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Abstract

In this paper we introduce a multiple testing procedure to assess a common covariance

structure betweenk groups. The new test allows for a choice among eight different patterns

arising from the three-term eigen decomposition of the group covariances. It is based on the

closed testing principle and adopts local likelihood ratio tests. The approach reveals richer in-

formation about the underlying data structure than classical methods, the most common one

being only based on homo/heteroscedasticity. At the same time, it provides a more parsimo-

nious parameterization, whenever the constrained model is suitable to describe the real data.

The new inferential methodology is then applied to some well-known data sets chosen from the

multivariate literature. Finally, simulation results are presented to investigate its performance

in different situations representing gradual departures from homoscedasticity and to evaluate

the reliability of using the asymptoticχ2 to approximate the actual distribution of the local

likelihood ratio test statistics.

Keywords: Closed Testing Procedures; Common Principal Components; Eigen Decomposi-

tion; Homoscedasticity; Likelihood Ratio Tests; Proportional Covariance Matrices.
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ACCEPTED MANUSCRIPT

1 Introduction

Let xih be theith p-dimensional observation in grouph, i = 1, . . . , nh, h = 1, . . . , k. Suppose

that data in each group are randomly drawn from a normal distribution with mean vectorμh and

covariance matrixΣh, h = 1, . . . , k.

Unlike multivariate analysis of variance (MANOVA), where the interest is in comparingμ1, . . . ,μk,

here the attention is focused on the detection of a common structure (orpattern) among the group

covariancesΣ1, . . . ,Σk. The assessment of a common pattern provides a more informative esti-

mation of the group conditional densities on the training set in normal discriminant analysis (see,

e.g., Fluryet al., 1994 and Bagnatoet al., in press) and it is of intrinsic interest in such fields

as psychometrics or genetics, where the similarity of genetic covariance structures among species

is a fundamental subject of investigation. Moreover, discovering a common structure for group

covariances allows one to reduce the number of estimated parameters (principle of parsimony).

To face the issue, this paper considers a very general framework given by the (three-term) eigen

decomposition

Σh = λhΓhΔhΓ
′
h, h = 1, . . . , k, (1)

whereλh = |Σh|
1/p, with |∙| denoting the determinant,Δh is the scaled (|Δh| = 1) diagonal matrix

of the eigenvalues ofΣh sorted in decreasing order, andΓh is a p × p orthogonal matrix whose

columns are the normalized eigenvectors ofΣh, ordered according to their eigenvalues (note thatΓh

is not unique when eigenvalues have multiplicities greater than one). This decomposition is widely

employed in the mixture framework (see Celeux and Govaert, 1995 and Bensmail and Celeux,

1996, among many others). Each component in the right side of (1) has a different geometric

interpretation in terms of the hyper-ellipsoids of equal concentration (sections of thep-variate

normal distribution having a given probability). The volume is determined byλh (more precisely,

it is proportional toλp/2
h = |Σh|

1/2; see Rencher and Christensen, 2012, Sections 3.11 and 4.1.3

for details). Shape and orientation are governed byΔh andΓh, respectively. Now, considering the
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ACCEPTED MANUSCRIPT

triplet (λh,Δh,Γh), and allowing to its elements to be equal (E) or variable (V) among groups, we

obtain the following family of parsimonious and easily interpretable models

M̃ =

{
EEE,VEE,EVE,EEV,VVE,VEV,EVV,VVV

}
.

With this convention, writingλΓhΔΓ
′
h, or EEV, means that we consider groups with equal volumes,

equal shapes, and different orientations. The present approach is quite general because it includes

many previously studied models as special cases. Table 1 schematizes all the modelsM ∈ M̃,

giving their mapping with the covariance restrictions already known in the literature. Figure 1

exemplifies the models providing a graphical representation in the casep = k = 2.

To detect the best model iñM, we use a closed multiple testing procedure. This is done

according to a very familiar MANOVA paradigm, where three treatment groups are compared

with a common control group, or a single treatment is evaluated against a single control on the

basis of three different variables (see, e.g., Westfall and Wolfinger 2000 and Bretzet al. 2011,

Chapter 4.1). Generalized likelihood ratio (LR) tests are considered as local tests in the procedure.

The result is a “global procedure” in the sense that the model, for the observed data, is detected by

simultaneouslyconsidering all the elements iñM. Conversely, in the MANOVA framework (see,

e.g. Christensen, 1996, p. 461) the user often follows a path that involvesa subsetof the models.

The paper is organized as follows. Section 2 shows some geometrical features on real data

that suggested the development of the new approach. Section 3 gives basic notation about closed

testing procedures, and Section 4 describes how to use LR tests as local tests. The new inferential

procedure is then applied, in Section 5, to some well-known data in the multivariate literature

to show how it works, in terms of improved information and parsimony. A simulation study is

developed in Section 6 to assess the performances of the closed testing procedure under normal

and heavy tailed densities and to evaluate the reliability of using the asymptoticχ2 for the actual

distribution of the local LR test statistics. Final considerations are given in Section 7.
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2 Real data motivating inference onM̃

In this section two real data sets will be shown to motivate inference onM̃.

