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Abstract: Data cleansing is growing in importance among both publit grivate organisations, mainly due to the rel-
evant amount of data exploited for supporting decision mgkirocesses. This paper is aimed to show how
model-based verification algorithms (namely, model chegkican contribute in addressing data cleansing
issues, furthermore a new benchmark problem focusing omatimur market dynamic is introduced. The
consistent evolution of the data is checked using a modetetion the basis of domain knowledge. Then,
we formally introduce the concept ahiversal cleanseii.e. an object which summarises the set of all cleans-
ing actions for each feasible data inconsistency (accgrttira given consistency model), then providing an
algorithm which synthesises it. The universal cleanserbeaseen as a repository of corrective interventions
useful to develop cleansing routines. We applied our amprda a dataset derived from the Italian labour
market data, making the whole dataset and outcomes publelyable to the community, so that the results
we present can be shared and compared with other techniques.

1 INTRODUCTION et al., 2012) for details, which allows one to study
how data change along the time.

To this regard, let us consider the dataset showed
in Tab. 1 modelling a cruise ship travel plan, as pre-
‘sented by (Mezzanzanica et al., 2012). The ship trav-
els by sea and stops at the port of calls (intermediate
destinations). The harbour regulations require a noti-
fication prior to entry into port. In this scenario, we
suppose that a ship is required to perforroheckin
notification when entering a harbour analaEeckout
When exiting. Looking at Tab. 1, one can note that the
departure date from Lisbon is missing, since a check-
out from Lisbon should be done prior to entering in
Barcelona. In this sense, the events sequence mod-
elling the travel of the ship S01 can be considered as
' inconsistent.

In the last two decades, the diffusion of Informa-
tive Systems has increased at an explosive rate, con
tributing to the definition and realisation of many IT
services, also in the public sector. As a consequence
the amount of data that organisations are now han-
dling is growing apace. Such data can contribute to
analyse, observe and explain social, economic and
business phenomena, as well as to assess decisio
making activities, e.g. the evaluation of active poli-
cies, resource allocation, service design and improve-
ment. However, it is well known that the quality of
the data is frequently very low (Fayyad et al., 2003)
and, due to the “garbage in, garbage out” principle
dirty data strongly affect the information derived from

them. Hence, data cleansing is a mandatory step be- Table 1: Travel Plan of a Cruise Ship
fore using data for decision making purposes. ShipID City Date Event Type
Data quality and cleansing issues have been ad{ S01 Venice | 12" April 2011 |  checkin
dressed in many fields of the literature, by dealing | S01 Venice | 18" April 2011 |  checkout
with several quality dimensions, see (Batini and Scan-| S01 Lisbon 36: April 2011 | checkin
napieco, 2006). Here we focus oansistencywhich S01 || Barcelona 5th May 2011 | checkin
takes into account the violation of semantic rules de-| SO || Barcelona| 8" May 2011 | checkout
fined over a set of data items. This work concentratest— - - -

on information about a given subject, object or phe-

nomena, observed at multiple sampled time points:  One can argue that ships are usually moored in
the result is a longitudinal dataset, also known as the harbour for 3 days, hence a cleansing activity
panel data, see (Singer and Willett, 2003; Bartolucci could set the missing departure date from Lisbon on



the 39 May. Unfortunately, there is no certainty of non negligible effort.

having guessed the real value, and having a consis-  Several approaches focus on integrity constraints
tent dataset is required to obtain effective statistics to |dent|fy errors, however they cannot address com-
(e.g., missing dates may have unpredictable effectsplex errors or several inconsistencies commonly
when computing an indicator likctive travel days  found in real data (Fan, 2008; Maletic and Marcus,

overall cruise duratiol 2000). Other constraint types have been identified
The aims of this work are twofold: (1) we describe in the literature: multivalued dependencies, embed-
how a model-based reasoning (i.e., model checking) ded multivalued dependencies, and conditional func-
can be used to describe and verify the consistent evo-tional dependencies. Nevertheless, according to Vardi
lution of the data along the time. Then, we show how i (vardi, 1987) there are still semantic constraints

such model can be exploited to synthesiddraver-  that cannot be described by the latter. E.g., the con-
sal Cleanser an object summarising the set all sistency model described in Sec. 6.

feasible cleansing actions for each feasible data in-
consistency; (2) We present a real-world problem in

the labour market context, providing both the source
datasets and the results publicly available to the com-
munity, so that the data can be shared and compare
with other studies.

