
Business Model Design as a Temporal Planning Problem: Preliminary Results
Daniele Magazzeni

Department of Informatics
King’s College London

UK

Fabio Mercorio
CRISP Research Centre

University of Milan Bicocca
Italy

Balbir Barn, Tony Clark, Franco Raimondi
Department of Computer Science
Middlesex University, London

UK

Vinay Kulkarni
Tata Consultancy Services

Pune, India

Abstract

A number of formalisms and notations are available to design
business models. Typically, a top-level model is created man-
ually with one of these formalisms by a team of business ex-
perts, and the model is then analysed using simulations and
model-based testing to find the most efficient configuration
for resource allocation. The aim of this paper is to present a
novel application domain for planning, together with a bench-
mark problem based on an industrial partner’s experience: we
encode the problem of finding the most efficient resource al-
location for a business process as a planning problem. In par-
ticular, we consider a list of actions that various divisions in
an organization can take, together with their associated costs,
and we look for a solution that minimises time-to-market for
a given project budget.

1 Introduction
Business organisations that provide or build products (e.g.,
software, mixed software-hardware solutions, and even ac-
tual goods) are likely to employ abstract modelling lan-
guages to describe and analyse their business processes. As
described below, a number of formal languages are avail-
able for modelling business processes, and various tools are
available to automate the analysis of the modelled work-
flows with the aim of minimising time-to-market, produc-
tion costs, maximising return on investment, etc. To the best
of our knowledge, however, the design of business mod-
els is still a manual process that relies on the experience
of top-level managers and domain experts to produce se-
quences of steps that achieve a desired business goal, sub-
ject to the minimization/maximization of various metrics.
As a result, there is no guarantee that the business models
obtained using this process are indeed the most efficient so-
lution. Additionally, the exploration of different options is a
very time-consuming task: each new model has to be devel-
oped and analysed separately, and alternative solutions need
to be compared manually.
In this paper we argue that the design of business models

can be automated using AI planning techniques, thus pro-
viding an effective tool to search for “efficient” solutions for
resource allocation and task scheduling, or to quickly ex-
plore alternative business models.

Copyright c 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

More in detail, our contributions can be summarised as
follows: we present a novel application domain for temporal
planning that is derived form a concrete instance provided by
an industrial partner; we describe a benchmark domain that
results in a challenging multi-objective temporal planning
problem; as a practical example, we consider a model-driven
software development process and we show how it can be
encoded as a temporal planning problem for our domain.

Finally, we use a temporal planner to generate solutions
that minimise time-to-market for a given project budget and
we provide a visual representation of the automatically gen-
erated non-trivial resource allocation using a Gantt chart.

Related work: UML Activity Diagrams (UML 2012)
and their associated profiles are among the most commonly
used representations for business process modelling. A
number of tools support UML modelling, including Eclipse
plug-ins (www.eclipse.org) and IBM Rational Rose
(www.ibm.com/software/rational/). Various ap-
proaches have been presented to analyse and verify activity
diagrams (Eshuis 2006; Forster et al. 2007). The key differ-
ence with our work is that the input of all the existing tools
(and for the methods mentioned below) is a business model
that is manually created: using a planner an optimised model
(in terms of resource allocation) is automatically generated.

Other business modelling languages include Petri
Nets (van der Aalst 1998; Hinz, Schmidt, and Stahl 2005)
and Event-Drive Process Chains (EPC) (van der Aalst 1999).
Due to space constraints we refer to (List and Korherr 2006)
for the description of additional methods.

Perhaps the closest work to ours is the translation of Sta-
tus and Action Management (SAM) models to PDDL (Hoff-
mann, Weber, and Kraft 2012). This work has been devel-
oped in collaboration with SAP (www.sap.com), and is
based on the use of an adaptation of the planner FF (Hoff-
mann and Nebel 2001). Using this approach, business
process modellers can employ a planner to refine high-
level actions and automatically generate sequences of steps
expressed in BPMN (Business Process Modelling Nota-
tion (OMG 2012)). The main difference with our proposal is
that we consider cost and duration of actions, together with
planning metrics.

