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Moser-Trudinger and Beckner-Onofri’s
inequalities on the CR sphere

By Thomas P. Branson, Luigi Fontana, and Carlo Morpurgo

Abstract

We derive sharp Moser-Trudinger inequalities on the CR sphere. The

first type is in the Adams form, for powers of the sublaplacian and for gen-

eral spectrally defined operators on the space of CR-pluriharmonic func-

tions. We will then obtain the sharp Beckner-Onofri inequality for CR-

pluriharmonic functions on the sphere and, as a consequence, a sharp log-

arithmic Hardy-Littlewood-Sobolev inequality in the form given by Carlen

and Loss.
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0. Introduction

Motivations and history. The problem of finding optimal Sobolev inequal-

ities continues to be a source of inspiration to many analysts. The literature

on the subject is vast and rich. Besides its intrinsic value, the determination

of best constants in Sobolev, or Sobolev type, inequalities has almost always

revealed or employed deep facts about the geometric structure of the underly-

ing space. More importantly, such constants were often the crucial elements
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needed to identify extremal geometries and to solve important problems such

as isoperimetric inequalities, eigenvalue comparison theorems, curvature pre-

scription equations, existence of solutions of PDE’s, and more.

This kind of research has produced a wealth of conclusive results in the

context of Euclidean spaces and Riemannian manifolds. In contrast, very lit-

tle is known in subRiemannian geometry, even in the simplest cases of the

Heisenberg group or the CR sphere; this is especially true with regards to best

constants in Sobolev embeddings and sharp geometric inequalities.

In order to motivate our work, we present three by now classical sharp

inequalities on the Euclidean Rn and Sn. First, there is the standard Sobolev

embedding W d/2,2 ↪→ L2n/(n−d), (0 < d < n) represented by the optimal

inequality

(0.1) ‖F‖2q ≤ C(d, n)

∫
X
FAdF, q =

2n

n− d
,

with C(n, d) = ω
−d/n
n Γ

Ä
n−d

2

ä
/Γ
Ä
n+d

2

ä
and where ωn denotes the volume of Sn.

For X = Rn the operator Ad is ∆d/2, where ∆ is the positive Laplacian on

Rn, and the extremals in (0.1) are dilations and translations of the function

(1 + |x|2)−n/q. For X = Sn, the operator Ad is the spherical picture of ∆d/2,

obtained from it via the stereographic projection and conformal invariance.

These operators act on the kth order spherical harmonics Yk of Sn as

(0.2) AdYk =
Γ
Ä
k + n+d

2

ä
Γ
Ä
k + n−d

2

äYk.
When d = 2, A2 = ∆Sn + n(n−2)

4 , the conformal Laplacian; for general

d ∈ (0, n), Ad is the intertwining operator of order d for the complementary

series representations of SO(n+1, 1), and it is an elliptic pseudodifferential op-

erator with the same leading symbol as (∆Sn)d/2. The fundamental solution of

Ad is given by the chordal distance function cd|ζ−η|d−n, with ζ, η ∈ Sn, where

cd is the same constant appearing in the fundamental solution (Riesz kernel)

for ∆d/2 on Rn. Higher order conformally invariant powers of the Laplacian on

general manifolds were found by Graham, Jenne, Mason, Sparling [GJMS92]

and are now known as the “GJMS operators.” The extremals for the inequal-

ity (0.1) are the functions |Jτ |1/q, where |Jτ | denotes the density of the volume

change via a conformal transformation τ of Sn.

Inequality (0.1) is invariant under the action of the conformal group, both

on Rn and Sn; for example, on Rn in addition to the usual dilation/translation

invariance, there is also an invariance under inversion: the action

F → F
Ä
x/|x|2

ä
|x|−2n/q
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leaves both sides of (0.1) unchanged. It is this aspect that makes this type of

operators particularly interesting.

For d = 2, it was Talenti [Tal76] who first derived (0.1) on Rn, followed

by Aubin [Aub76] on Sn. For general d, the inequality is the dual of the sharp

Hardy-Littlewood-Sobolev inequality obtained by Lieb [Lie83], a fundamental

inequality which concerns the minimization of ‖F ∗ |x|−λ‖q/‖F‖p in the case

p = 2; as stated, (0.1) appears in [Bec93].

Next, there is the limit case d = n of (0.1), which gives the so-called

exponential class embedding Wn/2,2 ↪→ eL, and more generally W d,n/d ↪→ eL,

itself a limiting case of W d,p ↪→ Lnp/(n−dp). In concrete terms the Sobolev

embedding in the critical case dp = n is represented by an Adams-Moser-

Trudinger inequality of type

(0.3)

∫
X

exp

ñ
αd

Ç
|F |

‖BdF‖p

åp′ô
≤ c0, p =

n

d
,

where Bd is a suitable, possibly vector-valued, pseudodifferential operator of

order d, and where the constant αd is best, i.e., it cannot be replaced by

a larger constant. Here F runs through an appropriate subspace of W d,n/d

where BdF 6= 0.

In the case of bounded domains of Rn the first sharp result is due to Moser

[Mos71], who obtained (0.3) with best constant in the case d = 1 and B1 = ∇,

for F ∈W 1,n
0 (Ω). Earlier, Trudinger [Tru67] proved a similar inequality, with-

out best constant, with ‖∇F‖n replaced by ‖F‖n + ‖∇F‖n, for F ∈W 1,n(Ω).

Adams [Ada88] found the sharp version of Moser’s inequality for higher order

gradients Bk = ∇k, and F ∈ W k,n/k
0 (Ω). A few years later, Fontana [Fon93]

extended Moser’s and Adams’ results to arbitrary compact manifolds without

boundary. Since then, and up to recent times, many authors worked on other

extensions and generalizations of Moser’s result, often motivated by problems

in conformal geometry and nonlinear PDE.

On the sphere there is also another form of the exponential class embed-

ding for Wn/2,2(Sn), namely the so-called Beckner-Onofri inequality

(0.4)
1

2n!
−
∫
Sn
uAnu+ −

∫
Sn
u− log −

∫
Sn
eu ≥ 0,

where −
∫

denotes the average operator, and where An is the intertwining op-

erator defined by (0.2) in the limit case d = n, with eigenvalues k(k + 1) · · ·
(k + n− 1). Such An is sometimes referred to as the Paneitz operator on the

sphere, in honor of S. Paneitz, who first discovered a fourth order conformally

invariant operator on general manifolds, which reduces to A4 = (∆S4)2 +2∆S4

on the Euclidean S4. Note that A2 = ∆S2 , when n = 2. Due to the partic-

ular nature of An, the functional in (0.4) is invariant under the group action

F → F ◦ τ + log |Jτ |, where τ is a conformal transformation of Sn and |Jτ | its
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associated volume density; this action preserves the exponential integral. This

important inequality was first derived by Onofri in dimension 2, and its gen-

eral n-dimensional form was discovered later by Beckner [Bec93], via an end-

point differentiation argument based on (0.1) and the sharp Hardy-Littlewood-

Sobolev inequality. Later, Chang and Yang [CY95] gave an alternative proof

of (0.4) by a completely different method, based on an extended and refined

version of the original compactness argument used by Onofri.

Estimate (0.4) has relevant applications in spectral geometry and mathe-

matical physics, from comparison theorems for functional determinants to the

theory of isospectral surfaces; see [Bra95], [BCY92], [CY95], [CQ97], [Ono82],

[OPS88].

Over the past couple of decades there has been a growing interest in

finding the analogues of the above results in the context of CR geometry. The

biggest motivations are certainly the isoperimetric inequality, the isospectral

problem, extremals for spectral invariants such as the functional determinant,

and several other eigenvalue comparison theorems.

In the CR setting, the first and only known sharp Sobolev embedding

estimate of type (0.1) with conformal invariance properties is due to Jerison

and Lee [JL87], [JL88], and it holds on the Heisenberg group Hn and on the

CR sphere S2n+1 in the case d = 2 for the CR-invariant Laplacian (which is

the standard sublaplacian in the case of Hn). The corresponding version for

operators of order 0 < d < Q = 2n+2, d 6= 2, is only conjectured,1 and involves

the intertwining operators Ad for the complementary series representations of

SU(n+1, 1). The explicit form of such operators has been known for quite some

time, for example by work of Johnson and Wallach [JW77], and also Branson,

Ólafsson and Ørsted [BÓØ96], and can be described as follows. Let Hjk be the

space of harmonic polynomials of bidegree (j, k) on S2n+1 for j, k = 0, 1, . . . ;

such spaces make up for the standard decomposition of L2 into U(n + 1)-

invariant and irreducible subspaces. The intertwining operators of order d < Q

are characterized (up to a constant) by their action on Yjk ∈ Hjk:

(0.5) AdYjk = λj(d)λk(d)Yjk, λj(d) =
Γ
Ä
j + Q+d

4

ä
Γ
Ä
j + Q−d

4

ä .
When d = 2, this gives the CR-invariant sublaplacian. As it turns out these

operators have a simple fundamental solution of type cd|1 − ζ · η|
d−Q
2 , where

ζ, η ∈ S2n+1, for a suitable constant cd. The conformally invariant sharp

1See the addendum at the end of this section about a recent breakthrough made by Frank

and Lieb [FL12] in this regard.
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Sobolev inequality that is conjectured to be true is

(0.6)

Ç
−
∫
S2n+1

|F |q
å2/q

≤ 1

λ0(d)2
−
∫
S2n+1

FAdF, q =
2Q

Q− d
,

with extremals |Jτ |1/p, τ a conformal transformation of S2n+1; this is the

Jerison-Lee inequality for d = 2 but it is an open problem for general d. This

conjecture does not seem to appear in any published articles, but it is well

known within the group of researchers interested in this type of questions.

One of the aspects that makes the CR treatment more difficult is the lack,

to date, of an effective symmetrization technique on the CR sphere or the

Heisenberg group that would allow, for example, to show the dual version of

(0.6), namely the CR Hardy-Littlewood-Sobolev inequality.

Regarding Moser-Trudinger inequalities at the borderline case d = Q/p,

Cohn and Lu recently made some progress [CL01], [CL04], deriving the CR

analogue of (0.3) with sharp exponential constant in the case of the gradient,

p = Q, both on Hn or the CR S2n+1. (See also [BMT03] for similar results on

Carnot groups.) In regard to the “correct” CR analogue of Beckner-Onofri’s

inequality (0.4), the situation is not so obvious. One would certainly start to

consider the operator AQ = limd→QAd, the intertwining or Paneitz operator

at the end of the complementary series range; the kernel of this operator is

the space of CR-pluriharmonic functions on S2n+1, given by P :=
⊕
j>0(Hj0⊕

H0j)⊕H00. On the basis of (0.4), the natural conjecture would be that for a

suitable constant cn

(0.7) cn −
∫
FAQF − log −

∫
eF−πF ≥ 0, ∀F ∈WQ/2,2,

where πF denotes the Cauchy-Szegő projection of F on the space P. The

Euclidean version (0.4) can be cast in a similar form, with πF being just the

average of F . This inequality, however, is not invariant under the conformal

action that preserves the exponential integral, i.e., F → F ◦ τ + log |Jτ |. On

the other hand, the fact that AQ has such large kernel P combined with the

invariance of P under the conformal action (see Proposition 3.2) leads one to

think that there should be a CR version of (0.4) that is conformally invariant

and whose natural “milieu” is the space of CR-pluriharmonic functions; in this

work we show that this is indeed the case.

Main results. The CR version of Beckner-Onofri’s inequality proven in

this paper is described as follows. Let A′Q be the operator acting on CR-pluri-

harmonic functions as

A′Q
∑
j

(Yj0 + Y0j) =
∑
j

λj(Q)(Yj0 + Y0j), λj(Q) = j(j + 1) · · · (j + n),
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where Yj0 ∈ Hj0, Y0j ∈ H0j . In Theorem 3.1 we prove that for any real

F ∈WQ/2,2 ∩ P, we have

(0.8)
1

2(n+ 1)!
−
∫
S2n+1

FA′QF + −
∫
S2n+1

F − log −
∫
S2n+1

eF ≥ 0.

The functional in (0.8) is invariant under the conformal action F → F ◦ τ +

log |Jτ |, where τ is a conformal transformation of S2n+1 (i.e., τ is identified with

an element of SU(n+ 1, 1)) and |Jτ | its Jacobian determinant. The extremals

of (0.8) are precisely the functions log |Jτ |.
A few remarks are in order. First, the conformal action is an affine rep-

resentation of SU(n+ 1, 1), and the minimal nontrivial closed (real) subspace

of L2 that is invariant under such action is precisely the space of real CR-

pluriharmonic functions (Proposition 3.2). This is in contrast with the Eu-

clidean case, for the action induced by SO(n+ 1, 1), since in that case the only

invariant closed subspaces of L2 are the trivial ones. This observation seems to

justify (at least partially) that inequality (0.8) could be regarded as the direct

CR analogue of (0.4) from the point of view of conformal invariance.

Secondly, the key character in (0.8) is the operator A′Q, which we call the

conditional intertwinor of order Q on P. This operator is the CR analogue on

P of the Paneitz, or GJMS, operator An on the standard Euclidean sphere,

and it coincides, up to a multiplicative constant, with the d-derivative at d = Q

of Ad restricted to P. Moreover, we have

A′QF =
n∏
`=0

Ä
2
nL+ `

ä
F , F ∈ P,

where L is the standard sublaplacian on the sphere. To our knowledge such

operator is introduced here for the first time.

Finally, if conjecture (0.6) were true, then (0.8) would result by the same

endpoint differentiation argument used by Beckner to obtain (0.4). The mean-

ing of this is that even though we do not know whether (0.6) holds, we can

still consider the functional

Jd[G] =
1

λ0(d)2
−
∫
GAdG−

Ç
−
∫
|G|q
å2/q

, q =
2Q

Q− d

and take the d-derivative at Q of Jd[1 + (1/q)F ] under the restriction F ∈ P;

the result of this operation is the functional in (0.8). This argument will in

fact be used to prove the conformal invariance of (0.8) (see Proposition 3.2).

Our proof of (0.8) follows the same general strategy used by Chang-

Yang and Onofri. The first step is to show that the functional in (0.8) is

bounded below. This is accomplished by a “linearization” procedure from a

sharp Adams/Moser-Trudinger inequality on the CR sphere derived here for

the first time. Indeed, a portion of this work is dedicated to inequalities of
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type

(0.9)

∫
S2n+1

exp

ñ
Ad

Ç
|F |

‖BdF‖p

åp′ô
dζ ≤ C0,

where 0 < d < Q, dp = Q, which are of independent interest. We will obtain

(0.9) for what we call d-type operators on Hardy spaces Hp, or Pp (Lp bound-

ary values of pluriharmonic functions on the ball), and which are essentially

finite sums of powers of the sublaplacian, restricted to such spaces, with lead-

ing power equal to d/2. When p = 2, the case of interest for (0.8), we have

AQ/2 = 1
2(n + 1)!ω2n+1 and this constant is sharp; i.e., in (0.9) it cannot be

replaced by a larger constant. We will also obtain (0.9) on the full W d,Q/d for

Bd = Ld/2 or Bd = Dd/2, where L is the sublaplacian of the CR sphere and

D = L+ n2

4 is the conformal sublaplacian, with sharp constants for any d < Q.

All of these inequalities will be applications of recent results by Fontana and

Morpurgo [FM11] on Adams inequalities in a measure-theoretic setting; their

proofs will follow from asymptotically sharp growth estimates on the funda-

mental solutions of the operators Bd, in terms of their distribution functions.

The second step toward a proof of (0.8) is to establish that the func-

tional has a minimum, via a compactness argument based on an Aubin’s type

inequality. This inequality is essentially saying that if a function F has van-

ishing center of mass, then an inequality like (0.8) holds with an improved

constant on the leading order term, but with added lower order terms.