Machine learning methodscan be used for er-

ror localisation and correction. These approaches ex-
ploit learning algorithms. After the training an al-
orithm can be used to identify errors and inconsis-
encies. Possible techniques and approaches are: un-
supervised learning, statistical methods, data profil-
ing, range and threshold checking, pattern recogni-
tion, clustering methodologies (Mayfield et al., 2009).
2 RELATED WORK The training phase requires a satisfactory dataset to
be identified, however a clean dataset that can be used

Data quality and cleansing problems have widely @S @ reference is rarely available in the da_ta qua_lity
been addressed, a lot of works cross the boundaries ofi€ld. Therefore, human feedbacks are required to im-
different research fields, consequently it is not an easy Prove the machine learning performances. Since the
task framing them into a holistic classification. Fur- underlying model built during the learning phase can-
thermore, there is no commonly agreed formal defini- NOt be easily accessed and interpreted by domain ex-
tion of data cleansing (Maletic and Marcus, 2010).  Perts (e.g., an impact evaluation of the cleansing ac-

To the best of our knowledge not any other works tl\_/ltles can be hardly done), in this paper we explore a
deal with database consistency issues related to (ardifferent approach where the consistency models are
bitrarily long) sequences. Several existing works fo- €xplicitly stated and verified.
cus on constraint among attribute sets (single tuple  Record linkage (known asobject identification
scope), others concentrate on entity resolution prob-record matchingmerge-purge problejraims to bring
lems that requires a pairwise comparison (two tuples together corresponding records from two or more data
scope). Furthermore, the finite state system approachsources or finding duplicates within the same one.
proposed in this paper can effectively capture the con- The record linkage problem falls outside the scope
sistency semantic of several historical or longitudinal of this paper, therefore it is not further investigated.
data. A survey can be found in (Batini and Scannapieco,

In the data quality domain accessing the real data 2006; EImagarmid et al., 2007; Maletic and Marcus,
is rarely feasible due to economic or practical con- 2010).
straints, indeed the cleansing activities can be per-  Consistent query answering  works,
formed only relying on domain knowledge. For the e.g. (Bertossi, 2006), focus on techniques for
same reason this paper focuses on the consistency difinding outconsistent answefsom inconsistent data,
mension, while dimensions that require access to thei.e. the focus is on automatic query modifications
real data (like accuracy) are not considered. and not on fixing the source data. An answer is con-

In this section we focused on works that identifies sidered consistent when it appears in every possible
and fix inconsistencies using domain knowledge. We repair of the original database. Semantic constraints
can distinguish among the following paradigms: are expressed using functional dependencies. The

Rules based error detection and correctioral- functional dependencies works at the attribute level,
low users to specify rules and transformation neededtherefore they are not well suited to manage con-
to clean the data, a survey can be found in (Maletic sistency issues specific of longitudinal or historical
and Marcus, 2010). Specifying rules can be a very data. Furthermore, already with two Functional
complex and time consuming task. Furthermore, both Dependencies the problem of computing Consistent
bug fixing and maintenance along the time require a Query Answers involving aggregate queries becomes



NP-complete (Bertossi, 2006). In (Bertossi et al., giveninputaction. Focusing axplicitmodel check-
2011) an approach similar to consistent query ing techniques, a model checker verifies whether a
answering exploits “matching dependencie”s and state transition system always satisfies a property by
“matching functions” instead of functional depen- performing an exhaustive search in the system state-
dencies. Matching dependencies were introduced asspace (i.e., the set of all the feasible system states).
declarative rules for data cleaning and entity resolu-  The system is typically modelled as a Finite State
tion. Enforcing a matching dependency on a databaseSystem, which can be formally defined as follows.
instance identifies the values of some attributes for Definition 1 (Finite State System)A Finite State

two tuples, provided that the values of some other System(FSS S is a 4-tuple (S.1,A.F), where: S is a

ggqtl)l)ﬂel\s/la?;?]insuifijcr:iggxssimmlz rm(e'?ﬁrttr?zsée?r:ai!c.i;: finite set ofstates| C S is a finite set omitial states
: 9 P A is a finite set ofactionsand F: Sx A — S is the

through which different tuples referring to the same " C .

. transition functioni.e. F(s,a) = <’ iff the system from
entity are made equal. The latter work focuses on ) .
data cleansing where mostly record linkage and state s can reach staté\sg action a.

: ng y J Hence, a trajectory is a sequence sfate, ac-
entity resolution problems are to be addressed. Such.. ’ J y q '
problems are not considered in this paper. It is worth tion T=$H3p $181 82 - Sn-18n-1 S SUCh thavi €
to note that the partial order of semantic domination [0 U]’VJ €[0n-1], 5 €Sisastate, pc Als an
among (cleansed) instances described in (Bertossiac'ﬂon'and Hs,a) =S+
et al.,, 2011), although conceived for a different Let.S be an FSS according to Def. 1 and ¢ebe
scenario, can contribute to the process of selecting aan invariant condition specifying some properties to
correction among a set of several ones i.e., the policy be satisfied e.g., some consistency properties. Let a
making task briefly introduced in Sec. 5. Due to lack statesg € E be an error state if the invariant formula
of space, the policy selection process is not further ¢ is not satisfied. Then, the setefror states EC Sis
investigated in this paper. defined as the union of the states violating/Ve limit

