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Introduction

The following work is made up of separated and distinct research problems but they

have in common the presence of latent or hidden variables. These rather diÆerent

problems illustrate “how latent variables pervade modern mainstream statistics and are

widely used in diÆerent disciplines such as medicine, economics, engineering, psychol-

ogy, geography, marketing and biology” (Skrondal and Rabe, 2004), they arise in a

wide variety of applications.

Although latent variables are part of numerous statistical and data analysis models,

we do not have a single general definition of latent variables that would include all

of these diverse applications. The techniques involving latent variables have risen and

grown almost exclusively within the framework of the social and behavioral sciences

but they have diÆerent names in the extensive literature which is extended over almost

a century and presents a disjointed picture both notationally and conceptually of the

treatment of latent variable models. Rather we have definitions of latent variables that

are closely tied to specific statistical models and few systematic comparisons of these

diÆerent definitions and the implications of the diÆerences. Unmeasured variables, fac-

tors, unobserved or hidden variables, constructs, true scores, unobserved confounders

or missing variables are some of the terms that researchers use to refer to variables in

the models that are not present in the data set. What are latent variables? Psychome-

tricians and others have espoused various opinions on the meaning of latent variables

and their relevance to empirical inquiry; for a review see Von Eye and Clogg, (1994),

Bollen (2002), Borsboom et al. (2003).

In the literature at a minimum we can distinguish two broad types of latent variables.

The first are notional “true” variables measured with errors, the second are hypothetical

concepts which are often related to several observed variables and which are assumed to

represent the underlying features of the system under study (hypothetical construct).

The first type are variables for which exact measurements are not available. Variables

of this type are usually well defined but the available measures are assumed to be imper-

fect indicators. The model used to take into account the measurement errors is known

as the measurement model. If the latent variable and the measured variables are both

v
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continuous it is called the factor model and it is analyzed in full detail in Section 1.5.1.

If the true variable is constructed as categorical and also the observed variables are

categorical the models are known as latent class models, they are analyzed in Section

2.1.1. Hypothetical constructs such as “self-esteem” and “life-satisfaction” are promi-

nent in psychological research. Sociologists are often concerned with constructs such as

“aspiration” and “alienation” whereas political scientists are interested in, for instance,

“political e±cacy”, “expectations”, “permanent income”. Although such hypothetical

concepts and constructs, or latent variables, cannot be directly measured, a number of

variables can be used to measure various aspects of these latent variables more or less

accurately.

Though this classification into types is useful and often used, it has been criticised.

Rubin (1982), for example, has argued that it is at least confusing to say that the

observable is some how less “true” than the unobservable. However conceptualization

in terms of latent variables is a useful way of looking at the relationships between the

observed variables. In such cases the role of the latent variables consists in clarifying

the interpretation of relatively complex association structures and the eÆect of errors

of observations in possibly distorting the dependencies.

All latent variable models involve an observable (or manifest) random vector X =

(X1, ..., XJ) and an unobservable (or latent) variable U , which may be either unidimen-

sional or vector valued. In any latent variable model, the manifest variable and the

latent variable are assumed to have a joint distribution over a sample space. A basic

condition on (X,U) is that of local conditional independence or (local independence)

(Holland and Rosenbaum, 1986) that is

F (x1, ..., xJ |u) =
J

Y

j=1

Fj(xj|u);

when the latent variable is held constant the manifest variables should be statistically

independent. A variable U for which the latent conditional independence holds is often

said to explain completely the association structure between the manifest variables

X1, ..., XJ .

Suppes and Zanotti (1981) have shown that if X has a finite number of possible val-

ues then there always exists a one-dimensional latent random variable such that (X,U)

satisfies this condition. Latent conditional independence taken alone does not allow

us to draw scientific conclusions, but “other conditions such as linearity, monotonic-

ity and functional form are features of latent variables models that give them testable

consequences in observed data” (Holland and Rosenbaum, 1986).

This work is structured as follows. The main core of the work is based on Chapter 3
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and Chapter 4. They are written in the article style and they have been submitted for

publications to two international reviews as they contain some new methodological and

or applicative notes. Chapter 1 and Chapter 2 provide basic background knowledge for

the models developed in the last chapters. Every chapter has its own references and a

comprehensive bibliography of the thesis is given as last section.

In chapter one we concentrate on the structure of models of dependence and as-

sociation and on their interpretation using graphical models which have been proved

useful to display in graphical form the essential relationships between variables. As a

framework for analyzing multivariate data sets, graphical Markov models give a direct

and intuitive understanding of the possibly complex underlying dependence structure;

second they give a precise representation of qualitative information about conditional

independencies in the underlying statistical model, and third the structure of the graph

yields direct information about various aspects related to the statistical analysis.

In most cases the statistical meaning of association is some kind of conditional de-

pendence. Thus, a missing edge indicates conditional independence of the corresponding

variables, given all the remaining variables. We focus on dependence structures derived

from multivariate normal random variables by marginalizing with respect to some com-

ponents. The results are useful because some components are di±cult to measure, their

measurement begin either inaccurate or simply incomplete. It is then helpful to know

whether an omission induces spurious or misleading association among the remaining

fully observed components.

At first we provide the necessary notation and background on graph theory. We

describe the Markov properties that associate a set of conditional independence to an

undirected and directed graph. Such definitions does not depend of any particular dis-

tributional form and hence can be applied to models with both discrete and continuous

random variables. In particular we consider models for Gaussian continuous variables

where the structure is assumed to be adequately described via a vector of means and

by a covariance matrix; the concentration and the covariance graphs models are illus-

trated where edges represent conditional independence on the first case and marginal

independence on the second.

For models with continuous variables the factorization of the joint density provides

a simple method for constructing a multivariate distribution with specific conditional

independencies: specify univariate regression models such that the explanatory vari-

ables in each regression are those which are thought to have a direct influence. Due to

the acyclicity this has to be done in a recursive way. The specification of the complex

multivariate distribution through univariate regressions induced by a Directed Acyclic

Graph (DAG) can be regarded as a simplification, as the single regression models typ-
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ically involve considerably fewer variables than the whole multivariate vector. The

distributions generated over such graphs are called triangular systems. In the present

work it is shown that such models are a subclass of the structural equation models

developed for linear analysis known as Structural Equation Models (SEM).

If the DAG represent systems with latent variable the edges corresponding to such

nodes are denoted in the graph by a double crossing over the nodes {±6 6 } to illustrate

that they are not observed. The independencies entailed by the DAG which is assumed

to describe the data generating process, can be encoded in two types of induced graph:

the overall concentration and the overall covariance graph, which are useful to show the

overall conditional and marginal independence structure implied by the DAG. Another

special class of graphs, called summary graph is illustrated, which is an attempt to define

a graphical representation of the independence structure of the DAG which results after

marginalizing over and conditioning on some variables. It is shown how such graph

may represent models known in literature as the instrumental variable model and the

seemingly unrelated regression model.

Model identifiability is discussed for models in which the existence of just one vari-

able is hypothesised. Some known results and new graphical criteria based on properties

of the induced conditional independence graphs are reported. An overview of the ap-

plication of the likelihood based inference is also given and some iterative methods are

enlightened. The chapter is concluded by some bibliographical notes.

Chapter 2 takes into account model for discrete variables and in particular an in-

troduction to the standard latent class model is provided as a model for measuring one

or more latent categorical variables by means of a set of observed categorical variables.

We describe some issues on the model identifiability and estimation and then we asses

the problem on how the latent class model can be used to model the nature of the latent

changes over time when longitudinal studies are used. Recently, latent variables have

been used under the name “hidden” variables in Markov modelling. The hidden Markov

model is presented which consists of a hidden state variable and a measured state which

both varying over time. The conditional independence relations of the model are en-

lightened which are depicted as in a graphical Markov model. Bibliographical notes

conclude the chapter.

In Chapter 3 we consider DAG models in which one of the variables is not observed.

DiÆerently from the factor model the latent variable may be not only exogenous but

it can be an intermediate variable of the data generating process. Once the condition

for global identification has been satisfied, we show how the incomplete log-likelihood

of the observed data can be maximize using the EM algorithm. As the EM does not

provide the matrix of the second derivatives we show a method for obtaining an explicit

Fulvia Pennoni
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formula of the observed information matrix using the missing information principle.

We illustrate the models with several examples taken from the literature. In the first

appendix calculations of the derivatives are reported and in the second appendix the R

code is reported, to get the estimated standard errors, which is implemented for the R

package ggm (Marchetti and Drton, 2003).

In Chapter 4 taking into account the problem of classifying criminal activity the

latent class cluster model is extended by proposing a model that also incorporates the

longitudinal structure of data using a method similar to a local likelihood approach.

The proposed methodology can also be used to classify other types of longitudinal event

history where the interest is in the changing nature of activity over time. The chapter

starts with the description of the data set which is taken from the Home O±ce OÆenders

Index of England and Wales. It contains the complete criminal histories of a sample

of those born in 1953 and followed for forty years. The models and the result of the

separated analysis for males and females are presented in detail.



Chapter 1

Continuous Graphical Models with

latent variables

1.1 Graph Notation and Terminology

In the following the notation and terminology for some types of graphical Markov

models will be introduced. It is mainly borrowed from Lauritzen (1996), Anderson et

al. (1995) and Castelo (2002).

1.1.1 Decomposable Graphical Markov Model

A graph is a pair G = (V,E) where V is the set of vertices and E is a set of edges. In

the present context, the set of vertices acts as an index set for some collection of random

variables Xv = (X1, ..., Xn) that form a multivariate distribution of some family P .

The set of edges E is a subset of the set of ordered pairs V £V that does not contain

loops, i.e (x, y) 2 E ) x 6= y, nor multiple edges. Given two vertices a, b we say that

they form an undirected edge if and only if (a, b) 2 E and (b, a) 2 E. An undirected

edge is represented graphically by a solid line joining the two vertices involved, e.g.

a° b. When all the edges in E are undirected we say that the graph G is an undirected

graph (UG).

When two vertices are joined by an undirected edge, these two vertices are called

adjacent. Given a vertex v 2 V the boundary of v is bd(v) = {u 2 V |(u, v) 2 E}. The

closure of a vertex v is cl(v) = bd(v) [ {v}.

A subgraph GS = (S, ES) is given by a subset S µ V and the induced edge set

ES = E \ (S £ S). It will be said that GS is an induced subgraph of G. An undirected

graph G = (V, E) is said to be complete if and only if every pair of vertices is adjacent.

A clique is a maximal complete subgraph.

1



GRAPH NOTATION AND TERMINOLOGY 2

An undirected path between two vertices a and b is a sequence a = vo, ..., vn = b

of distinct vertices such that n > 0, (vi°1, vi) 2 E and (vi, vi°1) 2 E for i = 1, ..., n.

An undirected cycle is an undirected path that begins and ends at the same vertex, i.e

a = b. An odd cycle is a cycle on an odd number of nodes. A subgraph is connected

if every pair of nodes is connected by a path. By a connectivity component we mean a

maximal connected subgraph.

Given three subsets of vertices A,B, S Ω V , it is said that S separates A from B in

an undirected graph if and only if every undirected path between vertices in A and B

intersects S.

A chord in a graph is an edge joining two vertices already connected by a graph.

An undirected chordal graph, or chordal graph, is an undirected graph with no chordless

undirected cycles on more than three vertices, chordal graphs are also known as decom-

posable, triangulated or rigid circuit graphs, and their properties have been exploited

in many areas of research.

We define a complementary graph of an undirected graph G as the graph Ḡ with

the same set of nodes, and an undirected edge connecting u and v whenever there is

not an edge between u and v in G.

Markov properties and definition

There are three Markov properties for undirected graphs.

Definition 1.1. Undirected pairwise Markov property (UPMP)

Let G(V, E) be an undirected graph. A probability distribution P is said to satisfy the

undirected pairwise Markov property if, for any pair u, v 2 V of non-adjacent vertices,

P satisfies

u?? v|V \{u, v}.

This means that two non-adjacent vertices u, v 2 V are conditionally independent

given the rest of the vertices.

Definition 1.2. Undirected local Markov property (ULMP)

Let G(V, E) be an undirected graph, a probability distribution P is said to satisfy the

undirected local Markov property if, for any vertex v 2 V , P satisfies

v ?? V \cl(v)|bd(v).

This means that a vertex v is conditionally independent of the rest of the variables

without its boundary, given its boundary.
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Figure 1.1: (i) an undirected graph G1; (ii) an undirected graph G2 representing the

conditional independence structure induced on {X1, X3, X4} by G after marginalizing

on X2.

Definition 1.3. Undirected global Markov property (UGMP)

Let G(V, E) be an undirected graph, then a probability distribution P is said to satisfy

the undirected global Markov property if, for any triple (A,B, S) of disjoint subsets of

V , such that S separates A from B in G and A,B are non-empty, P satisfies

A??B|S.

This means that two non-empty subsets of vertices A,B are conditionally indepen-

dent given a third subset S, if and only if S separates A from B.

In Whittaker (1990) and Lauritzen et al. (1990) there is more thorough discussion

of these Markov properties. In particular they show the following relations between the

properties:

UGMP ) ULMP ) UPMP.

This implies that the UGMP is the most comprehensive possible rule for reading oÆ

conditional independence restrictions from an undirected graph. If P is strictly positive,

then the properties are equivalent (see, e.g. Pearl and Paz, 1987).

We can now introduce the definition of a decomposable graphical Markov model.

Definition 1.4. Let G(V,E) be an undirected decomposable graph. The set U(G) of all

probability distributions that satisfy the UGMP relative to G is called the decomposable

graphical Markov model, determined by G.

The distinction between decomposable models with chordal graph and non-decomposable

models is important. Decomposable models have direct maximum likelihood estimates

and allow the factorization of the likelihood function with consequent local computation

of important statistical quantities. (Frydenberg and Lauritzen, 1989).

As remarked by Richardson and Spirtes, (2002), Markov models based on UGs are

closed under marginalization in the following sense: if an undirected graph represents

the conditional independencies holding in a distribution then there is an undirected

graph that represents the conditional independencies holding in any marginal of the
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distribution. For example consider the graph G1 in Figure 1(i). If we suppose that X2

is not observed, then it is evident that the conditional independence, X1??X4|X3 which

is implied by G1 is represented by an undirected graph G2 in Figure 1(ii), which does

not include X2. In addition, G2 does not imply any additional independence relations

that are not implied by G1.

1.1.2 The Acyclic Directed Graphical Markov Models

An edge is directed if and only if (a, b) 2 E ) (b, a) /2 E. A directed edge between

two vertices a and b, such that (a, b) 2 E, will be represented graphically by an arrow

pointing from a towards b, i.e a ! b. A graph G = (V, E) is said to be directed if all

edges in E are directed edges.

For a directed edge a ! b we distinguish between the two joined vertices by speci-

fying that a is the parent of b, and that b is the child of a. Those parent vertices that

have a common child, will be considered as the parent set of this child vertex, and it

will be noted as pa(v) for any given child vertex v.

A path between two vertices a and b is a sequence a = v0, ..., vn of distinct vertices

such that n > 0 and either (vi°1, vi) 2 E or (vi, vi°1) 2 E for i = 1, ..., n. A cycle is

a path where a = b. In a directed graph, a directed path is formed by directed edges

and is a direction preserving path. This means that every directed edge in the path

points towards the same direction. A given vertex a is called the ancestor of b if there

is a directed path from a to b. A directed cycle is a directed path where the first vertex

coincides with the last one. A acyclic directed graph, or DAG, is a directed graph

without directed cycles. The skeleton of a DAG is the undirected graph obtained by

transforming the set of directed edges into a set of undirected ones that preserves the

same adjacencies.

For a given vertex v, one may consider the set of those vertices that are ancestor

of v, which will be called the ancestor set of v, and noted an(v). A vertex b is called

the descendant of a if there is a directed path from a to b, i.e. a is an ancestor of

b. The vertices at the end of every directed path that starts at a vertex a will form

the descendant set of a, noted de(a). Given a vertex v the non-descendant set of v is

defined as nd(v) = V \{de(v) [ {v}}.

An important concept regarding DAGs in this context is the concept of immorality.

An immorality is formed by two non-adjacent vertices with a common child, e.g a !

b √ c. In the terminology of Cox and Wermuth (1996), an immorality is known as a

sink-oriented V-configuration, where a V-configuration is defined as a triplet of vertices

(a, b, c) such that two of them are adjacent to the third one but they are not adjacent
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to each other. In the case a ! b √ c, the vertex b is referred as the collision vertex.

The terminology of Cox and Wermuth (1996) allows to define further configurations

on the three vertices as the source-oriented V-configuration, e.g a √ b ! c, and the

transition-oriented V-configuration, e.g. a! b! c.

A DAG that has no immoralities is said to be moral. A DAG that is not moral

can be moralized by marring those non-adjacent parents that induce an immorality, i.e.

joining them with an undirected edge, and dropping directions on the rest of edges in

G. The moralized version of a directed graph G will be noted as Gm.

The statistical meaning of variables corresponding to the diÆerent types of nodes

as showed in Cox and Wermuth (1996) is the following. The variable at a parent node

is directly explanatory for the variable at a child node. The variable at an ancestor

but not at parent node is indirectly explanatory for the variables at descendant node.

The variable at a common ancestor node is a common explanatory variable. Further a

variable at a transition node is an intermediate variable, at a common sink node is a

common response and at a common source node it is a common directly explanatory

variable.

Markov properties of DAGs

We are going to illustrate some basic properties connecting graphical structure and

probability distributions in a DAG. Three are the Markov properties for DAGs.

Definition 1.5. Directed pairwise Markov property

Let G = (V, E) be a DAG, a probability distribution P is said to satisfy the directed

pairwise Markov property if, for any pair u, v 2 V of non-adjacent vertices such that

v 2 nd(u). P satisfies

u?? v|nd(u)\{v}.

The directed pairwise Markov property means that two non-adjacent vertices u and

v, such that v is non-descendant of u, are conditionally independent given the non-

descendant vertices of u without v.

Definition 1.6. Directed local Markov property

Let G = (V, E) be a DAG, a probability distribution P is said to satisfy the directed

local Markov property if, for any vertex v 2 V , P satisfies

v ?? {nd(v)\pa(v)}|pa(v).

The directed local Markov property means that a vertex is conditionally independent

of its non-descendants, without its parents, given its parents.
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Definition 1.7. Directed global Markov property

Let G = (V, E) be a DAG, a probability distribution P is said to satisfy the directed

global Markov property if, for any triple (A,B, S) of disjoint subsets of V , where A, B

are non-empty, such that S separates A from B in the moralized version of the subgraph

induced by the vertices in An(A [B [ S), i.e. in Gm
An(A[B[S), P satisfies

A??B|S.

(Proof: Lauritzen 1996, p.51).

The directed global Markov property means that two non-empty subsets of vertices

A,B are conditionally independent given a third subset S if S separates A and B in

the moralized subgraph induced by the smallest ancestral set of A [B [ S.

We can now state the following definition for directed acyclic Markov model also

called Bayesian Network.

Definition 1.8. DAG Markov model

Let G be a DAG. The set D(G) of all probability distributions that satisfy the directed

global Markov property relative to G is called the acyclic directed graphical Markov

model, or DAG Markov model, determined by G.

An important property of a distribution P satisfying the local directed Markov prop-

erty associated with a DAG is that its joint density can be decomposed into conditional

probabilities involving only variables and their parents according to the structure of the

graph in the following way

f(x) =
Y

v2V

f(xv|xpa(v)).

An alternative way of reading conditional independence in a DAG is by using a

separation criterion that permits direct reading from the graph whether the defining

independence structure of the graph implies a given conditional independent statement.

There are two equivalent separation criteria for DAG. One is the d-separation criterion

of Pearl and Verma (1987). Given two vertices u, v 2 V and a subset S µ V where

u, v /2 S one says that a path between u and v is active with respect to S if

1. every non-collision vertex in the path is not in S or

2. every collision vertex in the path is in S or has a descendant in S.

When a subset S creates an active path between two vertices u and v, then u and v

cannot be conditionally independent given S in G. When a path between two vertices

u, v is not active with respect to S, one says that the path is blocked by S.
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Figure 1.2: (a) DAG with three observed variables one common child node; (b) DAG

with three observed variables and one common parent; (c) moral graph of the former

DAG (b).

Definition 1.9. d-separation

Let G = (V,E) be a DAG. For any triple (A,B, S) of disjoint subsets of V , where A,B

are non-empty, A and B are d-separated by S if every path between the vertices in A

and B is blocked by S.

This d-separation rule gives su±cient conditions for two vertices in a DAG to be

observationally independent upon conditioning on some other set of vertices.

Lauritzen et al. (1990) states another separation criterion based on a moral graph.

Definition 1.10. Separation

Let G = (V,E) be a DAG. For any triple (A,B, S) of disjoint subsets of V , where

A,B are non-empty, A and B are separated by S if in the moral graph formed from the

smallest ancestral set containing A 2 B 2 S every path from A to B has a node in C.

The graph in Figure 2(a) has vertices V = {1, 2, 3} and edges E = {(1, 2), (3, 2)}.

The only independence in this model is X1 ?? X3 i.e these variables are marginally

independent. In addition both influence a third variable X2, thus conditioning on

X2 corresponds to selecting a subsample of the population and for this subsample

X1 and X3 are not necessarily independent any more i.e X1 ?/? X3|X2. Representing

the conditional independencies induced by this DAG in an undirected graph where no

information on marginal distribution of subvectors can be retained, therefore requires

that parents of a common child are linked. Thus the moral graph for Figure 2(a) has

edges Em = {{1, 2}, {1, 3}, {2, 3}}. This also implies that no undirected graph can be

found to represent the conditional independencies induced by Figure 2(a). In contrast

the graph of Figure 2(b) encodes the same conditional independencies of the undirected

graph of Figure 2(c) which is its moral graph.
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1.2 Background to the graphical Gaussian Markov

models

A multivariate Gaussian graphical Markov model is a family of multivariate normal

distributions which satisfy a collection of conditional independencies related to an undi-

rected graph. Before showing the graphical representation of such special situation we

give an account of the covariance matrices. Linear structures, in fact, which are anal-

ysed in the following sections impose some form on the covariance and concentration

matrix.

In the following we consider the p £ 1 random vector Xv = (X1, ..., Xp) having

a Gaussian distribution with mean E(X) = µ and covariance matrix cov(X) = ß

assumed positive definite, and its inverse, the concentration matrix, denoted by ß°1.