The first example refers to the crab data set of Campbell and Mahon (1974) on the genusLep-

tograpsus. Attention is focused on the sample ofn = 100 blue crabs, there beingn1 = 50 males

(group 1) andn2 = 50 females (group 2), each specimen havingp = 2 measurements (in millime-

ters) for the rear width (RW) and the length along the midline (CL) of the carapace. By Mardia’s

test, the two group-conditional distributions can be considered bivariate normal, while the LR test

of homoscedasticity (versus heteroscedasticity) rejects the null hypothesis at any reasonable signif-

icance level. Figure 2(a) displays the scatter plot of RW versus CL. In both groups, the estimated

ellipses of equal (95%) concentration (giving the graphical counterpart of the covariance matrices

estimated under VVV) are superimposed to facilitate our understanding. Although the LR test

points out heteroscedasticity, Figure 2(a) suggests that the two scatters for male and female crabs

have approximately the same volume and the same shape (i.e., same proportion between the axes

in the ellipse) but different orientations (directions of the main axes in the ellipses). This pattern is

represented by model EEV. On the other hand, noting some difference in volumes in Figure 2(a),

someone could lean toward VEV. As a consequence, we would appreciate a testing procedure to

assess our conjectures with the aim of gaining information about the data and obtaining a more

parsimonious model.

As a second example, we consider the turtle data set of Jolicoeur and Mosimann (1960) focus-

ing on the variables carapace length (LH) and height (HT), measured in millimeters, onn1 = 24

male andn2 = 24 female painted turtles (Chrysemys picta marginata). Although homoscedasticity

does not hold, Figure 2(b) shows some similarity in terms of shape for the two group scatters. If we

were able to assess this conjecture, concluding that model VEV describes the covariance structure

between groups, then we would obtain a gain in information and in parsimony, as in the previous

example. Moreover,shapeis a well-known and fundamental concept for the analysis of variation
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in living organisms, allowing for significant classification (Jolicoeur and Mosimann, 1960, p. 339).

In this paper, we show how the new inferential method provides a rigorous systematization of

these considerations.

3 Model assessment via closed testing procedures

In this section we provide a method for model assessment inM̃, in the framework ofmultiple

testing procedures(MTPs; see e.g., Hochberg and Tamhane, 1987). Let us denote byHM
0 the null

hypothesis related to the generic modelM ∈ M = M̃ \ {VVV }. Among the available alternatives

for each null, we setHVVV
1 as the unique (benchmark) alternative hypothesis. This positions allows

us to define sevenomnibustests, with VVV being the most general, unconstrained model. The

seven null hypotheses are represented in Figure 3.

Now, let us denote byH =
{
HVVE

0 ,HVEV
0 ,HEVV

0

}
the subfamily ofelementaryhypotheses in the

bottom layer of Figure 3. They play a crucial role: depending on the true model inM̃, none, some,

or all of the hypotheses inH may be the true null. Thus, for example, if the true model iñM is

EEV, thenHEVV
0 andHVEV

0 hold true, whileHVVE
0 is false. Figure 3 is represented as a hierarchy

where arrows indicate implications, because, for instance,HEEE
0 implies HVEE

0 (see Hochberg and

Tamhane, 1987, p. 344); in other words, EEE is more restrictive than VEE.

The natural choice for our context is to adopt aclosed testing procedure(CTP; Marcuset al.,

1976). It is the most powerful, among the available MTPs, that strongly controls thefamilywise er-

ror rate (FWER) at levelα (as recently further corroborated via simulations by Giancristofaro Ar-

boretti et al., 2012). Controlling the FWER in a strong sense means to control the probability

of committing at least one Type I error, under any partial configuration of true and false null hy-

potheses inH . This is the only way to make inference on each hypothesis inH . Operationally

we reject, say, the elementary hypothesisHVEV
0 if and only if each test on the more restrictive hy-

pothesesHVEE
0 , HEEV

0 , HEEE
0 , and also onHVEV

0 itself, yields a significant result. Denoting bypVEE,

pEEV, pEEE, and pVEV the p-values forHVEE
0 , HEEV

0 , HEEE
0 , andHVEV

0 , respectively, we report the
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adjusted p-value forHVEV
0 asqVEV = max{pVEE, pEEV, pEEE, pVEV}. An adjustedp-value represents

the natural counterpart, in the multiple testing framework, of the classicalp-value (see, e.g., Bretz

et al., 2011, p. 18).

4 Local likelihood ratio tests

To complete the definition of the closed testing procedure we still need to specify how to test

elementary and non-elementary hypotheses.

For the elementary hypotheses, we adopt localα-level tests based on the LR statistic because

they represent the standard method to comparek covariance matrices (Manly and Rayner, 1987).

