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Dependence measures
based on partial and total orderings'

Francesca Greselin *

Summary: The aim of this paper is to propose a new operational measure for
evaluating the degree of dependence existing between two nominal categorical
variables. Given an rxc table T, representing bivariate statistical data, our
approach to measure the strength of this relation is based on the consideration of

the class F of all contingency tables with the same margins as T. Once a partial or
total ordering of dependence in F (as defined in Greselin and Zenga [2004b]) has

been given, the relative position assumed by T in F can be a meaningful measure of
dependence. Some desirable properties of these indices are presented: by
construction, they are normalized, coherent with each level of ordering and attain
extreme values in extreme dependence situations. They are invariant to permutation
of rows and columns in the table and to transposition (as qualitative variables
classification requires), and, finally they show a sort of stability behaviour with
respect to similar populations. Furthermore, their straightforward interpretability is
compared with the classical interpretation of some well-known normalized indices.
Interesting remarks arise when the comparison is carried out on the discussion of
their values, particularly on the extreme dependence situations.

Keywords: partial ordering of dependence, association measure, dependence
measure.

1. Introduction

Dependence relations between variables is one of the most widely studied
subjects in Statistics. Many studies in the literature are devoted to explore
the nature and the extent of the relationship between two variables.
Relatively few works deal with nominal categorical variables, as this paper
does (for a specific review, see Greselin and Zenga (2004a)).

" Preliminary findings of this work have been presented at SIS (Societa Italiana di
Statistica) Annual Meeting, Milan, 2002.

¥ Quantitative Methods for Economics and Business Sciences — University of
Milano-Bicocca — P.za dell’Ateneo Nuovo 1, 20126 MILANO (e-mail:
francesca.greselin@unimib.it).
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The aim of this work is to employ the hierarchy of partial and total
orderings of dependence recently introduced by Greselin and Zenga (2004b)
to define a new class of measures of dependence. Our proposal is to express
the strength of dependence of a given table T by the relative position that 7
assumes among a finite set of tables, endowed by an ordering of dependence.
The reference set is the class of all bivariate distributions having the same
pair of margins.

The remainder of the paper is organized as follows. Section 2 states the
terminology and recalls some concepts related to partial and total
dependence orderings. In Section 3 the definition of the new measures is
recalled and some desirable properties of these indices are stated; Section 4
deals with the computational cost of the indices. In Section 5 a sort of
asymptotic behaviour of the indices with respect to similar population is
shown, by computational results. Section 6 gives some graphical
comparisons between two classical normalized indices and the new measures
of dependence we deal with. The cases of very high and very low strength of
dependence deserve special comments. Section 7 gives some concluding
remarks.

2. Brief review and terminology

Let N statistical units of a given population be classified according to the
qualitative variables A and B, both with nominal scale, whose unordered
categories are denoted respectively by ay,...aj,...a. and b,,...b;,...b,. As
usual, the joint frequency n(b;,a;) of the pair of categories b; and a; is denoted
by n;, while marginal frequencies are denoted by n,. = n(b;), i =12,...,r for
variable B and n.; = n(a;),j =1,2,... c for variable A. Bivariate statistical data
are generally represented in a table with r rows and ¢ columns, as Figure 1
shows:

B\A| a; a; a. | Total
b] npp ... N Ny nj.

b,‘ nip ... Wi N nje

b\ ny .. ony o Ny Ny
Total | n.; 1. Nec N

Figure 1. A bivariate table and its notation

In the hypothesis of independence (lack of association) the joint
frequencies are given by:
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iy =——=" i=l..,r and j=1,..c (D
N
and therefore independence is a symmetric relation.

The literature on measures of dependence for cross-classification is really
wide, and the reader can refer to Goodman and Kruskal’s works (1954,
1959, 1963, 1972 reprinted as a volume in 1979) which provide a broad
survey, careful discussion as well as brief historical and bibliographical
remarks.

Association measures are single summary numbers that describe the type
and the intensity of the relationships between two classified variables. When
properly employed, they provide a useful description of the dependence
structure displayed by a two-dimensional table.

In this paper variables A and B are supposed to play a symmetrical role, so
that a classical approach to evaluate deviation from independence can be
based on the contingencies:

c; =n;—n (i=12,.,r;j=12,.,c) )

)

or on the relative contingencies:

py =0 3

A careful observation of the table of contingencies offers an analytical
view over the kind and the intensity of the relation between each pair of the
categories of the two variables A and B. In order to obtain a synthetic
measure of its strength, a suitable normalized weighted mean of
contingencies yields two well-known association indices, the first proposed
by Pearson (1904) and successively normalized by Cramer (1946), the
second due to Mortara (1922).

