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1. Introduction

The effects of spatial agglomeration on productivity have been the object
of intense theoretical and empirical research since the seminal work of Mar-
shall (1920).1 In addition to the classic Marshallian economies (denominated
localization economies) that refer to intra-industry externalities (Marshall, 1920;
Henderson, 2003a), several contributions in the literature have addressed also
urbanization economies (Rosenthal and Strange, 2001; Melo et al., 2009; Combes
et al., 2011), inter-industry agglomeration economies connected with variety (Ja-
cobs, 1969; Glaeser et al., 1992; Cainelli and Iacobucci, 2012) and the economies
associated with local competition (Porter, 1990).2

The actual impact of spatial agglomeration on productivity ultimately remains
an empirical issue. While spatial agglomeration may be conducive to positive
externalities through the above mentioned channels, congestion effects and rent-
seeking behavior tend to have a negative influence on productivity. The impact
of the local competition associated with spatial agglomeration is also ambiguous
from a theoretical viewpoint. On the one hand, in the face of local competition,
firms may try to preserve their market shares and margins through innovation
(as suggested by Porter, 1990); on the other hand, competition may depress the
returns from innovation, thereby reducing the firms’ efforts and results (as in
Arrow, 1962; Romer, 1986). Thus, since the seminal work by Glaeser et al. (1992),
several contributions have attempted to gauge the impact of the various forms
of agglomeration externalities on employment, innovation and productivity.3

Notably, while the problems of endogeneity have been addressed in several
empirical works investigating the relationship between spatial agglomeration and
productivity (see for instance Ciccone and Hall, 1996; Puga, 2010; Combes et al.,
2011; Martin et al., 2011), little attention has been devoted so far to the possible
nonlinear features of such relationship. This is indeed quite surprising as one
would reasonably expect the presence of certain nonlinearities, such as threshold
effects or marginally decreasing (or increasing) externalities. In particular, as
agglomeration leads to both economies and diseconomies, the estimated impact of
agglomeration on productivity is usually an average (weighted across the industry
or firms in the sample under investigation) of the net effects of economies and
diseconomies. There is no reason to assume that these net effects are linearly

1Another important strand of the literature on spatial agglomeration has focused on
the identification of the direct (localized firm-related spillovers) and indirect (e.g., natural
advantage) sources of spatial agglomeration (see, for instance, Ellison and Glaeser, 1999;
Rosenthal and Strange, 2001, 2004; Puga, 2010). We shall not address these issues here.

2Some authors distinguish static externalities and dynamic externalities (e.g. Glaeser et al.,
1992; Henderson, 2003b). The former are one-time efficiency gains generated by spatial
concentration. They can account for spatial agglomeration in a homogeneous space, but not
for sustained growth differences across regions. The latter are within-industry (Marshall-
Arrow-Romer externalities, or dynamic localization economies) and across-industry knowledge
spillovers (Jacobs externalities, or dynamic urbanization economies), which can account for
the sustained growth differences.

3See, among the others, Beaudry and Schiffauerova (2009) and Puga (2010) for a review of
the results and Melo et al. (2009) and De Groot et al. (2009) for meta-analyses.
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dependent on the level of agglomeration: if economies and diseconomies increase
with agglomeration at different rates, the marginal elasticity of productivity
to the level of agglomeration is unlikely to be constant. By addressing the
possible nonlinearities associated with the net impact of various forms of spatial
agglomeration on productivity, this work aims at filling an important gap in the
literature.

One possible explanation for the scant attention paid to nonlinear effects
can be found in the weaknesses of the traditional methods adopted to deal with
nonlinearities. In particular, linear regressions augmented with quadratic and
cubic terms (as in Martin et al., 2011) suffer from well-known limitations: i)
the linear, quadratic and cubic terms are highly correlated; ii) few outliers can
severely affect the results; iii) implausible in- and out-of-sample predicted values
tend to be associated with very high/low values of agglomeration. In practice,
as we shall show, a specification with quadratic and cubic terms fails to capture
some nonlinear effects, produces implausible negative effects for low levels of
agglomeration, and prevents from checking for the presence of further nonlinear
effects.

Accordingly, this work addresses the nonlinear impact of various forms
of spatial agglomeration through the adoption of a Panel Smooth Transition
Regression (PSTR) model (González et al., 2005). The latter does not share
the weaknesses discussed above: it relaxes both parameter homogeneity and
parameter constancy (to account for firm-specific and time-varying elasticities),
and allows the impact of spatial agglomeration on productivity to vary smoothly
across extreme values. Although this method requires some non-trivial testing
and estimating techniques, which shall be duly presented in the methodological
section of this work, the results remain easily interpretable and provide interesting
insights.

Following the promising approach of Martin et al. (2011), we simultaneously
investigate the productivity-enhancing properties of localization, urbanization,
diversity and competition, while taking into account their possible nonlinear
effects.4 Starting from an unbalanced panel of more than 12,000 Italian manufac-
turing firms over the period 1999-2007 (from the AIDA databank by Bureau Van
Dijk), we calculate the Total Factor Productivity (TFP) for each firm, following
Levinsohn and Petrin’s (2003) semi-parametric approach. By choosing the Italian
provinces (NUTS 3) as our geographical units, we then estimate the indexes
that operationalize the four agglomeration-related variables discussed above.
As required by the nonlinear estimation technique, we obtain a balanced panel
including more than 7,000 firms on which we estimate the linear specifications,
test for the presence of nonlinear effects, and, when it is the case, estimate the
nonlinear (PSTR) functional forms. The adoption of yearly data and fixed effects
allows to capture the short-run impact of agglomeration on productivity: for this

4According to Beaudry and Schiffauerova (2009), only a small number of studies tackled
specialization, diversity and competition at the same time. Thus this represents an additional
contribution of this work.
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reason the work complements those cross-sectional studies that, analyzing time
intervals over long periods of time, address the long-run effects of agglomeration
accumulated over the years before the observation (Combes et al., 2010). In
fact, nonlinear effects related to static externalities, such as labor pooling, input
sharing and congestion, are more likely to be detected by exploiting variable
changes over short time spans, since the long-term localization patterns are
affected by (re)localization choices of individual firms and policy measures.5

It is worth noting that the adoption of firm-level data helps to address
many of the potential endogeneity problems encountered in the works using
industry-level data, as we shall discuss in Section 3. But using disaggregated
data is also useful all in itself. As argued by van Oort et al. (2012), showing that
regional economic productivity is higher in areas characterized by high spatial
agglomeration does not entail that a similar relationship holds at the level of the
individual firms.6 Accordingly, using firm-level data rather than sectoral TFP
data (as done, for instance, by Marrocu et al., 2013) allows to address the risk
of ecological fallacy and to get closer to the level of the analysis we are more
interested in.

To anticipate some of the main findings, localization and variety are shown
to have a positive and significant effect on firm productivity only at rather
high levels of the variables. Moreover, the rejection of any further nonlinearity
associated with localization and variety suggests that no serious congestion
effects emerge in the actual concentration patterns of firms: the marginal impact
of agglomeration on productivity flattens out after a certain level, but it does not
start diminishing. Notably, variety appears significant only once nonlinear effects
are allowed for and large values of diversification are reached: by averaging out
individual firms conditions, the linear estimates fail to detect such interesting
threshold effects. Competition is shown to have a positive effect on TFP, but it
turns out that the positive marginal impact is reduced when competition exceeds

5As suggested by Martin et al. (2011), short-run agglomeration economies are basically
related to labor and input market externalities. We therefore exclude a role for spatial
knowledge spillovers, which can be mainly captured in a long-run analysis. On the contrary,
labor and input market externalities exert their effects on firms TFP in the short-run through
two different specific channels. The first one is through labor market pooling. The larger the
number of workers with specialized skills in a given geographical area, the larger the expected
quality of the matches between firms needs and workers’ skills (Helsley and Strange, 1990).
The second channel is through local supplier sharing, whereby firms located in agglomerated
areas can have access to specialized suppliers and save on transport costs thank to the spatial
proximity. In addition, these firms benefit from the better quality of the products of their
local suppliers. It is worth noting that our analysis has two main limitations. First, we are not
able to discriminate empirically between the two channels. Second, like Martin et al. (2011),
we use the term “short-run” as a catch-all term to refer to all the “simultaneous” effects of
agglomeration on firm TFP.

6Henderson (2003a), van Oort (2007) and Martin et al. (2011), among others, exploit
plant-level data in their estimations. This would indeed be preferable to a firm-level analysis
for the existence of multi-plant firms. However, no such disaggregated data are available for the
Italian firms for a reasonable time span, and, moreover, using plant-level data for employment
and firm-level data for value-added and capital, as done by Martin et al. (2011), raises the
complex issue of how to allocate the latter across different plants of the same firm.

4



a critical level. Finally, as often occurs when localization and urbanization are
simultaneously included in the estimation, no significant effect of urbanization is
found, even allowing for nonlinear effects.

The paper unfolds as follows. In Section 2, we briefly review the literature.
In Section 3, we present the baseline linear specifications and discuss the dataset,
the variables and the preliminary econometric issues. The PSTR model, together
with the methodological issues regarding the tests of (no remaining non) linearity
and its estimation, is discussed in Section 4. Section 5 presents the main findings.
Section 6 concludes.

2. Background literature

Firms interact with the local environment and positive and negative exter-
nalities may emerge from that. The most well known form of such externalities
(localization economies) is related to the presence and scale of other firms in the
same industry.7 Marshall (1920) identified three main benefits emerging from
the concentration of a given industry in a region: the promotion of knowledge
spillovers between firms (as also claimed by Arrow, 1962; Romer, 1986); the
emergence of labor market pooling; input-output linkages.8

Similar benefits from agglomeration, however, may stem from the features
of the entire local production system whose “size” and “structure” may be
conducive to demand externalities and cross-fertilization of ideas, information and
knowledge. Following the literature, we call the former urbanization externalities
and the latter Jacobian externalities.