Other works in the field of automata and for- the error exploration to at mo3t actions (the finite
mal verification theory are now shortly referenced. horizon), i.e. only sequences reaching an esgoe
The application of automata theory for inference pur- E within the finite horizon are detected. Note that
poses was deeply investigated in (Vardi, 1992) in this restriction has a limited practical impact in our
the database domain. The problem of checking (and contexts although being theoretically quite relevant.
repairing) several integrity constraint types has been  Informally speaking, anodel checking probleis
analysed in (Afrati and Kolaitis, 2009). Unfortu- composed by a description of the FSS to be explored
nately most of the approaches adopted can lead to(by means of a model checker tool language), an in-
hard computational problems. Formal verification variant to verify and a finite horizon. A feasible solu-
techniques were applied to databases, to formally tion, orerror trace (if any) is a trajectory leading the
prove the termination of triggers (Choi et al., 2006), system from an initial state to an error one. Generally
for semistructured data retrieval (Neven, 2002), and speaking, a model checker is usually applied to verify
to solve queries on semistructured data (Dovier and the correctness of a systamodel In our context, we
Quintarelli, 2009). use a model checker (i) to verify the data consistency

Finally, many data cleansing toolkits have been (i.e., if thedataare conform to the model); (i) to syn-
proposed for implementing, filtering, and transform- thesise a set of corrective actions (i.e., all the feasible
ing rules over data. A detailed survey of those tools is corrections activities to cleanse the data).
outside the scope of the paper. The interested reader
can refer to (Maletic and Marcus, 2010).

4 DATA CONSISTENCY VIA FSS

3 BACKGROUNDS Finite State Systems are used to model event-
driven systems where the events are mapped to the
Model checking (see e.g., (Clarke et al., 1999)) actions of Def. 1. A bridge between databases (con-
is a hardware/software verification technique to ver- taining longitudinal data) and event-driven system is
ify the correctness of a given system. The system is required to perform data quality verification using
described in terms oftate variableswhose evalua-  model checking techniques. This connection can be
tion determines a state, arnhnsition relationsbe- done by portraying a database record ag@nif i.e.
tween states, which specify how the system can movea record content or a subset thereof is interpreted as
from a state to the next one as a consequence of athe description of an external world event modifying



the system state, and an ordered set of records as an
event sequencédo better clarify this concept, we for-

EType = “checkout A City; =" City
malise the following. @ 2 in the harbour

N,
Definition 2 (Event, Event Sequence, and Finite State EType = “checkiff ACity; = “CityX’
Event Dataset)Let R = (Ry,...,R) be aschemare-
lation of a database, let & (r1,...,rm) be anevent @
where | € Ry,...,Ih € Ry, then e is arecordof the Consistency
projection(Ry,...,Rm) over® with m< n. Mode , co(\é\s‘e“‘

A total orderrelation ~ on events can be defined /

. Model
such that g ~ e ~ ... ~ ;. Anevent sequencis Checker
a ~-ordered sequence of events- ey,...,e,. AFi- Qeo&"e“
nite State Event Datas@fSED) is an event sequence \e\a“e

'7@(9{
. . X &,
derived from a longitudinal dataset. letaFSED $ @ '.

DBMS
Intuitively, the application of model checking

techniques to data quality problems is driven by the (b)
idea that amodeldescribing the consistent evolution Figure 1: (a) A Graphical representation of the consistency
of feasibleevent sequences (i.e.cansistency model model of the Travel Plan.of a Cruise Ship domain. The
expressed by means of FSSs) can be used to verify iflower part of a node describes how the system state evolves
theactual data(i.e., data retrieved from the database) When an event happens. (b) A Graphical representation of

. . a model checking based data consistency verification of a
follow a consistent behaviour. Then, the problem of ~gepg.
verifying a database content consistency can be ex-
pressed as a model checking problem on FSSs: a, so-
lution for the latter (if any) will represent an inconsis- step3 (Data Analysis) The model checker looks for
tent sequence of tuples for the former. Hence, from an error trace on the FSS. A solution (if any) rep-
here on, we will refer without distinction to action resents an inconsistency affecting the dat&set
as areventand vice versa. Otherwise the event sequence is considered con-

Although a whole database content could be sistent.

checked by a single FSS, in several domains it is ad-
visable to split the data into different subsets (e.g., for
computational reason). Then, the subsets (each beingrhe Cruise Ship Example. The following example
a separate FSED) can be checked separately. To thishould clarify the matter. Let us consider the Cruise
aim we introduce the following: Ship example as introduced in Tab. 1.

