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METHOD, SYSTEM AND SOFTWARE
ARRANGEMENT FOR RECONSTRUCTING
FORMAL DESCRIPTIVE MODELS OF
PROCESSES FROM FUNCTIONAL/MODAL
DATA USING SUITABLE ONTOLOGY

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation-in-part of U.S.
patent application Ser. No. 11/471,913 filed on Jun. 20, 2006,
which issued as U.S. Pat. No. 7,801,841 on Sep. 21, 2010,
which relates to and claims priority from U.S. Patent Appli-
cation Ser. No. 60/692,410 filed on Jun. 20, 2005, the entire
disclosures of which are hereby incorporated herein by ref-
erence.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

The present invention was developed, at least in part, using
Government support under Contract No. F30602-01-2-0556

15

20

2

awarded by the Defense Advanced Research Project Agency,
and National Science Foundation Grant Nos. ITR-0428344,
CCF-0836649 and CCF-0937133. Therefore, the United
States Federal Government may have certain rights in the
invention.

COMPUTER PROGRAM LISTING AND
RELATED INFORMATION/DATA APPENDIX

Attached herewith, as an Appendix, please find two (2)
copies of the source code, tables, data and information asso-
ciated with the source code on CD-R disks. The entire dis-
closure provided therein is hereby incorporated by reference.
The CD-R disks provided in the disclosure comply with the
requirements set forth in 37 C.F.R. §§1.52(e), 1.77(b)(4), and
1.96. The attached CD-R disks (COPY 1 and COPY 2) con-
tain the following files, the last modified date of each file, and
size associated therewith.

8 goalie-init.txt 2KB  Text Document 829/2006 1:15 PM
@ cluster-accessions-view.lisp.txt 8 KB  Text Document 8/29/2006 12:42 PM
@ cluster-datestructure. lisp.txt 14 KB  Text Document 8/29/2006 1:16 PM
B clustering-experiments-displays.li . . . 1KB  Text Document 8/29/2006 12:43 PM
@ cluster-plots. lisp.txt 2KB  Text Document 8/29/2006 12:44 PM
@ delivery-script.lisp.txt 5KB  Text Document 8/29/2006 1:04 PM
@ delivery-script-dlllisp.txt 4KB  Text Document 8/29/2006 1:04 PM
8 delivery-script-test.lisp.txt 4KB  Text Document 8/29/2006 1:04 PM
8 disj-redescription-test.lisp.txt 1KB  Text Document &/29/2006 12:58 PM
@ edges-test. lisp.txt 1 KB  Text Document 8/29/2006 12:44 PM
@ elements-tree-view. lisp.txt 9KB  Text Document 8/29/2006 12:44 PM
@ file-menu. lisp.txt 12KB  Text Document 8/29/2006 12:45 PM
@ genesis-clusterize.lisp.txt 2KB  Text Document 8/29/2006 1:15 PM
8 goalie.lisp.txt 15KB  Text Document 8/29/2006 1:16 PM
8 goalie.system.txt 3KB  Text Document 8/29/2006 1:16 PM
8 goalie-console-interface.lisp.txt 2KB  Text Document 8/29/2006 12:45 PM
] goalie-database-setup-interface . . . 4KB  Text Document 8/29/2006 12:45 PM
@ goalie-gui.system.txt 1KB  Text Document &/29/2006 12:47 PM
@ goalie-ids-package.lisp.txt 1KB  Text Document &/29/2006 1:17 PM
8 goalie-pkg.lisp.txt 1KB  Text Document 8/29/2006 1:17 PM
8 goalie-user-interface.lisp.txt 10KB  Text Document 8/29/2006 12:48 PM
B goalie-user-interface.20041228.1 . . . 6 KB  Text Document 8/29/2006 12:49 PM
@ goalie-user-interface-common.lis . . . 3KB  Text Document 8/29/2006 12:49 PM
@ goalie-user-interface-functions.li . . . 3KB  Text Document 8/29/2006 12:49 PM
@ goaliezip.csh.txt 1KB  Text Document 8/29/2006 1:05 PM
@ go-assoc-file-manip.lisp.txt 4KB  Text Document &/29/2006 1:15 PM
@ go-databases-menu.lisp.txt 3KB  Text Document 8&/29/2006 12:50 PM
8 graphsearch-support.lisp.txt 3KB  Text Document 8/29/2006 1:14 PM
@ graphsearch-support.system.txt 1 KB  Text Document 8/29/2006 1:14 PM
@ graphsearch-support-package.li . . . 1 KB  Text Document 8/29/2006 1:14 PM
@ graph-view-common. lisp.txt 2KB  Text Document 8/29/2006 12:50 PM
@ graph-view-displays.lisp.txt 12KB  Text Document 8/29/2006 12:50 PM
8 graph-view-interface.lisp. txt 11 KB  Text Document 8/29/2006 12:51 PM
@ help-menu. lisp.txt 4KB  Text Document 8/29/2006 12:51 PM
8 image-display-panel lisp.txt 6 KB  Text Document 8/29/2006 12:51 PM
@ images-interface.lisp.txt 5KB  Text Document 8/29/2006 12:53 PM
& INSTALLATION.txt 5KB  Text Document 8/29/2006 1:17 PM
® [wdelidll.bat.txt 1KB  Text Document 4/19/2004 12:40 PM
8 |qcuslink-associations.lisp.txt 5KB  Text Document 8/29/2006 1:18 PM
® |wdeli.bat.txt 1KB  Text Document 12/24/2004 10:08 AM
® |wdeli-linux.sh.txt 1KB  Text Document &/29/2006 1:13 PM
@ |wdeli-macosx.sh.txt 1KB  Text Document &/29/2006 1:14 PM
@ nyu-seb-4-windows.txt 256 KB Text Document 8/29/2006 12:58 PM
@ nyu-seb-4-windows-020.txt 43 KB  Text Document 8/29/2006 12:58 PM
@ nyu-seb-4-windows-020-conn.txt 92 KB  Text Document 8/29/2006 12:59 PM
@ nyu-seb-4-windows-070.txt 14 KB  Text Document 8/29/2006 12:59 PM
16 KB  Text Document 8/29/2006 12:59 PM

8 nyu-seb-4-windows-070-conn.txt
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-continued
@ nyu-seb-4-windows-080.txt 14KB  Text Document 8/29/2006 12:59 PM
8 nyu-seb-4-windows-095.txt 223 KB Text Document 8/29/2006 12:59 PM
8 progress-dialog.lisp.txt 3KB Text Document 8/29/2006 12:54 PM
8 raw-data.lisp.txt 2KB  Text Document 8/29/20061:19 PM
® README.txt 1KB  Text Document 8/29/20061:19 PM
@ redescription. lisp.txt 18 KB  Text Document 8/29/2006 1:20 PM
B8 redescription-20041203.lisp.txt 9KB  Text Document 8/29/2006 1:20 PM
@ redescription-20041206.lisp.txt 10KB  Text Document 8/29/2006 1:20 PM
B8 redescription-20041212.lisp.txt 13KB  Text Document 8/29/2006 1:21 PM
@ redescription-20041216.lisp.txt 12KB  Text Document 8/29/20061:21 PM
@ redescription-files. lisp.txt 1KB  Text Document 8/29/20061:21 PM
@ redescription-panel.lisp.txt 1KB  Text Document 8/29/2006 12:54 PM
@ registration. xml.txt 1KB  Text Document 8/29/2006 12:40 PM
8 split-sequence.lisp.txt 10KB  Text Document 8/29/2006 1:21 PM
@ start-gui.lisp. txt 5KB  Text Document 8/29/2006 12:55 PM
8 summarize.lisp.txt 12KB  Text Document 8/29/2006 1:22 PM
® tar-exclude.txt 1KB  Text Document 8/29/2006 1:22 PM
@ test-hiding-interface.lisp.txt 3KB  Text Document 8/29/200612:55 PM
8 time-course-redescription-dlg.lis . . . 2KB  Text Document 8/29/200612:55 PM
@ tl.system. txt 1KB  Text Document 8/29/2006 1:01 PM
8 tl-package. lisp.txt 3KB  Text Document 8/29/20061:01 PM
@ tl-pprinting. lisp.txt 4KB  Text Document 8/29/2006 1:01 PM
@ tl-syntax.lisp.txt 27KB  Text Document 8/29/2006 1:02 PM
@8 tools-menu.lisp.txt 7KB  Text Document 8/29/2006 12:55 PM
@ venn-display.lisp.txt 6 KB  Text Document 8/29/200612:56 PM
8 web-access.lisp.txt 3KB  Text Document 8/29/200612:56 PM
@ windowed-clustering-experiment . . . 21 KB  Text Document 8/29/2006 1:22 PM
8 windowed-clustering-test. lisp.txt 4KB  Text Document 8/29/2006 1:00 PM
® windowed-experiment-setup-fum . . . 2KB  Text Document 8/29/200612:57 PM
@ windowed-experiment-setup-pa . . . 4KB  Text Document 8/29/2006 12:57 PM
8 wrair-seb-50ug-we.lisp.txt 4KB  Text Document 8/29/2006 1:00 PM
@ yeast-cell-cycle-data. lisp.txt 4KB  Text Document 8/29/2006 1:00 PM
FIELD OF THE INVENTION

The present invention relates generally to methods, sys-
tems and software arrangements for reconstructing formal
descriptive models of processes from functional/modal data
using a particular ontology or a controlled vocabulary.