85



2 A Formal Model for Business Processes
In this section we first provide a formal semantics for busi-
ness processes that abstracts the existing approaches de-
scribed above. Then, we describe an actual process currently
in use at Tata Consultancy Services. In section 3 a mapping
between the formal model and a temporal planning model is
presented, using the concrete business process as a running
example.

2.1 The Model
Definition 1 (Business Process) A Business Process (BP)
B is a 10-tuple (S,si,se,P ,D,R,A,T ,C,b), where: S is a fi-
nite set of states, si ∈ S is the initial state, se ∈ S is the
end state, P is a finite set of parameters, D : S → 2S is the
dependency function, R : S → 2P is the requirements func-
tion, A : S → 2P is the allocation function, T : S → R+ is
the temporal function, C : S × 2P × R+ → R+ is the cost
function and b ∈ R+ is the budget.

The set of states S corresponds to the set of typical busi-
ness steps, such as “Requirements analysis” or “Code test-
ing”. Each state may depend on other states: for instance,
“Code testing” depends on “Code generation”. The set P
includes parameters such as number of developers, number
of testers, number of domain experts, etc. For each state
s ∈ S, D(s) defines the set of states s depends on,R(s) de-
fines the requirements for the phase represented by s, A(s)
defines the resources allocated for it, T (s) defines its dura-
tion and C(s,A(s), T (s)) defines its cost. Finally we have
an initial state si ∈ S (such that D(si) = ∅), and an end
state se ∈ S.
Definition 2 (Business Process Execution) A Business
Process Execution for the BP B=(S,si,se,P ,D,A,T ,C,b) is
a sequence π = (s0a0t0)(s1a1t1)(s2a2t2) . . . sn, where,
∀j ≥ 0, sj ∈ S, aj = A(sj), tj = T (sj).

A Business Process Execution is admissible iff:

1. s0 = si
2. sn = se
3. ∀j ≥ 1, ∀sk ∈ {D(sj)} : sk ∈ π ∧ k < j

4. ∀sl ∈ S,R(sl) ⊆ A(sl)

5.
�

j=0...n−1 C(sj, aj , tj) ≤ b

In particular, conditions 1, 2, and 3 of Definition 2 require
all the dependencies among phases to be satisfied, all phases
requirements to be met and the total cost to be within the
given budget, respectively.

2.2 The MDSD Process
Table 1 describes the states and the associated functions
R(s), T (s), and C(s, a, t) for a model-driven software de-
velopment (MDSD) process that has been used to deliver
several large business applications for past 16 years at Tata
Consultancy Services. A row of the table depicts a specific
phase of the MDSD process, the time the phase takes to
complete as a percentage of total time taken for completion
of the MDSD process, and the various actors participating
in the phase along with their relative contribution. For in-
stance, the High Level Design phase requires 5% of the time

taken by the overall MDSD process, and requires the partic-
ipation of a Solution Architect (SA), a Domain Expert (DE)
and a TechnologyArchitect (TA). If the overall time required
by a project is 100 man-days, this line encodes the fact that
the HLD phase requires 0.3 · 5 TA days, 0.1 · 5 DE days,
and 0.6 · 5 SA days. The remaining actors are Test Engineer
(TE), MDE Expert (ME), Modeller (M), Developer (D), and
Tester (T).
The initial state is si = RE, and the end state is se = END.

The dependency function D is graphically shown in Fig-
ure 1. The function C(s, a, t) can be derived from the times

described in Table 1 and the costs in Table 2.

3 Business Process as a Planning Problem
The proposal of this paper is a translation of a business
process (as defined in Definition 1) into a temporal plan-
ning problem, so that planners can be used to find admissi-
ble business process executions (as defined in Definition 2)
while minimising the time-to-market.
It is worth noting that the use of temporal planning is

key in this context as it allows modelling of concurrent ac-
tivities and time-dependent resource allocations. Further-
more, although the business process design could be seen
as a scheduling problem, the setting we consider makes it a
planning problem. In fact, the number of resources that can
be allocated to each phase is not known in advance as well
as the order in which phases are executed, their duration and
how concurrency can be exploited.
In the following we present the main components of the

PDDL domain and problem.