Clearly, localization and urbanization diseconomies may also arise, in partic-
ular out of pollution, congestion, high land prices and the like (Tabuchi, 1998;
Higano and Shibusawa, 1999; Zheng, 2001).9 Accordingly, the sign and the

7As an alternative indicator of localization economies, the location quotient (i.e., the
regional share of industry employment relative to the national share) has been widely used in
the literature since the seminal studies by Glaeser et al. (1992) and Henderson et al. (1995).
However, this indicator has no clear theoretical justification. As explicitly acknowledged by
Rosenthal and Strange (2004), “explicit theories of the microfoundations of agglomeration
economies have nearly always been based on the idea that an increase in the absolute scale
of activity has a positive effect... [While models] do not make direct predictions regarding
the impact of the industry’s share of employment in a particular city or regarding the city’s
share in the industry relative to other cites” (p.2135). The widespread use of the location
quotient in papers investigating the impact of agglomeration economies on employment can be
rather explained by the fact that the level of employment of an industry in a local area (our
measure of localization) is already incorporated in their empirical specifications to account
for the mean reversion processes of employment dynamics, and cannot be used twice also to
capture localization economies. As our dependent variable is the TFP and not employment,
this problem does not apply to our work and there is no reason to use the location quotient.

8Albeit standard, this classification is not the only possible one. In their analysis of the
micro-foundations of agglomeration economies, Duranton and Puga (2004) suggest a taxonomy
based on the various mechanisms at play: sharing, matching and learning.

9As stressed by Fujita et al. (1999), the tension between the external economies from spatial
concentration and the diseconomies associated with large cities, such as commuting costs, was
at the heart of the early models for the analysis of the size distribution of urban areas (e.g.
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size of the impact of these economies on growth and productivity (at either the
industry or the firm level) are indeterminate at the theoretical level.

Equally debated in the literature is the ultimate effect of local competition on
productivity: on the one hand, Jacobs (1969) and Puga (2010) hypothesize that
competition spurs efficiency improvements and innovation efforts; on the other
hand, Marshall (1920) and Glaeser et al. (1992) contend that local monopoly
allows the externalities to be internalized by the innovators and it is thus
conducive to higher growth.

The empirical literature devoted to analyze the impact of these economies
on employment, productivity and output (levels and growth rates) is huge.
In a much cited survey, Rosenthal and Strange (2004) discuss the alternative
approaches adopted to address the sources, the scope and the effects of ag-
glomeration economies.10 With a meta-analysis, Melo et al. (2009) show that
urbanization economies are rather small or insignificant in most studies, espe-
cially when: localization variables are included in the estimation; panel data,
rather than cross-section, analyses are carried out; fixed effects are included.
Beaudry and Schiffauerova (2009) cover the literature on Marshallian, Jacobian
and competition externalities and attempt at distinguishing the relevance of a
Marshallian interpretation of the forces at play (where localization externalities
are positive and competition effects negative), and a Jacobian interpretation
(where both diversity and local competition have positive effects). The authors
are careful in distinguishing the various kinds of indicators (share, size, diversity)
and the underlying variables (employment, output, value added, number of
firms, and the like) used as proxies in the empirical investigation, and thus show
that the results are very sensitive to the choice of the underlying variables and
indicators as well as the level of industrial and geographical aggregation, the
performance measures considered, the country-time sample, and the empirical
method adopted.11

Their findings, as well as the conclusions of De Groot et al. (2009), suggest
that great care should be used in running the estimations and interpreting the
results. Using as a reference another recent work sharing the same baseline
specification, thus, appears a reasonable approach to adopt. Accordingly, in the
linear specification, we shall follow Martin et al. (2011), who make a promising
attempt at tackling the nonlinear effects of localization economies, although only
by means of a linear specification augmented of quadratic and cubic terms.

Mills, 1967; Henderson, 1974, 1988).
10Very recently, van Oort et al. (2012) review the literature and advocate a multilevel

modeling strategy, so as to model the micro and macro levels simultaneously.
11Cingano and Schivardi (2004) are among the first to show that focusing on TFP rather than

employment growth (as in Combes, 2000) has major consequences on the estimated impact
of agglomeration economies. In fact, the employment growth generated by local productivity
gains positively depends on the price elasticity of the final demand for the goods, of the local
labor supply and of the supply of the other complementary production factors (Combes et al.,
2004). So, for instance, when the labor supply in a region depends on the local conditions and
these are correlated with the level and structure of agglomeration, employment growth-based
estimators might be seriously biased (Cingano and Schivardi, 2004).
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3. Baseline specifications and data

3.1. Baseline specification

To analyze the impact of agglomeration and competition on productivity,
we adopt the two-step estimation strategy discussed in Martin et al. (2011). In
particular, we first compute the series of (value added-based) TFP at the firm
level by using data on employment, capital stock and value added. TFP are
worked out assuming a Cobb-Douglas production function and using the output
elasticities estimated at the industry level by means of Levinsohn and Petrin’s
(2003) semi-parametric approach.

As in Martin et al. (2011), we then regress these TFP on proxies aimed at
capturing the extent of localization externalities, urbanization and Jacobian
externalities, and competition. In particular, the baseline linear specification is:

aspit = βllocspit + βuurbspt + βddivspt + βccompspt + φi + ζt + ξit (1)

where the log TFP at time t of firm i located in territory p and active in
sector s (aspit ) is regressed on: a localization variable (locspit ), to capture local-
ization externalities; an urbanization variable (urbspt ), to capture urbanization
economies/diseconomies; an extra-sectoral variety index (divspt ), to capture Ja-
cobian externalities; an index of local competitive pressure (compspt ), to capture
Porter externalities; φi for any firm-specific time-constant factor; a time-related
component (ζt) and an error term (ξit). More precisely, the time-related compo-
nent (ζt) will be modeled via a set of region-time dummies rather than simple
time dummies, whose joint significance is in fact rejected by the data. To elimi-
nate the time-constant unobserved heterogeneity φi, we use the fixed effects (or
within) transformation of the data. We shall come back to the specification of
the deterministic components in Section 3.3.

Like in Martin et al. (2011), the localization variable is computed as follows:

locspit = ln(empspt − emp
sp
it + 1)

where empspit is the number of employees of firm i belonging to sector s and
located in territory p at time t, while empspt is the total number of employees of
all the firms belonging to s and located in p at t. The exclusion of the employees
of firm i from the sum of the employees operating in the same sector and in the
same province makes locspit vary across firms within the same province-sector
pair sp.

The urbanization variable is computed as:

urbspt = ln(emppt − emp
sp
t + 1)

where emppt is the sum of the employees of all the firms located in territory p at
time t.

The diversity, or variety, variable is calculated as the entropy index of local
employment shares outside the sector:

divspt = −
∑

s′∈S\s

emps
′p

t∑
s′∈S\s emp

s′p
t

log2

(
emps

′p
t∑

s′∈S\s emp
s′p
t

)
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where emps
′p

t is the number of employees of firms belonging to sector s′ ( 6= s)
and located in p at time t.12

Finally, the strength of local competitive pressure is measured by the log of
the inverse Herfindahl-Hirschman index of market concentration:

compspt = − ln

(∑
i

(
vaspit
vaspt

)2
)

where vaspit is the value added of firm i in sector s located in territory p at time
t and vaspt is the total value added of all the firms in sector s and territory p at
t.13

Differently from locspit , the regressors urbspt , divspt and compspt do not vary
across firms within the same province-sector pair sp. Thus, to avoid the so-called
Moulton’s (1990) problem associated with explanatory variables observed at
a more aggregate level than the dependent variable, in all the estimations we
compute cluster-robust standard errors, where a cluster is any province-sector
pair, and report the number of province-sector pairs in the sample, i.e. the
number of observations available to estimate the parameters associated with
urbanization, variety and competition.

Finally, we acknowledge that focusing only on manufacturing firms may be
too restrictive since non-manufacturing sectors add to extra-sectoral variety and
non-manufacturing firms can actually benefit from agglomeration economies. In
particular, some services have become highly integrated with manufacturing
and their share in the economy steadily increased over time.14 In spite of this,
we decided not to include services in our analysis for two main reasons. First,
the joint stock companies in our sample (see next section) are assigned to the
Italian provinces according to the location of their headquarter. This might
constitute a problem for service sectors, in particular for trade, transport, banking
and financial sectors, where firms are usually large, and so, looking at their
headquarter location, might be misleading about the localization patterns. This
does not represent a problem for manufacturing since these firms are generally

12 In Martin et al. (2011), divspt is defined as the log of the inverse Herfindahl index of
local employment shares of the sectors different from s. We use the entropy index as it does
not require any further transformation (it is already a weighted average of logs) and, more
importantly, it is a more standard measure of variety given its decomposability property (see,
for instance, Frenken et al., 2007). We have nonetheless estimated all the models also with
Martin et al.’s (2011) alternative index. The results do not significantly change.

13Although Martin et al. (2011) compute the same index using employment, the use of value
added seems more appropriate. Admittedly, the Herfindahl-Hirschman index has a number of
shortcomings when used as measure of competition. For instance, foreign competition is not
taken into account.

14See, for instance, Montresor and Vittucci Marzetti (2011) for an analysis of the integration
of services in manufacturing in terms of value added and employment, and Marrocu et al.
(2013) for a recent analysis including services at the region-sector level about the role played
by agglomeration externalities (specialization and diversity) in the productivity differentials
across Europe. This integration process is particularly relevant for knowledge-intensive service
sectors, where the nature, effects and channels of agglomeration forces can be more easily
identified and analyzed (see, for instance, Antonietti et al., 2013).
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small and single-plant. Second, for services there is also a problem of quality and
data coverage, in particular as far as the number of employees is concerned. This
explains why most of the Italian studies on the relationship between firm-level
productivity and agglomeration use data on manufacturing firms (e.g. Cingano
and Schivardi, 2004).15

3.2. Data

We start from an unbalanced panel of Italian manufacturing firms over the
period 1999-2007. Data are taken from the AIDA databank (Bureau Van Dijk).