Definition 3 (Finite State Event Databaselet § An FSED is the travel plan of a ship, the set of the
be a FSED, we define Binite State Event Database travel plans of the different ships is the FSEDB. An
(FSEDB) as a database DB whose content is-DB  €vent eis composed by the attribut&hipID, City,
UiC1 S where k> 1. Date, and Event Typenamelye = (ShiplD, City;,
Datg, EType). Moreover, the total-order operator
~ could be the binary operatet defined over the
event’s attributeDate, henceve,ej € E g < g iff
Date; < Date;;. Finally, a simply consistency prop-
erty could be'if a ship checks in to harbour A, then
it will check out from A before checking in to the next
harbour”.
We can model this consistency property through
n FSS. A graphical representation is given in
. ] ] Fig. 1(a), where the lower part of a node is used to
stepl (Data Modelling) A domain expertdefinesthe  gescribe how the system state evolves when an event
consistency modge.g., Fig. 1(a)) describing the  happens. In our settings, the system state is composed
correct evolution of the data through the model by (1) the variablepos which describes the ship’s

It should be clear that performing a model-based
data consistency evaluation requires a twofold effort:
(1) to define a consistency model of the data evo-
lution, and (2) to verify the data source (e.g., the
FSEDB introduced before) against the consistency
model. A schematic representation on how this task
can be accomplished by using a model checker is de-
picted in Fig. 1(b). We can distinguish three different
phases: a

checking tool language; position, and (2) the variableity describing the city
step2 (Data Verification) A datasetS is retrieved where the ship has arrived.
from the data sourcé&s|. The model checker auto- The data sourc& is an actual database instance

matically generates an FSS representing the evo-(e.g., an actual FSEDB) to be verified against the con-
lution of the model defined b§. sistency model. In such a case, for each diffegnt



(i.e., for each different FSED) the model checker gen- be a finite (although very large) attribute domain
erates a different FSS modelling ti$e consistency  where{xs,..., Xy} C {X1,...,%n} and{rq,...,ry} C

evolution. {r1,...,rm} are instances of D, i.e{x1,..., Xy} € D
and{rq,...,rmy} €D.
4.1 From actual datato symbolic data An event e happening in the state s requires the

evaluation of x,...,xy and r,...,ry values, namely

Unfortunately, since the consistency verification is @ configuration of i nv different values of D. Then,
strongly related to the actual data (i.e., the FSS ex- we define th&ymbolic Domairof D as a set ofdif-
panded by the model checker models the evolution of ferentsymbols 4, ..., dy y, called Symbolic Data
the database data), the identification of “generic” in- required to represent the values of D in the consis-
consistent patterns or properties is hard to be accom-tency model, i.e. ™= {dy, ... dy. m}.

plished. _ In the Cruise Ship example thuity state variable
To this aim, we use an abstraction of the actual ang theCity; event attribute both refer to the City

data, namely theymbolic datd, to discover generic  gomain, therefore the latter can be replaced by the
inconsistency patterns as well as to identify common symbolic__

; ) .. symbolic domaib2 = {Cityx,Cityy } in the au-
data properties. The following example should clarify tgmaton of Fig. 1(%'33./ Finall{y nge trivaiLI conditions
the concept. y

should be met before exploiting a Symbolic Domain
rather than the Actual Domain: (pl) no total order
The Cruise Ship Example. Let us consider again relation is defined in the actual domain (or the total
the Cruise Ship example of Tab. 1. We recall order relation is not considered for the scope of the
that & = (ShiplD, City;, Date, ETypg), & is  analysis); (p2) No condition should compare a sym-
is an event and each sequence or subsequencebol to a non-symbolic value (e.gity = “Venicé in

of events is ordered with respect to the date val- the Cruise Ship example).

ues. Let us consider two inconsistent event se-

quences, related to two different ships, respec- Table 2: Values of the domain variables of the Cruise Ship

tively S; = (checkinVenicé, (checkoutBarcelong Examp_'e- _ _

and S, = (checkinLisbon), (checkoutNapleg. For Variable Type [ Variable Domain Values
the sake of simplicity, we focus on very short se- State Variables EQtS sea, harbour
guences. As described before, these event sequences C:tz Cityy, Cityy

will result in the generation of different FSSs. Nev- Event data Event Type| checkin, checkou

ertheless, the inconsistencies found share a common
characteristic: the checkout has been made in a har-
bour different from the one where the last check-in
took place.