3.1 The Planning Domain
The business process domain presents a number of challeng-
ing features to be modelled. First, the business process con-
sists of different phases each of which, in turn, requires a
number of tasks to be accomplished. The order of execution
of the phases is not fixed, while there is a set of dependen-
cies among phases that must be satisfied, which, however,
allow for a set of phases to be executed in parallel. Second,
different tasks require people of different skills, and people
have to be allocated to each phase/task. The number of peo-
ple to allocate is not know in advance, and only an upper
bound is provided. Third, the project cost needs to be com-
puted, depending on the resource allocation, and maintained
within the given budget. Finally, as we want to optimise the
time-to-market, the duration of the plan has to be minimised.

We begin the description of the domain with the
whole project action, shown in Figure 2. It is an en-
velope action, which encloses the whole process execution
and whose duration is chosen by the planner. Therefore,
in order to minimise the time-to-market, the planner will
try to minimise the duration of the whole project ac-
tion, which, in turn, is used to set dynamically the value
of project time that is used to compute the cost of the
project, as described in the following.
In order to model resource allocation, we distinguish be-

tween employing a resource (which defines the total number

86



s ∈ S T (s) R(s)
% Time DE SA TA TE ME M D T

Requirements Elicitation (RE) 15 0.9 0.1
High Level Design (HLD) 5 0.1 0.6 0.3
Test Case Preparation (TCP) 5 0.2 0.1 0.7
Low Level Design (LLD) 10 0.3 0.7
Code Generator Procurement (CGP) 10 0.2 0.2 0.6
Component Interface Modelling (CIM) 2 0.1 0.1 0.8
Component Interface Validation (CIV) 2 0.1 0.1 0.8
Component Interface Assembly (CIA) 1 0.2 0.1 0.7
Modelling Component Implementation (MCM) 5 0.1 0.1 0.8
Validation of Component Implementation Model (VCIM) 5 0.1 0.1 0.8
Coding of Component Implementation (CCI) 7 0.8 0.2
Model-Based Code Generation (MBCG) 3 0.1 0.1 0.8
DSL translation (DSLT) 4 0.1 0.9
Compilation (COMP) 5 1
Unit Testing (UT) 5 1
Component Assembly (CA) 5 0.2 0.4 0.4
Integration Testing (IT) 5 0.1 0.1 0.8
User Acceptance Testing (UAT) 5 0.1 0.1 0.1 0.7
Sign Off (SO) 1 0.4 0.3 0.3
END

Table 1: Phases of the MDSD process

Figure 1: Dependency graph for the MDSD process

(:durative-action whole_project
:parameters (?p - phase)
:duration (<= ?duration (MAX_PLAN_LENGHT))
:condition (and (at start (todo_project))
(at start (is_last_phase ?p))
(at end (completed ?p)))

:effect (and (at start (running_project))
(at start (not (todo_project)))
(at end (project_completed))
(at end (assign (project_time) ?duration))))

Figure 2: The whole project action

of resources for each skill that will be used) and allocating a
resource (which defines how resources are used throughout
the process).

Employing Resources. Figure 3 shows the employ and
payOne actions for domain experts (similar actions are de-
fined for other skills). These actions are used for managing
the amount of resources and for updating the project cost
accordingly. In particular the employ action increments
the project cost by the cost of recruiting that particular re-

source (costs of resources of different skills are shown in
Table 2). On the other hand, the payOne action, which is
applied when the project is completed, is used to increment
the project based on the daily cost of the resource and the
duration of the project.

Allocating resources. The planner can use allocation
(deallocation) actions to assign (release) resources of differ-
ent skills to each phase of the business model before (after)
performing that phase through the corresponding execution
action. As an example, Figure 4 shows the actions for al-
locating and deallocating a domain expert. Note that the
deallocate action for skill Y does not require the whole
phase to be finished, but only the subtask for skill Y to be
completed. This allows a flexible allocation of the same re-
source to different phases.