For each firm we have balance-sheet data on value added, employment,
equipment, investment and total cost of labor, together with information about
the firm’s location and its industry classification. The industrial classification
used is ATECO 2007, i.e. the Italian version of the European nomenclature
NACE Rev. 2. We compute fixed capital using the perpetual inventory method.16

After a first round of cleaning up and having dropped the first year as we use
lagged values in some specifications, we end up with an unbalanced panel of
12,513 firms (104,725 obs).17

These data are used to estimate output elasticities at the two-digit industry
level following Levinsohn and Petrin’s (2003) semi-parametric approach.18 Esti-
mates of output elasticities range from 0.44 to 0.82 for labor and from 0.01 to 0.46
for capital. This exercise requires to choose the level of industry disaggregation
by striking a balance between ensuring the homogeneity of the output elasticities
within each sector and preserving a sufficient number of observations by sector.
Following the approach in Martin et al. (2011), we estimate the output elasticities
at the industry level (2-digit), as often done in other studies focusing on Italian
manufacturing data.19

15The papers extending the analysis to service sectors usually employ census data (e.g. Paci
and Usai, 2008).

16The stock of capital of firm i at time t (Kit) is computed as follows:

Kit = (1− δ)
pIt
pIt−1

Ki,t−1 + Iit

where δ is the depreciation rate (assumed equal to 0.085), Iit the investment of i at t, and pIt
the investment good prices at t (drawn from the Italian National Accounts).

17In particular, we have: removed the firms with no positive values of turnover and value
added for seven consecutive years over the period 1998-2007; made a mild trimming (0.1% on
both tails of the distribution) on sales growth (13,282 valid obs); removed firms with incomplete
balance sheet data for total cost of labor or fixed capital, no establishment year or province
location (NUTS 3), value added-turnover ratio negative or greater than one.

18Nominal values on fixed capital and value added have been deflated by using deflators
at the same two-digit level. After the estimation, two sectors—manufacture of coke and
refined petroleum products (Ateco 2007, 12) and manufacture of tobacco products (Ateco 2007,
19)—have been dropped because of too few observations and inconsistent TFP-related results.

19Using 3-digit industry level would force us to drop a number of sectors and, due to
limited data availability, we would risk running a not fully reliable TFP estimation also on the
remaining sectors.
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Table 1: Data description
Variable Mean Std. Dev. Skewness Kurtosis Min Max Obs

aspit overall 1.954 2.328 -0.343 3.182 -9.853 9.372 N = 58,784
between 1.714 0.117 2.805 -3.916 7.653 n = 7,348

within 1.576 -0.873 3.748 -9.318 6.609 T = 8
locspit overall 5.625 2.421 -1.039 3.557 0 12.490 N = 58,784

between 2.383 -1.059 3.524 0 9.716 n = 7,348
within 0.431 -3.320 44.069 -1.238 9.000 T = 8

urbspt overall 9.848 1.307 -0.063 3.897 2.944 12.931 N = 58,784
between 1.287 -0.094 3.662 3.655 12.375 n = 7,348

within 0.227 -0.491 9.877 6.565 11.326 T = 8
divspt overall 4.529 0.788 -1.619 6.084 0 5.504 N = 58,784

between 0.711 -1.977 7.835 0 5.354 n = 7,348
within 0.341 -3.803 24.563 2.264 5.514 T = 8

compspt overall 1.235 0.900 0.405 2.301 0 3.553 N = 58,784
between 0.836 0.403 2.443 0 3.370 n = 7,348

within 0.333 -0.544 6.263 -0.750 2.545 T = 8

From the estimated output elasticities, we compute the log of TFP of each
firm in each given year (aspit ). Then, we compute the other variables of Eq. (1)
(locspit , urbspt , divspt , compspt ) at the NUTS 3 level —i.e., the territory p is the
Italian province—and the 3-digit industry level (Ateco 2007). 20

Finally, for the requirements of the nonlinear estimation, which we discuss
in Section 4, we balance the panel to preserve comparability of linear and
nonlinear estimations. The resulting balanced panel has got 58,784 observations:
7,348 firms; 8 periods; 88 three-digit sectors (21 two-digit sectors); 97 Italian
provinces.21 Table 1 reports the main summary statistics for all the variables.

3.3. Preliminary linear results and econometric issues

The estimates of Eq. (1) for three alternative specifications of the time-related
effects are reported in Table 2: simple time dummies (column I); region-time
dummies (column II), where the regions correspond to the NUTS 2 level; industry-
time dummies (column III), where the industries are identified according to the

20While in the estimation of the firm-level TFP we adopt a 2-digit industry classification so
as to ensure the sectoral homogeneity of the output elasticities and to preserve a sufficient
number of sectors, to calculate the agglomeration variables we need to choose a level of sectoral
aggregation that allows to distinguish localization and urbanization economies. Intuitively,
agglomeration indexes at 2-digit sectoral level risk attributing urbanization economies to
localization economies as confirmed by Beaudry and Schiffauerova (2009), who find that the
3-digit sectoral classification is in general more appropriate to measure agglomeration and
urbanization economies. Finally, we intend to preserve direct comparability with Martin
et al. (2011) by following their empirical approach as close as possible, in particular in their
sections devoted to the nonlinear results. This entails a two-fold level of analysis with the TFP
estimated at the 2-digit level and agglomeration variables calculated at the 3-digit level.

21As for the distribution of firms among provinces, the provinces with fewer firms are:
Campobasso, Enna, Nuoro (2), and Aosta, Catanzaro, Potenza, Siracusa, Vibo-Valentia (3);
whereas the provinces with more firms are: Milano (1074); Bergamo (405); Varese (329);
Brescia (322); Torino (289); Treviso (264); Vicenza (231); Modena (221); Bologna (220);
Verona (216).
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Table 2: Fixed-Effects estimates of the alternative linear specifications
I II III

locspit 0.0525 0.0535 0.0534
(0.0445) (0.0435) (0.0415)

urbspt 0.0117 -0.0002 0.0001
(0.0592) (0.0744) (0.0589)

divspt 0.0143 0.0163 0.0067
(0.0308) (0.0389) (0.03162)

compspt 0.4178∗∗∗ 0.4183∗∗∗ 0.4307∗∗∗

(0.0526) (0.0520) (0.0493)

Estimator FE FE FE

Hausman test statistic
(H0: RE and FE consistent; RE efficient)

14.767 10.087 149.264

Hausman test p-value 0.0391 0.0390 0.000
Time-related dummies Time Region-time Industry-time

Wald test statistic (F-form)
(H0: no time-related dummies)

1.49 61.99 1.64

Wald test p-value 0.1652 0.0000 0.0000
Observations 58,784 58,784 58,784
Years 8 8 8
Firms 7,348 7,348 7,348
Sectors (3-digit) 88 88 88
Provinces (NUTS 3) 97 97 97
Sector-province pairs 2,234 2,234 2,234
Sector-province observations 17,872 17,872 17,872
Dependent variable: aspit . Years: 2000-2007. Region: NUTS 3 level. Province: NUTS 2 level. Industry:

2-digit ATECO 2007. Sector: 3-digit ATECO 2007. Cluster-robust standard errors in parentheses (cluster:

sector-province pair). Significance at: 1% ∗∗∗; 5% ∗∗; 10% ∗.

2-digit ATECO 2007 classification. In all the cases, we use a Fixed-Effects (FE)
estimator, where the unobserved firm-specific time-constant effect is eliminated
via the within transformation of the data. Moreover, to avoid the Moulton’s
(1990) problem connected with the fact that some of the regressors do not vary
within each province-sector pair, we compute the cluster-robust standard errors
and adopt them in all the tests.

Table 2 also reports the Hausman test statistics, according to which we reject
the null of Random-Effects (RE) at the 5% level in all the specifications. This
implies that the fixed effects are jointly statistically significant and correlated
with the regressors.

In all the estimations, the TFP elasticity to localization (loc) is positive
and in line with the literature: Rosenthal and Strange (2004) report that the
elasticity of productivity to the size of the industry generally lies between 0.03
and 0.08. However, we fail to reject the hypothesis that the coefficient is not
statistically different from zero when we adopt cluster-robust standard errors.

The TFP elasticities to urbanization (urb) and diversity (div) are close to zero
and not statistically significant (even using the usual OLS standard errors). This
is again in line with the literature: according to the meta-analysis by Melo et al.
(2009), the estimated impact of urbanization is lower when, as in the present case,
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localization economies are included, panel data rather than cross-section data
are used, and FE rather than RE or pooled OLS estimators are used. Moreover,
Beaudry and Schiffauerova (2009) show that both the elasticities are mostly
insignificant in cases similar to ours in terms of: administrative geographical
unit (NUTS 2); medium sectoral disaggregation (3-digit); dependent variable
(TFP rather than value added per worker). As observed by Martin et al. (2011),
urbanization economies are typically thought as long-term externalities which
the short-term kind of analysis conducted here, using yearly data and fixed
effects, can hardly capture. Finally, the impact of competition on productivity
(comp) is positive, large and highly statistically significant, supporting Porter’s
(1990) intuition and in line with Glaeser et al. (1992).

However, these estimates may suffer from a number of problems and limi-
tations, which we briefly discuss in what follows. In particular, although FE
estimators can cope with time-constant unobserved heterogeneity, they cannot ad-
dress issues related with: omitted time-variant industry- and/or location-specific
factors; simultaneity bias; firm demography; geographical unit; nonlinearities in
the effects of agglomeration on productivity (see also Martin et al., 2011, where
these problems are discussed in details).

