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Summary Clinical trials of phase II and III often fail due to poor experimental
planning. Here, the problem of allocating available resources, in terms of sample size,
to phase II and phase III is studied with the aim of increasing success probability.
The overall success probability (OSP) is accounted for, where it is assumed that
phase II data are not considered for confirmatory purposes and that are used for
planning phase III through sample size estimation. Being r the amount of resources
allocated to phase II, OSP (r) is a concave function and there exists an optimal
allocation ropt. If MI is the sample size giving the desired power to phase III, and
kMI is the whole sample size that can be allocated, it is then indicated how large k

and r should be in order to achieve levels of OSP of practical interest. For example,
when 5 doses are evaluated in phase II and 2 parallel phase III confirmatory trials
(one-tail type I error = 2.5%, power = 90%) are considered with 2 groups each, k = 24

is needed to obtain OSP ' 75%, with ropt ' 50%. When k is large enough, ropt is close
to 50%. The choice of k depends mainly on how many phase II treatment groups
are considered, not on the effect size of the selected dose. To increase OSP, phase
III sample size may be estimated conservatively: an improvement of ' 3% is given
when OSP ' 75% and optimal conservativeness is adopted. Resources larger than
those usually employed should be allocated to phase II to increase OSP.

Keywords: Launching rules; sample size estimation; overall success probability;
optimal allocation; sufficient resources.
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1 Introduction

It is common knowledge that phase II clinical trials aim is mainly exploratory, while
that of phase III is confirmatory, and that phase II also serves to enhance planning
for the subsequent phase III. Usually, phase II is small with respect to phase III
- on average, the phase II sample size is about 25% of that of phase III. The rate
of trials failure, which is around 60% and 40% for phase II and III, respectively,
suggest that this habit might be not helpful. In general, low success probabilities
are often due to low sample size (see [1], also reporting the above mentioned data).
Here, we study sample size problems from the perspective of a drug development
project, which means considering jointly phase II and phase III sample sizes.

To introduce the problem, by way of example, let us suppose that a phase II trial
with 2 parallel arms has been run and that a phase III with the same design needs
to be planned - phase II often involves more than 2 groups and phase III consists of
2 simultaneous trials. Assume that the minimum efficacy value (i.e. standardized
effect size) that should be observed to then launch phase III is 0.15 and that a slightly
higher value than this has been observed in phase II, so that phase III has now to
be launched. With one-sided α = 2.5% and power 1 − β = 90%, approximately 940

patients should be recruited for each of the two groups of a parallel design, if the
observed effect size is adopted for sample size computation - this is the so-called
pointwise estimation strategy, which is one of the available sample size estimation
strategies [2, 3]. This number (940) is quite high, but not beyond the range of those
usually adopted in phase III trials (visit, for example, clinicaltrials.gov, a service of
the U.S. NIH). So, assume that the research team decided to actually launch phase
III. Moreover, assume that 60 patients per group have been recruited in phase II, so
that the total number of patients enrolled in phase II and phase III is about 2000.

Now, the point is: if the resources for studying these 2000 patients were actually
available, would there be an allocation of sample size better than 60/940? Would,
for example, 400 data allocated to phase II and, at most, 600 to phase III has been
a better choice? It is worth noting that we wrote at most because once 400 data per
group come from phase II, the phase III sample size computed on the basis of the
latter data is not necessarily 600, where it is almost surely lower. Moreover, what
does “better allocation” mean? And, is there an optimal allocation?

Besides dose selection and safety evaluation, phase II aims are that of correctly
deciding go/no-go, that of launching phase III (i.e. go) with a high probability if
a meaningful effect really exists, and that of well estimating the drug effect size to
indicate a phase III sample size (M) as close as possible to the ideal one (i.e. the
one providing the desired probability of success of phase III); the aim of phase III
is to prove efficacy with a high probability, once again if a meaningful effect really
exists.

Hence, the aim is to succeed with high probability in both phases, whenever the
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drug under study actually works well. Then, in this paper we study sample size
resource allocation in terms of overall probability of success (OSP). In particular,
we focus on the amount of resources that should be provided to phase II and III
trials so as to attain a good level of OSP, and on how these resources should be
allocated between the two phases to optimize OSP. It is assumed that phase II
data provide information for phase III planning and are not used for phase III
confirmatory analysis.

Analogous computations on success probability have recently been proposed by
Jiang [4] under the Bayesian framework. Here, the frequentist approach is adopted;
this is also due to poor performances of Bayesian sample size estimators (proposed,
for example, by Chuang-Stein [5]) in terms of high variability of their results [3].

