
Statistica & Applicazioni 
Vol. I, n. 2, 2003 

 
 
 

 

Counting and enumerating frequency tables  
with given margins  

 

Francesca Greselin§ 

 
 

Summary:  
The problem of finding the number of rectangular tables of non-negative integers 
with given row and column sums occurs in many interesting contexts, mainly in 
combinatorial problems (counting magic squares, enumerating permutation by 
descents, etc.) and in statistical applications (studying contingency tables with given 
margins, testing for independence, etc.). In the present paper a new recursive 
argument is presented to produce a general expression for the number of m n tables 
with given margins. The result has the same expressive force of the one presented by 
Gail and Mantel (1977), but, remarkably, the counting approach suggests, quite 
naturally, also a recursive algorithm to explicitly generate the entire class of tables.  
This work is a necessary step for studying a new measure of association, based on 
the relative position that a given table assumes in its class, endowed by an 
association ordering. 
 
 
Keywords: Contingency tables, frequency tables, enumeration of contingency tables 
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1. Introduction 

Consider the integral m n table X whose entries are count data for a two-
way classification scheme. We shall be concerned first with the problem of 
counting up, then of enumerating all contingency tables with given margins. 

These classical problems arise when trying to introduce a new approach to 
measure association, namely evaluating the suitability to consider, as an 
association index, the relative position a distribution assumes in the set of all 
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contingency tables with given margins, endowed by a partial or total 
ordering of dependence (Greselin F. and Zenga M. 2001, 2002). The new 
association measure requires the knowledge of how many tables are 
consistent with the given margins, and also what they exactly are as in the 
context of Fisher-Yates test (and, more generally, exact inferential methods 
for contingency tables) in order to rank each of them with respect to a 
chosen association ordering.  

2. Preliminaries and notation  

Given the m n table X with m and n greater than one, let xij be its entry in 
row i and column j. Throughout, xij are assumed to be non negative integers. 
Let 1 be a column vector of ones and define the row totals r = X1, the 
column totals c = (XT1) T, and the total population size N = c1 = rT1.  

Let m,n(r,c) denote the reference set of all m n tables satisfying the same 
marginal constraints r and c as X: 
 

            m,n(r,c)={A | A={aij} is m×n, aij N, A1 = r; (AT1)T = c}             (1) 
 

Similarly, #m,n(r,c) will designate the number of matrices A  m,n(r,c):  
 
                             #m,n(r,c) = Card { m,n(r,c) }                               (2) 

 
As usual, the following representation for table A can be chosen: 

 
a11 a12 �… a1j �… a1n r1 
�… �…  �…  �… �… 
ai1 ai2 �… aij �… ain ri 
�…   �…  �… �… 
�…   �…  �… �… 
am1 am2 �… amj �… amn rm 
c1 c2 �… cj �… cn  

 

3. Brief review of the literature on determining the cardinality of  
m,n (r,c) 

The problem of counting all tables with given margins has received a fair 
amount of attention in the literature on combinatorics. It may be noted that 
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their number is equal to the number of ways that m types of objects can be 
distributed in n boxes, so that there are altogether ri objects of type i and 
there are cj objects in box j.  

Most of the literature was primarily concerned with finding exact values 
for #m,n(r,c)  in various special circumstances.  

A number of authors studied the particular case of square matrices n n 
with all marginal totals equal to t, i.e. stochastic matrices, in statistics, or 
magical arrays, in discrete mathematics. MacMahon (1915, 1960), Anand, 
Dumir and Gupta (1966), Stein and Stein (1970), Smith (1971), Gupta and 
Nath (1972), Nath and Iyer (1972), Abramson and Moser (1973) solved in a 
closed form only simple cases. For example, Stein and Stein gave the exact 
values of #n,n(r,c)  for a finite set of values of n and t. Just to give an idea of 
the size of this set, all the 5 5 tables with margins r = c = (15,15,15,15,15) 
are 1,9208�… 1050. Everett and Stein (1971) provided an asymptotic formula 
for the number of integer stochastic matrices. 