Executing Phases. Modelling the execution of a phase
presents an interesting issue, as a phase consists of one or
more tasks to be completed. Furthermore, the duration of
each task is defined in terms of man-days for each skill re-
quired to perform the task (as shown in Table 1). Let us as-
sume that task p requires skills A, B, C, and for each of them
the amount of work is pAdays, pBdays and pCdays. If

87



(:action employ_DE
:parameters ()
:precondition (and (< (employed_DE) (max_DE))
(running_project))

:effect (and (increase (available_DE) 1)
(increase (employed_DE) 1)
(increase (total_project_cost)

(employment_cost_DE)))

(:action payOne_DE
:parameters ()
:precondition (and (project_completed)
(> (employed_DE) 0)
(> (available_DE) 0))

:effect (and (increase (total_project_cost)
(* (project_time) (per_day_cost_DE)))

(decrease (employed_DE) 1)))

Figure 3: The employ and payOne actions

(:action allocate_DE
:parameters (?p - phase)
:precondition (and
(doing ?p)
(> (available_DE) 0))

:effect (and
(increase (allocated_DE ?p) 1)
(decrease (available_DE) 1)))

(:action deallocate_DE
:parameters (?p - phase)
:precondition (and
(completed_DE ?p)
(> (allocated_DE ?p) 0))

:effect (and
(decrease (allocated_DE ?p) 1)
(increase (available_DE) 1)))

Figure 4: An example of allocation and deallocation actions

the planner has allocated pAres, pBres, pCres resources
to task p, then the duration of the phase is

max
i∈{A,B,C}

�
pidays

pires

�

Therefore, the effects of the action become effective only
when all the sub-tasks have been completed. On the other
hand, the resources of skill j allocated for the task become
available as soon as the sub-task requiring skill j terminates,
even if the other sub-tasks are still executing.
Modelling such a scenario is not trivial, and the proposed

solution is illustrated in Figure 7. For each phase of the busi-
ness process, an envelope action is used, whose duration is
left to the planner. Then, the task is split into k durative ac-
tions (where k is the number of different subtask required
to complete the phase), whose duration depends on the re-
sources previously allocated by the planner.
As an example, Figure 5 shows the envelope action to per-

form a phase, while Figure 6 shows the action for the sub-
task requiring domain experts. Furthermore, the model al-
lows the presence of continuous non-linear constraints over

resources, as the business model design is expressed in terms
of a temporal planning problem.

(:durative-action execute_phase
:parameters (?p ?dp1 ?dp2 ?dp3 - phase)
:duration (and (<= ?duration (upper_bound ?p)))
:condition (and

(at start (todo ?p))
(at start (running_project))
(at start (depends ?p ?dp1 ?dp2 ?dp3))
(at start (completed ?dp1))
(at start (completed ?dp2))
(at start (completed ?dp3))
(at end (completed_DE ?p))
(at end (completed_SA ?p))
(at end (completed_TA ?p)))

:effect (and (at start (doing ?p))
(at end (completed ?p))
(at end (not (doing ?p)))
(at end (not (todo ?p)))))

Figure 5: An example of envelope-execution action

(:durative-action executive_subtask_DE
:parameters (?p - phase)
:duration (= ?duration (/
(duration_subtask_DE ?p) (allocated_DE ?p)))

:condition (and (at start (todosubtask_DE ?p))
(over all (doing ?p))
(at end (>= (employed_DE) (allocated_DE ?p)))

:effect (and (at start (not (todosubtask_DE ?p)))
(at end (completed_DE ?p))))

Figure 6: An example of subtask-execution action

3.2 The Planning Problem
The goal is to complete the whole project satisfying all
the dependencies. Furthermore, the total project cost must
be within the given budget. To this end, the goal has the
condition that total project cost must be no greater
than budget, where total project cost depends on
the number of resources with different skills employed
and the per-day cost of each resource (as shown in Ta-
ble 2). As we said before, we are interested in minimising
Time-to-Market. This is mapped into the planning metric
(:metric minimize (total-time)).