1.1 Contents

The theoretical framework is stated in Section 2, where phase II and phase III
tools (mainly launching rules and sample size definitions, respectively) are shown.
In Section 3, OSP is presented and some formulas are given. The results on the
behavior of OSP are shown in Section 4. In Section 5 the problem of the whole
amount of resources needed is studied. The variability of phase III sample size,
which is estimated on the basis of phase II data, is discussed in Section 6 in terms of
mean and MSE. The impact of conservative sample size estimation on this allocation
problem is evaluated in Section 7. The final discussion follows in Section 8.

2 Theoretical framework

2.1 Overview

It is assumed that a certain disease is under study, and that h doses of a new drug
for the disease of interest are evaluated in a phase II trial (h often varies from 3 to 7).
Also, a placebo arm is run. A classical parallel design is applied in the exploratory
phase II, with h+1 groups. If phase II results are promising, a single dose D is chosen
and 2 phase III trials comparing to placebo are run, once again under parallel design.
It is also assumed that the three trials (1 phase II and 2 phase III) share the same
response variable and the same patient population, meaning that the effect size of
the elected dose is the same in both phases. These assumptions allow simple sample
size estimation, with no need of further adjustments such as those in [6], and are
similar to the assumptions in Jiang [4], where h = 1 and only one phase III trial were
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considered. Here, all trials are run under balanced sampling, i.e. the sample size of
the groups under treatment is equal to that of the placebo group.

A certain, limited, amount of resources is available to develop phase II and III
trials, and this translates into a total of at most w patients that can be studied and
should be allocated in phase II and phase III. Let r ∈ (0, 1) be the rate of w allocated
to phase II: this implies that if a sample of size n is studied for each treatment in
phase II, then n(h + 1) = rw. So, the sample size n of each group in the phase II
trial is, approximately rw/(h+ 1). Consequently, the whole sample size available for
phase III is w(1 − r), which is not used entirely (almost surely). Indeed, the phase
III sample size actually adopted for each group is estimated on the basis of phase II
results, and is consequently a random variable, call it Mn, such that Mn ≤ w(1− r)/4,
since phase III groups are 4 (see Section 2.3).

2.2 Phase II Tools

Let µD and µP be the means of response variables of the populations under D and
under placebo respectively. Also, let σ the common standard deviation of the two
populations, so that the generic standardized effect size is δ = (µD − µP )/σ - without
loss of generality σ is set equal to 1. The true, unknown, effect size is δt. Moreover,
X̄D,n and X̄P,n are the means of measurements of samples of size n from the two
populations, and dn = X̄D,n − X̄P,n is the pointwise estimator of δt.

Now, call L the random event representing the success of phase II, where L
stands for launch of phase III. L can be defined in some different ways: on the basis
of statistical significance with an appropriate phase II type I error probability αII

(i.e. L ⇔ Tn > z1−αII
); on the basis of the constraint given by a maximum sample

size mmax for phase III (i.e. L ⇔ Mn ≤ mmax); on the basis of the observed effect
size overcoming a threshold of clinical relevance δ0L (i.e. L ⇔ dn > δ0L). Kirby et
al.[7] evaluated some further launching rules, which, through simple algebra, can be
reduced to L ⇔ dn > δ0L, for some values of δ0L. In [1] (Ch.3), it is shown that the
three launching criteria described above can be set in order to result mathematically
equivalent.

Although the launching rule based on δ0L is the most intuitive, and one of the most
used, let us focus on that based on mmax. In this framework constrained by w and
modeled by r, a refinement is necessary for the maximum allowed phase III sample
size. Once mmax (i.e. the maximum phase III sample size per group) has been fixed,
an intersection is needed between the two constraints for Mn (i.e. w(1−r)/4 and mmax):
the actual launching rule, then, becomes Mn ≤ mmax(r) = min{mmax, w(1− r)/4}. This
launching criterion is considered here, which allows to ease computational formulas
as in [3].

For completeness, Mn ≤ mmax(r) translates into L ⇔ dn > δ0L(r) = max{δ0L, 2(z1−α +

z1−β)
√

2/w(1− r)} (of course, the threshold for dn must remain of a certain clinical
interest - we come back to this point in Section 4.2).
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The success of phase II is considered the launching of phase III. Consequently,
phase II success probability is:

SPII(r) = Pδt(L) = Pδt(dn > δ0L(r)) = Pδt(Mn ≤ mmax(r))

2.3 Phase III tools

The so called Z-test is adopted, comparing the means of two normal distributions
with known variance. One-sided alternatives only are taken into account, so that
the statistical hypotheses are H0 : µD = µP and H1 : µD > µP .

Being X̄D,m and X̄P,m the means of the treatment and placebo group, respectively,
with samples of generic size m, let Tm =

√
m/2(X̄D,m − X̄P,m) be the test statistic.