For what concerns the non-elementary hypotheses, we first have to recall that every different

method for testing them leads to a new and different CTP, and CTPs are best when these methods

are as powerful as possible. The simplest approach consists of using MTPs such as, for example,

the classical Bonferroni method or the slightly more complex, but much less conservative, method

of Holm (1979). They are both applicable under arbitrary dependence among tests statistics. How-

ever, a non-multiple approach in this phase could guarantee a better performance, and this is the

reason why we prefer to move towards localα-level tests, based on the LR test statistics, also for

the non-elementary hypotheses.

For eachM ∈ M̃, the joint likelihood function is

LM

({
μh, λ

M
h ,Δ

M
h ,Γ

M
h

}k

h=1

)
=

k∏

h=1

exp




−

1
2

nh∑

i=1

(
xih − μh

)′ [λM
h Γ

M
h Δ

M
h

(
ΓM

h

)′]−1 (
xih − μh

)




(2π)
1
2 pnh

∣∣∣∣λM
h Γ

M
h Δ

M
h

(
ΓM

h

)∣∣∣∣
1
2nh

. (2)

The corresponding joint log-likelihood function,lM = ln LM, is given by

lM

({
μh, λ

M
h ,Δ

M
h ,Γ

M
h

}k

h=1

)
=

k∑

h=1

{
−

pnh

2
ln (2π) −

nh

2
ln

∣∣∣∣λM
h Γ

M
h Δ

M
h

(
ΓM

h

)′∣∣∣∣+

−
1
2

nh∑

i=1

(
xih − μh

)′ [λM
h Γ

M
h Δ

M
h

(
ΓM

h

)′]−1 (
xih − μh

)



. (3)
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Regardless fromM ∈ M̃, the maximum likelihood (ML) estimate ofμh is the samplemeanxh, and

it is obtained as solution of

∂lM

({
μh, λ

M
h ,Δ

M
h ,Γ

M
h

}k

h=1

)

∂μh

=
[
λM

h Γ
M
h Δ

M
h

(
ΓM

h

)′]−1
nh∑

i=1

(
xih − μh

)
= 0, h = 1, . . . , k.

Since the maximizing value ofμh does not depend onλM
h , ΔM

h , andΓM
h , we can obtain the ML

estimates for the latter three components by maximizing eitherLM or lM; then, through (1), we

get the estimate ofΣM
h . The estimates ofλVVV

h , ΔVVV
h andΓVVV

h will be defined in the following as

sample volume, sample shape-matrixandsample orientation-matrix, respectively.

To maximizeLM (or lM), iterative procedures are occasionally needed. The second column

of Table 2 indicates if ML estimation can be achieved in a closed form (CF) or if an iterative

procedure (IP) is needed. Details on the estimates can be found in Celeux and Govaert (1995) and

Biernackiet al. (see 2008, pp. 22–24). Note that, contrarily to what described in the above cited

works, the constraint of decreasing order of the diagonal elements inΔh, h = 1, . . . , k, should be

implemented for EVE and VVE.

Now, a natural way to compare eachM ∈ M with the diagnostic model VVV, consists of using

the (generalized) likelihood ratio (LR) statistic

LRM = −2 ln
LM

LVVV
(4)

that, underHM
0 , is asymptotically distributed (when minh=1,...,k nh→ ∞) as aχ2 with νM = ηVVV−ηM

degrees of freedom, whereηVVV andηM denote the number of (free) parameters for VVV andM,

respectively (see Anderson, 1984, pp. 405–406, for details onLREEE). The value ofνM is the gain

in parsimony that could be obtained, improving at the same time the information about the group

covariance structures. Table 2 specifies the number of parametersηM, and the degrees of freedom

νM of the LR statistic, for eachM ∈ M̃.

Finally, note that Box’s test and the test discussed in Flury (1986) are already existing LR tests

for the null hypothesesHEEE
0 and HVEE

0 , respectively. However, they are based on the unbiased
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version of the maximum likelihood estimators forΣEEE
h andΣVEE

h . For methodological uniformity,

since we employ ML estimators of the covariance matrices for the other models inM̃, we prefer

to do the same also forHEEE
0 andHVEE

0 .

5 Applications

In this section we will show how the proposed closed LR testing procedure acts on real data. To

this end, some well-known examples in the multivariate literature, in addition to those already

presented in Section 2, will be used. A nominal level of 0.05 is adopted hereafter for the FWER-

control. We will compare our approach with the likelihood-based Information Criteria (IC) sum-

marized in Table 3.

Note that a preliminary Mardia’s test is performed on each set of sample data to check the

underlying assumption of multivariate normality. TheR-code (R Development Core Team, 2012)

providing the ML-estimates iñM, and implementing the closed LR testing procedure, with both

adjusted and unadjustedp-values, is available athttp://www.economia.unict.it/punzo. In

particular, to maximizeLM in (2) for the models requiring an IP, we employed the general purpose

optimizeroptim, in theR-packagestats.