Skill per-day-cost employment cost
DE 5 30
SA 5 30
TA 4 25
TE 2 20
ME 5 30
M 2 20
D 1.25 12.5
T 1 10

Table 2: Normalized costs of resources of different skills

88



Figure 7: Envelope action for task execution

A fragment of the PDDL problem is shown in Fig-
ure 8, where we show key elements for phase Compilation
(COMP) and resource Developer (D).
The budget is fixed to 3, 000. The per day cost D,

the employment cost D and the maximum number of
Developers that can be employed are defined according to
the normalized costs of resources shown in Tab. 2.
Then, the predicate (todosubtask D COMP) is used

to specify which kind of skills are needed to complete the
phase (here a Developer is needed to perform the Compila-
tion phase). The dependency graph for the MDSD process
is defined through the predicate (depends COMP CIA
MBCG DSLT)which constrains the execution of the COMP
phase to the completion of three distinct phases, that are the
Component Interface Assembly, Model-Based Code Gen-
eration, and DSL Translation. The duration of the phase
COMP and its three subtasks is initiated through predicates
upper bound COMP and duration subtask respec-
tively, as explained in Sec. 2.2. Finally, as described above,
the goal is to find a feasible Business Process Execution ac-
cording to Def. 2 minimizing the time-to-market.

4 Experimental Results
Given the model detailed above, we used the POPF1 plan-
ner (Coles et al. 2010) to synthesise a solution. Figure 9 pro-
vides a Gantt chart of an efficient solution found by POPF
in less than 30 minutes, working on a x64 Linux machine
equipped with 6 GB of RAM. The MDSD process requires
about 15 days, with a total cost of 2.686 for people, against
an available budget of 3.000. Notice that the maximumnum-
ber of employees for each skill has been limited to 5.
An approach typically followed by managers - and con-

firmed by our industrial partner - is to move a resource to a
different phase only when the current phase is finished, as
the switching of resources between ongoing phases is hard
to be planned manually. Conversely, the key element of the
plan is the optimised parallel execution of several phases

1POPF is an any-time planner, which improves the current so-
lution as time is given.

(= (MAX_PLAN_LENGHT) 100) ;;sum of T(s) in Tab.1
(is_last_phase END)
(= (budget) 3000)
(= (total_project_cost) 0)
(= (project_time) 0)

;; Developer
(= (employed_D) 0)
(= (max_D) 5)
(= (available_D) 0)
(= (employment_cost_D) 12.5)
(= (per_day_cost_D) 1.25)

;; columns R(s) of Tab. 1 for a Developer
(todosubtask_D CCI) (todosubtask_D MBCG)
(todosubtask_D DSLT) (todosubtask_D COMP)
(todosubtask_D UT) (todosubtask_D CA)

;; graph of Fig.1
(depends COMP CIA MBCG DSLT)

;; COMP PHASE
(completed_DE COMP) (completed_TA COMP)
(completed_TE COMP) (completed_ME COMP)
(completed_M COMP) (completed_T COMP)
(completed_SA COMP)

(= (upper_bound HLD) 5)
(= (duration_subtask_D COMP) 5)

(:goal (and
(project_completed)
(<= (total_project_cost) (budget)))

(:metric minimize (total-time)))

Figure 8: An extraction of PDDL problem for the COMP
phase

as the model allows the switching of a resource between
phases even when they are still on-going. To give a few
examples, Figure 11 focuses on phases Modelling Compo-
nent Implementation (MCM), Component Interface Assem-
bly (CIA), and Coding of Component Implementation (CCI)
of the Gantt chart depicted in Figure 9. These phases start in
parallel on the sixth day of the project execution. In partic-
ular, the phases Modelling Component Implementation and
Component Interface Assembly have the same skill require-
ments as shown in Table 1, that is Software Architects and
MDE Experts.
In order to speed up the execution of these parallel phases

(on which the next Compilation phase depends) the planner
decides to allocate the available Modellers on the Compo-
nent Interface Assembly task until it ends, then the plan-
ner switches them on the same task of the phase Modelling
Component Implementation. The same happens for tasks
requiring MDE Experts. On the other hand, all these three
phases need to complete a task which involves Software Ar-
chitects (boxes with a green vertical texture in Figure 11).
As a consequence, the planner decides to assign 4 out of 5
Software Architects to complete the task of phase Coding of
Component Implementation. Simultaneously, it first assigns

89



6 7

Whole Project
Phase MCM
Phase CIA
Phase CCI

TaskM CIA 3
TaskSA CCI 4
TaskD CCI 5

TaskME CIA 3
TaskME MCM 5
TaskM MCM 5
TaskSA CIA 1

TaskSA MCM 1

Figure 11: A focus on the Gannt Charts of Figure 9. Rel-
evant tasks are highlighted with a green vertical texture
when referring to Software Architects (SA), with an orange
crosshatched texture to refer MDE Experts (ME) and with a
blue slanted texture in referring to Modellers (M).