As for the presence of time-variant industry- and/or location-specific omitted
factors,22 a simple, although admittedly rather rough, way to cope with the
problem is to add region-time and/or industry-time dummies to the baseline
specification, as done by Henderson (2003a).23 We therefore estimate the
baseline model including either region-time dummies (NUTS 2) or industry-time
(2-digit) dummies. As shown in columns II-III of Table 2, none of the estimates
significantly change across the three specifications. It seems also worth noting
that no firm in the sample changes location or sector during the period considered,
and this is something that likely reduces the role of time-variant location/industry
specific factors. Given our interest in the geographical dimension of TFP
externalities, we take a conservative stance and choose specification II as our
baseline linear specification in the remaining of the paper; accordingly, we shall
encompass a set of region-time dummies to capture the deterministic time-related
components in all the nonlinear specifications investigated hereafter.

As for the possible simultaneity bias, although it is discussed at some length by
Martin et al. (2011) and actually presented as one of the main reasons they adopt
a GMM approach, we do not think it to be very relevant in the present context.
In fact, when addressing the possible simultaneity bias, Martin et al. (2011,
p.184) actually combine the endogeneity bias coming from omitted variables,

22For example, a negative (positive) economic shock in a region/industry can change the
TFP of a given firm and also lead the other firms in the region/industry to close (open) or lay
off (hire) employees: this would give rise to spurious regressions.

23A more systematic way to deal with location-specific unobserved factors is to estimate a
model with spatial lags and/or spatially autocorrelated errors (LeSage and Pace, 2009). Given
that the main focus of this paper is the analysis of the nonlinear effects of agglomeration, while
the linear estimates in this section are rather preliminary, we do not apply such techniques
here.
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and the proper simultaneity bias, occurring when the right-hand variable (e.g.
loc or urb) is simultaneously determined along with the left-hand variable (a).
Omitted variables, in the form of (time-variant) industry- or location-specific
factors, are important in principle, but we control for them by adding region-time
and industry-time dummies. The proper simultaneity bias, in turn, is not a
major concern in the present application. Indeed, since the dependent variable is
the TFP at the firm level and loc, urb and div are all defined without counting
the workers of the firm whose TFP is explained,24 it is hard to imagine how such
variables might be significantly affected by idiosyncratic productivity shocks at
the firm level, especially when the firm itself accounts for just a small portion
of the overall production in the sector-area, like in Italy where nearly all firms
are small and medium-sized (see the Appendix for a formal analysis of reverse
causality issues).

Firm demography and spatial sorting are two additional issues that we do
not directly address in the paper because of the adoption of a balanced panel,
needed to carry out the nonlinear tests and estimations. For instance, either if
the survival of firms is correlated with agglomeration or if firms choose their
optimal location by taking agglomeration economies into account, the estimators
can be biased. Notwithstanding the adoption of a balanced panel, we argue that
these issues should not be overemphasized in the present analysis. First, the
FE estimator already purges the time-constant effects, which are clearly much
more important than time-varying ones given the short time span. Second, all
the variables (loc, urb, div and comp) are calculated on the entire unbalanced
sample. Even at the theoretical level, optimal locational choices are guided more
strongly by long-run agglomeration effects on productivity than by the short-run
effects addressed here: this is confirmed by the absence of spatial mobility in
our sample, in line with Martin et al. (2011) and Combes et al. (2012).

We compute our measures of agglomeration at the province level (Ciccone,
2002; Cainelli and Iacobucci, 2012): the Italian territory is split into 103 provinces
(NUTS 3 level of the EU geographical classification). An alternative geographical
unit would have been the Italian Local Labor System (LLS), i.e. a set of contigu-
ous municipalities characterized by a self-contained labor market (e.g. Cingano
and Schivardi, 2004). In fact, using the 2001 population census, the Italian
Statistical Institute (ISTAT) identifies 686 LLS. Most of them are composed of
two (69/686) or three municipalities (74/686) with very few firms (including
services). They are classified as LLS because within their territory people com-
mute for working. Only when these systems satisfy particular conditions they
are also classified as industrial districts. In our opinion, this can have two main
implications. First, these systems do not provide a sufficient level of “critical
mass” in terms of number of firms and employees. As suggested by Brunello

24This argument does not hold for comp, where the value-added of the firm enters the
calculation of the index. In fact, a productivity shock at the firm level could actually “cause”
a decrease of comp. This is something that possibly leads to a (likely slight) downward bias of
the estimator of the impact of competition on TFP.
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and De Paola (2008), “travel to work” areas are too small to take into account
all relevant spillovers. Second, as our sample is composed of 7,348 firms, most
local labor systems include very few firms and several local systems would thus
be excluded from the analysis, thereby producing a sort of “spatial” sample
selection. For these reasons, we choose to use the province as the geographic
unit of our investigation.

3.4. Preliminary nonlinear results

A final issue to consider, on which the remaining of this work shall focus, is
related to the possible presence of nonlinearities in the impact of the variables
on productivity: the linear specification cannot capture the nonlinearities of
agglomeration economies, such as the possible presence of critical masses or
congestion effects. In this case, any effect estimated by the linear model (1)
turns out to be just the average net effect of agglomeration economies and
diseconomies.

A simple way to account for the existence of such nonlinearities is to introduce
in the baseline regression both quadratic and cubic terms, as done by Martin et al.
(2011). The results of these specifications are reported in Table 3. In columns
IV to VII we introduce the quadratic and cubic terms for each of the variables
at a time. The Wald tests for the joint significance of the nonlinear terms
reveal that only for loc and comp there is evidence of nonlinearities. In column
VIII we report the results when all the quadratic and cubic terms are jointly
estimated and the same results hold. Finally, column IX reports the estimates
of a specification where only the quadratic and cubic terms for loc and comp are
included, again with no major change in the results. In sum, the quadratic and
cubic terms of localization and competition variables are significant in the various
specifications. This points to possible nonlinear patterns in the productivity
impact of agglomeration, at least for what concerns these two variables. The
estimates suggest that the marginal effect of localization starts low and then
grows with the level of localization, while the marginal impact of competition
has a U-shaped pattern.

However, the simple inclusion of quadratic and cubic terms in the linear
model might not address properly the possible nonlinearities. The results of
these augmented regressions should be taken at most as suggestive because of
their several limitations: linear, quadratic and cubic terms tend to be highly
correlated; outliers might drive the results; the estimates imply implausible in-
and out-of-sample predicted values for very high/low values of agglomeration.
So, for instance, in our sample, when the initial level of localization is low the
marginal total impact of localization on TFP implied by the point estimates of
the coefficients is negative and decreases by increasing localization further. Such
impact becomes positive only when localization becomes high. This result, in
fact similar to what found by Martin et al. (2011, Figure 1 and 2, p. 192), looks
odd and suggests that the linear specification with quadratic and cubic terms is
not fully appropriate.

The possible existence of critical masses and/or congestion effects could be
better captured by Hansen’s (1999b) Threshold Regression (TR) model, as this
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Table 3: Fixed-Effects estimates of the augmented linear specifications
IV V VI VII VIII IX

locspit 0.0910 0.05325 0.0538 0.0163 -0.0481 -0.0444
(0.0638) (0.0436) (0.0434) (0.0528) (0.0666) (0.0662)

(locspit )2 -0.0358∗∗ -0.0206 -0.0210
(0.0139) (0.0143) (0.0144)

(locspit )3 0.0032∗∗∗ 0.0028∗∗∗ 0.0028∗∗∗

(0.0007) (0.0008) (0.0008)

urbspt 0.0038 -0.6639 -0.0058 0.0055 -0.9810 .0051
(0.0727) (0.6518) (0.0759) (0.0752) (0.6869) (0.0723)

(urbspt )2 0.0789 0.12225
(0.0763) (0.0807)

(urbspt )3 -0.029 -0.0048
(0.0028) (0.030)

divspt -0.0000 -0.0025 0.0751 0.0191 0.1900 -0.0016
(0.0388) (0.0642) (0.468) (0.0398) (0.4793) (0.0392)

(divspt )2 -0.0011 -0.278
(0.1405) (0.1404)

(divspt )3 -0.0010 -0.0005
(0.0136) (0.0132)

compspt 0.4709∗∗∗ 0.4183∗∗∗ 0.4183∗∗∗ 1.4947∗∗∗ 1.6945∗∗∗ 1.6920∗∗∗

(0.0426) (0.0521) (0.0522) (0.1657) (0.1267) (0.1270)

(compspt )2 -0.6528∗∗∗ -0.7469∗∗∗ -0.7454∗∗∗

(0.1108) (0.1047) ( 0.1051)

(compspt )3 0.0996∗∗∗ 0.1172∗∗∗ 0.1167∗∗∗

(0.0248) (0.0246) (0.0247)

Estimator FE FE FE FE FE FE
Region-time dummies Yes Yes Yes Yes Yes Yes

Wald test statistic (F-form)
(H0: no region-time dummies)

65,324 10,879 4,961 440,000 750,000 320,000

Wald test p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Wald test statistic (F-form)
(H0: no quadratic and cubic terms)

41.34 0.53 0.10 44.41 35.67 65.28

Wald test p-value 0.0000 0.5858 0.9087 0.0000 0.0000 0.0000
Observations 58,784 58,784 58,784 58,784 58,784 58,784
Years 8 8 8 8 8 8
Firms 7,348 7,348 7,348 7,348 7,348 7,348
Sector-province pairs 2,234 2,234 2,234 2,234 2,234 2,234
Sector-province observations 17,872 17,872 17,872 17,872 17,872 17,872
Dependent variable: aspit . Years: 2000-2007. Region: NUTS 3 level. Province: NUTS 2 level. Industry: 2-digit ATECO 2007.

Sector: 3-digit ATECO 2007. Cluster-robust standard errors in parentheses (cluster: sector-province pair). Significance at:

1% ∗∗∗; 5% ∗∗; 10% ∗.

allows the productivity impact of the variables (i.e., the coefficients) to take
a discrete number of different values (called “regimes”), and the switch of a
cross-sectional unit from one regime to another is driven by a chosen “transition
variable” (in this case measuring the level of agglomeration) being above or
below a given identified “threshold”.

