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Abstract

Multidimensional asset models based on Lévy processes have been introduced to meet the

necessity of capturing market shocks using more refined distribution assumptions com-

pared to the standard Gaussian framework. In particular, along with accurately modeling

marginal distributions of asset returns, capturing the dependence structure among them

is of paramount importance, for example, to correctly price derivatives written on more

than one underlying asset. Most of the literature on multivariate Lévy models focuses

in fact on pricing multi-asset products, which is also the case of the model introduced in

Ballotta and Bonfiglioli (2014). Believing that risk and portfolio management applications

may benefit from a better description of the joint distribution of the returns as well, we

choose to adopt Ballotta and Bonfiglioli (2014) model for asset allocation purposes and we

empirically test its performances. We choose this model since, besides its flexibility and

the ability to properly capture the dependence among assets, it is simple, relatively par-

simonious and it has an immediate and intuitive interpretation, retaining a high degree

of mathematical tractability. In particular we test two specifications of the general model,

assuming respectively a pure jump process, more precisely the normal inverse Gaussian

process, or a jump-diffusion process, precisely Merton’s jump-diffusion process, for all the

components involved in the model construction.

To estimate the model we propose a simple and easy-to-implement three-step proce-

dure, which we assess via simulations, comparing the results with those obtained through

a more computationally intensive one-step maximum likelihood estimation.

We empirically test portfolio construction based on multivariate Lévy models assum-

ing a standard utility maximization framework; for the exponential utility function we

get a closed form expression for the expected utility, while for other utility functions (we

choose to test the power one) we resort to numerical approximations.



Among the benchmark strategies, we consider in our study what we call a ‘non-parametric

optimization approach’, based on Gaussian kernel estimation of the portfolio return dis-

tribution, which to our knowledge has never been used.

A different approach to allocation decisions aims at minimizing portfolio riskiness re-

quiring a minimum expected return. Following Rockafellar and Uryasev (2000), we de-

scribe how to solve this optimization problem in our multivariate Lévy framework, when

risk is measured by CVaR. Moreover we present formulas and methods to compute, as ef-

ficiently as possible, some downside risk measures for portfolios made of assets following

the multivariate Lévy model by Ballotta and Bonfiglioli (2014). More precisely, we con-

sider traditional risk measures (VaR and CVaR), the corresponding marginal measures,

which evaluate their sensibility to portfolio weights alterations, and intra-horizon risk

measures, which take into account the magnitude of losses that can incur before the end

of the investment horizon. Formulas for CVaR in monetary terms and marginal mea-

sures, together with our approach to evaluate intra-horizon risk, are among the original

contributions of this work.



Contents

Introduction 10

Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Essential notions 17

1.1 Stochastic processes and filtrations . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Characteristic function, moments and cumulants . . . . . . . . . . . . . . . 18

1.3 Lévy processes in finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 The normal inverse Gaussian process (NIG) . . . . . . . . . . . . . . 23

1.3.2 The Merton’s jump-diffusion model (MJD) . . . . . . . . . . . . . . . . 25

1.4 Estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Method of moments (MoM) . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Maximum likelihood (ML) . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.3 ML via Expectation-Maximization algorithm (EM) . . . . . . . . . . . 27

1.4.4 Spectral generalized method of moments (sGMM) . . . . . . . . . . . 28

1.5 Evaluating estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Multivariate Lévy models via linear transformation 31

2.1 Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Strengths of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 A three-step estimation procedure . . . . . . . . . . . . . . . . . . . . 36

2.3.1.1 Simulation study: loadings . . . . . . . . . . . . . . . . . . . 39

2.3.1.2 Simulation study: the ‘all NIG’ model . . . . . . . . . . . . . 44

2.3.1.3 Simulation study: the ‘all MJD’ model . . . . . . . . . . . . . 53

2.3.2 One-step approach: maximum likelihood . . . . . . . . . . . . . . . . 60



2.3.2.1 Simulation study: the ‘all-NIG’ model . . . . . . . . . . . . . 60

2.3.2.2 Simulation study: the ‘all-MJD’ model . . . . . . . . . . . . . 67

2.3.3 Estimation on real data . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Application to portfolio allocation 77

3.1 The investor’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Asset allocation with the multivariate Lévy model . . . . . . . . . . . . . . . 79

3.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 Equally weighted portfolio [EQ] . . . . . . . . . . . . . . . . . . . . . . 80

3.3.2 Mean-variance portfolio [MV] . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.3 Four-moments based allocation (Single Factor approach) [SF] . . . . 82

3.3.4 Non-parametric optimization [NP] . . . . . . . . . . . . . . . . . . . . 85

3.4 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Methodology and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.1 Daily horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.1.1 CARA utility function . . . . . . . . . . . . . . . . . . . . . . 98

3.6.1.2 CRRA utility function . . . . . . . . . . . . . . . . . . . . . . 102

3.6.2 Weekly horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.6.2.1 CARA utility function . . . . . . . . . . . . . . . . . . . . . . 107

3.6.2.2 CRRA utility function . . . . . . . . . . . . . . . . . . . . . . 111

3.6.3 Summarizing allocation results . . . . . . . . . . . . . . . . . . . . . . 115

4 Downside risk measures for Lévy portfolios 119

4.1 Value at risk, expected shortfall and marginal measures . . . . . . . . . . . 120

4.1.1 Value at risk (VaR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1.2 Expected shortfall (ES/CVaR/TCE) . . . . . . . . . . . . . . . . . . . . 121

4.1.3 Marginal value at risk (M-VaR) . . . . . . . . . . . . . . . . . . . . . . 122

4.1.4 Marginal expected shortfall (M-ES) . . . . . . . . . . . . . . . . . . . 124

4.2 Intra-horizon risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Definition of intra-horizon risk measures . . . . . . . . . . . . . . . . 125

4.2.2 Estimating the first-passage probability . . . . . . . . . . . . . . . . . 127



4.3 Portfolio optimization with CVaR . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.2 CVaR optimization: general theory . . . . . . . . . . . . . . . . . . . . 131

4.3.3 CVaR optimization: multivariate Lévy model . . . . . . . . . . . . . . 134

4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Conclusions and future work 141

Appendices 143

A Proof of statements in Chapter 2 143

A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.3 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B EM algorithm for Merton’s JD model 146

C CARA utility and normal returns 149

D Testing the equality of Sharpe ratios 150

D.1 Pairwise Sharpe ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D.2 Multivariate Sharpe ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

E Formula for ES in monetary terms 153



List of Figures

2.1 Three step procedure assessment: first loading. . . . . . . . . . . . . . . . . . 41

2.2 Three step procedure assessment: loadings. . . . . . . . . . . . . . . . . . . . 43

2.3 Three step procedure assessment: ’all-NIG’ model, common factor (ML). . . 47

2.4 Three step procedure assessment: ’all-NIG’ model, common factor (sGMM). 49

2.5 Three step procedure assessment: ’all-NIG’ model, first idiosyncratic com-

ponent (ML). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Three step procedure assessment: ’all-MJD’ model, common factor (EM). . . 55

2.7 Three step procedure assessment: ’all-MJD’ model, first idiosyncratic com-

ponent (EM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.8 One-step approach assessment: ’all-NIG’ model, common factor . . . . . . . 62

2.9 One-step approach assessment: ’all-NIG’ model, first idiosyncratic component 63

2.10 One-step approach assessment: ’all-NIG’ model, first loading . . . . . . . . . 64

2.11 Likelihood comparison (‘all-NIG’ model) . . . . . . . . . . . . . . . . . . . . . 66

2.12 One-step approach assessment: ’all-MJD’ model, common factor . . . . . . . 69

2.13 One-step approach assessment: ’all-MJD’ model, first idiosyncratic component 71

2.14 One-step approach assessment: ’all-MJD’ model, first loading . . . . . . . . 72

2.15 Likelihood comparison (‘all-MJD’ model) . . . . . . . . . . . . . . . . . . . . . 73

2.16 Estimation on real data: Apple Inc. returns distribution . . . . . . . . . . . 75

2.17 Estimation on real data: covariance matrix . . . . . . . . . . . . . . . . . . . 76

3.1 Data: time series and histograms (1) . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 Data: time series and histograms (2) . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Data: time series and histograms (3) . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Data: time series and histograms (4) . . . . . . . . . . . . . . . . . . . . . . . 93



3.5 Data: time series and histograms (5) . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Rolling window strategy (daily horizon) . . . . . . . . . . . . . . . . . . . . . 96

3.7 Weights: daily horizon; CARA utility (λ = 10); n = 10. . . . . . . . . . . . . . 98

3.8 Weights: daily horizon; CARA utility (λ = 15); n = 10. . . . . . . . . . . . . . 99

3.9 Weights: daily horizon; CARA utility (λ = 10); n = 20. . . . . . . . . . . . . . 100

3.10 Weights: daily horizon; CARA utility (λ = 15); n = 20. . . . . . . . . . . . . . 101

3.11 Weights: daily horizon; CRRA utility (λ = 5); n = 10. . . . . . . . . . . . . . . 102

3.12 Weights: daily horizon; CRRA utility (λ = 10); n = 10. . . . . . . . . . . . . . 103

3.13 Weights: daily horizon; CRRA utility (λ = 5); n = 20. . . . . . . . . . . . . . . 104

3.14 Weights: daily horizon; CRRA utility (λ = 10); n = 20. . . . . . . . . . . . . . 105

3.15 Rolling window strategy (weekly horizon) . . . . . . . . . . . . . . . . . . . . 106

3.16 Weights: weekly horizon; CARA utility (λ = 10); n = 10. . . . . . . . . . . . . 107

3.17 Weights: weekly horizon; CARA utility (λ = 15); n = 10. . . . . . . . . . . . . 108

3.18 Weights: weekly horizon; CARA utility (λ = 10); n = 20. . . . . . . . . . . . . 109

3.19 Weights: weekly horizon; CARA utility (λ = 15); n = 20. . . . . . . . . . . . . 110

3.20 Weights: weekly horizon; CRRA utility (λ = 5); n = 10. . . . . . . . . . . . . 111

3.21 Weights: weekly horizon; CRRA utility (λ = 10); n = 10. . . . . . . . . . . . . 112

3.22 Weights: weekly horizon; CRRA utility (λ = 5); n = 20. . . . . . . . . . . . . 113

3.23 Weights: weekly horizon; CRRA utility (λ = 10); n = 20. . . . . . . . . . . . . 114

4.1 VaR and intra-horizon VaR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Optimizing CVaR: weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3 Minimum expected return - CVaR frontier: Gaussian, ’all-NIG’ and ’all-

MJD’ models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of Tables

2.1 Three step procedure assessment: first loading. . . . . . . . . . . . . . . . . . 40

2.2 Three step procedure assessment: ’all-NIG’ model, common factor (ML). . . 46

2.3 Three step procedure assessment: ’all-NIG’ model, common factor (sGMM). 48

2.4 Three step procedure assessment: ’all-NIG’ model, first idiosyncratic com-

ponent, varying T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Three step procedure assessment: ’all-NIG’ model, first idiosyncratic com-

ponent, varying n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Three step procedure assessment: ’all-MJD’ model, common factor (EM). . . 54

2.7 Three step procedure assessment: ’all-MJD’ model, first idiosyncratic com-

ponent, varying T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Three step procedure assessment: ’all-MJD’ model, first idiosyncratic com-

ponent, varying n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9 One-step approach assessment: ’all-NIG’ model, common factor . . . . . . . 64

2.10 One-step approach assessment: ’all-NIG’ model, first idiosyncratic compo-

nent and loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.11 One-step approach assessment: ’all-MJD’ model, common factor . . . . . . . 68

2.12 One-step approach assessment: ’all-MJD’ model, first idiosyncratic compo-

nent and loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.13 Estimation on real data: moments . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1 Data sample moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Impact of estimating expected returns . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Allocation results: daily horizon; CARA utility (λ = 10); n = 10. . . . . . . . 98

3.4 Allocation results: daily horizon; CARA utility (λ = 15); n = 10. . . . . . . . 99



9

3.5 Allocation results: daily horizon; CARA utility (λ = 10); n = 20. . . . . . . . 100

3.6 Allocation results: daily horizon; CARA utility (λ = 15); n = 20. . . . . . . . 101

3.7 Allocation results: daily horizon; CRRA utility (λ = 5); n = 10. . . . . . . . . 102

3.8 Allocation results: daily horizon; CRRA utility (λ = 10); n = 10. . . . . . . . 103

3.9 Allocation results: daily horizon; CRRA utility (λ = 5); n = 20. . . . . . . . . 104

3.10 Allocation results: daily horizon; CRRA utility (λ = 10); n = 20. . . . . . . . 105

3.11 Allocation results: weekly horizon; CARA utility (λ = 10); n = 10. . . . . . . 107

3.12 Allocation results: weekly horizon; CARA utility (λ = 15); n = 10. . . . . . . 108

3.13 Allocation results: weekly horizon; CARA utility (λ = 10); n = 20. . . . . . . 109

3.14 Allocation results: weekly horizon; CARA utility (λ = 15); n = 20. . . . . . . 110

3.15 Allocation results: weekly horizon; CRRA utility (λ = 5); n = 10. . . . . . . . 111

3.16 Allocation results: weekly horizon; CRRA utility (λ = 10); n = 10. . . . . . . 112

3.17 Allocation results: weekly horizon; CRRA utility (λ = 5); n = 20. . . . . . . . 113

3.18 Allocation results: weekly horizon; CRRA utility (λ = 10); n = 20. . . . . . . 114

3.19 Summary of results: best strategies . . . . . . . . . . . . . . . . . . . . . . . 116

3.20 Summary of results: worst strategies . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 Traditional and intra-horizon risk measures relative to the portfolio opti-

mizing CVaR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2 Marginal risk-measures relative to the portfolios optimizing CVaR respec-

tively under the ‘all-NIG’, ‘all-MJD’ and Gaussian models. . . . . . . . . . . 140



Introduction

Multidimensional asset models based on Lévy processes have been introduced to meet the

necessity of capturing market shocks using more refined distribution assumptions com-

pared to the standard Gaussian framework. In particular, along with accurately modeling

marginal distributions of asset returns, capturing the dependence structure among them

is of paramount importance, for example, to correctly price derivatives written on more

than one underlying asset. Most of the literature on multivariate Lévy models focuses

in fact on pricing multi-asset products, which is also the case of the model introduced in

Ballotta and Bonfiglioli (2014). Believing that risk and portfolio management applications

may benefit from a better description of the joint distribution of the returns as well, we

choose to adopt Ballotta and Bonfiglioli (2014) model for asset allocation purposes and we

empirically test its performances. We choose this model since, besides its flexibility and

the ability to properly capture the dependence among assets, it is simple, relatively par-

simonious and it has an immediate and intuitive interpretation, retaining a high degree

of mathematical tractability. In particular we test two specifications of the general model,

assuming respectively a pure jump process, more precisely the normal inverse Gaussian

process, or a jump-diffusion process, precisely Merton’s jump-diffusion process, for all the

components involved in the model construction.

To estimate the model we propose two alternative approaches: a simple and easy-to-

implement three-step procedure and a more computationally intensive one-step maximum

likelihood estimation. Both of the approaches are assessed via simulations.

In our empirical test of portfolio construction based on multivariate Lévy models, we as-

sume a standard utility maximization framework; for the exponential utility function we

get a closed form expression for the expected utility, while for other utility functions (we

choose to test the power one) we resort to numerical approximations.
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Among the benchmark strategies, we consider in our study what we call a ‘non-parametric

optimization approach’, which to our knowledge has never been used, despite being quite

straightforward to implement. The approach is based on Gaussian kernel estimation of

the portfolio return distribution and leads to a closed expression for the expected utility

in the exponential case.

A different approach to allocation decisions aims at minimizing portfolio riskiness re-

quiring a minimum expected return. Following Rockafellar and Uryasev (2000), we de-

scribe how to solve this optimization problem in our multivariate Lévy framework, when

risk is measured by conditional value at risk. Moreover we present formulas and methods

to compute, as efficiently as possible, some downside risk measures for portfolios made

of assets following the multivariate Lévy model by Ballotta and Bonfiglioli (2014). More

precisely, we consider traditional risk measures (value at risk and conditional value at

risk), the corresponding marginal measures, which evaluate their sensibility to portfolio

weights alterations, and intra-horizon risk measures, which take into account the mag-

nitude of losses that can incur before the end of the investment horizon. Formulas for

CVaR in monetary terms and marginal measures, together with our approach to evaluate

intra-horizon risk, are among the original contributions of this work.

The outline of the thesis is as follows. We start with a brief review of the literature

on multivariate Lévy processes, with particular attention to applications in the asset al-

location area.1 Chapter 1 recalls some basic notions needed for the best understanding

of the present work. In Chapter 2 we introduce Ballotta and Bonfiglioli (2014) model

and we propose two alternative estimation procedures, which we assess via simulations

under two specifications of the general multivariate model. In Chapter 3 we show how

to perform portfolio selection in the standard framework of expected utility maximization

when assets follow the multivariate Lévy model by Ballotta and Bonfiglioli (2014), empiri-

cally testing the out-of-sample performance. Formulas and methods to efficiently compute

downside risk measures for portfolios made of multivariate Lévy assets are developed and

applied in Chapter 4, where we also deal with portfolio selection when the objective is to

minimize CVaR. Finally, we conclude and give some directions for future work.
1References and detailed reviews of the contributions relative to more specific topics are presented within the

respective chapters.
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Literature review

Dependence modeling is of paramount importance across all in quantitative finance, both

in the derivatives pricing branch, when dealing with multi-asset derivatives, and in the

risk and portfolio management area.

Before the introduction of alternative models based on copulas (see Patton (2009) for an

overview), multivariate time series and stochastic processes were mainly represented

through elliptical models, like multivariate normal or t-distributions, whose popularity

comes from their mathematical tractability but is questioned by empirical stylized fact

observed in financial data (Cont (2001)).

Constructing multivariate Brownian motions or diffusion based processes, like log-normal

processes, is the traditional way adopted to model dependence, but it reveals many limita-

tions: besides its very restricted symmetric dependence structure, the marginal processes

poorly reproduce the dynamics of single assets.

To incorporate the well-documented heavy tails of stock returns and the volatility skew

effects observed in the option market, a vast literature on more sophisticated models

emerged in the last decades, stochastic volatility models and Lévy based models above

all. The transition to Lévy processes is natural since they preserve the statistical proper-

ties of Brownian motion’s increments, relaxing the path continuity by allowing jump-alike

discontinuities, which are consistent with the real evolution of stock prices through time

and give rise to flexible distributions to describe financial asset returns. Notable paramet-

ric pure jump Lévy processes are the variance gamma (VG) process (Madan and Seneta

(1990), Madan et al. (1998)), the normal inverse Gaussian (NIG) process (Barndorff-

Nielsen (1997)) and the more general CGMY process (Carr et al. (2003)); examples of

jump-diffusion Lévy processes are the Merton model (Merton (1976)), with normal dis-

tributed jump sizes, and the double exponential jump-diffusion model by Kou (2002).

While these models successfully explain the dynamics of a single price process, modeling

a higher dimensional Lévy process is not as straightforward as in the case of multivariate

Brownian motion. Recently, there has been an increasing interest in developing multi-

variate Lévy processes.

Madan and Seneta (1990) first introduced the multivariate symmetric variance gamma
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process by subordinating a multivariate Brownian motion without drift by a common

gamma process. Similarly, Barndorff-Nielsen (1998) studied a multivariate NIG process,

using a common inverse Gaussian subordinator. Cont and Tankov (2004), Luciano and

Schoutens (2006) developed the asymmetric case, studying multivariate Lévy processes

with variance gamma components:

X(i)(t) = θiΓ(t) + σiW
(i)(Γ(t)), for i = 1, . . . , n, (1)

where Γ is a gamma process with unit mean rate and variance rate ν, and the Brownian

motions W (i) and W (j) driving different components are correlated with correlation coef-

ficient ρij .

These models are easily tractable, but they do not accommodate independence, and linear

correlation cannot be fitted once the marginals are fixed. Moreover, sharing the same sub-

ordinator on all the marginal components makes hard their joint calibration.

To build dependence among arbitrary marginal variance gamma processes, Semeraro

(2008), Luciano and Semeraro (2010a) studied the multivariate subordination of multi-

variate Brownian motions. The marginal processes are modeled as

X(i)(t) = θiG
(i)(t) + σiW

(i)(G(i)(t)), for i = 1, . . . , n, (2)

where

G(i)(t) = Y (i)(t) + aiZ(t) (3)

with Y (i) and Z independent gamma processes.

The same formulation has been immediately extended to other time changed Brownian

motions, like NIG and CGMY processes.

In this way, the case of full independence is accommodated, when all the subordinators

are independent. The correlation can be fitted by choosing the parameters of the common

component of the subordinator. However, using this construction, the number of involved

parameters increases with the square of the number of components, making the model

cumbersome when dealing with many assets. Moreover, the closed-form joint character-

istic function can only be written in the case of independent Brownian motions; in the

latter case the dependence mainly comes from the drift part and is sometimes too weak
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for financial modeling purposes (see Wang (2009)).

A theoretical motivation supporting this kind of constructions is that every Lévy process

can be written as a subordinated Brownian motion (Monroe (1978)). However, this result

has a practical utility only if the subordinator is identifiable. This prevents, for example,

the tractability of jump-diffusion processes, which in some cases may represent the most

appropriate choice to reproduce the empirical features of asset return distributions, typi-

cally in the medium run.

Recently, a different approach, based on Lévy copulas, has been introduced by Kallsen

and Tankov (2006), and Tankov (2006). A Lévy copula can be seen as a function gluing the

marginal Lévy measures together to form the Lévy measure of the joint process, which is

guaranteed to be a Lévy process as well. Despite the theory being elegant, the application

to financial data is still challenging since both estimation and simulation can be numeri-

cally demanding. For more details we refer to Cont and Tankov (2004) and to the works

mentioned above.

A further way to build multivariate Lévy processes, which we choose to adopt throughout

the present work, is via linear combination of independent Lévy processes; the closure of

Lévy processes under linear transformations is exploited in this case. As we discuss in

Chapter 2, a very simple construction, proposed by Ballotta and Bonfiglioli (2014), leads

to a flexible model which can properly describe both the marginal distributions and the

dependence structure among assets. Moreover the model is relatively parsimonious, the

overall number of parameters growing linearly with the number of components.

Most of the multivariate Lévy models cited above, included that of Ballotta and Bon-

figlioli (2014), were introduced with the main purpose of pricing derivatives. Calibration

procedures and applications to multi-asset options, such as exchange options, spread op-

tions, basket options and cross-currency options, have been developed.

Although these models are still not widespread in risk and portfolio management applica-

tions, short term allocation decisions and their riskiness assessment may be improved by

modeling more realistically asset returns and capturing their dependence structure.

To our knowledge, the main works focusing on asset allocation based on multivariate Lévy

processes are Madan and Yen (2007), Bertini et al. (2007), Staino et al. (2007) and Hitaj
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and Mercuri (2013).

Madan and Yen (2007) apply a signal processing technique known as independent com-

ponent analysis (ICA) to a multivariate financial time series, decomposing it into a linear

combination of statistically independent components (ICs). Assuming that the ICs follow

a variance gamma process, they build a multivariate variance gamma portfolio model,

which reduces to univariate problems of component investment, solved in closed form for

the exponential utility. They compare in terms of Sharpe ratio, certain equivalent and

gain-loss ratio the out-of-sample performance of portfolios built using their model with

those obtained assuming Gaussian ICs, observing a substantial improvement.

Staino et al. (2007) model returns as a multidimensional time-changed Brownian mo-

tion where the subordinator follows either an inverse Gaussian process or a gamma pro-

cess. They discuss static and dynamic portfolio selection models using Brownian motion

as benchmark model to compare results. In particular, for the static case they consider

allocations based on exponential utility and on the mean-value at risk ratio. In the for-

mer case, they describe directly the portfolio distribution by a univariate Lévy model, in

order to obtain an analytical expression for expected utility. In the latter they consider

multivariate Lévy models (VG and NIG) for asset log-returns, observing their better, yet

not substantially different, performances with respect to those obtained using the Brown-

ian motion benchmark. However, the proposed estimation procedure appears quite cum-

bersome with an increasing number of assets, since it requires two maximum likelihood

estimations for each marginal and a maximum likelihood estimation for each pairwise cor-

relation coefficient. To compute the value at risk of a portfolio made of multivariate Lévy

assets, Staino et al. (2007) suggest to adopt a moment based approximation approach, as

the Cornish-Fisher expansion or that proposed by Iaquinta et al. (2009).

Bertini et al. (2007) integrate the work of Staino et al. (2007) focusing specifically on the

multi-period allocation.

Hitaj and Mercuri (2013) perform asset allocation under three specifications of the

multivariate variance gamma model: Madan and Seneta (1990), Semeraro (2008) and

Wang (2009). They empirically investigate the effect of using higher moments in port-

folio allocation, comparing the performance obtained using a mean-variance approach, a
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mean-variance-skewness-kurtosis approach based on the fourth-order Taylor expansion

of expected utility and the maximization of analytical expected utility, which can be ex-

pressed in closed form for Lévy processes when the utility function is assumed to be expo-

nential. The parametric computation of moments and comoments according to the three

multivariate variance gamma models gives better results than the use of sample moments,

and including skewness and kurtosis in the decision process appears to be useful. Among

the three models they take into account, the one by Semeraro (2008) has the worst per-

formances while the one by Wang (2009) has the best ones, most likely because of their

different ability in capturing the dependence structure among assets.



Chapter 1

Essential notions

Let us start introducing some fundamental concepts needed for the best understanding of

the main part of this work. We mostly follow Schoutens (2003), Cont and Tankov (2004),

Wasserman (2003) and Meucci (2005).

In Section 1.1 we introduce some basic definition on stochastic processes and filtrations;

Section 1.2 is about characteristic functions, moments and cumulants of probability dis-

tributions; in Section 1.3 we review the most fundamental concepts on Lévy processes,

closely examining the normal inverse Gaussian process and the Merton’s jump diffusion

process, which we choose as reference examples to carry on throughout the present work.