The final step is a version of the argument given by Chang-Yang [CY95]

based on Hersch’s old results [Her70], in order to characterize the extremals.

As a byproduct we will obtain sharp inequalities for the first eigenvalue of A′Q
under conformal change of contact structure on S2n+1.

In the final part of the paper we will derive from (0.8) the following sharp

logarithmic Hardy-Littlewood-Sobolev inequality

(0.10) (n+ 1)−
∫
−
∫

log
1

|1− ζ · η|
G(ζ)G(η)dζdη ≤ −

∫
G logGdζ,

valid for all G ≥ 0 with the right-hand side finite, and −
∫
G = 1. The inequality

is conformally invariant under the action G → (G ◦ τ)|Jτ |, and its extremals

are the functions |Jτ |, with τ any conformal transformation. The logarithmic

kernel in (0.10) is a fundamental solution of A′Q as an operator acting on

CR-pluriharmonic functions with mean 0:

(A′Q)−1(ζ, η) = − 2

Γ
Ä
Q
2

ä
ω2n+1

log |1− ζ · η|.

In the Euclidean context, (0.10) was obtained by Carlen and Loss [CL92]

from the sharp inequality (0.1), cast in its dual form, via endpoint differenti-

ation. In some precise sense (0.10) and (0.8) are dual of one another. Finally,
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we will derive an equivalent version of (0.10) on the Heisenberg group, using

the conformal invariance of such inequality.

Ideas for related research. The inequality obtained by Beckner and Onofri

turned out to be central in the problem of finding extremal geometries for the

functional determinant of certain operators on compact Riemannian manifolds.

We expect the same to be true in the case of CR geometry, namely that

an explicit computation of functional determinants of conformally invariant

operators, at least in low dimensions, would involve the functional in (0.8) and

that (0.8) itself would be useful in solving extremal problems.

At the dual end, the third author has shown in [Mor96] that the logarith-

mic Hardy-Littlewood-Sobolev inequality on Sn was the analytic expression of

an extremal problem for the regularized zeta function of the Paneitz operators.

Likewise, we expect the same to be true on the CR sphere.

We hope that the results presented in this paper will serve as an incentive

to pursue these matters and, in particular, to motivate the explicit calculation

of functional determinants for low dimensional CR manifolds.

In memory of Tom Branson. Tom Branson wrote: “What I have in mind

is to generalize Beckner ’s sharp, invariant Moser-Trudinger inequality on Sn,

which is a fact about conformal geometry, to a fact about CR geometry, and

eventually other rank 1 and higher rank geometries” [Bra99]. Chang and Yang

gave an alternative, symmetrization-free proof of Beckner’s inequality on Sn;

it was Branson’s idea that we might attempt to “play the same game” on the

CR sphere. “This is not just any example; it ’s the one people will be by far

most interested in, because of CR geometry” [Bra99]. The present paper is the

result of our efforts to prove that Tom Branson’s original intuition was indeed

correct: yes, we can play the same game, but on the space of CR-pluriharmonic

functions (and with considerably more difficulties).

Tom Branson suddenly passed away in March 2006.

Acknowledgments. The authors would like to thank Francesca Astengo,

Bill Beckner, Arrigo Cellina, Bent Ørsted, Marco Peloso, Fulvio Ricci, and

Richard Rochberg for helpful comments.

Addendum. After this work was completed an important and remarkable

breakthrough was made by R. Frank and E. Lieb [FL12], who were able to prove

the sharp Hardy-Littlewood-Sobolev inequality on Hn, or its equivalent version

(0.6) on S2n+1. Their proof is symmetrization-free. The proof of the existence

of the optimizers is based on a sophisticated compactness argument, whereas

the characterization of the extremals is accomplished by a clever enhanced
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version of a Hersch type argument used originally by Chang-Yang in [CY95]

and adapted to the CR setting in the present paper (see Section 3).

1. Intertwining operators on the CR sphere

The Heisenberg group, the complex sphere and the Cayley transform. The

Heisenberg group Hn is Cn × R with elements u = (z, t), z = (z1, . . . , zn) and

with group law

(z, t)(z′, t′) = (z + z′, t+ t′ + 2 Im z · z′),

where we set z · w =
∑n

1 zjwj for w = (w1, . . . , wn). The Lebesegue-Haar

measure on Hn is denoted by du.

Throughout the paper we will often use the standard notation for the

homogeneous dimension of Hn:

Q = 2n+ 2.

The sphere S2n+1 is the boundary of the unit ball B of Cn+1. In coordi-

nates, ζ = (ζ1, . . . , ζn+1) ∈ S2n+1 if and only if ζ · ζ =
∑n+1

1 |ζj |2 = 1. The

standard Euclidean volume element of S2n+1 will be denoted by dζ.

The Heisenberg group and the sphere are equivalent via the Cayley trans-

form C : Hn → S2n+1 \ (0, 0, . . . , 0,−1) given by

C(z, t) =
( 2z

1 + |z|2 + it
,
1− |z|2 − it
1 + |z|2 + it

)
and with inverse

C−1(ζ) =
( ζ1

1 + ζn+1
, . . . ,

ζn
1 + ζn+1

, Im
1− ζn+1

1 + ζn+1

)
.

We will use the notation

N = C(0, 0) = (0, 0, . . . , 1).

The Jacobian determinant (really a volume density) of this transformation is

given by

|JC(z, t)| =
22n+1Ä

(1 + |z|2)2 + t2
än+1

so that ∫
S2n+1

Fdζ =

∫
Hn

(F ◦ C)|JC |du.

The homogeneous norm on Hn is defined by

|(z, t)| = (|z|4 + t2)1/4,

and the distance from u = (z, t) and v = (z′, t′) is

d((z, t), (z′, t′)) := |v−1u| =
Ä
|z − z′|4 + (t− t′ − 2Im (z · z′))2

ä1/4
.
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On the sphere the distance function is defined as

d(ζ, η)2 := 2|1− ζ · η| =
∣∣∣ |ζ − η|2− 2i Im (ζ · η)

∣∣∣ =
Ä
|ζ − η|4 + 4 · Im 2(ζ · η)

ä1/2
,

and a simple calculation shows that if u = (z, t), v = (z′, t′) and ζ = C(u), η =

C(v), then

(1.1)
|1− ζ · η|

2
= |v−1u|2

Ä
(1 + |z|2)2 + t2

ä−1/2Ä
(1 + |z′|2)2 + (t′)2

ä−1/2
;

i.e.,

(1.2) d(ζ, η) = d(u, v)

Ç
4

(1 + |z|2)2 + t2

å1/4Ç
4

(1 + |z′|2)2 + (t′)2

å1/4

.

Sublaplacians on Hn and S2n+1. The sublaplacian on Hn is the second

order differential operator

L0 = −1

4

n∑
j=1

(X2
j + Y 2

j ),

where Xj = ∂
∂xj

+ 2yj
∂
∂t , Yj = ∂

∂yj
− 2xj

∂
∂t , and ∂

∂t denote the basis of the

space of left-invariant vector fields on Hn. One can check that

L0 = −1

2

n∑
j=1

(ZjZj + ZjZj),

where

Zj =
∂

∂zj
+ izj

∂

∂t
, Zj =

∂

∂zj
− izj

∂

∂t

and with ∂
∂zj

= 1
2

(
∂
∂xj
− i ∂

∂yj

)
, ∂
∂zj

= 1
2

(
∂
∂xj

+ i ∂
∂yj

)
.

The fundamental solution of L0 was computed by Folland [Fol73], and

L−1
0 (u, v) = C2 d(u, v)2−Q, C2 =

2n−2Γ(n2 )2

πn+1

so that

G(u) =

∫
Hn
C2|v|2−QF (v−1u)dv =

∫
Hn
L−1

0 (u, v)F (v)dv

solves L0G = F . On the standard sphere, the sublaplacian is defined similarly

as

L = −1

2

n+1∑
j=1

(TjT j + T jTj),

where

(1.3) Tj =
∂

∂ζj
− ζjR, R =

n+1∑
k=1

ζk
∂

∂ζk
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and where the Tj generate the holomorphic tangent space T1,0S
2n+1 = T1,0Cn+1

∩ CTS2n+1. Explicitly,

(1.4) L = ∆ +
n+1∑
j,k=1

ζjζk
∂2

∂ζj∂ζk
+
n

2
(R+R)

with ∆ = −∑j
∂2

∂ζj∂ζj
. The trasversal direction is the real vector field

(1.5) T =
i

2
(R−R) =

i

2

n+1∑
j=1

Ç
ζj

∂

∂ζj
− ζj

∂

∂ζj

å
and CTS2n+1 is generated by the Tj , T j , T .

The conformal sublaplacian on the sphere is defined as

D = L+
n2

4
.

The fundamental solution of D has been computed by Geller [Gel80] (Theo-

rem 2.1 with α = 0 and modulo volume normalization)

(1.6) D−1(ζ, η) = c2 d(ζ, η)2−Q, c2 =
2n−1Γ(n2 )2

πn+1
= 2C2

in the sense that for smooth F : S2n+1 → C, the function

G(ζ) = D−1F (ζ) =

∫
S2n+1

c2d(ζ, η)2−QF (η)dη

satisfies DG = F .

The peculiarity of D is its direct relation with L0 via the Cayley transform

(1.7) L0

(
(2|JC |)

Q−2
2Q (F ◦ C)

)
= (2|JC |)

Q+2
2Q (DF ) ◦ C,

which can be readily established by using the explicit formulas for the funda-

mental solutions and (1.2). The multiplicative factor 2 in the above formula

appears because we use the standard volume elements for Hn and S2n+1 in-

stead of the volume forms associated with the standard contact forms θ0, and

θ of these two spaces. In this case indeed we have that∫
Hn
f θ0 ∧ dθ0 · · · ∧ dθ0 = 22nn!

∫
Hn
fdu =

∫
S2n+1

F θ ∧ dθ · · · ∧ dθ

= 22n+1n!

∫
S2n+1

Fdζ,

where f = (F ◦ C)(2|JC |) (see Jerison-Lee [JL87]). This also accounts for the

factor 2 in the relation c2 = 2C2.
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Spherical and zonal harmonics on the CR sphere. The space L2(S2n+1),

endowed with the inner product

(F,G) =

∫
S2n+1

FGdζ,

can be decomposed as L2(S2n+1) =
⊕

j,k≥0Hjk, where Hjk is the space of

harmonic polynomials on Cn+1 that are homogeneous of degree j, k in the ζ’s

and ζ’s, respectively, and restricted to the sphere. The dimension of Hjk is

(1.8) dim(Hjk) = mjk :=
(j + n− 1)!(k + n− 1)!(j + k + n)

n!(n− 1)!j!k!
,

and if {Y `
jk} is an orthonormal basis of Hjk, then the zonal harmonics are

defined as

Φjk(ζ, η) =

mjk∑
`=1

Y `
jk(ζ)Y `

jk(η).

The Φjk are invariant under the transitive action of U(n), and it turns out

that

(1.9)

Φjk(ζ, η) = Φjk(ζ·η) :=
(j + n− 1)!(j + k + n)

ω2n+1n!j!
(ζ·η)j−kP

(n−1,j−k)
k (2|ζ·η|2−1)

if k ≤ j, and Φjk(ζ, η) = Φjk(ζ · η) := Φkj(ζ · η), if j ≤ k, where P
(n,`)
k are the

Jacobi polynomials (see [VK93, §11.3.2]).

In particular, since P
(n−1,j)
0 ≡ 1, we have also

(1.10) Φj0(ζ · η) =
(j + n)!

j!n!ω2n+1
(ζ · η)j =

Γ
Ä
j + Q

2

ä
Γ(j + 1)Γ

Ä
Q
2

ä
ω2n+1

(ζ · η)j

and Φ0k(ζ · η) = Φk0(ζ · η) = Φk0(ζ ·η).

If F ∈ L2, then

F (ζ) =
∑
j,k≥0

∫
S2n+1

F (η)Φjk(ζ · η)dη,

the series being convergent in L2.
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Hardy spaces and CR-pluriharmonic functions. In the sequel we will use

the following notation:

H =
⊕
j≥0

Hj0

= {L2 boundary values of holomorphic functions on the unit ball},

H =
⊕
j≥0

H0j

= {L2 boundary values of antiholomorphic functions on the unit ball},

P =
⊕
j>0

(Hj0 ⊕H0j)⊕H00 = {L2 CR-pluriharmonic functions},

RP = {L2 real-valued CR-pluriharmonic functions},
H0, H0, P0, RP0 = functions in H, H, P, RP with 0 mean.

Note that H00 is the space of constant functions.

The space H is the classical Hardy space for the boundary of the unit ball

of Cn+1. The Cauchy-Szegő projection from L2(S2n+1) to H is given by the

Cauchy-Szegő kernel

K(ζ, η) =
1

ω2n+1(1− ζ · η)n+1
=
∑
j≥0

Φj0(ζ · η).

The projection operator on P

π : L2(S2n+1)→ P

has kernel 2ReK(ζ, η) − 1
ω2n+1

. Denote by P⊥ the orthogonal complement

of P, with respect to the standard Hermitian product ζ · η; i.e.,

L2(S2n+1) = P ⊕ P⊥.

The Hardy spaces for p > 1 are defined similarly. Hp will denote the Lp

closure of boundary values of holomorphic functions on the unit ball, continu-

ous up to the boundary, and likewise for all the other spaces Hp0, Pp, P
p
0 , . . . ,

etc. The Cauchy-Szegő projection sends Lp into Hp boundedly.

Sobolev spaces. The Sobolev, or Folland-Stein, spaces on Hn and S2n+1

can be defined in terms of the powers of the corresponding conformal sublapla-

cians. The main references here are, for example, [ACDB04], [ADB06], [Fol75].

We summarize the main properties below.

It is well known (see, e.g., [Sta89]) that for Yjk ∈ Hjk,

(1.11) DYjk = λjλkYjk, λj = j +
n

2
.
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For F ∈ L2(S2n+1), we can write F =
∑
j,k≥0

∑mjk
`=1 c

`
jk(F )Y `

jk, and c`jk(F )

=
∫
FY `

jk; in particular, if F ∈ C∞(S2n+1), then (1.11) implies that

(1.12)
∑
j,k≥0

mjk∑
`=1

(λjλk)
d|c`jk(F )|2 <∞.

For F ∈ C∞(S2n+1), we then define for any d ∈ R,

(1.13) Dd/2F =
∑
j,k≥0

mjk∑
`=1

(λjλk)
d/2c`jk(F )Y `

jk,

so that Dd/2 extends naturally to the space of distributions on the sphere. For

d > 0, p ≥ 1, we let

W d,p = {F ∈ Lp : Dd/2F ∈ Lp},

endowed with norm

‖F‖W d,p = ‖Dd/2F‖p;
the space W d,p is the completion of C∞(S2n+1) under such norm.

W d,2 is the space of F in L2 so that (1.12) and (1.13) hold, and it is a

Hilbert space with inner product and norm

(F,G)W d,2 =

∫
S2n+1

Dd/2F Dd/2G, ‖F‖W d,2 = (F, F )
1/2

W d,2 .

Clearly ‖(I + L)d/2‖2 yields an equivalent norm on W d,2. Also, if L2
d denotes

the classical Sobolev space on S2n+1, defined as above but using the (positive)

Laplace-Beltrami ∆ rather than D, and with norm ‖F‖L2
d

= ‖(I + ∆)d/2F‖2,

then

L2
d ↪→W d,2 ↪→ L2

d/2;

in fact,

c1‖F‖L2
d/2
≤ ‖F‖W d,2 ≤ c2‖F‖L2

d

for some c1, c2 > 0, as one can easily see by comparing the eingenvalues of D
with those of I + ∆ (i.e., 1 + (j + k)(j + k + 2n)).