Carlitz (1966, 1971, 1972), Grimson (1971, 1972) and Gupta (1968, 1971) 
considered a more specific case: the enumeration of symmetric square 
matrices. Stanley (1973) proved that #n,n(r,c)  is a polynomial on t  (the row 
and column sum) of degree (n-1)2, then Dahmen and Micchelli (1998) re-
proved this result, that was indeed conjectured by Gupta (1968), while 
Jackson and Van Rees (1975) presented a simplified computation for the 
coefficients of that polynomial. A comprehensive  review can be found in 
Stanley (1986, 1997). 

Another thread of investigations is based on the special circumstance of 
matrices of zeros and ones, analyzed by O�’Neil (1969a), Brualdi (1980) and 
Snijders (1991), and works quoted therein. Kemperman and Kuba (1998) 
investigated the slightly broader case of two valued matrices, and they 
solved the 2 n and 3 n cases. 

Referring to rectangular matrices, but yet restricting to the situation in 
which all whose rows sum to a given non-negative integer t and whose 
columns sum to a non-negative integer s, Edmonds (1977) solved the 2 n 
and the 3 n cases, showing that #m,n(r,c)  is a polynomial on t of degree (n-1) 
and 2(n-1) respectively. Mirsky (1968) determined the necessary and 
sufficient conditions for the existence of integral matrices whose elements, 
row-sums, and column-sums, all lay between prescribed bounds. Agresti and 
Wackerly (1977) and Agresti, Wackerly and Boyett (1979) gave maxima for 
several table dimensions m and n and N population size.  

Finally, referring to the general case, Leti (1970) gave an exact expression 
for #m,n(r,c) by an iterating process. A straightforward approach to table 
enumeration makes use of a recurrence: Gail and Mantel (1977) carry that 
out, leading to an exact and expressive formula. Macdonald (1979) provided 
an algorithm for computing #m,n(r,c) and a formula for this number, based on 
complete symmetric functions. James and Kerber (1981), relating m,n(r,c) to 
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the number of double cosets, gave a group-theoretic result, expressing  
#m,n(r,c) in terms of cardinality of Young subgroups. Mount  (1994, 1999) 
made a great improvement in deriving closed expressions for the number of 
tables. He showed that the counting function is a piecewise polynomial of 
row and column sums (already given by Blackley (1964) in a different way), 
he proposed a technique for inferring the polynomials, and obtained an 
algorithm whose run-time depends on the order of the matrix only and not on 
the magnitude of the components of r (or c, supposing m and n fixed).  

 
In addition to the attempts aimed to the analytical formulation of #m,n(r,c), 

useful approximations and asymptotic expressions for the number of tables - 
in its general formulation - were investigated by O�’Neil  
(1969b), Békéssy et al. (1972), Bender (1974), Good (1976), Good and 
Crook (1977) and, more recently, by Diaconis and Efron  
(1985). Mount (1999) proposed a new estimate and compared his 
approximate evaluations to the results by Gail and Mantel and Diaconis and 
Efron on a set of tables with their respective exact values of #m,n(r,c). 

The most up-to-date review over all these topics - that have seen active 
development also in recent years - is offered in Diaconis and Gangolli  
(1995). 

4. Counting the number of m n tables with given margins 

A well-known elementary result that represents a first step in approaching 
the more complex problem is the cardinality Ck(N) of the class composed by 
all k-tuples of non negative integers with given sum N.   

4.1 Cardinality of k-tuples of integers with given sum 

Let N be the value of the given sum. So, for these k-tuples: 
 the same integer value can be assumed by two or more elements in the k-
tuple; 

 two k-tuples with the same elements are considered different if their 
elements are placed in different orders; 

 no element may assume a value greater than N. 
 
