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Summary:  
For two-way contingency tables, whose row and column variables have nominal 
categories, we introduce a new partial order according to the strength of 
dependence within the class of all contingency tables with given margins. The order 
holds among tables which share the same configuration of signs in the deviation 
from independence (contingencies) and takes into account the absolute value of 
these contingencies. Our order, which seems to possess a more direct and intuitive 
interpretation relative to similar ones available in the literature, is characterized by 
a sequence of frequency transfers over a closed path, which involve an even number 
of cells and leave the marginal distributions unchanged. We derive necessary and 
sufficient conditions for maximal (minimal) tables, according to our notion of 
dependence. Furthermore a simple algorithm is provided to check these conditions. 
Finally, an associated measure of dependence is briefly mentioned. 
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1. Introduction 
 

The literature on dependence orderings is quite extensive and it deals mainly 
with ordinal qualitative and quantitative variables. In this framework, �“two 
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random variables X and Y are said to be positively dependent if either 
random variable being large probabilistically indicates that the other random 
variable is large�” (Kimeldorf and Sampson, 1987). This concept of positive 
dependence has played a fundamental role in many recent new ideas in 
statistics. Far from attempting an exhaustive review, we will briefly recall 
here that several notions of positive dependence were proposed by Lehmann 
(1966), Esary, Proshan and Walkup (1967), Karlin (1968), Shaked (1977), 
among many others. Shaked and Shantikumar (1994) provided an extensive 
review of all these, and presented most theoretical results derived from the 
study of their respective implications.  

Successively, a new approach to the study of positive dependence has 
begun. The basic idea is to compare two bivariate distributions having the 
same pair of margins in order to determine whether one distribution is more 
positively dependent than the other one. Thus it is to attempt a partial order 
of the distributions according to their degree of positive dependence. 
Tchen�’s more concordant ordering (1980), Rinott and Pollak�’s covariance 
ordering (1980) and Shaked and Tong�’s ordering for multivariate r.v. (1985) 
are the better known examples of such orderings. 

 
To date, in the literature relatively few works consider dependence 

orderings for nominal categorical variables, as we intend to study in the 
present paper. 

In this context, an interesting approach to dependence orderings is 
presented in Forcina and Giovagnoli (1987), where the authors proposed the 
�“asymmetric dependence pre-ordering�”, the �“weak interdependence pre-
ordering�” and the �“strong interdependence pre-ordering�”. Their orderings are 
based on linear transformations on matrices, which produce a loss of 
information (hence a loss of dependence) in the rows or columns of the 
transformed matrix. Unfortunately, if the basic idea is still to compare two 
bivariate distributions having the same pairs of margins, these proposals are 
not useful: they yield the modification of marginal distributions and the 
transformation of integer joint frequencies into real ones.  

Earlier, Joe (1985) proposed to compare two distributions by the Lorenz 
ordering of the vectorialized r×c entries. More recently, Scarsini (1990) 
slightly modified Joe�’s proposal, also taking into account the given margins.  
In section 2 we briefly recall their approaches and we analyze how 
appropriate they can be in assessing dependence. 

Hence, the purpose of this paper is to introduce a new dependence ordering 
between bivariate distributions with fixed row and column sums and a 
special kind of frequency transfer �– among the cells of a double table �– 
which generates a decrease in dependence.  

Section 3 presents the �‘directional dependence ordering�’: this definition  is 
natural enough and in a sense more intuitive than earlier ones considered in 
the literature: it takes into account the signs and the absolute values of the 
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r×c contingencies. The new (partial) ordering is characterized in terms of 
cyclic frequency transfers. The notion of cycle frequency transfer 
generalizes, over a closed set of pair of cells, the transformation suggested 
by Diaconis and Sturmfels (1998)  and carried out over 4 cells, in order to 
generate a Markov chain in the class of all bivariate distributions with given 
margins. 

In section 4, necessary and sufficient conditions are given to characterize 
maximal (or minimal) elements in the chosen set, endowed with the 
directional dependence ordering.  

Finally, in section 5, a new measure of dependence is proposed and some 
of its properties are sketched.  