The dual of W d,2 is the space of distributions

(W d,2)′ = {Dd/2F, F ∈ L2},

and it coincides with W−d,2 defined as the space of distributions T such that

D−d/2T ∈ L2.

The operators Dd/2 and Ld/2 are positive and self-adjoint in their domain

W d,2. The quadratic form (Dd/4F,Dd/4G) allows us to further extend Dd/2 and

Ld/2 to operators defined on W d/2,2 (the form domain) valued in W−d/2,2. In

the sequel we will denote such extensions by Dd/2, Ld/2, with domain W d/2,2.



MOSER-TRUDINGER AND BECKNER-ONOFRI’S INEQUALITIES 15

On the Heisenberg group the Sobolev spaces are defined analogously as

the completion of C∞c (Hn) under the norm ‖(I+L0)d/2‖2. The resulting space

is still denoted by W d,2.

Intertwining and Paneitz-type operators on the CR sphere. The group

SU(n+1, 1) acts as a group of conformal transformations on S2n+1, and there-

fore on Hn by means of the Cayley projection (see [KR85], [KR95]). Recall

that a conformal (or contact) transformation is a diffeomorphism h : Hn →
Hn that preserves the contact structure; i.e., if θ0 is a contact form, then

h∗θ0 = |Jh|2/Qθ0, where |Jh| is the Jacobian determinant of h. An analogue

of the Euclidean Liouville theorem holds: every C4 conformal mapping on Hn

comes from the action of an element of SU(n+ 1, 1), and it can be written as

composition of

left translations (z, t)→ (z′, t′)(z, t),

dilations (z, t)→ (δz, δ2t), δ > 0,

rotations (z, t)→ (Rz, t), R ∈ U(n),

inversion (z, t)→
(
− z

|z|2 + it
,− t

|z|4 + t2

)
.

Let us denote the spaces of conformal transformations (also called CR auto-

morphisms) of Hn by Aut(Hn) and the space of conformal transformations of

S2n+1 by Aut(S2n+1) := {τ : τ = C ◦ h ◦ C−1 some h ∈ Aut(Hn)}. Note that

the inversion on Hn corresponds to the antipodal map ζ → −ζ on S2n+1.

The functions |Jh| with h ∈ Aut(Hn) are obtained from |JC | by left trans-

lations and dilations and can be written as (cf. [JL88])

|Jh(u)| = C∣∣∣ |z|2 + it+ 2z · w + λ
∣∣∣Q ,

C > 0, w ∈ Cn, λ ∈ C, Reλ > |w|2, u = (z, t) ∈ Hn.

From this formula it follows that the functions |Jτ | with τ ∈ Aut(S2n+1) can

be parametrized as

(1.14) |Jτ (ζ)| = C

|1− ω · ζ|Q
, C > 0, ω ∈ Cn+1, |ω| < 1, ζ ∈ S2n+1.

The following formulas hold:

d(h(u), h(v)) = d(u, v)|Jh(u)|
1
2Q |Jh(v)|

1
2Q , ∀h ∈ Aut(Hn),(1.15)

d(τ(ζ), τ(η)) = d(ζ, η)|Jτ (ζ)|
1
2Q |Jτ (η)|

1
2Q , ∀τ ∈ Aut(S2n+1).

These formulas are trivially checked on translations, rotations, dilations

of Hn, and on the inversion of S2n+1; using (1.2) one can cover the remaining

cases.
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The operators L0 and D are intertwining in the sense that for each f ∈
C∞0 (Hn) and F ∈ C∞(S2n+1),

|Jh|
Q+2
2Q (L0f) ◦ h = L0

Ä
|Jh|

Q−2
2Q (f ◦ h)

ä
, ∀h ∈ Aut(Hn)

|Jτ |
Q+2
2Q (DF ) ◦ τ = D

Ä
|Jτ |

Q−2
2Q (F ◦ τ)

ä
, ∀τ ∈ Aut(S2n+1).(1.16)

To check these formulas it is enough to rewrite them in terms of the inverse

operators L−1
0 , D−1 and then use the explicit formulas for their kernels and

(1.15).

For 0 < d < Q, the general intertwining operator Ad of order d is defined

by the following property:

(1.17) |Jτ |
Q+d
2Q (AdF ) ◦ τ = Ad

Ä
|Jτ |

Q−d
2Q (F ◦ τ)

ä
, ∀τ ∈ Aut(S2n+1)

for each F ∈ C∞(S2n+1). In other words, the pullback of Ad by a conformal

transformation τ satisfies

τ∗Ad(τ−1)∗ = |Jτ |−
Q+d
2Q Ad|Jτ |

Q−d
2Q ,

where τ∗F = F ◦ τ .

The concept of intertwining operator is more properly understood in the

context of representation theory of semisimple Lie groups, in our case SU(n+

1, 1); see, e.g., [Bra95], [BÓØ96], [Cow82], [JW77]. In particular, for d ∈
C, the map ud : τ →

¶
F → |Jτ |(Q+d)/(2Q)(F ◦ τ)

©
is a representation of

the group SU(n + 1, 1), modulo identification of the latter with Aut(S2n+1);

these ud are known as principal series representations of SU(n + 1, 1), and

the ones corresponding to d ∈ (−Q,Q) are called complementary series. The

relation (1.17) says that Ad intertwines the representations ud and u−d. The

present formulation is given in elementary differential-geometric terms, which

for our purposes is more than enough. (See, however, [Bra95, pp. 18–19] for a

digression on the ud in more Lie-theoretic language.)

It is known from the above works (see also Proposition A.1) that an oper-

ator satisfying (1.17) is diagonal with respect to the spherical harmonics, and

its spectrum is completely determined up to a multiplicative constant by the

functions

(1.18) λj(d) =
Γ
Ä
Q+d

4 + j
ä

Γ
Ä
Q−d

4 + j
ä ∼ jd/2

in the sense that up to a constant the spectrum is precisely {λj(d)λk(d)}. From

now on we will choose such constant to be 1; i.e., Ad will be the operator on

W d,2 such that

(1.19) AdYjk = λj(d)λk(d)Yjk, Yjk ∈ Hjk.
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The form (A1/2
d F,A1/2

d G) allows us to extend Ad to an operator with

domain W d/2,2 valued in W−d/2,2, which we still denote by Ad. The eigenvalues

of such operators are still λj(d)λk(d); i.e., (1.19) holds, in the sense of forms.

Since λj(d) > 0 for all j ≥ 0 then KerAd = {0}, and eigenvalue estimates show

easily that ‖Ad/2F‖2 or ‖(Ad)1/2F‖2 are equivalent to ‖F‖W d,2 , for 0 < d < Q.

Observe that in the case d = 2, we have λj(2) = λj = j + n
2 , and we recover

the conformal sublaplacian; i.e.,

A2 = D.

A fundamental solution of Ad is given by

(1.20) Gd(ζ, η) := A−1
d (ζ, η) =

∑
j,k≥0

Φjk(ζ · η)

λj(d)λk(d)
= cd d(ζ, η)d−Q,

with

(1.21) cd =
2n−

d
2 Γ
Ä
Q−d

4

ä2
πn+1Γ

Ä
d
2

ä
and where the series converges unconditionally in the sense of distributions,

and also in L2 if Q/2 < d < Q. The proof of (1.20) is somehow implicit in the

work of Johnson and Wallach [JW77], and a similar formula (still quoted from

[JW77]) appears in [ACDB04, formula (11)], but with different normalizations.

The case d an even integer was treated by Graham [Gra84], including the

expression for the fundamental solution. For the reader’s sake in Appendix A

we offer a self-contained proof of the spectral characterization of intertwining

operators, in the sense of (1.17) and of formula (1.20), using only the explicit

knowledge of the zonal harmonics and Schur’s Lemma. We note here (but see

also Appendix A) that the intertwining property can be checked directly using

(1.20) and formulas (1.15), after casting (1.17) in terms of the inverse A−1
d .

We shall be concerned with the intertwining, Paneitz-type operators of

order Q. Noticing that

(1.22) λ0(d) =
Γ
Ä
Q+d

4

ä
Γ(Q−d4

ä ∼ Q− d
4

Γ
ÄQ

2

ä
, d→ Q,

we easily obtain from (1.17) that the operator AQ : W d,2 → P⊥ defined as

(1.23) AQF := lim
d→Q
AdF,

the limit being in L2, satisfies for F ∈WQ,2,

(1.24) |Jτ |(AQF ) ◦ τ = AQ(F ◦ τ), ∀τ ∈ Aut(S2n+1)

or

(1.25) τ∗AQ(τ−1)∗ = |Jτ |−1AQ.
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The operator AQ can be extended via its quadratic form to an opera-

tor, still denoted by AQ, with domain WQ/2,2, kernel KerAQ = P, valued inÄ
WQ/2,2

ä′
= W−Q/2,2. The identity (1.24) is still valid for F ∈WQ/2,2 and

AQYjk = λj(Q)λk(Q)Yjk = j(j + 1) · · · (j + n)k(k + 1) · · · (k + n)Yjk.

We observe that ‖(I + AQ)1/2F‖2 is equivalent to ‖F‖WQ/2,2 on the space

WQ/2,2 ∩ P⊥.

In the case where d is an even integer it is possible to write down a more

explicit formula for Ad as a product of Geller’s type operators. In fact, we can

recover the operators found by Graham in [Gra84].

Proposition 1.1. If d ≤ Q is an even integer, then Ad is a differential

operator and

Ad=



d
4−1∏
`=0

Ä
D − (2`+1)2

4 + i(2`+ 1)T
äÄ
D − (2`+1)2

4 − i(2`+ 1) T
ä

if d
4 ∈N,

D

d−2
4∏
`=0

Ä
D − `2 + 2i`T

äÄ
D−`2−2i` T

ä
if d−2

4 ∈N.

Proof. We have

λj(d) =

d
2−1∏
`=0

Ä
λj + `− d

4 + 1
2

ä
from which we have that (recall λj = j + n

2 )

λj(d)λk(d) =



d
4−1∏
`=0

Ä
λ2
j − (`+ 1

2)2
äÄ
λ2
k − (`+ 1

2)2
ä

if d
4 ∈ N,

λjλk

d−2
4∏
`=0

Ä
λ2
j − `2

äÄ
λ2
k − `2

ä
if d−2

4 ∈ N.

The proof is completed noticing that T Yjk = i
2 (j − k)Yjk, for Yjk ∈ Hjk, and

that
Ä
λ2
j − b2

äÄ
λ2
k − b2

ä
=
Ä
λjλk − b2 + b(j − k)

äÄ
λjλk − b2 − b(j − k)

ä
. �

In particular, note that when d = 4,

A4 =
(
L+

n2 − 1

4

)2
+ T 2.

Also, note that since T 2 = −|T |2, then one can isolate the highest order

derivatives in the above expression, counting T as an operator of order 2, and
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obtain

(1.26) Ad = |2T |d/2
Γ
Ä
L|2T |−1 + 2+d

4

ä
Γ
Ä
L|2T |−1 + 2−d

4

ä + lower order derivatives.

Of course the formula above needs to be suitably interpreted, as T is invert-

ible only on the space
⊕

j 6=kHjk. For d not an even integer, we speculate that

there might still be a way to make sense out of (1.26), as the “leading oper-

ator” appearing in that formula has the same form as the intertwinor on the

Heisenberg group (see (1.33)).

Remark. It is possible to show that a fundamental solution for AQ : P⊥ →
P⊥ is given by

A−1
Q (ζ, η) =

2

ω2n+1Γ
Ä
Q
2

ä2 log2 d
2(ζ, η)

2

(up to a CR-pluriharmonic function). This calculation can be effected using

the explicit formula for the fundamental solution of Ad and differentiating

twice with respect to d at d = Q. (Note that the constant cd has a pole of

order two ad d = Q.)

Conditional intertwinors. Of particular importance for us is the existence

of another intertwinor of order Q defined on P, which we call the conditional

intertwinor. This is defined by its action on the spherical harmonics in the

following way:

(1.27) A′QYj0 = λj(Q)Yj0 = j(j + 1) · · · (j + n)Yj0, A′QY0k = λk(Q)Y0k.

Observe that ‖(I + A′Q)1/2F‖2 is equivalent to ‖F‖WQ/2,2 on WQ/2,2 ∩ P, so

that A′Q can be extended in the usual way to WQ/2,2 ∩ P. We summarize the

properties of A′Q in the following proposition.

Proposition 1.2. The operator A′Q defined as in (1.27) is positive semi-

definite, self-adjoint on WQ/2,2 ∩ P , and KerA′Q = H00. For each F ∈
C∞(S2n+1) ∩ P , we have

(1.28) A′QF = − 4

Γ
Ä
Q
2

ä ∂

∂d

∣∣∣∣∣
d=Q

(AdF ) = lim
d→Q

1

λ0(d)
AdF,

and for every τ ∈ Aut(S2n+1), we have

(1.29) |Jτ |(A′QF ) ◦ τ = A′Q(F ◦ τ) +
2

QΓ
Ä
Q
2

äAQÄ log |Jτ |(F ◦ τ)
ä
.

Moreover, A′Q is a differential operator with

(1.30) A′QF =
n∏
`=0

Ä
2|T |+ `

ä
F =

n∏
`=0

Ä
2
nL+ `

ä
F, ∀F ∈ C∞(S2n+1) ∩ P,
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and it is injective on P0 with fundamental solution

(1.31) G′Q(ζ, η) := (A′Q)−1(ζ, η) = − 2

n!ω2n+1
log

d2(ζ, η)

2
.

Note that (1.29) says that the intertwining property in the form (1.24) or

(1.25) continues to hold for A′Q, but modulo distributions that annihilate P (or

modulo functions in P⊥ if F ∈ WQ,2). Also, A′Q is an intertwining operator

if seen as an operator from P to L2/P⊥. In particular, the representations

intertwined by A′Q are the standard shift τ → {F → F ◦ τ}, on P, and

τ → { [F ]→ [ (F ◦ τ)|Jτ | ] } on L2/P⊥.

Proof. The eigenvalues ofA′Q vanish when j = 0 or k = 0; hence, KerA′Q =

H00 (the constants). The first identity follows easily from (1.22). To prove

(1.29), it is enough to take the d-derivative at Q of (1.17):

|Jh|(A′QF ) ◦ τ − 2

QΓ
Ä
Q
2

ä |Jτ | log |Jτ |(AQF ) ◦ τ

= A′Q(F ◦ τ) +
2

QΓ
Ä
Q
2

äAQÄ log |Jτ |(F ◦ τ)
ä

for each F ∈ C∞(S2n+1) ∩ P. We can trivially check (1.30) when F is a

spherical harmonic. The last statement (1.31) follows from the formula

G′Q(ζ, η) =
∞∑
j=1

Φj0(ζ · η) + Φ0j(ζ · η)

λj(Q)

= 2Re
∞∑
j=1

Φj0(ζ · η)

λj(Q)
=

2

Γ
Ä
Q
2

ä
ω2n+1

Re
∞∑
j=1

(ζ · η)j

j
. �

Intertwining operators on the Heisenberg group. For completeness we say

a few words for the case of the intertwining operators on Hn. We already know

from (1.7) that there is a direct connection between A2 = D and L0, via the

Cayley transform. To find the analogue situation for Ad one basically has to

find the operator on Hn with fundamental solution |u|d−Q, since this operator is

easily checked to be intertwining. This has been done by Cowling [Cow82], and

the result can be formulated as follows. Consider the U(n)-spherical functions

Φλ,k(z, t) = eiλt−|λ| |z|
2
Ln−1
k (|λ| |z|2), λ 6= 0, k = 0, 1, 2, . . . ,

where Ln−1
k denote the classical Laguerre polynomial of degree k and order

n− 1. These are the eigenfunctions of the sublaplacian L0 and of T = ∂t:

L0Φλ,k = |λ|(2k + n)Φλ,k, TΦλ,k = iλΦλ,k.
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On Hn there is a notion of “group Fourier transform,” which on radial functions

(i.e., functions depending only on |z| and t) takes the form

f̂(λ, k) =

∫
Hn

Φλ,k(z, t)f(z, t) du, f ∈ L1(Hn).