These widely used indices possess many desirable and well-known
properties:

* they assume values in [0,1];

* they are null if and only if there is independence (lack of association);

* they assume their maximum value, i.e. 1, if and only if there is

complete or absolute association’;

? For the maximum dependence situations we will adopt Kendall and Stuart (1979)
terminology, briefly recalled here: “Considering a population classified according to
the presence or absence of two attributes A and B, we say that association is
complete if all A’s are B’s. Absolute association arises when all A’s are B’s and all
B’s are A’s.” These definitions correspond to unilateral and bilateral dependence, in
the Italian literature.
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* they are invariant under transposition and permutation of rows or
3
columns™;
* they are invariant with respect to ‘similar’ populations.

The term ‘similar’ is given by the following definition:

DEFINITION 1 Bivariate a-similar population

Let T be a given bivariate population T ={ n;} and let « a positive integer.
The co~similar population with respect to 7T is the bivariate distribution oT,
defined by the joint frequencies nij(“) = an;, multiples according to « of the
initial frequencies n;;.

Denoting with an apical (@) each index, when it refers to the a-similar
population obtained from the original by replicating it « times, it is well-
known that:

* Mg = Ml(“)(lpl), where M;(lgl) is the arithmetic mean of the

absolute value of the relative contingencies, weighted by the joint
frequencies ﬁ,.j;

e My(lph) = My'(ll), being M,(lol) the quadratic mean of the absolute
value of the relative contingencies, weighted by the joint frequencies

A

s

e M’ =M"? where M’ stands for the Mortara’s normalized index, defined
by M' = M(Ipl)/(2]§) and E is the minimum Gini’s etherogeneity
index of the two marginal distributions of A and B;

¢ C = C" where C is Cramer’s norming position for My(lo)), i.e.: C =
M,(lo/(k-1)"? | with k = min (r,¢).

Concluding these remarks, it is worth noting that, except in the 2x2 table
case, a single function (and hence a single measure of association) cannot
reflect the large diversity of ways in which a table can depart from
independence. As Bishop et al. (1995) synthesize “It is this fundamental
mathematical fact that leads to the variety of measures and to the difficulty
inherent in choosing a single measure on any given occasion.” Moreover,
considering normalized indices, the same authors say that “their weakness
and the major difficulty in their use is their lack of a clear interpretation.”

Therefore, partial orderings appear to be an adequate method in
approaching dependence and the introduction of a class of measures based
on partial orderings tries to overcome this issue.

? This property corresponds to the discretionary position of the variables A and B —
and of their categories — in the rows or columns of the table.
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3. Our proposal

In Greselin and Zenga (2004a) a cyclic frequency transfer is defined: it
transforms a bivariate distribution 7" in a new one, say 7’, which shows a
lower degree of dependence between the variables A and B, and 7" has the
same pair of margins as 7. A cyclic frequency transfer acts over a paired set
of cells in 7, decrementing the absolute value of their contingencies and
maintaining the margins. In the cited work, hence, the authors say that in 7"
there is lower directional dependence between A and B than in 7. This
notion corresponds to the definition of a partial ordering of dependence in

the reference set &F, the class of all rxc contingency tables with non negative
integer entries n;, whose row sums n;. (i=l,...,r) and column totals n.
(j=1,...,c) are given.

In partial ordering relations, only a subset of pairs belongs to the relation,

therefore to enable the ranking of all pairs of tables of F a total ordering is
needed:

DEFINITION 2 Total ordering of dependence
Let f: F>P be a real valued function, mapping rxc tables from & onto the
real line P. Let T, T' € &, then T precedes T" according to <; if and only if:

F(T) =f(T") “
and it will be denoted by T <,T".

To be adequate in measuring dependence, the function f F — P that

induces the total ordering on &, has to be coherent with the Directional
dependence ordering (and also with the Intensity of dependence ordering in
Greselin and Zenga (2004b), based only on the absolute values of the
contingencies).

A sufficient condition for f = f (o ﬁij) is to be a bounded, symmetric,
non-negative and non-decreasing functional form of its arguments, the
absolute (or relative) contingencies pj, having the independence frequencies
ﬁij as parameters. For example, f can be M;(l0l) or M(lol): their domain is a

set of bivariate distributions and their co-domain is the set of real numbers®.

Each of these functions induces a total ordering relation, denoted by =, (o))

and SMz(‘P‘) ’

*For a comparison between the indices M, (lpl) and M,(lol), and for a discussion of
their joint use in measuring dependence, see Greselin and Zenga (2004b) .
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Let T indicates the generic table pertaining to F. As sketched above, the
second step of our approach is then to consider, as a measure of dependence

for T, the relative position that T assumes in its ordered class &F.

DEFINITION 3 The class of indices I ;(T)
Given a bivariate distribution T, the relative position that 7 assumes in &,
is a measure of dependence I(7), for T

#1S|SeF;S=<. T
- Hlslserisn

The index I; will also appear in the foregoing with explicit mention of the
chosen function: we will specifically deal with IM,( )and IMz(\P\)'

(&)

o
3.1 Properties of I(T)

First of all, the index I(T) is a relative frequency, so its meaning is
straightforward. For example, if 7 is a table in F and IMZ(‘p‘)(T) =23, it

means that, among all bivariate distributions in &, ordered by non-
decreasing values of M(lol), T lies in a position that divides the class in two

parts, 23 percent of tables in F has a lower or equal value of Ma(l0l), and the
remaining tables have an higher value.