the remaining Software Architect to phase Component Inter-
face Assembly, and then to the phase Modelling Component
Implementation. This non-trivial allocation of resources be-
tween tasks allows the planner to compute an optimised task
duration to minimize the project time maximising the budget
usage. Finally, a less efficient plan is provided in Figure 10
that requires 57 days to complete theMDSD process. Notice
that, in comparison with the optimised solution of Figure 9,
this plan recruits less employees but requires more budget
to complete the process. This example shows that there is
much room for optimisation in this domain using automated
planning.

5 Conclusion and Future Work
In this paper we have presented how the problem of design-
ing a business model can be cast as a planning problem.
Our experience at Tata Consultancy Services over nearly two
decades has shown that the correct design of business mod-
els can make the difference between successful and unsuc-
cessful projects. However, in spite of the large body of work
available for the verification of existing business processes
(see for instance (Bianculli, Ghezzi, and Spoletini 2007) and
references therein), there is currently no support for the au-
tomatic generation of business processes. We have presented
a first approach on this direction, modelling the design of the
business process as a temporal planning domain and finding
plans that minimise time-to-market for a given project bud-
get.
The abstract model described in Section 2.1 captures

the key elements of most modelling languages described
in the Introduction: we are currently working on auto-
matic translators from mainstream notations (OMG 2012;
Clark, Barn, and Oussena 2011) to PDDL, and for the future
we envisage automatic tool support to enable the communi-
cation between modelling tools and an appropriate planner.
A natural future work for extending the proposed model

is to exploit the expressive power of PDDL3.0 (Gerevini
and Long 2006) and use preferences to take into account
soft constraints and model further Key Performacen Indica-

tors. Finally, to deal with the multi-objective optimisation
involved in this problem and provide richer suggestions to
business organisation, the use of Pareto frontiers (Sroka and
Long 2012) appears promising.

References
Bianculli, D.; Ghezzi, C.; and Spoletini, P. 2007. A model
checking approach to verify BPEL4WS workflows. In Pro-
ceedings of the IEEE International Conference on Service-
Oriented Computing and Applications, SOCA ’07, 13–20.
Washington, DC, USA: IEEE Computer Society.
Clark, T.; Barn, B. S.; and Oussena, S. 2011. LEAP: a
precise lightweight framework for enterprise architecture. In
Proceeding of the 4th Annual India Software Engineering
Conference, ISEC 2011, 85–94. ACM.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the Twentieth International Conference on Automated Plan-
ning and Scheduling (ICAPS-10).
Eshuis, R. 2006. Symbolic model checking of UML activity
diagrams. ACM Trans. Softw. Eng. Methodol. 15(1):1–38.
Forster, A.; Engels, G.; Schattkowsky, T.; and Van
Der Straeten, R. 2007. Verification of business process qual-
ity constraints based on visual process patterns. In Theoret-
ical Aspects of Software Engineering, 2007., 197 –208.
Gerevini, A., and Long, D. 2006. Preferences and soft con-
straints in pddl3. In Proceedings of ICAPS Workshop on
Planning with Preferences and Soft Constraints.
Hinz, S.; Schmidt, K.; and Stahl, C. 2005. Transforming
BPEL to Petri nets. Business Process Management 220–
235.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Intell.
Res. (JAIR) 14:253–302.
Hoffmann, J.; Weber, I.; and Kraft, F. 2012. SAP speaks
PDDL: Exploiting a software-engineering model for plan-
ning in business process management. Journal of Artificial
Intelligence Research 44:587–632.
List, B., and Korherr, B. 2006. An evaluation of conceptual
business process modelling languages. In Proceedings of the
2006 ACM symposium on Applied computing, 1532–1539.
ACM.
OMG. 2012. OMG business process model and notation.
www.bpmn.org/. Last accessed: 13 November 2012.
Sroka, M., and Long, D. 2012. Exploring metric sensitivity
of planners for generation of pareto frontiers. In STAIRS,
volume 241 of Frontiers in Artificial Intelligence and Appli-
cations, 306–317.
UML. 2012. OMG formal specifications. http://www.
omg.org/spec/. Last accessed: 12 November 2012.
van der Aalst, W. 1998. The application of Petri nets to
workflow management. Journal of circuits, systems, and
computers 8(01):21–66.
van der Aalst, W. 1999. Formalization and verification of
event-driven process chains. Information and Software tech-
nology 41(10):639–650.