In what follows we denote vertices by the letters i, j, .., p. The diagonal elements of ß

are the variances æii and those of ß°1 are the precisions æii. The oÆ-diagonal elements

of ß are the covariances æij and those of ß°1 are the concentrations æij. Covariances

and concentrations are measures of association; variances and precisions are measures

of variability.

If we partition X = {Xa, Xb, Xc}, the set V = {a, b, c} is partitioned accordingly,

where a, b, and c are disjoint subsets of V (a and b nonempty) such that a[ b[ c = V .

We indicate with ßab the submatrix [ß]a,b of a matrix ß and with ßab the submatrix

[ß°1]a,b of its inverse. The covariance ß and the concentration (or precision) matrix

ß°1 of the Xv are then written as:

ß =

0

B

@

ßaa ßab ßac

ßba ßbb ßbc

ßca ßcb ßcc

1

C

A

ß°1 =

0

B

@

ßaa ßab ßac

ßba ßbb ßbc

ßca ßcb ßcc

1

C

A

From covariance algebra a marginal correlation Ωij between Xi and Xj, is expressible via

elements of the covariance matrix in a way similar to that in which a partial correlation

Ωij.k between Xi and Xj given all the remaining variables k = {1, ..., p} \ {i, j} is

expressible via elements of the concentration matrix or via elements of the conditional

covariance matrix of Xi and Xj given k = {1, ..., p} \ {i, j}. The following results (see

e.g. Wermuth, 1976) hold:

Ωij = æij(æiiæjj)
°1/2

Ωij.k = °æij(æiiæjj)1/2 = æii.k/(æii.kæjj.k)
1/2.

As the partial regression coe±cients between Xi and Xj given k = {1, ..., p} \ {i, j}

is Øij.k = æij.k/æjj.k, the partial correlation coe±cient relates to it in the following way
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Ωij.k = Øij.k(æjj.k/æii.k)
1/2.

For normal distributions independence is equivalent to zero correlation and condi-

tional independence just means zero partial correlation. Since partial correlations are

closely connected to the inverse of the covariance matrix the following lemma can be

proved [cf. Speed and Kiiveri (1986) and Whittaker (1990) and also Anderson (1958),

or Rao (1973)].

Lemma 1.1. Suppose X = {Xi, i 2 V } ª N(0, ß) and a, b and c are pairwise disjoint

subsets of V (a and b non-empty), such that V = a [ b [ c. Then:

(i) the marginal distribution of Xa is N(0, ßaa);

(ii) the conditional distribution of Xa given Xc is N(ßacß°1
cc Xc, ßaa.c),

where ßaa.c = ßaa ° ßacß°1
cc ßca;

(iii) Xa ??Xb|Xc , ßab.c = 0, ßab = 0.

The statements of the lemma refer to the simultaneous distribution of all variables.

The lemma shows that the conditional independence statements concerning the vari-

ables if they have a Gaussian distribution can be interpreted in terms of zero partial

correlations if it can be assumed that the variables have a finite covariance matrix.

The models with patterns of zero in the correlation matrix are defined as concentra-

tion graphs where Gcon(V, Econ) is the pair set of vertex V associated with Xv and Econ

is a set of undirected edges such that there is no edge joining two nodes u and s when-

ever Xu is independent of Xs given all the other variables. Edges in a concentration

graph are represented here by full lines, i.e. u ° s. The concentration graph satisfies

the undirected pairwise Markov property. In the multivariate normal distribution it

follows that a Gcon can be defined by setting to zero a specified oÆ-diagonal element

of the inverse of the variance matrix, such models were proposed by Dempster (1972).

The reader is referred to Edwards (2000), Lauritzen (1996) and Whittaker (1990) for

statistical properties of these models.

The models with patterns of zeros in marginal correlations had been introduced as

linear in covariance models by Dempster (1972) and have more recently been called

covariance graph models by Cox and Wermuth (1993, 1996). They use an undirected

graph with dashed lines to represent marginal association among variables. A covariance

graph Gcov = (V, Ecov) is the pair of set V of vertices associated with Xv and a set Ecov

of undirected edges such that there is no edge joining nodes u and s whenever Xu

is marginally independent from Xs. Edges in a covariance graph are represented by
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Figure 1.3: Covariance graph between four observed variables; an edge missing between

two nodes means pairwise marginal association.

dashed lines, i.e. u°°s or by bi-directed edges represented by i.e. (√!) (Drton and

Richardson, 2003). For such graphs Kauermann, (1996) studied pairwise, local and

global Markov properties (see also Benerjee and Richardson, 2003). Such properties

are dual to previous Markov properties associated with undirected graphs.

Figure 1.3 illustrates a covariance graph corresponding to a covariance matrix where

there is a structural zero in position (2, 3) and (2, 4), which has therefore the interpre-

tation of linear marginal independence of variable pair X2, X3 and X2, X4.

1.3 General structural linear equations model

Structural equation models, referred as SEM, are used to represent relations between

several response and explanatory variables, some of which may be hidden and some of

which may mutually influence one another. Most commonly SEM have been assumed

linear but there are important exceptions (e.g. Goldberger and Ducan, 1973). Here

we restrict ourselves to the class of linear SEM (LSEM). They have two parts: a sys-

tem of Gaussian variables (also called systems of linear simultaneous equations) and a

path diagram corresponding to the functional composition of variables specified by the

structural equation and the correlations among the error terms (Bollen, 1989).

One of the most common specifications of a linear SEM is the so called LISREL (LIn-

ear Structural RELations) model (cf. Jöreskog and Sörbom, 1989). A LISREL model

has two types of variables: exogenous, if they are not influenced by any other variable

in the model (they are free variables whose distribution is arbitrary) and endogenous

if their distributions are determined by those of the exogenous variables. Variables

that have been directly observed and measured are called manifest variables whereas

variables that are hypothesized to have a role in the model but have not been directly

observed or measured are called latent. The system has the following structure
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¥ = B¥ + °ª + ≥

y = §y¥ + ≤

x = §xª + ±.

The first equation is called the structural equation because it is the structural part of

the model and it describes the relationships between the latent variables. The last two

are called the measurement equations because they compose the measurement model

which describes how each latent variable is measured by the corresponding manifest

indicator. Here ¥ and ª are unobserved endogenous and exogenous random vectors. The

unobserved endogenous random variables are only partially explained by the model and

≥ is the unexplained component (a random disturbance in the equation), with covariance

matrix cov(≥) = ™. In the last two equations y and x are observed random indicator

and ≤ and ± are unobserved random errors or residual vectors. The assumptions of the

model can be summarized as follows:

(i) the error variables ≥, ≤, ± and ª are mutually uncorrelated,

(ii) (I °B) is non singular.

The fact that the error variables are mutually independent allows the possibility

that there are nonzero correlations within the sets of ª, ≤, and ± variables or between

the ≤ and ± variables. For such reasons LISREL model os a flexible model.

If qualitative variables are present in the model they are usually assumed to be

generated by dividing an underlying normal distribution into two or more classes. This

implies that interactive eÆects of two or more variables cannot be represented.

The equations of the LISREL model can be written in block matrix form

2

6

4

¥

y

x

3

7

5

=

2

6

4

B 0 0

∏y 0 0

0 0 0

3

7

5

2

6

4

¥

y

x

3

7

5

+

2

6

4

°

0

∏x

3

7

5

ª +

2

6

4

≥

≤

±

3

7

5

.

If the diÆerence between observed and unobserved variables is neglected a general

recursive or non recursive simultaneous equations system of p endogenous and q exoge-

nous variables is the following:

Y = BY + CX + E,

where X is a vector of q observed or unobserved exogenous variables, Y is a vector of p

observed or unobserved endogenous variables, E is a vector of p unobserved errors or
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residual variables, B is a p £ p matrix such that (I ° B) is invertible, and C is also a

p£ p matrix.

It is assumed that:

(i) (E,X) ª Np+q(0, ≠), i.e, (E, X) has a (p + q)-dimensional normal distribution

with expectation 0 and (positive definite) covariance matrix ≠,

(ii) Cov(Ei, Xj)=0 for i = 1, ..., p and j = 1, ..., q. Hence E and X are uncorrelated

and have covariance matrix ™ and ©, respectively.

In matrix notation the last assumption is

≠ =

"

cov(E, E) cov(E, X)

cov(X,E) cov(X, X)

#

=

"

™ 0

0 ©

#

.

From this specification it follows that (Y, X) ª Np+q(0, ß). The next lemma from

Kiiveri, Speed and Carlin (1984) gives expressions for ß and ß°1.

Lemma 1.2. Let Y = BY + CX+ E be a simultaneous equations system which satisfies

(i) and (ii). Then the over all covariance and concentration matrix of X and Y is

ß =

"

(I °B)°1(™ + C©C 0)(I °B0)°1 (I °B)°1C©

©C 0(I °B0)°1 ©

#

,

ß°1 =

"

(I °B0)™°1(I °B) (I °B0)™°1C

°C 0©°1(I °B) C 0©°1C + ©°1

#

.

The matrices B, C, © and ™ contain the coe±cients of the linear equations system,

and are called the parameter matrices of the model.

We refer to the equation system as recursive if the endogenous variables can be

ordered in such a way that B becomes a lower (or upper) triangular matrix. For

this reason in recent literature they are also called a triangular system (Wermuth and

Cox, 2004). Some authors only use the term recursive if B is lower triangular and

the disturbances for one equation are uncorrelated with the disturbances of the other

equation: the covariance matrix of the errors ™ is diagonal matrix; if ™ is not diagonal,

but B is lower triangular, they call the system partially recursive (Bollen, 1990 pp. 81).

In such a system feedback relations are absent, i.e. there are no cycles. Otherwise the

LSEM is called non-recursive.

It is a common practice to draw a path diagram (Wright, 1934) of the simultaneous

system. As Jöreskog and Sörbom (1989) remark, this has at least two advantages.
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Figure 1.4: (a) Structural model with correlated residuals; (b) Structural model with

feedback loops and correlated residuals.

First, “the path diagram eÆectively communicates the basic conceptual ideas of the

model.” Second, “if the path diagram includes su±cient detail, it can represent exactly

the corresponding algebraic equations and the assumptions about the errors terms in

these equations” and it portrays also the correlational assumptions about the exogenous

variables.

In the path diagram points correspond to variables: sometimes the observed vari-

ables are enclosed in boxes and the latent variables are circles, whereas arrows corre-

spond to free parameters in the LSEM. The arrows occurs in the following way: each

free parameter in B corresponds to an arrow between two endogenous variables e.g

Yj ! Yi if bij 6= 0. Each free parameter in C corresponds to an arrow from an exoge-

nous variable to an endogenous variable, e.g. Xj ! Yi if cij 6= 0. Each free parameter in

© corresponds to bi-directional (two-headed) arrow between two exogenous variables,

e.g. Xi $ Xj, if ¡ij = ¡ji 6= 0. Each free parameter in ™ correspond to a bi-directional

arrow between two error variables, e.g. Ei $ Ej if √ij = √ji 6= 0. These conventions are

illustrated by the path-diagram in Figure 1.4 where four observed variables represent:

(a) a recursive system with correlated residuals between the endogenous variables Y1

and Y2 (b) a non-recursive system with feed-back loops and correlated residuals between

X1 and X2.

In general if there is a missing edge in the path diagram of a linear structural

equation no correlation coe±cient of the associated variable pair is implied to be zero,

neither the marginal correlation nor any partial correlation. In some structural equa-

tion models, however, an independency interpretation is possible: univariate recursive

regressions with independent residuals, multivariate regressions and seemingly unre-

lated regressions can all be regarded as special cases of LSEM for which a graphical

representation is possible.

Non-recursive structural equation models are not DAG models and the joint dis-
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tribution is no longer specified in terms of the product of conditional distribution of

the children given the parent. They are instead represented by directed cyclic graphs

(Spirtes, 1995). In extending the framework of graphical models also to such SEM with

feedback relations among variables, Koster(1996) and Spirtes (1995) proved indepen-

dently that the set of conditional independence relations and zero partial correlations

entailed by a SEM can be read oÆ from the d -separation relations in the associated

graph, even in the case of cyclic graphs. In other words d -separation in a cyclic graph

still implies independencies in the joint generating distribution, provided that the rela-

tions are linear.

The graph in Figure 1.4 (a) is not strictly a directed graph because of the curved

line between Y2 and Y3 which indicates that error variables ≤2 and ≤3 are correlated.

The error variable for a variable Y represents the sum of all causes of operating on Y

other than the substantive variables explicitly included in the model. As illustrated

by Richardson and Spirtes (1999) it is possible to convert SEMs with correlated errors

into SEMs without correlated errors by adding a latent common cause of the appropri-

ate substantive variables and replacing the previously correlated error variables with

uncorrelated ones.

1.4 Linear recursive structural equations

We consider a linear structure equation system associated with a DAG G in N nodes

N = (1, ..., dN) having node i corresponding to a random variable Xi. Where there

exists qualitative prior information that specifies constraints on the ordering of random

variables, the joint distribution of the observable is not the primitive notion but rather

the end result of the specification of a collection of local conditional distributions. More

precisely we consider it as the data generating process for a DAG model a system of

linear recursive regression equations of the form

Xv = fv(Xpa(v), ≤v) v 2 N

where the assignments have to be carried out sequentially, in a well-ordering of the

directed acyclic graph G so that at all times, when Xv is about to be assigned a value,

all variables in pa(v) have already been assigned a value. These are variables assumed to

be of substantive importance for predicting Xv. The DAG prescribes a stepwise process

for generating the distribution where a proper dependence of Xi is to be only on its

potentially explanatory variables. The variables ≤v or “disturbances” are assumed to be

independent; the system is called recursive or a univariate recursive regression system

or a triangular system. Often assembling evidence of various kinds gives “substantive
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Figure 1.5: DAG with three variables representing a structural equation system

knowledge strong enough to relate a response of primary interest via a sequence of

intermediate single variables to a purely explanatory variable” (Wermuth, 1999). Such

a system is well suited to express a substantive research hypothesis either formulated

at the start of an investigation or developed during statistical analysis.

The triangular system is a set of equations of the form

X1 + a12X2 + a13X3 + ... + a1dN XdN = ≤1

X2 + a23X3 + ... + a2dN XdN = ≤2

...

XdN = ≤dN ,

where Xi is a dependent or endogenous variable for i = 1, ..., k and it is to be

determined, i.e. exogenous, for i = k + 1, ..., dN .

As noted in Koster (1999) there are some diÆerences between methods for portraying

the relationships between variables by means of a path diagram or graph but in the

case of the path diagram of a recursive LSEM for Gaussian variables it can be given

a consistent interpretation as a graphical model. Kiiveri and Speed (1982) have shown

that if the error terms are jointly independent, then any distribution that forms a linear

recursive SEM with a directed graph G satisfies the local directed Markov properties

for G. “An edge, missing in the graphical representation, corresponds to a defined

conditional independence between two variables and each edge present to a conditional

dependence of substantive interest between one variable regarded as explanatory, all

taken conditionally on the other explanatory variables. (Cox and Wermuth, 1996).

Assuming uncorrelated exogenous and error variables, Lauritzen et al. (1990) have

strengthened the results of Kiiveri, Speed and Carlin (1984) such that more Markov

properties can be read oÆ the path diagram.

To an LSEM were often given causal interpretations, (see e.g Goldberger, 1972)
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and the methodology is often called “causal modelling” (see e.g. Blenter 1980). Such

types of graph have been called also causal graphs (Kiiveri and Speed, 1982) because

of the causal interpretation between random variables that can be given to the edges

of the graph, due to the fact that each variable is indexed by time. In such a context

researchers decompose the eÆects of one variable on another into direct, indirect and

total eÆects. An edge from X to Y in G means that X is a direct cause of Y relative

to the set of vertices V and it expresses the direct eÆect of X on Y holding constant

the other variables in the model. This is a way of interpreting the associations and the

dependencies arising in the system. The same causal meaning has been used recently

in epidemiological literature (Greenland et al. 1999). We take the view of the authors

which argue that any causal interpretation should be conducted with extreme caution

in the context of observational studies as has been stressed by Guttmann (1977), CliÆ

(1983), Holland (1988) and Sobel (1995), among others.

The system corresponding to Figure 1.5, with just three variables measured as de-

viation from their means, is the following

Y = ØY K.XK + ØY XX + ≤Y

K = ØKXX + ≤K

X = ≤X .

A measure of the total (overall) eÆect of X on Y is the marginal regression coe±cient

between Y and X, marginalizing over K. Just from linearity properties of the system

it can be calculated as the sum of eÆects of “two paths”

ØY X = ØY X.K + ØY K.XØKX ,

the coe±cients for the direct eÆect of X on Y and terms which can be identified as the

indirect eÆects along each distinct path from X to Y .

Similarly the regression coe±cient between Y and K

ØY K = ØY K.X + ØY X.KØKX .

As can be seen, the linear dependence of Y on X is unaltered in slope if and only

if ØY X.K = 0 or ØKX = 0, (Cox and Wermuth, 2003). Further the same result holds

exactly also for least square estimates of the eÆects. Spirtes et al. (1998) reports a

simple rule (Wright, 1934) for calculating the covariances between two variables form a

linear recursive system. The covariance between Y and X can be expressed as the sum

over all of the collision less paths of the product of the edge labels on the path times

the variance of the source node of the path if there is one. For example, in Figure 1.5
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æY X = (∞ + ªÆ)æXX where ∞ = ØY X.K , ª = ØY K.X and Æ = ØKX and hence the partial

regression coe±cient follows directly ØY X = æY X
æXX

.

The arguments we are dealing with apply also to the very much broader family of

problems that are called quasi linear (Cox and Wermuth, 1996). It means that any

dependence present has a linear component and like linear least square regression equa-

tions in a multivariate normal framework, any curvature and higher-order interactions

present are such that a vanishing linear least-squares regression coe±cient implies that

no dependence of substantive importance is present.

It is important for interpretation that absence of an edge means an appropriate

independence and that presence of an edge implies a dependence strong enough to

be of substantive importance. So it must be assumed that there are no parametric

cancellations (Wermuth and Cox, 1998) or lack of faithfulness in the graph (Spirtes

et al. 1993). This can occur if the quantitative causal eÆects of two variables along

diÆerent directed paths exactly cancel each other out. For example in Figure 1.5 there

is no vertex unconditionally d -separated from any other vertex. Assuming that the

joint probability distribution over the three vertices is multivariate normal the partial

correlation coe±cient can be written Ωxy.k = Ωxy ° ΩxkΩyk/
q

(1° Ω2
xk)(1° Ω2

yk). It can

happen that Ωxy.k = 0, because Ωxy = ΩxkΩyk, even though X and Y are not d -separated

given K, if the correlations between each pair of variables exactly cancel each other.

Assuming that X is a vector of k mean centered random variables with Gaussian

joint distribution with covariance matrix ß, the recursive system can be written as

AX = ≤ cov(≤) = ¢ (1.4.1)

where A = {°ars} is upper triangular matrix with ones along the diagonals and with

oÆ-diagonal elements corresponding to partial regression coe±cients between two vari-

ables given the parents, °ars = Ørs.pa(r)\s associated with a directed edge between

Xs √ Xr; ¢ = cov(≤) is a nonsingular diagonal covariance matrix of the residuals

with elements of partial variances ±rr = ærr.pa(r) along the diagonal representing the

unexplained proportion of the variance of the dependent variable.

Each parameter in the system has a well-understood meaning since it gives for

unstandardized variables the amount by which the response is expected to change if

the explanatory variable is increased by one unit and all other variables in the equations

are kept constant.

From 1.4.1 a triangular decomposition of the covariance matrix ß and of the con-

centration matrix ß°1 is given by

cov(X) = ß = (A°1)¢(A°1)0, ß°1 = A0¢°1A.
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Whenever there is a zero regression coe±cient for variable Xi in equation i this cor-

responds to the statement that Yi is conditionally independent of Xj given the directly

explanatory variable of Xi.

For joint Gaussian distributions defined by the system this representation implies

that every structural zero in A and in A°1 is equivalent to a specific independent

statement. The linear system that arise can be parameterized in various ways. DiÆerent

parameterizations typically contain diÆerent structural zeros defined as parameters that

are implied to be zero in the generating DAG for all members of the family.

Induced graphs

One of the appealing features of studying such a generating process is that it allows

diÆerent investigation conditioning and or marginalizing over some nodes of the DAG.

Induced graphs can be derived starting from such types of DAG and they represent the

Markov structure induced by DAG on the observed variables. Two types of such graphs

are the induced covariance and concentration graph. The induced covariance graph of

S given C, GS|C
cov , is an undirected dashed-line graph of the type described previously in

which an edge between i and j is present if and only if Xi??Xj|XC is not implied by the

DAG. Similarly, the induced concentration graph given C, GS|C
con , is an undirected full-

line graph, in which an edge between i and j is present if and only if Xi??Xj|XC[S\{i,j}.

Then the first shows the marginal pairwise independencies of variable pairs in S induced

after conditioning on C and the latter shows the independencies of variable pairs in S

induced after conditioning on C and all remaining variables in S. Such independencies

may be derived using separation criteria for DAG and they are not confined to the

Gaussian case (Pearl, 1988).

One implication is that when the conditioning set is empty the overall covariance

graph induced by the DAG has an undirected edge between Xi and Xj if and only if

there is a path connecting Xi and Xj which does not contain a collision node. The

overall concentration graph induced by the DAG has an undirected full line between

Xi and Xj if there is an arrow between them in the DAG or Xi and Xj have a common

child.

As shown in Section 1.2 an edge missing on such graphs indicates a structural zero in

the corresponding induced parameter matrix, i.e. it has a zero in position (i, j) of ß and

of ß°1 respectively. This holds for all linear equations generated over the same graph.

Therefore from the first section we know that a missing edge in an induced graph of a

Gaussian triangular system indicates both an independence statement and a structural

zero correlation in a concentration, covariance or regression coe±cient matrix.

In Figure 1.6 an example is presented of the relationship between a DAG and the
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Figure 1.6: (a) Generating DAG; (b) the overall induced concentration graph GV
con; (c)

the overall induced covariance graph GV
cov.

induced overall concentration and covariance graphs. For instance, a zero element

in position (2, 3) in the matrix A, representing the edges of the DAG in Figure 1.6,

corresponds to a zero marginal correlation and it leads to a non zero partial correlation

corresponding to position (2, 3) of ß°1 as shown by the induced overall covariance and

concentration graphs respectively. Wermuth and Cox (2003) derive induced graphs

exclusively via transformations of a binary matrix of the starting DAG.