Moreover, the index I; has the following desirable properties.

* It takes values in [0,1], i.e. it is autonormalized, by construction.

* The minimum value of I(7) is 1/(#F), whenever T is a minimum table
for the dependence ordering in F. For almost all tables T of real
statistical data, #F has a high value (as it is shown in Greselin (2003),

#F grows exponentially with the population size N, the number r of
rows and the number ¢ of columns in the table6). Hence min I(T)
approaches zero.

* Conversely, the maximum value I(T) =1 is reached if and only if T"is a

maximum table for the ordering function f in &F. This property is
coherent with our choice of comparing a table 7 in its class, selecting
one of the three distinct possibilities (both sets of margins fixed, one

5> The symbol #&F stands for “number of the elements of the set F”, ie. the
cardinality of &.

® See also Examples 3, 4 and 5 in the following Section, giving the values #F in
tables 3, 4 and 5 respectively.
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margin fixed, total population size fixed) as in Zanella (1988)’.
* It is invariant under transposing and under permutation of rows and

columns, that is, for Q and S tables in a given class F:
ifQ<;S then Q'<;S" and P;QP,<;P,SP,
for all rxr permutation matrices P; and all cxc permutation matrices P,.

Agreeing with Goodman and Kruskal’s remark (1954): “one difficulty
with the use of traditional normalized measures is that it is difficult to
compare meaningfully their values for two cross-classification tables”, our
proposal overcomes this issue: being a relative position, I(7) allows
comparisons between tables with different dimensions r and ¢, and different
population sizes V.

4. The computational cost of I{T)

This brief section is devoted to analyze the cost to compute the index I(7).

To evaluate I(T), the whole class F of tables with the same margins as T has
to be generated. Then a measure of dependence - given by M, (lpl) or Mx(lol),
or, more generally, by the function f = f (o;; ﬁij) - has to be evaluated on

each table S in &F, observing if it produces a value f (S) < f (T) so that the

relative position of 7 in & can be evaluated in the meanwhile. These steps
can be executed in a few seconds or minutes, by a software program written
in C and running on a common pc Pentium V, whenever N < 1000 and the
number of the rows and columns of the table T does not exceed 10.

In the other cases the computational time required to generate the class &
grows, quickly becoming intractable. The following Section, showing an
observed behaviour of the index, will be very useful to face this issue.

5. The behaviour of I(T) with respect to similar distributions

It could be expected that I(T) possesses the invariance property with respect
to similar populations, as Mortara’s and Cramer’s normalized indices and
other traditional measures do.

Actually, it has been verified that for low size populations (N=10,..,100),
this property does not hold and the multiplication of a table by an integer

" 1t is worth noting that, whenever complete or absolute association is compatible
with the given margins, all the functions f attain their maximum values on 7 and
hence I; (T) = 1;
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factor a can modify I(7) in an unpredictable direction. In the following,
Example 1 has been chosen to show how I(7) may change when 7 lies in a

small class F.

Indeed, considering the “granularity” of the distributions in &, due to the
requirement that joint frequencies are integers, this anomaly is expected to
disappear by increasing aN. This is what we have verified: as @ or N
increase so that oN reaches some hundreds, the index I(7) attains a
substantial stabilization, presenting fluctuations only on its second decimal.
Examples 2, 3 and 4 have been chosen, among a set of more results, to show
the stabilization process of the index.

The following Tables 1-5 show the results of computing the index I(7) for
similar distributions. Starting from a given table 7 and iteratively computing
its double, triple, etc, multiplying its joint frequencies by a positive integer
a, we have reached interesting results. A software program has been
developed: beginning with =1 and incrementing its value, the algorithm

generates the class aF and calculates the index I(aT) for each value of «.

Example 1: Let us consider table T in Figure 2:

1] 2] 3
31 3] 6
11 0 1
51 51 10

Figure 2. The bivariate table T

The aim of this first example is to examine in detail the class & to which

table T belongs, here denoted by the given margins: F{(3,6,1);(5,5)} and
composed by the following eight tables (printed without margins for
shortness):

0|3 0|3 1]2 1]2 2|1 2|1 0 3]0
2 5|1 313 412 21 4 313 115 21 4
110 01 110 01 110 01 110 01
Tl T2 T3 T4 T5 Tc, T7 Tg

Figure 3. The class F{(3,6,1);(5,5)}

First of all, we recognize table T in the third enumerated table: 7. For each

of the bivariate distributions that pertain to F{(3,6,1);(5,5)}, the quantities
M, (o), My(lpl), Mortara’s index M’ and C were evaluated, obtaining the

distributions of those indices over F.
Different total orderings can be considered for enumerating the tables in
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F{(3,6,1);(5,5)}: by non decreasing values of M,(l0l), or of My(l0)) etc.
As a second step, we consider the 2-similar distribution 27; obtained by
doubling all observed frequencies:

—_

le=} | S M{e Y]\

—_

e} (e} [y PN
[\

Figure 4. The bivariate table 2T;

For table 2T; the corresponding class 2F= F{(6,12,2);(10,10)} is then
generated, all indices cited above are evaluated on each table in 2§ and the

different orderings on 2F are considered. The class F{(6,12,2);(10,10)} is
composed by 21 tables. Among them there are the eight tables that are

‘doubles’ of those in F{(3,6,1);(5,5)}. As the eight initial tables were all
comparable using a chosen (partial or total) ordering with 73, in the same
way and with the same kind of inequalities their ‘doubles’ are comparable
with 275. The remaining 13 ‘new’ matrices (that are not multiples of any of
the preceding tables) do not split uniformly at the left and at the right of 27}
with respect to the selected ordering. Hence the dependence index based on
the relative position in the ordering changes from IMI(\p\)z 0.25 on T3 to

IMI(‘p‘)= 0.333333 on 2T3;. Conversely, because of the invariance property,
M, (o)) = M'=0.2 and M,(lpl) = C = 0.365 for all tables oT5.
The analysis of table 75 goes on with the generation of the following

multiples of T3 and of the corresponding classes &, in order to study the
behaviour of each of the indices of interest. Passing from 27; to 373, the
number of the elements in F{(9,18,3);(15,15)} increases up to 40; only 9
tables lay before 377 in the ordering induced by M,(lgl), so that 1 M (o) = 0.25

Io|
on 3T;. Observing 4T3, the cardinality of its class 4F attains 65. Only 18
tables lay before 47; in the ordering induced by M;(lol) and IMI(‘p‘):
0.292308 on 47;. Table 1 shows, from left to right, all results on oT5: the
multiplying factor ain the first column; then, the size of the a-similar
population aN, the cardinality of the class afF, and the indicesIMl(‘p‘),

IMZ(‘p‘) evaluated on oT; are given.

Table 1 shows thatIMl(‘p‘), after oscillating, steadily decreases, while IMZ(‘p‘)

increases from the multiple a=10 upwards. Both indices show an almost
stable behaviour for high values of aV.



a N #aF)  Tu) ()

1 10 8 0.250000 0.250000

2 20 21 0.333333 0.333333

3 30 40 0.250000 0.400000

4 40 65 0.292308 0.384615

5 50 96 0.250000 0.395833

6 60 133 0.278195 0413534

7 70 176 0.250000 0.420455

8 80 225 0.271111 0.413333

9 90 280 0.250000 0.421429

10 100 341 0.266862 0.413490
20 200 1,281 0.258392 0.433255

30 300 2,821 0.255583 0.441333
40 400 4,961 0.254183 0.443257
50 500 7,701 0.253344 0.446306

60 600 11,041 0.252785 0.447514
70 700 14 981 0.252386 0.448635
80 800 19,521 0.252087 0.448696

90 900 24,661 0.251855 0.450185
100 1,000 30,401 0.251669 0.450215
200 2,000 120,801 0.250834 0.452074
300 3,000 271,201 0.250556 0.452701
400 4,000 481,601 0.250417 0.453074
500 5,000 752,001 0.250333 0.453296
600 6,000 1,082.401 0.250278 0.453378
700 7,000 1,472,801 0.250238 0.453494
800 8,000 1,923,201 0.250208 0.453570
900 9,000 2,433,601 0.250185 0.453594
1,000 10,000 3,004,001 0.250167 0.453668
1,500 15,000 6,756,001 0.250111 0.453792
2,000 20,000 12,008,001 0.250083 0.453860
2,500 25,000 18,760,001 0.250067 0.453897
3,000 30,000 27,012,001 0.250056 0.453924
3,500 35,000 36,764,001 0.250048 0.453943
4,000 40,000 48,016,001 0.250042 0.453956
4,500 45000 60,768,001 0.250037 0.453967

Table 1. Behaviour of the indices IM,(\p\) and IMz(

lo|

) on tables oT;

F. Greselin

The issue now is to understand if this is a general behaviour of the indices:
for this, the working scheme selected for 735 is repeated in detail for each

table in the same class F{(3,6,1);(5,5)}.

Hence, carrying out the same analysis on table 7
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D= (D[N

O |— [N |Ww

7Y [=IFN [

Figure 5. The bivariate table T,

as the tables pertaining to the double, triple and quadruple classes 2F, 3F,
4F (and comparable with 27T, 3T, and 4T,) do not split uniformly at the left
and at the right of the corresponding multiple of 7, with respect to the
ordering, the value of the index I M, (‘p‘)varies:

IM,(‘p‘)(T4) =05
IMI(‘p‘)(2T4) =0.619
IM,(‘p‘)(3T4) =0.55 and

L, () 474 =06
while M’ = 0.4 is the value of Mortara’s normalized index and C = 0.447 is

the Cramer’s index for all similar tables oT.