Section 1.4 describes the estimation methods adopted in the following and Section 1.5

recalls some useful notions to evaluate estimators.

1.1 Stochastic processes and filtrations

Let T be a fixed finite time horizon. We introduce a probability space (Ω,F , P ), where Ω

is the set of all possible outcomes, F is a sigma-algebra (a family of subsets of Ω contain-

ing Ω itself and closed under the complement and countable unions), and P is a function

assigning probabilities to the events in F . We say that the probability space is complete

if for each B ⊂ A ∈ F such that P (A) = 0, we have that B ∈ F . We will always work

with complete spaces, since every probability space (Ω, F̄ , P ) can be completed consider-

ing F = σ(F̄ ∪ N ), where

N =
{
B ⊂ Ω : B ⊂ A for some A ∈ F̄ , with P (A) = 0

}
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and σ(C) is the smallest sigma-algebra on Ω containing C. Moreover, we add a filtration

{Ft}0≤t≤T to our probability space. A filtration is a non decreasing family of sub-sigma-

algebras of F : Fs ⊂ Ft ⊂ FT ⊂ F for 0 ≤ s < t ≤ T ; Ft represents the information

available at time t, while the filtration {Ft}0≤t≤T represents the information flow evolving

with time.

We assume that the filtered probability space (Ω,F , {Ft}0≤t≤T , P ) satisfies the so-called

‘usual conditions’:

(a) F is complete;

(b) F0 contains all P -null sets of Ω (intuitively, we know which events are possible

and which are not);

(c) {Ft}0≤t≤T is right continuous, i.e. Ft =
⋂
s>t Fs.

We will always work with filtered probability spaces satisfying the usual conditions, since

for every filtered probability space (Ω, F̄ ,
{
F̄t
}

0≤t≤T , P ) it is possible to build the so-called

usual P-augmentation completing the sigma algebra F̄ as specified above and setting

Ft =
⋃
s<t

σ(F̄s ∪N ) ∀ 0 ≤ t ≤ T.

A stochastic process X = {Xt, 0 ≤ t ≤ T} is a family of random variables defined on a

complete probability space (Ω,F , P ). The process X is said to be adapted to the filtration

{Ft} if Xt is Ft-measurable for each t (Xt ∈ Ft ∀t), i.e. Xt is known at time t.

Given a process X on a complete probability space, the natural filtration of X,
{
FXt
}

is

the P -augmentation of
{
F̄Xt
}

where, for each 0 ≤ t ≤ T , F̄Xt is the smallest sigma-algebra

such that Xt is F̄Xt -measurable. The natural filtration is thus the ’smallest’ filtration

satisfying the usual conditions and containing all the information that can be achieved

observing the evolution of X through time.

1.2 Characteristic function, moments and cumulants

Let us first introduce the Fourier transform. There are several common conventions for

defining the Fourier transform F of an integrable function f : R → C; throughout this
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work we adopt the following definition:

F [f ](u) =
∫ ∞
−∞

f(x)e−iuxdx. (1.1)

The characteristic function φ of a random variable X is defined as

φX(u) = E[eiuX ] =
∫ ∞
−∞

eiuXdF (x) u ∈ R, (1.2)

where F indicates the cumulative distribution function FX(x) = P (X ≤ x).

In particular, if X is a continuous random variable, the characteristic function is the

Fourier transform of the probability density function fX

φX(u) = E[eiuX ] =
∫ ∞
−∞

eiuXfX(x)dx u ∈ R, (1.3)

being fX(x) = d
dxFX(x).

The characteristic function is always defined and it is continuous; φ(0) = 1 and |φ(u)| ≤ 1

for all u ∈ R.

It is worth noting that the Fourier transform takes convolutions into multiplications: if

X and Y are two independent random variables with characteristic functions φX and φY

respectively, then the characteristic function of X + Y is given by φX+Y (u) = φX(u)φY (u).

Moreover, the characteristic function fully and uniquely determines the distribution func-

tion FX .

From φ we can easily derive the moments of X; assume that there exists the k-th moment

of X, i.e. suppose E[|X|k] <∞, then:

E[Xk] = i−k
dk

duk
φ(u)

∣∣∣∣
u=0

. (1.4)

The function m(u) = φ(−iu), if defined for all u ∈ R, is called the moment generating

function.

The function k(u) = logm(u) is called cumulant function of X. The cumulants cr, r =

1, 2, . . . are the coefficients in the Taylor expansion of the cumulant generating function

about the origin:

k(u) = logm(u) =
∞∑
r=1

cr
ur

r! , (1.5)
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and they can be obtained as

cr = dr

dur
k(u)

∣∣∣∣
u=0

. (1.6)

In the development of this work we will deal with the first four moments and cumulants,

for which the following relations hold (Cornish and Fisher (1937))

c1 = µ̂1 (1.7)

c2 = µ̂2 (1.8)

c3 = µ̂3 (1.9)

c4 = µ̂4 − 3µ̂2
2, (1.10)

where cr is the r-th cumulant and µ̂r is the r-th central moment, defined as

µ̂r = E[(X − E(X))r].

1.3 Lévy processes in finance

In this section we introduce some fundamental concepts about Lévy processes; for a deeper

introduction to Lévy processes refer to Cont and Tankov (2004), Schoutens (2003) or Sato

(1999).

Lévy processes can be thought of as random walks in continuous time, i.e. they are

stochastic processes with independent and stationary increments.

Brownian motion, the best known of all Lévy processes, was introduced as a model for

stock prices in early 1900s by Bachelier. Osborne (1959) and Samuelson (1965) refined

Bachelier’s model by proposing the exponential of a Brownian motion (called exponen-

tial or geometric Brownian motion) as stock price model. It was Mandelbrot (1963) who

studied the first non-normal exponential Lévy process and introduced the α-stable Lévy

motion with index α < 2. A few years later, an exponential Lévy process model with a

non-stable distribution was proposed by Press (1967). His log-price process is a superposi-

tion of a Brownian motion and an independent compound Poisson process with normally

distributed jumps and it represented the basis for the construction of jump-diffusion mod-

els (Merton (1976), Kou (2002)). Later, models based on more general pure jump Lévy

processes were introduced, such as variance gamma (VG) by Madan and Seneta (1990),
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normal inverse Gaussian (NIG) by Barndorff-Nielsen (1997) and CGMY by Carr et al.

(2003).

The general structure of this class of processes has been gradually discovered by

de Finetti, Kolmogorov, Lévy, Khintchine and Itô, and it is described by the celebrated

Lévy-Khintchine formula.

For notational simplicity, here we consider only R-valued processes, although the results

hold also for Rn-valued processes.

Assume as given a filtered probability space (Ω,F , {Ft}t≥0 , P ).

Lévy process. An adapted, càdlàg process X := {Xt : t ≥ 0}, with X0 = 0 almost

surely, is a Lévy process if

(i) X has increments independent of the past, i.e. the random variable Xt − Xs is

independent of Fs for any 0 ≤ s < t <∞;

(ii) X has stationary increments, i.e. Xt −Xs is distributed as Xt−s for any 0 ≤ s <

t <∞;

(iii) X is continuous in probability, i.e. lims→tXs = Xt, where the limit is taken in

probability.

The third condition does not imply that the sample paths are continuous; it only means

that for a given time t, the probability of seeing a jump at t is null: discontinuities occur

at random times.

Infinite divisibility. If X is a Lévy process, then for any t > 0, the distribution of

Xt is infinitely divisible, i.e. for every integer n > 2 there exist n i.i.d. random variables

X(1), . . . , X(n) whose sum is equal in distribution to Xt. Conversely, if F is an infinitely

divisible distribution, then there exists a Lévy process X such that the law of X1 is

given by F . Examples of infinitely divisible distributions are Gaussian, gamma, Poisson,

log-normal, Pareto, Student-t and α-stable distributions.

By the infinitely divisibility, the characteristic function of Lévy processes can be
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expressed in a simple form. Moreover it is possible to characterize all Lévy processes in

terms of their characteristic functions, as showed by the Lévy-Khintchine formula.

Lévy-Khintchine representation. The inner structure of Lévy processes has been

described in full details by Paul Lévy and A. Ya. Khintchine in the 1930’s in terms of their

characteristic functions. Consider a triple (a, σ, ν), where a ∈ R, σ ≥ 0 and ν is a positive

measure on R0 := R\{0} (i.e. the real line, possibly excluding zero) such that∫
R0

(1 ∧ |x|2)ν(dx) <∞. (1.11)

Let X be a Lévy process; then

φX(u; t) = E(eiuXt) = etϕ(u), (1.12)

where

ϕ(u) = iua− u2σ
2

2 +
∫
R0

(eiux − 1− iux1{|x|<1})ν(dx). (1.13)

The measure ν is called the Lévy measure; the triple (a, σ, ν) is called the characteristic

triple of the process X; the function ϕ is also known as Lévy exponent.

The Lévy triple fully determines the path properties of a Lévy process. For example, if

a = 0 and ν = 0, the process is a standard Brownian motion and has continuous random

paths. If σ = 0, the Lévy process is a pure jump process, meaning that there is no diffusion

component. If the Lévy measure also satisfies ν(dx) = λδ(1), where δ(1) is the Dirac delta

computed at 1, then we obtain a Poisson process with rate parameter λ.

Pure jump Lévy processes can also be split into two categories depending on the arrival

rate of jumps. A Lévy process is called of finite activity if
∫
R0
ν(dx) < ∞. If the integral

diverges instead, then the process has infinite activity, which means its arrival rate of

jumps is infinity.

Let us examine closely a couple of examples of Lévy processes, which we will use as

basic components for building the multivariate Lévy models adopted in the application

part of this work: the normal inverse Gaussian (NIG) process and the jump-diffusion

(MJD) model proposed by Merton (1976). In the following we will take as known some
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very basic notions on the two most important continuous time stochastic processes, the

Brownian motion (Bachelier (1900)) and the Poisson process (Cox (1955)), both of which

happens to be Lévy.

1.3.1 The normal inverse Gaussian process (NIG)

The NIG process belongs to a class of models based on subordinated Brownian motion, and

in particular to the so-called normal tempered stable processes. A subordinated Brownian

motion X is a Lévy process obtained by observing an arithmetic Brownian motion on a

time scale governed by an independent increasing and positive Lévy process G, called

subordinator. Hence Xt can be written as

Xt = θGt + σW (Gt), θ ∈ R, σ > 0, (1.14)

where W is a Brownian motion and it is independent of the subordinator G.

The characteristic function reads

φX(u; t) = exp
(
tϕG

(
iuθ − u2σ

2

2

))
, u ∈ R, (1.15)

where ϕG is the characteristic exponent of the subordinator.

Usually the parameters for the distribution of the subordinator are chosen in such a way

that E(Gt) = t, to make the random time an unbiased reflection of calendar time (see,

for example, Madan et al. (1998)). One class of subordinators quite popular in financial

modeling due to its mathematical tractability is the family of tempered stable processes,

which have characteristic exponent

ϕG(u) = α− 1
αk

[(
1− iuk

1− α

)α
− 1
]
, u ∈ R, (1.16)

where k > 0 is the variance rate of Gt and α ∈ [0, 1) is the index of stability. As particular

cases, if α = 0, expression (1.16) is to be understood in a limiting sense, Gt is a gamma

process and X is called variance gamma process (Madan and Seneta (1990), Madan et al.

(1998)); if α = 1/2, the subordinator follows an inverse Gaussian process and X is the

NIG process of Barndorff-Nielsen (1997). Lévy processes based on subordinated Brownian

motion are widespread in financial modeling for many reasons: they are highly tractable
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from a mathematical point of view, as under trade time the log-return distribution is

Gaussian, and empirical evidence reveals this to be a realistic assumption (see for example

Ane and Geman (2000)); moreover, the time change construction recognizes that stock

prices are largely driven by news, and the time between news, as well as their impact, is

random.

As we stated above, the NIG model is the normal tempered stable process with stability

parameter α = 1/2. Its characteristic function reads

φX(u; t) = exp
(
t

k
(1−

√
1− 2iuθk + u2σ2k)

)
, u ∈ R. (1.17)

The NIG process is among those Lévy processes whose probability density function is

available in (semi) closed analytical form; this allows for direct maximum likelihood esti-

mation techniques.

According to the parametrization adopted in Cont and Tankov (2004), the probability den-

sity function is

ft(x) = Cexp

(
Ax

K1(B
√
x2 + t2σ2/k)√

x2 + t2σ2/k

)
, (1.18)

where

A = θ

σ2 (1.19)

B =
√
θ2 + σ2/k

σ2 (1.20)

C = t

π
et/k

√
θ2

kσ2 + 1
k2 , (1.21)

and Kv(x) is the Bessel function of the second kind with order v.

The Lévy measure reads

ν(x) = C

|x|
exp {Ax}K1(|B|x); (1.22)

since the integral of (1.22) over the real line is infinite, the NIG process has infinite activ-

ity.

We report below the first four cumulants of Xt, needed to estimate the model by method
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of moments:

c1 = θt (1.23)

c2 = σ2t+ θ2kt (1.24)

c3 = 3σ2θkt+ 3θ3k2t (1.25)

c4 = 3σ4kt+ 15θ4k3t+ 18σ2θ2k2. (1.26)

From (1.26) we can observe that θ controls the mean and the skewness of Xt (the distribu-

tion is symmetric when θ = 0), σ dictates the overall variability and k controls the kurtosis

or tail heaviness of the distribution.

1.3.2 The Merton’s jump-diffusion model (MJD)

A Lévy jump-diffusion process has the following form

Xt = µt+ σWt +
Nt∑
i=1

Ji, (1.27)

where W is a standard Brownian motion, N is a Poisson process counting the jumps of X

and Ji are i.i.d. variables describing the jump sizes. The first terms in (1.27) represent

the diffusion component, which we indicate by Dt, while
∑Nt
i=1 Ji is the jump component.

All the random objects involved, W , N and Ji (for all i), are assumed to be mutually

independent. In the Merton’s jump-diffusion model (Merton (1976)) jump sizes are all

normally distributed, Ji ∼ N(ν, τ2) for all i. This allows to obtain the probability density

function of Xt as a quickly converging series; indeed, from

P(Xt ∈ A) =
∞∑
k=0

P(Xt ∈ A|Nt = k)P(Nt = k), (1.28)

we easily get

fXt(x) = e−λt
∞∑
k=0

exp
{
− x−µt−kν

2(σ2t+kτ2)

}
√

2π(σ2t+ kτ2)
(λt)k

k! . (1.29)

Thus Xt has an infinite Gaussian mixture distribution with mixing coefficients given by a

Poisson distribution with parameter λ.

The Lévy measure is given by

ν(x) = λ

τ
√

2π
exp

{
− (x− ν)2

2τ2

}
(1.30)
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and it clearly integrates to λ < ∞, meaning that the jump component of MJD model is of

finite activity. The economical interpretation is that in JD models, jump are considered

rare events caused by the arrival of important new information which has more than a

marginal effect on prices, as compared, for example, to temporary imbalances between

demand and supply.

The first four cumulants of Xt are

c1 = µt+ λνt (1.31)

c2 = t(σ2 + λ(ν2 + τ2)) (1.32)

c3 = tλ(3τ2ν + ν3) (1.33)

c4 = tλ(3τ4 + 6τ2ν2 + ν4). (1.34)

We can observe how the parameters λ, ν and τ control the non-Gaussian properties of the

density (1.29); in particular, ν controls skewness (the density function is symmetric when

ν = 0), and the density (1.29) approaches normality when either λ or E(J2
i,t) = ν2 + τ2

converge to zero.

The characteristic function reads

φXt(u) = exp
{
iuµt− u2σ2

2 t+ λt
(
eiuν−

τ2u2
2 − 1

)}
, u ∈ R. (1.35)

A convenient reparametrization, suggested by Duncan et al. (2009) and exploited to

simplify the solution of the EM algorithm they propose to estimate the model, is obtained

by setting ν = ασ and τ = βσ (with β > 0). In the following we will apply their estimation

procedure, using the two parametrizations interchangeably (see Section 2.3.1.3 and

Appendix B for more details).

1.4 Estimation methods

In this section we briefly review the parametric methods we will use in the estimation of

univariate Lévy processes.
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1.4.1 Method of moments (MoM)

The method of moments introduced by Pearson (1894) estimates the k model parameters

in such a way that the first k theoretical moments match the first k sample moments. We

will use this method to initialize our maximum likelihood estimation procedures.

1.4.2 Maximum likelihood (ML)

The maximum likelihood method, introduced by Fisher (1925), selects the set of param-

eters that maximizes the likelihood function, i.e. the estimates are built in such a way

that the observed data become the most likely outcomes of the parametric distribution.

Formally, the maximum likelihood estimates are defined as

θ̂ = argmax
θ∈Θ

f(x1, . . . , xn|θ), (1.36)

where Θ is the parameter space and f(x1, . . . , xn|θ) is the likelihood function, i.e. the joint

probability density function of the observations, given the set of parameters θ. In practice

it is often more convenient to work with the logarithm of the likelihood function, called

the log-likelihood. When dealing with i.i.d. observations, with density function f , the

likelihood maximization becomes

θ̂ = argmax
θ∈Θ

n∏
i=1

f(xi|θ), (1.37)

or, equivalently, the log-likelihood maximization becomes

θ̂ = argmax
θ∈Θ

n∑
i=1

lnf(xi|θ). (1.38)

1.4.3 ML via Expectation-Maximization algorithm (EM)

The EM algorithm proposed by Dempster et al. (1977) is an efficient iterative procedure

to compute the maximum likelihood estimates in presence of missing data or latent vari-

ables.

Given a set y = (x; z) of complete data, where x are observed and z are latent or missing

data, and a vector of unknown parameters θ, along with a complete likelihood function

Lc(θ; y) = fc(y|θ), each iteration of the EM algorithm consists of two steps: the E-step

computes the conditional expectation of the complete log-likelihood, given the observed
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data x and under the current parameters estimate θ; the M-step finds a new set of param-

eters maximizing the expected log-likelihood obtained in the E-step. More precisely, above

we denoted by fc(y|θ) the probability density function of the random vector Y correspond-

ing to the complete data vector y, and by Lc(θ; y) the log likelihood function that could be

specified for θ if y were fully observable. As the complete log-likelihood is unobservable,

it is replaced by its conditional expectation given the available data x, using the current

fit for θ. Therefore, on the k + 1 iteration of the EM algorithm

• E-step: compute1

Q(θ; θ(k)) := Eθ(k) {ln(Lc(θ; y))|x} (1.39)

• M-step: choose θ(k+1) to maximize Q(θ; θ(k)) with respect to θ.

The E-step and the M-step are alternatively repeated until convergence, which may be

determined setting a suitable stopping rule based either on the distance among two sub-

sequent parameter estimates or among the difference in the respective log-likelihoods. For

further details, refer for example to Ng et al. (2012).

1.4.4 Spectral generalized method of moments (sGMM)

Spectral GMM estimators, or GMM-type estimators, aim at minimizing the distance

among the theoretical and the empirical characteristic functions; formally they are based

on the following condition

E[h(u, Y ; θ)] = 0 ∀u ∈ R (1.40)

where

h(u, Y ; θ) = eiuY − φθ(u), (1.41)

and θ is the vector of true parameters.

The idea is that, since there is a one to one correspondence between the characteristic

function and the density function, they enclose the same information; this fact suggests

that the estimation based on the empirical characteristic function should be in principle

as efficient as the maximum likelihood estimation.

The most popular way to deal with (1.40) is the discrete approach proposed by Feuerverger
1The conditional expectation is denoted by Q since it is the best predictor of the complete log-likelihood

according to the quadratic loss.
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and McDunnough (1981), which consists in choosing a finite grid u = (u1, . . . , uk)′ and

using the 2k conditions:

E[hθ(Y )] = 0, (1.42)

where hθ(Y ) = (hθ<(Y ),hθ=(Y ))′. The estimator is then defined as

θ̂n = argmin
θ

[ĥn(θ)]′Wn[ĥn(θ)], (1.43)

where ĥn(θ) = 1
n

∑n
i=1 hθ(yi) and Wn is a proper weighting matrix. Despite being a sim-

ple and widely spread method (see for example Singleton (2001), Jiang and Knight (2002),

Chacko and Viceira (2003), Yu (2004)) for the estimation of Lévy models, which are de-

fined in term of characteristic function (1.12), the choice of the grid, i.e. how many and

which moment conditions to impose, is a very delicate issue which can strongly affect the

efficiency of the estimates.

Although we won’t go through this path, it is worth knowing that a continuous approach

to the problem (1.40), called continuous generalized method of moments (cGMM), was pro-

posed by Carrasco and Florens (2000); the procedure matches empirical and theoretical

characteristic functions continuously over an interval. Imposing a continuum of moment

conditions, the information enclosed in the empirical characteristic function is better ex-

ploited, leading to a gain in efficiency.

1.5 Evaluating estimators

In this section we define the main measures we use to evaluate estimators, i.e. error, bias

and inefficiency, following Wasserman (2003) and Meucci (2005). Let x1, . . . , xT be T data

points from a same distribution, meaning that the random variables X1, . . . , XT are i.i.d..

A point estimator θ̂T of a parameter (or more generally a vector of parameters) θ is some

function of the data

θ̂T = g(x1, . . . , xT ). (1.44)

A reasonable requirement for an estimator is that it should converge to the true parameter

value as more and more data are collected; more precisely, if θ̂T
P→ θ, the estimator is said

to be consistent. Being a function of the data, θ̂T is clearly a random variable, whose

distribution is called the sampling distribution. If the expected value of the sampling
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distribution coincides with the true value of the parameter, the estimator is said to be

unbiased. The bias of an estimator is indeed defined (in the general multivariate case) by

bias2(θ̂T ) =
∥∥∥E(θ̂T )− θ

∥∥∥2
, (1.45)

where ‖·‖ denotes the Euclidean norm.

In the univariate case, the standard deviation of the sampling distribution is called stan-

dard error; in the more general multivariate case, inefficiency is a measure of the disper-

sion of the estimator defined as

ineff2(θ̂T ) = E

{∥∥∥θ̂T − E[θ̂T ]
∥∥∥2
}
. (1.46)

We define the loss of an estimator as the quadratic loss

loss(θ̂T ) =
∥∥∥θ̂T − θ

∥∥∥2
, (1.47)

and the error as the square root of the expectation of the loss (since the loss is a squared

distance), i.e.

err(θ̂T ) =

√
E

{∥∥∥θ̂T − θ
∥∥∥2
}
. (1.48)

In the univariate case, the error reduces to the so called root mean squared error (RMSE).

The following relation holds for error, bias and inefficiency

err2 = bias2 + ineff2. (1.49)

To make the evaluation scale independent we can normalize the loss and the error by the

length of the true value, if it is not zero. So we have the relative (or percentage) loss and

relative (or percentage) error, defined as

Ploss(θ̂T ) =

∥∥∥θ̂T − θ
∥∥∥2

‖θ‖2
(1.50)

Perr(θ̂T ) =

√
E

{∥∥∥θ̂T − θ
∥∥∥2
}

‖θ‖
(1.51)

In the univariate case, the relative error is called relative root mean squared error

(RRMSE).



Chapter 2

Multivariate Lévy models via linear
transformation

There exist several methods to build multivariate Lévy processes.

The traditional way is to subordinate a Brownian motion through a univariate subordi-

nator (see, e.g., Monroe (1978)). Following this approach, Luciano and Schoutens (2006)

propose a common gamma subordinator and an uncorrelated multidimensional Brownian

motion to build a multivariate variance gamma model. Cont and Tankov (2004) and Leoni

and Schoutens (2007) extend this model to correlated Brownian motions, which allow for

uncorrelated asset returns. One drawback of these models is that the time change is as-

sumed to be the same for all assets, which is contrary to economic intuition. Another

problem is that the achievable range of dependence is limited. For example, asset returns

cannot be independent in this approach.

Recent research has focused on alleviating these problems by using multivariate subor-

dinators (see for example Semeraro (2008), Wang (2009), Luciano and Semeraro (2010b),

Luciano and Semeraro (2010a) for multivariate variance gamma and multivariate nor-

mal inverse Gaussian models, Prause (1999) for a more general model with a generalized

inverse Gaussian subordinator). Yet, as pointed out by Wallmeier and Diethelm (2012),

although these models offer more flexibility with respect to the marginal distributions,

some of them do not improve modeling of the dependence structure, still resting on the as-

sumption of independent Brownian motions. Semeraro (2008) and Luciano and Semeraro

(2010b) improve the richness of the correlation structure introducing correlated Brownian

motions, but this is achieved at the cost of increasing the complexity of the model, with a
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number of parameters growing with the square of the number of assets.

Another way to build multivariate models is based on the so called Lévy copula, which in-

stead of being defined on the cumulative distribution function, as is the standard copula,

is defined on the Lévy measure ν(dx) itself (see Section 1.3). Lévy copulas can be seen as

functions gluing the marginal Lévy measures together to form the Lévy measure of the

whole process. For more details refer to Tankov (2006), Barndorff-Nielsen and Lindner

(2004) and Kallsen and Tankov (2006).

A third method, which is the one we will adopt in the further discussion, is via linear

combination of independent Lévy processes; in fact Lévy processes are closed under linear

transformations. As we see in Sections 2.1 and 2.2, through a very simple construction, as

that proposed by Ballotta and Bonfiglioli (2014), we get a flexible model which can prop-

erly describe both the marginal distributions and the dependence structure among assets.

Moreover the model is relatively parsimonious, since the overall number of parameters

involved grows linearly with the number of components. In Section 2.3 we discuss the

estimation of the model, which is one of the main contributions of the present work.

2.1 Model construction

Let us start presenting the multivariate Lévy model introduced by Ballotta and Bonfiglioli

(2014), which represents the general framework for the models adopted in the following.