Remarks: 
 For k = 0, clearly C0(N) = 0. 
 For k = 1 there is only one 1-tuple, i.e. the integer N: C1(N) = 1. 
 For k = 2 there is a 2-tuple (i, N-i) for every integer i:  0  i  N, therefore 
C2(N) = 1+N. 

 For N = 0 there is only one possible k-tuple, composed by all null 
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elements, so Ck(0) = 1, for every k.  
 For N > 0 each k-tuple contains at least a non-null element. If 0 < N < k all 
the k-tuples have at least k-N (and no more than k-1) null elements.  

 
PROPOSITION: 
The number Ck(N) of k-tuples of integer numbers whose sum is a given 
integer N is: 

 
1k

1kN
(N)Ck  (3) 

 
The thesis can easily be proved by induction on k, using a well-known 

property of binomial coefficients. 
 
Remark 1:  

An algorithm that would generate all k-tuples with given sum N can be 
developed recursively using the relation between k-tuples and (k-1)-tuples; 
the process stops when arriving at k=1, whose solution is known. 
Remark 2: 

Ck(N) corresponds to the number of ways of distributing N like objects 
into k unlike cells.  

4.2 Cardinality of matrices of integers with given row and column sums 

Before proceeding to get an expression for #m,n(r,c), the literature on  the 
complexity of computing  this cardinality will be recalled. 

4.2.1 Problem hardness 

Counting tables with given margins is #P-hard (even in the case when m or n 
is 2, using the familiar notion of #P-completeness, introduced by Valiant, 
1979) as proved by Dyer, Kannan and Mount (1997). They obtained this 
relevant result by polinomially reducing the computation of the number 
#2,n(r,c) of these matrices  to the computation of the number 2,n(r,c) of 
integer points in a specific 2 n politope P(r,c) with integer vertices, then 
they employed Dyer and Frieze�’s result (1991) about the #P-hardness of 
computing the P(r,c) volume to obtain the thesis. 

4.2.2 A recursive method for counting 

Before approaching a general expression for #m,n(r,c), some remarks are 
needed. For the nature of the problem:  
 
                                            ).,(# ),(# mn,nm, rccr                                          (4) 
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Furthermore, the quantity #m,n(r,c) is invariant to whatever reordering of 

the elements of vectors r and c. Without any loss of generality, one can pose 
m  n, and for any A m,n(r,c): 
 each row (column) of A is an n-tuple (m-tuple) with given sum, as in 
section 4.1; 

 A can be composed by entries having the same repeated value; 
 the arrangement of the entries is meaningful, hence two tables that differ 
only by the arrangement of their elements must be considered different; 

 aij  min(rj,ci),   i,j:  1  i  m, 1  j  n, as rj and ci are the maximum 
values in the row and column;  

 the total sum of the entries of A is equal to the sum of the elements of 
vectors r and c (by definition):  
 

                                           .
m

1i

n

1j
ji

m

1i

n

1j
ij cra                                       (5) 

 
The case m = n = 0 has no interest, so let us pose m = 1. Then #1,n(r,c) =1, 

for there is only one matrix whose entries are exactly those of vector c. 
 
For m = n = 2, once the value of any of the four entries of A is assigned, 

the three others are determined by the margin constraints. All matrices with 
given margins are generated giving to a11 all the range of its possible values: 

 
                             max (0, c1- r2)  a11  min (r1, c1).                                (6) 
 
The resulting expression for #2,2 is therefore: 
 
                      #2,2(r,c) = min (r1,c1) �– max (0, c1- r2) +1.                           (7) 
 

Let us now discuss the case m = 2 and n > 2.  
 
First of all, without loss of generality, let a11 be chosen in the range (6). 