 
 

2. Dependence orderings for categorical variables, in the class of 
bivariate distributions with given margins  

 
In this section, after introducing some notations, we recall Joe�’s and 

Scarsini�’s proposals and we discuss their relevance in comparing bivariate 
distributions with respect to (w.r.t.) their degree of dependence. 

 
Let the n statistical units of a given population be classified according to 

the qualitative variables A and B, both categorical, with a finite number of 
unordered categories, denoted by a1,�…,aj,�…,ac and b1,�…,bi,�…,br 
respectively. 

With regard to the typology of statistical data (Kendall and Stuart (1979), 
Leti (1983), Zanella (1988)), the following three cases are usually examined: 

a) both A and B margins are fixed; 
b) only the marginal frequencies of one variable are fixed; 
c) there are no constraints on the marginal frequencies (in other words, 

only the total population size, say n, is fixed).  
In this paper we refer to case a).  
Let  be the class of all r×c contingency tables with non negative integer 

entries  nij, whose row sums ni�• and column totals n�•j are considered fixed.  
 
In order to compare the relative degree of dependence represented by two 

bivariate distributions T and T  of , Joe (1985) suggested that the column 
vectors vec(T) and vec(T ), respectively obtained by piling up the columns 
of T and T , are compared by using the classical majorization ordering of 
Marshall and Olkin (1979). Recalling that if x=(x1,�…xp) and y=(y1,�…yp) are 
two vectors of dimension p (p= r×c, in the present case), then x majorizes y 
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and we write x M y, if 
==

≥
k

1i
[i]

k

1i
[i] yx , for k=1,�…, p-1 where x[1] �…  x[p] 

and y[1] �… y[p],  and 
==

=
p

1i
[i]

p

1i
[i] yx . 

 
In other words, after rearranging in two r×c vectors the internal 

frequencies of each table, Joe�’s proposal is to consider their ordering, based 
on the Lorenz curve.  

In order to understand the rationale of Joe�’s proposal, let us observe that, 
in the case of independence, each row in a bivariate table is a distribution 
similar1 to that of the marginal row (and the same holds for columns); 
moreover, if the margins are uniform, i.e. for ni�•=n/r and n�•j=n/c 
∀ i∈{1,�…,r} and ∀ j∈{1,�…,c}, all entries nij coincide. Hence, roughly 
speaking, a decrease in the concentration (variability) of the entries nij can be 
related to a decrease in dependence. But Joe did not consider the margins, so 
that the ordering J presents an odd behavior w.r.t. the independence table, as 
remarked in  section 4. 

 
A related concept investigated by Scarsini (1990), developing an idea  

suggested by Cifarelli and Regazzini (1986),  consists of comparing, not T 
with T , but rather T/ T�ˆ  with T / T�ˆ   in the majorization ordering. Here, 
matrix division is understood to be componentwise, and T�ˆ ={ ijn�ˆ } is the 
independence table. 

 
Scarsini�’s ordering, denoted by S, takes into account the given margins 

which were not explicitly involved in Joe�’s proposal. 
Let us note that the two orderings J and S coincide when the margins of T 

and T  are uniform. 
The orderings J and S possess the property of invariance under the 

transposition and permutation of rows and/or columns. In the above 
mentioned work, Joe obtained necessary and sufficient conditions to 
characterize maximal and minimal matrices either for margins chosen in  
or in +. Scarsini showed that there is a unique minimum in S, i.e. the 
independence table. For the general case r×c there is not a maximum w.r.t. 

                                                      
1 We say that two distributions are similar if they have the same relative frequencies (Gini 

1914-15). The analysis of dependence based on the similarity of the conditioned univariate 
distributions represented by the rows (analogously by the columns) is due to Salvemini 
(1939), then it was refined by Castellano (1960) and further developed also by Leti (1983) 
and Zanella (1988). References to the earlier works are available in Naddeo (1987). 
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S, except in the case of equal margins, giving the diagonal table as the 

unique maximum. 
 