We replace the actual city domain ddbgiry = 5 DATA CLEANSING VIA FSS
{Venice BarcelonaLisbon Naples...} with a sym-
bolic domain composed by a (small) set of symbols  |n the previous sections we described how the con-
to identify some common inconsistency patterns in sjstency of a database event sequence can be modelled
the previous example. In other words, we can make and verified through model checking. Looking for-
an abstraction of the domalDiy by using only two  ward, one can wonder if the consistency model can

symbols, namelpM*°"°— (Cityy Cityy}. Once a  be used as the basis to identifieansing activities
map between actuarto symbolic data has been doneNamely, once the FSS describing the dataset consis-
we can model the domain as shown in Tab. 2. tency evolution is generated, can the FSS be exploited

The number of symbols to be used, i.e. the sym- to identify the corrective events (or actions) able to
bolic set cardinality has to be chosen according to the cleanse an inconsistent dataset?
criteria described below. More formally, we define Let us consider an inconsistent event sequence
the following. having an actiora that leads to an inconsistent state
sj when applied on a (reachable) state Intuitively,
a corrective action sequence represents an alternative
route leading the system from stateo a state where
the actiona; can be applied (without violating the
consistency rules). In other words,ceansing ac-
Ithe idea is not new and it is inspired by thbstract tion sequencgif any) is a sequence of actions that,
interpretationtechnique (Clarke et al., 1994). starting froms;, makes the system able to reach a new

Definition 4 (Symbolic Data and Symbolic Do-
main). Let s be an FSS state and e be an
event with respectively s xi,...,X, state vari-
ables and e= (ri,...,rm) event attributes. Let D



state on which the actioa can be applied resulting

in a consistent state. In this paper we assume that cor-

rections cannot delete or modify existing data as we

are intended to cleanse the data by preserving as much

as possible the source dataset.
More formally we can define the following.

Definition 5 (Cleansing Action Sequencelet § =
(S1,A/F) be an FSS, E be the set of errors states
(i.e. inconsistent states) and T be the finite horizon.
Moreover,

o letQ = U Reach(j) be the set of all the states
iiel
reachable from the initial ones;
e let = sap ... 5& Sj be aninconsistent trajec-
tory, that is a trajectory wherejsc Q is an incon-
sistent state (i.e.jsc E)and g,...,5 ¢ E.

Then, a Teleansing action sequentm the pair
(s,a) is a non-empty sequence of action$ A
Co,...,Cn € A, such that exists a trajectong, = spag
...S-18-15C0S+1---S+nCn Ska onS with |A°| < T,
where all the statess.. ., s are consistent.

In the Al Planning field &Jniversal Plan(Schop-
pers, 1987) is a set of policies, computed off-line,
able to bring the system to the goal from any feasible
state (the reader can see (Cimatti et al., 1998; Della
Penna et al., 2012) for details). Similarly, we are in-
terested in the synthesis of an object, we thiliver-
sal Cleanser(UC), which summarises for eagtair
(state, action) leading to an inconsistent state, the se
A of all the feasible cleansing action sequences. This
UC is computed only once and then applied as an or-
acle to cleanse any kind of FSEDB. In this sense, a
(state, action) pair uniquely representsearor-code
To this aim, we proceed as follows:

stepl (Data Modelling) A consistency model of the
system is formalised by means of a model check-
ing language as described in Sec. 4.

step 2 (Database Modelling)A worst-caseFSEDB

step 3 (Data Verification) Use the model checker to
generate the FSS representing all the inconsis-
tent sequences, starting from the database domain
model (step 2) and the consistency model (step
1), the whole process is shown in Fig. 1(b) as de-
scribed in Sec. 4

step 4 (UC Synthesis)Explore the FSS to synthesise
the Universal Cleanser.

Now we are in state to formalise the Universal
Cleansing Problem (UCP) and its solution.

Definition 6 (Universal Cleansing Problem and So-
lution). A Universal Cleansing ProbleifyCP) is a
triple D ={S$,E, T} where§S = (S1,A F)isan FSS,

E be the set of error (or inconsistent) states computed
by the model checker, and T is the finite horizon.

A solution forD, or a Universal Cleansdor D is
amapX from the sef x A to a subset £of the power
set of A, namely /AC 2”4, where for each inconsistent
trajectory t= Sap ... 5@ Sj if A’ # 0 then A must
containall the possibld -cleansing action sequences
for the pair(s, &).

It is worth to highlight that, while on the one
hand the UC generated @fbomain-dependent.e. it
can deal only with event sequences conforming to
the model that generated it, on the other hand it is
data-independergince, once the UC is computed on
a worst-case FSEDB, it can be used to cleassg

t‘FSEDB. The pseudo code of the algorithm generat-

ing a Universal Cleanser is given in Algorithms 1 and

2. It has been implemented on the top of the UPMur-
phi tool (Della Penna et al., 2009) which has been en-
hanced with a disk-based algorithm to deal also with
big state spaces (Mercorio, 2013). The Algorithm 1

takes as input the FSS specification of the domain,
the set of error states given by the model checker (to
identify inconsistent trajectories) and a finite horizon

T. Then, it looks for a cleansing action sequence (ac-
cording to Def. 5) for each inconsistent (state, action)

will be defined, i.e. a fictitious database which pair. This work is recursively accomplished by the
contains all the possible event sequences, bothAlgorithm 2 which explores the FSS through a Depth-
the consistent and the inconsistent ones, com-First visit collecting and returning all the cleansing
posed by at mosT events for each. Note that solutions.

this step does not require to really generate such
database, indeed it can be easily accomplished
by allowing the model to receive any kind of
events. For the cruise ship example a worst-
case FSEDB is represented by all the possible
event sequences, ..., er where the variable val-
ues range ilCity; = {Cityx,Cityy } andEType =
{checkincheckout. Note that the value of the
finite horizonT can be identified as the FS&-
ameter.