Example 1: Iris data

This data set was made famous by Fisher (1936) illustrating discriminant analysis. The sample

containsn = 150 observations onnh = 50 flowers,h = 1,2,3, from each ofk = 3 species of iris:

setosa, versicolorandvirginica. The p = 4 variables, measured in centimeters, are:sepal length,

sepal width, petal length, andpetal width. The matrix of scatter plots for the grouped-data is shown

in Figure 4. Mardia’s test is consistent with multivariate normality in each of the 3 groups.

Sample volumes, sample shape-matrices and sample orientation-matrices, for each group, are

given in Table 4. A glance to Table 4 and Figure 4 indicates that the covariance structure among
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groups is quite different, although some similarities in terms of shape are observed. The LR test for

HEEE
0 is rejected (pEEE ≈ 0). Also, at the 0.05-level, heteroscedasticity has been detected for these

data by Flury (1984, 1988, Example 4.4) after the use of the CPC, and by Greselinet al. (2011)

via an augmentation multiple testing procedure conceived for the family of hypotheses composed

by homoscedasticity, homometroscedasticity (EEV), and homotroposcedasticity (VVE).

Additional information about the degree of similarity between the three covariance matrices

can be gained by employing the closed LR testing procedure. The diagram in Figure 5 lists unad-

justedp-values, for all the hypotheses in the hierarchy, and adjustedp-values (in round brackets)

for the elementary hypotheses. This way of proceeding, in line with Westfall and Young (1993,

p. 10), highlights their disparity. The hierarchical arrangement of Figure 5 better illustrates how

to compute the adjustedp-values. Thus, for example, the adjustedp-value forHEVV
0 is given by

qEVV = max
{
pEVV , pEEV, pEVE, pEEE

}
= max

{
5.20∙10−12,5.17∙10−11,0,0

}
= 5.17∙10−11.

At the 0.05-level,HVEV
0 is the only elementary hypothesis that is not rejected inH by the closed

LR testing procedure (see Figure 5). Table 5 contains further details about the models, the results

obtained by the LR testing procedure, and the adopted IC. Here all the considered IC agree with

the closed LR testing procedure.

To summarize, the proposed inferential approach allows us to conclude that scatters in the three

iris species differ in orientation and volume but are consistent with having the same shape. We have

obtained a more parsimonious model with a gain of 6 parameters with respect to VVV. The analysis

could be made even more accurate and parsimonious by applying the closed LR testing procedure

to the two groupsversicolorandvirginica only, omittingsetosathat appear well separated from

them (see Flury, 1984, Example 1).

Example 2: Bank notes data

From Flury (1988, pp. 51–56), thep = 2 variables “width, measured on left side” (LEFT) and

“width, measured on right side” (RIGHT), measured (in millimeters) on former Swiss 1000-franc
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bank notes, will be considered. There arek = 2 groups of bills, genuine (group 1) and forged

(group 2), each of them consisting ofnh = 100, h = 1,2, observations. Mardia’s test assesses

bivariate normality for the group of forged bills, but it leaves some doubt with respect to the

genuine one. However, we will proceed with the analysis, as Flury (1988) also does. The LR test

of homoscedasticity rejects the null hypothesis providing ap-valuepEEE = 0.00258.

Table 6 summarizes the decomposition (1) in each group, and Figure 6 shows the scatter plots

with the ellipses of equal (95%) concentration superimposed. The scatter plots for genuine and

forged bank notes are separately displayed to avoid a large overlapping between sample points.

Although the LR test for EEE points out heteroscedasticity, the data in Table 6 suggest some

similarity in orientation and shape, while some difference in their volume emerges for the two

ellipses in Figure 6(a) and Figure 6(b). This conjecture is statistically corroborated by Flury (1988,

p. 154): within his hierarchy of similarity between thek covariance matrices, he leans towards

PCM, that coincides with VEE.

Results obtained by the closed LR testing procedure, given in Figure 7 and Table 7, confirm the

validity of VEE. Some concern arises when noting how different IC can lead to different choices.

In particular, the AIC leads to VEV, while the remaining ones choose VEE. However, this disagree-

ment may be partly illuminated by the differences in the complexity penalizations of the criteria

(e.g., the AIC features a rather weak penalization whereas the penalization of the BIC is more

stringent).

Example 3: Crab data

The crab data set introduced in Section 2, and graphically represented in Figure 2(a), will be con-

sidered. For sake of brevity, we present only the final findings by means of Table 8 that corroborate

the considerations we made previously; in particular, at the 0.05-level,HEEV
0 is not rejected because

its componentsHEVV
0 andHVEV

0 are also not rejected. Moreover, comparingqVEV with qEVV, we

note that the former provides stronger evidence of similarity between groups in terms of shape.
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On the contrary, the AIC and the AIC3 lean towards the less parsimonious VEV (as VEV adds one

parameter with respect to EEV).