Analogous considerations can be drawn with respect to the table 77,
pertaining to F{(3,6,1);(5,5)}:

n|—= O

S|—= N |Ww

N[O (oW

Figure 6. The bivariate table T,

All results on replications o7 are resumed in Table 2.

For all tables aT; the values of Mortara’s normalized index and the
Cramer’s index are M'= 0.6 and C = 0.683, respectively. Also in this case,
after oscillating for the first multiples ¢, the two indices IMI(\p\) and IMz(\P\)

attain a substantial stabilization around the values 0.92 and 0.96,
respectively, as the product aN reaches a hundred. The difference among the
two families of indices is remarkable: while Mortara’s index indicates a fair
dependence, measured by a 60 percent of the maximum dependence, the
index based on the total ordering points out that only an 8 percent of tables

in F reflect a higher degree of dependence. This remarkable difference will
be further discussed in Section 5.
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a N #aF) M, (o)) M, (o))

1 10 8 0.75000 0.75000

2 20 21 0.90476 0.90476

3 30 40 0.85000 0.90000

4 40 65 0.90769 0.90769

5 50 96 0.87500 0.91667

6 60 133 0.90977 0.93985

7 70 176 0.88636 0.93182

8 80 225 091111 0.93778

9 90 280 0.89286 0.94286

10 100 341 0.91202 0.93548

100 1000 30401 091612 0.95790
200 2000 120,801 0.91639 0.95871

300 3000 271,201 0.91648 0.95900

400 4000 481,601 0.91653 0.95923
500 5000 752,001 0.91656 0.95931

600 6000 1,082,401 0.91657 0.95937

700 7000 1,472,801 0.91659 0.95943

800 8000 1,923,201 0.91660 0.95947

900 9000 2,433,601 0.91661 0.95948

1,000 10,000 3,004,001 0.91661 0.95952

1400 14,000 5,885,601 0.91663 0.95957

1,800 18,000 9,727,201 0.91664 0.95960
Table 2. Behaviour of the indices 1 M (s]) and 1 M, ((p]) O tables ol
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Table T, also pertaining to F{(3,6,1);(5,5)}, shows a different behaviour
for the indices, due to its particular position in the dependence orderings:

Figure 7. The bivariate table T,

0] 31 3
5] 1 6
0] 1 1
51 51 10

On table 7> the indices M;(lpl), M,(lpl), Mortara’s M' and C assume their
maximum values in F. This means that all tables in F rank to the left of 7.
Moreover, this property holds also for the multiples o7, with respect to the
classes aF. Hence IM,(\p\)(aTZ) = IMZ(\p\)(O’TZ) = 1, depicting that table 7,

and its multiples are the ‘farthest’ from independence in their class.
Conversely, the normalized indices C and M’ do not attain their maximum
value, because of the constraint on margins: M'= 0.8 and C = 0.817 for all

tables aT>.
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Finally, observing that the remaining four tables in F{(3,6,1);(5,5)} are
obtained by T, T,, T; and T, interchanging the columns (so they lead to the
same results), the analysis of the class is completed.

For the sake of brevity, and with the purpose of exploring one entire class

F in a reasonable amount of computing time, this first example refers to
tables with low statistical meaning, while in the following cases we apply the
replications to more realistic bivariate distributions.

Example 2: Now we analyze a 2x3 table S, referring to a population with
N= 837 and a low dependence between variables A and B, measured by M’ =
0.222 and C =0.193.

80| 80| 45]205
387|161 | 841632
467 |241|129] 837

Figure 8. The bivariate table S

Proceeding as before with multiples, still focusing on studying the
stabilization of IM,(\p\) and IMz(\P\)’ the following Table 3 gives in the fifth

and in the seventh column the relative variation (comparing the indices
evaluated on a table and on its double).

I I, (2as) ' I, (2a8)
@ aN #(aF) Ml(\p\) IM, (as) Mz(‘P‘) IM2 (O{S)
1 837 18,395 0.188366 - 0.129492 -
2 1,674 73,038 0.188806 1.002336 0.130302 1.006255
4 3,348 291,071 0.189930 1.005953 0.130762 1.003530
8 6,696 1,162,125 0.190037 1.000563 0.131001 1.001828
16 13,392 4,644,185 0.190100 1.000332 0.131125 1.000947
32 26,784 18,568,113 0.190132 1.000168 0.131184 1.000450
64 53568 74,255,201 0.190115 0.999911 0.131214 1.000229
128 107,136 296,986,305 0.190122 1.000037 0.131230 1.000122
Table 3. Behaviour of the indices IMI(‘p‘) and IMz(\P\) on tables aS

The starting size N = 837 of the population assures that the relative
variation of the two indices IMI(‘p‘)and IMZ(‘p‘) has an order of magnitude of

107, till from a=1.