Running Example. Consider again the Cruise Ship
example of Tab. 1. We recall that awent gis g =
(ShiplD, City;, Date, EType) and each event se-
gquence and subsequence is ordered with respect to the
event dates. It is worth to note that the finite horizon

about how this task can be accomplished. The value is com-

puted by the model checker as ttiemeterof the FSS, i.e.

the largest number of states which must be visited in or-

- der to travel from one state to another excluding trajeesori
2Due to the limited space we provide only the intuition which backtracks or loops.



Table 3: 2-steps Universal Cleanser for the Cruise Ship plam

| ([state],(action)) | Corrective Actions |
([pos= sed, (checkouiCityx)) (checkinCityx)
(checkoufCityx )

([pos= harbourA city = Cityx], (checkoutCityy)) (checkinCityy )

([ pos= harbourA city = Cityx], (checkinCityy)) (checkoufCityx )
([ pos= harbourA city = Cityx], (checkinCityx )) (checkoufCityx )

T = 2 is enough to guarantee that any kind of incon- Algorithm 2 AuxUC

sistency will be generated and then corrected using NO|nput: a states,

more than 2 actions. Consider that the main elements 5 5ctiong,

of an eventar& Type € {checkincheckout, City; € a finite horizonevel

{Cityx,Cityy }, i.e., 4 possible events. Then, we rep- Output: list of correction sequences]]

resent thevost-caséSEDB by considering into our 1: cg] + O /llist of correction sequences

model all the possible 2-step event subsequences (i.e., Csaun{] < O //aux list of correction sequences
simply enrich each node of the graphin Fig. 1(@) with . ; .0 /f0cal cs] index

all the possible edges). Table 3 shows the Univer- , if |evel< T then

sal Cleansing for our example, whichrignimalwith forall @ € As.t.F(s,a) =5 withs ¢ E do
respect to the number of event variable assignments, if F(s,a)=9"s.t.s" ¢ E then

i.e., the missing pair fjos= sed, (checkoutCityy)) . cdi] + &
8
9

fits on ([pos= sed, (checkoufCityx)). The UC, once P—it1
generated, is able to cleanse any kiné &E DBcom- else
pliant with the model from which it has been gener- | Csun{] ¢ AUXUC(S, a, level+ 1)
ated. 1 for all seqe csuy do
12: cqi] + @ Useq

Algorithm 1 UNIVERSALCLEANSING 13 i+l

Input: FSSS, 14 return cg]
set of error stateg,
finite horizonT
Output: Universal Cleanse®
1: level<« 0; /ho stop wherT is reached
2 forall se Sae As.t.F(s,a) =s"" do
3 K]s,a) « AUXUC(s a,level)
4 return K

depends upon the input set of policies) which can be

fixed as well as evolve during the cleansing phase,

e.g., by using learning algorithms. Clearly, the best

suited policy for a given domain can be selected ac-

cording to several criteria, which often is driven by

the data analysis purposes. As an example, one could
The Fig. 2(a) describes the overall cleansing pro- be interested in studying the variation of an ir]dic_ator

cess. As a first step, a consistency model of the do- value computed on the cleansed data. To this aim, a

main is defined while the Universal Cleanser is au- Policy able to maximise or minimise the value of such

tomatically synthesised according to the proceduresindicator should be applied, see e.g. (Mezzanzanica

presented in Sec. 4. Then, the “Consistency Verifica- et al.,_2_012). A discussion on how sel_ect a suitable set

tion” task verifies each sequence of the source (and©f policies falls out of the scope of this work. Never-

dirty) databas&. When an inconsistency is found the  theless, once the UC has been synthesised any kind of

“Cleanse the Inconsistency” task scans the UC look- Policy can be applied.