Example 4: Turtle data

The turtle data set introduced in Section 2, and graphically represented in Figure 2(b), will be taken

into account. The overall results are given in Table 9. We can see thatHVEV
0 is the only elementary

hypothesis that is not rejected at the 0.05-level, meaning that VEV is able to describe the covariance

structure between groups with a slight gain of one parameter with respect to heteroschedasticity

(VVV) assessed by the LR test of homoscedasticity.

6 A simulation study

We present here the results of a simulation study, implemented inR, developed with a twofold

aim: to show the performance of the proposed closed LR testing procedure in different situations

of gradual departure from homoscedasticity (EEE), and to ascertain that the actual distribution of

the test statisticLRM, M ∈ M, can be well approximated by the expectedχ2 with νM degrees of

freedom.

6.1 Performance evaluation of the closed LR testing procedure

We measure how effective is the proposed testing procedure in assessing the correct structure be-

tween groups by measuring the acceptance rates in different settings. As a lot of factors come into

play (the number of groupsk and their size, the dimensionp of the observed variables, the overall

sample sizen, the nominal levelα of the test, the volume, shape, and orientation components of

the eigen decomposition), some of them have been necessarily considered fixed.

Three different scenarios have been taken into account. We work with bivariate data (p = 2),

andk = 2 groups of equal size (n1 = n2). We have considered overall sample sizes ofn = 100 and
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n = 200.

In the first scenario, data have been drawn from the bivariate normal distribution, with mean

vectorsμ1 = μ2 = 0 and covariance matricesΣ1 andΣ2, respectively. EachΣh, according to the

eigen decomposition (1), can be written as

Σh = λhΓhΔhΓ
′
h = λhR (ϑh)




1/δh 0

0 δh




R (ϑh)
′ , (5)

where

R (ϑh) =




cosϑh − sinϑh

sinϑh cosϑh




is the rotation matrix of angleϑh, andδh ∈ (0,1]. The elements in the shape matrix arise from the

constraint:|Δh| = 1. Hence, we have a single parameter for each eigen decomposition term:λh is

the volume parameter,δh is the shape parameter, andϑh is the orientation parameter. In the case

p = 2, this is an alternative way to explain whyΣh, as well as its eigen decomposition, has three

free parameters,h = 1, . . . , k (analogous considerations hold true forp > 2).

To simulate different ways of gradual departure from homoscedasticity, after settingΣ1 by

λ1 = 1, δ1 = 0.7, andϑ1 = 0, we have considered some values forλ2, δ2, andϑ2 to specifyΣ2:

three values forλ2 (1, 2, and 3), two values forδ2 (0.7 and 0.3), and three values forϑ2 (0,π/4, and

π/2 in radiants, i.e., 0◦, 45◦, and 90◦ in degrees). All the 18 combinations of these three parameters

have been taken into account in the simulations.

Table 10 displays the simulated acceptance rates for this first setting. The rates refer to a

nominal level of 0.05 and are calculated simulating 1000 samples for each of the 18 possible

settings of(λ2, δ2, ϑ2) and for both the values ofn. Bold numbers highlight the true model in each

setting. As expected, the proposed procedure appears to be consistent since its power increases

with n. To give an example, for model VVE given by(λ2 = 2, δ2 = 0.3, ϑ2 = 0), the simulated

acceptance rate raises from 0.783 to 0.948 whenn = 100 moves ton = 200. Moreover, givenn, the

acceptance rates for the true model gradually increase in line with its strength; thus, for example,
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with reference to the casen = 100, model VEE is better assessed forλ2 = 3 (simulated acceptance

rate of 0.951), than forλ2 = 2 (simulated acceptance rate of 0.769). Analogous considerations hold

for model VEV in the caseλ2 = 3, for n = 200; here, the acceptance rate increases from 0.826 to

0.907 whenϑ2 increases fromπ/4 to π/2. It is also interesting to note that, with reference to the

complete null (EEE), the procedure is able to maintain the size in the casen = 100; in the case

n = 200, in accordance with the classical MTPs, the procedure appears to be slightly conservative

(simulated acceptance rate of 0.967).

To verify the robustness of the procedure with respect to departures from normality, we have

considered two further scenarios, where data have been drawn from two bivariatet-distributions

with mean vectorsμ1 = μ2 = 0, scale matricesΣ1 andΣ2, and degrees of freedomν1 = ν2 = 10,

in the first case, andν1 = ν2 = 5 in the second one. We recall that the covariance matrix of a

multivariatet distribution is proportional to the scale matrixΣ via the relationν/ (ν − 2)Σ. For

simplicity, the same scheme above described for the normal case has been applied to the scale

matricesΣ1 andΣ2 when drawing samples from thet distribution.