BACKGROUND INFORMATION

Analysis of functional or modal sets of data may focus on
particular targeted characteristics or behaviors of subsets of
the data, but it may not otherwise provide global and/or
dynamic perspectives (e.g., invariants) that can be inferred
collectively from a set of data. The conventional use of con-
trolled vocabularies to describe sets of data may exploit only
the taxonomical properties (e.g., membership or set contain-
ment) of the ontology, and likely may not otherwise use
process-oriented properties to present dynamical perspec-
tives on the whole systems, e.g., in biological systems. How-
ever, such dynamical perspectives can be important in obtain-
ing a better analysis, e.g., a process-level understanding of the
underlying dynamics and relationships that may be acting to
produce the observed data.

Useful information can be obtained for characterizing a
dynamical system by encoding its properties into the ver-
nacular of temporal logic. Temporal logic may be defined in
terms of Kripke structures, which can be expressed in the
form (V, E, P). This can be understood to represent a “seman-
tic support” for hybrid systems. Here, (V, E) can be under-
stood to represent a directed graph having a plurality of reach-
able states of the system as vertices, V, and state transitions of
the system as directed edges, E. For example, a classic cell-
cycle can be characterized by six states: M, G1(1), G1(II), S,
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G2 and GO. P can represent a labeling of the states of the
system with properties that apply to each state.

Conventional model systems and/or experimental condi-
tions may be used conventionally to formally define a Kripke
structure. Defining a Kripke structure can require defining
states, a state transition diagram and providing a labeling of
the states using a particular vocabulary.

A redescription can be understood to mean a shift of
vocabulary, e.g., a different way of communicating a given
aspect of information. Redescription mining is a technique
that may be used to find sets (e.g., sets of genes) that can be
associated with multiple definitions. In biological systems,
the inputs to a redescription mining technique may be of
different forms, e.g., a universal set of open reading frames
(“ORF”s) associated with a particular organism, and various
subsets, or “descriptors,” which may be defined over this
universal set. These subsets can be based on diverse sets of
information, e.g., prior biological knowledge, or they may be
defined by the outputs of algorithms operating on gene
expression data. An exemplary descriptor can be from the
field of systems biology, e.g., “genes involved in glucose
biosynthesis.”

Redescription mining can connect diverse vocabularies by
relating set-theoretic constructs formed over the descriptors.
For example, it may be possible to determine, in a biological
system, that “genes expressed in the desiccation experiment
except those participating in universal stress response” is the
same as “genes significantly expressed 2-fold positively or
negatively in the salt stress experiment.” This redescription
relates a set difference in the first descriptor to a set union in
the second descriptor. Such equivalence relationships can
assist in unifying diverse ways of qualifying information by
identifying regions of similarity and/or overlap.
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Microarray technologies can be utilized to analyze biologi-
cal processes, e.g., to characterize cellular transcriptional
states by simultaneously measuring mRNA abundance of
many thousands of genes. The levels of gene expression (ab-
solute or relative), which can be measured while a cell is
subjected to a particular ambient condition, can be analyzed
using conventional statistical techniques, visualization tech-
niques, and/or data mining algorithms/techniques. Statistical
and data-mining analysis techniques may focus on targeted
sets of genes, e.g., those that may vary in a well correlated
manner, are under similar regulatory control, or may have
consistent functional annotation or ontological categoriza-
tions. However, there may be additional information in the
full data set which can remain unrecognized or be inadvert-
ently discarded when using these techniques, and possibly
contain a richer and more detailed picture.

Biological processes such as circadian rhythms, cell divi-
sion, metabolism, and development can occur as ordered
sequences of events. The synchronization of these coordi-
nated events can be important for proper cell function, and
thus the determination of significant time points in biological
processes can be an important component of all (or substan-
tially all) biological investigations. For example, such signifi-
cant time points can establish logical ordering constraints on
subprocesses, impose prerequisites on temporal regulation
and spatial compartmentalization, and/or situate dynamic
reorganization of functional elements in preparation for sub-
sequent stages. Thus, building temporal phenomenological
representations of biological processes from genome-wide
datasets can be relevant in formulating biological hypotheses
on, e.g., how such processes can be mechanistically regu-
lated, how the regulations can vary on an evolutionary scale,
and how inadvertent disregulation of such processes can lead
to a diseased state or fatality.

Thus, there may be a need for methods, systems and soft-
ware arrangements that are capable of providing global and
dynamic perspectives on transcription states by combining
quantitative analysis of data sets with formal models that can
characterize various global phenomena, e.g., temporal evolu-
tion of biological processes or other sequential data patterns.

SUMMARY OF THE INVENTION

One of the objects of the present invention is to provide
systems, methods, software arrangements, and computer-ac-
cessible media for reconstructing formal descriptive models
of processes from data, e.g., functional and/or modal data
using a particular ontology or a controlled vocabulary.

In one exemplary embodiment of the present invention, a
set of data to be analyzed can be obtained, where the data may
be heterogeneous and of diverse nature, e.g., functional, tem-
poral or modal data. The data may be generated by a dynami-
cal system, and may represent diverse phenomena of different
nature, e.g., gene expressions, probe values, neural data, or
clicks on web links. Alternatively or additionally, the data
may be dependent on one or more modal parameters, e.g.,
time, dosage, or an environmental condition. The data may be
provided in the form of a matrix.

The data may be organized into a plurality of states and
state transitions between the states. For example, states may
include clusters, possible worlds, etc., and state transitions
may include persistence, causality, continuity, etc. This orga-
nization can be performed using conventional procedures,
e.g., a clustering procedure employing a K-means technique,
an SOM technique, an agglomerative technique, or a graph-
based technique, a biclustering procedure, or an information-
bottleneck-based procedure, etc.
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In another exemplary embodiment of the present invention,
each state may be annotated using one or more labels pro-
vided by a set of atomic propositions, e.g., a controlled
vocabulary. The vocabulary can be provided through different
analytical techniques, e.g., by an ontology, statistical text
mining, etc. The model represented by a number of labeled
states and associated state transitions may be referred to as a
“Hidden Kripke Model.” Such models can have the form of a
conventional Kripke model, and/or may be described as “hid-
den” because the model is derived from the data itself using
the controlled vocabulary or ontology. Conventional Kripke
models, in contrast, can be formulated a priori based on some
system knowledge, and then data can be fitted to the assumed
model.

In a further exemplary embodiment of the present inven-
tion, a probability coefficient, or p-value, may be assigned to
one or more states or clusters in the model. The p-values may
be computed by a statistical analysis, e.g., applying a Fisher
exact test, utilizing a Jacquard Coefficient, etc., and they may
be sub-selected by a separate procedure, e.g., false-discovery
rate (“FDR”) criteria. These p-values can indicate the degree
of'likelihood that a given state and transition will conform to
the generated model. A new model may optionally be gener-
ated based on a different organization of the data into states
and state transitions, if the p-values for a generated model are
not sufficiently large.

In a still further exemplary embodiment of the present
invention, invariants may be extracted from the generated
model, which can be a Kripke model. These invariants can
provide additional insight into the dynamical system or phe-
nomena that created or influenced the data. Extraction of
invariants may be performed using a formal approach, e.g.,
using modal logic, fuzzy logic, or temporal logic such as, for
example, linear-time or branching-time logic, etc., by com-
bining the labels systematically, e.g., using model checking
and/or iterative extension techniques. The generated model
and associated invariants may be used to provide responses to
user queries about the data set. This procedure can permit
additional information to be obtained regarding relationships
among the data, the nature of the underlying processes, and/or
patterns that may be present in the dynamical and/or multi-
variate system that produced the data.

These and other objects, features and advantages of the
present invention will become apparent upon reading the
following detailed description of embodiments of the inven-
tion, when taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the invention
will become apparent from the following detailed description
taken in conjunction with the accompanying figures showing
illustrative embodiments of the invention, in which:

FIG. 1 is a general flow diagram of a certain exemplary
embodiment of a method according to the present invention;

FIG. 2 is an illustration of a display of an exemplary output
of an exemplary embodiment of systems and/or software
arrangements in accordance with the present invention;

FIG. 3 is an illustration of an exemplary diagram showing
sample states and state transitions;

FIG. 4 is an exemplary Kripke diagram that may be gen-
erated in accordance with a further exemplary embodiment of
the present invention;

FIG. 5 is a schematic diagram of the system in accordance
with a certain exemplary embodiment of the present inven-
tion;
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FIG. 6A is a schematic diagram illustrating an exemplary
procedure according to the present disclosure;

FIG. 6B is schematic diagram illustrating an another exem-
plary procedure according to the present disclosure;

FIG. 7 a schematic diagram illustrating an exemplary com-
bined temporal process model;

FIG. 8A is an illustration an exemplary plot of data from
YCC experiments/studies;

FIG. 8B shows exemplary contingency tables 830 that
capture the concerted grouping of genes within segments;

FIG. 8C shows exemplary Gantt chart views corresponding
to the exemplary plot of FIG. 8 A and exemplary contingency
tables of FIG. 8B;

FIG. 9A is another table showing segmentation that can
result from an exemplary analysis according to the present
disclosure;

FIG. 9B is a table showing segmentation that can result
from an exemplary analysis according to the present disclo-
sure;

FIG. 10A is a table showing segmentation resulting from
an exemplary analysis according to the present disclosure;
and

FIG. 10B is a table showing segmentation resulting from
another an exemplary analysis according to the present dis-
closure.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The method, system and software arrangement according
to an exemplary embodiment of the present invention, collec-
tively referred to herein as “GOALIE” (an acronym of “Gene
Ontology Algorithmic Logic for Information Extraction™),
can use a gene ontology (“GO”) biological process taxonomy
(or any other ontology or controlled vocabulary collection,
e.g., MeSH, UMLS, etc.) to automatically extract temporal or
other invariants from numerical data. The data may be orga-
nized modally, e.g., along time, concentration, dosage, or any
other independent variable or combinations thereof.
GOALIE is capable of integrating data-driven reasoning, e.g.,
analysis of time course data sets with model-building capa-
bilities.