ing for a correction. Since the UC may provide more

than one corrective actions for the same inconsis-

tency, a criterion (i.e., policy) is required to select a 6 AN OPEN DATA BENCHMARK

suitable correction. Once a correction has been prop-

erly identified, the inconsistency is fixed and the new PROBLEM

sequence is verified iteratively until no further incon-

sistencies are found. Finally, the new cleansed events  The domain we are presenting is freely inspired

sequence is stored into the database “S Cleansed”. by the Italian labour market domain. Indeed, since the
It is worth noting that the cleansed results may 1997, the Italian public administration has been devel-

vary as the policy varies (i.e., the cleansed databaseoping an ICT infrastructure, called tHEO System’;
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Figure 2: (a) A graphical representation of the Consistafenfication and Cleansing Processes. (b) Some correatiiena
sequences given by the UC for the error-code 289 wtith start, cs= cessationcn = conversiorandex= extension

for recording data concerning employment and active empr_id: it uniquely identifies the employer in-
labour market policies, generating an administrative volved in the event.

archive useful for studying the labour market dynam-
ics, e.g., (Martiniand Mezzanzanica, 2009). Accord-
ing to the ltalian labour market laws, every time an
employer hires or dismisses an employee, or an em-
ployment contract is modified (e.g. from part-time
to full-time, or from fixed-term to unlimited-term), a
communication (i.e., an event) is sent to a job reg-
istry, managed at local level. These communications
are calledvlandatory Communications

The evolution of a consistent worker’s career
along the time is described bysequencef events
ordered with respect te.dateand grouped byv_id:
the sequence can be considered as longitudinal data.
Considering the terminology introduced in Def. 1 and
Def. 2, an FSED is the ordered set of events for
a givenw.id, and the FSEDs union composes the
FSEDB. Now we closely look to the worker careers
consistency, where the consistency semantics is de-
. . rived from the Italian labour law, from the domain
6.1 Domain Modelling knowledge, and from the common practice. Here are

o ) reported some constraints:
Each mandatory communication is stored into a

record composed by the following attributes: cl: an employee can have no more than one full-time

contract active at the same time;

e.id: it represents an id identifying the communica- .
c2: an employee cannot have more thémart-time

.t|or.1, L . ) contracts (signed by different employers); in our

w.id: it represents an id identifying the person in- context we assumié = 2 i.e., an employee cannot
volved in the event; have more than two part time jobs active at the

e_date: it is the event occurrence date; same time;

e_type: it describes the type of events occurring to €3: a contract extension cannot change the existing
the worker career. Events types are ttart or contract type ¢ type and the part-time/full-time
thecessatiorof a working contract, thextension status ¢_flag) e.g., a part-time and fixed-term
of a fixed-term contract, or theonversiorfrom a contract cannot be turned into a full-time contract
contract type to a different one; by an extension;

c_flag: it states whether the event is related to a full- c4: a conversion requires either tlietype or the
time or a part-time contract; c_flag to be changed (or both).

c_type: describes the contract type with respect to the For simplicity, we omit to describe some trivial
Italian law. Here we considdiimited, i.e. fixed- constraints e.g., an employee cannot hagessation
term, andunlimited i.e. unlimited-term, con-  event for a company for which she/he does not work,
tracts. an event cannot be recorded twice, etc.



The UPMurphi tool allows us to build an FSS un- remaining part of the career. Indeed a further evalua-
pon which we perform the data consistency task. A tion of a career consistency may be affected by the
worker’s career at a given time point (i.e., the sys- cleansing policy applied, then falsifying the results
tem state) is composed by three elements: the list ofabout the quality of the source dataset.
companies for which the worker has an active con-  As first step, we synthesised the UC, identify-
tract C[]), the list of modalities (part-time, full-time)  ing 342 different error-codes, i.eall the possible
for each contractM[]) and the list of contract types 3-steps (state,action) pairs leading to an inconsistent

(T)- state of the model. Then, the verification process on
To give an exampleC[0] = 12, M[0] = PT, T[0] = the dataset caught 998 inconsistent careers (i.e.,
unlimited models a worker having an active unlim- the 43% of total careers). The Fig. 4 shows a graph-
ited part-time contract with company 12. ical distribution of the error-codes found. The x-axis

A graphical representation of the domain is reports the error-codes of the UC while the y-axis
showed in Figure 3 and it outlines a consistent ca- summarises the number of careers affected by that er-
reer evolution. Note that, to improve the readabil- ror. Several analyses can be performed on such con-
ity, we omitted to represembnversiorevents as well  sistency outcomes. Nevertheless, since the aim of
as inconsistent states/transitions (e.g., a worker ac-this work is to provide a technique and a benchmark
tivating two full-time contracts), which are handled dataset so that other approaches, comparisons and sta-
by the FSS generated by the UPMurphi model. A tistical analysis can be performed on such data, we
valid career can evolve signing a part-time contract restrict ourselves to consider the following.

with companyi, then activating a second part-time o The closer the error-codes, the similar the error

contract with companyj, then closing the second characteristics. We discovered that the three most
part-time and then reactivating the latter again (i.e., numerous error codes (i.e., 335, 329 and 319 rep-
unempemp, emp,j, emp,emp ). resenting about the 30% of total inconsistencies)
arose due to an extension, cessation or conversion
From actual to symbolic data. A mapping from event received when the worker was in theem-

actual to symbolic data has been identified as de-  Ployedstatus. Hence, cleansing activities for such
scribed in Sec 4.1 taking into account both states and ~ careers may have a great impact on the quality of
events of the automaton of Fig. 3. the cleansed data.