The orderings of Joe and Scarsini appear to be very useful in comparing 

the degree of concentration in two tables T={nij} and T ={n ij} in a given 
class , i.e., in measuring how the n units are more or less concentrated in 
the  r×c cells of a table. However, they do not compare each nij with the 
corresponding joint frequency n ij in T , but rather the components of one 
specific rearrangement of vec(nij) with another (possibly different!) 
arrangement of vec(n ij). This is not meaningful in a dependence context, 
where the pair (i,j) corresponds to a specific choice of the i-th category of B 
and the j-th category of A so that nij  and ρ*ij =nij/ ijn�ˆ  are conceptually related 
to the couple of indexes.  

 
 

3. Directional dependence ordering and cycle frequency transfers  
 

In this section, the concept of directional dependence ordering is introduced 
and analysed. Then, the notions of a cycle in a table and of a cyclic 
frequency transfer that decreases the directional dependence are defined. 
Some examples are given. This section ends with Theorem 3.5 that shows  
the strong relation between these definitions.   

Definition 3.1: Directional dependence (partial) ordering  
Let T={nij} and T ={n ij} be two tables in  and let cij=nij ijn�ˆ  

(respectively c ij) be their contingencies. Between the variables A and B 
there is more directional dependence in T than in T , if and only if, 
( ) c1,...,:j;r1,...,:iji,∀ : 
i) c ij  × cij  0 ; 
ii) | c ij | ≤ | cij |. 

 
The following notation:  

T  DD T 
indicates that T  precedes T in the directional dependence ordering. 

 
Conditions i) and ii) appear to be appropriate  in comparing and assessing 

the nature (the configuration of the contingency signs cell by cell) and the 
strength (the absolute values) of the mutual dependence of A and B, as the 
following tables T1 and T2 show:  
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              T1{n ij}             DD           T2{nij}                            T�ˆ { ijn�ˆ } 
 
In T1 and in T2 the signs of the contingencies agree, cell by cell, as 

condition i) of def. 3.1 requires. Where the sign is positive as, for example, 
in cell (1,1), the inequality n11  n 11 > n�ˆ 11 holds, i.e. c11 = 2.7  c 11 = 1.7. 
There is a sort of �‘attraction�’2 between the first category of variable A and 
the first category of B, in that they appear together in a number of units 
higher than the expected joint frequency in case of independence, and this 
�‘attraction�’ is stronger in T2 than in T1. Analogously, with a negative sign of 
the contingency, for example in cell (2,3), the inequality n23  n 23 < n�ˆ 23 
holds, i.e. |c23| = 1.7  |c 23| = 0.7. The second category of B and the third 
category of A appear together in few units, less than those that we expect if 
A and B were independent, and this �‘repulsion�’ is stronger in T2 than in T1.  

 
The qualifier �‘directional�’ in def. 3.1 corresponds to a specific 

configuration of the contingency signs in the table: 
 
 
 
 
 
 
 
 
 
By the very nature of variables A and B, the labelling of their respective 

categories is immaterial, so the following property of the directional 
dependence ordering is meaningful and required:  

                                                      
2 Benini (1901) coined the terms �‘attraction�’ and �‘repulsion�’ to indicate this kind of relation 

in assessing dependence. 

B\A a1 a2 a3  
b1 11 7 2 20 
b2 7 7 2 16 
b3 4 5 2 11 
b4 3 1 3 7 

 25 20 9 54 

B\A a1 a2 a3  
b1 12 6 2 20
b2 7 8 1 16
b3 3 5 3 11
b4 3 1 3 7
 25 20 9 54

B\A a1 a2 a3  
b1 9.3 7.4 3.3 20 
b2 7.4 5.9 2.7 16 
b3 5.1 4.1 1.8 11 
b4 3.2 2.6 1.2 7 
 25 20 9 54 

B\A a1 a2 a3  
b1 +   20
b2  +  16
b3  + + 11
b4   + 7

 25 20 9 54
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THEOREM 3.2: 
The directional dependence ordering is invariant under the transposition 
and permutation of rows and/or columns. That is, if S DDT then: 

ST DDTT        and           P1S P2 DD P1T P2 
for all r×r permutation matrices P1 and all c×c permutation matrices P2.  
PROOF: 
The thesis comes directly from def. 3.1.  