Though more flexible than the linear model, the TR approach still suffers
from an important limitation: it imposes abrupt transitions across the regimes,
i.e. the estimated impact of agglomeration jumps when the transition variable
crosses any identified threshold. This rules out any continuous variation of
the productivity impact as well as any smooth transition of the cross-sectional
units from one regime to another. To address this limitation, González et al.
(2005) and Fok et al. (2005) put forward the Panel Smooth Transition Regression
(PSTR) model, building on the work of Granger and Teräsvirta (1993) on Smooth
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Transition Autoregressive (STAR) models.
The PSTR approach we adopt in this paper allows to relax the hypotheses

of homogeneity and time-stability of the parameters in a convenient and flexible
way, since they are allowed to change smoothly between the values associated
with two (or more) extreme regimes. As in the TR model, the change is
still driven by a transition variable (in this application capturing the level of
agglomeration), but in the PSTR model the transition can be smooth rather
than abrupt. Both the threshold (called “location parameter” in the PSTR
literature) and the smoothness of the transition are estimated from the data,
thereby making the linear and the TR models nested in the PSTR one. Since the
transition variable is time-varying and unit-specific, the coefficients (measuring
the impact of agglomeration on productivity) for each of the cross-sectional units
in the panel gradually change over time. Thus, the coefficients are not forced
to assume at each point in time and for each unit the values associated with
either of the extreme regimes, but are let free to vary within them. The adoption
of a bounded and continuous (typically, a logistic) function of the transition
variable to guide the fluctuations of the coefficients across the extreme regimes
guarantees their gradual variation, in contrast with the dichotomous switches
superimposed by the TR model.

It is worth stressing that, since the PSTR model nests both the TR model
and the linear one, using a PSTR model neither excludes the possibility of
estimating a TR-like model, nor it imposes a nonlinear shape to what is in fact
a linear relation.

In the next section we will illustrate in some details the PSTR model along
with the main methodological issues related with the preliminary tests of nonlin-
earity and the subsequent model estimation.

4. Nonlinear specification

To illustrate the rationale and the features of the PSTR model relevant in
the present application, let us start from the baseline linear specification (1) and
assume that, instead of being constant, the TFP elasticity to localization (the
coefficient βl) can vary across units and time, i.e.:

aspit = βl
it loc

sp
it + βuurbspt + βddivspt + βccompspt + φi + ζpt + ξit (2)

where, on the basis of the results discussed in the previous section, ζpt are
region-time effects.

In a way consistent with the PSTR model, we assume that:

βl
it = βl

0 +

r∑
j=1

βl
j g(qit; γj , cj) (3)

where:

g(qit; γj , cj) =
1

1 + exp
(
− γj(qit − cj)

) . (4)
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According to Eq. (3), the TFP elasticity to localization is a weighted average of
the coefficients associated with the r+1 regimes, with weights given by the r Eqs.
(4). These weights are logistic functions of a transition variable qit—the variable
that guides the transition across regimes—, where cj is a location parameter—the
critical level separating two contiguous regimes—and the parameter γj (> 0)
determines the smoothness of the transition across the regimes.25

When γj → ∞, for all j, the r transition functions g(.) become indicator
functions and the model reduces to a simple panel TR model. On the contrary,
when γj → 0, the r functions g(.) become constant and the model collapses to a
simple panel linear regression model with fixed effects.

Finally, it is worth stressing that the procedure, to be discussed in what
follows, provides for the estimation of all the parameters of interest, including the
number of nonlinear regimes (r) and the associated location (cj) and smoothness
(γj) parameters, so that no a priori identification of the number and values of
the (extreme) regimes, or the shape of the transitions between them, is required.

4.1. Nonlinearity testing

The first preliminary step (see González et al., 2005, for a thorough discussion)
is to test the linearity of Eq. (1) against a PSTR model with two regimes (Eqs.
(2)-(4) with r = 1) and a given transition variable (qit), that is:

aspit =
(
βl
0 + βl

1 g(qit; γ1, c1)
)
locspit + βuurbspt + βddivspt

+ βccompspt + φi + ζpt + ξit
(5)

Testing linearity is a non-standard problem since under the null of linearity
there are unidentified nuisance parameters.26 To solve the identification problem,
Hansen (1999a,b, 2000) proposes to compute the supremum LR test statistic
to test the null βl

1 = 0. Andrews and Ploberger (1994) suggest instead to
use alternative statistics: AveLM, ExpLM or wLM, i.e. weighted averages of
(heteroskedasticity-robust) LM-test statistics computed for several combinations
of γ1 and c1 spanning the parameter space.27 Since these statistics have (asymp-

25The PSTR model is actually more general: it can accommodate different transition
variables, one for each nonlinear regime, and/or more complex transition patterns across pairs
of identified extreme regimes (González et al., 2005).

26Linearity follows by imposing either βl1 = 0 or γ1 = 0. When the null is βl1 = 0 (γ1 = 0),
c1 and γ1 (βl1) are unidentified nuisance parameters.

27AveLM, ExpLM and wLM are, respectively, the average test statistic, the exponential
average test statistic and the weighted average test statistic. They are defined as follows:

AveLM =

∫
γ1

∫
c1

LM(γ1, c1) dW (γ1, c1)

ExpLM = ln

(∫
γ1

∫
c1

exp

(
1

2
LM(γ1, c1)

)
dW (γ1, c1)

)
wLM =

∫
γ1

∫
c1

ω(γ1, c1) LM(γ1, c1) dW (γ1, c1)

where W (γ1, c1) is the weight function that allocates weights on the pairs (γ1, c1), while
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totically pivotal but) non-standard distributions, which depend on the moments
of the distribution of the nonlinear parameters and whose critical values cannot
therefore be tabulated, to obtain the critical values one has to bootstrap the
tests.28

In this literature, Hurn and Becker (2009) and Becker and Osborn (2012)
have recently dealt with the problem of heteroskedasticity and the distortions the
latter causes to the size of the test in small samples. Dealing with heteroskedas-
ticity in nonlinearity tests can be problematic: on the one hand, neglecting
heteroskedasticity may lead to reject the null of linearity when it is not the case;
on the other hand, robustification can remove most of the test power (Lundbergh
and Teräsvirta, 1998). To cope with this, Hurn and Becker (2009) suggest to
compute heteroskedasticity-robust test statistics and calculate the critical values
of the tests using fixed-design wild bootstrap (Gonçalves and Kilian, 2004). They
show via simulation that this leads to a significant reduction in the distortions of
the test. Accordingly, we follow their approach and use heteroskedasticity-robust
test statistics.29

It is worth pointing out that the PSTR procedure requires to test for the
presence of nonlinearities associated with each variable at a time. For this reason
we shall first test and estimate the nonlinearities associated with each of the
various agglomeration variables and, only subsequently, we shall estimate the
model with all the nonlinear effects at once.

4.2. Estimation of the PSTR specification

If the null of linearity is rejected, a two-regime PSTR model is estimated (Eq.
(3) with r = 1). The estimation is carried out by minimizing a concentrated
Sum of quadratic Residuals (SSR). The SSR is concentrated with respect to
the fixed effects φi and the linear coefficients β’s by applying a standard FE
estimator for panel data conditional on a given combination of the nonlinear
parameters (c1 and γ1) characterizing an iteration. Spanning a meaningful set
of combinations of such nonlinear parameters, the conditional FE estimates are
recomputed at each iteration in the nonlinear optimization and the concentrated
SSR is calculated.

ω(γ1, c1) is the weight function on LM, with weights proportional to the magnitude of the
values of the LM statistic, for the test not to be too heavily influenced by redundant values of
γ1 and c1, that may have a negative effect on its power.

28An alternative way to deal with the identification problem is by testing the null γ1 = 0
via a m-order Taylor expansion of the nonlinear model around this point (Luukkonen et al.,
1988). González and Teräsvirta (2006) have studied the finite sample properties of Andrews
(1993) and Andrews and Ploberger’s (1994) test statistics (SupLM, AveLM, ExpLM or wLM)
and compared them with the Taylor expansion-based test, thus showing that AveLM, ExpLM
or wLM are always more powerful than SupLM and Taylor expansion-based tests. This is why
we decided not to report such tests, that we have nonetheless computed. The results (available
at request) do not alter the conclusions.

29The alternative heteroskedasticity-robust bootstrap procedure, discussed in Hansen (1999a)
for TR models, is able to preserve the observed heteroskedasticity, but it does not exactly
reproduce the heteroskedastic pattern of the data.
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To explore the set of combinations of the nonlinear parameters and then find
the minimum of the concentrated SSR and the corresponding minimizers, i.e.
(ĉ1, γ̂1), we follow González et al. (2005) and González and Teräsvirta (2006) and
implement the Simulated Annealing (SA) algorithm proposed by Corana et al.
(1987) (see also Goffe et al., 1994, for an application to M-estimation problems).

SA—so named as it resembles the process undergone by the atoms in a heated
metal when it cools slowly—denotes a large class of probabilistic algorithms
used to locate global minima/maxima of functions in large search spaces, when
the problem is unmanageable using combinatorial or analytical methods. SA
improves more standard iterative optimization algorithms by introducing the
“Metropolis criterion”: some steps are taken in the “wrong direction” with a
certain probability, as they serve to better explore the space of possible solutions.
The probability of taking the wrong direction decreases when no significant
improvements in the result is reached after many consecutive iterations (this
is regulated by the decrease in the “temperature”, again by analogy with the
annealing of a metal).30

Finally, since it is not desirable to identify a regime containing only very few
observations, we also check that the estimated location parameters are within
the 5–95th percentiles of the sample values of the transition variables, so that
each regime can be estimated using at least 5% of all the observations.31

4.3. Testing for no remaining nonlinearity

After the estimation of a two-regime PSTR model, it is necessary to test
the hypothesis that it adequately captures the nonlinearities in the panel and
no additional nonlinearities are present. We follow González et al. (2005) and
perform a test of (no remaining) nonlinearity on the following specification:

aspit =
(
βl
0 + βl

1 g(qit; γ̂1, ĉ1) + βl
2 g(qit; γ2, c2)

)
locspit + βuurbspt

+ βddivspt + βccompspt + ζpt + φi + ξit
(6)

where γ̂1 and ĉ1 are the estimates of the nonlinear parameters in the two-regime
PSTR model.

