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SAMPLING SITES AND PM2.5 CHEMICAL COMPOSITION
PM2.5 was sampled over one year in three sites located in the North of Italy: an urban (Milan-
MI; 45°31’19”N, 9°12'46"E), a rural (Oasi Bine-OB; 45°08'40”N, 10°26’08”E) and a high
altitude remote site (Alpe San Colombano-ASC, m.2280 a.s.l; 46°27'18"”N 10°18'50"E). { 2 ;
Daily PM2.5 samples were collected through a low volume gravimetric [PM2.5]= 16.8 (+ 6.2) [PM2.5]= 15.5 ( 6.7) [PM2.5]= 5.9 (+ 5.2)
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sampler (38,33 I/min) for one year, and PM2.5 main chemical composition | =, il s iy pr sy .
was analysed (Fig.1)
During summer, the high altitude remote site (ASC) is within the
SUMMER
boundary layer, and it is influenced by atmospheric transport
from the plain. In winter, ASC is above the mixing layer and
PM2.5 chemical composition is typical of the free troposphere.
FIG.1 Mean PM2.5 concentrations (t dev.st)
and main chemical composition (% ).
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n-ALKANES and PRIMARY BIOGENIC SOURCE | (Legrand, 2007). A

3 w10
*Gone concentration  pgm’)

N-alkanes come from anthropic (combustion) and biogenic (primary biogenic) sources. Anthropogenic n-alkanes concentrations are
higher than biogenic ones (wax n-alkanes) in all sites (urban, rural and remote sites) (Tab.3). Contribution of biogenic source is
higher during summer, with a % of biogenic source to total n-alkanes concentrations (% WNA = %wax N-alkanes) of 10-17%.
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URBAN SITE (M) RURAL SITE (0B) REMOTE SITE (ASC) TAB.3 N-alkanes C20-C32. Carbon preference index (CPI), %
SUMMER WINTER SUMMER WINTER SUMMER WINTER contribution of plant wax n-alkanes (% WNA), anthropogenic n-
CPI 15 (¢ 01) 11( 01) | 13 (¢ 01) 10 (+ 01) |13 (£ 03) 10 (t 00) | alkanes concentrations (ANTHROPOGENIC C20-C32) and biogenic
% WNA (C20-C32) 174 (£ 46) 45(t 49 ) | 113 (+ 35) 19 (+ 34) | 101 (¢ 95) 00 (¢ 22) | p-alkanes concentrations (WAX C20-C32).
ANTHROPOGENIC C20-C32 (ngm-3) | 6.0 (¢ 15) 1726(+ 1357) | 82 (¢ 29 ) 607 (£ 21.9) | 53 (+ 18) 75 ( 30)
WAX 20-C32 (ng m-3) 13 (£ 06) 52( 49) | 11 (£ 05) 17 (£ 22) |05 (+ 04) 00 (x 03) e -
N-alkanes were used to estimate total contribution of primary biogenic . = osirura) FIG.4 Plant Debris
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source (plant debris) to total PM2.5 concentrations (Kotianova, 2008).
Primary biogenic source is maximum during the leaf falling season (autumn)
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(1.2-1.4%), and < 1% during other seasons (Fig.4). .
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