Conventional analysis techniques can require that a Kripke
structure be pre-defined based on knowledge or assumptions
about processes that are related to the data, and fitting of the
data to the pre-defined structure. GOALIE can utilize and/or
include an exemplary method for obtaining Kripke structures
directly from data sets, e.g., time course micro-array data sets.
Such “hidden” Kripke models (“HKM™s), as described
below, can be generated by combining concepts and tech-
niques used in a redescription mining with “model checking”
techniques, e.g., those used for systems biology. This exem-
plary approach can provide both global and dynamic perspec-
tives of transcriptional states, in which properties of a
dynamical system can be described using the vernacular of
temporal logic.

A “hidden” Kripke model can include a set of hidden states
or possible worlds, together with transitions among the states,
where the states may be labeled with logical propositions. An
HKM may appear to be a variation of the conventional Hid-
den Markov Model (“HMM”) that may be used in the field of
bioinformatics. However, it is likely that an HKM as
described herein may have no readily observable emission
alphabets. To generate an HKM, true logical propositions
selected from a universe of discourse may be inferred or
redescribed. For example, according to the exemplary meth-
ods of the present invention described herein, an HKM may
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be generated without assuming a particular system architec-
ture a priori. The transitions associated with the HKM can be
inferred from the structure and/or the semantics of the pos-
sible worlds or universes. When the HKM structure has been
inferred, however, it can be utilized to identify invariants
associated with the data set, e.g., predicting dynamical prop-
erties of unannotated genes or behavior of a cell, an organ or
an organism at a system level under various environmental,
physical, or other conditions.

To obtain the Kripke structure from a reachability graph, a
set of atomic propositions (“AP”) can be defined to denote the
properties of individual states. For example, a proposition p
may be defined as “cell size large enough for division.” The
proposition p may not be true in states M, G1(I), and GO, and
it may become true in state G1(II). A vocabulary of proposi-
tions may be defined, and the state symbols (e.g., M, G1(]),
etc.) may be replaced with the set of atomic propositions that
apply to each state. Thus, P can represent a map from the set
of states to the set of atomic propositions AP. The resulting
labeled graph can represent the Kripke structure.

In accordance with certain exemplary embodiments of the
present invention, redescriptions can be utilized to infer the
Kripke structures. For example, the redescription can be
based on a method combining one particular vocabulary with
a particular modal data set, e.g., combining gene expression
levels at specified time points or intervals with a particular
vocabulary that may be related to an ontology, e.g., a GO
biological process taxonomy. The redescription may be
equivalent or substantially similar to labeling time-dependent
expression clusters (e.g., the states) with atomic symbols
based on GO categories (e.g., the propositions). To obtain
state transitions, redescription can be performed again, where
the second redescription involves connecting a pair of states,
e.g., a state defined over one time slice to a state defined in a
neighboring (e.g., a successive) time slice. Thus, descriptors
defined in a propositional temporal logic can be utilized to
perform redescriptions both within and across intervals of
time. By combining these redescriptions into the Kripke
structure or model, a global understanding of the temporal
nature of the underlying processes can be obtained. This
exemplary approach can integrate techniques using model-
checking methods with a data-driven emphasis of redescrip-
tion techniques as described herein.

GOALIE can be used to analyze a time-course biological
micro-array experiment by first weighing time-points using a
sliding-window. This weighing procedure can be performed
using various algorithms, e.g., a Haar square weight function
or a smoother function such as, e.g., a Gaussian distribution.
This exemplary procedure may be similar in concept to a
performance of a multi-frequency analysis of signals. The
result of this set of instructions can be a set of data windows
which may overlap. The data windows can then be clustered
using one of several conventional procedures, e.g., a K-means
technique.

Associations or redescriptions of each cluster in each win-
dow can then be constructed using a particular controlled
vocabulary, e.g., ontological annotations for genes and pro-
teins. Hach cluster in each data window may be associated
with one or more descriptive terms obtained from the con-
trolled vocabulary (e.g., from the GO process taxonomy).
This association can be achieved by performing data-depen-
dent statistical tests. These exemplary tests can include many
different approaches, e.g., a simple implication covering
technique which may be based on conventional procedures
such as Jacquard similarity, a Hypergeometric test, or a Fisher
Exact Test.
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Labeling of the clusters may also be performed using an
empirical Bayes approach. Labeled clusters can then be
“chased” to yield transitions to clusters in neighboring time
windows. The basis for relating clusters across time windows
may be the commonality of labelings as revealed by the
previous procedure. The above stages can then be repeated, as
needed, in an iterative fashion to refine the initial clusterings
(e.g., in response to the identified state transitions) or to adjust
the transitions (e.g., to reflect new cluster assignments). Since
the propositions can be obtained from a controlled vocabu-
lary, it may be possible to combine these propositions to
create formulae in a propositional temporal logic (CTL),
which may be useful in describing complex cellular dynam-
ics.

Appropriate statistical corrections may also be employed
in conjunction with these tests, e.g., applying a Bonferroni
correction or a Benjamini-Hochberg correction, which may
reduce a false discovery rate of inferred redescriptions. Such
constructions can be applied to a fixed set of clusters using
conventional techniques. Further, GOALIE is capable of cou-
pling such techniques using a time-course analysis (or an
analysis with respect to the course of another independent
variable) of numerical data. This exemplary approach can
thus provide information relating to correlations among pro-
cesses occurring within, e.g., a biological or other dynamical
system.

A set of graph relationships among data windows can then
be generated based on associations among clusters and terms
provided by the particular controlled vocabulary. This exem-
plary set of graph relationships can be used to construct
exemplary temporal logic formulae describing the system
(e.g., a biological system) at a phenomenological level. The
construction of such graph can depend on the choice of the
controlled vocabulary or ontology, the quality of the basic
annotations available (e.g., the annotation of a specific gene
product with a number of terms), and/or the quality of the
statistical tests used in the previous procedure of constructing
associations or redescriptions of each cluster.

The number of the clusters, and therefore the number of
associations and/or redescriptions between controlled
vocabulary terms and clusters, can then be optimized by
performing an exemplary optimization procedure on the data,
whereas the routine may be formulated in terms of an infor-
mation bottleneck problem. An objective function can be
generated by combining several mutual information factors
denoting interdependencies between data and ontology, e.g.,
in a biological analysis they can be gene products and con-
trolled vocabulary terms. This procedure can improve and/or
maximize the consistency of inter-window associations (e.g.,
redescriptions) between sets of terms and clusters in each data
window. They can be useful because the information bottle-
neck formulation can be expressed in terms of opposing con-
straints. This optimization routine can be analogous to com-
petitive learning procedures and unsupervised techniques
that cluster in a primary space using information from an
auxiliary space.

The set of graph relationships can then be organized in a
directed acyclic graph (“DAG”), and circularities may be
re-introduced using a wrapping technique. An edge can be
placed between a cluster in a window and another cluster in a
previous or successor window. Each edge may be tagged with
the terms that (i) are shared between the redescriptions of the
two clusters and/or (ii) are associated only in the first cluster,
and the terms that are associated only to the second cluster.
The set of temporal logic sentences may be reconstructed by
analyzing different “chains” of edges in the DAG. For
example, finding a set of terms that appear in each edge of a
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chain from the initial window to the last window can generate
a particular temporal logic sentence, likely denoting the
invariance of the set of terms.

An exemplary flow diagram of a method 100 according to
an exemplary embodiment of the present invention is shown
in FIG. 1. For example, data to be analyzed can be received
(step 110), where the data may be, e.g., functional, temporal
or modal. The data may be generated by different mecha-
nisms, e.g., a number of sensors measuring important vari-
ables, e.g., gene expressions, probe values, neural data, or
clicks on web links. Alternatively or additionally, the data
may be dependent on one or more parameters, e.g., time,
dosage, or a condition variable. Such data may be provided as
a matrix (step 120), where each row can represent an index of
the sensors, and each column can represent a modal variable.

A “Hidden Kripke Model” may then be constructed by
organizing the matrix of data into states and state transitions
(step 130). For example, the states may include clusters,
possible worlds, etc., and the state transitions may include
any one or more of many important binary relations, e.g.,
persistence, causality, continuity, etc. The model construction
can be performed using a conventional procedure, e.g., a
clustering procedure employing a K-means technique, an
SOM technique, an agglomerative technique, or a graph-
based technique, a biclustering procedure, and/or an informa-
tion-bottleneck-based procedure, etc.

The states may then be annotated or labeled using the
particular controlled vocabulary (step 140). The vocabulary
can be provided, e.g., by an ontology, statistical text mining,
etc. A p-value may then be assigned to each label or annota-
tion (step 150). The p-values may be determined by a statis-
tical analysis, e.g., applying a Fisher exact test, utilizing a
Jacquard Coefficient, etc., and they may be sub-selected
using additional statistical criteria, e.g., false-discovery rate
(“FDR”) criteria. The p-values may optionally be assessed to
determine if they are greater than a predetermined value, or if
they are sufficiently high for the desired application (step
160). If the p-values are not sufficiently large, the data may be
rearranged into the different states and state transitions (step
170). This can be performed using different criteria for iden-
tifying the states and transitions than were used previously.
The rearranged states and transitions may then be again anno-
tated (step 140).