The value of a21 is determined by the constraint on first column: 
 

a11 a12 . . . . . . . . . a1n r1 
 a21= c1-a11 a22     r2 

c1 c2 �…. ci �…. cn  
 
For each possible value of a11 one has to consider all matrices with 2 rows 

and (n-1) columns: 
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 a12 . . . . . . . . . a1n r1 = r1-a11 
 a22     r2 = r2-a21 
  c1 =c2 �…. c i-1=ci �…. c n-1=cn  

 
with new marginal constraints r  and c , defined by: 
 

                     

1112212
'
2

111
'

1

1i
'
i

acrarr

arr

1ni1forcc

                                 (8) 

 
Note that c  is (n-1)-dimensional (while vector c has n components), 

whereas r  still has two components as r.  
Let now a11

(k) denote the k-th integer value for a11 obtained by ordering all 
possible values for a11, with an index k ranging from 1 to #2,2(r,c).  In 
relation with a11

(k), let us consider the vectors r  e c , directly determined by 
a11

(k), and denoted with r (k) and c (k). So we have obtained the relation: 
 

                     ),(# ),(#
),(#

1

(k)(k)
1-n2,n2,

2,2 cr

c'r'cr
k

                                (9) 

 
The general case: m > 2, n > 2. 

Let #m-1,n(r ,c ) denote the number of tables with m-1 rows, with the 
constraints given by the vectors r  and c , obtained from r and c by the 
following relations: 

 

                            
1-mj1 forr  r

ni 1for a - c  c

1j
'
j

1ii
'
i                                      (10) 

 
For each n-tuple of non negative integer values assigned to the first row 

elements of the former table: 
 

a11 �…. �…. a1i �…. a1n r1 
a21  �…. �…. a2i �…. a2n  

      �… 
      rj 
      �… 

am1   ami  amn rm 
c1 �…. �…. ci �…. cn  

 
 
one obtain #m-1,n(r , c ) different solutions: as many as the number of tables 
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with m-1 rows and satisfying constraints r , c : 
 

a21 �… �… a2i  a2n r 1=r2 
�…   �…   �… 
      r j-1=rj 
      �… 
      r m-1=rm 

c 1=c1-a11  �…. c i=ci-a1i   �…. c n=cn-a1n   
 

 
Observe that c is an n-dimensional vector, and so is c , whereas if r has m 

components then r  has only (m-1).  
 
Let us denote with R={a11, a12, �…, a1n} the generic first row in matrix A. 

Such rows are vectors in Nn, so we can arrange them in the usual 
lexicographic order, and we can call R(k) the k-th vector in this ordered 
sequence. We will denote with Rn(r, c) the unknown number of these first 
rows in A. Consider now the vectors r  and c , directly determined by R(k), 
and denote them with r (k)  and c (k). We can state the relation:  

 

                         ),(# ),(#
),(R

1k

(k)(k)
n1,-mnm,

n cr

c'r'cr                            (11) 

 
that recursively gives the number of m n tables with given margins r and c. 

 
This expression gives the solution of the problem for m>2; the recursive 

process ends when it arrives to the case m=2, for which the solution is 
known. 

 
It remains to draw Rn(r,c), i.e., the number of n-tuples that can be the first 

rows for A. The elements a1j  for j=1,�…,n   in such first rows must satisfy the 
following inequalities: 

 

                                  
  

n

j
1

1
j1

jj1

ra

nj 1for  ca
                             (12) 

 
To obtain a recursive expression for Rn(r,c), an explicit definition for 

R2(r,c)  will be useful. Let a11 and a12 be the values of the generic first row in 
a two columns table, with a generic number of rows. Observe that, given a 
value to a11, a12 is determined by the second constraint: a12 = c1 - a11. Each 
first row of A corresponds to an integer value assigned to a11, satisfying the 
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following inequalities: 
 

           
Ncr0maxr -c0maxa

c,rmina

11

m

2i
i111

1111

, , 

 
                       (13) 

 
The second inequality comes from the fact that the minimum value for a11 

is reached when all the ai1 assume their respective maximum value ri, their 
sum being given as: 

                                                   .
m

1i
1i1 ca                                              (14) 