 
Before introducing the frequency transfers, we need the definition of a 

cycle in T:   

Definition 3.3: Cycle  
An ordered set of 2×k cells: { 1kkkk32222111 jijijijijiji n,n,...,n,n,n,n

+
} 

in T = {nij} is a cycle if and only if, with k : 2  k  (r×c)/2 : 
i) { };r1,2,...,,...ii,i k21 ∈  
ii) { };c1,2,...,,...jj,j k21 ∈  
iii) ;jj 11k =+  
iv) 1,2,...km1n�ˆn     ; 1n�ˆn 1mm1mmmmmm jijijiji =∀−≤+≥

++
. 

In other words a cycle in T is a closed path among the cells of T that picks 
up an ordered set of even entries: 
• each having  |cij | 1; 
• paired in the same row or column, with opposite signs of contingencies. 

We call length of the cycle the number 2×k of the involved cells. 

Definition 3.4: Cyclic frequency transfers which decrease directional 
dependence  

Let T{nij}∈ (ni�• ; n�•j),  and let {
1kkkk32222111 jijijijijiji n,n,...,n,n,n ,n
+

} be a 

cycle in T.  Define T {n ij}∈ (ni�• ; n�•j) with the positions:  
i) 2,...k; 1,mfor    1nn' mmmm jiji =−=   
ii) 2,...k; 1,mfor    1nn' 1mm1mm jiji =+=

++
  

iii) otherwise;nn' ijij =  
The transformation T T  is called a decreasing cyclic frequency 

transfer, for T  DD T. 
 
The example given above in table T2 shows a cycle and it concerns 2×3 

cells in T2: namely {n11, n12, n22, n23, n33, n31}. One can devise a decreasing 
cyclic frequency transfer which transforms T2 into T1, without changing the 
margins. Moreover, the cells loosing a unit (i.e. n11, n22, n33) are such that  
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nij  ijn�ˆ +1, whereas the cells gaining a unit (i.e. n12, n23, n31) are such that 
nij ≤ ijn�ˆ 1. As a result of transfers, the modified frequencies n ij  lay in an 
intermediate position between the initial nij and those of independency ijn�ˆ . 
The signs of the contingencies have not changed, while their absolute value 
has decreased. Hence, these transfers draw the table closer to the situation of 
independence without modifying the direction of dependence or the margins. 

 
Obviously, one may consider T as the transformation of T , by an 

opposite, increasing cyclic frequency transfer. 
 
The intimate connection between the cyclic frequency transfer and the 

directional dependence ordering is openly expressed by: 
 

THEOREM 3.53: 
Let S, T  , such that T DD S and S ≠ T. Then, by a finite series of cyclic 
frequency transfers, S can be transformed into T. 
PROOF: 
Let us first prove that in S there is a decreasing cycle. Let d1 be the positive 
integer defined by:  

−=
i j

T
ij

S
ij1 ccd ,  

where X
ijc   denotes the contingencies of table X (for X = S, T). Let (i1, j1) be 

a pair of row and column indexes such that 
111111 ji

T
ji

S
ji n�ˆnn ≥> i.e.: 

.0cc T
ji

S
ji 1111

≥>  Given that 0c
c

1j

T
ji1 =

=

 and given the ranking between T and 

S, we now show that there is a column index j2≠j1 such that: 0cc T
ji

S
ji 2121

≤< . 
If such j2 does not exist, then: 

 0ccccccc0 T
ji

c

jj
1j

T
ji

T
ji

c

jj
1j

S
ji

S
ji

c

jj
1j

S
ji

c

1j

S
ji 11

1

111

1

111

1

11
=+≥+>+==

≠
=

≠
=

≠
==

 

thus giving a contradiction.  
This argument can be repeated in column j2, looking for a row, say i2, in 

which .0cc T
ji

S
ji 2222

≥>  After a finite number of these correspondences, say p,  
having r×c cells,  this cell collection will eventually reach a cell (ik, jk) 

                                                      
3 Theorem 3.5 states the analogue of Muirhead (1903), Hardy, Littlewood and Polya (1929, 

1934, 1952) result, for x, y vectors in n: �”If x M y then x can be derived from y by a finite 
series of T-transforms: x xT�”. 
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already visited (with k: 1  k  p), thus locating a decreasing cycle in S: 
{

1pppp1kkkk jijijiji nnnn
++

,,...,, }. Observe that:  2  p  r×c/2 .  