Proposition 1

Let Z, Y (j), j = 1, . . . , n be independent Lévy processes on a probability space (Ω,F ,P),

with characteristic functions φZ(u; t) and φYj (u; t), for j = 1, . . . , n, respectively.

Then, for aj ∈ R, j = 1, . . . , n

Xt = (X(1)
t , . . . , X

(n)
t )′ = (Y (1)

t + a1Zt, . . . , Y
(n)
t + anZt)′ (2.1)

is a Lévy process on Rn with characteristic function

φX(u; t) = φZ

 n∑
j=1

ajuj ; t

 n∏
j=1

φYj (uj ; t),u ∈ Rn. (2.2)

Proof. The proof, given in Appendix A, follows from the properties of Lévy processes.
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Corollary 1

Let X be the multivariate Lévy process introduced in Proposition 1.

(i) For j = 1, . . . , n, the mth cumulant cm of the jth component of Xt is

cm(X(j)
t ) = t[cm(Y (j)

1 ) + amj cm(Z1)]. (2.3)

(ii) For any j 6= l

Cov(X(j)
t , X

(l)
t ) = ajalVar(Z1)t. (2.4)

Proof. The proof is given in Appendix A.

2.2 Strengths of the model

Interpretation. The construction of the model offers a simple and intuitive interpreta-

tion: for each X(j), j = 1 . . . , n, the process Z can be considered as the systematic part of

the risk, while the process Y (j) can be seen as capturing the idiosyncratic shocks.

Dependence structure. Due to the presence of the common factor Zt, the compo-

nents of Xt are dependent and also may jump together. The joint distribution follows by

construction from the distributions chosen for Z and Y (j), j = 1 . . . , n; in other words, the

copula is implicitly defined by the model.

Corollary 2

For each t ≥ 0, X is positive associated if either aj ≥ 0 for j = 1 . . . n or aj ≤ 0 for j = 1 . . . n,

i.e.

Cov(f(Xt), g(Xt)) ≥ 0 (2.5)

for all non decreasing functions f, g : Rn → R for which the covariance is well-defined.

Proof. The proof is given in full detail in Ballotta and Bonfiglioli (2014).
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In general, the coefficients aj do not have the same sign for all j = 1 . . . n; in this

case, the components X(j) and X(l) are pairwise positive (negative) quadrant dependent if

ajal > 0 (ajal < 0). From the construction of X, it follows that, conditioning to the common

factor Z, the components are independent; further, if Y is degenerate, the component of X

are perfectly (linearly) dependent; on the other hand, if Z is degenerate, the components

of X are independent. The dependence between components is correctly described by the

pairwise linear correlation coefficient

ρX
j,l = Corr(X(j)

t , X
(l)
t ) = ajalVar(Z1)√

Var(X(j)
1 )
√

Var(X(l)
1 )

. (2.6)

In fact, for fixed aj , al 6= 0, the correlation coefficient is null if and only if Var(Z1) = 0, i.e.

Z is degenerate and the components are independent. Moreover,
∣∣∣ρX
j,l

∣∣∣ = 1 if and only if

Y (j) and Y (l) are degenerate, i.e. there is no idiosyncratic factor in the components X(j)

and X(l). If we consider the correlation coefficient as a function of the loading parameters,

aj and al, we observe that for fixed aj = ā > 0 (aj = ā < 0), ρX
j,l is monotone increasing

(decreasing) in al and can take any value from −1 to 1 (from 1 to −1). In particular,

ρX
j,l = 0 if at least one of the loading is null (i.e. at least one of the two components

has no systematic risk), while
∣∣∣ρX
j,l

∣∣∣ = 1 as a limit case for |ā| = +∞ and |al| = +∞

(i.e. the idiosyncratic risk plays no role in the dynamic of the components X(j) and X(l)).

Finally, sign(ρX
j,l) = sign(ajal), therefore both positive and negative correlations can be

accommodated.

Moreover, since

Corr(X(j)
t , Zt) = aj

√
Var(Z1)

Var(X(j)
1 )

, (2.7)

the pairwise correlation coefficient ρX
j,l can be expressed in terms of the correlation be-

tween each component of X and the systematic component Z, as

ρX
j,l = Corr(X(j)

t , Zt)Corr(X(l)
t , Zt). (2.8)

The dependence structure presented above is one of the strength points of the model

proposed in Ballotta and Bonfiglioli (2014) compared to the multivariate subordinator

approach of Semeraro (2008) and Luciano and Semeraro (2010a), where the correlation

coefficient can be null even though the processes are dependent, and the factor copula
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approach of Baxter (2007) and Moosbrucker (2006), whose models can accommodate only

strictly positive correlations.

Parsimony. The relative parsimony of the model is a further point in support of

the construction presented in Proposition 1. We already remarked that a multivariate

subordination of correlated Brownian motions implies that the number of parameters

grows with the square of the number of assets, due to the presence of a correlation matrix

for the Brownian motion part of the components. The construction proposed by Ballotta

and Bonfiglioli (2014) manages to model the whole range of dependencies retaining a

high degree of parsimony, the number of parameters growing linearly with the number of

assets.

Flexibility. A further pro of the construction above is that we are allowed to specify

any univariate Lévy process for Y (j), j = 1 . . . n, and Z. The joint distribution might not be

known analytically, but it can be recovered numerically using the characteristic function

given in Proposition 1. Conversely, for a chosen distribution for the process X(j), j =

1, . . . , n, it is possible to impose convolution conditions on the processes Y (j) and Z s.t.

Y
(j)
t + ajZt

d= X
(j)
t , ∀j = 1 . . . n, i.e.

ϕX(j)(u) = ϕY (j)(u) + ϕZ(aju) j = 1, . . . , n. (2.9)

The latter feature is particularly convenient when the model is aimed at describing the

information provided by traded derivative contracts, as argued in Ballotta and Bonfiglioli

(2014).

2.3 Model estimation

Here the present work parts from the one carried out by Ballotta and Bonfiglioli (2014);

in fact, our aim is to apply the model for asset allocation purposes, and we focalize on

historical estimation rather than calibration.

In particular, we propose a three-step estimation procedure, based on the assumption that

the common factor Z is observable, being well proxied by the returns on a broad-based in-
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dex, and a more computationally intensive one-step maximum likelihood estimation.

To assess the effectiveness of the two approaches we test them through simulation studies

in two particular specifications of the multivariate model (2.1): one assumes all the in-

volved processes to be normal inverse Gaussian processes with drift (‘all-NIG’); the other

assumes all the involved processes to be Merton’s jump-diffusion processes (‘all-MJD’).

2.3.1 A three-step estimation procedure

In this section we propose a three-step estimation procedure for the multivariate Lévy

model described in Section 2.1.

Let us denote with St the price of a financial asset. In the class of exponential-Lévy

models, the price St is represented as

St = S0exp(Lt), (2.10)

where L is a Lévy process, whose characteristic exponent (1.13) we denote by ϕ. Assuming

that we observe the price process on an equally-spaced time grid t = 1, 2, . . . , n, the log-

returns or compounded returns, defined as

Xt = log
(

St
St−1

)
= Lt − Lt−1, (2.11)

are i.i.d. infinitely divisible random variables whose characteristic function reads

φX(u) = φL1(u) = eϕ(u). (2.12)

We adopt the multivariate model presented in Section 2.1 to describe the joint process

of compounded stock returns.

In a preliminary stage, we need to specify the nature of Lévy processes assumed for

Y (j), j = 1 . . . n and Z. We are in principle free to choose any Lévy process for each of

them. In our leading example we suppose them to be all of the same kind, precisely all

NIG processes with a drift component or all Merton’s jump-diffusion processes.

We do not impose any convolution condition on X, whose nature is fully determined by

its characteristic function (2.2) once the parameters of Z, Y and the loadings a have been

estimated.
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Step 1. Systematic component.

Our main assumption is that the past realizations of the systematic component are some-

how observable, being well-proxied by the returns of a broad-based index. Therefore the

first step of our procedure consists in the univariate estimation of the parameters leading

the process Z given the time series of the index log-returns.

This univariate estimation can be performed by any technique, therefore we shall

choose the one which best suits the particular model. The maximum likelihood method is

preferable in terms of efficiency if the probability density function of the process assumed

for Z is available in analytical form (as it is for the NIG process), or if it can be performed

via EM algorithm (as it is for the Merton’s jump-diffusion process), but this is often not the

case; however, the return density can be recovered numerically inverting the analytical

characteristic function (1.12), for example via FFT, as suggested by Carr et al. (2003). The

spectral GMM estimation described in Section 1.4.4 can be also applied.

For the NIG model, we apply maximum likelihood directly, using the method of

moments estimates as starting points for the numerical optimization. The spectral GMM,

though less accurate, can be an adequate alternative. See Section (2.3.1.2) for more

details.

For the MJD model we apply the EM algorithm proposed by Duncan et al. (2009); in fact,

ML estimation for jump-diffusion processes is not straightforward and requires a careful

numerical optimization (see for example Honoré (1998)). Refer to Section (2.3.1.3) for

more details.

Step 2. Loading parameters.

In the second step we estimate the loading parameters a = [a1, . . . , an]′. The loadings de-

termine the dependence structure among the components of the process X, therefore they

must be recovered by extracting the information enclosed in the covariance (or correlation)

matrix of the stock returns.

In particular, we estimate the vector a fitting the non diagonal entries of the sample

covariance matrix to their theoretical counterparts predicted by our multivariate model.
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From (2.6), we can express the covariance matrix of X as

Cov(X) = aa′Var(Z1) + diag([Var(Y (1)), . . . ,Var(Y (n))]), (2.13)

where the non-diagonal entries depend only on the loadings and on the variance of Z1.

We then simply minimize with respect to a the Frobenius distance between the sample

covariance and expression (2.13), setting the diagonal entries to zero in both of them.

In expression (2.13) we can plug-in the sample variance of the stock index returns or

the parametric expression for the variance, using the estimates obtained in Step 1; in

the former case, this step turns out to be independent of the specification of the Lévy

processes involved in the multivariate model construction. For a reasonable initialization

of the algorithm we suggest to perform a simple linear regression of the stock returns on

the broad-based index returns.

Step 3. Idiosyncratic components.

We are left with the parameters leading the processes Y (j), j = 1 . . . n, to be estimated.

From the very definition of our model (2.1), we can write each component Y (j) as

Y (j) = X(j) − ajZ. (2.14)

The nature of the process Y (j) is decided exogenously (e.g. each Y (j) is a NIG process

or a MJD process as in our main examples); given the observed time series of assets

returns x(j) and index returns z, and plugging in the estimate of the loadings âj obtained

in Step 2, we can then recover the parameters of the process Y (j) by means of a univariate

estimation on the fictitious time series

y
(j)
t = x

(j)
t − âjzt. (2.15)

As in Step 1, the univariate estimation can be performed by any technique. To estimate

the NIG model we apply direct maximum likelihood. The spectral GMM estimation can

also be applied, but this could be hard when the number of asset n is high, since the

estimation of each component Y (j), j = 1 . . . n may require different moment conditions to

produce reliable results, as we realized in our simulation study.
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For the MJD model we apply the EM algorithm proposed by Duncan et al. (2009).

In the following sections we present the results of a simulation study aimed at assess-

ing the estimation procedure described in Section 2.3.1. Since the estimation of loadings

is model independent1, we start presenting the evaluation of Step 2 (Section 2.3.1.1). Sec-

tions 2.3.1.2 and 2.3.1.3 deal with the estimation assessment of Step 1 and Step 3, when

Y (j), j = 1 . . . n, and Z are all assumed to be NIG processes with drift or all Merton’s

JD processes respectively. The parameters used for the simulations were chosen applying

the three-step routine to a real dataset of daily returns of 30 stocks in the S&P500 index,

using the index returns as proxy for Z.

2.3.1.1 Simulation study: loadings

In the following we present part of the results of the estimation assessment relative to

Step 2, i.e. the estimation of the loadings a. The proper estimation of loading parameters

is of crucial importance, both to correctly model the dependence structure among asset re-

turns and because their estimates are involved in the idiosyncratic component parameters

estimation. We report in Table 2.1 the relative and absolute root mean square error (1.51,

1.48), bias (1.45) and inefficiency (1.46) of the first loading a1 as the number of assets

varies in n = [5, 10, 15, 30] and the length of the simulated series for the estimation varies

in T = [250, 500, 750, 1000].2 We can notice that the estimates improve both for increasing

T , which is an indicator of consistency, and also with the number of assets n.

Figure 2.1 shows the distributions of the estimators (on the left) and of the quadratic loss

(1.47) (on the right) in the particular case n = 30 and T = 250. On the left hand plot,

the true value of a1 and the mean of the estimator are highlighted respectively with red

and green dots. On the right hand plots we highlight the mean square error with a blue

bar and the squared bias with an orange bar, which in this case is almost not visible,

reminding that the difference among them represents the squared inefficiency.3

1We choose to use the sample variance of Z1 in expression 2.13, to compute the theoretical covariance matrix.
2Analogous results for loadings other than the first, omitted for the sake of brevity, are available upon request.
3For Figures 2.1, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.12, 2.13 and 2.14 we refer to Meucci (2014).
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a1= 0.8898 n=5 n=10 n=15 n=30

T=250
RRMSE 8.42% 7.88% 7.87% 7.58%

RMSE 7.50E-02 7.01E-02 7.00E-02 6.74E-02
Bias 1.13E-03 7.80E-04 2.12E-03 2.55E-03

Inefficiency 7.50E-02 7.01E-02 7.00E-02 6.74E-02

T=500
RRMSE 5.94% 5.40% 5.44% 5.36%

RMSE 5.29E-02 4.81E-02 4.84E-02 4.77E-02
Bias 1.49E-03 5.13E-04 6.24E-05 1.90E-03

Inefficiency 5.28E-02 4.81E-02 4.84E-02 4.76E-02

T=750
RRMSE 4.80% 4.41% 4.43% 4.36%

RMSE 4.27E-02 3.93E-02 3.94E-02 3.88E-02
Bias 1.30E-04 3.85E-04 4.97E-04 2.82E-04

Inefficiency 4.27E-02 3.93E-02 3.94E-02 3.88E-02

T=1000
RRMSE 4.14% 3.83% 3.85% 3.81%

RMSE 3.68E-02 3.41E-02 3.42E-02 3.39E-02
Bias 3.17E-04 4.34E-04 7.33E-04 5.84E-04

Inefficiency 3.68E-02 3.41E-02 3.42E-02 3.39E-02

Table 2.1: Estimation assessment results for the loading parameter a1.
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Figure 2.1: Distributions of the estimators and of the square loss for the loading parameter
of the first stock (a1). Number of simulations: 10000; length of the simulated time series:
250; number of assets: 30.
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In order to analyze in more depth the behavior of the loadings estimators as the num-

ber of assets varies, we perform a further experiment, simulating datasets all made of

series of a fixed length T , and with number of assets spanning the interval [2, 60]. To

choose the parameters we first apply the three-step routine (2.3.1) to a real dataset made

of 60 assets belonging to the FTSE100 index, using the index returns as proxy for the

systematic factor Z. For each n we simulate a dataset and we estimate the loadings, re-

peating the simulation-estimation procedure 10000 times. We then compute the average

error, average bias, average standard error and average interquartile range of the load-

ings in correspondence of each n, meaning that, given n, we compute these measures for

all aj , j = 1, . . . , n, and then we take the average.

The computations are repeated for simulated series of increasing length: T =

[250, 500, 750, 1000]. Results are plotted in Figure 2.2. The estimates of the loadings ap-

pear to be consistent, since all the average error measures decrease when estimation is

performed on longer time series.

We observe that for n = 3, . . . , 5 we get the highest, but still quite small errors (the average

percentage root mean square error in the worst case, i.e. n = 3 and T = 250, is less than

8%), both due to higher inefficiency and bias, while for a higher number of assets, average

error, bias and inefficiency decrease and almost stabilize to lower values.
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Figure 2.2: Average error, bias, standard error and interquartile range of the loadings
estimates for increasing number of assets (n = 2, . . . , 60) and increasing number of obser-
vations (T = [250, 500, 750, 1000]).
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2.3.1.2 Simulation study: the ‘all NIG’ model

The NIG model allows us to perform direct maximum likelihood estimation in Step 1 and

3, since its probability density function is available in closed form (1.18). We introduce

a drift to the standard model described in Section 1.3 to obviate the drawback that in

the standard model mean and skewness are concordant, as Equations (1.23)-(1.26) show

(since k > 0, c1 and c3 both have the sign of θ). As we would like to model properly

return distributions with positive mean and negative skewness as well (and vice versa),

we introduce a drift parameter µ. If X is the standard NIG process introduced in Section

1.3, hereafter we will call NIG the process

X̃t = µt+Xt. (2.16)

The characteristic function of (2.16) differs from (1.17) by a multiplicative factor eiµt, the

probability density function is (1.18) computed in (x−µt) and only the first cumulant (1.23)

changes, becoming c1 = (µ + θ)t (see Schoutens (2003)). We use the first four theoretical

cumulants in order to obtain the method of moment estimates, to which we initialize the

maximum likelihood optimization search, performed by means of the MATLAB® function

fminunc. We recall from Section 2.3 that to fit the systematic component parameters

we rely on the simulated series z1, . . . , zt, t = 1 . . . , T , while to fit the jth unobservable

idiosyncratic component parameters we perform a univariate estimation on the series

x
(j)
t − âjzt, t = 1 . . . , T .

The parameters used for the simulation were chosen applying the three-step routine to

a real dataset of daily returns of 30 stocks in the S&P500 index, using the index returns

as proxy for Z. Once fixed the parameters, we simulate the NIG processes Z and Yj ,

j = 1, . . . , n, and then we obtain the multivariate process X as it was built in Proposition

1.

We assess the estimation procedure in 16 cases, varying the length of the simulated

series (T = [250, 500, 750, 1000]) and the number of assets (n = [5, 10, 15, 30]). In each

case we repeat the simulation and estimation 10000 times and, for each parameter, we

compute the distribution of the loss (1.47), root mean square error (1.48), bias (1.45) and

inefficiency (1.46). Since the number of parameters is high (if n = 5 the total number of
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parameters is 4(Z) + 5(a) + 5× 4(Y ) = 29, if n = 30 they are 4(Z) + 30(a) + 30× 4(Y ) = 154)

we cannot display detailed results for each parameter; for illustrative purpose, we show

only the assessment results for the estimation of Z and Y (1), having already examined

the loadings estimation. Complete results are available upon request.

Step 1. Systematic component.

We present below the results of the estimation assessment relative to the parameters of

the systematic factor Z, i.e. µZ , θZ , σZ and kZ .

Table 2.2 displays root mean square error (1.48), bias (1.45) and inefficiency (1.46)

of the maximum likelihood estimators as the length of the simulated series varies in

T = [250, 500, 750, 1000]. Obviously, for this step the number of assets n is irrelevant.

To visualize the results we plot in Figure 2.3 the distributions of the estimators (on the

left) and of the quadratic losses (1.47) (on the right) for each parameter when T = 250.

On the left hand plots we highlight with a red dot the true value of each parameter and

with a green dot the mean of the estimator. On the right hand plots we highlight the

mean square error with a blue bar and the bias squared with an orange bar, reminding

that the difference among them represents the squared inefficiency. The red dots and the

orange bars are almost not visible in most of the plots revealing a low level of bias, and the

loss distributions are sharply peaked around zero, meaning that the maximum likelihood

estimators for the NIG model are suitable for the first step of our procedure. Both from

Table 2.2 and from Figure 2.3 a relatively high level of inefficiency can be perceived; how-

ever, the goal of our simulation study is not to assess the maximum likelihood estimators

for the NIG model, but rather to verify the effectiveness of the three step procedure we

worked out. As a positive signal in this direction, we expect the errors obtained in the

assessment of the third step to be comparable with those presented in this section4.

4Mind that errors are expressed in absolute terms.
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Z T=250 T=500 T=750 T=1000

µ = 0.0014
RMSE 9.85E-04 6.72E-04 5.42E-04 4.65E-04

Bias 4.33E-05 1.21E-05 1.84E-05 6.73E-06
Inefficiency 9.84E-04 6.71E-04 5.41E-04 4.65E-04

θ = -0.0014
RMSE 1.47E-03 1.02E-03 8.20E-04 7.12E-04

Bias 3.09E-05 2.42E-05 1.87E-05 4.90E-06
Inefficiency 1.47E-03 1.02E-03 8.20E-04 7.12E-04

σ = 0.0168
RMSE 1.76E-03 1.23E-03 1.01E-03 8.77E-04

Bias 1.77E-04 8.60E-05 6.41E-05 4.70E-05
Inefficiency 1.75E-03 1.22E-03 1.01E-03 8.75E-04

k = 3.32
RMSE 1.30E+00 8.97E-01 7.26E-01 6.32E-01

Bias 1.91E-02 8.17E-03 5.85E-04 5.79E-03
Inefficiency 1.30E+00 8.97E-01 7.26E-01 6.32E-01

Table 2.2: Estimation assessment results for the parameters driving the systematic com-
ponent Z (ML estimation).
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Figure 2.3: Distributions of the ML estimators and of the square losses for the parameters
of the common factor Z. Number of simulations: 10000; length of the simulated time
series: 250.
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The spectral generalized method of moments can be also applied in the first step,

especially when the probability density function is not available in closed form.

Here we adopt the discrete approach described in Section 1.4.4, implemented by means

of a MATLAB® package developed by Cliff (2003). Table 2.3 presents results relative to

sGMM estimators for the common factor’s parameters. Figure 2.4 illustrates the case

T=750. We can notice that increasing the length of the time series, the estimates for µ, θ

and σ become quite accurate, while particularly hard is the estimation of k, the parameter

controlling kurtosis.

Comparing Tables 2.3 and 2.2 we can see that ML estimators are preferable, displaying

lower bias and inefficiency than sGMM estimators in correspondence of all the parame-

ters.

Z T=250 T=500 T=750 T=1000

µ = 0.0014
RMSE 1.14E-01 7.27E-03 1.22E-03 9.53E-04

Bias 6.58E-04 3.54E-04 1.73E-04 1.89E-04
Inefficiency 1.14E-01 7.26E-03 1.21E-03 9.34E-04

θ = -0.0014
RMSE 1.02E-01 7.33E-03 1.49E-03 1.24E-03

Bias 7.19E-04 7.50E-04 5.50E-04 5.20E-04
Inefficiency 1.02E-01 7.29E-03 1.39E-03 1.13E-03

σ = 0.0168
RMSE 2.28E-03 1.78E-03 1.53E-03 1.35E-03

Bias 1.74E-03 1.40E-03 1.22E-03 1.09E-03
Inefficiency 1.48E-03 1.10E-03 9.26E-04 8.04E-04

k = 3.32
RMSE 1.94E+00 1.76E+00 1.62E+00 1.51E+00

Bias 1.63E+00 1.39E+00 1.28E+00 1.21E+00
Inefficiency 1.06E+00 1.08E+00 9.81E-01 8.97E-01

Table 2.3: Estimation assessment results for the parameters driving the systematic com-
ponent Z (spectral GMM estimation).
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Figure 2.4: Distributions of the spectral GMM estimators and of the square losses for
the parameters of the common factor Z. Number of simulations: 10000; length of the
simulated time series: 750.
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Step 3. First idiosyncratic component.

We present below the results of the estimation assessment for the parameters of

the idiosyncratic component relative to the first stock in our simulated database, i.e.

µY (1) , θY (1) , σY (1) and kY (1) .

Table 2.4 displays root mean square error (1.48), bias (1.45) and inefficiency (1.46) of the

maximum likelihood estimators when the total number of assets is fixed (n = 30) and the

length of the simulated series varies in T = [250, 500, 750, 1000]. In Table 2.5 we instead

show the assessment results for a fixed T = 500, varying the number of assets. Although

the estimation of each Y (j), j = 1 . . . , n, is performed univariately, the number of assets

plays a key role in the estimation of the loadings, which enter and affect the estimation

of the Y (j) parameters; however Table 2.5 reveals almost uniform estimation errors for

n = [5, 10, 15, 30].

To visualize the results we plot in Figure 2.5 the distributions of the estimators (on

the left) and of the quadratic loss (1.47) (on the right) for each parameter when T = 250

and n = 30. As in Figure 2.3, on the left hand plots we highlight with a red dot the true

value of each parameter and with a green dot the mean of the estimator. On the right

hand plots we highlight the mean square error with a blue bar and the bias squared with

an orange bar. The red dots and the orange bars are almost not visible in most of the

plots revealing a low level of bias, and the loss distributions are squeezed above zero,

meaning the third step of our estimation procedure works well. As we noticed in relation

to the estimation of the systematic factor, for all of the parameters almost the whole root

mean square error is due to inefficiency. Nevertheless we observe estimation errors and

inefficiency levels in line with those obtained in Step 15, therefore splitting the estimation

procedure in three steps, besides being simple, seems also to be effective.

5Mind that errors are expressed in absolute terms.
Analogous observations hold true for components other than the first.
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Y (1) T=250 T=500 T=750 T=1000

µ = 9.92E-04
RMSE 2.17E-03 1.13E-03 9.00E-04 7.69E-04

Bias 1.09E-05 2.80E-06 2.58E-05 4.71E-06
Inefficiency 2.17E-03 1.13E-03 9.00E-04 7.69E-04

θ = 2.15E-04
RMSE 2.45E-03 1.37E-03 1.09E-03 9.40E-04

Bias 8.74E-06 9.50E-06 3.46E-05 9.08E-06
Inefficiency 2.45E-03 1.37E-03 1.09E-03 9.40E-04

σ = 0.0173
RMSE 1.39E-03 9.71E-04 7.97E-04 6.74E-04

Bias 2.08E-04 1.03E-04 7.91E-05 6.38E-05
Inefficiency 1.37E-03 9.66E-04 7.93E-04 6.71E-04

k = 1.483
RMSE 6.19E-01 4.31E-01 3.48E-01 3.02E-01

Bias 2.04E-02 7.46E-03 1.50E-02 7.11E-03
Inefficiency 6.19E-01 4.31E-01 3.47E-01 3.02E-01

Table 2.4: Estimation assessment results for the parameters of the idiosyncratic compo-
nent Y (1) when n = 30, varying the length of the series T .