Hence: 
                .,, 1Ncr0maxc,rmin)(R 11112    cr                    (15) 
 
Finally, let us consider Rn(r,c), focusing once more on the range of 

possible values for a11. As done before, let a11
(k) denote the k-th ordered 

value of a11 in its range given by (13), and let the vectors r  and c , be 
directly determined by a11

(k), with r (k) and c (k). Therefore:   
 

                                
),(

),(
cr

c'r'cr
2R

1

(k)(k)
1nn ),(RR

k
                              (16) 

 
where the vectors r (k)  and c (k)   are defined by:  

 

              

mj2forr  r

ar  r

1-ni1 for  c  c

 
(k)

j
(k)'

j

(k)
11

(k)
1

(k)'
1

(k)
1i

(k)'
i

                           (17) 

 
so completing the determination of the cardinality of the considered class of 
tables. 

5. Generation of the entire class of tables with given margins 

5.1 Brief review 

The problem of generating the isomarginal family of bivariate distributions 
has been widely analized: a number of authors, since Klotz (1967), Stein and 
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Stein (1970) with a branching algorithm, successively extended and clearly 
described by Good and Crook (1977), then Goodall (1968), March (1972), 
Boulton and Wallace (1973), Hancock (1975), Baker (1977), Pagano et al. ( 
1981), and also Mehta and Patel (1983) with the network algorithm, all them 
have suggested algorithms for exhaustively stepping through the set 

m,n(r,c), one table at a time. The main purpose of these works was directed 
toward the foundation of exact inferential methods for contingency tables. 
Most of these algorithms begin at some canonically constructed initial table 
and proceed by making small changes to cell entries so that the tables evolve 
monotonically in some linear order. The construction of an algorithm for the 
enumeration of the tables with given margins is very much dependent upon 
the chosen representation for m,n(r,c) and in the literature three alternatives 
are presented:  
 a tree in which each leave is a completely filled matrix, 
 a network consisting of nodes and arcs in which each table is a path (i.e. a 
sequence of arcs) from the source node to the sink node, 

 a convex subset of lattice points in Rm n. 
For a detailed survey of algorithms for total enumeration, see Verbeek and 

Kroonenberg (1985). 
Of course, the set m,n(r,c) is large, and complexity considerations (for a 

thorough discussion see section 9 in Diaconis and Gangolli, 1995) may rule 
the algorithms out of success. The number of possible tables increases 
factorially fast as m, n, or the total population size N increases. However, in 
statistical applications, one is frequently in the situation in which many 
subjects are classified into a small number of categories, so m and n are 
given and N can vary. In these circumstances the problem is hence 
theoretically tractable: we were pleasantly surprised at how often the 
complete enumeration of m,n(r,c) with respect to real bivariate statistical 
data is available, in a reasonable computing time. 
 

5.2 Generating  from counting 

The nature of the present approach to the problem of counting can lead to 
gear an algorithm for generating the entire set of bivariate distributions with 
given margins. Recursion is not only a particularly powerful means in 
mathematical definitions but also in formulating algorithms.  It is well 
known that recursive algorithms are primarily appropriate when the problem 
to solve, or the data structure to process, are already defined in recursive 
terms. The structure of the algorithm can hence be represented by a tree, 
whose definition is now briefly recalled. 

A tree structure with base type T is either (Wirth,1976): 
 the empty structure; 
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 a node of type T with a finite number of associated disjoint tree structures 
of base type T, called subtrees, represented by the following graph: 

 

 
Figure 1. Graph representation of a tree, with a root and three subtrees. 
 

 
Let us consider the tree: 
 

 whose base type is a table with m rows and n columns; 
 whose root1 is the m n table with unassigned internal values; 
 whose nodes at level 1 correspond to the tables in which the first element 
a11, is given. The i-th branch that exits from the root, from left to right, 
points to the i-th table whose value of a11 is the i-th among the Rn(r,c) 
possible values; 

 each node at level l, with 0 < l  (n-1), has as many ordered descendants as 
the possible values of a1(l+1). This position completely defines level l+1 of 
the tree and corresponds to the partial construction of a double table, 
determining a portion of its first row.  

