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Abstract
In this paper we prove that under ideal conditions the helicity of fluid knots,
such as vortex filaments or magnetic flux tubes, provides a fundamentally new
topological means by which we may associate a topological invariant, the Jones
polynomial, that is much stronger than prior interpretations in terms of Gauss
linking numbers. Our proof is based on an extension of the Kauffman bracket
polynomial for unoriented knots. Explicit calculations of the Jones polynomial
for the left- and right-handed trefoil knots and for the Whitehead link via
the figure-of-eight knot are presented for illustration. This novel approach
establishes a topological foundation of classical field theory in general, and
of mathematical fluid dynamics in particular, by opening up new directions of
work both in theory and applications.

PACS numbers: 11.10.−z, 47.10.A, 47.32.C−, 52.30.Cv

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we prove that in ideal conditions the helicity of fluid knots, such as vortex
filaments or magnetic flux tubes, provides a fundamentally new topological means by which
we may associate a topological invariant, the Jones polynomial, that is much stronger than
prior interpretations in terms of Gauss linking numbers. This result provides a fundamentally
new topological approach to the study of complex fluid flows, by extending the former use
of helicity in terms of linking numbers to the computation of knot polynomials. This novel
approach contributes to establish a topological foundation of classical field theory in general,
and of mathematical fluid dynamics in particular, by opening up new directions of work both
in theory and applications.
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It is well known that helicity plays a fundamental role both in fluid mechanics and
magnetohydrodynamics (MHD), it being an invariant of the Euler and ideal MHD equations,
and a robust quantity of the dissipative Navier–Stokes equations and resistive MHD flows. In
ideal conditions its invariance was first established by Woltjer (1958) in the context of MHD
(magnetic helicity), and its topological interpretation in terms of the Gauss linking number
was provided by Moffatt (1969) in the context of vortex dynamics (kinetic helicity). In the
latter case, kinetic helicity is defined by

H ≡
∫

�

u · ω d3x, (1)

where u is the velocity field, defined on an unbounded domain of R
3, ω = ∇ × u is the

vorticity, defined on a sub-domain � and x is a position vector in R
3. For simplicity, we

assume ∇ · u = 0 everywhere and request ω · n̂ = 0 on ∂�, where n̂ is orthogonal to ∂�, with
∇ · ω = 0. Magnetic helicity, on the other hand, is simply obtained by replacing u · ω with
A · B, where B = ∇ × A is the magnetic field in � and A is its vector potential, subject to the
Coulomb gauge condition ∇ · A = 0. Indeed, any form of the type

H =
∫

M3
A ∧ dA (2)

is a helicity-type quantity, where M3 is a compact three-manifold with coordinates xi

(i = 1, 2, 3), and the gauge potential A = Aa
i τa dxi is a connection 1-form with τa

(a = 1, . . . , dim(G)) being the generators of the gauge group G. It was Whitehead (1947),
who showed that indeed H is an isotopy invariant of M3.

The topological meaning of helicity is particularly evident when we consider vortex
filaments in R

3. For N thin vortex filaments, � = ∑
i �i (i = 1, . . . , N) is the union of N

tubular regions �i, with vorticity embedded in �i. Each vortex is centred on a smooth, possibly
knotted, oriented curve γ i, central axis of �i. A collection of knots forms a link, and in general
we shall refer to a collection of vortex filaments as an oriented knot or link K in R

3. Thus, the
helicity H = H(K) is given by (Ricca and Moffatt 1992, Moffatt and Ricca 1992)

H(K) =
∑

i

κ2
i Lki + 2

∑
i j

κiκ jLki j, (3)

where κi denotes vortex circulation, Lki denotes the (Călugăreanu 1961, White 1969) self-
linking number of vorticity lines in �i with respect to the centerline γ i, and Lki j is the Gauss
linking number of γ i with γ j. Note that the self-linking number of the ith-vortex admits
decomposition in terms of the writhing number (Wri) and twist number (Twi), according to
Lki = Wri + Twi, two quantities that account for the geometry of the ith vortex filament
in space. The circulation (or topological charge) κi is an invariant of the Euler equations
and provides information on the topological complexity (connectedness) of the fluid domain
in R