After the states are annotated (step 140) and provided with
p-values (step 150), invariants of the resulting Kripke struc-
ture may be extracted (step 180). The extraction of invariants
may be performed using a formal method, e.g., modal logic,
temporal logic such as, for example, linear-time or branching-
time logic, fuzzy logic, etc., by combining the labeled anno-
tations algorithmically, e.g., using model checking and/or
iterative extension techniques. The Kripke model and the
associated invariants may be used to generate responses to
user queries (step 190). This exemplary procedure can permit
additional information to be obtained regarding the relation-
ships among the data and the nature of the underlying pro-
cesses or patterns that may be present in the dynamical or
multivariate system, which produced the data.

EXAMPLE

Certain exemplary embodiments of the method, system
and software arrangement according to the present invention
have been used to analyze a yeast cell cycle data set described
in Spellman et al., (see Spellman, P., et al., Comprehensive
Identification of Cell Cycle Regulated Genes of the Yeast
Saccharomyces Cerevisiae by Microarray Hybridization,
Molecular Biology of the Cell, 9(12), pp. 3273-3297, Decem-
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ber (1998)). Analysis of this exemplary data using an exem-
plary embodiment of the present description is described in
Ramakrishnan et al., Reconstructing Formal Temporal Mod-
els of Cellular Events using the GO Process Ontology, Bio-
Ontologies SIG Meeting, ISMB 2005, Detroit, U.S.A.
(2005).

For example, the data set includes several time course
microarray measurements of gene expression levels under a
number of cell synchronization treatments (e.g., a-factor,
Cdcl5, and elutriation treatments). An analysis was per-
formed on a data set prepared from the a-factor time course
data using the full set of more than 6000 genes in accordance
with exemplary embodiments of the present invention.

The a-factor time course data was partitioned into win-
dows containing four time points each, yielding eight win-
dows. Each window was partitioned into 15 clusters, resulting
in a total of 120 clusters. The 120 clusters were redescribed
using a p-value of 0.05. The redescriptions across the win-
dows were then computed using a stringent Jaccard’s coeffi-
cient 0=0.8.

FIG. 2 shows an exemplary display (e.g., a screen shot 200)
of'another exemplary embodiment of the system and software
arrangement (GOALIE) in accordance with the present
invention. In particular, a left portion 210 of the screen shot
200 depicts various time slices utilized in the exemplary data
analysis. A top right portion 220 of the screen shot 200 depicts
an image of a cluster connections graph that may be used for
an interactive exploration of the data using redescriptions. A
bottom right portion 230 of the screen shot 200 identifies
exemplary propositions that remain true, propositions that
become true, and exemplary propositions that cease to be true
when going from a source cluster to a destination cluster.

A representation of the cluster connection graph 220 of
FIG. 2 is shown in FIG. 3. In this exemplary graph, Cluster 7
(310) in the first window has been “chased” to yield a chain
through successive time windows that includes Clusters 7
(320), Cluster 4 (330), Cluster 4 (340), Cluster 11 (350), and
Cluster 12 (360), respectively. The links between the clusters
are labeled with the cardinality of the GO terms they have in
common. For example, the first edge 370 in this chain
involves 2 common GO terms, the second edge 380 involves
3 common GO terms, etc.

An exemplary Kripke diagram 400 derived from the yeast
cell cycle data set described in Spellman et al. (see Spellman
et al., supra.) using the exemplary embodiments of the
method, system and software arrangement according to the
present invention is shown in FIG. 4. The derivation of this
exemplary Kripke diagram 400, which can be obtained using
the information provided by GOALIE similar to that shown in
FIG. 2, is described hereinbelow. In the following descrip-
tions, the notation: “Cluster~L:N,” with L. and N representing
positive integers, can be understood to refer to Cluster N in
time course window L.

Time Course Window 1 to Time Course Window 2: Con-
nection 1:15 to 2:4.

For example, referring to FIG. 4, the inspection of a first
cluster 410 in a first window (e.g., Cluster~1:15) may indicate
that there is only one connection which is worth following to
a cluster 420 in a second window (e.g., Cluster~2:4). The
criteria for this choice can be that an edge connecting the two
clusters 410, 420 is labeled (among many others) by, e.g., the
GO categories ‘positive regulation of sister chromatid cohe-
sion’ (GO:0045876), and that Cluster~2:4 420 is labeled by,
e.g., the category ‘regulation of S phase of mitotic cell cycle’
(GO:0007090), i.e., Cluster~2:4 420 becomes activated in a
second time course window.
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Time Course Window 2 to Time Course Window 3: Con-
nection 2:4 to 3:2.

Next, Cluster~2:4 420 may be reviewed in a second time-
course window. There are two connections that can be fol-
lowed to time-course window 3, a connection to Cluster~3:2
430 and a connection to Cluster~3:4 435. The GO category
‘regulation of S phase of mitotic cell cycle’ (GO:0007090) is
maintained across the connection to Cluster~3:2 430, while
the category ‘positive regulation of sister chromatid cohe-
sion’ (GO:0045876) becomes inactive.

Time Course Window 3 to Time Course Window 4: Con-
nection 3:2 to 4:4.

A subsequent connection in this chain of states may indi-
cate that the GO categories ‘G2 phase of mitotic cell cycle’
(GO:0000085), G2-specific transcription in mitotic cell
cycle’ (GO:0000116), ‘microtubule/chromatin interaction’
(GO:008546), and ‘attachment of spindle microtubules to
kinetochore’ (GO:008608) can each become active in Clus-
ter~4:4 440.

Time Course Window 4 to Time Course Window 5: Con-
nection 4:4 to 5:11.

Based on analysis of the yeast data by GOALIE, this exem-
plary connection may be the only significant connection
between time windows 4 and 5. The GO categories ‘G2 phase
of mitotic cell cycle’ (GO:0000085), and G2-specific tran-
scription in mitotic cell cycle’ (GO:0000116) remain active in
Cluster~5:11 450, while the two categories ‘microtubule/
chromatin interaction’ (G0O:008546), and “attachment of
spindle microtubules to kinetochore” (GO:008608) can
become inactive.

Time Course Window 5 to Time Course Window 6: Con-
nection 5:11 to 6:10.

In this next procedure, the G2 related categories may
become inactive, while M phase related activities may be
initiated in Cluster~6:10 460. For example, the GO categories
‘G2 phase of mitotic cell cycle’ (GO:0000085) and ‘G2-
specific transcription in mitotic cell cycle’ (GO:0000116) can
become inactive. The GO categories ‘G2/M-specific tran-
scription in mitotic cell cycle’ (GO:0000117) and ‘positive
regulation of sister chromatid cohesion” (GO:0045876)
become active.

Following the exemplary sequential chains downward
Cluster~6:10 460, connections that exhibit an expected tran-
sition from G2 to M phases can be located, e.g., in transition
from Time Course Window 7 to Time Course Window 8,
Connection 7:11to 8:12. These clusters are not shown in FIG.
4.

GOALIE may have all pre-processed information available
to automatically generate, e.g., two temporal logic formulae.
The first formula may indicate that there can exist a directed
path connecting a sequence of clusters in successive time
windows such that the GO category “sister chromatid cohe-
sion” holds until the cell enters G2 phase. The second formula
may indicate, e.g., that ‘the cell, after dwelling in G2 phase,
enters M phase.” This feature may be generally recognized as
a property of a cell cycle. However, this result is derived
automatically, as described herein, from numerical expres-
sion matrices and a static ontological annotation.

Further, GOALIE can incorporate conventional query-
based model checking techniques that can be used by a user,
e.g., a biologist to formulate a Natural Language (“NL”)
query or a query formulated in a temporal logic language
(e.g., CTL) about the temporal evolution of the exemplary
system.

The invariants may be extracted from the DAG of cluster
relationships. Translating such formulae into a NL form can
be simplified by using exemplary embodiments of the present
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invention. For example, the following examples illustrate two
exemplary invariants that may be derived from the exemplary
analysis of gene data described hereinabove:

Exists_path(“sister chromatid cohesion’

Until (‘G2 phase’ And G2 specific transcription’))

Eventually(Exists_path((‘G2 phase’ And * G2 specific

transcription’)
Until ‘G2/M specific transcription’))

The exemplary embodiments of the methods according to
the present invention described herein may be used with
various types of data and different controlled vocabularies
and/or ontologies. For example, in addition to biological
applications, the systems, methods and software arrange-
ments in accordance with exemplary embodiments of the
present invention may be used to describe and understand
data relating to various fields of application, e.g., consumer
purchasing patterns, vehicular traffic patterns, and the like.
The exemplary embodiments of the present invention may
also have biological applications to drug-or-vaccine discov-
ery, understanding behavior of a cell in an altered diseased
state (e.g., cancer, neuro-degeneration or auto-immune dis-
ease), genetically modifying a natural wild-type organism,
genetic-engineering, etc. Other exemplary applications may
include providing improved understanding of such phenom-
ena as neural behavior, market behavior of a population of
users interacting on the Internet, etc.