 
Now, giving a value to a1i   for i = 1,�…, n-1 also means having given the 

value of a1n (because of the constraint on c1) so that nodes at level n-1 refers 
to all the tables with first row assigned and satisfying the r and c constraints. 
Their number is Rn(r, c). Scanning these first rows from left to right in level 
n-1 of the tree, they appear in lexicographic order as vectors in space Nn. 

 
To understand how the algorithm proceeds (choosing an example without 

any statistical meaning, just to be able to draw it in a page), let c = (3,2,2) 
and r = (3,1,3) be the two marginal distributions representing the row and 
the column constraints, with m = n = 3. 

 
In the following representation, the tree is built up to level m �– 1 = 2, and 

all possible first rows for the tables appear: 
 

                                                 
1  level, descendant node, root and ancestor definitions are here recalled:  
The root of a tree is defined to be at level 0. A node y which is directly below node x is called 
a (direct) descendant of x; if x is at level i, then y is said to be at level i+1. Inversely, node x is 
said to be the (direct) ancestor of y.  Cfr. N. Wirth (1976). 
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0 1 2 3

0 1 2 0 2 1 1 0 2 1 1 1 1 2 0 2 0 1 2 1 0 3 0 0

 
 

Figure 2. Tree representation for the generation of all bivariate tables with c = 
(3,2,2) and r = (3,1,3). In this figure the tree is only partially built up to level m �– 1 
= 2. All possible first rows for the tables appear in level 2. 

 
Our goal now is to accomplish the definition of the tree. Let i assume an 

integer value in (1,�…,m-2), where  1 -n  1)(i  1n i  l , hence the 
generic level l can be expressed as: l = i  (n-1) + j with j opportune integer 
in (0,1,�…,(n �– 2)). Each node at level l has as many descendants as the 
possible values of a(i+1)(j+1). So nodes at level l+1 are completely defined. 
Observe that the range of values for a(i+1)(j+1) is determined by the new 
constraints r  and c  given by (10), or the analogue obtained after i rows of 
recursion. 

Finally, as the assignment of all values a(i+1)(j+1) with j = 0,1,�…,(n�–2) means 
also the assignment of a(i+1)(n) for the constraint c(i+1), the nodes at level 

1 -n  1)(i  l  correspond to all the tables with i+1 rows completely 
determined and satisfying the r and c constraints.  

Reaching level l = (m-1)(n-1) and considering the constraint represented 
by r, all the m×n tables are wholly defined.  

 
Throughout this representation, the cardinality of the class of tables with 

given margins is the number of leaves2 of the corresponding tree, i.e., the 
number of elements appearing at level (m-1)(n-1). In other words, it equals 
the cardinality of nodes of the tree whose path length3 is (m-1)(n-1). 

 
In the previous example, the whole tree for c=(3,2,2) and r=(3,1,3), is: 
 

                                                 
2  If a node in a tree has no descendants, it is called a terminal element or a leaf; and an 
element which is not terminal is an interior node. 
3  The number of branches or edges which have to be traversed in order to proceed from the 
root to a node x is called the path length of x.  
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0 1 2 3

0 1 2 0 2 1 1 0 2 1 1 1 1 2 0 2 0 1 2 1 0 3 0 0

0 1 2 0 1 2 0 2 1 0 2 1 1 0 2 1 0 2 1 1 1 1 1 1 1 2 0 1 2 0 2 0 1 2 0 1 2 0 1 2 1 0 2 1 0 2 1 0 2 1 0 3 0 0 3 0 0
0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0

0 1 2 0 1 2 0 2 1 0 2 1 1 0 2 1 0 2 1 1 1 1 1 1 1 2 0 1 2 0 2 0 1 2 0 1 2 0 1 2 1 0 2 1 0 2 1 0 2 1 0 3 0 0 3 0 0
0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0
3 0 0 2 1 0 3 0 0 2 0 1 2 1 0 1 2 0 2 1 0 2 0 1 2 0 1 1 0 2 1 2 0 1 1 1 0 2 1 1 1 1 1 1 1 1 0 2 0 1 2 0 2 1 0 1 2  
 
Figure 3. Complete tree representation for the generation of all bivariate tables 
with c = (3,2,2) and r = (3,1,3).  
 