The rejection of the null at this stage implies that the variation of the
parameters of the model is not fully captured by a two-regime PSTR model.
This suggests that the parameters should be let change across time and units in
a more complex way. In this case, the unit and time-varying parameters become

30Corana et al.’s (1987) algorithm is just one of the many proposed in the literature. For a
systematic treatment of SA see Otten and van Ginneken (1989).

31This restriction on the values that the locations can take has the side-effect of preventing,
especially in the case of very smooth transitions, the detection of locations in the tails of the
distribution of the transition variables. Having said that, given the need of a sufficiently large
number of observations in each regime for the estimation of its parameters, in the literature
the 5–95th percentiles of the transition variable are typically used to determine the boundaries
of the location parameters. Although the large size of our panel would allow for percentiles
lower (higher) than the 5th (95th), we nevertheless follow the standard approach.
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weighted averages of the three βl
n parameters (n ∈ {0, 1, 2}) characterizing the

three extreme regimes.
Proceeding as before, this test of (no remaining) nonlinearity is performed

testing βl
2 = 0 by computing AveLM, ExpLM or wLM test statistics.

Following a sequential procedure, as in González et al. (2005), the test can be
generalized to a generic number of regimes to determine the number of transitions
in the model. In particular, after the estimation of a model with r + 1 regimes,
one can perform a nonlinearity test on:

aspit =

βl
0 +

r∑
j=1

βl
j g(qit; γ̂j , ĉj) + βl

r+1 g(qit; γr+1, cr+1)

 locspit

+ βuurbspt + βddivspt + βccompspt + ζpt + φi + ξit

(7)

where the null is βl
r+1 = 0. If it is rejected, a (r + 2)-regime PSTR model can

be estimated and one can continue adding regimes until the first acceptance of
the null of no remaining nonlinearity.

4.4. Nonlinear specifications

To analyze the nonlinearities in the effects of agglomeration variables on firm
productivity, we assume that each one of the lagged variables is the transition
variable of the nonlinear regimes associated with the variable itself, that is:32

βl
it = βl

0 +
∑rl

j=1 β
l
j g(locspi,t−1; γj , cj) (8)

βu
it = βu

0 +
∑ru

j=1 β
u
j g(urbspt−1; γj , cj) (9)

βd
it = βd

0 +
∑rd

j=1 β
d
j g(divspt−1; γj , cj) (10)

βc
it = βc

0 +
∑rc

j=1 β
c
j g(compspt−1; γj , cj) (11)

and estimate four different PSTR models:

A. nonlinear effects of localization:

aspit = βl
itloc

sp
it + βuurbspt + βddivspt + βccompspt + ζpt + φi + ξit (12)

B. nonlinear effects of urbanization:

aspit = βllocspit + βu
iturb

sp
t + βddivspt + βccompspt + ζpt + φi + ξit (13)

C. nonlinear effects of diversity:

aspit = βllocspit + βuurbspt + βd
itdiv

sp
t + βccompspt + ζpt + φi + ξit. (14)

32We use the lagged values of the indicators of interest (i.e., loci,t−1, urbi,t−1, divi,t−1,
compi,t−1) as candidate transitions, instead of their actual values, to avoid problems of
collinearity in the tests of nonlinearity.
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D. nonlinear effects of competition:

aspit = βllocspit + βuurbspt + βddivspt + βc
itcomp

sp
t + ζpt + φi + ξit (15)

As a robustness check, we also estimate a model where the nonlinearities not
rejected by the tests appear simultaneously in the same equation.

E. nonlinear effects of localization, urbanization, diversity and competition:

aspit = βl
itloc

sp
it + βu

iturb
sp
t + βd

itdiv
sp
t + βc

itcomp
sp
t + ζpt + φi + ξit. (16)

Before proceeding, it is worth discussing the reasons why we analyze only
the cases in which the transition variable of the nonlinear regime is associated
with the variable itself. Inspired by the theory illustrated in Sections 1 and 2,
we aim at identifying the presence and size of possible nonlinear marginal effects
of each of the agglomeration variables whereas we do not search for possible
nonlinear interactions between the variables (as it would instead have been the
case, had we interacted an agglomeration variable in the linear component with
another variable in the nonlinear one). This is not different from and directly
comparable with what done when using a linear specification with quadratic and
cubic terms, as also in this case an agglomeration variable is interacted with
itself (in the quadratic term) and with its own squared value (in the cubic term).
We do not exclude that nonlinear interaction effects may be at play, yet their
detection falls beyond the scope of this paper.

5. Results

Taking stock of the robust linear estimates reported in Table 2 and building
on the preliminary findings on the augmented linear specifications (Table 3), we
move to address the main object of this work, i.e., the existence of nonlinear
effects of spatial agglomeration on TFP productivity at the firm-level.33

5.1. Nonlinearity tests

Following the procedure outlined in Section 4.1, we start by testing the null of
linearity against the alternative of a two-regime PSTR model for each of the four
models detailed in Section 4.4. In particular, for each model A-D we compute the
three LM test statistics put forward by Andrews and Ploberger (1994), i.e. the
average LM (AveLM), the exponential average LM (ExpLM), and the weighted
average LM (wLM). All the test statistics are computed from heteroskedasticity-
robust LM statistics and their p-values calculated via fixed-design wild bootstrap,
as suggested by Hurn and Becker (2009).34

33All the calculations were done using gretl 1.9.14 (gretl.sourceforge.net). Code available
at request.

34To calculate AveLM, ExpLM and wLM, we first compute a heteroskedasticity-robust LM

test statistic for each of 100 pairs (γ1, c1): LM(γ
(j)
1 , c

(j)
1 ). Each pair is built as follows: γ1 is
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Table 4: Heteroskedasticity-robust nonlinearity tests
Transition variable Test statistic p-value

A locspi,t−1 AveLM 4.3521 0.0000

ExpLM 4.1418 0.0000
wLM 0.1525 0.0000

B urbspt−1 AveLM 1.1071 0.3030
ExpLM 1.1485 0.2121
wLM 0.0561 0.2727

C divspt−1 AveLM 1.7953 0.1212
ExpLM 2.7635 0.0303
wLM 0.1409 0.0101

D compspt−1 AveLM 6.1258 0.0000
ExpLM 4.9033 0.0000
wLM 0.1776 0.0000

The test statistics, with the associated p-values, are reported in Table 4.
They strongly reject the null of linearity in all the models but model B, i.e.
the one searching for possible nonlinearities in the externalities of urbanization.
Accordingly, we shall proceed in what follows with the estimation of the models
A, C and D. Before moving on, however, we would like to notice that the failure
to reject the null of linearity for urbanization provides an important insight on
its own: the insignificant impact of urbanization economies on the TFP in the
linear estimate in Table 2 is not due to the failure to account for threshold effects
and non-constant elasticity.

5.2. Nonlinear estimates

As the tests of nonlinearity suggest that adopting a PSTR model is warranted
for all the indicators but urbanization, we proceed with estimating models A, C

drawn from a uniform distribution 0-100; c1 is drawn uniformly at random from the set of
observed values of the transition variables within the 5-95th percentile in the sample. Then we
apply the following formulas:

AveLM =
1

100

100∑
j=1

LM(γ
(j)
1 , c

(j)
1 )

ExpLM = ln

100∑
j=1

exp
(

0.5LM(γ
(j)
1 , c

(j)
1 )
)

1000


wLM =

1

100

100∑
j=1

ωjLM(γ
(j)
1 , c

(j)
1 )

where ωj = LM(γ
(j)
1 , c

(j)
1 )/

∑100
j=1 LM(γ

(j)
1 , c

(j)
1 ). To calculate bootstrap p-values via fixed-

design wild bootstrap, we compute AveLM, ExpLM and wLM for 99 bootstrap replications,
where, in each replication, we randomize the sign of the residuals of the estimated linear model.
The bootstrap p-value is equal to the fraction of bootstrap test statistics greater than the
original one.
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Table 5: Panel Smooth Transition Regression estimates
A C D E

βl
0 0.0311 0.0542 0.0505 0.0287

(0.0353) (0.0436) (0.0425) (0.0349)

βu
0 -0.0031 0.0207 0.0035 0.0226

(0.0741) (0.0750) (0.0746) (0.0749)

βd
0 0.0158 0.0001 0.0180 0.0004

(0.0390) (0.0392) (0.0389) (0.0392)

βc
0 0.4270∗∗∗ 0.4209∗∗∗ 0.4433∗∗∗ 0.4551∗∗∗

(0.0481) (0.0520) (0.0526) (0.0494)

Region-time dummies Yes Yes Yes Yes

Wald test statistic (F-form)
(H0: no region-time dummies)

137.18 83.70 72.22 144.01

Wald test p-value 0.0000 0.0000 0.0000 0.0000
βl
1 0.0641∗∗∗ 0.0646∗∗∗

(0.0212) (0.0200)

βd
1 0.0406∗∗ 0.0423∗∗

(0.0123) (0.0123)

βc
1 -0.0634∗∗∗ -0.0637∗∗∗

(0.0194) (0.0196)

γl 3.7830 4.0470
cl 6.9101 6.9144
γd 737.14 905.66
cd 3.6793 3.6787
γc 877.96 877.96
cc 1.3904 1.3904
Observations 58,784 58,784 58,784 58,784
Years 8 8 8 8
Firms 7,348 7,348 7,348 7,348
Sector-province pairs 2,234 2,234 2,234 2,234
Dependent variable: aspit . Years: 2000-2007. Region: NUTS 3 level. Province: NUTS 2 level.