3.
As Maxwell pointed out (1873, vol II, section 4.1; see also Ricca and Nipoti 2011 for a

historical reconstruction), it is known that the linking number sometimes fails to detect essential
topology, as the examples of the Whitehead link and the Borromean rings demonstrate. A
richer topological description is therefore needed to extend the use of helicity beyond linking
numbers. A possibility is provided by the computation of polynomial knot invariants. These
provide a tool by which one can define stronger means to distinguish families of knots and
links. Kauffman’s bracket polynomial definition of the Jones polynomial suggests this as an
attractive first step, even though stronger methods, such as the Khovanov homology or the
Heegaard Floer homologies, are known to be significantly more successful. Our application of
the Kauffman method will be accomplished by an approach similar to that done in topological
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quantum field theory (TQFT). By recalling some basic results of TQFT, we shall first re-
interpret helicity as an Abelian Chern–Simons (CS) action (section 2). In section 3 we shall
recall some basic concepts of knot theory by introducing the R-polynomial for oriented knots,
that will serve as a preliminary tool for the subsequent derivation. Our main result, i.e. a
description of a method by which the Jones polynomial can be used to study the topology of
fluid knots and links (vortex or magnetic) through helicity, will be stated and demonstrated in
section 4. This will be done in two steps: first, by using the Kauffman bracket polynomial for
unoriented knots (section 4.1) we shall derive the three skein relations, and then, by recovering
orientation, we shall re-write the skein relations of the Jones polynomial (section 4.2). The
cases of left- and right-handed trefoil knots (mirror knots), and the case of the Whitehead link
via the figure-of-eight knot, will be discussed in section 5 as explicit examples of polynomial
calculations for simple knots and links. Conclusions will be drawn in section 6.

2. Helicity as an Abelian Chern–Simons action

In gauge field theory the non-Abelian Chern–Simons (CS) action is given by

S =
∫

M3
A ∧ dA + A ∧ A ∧ A. (4)

When the gauge group G is Abelian, then equation (4) reduces to SAbelian = ∫
M3 A ∧ dA (cf

equation (2) above). Thus, the helicity H is an Abelian CS action.
Quantum CS field theory (see, for example, Peskin and Schoeder 1995) studies the vacuum

expectation value of the Wilson loops, essentially given by〈
N∏

k=1

ei
∮
γk

A

〉
= 1

Z

∫
[DA] e

∑
k i

∮
γk

A eiS, (5)

where γk is the (unoriented) support of a Wilson loop and Z = ∫
[DA] eiS is the partition

function. Work done in this context, initiated by Witten (1989) and carried out by many
others (see, for example, Le et al 1998), shows that the functional integral in (5) admits
a topological interpretation in terms of the Jones (1987), HOMFLY-PT (Freyd et al 1985,
Przytycki and Traczyk 1987) and other knot polynomials (Kauffman 1987, 1991). Moreover,
from the exponential expansion of (5) we can extract the Vassiliev invariants of knots and
three-manifolds via the Kontsevich integrals (see, for example, Altschuler and Freidel 1997,
Chmutov et al 2011), and the linking numbers of knots (see, for instance, Bar-Natan 1995,
Labastida and Pérez 1998). It is therefore natural to expect that helicity, as an Abelian CS
action, gives rise to knot polynomials. This will indeed be the case, and it will be proven in
section 4.2.

Before proceeding further, we need to make one more observation. In the case of thin
vortex filaments (and similarly for thin magnetic flux tubes), the vorticity field can be thought
of as given by ω = ω0 t̂, where ω0 is a constant and t̂ is the unit tangent to the vortex axis, so
that equation (1) can be reduced (see, for instance, Barenghi et al 2001) to

H =
∑

k

κk

∮
γk

u · dl, (6)

where κk = ∫
�0k

ω0 d2x is the circulation, �0k is the vortex cross-section, u is the vortex
self-induced velocity given by the Biot–Savart integral and dl is an elementary arc-length of
γk in the t̂-direction. For simplicity, we can set κk = 1. Hence, in analogy with equation (5),
and up to a constant, we can introduce the functional〈

N∏
k=1

ei
∮
γk

u·dl

〉
=

∫
[Du] e

∑
k i

∮
γk

u·dl eiH . (7)
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(a) (b) (c)

Figure 1. (a) Over-crossing L+, (b) under-crossing L− and (c) non-crossing L0 of oriented strands
in a knot diagram.