Let S1 be the matrix obtained from S by the decreasing frequency transfer 
carried out on the above cycle, and let −=

i j

T
ij

S
ij2 ccd 1 . A cyclic 

frequency transfer involves at least four cells, so d2  d1  4.  
Now, if S1 DD S and S1  S, a cycle can be identified in S1. A finite 

sequence of m such transforms (with 4dm 1≤ ), being the sequence d1, 
d2,�…, a strictly decreasing series of non negative integers, yields dm = 0. 
Therefore, the sequence S, S1, S2,�…, Sm gives Sm= T.  

 
 
4. The role and characterization of extremes  
 
In this section, we obtain results for minimal and maximal matrices in a 
given class , w.r.t. the directional dependence ordering (DDO). Let us 
recall the well-known definition for an extremal4 element in a partially 
ordered set: 

Definition 4.1: Maximal (minimal) element in a poset 
Let S be a matrix in (ni�• ; n�•j). S is a maximal (minimal) matrix in  

w.r.t. DDO if and only if there is no T ∈ , T ≠ S such that S DD T (S DD 

T).  
 
In other words, S is an extremal table w.r.t. DDO if and only if there is no 

other table T in , having the same contingency signs as S and with all 
contingencies �‘heavier or equal�’ (or �‘lighter or equal�’) than S.  

 
Now, we can rephrase the characterizing proposition: 
 

THEOREM 4.2:  
Necessary and sufficient condition for a maximal (minimal) matrix in  
w.r.t. DDO. 
A matrix S={nij} is maximal (minimal) in  w.r.t. DDO if and only if S has 
no increasing (decreasing) cycles. 

 
The proof is straightforward, hence it is omitted.  
 

                                                      
4 See, for example, Rosen (2000), page 721. 
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Theorem 4.2, directly connected to the concept of cyclic frequency 
transfers, is unable to give a practical method for distinguishing extreme 
tables. Before we can achieve an operative characterization for maximal 
tables, we need two definitions:  

Definition 4.3: Reduced submatrix 
Let S be an r×c matrix, and S  the submatrix obtained by deleting  a line 

from S. S  is called the reduced submatrix of S. 
 
A line of a matrix designates either a row or a column of the matrix. So, if 

the deleted line in S is for example row i, then S  is an (r-1)×c matrix (if the 
deleted line is a column, changes are made accordingly). 

Definition 4.4: DDmax-saturated line 
A row or a column in a matrix is a DDmax-saturated line if and only if one 

of the following two conditions holds: 
i)  each cell (i,j) in  the line with a negative contingency sign has the 

minimum frequency5 ijn~ = max (0, ni�•+n�•j�–n); 
or: 

ii)  all contingencies share the same sign6.  
 
Each of the two conditions in def 4.4 assures that no increasing cycle 

contains a pair of cells in that line.  
 

THEOREM 4.5:  
Necessary and sufficient conditions for a maximal matrix in   w.r.t. 
DDO. 
An r×c matrix S is maximal in  w.r.t. DDO if and only if by deleting 
successively a DDmax-saturated line in S and in its reduced submatrices one 
arrives at a uni-dimensional array. 
PROOF: 
Suppose first that a finite series of dropped DDmax-saturated lines in S leads 
to reduce S to a vector. In S only case i) occurs: we identify a line, for 
instance row k, in which for each negative contingency sign in cell (k,j) there 
is the respective minimum frequency kjn~ . Hence there is no increasing cycle 
in S which involves a pair of cells in row k.  