Cluster-robust standard errors in parentheses (cluster: sector-province pair). Significance at: 1%
∗∗∗; 5% ∗∗; 10% ∗. NB: although we report the s.e. also for the slope parameters associated with

the nonlinear regimes (β1
l , β

1
d , β

1
c ), because of the nuisance parameter problem their significance is

evaluated by using the tests reported in Table 4.

and D assuming two-regimes, i.e. rl = rd = rc = 1 in Eqs. (8), (10) and (11).
The results are summarized in Table 5.35

As detailed in Section 4.3, the estimation procedure stops only when the test
of no remaining nonlinearity does not reject the null, for there is no evidence
of additional nonlinear regimes not yet included in the specification. None of
the tests reported in Table 6 reject the null at the 5% significance level and,
therefore, the estimates of the two-regime PSTR models in Table 5 turn out to

35As outlined in Section 4.2, the minimum of the concentrated SSR to estimate the nonlinear
parameters is find by using Corana et al.’s (1987) SA algorithm. In particular, in implementing
the algorithm we set the initial temperature at 50, well above the average difference in SSR.
The temperature reduction factor is 0.85. The algorithm adjusts the step-size vector every 20
parameter changes and the loop is repeated 20 times before each temperature reduction. The
tolerance is set to 1e-05. In all the cases, the procedure converges after on average 350,000
function evaluations.

23



Table 6: Heteroskedasticity-robust tests of no remaining nonlinearity
Transition variable Test statistic p-value

A locspi,t−1 AveLM 0.8875 0.5252

ExpLM 0.6448 0.5354
wLM 0.0449 0.5051

C divspt−1 AveLM 2.7119 0.0404
ExpLM 1.8903 0.0505
wLM 0.0811 0.0505

D compspt−1 AveLM 0.9422 0.4747
ExpLM 0.6246 0.5051
wLM 0.04214 0.5354

be the final ones.36

In particular, the first column of Table 5 reports the estimates of model A,
where the TFP elasticity to localization varies nonlinearly according to its lagged
level (locspi,t−1). The slope parameter associated with the lower extreme regime

(βl
0) is positive but low (0.031) and not statistically different from zero, whereas

the one associated with the upper extreme regime (βl
1) is above 0.095 and highly

significant. This points out that localization externalities do not materialize at
low levels of spatial agglomeration, but only when the latter reaches a certain
threshold. This is clearly showed by Figure 1(a), that plots the total elasticity
of TFP to localization, βl, against the lagged level of localization, locspi,t−1 (each
firm at each moment in time is associated with one of the points along the
plotted line). The graph makes apparent that, for levels of localization close to
the sample mean (median) of locspi,t−1, i.e. 5.65 (6.17), which corresponds to 285
(475) workers employed outside the firm in the same sector and province, the
estimated elasticity is about 0.032 (0.035); for values of loc equal to ĉl (6.91),
corresponding to roughly 1000 workers employed outside the firm in the same
sector and province, localization economies materialize: the estimated elasticity
is two times larger and statistically significant (0.063). Finally, when loc is equal
to 8 (about 3000 workers) the elasticity is 0.094, almost three times larger than
before.37

36As for diversity, one of the tests does not reject the null at the 5% level and the other
two are very close to the boundary of the rejection region. We nonetheless decided not to
include in the specification the second nonlinear regime for diversity for a number of reasons.
First, since the tests of remaining nonlinearity are not robust to intra-cluster correlation and
div is constant at the sector-province pair, these tests tend to over-reject the null. Second,
González et al. (2005) suggest to reduce the significance level by a constant factor when
testing for the presence of additional nonlinear regimes in order to avoid excessively large
models. Third, and more importantly, once estimated: i) the location parameter associated
with the additional regime happens to be quite close to the location parameter of the previous
regime, with a sudden transition; ii) the sum of the point estimates of the coefficients βd1 and
βd2 in the specification with the second nonlinear regime is very similar to that of βd1 in the
specification with only one nonlinear regime. Therefore, this additional regime does not change
any important conclusion while it makes harder illustrate and discuss the results.

37We warn the reader that these are just point estimates and should be taken with care, for
they strongly depend on γ̂l and ĉl.
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(a) Localization (b) Variety

(c) Competition

Figure 1: Total TFP elasticity as a function of the initial level of the variable

Looking at their time average, only 35% of the firms are above the location
parameter and thus appear to receive consistent benefits from localization. 11.4%
of the firms in the sample “change regime” in the period, crossing the threshold
in either way in the period.38 This finding clearly improves upon the estimated
marginal impact of localization on TFP implied by the point estimates of the
coefficients in the linear specification augmented by quadratic and cubic terms
adopted by Martin et al. (2011) and in Table 3. Indeed, the estimated marginal
impact from the linear augmented specification is negative for low-medium
levels of localization and becomes positive only when localization is high, and
continues to increase ever afterwards; more meaningfully, our findings indicate
that the marginal impact is not statistically different from zero at low levels
of agglomeration and gradually increases until it reaches a constant value, for
further economies and diseconomies of localization offset each other.

38Let us note that in this case, since γ is not high, the change is smooth and therefore no
clear regime switching can be identified.
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Moreover, the fact that the tests of no remaining nonlinearity do not reject
the null (Table 6) shows that there is no evidence of further regimes associated
with localization. In particular, there is no strong evidence in the data in favor of
regimes allegedly arising from the negative externalities of localization associated
with agglomeration diseconomies (i.e., congestion effects, commuting costs, and
the like). Clearly, this does not mean that these effects do not exist, but rather
that the actual spatial distribution of firms is such that these negative effects do
not materialize in practice.

Similar qualitative findings apply for the specification encompassing the
nonlinear effect of diversity (div), namely Model C. According to the estimates
(second column of Table 5), the TFP elasticity to variety (βd) grows as the level
of variety overcomes a certain threshold. The elasticity associated with the low
extreme regime (div < 3.68) is not statistically different from zero, whereas the
one associated with the high regime is again positive, larger and statistically
significant. The transition across the regimes is less smooth than in the case of
loc, because the smoothness parameter (γd) is relatively high: this implies that
most of the firms in the sample fall in either of the two extreme regimes. Also
in this case, we cannot reject the hypothesis of no remaining nonlinearity (Table
6) and the model is not extended to include further regimes. Figure 1(b) plots
the total TFP elasticity to diversity (βd) against its lagged level. These findings
suggest that firms located in provinces characterized by a high variety of other
industries benefit from this only once variety passes a critical level. Looking at
their time average, in our sample 85% of the firms are above this threshold and
roughly 19% crosses the threshold in either way at least one time. It is worth
noticing that this result would not be detected by using a specification with
quadratic and cubic terms, such as that adopted by Martin et al. (2011) and
in Table 3. This strengthens the case of using a flexible approach such as the
PSTR to detect properly nonlinear effects.

The case of competition (model D) is somehow symmetric to the previous
ones. The TFP elasticity to competition (βc), plotted in Figure 1(c), is reduced
once competition exceeds a critical value. This finding is in line with the idea
that competition is beneficial to innovation and productivity (as suggested by
Porter, 1990), but its contribution decreases when competition becomes too
fierce, probably because too high a level of local competition jeopardizes the
ability of the firms to internalize the benefits of their innovation (Glaeser et al.,
1992). The implied TFP elasticities in the two regimes are always positive
and statistically significant. That said, it is worth stressing that, for values of
comp close to the location parameter, cc, the regime switching produced by the
increased (decreased) competition likely produces a decrease (an increase) of the
overall TFP. Hence, competition and TFP might exhibit a negative correlation
for values close to the threshold. In particular, since the average value of
comp (1.23) is smaller than but quite close to the estimated location parameter
(ĉc = 1.39), this implies that, according to our estimates, economic policies aimed
at increasing the average level of competition could have a negative impact on
firm productivity in Italy, at least in the short-run.

Table 5 reports also the result of model E, where all the nonlinear interaction
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terms are simultaneously considered. To estimate the model we started by
introducing the nonlinear regime for comp, as this variable is associated with
the highest statistics in the nonlinearity tests (Table 4). Then we tested for
the presence of other nonlinear regimes associated with loc, urb, div or comp.
On the basis of the results of these tests, we decided to include a nonlinear
interaction associated with loc. We further test for any remaining nonlinearity
associated with any of the agglomeration variables. On the basis of the test
statistics we included the nonlinear regime associated with div. Then we stopped
as the tests do not detect any additional nonlinearity. This specification shows
that it makes practically no difference, both in terms of point estimates and of
confidence intervals, whether all the nonlinearities are estimated simultaneously
or individually as in model A, C and D. On the contrary, dealing with one
nonlinearity at the time provides some evidence on the robustness of the results
across the various specifications, since the estimated linear coefficients remain
almost identical.

Having illustrated the results of the empirical analysis, we need to address
the implications of such findings for the Italian provinces and sectors. In this
respect, one advantage of the PSTR model with respect to the linear augmented
one is that the former is less prone than the latter to suffer from the presence of
outliers and to produce unrealistic in-sample projections for high and low values
of the nonlinear variable. Hence, the PSTR model seems appropriate to produce
a visual representation of the marginal impact of agglomeration economies.

In Figure 2, we map the marginal impact on TFP of both localization and
diversity across the various Italian provinces, calculated by averaging firm values
over years and sectors. The two maps in Figure 2 show that the marginal impact
of localization and diversity is greater in the North and in a few provinces of
the Center than in the South and in the islands, in line with the literature
on the Italian industrial districts/local production systems. As the estimated
threshold for the localization variable is relatively high in the sample and
the regime switching quite definite, it is not surprising that there is little
differentiation across the provinces in the South of Italy, with the exception of
those in Campania, where one can find a concentration of food, clothing, textile,
and leather manufacturing firms.