Marginalizing over some nodes of a DAG alters associations among the other vari-

ables and typically a graph more complex than the fully directed graph is needed to

capture the independence structure because DAG models are a class of graphs that is

not closed under marginalization. A DAG with hidden variables induces an indepen-

dence structure over the observed variables that can be represented by a graph called

a summary graph (Cox and Wermuth, 1996). It gives a summary representation of the

system when we marginalize over, or condition on, some variables in the DAG.

Considering a DAG G = (V, E) we derive the independence graph implied for the

distribution of XS, where S is the selected subset of nodes remaining after marginalizing

over a subset of nodes M of V , i.e S = V \M . The resulting summary graph for the

distribution of XS is denoted by GS. It may contain three types of edge: directed edge,

i.e (i¡ j), dashed line (i j) or both directed and dashed, i.e (i¡ j). Directed

cycles may not occur in a summary graph, but it is possible for there to be a dashed

line between i and j and at the same time a directed path from j to i.

By way of illustration we consider the eÆect of marginalizing over any single node

in a DAG. As can be seen from Figure 1.7 the eÆect of marginalizing over a node is

diÆerent according as the node is a sink node, or a collision node, or a source node.

Marginalizing over a transition node and over a common source node are all edge-

inducing. An induced edge in an independence graph means in general that a specific
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Figure 1.7: Top: DAG, bottom: summary graphs (a) EÆect of marginalizing over

transition node, (b) source node, (c) a collision node

independence statement in the original generating DAG no longer holds in all distribu-

tions generated over the new graph. Ignoring the intermediate variable, i.e. marginal-

izing over k in Figure 1.7(a) leaves i dependent on j. Ignoring the common explanatory

variable i.e. marginalizing over k in Figure 1.7(b) leaves the i and j associated. In

case (c) instead marginal associations between two explanatory variables cannot hap-

pen marginalizing over a child: an eÆect cannot alter conditions that were determined

before the event occurred.

From the illustration of Figure 1.8(a) (see Cox and Wermuth, 1996) it can be seen

that when the generating DAG is hypothesized without latent variables the summary

graph is the same generating DAG. The overall concentration graph reflects the inde-

pendencies of (X1, X3)??X4|X2, and the overall covariance graph of X3 ?? (X2, X4).

If in the generating DAG a latent variable is supposed to influence the two primary

responses X1 and X2, as shown in Figure 1.8(b) the summary graph has a dashed

line for X1 and X2 and it represents a system of recursive regressions with correlated

residuals. The induced covariance graph is independence-equivalent to the summary

graph and the induced concentration graph is complete.

In the case of a measurement model as in Figure 1.9, where the influence of two

latent variables is hypothesized for three measures, the resulting summary graph is

equivalent to a covariance graph and the concentration graph is complete.

As can be seen the summary graph which results from applying the operation of

marginalization to the independence model given by the original graph is not always

the same independence models. As noted in Wermuth, (1999) diÆerent classes of model

can be identified which arise by marginalizing over nodes in a directed acyclic graph

and which are, in the case of a joint Gaussian distribution, also within the class of linear

structural equation models.
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Figure 1.8: Implications of two DAGs: (a) Derivation of the summary, concentration

and covariance graphs; (b) EÆect of marginalizing over a source node.

Figure 1.9: Measurement model; summary graph identical to the induced covariance

graph; induced concentration graph.

Figure 1.10: (a) Generating DAG; (b)Corresponding summary graph marginalizing

over T.
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For example, considering the DAG in Figure 1.10(a) as a generating process; variable

X3 is called in the econometric literature an instrumental variable or surrogate. It is

an instrument because it allows us to estimate the regression coe±cients between two

variables X1 and X2 in presence of an unobserved confounder T . The instrument is a

variable that is marginally correlated with the explanatory variable X2 and marginally

independent of the unobserved variable T . The unobserved confounder is a variable that

should have been included in the model but which was not observed, i.e its existence and

nature were not appreciated or it was impossible to measure. In the epidemiological

literature a confounder is defined to be an unobserved quantity that simultaneously

aÆects the treatment and the response (see also JoÆe, 2001). Marginalizing over “T”

from the system means that the special independence assumptions made in formulating

these equations cannot be empirically tested using only the observed variables and it

leads to the summary graph pictured in Figure 6b. A non directional edge in the

summary graph is used to indicate that two variables are associated for some reason

other that they aÆect one another. This graph represents a system of linear equations

with correlated residuals between X1 and X2.

It can be shown that such graphs can also represent the seemingly unrelated regres-

sion equation (SURE) model by Zellner, (1962). In such models there is interaction

between diÆerent equations because it is hypothesized that random disturbances asso-

ciated with some diÆerent equations are correlated with each other. In this case the

equations are linked statistically, even though not structurally, through the connection

of the error distribution inducing the non-diagonality of the associated variance and

covariance matrix. For example the summary graph in Figure 1.8(b), linking together

the two equations through the dashed line, reflects the link between the error terms of

the equation of X1 and X2. The generating DAG hypothesises the presence of a hidden

common explanatory variable influencing each of the primary response variable and the

likelihood that a similar factor may be responsible for the random eÆects linking the

two equations.

1.5 Normal linear factor analysis model

The origins of factor analysis have to be found in Spearman (1904) and an account of his

innovative role in the development of the subject can be found in Bartholomew (1995).

In the early days of factor analysis, the factor model was used to measure human

intelligence. In 1904 Spearman was concerned with the fact that people especially

children, who performed well in one test of mental ability also tended to do well in

others. This led to the idea that all an individual’s scores were manifestations of some
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underlying general ability which might be called general intelligence. However, the

scores on diÆerent items were certainly not perfectly correlated and this was explained

by invoking factors specific to each item to account for the variation in performance

from one item to another. The aim of the model is to condense a number of variables,

often called items, into one or more summary scores. The simplest way in which this

might happen would be for the two eÆects to be independent and additive.

A straightforward generalization of Spearman’s single factor model is the common

factor model, which was proposed by Garnett (1919). Suppose that X1, ..., Xp are

continuous variables measured on each individual in a sample from some population. All

of X1, ..., Xp are on an equal footing : there is no division into response and explanatory

variables. The aim of the study is to “explain” the correlations among the observed

variables in terms of a smaller number of unobservable variables also called common

factors. The general factor model

X1 = u1 + ∏11Z1 + ... + ∏1qZq + E1

X2 = u2 + ∏22Z2 + ... + ∏2qZq + E2

...

Xp = Up + ∏p1Zq + ... + ∏pqZq + Ep

or in matrix notation

X = µ + §Z + E, (1.5.1)

where µ(p £ 1) is a constant term, §(p £ p) is a matrix of the factor loadings which

are the same for all individuals, Z = (Z1, Z2, ..., Zq)0 are the common factors and

E = (E1, E2, ..., Ep)0 are random disturbances specific to each item, they are also called

specific factors. As can be seen the factor model is a special case of the linear recursive

structural equations model where there are no y, ¥, ≤, ≥ from the system in Section 1.3.

The assumptions are that

i Xi ª Np (µ, ß), each Xi follows a multivariate normal distribution;

ii cov(E,Z) = 0, the common factors are distributed independently of the specific

factors;

iii E(E)= 0, cov(E)= ™, with ™ diagonal, thus they are independent.

The key assumption of the factor model in that E1, E3, ..., Ep are uncorrelated thus

X1, X2, ..., Xp are conditionally uncorrelated given Z. From the assumption

X|Z ª N(µ + ∏Z, ™),
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Figure 1.11: (a)DAG with four observed variables one common factor; (b) resulting

summary graph that is a complete covariance graph.

and if the matrix ™ is diagonal then it follows

Xi ??Xj|Z for i, j = 1, ..., p i 6= j.

As for recursive LSEM the independence structure of the factor model can be captured

by a directed acyclic graph. Figure 1.11(a) shows a DAG for four items and one common

factor.

The graph says that X1, X2, X3, X4 are all influenced by Z but they are not directly

related to one another. As mentioned before we omit the error terms pointing at the Xs.

Figure 1.11(b) shows the summary graph obtained by marginalizing over the common

source node: the resulting graph is a full covariance graph where an edge represents the

marginal pairwise association of a variable pair (Cox and Wermuth, 1996).

The covariance matrix of X is

ß = cov(X) = cov(∏Z) + cov(E) = ∏cov(Z)∏0 + cov(E) = ∏∏0 + ™. (1.5.2)

The converse also holds: if ß can be decomposed as in (1.5.2), then the q-factor model

(1.5.1) holds. Equation (1.5.2) shows that variances and covariances are linear functions

of the parameters. If we allow the latent variables to be correlated, the covariance matrix

of the hidden variables will be denoted by cov(Z) = ©, and the covariance matrix of the

observations is induced by the relations between the hidden variables ß = ∏©∏0 + ™.

If ™ is a diagonal matrix then the factor analysis is scale invariant. In fact, writing

Y = CX where C = diag(c1, ..., cp) then cov(Y ) = (C∏)(C∏)0 + C™C 0 and the q-factor

model also holds for Y . So it does not matter whether we work with the covariances

or the correlations between X1, ..., Xp as the same factor model holds. The factor

model may therefore be viewed as a particular structure imposed on the covariance

matrix ß, if we consider ß unstructured there are p(p+1)/2 parameters, if we consider

ß structured (∏∏0 + ™) there are pq + p ° q(q ° 1)/2 parameters, the reduction of
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parameters represent the degree of simplification oÆered by the factor model relative to

completely unstructured ß.

From (1.5.2) the variances of X can be split into two parts

var(Xr) = ærr =
q

X

j=1

∏2
rj + √r

where the first h2
r =

Pq
j=1 ∏2

rj arises from what is common to all Xs, for which reason it

is known as the communality, the complementary part, √r, being the variance specific

to that particular Xr is known as the specific or unique variance due to Er.

Spearman first noted a necessary and su±cient condition for the existence of his gen-

eral factor model, the so called tetrad condition on the correlation matrix. A tetrad con-

dition is an equality among the products of correlations involving a group of four vari-

ables. For example, a tetrad condition among W,X, Y, Z is that ΩWXΩY Z = ΩWY ΩXZ .

Such a constraint is implied by a model in which there is a single common factor

of W,X, Y, Z. In Spearman’s case tetrad diÆerences among measures of reading and

mathematical aptitude led him to hypothesize that a single common cause, general

intelligence, was responsible for performance on all four psychometric instruments.

In 1956 Anderson and Rubin showed that the tetrad condition for a single factor

model arises with the column vector ∏. If ∏∏0 is a positive definite matrix of rank one

then the determinant of each of its 2£ 2 submatrices known as a tetrad is zero

Ø

Ø

Ø

æil æim

æjl æjm

Ø

Ø

Ø

= æilæjm ° æimæjl = 0

this is the tetrad condition for unequal i, j, l, m. This generates a block-structure in the

covariance matrix.

For example, the model in Figure 1.11 entails the following two tetrad conditions

on the covariances (see also Geiger, 1998)

æ12æ34 = æ13æ24

æ12æ34 = æ14æ23.

In 1931 H.B. Heywood showed that the tetrad condition is a necessary condition for

the factor model to hold only because Spearman excluded the case when ™ ∑ 0 and

this was not an impossible case. There is no inconsistency in the occurrence of a zero

residual variance and, taken at its face value, it would simply mean that the variation

of the manifest variable in question is wholly explained by the latent variables. In

practice this rarely seems plausible (see Bartholomew and Knott, 1999). If one element

of ™ is negative the factor model cannot hold since the variances of the residual vector
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would be negative. If a Heywood case arises when the data conform to a linear factor

model it would probably be the result of sampling error, a key factor is therefore to

have a big sample size. For a given sample size the risk decreases as the number of

variables increases. Another cause of the Heywood case is the attempt to extract more

factors than are present. This di±culty does not arise if the partial correlations between

variables under study are substantial and all positive and if the marginal correlations

are close to fulfilling the tetrad conditions (see Cox and Wermuth, 1996).

1.6 Identification and estimation

1.6.1 Identification

A parametric statistical model is identifiable if there is a unique set of model parameters

µ that can generate a given distribution. The following definition is useful.

Writing f(x, µ) for the expression of the likelihood function of the family model

considered we define two parameter vectors µ1 and µ2 to be observationally equivalent

if they imply the same f(x, µ1) = f(x, µ2). The equivalence class at point µ1 is {µ :

Æ(µ) = Æ(µ1)}.

Definition 1.11. Local and global identifiability

(i) A parameter vector µ1 2 A is locally identified if there is an open neighborhood of

µ1 which contains no other µ which is observationally equivalent to µ1.

(ii) A parameter vector µ 2 A is globally identified if for any parameter point µ1
2 A

there is no other observationally equivalent point µ2
2 A.

It should be noted that local identification everywhere in A is a necessary but not

su±cient condition for global identification (see, e.g. Skrondal and Rabe, 2004).

In linear SEM when the latent variables are standardized, the identification problem

reduces to assessing whether or not µ is uniquely determined by the covariance matrix

ß of the observed variables. Generally it can be assumed that the distribution of

the observed variables is su±ciently well described by the moments of first and second

order. In particular, if the distribution is multivariate normal and the observed variables

are centered, the second moment order is enough to check model identifiability, and

the covariance matrix can be written as a function of a parameter vector, ß = ß(µ).

The parameters in µ are globally identified if no vectors µ1 and µ2 exist such that

ß(µ1) = ß(µ2) unless µ1 = µ2.
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One way to establish identification is algebraically: each element of µ must be solved

for in terms of one or more elements of ß known to be identified. For a review of some

algebraic rules of necessary or su±cient conditions for identification see Bollen, (1989).

However for complex models this algebraic approach is “extremely tedious and prone to

mistakes” Bollen, (1989).

Other methods are based on empirical identification which is based on the properties

of the estimated parameters. A frequently used rule for identification is based on the

estimated information matrix of the second derivatives of the log-likelihood function of

the model. Kiiveri (1982) shows that it is su±cient to check the rank of the first deriva-

tives of the covariance matrix of the observed variables with respect to the estimated

parameter vector. If this matrix has full rank when evaluated at the solution point then

the information matrix is positive definite and the parameters are locally identified at

the solution point (e.g. Rothenberg, 1971).

In practice this approach is not feasible because the information matrix is usually

analytically intractable in complex models. Another possible solution is to determine

the rank by using numerical methods as well as by adding additional constraints needed

to obtain local identifiability (see e.g McDonald., 1982).

A necessary condition for identification is that the number of elements of indepen-

dent parameters µ to be estimated must be less than or equal to the number of unique

elements in the sample variance-covariance matrix, as in every linear system. If the non-

redundant elements of the variance-covariance matrix are more than the parameters to

be estimated, the model is said to be overidentified. This gives rise to overidentified

conditions on ß which should hold if the model is true. The overidentified coe±cients

provide the degrees of freedom for the chi-square test discussed under model evaluation.

The model is underidentified when there are fewer non-redundant elements in the

variance-covariance matrix than parameters to be estimated and the parameters cannot

be consistently estimated; this implies that the degrees of freedom of the model are

negative and the model statistics are meaningless. Finally, the model is just identified

if the number of the parameters to be estimated is the same as the number of non-

redundant parameter of the sample covariance matrix. In such case the degrees of

freedom of the model are zero.

The identification problem of the factor model was discussed in a systematic way

by Anderson and Rubin (1956). If the system (1.5.1) or the system (1.5.2) admits a

unique solution or a finite number of solutions in ∏∏0 and ™, given the matrix of the

observed variables then the factor model is globally identified.

Even if the factor model is identified the solutions cannot be unique for the indeter-

minacy of the factor scores. The subject of factor indeterminacy has a vast history in
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factor analysis (Wilson, 1928; Lederman, 1938; Guttman, 1955). It has lead to strong

diÆerences in opinion (Steiger, 1979). It is due not simply to measurement errors in the

factors, the indeterminacy lies in the fact that it is not known which variables determine

the scores. In geometrical terms, factor indeterminacy can be described as follows: if

variables are seen as vectors in a vector space, the common factor model postulates

a p + q dimensional vector space in which the p observable variables are embedded.

The indeterminacy of the common and specific factors results from the fact that it is

impossible to identify the p + q basis vectors given p observable variables. Specifically,

Guttmann (1955) demonstrated the following lemma:

Theorem 1.1. Assume that a random vector X satisfies equation (1). Then there

exists a random vector W such that

Z = ∏0ß°1X + W

with E(XW 0) = 0 and E(WW 0) = I ° ∏0ß°1∏.

A discussion of this issue can be found in Haagen (1992).

One restriction generally imposed for identification is assessing the scale of the latent

variables, which is also a way to make them interpretable. The latent variable variance

is than fixed to one. Another way is fixing to one a path from the latent variable to

one measured variable. For a more detailed discussion see e.g Bollen (1989).

If we restrict ourselves to the single factor model, general results have been estab-

lished. Anderson and Rubin (1956) gave a simple necessary and su±cient condition to

uniquely identify the parameter vector ∏.

Theorem 1.2. A necessary and su±cient condition for identification of a single factor

model when ™ is diagonal is that at least three factor loadings be nonzero.

Sometimes if the residuals are correlated ™ is no longer diagonal. This may result

from a factor model with more than one latent variable in the case of lack of identifi-

cation. In this case it is easier to work with the simple factor model with correlated

residuals. In fact the concentration matrix of such model has a structure similar to the

covariance matrix

ß°1 = °±±0 + ™°1 (1.6.1)

where ± = ßxzpæxx.z.

A su±cient graphical rule for solving global identifiability of the system has been

established by Stanghellini (1997) assessing the structure of zeros in the inverse of the
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Figure 1.12: Graph derived after conditioning on Z: (a) possible induced covariance

graph of the residual of a single factor model with four observed variables and (b) cor-

responding complementary covariance graph.

variance of the residuals ™°1. This rule was later proved to be necessary by Vicard

(2000). The following lemma (Stanghellini and Wermuth, 2003) based on the properties

of the complementary graph of the induced covariance and concentration graphs is a

direct consequence of that rule.

Lemma 1.3. The system (1.5.2) can be solved with respect to ∏∏0 + ™ if and only if

one of the following conditions holds:

(i) ∏ 6= 0 and the structure of zeros in ™ is such that every connectivity component

of the complementary graph Ḡ of GX|Z
cov contains an odd cycle;

(ii) ± 6= 0 and the structure of zeros in ™ is such that every connectivity component

of the complementary graph Ḡ of GX|Z
con contains an odd cycle.

In Figure 1.12 is shown the possible induced covariance graph of the residuals ob-

tained conditioning on the common factor, with four observed variables and with cor-

related residuals between variables X1, X2, and X1, X4 and the corresponding comple-

mentary graph GX|Z
cov . In such model ™ has the following structure

™ =

0

B

B

B

@

1 æ12.z æ13.z 0

. 1 0 0

. . 1 0

. . . 1

1

C

C

C
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A three-cycle can be seen in GX|Z
cov between the variables X2, X3, X4 and this defines the

minimum submatrix needed to identify the model.

For the models introduced in Section 1.4 Stanghellini and Wermuth (2004), propose

su±cient conditions for global identifiability of DAG models with one unobserved vari-

able. These conditions are formulated in terms of the joint distribution of the variables
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Figure 1.13: (a) Generating DAG with Z as a node to be marginalized over; (b) the

induced overall concentration graph GV
con with c = bd(Z) = {X1, X2, X3, X4}; (c) the

concentration graph induced by c Gc|V \c
con ; (b) the corresponding complementary concen-

tration graph Ḡ of Gc|V \c
con .

and are based based on properties of some conditional independence graph induced by

the model. They define a particular class of graphs:

Definition 1.12. An undirected graph G is G- identifiable if every connectivity com-

ponent of the complementary graph Ḡ contains an odd cycle.

Then assuming no parametric cancellations in Gcov they derive the following criteria.

Theorem 1.3. Let X = (Y, Z) with marginalization over Z and æzz = 1. Then the

model (1.4.1) is identified if one of the following conditions holds:

(i) the boundary of the latent variable m, in the covariance graph GV
cov contains at

least three nodes and Gm|Z, the subgraph induced by m in GY |Z
cov is G-identifiable;

(ii) the boundary of the latent variable c, in the concentration graph GV
con contains at

least three nodes and Gm|L
con , the subgraph induced by c in GV

con, is G-identifiable.

For example the graph in Figure 1.13 (Stangellini and Wermuth 2004) correspond to

an identified model. In this case c = {X1, X2, X3, X4}, in (c) the subgraph induced by c

in GV
con is shown and in (d) the complementary graph of this subgraph is presented. The

last graph has just one connectivity component which contains the odd cycle formed

by {X1, X2, X3}.

A related concept to the identifiability is that of equivalence which concerns the

prospects of distinguishing empirically between diÆerent statistical models. If every

probability distribution that is generated by one model can be also generated by an-

other, the two models are equivalent and equally well compatible with any data. Equiv-

alence is detrimental when the models are equally compatible with background knowl-

edge, and have the same degrees of freedom. We state the following definition from

Pearl (2000, p.145).

Fulvia Pennoni
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Definition 1.13. Covariance Equivalence

Two graphical Gaussian linear models are covariance equivalent if and only if they entail

the same sets of zero partial correlation. Moreover, two such models are covariance

equivalent if and only if their corresponding graphs have the same sets of edges and the

same sets of v-configuration.

It provides a test for the equivalence checking the zero partial correlations through

the d -separation tests and also through comparison of the corresponding edges and

their directionalities. For related topics see also Spirtes et al. (1993, 2000) .

1.6.2 Maximum likelihood estimation

Throughout it is assumed that the observed data come from a Gaussian distribution.

It is really important that this assumption be checked. Within complete data there

are X = (x1, ..., xn) independent observations from N(0, ß) and supposing the sample

mean vector to be zero, the relevant log-likelihood function can be expressed as

l(ß) =
n

2
log |ß| +

n

2
tr(ß°1S),

where S is the sample covariance matrix e.g. Edwards (2000, §3.1). The likelihood

equations are the estimating equations obtained by setting the derivatives of the log-

likelihood l(ß) with respect to æij, i √° j to zero. We states the following definition

(see e.g. Capitanio et al., 2003, Cox and Wermuth, 1999).

Definition 1.14. For a family of models specified by a parameter µ taking values in

a parameter space £, the likelihood of an observed vector x admits a parameter based

factorization if L(µ; x) = L1(µ1; x)L2(µ1; x) where µ1 2 £1 and µ2 2 £2 and µ1 and µ2

are variation independent, that is £ = £1 ££2.