Table 11 displays the simulated acceptance rates for the second scenario. As before, the rates

refer to a nominal level of 0.05 and are calculated simulating 1000 samples for each of the 18

possible settings of(λ2, δ2, ϑ2) and for both values ofn; bold numbers are in correspondence to the

true model in each setting. The performance of the test worsens (compare Table 10 with Table 11)

when considering samples drawn from thet distribution with 10 degrees of freedom. Only as an

example, compare the simulated acceptance rates under the complete null in both tables. When the

degrees of freedom decrease to 5, as expected, the simulations give even worse results, here omitted

for sake of brevity. This attests the importance, for the proposed procedure, of the underlying

assumption of multivariate normality in each group.
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6.2 Asymptoticχ2 distributions of the local LR statistics

We are interested in comparing the simulated distribution function (SDF) of the test statisticLRM,

M ∈ M, with its asymptoticχ2-distribution withνM degrees of freedom. According to the simu-

lation scheme of Section 6.1, we have considered: sample sizes ofn = 100 andn = 200, bivariate

data (p = 2), andk = 2 groups of equal size (n1 = n2). As before, data in group 1 are gen-

erated with parametersλ1 = 1, δ1 = 0.7, andϑ1 = 0, while departures in volume, shape, and

orientation are obtained by specifyingλ2 = 3, δ2 = 0.3, andϑ2 = π/2, respectively. Thus, for

example, data underHVEV
0 have been randomly generated from two bivariate normal distributions

having zero-mean and covariance matrices respectively defined by(λ1 = 1, δ1 = 0.7, ϑ1 = 0) and

(λ2 = 3, δ2 = 0.7, ϑ2 = π/2).

Since the obtained results are very similar between models, we report only those referred to

EVV (see Figure 8). A quick look at the plots confirms that the discrepancy between the curves

is negligible; moreover, as expected, the increase ofn seems to improve this agreement. These

results confirms the validity of the theoretical asymptoticχ2 distribution in our context.

7 Concluding remarks and discussion

This paper shows how some relevant configurations of similarity between covariance matricesΣh,

referring tok normal groups, can be described by considering the three-term eigen decomposition

Σh = λhΓhΔhΓ
′
h. Each of these terms denotes specific geometric features (volume, shape, and

orientation). This approach leads to eight different models by allowing each of the terms to be

common or not between groups. However, no statistical test to assess the “correct” model among

them exists and, still today, theomnibusBox test of homoscedasticity (versus heteroscedasticity)

is widely used; unfortunately, beingomnibus, after a rejection of the null hypothesis it leaves

the practitioner without any further information. In this paper, such a gap has been addressed by

providing a closed multiple testing procedure, using local likelihood ratio tests, to assess the choice
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between the eight models. Although, in principle, an information criterion could be employed, a

large number of these criteria has been proposed in literature (possibly leading to different choices)

and practitioners tend to use one of them almost randomly or routinely. On the other hand, the

closed LR test proposed here offers a straightforward assessment of covariance configurations

and is based on only one subjective element, the significance levelα, whose meaning is clear to

everyone. Moreover, the adjustedp-values provide also a measure of “how significant” the test

result is. We have evaluated, through simulations, the ability of the proposed procedure to detect

the true underlying structure. Further, the real data sets analyzed in this paper have shown the gain

in information and in parsimony that can be obtained via the new inferential method.

A further remark refers to the field of application that is not restricted to the (completely)

supervised paradigm, as it could be inferred by the underlying assumptions. Our proposal provides

indeed a suitable way to select a common covariance structure on labelled data, hence it can be

naturally translated into the framework of model-based classification (see, e.g., Bagnatoet al.,

2013). The estimation of the underlying mixture model could be also improved by employing this

procedure in semi-supervised mode.

A direct application of this test can be devised in the field of biology, where a researcher may

be interested in studying isometric or allometric scaling with respect to groups induced by species,

gender, age, and so on. Isometric scaling occurs when changes in size (during growth or over

evolutionary time) do not lead to changes in proportion. An example is found in frogs: aside from

a brief period during the few weeks after metamorphosis, they grow isometrically (see Emerson,

1978). Instead, allometric scaling is any change that deviates from isometry. A classic example is

the skeleton of mammals, that becomes much more robust and massive, relative to the size of the

body, as the body grows (Schmidt-Nielsen, 1984). Three of the four data sets we employed come

from biology. However, our procedure is far more widely applicable, as illustrated by the Swiss

bank notes example herein.