We recall that, for the sake of clarity the automa- e Some error-codes require no less than 3 correc-
ton shows only the consistent transitions triggered by tive actions to cleanse the data. As an exam-
the events allowed in a state, whilst the model checker  ple we report the case of the error-code 53: A
automatically manages also inconsistent transitions,  worker having two active part-time contracts with
i.e. transitions triggered by events that lead to an “er-  CompanyXandCompanyYreceives the cessation

ror state”. of a full-time contract for a thircCompanyZ In

The attributesc_type etype andc_flag are al- such a case, a corrective action sequence requires
ready bounded and we left them as is, while the at least three actions to fix the inconsistencies,
empcid attribute domain has been mapped onasym- i.e., to close the contract wit@ompanyXand
bolic set of 3 symbol§empx,empr, empk} accord- CompanyYand then to start a new full-time con-
ing to the process described in Sec. 4.1. tract withCompanyzZ

Finally, we highlight that the model satisfies the o The UC helps to discover cleansing activities that
conditions pl and p2 introduces in the Sec. 4.1,  might otherwise be neglected. To this regard, let
namely: (1) a total order relation for themprid do- us consider the case of a worker having a full-
main is defined but it is not considered in the automa- time contract with &ompanyXwhich receives a

ton, and (2) there are no conditions comparing asym-  giart of a new part-time contract wi@ompanyY

bolic value with a non symbolic one. Looking at the model, a domain expert can ar-
) gue that probably the worker has closed the full-
6.2 Experimental Results time contract, but the communication was lost. As

a consequence, a hand-written cleansing activity
Here we comment some results about the consistency  may fix the inconsistency by closing the full-time
verification process performed on the dataset pre-  contract. Nevertheless, for such inconsistency
sented in Sec. 6.3. Note that, in order to analyse the (i.e., the error-code 289) the UC returns 9 differ-
quality of the source dataset (wrt consistency), UP- ent cleansing sequences, as shown in Tab. 2(b),
Murphi stops the verification algorithm when an in- which can contribute in the identification of alter-
consistency is found, avoiding the evaluation of the native cleansing policies.
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Figure 3: A graphical representation of a valid worker'seeasrFSS wherst = start, cs= cessationcn = conversionand
ex= extension

Itis worth noting that applying different corrective ac- id, the error code and therror index of the
tions may lead to different cleansed states, as in the  event after the shortest consistent subsequence:
latter example where fixing the inconsistency through Considering a career composed lyevents, an
Seq.1 leads the worker career to the unemployed state  error indexi with 0 <i < n means thati — 1
whilst the application of Seq.3 brings the career to events make the career consistent whilstithie

a different one (i.e., thempi). Hence, for a high- event makes it inconsistent.

quality cleansing process the joint utilisation of UC

and domain-dependent policies is required. The Universal Cleanser. It has been generated ac-
. — cording to Def. 6 on the consistency model of

6.3 Online Dataset Description Fig. 3_9 Y

The whole dataset and the experimental results
presented in Sec. 6.2 has been made publicly avail-

able for download The source archive contains 7 CONCLUDING REMARKS

1,248 814 mandatory communications describing

the careers of 21429 people observed starting from In this paper we have shown how a model-based
the Bt January 2001 to the $1December 2010. The approach can be used to verify and cleanse a dirty
dataset is composed by the following tables: dataset, providing an algorithm (build on top of the

UPMurphi tool) to automatically synthesise a uni-

The Worker Careers. It is a table composed by 7 versal cleanser that, as a characteristicdasnain-

columns, whose semantics has been detailed independent(i.e., it copes with consistency issues
for a given domain) butdata-independen(i.e., it

Sec. 6.1. . _ _
can cleanse any kind of dataset compliant with the
. . . model).
The ConS|stedn<k:)y \{ﬁr'flcat'?n Results. It IIS &tablek Moreover, we presented a real-world scenario in
composed Dy three columns, namely the WOTKEr he |abour market domain for which the universal
Shttp://goo.gl/zrbrR The username is: cleanser has been computed. As a further contri-

data2013materials@gmail.com Password: data2013 bution, an anonymous version of the dataset used
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has been made available for download (according to
the current law and privacy requirements) together
with the cleanser and the consistency verification out-
comes. Our results confirm the usefulness of ex-
ploiting model-based verification and cleansing ap-
proaches in the data quality field, as it may help do-

main experts and decision makers to have a better
comprehension of the domain aspects, of the data pe-

culiarities, and of the cleansing issues.
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