An algorithm that generates all the tables with given margins can be easily 
built on such tree structure, following its preorder traversal4 and enumerating 
all tables, from the first to the last one, in lexicographic order. 

 
A software program has been developed according to the algorithm and 

run on a 1800 MHz Pentium PC. The following table reports the running 
time of the program, for values of m, n and N in some range of statistical 
association analysis.  

 
Table 1. Computing time to generate some classes of tables with given margins, for 
different dimensions m and n, and constraints r and c. 
 

m n N r c Time to generate  
m,n(r,c) (in seconds) 

3 2 1280 (620,660) (384,768,128)                              0.35 
4 2   672 (310,362) (176,152,158,186)                            22.383 
3 3   432 (256,64,112) (144,176,112)                          147.192 
3 2   720 (180,540) (240,240,240)                              0.22 
3 3   134 (27,51,56) (61,45,28)                            14.45 
4 2   300 (120,180) (54,66,141,39)                            18.57 
3 4     56 (15,9,21,11)  (12,26,18)                            28.44 
4 4   125 (12,34,21,58) (15,37,44,29)                    398997.76 

                                                 
4  Three main orderings, conveniently expressed in recursive terms, emerge naturally from the 
structure of a tree. Referring to the general tree in which R denotes the root and A and B 
denote the left and right subtrees, the three orderings are:    

1. Preorder:   R,A,B (visit root before the subtrees) 
2. Inorder:     A,R,B  
3. Postorder:  A,B,R (visit root after the subtrees). 
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The results are very encouraging because the program, while generating 

the set of matrices in m,n(r,c), also computes a variety of statistical indices 
(contingencies, association measures and ranking of tables in partial 
association ordering) for each of them in a reasonable amount of time. As 
remarked above, the number of tables with given margins grows factorially 
with m and n and the computing time become heavy for m and n  4. 

 
Further research can be devoted to the enumeration of tables of higher 

dimension. The particular form of the algorithm extends quite readily to the 
enumeration of three and higher dimensional tables conditional on their 
margins. The coding of these extensions would be but a direct extension of 
the present code: whenever the present algorithm generates an m×n table 
{aij}, a new procedure can consider it as the first slice of a m×n×p table, so 
that all three-way tables can be built up generating all p×n tables with given 
first column {aij1}={aij} and given margins. The recursive structure of the 
method can afford successively four-way tables and so on. These 
considerations attain to the feasibility of the extension of the software to 
cope with contingency tables formed by cross-classifying three or more 
categorical variables.  

With reference to the complexity of the same problem, once more, as the 
cardinality of the class of tables increases exponentially with the number of 
categories in each variable, we expect that the needed computing time 
becomes rapidly critical. 

6. Concluding remarks 

The present paper gives a recursive method to obtain the number of 
frequency tables with given margins. This approach for counting, naturally 
suggested an algorithm to generate all the matrices. The software based on 
this algorithm provides a tool to produce the class of all considered tables. 
Our aim is to exploit it in order to investigate how different association 
orderings can order contingency tables in the same class. Furthermore, a 
possible significant extension of this work might be to evaluate the behavior 
of a new category of association indices, based on the relative position a 
contingency table assumes in the context of its class. A sort of property of 
multiplicative invariance of those measures, for example, could be very 
useful to face the hardness of the problem of generating the entire class of 
tables.  
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