With this notation, we have‘L0f(λ, k) = |λ|(2k + n)f̂(λ, k), T̂ f(λ, k) = −iλf̂(λ, k).

In analogy with the sphere situation, one can show that up to a multi-

plicative constant there is a unique operator Ld such that

|Jh|
Q+d
2Q (Ldf) ◦ h = Ld

Ä
|Jh|

Q−d
2Q (f ◦ h)

ä
, ∀h ∈ Aut(Hn)

for f ∈ C∞(Hn), and such Ld is characterized by (under our choice of the

constant)

(1.32) ‘Ldf(λ, k) = 2d/2|λ|d/2
Γ
Ä
k + Q+d

4

ä
Γ
Ä
k + Q−d

4

ä f̂(λ, k) = 2d/2|λ|d/2λk(d)f̂(λ, k),

or, otherwise put,

(1.33) Ld = |2T |d/2
Γ
Ä
L0|2T |−1 + 2+d

4

ä
Γ
Ä
L0|2T |−1 + 2−d

4

ä .
With this particular choice of the multiplicative constant, we have

L2 = L0, L4 = L2
0 + T 2 = L2

0 − |T |2,

Ld
(
(2|JC |)

Q−d
2Q (F ◦ C)

)
= (2|JC |)

Q+d
2Q (AdF ) ◦ C,

and a fundamental solution of Ld is

(1.34) L−1
d (u, v) = Cd |v−1u|d−Q, Cd = 1

2 cd =
2n−

d
2
−1 Γ

Ä
Q−d

4

ä2
πn+1Γ

Ä
d
2

ä .

The proofs of these facts are more or less contained in [Cow82, Th. 8.1], which

gives the computation of the group Fourier transform of |u|d−Q. Note however,

that our proof of the corresponding facts on the sphere (Appendix A) can easily

be adapted to this situation.

We remark here that in the case d an even integer, the operator Ld coin-

cides with the operator found by Graham in [Gra84].

The intertwinors at level d = Q on Hn are obtained in the same manner

as those for the sphere. There is the operator

LQ = lim
d→Q
Ld
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whose kernel is the space of boundary values of pluriharmonic functions on the

Siegel domain (modulo identification of its boundary with Hn). In terms of

AQ, we have

(1.35) LQ(F ◦ C) = 2|JC |(AQF ) ◦ C.

For the conditional intertwinor, we recall that f is the boundary value of

a holomorphic (resp. antiholomorphic) function on the Siegel domain if and

only if f̂(λ, k) = 0 if k 6= 0 or λ < 0 (resp. λ > 0). So for f a smooth

CR-pluriharmonic function on Hn, we can define, in analogy with A′Q and via

(1.32),

L′Qf = − 4

Γ
Ä
Q
2

ä ∂

∂d

∣∣∣∣∣
d=Q

Ldf = lim
d→Q

1

λ0(d)
Ldf = |2T |Q/2f.

With this definition, we have for a smooth F ∈ P,

2|JC |(A′QF ) ◦ C = L′Q(F ◦ C) +
2

QΓ
Ä
Q
2

äLQÄ log(2|JC |)(F ◦ C)
ä
,

which basically says that the conditional intertwinor on S2n+1 is nothing but

|2T |Q/2 on the Hn-pluriharmonic functions, “lifted” from Hn to S2n+1 via the

Cayley map. (Note that the second term on the right is orthogonal the the

pluriharmonics.) Also, we have

|Jh|(L′Qf) ◦ h = L′Q(f ◦ h) +
2

QΓ
Ä
Q
2

äLQÄ log |Jh|(f ◦ h)
ä
, h ∈ Aut(Hn)

analogous to (1.29).

Intertwining operators and change of metric. The sublaplacian and con-

formal sublaplacian can be defined intrinsically on any compact, strictly pseu-

doconvex CR manifold M , in terms of the contact form θ; see, e.g., [JL87],

[Sta89]. In particular, the conformal sublaplacian Dθ, corresponding to the

contact form θ, satisfies the simple transformation formula

(1.36) DWθ = W−
Q+2
4 DθW

Q−2
4 ,

for any positive, smooth function W on M , where Q = 2n + 2 and 2n + 1 is

the dimension of the manifold.

General intrinsic constructions of higher integer order CR-invariant oper-

ators have been established by works of Fefferman, Gover, Graham, Hirachi

([Hir93], [FH03], [GG05]). A special but important case is the fourth order CR

Paneitz operator P in dimension Q = 4, introduced in [Hir93], which satisfies

PWθ = W−1Pθ.

The CR Paneitz operator was also recently studied in [CCY12].
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It is natural to speculate that a similar theory could be devised for the

conditional intertwinors, acting on pluriharmonic functions, which we intro-

duced here only in the standard structure of S2n+1. Rather than attempting

an intrinsic construction of such operators, we will present a natural extension

of A′Q from the standard contact form θ of S2n+1 to a “conformally changed”

form Wθ, motivated by the intertwining property given in (1.29). We will be

interested in studying eigenvalues inequalities of such operators later on, as

part of the proof of the Beckner-Onofri’s inequality (0.8) (see Proposition 3.6).

In order to motivate our construction, which will be carried over the whole

family of intertwinors Ad, first observe that if θ is the standard form on S2n+1,

then (1.36) implies that DWθ is a positive and self-adjoint operator, densely

defined on L2(S2n+1,WQ/2dζ). By standard facts (which will be recalled be-

low), DW has eigenvalues 0 < λj(W ) ↑ ∞, and by the intertwining property

(1.16) (see proof of Proposition 1.3 below) such eigenvalues are invariant under

the conformal action that preserves LQ/2 norms:

λj(W ) = λj
Ä
(W ◦ τ)|Jτ |2/Q

ä
.

We can now extend all this to the operators Ad and A′Q. For 0 < W ∈
C∞(S2n+1) and 0 < d ≤ Q, the L2 Hermitian products

(F,G) =

∫
S2n+1

FGdζ, (F,G)W :=

∫
S2n+1

FGWQ/ddζ

define equivalent norms on L2. It follows that P is a closed subspace of L2

under the product (F,G)W , and there exists a corresponding orthogonal pro-

jection πW :

πW : L2 → P.

Proposition 1.3. Let W ∈ C∞(S2n+1), with W > 0. For 0 < d ≤ Q,

the operator

Ad(W ) := W−
Q+d
2d AdW

Q−d
2d

satisfies

(1.37)
Ä
Ad(W )F,G

ä
W

=
Ä
AdF,G

ä
F,G ∈ C∞(S2n+1),

and it can be extended to a self-adjoint operator on W d/2,2, which is positive

definite if d < Q, and positive semidefinite if d = Q, with KerAQ(W ) = P .

There is a sequence {ψWj } of real-valued eigenfunctions of Ad(W ) that form

an orthonormal basis of L2 with respect to (F,G)W .

The operator Ad(W ) and its eigenvalues
¶
λj(W )

©∞
0

are conformally in-

variant in the sense that if τ ∈ Aut(S2n+1) and Wτ = (W ◦ τ)|Jτ |d/Q, then

(1.38) τ∗Ad(W )(τ−1)∗ = Ad(Wτ )
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and

(1.39) λj(W ) = λj(Wτ ), j ≥ 0.

The operator

(1.40) A′Q(W ) := πWW
−1A′Q

satisfies

(1.41)
Ä
A′Q(W )F,G

ä
W

=
Ä
A′QF,G

ä
, F,G ∈ C∞(S2n+1) ∩ P,

and it can be extended to a self-adjoint, positive semidefinite operator on

WQ/2,2 ∩ P , with KerA′Q(W ) = H00. There is a sequence {φWj } of real-valued

eigenfunctions of A′Q(W ) that form an orthonormal basis of P with respect to

the product (F,G)W .

The operator A′Q(W ) and its eigenvalues
¶
λ′j(W )

©∞
0

are conformally in-

variant in the sense that if τ ∈ Aut(S2n+1) and Wτ = (W ◦ τ)|Jτ |, then

(1.42) τ∗A′Q(W )(τ−1)∗ = A′Q(Wτ )

and

(1.43) λ′j(W ) = λ′j(Wτ ), j ≥ 0.

Proof. This proposition follows in a more or less straightforward way

from the standard spectral theory of forms and operators on Hilbert spaces

(e.g., see [Sho77, Th. 7.7]). For 0 < d < Q, identity (1.37) is obvious, andÄ
Ad(W )1/2F,Ad(W )1/2F

ä
W
≥ c‖F‖W d/2,2 , some c > 0, and we can find an or-

thonormal basis of eigenfunctions of Ad(W ) for L2. Clearly, since AQ is real,

such eigenfunctions can be chosen to be real-valued. Identity (1.38) follows

from the intertwining property (1.17) and implies that if λ is an eigenvalue

of Ad(Wτ ) with eigenfunction ψ, then λ is also an eigenvalue of Ad(W ), with

eigenfunction ψ ◦ τ−1, which is (1.39). The proof for the case d = Q is similar,

by considering the positive operators I + AQ(W ) and I + A′Q(W ). Identity

(1.42) follows fromÄ
A′Q(W )(G ◦ τ−1) ◦ τ, φ

ä
Wτ

=
Ä
A′QG,φ

ä
=
Ä
A′Q(Wτ )G,φ

ä
Wτ
, G, φ ∈WQ/2,2 ∩ P,

which in turn is a consequence of the intertwining property (1.29), i.e.,

|Jτ |
Ä
A′Q(G ◦ τ−1)

ä
◦ τ = A′QG+H, G ∈WQ/2,2 ∩ P

for some H ∈ P⊥, and the fact that G ◦ τ−1 ∈ P, since the conformal trans-

formations are restrictions of biholomorphic mappings on the unit ball. �
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The naturality of the operators Ad(W ) and A′Q(W ) is expressed by the

intertwining relations in (1.38), (1.42). In the case d integer, the operators

Ad(W ) coincide with those obtained intrinsically in [FH03], [GG05], [Hir93],

within the class of contact forms {Wθ}.

2. Adams and Moser-Trudinger inequalities on the CR sphere

In this section we establish new sharp Moser-Trudinger inequalities on

S2n+1. Two particular cases of such estimates will be needed in the next

section for the proof of Beckner-Onofri’s inequality (see Propositions 3.3 and

3.4), but we believe that the other cases are of independent interest. The first

special result we will need is a sharp inequality of type (0.9) for the operator

BQ/2 = (A′Q)1/2:

(2.1)

∫
S2n+1

exp

ñ
ω2n+1(n+ 1)!

2

Ç
|F |

‖(A′Q)1/2F‖2

å2 ô
dζ ≤ C0

for all F ∈ WQ/2,2 ∩ RP, with zero mean; this is a key estimate in order to

show that the Beckner-Onofri functional (0.8) is bounded below. We will in

fact establish a version of (2.1) that is valid for more general spectrally defined

operators acting on pluriharmonic functions or on Hardy spaces, since its proof

does not really require the specific structure of the operator (A′Q)1/2.

The second main result that we will need has to do with (0.9) for the

operator BQ/2 = LQ/4. For technical reasons we will in fact need to use the

spectrally modified operator L
Q/4
λ = ( 2

nL)Q/4π +
√
λLQ/4π⊥ (λ > 0) and the

following estimate:

(2.2)

∫
S2n+1

exp

ñ
ω2n+1(n+ 1)!

2
Ä
1 + kn

λ

ä Ç
|F |

‖LQ/4λ F‖2

å2 ô
dζ ≤ C0

for all F ∈WQ/2,2 with zero mean and some specific constant kn > 0 depending

only on n. Such estimate will be needed to prove an Aubin’s type inequality for

functions with vanishing center of mass (Proposition 3.4). The above estimate

(2.2) will be a special case of a more general sharp Moser-Trudinger inequality

valid for arbitrary real powers less thanQ of the operator aLπ+bLπ⊥ (a, b > 0),

which include the sublaplacian, in the same spirit as Adams’ original results

on Rn [Ada88].

The main step in the proof of (2.1), (2.2), and their generalizations, is their

equivalent formulation in terms of suitable potentials, also known as “Adams’

forms” of Moser-Trudinger inequalities.

Adams inequalities for convolution type operators on the CR sphere. Let

us introduce some notation:

u = (z, t) ∈ Hn, Σ = {u ∈ Hn : |u| = 1}, u∗ = (z∗, t∗) =
u

|u|
∈ Σ,
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ζ = C(z, t) ∈ S2n+1,
1− ζn+1

1 + ζn+1
= |z|2 + it = |u|2eiθ,(2.3)

E = C(Σ) =
¶

(ζ1, . . . , ζn+1) ∈ S2n+1 : Re ζn+1 = 0
©
.

It is easy to see that a function h(ζ, η) is U(n+1)-invariant, i.e., h(Rζ,Rη)

= h(ζ, η) for all R ∈ U(n+1), if and only if h(ζ, η) = g(ζ·η) for some g defined

on the unit disk of C. Furthermore, from (2.3) the function g(ζ · N) = g(ζn+1)

is independent on Re ζn+1, i.e., it is defined on E , if and only if it is a function

of the angle θ = sin−1 t∗.

A measurable function φ :
î
− π

2 ,
π
2

ó
→ R can be viewed as a function on

Σ, via φ(θ) = φ(sin−1 t∗), and we will use the notation

(2.4)

∫
Σ
φdu∗ :=

∫
Σ
φ(sin−1 t∗)du∗ = ω2n−1

∫ π/2

−π/2
φ(θ)(cos θ)n−1dθ

whenever the integrals make sense. The formula on the right in (2.4) is easily

checked via polar coordinates. Finally, for w ∈ C, |w| < 1 we let

θ = θ(w) = arg
1− w
1 + w

∈
[
− π

2
,
π

2

]
.

Theorem 2.1. Let 0 < d < Q and p = Q
d . Define

Tf(ζ) =

∫
S2n+1

G(ζ, η)f(η)dη, f ∈ Lp(S2n+1),

where

G(ζ, η) = g
Ä
θ(ζ · η)

ä
d(ζ, η)d−Q +O

Ä
d(ζ, η)d−Q+ε

ä
(2.5)

= 2
d−Q
2 g
Ä
θ(ζ · η)

ä
|1− ζ · η|

d−Q
2 +O

Ä
|1− ζ · η|

d−Q+ε
2

ä
, ζ 6= η

for bounded and measurable g :
î
− π

2 ,
π
2

ó
→ R, with

∣∣∣OÄ|1 − ζ · η| d−Q+ε
2

ä∣∣∣ ≤
C|1− ζ · η|

d−Q+ε
2 , some ε > 0, and with C independent of ζ, η.

Then, there exists C0 > 0 such that for all f ∈ Lp(S2n+1),

(2.6)

∫
S2n+1

exp

ñ
Ad

Ç
|Tf |
‖f‖p

åp′ô
dζ ≤ C0,

with

(2.7) Ad =
2Q∫

Σ
|g|p′du∗

for every f ∈ Lp(Sn), with 1
p + 1

p′ = 1. Moreover, if the function g(θ) is

Hölderian of order σ ∈ (0, 1], then the constant in (2.7) is sharp, in the sense

that if it is replaced by a larger constant then there exists a sequence fm ∈
Lp(S2n+1) such that the exponential integral in (2.6) diverges to +∞ as m→∞.
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In [CL01], Cohn and Lu give a similar result in the context of the Heisen-

berg group and for kernels of type G(u) = g(u∗)|u|d−Q, i.e., without any per-

turbations. A version analogous to Theorem 2.1 can be stated and proved also

on Hn (thus extending the result in [CL01]).