Y (1) n=5 n=10 n=15 n=30

µ = 9.92E-04
RMSE 1.13E-03 1.12E-03 1.14E-03 1.13E-03

Bias 5.71E-06 1.19E-07 1.18E-05 2.80E-06
Inefficiency 1.13E-03 1.12E-03 1.14E-03 1.13E-03

θ = 2.15E-04
RMSE 1.39E-03 1.37E-03 1.40E-03 1.37E-03

Bias 1.17E-05 8.77E-06 1.81E-05 9.50E-06
Inefficiency 1.39E-03 1.37E-03 1.40E-03 1.37E-03

σ = 0.0173
RMSE 9.65E-04 9.60E-04 9.61E-04 9.71E-04

Bias 1.05E-04 1.05E-04 9.35E-05 1.03E-04
Inefficiency 9.60E-04 9.54E-04 9.56E-04 9.66E-04

k = 1.483
RMSE 4.29E-01 4.28E-01 4.28E-01 4.31E-01

Bias 1.41E-02 1.53E-02 1.11E-02 7.46E-03
Inefficiency 4.29E-01 4.27E-01 4.28E-01 4.31E-01

Table 2.5: Estimation assessment results for the parameters of the idiosyncratic compo-
nent Y (1) when T = 500, varying the total number of assets n.
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Figure 2.5: Distributions of the estimators and of the square losses for the parameters
of the first stock idiosyncratic factor Y (1). Number of simulations: 10000; length of the
simulated time series: 250; number of assets: 30.
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2.3.1.3 Simulation study: the ‘all MJD’ model

In this section we present part of the results of a simulation study similar to the above,

where all the involved processes are supposed to be Merton’s JD.

As the estimation of the loadings is model independent6, here we focus only on Step 1

and Step 3. To fit the Merton’s model we implement the EM algorithm in the formulation

proposed by Duncan et al. (2009), since ML estimation for jump-diffusion processes is not

straightforward and requires a careful numerical optimization (see for example Honoré

(1998)). The EM algorithm of Duncan et al. (2009) is particularly efficient as they provide

simple closed form solutions for the M-step. For a detailed description of the algorithm

we refer to Appendix B.

Step 1. Systematic component.

We present below the results of the estimation assessment relative to the parameters of

the systematic factor Z, i.e. µZ , σ2
Z , νZ , τ2

Z and λZ .

As we did for the NIG model in Section 2.3.1.2, we show in Table 2.6 the root mean square

error (1.48), bias (1.45) and inefficiency (1.46) of each estimator when the estimation is

performed on time series of increasing length. In Figure 2.6 we report the distribution of

each estimator and of the respective loss (1.47). Even in the MJD case we can see that

the ML estimators obtained by EM are almost unbiased and we can take the errors and

inefficiency levels as terms for comparison to evaluate Step 37.

6We chose to use the sample variance of Z1 in expression 2.13, to compute the theoretical covariance matrix.
7Mind that errors are expressed in absolute terms.
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Z T=250 T=500 T=750 T=1000

µ = 0.0012
RMSE 8.24E-04 5.83E-04 4.66E-04 4.05E-04

Bias 2.80E-05 1.83E-05 2.49E-05 2.66E-05
Inefficiency 8.23E-04 5.83E-04 4.65E-04 4.04E-04

σ2= 5.75E-05
RMSE 2.23E-05 1.59E-05 1.58E-05 1.38E-05

Bias 3.22E-06 2.70E-06 3.17E-06 2.74E-06
Inefficiency 2.21E-05 1.57E-05 1.54E-05 1.35E-05

ν = -0.0025
RMSE 3.14E-03 1.90E-03 1.51E-03 1.28E-03

Bias 1.35E-04 1.72E-04 6.60E-05 6.62E-05
Inefficiency 3.13E-03 1.89E-03 1.51E-03 1.28E-03

τ2 = 0.0004
RMSE 1.90E-04 1.52E-04 1.35E-04 1.23E-04

Bias 4.44E-05 3.36E-05 3.34E-05 2.90E-05
Inefficiency 1.85E-04 1.48E-04 1.31E-04 1.19E-04

λ=0.47
RMSE 1.50E-01 1.07E-01 8.72E-02 7.88E-02

Bias 1.48E-02 1.94E-02 2.33E-02 2.01E-02
Inefficiency 1.49E-01 1.05E-01 8.40E-02 7.62E-02

Table 2.6: Estimation assessment results for the parameters driving the systematic com-
ponent Z.
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Figure 2.6: Distributions of the estimators and of the square losses for the parameters of
the common factor Z. Number of simulations: 10000; length of the simulated time series:
250.
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Step 3. First idiosyncratic component.

We present below the results of the estimation assessment for the parameters of

the idiosyncratic component relative to the first stock in our simulated database, i.e.

µY (1) , σ2
Y (1) , νY (1) , τ2

Y (1) and λY (1) .8

Table 2.7 displays root mean square error (1.48), bias (1.45) and inefficiency (1.46) of the

maximum likelihood estimators when the total number of assets is fixed (n = 30) and the

length of the simulated series varies in T = [250, 500, 750, 1000]. In Table 2.8 the length of

the time series is fixed (T = 500) and the number of assets varies in n = [5, 10, 15, 30]. As

observed in relation to the ‘all NIG’ case, the number of assets, which enters in the load-

ings estimation, has only little impact on the estimation errors of the idiosyncratic terms.

Figure 2.7, analogously to the previous ones, shows estimators and losses distributions

referring to the case T = 250 and n = 30.

Both from graphs and tables we can notice that estimation errors and inefficiency levels

are again in line with those obtained in Step 19, standing in support of our three-step

routine for the ‘all-MJD’ model as well.

8Complete results are available upon request.
9Mind that errors are expressed in absolute terms.

Analogous observations hold true for components other than the first.
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Y (1) T=250 T=500 T=750 T=1000

µ = 0.00133
RMSE 1.10E-03 7.61E-04 6.12E-04 5.33E-04

Bias 9.29E-06 3.76E-06 7.53E-06 1.45E-07
Inefficiency 1.10E-03 7.61E-04 6.12E-04 5.33E-04

σ2= 0.00012
RMSE 3.02E-05 2.29E-05 2.00E-05 1.93E-05

Bias 1.22E-07 5.15E-07 3.35E-07 7.67E-07
Inefficiency 3.02E-05 2.29E-05 2.00E-05 1.93E-05

ν = -0.0004
RMSE 7.78E-03 3.26E-03 2.43E-03 2.03E-03

Bias 1.62E-04 3.30E-05 3.83E-06 5.59E-06
Inefficiency 7.78E-03 3.26E-03 2.43E-03 2.03E-03

τ2 =0.00059
RMSE 3.30E-04 2.36E-04 2.07E-04 2.02E-04

Bias 4.81E-05 3.03E-05 2.55E-05 2.90E-05
Inefficiency 3.27E-04 2.34E-04 2.06E-04 2.00E-04

λ =0.29214
RMSE 1.61E-01 1.21E-01 1.03E-01 9.06E-02

Bias 1.62E-02 1.56E-02 1.17E-02 5.44E-03
Inefficiency 1.60E-01 1.20E-01 1.02E-01 9.04E-02

Table 2.7: Estimation assessment results for the parameters of the idiosyncratic compo-
nent Y1 when n = 30, varying the length of the series T .
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Y (1) n=5 n=10 n=15 n=30

µ = 0.00133
RMSE 7.55E-04 7.63E-04 7.57E-04 7.61E-04

Bias 1.59E-06 1.28E-05 2.36E-06 3.76E-06
Inefficiency 7.55E-04 7.63E-04 7.57E-04 7.61E-04

σ2= 0.00012
RMSE 2.33E-05 2.32E-05 2.30E-05 2.29E-05

Bias 3.61E-08 1.80E-07 6.70E-07 5.15E-07
Inefficiency 2.33E-05 2.32E-05 2.30E-05 2.29E-05

ν = -0.0004
RMSE 3.25E-03 3.18E-03 3.09E-03 3.26E-03

Bias 4.24E-05 4.42E-05 1.10E-05 3.30E-05
Inefficiency 3.25E-03 3.18E-03 3.09E-03 3.26E-03

τ2 =0.00059
RMSE 2.42E-04 2.38E-04 2.35E-04 2.36E-04

Bias 3.34E-05 3.44E-05 2.99E-05 3.03E-05
Inefficiency 2.40E-04 2.36E-04 2.33E-04 2.34E-04

λ =0.29214
RMSE 1.21E-01 1.20E-01 1.21E-01 1.21E-01

Bias 1.54E-02 1.39E-02 1.62E-02 1.56E-02
Inefficiency 1.20E-01 1.19E-01 1.19E-01 1.20E-01

Table 2.8: Estimation assessment results for the parameters of the idiosyncratic compo-
nent Y1 when T = 500, varying the total number of assets n.
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Figure 2.7: Distributions of the estimators and of the square losses for the parameters of
the first stock idiosyncratic component Y (1). Number of simulations: 10000; length of the
simulated time series: 250; number of assets: 30.
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2.3.2 One-step approach: maximum likelihood

In this section we show how to perform the maximum likelihood estimation of all the

parameters involved in our multivariate Lévy model (2.1) on a single step, avoiding the

assumption of the common factor Z being observable. This approach is feasible especially

when the probability density function of the Lévy models chosen for the systematic

and idiosyncratic factors are available in closed form, as in the ‘all-NIG’ and ‘all-MJD’

specifications. If this is not the case, though still viable, the one-step approach may

become computationally challenging.

The joint probability density function of (x1,t, . . . , xn,t) reads

fX(x1,t, . . . , xn,t) =
∫ ∞
−∞

fX|Z((x1,t, . . . , xn,t)|z)fZ(z)dz

=
∫ ∞
−∞

fY1(x1,t − a1z) · . . . · fYn(xn,t − anz)fZ(z)dz,
(2.17)

where we used the independence of the Yj , j = 1 . . . n, among themselves and of Z.

The likelihood function of the sample x = (x1,t, . . . , xn,t)t=1...T then follows as

L(x,θ) =
T∏
t=1

[∫ ∞
−∞

fY1(x1,t − a1z; θY1) · . . . · fYn(xn,t − anz; θYn)fZ(z; θZ)dz
]
, (2.18)

where θ = [θY1 , . . . ,θYn ,θZ ,a].

To compute the likelihood (2.18) we fix a grid of values for Z and we numerically eval-

uate the integral by means of the MATLAB® function trapz; to perform the maximiza-

tion we use the MATLAB® function fminsearch, exploiting the three-step procedure de-

scribed in Section 2.3.1 to initialize the vector of parameters.

2.3.2.1 Simulation study: the ‘all-NIG’ model

The maximum likelihood estimation under the ‘all-NIG’ model consists in maximizing

the likelihood function (2.18), where all the probability density function involved are NIG

(1.18)10, with respect to the 5× n+ 4 parameters of the model.

In this section we present part of the results of a simulation study aimed at assessing
10with drift (see Section 2.3.1.2).
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the effectiveness of the one-step ML approach in the estimation of the ‘all-NIG’ model

parameters. Due to the computational cost of the procedure, here we evaluate the

estimation for a small number of assets (n = 5, i.e. 24 parameters to be estimated)

repeating the simulation 1000 times; we then perform 100 simulations to evaluate the

estimation for n = 15 assets (i.e. 79 parameters), leaving to future studies a deeper

assessment of the overall-ML estimation method for the all-NIG model.

Results relative to the common factor Z are reported in Table 2.9; those relative to the

first idiosyncratic component Y (1), including the loading a1, are displayed in Table 2.10.

Complete results are available upon request.

The estimators and loss distributions for n = 5 are plotted in Figures 2.8, 2.9 and 2.10.

Keeping in mind the different number of simulations performed11, the results reported

in Table 2.9 can be compared to those displayed in the second column of Table 2.2, corre-

sponding to estimates based on T = 500 observations, while the results in Table 2.10 can

be compared with those in the first and third columns of Table 2.5; the errors relative to

the first loading estimates can be compared to those reported in Table 2.1, where T = 500,

n = 5, 15. We observe that the errors obtained with the three-step procedure, using ML

estimation, are in line with those obtained with the one-step ML approach, which in prin-

ciple should be the most effective method, exploiting all at once the whole information

contained in the data.

11A higher number of simulations leads in general to higher errors, due to higher inefficiency, since the vari-
ability of the estimates tends to increase.
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Figure 2.8: Distributions of the estimators and of the square losses for the parameters of
the common factor Z. Number of simulations: 1000; length of the simulated time series:
500; number of assets: 5.
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Figure 2.9: Distributions of the estimators and of the square losses for the parameters
of the first idiosyncratic component Y (1). Number of simulations: 1000; length of the
simulated time series: 500; number of assets: 5.
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Z n=5 (1000 sim.) n=15 (100 sim.)

µ = 0.0014
RMSE 7.07E-04 5.67E-04

Bias 5.82E-05 4.18E-05
Inefficiency 7.04E-04 5.65E-04

θ = -0.0014
RMSE 1.11E-03 8.64E-04

Bias 9.64E-05 5.63E-05
Inefficiency 1.10E-03 8.62E-04

σ = 0.0168
RMSE 1.24E-03 1.25E-03

Bias 3.60E-05 7.30E-05
Inefficiency 1.24E-03 1.25E-03

k = 3.32
RMSE 1.15E+00 8.35E-01

Bias 8.90E-02 1.29E-01
Inefficiency 1.14E+00 8.25E-01

Table 2.9: Estimation assessment results for the parameters of the common factor Z for
T = 500.

Figure 2.10: Distributions of the estimator and of the square loss for first loading a1.
Number of simulations: 1000; length of the simulated time series: 500; number of assets:
5.
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Y (1) n=5 (1000 sim.) n=15 (100 sim.)

µ = 9.92E-04
RMSE 1.19E-03 1.11E-03

Bias 2.51E-05 1.58E-04
Inefficiency 1.19E-03 1.10E-03

θ = 2.15E-04
RMSE 1.47E-03 1.52E-03

Bias 1.61E-05 1.43E-04
Inefficiency 1.47E-03 1.52E-03

σ = 0.0173
RMSE 9.95E-04 1.12E-03

Bias 1.04E-04 1.97E-04
Inefficiency 9.90E-04 1.10E-03

k = 1.483
RMSE 4.87E-01 4.59E-01

Bias 1.22E-02 4.56E-02
Inefficiency 4.87E-01 4.57E-01

a1= 0.8898
RMSE 4.72E-02 3.85E-02

Bias 2.36E-04 1.64E-03
Inefficiency 4.72E-02 3.85E-02

Table 2.10: Estimation assessment results for the parameters of the first idiosyncratic
component Y (1) and the first loading a1 for T = 500.
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Figure 2.11: Likelihood comparison (‘all-NIG’ model)

As a further comparison between the three-step and one-step procedures, we simulate

1000 samples, each made of 500 observations from an ‘all-NIG’ model with 5 components,

and we estimate the parameters with both methods. For each simulated sample we then

compare the maximum likelihood achieved using the one-step approach with the likeli-

hood based on the parameters estimated by the three step approach (where univariate

estimations are performed by ML). Figure 2.11 displays the results; we sort the simula-

tions by increasing values of the maximum likelihood for more clarity and we also plot

the likelihood obtained using the true parameters, i.e. those adopted in the simulation.

We can notice how, in every simulation, the estimates obtained by means of the three-step

procedure lead to a likelihood which is very close to the maximum one. Therefore, if ML

is a viable method for the univariate estimations, the three-step procedure is an effective,

simple and fast alternative to the overall ML estimation.
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2.3.2.2 Simulation study: the ‘all-MJD’ model

The maximum likelihood estimation under the ‘all-MJD’ model consists in maximizing

the likelihood function (2.18), where all the probability density function involved are MJD

(1.29), with respect to the 6× n+ 5 parameters of the model.

In this section we present the results of a simulation study aimed at assessing the

effectiveness of the one-step ML approach in the estimation of the ‘all-MJD’ model param-

eters. Due to the computational cost of the procedure, here we evaluate the estimation

for a small number of assets (n = 5, i.e. 35 parameters to be estimated) repeating the

simulation 1000 times; we then perform 100 simulations to evaluate the estimation for

n = 15 assets (i.e. 95 parameters), leaving to future studies a deeper assessment of the

overall-ML estimation method for the all-MJD model.

Results relative to the common factor Z are reported in Table 2.11; those relative to the

first idiosyncratic component Y (1), including the loading a1, are displayed in Table 2.12.

Complete results are available upon request.

The estimators and loss distributions for n = 5 are plotted in Figures 2.12, 2.13 and 2.14.

Keeping in mind the different number of simulations performed12, we can compare the

errors relative to the one-step ML approach with the corresponding errors obtained by

means of the three-step procedure, where we used the EM algorithm to obtain ML estima-

tors. In particular, the results reported in Table 2.11 can be compared to those displayed

in the second column of Table 2.6, while the results in Table 2.12 can be compared with

those in the first and third columns of Table 2.8; the errors relative to the first loading

estimates can be compared to those reported in Table 2.1, where T = 500, n = 5, 15. We

observe that for the ‘all-MJD’ model the errors of the three-step procedure are just a bit

higher than those obtained with the one-step ML approach.

12A higher number of simulations leads in general to higher errors, due to higher inefficiency, since the vari-
ability of the estimates tends to increase.
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Z n=5 (1000 sim.) n=15 (100 sim.)

µ = 0.0012
RMSE 6.24E-04 6.23E-04

Bias 9.65E-05 1.06E-04
Inefficiency 6.16E-04 6.13E-04

σ2= 5.75E-05
RMSE 1.60E-05 9.63E-06

Bias 3.72E-06 3.07E-06
Inefficiency 1.56E-05 9.13E-06

ν = -0.0025
RMSE 1.69E-03 1.85E-03

Bias 8.17E-05 2.73E-04
Inefficiency 1.69E-03 1.83E-03

τ2 = 0.0004
RMSE 1.11E-04 1.43E-04

Bias 2.55E-05 5.90E-05
Inefficiency 1.08E-04 1.31E-04

λ=0.47
RMSE 2.33E-01 1.49E-01

Bias 1.63E-01 8.84E-02
Inefficiency 1.66E-01 1.20E-01

Table 2.11: Estimation assessment results for the parameters of the common factor Z for
T = 500.
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Figure 2.12: Distributions of the estimators and of the square losses for the parameters of
the common factor Z. Number of simulations: 1000; length of the simulated time series:
500; number of assets: 5.
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Y (1) n=5 (1000 sim.) n=15 (100 sim.)

µ = 0.00133
RMSE 7.85E-04 7.68E-04

Bias 4.54E-05 6.12E-05
Inefficiency 7.84E-04 7.65E-04

σ2= 0.00012
RMSE 2.41E-05 2.21E-05

Bias 1.02E-06 2.12E-06
Inefficiency 2.41E-05 2.20E-05

ν = -0.0004
RMSE 3.03E-03 3.19E-03

Bias 9.54E-05 7.16E-05
Inefficiency 3.03E-03 3.19E-03

τ2 =0.00059
RMSE 2.41E-04 2.33E-04

Bias 3.63E-05 6.06E-05
Inefficiency 2.39E-04 2.25E-04

λ =0.29214
RMSE 1.36E-01 1.15E-01

Bias 2.15E-02 1.20E-02
Inefficiency 1.35E-01 1.14E-01

a1= 0.8921
RMSE 5.44E-02 3.98E-02

Bias 1.08E-02 4.52E-03
Inefficiency 5.33E-02 3.95E-02

Table 2.12: Estimation assessment results for the parameters of the first idiosyncratic
component Y (1) and the first loading a1 for T = 500.
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Figure 2.13: Distributions of the estimators and of the square losses for the parameters
of the first idiosyncratic component Y (1). Number of simulations: 1000; length of the
simulated time series: 500; number of assets: 5.
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Figure 2.14: Distributions of the estimator and of the square loss for first loading a1.
Number of simulations: 1000; length of the simulated time series: 500; number of assets:
5.
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Figure 2.15: Likelihood comparison (‘all-MJD’ model)

As we did for the ‘all-NIG’ model, we then simulate 1000 samples, each made of 500

observations from an ‘all-MJD’ model with 5 components, and we compare the likelihoods

achieved using the parameters estimated by the three-step procedure with the maximum

likelihoods. Figure 2.15, displays the results; we sort the simulations by increasing values

of the maximum likelihood for more clarity and we also plot the likelihood obtained using

the true parameters, i.e. those adopted in the simulation. We can notice that, with respect

to the ‘all-NIG’ model, where the univariate estimations in the three-step approach were

performed by ML, here the likelihoods resulting from the three-step routine, where the

univariate estimations are performed by EM algorithm, are less close to the maximum

ones, but still high, being bigger than the likelihoods obtained with the true parameters.

Jointly with the observations made above with regards to the ‘all-NIG’ model, this sug-

gests that the loss of efficiency in the three-step approach for the ‘all-MJD’ model is mostly

due to the lower efficiency of the univariate estimations rather than to the splitting pro-

cess.
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2.3.3 Estimation on real data

As a further experiment we estimate the multivariate Lévy model (2.1) (in both the ‘all-

NIG’ and ‘all-MJD’ specifications) on a real dataset of stock returns (see Section 3.5) to

investigate if the estimated model well describes the actual asset return distribution. The

estimation is performed via the three-step procedure presented in Section 2.3.1.

For purely illustrative purpose, in Figure 2.16 we plot the histogram of the log-returns

of ‘Apple Inc.’, the first of the twenty stocks in our database, with superimposed the esti-

mated marginal probability density function resulting from our models.

Moreover, in Table 2.13 we compare the first four moments with their theoretical counter-

parts, obtained through relations (2.3) and (1.10).

Finally, we compare sample and theoretical (2.13) covariance matrices, to check if we

manage to catch the correlation structure. Since reporting and comparing big matrices

may be cumbersome, in Figure 2.17 we show the two color-coded matrices, where the es-

timated one is under the ‘all-NIG’ specification of the multivariate model13. Each entry of

the two matrices is colored according to its value; the conversion color-value is provided

in the lateral color bars (which are the same to make the comparison immediate). We can

notice that the estimated matrix colors resemble those of the sample covariance, meaning

that the multivariate Lévy model accurately reproduces the covariance among the assets.

It is worth stressing that, even if in our dataset all of the correlations happen to be pos-

itive, the simulation study presented in Section 2.3.1.1, and in particular the results in

Figure 2.2, involves the presence of negative loadings.

mean variance skewness kurtosis

sample 0.00084 0.00055 -0.497 9.53
all-NIG model 0.00084 0.00054 -0.262 6.54

all-MJD model 0.00084 0.00052 -0.152 4.88

Table 2.13: First four moments of Apple Inc. returns distribution: sample and multivari-
ate Lévy estimates.

13Under the ‘all-MJD’ model only the diagonal entries change, due to the different estimation of the idiosyn-
cratic components variance.
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Figure 2.16: Apple Inc. returns distribution. The estimated marginal probability density
function under two specifications of the multivariate Lévy model are superimposed to the
histogram.
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Figure 2.17: Sample and estimated covariance matrices (‘all NIG’ model). The conversion
color-values is provided in the lateral color bars.



Chapter 3

Application to portfolio allocation

In this chapter we apply the model presented in Chapter 2, in the particular ‘all NIG’

and ‘all MJD’ specifications we adopted in the simulation studies (Sections 2.3.1.2 and

2.3.1.3), for portfolio selection purposes. We focus on the stock market, considering stocks

belonging to the S&P500 index. In Section 3.1 we define our assumptions on the investor’s

problem. In Section 3.2 we show how to perform portfolio selection according to the multi-

variate Lévy model (2.1). In the subsequent part we describe in details data, methodology

and results of the application we carry out, illustrating the benchmark strategies and

the measures of performance we take into account. In particular, we include among our

benchmarks a strategy that we call ‘non-parametric portfolio optimization’ (see Section

3.3.4), which to our knowledge has never been employed, although being straightforward

and exhibiting quite good out of sample performances.

3.1 The investor’s problem

In our empirical analysis we consider a standard expected utility maximization frame-

work, i.e. the investor goal is to maximize the expected utility of terminal wealth subject

to a set of investment constraints.

Given n risky assets, we indicate by wt the vector of weights at time t, meaning that wi,t

is the proportion of wealth invested on the i-th asset at time t; we consider only positive

weights, not allowing for short selling.

We indicate by ri,t the log-return of asset i at time t and by rp,t the portfolio return at time
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t.1

We will work on daily or weekly time steps, for which the distributions of linear and com-

pounded returns are similar2, therefore we can approximate the portfolio return rp,t as

rp,t ≈
n∑
i=1

wi,tri,t = wt
′rt. (3.1)

Moreover we focus on a short investment horizon, daily or weekly, interpreting the point

of view of a professional investor who frequently rebalances her positions.

The investor’s problem reads

w∗ = argmax
w

E[U(WT )]

s.t.
∑n
i=1 wi = 1

wi ≥ 0 ∀i = 1 . . . n,

(3.2)

where we assume that the wealth W is entirely determined by the portfolio outcome rp.

We will generally refer to the above constraints as IC (investment constraints), using the

compact notation w ∈ IC.

In the application we deal with two different objective functions, the exponential (or

CARA, acronym for constant absolute risk aversion) utility function

U(W ) = −exp(−λW ) (3.3)

and the power (or CRRA, acronym for constant relative risk aversion) utility function

U(W ) =


W (1−λ)

1−λ if λ 6= 1

log(W ) if λ = 1,
(3.4)

where in both cases λ > 0 represents the investor’s risk aversion coefficient.

Since the exponential utility function is increasing and concave on all of the real line,

when dealing with it we identify wealth with portfolio outcome, maximizing E[U(R)].