Example 3: Now we analyze a 2x4 table V, shown in Figure 9, referring to
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a population with N = 84 and reflecting a strong dependence between

variables, for M;=M’'=0.738 and M,=C =0.772.

Figure 9. The bivariate table V

0] 5|17

20142

22114] 5

1142

2211922

21184

The results on aV are presented in Table 4:

I I, (2as) I, (2a8)
@ aN #(aF) M, (o)) Iy, (OtS) M ((ol) IMZ(O‘S)
1 84 7040 0.936080 - 0.934091 -

2 168 52,507 0.944579 1.009079 0.946826 1.013634
4 336 405,405 0.946241 1.001760 0.952813 1.006323

8 672 3,185817  0.947102 1000910  0.955755 1.003088
16 1,344 25,259,185 0.947539 1.000461 0.957167 1.001477
32 2,688 201,168,737 0.947760 1.000233 0.957890 1.000755
64 5376 1605740225 0947871 1000117 0.958247 1.000373
128 10,752 12,831,501,697  0.947926 1000058  0.958425 1.000186

Table 4. Behaviour of the indices IMI(‘p‘) and IMZ(‘p‘) on tables aV

Also in this case a sort of stability of the two indices IMI(‘p‘)and IMz(\P\) is

expressed by their low relative variations.

Example 4: Finally, we analyze a 3x3 table W, shown in Figure 10,
referring to a population with N = 27 and with an intermediate degree of
dependence between characters, expressed by M' =0.321 and C =0.316.

DN | 00| W

IO | =W

16

oo fw

27

Figure 10. The bivariate table W

As before, starting from the given table, generating its class and
successively doubling the distributions and the corresponding classes, we
obtained the results shown in Table 5.
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I I, (2a8) ! I, (2a8)
@ aN #(aF) M, (o)) Iy, (O!S) M (o]) Iy, (aS)
1 27 500 0.214000 - 0.172000 -
2 54 5,035 0.286395 1.338294 0.250447 1.456087
4 108 62,349 0.329917 1.151965 0.300598 1.200246
8 216 871,097 0.357033 1.082190 0.330207 1.098500
16 432 12,997,105 0.370535 1.037817 0.346283 1.048685
32 864 200,705,505 0.376607 1.016387 0.354601 1.024021
64 1,728  3,154,383,809 0.379930 1.008824 0.358831 1.011929
Table 5. Behaviour of the indices IM](‘p‘) and IMz(\p\) on tables aW

In the first table N = 27, so the process of stabilization is slower than
above. The relative variation of the indices reaches an order of magnitude of
107 only arriving at a=64.

More results can be given, also increasing the dimensions of the tables,
even if the computing time increases when dealing with the generation of the

multiples &F. In any case, all results that we have achieved confirm this
stabilization of the indices when replicated on similar populations as aN
reaches some (few) hundreds.

This behaviour of I(7T) with respect to a—similar distributions can be very
useful for evaluating this index in two opposite situations.

In presence of bivariate distributions referring to small population sizes (N
< 400), we can consider the multiple table T (for oz aN > 400), and select
the value of I{aT) as a good measure of association for 7' This evaluation of
the index gives a stabilized value, as it does not depend on the ‘granularity’

of the initial class F of table 7.

Conversely, as in social sciences researchers generally work with a large
number of observations and their cross-classification tables usually refer to
populations whose size passes the threshold that assures the stability of I(7),
the observed behaviour of the indices can be used in the reverse mode. The
approximated table (o)’ with a<1 can be evaluated and the total
population can be reduced to the threshold N = 400. The software program,

instead of generating the whole class & of T (whose cardinality can be so
high to force the software to run for a long time), has to generate only the

smaller class F' corresponding to (oT)'. Hence, the software calculates the
relative position of (aT)" within an acceptable response time. The index
I((aT)") is a good approximation (~107) of the exact index I(T).
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6. Comparing I; to Mortara’s and Cramer’s indices

The purpose of this section is to offer a graphical representation of I with
respect to Mortara’s and Cramer’s normalized indices and to discuss
specifically their values on extreme dependence situations. Chosen a class

&, for each enumerated table in F, the indices M’ and C and the measures of
dependence based on the relative position IM](‘p‘) and IMZ(‘p‘) have been

evaluated. Obviously, the total ordering induced by M,(Igl) coincides with
that induced by M', hence 1 M, (o)) = I analogously for M,(lol) and C, hence

Il
Ly, o) = Ie-

Let us begin focusing the analysis on F{(42,42)(22,19,22,21)}, ie. the
class of 2x4 tables presented in Example 3 of Section 4. This class is
composed by 7,040 tables: each representing a different bivariate
distribution for a population of 84 statistical units. The following diagram
represents the relation between M’ and Iy : a point (x,y) in the graph
corresponds to the pair of values (M'(T), Iy(7)) evaluated on the same table

Tin &, considering all tables T in &F.