The point of Theorem 2.1 is that the expansion (2.5) is precisely that of the

fundamental solutions of several (if not most) differential and pseudodifferental

operators of interest in CR geometry including, for example, the sublaplacian

and its powers.

Proof. The proof of this theorem is an application of general results about

Adams inequalities in measure-theoretic settings, recently obtained by Fontana

and Morpurgo [FM11]. In fact, (2.6) is an instant consequence of Theorem 1

in [FM11] and the following sharp asymptotic estimate on the distribution

function of G(ζ, η):

(2.8)
∣∣∣{ζ : |G(ζ, η)| > s}

∣∣∣ = s
− Q
Q−d

1

2Q

∫
Σ
|g|

Q
Q−ddu∗ +O

Ä
s
− Q
Q−d−σ

ä
for a suitable σ > 0, as s→ +∞. The proof of (2.8) is a “routine” calculation

based on the asymptotic expansion (2.5): first use the Cayley transform to

reduce things to Hn, then use polar coordinates to complete the job. (See

[BFM07, Lemma 2.3] for details.)

The sharpness statement is proved in [FM11] and follows the same general

philosophy originally used by Adams and later by Fontana, Cohn-Lu, and many

others. In our case it is possible to check that the sequence fm in the statement

of Theorem 2.1 can be chosen as

fm(η)=

|G(N, η)|d/(Q−d) sgn
Ä
G(N, η)

ä
if |G(N, η)|≤m, d(N, η)≥2m−2/(Q−d)

0 otherwise.

�

Moser-Trudinger inequalities for operators of d-type on Hardy spaces. For

a given d > 0, we say that a densely defined and self-adjoint operator Pd on H
is of d-type if

(2.9) PdYj0 = µj0Yj0, ∀Yj0 ∈ Hj0
for a given sequence {µj0} such that for j →∞,

0 ≤ µ00 ≤ µ10 ≤ µ20 ≤ · · ·(2.10)

µj0 = jd/2 + a1j
d/2−ε1 + · · ·+ amj

d/2−εm +O(jd/2−εm+1)

for some 0 < ε1 < ε2 < · · · < εm+1 with Q−d
2 < εm+1. From this condition it

follows that Ker(Pd) is finite dimensional and that Pd is a continuous operator

from W d,2 ∩ H to H. More generally, one defines operators of d-type on Hp
as densely defined operators satisfying (2.9) and (2.10). Note that by (2.10),
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the operator Pd can be written on C∞ ∩ Hp as a finite sum of powers of the

sublaplacian, up to a smoothing operator. Pd is a continuous operator from

W d,p ∩Hp to Hp and invertible if restricted to Ker(Pd)
⊥ with

Ker(Pd)
⊥ :=

{
F ∈ Hp :

∫
S2n+1

Fφk = 0, k = 1, . . . ,m
}

and where φ1, . . . , φm denote a basis of Ker(Pd), the null space of Pd. Oper-

ators of d-type on Hp and Pp are defined similarly, and the spectrum of such

operators is denoted by {µ0j} and {µj0, µ0j} respectively, where the µ’s satisfy

a condition of type (2.10).

Clearly the operators (A′Q)α are of αQ-type for α > 0.

Theorem 2.2. If Pd is an operator of d-type on Pp, with 0 < d < Q,

then there is C0 > 0 such that for any F ∈ W d,p ∩ Pp ∩ Ker(Pd)
⊥ and with

p = Q
d ,

1
p + 1

p′ = 1, we have

(2.11)

∫
S2n+1

exp

ñ
Ad

Ç
|F |
‖PdF‖p

åp′ô
dζ ≤ C0,

with

(2.12) Ad =
2Q∫

Σ
|gd|p′du∗

and

(2.13) gd(θ) =
2
Q−d
2

+1 Γ
Ä
Q−d

2

ä
ω2n+1 n!

cos
Ä
Q−d

2 θ
ä
.

In the special case d = Q/2 (i.e., p = p′ = 2),

(2.14) AQ/2 =
ω2n+1(n+ 1)!

2
= (n+ 1)πn+1,

and this constant is sharp; i.e., it cannot be replaced by a larger constant in

(2.11).

If Pd is of d-type on Hp, then for any F ∈ W d,p ∩ Hp ∩ Ker(Pd)
⊥, both

(2.11) and (2.12) hold with gd =
2
Q−d
2 Γ
Ä
Q−d
2

ä
n!ω2n+1

. In the special case d = Q/2, we

have AQ/2 = ω2n+1(n+ 1)! = 2(n+ 1)πn+1, and this constant is sharp.

Remark. Inequality (2.1) is a special case of (2.11).

Proof. If Pd is of d-type on Hp, then it is invertible on F ∈ W d,p ∩ Hp ∩
Ker(Pd)

⊥ and has fundamental solution defined by the formula

P−1
d (ζ, η) := lim

R→1−

∑
µj0 6=0

Φj0(ζ · η)

µj0
Rj

in the sense of distributions and pointwise for ζ 6= η.
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Using that

∑
µj0 6=0

Φj0

µj0
Rj =

1

n!ω2n+1

∑
j≥j0

Γ
Ä
j + Q

2

ä
Γ(j + 1)

(Rζ · η)j

µj0

and using the hypothesis on the µj0, it is straightforward to check that

(2.15) P−1
d (ζ, η) =

Γ
Ä
Q−d

2

ä
ω2n+1 n!

(1− ζ · η)
d−Q
2 +O

Ä
|1− ζ · η|

d−Q
2

+ε
ä

for a suitable ε > 0.

Likewise, if Pd is of d-type on Pp, then it is invertible on F ∈W d,p ∩Pp ∩
Ker(Pd)

⊥ and has fundamental solution defined by the formula

P−1
d (ζ, η) := lim

R→1−

® ∑
µj0 6=0

Φj0(ζ · η)

µj0
Rj +

∑
µ0j 6=0

Φ0j(ζ · η)

µ0j
Rj
´

in the sense of distributions and pointwise for ζ 6= η, and the following expan-

sion holds:

P−1
d (ζ, η) =

2Γ
Ä
Q−d

2

ä
ω2n+1 n!

Re (1− ζ · η)
d−Q
2 +O

Ä
|1− ζ · η|

d−Q
2

+ε
ä

(2.16)

= 2
d−Q
2 gd(θ) |1− ζ · η|

d−Q
2 +O

Ä
|1− ζ · η|

d−Q
2

+ε
ä

for a suitable ε > 0. Note that (1− ζ · η) = |1− ζ · η| eiθ +O(|1− ζ · η|2).

The proof of (2.11) now follows from Theorem 2.1, taking T to be the

integral operator with kernel G(ζ, η) = P−1
d (ζ, η), as in (2.15) and (2.16). In

the case d = Q/2, the computation of AQ/2 is based on (2.4) and the formula

∫ π/2

0
cos2

Ä
n+1

2 θ
ä
(cos θ)n−1dθ =

1

2

∫ π/2

0
(cos θ)n−1dθ =

√
π Γ
Ä
n
2

ä
4 Γ
Ä
n+1

2

ä
together with the duplication formula for the gamma function.

For the proof of the sharpness statements, see [BFM07]. �

Moser-Trudinger inequalities for powers of sublaplacians. In this section

we obtain sharp Moser-Trudinger inequalities for Ld/2 and, more generally, for

powers of operators of type La,b := aLπ + bLπ⊥, where π⊥ := I − π on Lp.

As in the proof of Theorem 2.2, the main step is to give precise asymptotic

estimates for the fundamental solution of such operators.
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The starting point is an explicit formula for the fundamental solution of

the powers of the Hn sublaplacian:

L−d/20 (u, 0) = 1
2 Gd(θ)|u|

d−Q,

(2.17)

Gd(θ) =
2n+1Γ

Ä
Q−d

2

ä
πn+1Γ

Ä
d
2

ä Re

®
ei
Q−d
2
θ
∫ ∞

0

( s

1− e−2s

) d
2
−1 e−ns

(e2iθ + e−2s)
Q−d
2

ds

´
,

which was derived first by [BDR93] in case d an even integer and later by

[CT00] for any d < Q using the heat kernel approach.

The following result yields more information on the function Gd(θ), and

it will be useful in the explicit computation of the sharp constants for the case

p = 2.

Proposition 2.3. Gd(θ) has the following trigonometric expansion :

(2.18) Gd(θ) =
∞∑
k=0

gk,d(θ)

λ
d/2
k

,

where

gk,d(θ)=
2
Q−d
2

+1

ω2n+1n!

k∑
`=0

(−1)`Γ
Ä
k − `+ d

2 − 1
ä

Γ
Ä
`+n− d

2 + 1
ä

Γ
Ä
d
2 − 1

ä
Γ(k − `+ 1)Γ(`+ 1)

cos
îÄ

2`+Q−d
2

ä
θ
ó

if d 6= 2, with the series converging in the sense of distributions, and

gk,2(θ) =
(−1)k2n+1

ω2n+1n!
· Γ(k + n)

Γ(k + 1)
.

Moreover,

(2.19)

∫
Σ
gk,dgj,Q−ddu

∗ =
4 Γ(k + n)

πn+1Γ(n)Γ(k + 1)
δj,k.

Formula (2.18) appeared in [BDR93], for the case d an even integer, and

can be shown in a similar way using formula (2.17), and writing (1−e−2s)d/2−1

and (e2iθ + e−2s)−(Q−d)/2 as binomial series. The orthogonality relation (2.19)

seems to be new, and its proof is a brute calculation involving classical termi-

nating Saalschützian hypergeometric series; see [BFM07] for more details.

Proposition 2.4. The fundamental solution of Ld/2 ( 0 < d < Q) satis-

fies

L−d/2(ζ, η) = Gd(θ)d(ζ, η)d−Q +O
Ä
d(ζ, η)d−Q+ε

ä
(2.20)

= 2
d−Q
2 Gd(θ)|1− ζ · η|

d−Q
2 +O

Ä
|1− ζ · η|

d−Q+ε
2

ä
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with Gd(θ) as in (2.17). More generally, if La,b := aLπ + bLπ⊥ with a, b > 0,

then L
d/2
a,b is continuous on W d,p, invertible on the subspace of functions with

zero mean, and its fundamental solution satisfies

L
−d/2
a,b (ζ, η) = 2

d−Q
2

ñ
gd(θ)

(an/2)d/2
+
g⊥d (θ)

bd/2

ô
|1− ζ · η|

d−Q
2 +O

Ä
|1− ζ · η|

d−Q
2

+ε
ä
,

(2.21)

g⊥d (θ) = Gd(θ)−
gd(θ)

(n/2)d/2
(2.22)

for a suitable ε > 0, and with gd(θ) as in (2.13), and Gd(θ) as in (2.17).

Note that gd(θ)(n/2)−d/2 is the first term in the expansion (2.18), so that

the notation g⊥d in (2.22) is justified.

The proof of (2.20) is relatively straightforward in the case of integer

powers, i.e., when d is even. The idea is that first one should consider D−d/2,

where D is the conformal sublaplacian with the explicit fundamental solution

as in (1.6). The fundamental solution of D−d/2 is then a multiple integral on

products of spheres, which can be related to the fundamental solution of L−d/20

on Hn via the Cayley transform. The case of d not an even integer is more

involved, and the authors were able to handle it by using path integration.

For details, see [BFM07, Prop. 2.6 and Cor. 2.7]. The proof of (2.21) follows

at once from (2.20) and the fact that the operator
Ä

2
nL
äd/2

π is of d-type, so

Proposition 2.3 applies.

The following is now an immediate consequence of the above results com-

bined with Theorem 2.1.

Theorem 2.5. Let La,b = aLπ + bLπ⊥ ( a, b > 0). Then there is C0 > 0

so that for any F ∈W d,p with zero mean and with p = Q
d ,

1
p + 1

p′ = 1,

(2.23)

∫
S2n+1

exp

ñ
Ad(a, b)

Ç
|F |

‖Ld/2a,b F‖p

åp′ô
dζ ≤ C0,

with

Ad(a, b) =
2Q∫

Σ

∣∣∣∣ gd(θ)

(an/2)d/2
+

g⊥
d

(θ)

bd/2

∣∣∣∣p′ du∗ ,
and the constant Ad(a, b) is sharp. If d = Q

2 , or p = p′ = 2, then

(2.24) AQ/2(a, b) =
ω2n+1(n+ 1)!

2

ñ(
2
an

)n+1
+ 1

bn+1

∞∑
k=1

Ç
k + n− 1

n− 1

åÄ
k + n

2

ä−n−1
ô .

Setting a = b = 1 in the above theorem gives the following sharp Moser-

Trudinger inequality for the powers of the sublaplacian.
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Corollary 2.6. There is C0 > 0 so that for any F ∈ W d,p with zero

mean and with p = Q
d ,

1
p + 1

p′ = 1,

∫
S2n+1

exp

ñ
Ad

Ç
|F |

‖Ld/2F‖p

åp′ô
dζ ≤ C0,

with

(2.25) Ad =
2Q∫

Σ
|Gd(θ)|p′ du∗

,

and the constant Ad is sharp. If d = Q
2 , or p = p′ = 2, then

(2.26) AQ/2 =
(n+ 1)(n− 1)!πn+1

∞∑
k=0

(k+n−1)!

k!
Ä
k+

n
2

än+1

.

In particular,

AQ/2 =


4 if n = 1

18π if n = 2

192 π2

12−π2 if n = 3.

Remarks. 1. Inequality (2.2) is a special case of (2.23).

2. The constant in (2.26) can be computed in principle for any given n, by

using partial fractions and the values of the Hurwitz zeta function
∑∞

0 (k+a)−s,

when a = n/2 and s is even.

3. Corollary 2.6 above holds also for Dd/2 with the same constant as in

(2.25) (and for all functions in W d,p). The reason for this is that the expansion

(2.20) also holds for the kernel of D−d/2 (see [BFM07, Prop. 2.6]).

3. Beckner-Onofri’s inequality

The goal of this section is to establish the sharp Beckner-Onofri inequality

for real CR-pluriharmonic functions on the sphere.

Theorem 3.1. For any F ∈WQ/2,2 ∩ RP , we have the inequality

(3.1)
1

2(n+ 1)!
−
∫
FA′QF dζ + −

∫
F dζ − log −

∫
eF dζ ≥ 0.

The inequality is invariant under the conformal group of S2n+1, in the sense

that the functional on the left-hand side is invariant under the action F →
F τ = F ◦ τ + log |Jτ | for τ ∈ Aut(S2n+1). Equality in (3.1) holds if and only

if F = log |Jτ | for some τ ∈ Aut(S2n+1).
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There is a corresponding version of (3.1) for general complex-valued CR-

pluriharmonic functions F :

1

2(n+ 1)!
−
∫
FA′QF dζ + −

∫
ReF dζ − log −

∫
eReF dζ ≥ 0,

but it is a trivial consequence of the real-valued case.

As we mentioned in the introduction, the proof of this theorem is based

on the original compactness argument given by Onofri in dimension 2, and

later perfected and extended to any dimensions by Chang-Yang, to provide an

alternative proof of Beckner’s result.

Define once and for all

J [F ] =
1

2(n+ 1)!
−
∫
FA′QF dζ + −

∫
F dζ − log −

∫
eF dζ

for any F ∈WQ/2,2 ∩ RP.
We divide the proof in three main steps:

I. Conformal invariance of J ,

II. Existence of a minimum for J ,

III. Characterization of the minimum.

Step I: Conformal invariance of J .

Proposition 3.2. The conformal action F → F τ = F ◦ τ + log |Jτ | pre-

serves RP and WQ/2,2 ∩ RP . Moreover, such spaces are the minimal closed

subspaces of L2(S2n+1), WQ/2,2 respectively, which are invariant under the con-

formal action. Finally, J [F τ ] = J [F ] for all F ∈WQ/2,2 ∩ RP .