Given the type I error probability α, statistical significance (i.e. a trial success) is
found if Tm > z1−α, where z1−α = Φ−1(1− α) and Φ is the distribution function of the
standard normal. The power function of a generic phase III trial is: Pδ(Tm > z1−α) =

Φ(δ
√
m/2 − z1−α) = πδ(m), and, being δt the true and unknown value of δ, the true

power is πδt(m), which was simply called success probability in [1], Ch.3, i.e. SP (m).
Now consider 1− β to be the desired power to be achieved in each phase III trial

(e.g. 90%), where β is the type II error probability. Then, the ideal sample size per
group for each phase III trial is:

MI = min{m |SP (m) > 1− β} = b2(z1−α + z1−β)2/δ2t c+ 1 (1)

Ideally, an infinite number of patients should run phase II in order to obtain that
the effect size estimated through phase II data coincides with δt (almost sure), and
consequently phase III is launched with MI data per group. In practice, n data per
group are allocated in phase II, and once phase II has succeeded, i.e. conditionally
to L, phase III is run with the sample size estimated by phase II data. Several
sample size estimation strategies can be adopted (see [1]). Here, MI is estimated by
the pointwise estimator of the sample size, based on the pointwise estimator of the
effect size (i.e. dn):

Mn = b2(z1−α + z1−β)2/d2nc+ 1 (2)

The adoption of the pointwise strategy is made for simplicity and also because the
performances of Mn, in terms of OSP and MSE are acceptable, although not best
[3]. Further developments regarding conservative sample size estimation under this
constrained framework are reported in Section 7.

In our study it is assumed that 2 confirmative phase III trials are run simulta-
neously and independently. In accordance with [1] (first eq. of p.66), the success
probability is that of finding two statistically significant results when Mn patients
per group are recruited, giving SP (Mn) = (πδt(Mn))2. Consequently, success probabil-
ity is a random variable depending on the randomness of Mn and on its maximum
mmax(r). The mean of SP (Mn), conditional to L, is of main interest and, although it
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has been called Average Power by Wang et al.[2], we call it the SP of phase III. Its
formulation, in accordance with eq.3.10 in [1], is:

SPIII(r) =

mmax(r)∑
m=2

SP (m)Pδt(Mn = m|L) (3)

3 Defining OSP

Let us assume that the quantity to be optimized is the Overall Success Probability
(OSP), that is the joined probability of success of phase II and phase III. In the
recent past, OSP has been called Overall Power [8, 3, 1], however, we now tend to
use the word power either to indicate power functions or to identify thresholds of
desired success probability.

Since the (random) results of the two phases are independent - it is assumed that
phase II data are not included in the analysis of phase III data, OSP is given by the
product of the success probabilities of phase II and phase III. In particular, OSP is
the probability of launching phase III and rejecting the null hypothesis during both
phase III trials, when phase III sample size is estimated on the basis of phase II
data and provided that the Mn results lower than mmax(r):

OSP (r) = SPII(r)× SPIII(r) = Pδt(L)

mmax(r)∑
m=2

SPIII(m)Pδt(Mn = m|L) (4)

which reduces to:

OSP (r) =

mmax(r)∑
m=2

SPIII(m)Pδt(Mn = m) (5)

Moreover, from the exact distribution of dn (i.e. N(δt, 2/n)), that of Mn is derived
and, in agreement to eq.3.10 in [1], we finally obtain:

OSP (r) =
mmax(r)∑
m=2

[Φ(

√
m

2
δt−z1−α)]2{Φ(

√
n

2
(
z1−α + z1−β√

(m− 1)/2
−δt))−Φ(

√
n

2
(
z1−α + z1−β√

m/2
−δt))}

(6)
We expect OSP (r) to be low for small values of r, due to low a launch probability (i.e.
SPII(r)), since the phase II sample size n = rw/(h+1) is low. Also, OSP (r) is expected
to be low for high values of r, due to low values of SPIII(Mn) since Mn is limited by
a low value assumed by mmax(r) (through w(1− r)/4). In other words, when a small
amount of resources is allocated to either phase II or phase III, the OSP should be
low. Whereas, there exists an intermediate allocation of resources that optimizes
OSP (r). So, the problem is to find the optimal allocation ropt = argmax{OSP (r)}.
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4 Behavior of OSP

Some numerical examples are adopted to illustrate the behavior of OSP. At first,
the settings are defined, that imply a simplification of launching rules. Then, the
computing results are shown.