For the CRRA utility function, which is increasing and concave only for positive level of

wealth we consider instead W1 = W0(1 + rp,1), taking the initial wealth W0 as numéraire,
1When there is no ambiguity we may omit time subscripts to simplify notation.
2If returns are very volatile or the time step is longer, it becomes essential to work with linear returns, for

which relation (3.1) holds exactly. For more details, see Meucci (2010).
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i.e. setting W0 = 1, and assuming that for daily or weekly portfolio returns rp = −1 is a

reasonable lower bound.

When the estimation step is daily and the horizon is weekly, we perform the optimiza-

tion considering the portfolio returns distribution projected to the horizon. To do this we

rely on approximation (3.1) and we project the characteristic function of portfolio returns

distribution (3.6) (see Meucci (2005), Meucci (2011)).

3.2 Asset allocation with the multivariate Lévy model

In this section we illustrate how we perform portfolio selection based on the multivariate

Lévy model presented in Chapter 2.

Relying on approximation (3.1) we can write the random variable representing portfolio

return as

Rp ≈
n∑
j=1

wjX
(j) =

n∑
j=1

wjY
(j) + Z

n∑
j=1

wjaj . (3.5)

The characteristic function of the portfolio returns distribution can then be easily ob-

tained, exploiting the independence of the Y (j), j = 1, . . . , n, among themselves and of Z,

as

E [exp (iγRp)] = E

exp

iγ
 n∑
j=1

wjY
(j) + Z

n∑
j=1

wjaj


= E

exp

iγ
 n∑
j=1

wjY
(j)

E
exp

iγZ n∑
j=1

wjaj


=

 n∏
j=1

E
[
exp

(
iγwjY

(j)
)]E

exp

iγZ n∑
j=1

wjaj


=

 n∏
j=1

φY (j) (γwj)

φZ

γ n∑
j=1

wjaj

 ∀γ ∈ R.

(3.6)

In particular, in the ‘all NIG’ specification of the model, φZ and φY (j) , j = 1, . . . , n, are

NIG characteristic functions (1.17), while in the ‘all MJD’ specification they are all MJD

characteristic functions (1.35).

For a generic utility function U(W ), to obtain the best allocation we maximize with

respect to the vector of weights the expected utility of the associated final wealth (see
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(3.2)), which explicitly reads

E(U(W )) =
∫
D

U(W )fW (W )dW, (3.7)

where the wealth W depends on the portfolio return rp as specified in Section 3.1 (as

W = rp or W = 1 + rp); hence we can write

E(U(W )) =
∫
D̃

U(W )fRp(r)dr, (3.8)

where the integration sets in (3.7) and (3.8) are the support of the random variables W

and Rp respectively.

To recover the probability density function fRp we invert the characteristic function (3.6)

using the discrete Fourier transform, computed with a fast Fourier transform algorithm

by the MATLAB® function fft.

To evaluate (3.8) we adopt the trapezoidal numerical integration given by the function

trapz.

In the particular case of an exponential utility function (3.3), the computations are

simplified and exact instead, since from (3.6) we can derive an explicit expression for the

expected utility. In fact

E(U(W )) = E[− exp (−λRp)] = −E[exp (−λRp)], (3.9)

which can be computed from (3.6) replacing iγ by −λ, i.e. the expected utility is obtained

from the expression of the characteristic function of the portfolio distribution imposing

γ = iλ.

3.3 Benchmarks

3.3.1 Equally weighted portfolio [EQ]

We take as first benchmark the equally-weighted portfolio, in which a fraction 1/n of

wealth is allocated to each of the n assets available for investment. This naive rule is easy

to implement not relying either on estimation of the asset returns distribution or on opti-

mization. Despite the sophisticated theoretical models developed in the last 60 years and

the advances in methods for estimating the parameters of these models, investors con-
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tinue to use such simple allocation rules for allocating their wealth across assets (see Be-

nartzi and Thaler (2001) and Huberman and Jiang (2006)). Moreover, some studies have

shown that equally-weighted portfolios, which are not exposed to estimation errors, out-

performed portfolios constructed using optimization techniques (see for example DeMiguel

et al. (2009) and Duchin and Levy (2009)).

Independently of market data and investor’s preferences, the ’EQ’ strategy reads:

wEQi = 1
n
, ∀ i = 1, . . . , n. (3.10)

3.3.2 Mean-variance portfolio [MV]

As a second benchmark we use the well known mean-variance portfolio, based on the

modern portfolio theory developed by Markowitz (1952). The MV portfolio is obtained by

a two-step approach: in the first step the so called mean-variance efficient frontier, i.e. the

set of portfolios offering the highest expected return for a given level of risk (measured in

terms of variance), is computed; the second step finds, among the portfolios belonging to

the efficient frontier, the one giving the maximum level of satisfaction. Expected returns

and variances are estimated through their sample counterparts; given the approximation

(3.1), we compute the mean and the variance of portfolio returns distribution as

µp ≈ w′µ (3.11)

σ2
p ≈ w′Σw, (3.12)

where µ and Σ are respectively the vector of the means and the covariance matrix of the

assets returns.

Therefore we can write the first step as

w(v) = argmax
w∈IC
σ2
p=v

µp. (3.13)

We evaluate the investor’s satisfaction related to a given portfolio w by means of the

certainty equivalent (CE(w)).

Hence the second step reads:

wMV = argmax
v≥0

CE(w(v)). (3.14)
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In particular, we focus on Arrow-Pratt approximation of the certainty equivalent:

CE(w) ≈ E(W ) + 1
2
u′′(E(W ))
u′(E(W )) Var(W ), (3.15)

where W is the final wealth as we specified in Section 3.1.

Espression (3.15) becomes

CE(w) ≈ µp −
λ

2σ
2
p, (3.16)

for the CARA utility function (3.3)3, and

CE(w) ≈ (1 + µp)−
λ

2
σ2
p

(1 + µp)
, (3.17)

for the CRRA utility function (3.4).

3.3.3 Four-moments based allocation (Single Factor approach)
[SF]

As a third benchmark we consider the allocation resulting from a fourth-order Taylor

expansion of the utility function, using the single-factor estimators for higher-order mo-

ments proposed by Martellini and Ziemann (2010). We summarize the main ideas and

we report the formulas needed for the implementation; refer to the original paper for a

deeper discussion.

Using a fourth-order Taylor expansion of the utility function, the expected utility can be

approximated as

E[U(W )] ≈ U(E(W )) + U (2)(E(W ))
2 µ(2) + U (3)(E(W ))

6 µ(3) + U (4)(E(W ))
24 µ(4) (3.18)

being µ(n) the n-th central moment:

µ(n) = E[(W − E(W ))n]. (3.19)

We will here identify final wealth with portfolio return; thanks to the translation invari-

ance property of central moments, if W = 1 + rp, the only moment affected is the first,

becoming E(W ) = 1 + E(Rp). Therefore the approximated expected utility (3.18) depends

on the derivatives of the utility function and on the first four moments of the portfolio
3In this case, under the assumption of Gaussian returns, the direct optimization of expression (3.16) leads to

an exact one-step optimal allocation, as proved in Appendix C.
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returns distribution, which in turn are functions of portfolio weights and of the first four

moments and comoments of assets returns distributions. More precisely, portfolio mo-

ments are given by

µ(1) = µp (3.20)

µ(2) = σ2
p = w′M2w; (3.21)

µ(3) = sp = w′M3(w⊗w); (3.22)

µ(4) = kp = w′M4(w⊗w⊗w); (3.23)

where ⊗ denotes the Kronecker product and M2,M3,M4 are the so called higher order

moment tensors (Jondeau and Rockinger (2003)) representing covariance, coskewness and

cokurtosis respectively4. To estimate the higher moment tensors we choose the single-

factor approach, which goes back to the single-factor linear model of Sharpe (1963) for

asset returns

ri,t = c+ βiFt + εi,t, (3.24)

where εi is the residual term relative to asset i and the factor F is taken to be a broad-

based index (the S&P500 in our case). The residuals are assumed as homoscedastic and

cross-sectionally uncorrelated:

ε ∼ (0,Ψ), (3.25)

where Ψ is a diagonal matrix containing the residual variances (‘idiosyncratic’ risks).

Then the covariance matrix M2 can be written as

M2 = ββ′µ
(2)
0 + Ψ, (3.26)

where β is the column vector containing the regression coefficients and µ(2)
0 is the variance

of the single-factor. Martellini and Ziemann (2010) derive analogue decompositions for the

coskewness and cokurtosis:

M3 = (ββ′ ⊗ β′)µ(3)
0 + Φ (3.27)

M4 = (ββ′ ⊗ β′ ⊗ β′)µ(4)
0 + Υ, (3.28)

4We follow the notation in Martellini and Ziemann (2010) for the tensors M3 and M4, stacking the subcomo-
ment matrices column-wise.
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where µ(3)
0 and µ

(4)
0 are respectively the skewness and kurtosis of the single factor. The

values in Ψ, Φ and Υ are explicitly assessed under the assumption that all the cross-

sectional residuals εi and εj (i 6= j) are independent, and exploiting the independence of

the factor return process from the residual return process which comes from the least-

squares regression technique. The structure of the n× n matrix Ψ is

ψii = E(ε2i ), with the sample estimate
1
T

T∑
t=1

ε̂2i,t, (3.29)

ψij = 0 ∀i 6= j. (3.30)

The structure of the n× n2 matrix Φ is

φiii = E(ε3i ), with the sample estimate
1
T

T∑
t=1

ε̂3i,t, (3.31)

ψiij = 0 (3.32)

ψijk = 0 ∀i 6= j 6= k. (3.33)

The n× n3 matrix Υ entries are

υiiii = E(ε4i ), with the sample estimate
1
T

T∑
t=1

ε̂4i,t, (3.34)

υiiij = 3βiβjµ(2)
0 ψii (3.35)

υiijj = β2
i µ

(2)
0 ψjj + β2

jµ
(2)
0 ψii + ψiiψjj (3.36)

υiijk = βjβkµ
(2)
0 ψii (3.37)

υijkl = 0 ∀i 6= j 6= k 6= l. (3.38)

Summarizing, to apply the ’SF’ strategy we perform the linear regressions (3.24) and we

estimate the moments and comoments of the assets returns as in (3.30), (3.33) and (3.38).

For a given allocation w we can then compute the first four moments of portfolio returns

distribution as in (3.23) and obtain the approximated expected utility value through (3.18).

The optimal allocation is the one resulting from the constrained maximization of (3.18).

More precisely, writing explicitly the derivatives, and according to our wealth definitions
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(see Section 3.1), expression (3.18) becomes

E[U(W )] ≈ −e−λµp
(

1 + 1
2λ

2σ2
p −

1
6λ

3sp + 1
24kp

)
(3.39)

for the CARA utility function (3.3), and

U(E(W )) =


W̄ (1−λ)

(1−λ) −
λW̄−(λ+1)σ2

p

2 + λ(λ+1)W̄−(λ+2)sp
6 − λ(λ+1)(λ+2)W̄−(λ+3)kp

24 if λ 6= 1

log(W̄ )− 1
2
σ2
p

W̄ 2 + 1
3
sp
W̄ 3 − 1

4
kp
W̄ 4 if λ = 1

(3.40)

for the CRRA utility function (3.4), where W̄ = 1 + µp.

3.3.4 Non-parametric optimization [NP]

As a further benchmark we introduce a strategy based on the Gaussian kernel estimation

of the portfolio returns distribution. Given a vector of weights w and the time series of

assets prices, collected in a T × n matrix S, we can compute the portfolio log-returns as

rp,t = log
Vt
Vt−1

, (3.41)

where Vt is the value of the portfolio at time t, obtained as Vt = Stw.

Based on the sample [rp,1, . . . , rp,T ] of portfolio returns obtained through (3.41), we can

perform a kernel estimation of the returns density as

f̂Rp(r) = 1
Th

T∑
t=1

K
(
r − rp,t
h

)
, (3.42)

where h is the kernel bandwidth and we take the kernel density K to be standard normal.

Then, for a generic utility function we can compute the expected utility numerically evalu-

ating the integral (3.8), where fRp is replaced by f̂Rp . This is indeed the way we implement

the strategy for the CRRA utility function (3.4), for W = 1 + rp, performing the kernel es-

timation by means of the MATLAB® function ksdensity and evaluating the integral

through the function trapz.

In the particular case of exponential utility function (3.3) we don’t need the numerical

approximation of the integral (3.8) instead, since we can express the expected utility in

a closed form. Consider the moment generating function of a random variable Rp dis-

tributed according to the density f̂Rp in equation (3.42); as we show below, it can be writ-
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ten as a (rescaled) sum of T normal moment generating functions with means rp,t, for

t = 1 . . . T , and variance h.

E(eαRp) =
∫
D

eαrf̂Rp(r)dr =
∫
D

eαr
1
Th

T∑
t=1

K
(
r − rp,t
h

)
dr

= 1
Th

T∑
t=1

∫
D

eαrK
(
r − rp,t
h

)
dr = 1

Th

T∑
t=1

E(eαR̃)

= 1
Th

T∑
t=1

eαrp,t+
1
2hα

2
= 1
Th

e
1
2hα

2
T∑
t=1

eαrp,t ,

(3.43)

where in the fourth passage we denoted with R̃ a random variable with distribution

N(rp,t, h), and in the fifth one we made explicit the expression of its moment generating

function. The expression of the expected utility, i.e. our objective function, then follows

directly from (3.43) as:

E(−e−λRp) = −E(e(−λ)Rp) = − 1
Th

e
1
2hλ

2
T∑
t=1

e−λrp,t . (3.44)

3.4 Performance measures

We calculate several performance measures to evaluate the optimized portfolios.

Portfolio moments

First, we report mean, variance, skewness and kurtosis of the out-of-sample portfolio

returns for each optimization strategy.

Monetary Utility Gain/Loss Measure (MUG)

A measure of performance to compare two strategies (let us call them ‘strategy A’ and

‘strategy B’) is the Monetary Utility Gain/Loss Measure (MUG), proposed by Ang and

Bekaert (2002). The goal is to measure the economic gain/loss that results from holding

portfolio A instead of portfolio B. We implicitly define the quantity WA as follows:

E(U(W (strategyB)
T )|W0 = 1) = E(U(W (strategyA)

T )|W0 = WA). (3.45)
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When dealing with an exponential utility function (3.3), the equation above reads

T∑
t=1
−e−λ(1+r(strategyB)

t ) =
T∑
t=1
−e−λWA(1+r(strategyA)

t ), (3.46)

while when dealing with a CRRA utility function (3.4) with λ 6= 1, Equation (3.45) reads

T∑
t=1

(1 + r
(strategyB)
t )1−λ =

T∑
t=1

WA(1 + r
(strategyA)
t )1−λ, (3.47)

where r(strategyA/B)
t are the annualized geometric out-of-sample portfolio returns obtained

using strategy A/B. If WA > 1 we prefer strategy B, since we have to invest more than one

euro in strategy A to reach the same utility we obtain from investing one euro in strategy

B; on the other hand, if WA < 1 we prefer strategy A5.

The MUG of strategy B with respect to strategy A is given by MUG = 100(WA − 1), and it

represents the percentage annual excess amount that should be invested in portfolio A to

reach the same terminal utility achieved by investing one euro in portfolio B. Therefore,

if MUG > 0 we prefer strategy B, if MUG < 0 we prefer strategy A.

An equivalent interpretation of MUG says that it represents the percentage increase in

the certain equivalent from moving from strategy A to strategy B.

Sharpe ratio

Further, we compute the out-of-sample Sharpe ratio as the mean of out-of-sample returns

divided by their standard deviation.

SR =
µrp
σrp

(3.48)

We use the two-sample statistic for comparing Sharpe ratios as proposed by Opdyke

(2007) to test if the difference in Sharpe ratios of two portfolios is significant. This test

can be applied under the very general conditions of stationary and ergodic returns; it

permits auto-correlated and non-normal distributed returns and allows for a likely high

correlation between the portfolio returns of different strategies.

Moreover we compute the multivariate statistic introduced by Leung and Wong (2006) to

test the hypothesis that the portfolios obtained with the strategies we implemented have
5Given this immediate interpretation of the quantity WA we report it, instead of MUG, in our result tables.
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no significantly different Sharpe ratios, under the assumption of i.i.d. returns. Both the

test statistics are reported in Appendix D.

Portfolio turnover

We compute the portfolio turnover, which quantifies the amount of trading required to

implement a certain strategy, in line with Wolff et al. (2012). The portfolio turnover is the

average sum of the absolute values of the trades across the n available assets:

TO = 1
T

T∑
t=1

n∑
j=1

(
|wj,t+1 − wj,t+ |

)
, (3.49)

where wj,t is the portfolio weight in asset j at time t and wj,t+ is the weight of asset j

before rebalancing at t+ 1, i.e.

wj,t+ = wj,tSj,t+1∑n
j=1 wj,tSj,t+1

. (3.50)

For example, in an equally weighted portfolio strategy wj,t = wj,t+1 = 1/n, but wj,t+ may

be different due to changes in asset prices between t and t+ 1.

The turnover can be interpreted as the average percentage of wealth traded in each period.

Maximum drawdown

As a further risk measure, we compute the maximum drawdown, as proposed by Gross-

man and Zhou (1993), which reflects the maximum accumulated loss that an investor may

suffer in the worst case during the whole investment period.

We compute the percentage maximum drawdown (MDD) as:

MDD = max
τ∈(0,T )

[
max
t∈(0,τ)

(
Pt − Pτ
Pt

)]
(3.51)

where Pt is the portfolio price at time t, when the portfolio is bought, and Pτ is the portfolio

price at time τ , when the portfolio is sold.

3.5 Data

The dataset employed in our empirical analysis is composed by 20 assets chosen among

the most capitalized stocks belonging to the S&P500 index. We collected the dividend-
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adjusted prices from 10 September 2007 and 20 May 2013. In Table 3.1 we report mean,

standard deviation, skewness and kurtosis of the daily log-returns of the index, which we

use as a proxy for the common factor Z in our model (2.1), and of the 20 assets during the

reference period. In Figures 3.1-3.1 we plot the time series of the stocks daily log-returns

and the respective histograms, superimposing the estimated marginal probability density

functions under the ’all-NIG’, ’all-MJD’6 and Gaussian model.

mean st. dev skewness kurtosis

S&P500 9.62E-05 0.0159 -0.2663 10.4532

AAPL UW 8.35E-04 0.0235 -0.4975 9.5293
XOM UN 1.55E-04 0.0182 0.1268 17.1272
WMT UN 5.13E-04 0.0133 0.1432 10.7217
MSFT UW 2.39E-04 0.0198 0.3312 11.1282
GOOG UW 3.97E-04 0.0213 0.3380 11.9304
GE UN -2.00E-04 0.0244 0.0063 10.2653
IBM UN 4.79E-04 0.0156 0.0178 7.8491
CVX UN 3.85E-04 0.0198 0.1474 16.3137
BRK/B UN 2.51E-04 0.0176 0.7678 14.7178
T UN 1.94E-04 0.0162 0.6211 13.7416
PG UN 2.47E-04 0.0126 -0.2324 10.4033
PFE UN 3.13E-04 0.0165 -0.0824 8.2781
JNJ UN 3.73E-04 0.0112 0.6151 17.4169
WFC UN 1.90E-04 0.0381 0.7104 15.4729
KO UN 4.24E-04 0.0136 0.6199 14.1810
JPM UN 2.11E-04 0.0348 0.2856 11.8390
ORCL UW 4.08E-04 0.0210 -0.1182 7.5823
MRK UN 1.01E-04 0.0190 -0.5751 12.8927
VZ UN 4.47E-04 0.0158 0.3343 10.9179
AMZN UW 8.14E-04 0.0281 0.5348 10.3585

Table 3.1: Data sample moments.

6To estimate the parameters of the ’all-NIG’ and ’all-MJD’ models we adopt the three-step estimation proce-
dure introduced in Section 2.3.1.
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Figure 3.1: Time series and histograms: Apple, Exxon Mobil Corporation, Wal-Mart
Stores, Microsoft Corporation.



3.5 DATA 91

Figure 3.2: Time series and histograms: Google, General Electric, IBM, Chevron Corpo-
ration.
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Figure 3.3: Time series and histograms: Berkshire Hathaway, AT&T, Procter & Gamble,
Pfizer.
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Figure 3.4: Time series and histograms: Johnson & Johnson, Wells Fargo & Co., Coca-
Cola, JPMorgan Chase & Co..
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Figure 3.5: Time series and histograms: Oracle, Merck & Co., Verizon Communications,
Amazon.com.
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3.6 Methodology and results

In this section we present methodology and results relative to our empirical investigation.

We test the out-of-sample performance of the allocations based on the multivariate Lévy

model (2.1), in its ‘all-NIG’ and ‘all-MJD’ specifications, compared to those obtained apply-

ing the benchmark strategies introduced in Section 3.3.

The out-of-sample results are evaluated by means of the performance measures presented

in Section 3.4.

Sections 3.6.1 and 3.6.2 illustrate the rolling window approaches adopted to test alloca-

tions over daily and weekly horizons respectively, and point out some expedients adopted

in the portfolio construction, integrating the basic framework introduced in Section 3.1.

Results are presented distinguishing whether the maximization of expected utility is

based on exponential (3.3) or power (3.4) function.

Finally, we summarize and comment results in Section 3.6.3.

3.6.1 Daily horizon

To test allocations over a daily horizon, we adopt the following rolling window strategy:

estimation is performed on the most recent 500 daily returns; the weights resulting from

the allocation decision are then kept fixed for the subsequent 5 days, and portfolio returns

on these 5 days are used to evaluate what we call out-of-sample performance. Then a new

allocation decision takes place. Given our dataset, made of 1434 observations, we get 186

estimation periods and 930 allocations to evaluate the strategies presented in Sections 3.2

and 3.3. Figure 3.6 illustrates the rolling window approach.

It has long be recognized that the estimation of expected returns is a challenging task,

with the consequence that in mean-variance portfolio allocations, for example, global min-

imum variance portfolio often achieve higher out-of-sample Sharpe ratio. This is why

many works focus on global minimum risk portfolio to pursue the optimal allocation (see

Martellini and Ziemann (2010) and references therein). We decide to adopt the same ex-

pedient and neutralize the impact of the expected return parameters in the strategies we

implement. This choice is supported by evaluation results; in fact, it leads to better results

in term of Sharpe ratio, turnover and maximum drawdown for every strategy and situ-
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Figure 3.6: Rolling window strategy (daily horizon)

ation (number of assets, horizon, utility function) we investigated. Table 3.6.1, reported

as an example, refers to an allocation with daily horizon, CARA utility function (3.3) with

risk aversion coefficient λ = 15, and 20 available assets. Evaluation results when allo-

cation takes into account the estimates of expected returns are highlighted in pink; the

performance measures obtained when expected returns are neglected are highlighted in

light-blue.

The impact of the expected return parameters in mean-variance (MV) and single

factor (SF) strategies is neutralized simply setting the expected return of all assets to the

same constant value, e.g. µ = 0, as in Martellini and Ziemann (2010).

For the non-parametric (NP) approach instead, we perform kernel density estimation on

demeaned portfolio returns.

In the ’all-NIG’ model case we nullify the expected return effect setting the following

conditions on drift parameters: µZ = −θZ and µY (j) = −θY (j) , for all j = 1, . . . , n.

Similarly, in the ’all-MJD’ model we set µZ = −λZνZ and µY (j) = −λY (j)νY (j) , for all

j = 1, . . . , n.

Sections 3.6.1.1 and 3.6.1.2 present allocation and evaluation results for CARA (3.3)
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EQ MV SF NP all-NIG all-MJD

SR 0.06895 0.07991 0.08558 0.08469 0.07879 0.07950
0.06895 0.08245 0.08831 0.08958 0.08301 0.08419

TO 0.00752 0.00491 0.00599 0.00606 0.00474 0.00471
0.00752 0.00487 0.00455 0.00435 0.00407 0.00409

MDD 0.12953 0.63950 0.52852 0.53648 0.69741 0.71206
0.12953 0.09737 0.22324 0.08781 0.09471 0.09835

Table 3.2: Comparison of Sharpe ratio, turnover and maximum drawdown when allocation
takes into account the estimates of expected returns (pink) or neglects it (light-blue), for
different strategies. Daily horizon, CARA utility function, λ = 15, number of assets n = 20.

and CRRA (3.4) utility functions respectively. With respect to the exponential utility func-

tion we consider for the risk aversion parameter the values: λ = 10 and λ = 15; for the

power function we investigate the cases λ = 5 and λ = 10.

On results tables we highlight in bold font the best value achieved in correspondence of

each performance measure.

Each table is followed by an image showing the evolution of the weights, allocation by

allocation, obtained applying the different strategies.
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3.6.1.1 CARA utility function

EQ MV SF NP all-NIG all-MJD

Mean 6.72E-04 6.25E-04 6.34E-04 6.08E-04 6.22E-04 6.30E-04
Variance 9.84E-05 6.61E-05 6.48E-05 6.72E-05 6.59E-05 6.55E-05

Skewness -0.3727 -0.4484 -0.4279 -0.4648 -0.4532 -0.4471
Kurtosis 6.4684 6.3326 6.2860 6.0480 6.1013 6.2354

W(all-NIG) 4.3712 1.3348 1.4003 1.0353 1.0000 1.1290
W(all-MJD) 4.3712 1.1823 1.2402 0.9169 0.8857 1.0000

SR 0.0678 0.0769 0.0787 0.0741 0.0766 0.0778
TO 0.0067 0.0061 0.0057 0.0050 0.0052 0.0054

MDD 0.1323 0.2850 0.4807 0.4045 0.3660 0.3450

Table 3.3: Daily horizon. CARA utility (λ = 10). Number of assets: n = 10. Kernel
bandwidth for NP strategy: h=0.01.