Proof. Clearly F ◦ τ ∈ RP if F ∈ RP, and likewise for WQ/2,2 ∩ RP.

For τ conformal, using (1.14) we see that log |Jτ | ∈ RP. Any subspace M of

L2 invariant under the action must contain the orbit of the function 0, i.e.,

all functions of type log |Jτ |; thus (still from (1.14)) every function of type

C −QRe log(1− ζ ·ω) must be in M for any given ω ∈ Cn+1, |ω| < 1. If M is

also closed, then it contains all ω-partial derivatives of such functions, evaluated

at ω = 0, and therefore M contains every real pluriharmonic polynomial and

hence all of RP. �

Next consider the functional

Jd[G] =
1

λ0(d)2
−
∫
GAdGdζ −

Ç
−
∫
|G|1/θdζ

å2θ

,

with θ = Q−d
2Q . This functional is invariant under the action G → Gτ,θ =

(G ◦ τ)|Jτ |θ; this follows from (1.17). One easily checks that as θ → 0 (i.e.,

d→ Q),

Jd[1 + θF ] =
θ2

λ0(d)2
−
∫
FAdF dζ + 2θ −

∫
F dζ − 2θ log −

∫
eFdζ +O(θ2)
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so that if F ∈WQ/2,2 ∩ RP, using (1.28) we obtain

d

dθ

∣∣∣∣∣
θ=0

Jd[1 + θF ] = 2J [F ].

On the other hand, letting G = 1 + θF we get Gτ,θ = (1 + θF )τ,θ = 1 + θF τ +

O(θ2) so that Jd[(1 + θF )τ,θ] = Jd[1 + θF τ ] + O(θ2), and by differentiation

this implies J [F ] = J [F τ ] if F ∈WQ/2,2 ∩ RP.

Note. On the Euclidean Sn, the minimal subspace of L2 that is invariant

under the conformal action is the whole L2. Indeed, in that case, the log |Jτ |
are of type C − n log |1− ω · ζ|, with ω ∈ Rn+1, |ω| < 1. An argument similar

to the one used in the above proof shows that the orbit of the function 0 is

dense in L2.

We remark that the proof above is an adaptation of Beckner’s argument

in [Bec93]. Another possible proof of Proposition 3.2 can be given directly as

in [CY95], without appealing to the intertwining property of Ad, but working

directly withA′Q. We chose Beckner’s argument since it shows how the putative

sharp, conformally invariant Sobolev inequality Jd[G] ≥ 0; i.e.,

(3.2) −
∫
GAdGdζ ≥

ñ
Γ
Ä
Q+d

4

ä
Γ(Q−d4

ä ô2Ç
−
∫
|G|q dζ

å2/q

, q =
2Q

Q− d

would imply Beckner-Onofri’s inequality (3.1) for the pluriharmonic functions.

Inequality (3.2), or its dual “Hardy-Littlewood-Sobolev” form, is only known

for d = 2.2

Step II: Existence of a minimum for J . From now one we will denote the

average of F ∈ L1(S2n+1) by‹F = −
∫
F =

1

ω2n+1

∫
S2n+1

F.

Proposition 3.3 (Provisional Beckner-Onofri’s inequalities). There exists

a constant C such that for all F ∈WQ/2,2 ∩ RP , we have

(3.3)
1

2(n+ 1)!
−
∫
FA′QF dζ + −

∫
F − log −

∫
eFdζ + C ≥ 0.

If λ > 0, then there exists a constant Cλ such that for all F ∈WQ/2,2 and with

Lλ = 2
nLπ + λ2/QLπ⊥,

(3.4) An(λ)−
∫
FL

Q/2
λ F dζ + −

∫
F − log −

∫
eFdζ + Cλ ≥ 0

2See the addendum at the end of the introduction.
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with

(3.5) An(λ) =
1

2(n+ 1)!

ñ
1 +

1

λ

∞∑
k=1

(k + n− 1)!

(n− 1)!k!
Ä
k + n

2

än+1

ô
.

Proof. This is a standard argument based on the Adams inequalities (2.11)

and (2.23) for the operators (A′Q)1/2 and L
Q/4
λ = ( 2

nL)Q/4π +
√
λLQ/4π⊥. If

an inequality of type ∫
S2n+1

exp

Ç
B
|F − ‹F |2
‖PF‖22

å
dζ ≤ C0

holds for one of the above operators P and for either WQ/2,2 ∩ RP or F ∈
WQ/2,2 and with zero mean, then letting µ = B1/2(F − ‹F ), ν = 1

2B
−1/2‖PF‖22

and expanding (µ− ν)2 ≥ 0, we get

1

4B
‖PF‖22 − log

∫
eF−F̃dζ + logC0 ≥ 0,

which implies (3.3) and (3.4). �

Remark. We note that (3.3) is valid with P 2
Q/2 in place of A′Q, where PQ/2

is any operator as in Proposition 2.3, with d = Q/2 and with kernel H00 (i.e.,

the constants).

From (3.3) we now know that J is a functional that is bounded below

on WQ/2,2 ∩ RP. The goal now is to show that the minimizing sequence is

actually bounded on such space. The first key step is the following Aubin’s

type inequality, used in the Euclidean setting first by Onofri and Aubin and

then by Chang-Yang.

Proposition 3.4 (Aubin’s type inequality). For given σ > 1
2 , there exist

constants C1(σ), C2(σ) such that for any WQ/2,2 ∩RP with
∫
S2n+1 ζj e

Fdζ = 0

for j = 1, 2 . . . , n+ 1, the following estimate holds :

(3.6)
σ

2(n+ 1)!
−
∫
FA′QF dζ + −

∫
F dζ − log −

∫
eFdζ + C1(σ)‖L

Q−1
4 F‖22 + C2(σ) ≥ 0.

The proof below is an adaptation of the one in [CY95, Lemma 4.6] (see

also [Aub79, Th. 6]). We present it here because in our case there is an added

difficulty, namely that the localization argument (multiplication by cutoff func-

tions) inherent in the proof does not preserve the class P.

Proof. Assume for the moment that F ∈ WQ/2,2, and without loss of

generality assume that
∫
S2n+1 eF = ω2n+1. Cover S2n+1 with 2(2n + 2) = 2Q

congruent spherical caps, by considering a cube inscribed inside the sphere,
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with side L = 2/
√

2n+ 2. By rotation we can assume that if

Ω1
δ1 = {x ∈ S2n+1 : δ1 ≤ x2n+2 ≤ 1}, δ1 <

1√
2n+ 2

,

then

(3.7)

∫
Ω1
δ1

eF ≥ ω2n+1

2Q
.

It is not hard to show that using the hypothesis
∫
S2n+1 x2n+2e

F = 0, if

Ω2
δ2 = {x ∈ S2n+1 : −1 ≤ x2n+2 ≤ −δ2}, δ2 <

δ1

4Q
,

then

(3.8)

∫
Ω2
δ2

eF ≥ δ2ω2n+1.

Let φ1, φ2 be cutoff functions such that 0 ≤ φj ≤ 1 and

φj =

1 on Ωj
δj
,

0 on S2n+1 \ Ωj
δj/2

.

Consider the operator Lλ = 2
nLπ+ λ2/QLπ⊥, so that from (3.4), (3.7) we

obtain

ω2n+1

2Q
≤
∫

Ω1
δ1

eF ≤ eF̃
∫

Ω1
δ1

e(F−F̃ )φ1 ≤ eF̃ω2n+1 −
∫
e(F−F̃ )φ1

(3.9)

≤ ω2n+1e
F̃ eCλ exp

ñ
An(λ)−

∫
(F − ‹F )φ1L

Q/2
λ (F − ‹F )φ1+ −

∫
(F − ‹F )φ1

ô
,

with An(λ) as in (3.5), and likewise, using (3.4) and (3.8),

(3.10)

δ2ω2n+1 ≤ ω2n+1e
F̃ eCλ exp

ñ
An(λ)−

∫
(F − ‹F )φ2L

Q/2
λ (F − ‹F )φ2 + −

∫
(F − ‹F )φ2

ô
.

Now we claim that for k an even integer and ε > 0,∣∣∣∣∣
∫
S2n+1

(F − ‹F )φjL
k
λ(F − ‹F )φj(3.11)

−
Ä

2
n

äk ∫
S2n+1

φ2
j

Ä
πLk/2F

ä2 − λ2k/Q
∫
S2n+1

φ2
j

Ä
π⊥Lk/2F

ä2 ∣∣∣∣∣
≤ ε

∫
S2n+1

Ä
L
k/2
λ F

ä2
+ C(λ, ε)

∫
S2n+1

FLk−1F,
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whereas if k is odd, then∣∣∣∣∣
∫
S2n+1

(F − ‹F )φjL
k
λ(F − ‹F )φj −

Ä
2
n

äk ∫
S2n+1

φ2
j

∣∣∣∇HπL k−1
2 F

∣∣∣2(3.12)

− λ2k/Q
∫
S2n+1

φ2
j

∣∣∣∇Hπ⊥L k−1
2 F

∣∣∣2∣∣∣∣∣
≤ ε

∫
S2n+1

Ä
L
k/2
λ F

ä2
+ C(λ, ε)

∫
S2n+1

FLk−1F.

Here ∇H denotes the so-called horizontal gradient defined on complex valued

functions as

∇HF =
n+1∑
j=1

(T jF Tj + TjF T j),

the Tj being the generators of T1,0(S2n+1) defined in (1.3). Such gradient

satisfies the identities

∇HG · ∇HF =
1

2

n+1∑
j=1

(TjGTjF + TjGT jF ),

∫
S2n+1

GLF =

∫
S2n+1

∇HG · ∇HF .

Note that
∫
S2n+1 |∇HL

k−1
2

λ F |2 =
∫
S2n+1(L

k
2
λF )2. The proof of these estimates

is given in the appendix, but the gist of it is that one can commute φj with

either the projection or Lkλ, gaining one derivative of F . If n is odd, using

(3.11) (with k = n+ 1), for j = 0, 1 we get∫
S2n+1

(F − ‹F )φjL
Q/2
λ (F − ‹F )φj

≤
∫

Ωj
δj/2

ñÄ
2
n

äkÄ
πLk/2F

ä2
+ λ2k/Q

Ä
π⊥Lk/2F

ä2ô
+ ε

∫
S2n+1

(L
Q
4
λ F )2 + C(λ, ε)‖L

Q−1
4 F‖22.

Using these last inequalities in (3.9), (3.10) multiplying the resulting estimates

out, and taking square roots we get 
δ1

2Q
≤ eF̃ exp

ñ(
1
2An(λ) + ε

)
−
∫
FL

Q/2
λ F + C1(λ, ε)‖L

Q−1
4 F‖22 + C2(λ)

ô
or (

1
2An(λ) + ε

)
−
∫
FL

Q/2
λ F + −

∫
F + C1(λ, ε)‖L

Q−1
4 F‖22 + C2(λ) ≥ 0

for some constants C1(λ, ε), C2(λ). The case n even is the same, just use (3.12)

rather than (3.11).
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Now, for given σ> 1
2 , we can certainly find λ, ε so that 1

2An(λ)+ε= σ
2(n+1)! ,

and specializing to F ∈WQ/2,2 ∩ RP, we obtain

σ

2(n+ 1)!
−
∫
F
Ä

2
nL
äQ/2

F dζ + −
∫
F dζ + C1(σ)‖L

Q−1
4 F‖22 + C2(σ) ≥ 0.

Since on P we have
Ä

2
nL
äQ/2 ≤ A′Q, we also obtain (3.6), under the condition

−
∫
eF = 1. (For the unconstrained case just replace F in the above inequality

by F − log−
∫
eF .) �

We would like to make an important remark at this point. The very nature

of the center of mass hypothesis in the above lemma makes it almost impossible

to avoid the use of cutoff functions in order to proceed with the localization

argument; the authors were unable to conceive a different argument working

exclusively inside the class P. This justifies our choice of the operator Lλ, which

allows us to temporarily exit the space P. Our choice is not the only one. For

example, in the same spirit as in [CY95] one could try to use the operator 2
nL,

i.e., Lλ with λ4/Q = 2
n . This operator satisfies

∫
F
Ä

2
nL
äQ/2

F ≤
∫
FA′QF for

F pluriharmonic, however, to make the argument work, the Adams constant‹AQ/2 corresponding to
Ä

2
nL
äQ/2

should satisfy 2‹AQ/2 > AQ/2 with AQ/2 as in

(2.14). Using (2.24), we obtain

AQ/2‹AQ/2 =

Ä
n
2

än+1

(n− 1)!

∞∑
k=0

(k + n− 1)!

k!
Ä
k + n

2

än+1 ,

which is less than 2 only for n = 1, 2 (in which cases one can indeed use 2
nL to

prove (3.6)) and seems to have exponential growth in n.

The proof of the existence of the minimum for J can now proceed in more

or less the same way as in [CY95]. Let

S0 =
¶
F ∈WQ/2,2 ∩ RP : −

∫
eF dζ = 1, −

∫
ζeF dζ = 0

©
,

and let us prove that a minimum of J exists in S0. First, we invoke the

following version of the “center of mass theorem” for the CR sphere: if −
∫
eF = 1,

then there exists a conformal transformation τ such that

(3.13) −
∫
S2n+1

ζ eF
τ (ζ)dζ = 0, F τ = (F ◦ τ) + log |Jτ |.

The proof of this fact is, by now, a routine topological argument, modeled

exactly after the proofs given in [CY87], [Ono82] in the Euclidean case. The

basic idea is that if the vector-valued integral (3.13) never vanishes as a function

of τ , then its unit normalization restricted to a suitable set of transformations

can be seen as a retraction from the closed unit ball of Cn+1 to its boundary,

which is not possible.
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The center of mass condition and the conformal invariance of J imply

that minimizing J over WQ/2,2 ∩ RP is equivalent to minimizing J over S0.

Pick a minimizing sequence Fk ∈ S0, with J [Fk] → inf J . Let us first

prove that

(3.14) −
∫
FkA′QFk ≤ C2 + C1‖L

Q−1
4 Fk‖22.

From (3.6), for a fixed 1
2 < σ < 1,

J [Fk] + C1(σ)‖L
Q−1
4 Fk‖22 + C2(σ) ≥ 1− σ

2(n+ 1)!
−
∫
FkA′QFk,

and since Fk is minimizing, we obtain (3.14). Now let us prove that Fk can be

chosen so that

(3.15) ‖L
Q−1
4 Fk‖2 ≤ C.

For this we use the Ekeland principle (see, e.g., [dF89, Th. 4.4]) to ensure that

J ′[Fk]→ 0 in W−Q/2,2 ∩ RP, where J ′ denotes the Gateaux derivative of J .

Thus, 〈J ′[Fk], φ〉 =
∫
Hkφ with

Hk := A′QFk − (n+ 1)!π(eFk − 1)→ 0 in W−Q/2,2 ∩ RP;

i.e.,

(3.16) Fk − ‹Fk = (A′Q)−1Hk + (n+ 1)!(A′Q)−1π(eFk − 1).

If 0 < 2α < Q, such as α = Q−1
2 , then the operator A′QL−α/2π, with

eigenvalues
Ä
n
2k
ä−α/2

λk(Q), is of the type described by (2.9), (2.10), with

d = Q− α. Hence by Proposition 2.4, we have

|Lα/2(A′Q)−1π(ζ, η)| ≤ C|1− ζ · η|−α/2.

So∫
S2n+1

∣∣∣Lα/2(A′Q)−1π(eFk − 1)
∣∣∣2dζ

≤ C
∫
S2n+1

Ç ∫
S2n+1

|1− ζ · η|−α/2|eFk(η) − 1|dη
å2

dζ

≤ C
Ç ∫

S2n+1

∫
S2n+1

|eFk(η) − 1|dηdζ
å

·
∫
S2n+1

∫
S2n+1

|1− ζ · η|−α|eFk(η) − 1|dηdζ ≤ C.