4.1 Settings

Three values of h, i.e. number of doses evaluated in phase II, are accounted for:
3, 5, 7. As it concerns the launching rule, we start by focusing on the most intuitive,
which is the one based on the threshold of clinical relevance δ0L. It has recently been
shown [3, 7], that δ0L should be set not too close to δt, in order not to penalize SPII .
A threshold around δt/3 is therefore set, accordingly. In phase III, the type I error
probability is set at 2.5%, where the adopted power is 1 − β = 90% - indeed, several
papers in the field of sample size estimation suggest setting the power to at least the
latter value (e.g. [2, 3]). Three effect size values are considered (δt = 0.2, 0.5, 0.8), each
one providing an ideal phase III sample size MI which results 526, 85, 33, respectively,
from (1). For each δt, the whole sample size w is taken equal to kMI , with five values
of k: 10, 15, 20, 25, 30. For each of the 45 settings (3 number of doses × 3 values of δt ×
5 values of k), r is considered varying from 5% to 95% (step 1%).

4.2 Simplifying launching rule

Let us translate the launch threshold based on the effect size considered in the
settings into that based on the maximum sample size, and then simplify the latter
in order to ease OSP formulas. Having adopted the launch threshold of δt/3, the
maximum sample size allowed in phase III becomes mmax = b2(z1−α + z1−β)2/(δt/3)2c+1,
i.e. approximately 9MI . For all the 45 settings defined above, the maximum sample
size introduced by the constraint of available resources, i.e. w(1− r)/4, results lower
than 9MI . Consequently, mmax(r) turns out to be w(1 − r)/4. The OSP in equations
(4) to (6) are, therefore, computed by replacing mmax(r) with w(1− r)/4.

The actual launching threshold for the effect size, then, becomes δ0L(r) = 2(z1−α +

z1−β)
√

2/w(1− r), since the latter emerges in all the settings higher than δt/3. In
other words, the launching rules based on the constraint on sample size given by the
available resources (and that depend on r) are stricter than δt/3. This is illustrated
in Figure 1, where δ0L(r) as a function of r is reported when δt = 0.5. With the other
values of δt the curves result very similar, as well as when the number of doses h

varies from 3 to 7: in all the situation the thresholds are stricter than δt/3. Hence, if
δt/3 is considered a threshold of clinical relevance, a fortiori 2(z1−α + z1−β)

√
2/w(1− r)

is so.
Note that this stricter launching rule, on one hand penalizes the probability of

launching phase III, that is SPII , but on the other is imposed by the model we are
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studying, which allocates w to phase II and phase III.

4.3 Computing OSP

The resulting values of OSP (r), for different values of δt and k, but with h = 5 only,
are reported in Figure 2. It is worth noting that the results under different δts
are very similar - they lie approximately on the same curves. Differences among
OSP (r) from different k levels are evident, and the values of OSP (r) increase when k

increases, i.e. when the whole sample size w increases.
When k = 10, ropt = 32%, regardless of δt; moreover OSP (32%) ' 44.5%, which is

quite low with respect to the desired level of SPIII = (90%)2 = 81%. Note also that
when r is around 32%, the values of OSP (r) are slightly lower: OSP (20%) ' 41%, and
OSP (50%) ' 38%.

With k = 20, OSP is higher (see Figure 2), exceeding 70%. Once again, ropts under
different δs are very close (i.e. ropt ' 46%), and we found OSP (46%) ' 71.7%: this is
an interesting practical result, since 70% might look as an almost acceptable level of
OSP . Moreover, when r is around 46%, the OSP is as follows: OSP (25%) ' 67%, and
OSP (65%) ' 66%.

With k ≥ 25, values of OSP (r) are closer, especially when r ∈ (30%, 60%). Moreover,
ropt moves from 52% (with k = 25) to 58% (with k = 30), meaning that if the whole
set of resources increases (viz. k increases), the best solution is to allocate more and
more sample size to phase II, in order to improve SPII and the precision in estimating
phase III sample size. Furthermore, with k = 25, max{OSP} = OSP (52%) ' 76%, and
with k = 30 we find max{OSP} = OSP (58%) ' 79%: these findings suggest that when
k increases, the maximum OSP tends to 81% (with k = 100, max{OSP} = 80.82%). In
particular, this results is given by the fact that SPII(ropt) tends to 1 and SPIII(ropt)

tends to (90%)2 = 81%.
In Figure 3, OSP curves with h = 3 to 7 doses are reported with δt = 0.5 (black

dots were already available in Figure 2): once again, k ≥ 20 is suggested, even higher
if h = 7. In these three dose settings, ropt tends to be a bit higher than 50%, although
OSP (50%) is almost equal to OSP (ropt).