                                                      
5 As it is well known, because of the given margins, the joint frequencies nij must obey the 

inequalities: max (0, ni�•+n�•j�–n)  nij  min (ni�•, n�•j) for i=1,...,r and j=1,�…,c. 
6 Condition ii) can not hold in the initial matrix, but it can appear as soon as we deal with one 

of its reduced submatrices. 
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Let us turn our attention to the reduced submatrix S , obtained from S by 

deleting row k: we repeat the same process in matrix S . At this point, also 
ii) of def. 5.2 can occur. In any event, having identified a DDmax-saturated 
line, there is no increasing cycle in S  involving such a line; consequently 
the line is dropped from S , obtaining (S ) . This sequence stops upon 
reaching a table 1×t (or s×1), in which �–obviously�– no increasing cycle is 
obtainable, hence S is a maximal table. 

Now, let us suppose S maximal and in all lines of all reduced submatrices 
of S neither i) nor ii) of def 3.4 holds. Then, in any line there are at least two 
cells with opposite sign of the contingencies and a cell with negative 
contingency sign and non minimum frequency. Let us choose a line in S, for 
example row k, thus in row k there are two frequencies nkp and nkq, such that 

( ) kpkppk n�ˆ n n,nmin >>••  and kqkqkq n n n �ˆ~ << . In turning our attention to 
column p, we identify one row t in which: tptptp n n n �ˆ~ << . A finite sequence 
of these correspondences builds an increasing cycle that eventually closes on 
an already visited cell, leading to a contradiction.  

 
Maximum dependence of A on B is not so clearly defined in the literature, 

but we can adopt the following definitions7: 
 
Definition 4.6: Complete dependence of A on B (�‘massima dipendenza 

unilaterale di A da B�’ in the Italian  literature) 
In table T={nij} there is the complete dependence of variable A on variable 

B if ∀  i:1,..,r: a unique j exists such that nij≠0. 
 
In other words, for each category of B there is a unique category of A 

which can be associated with it.  

Definition 4.7: Absolute dependence between A and B (�‘massima 
dipendenza bilaterale tra A e B�’ in the Italian  literature) 

In table T={nij} there is the absolute dependence between variables A and 
B if Def 4.6 holds for A on B and for B on A. 

 
COROLLARY 4.8: 
All matrices which show complete or absolute dependence are maximal 
w.r.t. DDO. 

                                                      
7 For the maximum dependence (association) we will rephrase Kendall and Stuart (1979, page 

560), referring to tetrachoric tables and briefly recalled here: �“Considering a population 
classified according to the presence or absence of two attributes A and B, we say that 
association is complete if all A�’s are B�’s. Absolute association arises when all A�’s are B�’s 
and all B�’s are A�’s.�” 
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 Examples 4.9: 
 
 
 
 
 
                                                
 
 
 
                                  T3                                                    T4 
 
T3 shows the complete dependence of A from B, while in T4 we observe 

the absolute dependence. Each row in the two tables is a DDmax-saturated 
line, i.e. no increasing cyclic frequency transfer can be devised in T3 or in 
T4, and this assures their maximality w.r.t. DDO. 

 
Furthermore, if variables A and B were nominal and ordered, it would be 

meaningful to identify the cograduation and contragraduation matrices8. 
 

COROLLARY 4.11:  
The cograduation and  contragraduation matrces are maximal w.r.t. DDO. 

 
Examples 4.12: 

 
 
 
 
 
 
 
 
                          
                                   T5                                                  T6                               
 

                                                      
8 The names �‘cograduation table�’ and �‘contragraduation table�’ were coined by Salvemini 

(1939) to designate two tables singled out by Fréchet: the table which in each cell shows 
the maximum cumulative frequencies among all possible bivariate distributions with the 
same margins (cograduation), and that which similarly shows the minimum cumulative 
frequencies (contragraduation). References to Salvemini�’s work are available in Naddeo 
(1987). 

B\A a1 a2 a3  
b1 25 0 0 25 
b2 0 20 0 20 
b3 0 0 9 9 

 25 20 9 54 

B\A a1 a2 a3  
b1 25 0 0 25
b2 0 15 0 15
b3 0 0 9 9
b4 0 5 0 5

 25 20 9 54

B\A a1 a2 a3  
b1 0 11 9 20
b2 7 9 0 16
b3 11 0 0 11
b4 7 0 0 7

 25 20 9 54

B\A a1 a2 a3  
b1 20 0 0 20 
b2 5 11 0 16 
b3 0 9 2 11 
b4 0 0 7 7 

 25 20 9 54 
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One can easily verify that a process of eliminations of DDmax-saturated 

lines in T5 (cograduation) and T6 (contragraduation) leads to reduce each 
table to a vector.  