(a)

(b)

Figure 2. By adding and subtracting local paths (a) an over-crossing is reduced to a non-crossing
plus a positive writhe γ+ and (b) an under-crossing is reduced to a non-crossing plus a negative
writhe γ−.

Note that now the (oriented) integration paths coincide with the vortex centerlines γk. Thus,
by using equation (6) above, we have〈

N∏
k=1

ei
∮
γk

u·dl

〉
=

∫
[Du](e

∑
k i

∮
γk

u·dl
)2 =

∫
[Du](eiH )2. (8)

From the considerations made above, and from direct inspection of the right-hand side of
equation (8), it is evident that by straightforward re-scaling we can replace eiH with tH (the
base e being just a constant). Hence, by following a strategy similar to that outlined by Birman
and Lin (1993), we can re-define tH as a new variable and use this new variable to show that
indeed tH satisfies the skein relations of knot polynomials.

3. R-polynomial for oriented knots

We need to recall some preliminary information on the R-polynomial for oriented knots.
Kauffman (1987) proved that the Jones knot polynomial can be constructed by analyzing
crossing states in a knot diagram, where (see figure 1) over-crossings, under-crossings and
non-crossings are denoted by L+, L− and L0, respectively.

Calculations are based on applying reduction techniques performed recursively on
crossing sites, according to the diagrams shown in figure 2. These techniques resort to virtually
split the over/under-crossing (figures 2(a) and (b)), by adding and subtracting local paths, so
as to reduce each crossing site to a non-crossing plus a positive/negative writhe contribution,
denoted respectively by γ+ and γ−. These operations can be symbolically represented by a
single equation in the variable tH , given by

tH(L±) = tH(L0⊕γ±) = tH(L0)tH(γ±). (9)

By definition, H(γ±) = ∮
γ±

u · dl is given by the self-linking number associated with γ±;
hence, we can set H(γ±) = ±1/2 (or any other constant value between 0 and ±1). Thus,
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(a) (b) (c)

Figure 3. (a) Writhe +1, denoted by α+, (b) writhe −1, denoted by α− and (c) non-writhe, denoted
by α0.

Figure 4. By adding and subtracting local paths, a writhe +1 is reduced to a trivial circle plus a
writhe γ+.

by taking the difference between the two states and by setting k = t1/2, we have a first skein
relation for the knot polynomial, that is,

tH(L+) − tH(L−) = (k − k−1)tH(L0). (10)

The second skein relation is obtained by considering the writhe states α+, α− and α0 as shown
in figure 3. As above, by virtually adding and subtracting local paths to each writhe state, as
shown by the example of figure 4, we can obtain relationships between α± and α0.

Assuming that the self-linking number of a trivial circle is zero, then tH(©) = 1, and so
we obtain

tH(α+) = tH(α0)tH(γ+) = ktH(α0). (11)

Similarly for α−:

tH(α−) = k−1tH(α0). (12)

Thus, by defining R(K) = tH(K) for an oriented knot (or link) K, and by setting z = k − k−1,
equations (10)–(12) are re-written as

R(©) = 1, (13)

R(α+) = kR(α0), R(α−) = k−1R(α0), (14)

R(L+) − R(L−) = zR(L0). (15)

Equations (13)–(15) are the skein relations of the so-called R-polynomial originally introduced
by Kauffman (1987).

Note that in Kauffman’s original notation one has δ = (k − k−1)/z, whereas in our case
we simply set δ = 1. While this position is useful for the purpose we have in mind, this choice
is inevitably more restrictive, since it leads to a reduction from a two-parameter polynomial to
a single-parameter polynomial (from δ = 1, we have z = k − k−1); consequently, the resulting
degenerate R-polynomial is considerably weaker, failing to distinguish, for example, simple,
distinct topologies as shown in figure 5. Therefore, we need to resort to a more powerful knot
polynomial, as will be shown in the next section.
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(a) (b) (c)

Figure 5. The R-polynomial cannot distinguish between the different topologies in the pairs of
knots shown in the three cases above.