5 Sizing the whole amount of resources

The results of the above Section suggest that, when h = 5 doses are evaluated in phase
II, at least k =20–25 should be adopted, that is, a whole sample size amounting to at
least 20–25 times the ideal sample size of one group of phase III should be provided
for phases II and III trials, regardless of the amplitude of the true effect size. It is
not a big error to made an allocation which is not optimal: an error of ±10% (and in
some cases of ±20%) from the ropt is well supported by the flexibility of the system
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(i.e. the pointwise sample size estimation framework). To provide insufficient overall
resources (e.g. k =10–15) is much worse. In Table 1, the values of k providing a
maximum OSP of at least 75% is given, with a number of phase II doses h from 1 to
9.

As a rule of thumb, in order to optimize the OSP of phases II and III, with a
number of phase II groups ranging from 2 to 10 (and 2 phase III confirmatory trials)
provide to the whole development project sufficient resources to recruit a number
of patients from 20 to 30 times (increasing linearly with the number of groups) the
ideal sample size of one treatment group of phase III, and allocate about 50% of the
sample size to phase II, regardless of the amplitude of the effect size.

As regards the introductive example where h was 1, k = 16 is needed, and assuming
an effect size of 0.5 which gives MI = 85, resources for 1360 = 16 × 85 patients are
indicated in order to achieve a 75% OSP. Then, ropt = 40% of the sample size should
be provided to phase II, that is n = 272 patients per group, and the remaining 816

patients can be enrolled, at most, in phase III, that is M272 ≤ 204 (recall that 2 phase
III trials are being considered now, i.e. 4 phase III groups). If the assumed effect
size is right, the OSP is 75%.

5.1 Assuring the whole amount of resources

The problem that in practice δt is unknown does not influence the allocation choice
based on OSP, since OSP (r) is almost independent of δt, as has been shown. Never-
theless, to allocate enough resources to recruit, at most, a number of patients from
20 to 30 times MI is required for about 75% of OSP,where MI depends on δt.

So, in practice MI should be replaced by Ma = M(δa) = b2(z1−α + z1−β)2/δ2ac + 1,
where δa is the assumed effect size. Hence, we do not know how close Ma is to MI . In
order to reinforce the assumption on δa and limit parameter uncertainty, assurance

can be applied [9]. This consists in defining a distribution around δa, call it fδa(t),
so that the assured sample size becomes MA =

∫
M(t) fδa(t) dt. This technique can

also be viewed as a Bayesian approach to sample size determination, where fδa(t)

plays the role of the prior distribution - indeed, recall that phase II data have not
yet been observed.

Within Bayesian approaches, a Gaussian prior is often defined for the effect size.
Here, we prefer to consider compact support prior distributions, such as uniform
ones or the parabolic shaped ones of Epanechnikov kernel smoothers; this is because
normal distributions allow for tail values of the effect size that may result too high
or simply below zero, giving no solutions to the classical sample size formula. The
prior distributions we tend to adopt are defined in a finite range around δa. When
symmetric distributions are used, their density may be defined > 0 at most 50%

above and below the central value δa, i.e. fδa(t) > 0 when t ∈ (δa(1 − ε/2), δa(1 + ε/2),
and fδa(t) = 0 otherwise, with ε ≤ 1, and fδa(δa − t) = fδa(δa + t), ∀t > 0. For example,
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when the uniform prior is adopted with the maximum allowed variability, (i.e. ε = 1,
fδa(t) = 1/(2δa) when t ∈ (δa/2, 3δa/2), and fδa(t) = 0 otherwise), it can easily be found
that MA = 4Ma/3: this is a situation where quite a high amount of assurance is
applied, since the uniform shape assures more than the parabolic one and ε = 1

allows a quite large variability around δa.
The rule of thumb above, through assurance, now suggests providing the whole

development project when h = 5 with sufficient resources to recruit 24MA patients,
i.e. 32 times the assumed sample size Ma. Note that a lower assurance would provide
24 ≤ k ≤ 32.

6 Mean and variability of total sample size

An indispensable aspect of this problem is the behavior of the sample size estimator
Mn, reflecting the actual amount of resources spent in phase III and so those spent
overall. Mn is a random variable that for small rs, i.e. when the phase II sample size
n is low, might present large variability in estimating MI : to compute the average
of Mn, which is also related to the average cost of the trial, and its variability, the
formulas are:

E[Mn|L] =

mmax(r)∑
m=2

mPδt(Mn = m|L)

and

MSE[Mn|L] =

mmax(r)∑
m=2

(m−MI)
2 Pδt(Mn = m|L)

In Table 2, the average and the MSE of Mn, conditional to phase III launch,
is shown for three different values of δt, each one implying a different MIs, with
k increasing from 15 to 30 (according to findings and suggestions of the previous
Section), with h = 5 and with r equal to 25%, 50% and 75%. It can be noted that
when the whole amount of resources increases (i.e. k increases) and the resource rate
allocation to phase II (r) is fixed, both mean and MSE of MI |L increase. Mainly,
when r increases, the estimation process becomes more reliable: the mean of MI |L
tends to MI and the MSE decreases, for each k of those considered.