Figure 3 instead shows the total TFP impact of the four agglomeration
economies (localization, variety, urbanization and local competition) across the
Italian provinces. This map clearly suggests that agglomeration economies
contribute to reinforce the historical North-South divide (measured in terms
of GDP per capita, as well as productivity, efficiency and R&D spillovers, as
shown among the others by Foddi and Usai, 2013; Dettori et al., 2012; Aiello
and Cardamone, 2012).39

39The average total TFP impact of agglomeration economies at the province level is positively
correlated with other indicators of productivity and agglomeration. In particular, it exhibits
significant positive correlations with: i) the “district degree” of the province, computed from
the 2001 “Italian Industrial census” of the Italian National Statistical Institute (ISTAT) as the
number of workers employed in an industrial district as a fraction of the total manufacturing
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(a) Localization (b) Variety

Figure 2: TFP elasticity to localization and diversity across Italian provinces

Figure 3: Total TFP accounted by agglomeration factors (localization, variety, urbanization
and local competition) across Italian provinces
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Figure 4: Total TFP accounted by agglomeration economies across industries (2-digit)

Finally, in Figure 4 we plot the total TFP impact of agglomeration economies
(localization, diversity, urbanization and local competition) across industries,
aggregated at the 2-digit level and averaged over time and provinces. Unsur-
prisingly, agglomeration economies have the highest impact in the industries
representing the bulk of the Italian manufacturing sectors (textile, leather and
wearing apparel, machinery, and furniture), as well as metal and pharmaceutical
products.

6. Conclusions

This work revisits the vexed question regarding the impact of spatial ag-
glomeration on productivity and, by extending the comprehensive approach
by Martin et al. (2011) to analyze four kinds of agglomeration externalities,
it addresses the overlooked issue of the plausible nonlinear impact of spatial
economies on firm-level productivity.

By investigating the issue on a large sample of Italian manufacturing firms
located in 97 Italian provinces (NUTS 3) over the period 1999-2007, it is shown
that significant localization economies materialize only for values of intra-industry
agglomeration above a certain threshold. While the significance of localization
economies is in line with the linear estimates and with the findings in the
literature, the nonlinear results suggest some interesting insights: localization
economies are more influential when agglomeration is relatively large. Moreover,
once a certain level of localization is reached, their marginal impact stops growing.
There is however no sign of diseconomies (e.g., congestion effects) able to reduce
the impact of agglomeration on the firm-level TFP, as the test statistics exclude
any further nonlinearity. As we emphasize in the paper, this does not mean that

employment in the province (corr = 0.57); ii) the manufacturing export propensity in the
province averaged over the period 1999-2007, computed from the yearly series of “Provincial
Accounts” (Conti Provinciali) of ISTAT as the value share of exports in the total manufacturing
production (corr = 0.63).
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these negative effects do not exist or cannot prevail, but rather that the actual
spatial distribution of firms is such that they do not materialize in our sample.40

Variety-related (Jacobian) externalities have also a positive impact on pro-
ductivity, but this occurs only when diversity passes a certain threshold. Thus,
neither a traditional linear analysis, nor a linear specification augmented by
quadratic and cubic terms allow this result to emerge. To the best of our
knowledge, there is no other study addressing the nonlinear impact of Jacobian
externalities.

In line with previous studies, the impact of local competition on productivity
is found to be positive, even though the nonlinear estimates show that when
competition is above a certain threshold (close to the median value) its impact
is reduced, although still largely positive and significant.

Finally, urbanization economies do not appear statistically significant and no
nonlinearity is detected either.

We have explored the implications of the identified nonlinearities for the
provinces and sectors in the Italian economy, by analyzing the average estimated
marginal impacts of localization and variety across the Italian provinces, and the
average estimated total impact on TFP of all agglomeration economies across
regions and industries. Our findings are in line with the regional divide that
characterizes Italy and with the sectoral specialization of its industrial system.

As pointed out by Greenstone et al. (2010), agglomeration externalities
can have a dramatic practical importance and their features should inform
economic policy. In this respect, our results actually show that, given the
existence of critical masses and thresholds for localization economies and Jacobian
externalities to materialize, tax and other localization incentives should manage
to attract a non-negligible number of new firms to be successful. Moreover, given
that the marginal spillovers for firm-level TFP flatten out after a certain level
of agglomeration/diversity is reached, our results suggest the existence of an
interesting trade-off at the policy level. On the one hand, the greatest increase
in productivity at the firm level could be achieved by clustering policy actions
on those geographical areas where the agglomeration/variety level can be pushed
from just below to just above the critical threshold. This is particularly relevant
for local policy makers. On the other hand, the aggregate effect on productivity
depends on the number of firms which may benefit from such interventions.
Accordingly, national policy makers should discriminate across industrial clusters
by undertaking differentiated real and/or financial actions with a view to focusing
on the areas where the marginal impact is higher.41

40Let us note that the fact that we do not observe a decreasing marginal net effect of
agglomeration on TFP is not the result of optimal location choices of firms, as it might be
expected in a longer time span where firms can revise their location choice, because no firm in
our sample relocates.

41As explained, our sample is fully balanced due to the features of the estimation procedure.
This implies that our results do not take into account an important phenomenon that affects
aggregate productivity, that is firm demography. While this does not impinge upon the results,
it should be taken into account in designing policy measures to boost productivity.
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Table A.7: Panel unit root tests
Harris-Tzavalis Im-Pesaran-Shin (Zt̃−bar)

aspit -0.1250 (0.0000) -69.9664 (0.0000)
locspit 0.2876 (0.0000) -610.000 (0.0000)
urbspt 0.1243 (0.0000) -25.4291 (0.0000)
divspt -0.1001 (0.0000) -99.2528 (0.0000)
compspt -0.1044 (0.0000) -37.6448 (0.0000)
Cross-sectional averages subtracted from the series to mitigate the impact of cross-sectional

dependence, as suggested by Levin et al. (2002). H0: panels contain unit roots. Ha: Panels

are stationary (HT); Some panels are stationary (IPS). p-values in parentheses.

This analysis could be extended in other directions. First, one could explore
nonlinear interactions between different forms of agglomeration. It is possible,
for instance, that urbanization economies become relevant once a certain level
of localization is achieved; or that the impact of local competition externalities
may depend on the overall size of the industry to which a firm belongs. Second,
one could properly address the possible presence of time-variant location-specific
unobserved factors.42 Third, the analysis might be extended by considering the
service sectors, in addition to the manufacturing ones. This is indeed one of the
main limits of the paper as the share of services is steadily growing over time
and some services are becoming increasingly knowledge intensive and, in general,
highly integrated with manufacturing. These issues represent venues of future
research.
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AppendixA. Granger tests

To get some hints on possible reverse causality/simultaneity issues, we have
carried out a Granger test for each explanatory variable. In particular, after
having checked the absence of unit roots (Table A.7 reports Harris and Tzavalis
(1999) and Im et al. (2003) tests for panel-data unit-root; both the tests lead to

42One possibility is to use a spatial lag instead of or along with the temporal lag, as transition
variable. For example, the transition variable qit might be defined as

∑
j wijqj,t−τ , where wij

is a spatial weight reflecting the geographical proximity between firm i and firm j and τ ≥ 0 is
the temporal lag. We are indebted to one of the referees for this suggestion, which we do not
follow as proceeding in this direction would make the paper strive far from its original goal
and its main term of comparison, i.e. Martin et al. (2011).
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Table A.8: Dynamic panel-data estimation, two-step difference GMM
Dependent variable (xt)

locspit urbspt divspt compspt
aspi,t -1.4117∗ -1.3181 0.8777 -1.1027

(0.6971) (1.1905) (0.5992) (1.1560)

aspi,t−1 0.0007 0.0010 -0.0023 0.0058
(0.0118) (0.0110) (0.0074) (0.0097)

xt−1 0.8228∗∗∗ 0.0353 -0.0021 0.0454
(0.2662) (0.2815) (0.0694) (0.1110)

xt−2 0.2931∗∗∗ 0.1416 0.2712∗∗∗ 0.0752
(0.1049) (0.1193) (0.0328) (0.0584)

Observations 36,740 36,740 36,740 36,740
Years 5 5 5 5
Firms 7,348 7,348 7,348 7,348
Sector-province pairs 2,234 2,234 2,234 2,234
N. instruments 11 11 11 11
AR(1) [p-value] -2.04 [0.041] -1.10 [0.270] -1.47 [0.142] -1.01 [0.313]
AR(2) [p-value] -0.87 [0.386] 0.06 [0.955] 0.09 [0.926] -0.35 [0.725]
Sargan test [p-value] 0.92 [0.631] 1.54 [0.464] 0.33 [0.847] 1.41 [0.494]
Hansen test [p-value] 0.90 [0.639] 1.56 [0.459] 0.33 [0.848] 1.40 [0.497]

Wald test statistic [p-value]
H0: aspi,t and aspi,t−1 jointly not significant

4.13 [0.127] 1.25 [0.537] 2.15 [0.341] 1.04 [0.596]

Unreported constant and time dummies. HAC s.e. in round brackets. Significance at: *** 1%; ** 5%; * 10%.

reject the null of panels containing unit roots at the 1% level for all the series),43

we have estimated the following dynamic panel models by two-step difference
GMM (Bond, 2002):

xit =

2∑
m=1

αmxi,t−m +

1∑
l=0

γla
sp
i,t−l + ζt + φi + ξit

where xit is equal, in turn, to locspit , urb
sp
t , div

sp
t , comp

sp
t , and we have computed

Wald statistics to test the null γ0 = γ1 = 0. Table A.8 summarizes the main
results. As shown in the Table, the Wald tests always fail to reject the null
hypothesis at the 10% level, i.e. that the TFP does not Granger-cause the
explanatory variable (locspit , urb

sp
t , div

sp
t , comp

sp
t ).
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