An exemplary embodiment of a system 500 for implement-
ing the present invention is shown in FIG. 5. For example, a
database 510 of the system 500 may contain one or more sets
of data to be analyzed. The system 500 may further store,
obtain and/or utilize external information 520 which can
include, e.g., one or more controlled vocabularies, as well as
exemplary procedures that may be used, e.g., to perform one
or more steps required to construct hidden Kripke models,
generate p-values, etc. The external information 520 and
information contained in the database 510 can be communi-
cated to a computer 530. The computer 530 may comprise a
hardware processing arrangement and/or processor, and may
be configurable, e.g., to represent the data in matrix form,
organize the data into states and state transitions, annotate or
label states, generate p-values associated with the various
states, generate Kripke models based on the data, extract
invariants associated with the Kripke model, and/or perform
other computational and/or data handling procedures.

Information relating to the data sets may be communicated
to an optional output arrangement 540. The output arrange-
ment 540 may include any suitable display device, including
but not limited to a display, a video monitor, a printer, a data
storage medium, and the like. The output arrangement 540
can be in communication with the computer 530 using an
output connection 545, which can include a wireless connec-
tion, a wired connection, a signal communication line, a local
area network, a wide area network, a connection to the Inter-
net, etc.

The system 500 may further comprise an input arrange-
ment 550, which can include any suitable input device
capable of providing signals to the computer 530. The input
arrangement 550 can include, but is not limited to, a mouse, a
keyboard, a touch screen, a pointing device, and the like. The
input arrangement 550 can be in communication with the
computer 530 using an input connection 555, which may
include, e.g., a wireless connection, a wired connection, a
signal communication line, a local area network, a wide area
network, a connection to the Internet, etc. The input arrange-
ment 550 can be used, e.g., to specify data sets and/or con-
trolled vocabularies to be used, and/or queries to be processed
based on a generated Kripke structure. The computer 530 can
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include a hard drive, CD ROM, RAM, and/or other storage
devices or media which computer-accessible medium can
include thereon software, which can be configured to execute
the exemplary embodiments of the method/procedure and
software arrangement of the present invention.

Further provided and described herein is an exemplary
framework that can be used to, e.g., reconstruct temporal
models of cellular processes from time-course gene expres-
sion data. For example, it is possible to combine multiple
time-course datasets to reveal groups of critical genes that can
alter orchestrated processes in the cell. As described herein,
this exemplary problem can be mathematically formulated as,
e.g., optimally (or based on meeting certain pre-determined
criteria) segmenting multiple datasets into a succession of
“informative” windows such that time points within a win-
dow can expose concerted clusters of gene action whereas
time points straddling window boundaries can constitute
points of significant restructuring. For example, provided
herein is a description of how exemplary embodiments
according to the present disclosure can successfully bring out
and/or involve an interplay (and/or interdependence, associa-
tion with, bilateral utilization, etc.) between multiple yeast
processes, as can be inferred from combined datasets for the
cell cycle and the metabolic cycle, which datasets can be
experimental and/or obtained based on pre-selected criteria.

Cells and organisms can be viewed as progressing through
sequences of states, as aresult of discrete mechanisms. Defin-
ing these states and identifying the underlying mechanisms
can be important to, e.g., understanding biological processes
and how metabolic and developmental disorders can be
treated. Exemplary analysis systems and tools can be based
on and/or utilize algorithms, procedures and/or methods for
time series analysis using temporal logic formalisms and can
be used with engineering, and computer and systems science
applications, for example.

For example, the yeast species Saccharomyces cerevisiae,
which has been likely researched and studied to understand
the biology of eukaryotic microorganisms, can be a good
model organism to illustrate some of the exemplary embodi-
ments of the present disclosure as described herein. To under-
stand the systems biology of yeast, it is possible to study
temporal expression profiles of genes involved in a particular
function, e.g., cellular division or metabolism, and create
models of the state space dynamics in terms of labeled states
and state transition relations.

For example, FIGS. 6A and 6B illustrate a procedure
according to an exemplary embodiment of the present disclo-
sure. As shown in these FIG. 6A, a yeast cell cycle (YCC)
model 610 can be created using data generated by a procedure
such as described in Spellman et al. (see Spellman et al.,
supra.). Similarly, as shown in FIG. 6B, a yeast metabolic
cycle (YMC) model 620 can be created by combining data
generated separately by two other research groups, such as
the groups described in Tu et al. (see Tu, B., Kudlicki, A.,
Rowicka, M. and McKnight, S., Logic of the yeast metabolic
cycle: temporal compartmentalization of cellular processes,
Science 310:1152-1158 (2005)) and Klevecz et al. (see
Klevecz, R., Bolen, J., Forrest, G. and Murray, D. B., 4
genomewide oscillation in transcription gates DNA replica-
tion and cell cycle, Proc Nat’l Acad Sci USA 101:1200-1205
(2004)). Resulting exemplary YCC and YMC labeled state
transition models 610, 620 are shown in FIGS. 6A and 6B,
respectively. States can be identified through an exemplary
segmentation procedure according to above-identified appli-
cation, and edges can be labeled by the experimental condi-
tions under which the transitions are observed.
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It is possible to view these two exemplary models 610, 620
as Kripke structures (see, e.g., Clarke, E., Grumberg, O. and
Peled, D., Model Checking, MIT Press (1999)), with atomic
propositional labels corresponding to the GO functional cat-
egories, thereby enabling temporal logic model-checking to
extract complex global properties of these modules. For
example, it can be ascertained from the Kripke structure of the
cell cycle that for cytokinesis to lead to DNA replication, it is
possible that the cell size must have enlarged sufficiently for
division.

One exemplary goal of this type of analysis can be to
formulate models without preexisting hypotheses, and to pre-
dict, e.g., how a system can be expected to behave when
subjected to multiple perturbations. Due to the multitude of
possible perturbations that can be imposed, it can be difficult
to conduct experiments corresponding to each of them and/or
require undue experimentation to obtain meaningful results
orreliable information. Therefore, computational capabilities
that can provide information on interactions and/or associa-
tions between individual subsystems can become important
for obtaining such results.

FIG. 7 shows an exemplary illustration of a combined
temporal process model 710 of exemplary YCC and YMC
experiments/studies. An exemplary approach and procedure
according to the present disclosure, as shown in FIG. 7, is
provided to computationally integrate data from the distinct
YCC and YMC experiments/studies 720 along with data from
other perturbations 730, e.g., by hydrogen peroxide (HP) or
menadione (MD) treatments, into a more complex combined
model. Such exemplary integration can be possible even
though the data sources for each experiment/study and per-
turbation can be gathered independently. The combined
exemplary model 710, which can be created by this exem-
plary metaanalysis, can reveal insightful and complex tem-
poral properties of the combined exemplary system, which
can not be visible in the individual component models. For
example, the exit from cell cycle under HP perturbation 740
can be inferred as fundamentally different from the exit from
cell cycle under MD treatment 750, in which under MD
treatment, the cells complete one full cycle before being
arrested.

To generate Kripke structure models as shown in FIG. 7, it
is possible to use exemplary algorithms, procedures and/or
methods to extract states and state transitions from the data,
and subsequently to label the states. As provided and
described herein, the exemplary mathematically rigorous
procedure/method (GOALIE) can reconstruct temporal mod-
els of cellular processes from time-course gene expression
data.

Exemplary Inference of Temporal Models.

As the exemplary procedure, method and/or system to infer
temporal models, exemplary embodiments of GOALIE can
be utilized by an experimentalist to, e.g., track which genes
are under coordinated temporal regulation and how such gene
expression can persist and dynamically vary over time,
thereby providing information and insight into the progres-
sion of events constituting a given process. GOALIE can be
based on and/or use an efficient dynamic programming algo-
rithm, procedure and/or method utilizing an information-
theoretic optimization criterion, for example.

Time-course analysis can be an important tool for the study
of organism development, disease progression, and cyclical
biological processes, e.g., the cell cycle, metabolic cycle, and
even entire life cycles. The growing affordability of transcrip-
tional profiling screens has likely fostered the generation of
multiple time series datasets. When the number of time points
is sufficiently large, researchers can utilize continuous repre-
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sentations to smooth out noise, apply hidden Markov models
to guide clustering, and use static measurements to “fill in the
gaps” in the time series data. When the number of time points
is small, it is possible to study the role of sampling rates and
propose the use of model profiles to guide clustering.
Researchers also can characterize periodicity in transcrip-
tional profiles, quantify timing differences in gene expres-
sion, extract binary signals embedded in the data, and recon-
struct regulatory relationships.

One of the attractions of time series analysis can be its
potential to reveal temporal relationships underlying biologi-
cal processes, e.g., which process can occur before a particu-
lar event, what “checkpoints” can need to be satisfied (and
when), and whether there can be alternative pathways of time
series progression. Certain temporal modeling formalisms
can be utilized, such as linear time logic, which can use a
single time line from start to end, and branching time logics,
which can allow for multiple possibilities. For example, as
described herein, exemplary embodiments of the present dis-
closure can utilize linear time logics for modeling individual
experimental conditions (stresses) yielding Gantt chart rep-
resentations (as shown in the FIG. 9 and described herein
below). The interplay between the stresses and potential
branching behavior can then be inferred indirectly through
concurrent notations such as Kripke diagrams. It is also pos-
sible according to certain exemplary embodiments of the
present disclosure to directly model branching time behavior
using data mining techniques, for example.