(Here we used that −
∫
eFk = 1 and that

∫
|1− ζ · η|−α = Cα for any η ∈ S2n+1,

since 2α < Q.) On the other hand, looking at the eigenvalues of Lα/2(A′Q)−1,∫
S2n+1

∣∣∣Lα/2(A′Q)−1Hk

∣∣∣2dζ ≤ C‖Hk‖2Wα−Q,2 ≤ C‖Hk‖2W−Q/2,2 ≤ C
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since ‖Hk‖W−Q/2,2 → 0. All this with (3.16), 2α = Q−1, and Lα/2(Fk− ‹Fk) =

Lα/2Fk proves (3.15).

Finally, by Jensen’s inequality ‹Fk ≤ 0 and since J [Fk]→ inf J , then

|‹Fk|=−−∫ Fk=−J [Fk] +
1

2(n+ 1)!
−
∫
FkA′QFk≤C +

1

2(n+ 1)!
−
∫
FkA′QFk≤C ′

by (3.14) and (3.15). From this we deduce

−
∫
|Fk|2 = −

∫
|Fk − ‹Fk|2 + |‹Fk|2 ≤ C1‖LQ/4Fk‖22 + C2 ≤ C,

and therefore the minimizing sequence is bounded inWQ/2,2. Now the standard

argument goes like this: find a subsequence Fki converging in L2 and pointwise

almost everywhere to an F0 and weakly in WQ/2,2. Clearly F0 ∈ RP, and from

the Adams inequality as i→∞, perhaps along another subsequence,

1 = −
∫
eFki → −

∫
eF0 , 0 = −

∫
ζje

Fki → −
∫
ζje

F0 , j = 1, 2, . . . , n+ 1.

(This is because eFki is bounded in L2, hence up to a subsequence it is weakly

convergent, and its weak limit coincides with eF0 almost everywhere.) Since

−
∫
Fk → −

∫
F0 and J [Fk] converges, then also −

∫
FkA′QFk converges, and by stan-

dard results its limit is≥ −
∫
F0A′QF0, but it cannot be greater, since the sequence

is minimizing for J . This shows that J [Fk]→ J [F0] = inf J .

Step III: Characterization of the minimum. As in [CY95] the problem of

describing the minimum will be related to the first nonzero eigenvalue of a

conformally invariant operator in the conformal class of the standard contact

form, specifically the operator A′Q(W ) introduced in Proposition 1.3. Accord-

ing to Proposition 1.3, if W ∈ C∞(S2n+1) and W > 0, then A′Q(W ) acting on

WQ/2,2 ∩ P0, with inner product (F,G)W =
∫
FGW , has positive eigenvalues

0 < λ′1(W ) ≤ λ′2(W ) ≤ · · · (each counted with its multiplicity), and

(3.17) λ′1(W ) = min

®
(φ,A′Qφ)

(φ, φ)W
, φ ∈WQ/2,2 ∩ RP0,

∫
S2n+1

φWdζ = 0

´
.

Recall that (φ,A′Qφ) = (φ,A′Q(W )φ)W and that the eigenfunctions of A′Q(W )

can be chosen real-valued.

Proposition 3.5. Suppose that F0 ∈ S0 is a minimum for J , then F0 ∈
C∞(S2n+1) and λ′1(eF0) ≥ (n+ 1)!.

Proof. The function F0 must satisfy

d

dt

∣∣∣∣∣
t=0

J [F0+tφ] = −
∫
φ

Ç
1

2(n+ 1)!
A′QF0+(eF0−1)

å
= 0, ∀φ ∈WQ/2,2∩RP;
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i.e., 1
2(n+1)!A

′
QF0 + π(eF0 − 1) = 0, which, together with (1.31), implies that

F0 ∈ C∞(S2n+1). On the other hand, F0 must also satisfy

d2

dt2

∣∣∣∣∣
t=0

J [F0 + tφ] =
1

(n+ 1)!
−
∫
φA′Qφ+

Ç
−
∫
φeF0

å2

− −
∫
φ2eF0 ≥ 0,

and from (3.17), we have λ′1(eF0) ≥ (n+ 1)!. �

The next result is a Hersch-type “isoperimetric” inequality for the first Q

reciprocal eigenvalues. In the Euclidean case the inequality appeared first in

[Her70], and it was later extended in [CY95].

Notice that in our notation, when W ≡ 1 on S2n+1, we have

λ′j(1) = λ1(Q) = (n+ 1)!, k = 1, 2, . . . ., 2n+ 2

since the bottom eigenvalue for A′Q is (n+ 1)! counted with multiplicity m01 +

m10 = 2n + 2 (see (1.8)), its eigenspace being generated by the coordinate

functions ζ1, . . . , ζn+1 and ζ1, . . . , ζn+1.

Proposition 3.6. For W ∈ C∞(S2n+1), W > 0 and −
∫
W = 1, we have

(3.18)
2n+2∑
j=1

1

λ′j(W )
≥

2n+2∑
j=1

1

λ′j(1)
=

2n+ 2

λ1(Q)
=

2

n!
.

In particular,

(3.19) λ′1(W ) ≤ λ′1(1) = (n+ 1)!,

and equality holds in (3.18) or (3.19) if and only if W = |Jτ | for some τ ∈
Aut(S2n+1).

Proof. The proof of this uses the variational characterization of the sum

of reciprocal eigenvalues (see [CY95], or [Ban80, 3.7]):

(3.20)
2n+2∑
j=1

1

λ′j(W )
= max

2n+2∑
j=1

(φj , φj)WÄ
φj ,A′Q(W )φj

ä
W

= max
2n+2∑
j=1

(φj , φj)W
(φj ,A′Qφj)

,

the maximum being over those φj ∈WQ/2,2∩P0 such that −
∫
φjW = −

∫
φjA′Qφk

= 0 for j, k = 1, . . . , 2n + 2, j 6= k. It is easy to see that the maximum is

attained at φ1, . . . , φ2n+2 if and only if each φj is an eigenfunction of λ′j(W ).

By conformal invariance of the eigenvalues, i.e., λ′j(W ) = λ′j(Wτ ), where Wτ =

(W ◦ τ)|Jτ |, we can apply the center of mass theorem (3.13) with W = eF and

assume that −
∫
ζjW = 0, (and hence −

∫
ζjW = 0) for j = 1, . . . , n+ 1.

Therefore, we can choose ζj , ζj as φj in (3.20), and since

(ζj ,A′Qζj) = λ1(Q)

∫
S2n+1

|ζj |2dζ =
ω2n+1

n+ 1
λ1(Q),
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we obtain

2n+2∑
j=1

1

λ′j(W )
≥ n+ 1

λ1(Q)ω2n+1

n+1∑
j=1

∫
S2n+1

(|ζj |2 + |ζj |2)W (ζ)dζ =
2(n+ 1)

λ1(Q)
,

which is (3.18). Equality in (3.18) implies that each ζj , ζj is an eigen-

function of A′Q(W ) with eigenvalue λ1(Q), which implies
Ä
φ,A′Q(W )ζ1

ä
W

=

λ1(Q)(φ, ζ1)W for all φ ∈ C∞(S2n+1), but this means (φ, ζ1) = (φ, ζ1)W for all

φ, and this implies W ≡ 1 on S2n+1. So if W has vanishing center of mass,

then equality holds if and only if W ≡ 1; hence if we start from any W by

conformal invariance, we have equality in (3.18) if and only if W is in the

conformal orbit of the constant function 1, i.e., W = |Jτ | for some τ .

Estimate (3.19) follows from the monotonicity of the eigenvalues, and

equality in (3.19) implies equality in (3.18). �

To finish up the proof of Theorem 3.1, if F0 ∈ S0 is a minimum for J , then

F0 ∈ C∞(S2n+1). By the previous propositions, λ′1(eF0) = λ1(Q) = (n + 1)!,

which is true if and only if eF0 = |Jτ | for some τ ∈ Aut(S2n+1). This concludes

the proof.

4. The logarithmic Hardy-Littlewood-Sobolev inequalities

In this final section we use the Beckner-Onofri inequality (3.1) to give a

proof of (0.10), i.e., the CR version of the inequality due to Carlen and Loss in

the Euclidean setting [CL92]. The procedure is at this point fairly standard;

see, for example, [Bec93] and [Oki08]. The proof below is essentially the one

in [Oki08].

Theorem 4.1 (Log HLS inequality). For any G : S2n+1 → R, with G ≥ 0,

G ∈ L logL, and −
∫
G = 1, we have

(4.1) (n+ 1)−
∫
−
∫

log
1

|1− ζ · η|
G(ζ)G(η)dζdη ≤ −

∫
G logGdζ

with equality if and only if G = |Jτ | for some τ ∈ Aut(S2n+1).

It is not hard to prove that for G ∈ L logL and G ≥ 0, the left-hand side

is well defined, finite, and nonnegative. Also, in view of (1.31), when G ∈ L2,

inequality (4.1) can be restated as

(4.2)
(n+ 1)!

2
−
∫

(G− 1)(A′Q)−1π(G− 1) ≤ −
∫
G logG.

Just like in the Euclidean case, it is possible to state an equivalent result

on the Heisenberg group via the Cayley transform.
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Corollary 4.2 (Log HLS inequality on Hn). For any measurable g :

Hn → R with g ≥ 0,
∫
Hn g = ω2n+1 and

∫
Hn g log(1 + |u|2) <∞, we have

(4.3) (n+ 1)−
∫
Hn
−
∫
Hn

log
2

|v−1u|2
g(u)g(v)dudv ≤ −

∫
Hn
g log g + log 2,

where −
∫
Hn = 1

ω2n+1

∫
Hn . Equality in (4.3) occurs if and only if g=(|JC | ◦h)|Jh|

for some h ∈ Aut(Hn).

Proof of Theorem 4.1. Let G ∈ L2, with G ≥ 0, −
∫
G = 1, and let

F = (n+ 1)! (A′Q)−1π(G− 1),

which is a real-valued pluriharmonic function with mean 0. Using Beckner-

Onofri’s inequality,

(n+ 1)!

2
−
∫

(G− 1)(A′Q)−1π(G− 1) =
1

2
−
∫
GF(4.4)

= −
∫
GF − 1

2(n+ 1)!
−
∫
FA′QF ≤ −

∫
GF − log −

∫
eF .

Now use Jensen’s inequality to deduce

(4.5) log −
∫
eF = log −

∫
eF−logGG ≥ −

∫
(F − logG)G,

which yields (4.2) for G ∈ L2. Inequality (4.1) follows for any G ∈ L logL

by an elementary truncation argument. From the Euler-Lagrange equation it

is easy to see that any extremal of (4.1) must be in C∞(S2n+1). Moreover,

equality in (4.1) implies equality in (4.2), (4.4), and (4.5); i.e., (by Theorem 3.1)

F = log |Jτ |, for some τ ∈ Aut(S2n+1), and F−logG =constant, or G = C|Jτ |;
since G has mean 1, then we finally have G = |Jτ | for some τ . �

Proof of Corollary 4.2. First observe that if g : Hn→R and G : S2n+1→ R
are related by g = (G◦C)|JC |, then −

∫
G = −

∫
Hng = 1 (with the above convention

on the average on Hn). Moreover, since

|1− ζ · η| = 2−
n
n+1 |JC(u)|

1
Q |JC(v)|

1
Q |v−1u|2

(if C(u) = ζ and C(v) = η), then

(n+ 1)−
∫
−
∫

log
1

|1− ζ · η|
G(ζ)G(η)dζdη − −

∫
G logG

= (n+ 1)−
∫
Hn
−
∫
Hn

log
(
2

n
n+1 |v−1u|−2|JC(u)|−

1
Q |JC(v)|−

1
Q

)
g(u)g(v)dudv

− −
∫
Hn
g log g + −

∫
Hn
g log |JC |

= (n+ 1)−
∫
Hn
−
∫
Hn

log
2

|v−1u|2
g(u)g(v)dudv − −

∫
Hn
g log g − log 2.
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This identity easily implies the statement. The given integral condition on g

is to guarantee that
∫
g log g is finite if and only if

∫
G logG is finite, where g

and G are related as above. �

Note that with the same argument as in the proof of the corollary above,

one can see that the log HLS functional (on S2n+1 or Hn) is invariant under

the conformal action.

Appendix A. Intertwining operators on S2n+1

In this appendix we give an explicit calculation of the spectrum of the in-

tertwining operators Ad, as defined by (1.17); a consequence of this calculation

will be formula (1.20) up to a constant, and a further calculation will yield the

explicit constant given in (1.21). The proof below is inspired by the method

used by Johnson and Wallach [JW77], but it is rather self-contained and uses

a minimal apparatus from representation theory, such as Schur’s lemma and

the knowledge of the zonal harmonics Φjk. We believe that our calculation

is actually slightly simpler than that in [JW77], at least in our context. In

[Bra95] and [BÓØ96] there is another derivation of the spectrum of intertwin-

ing operators, again via the theory of spherical principal series representations

of semisimple Lie groups (SU(n + 1, 1) in our case), and the results there are

quite general.

Proposition A.1. Suppose that an operator Ad (0 < d < Q) is inter-

twining, i.e.,

(A.1) |Jτ |
Q+d
2Q (AdF ) ◦ τ = Ad

Ä
|Jτ |

Q−d
2Q (F ◦ τ)

ä
, ∀τ ∈ Aut(S2n+1)

for each F ∈ C∞(S2n+1). Then Ad is diagonal with respect to the spherical

harmonics, and for every Yjk ∈ Hjk,

AdYjk = cλj(d)λk(d)Yjk

for some constant c ∈ R, with λj(d) as in (0.5). Vice versa, the operator Ad
with eigenvalues λj(d)λk(d) is intertwining and has the fundamental solution

A−1
d (ζ, η) = cdd(ζ, η)d−Q, cd =

2n−
d
2 Γ
Ä
Q−d

4

ä2
πn+1Γ

Ä
d
2

ä .

Proof. For more clarity in the argument below, we will use the notation

Hj,k, Φj,k for Hjk, Φjk, respectively. The fact that Ad is diagonal follows

from Schur’s lemma and the irreducibility of the spaces Hj,k. Suppose that

AdΦj,k = λj,kΦj,k with λj,k = λk,j ∈ R. Recall that
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Φj,k(ζ, η) = Φj,k(ζ·η) :=
(k + n− 1)!(j + k + n)

ω2n+1n!k!
(ζ·η)k−jP

(n−1,k−j)
j (2|ζ·η|2−1)

if j ≤ k, and Φj,k(ζ, η) = Φj,k(ζ · η) := Φk,j(ζ · η) if k ≤ j. From now on we

choose η = N and denote, for j ≤ k,

Ψj,k(ζ · N) = Ψj,k(z) = zk−jP
(n−1,k−j)
j (2|z|2 − 1), z = ζ · N = ζn+1

so that still AdΨj,k = λj,kΨj,k.

Consider the family of dilations of Hn, which on the sphere take the form

τλ(ζ) = τλ(ζ ′, ζn+1) =

Ç
2λζ ′

1 + ζn+1 + λ2(1− ζn+1)
,
1 + ζn+1 − λ2(1− ζn+1)

1 + ζn+1 + λ2(1− ζn+1)

å
.

The Jacobian of τλ is

|Jτ
λ
| =

∣∣∣∣ 2λ

1 + z + λ2(1− z)

∣∣∣∣Q
and

d

dλ

∣∣∣∣
λ=1
|Jτ

λ
|a/Q =

a

2
(z + z).