Moreover, note that when k = 25 and r = 50% (that are the operating conditions
giving high OSP when h = 5), the mean of Mn is close to MI and the mean error is
about MI/2, for every δt. Indeed, the behavior of Mn too is almost independent of
δt, not only that of OSP : Table 3 reports the standardized values of mean and mean
error of Table 2, and it can be noted that the results of different δts are very close.

Now, let us consider how these numbers reflect on the whole amount of resources
spent in both phases, that is, on the total sample size: MT = MI × k× r+ 4Mn, which
is a random number too. From a practical standpoint, the settings with k = 20, 25
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and r = 25%, 50% are the most interesting. Indeed, when k = 30 a very high amount
of resources is needed, and with k = 15 the OSP is often low; also, OSP is low with
r = 75%, due to strict constraints for Mn.

When k = 25 and r = 50%, the average amount of resources actually spent is
E(MT ) = MI × (25× 50% + 4× 1.11) ' 17MI , with a standard deviation of σ(MT ) ' 2MI -
recall, this is almost independent of δt. It is also of great interest to obtain percentiles
for Mn, and so for MT : to compute them, the usual normal formula (i.e. average
+ Φ−1(p)× std.dev.) is not indicated since the distribution of Mn is not normal (e.g.
Fig.3.2 in [1]); percentiles of Mn con be obtained through conditional probability
calculation. For example, with δt = 0.5 and under the latter setting where n = 177

and E(M177) = 94.0, the 80% and 90% percentiles are m.8
177 = 122 and m.9

177 = 151,
respectively. Once again, percentiles present small variations in function of δt.

Mean, standard deviation and percentiles of the four settings considered of main
interest are reported in Table 4. In the light of these further results in terms of
average sample size and variability, even rs that do not provide optimal OSP may
be of practical interest. For example, when k = 25 is adopted (i.e., w = 25MI is
allocated) and r = 25% of resources are used in phase II, the average of MT is 11.1MI

and MT does not overcome 12.8MI with 80% probability, where OSP = 72.4%.

7 Improving OSP through conservativeness

In the recent past, we underlined the importance of estimating the sample size
conservatively [1]. This is in order to account for the variability of the effect size
estimate and in agreement with some authoritative authors (e.g. [2, 5, 7]). In
particular, we suggested considering a conservative estimator of δt, i.e. dγn = dn −
zγ
√

2/n, to be used in (2) in place of dn. Some authors include this technique in
adaptive ones [2], and its adoption “appears to be a reasonable choice” for planning
phase III [10]. Moreover, sample size estimation performances can be improved by
varying the amount of conservativeness γ [3].

In the problem here studied, the use of dγn in OSP computation implies that
(6) becomes OSP2(r, γ), which is a concave function of two variables - for the sake
of brevity, we do not report the entire formulation here. Then, in practice OSP
can be optimized for the amount of resources allocated to phase II and for the
amount of conservativeness adopted in estimating phase III sample size. In Figure 4,
OSP2(r, γ) is shown for one of the settings considered above, i.e. α = 2.5%, 1−β = 90%,
h = 5, δt = 0.5, and k = 25. The surface is concave and it presents a maximum
at (r, γ) = (46%, 72%), where OSP2(46%, 72%) = 80.1% - remember that in this setting
OSP (ropt) = 76.2%, and ropt = 52%.

In Table 5 some values of OSP2 are reported, with the same settings of interest
considered for building Table 1. It is worth noting that this approach may provide
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useful results when the possibility of exploiting conservativeness exists, that is when
the constraint is not stringent. In particular, a fairly high amount of resources
should be allocated to the whole development project, that is the choice of k in
accordance to the second column of Table 1. Under these conditions, OSP2 can be
increased by about 3%: this improvement seems low, whereas it might actually be a
lot when multiplied by the revenues produced if the trial succeeds.

To conclude, consider the setting of possible practical interest, although not op-
timal, discussed in last Section, that was k = 25 and r = 25%: with γ = 68%, the
average and the 80%-tile of the total sample size MT increase to 11.8MI , and 14.9MI ,
respectively, where OSP becomes 75.6%, i.e. +3.2%.