Iy versus Mortara
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/
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0 o1 02 03 04 05 06 07 08 09 1

Mortara's normalized index M'

Figure 11. The index I,y versus Mortara’s index in F{(42,42);(22,19,22,21)}

The first remark is that there are very few tables in & with extreme values

of Mortara’s index: only 10 percent of tables in & have M’ < 0.285714 and
only another 10 percent of them have M’ = 0.714286. These considerations
can be appreciated also by Figure 12, representing the distribution of M’ in

F (the range [0,1] of values has been divided in 20 classes, each of width
0.05).
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Mortara's distribution
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classes of values of the index M'

Figure 12. The distribution of Mortara’s index in F(42,42);(22,19,22,21)}

The following quantiles describe more analytically the distribution of

Mortara’s index in F: the first decile D;(M’) = 0.285714; the first quartile
Q:;(M’") =0.380952, the median Me (M’) = 0.47619; the third quartile Q;(M")
=0.595238 and, finally, the ninth decile Do(M") = 0.714285.

Hence, a large proportion of tables corresponds to intermediate values of
this classical normalized index: namely, 80 percent of tables are described
by a Mortara’s index in a narrow range of central values:
[0.285714; 0.714286].

The comparison between I and C, on the same class

F{(42,42);(22,19,22,21)}, deserves now our attention. In Figure 13, the
value of the index C is plotted in the X-axis, while the corresponding value
of I is plotted in the Y-axis:

Icversus C

1 ey
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0 / T

o o1 02 03 04 05 06 07 08 09 1
C

Figure 13. The index I¢ versus Cramer’s index in F{(42,42);(22,19,22,21)}
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Once again, we observe that the lower values and the higher values of C
correspond to few tables. The graphical representation of the distribution of

C in & is given in Figure 14.

C distribution
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classes of values of the index C

Figure 14. The distribution of Cramer’s index in J(42,42);(22,19,22,21)}

Only 2 percent of all tables in F has a value of C < 0.2 and the tables with

C > 0.8 are 3.7 percent of all tables in &. The quantiles of C in & are the
following: (with the same notation as above) D;(C) = 0.330752; Q,(C) =
0.449991; Me (C) = 0.565737; Q3(C) = 0.658759 and Dy(C) = 0.739896.

Now, let us consider F{(9,11,7);(16,4,7)}, the class of 3x3 tables in

Example 4 of the above section, with #F=500 and referring to a population
with N = 27. Figure 15 represents the relation between Mortara’s index and
the measure of dependence Iy

Iy versus Mortara
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Mortara's normalized index M'

Figure 15. The index 1, versus Mortara’s index in F(9,11,7);(16,4,7)}
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Once again we observe that extreme values of Mortara’s index are really

rare in the class: only 10 percent of tables in F have M’ < 0.259804 and only
another 10 percent of them have M’ = 0.637255. Conversely, 80 percent of
tables are described by values of the classical index M’ that lie in the narrow

interval [0.259804; 0.637255]. Furthermore, the minimum value of M’ in F
1s 0.090686; the maximum value is 0.862745; the median of M’ is Me(M') =

0.441176 in the class &F. These considerations can be appreciated also by
inspecting the distribution of M":

M distribution
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Figure 16. The distribution of Mortara’s index in F(9,11,7);(16,4,7)}

Among all tables in F, only 3.2 percent have M’ < 0.2, and only 2.8
percent have M' > 0.8.

Figure 17 depicts clearly the relation between C and I:

Ic versus C
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Figure 17. The index I¢ versus Cramer’s index in F7(9,11,7);(16,4,7)}
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Only 10 percent of tables in F have C =< 0.275428 and only another 10
percent of them have C > 0.603791. Conversely, a high proportion of tables
corresponds to intermediate values of this classical normalized index. The

median of C is Me(C) = 0430513 in the class F. The minimum value of C
in F is 0.083101 and the maximum value is 0.807947. Figure 18 shows the
C distribution on F.

C distribution
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Figure 18. The distribution of Cramer’s index in J3(9,11,7);(16,4,7)}

From these examples (more cases were analysed in detail), we can argue
that the indices M and C overmeasure the degree of dependence in their low

values: the tables in the class F with low values of M’ and C are really rare
and their relative position expressed by Iy and Ic detects their extreme
position in the ordering. Similarly, the indices M' and C tend to

underevaluate the strength of dependence in F providing values far from 1
on a large set of tables with high dependence.