Also, d
dλ

∣∣∣
λ=1

(τλζ · N) = z2 − 1 so that

d

dλ

∣∣∣∣
λ=1
|Jτ

λ
|a/Q
Ä
Ψj,k ◦ τλ

ä
=
a

2
(z + z)z k−jP

(n−1,k−j)
j (2|z|2 − 1)(A.2)

+ (k − j)(−1 + z 2)z k−j−1P
(n−1,k−j)
j (2|z|2 − 1)

+ 2(z + z)(|z|2 − 1)z k−j
d

dx
P

(n−1,k−j)
j (2|z|2 − 1).

The above quantity is a polynomial in z, z , with highest order monomials that

are multiples of zjz k+1 and zj+1z k. The projection of (A.2) onHj+1,k
⊕Hj,k+1

gives, for fixed 0 ≤ j < k,

d

dλ

∣∣∣∣
λ=1
|Jτ

λ
|a/Q
Ä
Ψj,k ◦ τλ

ä∣∣∣∣
Hj+1,k⊕Hj,k+1

= Az k−j−1P
(n−1,k−j−1)
j+1 (2|z|2 − 1)

(A.3)

+Bz k−j+1P
(n−1,k−j+1)
j (2|z|2 − 1),

and for j = k,

d

dλ

∣∣∣∣
λ=1
|Jτ

λ
|a/Q
Ä
Ψj,k ◦ τλ

ä∣∣∣∣
Hj+1,j⊕Hj,j+1

= AzP
(n−1,1)
j (2|z|2 − 1)(A.4)

+Bz P
(n−1,1)
j (2|z|2 − 1),

and the goal is to determine A and B. In order to do this we consider the case

z real and z imaginary, and we compare the coefficients of the highest order

powers in (A.2) and (A.3)–(A.4); what we need here is that the coefficient of

xj in a Jacobi polynomial of order j is given by

1

j!

dj

dxj
P

(α,β)
j (x) =

1

2jj!

Γ(2j + α+ β + 1)

Γ(j + α+ β + 1)
.



46 THOMAS P. BRANSON, LUIGI FONTANA, and CARLO MORPURGO

For z real, a comparison of the coefficients of zk+j+1 from (A.2) and (A.3)–

(A.4) gives

Γ(k + j + n)

j!Γ(k + n)
(a+ k + j) = A

Γ(k + j + n+ 1)

(j + 1)!Γ(k + n)
+B

Γ(k + j + n+ 1)

j!Γ(k + n+ 1)

or

(A.5) a+ k + j = A
k + j + n

j + 1
+B

k + j + n

k + n
.

On the other hand, if z is purely imaginary, the same comparison yields

(−i)k−j+1(k − j) Γ(k + j + n)

j!Γ(k + n)
= A(−i)k−j−1 Γ(k + j + n+ 1)

(j + 1)!Γ(k + n)

+B(−i)k−j+1 Γ(k + j + n+ 1)

j!Γ(k + n+ 1)

or

(A.6) k − j = −A k + j + n

j + 1
+B

k + j + n

k + n
.

Solving (A.5) and (A.6) in A and B,

A =
(a

2
+ j

) j + 1

k + j + n
, B =

(a
2

+ k
) k + n

k + j + n
,

which means, for 0 ≤ j ≤ k,

d

dλ

∣∣∣∣∣
λ=1

|Jτ
λ
|a/Q
Ä
Ψj,k ◦ τλ

ä∣∣∣∣∣
Hj+1,k⊕Hj,k+1

(A.7)

=
(a

2
+ j

) j + 1

k + j + n
Ψj+1,k +

(a
2

+ k
) k + n

k + j + n
Ψj,k+1.

Differentiating in λ the intertwining relation (A.1) applied to Ψj,k, i.e.,

λj,k|Jτλ |
Q+d
2Q (Ψj,k ◦ τλ) = Ad

Ä
|Jτ

λ
|
Q−d
2Q (Ψj,k ◦ τλ)

ä
(it is easy to see that differentiation in λ commutes with Ad) and using (A.7) ,

λj,k
(Q+ d

4
+ j

) j + 1

k + j + n
Ψj+1,k + λj,k

(Q+ d

4
+ k

) k + n

k + j + n
Ψj,k+1

= λj+1,k

(Q− d
4

+ j
) j + 1

k + j + n
Ψj+1,k + λj,k+1

(Q− d
4

+ k
) k + n

k + j + n
Ψj,k+1,

which implies

λj+1,k = λj,k

Q+d
4 + j

Q−d
4 + j

, λj,k+1 = λj,k

Q+d
4 + k

Q−d
4 + k

k ≥ j ≥ 0,

and therefore

λj,k = λ0,k

Γ
Ä
Q+d

4 + j
ä

Γ
Ä
Q−d

4 + j
ä = λ0,0

Γ
Ä
Q+d

4 + j
ä

Γ
Ä
Q−d

4 + j
ä Γ
Ä
Q+d

4 + k
ä

Γ
Ä
Q−d

4 + k
ä .
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The proof of the last statement follows from the fact that the convolution

operator Bd with kernel d(ζ, η)d−Q is intertwining, but with d replaced by −d:

Bd
Ä
|Jτ |

Q+d
2Q (G ◦ τ)

ä
= |Jτ |

Q−d
2Q (BdG) ◦ τ,

which can be checked directly on the dilations and translations (and trivially,

rotations and the inversion), using formulas (1.15).

From this and the previous calculations (which are valid also for −Q <

d < 0) we deduce (note: λj(−d) = λj(d)−1),∫
S2n+1

d(ζ, η)d−QYjkdη =
c

λj(d)λk(d)
Yjk.

Now set j = k = 0, and by an elementary computation,∫
S2n+1

d(ζ, η)d−Qdη = 2
d−Q
2

∫
S2n+1

|1− ζ · η|
d−Q
2 dη = 2

d−Q
2 ω2n+1

Γ
Ä
Q
2

ä
Γ
Ä
d
2

ä
Γ
Ä
Q+d

4

ä2
so that

c = λ0(d)2ω2n+1

Γ
Ä
Q
2

ä
Γ
Ä
d
2

ä
2
Q−d
2 Γ
Ä
Q+d

4

ä2 = ω2n+1

Γ
Ä
Q
2

ä
Γ
Ä
d
2

ä
2
Q−d
2 Γ
Ä
Q−d

4

ä2 =
1

cd
.

The operator Ad with eigenvalues λj(d)λk(d) is the inverse of cdBd, and so it

is also intertwining and has the requested fundamental solution. �

Appendix B. Proofs of (3.11) and (3.12)

In the proofs of (3.11) and (3.12) we will assume without loss of generality

that F has zero mean, since the operators on the right-hand sides of such

inequalities both annihilate the constants. To start with (3.11), we assume k

even. We have Lkλ =
Ä

2
n

äk
πLk + λ2k/Qπ⊥Lk and (for φ ∈ C∞)

(B.1)∫
S2n+1

φFLkλφF =
Ä

2
n

äk ∫
S2n+1

î
πLk/2(φF )

ó2
+ λ2k/Q

∫
S2n+1

î
π⊥Lk/2(φF )

ó2
,

so let us first consider the first term. Using the definition of L, we can write

Lk/2(φF ) = φLk/2F +
∑
I

φITIF,

where the sum is finite, over a suitable set of multiindices I = {i1, . . . , i`},
` < k, and where TI = T ′i1 . . . T

′
i`

, the T ′j being either Tj or T j , and φI a

smooth function. Apply π to this formula and square it; the leading term

is (πφLk/2F )2, and the remainder terms are estimated using the following

inequalities:

i) ‖πG‖2 ≤ ‖G‖2,

ii) ‖TIF‖2 ≤ C‖L
k−1
2 F‖2 if I has length < k,

iii) ‖πLk/2FTIF‖1 ≤ ε‖πLk/2F‖22 + C(ε)‖L
k−1
2 F‖22.
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For ii) see, for example, [ADB06] for an orthonormal base of T1,0 rather than

the Tj . Observe that ii) is also valid for I empty, i.e., for ‖F‖2, since F has

zero mean.

Thus we are reduced to estimate the last two terms of the identity∫ î
π(φLk/2F )

ó2
=

∫
φ2(πLk/2F )2

+

∫ (
[π, φ]Lk/2F

)2
+ 2

∫ (
[π, φ]Lk/2F

)
φπLk/2F,

where [π, φ] = πφ − φπ. In order to do this we just have to justify that if Tj
is as in (1.3), then the operator T = Tj [π, φ] (and hence [π, φ]Tj) is bounded

on L2. This is a consequence of the famous T1-theorem by David-Journe, in

the context of spaces of homogeneous type (such as the CR sphere); see, for

example, [DJS85]. Indeed one can write down explicitly the kernel of such

operator, using the Cauchy-Szegő kernel, and check that it is a Calderon-

Zygmund kernel, with T1 = T ∗1 = 0.

This given, we can easily estimate the second and third term with

ε‖πLk/2F‖22 + C(ε)‖L
k−1
2 F‖22.

This takes care of the first term on the right-hand side of (B.1); to deal with

the second term in (B.1), we argue exactly in the same manner. This shows

(3.11) in case k even.

For k odd, the proof of (3.12) is completely similar, except one has to start

from
∫
πL

k−1
2 (Fφ)πL

k+1
2 (Fφ). Using the same product rule as above and the

commutator estimate, the leading term is given by∫
φ2πL

k−1
2 F πL

k+1
2 F =

∫
φ2
∣∣∣∇HπL k−1

2 F
∣∣∣2 +

∫
πL

k−1
2 (Fφ)∇Hφ2∇HπL

k−1
2 F,

and it is easy to see that the second term is bounded above by

ε

∫ ∣∣∣∇HπL k−1
2 F

∣∣∣2 + C(ε)‖L
k−1
2 F‖22 = ε‖Lk/2πF‖22 + C(ε)‖L

k−1
2 F‖22.

The remainder terms are estimated similarly. �

References

[Ada88] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives,

Ann. of Math. 128 (1988), 385–398. MR 0960950. Zbl 0672.31008. http:

//dx.doi.org/10.2307/1971445.

[ACDB04] F. Astengo, M. Cowling, and B. Di Blasio, The Cayley transform

and uniformly bounded representations, J. Funct. Anal. 213 (2004), 241–

269. MR 2078626. Zbl 1054.22006. http://dx.doi.org/10.1016/j.jfa.2003.

12.009.

[ADB06] F. Astengo and B. Di Blasio, Sobolev spaces and the Cayley transform,

Proc. Amer. Math. Soc. 134 (2006), 1319–1329. MR 2199175. Zbl 1091.

43003. http://dx.doi.org/10.1090/S0002-9939-05-08278-X.

http://www.ams.org/mathscinet-getitem?mr=0960950
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0672.31008
http://dx.doi.org/10.2307/1971445
http://dx.doi.org/10.2307/1971445
http://www.ams.org/mathscinet-getitem?mr=2078626
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1054.22006
http://dx.doi.org/10.1016/j.jfa.2003.12.009
http://dx.doi.org/10.1016/j.jfa.2003.12.009
http://www.ams.org/mathscinet-getitem?mr=2199175
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1091.43003
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1091.43003
http://dx.doi.org/10.1090/S0002-9939-05-08278-X


MOSER-TRUDINGER AND BECKNER-ONOFRI’S INEQUALITIES 49
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[BÓØ96] T. P. Branson, G. Ólafsson, and B. Ørsted, Spectrum generat-

ing operators and intertwining operators for representations induced from

a maximal parabolic subgroup, J. Funct. Anal. 135 (1996), 163–205.

MR 1367629. Zbl 0841.22011. http://dx.doi.org/10.1006/jfan.1996.0008.

[CL92] E. Carlen and M. Loss, Competing symmetries, the logarithmic

HLS inequality and Onofri’s inequality on Sn, Geom. Funct. Anal. 2

(1992), 90–104. MR 1143664. Zbl 0754.47041. http://dx.doi.org/10.1007/

BF01895706.

[CT00] D.-C. Chang and J. Tie, Estimates for powers of sub-Laplacian on

the non-isotropic Heisenberg group, J. Geom. Anal. 10 (2000), 653–678.

MR 1817779. Zbl 0992.22007. http://dx.doi.org/10.1007/BF02921990.

[CQ97] S.-Y. A. Chang and J. Qing, The zeta functional determinants on man-

ifolds with boundary. II. Extremal metrics and compactness of isospectral

http://www.ams.org/mathscinet-getitem?mr=0448404
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0371.46011
http://projecteuclid.org/euclid.jdg/1214433725
http://www.ams.org/mathscinet-getitem?mr=0534672
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0411.46019
http://dx.doi.org/10.1016/0022-1236(79)90052-1
http://www.ams.org/mathscinet-getitem?mr=2004744
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1080.22003
http://dx.doi.org/10.1016/S0022-1236(02)00169-6
http://www.ams.org/mathscinet-getitem?mr=0572958
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0436.35063
http://www.ams.org/mathscinet-getitem?mr=1230930
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0826.58042
http://dx.doi.org/10.2307/2946638
http://www.ams.org/mathscinet-getitem?mr=1219650
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0789.22012
http://projecteuclid.org/euclid.ijm/1255987061
http://projecteuclid.org/euclid.ijm/1255987061
http://www.ams.org/mathscinet-getitem?mr=1316845
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0848.58047
http://dx.doi.org/10.2307/2155203
http://www.ams.org/mathscinet-getitem?mr=1186028
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0761.58053
http://projecteuclid.org/euclid.cmp/1104251221
http://www.arxiv.org/abs/0712.3905
http://www.ams.org/mathscinet-getitem?mr=1367629
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0841.22011
http://dx.doi.org/10.1006/jfan.1996.0008
http://www.ams.org/mathscinet-getitem?mr=1143664
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0754.47041
http://dx.doi.org/10.1007/BF01895706
http://dx.doi.org/10.1007/BF01895706
http://www.ams.org/mathscinet-getitem?mr=1817779
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0992.22007
http://dx.doi.org/10.1007/BF02921990


50 THOMAS P. BRANSON, LUIGI FONTANA, and CARLO MORPURGO

set, J. Funct. Anal. 147 (1997), 363–399. MR 1454486. Zbl 0914.58040.

http://dx.doi.org/10.1006/jfan.1996.3060.

[CY95] S.-Y. A. Chang and P. C. Yang, Extremal metrics of zeta func-

tion determinants on 4-manifolds, Ann. of Math. 142 (1995), 171–212.

MR 1338677. Zbl 0842.58011. http://dx.doi.org/10.2307/2118613.

[CY87] S.-Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on

S2, Acta Math. 159 (1987), 215–259. MR 0908146. Zbl 0636.53053. http:

//dx.doi.org/10.1007/BF02392560.

[CCY12] S. Chanillo, H.-L. Chiu, and P. Yang, Embeddability for three-

dimensional Cauchy-Riemann manifolds and CR Yamabe invariants, Duke

Math. J. 161 (2012). http://dx.doi.org/10.1215/00127094-1902154.

[CL01] W. S. Cohn and G. Lu, Best constants for Moser-Trudinger inequalities

on the Heisenberg group, Indiana Univ. Math. J. 50 (2001), 1567–1591.

MR 1889071. Zbl 1019.43009. http://dx.doi.org/10.1512/iumj.2001.50.

2138.

[CL04] W. S. Cohn and G. Lu, Sharp constants for Moser-Trudinger inequalities

on spheres in complex space Cn, Comm. Pure Appl. Math. 57 (2004),

1458–1493. MR 2077705. Zbl 1063.35060. http://dx.doi.org/10.1002/cpa.

20043.

[Cow82] M. Cowling, Unitary and uniformly bounded representations of some

simple Lie groups, in Harmonic Analysis and Group Representations,

Liguori, Naples, 1982, pp. 49–128. MR 0777340. http://dx.doi.org/10.

1007/978-3-642-11117-4 2.
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