8 Discussion

Although the development of a drug, and in particular the clinical part regarding
phase II and III trials, might be looked at in its entirety, scientists and trial managers
often tend to focus on each phase separately. It is a fact that the failure rate of phase
II and phase III clinical trials is quite high. As a consequence, the overall success
provability (OSP) has recently begun to be used as a tool for planning experiments
[8, 4, 3]. In this paper, we studied the problem of allocating the available resources
for developing phase II and III trials (in terms of sample size) to each of the two
phases. It was assumed that 2 phase III trials are run with a sample size estimated
on the basis of phase II data. Overall success probability has been evaluated, and
the variability of the resources actually spent has been accounted for.

We showed that to obtain a high OSP (e.g. 75%) the whole amount of resources
needed is one order of magnitude higher than the ideal sample size of one group of
one phase III trial (viz. MI). In particular, when the number of doses evaluated in
phase II goes from 3 to 9, the whole amount of resources needed varies from 20 to
31 times MI . This is almost independent of the effect size of the dose selected in
phase II. Moreover, to obtain the optimal OSP, the rate of resources to be allocated
to phase II is often close to 50%. It should be remarked that the remaining resources
allocated to phase III are not necessarily spent, they are just available, and their use
depends on how large the phase III sample size estimated through phase II data is.
The higher the rate allocated to phase II, the more precise sample size estimation is,
provided that enough resources are left for phase III. Even an amount of resources as
low as 25% might give an acceptable OSP and an invitingly small total sample size
if allocated to phase II, provided that a sufficient amount of resources is allocated
to the two phases.

Concerning phase III sample size estimation, conservativeness may be adopted
(see [1]), and may result in a considerable increase in OSP (i.e. about 3% when
OSP ' 75%). If the whole amount of resources available for the two phases is low
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(i.e. lower than 15 times MI), the OSP will be low too, even lower than 50%, even
if the best allocation of resources is made between the two phases together with
conservative sample size estimation. Since MI depends on the unknown effect size
of the selected dose, wrong assumptions regarding the latter can cause too small
investments and low OSP. To reduce this risk, MI my be computed by applying
assurance [9] on effect size assumptions.

The indications on the amount of resources to be allocated to phase II suggested
by Jiang [4] differ from ours, but in that paper only 2 phase II groups and 1 phase III
trial are taken into account. Differences between our indications and those provided
by Stallard [11] are much more evident, since phase II data are considered there only
for detecting a certain effect with low power, not for adequately planning phase III.
Often, papers in the field of sample size estimation adopt the Bayesian approach:
although in simple situations Bayesian estimators present a very high variability and
are, therefore, not indicated for practical purposes [3], in more complex ones (e.g.
[12]) they can be of some interest, especially is appropriated launching rules on the
maximum allowed sample size are adopted jointly.

In the last decade, there has been an increase in the adoption of adaptive de-
signs in phase II and phase III, but fixed sample designs are still used in the great
majority of clinical trials. Wang et al. [10] suggest the adoption of adaptive design
in exploratory trials in order to reduce costs and durations of the studies, whenever
the more complicated logistics and a correct methodology allows their application.
In this context, instead of stopping rules based on statistical significance or on the
precision of the effect size estimate, in accordance with the exploratory aim of phase
II trials we suggest the adoption of stopping rules based on the precision of the
sample size estimator for phase III (i.e. Mn), provided that clinically meaningful
results are observed.

The 50% allocation suggested here in order to optimize OSP is usually not adopted
in clinical practice: phase II often absorbs less resources than phase III. Indeed, the
size of samples adopted in phase II is, on average, 10–15% of the total sample size of
the two phases (where 2 phase III trials are considered) [1]. To improve the success
rate of phase II and phase III trials, phase II allocation might be increased to, at
least, 25%, provided that a sufficient global amount of resources is available. Then,
a more accurate phase II would also induce a higher probability of choosing the best
dose among those considered. Nevertheless, larger phase II trials imply higher costs
and longer times for the development project, allowing for a shorter patent life and
so lower potential gains, of course in case of successful trials. Optimal allocation
of resources should also be evaluated from an economic perspective, as suggested
by Jiang [4] too. For this reason, our future works may focus on the relationship
between allocations, OSP, efficacy and safety utility functions, costs, revenues, and
gain, according to [13, 14].
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Table 1 Values of k to join 75% of OSP
h k ropt OSP (ropt)

1 16 40% 76.2%
2 17 43% 75.3%
3 20 47% 75.9%
4 22 51% 75.7%
5 24 52% 75.6%
6 26 53% 75.6%
7 27 53% 75.1%
8 29 56% 75.2%
9 31 56% 75.3%

Table 1. Minimum values of k to join a max OSP of at least 75%, with α = 0.025,
1− β = 0.9, h = 1, . . . , 9, and δt = 0.5.
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Table 2 Mean and MSE of SSE
δt k r = 25% r = 50% r = 75%