Comparing the Figures 11, 13, 15 and 17, representing the indices based
on the total ordering versus the classical measures M’ and C, the line
bisecting the first quadrant crosses the curves for different values of M’ and
C. In the four cases that we are considering, the crossing points are

approximately 0.404 for M’ and 0.403 for C in F{(9,11,7);(16,4,7)}, and

0.446 for M’ and 0.603 for the C plotting in F{(42,42);(22,19,22.21)}. As it
was verified in many other cases, tables ranked in the same position in the
ordering of dependence can have different values of the indices M’ and C.
Furthermore, while M;(I0l), being the order of magnitude of the relative
deviation from independence, has an immediate meaning, the same cannot

be said for Mortara’s M’ and for C, in the context of the class F. Their lack
of a clear interpretation, particularly for intermediate values (where they are



Dependence measures based on partial and total orderings

dense and they can poorly distinguish between a high proportion of tables)
and for nearly extreme values (other than the unity and the null value),
suggests that it is better to use M;(lol) jointly with the indices proposed in
this work. For example, in case of M;(lol) = 0.699588 and Iy = 0.9 for an
assigned table T, we can argue that:
* the joint frequencies in the table differ from the independence
frequencies, in average, of 70 percent of their value,

* 90 percent of the tables in the same class F have a degree of
dependence - measured by M,(I0l) or by M’ - lower than 7.

7. Concluding remarks

The relative position a table has in a chosen dependence ordering is a
meaningful measure of dependence, denoted by I(7), whose interpretation is
immediate and straightforward.

The properties of I(T) are:

¢ the index is normalized;

* it attains the extreme values on the extreme situations of dependence,
constrained by the given margins;

* it inherits all invariance properties the ordering induced by f has (as
bivariate distributions of qualitative variables require);

* it allows comparisons between cross-classification tables with different
dimensions (r and ¢) and population size N;

* it behaves as if it had a sort of invariance property with respect to
similar populations: as aN reaches some hundreds I(7) attains a
substantial stabilization, presenting fluctuations only on its second
decimal.

This last property can be very useful for evaluating the index in the two
opposite situations of bivariate distribution referring to small population
sizes and, in the reverse mode, facing computational complexity for cross
classification tables referred to populations whose size passes the threshold
that assures the stability of I(T).

The analysis of the relation between M’ and C with respect to the
corresponding indices Iy and Ic shows that the former measures are
remarkably concentrated on their intermediate values. They assign a narrow
interval of central values to a wide set of tables, poorly discriminating
between their degree of dependence. On the other side, only a low
proportion of tables corresponds to the extreme values of those indices.
Hence, in case of very high or very low strength of dependence, the indices
C and M’ cannot reveal these situations by their values, while Iy and I¢
depict it precisely.



F. Greselin

Acknowledgements

The author wish to thank M. Zenga for his continuous suggestions on a preliminary draft of
the paper and the Italian MIUR for financial support, within the project: ‘Descriptive and
Inferential Aspects for Categorical Data Analysis’, led by professor A. Forcina, University of
Perugia (COFIN prot. 2002133957_004). Sincere thanks to an anonymous referee for his
constructive remarks and comments.

References

Bishop Y.M.M., Fienberg S.E., Holland P.W. (1995). Discrete multivariate
analysis: theory and practice. 12° ed., MIT Press, Cambridge.

Cramer H. (1946). Mathematical Methods of Statistics. Princeton, Princeton
University Press.

Greselin F. (2003). Counting and enumerating frequency tables with given
margins. Statistica & Applicazioni, 1, 87-104.

Greselin F. and Zenga M. (2004a). A partial ordering of dependence for
contingency tables. Statistica & Applicazioni, 2, 53-71.

Greselin F. and Zenga M. (2004b). Partial and total orderings of dependence
on tables with given margins. Quaderni di Statistica, 6, 129-155.

Goodman L.A. and Kruskal W.H. (1954). Measures of Association for Cross
Classification. Journal of the American Statistical Association, 49, 723-764.
(1959). Measures of Association for Cross
Classification, II: Further Discussion and References. Journal of the
American Statistical Association, 54, 123-163.

(1963). Measures of Association for Cross
Classification, III: Approximate Sampling Theory. Journal of the American
Statistical Association, 58, 310-364.

(1972). Measures of Association for Cross
Classification, IV: Simplification of Asymptotic Variances. Journal of the
American Statistical Association, 67,415-421.

(1979). Measures of association for cross
classification. Springer series in Statistics, Springer-Verlag, New York.
Kendall M. and Stuart A. (1979). The Advanced Theory of Statistics, vol 2:
Inference and Relationship. 4th edn. New York: Macmillan.

Mortara G. (1922). Lezioni di statistica metodologica. Citta di Castello,
Societa tipografica “Leonardo da Vinci”.

Pearson K. (1904). Mathematical Contributions to the Theory of Evolution.

XIII. On the Theory of Contingency and Its Relation to Association and
Normal Correlation. Drapers’ Company Res. Mem., Biometric Ser., 1.



Dependence measures based on partial and total orderings

Zanella A. (1988). Lezioni di Statistica, parte II: Strutture di dati in due o piu
dimensioni, sez. II: La Connessione. Vita e Pensiero, Milano.