Figure 6. The crossing L+ can be split by adding and subtracting local paths following the left–right
(LR) or up–down (UD) scheme above. Both decompositions contribute equally to the calculation
of tH .

4. Jones’ polynomial from helicity

In this section we shall prove that the Jones polynomial of fluid knots, such as vortex or
magnetic knots, can be expressed in terms of helicity. The following result holds true.

Theorem 1. Let K denote a fluid knot or an n-component link. If the helicity of K is H = H(K),
then

tH(K) = t
∮
K u·dl, (16)

appropriately rescaled, satisfies the skein relations of the Jones polynomial V = V (K).

Proof of this result is based on a two-step approach. First (part 1, section 4.1), we shall
consider unoriented knots and derive the Kauffman bracket polynomial for these knots. Then
(part 2, section 4.2), by taking into account orientation, we shall derive the skein relations of
the Jones polynomial for oriented knots from the bracket polynomial, and this will complete
the proof of the theorem.

4.1. Proof of theorem 1: Kauffman’s bracket polynomial for unoriented knots (part 1)

Let K denote an unoriented fluid knot or an n-component link. Let us consider the
decomposition of the unoriented crossing L+ of figure 6. The crossing can be virtually split
by adding and subtracting local paths (of opposite ‘charge’) following the left–right (LR) or
up–down (UD) scheme shown in the figure. Evidently, both decompositions have the same
probability to occur; therefore, we assume that both must contribute equally to the calculation
of tH . Hence,

tH(L+) = tH(L+)

LR + tH(L+)

UD , (17)

where the terms on the right-hand side refer to the decomposition scheme shown in the figure.
Let us examine the contributions from parallel strands and from the figure-of-eight unknot,

6
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Figure 7. The writhe (absolute) value of a figure-of-eight unknot is bounded between 0 and 1.

separately. The parallel strands do not add any topological information, and indeed they
correspond to a non-crossing L0. Thus, their contribution to tH is zero.

The writhe contribution of the figure-of-eight unknot γ± is bounded between 0 and 1 (in
absolute value), and it cannot be determined a priori. Therefore, with reference to the LR
scheme of figure 6, the contribution of γ+ to the helicity by its self-linking number is given
by λH(γ+), where 0 � λ � 1 takes account of the uncertainty associated with the writhe
value (see figure 7). Hence, according to the LR decomposition, the unoriented L+ splits into
L0 ⊕ γ+, by contributing tH(L+)

LR = tH(L0)tλH(γ+) to helicity. By taking a = tλH(γ+), we have

tH(L+)

LR = atH(L0 ). (18)

Similarly for the UD decomposition, where we have L∞ ⊕ γ−, where L∞ = ; thus

H(γ−) = λH(γ−) = −λH(γ+). (19)

Hence

tH(L+)

UD = a−1tH(L∞), (20)

where a−1 = tλH(γ− ) = t−λH(γ+ ). By combining equations (17), (18) and (20), we have

tH(L+) = atH(L0 ) + a−1tH(L∞). (21)

The same reasoning can be repeated for the LR and UD decompositions performed on the
other crossing L−. We have

tH(L−) = atH(L∞ ) + a−1tH(L0). (22)

Evidently, equations (21) and (22) are complementary, and both of them must contribute to
the skein relations of the Kauffman bracket polynomial for unoriented knots.

Another skein relation comes from considerations of the contribution from distinct
components of a link, that is from , where © denotes a trivial circle and the rest of
the link. With reference to figure 8, we see how loop types α+ and α− can be virtually
decomposed into a collection of elementary paths by local splitting of strands. From this

decomposition we derive the diagram of figure 9 that shows that can be obtained by a
combination of two LR splits performed on the loop types α+ and α−, i.e.

tH(α+�γ+) = tH(α+)t−H(γ+) = a−1tH(α+), (23)

7
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Figure 8. Virtual decomposition of loop types α+ and α− by strand splitting into local paths.