When the variables of the models are all observed the solution of the likelihood

equations involves regression of each variable on its direct explanatory variables. This

is a well known result from structural equation models (see e.g. Land 1973).

When there are latent variables the maximum likelihood estimators of (ß̂) in ex-

plicit algebraic form are typically not available. For many models a variety of iterative

computational methods for handling unobserved variables are available and solving

the likelihood equations, which are the estimating equations obtained by setting the

derivatives of the log-likelihood l(µ) with respect to µi and µj to zero.

To solve the problem of finding µ̂ 2 £ such that l(µ̂) = max l(µ) a wide class

of algorithms would proceed as follows from a suitable initial value µ0 of the vector

parameter. Given µn the n° th approximation to the maximum likelihood estimate µn,
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let gn = @l/@µn the first derivative, or the gradient of the fitting function, evaluated at

µn and let An = A(µn) be a negative definite matrix. Define µn+1 through

µn+1 = µn ° cnA°1
n gn,

where cn is chosen to maximize l(µ) in the direction Angn from µn, for cn 2 [°a, a] and

a > 0 fixed throughout.

Many maximization methods are distinguished by their choice of An. If the choice

of An is an identity matrix I this leads to the method of the steepest ascent, and the

step length can be adjusted on multiplying An by a constant cn to alter the resulting

change in µn+1. The main disadvantage of the steepest ascent method is that it is very

slow and it is not very sensitive to the diÆerent shapes that the log likelihood may take.

Another choice for An is the inverse of the second partial derivatives, or the inverse

Hessian matrix, of l(µ) with respect to or An = [@2l/@µ@µ0]°1. The choice of An is based

on a Taylor series expansion of l(µ̂) around µn. The Newton-Raphson (NR) algorithm

requires the analytic first moreover the second partial derivatives of l(µ) with respect to

µ which may be di±cult to calculate and the second derivatives need to be calculated

at each step and this can be very time consuming.

Another possible choice of An is to use the expected value of the inverse Hessian

matrix An = E[@2l/@µ@µ0]°1 and this is called the Fisher Scoring algorithm. A benefit

of the Scoring shared with the Newton’s methods is that the inverse of the expected

information matrix E[°@2l/@µ@µ0]°1 immediately supplies the asymptotic variances

and covariances of the maximum likelihood estimates µ̂ (Rao, 1973), since the observed

information is under natural assumptions asymptotically equivalent to the expected

information.

A modified version of the NR algorithm is often used. The Quasi-Newton methods

(Fletcher and Powell, 1963) updates the current approximation An to the Hessian matrix

by an updating formula An+1 = An ° cnpnp0n with vector cn and pn specified by cn =

1/(qn+Ansn) where qn = (gn+1°gn), sn = (µn°µn+1) and pn = (qn+Ansn), where pn, qn

and cn are chosen to increase the function su±ciently in the direction Ansn. The initial

second derivative approximation can be freely specified. In successful applications of

quasi-Newton methods choice of the initial matrix A1 is critical. Setting A1 = °I

is convenient, but often poorly scaled for a particular problem. A better choice is

A1 = E[@2l/@µµ0|X] where X is the observed data. The last choice is generally simple

to compute and it does not require the calculation of the second derivative at each step.

For example in LISREL (Jöreskog and Sorbom, 1989) program the standard method

for fitting models with latent variables is based on such algorithm.

An easier method to implement is the EM algorithm (Dempster, Laird and Rubin,
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1977); it fully described in Chapter 2. If the EM algorithm converges, it converges to

a solution of the likelihood equations derived from the log-likelihood function of the

observed data. As shown by Kiiveri (1982), the EM algorithm may be slow to converge

when there are more latent variables than one. It typically performs well far from

the maximum likelihood point and it can be accelerated by using hybrids algorithms

that begin as pure EM and gradually make the transition to quasi-Newton methods to

perform best near the maximum likelihood point (Lange, 1995a, 1995b).

1.7 Bibliographical note

In his initial exposition of “path analysis” the geneticist Sewall Wright in the early

1920’s introduced into statistics the basic idea of directed acyclic graphs whose vertices

represent continuous random variables and edges some notions of correlations and cau-

sation. One of the appealing features of Wright’s method was its ability to produce

estimates of path coe±cients when some of the variables in the system were not directly

observed and some of Wright’s examples could be viewed as early attempts at estimat-

ing parameters in a model on the basis of missing data approach. The approach was first

confined to those problems with essentially linear structures and uncorrelated errors in

which the interrelationships are adequately captured by the covariance matrix of the

variables. Early descriptions of univariate recursive regressions have been given also by

Tinbergen (1937) for the study of the business cycle. Wright’s method was early sub-

ject to philosophical and methodological criticism; the cause of much misunderstanding

seems to be his failure to describe his method in the context of a well defined statisti-

cal model. In the 1930s Harold Hotelling invented principal components analysis and

Louis Thurstone developed factor analysis. In 1943 Trygve Haavelmo noted an impor-

tant limitation of univariate linear recursive equations and he developed joint response

models with cyclic dependencies. This has led to the overcoming of some of Wright’s

deficiencies with important developments. The emphasis shifted from being an a pos-

teriori description of an assumed causal process, as Wright viewed his method, to being

a tentative test for an assumed causal process. This gave rise to structural equations

models (SEM) in econometrics (Goldberger, 1964), linear structural equations mod-

els (LSEM); the analysis of covariance structures (Dempster, 1972) in psychometrics

(Jöreskog, 1973,1977, 1981) and in sociology (Ducan, 1969; Land, 1973). Covariance

selection model were first introduced by Dempster in 1972 and have subsequently been

studied by Wermuth (1976a, 1976b), Knuiman (1978) and Speed (1978).

The idea that the probabilistic meaning and implications of structural models are

best revealed through an understanding of the independence constraint they impose

Fulvia Pennoni
is

Fulvia Pennoni


Fulvia Pennoni


Fulvia Pennoni


Fulvia Pennoni
3

Fulvia Pennoni




BIBLIOGRAPHICAL NOTE 34

seem to have first appeared in Moran (1961) and an approach to causal models in

sociology can be found in Blalock (1961, 1971). The conceptual synthesis of models

containing structurally related latent variables was developed extensively in sociology

during the 1960s and early 1970s. For instance Blalock argued that sociologists should

use causal models containing both indicators and underlying variables to make infer-

ences about the latent variables based on the covariances of the observed indicators.

In 1912 Andrej Markov used the notion of conditional independence explicitly to

simplify multivariate structures. After the work of Phil Dawid (1979) moving away

from the use of SEM Speed Kiiveri and Carlin (1984) preferred to use an appealing fac-

torization of the joint density of the variables under consideration, and the consequent

conditional independent constraints on the variables. In fact analysis and interpretation

of multivariate data can often be simplified when knowledge about independencies is

available or can be derived.

At first the graphs defining graphical Markov models were undirected but soon

directed acyclic graphs (DAGs) and chain graphs were used. Chain graphs were in-

troduced by Lauritzen and Wermuth (1989) in which a pair of variables can be linked

either by an arrow or by an undirected edge. Undirected and directed acyclic graphs

are special types of chain graphs (Lauritzen, 1996, Edwards 2000). Even though the

types of graphs encountered in graphical Markov models look quite dissimilar, the way

in which for any such graph the associated graphical Markov model is defined, is es-

sentially the same. The vertices of the graph are associated with the random variables

that are being studied. For each type of graph a purely graph-theoretical concept of

“separation” is introduced, allowing one to state whether or not in a certain graph

two given subsets of vertices are separated by a given third subset of vertices. Finally,

the graphical Markov model is defined by stipulating that each valid separation state-

ment pertaining to vertices of the graph be mirrored by a valid conditional independent

statement pertaining to the associated random variables. Currently there are in the lit-

erature two main lines of approach in defining “separation in graphs”. One approach,

defined by Frydenberg (1990) for the class of chain graphs is based on the operation of

“moralization” of subgraphs induced by certain subsets of vertices. The other approach

introduced by Pearl (1988) is based on the notion of d-separation and applies to DAGs.

In Lauritzen it is shown that both ways of defining separation in graphs are equivalent

if the graph is DAG.

Further steps were recently taken by Spirtes (1995) and Koster (1996), who showed

how DAGs (in the case of Spirtes) and chain graphs (in the case of Koster) can be

generalized so as to permit directed cycles. The work of Koster (1999) provides a

probabilistic interpretation for any graph that consists of a finite number of variables
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with arrows and undirected edges among them.

In recent times the combination of ideas from the area of graphical Markov models,

in which the the Markov properties (i.e., the conditional independence structure of

a set of random variables) are accurately portrayed by a certain graph (Frydenberg

1990, Lauritzen and Wermuth 1989, Whittaker 1990) with those from SEM has formed

stimulating ground for reinterpreting and enlarging existing results. In fact a graphical

approach can be used to solve a number of important problems in SEM; “the conceptual

basis for SEM achieves a new level of precision through graphs. What makes a set of

equations “Structural”, what assumptions are expressed by the authors of such equations,

what the testable implications of those assumption are, and what policy claims a given

set of structural equations advertises are some of the questions that receive simple and

mathematically precise answers via graphical models” (Pearl, 2000).

The work of Pearl has suggested that the DAG can also be used to calculate the

eÆects of intervening on an existing causal system by manipulating the values of vari-

ables and also it a useful tool to compare the outcomes that would arise under diÆerent

interventions. As noted by Dawid (2002), this view coincides with enhancing a proba-

bilistic model described by a DAG with further causal interpretation that is not implicit

in its nature. Dawid calls the graph with this modified semantics as an intervention

DAG. A review of graphical causal modelling for epidemiological research can be found

in Greenland (2000) and Greenland et al. (1999).

When we deal with a latent variable in graphical models we introduce a graph in

which some of the nodes are denoted specially to show that they are not observed, in

this work following Cox and Wermuth (1996) they are denoted in the graph by a double

crossing over the nodes. Latent variables are variables over which we marginalize and

the possible impact on the form of the conditional density has to be considered.

In the recent literature on graphical models two other approaches to the problem

of marginalizing and conditioning in graphical models have been proposed besides the

summary graph (Cox and Wermuth 1996; Wermuth and Cox 1998). One considers

ancestral graphs (Richardson and Spirtes, 2002); and the the other is based on MC

graphs (Koster, 2002). As noted in Koster (2002) the operation of marginalization and

conditioning are defined diÆerently for each type of graph thus after marginalizing on a

given dag over a subset of vertices m µ V and or conditioning on a subset c µ (V \m)

each of the three approaches may render a distinct (thought separation-equivalent)

graphical object.
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Jöreskog K. G. (1977). Structural equation models in the social sciences: specification,

estimation and testing. In P. R. Kirshnaiah (Eds.) Applications of statistics,

265-286, Amsterdam, North Holland.
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Chapter 2

Latent Class Models

2.1 Latent class analysis

Latent structure analysis arises from models in which the latent variables are categorical

and it can be seen as a qualitative version of the factor model for the analysis of

qualitative data. The object of latent class model analysis is to define a latent variable,

specifically a set of classes of the latent variable, within which the manifest variables

are conditionally (or locally) independent. In other words, the association between the

manifest indicator “is explained via a representation in terms of a finite set of latent

classes within each of which independency holds” Cox, (2003).

The latent class model has been considered into two closed related parametrization.

The first one (Lazarsfeld and Henry, 1968) is in term of probabilities of belonging to a

particular latent class and of obtain a particular scoring pattern on the observed vari-

ables, given the latent class one belongs to. The second one was introduced by Haber-

man (1979), (see also Hagenaars, 1990) is a parametrization in terms of a log-linear

model with a categorical latent variable. The basic unrestricted latent class model is

identical across the two parameterizations, restricted models with one parametrization

may not be readily translated into the alternative parametrization.

For simplicity of exposition, we discuss the probabilistic parametrization of the

model following the notation in Bartholomew and Knott, (1999). Suppose that there

are p binary observed variables x1, x2, ..., xp with xi = 0 or 1 for all i, i = 1, ..., p, which

can be collected in a column vector x = (x1, ..., xp)0. We denote a categorical latent

variable by z with levels indexed by r, r = 1, ..., R, where R is the number of latent

classes. If z can be defined so as to explain the correlations among x1, x2, ..., xp its classes

are taken to represent the latent types, as they are defined by the measured variables

within the sample population. For this parametrization the assumption of conditional

44
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Figure 2.1: DAG model with one latent variable and three observed binary indicators.

independence states that the manifest items are independent for individuals with the

same position on the latent variable. Such independencies can be encoded in a directed

acyclic graphical Markov model, showed in Figure 2.1, of the type equivalent to the fac-

tor model, where the variables are depicted by full dots to denote that they are categor-

ical. The example in Figure 2.1 shows that within categories of variable z, the observed

variables x1, x2 and x3 are pairwise independent. If x1, x2 and x3 are dichotomous

variables there are 23 diÆerent patterns of responses that can be observed. For example

diÆerent response vectors are {000}, {100}, {010}, {001}, {110}, {101}, {011}, {111}.

Let ¥r = P (z = r) be the latent class probability which describes the probability

distribution that a random chosen individual is in class r of the latent variable. The

number of R classes of the latent variable represents the number of latent types defined

by the latent class model for the observed variables. The relative size of each of the

R classes provides also significant information for the interpretation of the latent class

probabilities. It indicates whether the population is relatively evenly distributed among

the R classes, or whether some of the latent classes represent relatively small segments.

A second type of latent class parameter is the conditional probability which is com-

parable to the factor loading in factor analysis. Let ºir = P (xi = 1|z = r) denote

the probability of an individual being in class r of the latent variable with a positive

response of the observed variable xi. For each of the R classes of the latent variable,

there is a set of conditional probabilities one for each level of the observed variables.

Following the example in Figure 2.1 the R latent classes of z will have three sets of con-

ditional probabilities (º1r,º2r,º3r). Within each of the latent classes the conditional

probabilities indicate whether observations in class r are likely or unlikely to have the

characteristics of each of the observed variables, such probabilities must sum to one.

Consequently there is one redundant conditional probability for each observed variable

within each latent class. For example if x1, x2 and x3 have I, J and K categories re-

spectively, there are (I ° 1) + (J ° 1) + (K ° 1) conditional probabilities which need to
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be identified for each of the R latent classes.

The conditional probability of observing a response pattern x can be expressed as

the product of the conditional response probabilities for the separate items. For this

model

f(x) =
R°1
X

r=0

¥r

p
Y

i=1

ºxi
ir (1° ºir)

1°xi . (2.1.1)

A component of latent class analysis is predicting latent class membership for cases

showing various observed response vectors. The posterior probability that an individual

with response vector x belongs to category r is thus

h(r|x) =
¥r

Qp
i=1 ºxi

ir (1° ºir)1°xi

f(x)
r = 0, . . . , R° 1. (2.1.2)

This function is used to construct an allocation rule according to which an individual

is placed in the class for which the posterior probability is greatest.

2.1.1 Identification, estimation and testing

A di±cult problem in latent class models is the identifiability of their parameters.

As illustrated in the previous chapter, at paragraph 1.6.1, there are various notions

concerning identification in the literature. A latent class model is globally identified if

there is a unique latent structure which generates the manifest probabilities.

A necessary but not su±cient condition for identifiability is that the number of

parameters to be estimated independently is not greater than the number of indepen-

dently observed frequencies. In fact, if there are more model parameters than there

are independent cell probabilities then there will be many sets of model parameters

leading to the same likelihood. The number of parameters in the model is given by

P = {R
Pt

j=1(cj ° 1) + (R° 1)} where c1£ c2£ ...£ cj represents the dimension of the

contingency table.

Only for some simple cases an analytic solution has been provided to check identifi-

ability. For instance, the conditions for the parameters to be identifiable, are known for

dichotomous observed data and one binary latent variable: the upper limit of the num-

ber of classes to be identified, in the absence of any restrictions, is two when there are

four dichotomous variables. In fact, the proof that the parameters in a three-class latent

class model with four observed variables, are not identifiable was given by Lazarsfeld

and Henry (1968, p.65). However, as pointed out by Goodman (2002, p.55), there is an

error in the Lazarsfeld and Henry proof. Three latent classes become identifiable when

there are five dichotomous variables, in which case the maximum number of identifiable
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classes is limited to four (cf. Lazarsfeld and Henry, 1968). Further, it is known that

for two-dimensional contingency tables not all parameters for the two class model are

identifiable (Clogg, 1981).

As pointed out by Formann (2003), except for some few cases, it not possible to say

a priori whether these models may be identifiable. Some criteria for local identifiability

“become available after one has estimated the parameters under a certain model, be-

cause identifiability via the parameter estimates also depends on the specific data under

investigation.” (Formann, 2003).

Goodman (1974) made some progress with local identifiability, which means that

in a small neighborhood the maximum of the likelihood is unique. He stated that the

maximum is unique if the transformation of the cell probabilities to the parameters is

one to one in a small neighbourhood. If the Jacobian of the transformation, which is

the matrix of the partial derivatives of f(x) with respect to the model parameters, has

full rank, then all the parameters are locally identifiable, and the model as a whole

is said to be locally identifiable. Equivalently, the (expected) matrix of the second

order partial derivatives of the log-likelihood possesses eigenvalues smaller than 0 (see

Formann, 1985). Goodman proved that the three latent class model with four observed

dichotomous variables is not even locally identified.

Maximum likelihood values of the parameters can be found using standard opti-

mization routines such as Newton-Raphson technique (McHugh 1956, 1958) and the

EM-algorithm (Dempster et al. 1977, Goodman 1978, Wu 1983) . The log-likelihood

function for a random sample of size n becomes

L =
n

X

k=1

ln

∑R°1
X

r=0

¥r

p
Y

i=1

ºxi
ir (1° ºir)

1°xi

∏

;

which as to be maximized subject to
P

¥r = 1.

The EM algorithm proceeds as follows:

(i) it starts with a random choice of an initial set of posterior probabilities h(r|x).

(ii) than it uses ¥̂r =
Pn

k=1 h(r|xk)/n for {r = 0, ...R°1} and º̂ir =
Pn

k=1 h(r|xh)/n¥̂r

for {i = 1, 2, ..., p}, where h(r|xk) is the posterior probability to be in class r for

an individual with xk, to obtain a first approximation to {¥̂r} and {º̂ir},

(iii) the estimates obtained are substituted into the expression 2.1.2 to obtain improved

estimates of h(r|xh),

(iv) then the routine returns to compute a second approximation for the parameters

{¥̂r} and {º̂ir}; and it continues the cycle until convergence is attained.
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It is useful, as mentioned before, to use diÆerent starting values to guard against the

risk of taking a local for a global maximum. In multinomial mixture global maxima of

the likelihood may exist and this is not only the case for maximum likelihood estimation

but also for other methods. If a local maximum has been achieved the problem is to

establish it as the unique or global one (see e.g. McCutcheton, 2002). This can be

done using diÆerent sets of starting values; if they result in diÆerent local maxima,

then the likelihood is multimodal and one can choose the best maximum as the global

one. It seems that, as the number of classes increases, the likelihood threatens to

be multimodal (e.g Kollmann and Formann, 1997) and the risk of multiple maxima

decreases with increasing sample size. Aitkin et al. (1981) provided an illustration of

multiple maxima arising with only three latent classes.

The algorithm does not provide the second derivatives needed for the calculation

of standard errors of the latent class proportions or conditional probabilities, which

can be used to construct confidence intervals that give some sense of the stability of

the parameter estimates and to construct various tests of significance. A direct way of

obtain standard errors from the EM algorithm has been proposed by Lang (1992) when

the latent class model is parameterized in terms of a log-linear model. The estimated

standard errors are generally evaluated asymptotically. The second derivatives and

cross derivatives of L can be expressed in terms of the posterior distributions and

the asymptotic variance-covariance matrix of the estimates is than the inverse of the

expectation of the matrix of the negatives of such derivatives. Thus if we have a set of

parameters µ then

cov(µ̂)°1 = E

∑

°

@2L

@µi@µj

∏

µ=µ̂

.

With large n the expectation can be approximated by taking the inverse of the observed

second derivative matrix. For the unrestricted latent class analysis, applied to binary

data, it has been shown (De Menezes, 1999) that the asymptotic standard errors may

poorly approximate the true values when sample sizes are not su±ciently large or there

are problems of sparse data. It has been suggested also that one should compare

the asymptotic standard errors with standard error estimates obtained using empirical

methods such as the jackknife and the parametric bootstrap (Efron and Gong, 1983).

The jackknife is a resampling method that is based on the notion of omitting one

observation at a time and then recomputing the statistic of interest (Dayton, 1998).

Assume that for a sample of N observations, the computed value of the statistics of

interest based on the total sample is W and that if the ith case is omitted, the compute

value of the statistic based on the remaining N ° 1 cases is Wi, where i = 1, ..., N now

refer to a case and not to a to a manifest variable. Than the jackknife estimates for
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the sampling variance of W is N
PN

i=1(Wi °W )2/(N ° 1) and the square root of this

quantity is the estimated standard error for W .

The parametric bootstrap involves conducting a simulation study in which the sam-

ple values of the latent class proportions and conditional probabilities are treated as

if they were population values. Random samples of size N are generating using these

population values, the statistic of interest is computed from the samples, and the stan-

dard deviation of the empirical distribution is used to estimate the standard error of the

statistic. For this reason, many common latent class software programs, such as LA-

TENT GOLD (Vermuth and Magidson, 2000), have a facility for estimating standard

errors by a parametric bootstrap method.

Several latent class model evaluation procedures have become standard. These

techniques rely on a comparison between the expected frequency count given by the

estimated latent class model parameters and the cell frequency count found in the sam-

ple data. When such frequencies are too far from each other, the model is implausible.

Models with many latent classes usually provide expected cell frequencies closer to the

observed cell frequencies. The task is to find the most parsimonious model that has an

acceptable fit to the observed data. To have such an evaluation four criteria are used,

two of which are the Pearson chi-square statistics ¬2 and the log-likelihood ratio test

G2. If n is large compared to 2p the expected frequency for each response pattern is

likely to be large enough to carry out a valid asymptotic chi-squared ¬2 or log-likelihood

ratio G2 test to compare the observed and expected frequencies. The calculation of the

degrees of freedom for a model with R classes is df = 2p
°R(p + 1) + 1.

One problem of the chi-square statistics is that there is some di±culty in rejecting

the significance of even quite modest parameters when the sample size is large (see, e.g.

McCutcheon 2002). Second latent class models can require the estimation of a rather

large number of parameters even for models of modest size.