 
In recalling Theorem 3.2, we can generalize Corollary 4.11: 
 

COROLLARY 4.13:  
All tables which are obtainable by permuting rows and/or columns from a 
cograduation matrix or from a contragraduation matrix are maximal w.r.t. 
DDO. 

 
Joe, in the above cited work, obtains necessary conditions for maximality 

in J (see Theorem 4) and the equivalent Lemma 3.1 in Jurkat and Ryser 
(1967) gives the characterization of extremal matrices in , regarded as a 
convex set. They, in fact, propose a constructive algorithm for writing all 
matrices of Corollary 4.13. Hence all maximal tables in Joe�’s ordering are 
maximal w.r.t. DDO. 

 
However, there are maximal tables in DDO that are not included in 

Corollary 4.13. As a counterexample, let us observe table T7:   
 
                    T7 

 
Looking at its submatrix: 
 
 
 
the submatrix contains four lines with all 

positive elements, but no cycle can be built 
in it, for in each column the contingency 
signs agree. Hence T7 is maximal in DDO.                     

 
Remarks: 
Given one dependence direction, there can be one or more maximal tables 

w.r.t. DDO: T5 and T7 are maximal, and T5  T7  nor T5  T7.  
 
In focusing now on the characterization of minimal tables, depending on 

the specific values of these marginal frequencies and the grand total n = n1�• + 
 + nr�• = n�•1+  + n�•c the independence table { }ijn�ˆ �ˆ =T  may or may not 

belong to . 

B\A a1 a2 a3  
b1 20 0 0 20
b2 1 15 0 16
b3 4 5 2 11
b4 0 0 7 7

 25 20 9 54

1 15
4 5
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If { }ijn �ˆ�ˆ =T  then T�ˆ  is the lower bound for DDO. This means that T�ˆ  is 

the unique minimal matrix T�ˆ , i.e.:  T , T is comparable with T�ˆ  and  T�ˆ  
DD T. 
 
The following counterexample shows that this natural comparability with 

the independence table doesn�’t hold in Joe�’s ordering, leading to an 
anomalous situation:  

 
 
 
 
 
                 
                             
 
                                 T8                                                 T�ˆ       
T�ˆ  but T8 is not comparable with T�ˆ  in Joe�’s ordering! 
 
Before concluding this section concerning extremal tables in DDO, we 

remark that, as for maximal tables, one can easily define the DDmin-
saturated line and state a characterizing proposition for recognizing minimal 
tables.  

 
 

5. A measure of dependence derived from the directional dependence 
ordering 

 
Goodman and Kruskal (1979) offer a fundamental survey on measures of 
dependence between two statistical variables; as well as Haberman (1982) 
and Kendall and Stuart (1979), they believe that several measures are 
possible, reflecting different goals: measures of prediction, symmetric 
measures, etc. 

 
In the present work we assumed the symmetric role of variables A and B 

and we showed that the DD-ordering permits discrimination among the large 
subset of tables which do not represent extreme dependence situations, 
describing what kind of dependence between A and B they represent (a 
specific dependence direction) and possibly comparing pairs of tables 
possessing this directional dependence to a greater or lesser extent.  

Now we expect that dependence indexes - used to measure the strength of 
this relation - are coherent with such partial ordering.  

B\A a1 a2 a3  
b1 4 4 4 12
b2 4 5 15 24
b3 4 15 17 36

 12 24 36 72

B\A a1 a2 a3  
b1 2 4 6 12
b2 4 8 12 24
b3 6 12 18 36

 12 24 36 72
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For the central role of contingencies in DDO, any classical dependence 

index defined by a non-negative and strictly increasing function of the 
absolute value of  contingencies (or of relative contingencies ρij) is coherent 
with the DDO, as in Polisicchio (2002) : 
• M1(|ρ|), the weighted arithmetic mean of |ρij| = |cij| / ijn�ˆ  with weights ijn�ˆ ;  
• M2(|ρ|), the weighted quadratic mean of |ρij| = |cij| / ijn�ˆ  with weights ijn�ˆ ;  
• the classic Pizzetti-Pearson statistic X2 (Pearson, 1904); 
• the global independence index of second order (Castellano, 1962); 
• the total dependence index of second order (Gini, 1955). 