Figure 3.7: Weights: daily horizon; CARA utility (λ = 10); n = 10.
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EQ MV SF NP all-NIG all-MJD

Mean 6.72E-04 6.25E-04 6.48E-04 6.08E-04 6.19E-04 6.29E-04
Variance 9.84E-05 6.61E-05 6.88E-05 6.73E-05 6.60E-05 6.55E-05

Skewness -0.3727 -0.4470 -0.4347 -0.4657 -0.4536 -0.4463
Kurtosis 6.4684 6.3207 6.5762 6.0453 6.0788 6.2335

W(all-NIG) 2.6272 1.3163 2.5953 1.0703 1.0000 1.1495
W(all-MJD) 2.6272 1.1450 2.4560 0.9311 0.8699 1.0000

SR 0.0678 0.0769 0.0782 0.0741 0.0762 0.0777
TO 0.0067 0.0060 0.0062 0.0049 0.0051 0.0053

MDD 0.1323 0.2935 0.4941 0.4070 0.3718 0.3472

Table 3.4: Daily horizon. CARA utility (λ = 15). Number of assets: n = 10. Kernel
bandwidth for NP strategy: h=0.01.

Figure 3.8: Weights: daily horizon; CARA utility (λ = 15); n = 10.
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EQ MV SF NP all-NIG all-MJD

Mean 6.76E-04 5.97E-04 6.28E-04 6.49E-04 5.95E-04 6.01E-04
Variance 9.62E-05 5.25E-05 5.12E-05 5.29E-05 5.12E-05 5.10E-05

Skewness -0.3603 -0.3382 -0.3179 -0.3417 -0.3451 -0.3341
Kurtosis 6.6800 6.1803 5.8610 5.9702 5.8214 5.8224

W(all-NIG) 2.4021 1.0290 1.0056 1.0372 1.0000 0.9948
W(all-MJD) 2.4217 1.0344 1.0108 1.0427 1.0052 1.0000

SR 0.0690 0.0824 0.0877 0.0893 0.0832 0.0842
TO 0.0075 0.0050 0.0044 0.0044 0.0041 0.0041

MDD 0.1295 0.0868 0.1957 0.1013 0.0915 0.0964

Table 3.5: Daily horizon. CARA utility (λ = 10). Number of assets: n = 20. Kernel
bandwidth for NP strategy: h=0.01.

Figure 3.9: Weights: daily horizon; CARA utility (λ = 10); n = 20.
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EQ MV SF NP all-NIG all-MJD

Mean 6.76E-04 5.97E-04 6.36E-04 6.52E-04 5.94E-04 6.01E-04
Variance 9.62E-05 5.24E-05 5.19E-05 5.30E-05 5.12E-05 5.10E-05

Skewness -0.3603 -0.3337 -0.3110 -0.3389 -0.3471 -0.3336
Kurtosis 6.6800 6.1482 5.8459 5.9534 5.8127 5.8130

W(all-NIG) 3.0054 1.0280 1.0263 1.0466 1.0000 0.9928
W(all-MJD) 3.0391 1.0354 1.0337 1.0542 1.0072 1.0000

SR 0.0690 0.0825 0.0883 0.0896 0.0830 0.0842
TO 0.0075 0.0049 0.0045 0.0044 0.0041 0.0041

MDD 0.1295 0.0974 0.2232 0.0878 0.0947 0.0983

Table 3.6: Daily horizon. CARA utility (λ = 15). Number of assets: n = 20. Kernel
bandwidth for NP strategy: h=0.01.

Figure 3.10: Weights: daily horizon; CARA utility (λ = 15); n = 20.
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3.6.1.2 CRRA utility function

EQ MV SF NP all-NIG all-MJD

Mean 6.72E-04 6.25E-04 6.34E-04 6.94E-04 6.23E-04 6.29E-04
Variance 9.84E-05 6.61E-05 6.44E-05 6.74E-05 6.58E-05 6.55E-05

Skewness -0.3727 -0.4448 -0.4306 -0.3350 -0.4516 -0.4454
Kurtosis 6.4684 6.2770 6.1461 5.6022 6.1143 6.2338

W(all-NIG) 22.1032 1.2550 1.0862 1.0119 1.0000 1.1147
W(all-MJD) 21.7794 1.1258 0.9744 0.9077 0.8971 1.0000

SR 0.0678 0.0768 0.0790 0.0846 0.0768 0.0777
TO 0.0067 0.0059 0.0053 0.0055 0.0051 0.0053

MDD 0.1323 0.3245 0.3945 0.5671 0.3658 0.3460

Table 3.7: Daily horizon. CRRA utility (λ = 5). Number of assets: n = 10. Kernel
bandwidth for NP strategy: h=0.1.

Figure 3.11: Weights: daily horizon; CRRA utility (λ = 5); n = 10.
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EQ MV SF NP all-NIG all-MJD

Mean 6.72E-04 6.25E-04 6.34E-04 6.08E-04 6.20E-04 6.28E-04
Variance 9.84E-05 6.61E-05 6.48E-05 6.72E-05 6.60E-05 6.55E-05

Skewness -0.3727 -0.4484 -0.4279 -0.4648 -0.4540 -0.4487
Kurtosis 6.4684 6.3326 6.2860 6.0480 6.0931 6.2375

W(all-NIG) 4.3712 1.3456 1.4116 1.0436 1.0000 1.1418
W(all-MJD) 4.3712 1.1785 1.2363 0.9140 0.8758 1.0000

SR 0.0678 0.0769 0.0787 0.0741 0.0764 0.0776
TO 0.0067 0.0061 0.0057 0.0050 0.0051 0.0053

MDD 0.1323 0.2850 0.4807 0.4045 0.3623 0.3517

Table 3.8: Daily horizon. CRRA utility (λ = 10). Number of assets: n = 10. Kernel
bandwidth for NP strategy: h=0.01.

Figure 3.12: Weights: daily horizon; CRRA utility (λ = 10); n = 10.
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EQ MV SF NP all-NIG all-MJD

Mean 6.76E-04 5.97E-04 6.18E-04 6.21E-04 5.96E-04 6.00E-04
Variance 9.62E-05 5.21E-05 5.08E-05 5.66E-05 5.11E-05 5.19E-05

Skewness -0.3603 -0.3223 -0.3236 -0.3496 -0.3425 -0.3498
Kurtosis 6.6800 6.0588 5.8546 6.4443 5.8090 6.0149

W(all-NIG) 312.2649 1.3194 0.9542 4.4790 1.0000 1.3752
W(all-MJD) 227.0617 0.9594 0.6938 3.2569 0.7271 1.0000

SR 0.0690 0.0826 0.0866 0.0825 0.0833 0.0833
TO 0.0075 0.0045 0.0042 0.0053 0.0041 0.0047

MDD 0.1295 0.1440 0.1591 0.2093 0.0927 0.0809

Table 3.9: Daily horizon. CRRA utility (λ = 5). Number of assets: n = 20. Kernel
bandwidth for NP strategy: h=0.01.

Figure 3.13: Weights: daily horizon; CRRA utility (λ = 5); n = 20.
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EQ MV SF NP all-NIG all-MJD

Mean 6.76E-04 5.97E-04 6.31E-04 6.63E-04 5.94E-04 6.01E-04
Variance 9.62E-05 5.21E-05 5.14E-05 6.00E-05 5.12E-05 5.15E-05

Skewness -0.3603 -0.3223 -0.3157 -0.3332 -0.3447 -0.3440
Kurtosis 6.6800 6.0588 5.8411 5.8533 5.8129 5.9264

W(all-NIG) 313.2932 1.3092 0.9925 1.9199 1.0000 1.1704
W(all-MJD) 267.6810 1.1186 0.8480 1.6403 0.8544 1.0000

SR 0.0690 0.0826 0.0880 0.0856 0.0831 0.0838
TO 0.0075 0.0045 0.0044 0.0044 0.0041 0.0044

MDD 0.1295 0.1440 0.2006 0.2373 0.0946 0.0846

Table 3.10: Daily horizon. CRRA utility (λ = 10). Number of assets: n = 20. Kernel
bandwidth for NP strategy: h=0.1.

Figure 3.14: Weights: daily horizon; CRRA utility (λ = 10); n = 20.
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3.6.2 Weekly horizon

To test allocations over a weekly horizon, we adopt the following rolling window strat-

egy: the multivariate Lévy models estimation is performed on 500 daily returns and the

resulting distribution is then projected to a weekly horizon; the implementation of mean-

variance, single factor and non-parametric approaches is based on 100 weekly observations

instead. Out-of-sample performance is evaluated on the week following the estimation.

Given our dataset, made of 1434 daily returns, corresponding to 286 weekly observations,

we get 186 allocations to evaluate the different strategies. Figure 3.15 illustrates the

rolling window approach.

Figure 3.15: Rolling window strategy (weekly horizon)

We choose to neutralize the effect of expected return parameters as we did for alloca-

tions with daily horizon, for the same reasons discussed above.

Sections 3.6.2.1 and 3.6.2.2 present allocation and evaluation results for CARA (3.3),

with λ = 10, 15, and CRRA (3.4), with λ = 5, 10, utility functions respectively.

On results tables we highlight in bold font the best value achieved in correspondence of

each performance measure.

Each table is followed by an image showing the evolution of the weights obtained with the

different strategies.
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3.6.2.1 CARA utility function

EQ MV SF NP all-NIG all-MJD

Mean 5.09E-04 3.71E-04 2.34E-04 3.34E-05 2.55E-04 2.77E-04
Variance 1.18E-04 7.67E-05 7.72E-05 7.63E-05 7.21E-05 7.28E-05

Skewness -0.5611 -0.8016 -0.8075 -0.8654 -0.7945 -0.7882
Kurtosis 7.8057 5.9877 6.4377 6.1428 5.7601 5.8484

W(all-NIG) 1.1426 0.9788 1.0053 1.0927 1.0000 0.9991
W(all-MJD) 1.1438 0.9797 1.0062 1.0937 1.0009 1.0000

SR 0.0469 0.0424 0.0266 0.0038 0.0301 0.0324
TO 0.0165 0.0136 0.0133 0.0099 0.0117 0.0123

MDD 0.1474 0.4778 0.4845 0.3716 0.3224 0.3047

Table 3.11: Number of assets: n = 10. Risk aversion parameter: λ = 10. Kernel bandwidth
for NP strategy: h=0.1.

Figure 3.16: Weights: weekly horizon; CARA utility (λ = 10); n = 10.
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EQ MV SF NP all-NIG all-MJD

Mean 5.09E-04 3.72E-04 1.98E-04 3.40E-05 2.54E-04 2.78E-04
Variance 1.18E-04 7.67E-05 7.93E-05 7.62E-05 7.20E-05 7.28E-05

Skewness -0.5611 -0.7990 -0.8770 -0.8790 -0.8015 -0.7866
Kurtosis 7.8057 5.9541 7.1237 6.1444 5.7529 5.8402

W(all-NIG) 1.2327 1.0147 1.0372 1.1159 1.0000 1.0067
W(all-MJD) 1.2228 1.0075 1.0296 1.1079 0.9934 1.0000

SR 0.0469 0.0424 0.0223 0.0039 0.0299 0.0326
TO 0.0165 0.0134 0.0145 0.0099 0.0116 0.0123

MDD 0.1474 0.4917 0.4032 0.3875 0.3241 0.3066

Table 3.12: Weekly horizon. CARA utility (λ = 15). Number of assets: n = 10. Kernel
bandwidth for NP strategy: h=0.1.

Figure 3.17: Weights: weekly horizon; CARA utility (λ = 15); n = 10.
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EQ MV SF NP all-NIG all-MJD

Mean 7.30E-04 7.12E-04 7.25E-04 5.02E-04 7.96E-04 8.18E-04
Variance 1.20E-04 6.17E-05 6.05E-05 6.20E-05 5.77E-05 5.76E-05

Skewness -0.5072 -0.3386 -0.3334 -0.6071 -0.3297 -0.3186
Kurtosis 7.6798 4.7614 5.2593 5.5785 4.9364 4.9765

W(all-NIG) 2.0503 1.1300 1.0606 1.1925 1.0000 0.9906
W(all-MJD) 2.0795 1.1406 1.0703 1.2050 1.0097 1.0000

SR 0.0666 0.0907 0.0932 0.0637 0.1048 0.1077
TO 0.0182 0.0113 0.0106 0.0101 0.0097 0.0097

MDD 0.1412 0.2372 0.2587 0.2105 0.1401 0.1448

Table 3.13: Number of assets: n = 20. Risk aversion parameter: λ = 10. Kernel bandwidth
for NP strategy: h=0.2.

Figure 3.18: Weights: weekly horizon; CARA utility (λ = 10); n = 20.
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EQ MV SF NP all-NIG all-MJD

Mean 7.30E-04 7.15E-04 7.08E-04 4.88E-04 7.92E-04 8.17E-04
Variance 1.20E-04 6.15E-05 6.27E-05 6.19E-05 5.77E-05 5.76E-05

Skewness -0.5072 -0.3293 -0.3448 -0.6009 -0.3323 -0.3186
Kurtosis 7.6798 4.6983 5.4039 5.6126 4.9248 4.9727

W(all-NIG) 2.5193 1.1073 1.0630 1.2279 1.0000 0.9798
W(all-MJD) 2.6043 1.1296 1.0837 1.2560 1.0211 1.0000

SR 0.0666 0.0911 0.0894 0.0620 0.1043 0.1076
TO 0.0182 0.0110 0.0112 0.0101 0.0097 0.0097

MDD 0.1412 0.2449 0.2862 0.1854 0.1391 0.1448

Table 3.14: Number of assets: n = 20. Risk aversion parameter: λ = 15. Kernel bandwidth
for NP strategy: h=0.2.

Figure 3.19: Weights: weekly horizon; CARA utility (λ = 15); n = 20.
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3.6.2.2 CRRA utility function

EQ MV SF NP all-NIG all-MJD

Mean 5.09E-04 3.79E-04 2.90E-04 8.91E-05 2.58E-04 2.77E-04
Variance 1.18E-04 7.67E-05 7.54E-05 7.43E-05 7.21E-05 7.28E-05

Skewness -0.5611 -0.7788 -0.7426 -0.7932 -0.7917 -0.7874
Kurtosis 7.8057 5.8090 5.8360 5.5826 5.7674 5.8408

W(all-NIG) 22.5092 1.1758 1.2334 0.8728 1.0000 1.0941
W(all-MJD) 22.4125 1.0747 1.1273 0.7977 0.9140 1.0000

SR 0.0469 0.0433 0.0334 0.0103 0.0304 0.0325
TO 0.0165 0.0130 0.0125 0.0098 0.0118 0.0123

MDD 0.1474 0.5230 0.5246 0.4060 0.3201 0.3041

Table 3.15: Weekly horizon. CRRA utility (λ = 5). Number of assets: n = 10. Kernel
bandwidth for NP strategy: h=0.1.

Figure 3.20: Weights: weekly horizon; CRRA utility (λ = 5); n = 10.
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EQ MV SF NP all-NIG all-MJD

Mean 5.09E-04 3.79E-04 2.15E-04 4.71E-05 2.55E-04 2.77E-04
Variance 1.18E-04 7.67E-05 7.80E-05 7.49E-05 7.21E-05 7.28E-05

Skewness -0.5611 -0.7788 -0.8307 -0.8189 -0.7955 -0.7859
Kurtosis 7.8057 5.8090 6.6804 5.7394 5.7543 5.8366

W(all-NIG) 4.3712 1.1881 3.2863 1.1143 1.0000 1.1020
W(all-MJD) 4.3712 1.0781 2.9821 1.0112 0.9075 1.0000

SR 0.0469 0.0433 0.0244 0.0054 0.0300 0.0324
TO 0.0165 0.0130 0.0137 0.0098 0.0117 0.0123

MDD 0.1474 0.5230 0.4603 0.4038 0.3215 0.3044

Table 3.16: Weekly horizon. CRRA utility (λ = 10). Number of assets: n = 10. Kernel
bandwidth for NP strategy: h=0.07.

Figure 3.21: Weights: weekly horizon; CRRA utility (λ = 10); n = 10.
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EQ MV SF NP all-NIG all-MJD

Mean 7.30E-04 7.30E-04 7.64E-04 5.15E-04 7.99E-04 8.18E-04
Variance 1.20E-04 6.12E-05 5.95E-05 6.58E-05 5.76E-05 5.76E-05

Skewness -0.5072 -0.3081 -0.3468 -0.5255 -0.3272 -0.3178
Kurtosis 7.6798 4.5648 5.1381 5.5372 4.9391 4.9734

W(all-NIG) 22.7374 0.9894 1.6764 4.9333 1.0000 1.0461
W(all-MJD) 22.7374 0.9493 1.6025 4.7159 0.9559 1.0000

SR 0.0666 0.0933 0.0991 0.0636 0.1052 0.1078
TO 0.0182 0.0102 0.0103 0.0096 0.0097 0.0097

MDD 0.1412 0.2612 0.2587 0.2104 0.1416 0.1457

Table 3.17: Weekly horizon. CRRA utility (λ = 5). Number of assets: n = 20. Kernel
bandwidth for NP strategy: h=0.1.

Figure 3.22: Weights: weekly horizon; CRRA utility (λ = 5); n = 20.
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EQ MV SF NP all-NIG all-MJD

Mean 7.30E-04 7.30E-04 7.16E-04 4.90E-04 7.95E-04 8.17E-04
Variance 1.20E-04 6.12E-05 6.10E-05 6.84E-05 5.77E-05 5.77E-05

Skewness -0.5072 -0.3081 -0.3297 -0.5886 -0.3315 -0.3195
Kurtosis 7.6798 4.5648 5.2870 6.1413 4.9402 4.9745

W(all-NIG) 693.7070 0.9814 2.0008 11.5704 1.0000 1.0395
W(all-MJD) 667.3671 0.9472 1.9248 11.1311 0.9620 1.0000

SR 0.0666 0.0933 0.0917 0.0593 0.1047 0.1075
TO 0.0182 0.0102 0.0107 0.0095 0.0097 0.0097

MDD 0.1412 0.2612 0.2576 0.2026 0.1403 0.1311

Table 3.18: Weekly horizon. CRRA utility (λ = 10). Number of assets: n = 20. Kernel
bandwidth for NP strategy: h=0.1.

Figure 3.23: Weights: weekly horizon; CRRA utility (λ = 10); n = 20.
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3.6.3 Summarizing allocation results

To summarize and better understand the results of our empirical analysis, we report in

Tables 3.19 and 3.20 the strategies giving respectively the best and the worst values ac-

cording to the different performance measures, in correspondence of each situation we

tested. In the losers’ table we display two strategies, since we want to verify if there

are strategies, other than the naive equally-weighted portfolio, which often produce bad

results.

First of all we observe that the ‘all-NIG’ and ‘all-MJD’ specifications of the multivari-

ate Lévy model often appear in the winners’ table, especially when focusing on MUG and

turnover. On the other hand, they are almost missing from the losers’ one, the only ex-

ception being the presence of the ‘all-NIG’ model as second worst according to the SR

criterion7 when considering a weekly horizon, 10 assets and power utility function with

risk aversion coefficient λ = 5.

The naive EQ strategy always gives the worst results according to MUG and turnover

criteria, and bad results are obtained using Sharpe ratio as well, except for weekly horizon

allocations with 10 available assets.

The strong point of equally weighted portfolios is that they have a small maximum draw-

down, but the allocations based on multivariate Lévy models tend to beat them when the

number of available assets increases from 10 to 20.

While on the mean-variance approach we can easily tell that it appears in the losers’

table much more frequently than in the winners’ one, the single-factor and non-parametric

strategies exhibit ambivalent outcomes.

The SF approach displays good Sharpe ratios when investments focus on a daily horizon,

but low ones when investment is set over a weekly horizon; it is always among the worst

strategies when evaluation is based on maximum drawdown.

Portfolios obtained by means of the non-parametric approach are characterized by low

turnover, but often display low Sharpe ratios and poor outcomes with respect to the MUG
7As we mentioned in Section 3.4, for each set of results in Sections 3.6.1 and 3.6.2 we tested the hypothesis

that the Sharpe ratios obtained applying different strategies be equal. We performed both pairwise and multi-
variate tests, described in Appendix D, with a significance level α = 5%. Whereas the pairwise Sharpe ratio test
shows that the performances obtained with different strategies are in most cases indistinguishable, the multi-
variate test results reject the equality of the Sharpe ratios. Therefore we can at least rely on the fact that the
worst and the best strategies according to the SR criterion produces significantly different results.
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THE WINNERS

MUG
Daily horizon Weekly horizon
n=10 n=20 n=10 n=20

CARA
λ=10 all-NIG all-MJD MV all-MJD
λ=15 all-NIG all-MJD all-NIG all-MJD

CRRA
λ=5 all-NIG SF NP MV
λ=10 all-NIG SF all-NIG MV

SR
Daily horizon Weekly horizon
n=10 n=20 n=10 n=20

CARA
λ=10 SF NP EQ all-MJD
λ=15 SF NP EQ all-MJD

CRRA
λ=5 NP SF EQ all-MJD
λ=10 SF SF EQ all-MJD

TO
Daily horizon Weekly horizon
n=10 n=20 n=10 n=20

CARA
λ=10 NP all-NIG NP all-NIG
λ=15 NP all-NIG NP all-NIG

CRRA
λ=5 all-NIG all-NIG NP all-MJD
λ=10 NP all-NIG NP NP

MDD
Daily horizon Weekly horizon
n=10 n=20 n=10 n=20

CARA
λ=10 EQ MV EQ all-NIG
λ=15 EQ NP EQ all-NIG

CRRA
λ=5 EQ all-MJD EQ EQ
λ=10 EQ all-MJD EQ all-MJD

Table 3.19: Summary of results: best strategies
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THE LOSERS

MUG
Daily horizon Weekly horizon
n=10 n=20 n=10 n=20

CARA
λ=10 EQ, SF EQ,NP EQ,NP EQ,NP
λ=15 EQ, SF EQ,NP EQ,NP EQ,NP

CRRA
λ=5 EQ,MV EQ,NP EQ, SF EQ,NP
λ=10 EQ,SF EQ,NP EQ, SF EQ,NP

SR
Daily horizon Weekly horizon
n=10 n=20 n=10 n=20

CARA
λ=10 EQ,NP EQ,MV NP,SF NP,EQ
λ=15 EQ,NP EQ,MV NP,SF NP,EQ

CRRA
λ=5 EQ,MV EQ,NP NP,all-NIG NP,EQ
λ=10 SR,NP EQ,MV NP,SF NP,EQ

TO
Daily horizon Weekly horizon
n=10 n=20 n=10 n=20

CARA
λ=10 EQ,MV EQ,MV EQ,MV EQ,MV
λ=15 EQ,SF EQ,MV EQ,SF EQ,SF

CRRA
λ=5 EQ,MV EQ,NP EQ,MV EQ,SF
λ=10 EQ,MV EQ,MV EQ,SF EQ,SF

MDD
Daily horizon Weekly horizon
n=10 n=20 n=10 n=20

CARA
λ=10 SF,NP SF,EQ SF,MV SF,MV
λ=15 SF,NP SF,EQ MV,SF SF,MV

CRRA
λ=5 NP,SF NP,SF SF,MV MV,SF
λ=10 SF,NP NP,SF MV,SF MV,SF

Table 3.20: Summary of results: worst strategies
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criterion. However, the NP strategy could be further refined and improved by a more

careful choice of the kernel bandwidth h, which in the present work has been set simply

according to graphical considerations arising from the weights plots. In fact, with too high

or too low values for the bandwidth parameters the weights look very unstable; neverthe-

less, among the range of good values we may have missed the optimal ones, which is a

point requiring deeper investigation.



Chapter 4

Downside risk measures for Lévy port-
folios

In this chapter we deal with downside risk measures for portfolios made of multivariate

Lévy assets.

In particular, in Section 4.1 we present formulas to compute value at risk (VaR) and tail

conditional expectation (TCE), and we develop a new approach to compute the correspond-

ing marginal measures, exploiting the expression for the conditional characteristic func-

tion introduced by Bartlett (1938).

In Section 4.2 we discuss intra-horizon risk measures, i.e. intra-horizon value at risk

(VaR-I) and intra-horizon tail conditional expectation (TCE-I), which take into account

the magnitude of losses that can incur throughout the investment term, not only at the

end of the horizon. To compute these measure we adopt the Fourier Space Time-stepping

(FST) algorithm, introduced by Jackson et al. (2008) for option pricing purposes.

Section 4.3 handles portfolio optimization when the objective is to minimize CVaR and as-

set returns follow the multivariate Lévy model (2.1), following the approach of Rockafellar

and Uryasev (2000).

Finally, in Section 4.4, we present an application. For the ‘all-NIG’, ‘all-MJD’ and Gaus-

sian model we build the optimal portfolio based on CVaR objective and we compute all the

risk measures mentioned above.
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4.1 Value at risk, expected shortfall and marginal
measures

In this section we describe how to efficiently compute value at risk, expected shortfall,

and their respective marginal measures when portfolio returns are assumed to follow

exponential Lévy models.

4.1.1 Value at risk (VaR)

A primary tool for financial risk assessment is the value at risk (VaR), defined as the

amount lost on a position (or portfolio) with a given small probability at the end of a fixed

horizon. More precisely, the (1− α)-VaR over an horizon [0, T ] is implicitly defined as

P (ST − S0 ≤ −VaR) = α, (4.1)

where St is the value of the position (or portfolio) at time t.

We consider a VaR defined on the return distribution, as

P (XT ≤ −VaR) = α, (4.2)

where Xt = log(St) − log(S0), and the relation among the two VaRs defined in (4.1) and

(4.2) is immediate.

To compute the α-quantile of the return distribution when assuming an exponential

Lévy model, we adopt the approach of Le Courtois and Walter (2009), followed also by

Ramponi (2012). In particular, they suggest how to compute the cumulative distribution

function from the characteristic function, without first recovering the probability density

function.