The other two criteria, are known as information criteria based on concepts de-

rived from information theory, are the AIC (Akaike, 1973) and the BIC (Schwarz 1978,

RaÆtery, 1995). They penalized the likelihood for the increased number of parameters

required to estimate more complex models. There are two equivalent ways to imple-

ment the AIC and the BIC for a set of competing latent class models. As originally

proposed by Akaike, the AIC is based on the log-likelihood for the data based on, say,

h diÆerent models begin compared

AIC = °2 log L + 2npar,

where npar is the number of independent parameters that are estimated when fitting
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the model to the data. The BIC based on the log-likelihood is the following

BIC = °2 log L + (log N)npar,

where N is the sample size. A simple approach is based on likelihood-ratio chi square

statistics: the AIC is given by AIC = G2
° 2df and the BIC is BIC = G2

° df [log(N)]

where df is the degrees of freedom. Consequently the AIC penalizes the G2 by the

total number of parameters required for the model estimation and the BIC by the

total number of parameters required to fit the model and by the total sample size.

Consequently, models with lower AICs and BICs are judged to be more appropriate

than those with higher values of these criteria. A criticism of the AIC is that it lacks

property of asymptotic consistency because it does not directly involves the sample

size N . Results on empirical investigations of the AIC and BIC (Lin and Dayton,

1997) suggest that, in the context of latent class models, researchers might prefer the

AIC unless the sample contains several thousand cases or the models begin estimated

are based on relatively few parameter, in which the BIC is preferable. Often the two

measures select the same or very similar models.

Other statistics are known as classification statistics (Vermunt and Magidson, 2000),

they contain information on how well we can predict to which latent class cases belong

given they observed values, in other words how well latent classes are separated. The

estimated proportion of classification error for each latent class may be computed as

follows

Er =
R

X

r=1

nr

N

£

1°max(º(r|xv))
§

;

where nr are the frequencies of the response vector xv, N is the total number of

individuals on the sample and º(r|xv) is the posterior probability for the model latent

class for response vector xv. It should be noted that the success of the misclassification

for an actual data set tends to be optimistic, because both parameter estimation and

classification are based on the same data. Other types of classification errors may be

computed (see e.g. Vermunt and Magidson, 2000 p.25).

The Average Weight of Evidence (AWE) criterion adds a third dimension to the

information criteria described above. It weights fit, parsimony, and the performance

of the classification (Banfield and Raftery, 1993). This measure uses the so-called

classification log-likelihood. Which is equivalent to the complete data log-likelihood Lc

and it can be defined as

AWE = °2Lc + 2
≥3

2
+ log N

¥

npar.

The lower AWE, the better a model. Celeux (1997) described various indices that

combine information on model fit and information on classification errors.
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Some problems for model selection arise for “sparse“ data, see for example Collins

et al., 1993 and, in a more general context Langeheine et al., 1996. In such cases the

parametric bootstrap (Efron, 1982) has become a standard method for model selection

in latent class analysis which is used to determine the empirical distribution of the ¬2

test statistic using Monte Carlo sampling (Noreen, 1989). This method requires the

fitting of the desired model in the usual way and the generating of a random sample

from the population in which the parameter values are set equal to those estimated for

the actual sample and then the fitting of the model in each case and the computing of

the chosen test of goodness of fit. Then it needs to compare the actual value of the

statistic with the bootstrap sampling distribution. The number of bootstrap samples

needs to be large enough to give a reasonable estimate of the sampling distribution but

the time needed to do the calculations will increase proportionally.

2.2 Dynamic Latent Class Model

Static latent variables as those in the classic latent class models are not expected to

change over time, or else the change is not of interest in a particular study. In con-

trast, dynamic latent variables do change in systematic and important ways over time.

The same variable may be thought as static in one context and dynamic in another,

depending of the objectives and interests of a particular research. Empirical study of

developmental processes, for example, requires the availability of pertinent statistical

methods that capture the dynamics underlying age-related changes. Changes in crim-

inal behaviour, in drug use, age-related decline in cognitive ability are examples of a

dynamic latent variables.

In longitudinal or panel data, which aries when a sample of units provide responses

on multiple occasions, an important feature is that observations at diÆerent occasions

are clustered in units and influenced by the same shared unit-specific unobserved hetero-

geneity as well as an unobserved time-varying influence that induces greater dependence

between responses occurring closer together in time.

An approach is obtained by means of latent Markov model proposed originally by

Wiggins (1955) and then referred as Markov chain models by Lazersfeld and Henry

(1968, Chap.9) in the analysis of panel data where few repeated observations (typically

three to five) are made on the same people. They have been employed to evaluate

theories of development (Langeheine 1994, Langeheine and van de Pol 2002).

An alternative formulation, almost identical, to the latent Markov model has been

proposed recently under name the latent transition analysis (LTA; Hansen 1991, Collins

and Wugalter, 1992). It is a latent class theory approach to measuring stage sequential
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dynamic latent variables. As pointed out by Collins and Flaherty (2002), this model is

limited to small number of variables and to few stages.

In the time series analysis the application such models are referred as hidden Markov

model (MacDonald and Zucchini, 1997). It is increasingly begin adopted in applications

since it provides a convenient way of formulating an extension of a mixture model to

allow for dependent data.

The term Markov chain refers to the discrete variables measured repeatedly over

time with the same sample of subjects and that the dynamics across time are modelled

by assuming a discrete time process in order to make statements about change or

stability or both.

In the following the notation and terminology of the Markov chain is introduced

which is mainly borrowed from Bilmes (2002). First we describe a discrete time Markov

chain model with observed variables; we do so in some detail because of the close links

to the hidden Markov Model. We do not discuss the statistical questions relating the

model selection, the properties of maximum likelihood estimators and the question of

testing for goodness of fit which are di±cult problems in such context and need further

study.

A discrete time stochastic process is a collection Xt for t = 1, ..., T of random

variables ordered by the discrete time index t.

Definition 2.1. Stationary Stochastic Process

The stochastic process {Xt : t ∏ 1} is said to be stationary if the two collection of

random variables

{Xt1, Xt2, ..., Xtn}

and

{Xt1+h, Xt2+h, ..., Xtn+h}

have the same joint probability distributions for all n and h.

Stationarity is equivalent to the condition that

P (Xt1 = x1, Xt2 = x2, ..., Xtn = xn)

= P (Xt1+h = x1, Xt2+h = x2, ..., Xtn+h = xn),

for all t1, t2, ..., tn for all n > 0 for all h > 0, for all xi.

A collection of discrete-valued random variables {Qt} forms an nth-order Markov chain

if

P (Qt = qt|Qt°1 = qt°1, Qt°2 = qt°2, ..., Q1 = q1)

= P (Qt = qt|Qt°1 = qt°1, Qt°2 = qt°2, ..., Qt°n = qt°n)
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for all t ∏ 1, and all q1, q2, ..., qt. In other words, given the previous n random variables,

the current variables is conditionally independent of every variables earlier than the

previous n. A first order Markov chain can be seen as a directed acyclic graphical

Markov model as described in Section 1.1.2.

One often views the event {Qt = i} as if the chain is “in state i at time t” and the

event {Qt = iQt+1 = j} as a transition form state i to state j starting at time t.

A Markov chain or process is a sequence of events, usually called states. It is a

stochastic process, in which it is assumed that future states are not influenced by all

the past states: given the present the future is independent of the past.

The statistical evolution of a Markov chain is determined by the state transition

probabilities fij(t) = P (Qt = j|Qt°1 = i) of an occurrence at time point t given the

occurrence at time point t°1. In some cases it can be assumed that the transition prob-

abilities are time invariant. Such a time independent chain is called time-homogeneous

because fij(t) = fij for all t. The transition probabilities in an homogeneous Markov

chain are determined by a time independent stochastic transition matrix A = {ai,j}.

The rows of A form potentially diÆerent probability mass functions over the states of

the chain; the special case of time t = 1 is described by the initial state distribution

º = p(Q1 = i). For this reason A is also called a stochastic transition matrix. The sta-

tionarity condition of a Markov chain depends on if the Markov chain transition matrix

admits a stationary distribution or not, and if it does the current marginal distribution

over the states is one of those stationary distributions.

If Qt is a time-homogeneous stationary Markov chain then

P (Qt1 = q1, Qt2 = q2, ...., Qtn = qn) = P (Qt1+h
= q1, Qt2+h

= q2, ..., Qtn+h
= qn)

for all ti, h, n and qi.

Using the first order Markov chain, the above can be written as

P (Qtn = qn|Qtn°1 = qn°1)P (Qtn°1 = qn°1|Qtn°2 = qn°2)...

P (Qt2 = q2|Qt1 = q1)P (Qt1 = q1).

As it can be seen the time-homogeneous property of a Markov chain is distinct from

the stationarity property. Stationarity, however does implies time-homogeneity. An

homogeneous Markov chain is stationary only when P (Qt1 = q) = P (Qt1+h = q) =

P (Qt = q) for all q 2 Q. Futher details can be found in Guttorp (1995, Chapter 2) and

Kao (1997). The sequence of states Q = {q1, ..., qk} can be observed only through the

stochastic processes defined into each state.

Following Bilmes (2002) we provide a formal definition of the Hidden Markov Models
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Definition 2.2. A hidden Markov model is a collection of random variables consisting

of a set of T discrete scalar variables Q1:T and a set of other variables X1:T which may

be either discrete or continuous (and either scalar or vector valued). These variables,

collectively, possess the following conditional independence properties

{Q1:T , X1:T}?? {Q1:t°2, X1:t°1}|Qt°1 (2.2.1)

and

Xt ?? {Q¬t, X¬t}|Qt (2.2.2)

where X¬t = (X1:T |Xt) = {X1, X2, ..., Xt°1, Xt+1, Xt+2, ..., XT} for each t 2 1 : T .

Equations (2.2.1) and (2.2.2) imply a large assortment of conditional independence

statements. Equation (2.2.1) states that the future is conditionally independent of the

past given the present. One implication is that Qt ?? Q1:t°2|Qt°1 which means that

the variables form a discrete time, discrete-valued, first-order Markov chain. Another

implication of Equation (2.2.2) is Qt ?? {Q1:t°2, X1:t°1}|Qt°1 which means that Xø is

unable, given Qt°1, to aÆect Qt for ø < t. This does not imply, given Qt°1, that Qt is

unaÆected by future variables. In fact the distribution of Qt could change, even given

Qt°1, when the variables Xø or Qø+1 change, for ø > t.

The Equation (2.2.2) states that given an assignment to Qt, the distribution of

Xt is independent of every other variable, both in the future and in the past in the

hidden Markov model. One implication is that Xt ?? Xt°1|{Qt, Qt°1} which follows

since Xt ?? {Xt+1, Qt+1}|Qt and Xt ??Xt+1|Qt+1.

The two above conditional independence properties imply that, for a given T , the

join distribution over all the variables may be expanded as follows

p(x, q) = p(xT , qT |x1:T°1, q1:T°1)p(x1:T°1, q1:T°1)

= p(xT |qT , x1:T , q1:T°1)p(qT |x1:T°1, q1:T°1)p(x1:T°1, q1:T°1)

= p(xT |qT )p(q|qT°1)p(x1:T°1, q1:T°1)

= ...

= p(q1)
T

Y

t=2

p(qt|qt°1)
T

Y

t=1

p(xt|qt).

The first and the second row of the equation follow from the chain rule of probability.

The third row is obtained since XT ?? {X1:T°1, Q1:T°1|QT} and QT ?? {X1:T°1, Q1:T°2}

which follow from Definition 2.2.

A parametrization of an hidden Markov model requires: the distribution over the

initial chain variable p(q1), the conditional transition distributions for the first-order
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Figure 2.2: A Hidden Markov Model

Markov chain p(qt|qt°1) and the conditional distribution for the other variables p(xt|qt).

In the classic definition of hidden Markov model the initial distribution is labelled

º which is a vector of length of the cardinality of the state space; p(Q1 = i) = ºi

where ºi is the ith element of º. The observation probability distributions are notated

as bj(x) = p(Xt|Qt = j) and the associated parameters depend on bj(x)’s family of

distributions, when the observations are discrete the distributions are mass functions.

Also the Markov chain is typically assumed to be time-homogeneous, with stochastic

matrix A where Aij = p(Qt = j|Qt°1 = i) for all t. In the Markov chain Q1:T is typically

hidden, which naturally results in the name hidden Markov model. The variables X1:T

are typically observed.

The collection of observed values x1:t have presumably been produced according

to some specific but unknown assignment to the hidden variables. To compute the

probability p(x1:T ) one must therefore marginalize away all possible assignments to

Q1:T as follows

p(x1:T ) =
X

q1:T

p(x1:T , q1:T ) =
X

q1:T

p(q1)
T

Y

t=2

p(qt|qt°1)
T

Y

t=1

p(xt|qt).

An hidden Markov model may be graphically depicted as one instance of a DAG

model as displayed in Figure 2.2. Using any of the equivalent schemas such as the

directed local Markov properties, the conditional independence properties implied by

Figure 2.2 are identical to those expresses in Definition 2.2. For example the variable

Xt does not depend of any of Xt’s non descendants {Q¬t,X¬t} given Xt’s parents Qt.

2.2.1 Estimation

For the maximum likelihood estimation of the model the EM-type algorithm is usually

applied (Dempster et al., 1977). One is interested in computing p(x1:T ) for a given

set of independent and identically distributed observations according to a multinomial
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distribution. The joint distribution can be expressed as

p(x1:T ) =
X

qt°1

p(xt|qt)p(qt|qt°1)p(x1:t, qt°1).

The EM algorithm is commonly used for finding the maximum-likelihood estimate of

the parameters of a HMM given the set of observed vectors. This algorithm is also

known in the HMM literature as a re-estimation procedure (Baum and Petrie, 1966;

Baum et al. 1970). The likelihood is constructed from tree ingredients: the initial

distribution at the first state of the chain; the time dependent transition probabilities

and the conditional densities ¡(xt|qt).

The inference calculation involves calculating the probabilities of the hidden states

Qt given the time series of Xt. Baums’s forward algorithm is based on recursively

evaluating the joint probabilities using the alpha and beta-recursions.

The alpha or forward recursion is based on recursively evaluating the joint proba-

bilities

Æq(t) = p(x1:T , Qt = q)

which is the probability of seeing the partial sequence x1:T and ending up in state q

at time t. To derive this recursion it was necessary to use only the fact that Xt was

independent of its past given Qt.

The backward procedure (or beta recursion) recursively evaluates the conditional

probabilities

Øq(t) = p(xt+1:T |Qt = q)

which is the probability of ending partial sequence xt+1:T given that we started at state

Qt = q at time t. The E step requires the calculations of the conditional expectation

complete-data log-likelihood, where the posterior probabilities can be expressed in terms

of the alpha and beta recursions (see e.g. MacLachlan and Peel, 2000). The M-step

consists in finding the updated estimates of the parameters from the function at the E

step. They are a combination of the maximum likelihood estimates for the multinomial

parameters and Markov chain transition probabilities.

2.3 Bibliographical Note

The use of latent class models as a tool to help researchers gain a deeper understanding

of the observed relationships among the observed dichotomous (or polytomous) vari-

ables has the same short history as the path analysis models in the twentieth century,

but it might be worthwhile to note that some mathematical models that were used
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earlier in some nineteenth-century models as the work of Peirce (1884) can be viewed

as special case of latent class models. The main development of latent class models has

taken place during the last half of the twentieth-century: it was developed by Lazarsfeld

(1950) and by Lazarsfeld and Henry (1968). Goodman (1974a,1974b) and Haberman

(1974, 1976, 1979) were the first to formulate maximum likelihood estimation proce-

dures that could be used in the field of latent class analysis. During the 1950s and

1960s, there were essentially five diÆerent methods that were proposed for estimating

the parameters in the latent class model (for a review see Goodman, 2002). During the

past two decades great progress has been made regarding the estimation and testing of

latent class models.

Heberman (1974) showed the connections between latent class models and log-linear

models for frequency table with missing cell counts. Bartholomew (1987) classifies both

the latent and the manifest variables as metrical or categorical and he uses the phrase:

latent structure analysis for all models that use categorical latent variables, regard-

less of the nature of the manifest variables. Test theory models, such as psychological

measurement models, known as item response theory (IRT), become popular also un-

der the heading latent trait models where it is assumed a continuous latent variable

(e.g. ability) and functional relationships are used to model the dependence of discrete

random variables (e.g. responses to achievement test items). Latent class and latent

trait models treat the manifest indicators as discrete variables, although they can be

measured at every measurement level, whereas latent class treat the latent variables as

discrete. For a detailed discussion see Heinen (1996).

As previously noted the latent class model assumes that the population consists of

T mutually exclusive and exhaustive homogeneous subgroups or latent classes. Each

individual belongs to only one latent class. Who belongs to the same latent class

has equal probabilities for responding to the item in certain categories. In this sense,

latent class model is a finite-mixture model (Titterington et al., 1985; McLachlan and

Basford, 1988) because the total population is a mixture of finite number of latent

classes that diÆer not only with respect to the conditional response probabilities but

also with respect to their relative sizes. During the past decade it has also become clear

that particular developments in econometrics, biometrics, and mathematical statistics

concerning finite mixture models are identical or at least have very close ties to latent

class modelling, thus it enhances the potentialities of latent class analysis.

When the categorical latent variables are regarded as nominal level variables, whose

categories are not ordered, there is a close connection between the concepts of “clus-

ters” and “latent classes”. Latent class cluster analysis is essentially a variant of what

Gibson and Lazarsfeld in the 1950s called latent profile analysis, in which the underly-
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ing variable is treated as nominal level latent variable, but the observed variables (the

indicators) are treated as continuous. Wolfe (1970) was the first who made an explicit

connection between latent class and cluster analysis. An important diÆerence between

standard cluster analysis techniques and latent class clustering is that the latter is a

model-based clustering approach (see e.g. Vermuth and Magidson, 2000). In such cases

the goal is to identify distinct diÆerent pattern and classifying respondent into groups.

This means that a statistical model is postulated for the population from which the

sample under study is coming. Thus it is assumed that the data is generated by a mix-

ture of underlying probability distributions (see e.g MacLachlan and Basford, 1988).

One advantage of model based clustering is that it provides a precise framework for

assessing the resulting partitions of the data and especially for choosing the relevant

number of clusters (see e.g. Biernacki et al. 1998).

As Clogg (1988) noted, many applications in latent class analysis also aim at more

explanatory data reduction. In many examples of social research, in fact, so many

diÆerent variables are measured that it becomes necessary to compress these data into

a smaller set of variables (e.g.; see Aitkin et al. 1981, Formann, 1985).

A proposed model called latent transition analysis (LTA; Graham et al., Hansen,

1991; Collins and Wugalter, 1992) consists of appropriate dependence sequences of

discrete random variables. It is a latent class theory approach to measuring stage se-

quential dynamic latent variable and estimating and testing models for stage sequential

development.

Alternative formulation of the latent class model for longitudinal categorical data

can be found in e.g. Langeheine and van de Pol (2002).

For general hidden Markov models, Lindgren (1978) constructed consistent and

asymptotically normally estimator of the component distributions, but he did not con-

sider estimation of the transition probabilities. Leroux establish the consistency of the

maximum likelihood estimation for general hidden Markov models under mild condi-

tions, while local asymptotic normality was proven by Bickel ad Ritov (1996). Recently,

Bickel et al. (1998) showed that under mild conditions the MLE is asymptotically nor-

mal and that the observed information matrix is a consistent estimator of the expected

information. The relation between hidden Markov models and graphical models has

been reviewed also by Smyth et al. (1997).

The hidden Markov model is finding widespread in engineering applications, for

example as the acoustic model in speech processing see Levinson, Rabiner and Sondhi

(1983), in econometrics (Hamilton, 1989; Chib, 1996), biology (Albert, 1991), finance

(Ryden et al. 1998).
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Chapter 3

Fitting DAG models with one

hidden variable

Abstract: We discuss directed acyclic graph (DAG) models to represent the indepen-

dence structure of linear Gaussian systems with continuous variables: such models can

be interpreted as a set of recursive univariate regressions. Then we consider Gaussian

models in which one of the variables is not observed and we show how the incomplete

log-likelihood of the observed data can be maximized using the EM. As the EM algo-

rithm does not provide the matrix of the second derivatives we show how to get an

explicit formula for the observed information matrix. We illustrate the utility of the

models with some examples.

Keywords: Conditional independence graph models; linear systems, directed acyclic

graph models, latent variable; identifiability; EM algorithm; standard errors.

3.1 Introduction

The analysis of multivariate data typically deals with complex association structures

due to various direct and indirect relations among variables. The idea of graphical

Markov models introduced first by Dempster (1972) is to represent the independence

structure of a multivariate random vector by a graph where the vertices correspond

to variables and the absence of an edge between vertices stands for conditional or

marginal independencies. In many applications some dependency structure between

1Portions of this work were presented in November 2003 at the gR workshop in Aalborg (DK) by G.
Marchetti, F. Pennoni and E. Stanghellini; at the Methodology and Statistics Conference in Ljubljana
by F. Pennoni. This research was partially supported by MURST (grant PRIN 2002).
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observed variables can be explained by supposing that their distribution arises after

marginalizing over, and or conditioning on latent variables.

Such models are particularly of interest in the context in which one variable is not

observed and some knowledge about the generating process of the data is available

as for example for data collected in the social sciences. In such context appropriate

estimation procedures have to be found to estimate the parameters of interest. We

focus on maximum likelihood estimation of DAG models with one latent variable which

can act as an intermediate, source or collision node. The estimation requires iterative

solutions and thus appropriate algorithms.

The outline of the chapter is as follows. In the first section we interpret a DAG

for a Gaussian system as a set of recursive univariate regressions and we give some

matrix notation. In Section 3.3 we show the observed data log-likelihood and briefly we

discuss some identifiability problems. We also illustrate the steps of the EM algorithm

for maximum likelihood estimation. Following Kiiveri (1987) we report the explicit

form for the second derivatives of observed log-likelihood and in the Appendix A we

show how to derive it. In Section 3.4 we give some examples of identifiable DAG’s

with one hidden variable using real data sets. Computations are carried out in R with

the package ggm (Marchetti and Drton, 2003). In the Appendix B the R routines are

reported for adding to the ggm library the estimated standard errors for the parameter

of DAG model with one latent variable.