The likelihood ratio tests for patterned covariance matrices, used as localα-level tests in our
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procedure, are however sensitive to violations of the normality assumption (as also noted in the

simulation results of Section 6). The problem of their generalization to wider classes of distri-

butions has generated a huge amount of literature (see, e.g., Hallin and Paindaveine, 2009, and

the references therein, for EEE, VEE and EVV; and Boente and Orellana, 2004, for VEE). Future

work will consider extending these results to the remaining localα-level tests in our hierarchy to

robustify the multiple testing procedure.
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Table 1: Models inM̃ described by their covariance restrictions

M
Volume

λh

Shape

Δh

Orientation

Γh

Decomposition

of Σh

Relationship with

existingmodels

EEE Equal Equal Equal λΓΔΓ′ Homoscedasticity

VEE Variable Equal Equal λhΓΔΓ
′ Proportional Covariance Matrices

(PCM; Flury, 1986)

EVE Equal Variable Equal λΓΔhΓ
′ -

EEV Equal Equal Variable λΓhΔΓ
′
h

Homometroscedasticity
(Greselinet al., 2011)

VVE Variable Variable Equal λhΓΔhΓ
′

Common Principal Componentsa

(CPC; Flury, 1984)

Homotroposcedasticity
(Greselinet al., 2011)

VEV Variable Equal Variable λhΓhΔΓ
′
h -

EVV Equal Variable Variable λΓhΔhΓ
′
h -

VVV Variable Variable Variable λhΓhΔhΓ
′
h Heteroscedasticity

a If the constraint on the decreasing order of the diagonal elements ofΔh is relaxed,h = 1, . . . , k.
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Table 2: Scheme of computation ofνM, for the asymptoticχ2-approximation ofLRM, starting fromηVVV

andηM, for each modelM ∈ M̃.

M ML ηVVV ηM νM

EEE CF k
p(p+ 1)

2
−

p(p+ 1)
2

= (k− 1)
p(p+ 1)

2

VEE IP k
p(p+ 1)

2
−

p(p+ 1)
2

+ (k− 1) = (k− 1)

(
p(p+ 1)

2
− 1

)

EVE IP k
p(p+ 1)

2
−

p(p+ 1)
2

+ (k− 1) (p− 1) = (k− 1)

(
p(p− 1)

2
+ 1

)

EEV CF k
p(p+ 1)

2
− k

p(p+ 1)
2

− (k− 1) p = (k− 1) p

VVE IP k
p(p+ 1)

2
−

p(p+ 1)
2

+ (k− 1) p = (k− 1)
p(p− 1)

2

VEV IP k
p(p+ 1)

2
− k

p(p+ 1)
2

− (k− 1) (p− 1) = (k− 1) (p− 1)

EVV CF k
p(p+ 1)

2
− k

p(p+ 1)
2

− (k− 1) = (k− 1)

VVV CF k
p(p+ 1)

2
− k

p(p+ 1)
2

= 0
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Table 3: Definitions and references for the adopted likelihood-based information criteria.

Information Criterion Definition Reference

AIC −2lM + 2ηM Akaike (1973)

AIC3 −2lM + 3ηM Bozdogan (1994), Cavanaugh (1999)

BIC −2lM + ηM ln n Schwarz (1978)

CAIC −2lM + ηM (1+ ln n) Bozdogan(1987)
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Table 4: Three-term decomposition ofΣVVV
h , h = 1, 2, 3, in the Fisher iris data.

Group Volume Shape Orientation

setosa
(n1 = 50)

λVVV
1 = 0.037 ΔVVV

1 =




6.202 0 0 0
0 0.968 0 0
0 0 0.703 0
0 0 0 0.237




ΓVVV
1 =




0.669 −0.599 −0.440 0.036
0.734 0.621 0.275 0.020
0.097 −0.490 0.832 0.240
0.064 −0.131 0.195 −0.970




versicolor
(n2 = 50)

λVVV
2 = 0.065 ΔVVV

2 =




7.396 0 0 0
0 1.097 0 0
0 0 0.830 0
0 0 0 0.148




ΓVVV
2 =




0.687 0.669 −0.265 0.102
0.305 −0.567 −0.730 −0.229
0.624 −0.343 0.627 −0.316
0.215 −0.335 0.064 0.915




virginica
(n3 = 50)

λVVV
3 = 0.105 ΔVVV

3 =




6.477 0 0 0
0 0.993 0 0
0 0 0.487 0
0 0 0 0.319




ΓVVV
3 =




0.741 −0.165 0.534 0.371
0.203 0.749 0.325 −0.541
0.628 −0.169 −0.652 −0.391
0.124 0.619 −0.429 0.646



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Table 5: Fisher iris data. Details on: modelsM ∈ M̃, closed LR testing procedure, and likelihood-based
IC. Bold numbers refer to the “not rejected” hypotheses inH at the 0.05-level (columnqM) and to the best
model (minimum column value) for each IC.

M ηM LRM νM pM qM −2lM AIC AIC3 BIC CAIC

EEE 10 149.66 20 ≈ 0 196.82 216.82 226.82 246.93 256.93
VEE 12 114.61 18 ≈ 0 161.78 185.78 197.78 221.91 233.91
EVE 16 107.24 14 ≈ 0 154.41 186.41 202.41 234.58 250.58
EEV 22 64.85 8 5.17∙10−11 112.02 156.02 178.02 222.25 244.25
VVE 18 66.31 12 1.56∙10−9 1.56∙10−9 113.47 149.47 167.47 203.67 221.67
VEV 24 11.34 6 0.07831 0.07831 58.51 106.51 130.51 178.77 202.77
EVV 28 51.96 2 5.20∙10−12 5.17∙10−11 99.13 155.13 183.13 239.43 267.43
VVV 30 47.17 107.17 137.17 197.49227.49
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Table 6: Three-term decomposition ofΣVVV
h , h = 1,2, in the Bank notes data.