90



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Whole Project (cost 2686.685)
Phase RE

TaskDE RE 5
TaskSA RE 5
Phase TCP

TaskSA TCP 3
TaskTE TCP 3

Phase HLD
TaskDE TCP 3
TaskDE HLD 2
TaskTA HLD 5
TaskSA HLD 5

Phase LLD
TaskSA LLD 5
TaskTE LLD 5

Phase CIM
TaskME CIM 3
TaskSA CIM 3
TaskM CIM 5
Phase CGP

TaskSA CGP 5
TaskME CGP 5

Phase CIV
TaskM CIV 5
TaskTA CGP 5
TaskSA CIV 5
TaskME CIV 5
Phase MCM
Phase CIA
Phase CCI

TaskM CIA 3
TaskSA CCI 4
TaskD CCI 5

TaskME CIA 3
TaskME MCM 5
TaskM MCM 5
TaskSA CIA 1

TaskSA MCM 1
Phase VCIM

TaskME VCIM 5
TaskM VCIM 5

Phase DSLT
TaskD DSLT 3
TaskSA DSLT 3
TaskSA VCIM 5
Phase MBCG

TaskD MBCG 2
TaskSA MBCG 5
TaskM MBCG 5

Phase COMP
TaskD COMP 5

Phase UT
TaskD UT 5
Phase CA

TaskSA CA 5
TaskM CA 5
TaskD CA 5

Phase IT
TaskTE IT 5
TaskSA IT 5
TaskT IT 5
Phase UAT
Phase SO

TaskTE UAT 3
TaskSA UAT 3
TaskDE UAT 3
TaskT UAT 5
TaskTE SO 5
TaskSA SO 5
TaskDE SO 5

Figure 9: Gannt Charts of a POPF solution. The black bar represents the overall phase duration whereas a blue bar TaskXY K
represents the execution of task X of the phase Y usingK allocated employees.

91



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Whole Project (cost 2750.655)
Phase RE

TaskSA RE 1
TaskDE RE 2
Phase TCP
Phase HLD

TaskTE TCP 1
TaskTA HLD 1
TaskSA TCP 1
TaskSA HLD 1
TaskDE TCP 1
TaskDE HLD 1

Phase LLD
TaskSA LLD 1
TaskTE LLD 1

Phase CIM
Phase CGP

TaskM CIM 1
TaskME CIM 1
TaskTA CGP 1
TaskSA CIM 1
TaskME CGP 1
TaskSA CGP 1

Phase CIV
TaskM CIV 1

TaskME CIV 1
TaskSA CIV 1
Phase MCM
Phase CIA

TaskM CIA 1
TaskME CIA 1
TaskM MCM 1

TaskME MCM 1
Phase CCI

TaskD CCI 1
TaskSA CIA 1
TaskSA CCI 1

TaskSA MCM 1
Phase VCIM

TaskM VCIM 1
TaskME VCIM 1
TaskSA VCIM 1

Phase DSLT
TaskD DSLT 1
TaskSA DSLT 1
Phase MBCG

TaskD MBCG 1
TaskM MBCG 1
TaskSA MBCG 1

Phase COMP
TaskD COMP 1

Phase UT
TaskD UT 1
Phase CA

TaskD CA 1
TaskM CA 1
TaskSA CA 1

Phase IT
TaskT IT 1

TaskTE IT 1
TaskSA IT 1
Phase UAT

TaskT UAT 1
TaskTE UAT 1

Phase SO
TaskTE SO 1

TaskDE UAT 1
TaskSA UAT 1
TaskDE SO 1
TaskSA SO 1

Figure 10: Gannt Charts of a POPF feasible solution. The black bar represents the overall phase duration whereas a blue bar
TaskXY K represents the execution of task X of the phase Y usingK allocated employees.

92