Figure 9. Disjoint union of link components from decomposition of loop types.

and

tH(α−�γ−) = tH(α−)t−H(γ−) = atH(α− ). (24)

Since the two split paths have equal probability of occurring, they must contribute equally to

the decomposition ; hence,

tH( ) = a−1tH(α+ ) + atH( α−). (25)

Since the writhes α+ and α− present apparent crossings, and these are described by the skein
relations (21) and (22), then we can apply (21) and (22) to α+ and α− to further decompose the
right-hand side of the diagram of figure 9. By a straightforward application of the equations
above to α+ and α−, we obtain

(26)

and

(27)

By combining (25) with (26) and (27), we obtain

(28)

which provides the last skein relation of the bracket polynomial.

8
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By introducing the bracket symbol 〈K〉 = tH(K) for unoriented knots, we can rewrite (21),
(22) and (28) as the skein relations of the Kauffman bracket polynomial, that is,

(29)

(30)

(31)

4.2. Proof of theorem 1: Jones’ polynomial for oriented knots (part 2)

The Jones polynomial, an ambient isotopy invariant for oriented knots, is obtained
straightforwardly from the Kauffman bracket polynomial, that is, a regular isotopy invariant
for unoriented knots (Kauffman 1987). The bracket polynomial is an invariant under the sole
Reidemeister type II and III moves, and it changes when a writhe α+ changes to α−. Indeed,
by combining (30) and (31), we have

(32)

that shows that the bracket polynomial is not invariant under the Reidemeister type I move
(the so-called writhe move). Furthermore, we need to take care of the orientation naturally
induced by the field lines. Therefore, we must include orientation and consider oriented
knots K.

Let us denote by Wr(K) the writhing number of K, defined as usual by Wr(K) = ∑
r εr,

where εr = ±1, according to standard convention on crossing sites over the r apparent
crossings of K. Then, let us introduce a new polynomial V (K) defined by

V (K) = b−W r(K)〈K〉. (33)

As can be easily verified, V (K) is an isotopy invariant of the ambient space, that is,

V (α+) = V (α−) = V (α0). (34)

The skein relations of V (K) can be derived at once from those of the bracket polynomial. By
eliminating 〈L∞〉 from the two relations (30), we have

a 〈L+〉 − a−1 〈L−〉 = (a2 − a−2) 〈L0〉 . (35)

Then, by letting τ = a−4 and by replacing 〈K〉 with bWr(K)V (K), we have

(36)

(37)

By the direct application of (36) and (37) we can see that the third skein relation of the bracket
polynomial, equation (31), becomes

(38)

Equations (36) and (37) are the skein relations of the Jones polynomial for oriented knots.
They provide a powerful tool to compute the topology of fluid knots in terms of helicity via
τ = t−4λH(γ+ ). This completes the proof of the theorem.

9
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(a) (b)

Figure 10. Reduction schemes for the left- and right-handed trefoil knots. (a) Top: left-handed
trefoil knot; bottom: writhe γ− and a Hopf link H−, with crossing −1. (b) Top: right-handed trefoil
knot; bottom: writhe γ+ and a Hopf link H+, with crossing +1. The two knots are mirror images
of one another.

(a)

(b)

(c)

Figure 11. (a) Writhes γ+, γ− and disjoint union of two trivial circles lcc. (b) Hopf link H+ with
crossing +1, disjoint union of circles lcc and a writhe γ+. (c) Hopf link H− with crossing −1,
disjoint union of circles lcc and writhe γ−.

5. Jones’ polynomial calculation from helicity

In this section we provide two examples of the direct calculation of the Jones polynomial by
using diagram decomposition and the skein relations (36) and (37).