E[Mn|L] MSE[Mn|L] E[Mn|L] MSE[Mn|L] E[Mn|L] MSE[Mn|L]

0.2 15 542.3 95643.6 504.6 38078.7 376.5 27581.7
(MI = 526) 20 606.9 145686.2 561.9 58211.7 458.0 15703.9

25 638.1 181566.1 584.4 70551.9 512.4 18439.4
30 647.8 195765.9 587.8 71008.5 541.4 24290.4

0.5 15 87.6 2482.1 81.4 986.8 61.3 703.5
(MI = 85) 20 97.9 3800.9 90.6 1510.3 74.4 410.2

25 102.7 4682.1 94.0 1799.1 82.7 481.8
30 104.1 5006.8 94.5 1809.1 87.3 631.4

0.8 15 34.3 379.9 32.1 149.5 24.5 95.0
(MI = 33) 20 38.4 580.5 35.6 227.5 29.4 59.2

25 40.4 721.4 37.1 283.2 32.4 70.2
30 41.0 775.6 37.2 282.1 34.4 99.4

Table 2. Mean and MSE of Mn, with α = 0.025, 1 − β = 0.9, h = 5, δt = 0.2, 0.5, 0.8,
k = 15, 20, 25, 30 and r = 25%, 50%, 75%.
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Table 3 Standardized Mean and MSE of SSE
δt k r = 25% r = 50% r = 75%

E[•]/MI

√
MSE[•]/MI E[•]/MI

√
MSE[•]/MI E[•]/MI

√
MSE[•]/MI

0.2 15 1.03 0.588 0.96 0.371 0.72 0.316
20 1.15 0.726 1.07 0.459 0.87 0.238
25 1.21 0.810 1.11 0.505 0.97 0.258
30 1.23 0.841 1.12 0.507 1.03 0.296

0.5 15 1.03 0.586 0.96 0.370 0.72 0.312
20 1.15 0.725 1.07 0.457 0.88 0.238
25 1.21 0.805 1.11 0.499 0.97 0.258
30 1.22 0.832 1.11 0.500 1.03 0.296

0.8 15 1.04 0.591 0.97 0.371 0.74 0.295
20 1.16 0.730 1.08 0.457 0.89 0.233
25 1.22 0.814 1.12 0.510 0.98 0.254
30 1.24 0.844 1.13 0.509 1.04 0.302

Table 3. Standardized mean and MSE of Mn, with α = 0.025, 1 − β = 0.9, h = 5,
δt = 0.2, 0.5, 0.8, k = 15, 20, 25, 30 and r = 25%, 50%, 75% (the symbol “•” stands for
“Mn|L”).
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Table 4 Standardized measures of total expenses
k r E(MT ) σ(MT ) m.8

n m.9
n m.8

T m.9
T OSP

20 r = 25% 9.6MI 2.8MI 1.6MI 2.2MI 11.5MI 13.8MI 67.7%

r = 50% 14.3MI 1.8MI 1.5MI 1.7MI 16.0MI 16.9MI 71.7%

25 r = 25% 11.1MI 3.1MI 1.6MI 2.2MI 12.8MI 15.2MI 72.4%

r = 50% 16.9MI 2.0MI 1.4MI 1.8MI 18.2MI 19.6MI 76.2%

Table 4. Standardized mean, st.dev. and percentiles of the total expenses in terms of
sample size (viz. MT ), through percentiles of Mn, obtained with α = 0.025, 1−β = 0.9,
h = 5, k = 20, 25 and r = 25%, 50%; also, δt = 0.5 has been adopted.
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Table 5 Maximum values of OSP2

h k ropt γopt OSP2(ropt, γopt)

3 20 42% 69% 78.7%
5 24 46% 70% 78.9%
7 27 48% 70% 78.3%
9 31 50% 72% 79.2%

Table 5. Values of OSP2 for same remarkable settings and values of k from Table 1.
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Figure 1: Launch thresholds δ0L, obtained with α = 2.5%, 1 − β = 90%, δt = 0.5, and with

k = 10, 15, 20, 25, 30.
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Figure 2: OSP (r), obtained with α = 2.5%, 1 − β = 90%, h = 5, δt = 0.2, 0.5, 0.8, and with

k = 10, 15, 20, 25, 30.

22



908070605040302010

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

r (%)

O
S

P

3 10

3 20

3 30

5 10

5 20

5 30

7 10

7 20

7 30

h k

OSP(r) vs r (%)

Figure 3: OSP (r), obtained with α = 2.5%, 1 − β = 90%, h = 3, 5, 7, δt = 0.5, and with

k = 10, 20, 30.
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