Exemplary embodiments of linear time modeling accord-
ing to the present disclosure can function as follows. For
example, given gene expression time-course data, it is pos-
sible to identify segments of the time course where, within a
segment, genes organize into groups depicting concerted
behavior but across segments there can be a significant
regrouping of genes. Although such exemplary analysis can
be conducted by tracking individual genes whose function is
known, according to certain exemplary embodiments of the
present disclosure, it is possible to automatically mine, in an
unsupervised manner, temporal relationships involving
groups of genes which are not a priori defined. Similarly,
while there can be a desire for research into modeling the
activity level of genes as a mixture model of activity levels of
processes, such research is likely not directly concerned with
revealing the temporal coordination of processes, such as
described herein.

For example, biclustering algorithms can reveal patterns
that can preserve order of the time course, but such biclusters
can not yield a partition of the entire time course, such as can
be achieved in accordance with certain exemplary embodi-
ments of the present disclosure. Additionally, such previously
described biclusters can tend to not cover all time points, can
involve overlapping time points, and therefore cannot be eas-
ily post-processed into a formal temporal model, for example.
Exemplary embodiments according to the present disclosure
can derive a complete (or substantially complete) segmenta-
tion from which it is possible to construct state model where
the states (nodes) correspond to the segments and transitions
(edges) denote observed state-state boundaries, which state
model can be finite. Furthermore, according to certain exem-
plary embodiments of the present disclosure, propositions
that hold true in each state (e.g., the biological processes
enriched in the corresponding segment) can be used to label
the corresponding node in the model. Exemplary models
from multiple stresses can then be combined by coalescing
nodes and factoring transitions.
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Exemplary Information-Theoretic Framework.

A core problem that can be solved by exemplary embodi-
ments according to the present disclosure can be the segmen-
tation of a given time-course dataset into a succession of
“informative” windows such that time points within a win-
dow can reveal concerted clusters of gene action, whereas
time points straddling window boundaries can indicate sig-
nificant process-level restructuring. There are various math-
ematical formalisms that can be utilized by exemplary
embodiments according to the present disclosure to formulate
the segmentation problem and to characterize its solution. For
example, as described herein, exemplary embodiments
according to the present disclosure can use a framework
based on information theory where the segmentation criterion
is driven by measures over cluster dynamics.

For example, given multiple vectors of measurements
¥ ={g,, g, ..., gy}, where each g, is a time series over
T ={t;,t,,. .., 1}, the problem of segmentation can be to find
a sequence of segments, (w,”, w, * ..., w,") where each
segment w,*, t.<t, can be a set of consecutive time points
beginning at time point t, and ending at time point t,. The
segment boundaries can be identified such that, if genes in
neighboring windows were to be clustered separately, highly
dissimilar sets of clusters would likely be found. Considering
the case of segmentation into two windows: e.g., where it is
sought to find segments w, ® and w, *, with r clusters in the
window w, | % and ¢ clusters in the W1nd0W W, %, Itis possible
to let o and [ represent the cluster random Variables for the
windows w, % and W, % respectively. In this exemplary case,
the set of p0551b1e values for o can be (1, ...,r), and the set
of possible values for f canbe {1, . . ., c}.

In order to relate two probability distributions, it is possible
to begin with the idea of entropy (information) and relative
entropy (conditional information). For example, H(X)=-2p
(x)log, p(x) can be the entropy of a probability mass function
p(x) for X, and HXIY)=Zp(x, y)log, p(xly) can be the
conditional entropy given by a conditional probability mass
function p(xly) for X with respect to Y. Accordingly, it is
possible to obtain

px)-p(y) )

HX) = HIX |Y) = =Ep(, o =58

Ifthere is not enough regulatory reorganization between two
consecutive time intervals, it is possible to gain a substantial
amount of new information in the subsequent time window,
provided that the dynamics in the preceding time window
have already been analyzed and etiolated therefrom. Such
exemplary procedures and concepts according to the present
disclosure can be summarized in a notion of mutual informa-
tion and lead to formulation of an exemplary optimization
problem.

The mutual information between the two exemplary prob-
ability distributions for o and  can provide a measure of
similarity between the two clusterings in adjacent windows,
as can be expressed by:

Ie, f)= H(@) -
= H(p) -

H(a|p)
H(B|a).

5=

Since it can be desirable that the clusterings be highly
dissimilar with as little mutual information as possible, the
problem can be to minimize:

200, p)=H(a)+H(B)+H(B)-H(ap)-H(Blor). Bl
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Terms H(ct) and H(P) in the above equation can be ignored
as these terms can just influence the cluster sizes. Thus, it is
possible to focus only on the conditional entropies and use
contingency tables to calculate the distributions as described
herein.

According to certain exemplary embodiments of the
present disclosure, it is possible to start by measuring the
similarity of the clusters across the windows using a rxc
contingency table. Entry n,; in the (i,j ) cell of the table can
represent the overlap between the genes clustered together in
cluster i of window w, % and in cluster j of window w, 1’“ The
sizes of the clusters in W, % can be provided by the column
wise sums across each row: n,.=Xn,;, while the sizes of clus-
ters in w b”’“ can be provided by row-wise sums down each
column: n,=Zn,.

Interpreting each row and column as a probability distri-
bution, preferred highly dissimilar clusters can resultin a total
of (r+c) uniform distributions across the rows and columns of
the exemplary contingency table. To capture the deviation of
these distributions from the uniform distribution, it is possible
to define r random variables R,, i=1, . . . , r occurring with
probability

pr() = —

corresponding to each row. Similarly, it is possible to define ¢
random variables C, j=1, . . ., ¢ occurring with probability

Ly
PCj(l)—;j

corresponding to each column. The deviation of these distri-
butions can then be captured from the uniform distributions
over the rows

and columns

IS

where

(L) 15 puinete(L)

px)

Dyr(puq) = Zp(x)logz e

by:

can represent the Kullback-Leibler (K1) divergence between
two probability distributions p(x) and q(x). The adjacent win-
dows can thus be clustered using this objective function,
minimizing it in order to yield highly dissimilar clusters
across the windows. The space over which this minimization
can be performed is further described herein below. Since the
KL divergence of virtually any distribution with respect to the
uniform distribution can differ from its negative entropy by a
constant (when the sizes of the supports of the distributions
are fixed), exemplary equation 4 can be equivalently
expressed as:
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F=- éz H(R) - %Z H(C)),
i=1 =

1< 12N
=--3 H(Bla=)->Y H@|B=)
= =

Thus the function # can capture the mutual information
between the clusterings in adjacent windows.

A goal can be to minimize # and obtain clusters for either
segment that can be local within each segment (similar to a
k-means algorithm) but have high dissimilarity when com-
pared with clusterings from the neighboring segment. This
can beachieved by, e.g., parameterizing # interms of cluster
prototypes, defining the cluster random variables to capture
locality in their respective spaces, and optimizing # using an
augmented Lagrangian algorithm. Soft clusters can be used
so that each gene can be a member of multiple clusters within
a segment, with different probabilities.

The preceding exemplary analysis is based on the assump-
tion that two adjacent segments are given and it is possible to
merely seek to find clusters that are maximally dissimilar
across the segments, for example. To identify the segments
initially, a dynamic programming algorithm can be utilized.
Using minimum and maximum segment length constraints, it
is possible to consider all (or substantially all) possible “til-
ings” of the time course where every pair of neighboring tiles
can reduce to the problem described above, e.g., where the
evaluation can consist of applying an exemplary clustering
framework and determining the minimized value of #.
These objective function values can then be summed over an
entire segmentation and used to evaluate one segmentation
over another. Computationally, this can reduce to a shortest
path algorithm where each edge length can be given by the
minimized value of # Each optimization can be performed
in a matter of a few seconds on a desktop computer so that the
entire segmentation can be computable in a relatively short
time-frame (e.g., a few minutes).

Exemplary Results.

Specific strains of Saccharomyces cerevisiae have been
shown to likely have two robust biological cycles occurring
simultaneously, e.g., the metabolic and cell cycles (see, e.g.,
Futcher, B., Metabolic cycle, cell cycle, and the finishing kick
to start, Genome Biol 7:107 (2006); and Palkova., Z. and
Vachova, L., Life within a community: benefit to yeast long-
term survival, FEMS Microbiol Rev 30:806-824 (2006)).
Exemplary framework according to the present disclosure
can be validated through, e.g., analysis of five yeast gene
expression datasets, including two YMC time courses involv-
ing two different strains grown under two different conditions
(YMC1: CEN.PK122 diploid strain, glucose-limited cultures
(see Tuetal., supra.) and YMC2: IFO 0233 diploid strain, not
glucose limited (see Klevecz et al., supra.), a YCC dataset
after release from a-factor synchronization (YCC: DBY 8724
strain (see Spellman et al., supra.), and observations of the
cell cycle under treatment of HP and MD (see Shapira, M.,
Segal, E., Botstein, D., Disruption of veast forkhead-associ-
ated cell cycle transcription by oxidative stress, Mol Biol Cell
15:5659-5669 (2004)). It is possible for exemplary embodi-
ments according to the present disclosure to recover intricate
temporal relationships across these datasets. For example, the
questions sought to be addressed can be, e.g., which pro-
cesses precede/succeed others, are there periodicity relation-
ships underlying a dataset, and what stages serve as check-
points or prerequisites for others.
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Exemplary Yeast Cell Cycle.

According to certain exemplary embodiments of the
present disclosure, it is possible to compute the optimal seg-
mentation for the YCC a-factor synchronization experiment
described in Spellman et al. (see Spellman et al., supra.) using
an exemplary programming procedure. This dataset can be or
include two exemplary cycles. FIGS. 8 A-8C illustrate one of
the two exemplary cycles. For example, to understand the
temporal nature of the underlying dataset, as shown in FIGS.
8A-8C, each window can be labeled with only functions from
the cluster whose mean expression peaks during the window.