5.1. The left- and right-handed trefoil knots

Jones’ polynomial can distinguish mirror images of knots; as an example we provide explicit
calculations for the left- and right-handed trefoil knots (see top diagrams of figures 10(a) and
(b)). By re-arranging (37), we can convert a crossing in terms of its opposite plus a contribution
from parallel strands, that is,

(39)

This relation can be applied to a crossing of the trefoil knots of figure 10 (shown in the top
diagrams) to decompose them in their relative contributions, given by a writhe and a Hopf link,
with corresponding orientations (bottom diagrams). It is curious to note that the decomposition
of the right-handed trefoil knot into a writhe γ+ and a Hopf link H+ with crossing +1 coincides
with the diagram shown by Moffatt (1969, p 119) in his original paper. With reference to the
left-handed trefoil of figure 10(a), we have a writhe γ− and a Hopf link H+. For the writhe,
by using (37), we have (see figure 11(a))

τ−1V (γ+) − τV (γ−) = (τ
1
2 − τ− 1

2 )V (lcc), (40)

10
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that gives

V (lcc) = −τ− 1
2 − τ

1
2 , (41)

where lcc denotes disjoint union of trivial circles. As regards to the Hopf link H+, we must
pay attention to the relative orientation of the components. With reference to figure 11(b), we
have

τ−1V (H+) − τV (lcc) = (τ
1
2 − τ− 1

2 )V (γ+), (42)

that gives

V (H+) = −τ
1
2 − τ

5
2 . (43)

Similarly for the Hopf link H− of the right-handed trefoil knot of figure 10(b). With reference
to figure 11(c), we have

τ−1V (lcc) − τV (H−) = (τ
1
2 − τ− 1

2 )V (γ−), (44)

that gives

V (H−) = −τ− 1
2 − τ− 5

2 . (45)

By comparing (43) with (45), we see that different orientations determine different
polynomials.

Let us combine the results above to obtain the Jones polynomial. For the left-handed
trefoil knot, say TL, we have

τ−1V (γ−) − τV (TL) = (τ
1
2 − τ− 1

2 )V (H−), (46)

that, by using (45), gives

V (TL) = τ−1 + τ−3 − τ−4. (47)

For the right-handed trefoil knot TR, we have

τ−1V (TR) − τV (γ+) = (τ
1
2 − τ− 1

2 )V (H+). (48)

Thus, by using (43), we have

V (TR) = τ + τ 3 − τ 4. (49)

As we see by comparing (47) with (49), the Jones polynomial can distinguish a knot from its
mirror image.

5.2. The Whitehead link

Let us consider the two Whitehead links with different orientations shown in the top diagrams
of figure 12. With reference to the bottom diagrams of figure 12, by applying the skein relation
(37) to the Whitehead link W+ of crossing +1, we have the relation

τ−1V (W+) − τV (H−) = (τ
1
2 − τ− 1

2 )V (TL) , (50)

and application of (37) to the Whitehead link W− of crossing −1 gives

τ−1V (H+) − τV (W−) = (τ
1
2 − τ− 1

2 )V (F8), (51)

where F8 denotes the figure-of-eight knot shown at the bottom of figure 12(b). The latter can
be further reduced according to the diagrams of figure 13. By applying (37) to the unknot with
two writhes γ− (denoted by γ=), and to the Hopf link with the writhe γ+ (denoted by H+

−),
we have

τ−1V (F8) − τV (γ=) = (τ
1
2 − τ− 1

2 )V (H+
−). (52)

11
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Figure 12. Reduction schemes for Whitehead links W+ and W−. (a) Top: Whitehead link W+
with crossing +1; bottom: Hopf link H− and the left-handed trefoil knot TL. (b) Whitehead link
W− with crossing −1; bottom: Hopf link H+, and a figure-of-eight knot F8.

Figure 13. Top: reduction scheme for the figure-of-eight knot F8; bottom: the unknot with the two
writhes γ−, denoted by γ= (left), and a Hopf link with a writhe γ+, denoted by H+

−.

Now, since V (γ=) = 1 and V (H+
−) = V (H−) = −τ− 1

2 − τ− 5
2 , we have

V (F8) = τ−2 − τ−1 + 1 − τ + τ 2. (53)

As can be easily verified, the mirror image of the figure-of-eight knot of figure 13 has the same
Jones polynomial as that of equation (53).