3.2 Gaussian directed acyclic graph models

Suppose X = (X1, X2, ..., Xk) is a finite set of substantive variables of interest ordered

in certain way, such that there exist a subset of indices pa(i) µ {i+1, ..., k}, i = 1, ..., k,

some independent random variables ≤1, ≤2, ..., ≤k and linear functions f1, f2, ..., fk such

that

Xi = fi(Xpa(i), ≤i), i = 1, ..., k [Xpa(i) ¥ {Xj : j 2 pa(i)}].

The set of equations Xi = fi(Xpa(i), ≤i) prescribes a stepwise process for generating the

distribution where a proper dependence of Xi is to be only on its potentially explanatory

variables. The system is called recursive or a univariate recursive regression system or

a triangular system.

This system can be represented by a directed acyclic graph (DAG) denoted by

G = (V, E) which consists of non empty finite set of vertices V ¥ {1, ..., k} representing

X = (X1, X2, ..., Xk) and a set E µ V £ V of arrows i √ j 2 E iÆ j 2 pa(i) such

that there are no direct path that start and end at the same variable. The multivariate
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distribution of Xv is called G °Markovian if it fulfils the so called pairwise Markov

property

Xa ??Xc|Xc for all (a, b) /2 E, a 6= b.

For Gaussian distribution this is equivalent to the global Markov property as illustrated

in Chapter 1 (Lauritzen and Wermuth, 1989). An important property of a distribution

satisfying the global directed Markov property associated with a DAG is that its joint

density can be decomposed into conditional probabilities involving only variables and

their parents according to the structure of the graph in the following way

p(x1, ..., xk) =
k

Y

i=1

p(xi|xpa(i)).

Assuming that X is a vector of k mean centered random variables with Gaussian

joint distribution with covariance matrix ß, the recursive system can be written as

AX = ≤ cov(≤) = ¢ (3.2.1)

where A = {°ars} is upper triangular matrix with ones along the diagonals and with oÆ-

diagonal elements corresponding to partial regression coe±cients between two variables

given the parents, °ars = Ørs.pa(r)\s associated with a directed edge between Xs √ Xr;

¢ = cov(≤) is a nonsingular diagonal covariance matrix of the residuals with elements

of partial variances ±rr = ærr.pa(r) along the diagonal, representing the unexplained

proportion of the variance of the dependent variable.

The arguments we are dealing with apply also to the very much broader family of

problems that are called quasi linear (Cox and Wermuth, 1996). It means that any

dependence present has a linear component and like linear least square regression equa-

tions in a multivariate normal framework, any curvature and higher-order interactions

present are such that a vanishing linear least-squares regression coe±cient implies that

no dependence of substantive importance is present.

A triangular decomposition of the covariance matrix ß and of the concentration

matrix ß°1 is given by

cov(X) = ß = (A°1)¢(A°1)0, ß°1 = A0¢°1A.

Here we consider the estimation of the unknown parameter ß or equivalently (A, ¢)

of a directed graphical Gaussian model based on an n independent and identically

distributed observations X(k) = (X1, ..., Xk) from X, with zero average constructed

from the series of deviates from the mean.
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Since our model assumes a zero mean, the empirical covariance matrix is definite to

be

S =
X

i

X iX i0/n i = 1, ..., k.

We assume n > p such that S is positive definite with probability one. Note that

the case where the model also includes an unknown mean vector µ can be treated by

estimating µ by the empirical mean vector X̄.

The density function of X can be expressed as

f(x) = (2º)np/2
|ß|°n/2exp{°

n

2
tr(ß°1)S},

see e.g. Edwards (2000). Considered as a function of the unknown parameters for fixed

data x it gives the likelihood function. The log-likelihood of the model, apart from an

additive constant

lX(ß) =
n

2
[log |ß°1

|° tr(ß°1S)], (3.2.2)

has to be maximized respect to ß.

It can be shown that

ârs = °Ø̂rs.pa(r)\s ±̂ = æ̂rr.pa(r)

are the maximum likelihood estimates of A and ¢ defined by linear regression estimates

in the independent equations.

3.3 Unobserved variable: maximum likelihood esti-

mation

Supposing that we observe only a subset Y p = (Y 1, ..., Y p) of the variables. The

complete data can be seen as X = (Y, Z) where Y denotes the observed components of

X and Z denotes the unobserved component. When this is the case the corresponding

DAG contains an hidden node.

The relevant log-likelihood function based on the observed components can be writ-

ten as follows

lY (ß) =
n

2
[log |ß°1

yy |° tr(ß°1
yy Syy)], (3.3.1)

where ßyy denotes the submatrix referring to Y of the conformably partitioned covari-

ance matrix of X, and Syy is the observed covariance matrix.
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The problem of what can be learned from the distribution of the observed variables

about the joint distribution specified by the DAG involves identifiability conditions. If

A and ¢ can be uniquely reconstructed from the covariance matrix of the observed

variables the system is said to be globally identified. As illustrated in Section 1.6

Stanghellini and Wermuth (2003) give two su±cient conditions based on properties of

the graph for identifiability of DAG Gaussian models with one hidden node. If the

sample covariance matrix is positive definite and the DAG considered satisfy one of the

given conditions the likelihood surface is unimodal and when fitting the corresponding

model a unique global maximum can be achieved.

Maximum likelihood analysis can be conceptualized as maximum likelihood esti-

mation in a multivariate normal model with missing data (Dempster et al., 1977).

Following Kiiveri (1987) who first suggested the procedure in a discussion on Jöreskog

paper (1981), we describe the maximum likelihood method for fitting such DAGs us-

ing the EM algorithm (Dempster et al.,1977). This is an iterative algorithm and each

cycle, which consists of an E step followed by and M step, increases the likelihood of

the parameters. The E step calculates the expected su±cient statistics given the ob-

served data and the current estimate of the parameters and the M step determines the

conditional expectations of the su±cient statistics as if they were the observed. For

an application of the EM algorithm to estimate the factor analysis model see Rubin

(1982).

In the following we explicitly define the E and the M step of the algorithm and

present a simple matrix expression for carrying out the computations.

The computations required are particularly straightforward: in the E-step we must

compute Q(ß|ßr) the conditional expected value of the complete data log-likelihood to

the observed data Y and a guessed initial value of complete data covariance matrix ßr

Q(ß|ßr) = E[l(ß, |Y1, ..., Yp, ßr)].

It can be shown that

Q(ß|ßr) =
n

2
[ln |ß°1

|° tr[(ß°1)E(S|Y, ßr)]] (3.3.2)

where the expected complete data covariance matrix given Y can be written as

E(S|Y, ßr) =

√

Syy SyyB0

. BSyyB0 + (æzz)°1

!

= C(Syy|ßr) (3.3.3)

where the element of the concentration matrix ß°1 corresponding to the missing data

Z are noted æzz and where B = °(ßzz)°1ßzy = ßzyß°1
yy are the regression coe±cients

between Z and Y .
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Therefore in the M-step we maximize Q(ß|ßr) as a function of ß to produce an

improved estimate ßr+1. This maximization is carried out by fitting the linear recursive

regression equations specified by the DAG.

The generalized likelihood ratio test for directed graphical Gaussian models against

the saturated model, the deviance at convergence is

D = n[tr(Syyß̂
°1)° ln |Syyß̂

°1
|°m],

which has an asymptotic ¬2 distribution with df = [m(m + 1)/2 °m ° k] degrees

of freedom, where m is the number observed variables and k is the number of edges in

the DAG.

The EM has the advantage of numerical stability which leads to a steady increase

in the likelihood of the data. A negative feature is that it may require many iterations

to converge, it is characterized by a slow convergence rate in a neighborhood of the

optimal point. It is also sensible to the starting values and it is convenient to choose

multiple random starting values.

One major shortcoming is that the observed information matrix is not obtained as

a by-product of the algorithm, which is useful to get an estimate of the precision of the

estimated parameters to construct confidence intervals and to construct various tests

of significance.

As illustrated above the EM finds the value of µ, where µ = (µ1, ..., µh) is the vector

of the unknown parameters, µ̂ that maximizes lY (µ), that is the maximum likelihood

for µ based on the observed data Y . Following Dempster et al. (1977) the observed

log-likelihood lY (µ) can be decomposed as

lY (µ) = Q(µ|µ0)°H(µ|µ0)

which leads to a simple expression for the second derivative matrix of the observed

log-likelihood derived in terms of the criterion function invoked by the EM algorithm.

Minus the second derivative of the log-likelihood is made of two parts

°

@2lY
@µ@µ

= °
@2Q(µ|µ0)

@µ@µ
°

≥

°

@2H(µ|µ0)

@µ@µ

¥

where Q is as in (3.3.2) and H is the expected value of the conditional density of

the complete data X given the observed data Y (Tanner, 1996). Referring to °Q as

the complete information and to °H as the missing information it has the following

appealing interpretation: the observed information is equal to the complete information

minus the missing information due to the unobserved components which has been called

the “missing information principle” by Orchard and Woodbury, (1972). A basic result
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due to Louis (1982) is that if the distribution of the complete data is in a regular

exponential family °@2H/@µ@µ = V arX|Y (@lX/@µ) the second derivative of the log-

likelihood of the observed data can be expressed entirely in terms of the complete data

log-likelihood

°

@2lY
@µ@µ

= °EX|Y

h @2lX
@µ@µ

i

° V arX|Y

≥@lX
@µ

¥

(3.3.4)

the amount of information lost by observing only Y is determined by the conditional

variance of the complete data log-likelihood given Y .

It is important to emphasize that the variance-covariance obtained is based on the

first and second derivatives of the observed data log-likelihood and thus is guarantee to

be inferentially valid only asymptotically.

Kiiveri (1982) calculated an explicit form for the above expression

@2lY
@µi@µj

=
1

2
tr

≥

ßij(ß° C)° ßißßjß) +
1

2
tr(ßiCßjC ° ßiC̃ßjC̃)

¥

(3.3.5)

where C = C(Syy|ß); C̃ = [C(Syy|ß) ° H], where H =

√

0 0

0 1
æzz

!

; and ßij =

@ß°1/@µi@µj and ßi = @ß°1/@µi.

In Appendix A it is shown how to get such a result and also the explicit formulas for

the second derivatives of the observed data log-likelihood for the adopted decomposition

to ß°1.

The EM can suÆer from extremely slow convergence specially in problems with

more than one latent variable. This defect has prompted a number of suggestions

for accelerating the algorithm. A Quasi-Newton method could be used which gradually

construct an approximate Hessian from the gradient of the objective function evaluating

at successive points encountered by the algorithm avoiding in that way to evaluate the

Hessian as the Newton algorithm.

3.4 Implementation and examples

We illustrate the fitting of the models described above on same examples. The R package

ggm (Marchetti and Drton, 2003) is designed for fitting graphical Markov models to data

from Gaussian distributions. We implemented the R code to add to the existing routines

of such package to compute the standard errors for the estimated parameters. Such code

is reported in Appendix B. The package is intended as a contribution to the gR-project

described in Lauritzen (2002).
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Figure 3.1: Graphical model for Educational example

In the following we show an example session in R using ggm and than we reports

several examples from the literature.

Example 3.1 (Educational Attainment). We use the the data reported by Sewel,

Haller & Ohlendorf (1970) and Wiley (1973). Most measurements used in behavioral

and social sciences contains sizeable measurements errors which if not taken into account

can cause several bias in results. The following example illustrates the problems with

measurement errors in observed variables. The purpose was to describe how well the

observed indicators serve as measurement instruments for the latent variable. A sample

of 3500 was recorded on the following items, we shorten the variable names:

-MA Mental ability,

-SES Socioeconomic status,

-AP Academic performance,

-SO Significant others’influence,

-EA Educational aspiration.

The postulated model includes a measurement error in SO. We can fit the Graphical

gaussian model from Figure 3.1 where the Z variable is not observed. The following is

the observed correlation matrix

> edu

ma ses ap so ea

ma 1.000 0.288 0.589 0.438 0.418

ses 0.288 1.000 0.194 0.359 0.380

ap 0.589 0.194 1.000 0.473 0.459

so 0.438 0.359 0.473 1.000 0.611
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ea 0.418 0.380 0.459 0.611 1.000

We define the graphical acyclic directed graph from Figure 3.1, which is done by

defining the parents as the regression structure of each node. The resulting graph is

represented by an adjacency matrix or equivalently by their edge matrix (cf. Cox and

Wermuth, 2004) A = (aij) where aij = 1 if i °! j.

> dag <- DAG(ap ~ ma, so ~ z, ea ~ ap + z, z ~ ma + ses +ap, ses ~ ma)

> dag

ap ma so z ea ses

ap 0 0 0 1 1 0

ma 1 0 0 1 0 1

so 0 0 0 0 0 0

z 0 0 1 0 1 0

ea 0 0 0 0 0 0

ses 0 0 0 1 0 0

Routines for testing the state of identification according to the criteria presented in

Section 1.6.1 are implemented: the function “checkIdent” which requires to specify the

dag and the label of the latent variable, returns which of the conditions are satisfied. For

the example considered as the second condition is satisfied the dag is globally identified

up to the sign of the regression coe±cients of the latent variable.

> checkIdent(dag, "z")

T1.i T1.ii

FALSE TRUE

Now we are able to fit the Gaussian DAG model with Z unobserved to the data.

The function “fitDagLatent” returns ß̂ as Shat, the diagonal of ¢̂ as Dhat, Â as Ahat.

This output also includes the deviance dev, the degrees of freedom df and the number

of iterations it. The label of the latent variable needs to be specified and it is possible

to set the residual variance or the variance of the latent variable to be 1 specifying

norm=2 or norm=1 respectively. The starting value for the EM algorithm can be choose

with seed option.

> r<- fitDagLatent(dag, edu, n, latent="z", norm = 2, seed=9866)

> r

$Shat

ma ses ap so ea z

ma 1.00 0.29 0.59 0.43 0.43 -0.80
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ses 0.29 1.00 0.17 0.36 0.37 -0.67

ap 0.59 0.17 1.00 0.47 0.45 -0.88

so 0.43 0.36 0.47 1.00 0.61 -1.12

ea 0.43 0.37 0.45 0.61 1.00 -1.14

z -0.80 -0.67 -0.88 -1.12 -1.14 2.11

$Ahat

ma ses ap so ea z

ma 1.00 0.00 0.00 0 0 0.00

ses -0.29 1.00 0.00 0 0 0.00

ap -0.59 0.00 1.00 0 0 0.00

so 0.00 0.00 0.00 1 0 0.53

ea 0.00 0.00 0.03 0 1 0.56

z 0.30 0.48 0.62 0 0 1.00

$Dhat

ma ses ap so ea z

1.00 0.92 0.65 0.40 0.38 1.00

$dev

[1] 7.15

$df

[1] 2

$it

[1] 151

Using the following command a summary of the estimated parameters of Â and of

the diagonal of ¢̂ can be obtained with their standard errors, the z ° values and the

p° values as tab and tab2 respectively.

> der<-der2(dag, "z", r, edu, n)

$tab

value s.e. z p

ma->ses -0.288 0.016 -17.792 0.000

ma->ap -0.589 0.014 -43.100 0.000
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ma->z 0.303 0.021 14.155 0.000

ses->z 0.479 0.018 27.100 0.000

ap->ea 0.035 0.013 2.660 0.008

ap->z 0.617 0.021 29.468 0.000

z->so 0.532 0.007 72.602 0.000

z->ea 0.556 0.009 61.682 0.000

$tab2

value s.e. z p

ma 1.000 0.027 36.749 0

ses 0.917 0.026 35.889 0

ap 0.653 0.018 37.403 0

so 0.399 0.010 41.091 0

ea 0.378 0.009 41.127 0

z 1.000 0.036 27.486 0

Comparing the deviance and the degrees of freedom using the asymptotic distribution

of the deviance as ¬2
df a satisfying model fit is suggested. It can be seen that the residual

variance for SO is 0.399 which means that the reliability of SO is only of the sixty per

cent.

Example 3.2 (Criminological research). Let us consider an example from criminolog-

ical research described by Smith and Patterson (1984). Random samples of persons in

sixty residential neighborhoods were interviewed regarding victimization experiences,

neighborhood safety and evaluation of police performance. The sample was 1500 people

living alone. The seven variables observed were as follows:

- Y4 number of self reported prior victimizations in the last twelve months,

- Y5 respondent’s age,

- Y6 respondent sex,

- Y7 the rate of personal and property victimization per 100 households in the respon-

dent’s neighborhood.

The following variables were responses to three questions asking respondents how

likely they thought it was that they would be victims of

- Y3 vandalism during the next year

- Y2 burglary

- Y1 robbery.
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Figure 3.2: DAG for Criminological example

Response categories on these items ranged from “not at all likely’ to “very likely’.

The proposed model was that variables Y1, Y2, Y3 acted as indicators of a latent variable

named perceived risk of victimization.

Considering a linear structural equations systems represented with the DAG in

Figure 3.2, where Z is the latent variable.

We want to estimate the relevant regression coe±cients involving Z; the arrows

between Y4, Y5, Y6 and Y7 are considered as dependencies of some interest and they do

not imply causal relationship. The dag satisfies the first and the second condition of the

Theorem 1.3.1 then the model is globally identified. Fitting this model with the residual

variance of the latent variable constrained to be one we get a deviance of 43.63 on 8

degrees of freedom. It can be seen from Table 3.2 that a significant fit can be achieved by

adding a direct edge from age (Y5) to the perceived risk of robbery (Y1). The results from

the new model are similar to those of the previous model with the addition of a positive

eÆect of the respondent’s age on the robbery indicator of perceived risk as displayed in

Table 3.2. It can be seen the non significant z-statistic for the regression coe±cient of

sex at the 5% level; it appears that prior victimization (Y4) and victimization rate (Y7)

have the greatest eÆect on the latent variable. The estimated residual variances for Y1,

Table 3.1: Estimated partial residual variances for the model in example 1

± s.e z

±1.Z 0.4691 (0.0303) 15.4818

±2.Z 0.3611 (0.0132) 27.3560

±3.Z 0.4390 (0.0161) 27.2671
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Y2, Y3 and Z are shown in Table 3.1 with their standard errors and z-values. Table 3.3

Table 3.2: Estimated regression coe±cients for the model in the example 1

Arrows Estimates s.e z

Y1 √ Z 0.6805 0.0486 14.0021

Y2 √ Z 0.7350 0.0503 14.6123

Y3 √ Z 0.6887 0.0480 14.3479

Z √ Y4 0.2541 0.0303 8.3861

Z √ Y5 °0.1343 0.0305 -4.4033

Z √ Y6 °0.0168 0.0305 -0.5508

Z √ Y7 0.2474 0.0299 8.2742

Y1 √ Y5 0.1165 0.0200 5.8250

Deviance 13.76 df 7 p < 0.06

gives the observed correlation matrix (upper triangular) and the estimated correlation matrix

(lower triangular) for the last models.

Table 3.3: Observed (upper diagonal) and Estimated (lower diagonal) covariance matrix

Y1 ° 0.575 0.540 0.169 -0.014 -0.023 0.224

Y2 0.575 ° 0.598 0.240 °0.144 °0.088 0.215

Y3 0.539 0.599 ° 0.246 °0.128 °0.092 0.182

Y4 0.198 0.237 0.222 ° °0.184 °0.148 0.168

Y5 °0.014 °0.141 °0.132 °0.184 ° 0.236 °0.027

Y6 °0.048 °0.082 °0.077 °0.148 0.236 ° °0.102

Y7 0.198 0.217 0.203 0.168 °0.027 °0.102 °

Z 0.783 0.869 0.814 0.323 °0.191 °0.111 0.295 1.182

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Z

Example 3.3 (Reader reliability in essay scoring). In an experiment to establish

methods of obtaining reader reliability in essay scoring 126 examinees were given a three-

part English composition, source: Jöreskog and Sorbom (1989). Each part required the

examinee to write an essay and for each examinee, scores were obtained on the following:

-Y1 original part 1 essay
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Figure 3.3: Graphical model for reliability example

-Y2 handwritten copy of the original part 1 essay

-Y3 a carbon copy of the handwritten copy

-Y4 the original part 2 essay.

The investigator would like to know whether the four scores can be used interchangeably

or whether scores on copies Y2 and X3 are less reliable than the originals Y1 and Y4.

The graphical model is the following

The estimated model is a measurement model, it satisfies the conditions for global

identifiability. The results of the estimated parameters are given below on Table 3.4.

The deviance of the model is 2.298 with df ={2}

Table 3.4: Estimates coe±cients Ø and partial residual variances ± for reliability exam-

ple

Ø Est s.e ± Est s.e

Øy1.z 4.573 0.18 ±y1.z 4.160 0.51

Øy2.z 2.268 0.41 ±y2.z 21.04 2.66

Øy3.z 2.651 0.35 ±y3.z 15.71 1.98

Øy4.z 4.535 0.10 ±y4.z 1.3 0.16

In Table 3.4 the observed and the estimated covariances are reported. The reliability

can be tested using the measures defined in Bollen (1989, Ch.6).

Example 3.4 (Hodge and Treiman’s study (1968)).

Six variables were measured to study the relation between social status and social

participation, see also Jöreskog and Goldberger (1975):

-CH Church attendance,

-ME Membership,
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Table 3.5: Observed (upper diagonal) and Estimated (lower diagonal) covariance matrix

for reader reliability example

Y1 25.070 12.436 11.726 20.751

Y2 12.239 28.202 9.228 11.973

Y3 12.121 7.095 22.739 12.069

Y4 20.739 12.139 12.022 21.871

Y1 Y2 Y3 Y4

Figure 3.4: Graphical model for the social status example

-FR Friends seen,

-Z Social Participation,

-IN Income,

-OC Occupation,

-ED Education.

The postulated structural equation model corresponds to the graphical model in

Figure 3.4. The model is globally identified.

The estimated regression coe±cients using as constrain ±z.par(z) = 1 for the model

without the edge between Church Attendance CH and Income IN has a deviance of

12.52 with 6 degrees of freedom.