In particular, FIG. 8A shows an illustration an exemplary
plot 810 of data from YCC experiments/studies that can
involve the staged coordination of several phases, e.g., M/G1
time points 811, G1,S time points 812 and G2,M time points
813. As shown in FIG. 8A, the corresponding mean expres-
sion profiles 821, 822, 823 for each group of genes can depict
the changing emphasis across the three phases.

FIG. 8B shows exemplary contingency tables 830 that
capture the concerted grouping of genes within segments.
FIG. 8B further illustrates exemplary contingency tables 840
that can capture the regroupings between segments. As shown
in FIG. 8B, contingency tables 830 can involve significant
enrichments, whereas tables 840 can approximate a uniform
distribution.

FIG. 8C shows how Gantt chart views 850, 860, 870 cor-
responding to the exemplary plot 810 of FIG. 8A and exem-
plary contingency tables 830, 840 of FIG. 8B can depict the
temporal coordination of biological processes underlying the
dataset. In this example, only some ofthe exemplary enriched
functions are shown in FIG. 8C.

Several qualitative observations can be made from the seg-
mentation in the example shown in FIGS. 8 A-8C. First, it is
possible to observe how clusters within each window can
offer significant enrichments of biological processes. Second,
exemplary segmentation can reveal the cyclic nature of the
dataset, e.g., alternating M/G1, {G1,S}, {G2,M} phases,
without explicit instruction. By studying the processes
enriched in each segment illustrated in FIGS. 8 A-8C, careful
coordination of the cell cycle can easily be seen. The YCC
time-course data can span approximately two points each for
phases M/G1, G1, and S can span only one time point for the
(G2 phase. Because a minimum window length can be three
according to certain exemplary embodiments of the present
disclosure (e.g., set so as to be able to recover significant
clusterings and regroupings), it is possible that the these
short-lived phases with this dataset cannot be precisely
resolved, although continuous representations such as spline
fits can be used to gain greater resolution of data sampling
(see Ernst, J., Nau, G. J. and Bar-Joseph, Z., Clustering short
time series gene expression data, Bioinformatics 21:1159-
1168 (2005)). Nevertheless, the significant events that can be
occurring in these segments can be retrieved with high speci-
ficity, e.g., p<107". in accordance with certain exemplary
embodiments of the present disclosure.

Exemplary Yeast Metabolic Cycle.

While the YCC may have been well studied, the timing
relationships in the YMC have likely only recently become
elucidated. For example, a main result of certain studies can
be the existence of three key clusters of expression patterns
that can oscillate coordinatively through the metabolic cycle
phases, influenced by careful transcriptional control. Exem-
plary embodiments according to the present disclosure can
recover the underlying temporal relationships in both the
YMC datasets studied here.

For example, FIGS. 9A and 9B illustrate exemplary tables
910 and 920, respectively, that show segmentation that can
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result from an exemplary analysis according to the present
disclosure of transcriptional profiling datasets evaluating the
rhythmical growth of S. cerevisiae (YMCI1: diploid
CEN.PK122, nutrient-limited conditions; YMC2: diploid
IFO0233, not nutrient limited). The time line of each experi-
ment is shown with each hash mark 911, 921 indicating a
sampling point. As shown in FIGS. 9A and 9B, exemplary
embodiments according to the present disclosure can accu-
rately determine the G1, S, and G2/M phases of the cell cycle,
respectively. The genes associated with each segment in this
example were culture and strain-dependent.

In particular, FIG. 9A illustrates that eight segments were
inferred for YMC1. These segments can correspond to the
successive reductive building (R/B), charging (R/C), and oxi-
dative (Ox) phases of the metabolic cycle. The gene ontology
(GO) categories enriched (p<10~7) can be clearly seen to be
cyclic in nature.

FIG. 9B shows that the same exemplary analysis applied to
the YMC?2 dataset can yield nine segments, corresponding to
three successive R/C, Ox, and R/B phases. The overlap in GO
categories between YMC1 and YMC2 can be fairly dramatic,
especially with regards to processes associated with cell divi-
sion. As shown by a comparison of tables 910 and 920, GO
categories can be associated with the R/B segment of YMC2
growth relative to YMC1. Such differences can be related to
differences in growth conditions as well as the strain
employed, for example.

Exemplary Hydrogen Peroxide and Menadione Oxidative
Stress.

The effects of HP and MD on yeast strain DBY8724 were
evaluated recently through temporal transcriptional profiling.
Inthe case of the peroxide treatment, cells were synchronized
with a-factor, exposed to HP for a set period of time, and
subsequently released from the oxidative stress. GOALIE
analysis of this dataset returned time segmentations that cor-
responded to the three main phases of the cell cycle, as shown
in FIGS. 10A and 10B.

In particular, FIGS. 10A and 10B provide illustrations of
exemplary tables 1010 and 1020, respectively, which show
segmentation resulting from an exemplary analysis according
to the present disclosure of a transcriptional profiling dataset
evaluating the exposure of S. cerevisiae (BY8743) to HP (0.2
mM) and MD (2 mM). The time line of the experiment is
shown, where each hash mark 1040, 1050 indicates a sam-
pling point, and the duration of the treatment is above the time
line. Exemplary embodiments according to the present dis-
closure accurately assigned Segments 11011, 1021 11 1012,
1022 and IV 1014, 1024 of the peroxide dataset to the times
when the cells are predominantly in G1, S, and G2/M phases
of the cell cycle, respectively. Segment 111 1013, 1023 puta-
tively represents the combined transition between phases of
the cell cycle as well as the release from oxidative stress. The
prevalence of genes associated with core metabolic processes
including sulfur metabolism is shown in FIGS. 10A and 10B.
As further shown in FIGS. 10A and 10B, the exemplary
analysis of the MD treatment resulted in the assignment of the
cell cycle stages (I-11I) as well as the G1 arrest.

Exemplary Process Modeling.

According to certain exemplary embodiments of the
present disclosure, a combined, dynamic, temporal process
model can be inferred from all of the datasets shown in FIG.
7, for example. The exemplary model can capture the inter-
play between the YMC and Y CC, and the cyclic nature of their
time courses. The exit of cells from the cell cycle due to HP
treatment and subsequent cell cycle arrest is also captured. It
is possible that these transitions can involve the cysteine and
glutathione metabolic processes that drive the transition to
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cell cycle arrest. The transitions involving MD do not indicate
a similar exit likely because the cells complete one full cycle
before getting arrested.

The ability to identify segments of interest in temporal
datasets without supervisory input permits analysis of the
interplay between biological processes. Through exemplary
temporal models, it has been shown that S. cerevisiae can act
in a somewhat unified fashion, with cell cycles based on core
metabolism and cell division. Connections between the YMC
and the YCC can have been under investigation, which can
have generated interesting hypotheses involving biochemical
process compatibility versus coordinated metabolic “bursts”.
An underlying assumption can be that, choreographed by
these two predominant cycles, the availability of energy can
control whether a yeast cell divides or not, can motivate many
other important questions, such as what are the major intra-
cellular and extracellular molecules that control an individual
cell and its decision to divide. The question may be as to
whether it is possible to use gene knockouts and/or growth
condition modifications to separate the YMC and YCC so that
they are independent of one another.

For example, an exemplary investigation of the transcrip-
tional profiling associated with peroxide stress identified a
time segment that corresponded to an “intermediate stage”
where the yeast cells were recovering from peroxide stress.
The GO categories enriched in this segment were related to
core metabolic processes (ethanol, TCA, glycogen), sulfur
metabolism, and inositol lipid-mediated signaling, as well as
chromatin silencing and nuclear pore organization/biogen-
esis. While sulfur metabolism can be associated directly with
the oxidative stress response, the linkage to inositol lipid-
mediated signaling genes and chromatin silencing is a bit
more remote. Further analysis can be necessary to elucidate
these connections. Nevertheless, exemplary tools can bring
out the nature of temporal “hardwiring” manifest in biologi-
cal processes. In particular they can open up questions related
to whether it would be possible to manipulate the system to
adopt an aberrant cell state or make it proceed along a desired
temporal order. For instance, the identification of unique tran-
scriptional states such as found in Segment I1I of the peroxide
treatment suggests that at this stage in the cell growth regime
it may be possible to force the organism to adopt aberrant
states. For example, exit from peroxide treatment results in
entry into the G2/M state. Another question can be what the
effect would be of adding alpha factor to the growth medium
directly after release from peroxide stress. Yet another ques-
tion can be as to whether the cells continue through the cell
cycle once before entering into G1, or move directly to G1.
Questions such as these are the focus of a future research
project to be initiated, according to certain exemplary
embodiments of the present disclosure.

By formulating the search for an optimal segmentation in
mathematical terms, it is possible to use dynamic program-
ming to reconstruct important temporal progressions and
cycles in molecular biology. An augmented Lagrangian algo-
rithm has been devised, implemented and tested to identify
clusters of genes that dynamically regroup across important
breakpoints in the time series. Simply by extracting and ana-
lyzing the connections between the YMC and the YCC pro-
cesses, which had remained latent in published data, it is
possible to refine hypotheses involving biochemical process
compatibility versus coordinated metabolic “bursts”.
Exemplary Methods

Exemplary Datasets and Data Preprocessing.