 
A simple but meaningful measure of dependence coherent with DD 

ordering may be derived by observing that the class , chosen as the 
reference set, is a finite set of tables9.   

Let DD be the sub-class of  composed by all tables that are comparable 
with T by DD.   

Definition 5.1: The index I DD  
 
Given a bivariate distribution T, the relative position that T assumes 

among DD, according to the sorting induced by  DD, is a measure of 
dependence I DD(T),  for T:  

( ) { }
{ }DD

DDDD

≤

≤
≤ ∈

≤∈
=

SS
TSSST

|card
;|cardI DD  

Observe that I DD is a relative frequency, so it is autonormalized, i.e. it 
assumes values in (0,1]. Its interpretation is straightforward: for example, a 
value of I DD(T)=.45 means that, among all bivariate distributions in  
representing the same nature of the dependence between A and B, 45% of 
such tables possess this directional dependence to a lesser extent w.r.t. T. 

 
Moreover I DD(T) assumes its minimum value if and only if T is minimal; 

conversely, I DD(T) = 1 if and only if T maximal w.r.t. DDO. 
 
I DD inherits all properties the DDO has, in particular it is invariant w.r.t. 

permutation of rows and/or columns and to transposition.  

                                                      
9 Given the class of all r×c contingency tables with integer entries  nij whose row 

sums ni�• and column totals n�•j are considered fixed, it is possible to locate and 
single out all its elements (see, among many others, Leti (1970) and Greselin 
(2004)). 



F.Greselin, M.Zenga 
 
 

I DD can be calculated by enumerating all tables in , as it was done by a 
C-algorithm on a Pentium PC for tables with r×c < 20 and n < 1000: 
obtaining its value in seconds or in minutes. The required computing time 
grows exponentially as r or c or n increase, due to the cardinality . In any 
event, observed asymptotic properties of this index can give light to this 
computational limit; as well as  the possibility to identify directly only all 
tables comparable with T (without enumerating all elements in ) by results 
coming from graph-theory. These and other issues will be argument of future 
work. 

 
 

6. Conclusions 
 

This paper suggests the introduction of partial dependence orderings in order 
to allow a deeper comprehension of some aspects of association. Partial 
ordering DD is also intuitive from a geometric point of view. Indeed, in the 
space of  r×c frequencies nij, there is a point whose coordinates are the 
independence frequencies ijn�ˆ . This point P�ˆ  is the origin of contingencies cij 
for all tables with the same given margins. Each table is represented by a 
point P = (c11,�…,crs). In agreement with the cij signs, point P is situated in a 
specific orthant in the space of cij coordinates.  The ranking of tables which 
are situated in different orthants is impossible according to DDO. Actually, 
the ranking induced by DD is not always feasible even among tables which 
lay in the same orthant: for T and T  belonging to the same orthant, we have 
that 
T DD T  if and only if, for each pair (i,j) the relation  |cij | ≤ |c ij| holds and 
the contingency signs agree. Consequently, starting from the orthant in 
which the given table T falls, with a series of transfers that increase the 
directional association, one would arrive at a table in the orthant with 
maximum association: the uniquely identified distributive independence 
situation �– the point P�ˆ �– is counterbalanced by one or more situations of 
maximum dependence in each orthant.  

The characterization of the extremes in the  class  w.r.t. DDO leads us to 
remark that the tables of complete or absolute dependence are recognized as 
maximal tables. At the same time, the lack of association corresponds to the 
unique minimal table in DDO (provided that they are compatible with the 
prescribed margins). The cograduation and contragraduation matrices are 
maximal tables in  w.r.t. DDO when the variables are ordered qualitative. 
Furthermore, DDO allows the identification of more maximal situations. 
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The idea of evaluating the degree of association in a given table T, 

considering its relative position in the ordered class , appears to be worthy 
of future developments. 
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