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Table 2 Selected phenotypes for participants in VA Normative Aging Study 1999-2008
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Table 3b Summary statistics short and long-term pollutants relative to examination date for 473 participants at first visit
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our cohort. We did a cross sectional analysis,
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« Confounders for Fasting Blood Glucose: Age, BMI, insulin

iIntake, other diabetic medications, and smoking status.

« Confounders for Aging: BMI, smoking status, physical
activity, educational level, alcohol consumption

« Confounders for Black Carbon and Lung Function Decline:
Age, BMI, smoking status, height, medication intake,

education, and disease status

Results

Fig 1 Manhattan Plot for association between
methylation and fasting blood glucose level
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Among the 46,983 CpG sites queried for an
association between fasting blood glucose levels
and methylation, 23 sites were significant by the
BH method.

Selected genes and functions for top 10 CpG hits for the association between methylation and fasting
blood glucose level
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« This CpG site was located at the peroxisome proliferator-activated
receptor pathway gene (TLL1); components of this receptor pathway are
molecular targets for the treatment of diabetes (Celi and Shuldiner, 2002).

Age-associated methylation changes: We found that several CpG sites belong
to genes previously implicated in aging biology and related processes:

« ADAMTS18 encodes a member of the ADAMTS (a disintegrin and
metalloproteinase with thrombospondin motifs) protein family, which is a
putative tumor suppressor related to nasopharyngeal carcinoma (Li et al.,
2010).

« Glia Cell-Derived Neurotrophic Factor (GDNF) is a gene subject to
epigenetic modifications, contributes to behavioral responses to stress (Uchida
et al., 2011).

« Epigenetic process influence the imprinting of anoctamin 1 (ANO1), a calcium
activated chloride channel. (Okae et al., 2012)

« Adenylate cyclase 5 (ADCY5) is subject to DNA hyper-methylation, which is
associated with precancerous stages of lung adenocarciroma (Sato et al.,
2013).

Conclusions

Understanding the underlying epigenetic basis of human
health and disease outcomes is critical to informing
prevention efforts, especially as we reconstruct past
exposure “signatures” in the epigenome to predict future
disease risk. Our current study leverages a rich DNA
archive to study the association(s) of air pollution, age,
lung function decline, and fasting blood glucose on DNA
methylation in vivo, and our preliminary data suggest
that we can identify candidate CpGs in relevant genes
that function within basic pathophysiological pathways.
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