The following formula is available to bypass the use of the density

F (x) = 1
2 −

1
2π

∫ +∞

−∞
e−iux

φ(u)
iu

du; (4.3)

however, the use of (4.3) can be problematic, because it is not stable around u = 0. Le Cour-

tois and Walter (2009) developed a new formula to compute directly the cumulative distri-

bution associated with any Lévy process as a Fourier transform of a well behaved function
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of the characteristic function. For any positive real number a, they proved the following

relation

F (x) = eax

2π

∫ +∞

−∞
eiux

φ(−u+ ia)
a+ iu

du. (4.4)

Therefore, a Fast Fourier Transform (FFT) has to be performed to obtain FX from φX and

then a root search allows to compute the VaR, i.e. the absolute value of the α-quantile.

4.1.2 Expected shortfall (ES/CVaR/TCE)

The expected shortfall (ES) at tail probability α is defined as the average of the VaRs

which are larger than the (1− α)-VaR, i.e. it is focused on the losses in the tail which are

larger than the corresponding VaR level. Formally

ESα(X) = 1
α

∫ α

0
VaRp(X)dp. (4.5)

Unlike VaR, that lacks subadditivity and convexity, the ES satisfies all the axioms of

coherent risk measures (see Artzner et al. (1997), Acerbi and Tasche (2002)). The ES is

convex for all possible portfolios, which means that it always accounts for the diversifica-

tion effect.

Moreover, it can be easily proved that, for continuous random variables, the ES coincides

with the tail conditional expectation (TCE), which is defined as

TCEα(X) = E(−X|X ≤ −VaRα(X)). (4.6)

To compute the ES under exponential Lévy models, Le Courtois and Walter (2009) de-

veloped a formula similar to (4.4), which bypasses the use of probability density function.

In particular, they proved that

E(X|X ≤ x) =
E(X1{X≤x})
P (X ≤ x) = G(x)

F (x) , (4.7)

where F is given in (4.4) and G can be written as

G(x) = eax

2π

∫ +∞

−∞
e−iux

φ′(u+ ia)
u+ ia

du, (4.8)

for any a > 0.

This formula can always be applied, however it may be unhandy since the first derivative
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of the characteristic function need to be computed. For a portfolio of assets following

our multivariate Lévy model (2.1), whose characteristic function is given in (3.6), this is

indeed the case. Therefore we first compute the VaR as described in Section 4.1.1, then

we recover the probability density function of X, and finally we numerically evaluate the

integral

TCEα = − 1
α

∫ −VaR

−∞
yfX(y)dy, (4.9)

where 1− α is the VaR level (e.g. for the 99%-VaR, α = 0.01).

If the ES in monetary terms, instead of return terms, is needed, we have to compute

ESα = E(ST − S0 |ST − S0 ≤ −VaRα ), (4.10)

where VaRα is expressed in monetary terms, as in (4.1).

Based on the approach of Le Courtois and Walter (2009), we achieve the following formula

ESα = S0

[
H

(
log
(
−V aRα + S0

S0

))
− 1
]
, (4.11)

where

H(x) = E
[
eXT |XT ≤ x

]
= eax

2π

∫ ∞
−∞

e−iux
φ(u+ i(a− 1))

a− iu
du, (4.12)

a is a strictly positive real number and φ is the characteristic function of XT = log(ST /S0).

The detailed proof is given in Appendix E.

To implement the formula we only need to perform a FFT on φXT .

4.1.3 Marginal value at risk (M-VaR)

When the VaR of a portfolio is defined on a return basis, as in (4.2), the marginal VaR (M-

VaR henceforth) relative to the i-th asset is the change in VaR resulting from a marginal

change in the relative position in instrument i. Hence, the M-VaR relative to component i

is

M-VaRi = ∂VaRp
∂wi

. (4.13)

Relying only on approximation (3.1) and on the assumption that the first moment of all the

relevant return distributions are finite, Tasche (1999) proves that M-VaR can be written
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as

M-VaRi = −E[Xi|Rp = −VaR]. (4.14)

The intuition behind Equation (4.14) is immediate: when there is strong positive (neg-

ative) dependence between the asset return Xi and the portfolio return Rp, then large

negative portfolio returns will be associated with large negative (positive) asset returns.

Increasing the weight wi of the asset will then lower (increase) the portfolio return, lead-

ing to an increase (decrease) in portfolio’s VaR.

From Equation 4.14 we know that

M-VaR = −
∫ ∞
−∞

xfXi|Rp=−VaR(x)dx, (4.15)

where VaR can be computed as discussed in Section 4.1.1.

To compute the M-VaR in our exponential Lévy model we need the conditional distribution

fXi|Rp , which we obtain exploiting the formula derived by Bartlett (1938), on the charac-

teristic function of a conditional statistic.

We then recover the conditional probability density function fXi|Rp via FFT transforma-

tion from the conditional characteristic function (see Bartlett (1938))

φXi|Rp=−VaR(u) = E[eiuXi |Rp = −VaR] =
∫
eivVaRM(u, v)dv∫
eivVaRM(0, v)dv

, (4.16)

where M(u, v) denotes the bivariate characteristic function defined as

M(u, v) = E[ei(uXi+vRp)]. (4.17)

For a portfolio made of assets following the multivariate Lévy model (2.1) we can compute

M(u, v) from the expressions of the characteristic functions of the idiosyncratic factors,

Y (j), j = 1, . . . , n, and the common factor Z, as

M(u, v) = E[eiu(Y (i)+aiZ)+iv(
∑n

j=1
wjYj+Z

∑n

j=1
wjaj)]

=

∏
j 6=i

E[eivwjYj ]

E[ei(u+vwi)Y (i)
]E[eiZ(uai+v

∑n

j=1
wjaj)]

=

∏
j 6=i

φYj (vwj)

φY (i)(u+ vwi)φZ(uai + v

n∑
j=1

wjaj).

(4.18)
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We then approximate the integrals in Equations (4.15) and (4.16) by trapezoidal integra-

tion, using the MATLAB® function trapz.

4.1.4 Marginal expected shortfall (M-ES)

A marginal measure similar to M-VaR can be defined with respect to the expected short-

fall: the M-ES relative to the i-th asset is the change in ES resulting from a marginal

change in the relative position in instrument i. Formally,

M-ESi = ∂ESp
∂wi

. (4.19)

Tasche (1999) proves a relation similar to (4.14), under the same assumptions:

M-ESi = −E[Xi|Rp ≤ −VaR]. (4.20)

In the previous section we saw a way to compute the conditional probability density func-

tion fXi|Rp . Here we need the conditional distribution of Xi|Rp ≤ −VaR, which we recover

from the joint probability density function f(Xi, Rp) as

fXi|Rp≤y(x) =
∫ y
−∞ fXi,Rp(x, z)dz

FRp(y) , (4.21)

where

fXi,Rp(x, y) = fXi|Rp=y(x)fRp(y). (4.22)

Therefore

M-ESi = −E[Xi|Rp ≤ −VaR] = − 1
α

∫ ∞
−∞

x

∫ −VaR

−∞
fXi|Rp(x|Rp = y)fRp(y)dydx. (4.23)

To compute the M-ES we approximate numerically the integrals in (4.23) by means of the

MATLAB®function trapz.

4.2 Intra-horizon risk

In this section we show how to calculate the intra-horizon risk of a portfolio of assets

following the multivariate Lévy model (2.1). In particular, we compute the intra-horizon

value at risk (VaR-I hereafter), the intra-horizon tail conditional expectation (TCE-I) and

the intra-horizon probability of breaching (PB-I).
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Traditional risk measures, as VaR or TCE, focus on possible losses at the end of a pre-

determined time horizon; nevertheless, investors care about exposure to loss throughout

the horizon, since they often have thresholds that cannot be breached for the investment

to survive. Taking into account the magnitude of losses that can incur before the end of

the horizon is of paramount importance, for example, for monitored asset managers, lever-

aged investors, borrowers required to maintain particular level of reserves as a condition

of a loan agreement or securities lenders required to deposit collateral.

The emphasis on intra-horizon risk was first placed by Stulz (1996); Kritzman and

Rich (2002) and Boudoukh et al. (2004) deal with intra-horizon risk assuming Gaussian

distributed returns and considering a multi-year investment horizon, while Bakshi and

Panayotov (2010) focus on the 10 days horizon relevant for regulatory purposes and con-

sider three Lévy jump models for asset returns: the Merton’s jump diffusion model (Mer-

ton (1976)), the finite moment log-stable model (FMLS) by Carr and Wu (2003) and the

two sided pure-jump CGMY model of Carr et al. (2003).

As we will show, intra-horizon risk measures are based on the distribution of the min-

imum return, which is in turn strictly connected to the first passage probability of the

return process to a lower barrier. While under the Gaussian assumption this distribu-

tion is analytically known (see Kritzman and Rich (2002)), in general it must be recov-

ered numerically. In particular, while Bakshi and Panayotov (2010) resort to an approach

based on partial integro-differential equations (PIDEs), we adopt an equivalent but sim-

pler method, exploiting the Fourier Space Time-stepping (FST) algorithm introduced by

Jackson et al. (2008) for option pricing purposes.

4.2.1 Definition of intra-horizon risk measures

In this section we formalize the definitions of the intra-horizon risk measures we are

going to compute: VaR-I, TCE-I and PB-I. Let Xt, for t ∈ [0, T ], be the real-valued random

process describing possible paths of an asset or portfolio return; the initial value is X0 = 0,

and we consider the random variable Xmin
T := min0≤t≤T Xt.

VaR-I is the absolute value of a quantile of the distribution of the random variable

Xmin
T . For example, the 10 days (1−α)-VaR-I is the absolute value of the loss level exceeded

at any point in time during the 10-day horizon with probability α.
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Formally:

P (Xmin
T ≤ −VaR-I) = α, (4.24)

where T = 10 days.

Figure 4.1: VaR and VaR-I: the idea.

Figure 4.1 illustrates the idea behind the definition of VaR-I; we plotted trajectories

over a long horizon for the best understanding of the concept. We simulate 10000 trajecto-

ries for the returns of an equally-weighted portfolio where the assets follow a multivariate

Lévy model with all NIG components. Some of these trajectories are plotted in light-

green. The histogram of the return distribution at the end of the horizon is displayed in

green and the estimated probability density function is superimposed. A dark-green dot

identifies the 5%-quantile of this distribution, i.e. the opposite of the 95%-VaR. Then, for

each trajectory Xt we build the corresponding trajectory of Xmin
t . For each light-green

trajectory we report the corresponding path of the minimum in light-blue; we highlight

one example of this construction with darker colors. The trajectories of minimum returns

give rise to the distribution of Xmin
T , i.e. the distribution of the minimum at the horizon. A

blue dot identifies the 5%-quantile of this distribution, i.e. the opposite of the 95%-VaR-I.
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The idea is that, even when the return at the end of the horizon is positive, during the

investment life the path of returns can reach high negative values, which investors may

care about. In such cases the left tail of the minimum distribution better represents risk

than the tail of return distribution itself.

Notice how the definition of VaR-I, given in expression (4.24), is closely related to the

first-passage time Ty of the return process Xt to a lower level y:

Ty := inf {t > 0 : Xt ≤ y} where y < X0; (4.25)

if Xt never reaches the level y within the horizon, i.e. if Xt > y ∀t ∈ [0, T ], we have that

Ty > T . The two events {Ty > T} and
{
Xmin
T > y

}
are therefore equivalent, and we can

write

P (Ty > T ) = P (Xmin
T > y). (4.26)

In particular, we indicate with PB-Iy,T the probability of breaching a certain threshold y

during the time horizon

PB-Iy,T = 1− P (Ty > T ). (4.27)

Then the α-quantile defining VaR-I can also be written as the level y such that

PB-Iy,T = α. (4.28)

Analogously to its traditional counterpart, the intra-horizon tail conditional expecta-

tion (TCE-I) is defined as the average of the larger-than-VaR-I losses that might occur

within the horizon

TCE-I = E[−Xmin
T |Xmin

T ≤ −VaR-I]. (4.29)

4.2.2 Estimating the first-passage probability

To estimate the first passage probability or equivalently the distribution of the minimum

of X, for a portfolio of assets following the multivariate Lévy model (2.1), we adopt the

Fourier Space Time-stepping (FST) algorithm introduced by Jackson et al. (2008) for op-

tion pricing purposes. Our problem is indeed equivalent to finding the value of a down-

and-out binary option, that is an option paying 1 if the underlying doesn’t hit a certain
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lower barrier within a given time period and 0 otherwise. However our computations are

performed under the physical probability measure.

More precisely, let St be an exponential Lévy process describing the price process, then

we can write St = S0e
Xt , where Xt is a Lévy process with Lévy exponent ϕ, representing

the log-return over the period [0, t]. We want to compute the probability (4.26):

P (Xmin
T > y) = P (S0e

Xmin
T > S0e

y) = P (Smin
T > ỹ) = E[1{Smin

T
>ỹ}], (4.30)

where we indicated the threshold for Smin
T by ỹ = S0e

y.

Without loss of generality we set S0 = 1.

The quantity (4.30) can be seen as the value at time t = 0 of the down-and-out barrier

version of a contract with payoff

Ψ(ST ) = 1{ST>ỹ}, (4.31)

i.e.

ΨDO(ST ) =


Ψ(ST ) if Smin

T > ỹ

0 otherwise
= 1{ST>ỹ}∩{Smin

T
>ỹ} = 1{Smin

T
>ỹ}, (4.32)

where ’DO’ stands for down-and-out and the evaluation is made under the physical prob-

ability measure.

The FST algorithm allows us to compute the value of an option by means of a backward

procedure based on the fact that the value function is a martingale1 and that the process

Xt has stationary and independent increments. In particular, we have

v(t1, X(t1)) = Et1 [v(t2, X(t2))]

=
∫ ∞
−∞

v(t2, Xt1 + x)fXt2−Xt1 (x)dx

=
∫ ∞
−∞

v(t2, Xt1 + x)fX(t2−t1)(x)dx,

(4.33)

where fXt(x) is the probability density function of the process Xt. Transforming (4.33)

into the Fourier space leads to

F [v](t1, ω) = F [v](t2, ω)eϕ(ω)(t2−t1), (4.34)
1In the option pricing world the value function is a martingale by the risk neutral valuation formula; for us

the value function is simply the conditional expectation of (4.31) and thus it is a martingale by construction.
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where F is the Fourier transform (1.1) and the following fact are used: F [fXt ](ω) = eϕ(ω),

which follows by the definition of characteristic function (1.2) and by the Lévy-Khintchine

representation (1.12); convolution in real space corresponds to multiplication in Fourier

space (see Section 1.2).

Therefore

v(t1, x) = F−1
{
F [v](t2, ω)eϕ(ω)(t2−t1)

}
(x). (4.35)

To implement the algorithm, the time and space domain as well as the time and frequency

domain are partitioned into a finite mesh of points and the discrete Fourier transform is

computed through the FFT algorithm; starting from tm = T , where the value function

coincides with the final payoff (vT = v(T, x) = Ψ(S0e
x)), at each backward time stepping

the value vm−1 is recovered from vm as

vm−1 = FFT−1[FFT [vm]eϕ∆t], (4.36)

and the step is repeated until v0 is reached.

To apply the algorithm to barrier options it is enough to continuously enforce the barrier

boundary condition at each time step.

Summarizing, we start form vT = 1{x>y} and we apply the FST algorithm for barrier

options, whose step reads

vm−1 = HDO(FFT−1[FFT [vm]eϕ∆t), (4.37)

where HDO(v) = v1{x>y}.

For further details on the FST algorithm, refer to Jackson et al. (2008).

At this stage, through the FST algorithm, we can recover the value function v(t,X(t));

therefore, given a barrier y we are able to compute the probability of breaching the barrier

within the interval [0, T ] (4.27) as

PB-Iy,T = 1− P (Xmin
T > y|X(0) = 0) = 1− v(0, 0). (4.38)

Moreover, we can find the VaR-I (4.24) exploiting the following observation:

v(0, x) ≡ P (Xmin
T > y|X(0) = x) = P (Xmin

T > (y − x)|X(0) = 0), (4.39)
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which follows from the translation invariance property of Lévy processes2. In particular,

to compute the (1− α)-VaR-I we follow the procedure below:

• choose an arbitrary threshold y (say y = 0 for simplicity);

• compute the function v(0, x) by means of the FST algorithm;

• spot the value x such that v(0, x) = 1− α;

• compute the VaR-I as VaR-I= −(y − x).

Finally, we can numerically compute the TCE-I (4.29) after recovering the distribution

of the minimum return from the value function, exploiting again the relation (4.39). In

fact

FXmin
T

(y) = 1− P (Xmin
T > y) = 1− P (Xmin

T > 0|X(0) = −y) = 1− v(0,−y). (4.40)

Therefore we can find the probability density function of the minimum return approxi-

mating by finite differences the derivative of FXmin
T

(y), and then numerically evaluate the

integral

TCE-I = − 1
α

∫ −VaR-I

−∞
yfXmin

T
(y)dy, (4.41)

where 1− α is the VaR-I level (e.g. for the 99%-VaR-I, α = 0.01).

4.3 Portfolio optimization with CVaR

This section handles portfolio optimization when the objective is to minimize CVaR, i.e. to

reduce the risk of high losses, and asset returns follow the multivariate Lévy model (2.1).

We follow the approach suggested by Rockafellar and Uryasev (2000) and applied to Lévy

processes by Yu et al. (2009), who considered the case of a variance gamma copula model.

Their method allows to optimize CVaR and calculate VaR at the same time.

The choice to optimize CVaR, instead of VaR, is due to the better properties of the former,

in particular its convexity. VaR can be ill-behaved as a function of portfolio positions and

can exhibit multiple local extrema (see Pflug (2000), Uryasev (2000)). However, since by

construction the VaR at level α of a portfolio cannot exceed the respective CVaR, mini-

mizing CVaR is closely related to minimizing VaR. Moreover, as showed by Rockafellar
2See Kolokoltsov (2011), page 118 ff.
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and Uryasev (2000) and Uryasev (2000), CVaR can be efficiently optimized using linear

programming techniques.

4.3.1 Framework

Let w = (w1, w2, . . . , wn)′ be the vector of portfolio weights and X = (X1, X2, . . . , Xn)′ be

sample asset returns modeled by the multivariate Lévy model (2.1). The loss associated

to the decision w is defined as negative portfolio return: f(w,X) = −w′X. We consider

an optimization problem where the objective function is CVaR, defined in (4.5) or equiva-

lently, since we deal with continuous distribution, in (4.6)3, which in the present notation

reads

CVaRβ = E(f(w,X)|f(w,X) ≥ VaRβ). (4.42)

The optimization problem becomes

minw CVaRβ

s.t.
∑n
i=1 wi = 1

wi ≥ 0 for i = 1, . . . , n

E[w′X] ≥ r0

Xi = Yi + aiZ, with Yi, Z indep. Lévy processes, for i = 1, . . . , n,

(4.43)

where the third constraint reflects the requirement that only portfolios that can be ex-

pected to return at least a given amount r0 will be admitted.

4.3.2 CVaR optimization: general theory

Here we briefly review the theory developed by Rockafellar and Uryasev (2000), which

allows to reduce the CVaR optimization problem (4.43) to a convex programming problem.

The loss f(w,X) is a random variable with a distribution induced by that of X. The

assumption that X admits a probability density function p(X) is made; however an an-

alytical expression for p(X) is not needed, it is enough to have an algorithm to generate

samples from it.
3Here we assume that VaR and CVaR are defined on a return basis.
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The probability of f(w,X) not exceeding a threshold α is given by

Ψ(w,α) = Pr(f(w,X) ≤ α) = E[1f(w,X)≤α] =
∫
f(w,X)≤α

p(X)dX. (4.44)

As a function of α, for a fixed decision vector w, Ψ is the cumulative distribution function

for the loss associated with w. Rockafellar and Uryasev (2000) assume that the function

Ψ, which is non-decreasing with respect to α and continuous from the right, is everywhere

continuous as a function of α.

VaR (4.2) and CVaR (4.42) at level β can then be written respectively as

VaRβ(w) = min {α ∈ R : Ψ(w,α) = β} (4.45)

CVaRβ(w) = 1
1− β

∫
f(w,X)≥VaRβ(w)

f(w,X)p(X)dX, (4.46)

being (1− β) the probability of the loss exceeding VaRβ .

Rockafellar and Uryasev (2000) introduce an auxiliary function Fβ , defined as

Fβ(w,α) = α+ 1
1− β

∫
X∈Rn

[f(w,X)− α]+p(X)dX (4.47)

for which they prove the following theorems.

Theorem 1. As a function of α, Fβ(w,α) is convex and continuously differentiable. The

CVaRβ of the loss associated with any w can be determined from the formula

CVaRβ(w) = min
α∈R

Fβ(w,α). (4.48)

In this formula the set consisting of the values of α for which the minimum is attained,

namely

Aβ(w) = argmin
α∈R

Fβ(w,α) (4.49)

is a nonempty, closed, bounded interval, and the VaRβ of the loss is given by

VaRβ(w) = left endpoint of Aβ(w). (4.50)

In particular, one always has

VaRβ(w) ∈ argmin
α∈R

Fβ(w,α) and CVaRβ(w) = Fβ(w,VaRβ(w)). (4.51)
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Theorem 2. Minimizing the CVaRβ of the loss associated with w over all the admissi-

ble decisions w is equivalent to minimizing Fβ(w,α) over all (w,α), in the sense that

min
w

CVaRβ(w) = min
(w,α)

Fβ(w,α), (4.52)

where moreover a pair (w∗, α∗) achieves the second minimum if and only if w achieves the

first minimum and α ∈ Aβ(w∗) (4.49). In particular, therefore, in circumstances where the

interval Aβ(w∗) reduces to a single point (as is typical), the minimization of Fβ(w,α) over

(w,α) produces a pair (w∗, α∗), not necessarily unique, such that w∗ minimizes CVaRβ

and α∗ gives the corresponding VaRβ .

Furthermore, Fβ(w,α) is convex with respect to (w,α), and CVaRβ(w) is convex with

respect to w, when f(w,X) is convex with respect to w, in which case, if the constraints

are such that the set of feasible decisions is convex, the joint minimization is an instance

of convex programming.

Since the function Fβ is convex and continuously differentiable, as stated in Theorem

1, it can be easily minimized numerically. Moreover, expression (4.48) gives a way to com-

pute CVaR without first calculating VaR.

The integral appearing in the definition of Fβ can be approximated by sampling the distri-

bution of X according to its probability density function p(X). If the sampling generates

a collection of vectors X(1), X(2), . . . , X(q) (where X(k) = (X(k)
1 , . . . , X

(k)
n ), for k = 1, . . . , q),

then the approximation reads

F̃β(w,α) = α+ 1
q(1− β)

q∑
k=1

[f(w,X(k))− α]+, (4.53)

where [t]+ = t · 1{t>0}. F̃β(w,α) is a convex and piecewise linear function of α and, if the

set of feasible decisions is convex, it is convex with respect to w as well. Although F̃β it

is not differentiable with respect to α, it can readily be minimized, either by line search

techniques or by representation in terms of an elementary linear programming problem,

as we see in the application below.
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4.3.3 CVaR optimization: multivariate Lévy model

In this section we show how to apply the general theory described in Section 4.3.2 to solve

the portfolio optimization problem (4.43).

First, we observe that the assumptions required for Theorems 1 and 2 to hold are all

fulfilled:

• The distribution of X admits a probability density function p(X) which, although

not always available in analytical form, can be recovered from the characteristic

function (2.2). However, as long as we can simulate the Lévy processes Z and Yi,

for i = 1, . . . , n, which compose the multivariate model (2.1), we can easily generate

random samples from the distribution of X; hence we can implement the approach

without first recovering p(X).

• Under our multivariate Lévy model, X has a continuous distribution, therefore the

cumulative distribution function for the loss associated with a given w (4.44) is itself

continuous.

• The loss f(w,X) is convex with respect to w (in fact, it is linear).

• The set of feasible portfolio is convex (in fact, polyhedral due to the linearity of all

the constraints).

Therefore, to solve the allocation problem (4.43), we consider the function

Fβ(w,α) = α+ 1
1− β

∫
X∈Rn

[−w′X − α]+p(X)dX, (4.54)

whose minimization with respect to (w,α) reduces to a convex programming problem and

is equivalent to CVaRβ minimization, as granted by Theorems 1 and 2.

More precisely we focus on the approximation given in equation (4.53), based on random

return samples generated according to our model for X.
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Introducing the auxiliary variables uk, k = 1, . . . , q, problem (4.43) can be represented

in term of the following linear programming problem

minα,w,uk α+ 1
q(1−β)

∑q
k=1 uk

s.t. uk ≥ 0, k = 1, . . . , q

w′X(k) + α+ uk ≥ 0, k = 1, . . . , q∑n
i=1 wi = 1

wi ≥ 0 for i = 1, . . . , n

w′E[X] ≥ r0,

(4.55)

where E[X] is the expected return according to model (2.1)4 and X(k), k = 1, . . . , q, are

random vectors sampled according to the distribution of X.

Summarizing, we need to go through the following steps:

• Step 1. Choice of the model: define all the Lévy processes involved in the multivari-

ate model (2.1).

• Step 2. Estimation of model parameters (refer to Section 2.3).

• Step 3. Computation of E[X] = E[Y ] + a′E[Z], given the parameters estimated in

Step 2.

• Step 4. Scenario generation: given the parameters estimated in Step 2, simulate a

large number q of samples for X. More precisely, simulate Z(k) and Y (k)
i , i = 1 . . . , n,

for k = 1, . . . , q, from the respective distributions; build each X(k) as X(k)
i = Y

(k)
i +

âiZ
(k).

• Step 5. Solve the linear programming problem (4.55). This can be easily and quickly

achieved by means of the MATLAB®function linprog.

4.4 Application

As an example we apply the procedure described in Section 4.3 to build a portfolio

composed by the 20 stocks considered in Section 3.5, where the objective is to minimize

95%-CVaR over a weekly horizon.
4We still rely on approximation 3.1.
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We consider the multivariate Lévy model (2.1) both in its ‘all-NIG’ and ‘all-MJD’ speci-

fications, comparing the results with an ’all-Gaussian’ (hence Gaussian) version of the

model.