Exemplary datasets came from a variety of sources. For
each dataset described below, it is possible to retain only
genes that have an annotation in the GO biological process
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taxonomy (revision 4.205 of GO released on Mar. 14, 2007),
log transformed (base 10) their expression values and nor-
malized them such that the mean expression of each gene
across all time points is zero. The YMC1 dataset (see Tuetal.,
supra.) consists of 36 time points collected over three con-
tinuous cycles. The original dataset consists of 6,555 unique
genes from the S. cerevisiae genome from which after pre-
processing as described above it is possible to retain 3,602
genes. It is also possible to analyze another YMC2 dataset
(see Klevecz et al., supra.) with 32 time points collected over
three continuous cycles. (While in YMC1 (see Tu et al,,
supra.) the authors claim that the cycle length is approxi-
mately 5h, in YMC2 (see Klevecz et al., supra.), the authors
claim that this cycle length is approximately 40 min.) Again,
3,602 genes were retained. As an exemplary third dataset, the
well known YCC dataset was analyzed from experiments
performed by Spellman et al. (see Spellman et al., supra.).
There are three components to the Spellman et al. YCC data,
following three different cell synchronization treatments with
a-factor, cdc 15, and elutriation. Described herein is an exem-
plary analysis of the a-factor dataset that has 6,076 genes
with 18 time points over approximately two cycles. Exem-
plary preprocessing results in a universal set of 2,196 genes.
Additionally, datasets from the experiments conducted by
Shapira et al. (see Shapira et al., supra.) were analyzed, who
studied the effects of oxidative stress induced by HP and MD
on the YCC. The analyzed datasets included HP and MD
which were added to the cells at 25 min after release from G1
arrest. The cells treated with HP were arrested in the subse-
quent G2/M phase while those treated with MD go through
one cell cycle and were arrested in the G1 phase of next cycle.
The HP dataset has 20 time points while the MD dataset has
14 time points. After preprocessing, a final set of 2,471 genes
in HP, and 2,247 genes in MD datasets were obtained.

Exemplary Dynamic Programming Procedure for Optimal
Segmentation.

It is possible to apply a dynamic programming algorithm
for segmenting the various time series. It is also possible to
use different settings for the numbers of clusters and different
thresholds for minimum and maximum possible window
lengths to search in the space of possible segmentations.
Besides the number of clusters in each segment, and mini-
munm/maximum constraints on window lengths, it is possible
to parameterize the segmentation procedure with a parameter
A that controls the sizes of the clusters in the resulting seg-
mentations and can be adjusted to yield approximately equal
cluster sizes. For YMC1, it is possible to experiment with the
number of clusters in each segment ranging from 3-15, a
minimum window length of 4 and maximum window length
of 7, and A=1.4. For YMC2, the number of clusters can be
varied between 3-15, with minimum and maximum window
lengths of 3 and 6 respectively, and A=1.35. For the YCC, it is
possible to have a range from 3-15 clusters in each window
with a minimum window length of 3 and maximum window
length of 5, and A=1.25. For segmenting the HP and MD
datasets, the number of clusters can be varied between 3-15,
with minimum and maximum window lengths of 3 and 7
respectively, and A=1.55. After the segmentation reveals win-
dows and clusters of genes in each window, it is possible to
perform functional enrichment over the selected sets of
genes. A hypergeometric p-value can be calculated for each
GO biological process term, and an appropriate cutoff can be
chosen using false discovery rate g-level of 0.01 (see, e.g.,
Storey, J. and Tibshirani, R., Statistical significance for
genomewide studies, Proc Nat’l Acad Sci USA 100:9440-
9445 (2003)). The time bounded enrichments can be summa-
rized as Gantt charts, such as described herein above. Further,
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it is possible to employ various statistical tests to assess the
sensitivity of the segmentation to variations in the number of
clusters.

Exemplary Inferring Temporal Coordination of Processes.

Itis possible to derive temporal process models from Gantt
charts as follows: Given two neighboring segments, each of
the processes enriched in the first segment can precede (e.g.,
can have a state transition to) a process enriched in the second
segment. Then, itis possible to find maximal sets of processes
that are common across two or more datasets that obey the
same precedence relationships. These sets can constitute the
states of the Kripke structure and the transitions between the
sets can be labeled with the experimental conditions where
they are observed. For ease of comprehension, the Kripke
structure can be projected down to a subset of processes
and/or subset of conditions in order to bring out specific
temporal relationships between these exemplary processes
across the specified conditions, for example.

The foregoing merely illustrates the principles of the
invention. Various modifications and alterations to the
described embodiments will be apparent to those skilled in
the art in view of the teachings herein. It will thus be appre-
ciated that those skilled in the art will be able to devise
numerous systems, arrangements and methods which,
although not explicitly shown or described herein, embody
the principles of the invention and are thus within the spirit
and scope of the present invention. In addition, all publica-
tions, patents and patent applications referenced herein are
incorporated herein by reference in their entireties.

What is claimed is:

1. A method for at least one of generating or utilizing a
model associated with a data set using predetermined seman-
tics, comprising:

organizing the data set into a plurality of states and a

plurality of state transitions, wherein at least one transi-
tion of the plurality of state transitions is associated with
each of the states;

associating each of the states with at least one label relating

to the predetermined semantics;

assigning at least one probability to at least one state of the

plurality of states based on a likelihood that the at least
one state follows the at least one transition associated
with the at least one state;
determining at least one invariant associated with the
model as a function of the at least one probability; and

re-organizing the data set into a plurality of further states
and a plurality of further state transitions based at least in
parton the at least one probability assigned to the at least
one state, wherein at least one further transition of the
plurality of further state transitions is associated with
each of the further states.

2. The method of claim 1, further comprising:

receiving a query relating to the data set; and

providing a response to the query based at least in part on

the model.

3. The method of claim 1, wherein the data set comprises at
least one of modal data, temporal data or functional data.

4. The method of claim 1, wherein the data set is associated
with atleast one of a gene expression, a probe value, a click on
a web link, or a cellular event.

5. The method of claim 1, wherein the data set is arranged
in a form of a matrix.

6. The method of claim 1, wherein the data set is organized
using at least one of a clustering procedure, a K-means pro-
cedure, an SOM procedure, an agglomerative procedure, a
graph-based procedure, a biclustering procedure, or an infor-
mation-bottleneck-based procedure.
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7. The method of claim 1, wherein the predetermined
semantics are provided by at least one of a controlled vocabu-
lary, an ontology, a gene ontology, a prior knowledge relating
to the data set, a procedure which operates on gene expression
data, or a statistical text mining procedure.

8. The method of claim 1, wherein the at least one prob-
ability is determined using at least one of a Fisher exact test or
a Jacquard coefficient technique.

9. The method of claim 1, wherein the at least one invariant
is determined using at least one of a modal logic technique, a
linear-time temporal logic technique, a branching-time tem-
poral logic technique, or a fuzzy logic technique.

10. The method of claim 1, wherein the at least one invari-
ant is determined by combining at least two labels.

11. The method of claim 10, further comprising combining
at least two labels using at least one of a model checking
technique or an iterative extension technique.

12. A system for at least one of generating or utilizing a
model associated with a data set using predetermined seman-
tics, comprising:

a computer hardware arrangement configured to;

(a) organize the data set into a plurality of states and a
plurality of state transitions, wherein at least one transi-
tion of the plurality of state transitions is associated with
each of the states;

(b) associate each of the states with at least one label
relating to the predetermined semantics;

(c) assign at least one probability to at least one state of the
plurality of states based on a likelihood that the at least
one state follows the at least one transition associated
with the at least one state;

(d) determine at least one invariant associated with the
model as a function of the at least one probability; and

re-organize the data set into a plurality of further states and
a plurality of further state transitions based at least in
parton the at least one probability assigned to the at least
one state, wherein at least one further transition of the
plurality of further state transitions is associated with
each of the further states.

13. The system of claim 12, wherein the computer hard-

ware arrangement is further configured to:

(e) receive a query relating to the data set; and

(f) provide a response to the query based at least in part on
the model.
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14. The system of claim 12, wherein the computer hard-
ware arrangement is further configured to organize the data
set using at least one of a clustering procedure, a K-means
procedure, an SOM procedure, an agglomerative procedure, a
graph-based procedure, a biclustering procedure, or an infor-
mation-bottleneck-based procedure.

15. A non-transitory computer-accessible medium having
stored thereon computer-executable instructions for at least
one of generating or utilizing a model associated with a data
set using predetermined semantics, wherein, when a com-
puter hardware arrangement executes the instructions, the
computer arrangement is configured to perform procedures
comprising:

organizing the data set into a plurality of states and a

plurality of state transitions, wherein at least one transi-
tion of the plurality of state transitions is associated with
each of the states;

associating each of the states with at least one label relating

to the predetermined semantics;

assigning at least one probability to at least one state of the

plurality of states based on a likelihood that the at least
one state follows the at least one transition associated
with the at least one state;
determining at least one invariant associated with the
model as a function of the at least one probability; and

re-organizing the data set into a plurality of further states
and a plurality of further state transitions based at least in
parton the at least one probability assigned to the at least
one state, wherein at least one further transition of the
plurality of further state transitions is associated with
each of the further states.

16. The computer-accessible medium of claim 15, wherein
the processing arrangement is further configured to:

receive a query relating to the data set; and

provide a response to the query based at least in part on the

model.

17. The computer-accessible medium of claim 15, wherein
the processing arrangement is further configured to organize
the data set using at least one of a clustering procedure, a
K-means procedure, an SOM procedure, an agglomerative
procedure, a graph-based procedure, a biclustering proce-
dure, or an information-bottleneck-based procedure.
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