Adding a direct edge from Income IN to Church attendance CH we get the es-

timates shown in Table 3.7 with a deviance of 6.79 with 5 degrees of freedom. The

observed and the estimated correlation matrix are given in Table 3.6.
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Table 3.6: Observed (upper diagonal) and Estimated (lower diagonal) correlation matrix

CH ° 0.360 0.210 0.100 0.156 0.158

ME 0.348 ° 0.265 0.284 0.192 0.324

FR 0.208 0.286 ° 0.176 0.136 0.226

IN 0.100 0.287 0.169 ° 0.304 0.305

OC 0.129 0.211 0.124 0.304 ° 0.334

ED 0.208 0.312 0.184 0.305 0.344 °

Z 0.499 0.697 0.410 0.411 0.303 0.477 °

CH ME FR IN OC ED Z

Table 3.7: Estimated regression coe±cients for the model in the example 3.4

Arrows Estimates s.e z

CH √ IN °0.127 0.052 -2.477

Z √ IN °0.280 0.056 -5.017

IN √ OC 0.226 0.044 5.091

Z √ OC °0.106 0.058 -1.849

IN √ ED 0.227 0.044 5.104

OC √ ED 0.344 0.041 8.306

Z √ ED °0.326 0.058 -5.571

CH √ Z °0.551 0.086 -6.369

ME √ Z °0.692 0.077 -9.031

FR √ Z °0.420 0.062 -6.593

3.5 Appendix A: Proof of (3.3.5)

To simplify the notation we write lX for lX(ß)/n and lY for lY (ß)/n.

The first and the second derivatives of (3.3.2) when ß is a function of a vector of

parameters µ are
@lX
@µ

=
1

2
tr(ßi(ß° S))

@2lX
@µi@µj

= °
1

2
tr(ßij(ß° S)° ßißßjß)

where ßi = @ß°1/@µi and ßij = @ß°1/@µi@µj. For the parametrization considered
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ß°1 = A0¢°1A the explicit derivatives have the form

@lX
@Aji

= [(ß° S)A¢°1]ji;
@lX
@¢ii

=
1

2
[A(ß° S)A0]ii;

@2lX
@Aji@Aml

= °(AljAim + Sli¢
°1
mj);

@2lX
@¢ii@¢ll

= °
1

4
(¢il¢il + ¢il¢il)

where Aji denotes the (j, i)th element of A°1 and ¢il is the (i, l)th element of ¢°1.

To get the derivatives of the incomplete log-likelihood lY as in (3.3.1) Dempster et

al. (1977) showed that
@lY
@µ

= EX|Y

≥@lX
@µ

¥

the observed score is equal to the expected score of the complete data log-likelihood

conditioned on the observed data. This expression becomes

@lY
@µi

=
1

2
tr

≥

ßi(ß° C)
¥

where C = C(Syy|ß) is defined in (3.3.3). The first part of the right hand side of (3.3.4)

is minus the conditional expected value of second derivative of (3.3.2)

°EX|Y

h @2lX
@µi@µj

i

= °
1

2
tr(ßij(ß° C)° ßißßjß).

The second part of the right hand side of (3.3.4) can be written

°V arX|Y

≥@lX
@µ

,
@lX
@µ0

¥

= °EX|Y

nh@lX
@µ

° EX|Y

≥@lX
@µ

¥ih@lX
@µ

° EX|Y

≥@lX
@µ

¥i0o
=

= °EX|Y

n1

2
tr

h

(ßi(C ° S))(ßi(C ° S))0
io

= °
1

2
tr

≥

ßiCßjC ° ßiC̃ßjC̃
¥

.

So (3.3.4) is established. In the parameterizations (A, ¢) we get the second derivatives

@2lY
@Aji@Aml

= °(AljAim + Cli¢
°1
mj) + Cli[¢

°1A0CA¢°1]mj+

+[CA¢°1]mi[¢
°1A0C]lj ° C̃li[¢

°1A0C̃A¢°1]mj ° [C̃A¢°1]mi[¢
°1A0C̃]lj

And the derivatives respect to ¢°1

@2lY
@¢ii@¢ll

= °
1

4

≥

¢il¢il + ¢il¢il
¥

+
1

4

n

[A0CA]il[A
0CA]il

+[A0CA]il[A
0CA]il ° [A0C̃A]il[A

0C̃A]il ° [A0C̃A]il[A
0C̃A]il

o

.
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3.6 Appendix B

R code to computed the inverse variance and covariance matrix of the complete data

log-likelihood.

der2 <- function(amat, latent, fit, Syy, n)

{

cmqi <- function (Syy, Sigma, z)

{

## Computes the matrix C(M | Q) by Kiiveri (1987), Psychometrika.

## It is a slight generalization in which Z is not the last element.

## z is a Boolean vector indicating the position

## of the latent variable in X.

y <- ! z

Q <- solve(Sigma)

Qzz <- Q[z,z]

Qzy <- Q[z,y]

B <- - solve(Qzz) %*% Qzy

BSyy <- B %*% Syy

E <- Sigma*0

E[y,y] <- Syy

E[y,z] <- t(BSyy)

E[z,y] <- BSyy

E[z,z] <- BSyy %*% t(B) + solve(Qzz)

dimnames(E) <- dimnames(Sigma)

E

}

A<-(fit$Ahat)

## the functions take the output returned by fitDagLatent

Shat <- (fit$Shat)

Khat <- solve(Shat)

Dhat <- (fit$Dhat)

Delta <- diag(fit$Dhat)

d1<-solve(Delta)

dimnames(d1) <- dimnames(A)

AA <- solve(A)

nod <- rownames(amat)
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nam <- rownames(Syy)

sek <- intersect(nam, nod)

sek <- c(sek, latent)

amat <- amat[sek,sek, drop=FALSE]

nod<-rownames(amat)

wherez <- is.element(nod, latent)

QQ <-cmqi(Syy, Shat, wherez)

q <- ncol(A)

H <- matrix(0, q ,q)

H[wherez,wherez] <- 1/(Khat[wherez,wherez])

Qtil <- QQ-H

Stil <- Shat-H

e <- d1%*%t(A)%*%QQ%*%A%*%d1

f <- QQ%*%A%*%d1

g <- t(f)

nn <- d1%*%t(A)%*%Qtil%*%A%*%d1

vv <- Qtil%*%A%*%d1

va <- t(vv)

ij <- matrix(nod[allEdges(amat)], ncol=2)

## Names of vertices of the edges

ij[, 2:1]

## The order of the indices in S is reversed wrt amat

p <- nrow(ij)

k <- c()

#print(ij)

for(u in 1:p)

{

for(v in 1:p)

{

i <- ij[u,1]; j <- ij[u,2]

l <- ij[v,1]; m <- ij[v,2]

new <- AA[l,j]*AA[i,m]- QQ[l,i]*d1[m,j] + QQ[l,i]*e[m,j]

+ f[m,i]*g[l,j] - Qtil[l,i]*nn[m,j] - vv[m,i]*va[l,j]

k = c(k,new)

}

}

p<- nrow(ij)
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k <- matrix(k, p, p, byrow=TRUE)

ed <- paste(ij[,1],"->", ij[,2], sep="")

dimnames(k) <- list(ed,ed)

p <- ncol(Syy)

npar <- apply(topSort(amat), 2, sum)

df<- (n-npar)

kinv <- solve(-k)

kinv1 <- kinv/df

seA <- sqrt(diag(kinv1))

uu <- t(A)%*%QQ%*%A

oo <- t(A)%*%Qtil%*%A

nek <- - 1/4*(d1%*%d1 + d1%*%d1)

+ 1/4*(uu%*%uu + uu%*%uu) - 1/4*(oo%*%oo + oo%*%oo)

seD<-diag(sqrt(solve(-nek)/df))

n<-ncol(A)

pp = c()

At<- -t(A)

for (i in 1:n) {

for (j in 1:n) {

if (amat[i,j]==1)

pp=cbind(pp,At[i,j])

}

}

pp <-as.vector(pp)

TT <- pp/seA

TT <- as.vector(TT)

names(TT) <- names(seA)

PP<-2*(1-pnorm(abs(TT)))

tab <-round(cbind(value = pp, s.e. = seA, z = TT, p = PP),4)

DD <- Dhat/seD # per Delta

DD <- as.vector(DD)

P <- 2*(1-pnorm(abs(DD)))

tab2<-round(cbind(value = Dhat, s.e. = seD, z = DD,p = P),4)

cat("\n")

list(tab = tab, tab2 = tab2)

}
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Chapter 4

Classifying criminal activity: A

latent class approach to longitudinal

event data

Abstract: This article addresses the problem of classifying criminal behaviour, that

is, of determining which types of oÆending co-occur in time. Using the Home O±ce

OÆenders Index, the complete criminal histories of a sample of those born in 1953 are

examined. A local likelihood approach to latent class analysis is proposed, and is used

to classify criminal activity, and state transitions over time can be examined. The

proposed methodology can be used to classify other types of longitudinal event history

where the interest is in the changing nature of activity over time.

Keywords: Criminal Careers; Latent class models; Local likelihood; Criminal path-

ways

4.1 Introduction

In criminological research, a common task is that of classifying criminal behaviour - of

determining which types of criminal activity co-occur in time. In this paper, we are

specifically concerned with allowing for behavioural change over the life course - thus

the concern is focused specifically on identifying specific groups of criminal activity in

1This is a joint work with Professors Brian Francis and Keith Soothill. Some results of the work
have been presented at the 54th Session (2003) of the International Statistical Institute (Berlin) and at
the Academy of Criminal Justice Sciences Annual Meeting 2004 (Las Vegas) by B. Francis, F. Pennoni
and K. Soothill. I was supported by Marie Curie Fellowship scheme. The authors are grateful to David
Firth for helpful comments.
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time and allowing individuals to move between these groups as an individual proceeds

in their criminal history.

We start this paper by considering how such a task has been addressed by crim-

inologists, first by attempting to classify individuals, and then through more recent

dynamic approaches. Classification of criminals was an early concern of criminal re-

search; for example Lombroso (1876) - often designated “the father of criminology”

attempted to classify oÆenders according to facial appearance and head shape, and

developed typologies of oÆenders. This essentialist stance of classifying the criminal

rather than the behaviour continued for much of the century since Lombroso’s pio-

neering text. The introduction of labelling theory and the work of Becker (1963) and

Matya (1964), amongst others, stressed the importance of the social process and the

societal reaction to the criminal act. Labels and labelling became pivotal in explana-

tions, and Clinard and Quinney (1973) began to capture this shift, labelling individuals

with criminal behaviour as “professional fringe violator” or with psychological labels

such as “self-centred over indulged person”. For much of this work, typologies were

often developed without statistical methodology, with the result that there were poor

allocation rules of new cases to groups (Gibbons, 1972) and by the mid 1970s there

was, indeed, a despondency about the future of research in typologies (Gibbons, 1975).

More recent work on typologies (Nagin and Land, 1993; Nagin, et al., 1995) has

started to examine changes in activity over time, concentrating on the frequency or

quantity of oÆending rather than the type or quality of oÆending. This approach is

based on a definition of a “criminal career” as the “ characterization of the longitudi-

nal sequence of crimes committed by an individual oÆender” (Blumstein et al., 1986).

The appropriate way to understand criminal career is to take a longitudinal look at

individuals over the life-course. (Farrington and West, 1990, Lauritsen, 1998, McCord

1982). “The criminal career approach emphases the need to investigate such questions

as why people start oÆending (onset), why they continue oÆending (persistence), why

oÆending becomes more frequent or more serious (escalation), and why people stop

oÆending (desistence). The factors influencing onset may diÆer from those influencing

other criminal career features such as persistence, escalation, and desistance, because

the diÆerent processes occur at diÆerent ages” (Farrington, 1997). Addressing these

and related issues requires knowledge about individual criminal careers, they initiation,

their termination and the dynamic changes between these end points (Blumstein et al.,

1986).

The approach of Nagin et al. (1993), using a semi-parametric Poisson model,

searches for subgroups of oÆenders with similar patterns in oÆending frequency over

the criminal career and concentrates on the varying frequency of total oÆending over
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time. In this way diÆerent trajectories of oÆending frequency over time can be identified

- such groups include “adolescence limited” (who oÆend then stop within adolescence),

and the “high level chronics” (who continue to oÆend at a high rate).

A final strand of work has examined the issue of transitions and specialisation. The

mix of diÆerent oÆence types among active oÆenders is another important criminal

career dimension. Wolfgang (1972) suggested the formation of transition matrices to

assess oÆence specialisation over time, with transition probabilities from oÆence i to

oÆence j being estimated. Stander et al. (1989) using data on 698 male adult prison-

ers, examined transitions between Home O±ce oÆence groups rather than oÆences and

found that oÆending transition behaviour over the first ten occasions was stationary.

However, problems with this approach can be seen. OÆenders would tend to commit

many diÆerent types of oÆence during their careers, and it is quite likely that even those

who specialise in fraud, or violence will also be involved in petty theft if the opportu-

nity arises. Moreover, the reliance of this approach on transition between conviction

occasions, means that age is not controlled for, for example, some individuals the move

between the 2nd and 3rd conviction will occur before 16, and for others after age 25.

Thus, on the one hand, methods assessing transition in criminal behaviour are not

satisfactory, and on the other hand, work on typologies is mainly concentrating on the

frequency of crime rather than its varying nature. The problem is to identify which

oÆences co-occur at the same period or age in the criminal history of an oÆender and

to identify the number of types and the nature of these types of activity. In addition,

criminal careers develop over time and techniques to describe them should therefore

also be able to capture transitions from one oÆence type to another. The technique

should be able to allow transition matrices to be examined for any age, although actual

behaviour transitions may well occur at diÆerent ages for diÆerent individuals.

This paper adopts a latent class approach, which provides advantages over other

methods of typology construction: it is based on a well formulated statistical model, and

does not assign units absolutely to classes but estimates posterior probabilities of class

membership for each unit. Latent class analysis is an increasingly popular technique

in criminological applications (see, e.g. Fergusson et al., 1991; Van der Heijden et al.,

1997; Uebersax, 1997); moreover the substantial body of work on criminal trajectories

has been recognised as a form of latent class analysis (d’Unger et al., 1998).

This paper proceeds as follows. Section 4.2 describes the dataset of criminal convic-

tion histories which provides the motivation for this work. Section 4.3 describes existing

work in examining patterns of criminal behaviour, and proposes a new more flexible

approach based on local likelihood, and Section 4.4 provides the results of the analysis.

The paper concludes with a brief discussion.
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4.2 The data

The data set used for the present analysis was derived from the OÆenders Index, a Home

O±ce research data set. The OÆenders Index is a court based record of the criminal

conviction histories of all oÆenders in England and Wales from 1963 to the current day

which contains a one in thirteen sample of all oÆenders born in 1953. We have restricted

our analysis to the OÆenders Index cohort data for 1953, which consists of all oÆenders

born in four specified weeks in 1953, with their complete criminal histories from the

age of criminal responsibility, 10 years, until the end of 1993. This provided us with a

set of oÆenders which are a one in thirteen sample of all oÆenders born in 1953. The

index stores the dates of convictions, the detailed oÆence code of the conviction and

the disposal or sentence.

Some features of the data set need to be mentioned. As the data set is based on

conviction records, it has the limitation that neither arrests nor cautions are included so

not all criminal activity is registered. In addition, the OÆenders Index records standard

list oÆences only - thus some of the more minor oÆences tried in magistrates courts are

omitted - these are mainly less serious motoring oÆences (Francis et al., 2004). The

conviction histories are formed by joining together court conviction records through

a record linkage process, matching convictions to individuals by name, gender and

data of birth. This process may be subject to error, particularly for female oÆenders

(Francis and Crosland, 2002). Finally, the OÆenders Index contains no record of deaths,

immigration or emigration, and so there is no information on when individuals are at risk

of conviction and when they are not. This includes “immigration” and “emigration” to

Scotland and Northern Ireland. However, these limitations are balanced by the strength

of the data set of providing complete criminal conviction histories for all oÆenders in

England and Wales from 1963. To date, the complete oÆenders index contains data on

over 6 million individuals; the publicly available 1953 cohort data on 11402 individuals

appearing in an England and Wales Court between 1963 and 1993.

Following the work of Francis et al. (2004) we simplify the data, reducing the oÆence

codes to 73 major oÆences, after combining categories and eliminating oÆences with less

than ten occurrences in the whole cohort (thus removing 0.005% of sample numbers).

For example, murder was combined with manslaughter and attempted murder.

The data consists of 9, 232 male oÆenders and 2, 170 females; so that 81% of sample

members begin males and 19% female.

Prime et al. (2001) analysed the criminal histories of oÆenders born in 1953, 1958,

1963, 1968, 1973 and 1978. It can be seen from Figure 4.1 that there are diÆerences

within the six birth cohorts examined and in the percentage of the population with a
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Figure 4.1: Estimated Cumulative percentage of the male population with a conviction

for various birth cohorts. Source: Prime et al. 2001.

conviction. Before the age of fifteen, males born in a later cohort years are less likely

to be convicted for an oÆence than males born in 1953. After the age of fifteen, males

born in 1978 and 1963 are more likely to have been convicted of an oÆence, with 20 and

21 per cent respectively convicted for an oÆence before the age of twenty compared to

19 per cent of the population born in 1953.

They report also that thirty three per cent of men born in 1953 had at least one

conviction for a “standard list” oÆence before the age of forty six. Figure 4.1 shows that

for the 1953 birth cohort, the percentage of the population with at least one conviction

increases with age, rising from 7 per cent before the age of fifteen, to 19 per cent before

the age of twenty; 28 per cent before the age of thirty, and 31 per cent before the

age of 40. Most oÆenders are first convicted of an oÆence between the ages of about

thirteen and twenty. The number of new oÆenders tails oÆ with increasing age and only

2 per cent of the population are first convicted of an oÆence in their late thirties to mid

forties.

The cumulative percentage of the female population with a conviction is showed

in Figure 4.2. They also show that nine per cent of women born in 1953 had been

convicted of a standard list of oÆence before the age of forty six. At the younger ages

the percentage of the female population with a conviction is only between a eighth and

a twentieth of the percentage of the male population with a conviction. The diÆerences

between six birth cohorts, shown in Figure 4.2, are very similar to those observed for

males in Figure 4.1.

To carry out our analysis we simplify the time axis, using age in completed years
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Figure 4.2: Estimated cumulative percentage of the female population with a conviction

for various birth cohorts. Source: Prime et al. 2001.

rather than working with continuous time - age thus takes 30 distinct values, from 10

to 40. We choose to analyze males and females separately, as the expectation is that

they will have rather diÆerent patterns of criminal activity.

Court data provide information on all oÆences at each record appearance. The data

set indicates that 47.6 per cent of oÆenders who appear in court are charged with one

oÆence only. Younger man predominated, 45.7 per cent being between 10 and 20 at the

time of the sentence, 21 per cent between 21 and 25, and 32 per cent over 26 years.

4.3 Models for local patterns in event data

The problem of determining classes of criminal activity which co-occur in time can be

rephrased more generally as one which identifies common patterns of event types which

co-occur in a small time interval in a collection of sequences of longitudinal event data,

where typically there will be a large number of diÆerent event types. A related problem

has been addressed by Abbott and Barman (1997), who, in examining the structure of

academic papers in the American Journal of Sociology, determined diÆerent types of

sentence, and then attempted to find common subsequences of sentence types which

occur in these articles. However, this work is not strictly relevant for criminal conviction

data as Abbott and Barman were primarily concerned with the order of events within

the subsequence, whereas the particular ordering of criminal convictions at a point in

a local time neighbourhood is not important. More recently, work by Hellerstein et al.

(2002) has addressed the problem of detecting patterns of event in a computer networks

using an approach entitle “multi attribute frequent pattern mining” but their approach
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has no underling statistical model.

The approach in this study is to use latent class analysis to determine classes of

criminal activity. Two methods of carrying out such local clustering in time are con-

sidered - the “segmentation” approach and a “local neighborhood” approach proposed

here.

4.3.1 The segmentation approach to local clustering

We provide a short summary of the segmentation approach, which was proposed by

Francis et al. (2004). This approach segments the age axis into a number of predeter-

mined age group segments, and examines oÆending behaviour within those age groups.

Francis et al. chose the age groups 10-15, 16-20, 21-25, 26-30, 31-35, with a five year

window apart from the first group, and termed each age segment an age strip. The

primary consideration was to obtain an interval of su±cient length to gain a picture of

the individual’s oÆending career in that portion of the life course.

A record was constructed for each age strip for each individual, which consisted of a

set of binary items, one for each oÆence category, with each item coding 1 if the oÆender

had been convicted at least once for that oÆence category in the age group under study,

and coded 0 if not. Records were omitted if they contained no convictions. Thus for

each oÆender i, a set of 1 ∏ r(i) ∑ 6 records was constructed, one for each age strip

- the total number of strips was S =
P

i r(i) and the strips were indexed by s. The

complete data for all oÆenders in each study therefore formed what can be thought of

as a prevalence matrix.

The latent class model was specified as follows. Let Osj be the observed binary

response for strip s and oÆence category j, with Osj = 1 if oÆence j is committed

within the strip s, and 0 otherwise. Over all s and j, the Osj form a prevalence matrix

O, which has rows Os. We suppose that here there are K classes or clusters in the date

set; let class k (k = 1, ..., K) have probability º(k). Define pjk to be the probability

that there is at least one conviction for oÆence j in a strip, given that the strip belongs

to class k. Than we can write the likelihood L of observing the prevalence matrix O as

a weighted sum over the K classes of individual class likelihoods:

L = f(O) =
Y

i

r(i)
Y

r

X

k

º(k)p(Os|k) =
S

Y

s

X

k

º(k)p(Os|k),

where

p(Os|k) =
Y

j

p
Osj

jk (1° pjk)
(1°Osj).
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We assume that any correlation that might exist within age strips belonging to the same

oÆender is modelled by the latent class structure. The latent class problem then becomes

one of obtaining estimates of the pjk for each strip and of the º(k) by maximizing the

above likelihood.

Unlike other methods of clustering, there has been much work and discussion on

the appropriate measure to be used when determining K, the optimal number of latent

classes or clusters. The concept of optimality is that there will be some number of

classes where all classes are distinct, but where adding an additional class to the model

provides no extra explanatory power. However standard likelihood theory breaks down,

because restricting a k + 1 class solution to k classes would involve setting º(k + 1) to

zero, giving a likelihood ratio test for a parameter that lies on the boundary of the

parameter space. This makes formal statistical significance testing using diÆerences

in log-likelihoods impossible. To prevent this, as showed in Section 2.1.1 of Chapter

2, most authors suggest to use information criteria such as the AIC (Akaike, 1974)

and BIC statistic (Schwarz 1978, Raftery, 1995). As showed in Section 2.1.2 both are

based on the likelihood but apply corrections for the number of parameters fitted and

additionally (for BIC) for the number of observations. Guidance is provided by the

appendix to D’Unger et al. (1998), which suggests that the BIC should be used.