The estimation of parameters is performed by means of the three-step procedure pre-

sented in Section 2.3.1, on weekly data.

The expectation E[X] is obtained as E[X] = E[Y ]+a′E[Z] where each E[Yi] for i = 1, . . . , n

and E[Z] is computed according to the first equation of formula (1.26), in the NIG case, or

(1.34), in the MJD case.

Scenario generation is achieved as described in Step 4, simulating each Z(k) and each

Y
(k)
i , i = 1 . . . , n, for k = 1, . . . , 10000 from NIG or MJD models, with the estimated

parameters.

We set r0 = 0 in the definition of problem (4.55), meaning that we exclude allocations

giving a negative expected return, and we solve it using the MATLAB®function linprog.

Figure 4.2: Optimal allocations under ’all-NIG’, ’all-MJD’ and ’all-Gaussian’ specifications
of our multivariate Lévy model, when objective is to minimize CVaR over a weekly horizon.

In Figure 4.2 we show the resulting allocations. We can notice that, even if the

allocations are quite different, the ‘all-NIG’ and ‘all-MJD’ models agree on which stocks
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should be overweighted in order to reach the goal of minimizing risk in terms of CVaR:

Johnson&Johnson, Coca-Cola, Procter&Gamble and Walmart. The Gaussian model

suggests a significant investment in Berkshire Hathaway as well, and a lower investment

in Procter&Gamble.

In Figure 4.3 we plot the frontier of optimal 95%-CVaR as a function of the minimum

required expected return r0, obtained using the three models: ‘all-NIG’, ‘all-MJD’ and

‘all-Gaussian’. The top plot, with n = 10, refers to the first ten assets in our dataset, while

the bottom plot is built using the whole dataset, so that n = 20.

Knowing that the multivariate Lévy models in ‘all-NIG’ and ‘all-MJD’ specifications

better describe our dataset than the Gaussian model, which appears clearly from Figures

(3.1)-(3.5), we notice how relying on the Gaussian model leads to a significant underesti-

mation of risk. On the other hand, the ‘all-NIG’ model appears to be the most conservative

one.

Moreover, from the solution of the linear programming problem we can obtain

95%-VaR and 95%-CVaR corresponding to the optimal allocations w∗, as illustrated in

Theorems 1 and 2: 95%-VaR is the optimum α and 95%-CVaR is the value of the objective

function computed in correspondence of (w∗, α∗). In Table 4.1 we compare these values

with those computed according to the definitions, as exposed in Sections 4.1.1 and 4.1.2

for the ‘all-NIG’ and ‘all-MJD’ models, analytically for the Gaussian model.

We notice that VaR and CVaR computed during the optimization are very close to those

computed by definition.

Table 4.1 reports also the intra-horizon measures, VaR-I and TCE-I, computed as dis-

cussed in Section 4.2. While the VaR-I of the optimal portfolios computed under the three

models are similar, the TCE-I computed under the ‘all-NIG’ model is considerably higher

then the others. Of course intra horizon measures are greater than traditional measures,

taking into account the possible losses that may incur within the (weekly) investment

horizon.

Finally, we compute the marginal risk measures, M-VaR and M-ES, as described in
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Figure 4.3: Minimum expected return - CVaR frontier: Gaussian, ’all-NIG’ and ’all-MJD’
models.
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Sections 4.1.3 and 4.1.4 for the ‘all-NIG’ and ‘all-MJD’ models, analytically for the

Gaussian model. The results are displayed in Table 4.2. First of all we observe

that all the marginal measures are positive, meaning that alterations of the optimal

weights would lead to an increase in VaR and, as expected, CVaR. Secondly, we notice that

the stocks overweighted in the optimal portfolios are those displaying lower marginal risk.

all-NIG all-MJD Gaussian

VaR (def) 0.0150 0.0158 0.0170
VaR (opt) 0.0151 0.0154 0.0171

CVaR (def) 0.0250 0.0243 0.0215
CVaR (opt) 0.0253 0.0245 0.0214

VaR-I 0.0390 0.0385 0.0392
CVaR-I 0.0541 0.0497 0.0484

Table 4.1: Traditional and intra-horizon risk measures relative to the portfolio optimizing
CVaR.
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all-NIG all-MJD Gaussian

M-VaR M-ES M-VaR M-ES M-VaR M-ES

APPL 0.0235 0.0453 0.0258 0.0447 0.0246 0.0313
XOM 0.0185 0.0360 0.0203 0.0355 0.0240 0.0305
WMT 0.0156 0.0244 0.0161 0.0237 0.0174 0.0218

MSFT 0.0192 0.0373 0.0211 0.0368 0.0241 0.0307
GOOG 0.0202 0.0378 0.0220 0.0374 0.0235 0.0295

GE 0.0238 0.0445 0.0259 0.0439 0.0239 0.0300
IBM 0.0152 0.0291 0.0167 0.0287 0.0179 0.0227
CVX 0.0210 0.0405 0.0230 0.0400 0.0272 0.0345

BRK/B 0.0141 0.0264 0.0154 0.0261 0.0177 0.0222
T 0.0188 0.0363 0.0206 0.0358 0.0246 0.0312

PG 0.0144 0.0247 0.0148 0.0239 0.0191 0.0241
PFE 0.0155 0.0295 0.0170 0.0291 0.0208 0.0263
JNJ 0.0150 0.0246 0.0160 0.0243 0.0182 0.0230

WFC 0.0379 0.0709 0.0414 0.0701 0.0371 0.0466
KO 0.0148 0.0250 0.0155 0.0244 0.0189 0.0241

JPM 0.0394 0.0734 0.0430 0.0726 0.0382 0.0479
ORCL 0.0208 0.0391 0.0227 0.0386 0.0257 0.0323
MRK 0.0163 0.0313 0.0178 0.0309 0.0235 0.0297

VZ 0.0141 0.0278 0.0156 0.0274 0.0181 0.0231
AMZN 0.0182 0.0382 0.0203 0.0376 0.0180 0.0238

Table 4.2: Marginal risk-measures relative to the portfolios optimizing CVaR respectively
under the ‘all-NIG’, ‘all-MJD’ and Gaussian models.



Conclusion and future work

In conclusion, believing in the crucial importance of modeling as realistically as possible

the joint distribution of asset returns in risk and portfolio management applications, we

suggested and developed some tools to extend and simplify the usage of multivariate Lévy

models in this area.

We chose as reference model the one introduced by Ballotta and Bonfiglioli (2014), due to

its generality, flexibility and tractability.

We proposed a fast three-step estimation procedure whose complexity does not increase

with the number of assets n, since it basically reduces to (n + 1) univariate estimations

and a least squares estimation on the covariance matrix. Simulation studies revealed that

this approach is as effective as a more computationally intensive overall maximum like-

lihood estimation of the whole set of parameters, as long as proper univariate estimation

methods are used.

We then illustrated how the multivariate Lévy model can be employed for asset allocation

purposes in a standard utility maximization framework, obtaining a closed form expres-

sion for the expected utility in the exponential case. For power utility function, and in

general for any utility other than exponential, we suggest to resort to numerical integra-

tion. We then made an empirical test to check whether the allocations based on the mul-

tivariate Lévy model, in two particular specifications taken as representative examples,

perform better than those obtained applying the most common allocation strategies and a

new non-parametric approach. The results of our test say that the Lévy-based allocations

often perform better and never perform worse than the others in terms of monetary utility,

Sharpe ratio, turnover and maximum drawdown. Portfolio based on the non-parametric

approach are characterized by low turnover, but their performance could be further im-

proved with a more accurate choice of the bandwidth for the kernel estimation, point
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which should be more carefully investigated.

Exploiting the results developed in Rockafellar and Uryasev (2000), we dealt also with

a different approach to portfolio selection, describing how to solve, in our multivariate

Lévy framework, optimization problems which have as objective the minimization of con-

ditional value at risk while requiring a minimum expected return. Moreover we intro-

duced new formulas and method to compute as efficiently as possible some downside risk

measures. In particular we developed a simple formula for CVaR in monetary terms, fol-

lowing Le Courtois and Walter (2009), formulas for marginal-VaR and marginal-CVaR,

using the conditional characteristic function by Bartlett (1938), and we illustrated how to

apply the algorithm developed by Jackson et al. (2008), with the purpose of pricing barrier

options, in order to compute intra-horizon risk measures.

Future study will compare the performance of allocations based on Ballotta and Bonfiglioli

(2014) model with results obtained using other multivariate Lévy models, as those built

by subordination.

Moreover, it would be interesting to estimate the model using non-parametric procedures,

avoiding the need of a priori specifying the nature of the idiosyncratic and common com-

ponents.



Appendix A

Proof of statements in Chapter 2

A.1 Proof of Proposition 1

The process Xt defined in (2.1) is a Lévy process in Rn.

Each component of Xt is defined as

X
(j)
t = Y

(j)
t + ajZt, (A.1)

where Y (j) and Z are Lévy processes.

• Xt is adapted and càdlàg. It follows from Z and Y (j), for every j = 1, . . . , n, being

Lévy processes, hence adapted and càdlàg.

• X0 = 0 almost surely. X(j)
0 = Y

(j)
0 + ajZ0, with Z0 and Y

(j)
0 , for every j = 1, . . . , n,

almost surely null.

• Increments are independent from the past. Increments are defined as

Xt −Xs =
{
X

(j)
t −X(j)

s

}
j=1,...,n

=
{

(Y (j)
t − Y (j)

s ) + aj(Zt − Zs)
}
j=1,...,n

, (A.2)

with 0 ≤ s < t < ∞. Since the increments of Z and the increments of Y (j), for every

j = 1, . . . , n, are independent of Fs, the increments of X are independent of Fs as

well.

• Increments are stationary. The distribution of the increments of Xt is determined by

the distributions of the increments of Z and Y. Since (Zt−Zs) is distributed as Zt−s

and (Y (j)
t − Y (j)

s ) is distributed as Y (j)
t−s, for j = 1, . . . , n and for any 0 ≤ s < t < ∞,

then (X(j)
t −X

(j)
s ) is distributed as X(j)

t−s, for j = 1, . . . , n and for any 0 ≤ s < t <∞.
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• X is continuous in probability.

lim
s→t

X(j)
s = lim

s→t
(Y (j)
s + ajZs) = Y

(j)
t + ajZt = X

(j)
t for j = 1, . . . , n, (A.3)

where all the limits are taken in probability.

The characteristic function of Xt is (2.2).

Using the independence of the processes Y (j), j = 1, . . . , n, from Z and among themselves,

we can write:

φx(u; t) = E
[
eiuXt

]
= E

[
e
i
∑n

j=1
ujX

(j)
t

]
= E

[
e
i
(∑n

j=1
ujY

(j)
t +Zt

∑n

j=1
ujaj

)]

= E

[
e
i
∑n

j=1
ujY

(j)
t

]
E

[
e
iZt
∑n

j=1
ujaj

]
= E

 n∏
j=1

eiujY
(j)
t

E [eiZt∑n

j=1
ujaj

]

=

 n∏
j=1

E
[
eiujY

(j)
t

]E

[
e
iZt
∑n

j=1
ujaj

]
=

 n∏
j=1

φY (j)(uj ; t)

φZ

 n∑
j=1

ajuj ; t

 .

(A.4)

A.2 Proof of Corollary 1

(i) It follows from direct differentiation of the cumulant generating function of the compo-

nents of Xt and from the fact that Lévy processes have an infinitely divisible distribution.

In particular, the cumulant generating function of X(j)
t , for j = 1, . . . , n, can be written

as
k
X

(j)
t

(u) = logm
X

(j)
t

(u) = logE
[
euX

(j)
t

]
= log

(
E
[
euY

(j)
t

]
E
[
euajZt

])
log
(
E
[
euY

(j)
t

])
+ log

(
E
[
euajZt

])
= logm

Y
(j)
t

(u) + logmZt(aju) = log(m
Y

(j)
1

(u))t + log(mZ1(aju))t

= t(logm
Y

(j)
1

(u) + logmZ1(aju)),

(A.5)

where mX indicates the moment generating function of the process X.

Differentiating (A.5) with respect to u and evaluating derivatives in correspondence of

u = 0 easily gives expression (2.3) for the cumulants of the j-th component of Xt, in terms

of the cumulants of the j-th component of Yt, the cumulants of Z, and the j-th loading aj .
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(ii) It follows from the assumption that the process Yt has independent components

and it is independent of Zt, and from the fact that Lévy processes have an infinitely divis-

ible distribution. In fact, for j 6= l,

Cov(X(j)
t , X

(l)
t ) =Cov(Y (j)

t + ajZt, Y
(l)
t + alZt) = Cov(Y (j)

t , Y
(l)
t ) + ajalCov(Zt, Zt)

= ajalV ar(Zt) = ajalV ar(Z1)t.
(A.6)

A.3 Proof of Corollary 2

The proof of Corollary 2 is given in full details in Ballotta and Bonfiglioli (2014).



Appendix B

EM algorithm for Merton’s JD model

To fit the Merton’s jump-diffusion model (1.27) we implemented the EM algorithm in the

formulation proposed by Duncan et al. (2009). We report here the main ideas and the for-

mulas needed to implement the procedure, while referring to the original work for further

details.

The independent random vectors

Ct =


(Dt, Nt) (Nt = 0)

(Dt, Nt, Jt,1, . . . , Jt,Nt) (Nt > 0)
t = 1 . . . , T (B.1)

completely determine the jump diffusion process X in (1.27). In the EM terminology, Ct

are the complete data, while Xt are the incomplete data. The complete log-likelihood of

C1, . . . , CT is given by

ln(Lc(θ)) =− 1
2T ln(σ2)− 1

2σ2

T∑
t=1

(Dt − µ)2 − T ln(
√

2π)

− 1
2 ln(τ2)

T∑
t=1

Nt −
1

2τ2

T∑
t=1

Nt∑
k=1

(Jt,k − ν)2 − ln(
√

2π)
T∑
t=1

Nt

− Tλ+ ln
(
λ

T∑
t=1

Nt

)
−

T∑
t=1

ln(Nt!),

(B.2)

where θ = (µ, σ2, ν, τ2, λ) is the vector of parameters and we interpret
∑Nt
k=1(Jt,k − ν)2 = 0

if Nt = 0. As we have seen in Section 1.4.3, starting from an initial guess θ0, in the

E-step we should compute the best (quadratic loss) predictor of ln(Lc(θ)), i.e. the condi-

tional expectation (1.39), where we condition on the available data X. The M-step gives

a new estimate θ(1), which maximizes the conditional expectation Q(θ; θ0). Under certain
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general conditions the sequence of estimates obtained in this way yields monotonically

increasing values of the likelihood and converges to the ML estimator for the incomplete

data X1, . . . , XT .

The algorithm proposed by Duncan et al. (2009) is particularly efficient since they provide

simple closed form solutions for the M-step. The values of µ, σ2, ν, τ2 and λ that maximize

Q(θ; θ0) are

µ̂ = 1
T

T∑
t=1

Eθ0(Dt|Xt) (B.3)

σ̂2 = 1
T

T∑
t=1

Eθ0

{
(Dt − µ̂)2Xt

}
(B.4)

ν̂ = 1
T λ̂

T∑
t=1

Eθ0(NtJt,k|Xt) (B.5)

τ̂2 = 1
T λ̂

T∑
t=1

Eθ0

{
Nt(Jt,k − ν̂)2|Xt

}
, (B.6)

where

λ̂ = 1
T

T∑
t=1

Eθ0(Nt|Xt) (B.7)

The formulas are made operational by evaluating the conditional expectations.

First, λ̂ (B.7) and the two functions

at(β) = Eθ0

(
1

1 +Ntβ2

∣∣∣∣Xt

)
(B.8)

bt(β) = V arθ0

(
1

1 +Ntβ2

∣∣∣∣Xt

)
(B.9)

must be evaluated in β0 = σ0/τ0, knowing the conditional probability

Pθ0(Nt = k|Xt) = ϕ(Xt;µ0 + kν0, σ
2
0 + kτ2

0 )∑∞
k=0 ϕ(Xt;µ0 + kν0, σ2

0 + kτ2
0 )

k = 0, 1, . . . (B.10)

where ϕ is the normal probability density function. The estimates for µ (B.3) and σ2 (B.4)

can then be computed using

Eθ0(Dt|Xt) = µ0 −
ν0

β2
0

+ at(β0)
(
Xt − µ0 + ν0

β2
0

)
(B.11)

Eθ0

{
(Dt − µ̂)2|Xt

}
= (Eθ0(Dt|Xt)− µ̂)2 + σ2

0(1− at(β0)) + bt(β0)
(
Xt − µ0 + ν0

β2
0

)2
.

(B.12)
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To find the estimates for ν (B.5) and τ2 (B.6) the following quantities are needed:

ct(β0) = β2
0at(β0)(1− at(β0))− β2

0bt(β0)− (1− at(β0))2

Eθ0(Nt|Xt)
(B.13)

Eθ0(NtJt,k|Xt) = (1− at(β0))
(
Xt − µ0 + ν0

β2
0

)
(B.14)

Eθ0

{
Nt(Jt,k − ν̂)2|Xt

}
= τ2

0 (Eθ0(Nt|Xt))− 1 + at(β0)) + ct(β0)
(
Xt − µ0 + ν0

β2
0

)2

+ Eθ0(Nt|Xt)
(
ν̂ − Eθ0(NtJt,k|Xt)

Eθ0(Nt|Xt)

)2
. (B.15)

To initialize the algorithm, Duncan et al. (2009) suggest to fix the value of ν0 = 0,

assuming symmetric returns, and of λ0 = 0.2 or smaller, and then to recover µ0, β0 and σ2
0

exploiting respectively the moment conditions

E(Xt) = µ (B.16)

β2 =
√

γ̂

3λ

(
1− λ

√
γ̂

3λ

)−1

(B.17)

Var(Xt) = σ2(1 + β2λ), (B.18)

where γ̂ is the sample excess kurtosis of Xt.



Appendix C

CARA utility and normal returns

Here we prove that under the assumptions of exponential utility function (3.3) and nor-

mally distributed returns, the optimization of expression (3.16) leads to an exact one-step

optimal solution for the allocation problem (3.2).

Given the assumptions above, the expected utility reads

EU(W ) = 1
σp
√

2π

∫ ∞
−∞
−e−λW e

− (W−µp)2

2σ2
p dW = 1

σp
√

2π

∫ ∞
−∞
−e
−
(
λW+ (W−µp)2

2σ2
p

)
dW. (C.1)

We can now rewrite the exponent grouping terms that depend on W and terms that do not

depend on W. Note that

λW + (W − µp)2

2σ2
p

=
(W − µp + λσ2

p)2

2σ2
p

+ λ

(
µp −

λσ2
p

2

)
. (C.2)

Substituting (C.2) in the expected utility expression (C.1) we have

EU(W ) = −e
−λ
(
µp−

λσ2
p

2

)
σp
√

2π

∫ ∞
−∞

e
−

(W−µp+λσ2
p)2

2σ2
p dW, (C.3)

where
1

σp
√

2π

∫ ∞
−∞

e
−

(W−µp+λσ2
p)2

2σ2
p dW = 1, (C.4)

being the integral of the probability density function of a normal random variable with

mean µ′ = µp − λσ2
p and variance σ2

p over the entire support.

Therefore

EU(W ) = −e
−λ
(
µp−

λσ2
p

2

)
, (C.5)

and the investor objective becomes to maximize expression (3.16).
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Testing the equality of Sharpe ratios

D.1 Pairwise Sharpe ratio test

Let SRa and SRb the Sharpe ratios for the returns {Rat}t=1,...,T and {Rbt}t=1,...,T of port-

folios a and b. Opdyke (2007) obtain the asymptotic distribution of

ŜRdiff = ( ˆSRa − ˆSRb)− (SRa − SRb)

under the null hypothesis

H0 : SRa = SRb. (D.1)

In particular, under very general, ‘real world’ financial conditions, i.e. the assumptions of

stationary and ergodic returns, the following holds true

√
T (ŜRdiff)

a∼ N (0,Vardiff) (D.2)

where T is the number of observations and Vardiff is given by

Vardiff =1 + SR2
a

4

[
µ4a

σ4
a

− 1
]
− SRa

µ3a

σ3
a

+ 1 + SR2
b

4

[
µ4b

σ4
b

− 1
]
− SRb

µ3b

σ3
b

− 2
[
ρa,b + SRaSRb

4

(
µ2a,2b

σ2
aσ

2
b

− 1
)
− 1

2SRa
µ1b,2a

σbσ2
a

− 1
2SRb

µ1a,2b

σaσ2
b

]
.

(D.3)

In equation (D.3),σa (σb), µ3a (µ3b), µ4a (µ4b) are respectively the standard deviation, skew-

ness and kurtosis of the returns of portfolio a (b), ρa,b indicates the correlation coefficient

among the returns of portfolio a and b, and the joint central moments are defined as

µ1a,2b = E[(Ra − µa)(Rb − µb)2]

µ2a,2b = E[(Ra − µa)2(Rb − µb)2].
(D.4)
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Minimum variance unbiased estimators of µ1a,2b, µ1b,2a and µ2a,2b are the respective h-

statistics h1a,2b, h1b,2a and h2a,2b, where

h1,2 =2s2
01s10 − Ts02s10 − 2s01s11 + T 2s12

T (T − 1)(T − 2)

h2,2 =−3s2
01s

2
10 + Ts02s

2
10 + 4Ts01s10s11 − 2(2T − 3)s2

11 − 2(T 2 − 2T + 3)s10s12

T (T − 1)(T − 2)(T − 3) +

s2
01s20 − (2T − 3)s02s20 − 2(T 2 − 2T + 3)s01s21 + T (T 2 − 2T + 3)s22

T (T − 1)(T − 2)(T − 3)

(D.5)

and sxy =
∑T
t=1R

x
atR

y
bt.

Therefore, we reject the hypothesis SRa = SRb with a (1− α) confidence level if

√
T
∣∣∣ ˆSRa − ˆSRb

∣∣∣
√

Vardiff
> z(1−α2 ) (D.6)

The proof, based on the delta-method, is given in full detail in Opdyke (2007).

D.2 Multivariate Sharpe ratio test

Leung and Wong (2006) develop a multivariate Sharpe ratio statistic to test the hypothesis

of the equality of multiple Sharpe ratios, working out the asymptotic distribution of the

statistic and its properties, under the assumption of i.i.d. returns. Let u = (SR1, . . . , SRk)′

be the vector of Sharpe ratios of k portfolios and û its sample counterpart.

The null hypothesis reads

H0 : SR1 = . . . = SRk. (D.7)

We first need to define the (k − 1)× k matrix

C =



1 −1 0 . . . 0

0 1 −1 . . . 0
...

. . . . . .
...

0 . . . . . . 1 −1


(D.8)
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so that the null hypothesis (D.7) can be equivalently written as

H0 : Cu = 0. (D.9)

The multivariate Sharpe ratio statistic reads

S = nk(Cû)′(CΩ̂C ′)−1(Cû). (D.10)

By Ω̂ we indicate the estimate of

Ω = 1
2



2 + SR2
1 2ρ12 + SR1SR2ρ

2
12 . . . 2ρ1k + SR1SRkρ

2
1k

2ρ12 + SR1SR2ρ
2
12 2 + SR2

2 . . . 2ρ2k + SR2SRkρ
2
2k

...
...

. . .
...

2ρk1 + SRkSR1ρ
2
k1 2ρk2 + SRkSR2ρ

2
k2 . . . 2 + SR2

k


(D.11)

such that the unknown Sharpe ratios and correlation coefficients are replaced by their

sample estimates.

For the α level, we reject the null hypothesis (D.9) if

S >
(T − 1)(k − 1)

(T − k + 1) Fk−1,T−k+1(α), (D.12)

where Fk−1,T−k+1(α) is the upper (100α)th percentile of an F -distribution with k − 1 and

T − k + 1 degrees of freedom.

For more details refer to Leung and Wong (2006).



Appendix E

Formula for ES in monetary terms

In this appendix we prove formula (4.12), useful to compute the ES in monetary terms

under exponential Levy models (4.10)-(4.11).

We have

H(x) = E
[
eXT |XT ≤ x

]
=
∫ x

−∞
esfXT (s)ds. (E.1)

Suppressing the subscript in fXT to simplify the notation and introducing a strictly posi-

tive number a, let us define

ζ(x) = e−axH(x) = e−ax
∫ x

−∞
esf(s)ds. (E.2)

The Fourier transform of (E.2) reads

ζ̂(u) =
∫ ∞
−∞

eiuxζ(x)dx, (E.3)

so that

ζ̂(u) =
∫ ∞
−∞

eiux
(
e−ax

∫ x

−∞
esf(s)ds

)
dx (E.4)

and

ζ̂(u) =
∫ ∞
−∞

∫ x

−∞
eiuxe−axesf(s)dsdx. (E.5)

Noting that

−∞ < s < x <∞,

we can swap the integrals as follows

ζ̂(u) =
∫ ∞
−∞

∫ ∞
s

eiuxe−axesf(s)dxds. (E.6)
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Therefore

ζ̂(u) =
∫ ∞
−∞

esf(s)
(∫ ∞

s

eiuxe−axdx

)
ds =

∫ ∞
−∞

esf(s)
[
e−(a−iu)x

−(a− iu)

]∞
s

ds

=
∫ ∞
−∞

esf(s)
(
− e
−(a−iu)s

−(a− iu)

)
ds = 1

a− iu

∫ ∞
−∞

eis(i(a−1)+u)f(s)ds

= 1
a− iu

φXT (i(a− 1) + u),

(E.7)

where we used the fact that |e−(a−iu)x| = e−ax tends to zero when x becomes infinite.

The function (E.2) being the inverse Fourier transform of ζ̂(u), we get

ζ(x) = 1
2π

∫ ∞
−∞

e−iux
φXT (i(a− 1) + u)

a− iu
du. (E.8)

Hence, from (E.2), we obtain

H(x) = eax

2π

∫ ∞
−∞

e−iux
φXT (i(a− 1) + u)

a− iu
du. (E.9)
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