Hence, by substituting (45) and (47) into (50), we have the Jones polynomial for W+, that
is

V (W+) = τ− 7
2 − 2τ− 5

2 + τ− 3
2 − 2τ− 1

2 + τ
1
2 − τ

3
2 . (54)

Similarly, by substituting (43) and (53) into (51), we have the Jones polynomial for W−, that
is

V (W−) = τ− 7
2 − 2τ− 5

2 + τ− 3
2 − 2τ− 1

2 + τ
1
2 − τ

3
2 . (55)

Evidently these two equations coincide, which means that different orientations of the
Whitehead link have no consequences for the resulting polynomial. Thus, we can conclude
that the Jones polynomial of the Whitehead link V (W ) is given by

V (W ) = τ
3
2 (−1 + τ−1 − 2τ−2 + τ−3 − 2τ−4 + τ−5). (56)

6. Conclusions

In this paper we have proved that the Jones polynomial of fluid knots and links under
ideal conditions can be expressed in terms of kinetic or magnetic helicity. This has been

12



J. Phys. A: Math. Theor. 45 (2012) 205501 X Liu and R L Ricca

done by re-interpreting helicity as an Abelian Chern–Simons action (section 2), following
an approach similar to that used in topological quantum field theory. First we have re-
called some basic concepts and techniques of knot theory (section 3) useful to introduce the
R-polynomial for oriented knots. Then in section 4 we have proven our main result that the Jones
polynomial of fluid knots and links can be determined in terms of helicity. This has been done
in two steps: by using the Kauffman bracket polynomial for unoriented knots we have derived
(section 4.1) the three standard skein relations, and then (section 4.2), by including orientation,
we have reduced them to the skein relations of the Jones polynomial for oriented knots. In
section 5, for illustration, we have computed the Jones polynomial explicitly in several cases;
first, we have considered the left- and right-handed trefoil knots to show that indeed the Jones
polynomial can distinguish mirror images; then we have considered the Whitehead link via
the figure-of-eight knot, for which the Gauss linking number vanishes.

This work demonstrates the breath and importance of this fundamentally new topological
approach to fluid dynamics based on polynomial invariants of knot theory expressed in terms
of fluid helicity. This has several consequences. Conceptually, this approach provides a much
richer topological context by freeing the role of helicity from its exclusive relationship with
linking numbers. From an applied viewpoint, this is particularly important for all those cases,
in which topology is essential, but linking numbers fail to detect it (such as for the Whitehead
link). More generally, this work provides a fundamentally new role for the Jones polynomial
of knots and links in terms of fluid helicity. From a foundational viewpoint, this provides
further evidence of the topological character of classical field theory, and ideal fluid dynamics
in particular.

In the light of modern developments in direct numerical simulations of fluid flows
and advanced visiometrics, then, numerical implementation of knot polynomial calculations
provides a new, powerful tool for computing topological aspects of complex fluid structures.
Work in this direction, based on extracting physical information from diagram analysis by
using knot theoretical concepts (Barenghi et al 2001, Ricca 2009), demonstrates this potential
for future diagnostic applications.

All this will contribute to open up new directions of work, both in theory and applications.
For instance, the consequences of now knowing that one can detect the unknot using the
Khovanov or Heegaard Floer theories to study knots and links suggest the possibility of
developing even more sophisticated tools than the knot polynomial invariants. Thus, the
development of an analogous program connecting helicity to these theories might help identify
some totally new topological characteristics of fluid knots. Some of our current work is in
progress along these new lines of research.
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Călugăreanu G 1961 Sur les classes d’isotopie des nœuds tridimensionnels et leurs invariants Czech. Math. J.

T11 588–625
Chmutov S, Duzhin S and Mostovoy J 2011 Introduction to Vassiliev Knot Invariants (Cambridge: Cambridge

University Press)
Freyd P, Yetter D, Hoste J, Lickorish W B R, Millett K and Ocneanu A 1985 A new polynomial invariant of knots

and links Bull. Am. Math. Soc. 12 239–46
Jones V F R 1987 Hecke algebra representations of braid groups and link polynomials Ann. Math. 126 335–88
Kauffman L H 1987 On Knots (Princeton, NJ: Princeton University Press)
Kauffman L H 1991 Knots and Physics (Singapore: World Scientific)
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