We briefly illustrate the main findings of such analysis with Table 4.1 and 4.2 where

it is shown a brief “pen-portraits” (Francis et al., 2004) for each cluster for males and

females respectively. The best solution for the male cohort was provided by nine latent

class model and three class model provided the best solution for describing the five-year

female criminal histories. Table 4.1 and 4.2 reports the estimated cluster proportions

for the nine clusters for males and for three cluster for females. The names given to

the clusters are based on the conditional posterior probability for an age strip to be in

a cluster having one or more conviction for a particular oÆence category j.

The segmentation approach has a number of problems. First, the size of the strip and

the strip cut-points are pre-determined rather than determined from the data. There

is no reason why the cut-points of 16, 21, 26 etc. are the correct values to choose,

and more carefully chosen cut-points might give a diÆerent solution. Additionally,

every oÆender might have their own personal pathway through criminal behaviour, and

diÆerent oÆenders might have diÆerent cut-points and pathways. For example, one

oÆender may make a transition from one pattern of oÆending to another at age 18,

another may not make a transition until age 22, and a third may not make a transition

at all. We therefore generalise the above approach.
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Table 4.1: Male results using the segmented approach: nine cluster solution

No. of Clusters Proportion OÆending profiles

1 18.5% Marginal lifestyle
2 16.6% Non-violent property
3 12.3% Fraud and general theft
4 11.8% General violence
5 9.9% Petty theft
6 8.6% Aggressive property oÆending
7 8.3% Vehicle theft
8 7.8% Wounding
9 6.0% Shoplifting

Table 4.2: Female results using the segmented approach: three cluster solution

No. of Clusters Proportion OÆending profiles

1 59.4% Versatile oÆending
2 36.3% Shoplifting
3 4.3% Trust violation

4.3.2 A local neighborhood approach

An alternative way of proceeding is to form a set of individual-specific oÆence prevalence

vectors for age strips centered at each possible age in the data set and to carry out a

clustering procedure on all active age profiles for all oÆenders. We need to define a local

neighbourhood N(at) around each age at, i.e. a pre specified time interval around at.

Let the neighbourhood around at extend from at0 to at1, where at0 ∑ at ∑ at1, than

for each local neighbourhood oÆences falling within the neighbourhood are identified

which contribute to the construction of the prevalence vector at age at, and oÆences

outside the neighbourhood which do not.

Following the ideas of local regression smoothing, and local likelihood, we can specify

the nature and the size of the local neighborhood through a kernel function K. For

example, Wu and Tuma (1990) proposed a local hazards survival analysis which was

developed by Betensky et al. (2002) and placed in the framework of local likelihood.

The idea in these papers is to estimate the hazard function locally - within a defined

neighbourhood region defined by a kernel function, while still obtaining global estimates

of the regression parameters. The kernel function in our application will similarly weight
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points in a region around an age at defined by a chosen range of the neighbourhood or

bandwidth h, giving us local estimates of the probability of class membership at any

age. When the neighbourhoods overlap it allows for events at a given age to contribute

to more than one strip with weights determined by the kernel, and thus introduces a

degree of smoothing in the way latent class membership changes from year to year.

As in local regression also here the choice of kernel function does not greatly influence

the e±ciency of the approximation of the target function (see e.g Hastie and Tibshirani,

1990), more important is the choice of the value of the bandwidth because it controls

the degree of smoothing. The choice of h can be viewed as a smoothing parameter

on the analysis. Increasing the value of h will decrease the ability of the model to

detect changes over time, until, when h approaches the age range, we are analysing the

oÆence profile of an individual’s complete criminal career rather than periods within

individuals. Small values of h will induce substantial noise in the age to age variation

of latent class membership.

After examining various bandwidth in preliminary analyses we chose symmetric

range of the neighbourhood. We report results based on a bandwidth of five years.

Various choices of symmetric kernel function can be made - Fahrmeir and Tutz

(2001) for example, give a wide range of choices. A straightforward choice is to fol-

low Wu and Tuma (1990) and choose a rectangular or uniform kernel function with

overlapping regions centred on at:

K(t) = K

µ

a° at

h

∂

=

(

1/(2h + 1) |a° at| ∑ h

0 otherwise

Other kernels could be used but are less useful when constructing binary prevalence

vectors.

4.4 Model Specification

As the previous analysis we use a latent class cluster analysis, a model-based clustering

procedure which assigns windows to classes with estimated probabilities. As mention

in Chapter 2 one advantage of model based clustering is that it provides a precise

framework for assessing the resulting partitions of the data and especially for choosing

the relevant number of clusters.

To estimate a model where the latent classes are estimated globally over all data

points we need to treat the data points like local events in the neighbourhood of age at

2Further work is needed on the consequences for estimator of choosing diÆerent bandwidth, i.e. of
choosing symmetric versus asymmetric range. Such work is beyond the scope of this study.



MODEL SPECIFICATION 96

(Tibshirani and Hastie, 1997). We extend the definition of the vector O to be vector of

binary indicators where Ojt = 1 if oÆender i is convicted for oÆence j in a region defined

by the bandwidth centered on age at. The binary variables Ojt = 1 are collected into

the prevalence vector Ot. Than pjt|k is the probability that there is at least one oÆence

of type j the region given the membership of at on class k; and º(k) is the probability

of the latent class in the region.

With N individuals the likelihood can be expressed as the product of the conditional

pattern probabilities in all the regions defined by the kernel

L(Ot) =
Y

i

Y

t

X

k

º(k)p(Oit = oit|k)K(t)

where

p(Oit = oit|k) =
Y

j

p
ojt

jt|k(1° pjt|k)
1°ojt

The posterior probability of the class membership overall the points of the regions

of the bandwidth is

H(k|Oit) =

Q

i

Q

t º(k)p(Oit = oit|k)K(t)

L(Oit)
.

The choice of the uniform kernel permitted to carry out the estimation of the model

as in standard latent class analysis. The analysis were carried out with the software

program Latent Gold Version 3.0.1 (Vermunt and Magidson, 2000) which can deal with

large numbers of items and has the ability to deal with individual level data rather than

data in tabular form.

To find maximum likelihood for the model parameters Latent Gold uses both the EM

(Dempster et al., 1977) as defined in Chapter 2 and the Newton Rahpson algorithm

(McHugh, 1956, 1958). The program starts with the EM until either the maximum

number of EM iterations or the EM convergence criterion is reached. Than the program

switches to NR iterations which stops when the maximum number of NR iterations or

the overall convergence criterion is reached. This is a way to combine the advantages of

both algorithms, that is, the stability of the EM even when far away from the optimum

and the speed of the Newton-Raphson when close to the optimum (cf. Vermunt and

Magidson, 2002).

The greater the number of latent classes the more the models can suÆer of identifi-

ability problems as such described in Section 2.1.1 of Chapter 4. To avoid obtaining a

local rather then a global solution we used a multiple set of starting values in order to

check for diÆerent solutions of log-posterior values. We also choose to perform 500 EM
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iteration and 150 NR iterations. The algorithms were quite slow to converge because

of the large size of the data set.

It should be note that the model considered in this article typically implied non linear

moment structures. It follows that local identification at one point in the parameter

space does not imply local identification elsewhere in the parameter space and the

parameter points can often be found which are not locally identified.

4.5 Results

Model selection was based on BIC and on the estimated proportions of non correct

classifications. In fact when classification of cases is based on assignment to the class

having the highest membership probability, the proportion of cases that are expected

to be misclassified is reported by the statistic known as classification error (cf. Section

2.1.2). The closer this value is to 0 the better.

It should be noted that the BIC we use is computed by using the log-likelihood

value and the number of parameters rather then by using the G2 and the number of

degrees of freedom. This means that data at the individual level is used to calculate

the diagnostic values rather than data from full 271 table of cross-classifications.

The BIC and the classification errors were recorded for both males and females.

Table 4.3 reports the BIC and the classification error values for the estimated one to

fourteen class models for males.

It can be seen that the BIC is lowest for the fourteen class model and it seems to

decrease increasing the number of classes. In this work we have therefore used BIC as

a guide, also taking into account other diagnostic values such as the classification error.

From table 4.3 the classification error reaches the minimum value for the eleven and the

twelve class models. For the principle of parsimony we assume the eleven class model

to be the best solution for the male cohort.

Table 4.4 reports the cluster proportions together with a label assigned to each of

the eleven latent classes and the top nine profile probabilities of cluster membership

given that the oÆence of type j has occurred, which show how the clusters are related

to the oÆences.

The strips are divided reasonably evenly between the clusters, as follows: cluster 1

- 19.3 per cent; cluster 2 - 13.2 per cent; cluster 3 - 12.5 per cent; cluster 4 - 10.3 per

cent; cluster 5 - 9.9 per cent; cluster 6 - 8.8 per cent; cluster 7 - 7.8 per cent; cluster 8 -

5.8 per cent; cluster 9 - 5.1 per cent; cluster 10 - 4.7 per cent; cluster 11 - 2.6 per cent.

Hence, from the table it can be noted that the first two clusters in particular, include

a vast range of criminal activity, together with cluster 7, cluster 8 and cluster 9. The
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Table 4.3: BIC and classification error values for males latent class analysis

No. of Clusters BIC Ej

1 916583.33 0
2 904911.70 0.0547
3 898304.10 0.1999
4 893198.08 0.2468
5 889213.78 0.2145
6 884929.26 0.1558
7 880789.64 0.1506
8 878430.67 0.1152
9 875665.31 0.1744
10 872397.61 0.1104
11 870079.45 0.0724
12 867624.68 0.0679
13 867555.97 0.1180
14 864466.92 0.0882

Table 4.4: Top nine profile probabilities for males: 11 cluster solution

Cluster 1 Marginal Lifestyle Cluster 2 Mixed OÆending Cluster 3 Petty Theft

º(1) 0.19 º(2) 0.13 º(3) 0.12

54.Reciving stolen goods 0.20 49.Petty theft 0.56 49.Petty theft 0.99

45.Stealing 0.11 30,27.Commercial burglary 0.50 46.Shoplifting 0.05

104.Assault 0.10 Vehicle oÆences 0.45 54.Reciving stolen goods 0.04

28.Burglary in a dwelling 0.07 28.Burglary in a dwelling 0.32 33.Going equipped 0.03

165.Posssesion of weapons 0.05 Criminal demage 0.30 45.Stealing from vehicle 0.02

20.Assault on females 0.04 8.Maliciuos wounding 0.25 28.Burglary 0.02

47.Stealing/machine 0.04 54.Reciving stolen goods 0.23 47.Stealing from machine 0.02

195.Minor oÆences 0.04 Fraud 0.19 29.Aggravated/burglary 0.02

80,83.Absconding from custody 0.03 46.Shoplifting 0.17 Forgery 0.01

Cluster 4 Demage, Violence Cluster 5 Car Crazies Cluster 6 Violence

º(4) 0.10 º(5) 0.10 º(6) 0.09

Criminal damage 0.99 Vehicle OÆences 0.99 8.Maliciuos wounding 0.99

8.Maliciuos wounding 0.15 49.Petty theft 0.14 49.Petty theft 0.07

49.Petty theft 0.08 45.Stealing from vehicle 0.11 Criminal damage 0.03

104.Assault 0.05 30,27.Commercial burglary 0.08 104.Assault 0.03

195.Minor oÆences 0.04 33.Going equipped 0.06 46.Shoplifting 0.03

Vehicle OÆences 0.04 28.Burglary in a dwelling 0.04 30,27.Commercial burglary 0.03

46.Shoplifting 0.04 Criminal damage 0.04 Vehicle OÆences 0.03

30,27.Commercial burglary 0.03 195.Minor oÆences 0.03 34.Robbery 0.02

80,83.Abscombing from custody 0.02 54.Reciving stolen goods 0.02 54.Reciving stolen goods 0.03
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Cluster 7 Commer. Burglary Cluster 8 Shoplifting

º(7) 0.08 º(8) 0.06

30,27.Commercial burglary 0.99 46.Shoplifting 0.99

49.Petty theft 0.19 54.Reciving stolen goods 0.02

28.Burglary in a dwelling 0.08 80,83.Abscombing from custody 0.02

Criminal demage 0.07 104.Assault 0.01

Vehicle oÆences 0.06 39.Stealing a person 0.04

46.Shoplifting 0.06 195.Minor oÆences 0.01

29.Aggravated burglary 0.05 - -

54.Receiving stolen goods 0.04 - -

32.Robbery 0.03 - -

Cluster 9 Fraud Cluster 10 Drugs Cluster 11 Stealing

º(9) 0.05 º(10) 0.05 º(11) 0.03

OÆraud 0.99 OÆdrug 0.99 41.Steeling by an employee 0.99

49.Petty theft 0.27 46.Shoplifting 0.05 52.Falsifying accounts 0.09

54.Receiving stolen goods 0.14 54.Receiving stolen goods 0.03 49.Petty theft 0.08

46.Shoplifting 0.08 49.Petty theft 0.03 54.Stealing 0.05

Forgery 0.08 80,83.Abscombing 0.03 Vehicle oÆences 0.04

80,83.Abscombing custody 0.07 Criminal damage 0.03 Fraud 0.03

30,27.Commercial burglary 0.05 30,27.Abscombing custody 0.02 Forgery 0.02

40.Stealing in a dwelling 0.05 28.Burglary in a dwelling 0.02 46.Shoplifting 0.02

8.Malicious Wounding 0.05 Vehicle oÆences 0.01 30,27.Commercial burglary 0.02

other clusters show a more specialized criminal activity. In fact the profile probability

is high for one oÆence and low for the remainders. This result is satisfying, as it shows

that oÆending groups are readily identified using the local likelihood approach. Whilst

group in the segmentation approach were often defined by a wide range of oÆences, this

is true only for a few of the clusters found in the analysis.

In terms of criminal activity, people behave diÆerently at diÆerent ages. Considering

the assignment of each age with the highest posterior probability to a cluster we can

examine in details how oÆender change their oÆending behavior as they become older.

Considering male variations by age, for every age at, we identified the number of

oÆenders classified into that oÆence cluster. A graph of such numbers is than obtained

to have a picture of changing activity over time.

The histograms in Figure 4.3-4.4 show the row posterior probabilities - this have

been smoothed to show the overall trend line, which has been superimposed. The

oÆending profiles vary dramatically with age. Some interesting patterns emerge and

compared to the “segmentation” approach they give a better picture. The problem of

naming the clusters seems less di±cult as oÆenders will often participate in a range of

criminal activity, but they seem to have a predominant activity.

Combining the results from the tables and the histograms we can analyse the results

as follows. Cluster 1 is the largest cluster and it is not a very specialized cluster, in
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Figure 4.3: Histogram of posterior probabilities of cluster membership for the first six

clusters for males 1953 cohort.
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Figure 4.4: Histogram of posterior probabilities of cluster membership for the last five

clusters for males 1953 cohort.
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fact, it is characterized mainly by receiving stolen goods (0.20), stealing from a vehicle

(0.11) and assault (0.10). It has high activity between 15 and twenty but it seems to

be made of criminal activities which last over the years. Cluster 2 is also a not very

specialized cluster: oÆenders are involved in petty theft (0.56), commercial burglary

(0.50), theft from vehicle, theft of vehicles and driving licence oÆences (0.45); burglary

in a dwelling (0.32) and other minor oÆences; it reaches a peak on age 18 and 19 and

soon it seems to decline quite speedily. Cluster 3 predominantly involves petty theft

(0.99) and it is a specialized cluster: the other oÆences has probability less or equal to

0.05; it is an oÆence which involve all young men until 20, it reaches the peak around

age 15. Cluster 4 involves other criminal damage (0.99) and malicious wounding (0.15);

it involves all ages over 15. Cluster 5 is characterized by non-violent oÆenders involved

in vehicle theft (0.99) and petty theft (0.14) and other stealing (0.11); mainly 16-20

years old and then it soon declines. Cluster 6 is predominantly involved in malicious

wounding, and it has the highest probability of having threats to murder and kidnap

(0.99). It does not reach reach the peak until 20 with another peak around 24-25. Class

7 is characterized by a very hight probability of breaking into shops and commercial

property (0.99), with smaller probability of pretty theft (0.19) and of burglary (0.08);

it as hight activity between 12-20 and then it declines soon. Class 8 involves shoplifting

(0.99) and also receiving or handling stolen goods (0.01); it can be seen that it has

three peaks: one around 13-14, around 24-25 and 30-31. Class 9 is characterized by a

very hight probability of fraud oÆences (0.997) with pretty theft (0.27) and receiving

stolen goods (0.14) also contributing. It does not reach the peak until age 28. Class 10

is involved in drugs (0.99) and shoplifting (0.05); it does not happen before age 16 and

it reaches the peak from age 22 to 25. Class 11 is involved predominantly in stealing

from an employee (0.99) and false accounting (0.09).

Female

Using the same analysis of the outcomes for females we report in Table 4.5 the BIC

and the classification error values for the estimated one to fourteen latent class model

of females using the “local neighborhood” approach.

A six-cluster model was chosen which seems to provide the best solution for describ-

ing the female 1953 cohort criminal histories. Table 4.6 shows the labels assigned to

each cluster, the estimated six cluster proportions and the top nine profile probabili-

ties of cluster membership for each oÆence. Figure 4.5 reports the histograms of the

posterior probabilities together with assignment of each age at to clusters.

The first four clusters are the largest. Cluster 1 has 14 per cent probability and

it seems to involve predominantly the shoplifting oÆence with (0.99) and pretty theft
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Table 4.5: BIC and classification error values for female latent class analysis

No. of Clusters BIC Ej

1 107631.80 0
2 101890.20 0.0321
3 100895.00 0.0322
4 100342.80 0.0965
5 99770.61 0.1066
6 99400.56 0.0679
7 99211.48 0.061
8 99122.03 0.0881
9 99098.11 0.0717
10 98918.20 0.0647
11 99049.74 0.0532
12 99510.87 0.0617
13 99349.82 0.0484
14 99438.28 0.0569

Table 4.6: Top nine profile probabilities for female: 6 cluster solution

Cluster 1 Shoplifting Cluster 2 Fraud Cluster 3 Petty Theft

º(1) 0.38 º(2) 0.25 º(3) 0.14

46.Shoplifting 0.99 Fraud 0.28 49.Petty theft 0.99

49.Petty theft 0.02 40.Stealing in a dwelling 0.07 Fraud 0.14

54.Receving stolen goods 0.02 43.Absracting electricity 0.06 46.Shoplifting 0.05

- - 47.Stealing from machines 0.06 54.Receving stolen goods 0.03

- - 46.Shoplifting 0.06 30,27.Commercial burglary 0.02

- - 28.Burglary in a d 0.03 40.Stealing in a dwelling 0.02

- - 30,27.Commercial burglary 0.03 41.Steling by an employee. 0.02

- - 45.Stealing from vehicle 0.02 - -

- - - - - -

Cluster 4 Violence Cluster 5 General criminality Cluster 6 Stealing

º(4) 0.14 º(5) 0.04 º(6) 0.04

8.Maliciuos wounding 0.34 49.Petty Theft 0.86 41.Steeling by an employee 0.99

Criminal damage 0.28 46.Shoplifting 0.41 52.Falsifying accounts 0.18

104.Assault 0.18 Fraud 0.40 46.Shoplifting 0.03

46.Shoplifting 0.06 54..Receving stolen goods 0.34 Fraud 0.03

30,27.Commercial burglary 0.06 8.Maliciuos wounding 0.24 - -

195.Other oÆences 0.05 Criminal damage 0.20 - -

80,83.Abscombing cus. 0.05 Forgery 0.17 - -

28.Burglary in a dwelling 0.04 Vehicle oÆences 0.16 - -

54.Receving stolen goods 0.03 30,27.Commercial burglary 0.13 - -
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Figure 4.5: Histogram of posterior probabilities of cluster membership for the six clusters

for females 1953 cohort.

(0.02); it is an all ages oÆence although it does tend to tail oÆ once over 30. Cluster 2

is characterized by fraud (0.28), stealing in a dwelling (0.07) and abstracting electricity

(0.06). It is also an all ages oÆence. Cluster 3 is petty theft (0.99) and fraud (0.14); it has

a peak between 15 and 18, and also another peak around 27. Cluster 4 is another large

cluster (0.14) per cent, it is involved in violence, assault (0.34) and criminal damage

(0.28) and it is an all age crime with peak in 27 and another one in 37. Cluster 5 is not

very large 4 per cent, it is characterized by petty theft (0.85) with shoplifting (0.42)

and fraud (0.40). Cluster 6 is a small cluster 4 per cent; it is involved with sealing by
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an employee (0.99) and false accounting (0.18); oÆenders are mainly 15-19 year olds .

For example, for female analysis, we can see that stealing from an employee is very

much an activity for young girls, reaching a peak at age 17 and then declining. The

probability of fraud, in contrast, hardly changes, from age 15 to age 25. Involvement

with car oÆending appears to be a type of activity which oÆenders grow out of and

move on to other activity, or to stop oÆending. Violent oÆending and being convicted

for it, however, is more likely to continue until the oÆender is 30 and has a for less

steep.

4.6 Discussion

It can be seen that age is a crucial variable in understanding criminal histories. The

proposed local neighborhood approach seems to give a more accurate picture of the

changing over time. The use of latent class model with local kernel smoothing to repre-

sent time related change provides a general framework to build behavioural typologies

that encompasses situations involving for example a psychological study on the core

behaviour of children.

Selecting an appropriate latent class model involves comparisons among models. We

illustrate the potential usefulness if the BIC procedure and the classification error.

A more appropriate description of the changes over time could be useful, for example

comparing diÆerent birth cohorts, because typologies may not remain constant over time

i.e. typologies from 1983 birth cohort may not be the same as those from 1953 birth

cohort.

However the analysis provide a case study in applying relative complex latent class

models to a substantive problem in criminology. These results contributes to under-

standing the crime behaviour and can help to decide policy for juvenile crime.

An unresolved question is to better assess if there are many transitions between

diÆerent latent classes and when such transitions occur. We think that hidden Markov

models can be useful to generate understanding in the area of oÆence patterning. The

basic assumption of this model is that the oÆending pattern of an oÆender within a

certain age strip depends only on a discrete latent variable representing his/her tendency

to commit crimes, which follows a first order homogeneous Markov process. Such model

may be useful to test hypothesis of interest, for example by restricting appropriately

the transition matrix models can be tested in which only pre-specified transition can

occur. A disadvantage of such modelling is that it requires fixed intervals like the

segmentation approach under representative oÆences have to be chosen for interval in

which more than one oÆence occur. The application of hidden Markov modelling of
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