Group Volume Shape Orientation

genuine
(n1 = 100)

λVVV
1 = 0.096 ΔVVV

1 =

[
2.226 0

0 0.450

]

ΓVVV
1 =

[
0.720 −0.694
0.694 0.720

]

forged
(n2 = 100)

λVVV
2 = 0.059 ΔVVV

2 =

[
2.088 0

0 0.479

]

ΓVVV
2 =

[
0.613 −0.790
0.790 0.613

]
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Table 7: Bank notes data. Details on: modelsM ∈ M̃, closed LR testing procedure, and likelihood-based
IC. Bold numbers refer to the “not rejected” hypotheses inH at the 0.05-level (columnqM) and to the best
model (minimum column value) for each IC.

M ηM LRM νM pM qM −2lM AIC AIC3 BIC CAIC

EEE 3 14.25 3 0.00258 115.53 121.53 124.53 131.43 134.43
VEE 4 3.10 2 0.21221 104.38 112.38116.38 125.58 129.58
EVE 4 13.98 2 0.00092 115.26 123.26 127.26 136.45 140.45
EEV 4 11.51 2 0.00316 112.79 120.79 124.79 133.99 137.99
VVE 5 2.88 1 0.089460.21221104.17 114.17 119.17 130.66 135.66
VEV 5 0.20 1 0.651220.65122101.49 111.49 116.49 127.98 132.98
EVV 5 11.32 1 0.00077 0.00316 112.60 122.60 127.60 139.09 144.09
VVV 6 101.28 113.28 119.28 133.07139.07
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Table 8: crab data. Details on: modelsM ∈ M̃, closed LR testing procedure, and likelihood-based IC. Bold
numbers refer to the “not rejected” hypotheses inH at the 0.05-level (columnqM) and to the best model
(minimum column value) for each IC.

M ηM LRM νM pM qM −2lM AIC AIC3 BIC CAIC

EEE 3 69.09 3 6.66∙10−15 834.61 840.61 843.61 848.43 851.43
VEE 4 67.42 2 2.33∙10−15 832.95 840.95 844.95 851.37 855.37
EVE 4 67.89 2 1.78∙10−15 833.42 841.42 845.42 851.84 855.84
EEV 4 3.25 2 0.19724 768.77 776.77 780.77787.19 791.19
VVE 5 67.29 1 ≈ 0 6.66∙10−15 832.81 842.81 847.81 855.84 860.84
VEV 5 0.01 1 0.93579 0.93579 765.53 775.53 780.53788.55 793.55
EVV 5 3.24 1 0.07185 0.19724 768.76 778.76 783.76 791.79 796.79
VVV 6 765.52 777.52 783.52 793.15799.15
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Table 9: turtle data. Details on: modelsM ∈ M̃, closed LR testing procedure, and likelihood-based IC.
Bold numbers refer to the “not rejected” hypotheses inH at the 0.05-level (columnqM) and to the best
model (minimum column value) for each IC.

M ηM LRM νM pM qM −2lM AIC AIC3 BIC CAIC

EEE 3 25.27 3 1.36∙10−6 593.70 599.70 602.70 605.31 608.31
VEE 4 13.66 2 0.00108 582.09 590.09 594.09 597.58 601.58
EVE 4 23.97 2 6.22∙10−6 592.41 600.41 604.41 607.89 611.89
EEV 4 14.97 2 0.00056 583.41 591.41 595.41 598.89 602.89
VVE 5 13.48 1 0.00024 0.00108 581.92 591.92 596.92 601.27 606.27
VEV 5 0.11 1 0.73504 0.73504568.55 578.55 583.55 587.90 592.90
EVV 5 14.89 1 0.00011 0.00056 583.32 593.32 598.32 602.68 607.68
VVV 6 568.43 580.43 586.43 591.66597.66
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Table 10: Simulated acceptance rates from the closed LR testing procedure. Samples are drawn with sizes
n = 100 andn = 200 byk = 2 groups of bivariate normal, varying the volume (λ2), the shape (δ2), and the
orientation (ϑ2) of the covariance matrixΣ2 with respect toΣ1 (λ1 = 1, δ1 = 0.7, andϑ1 = 0). Rates refer
to 1000 replications and to a nominal level of 0.05. Bold numbers highlight the true model in each setting.

n = 100 n = 200
λ2 δ2 θ2 EEE VEE EVE EEV VVE VEV EVV VVV EEE VEE EVE EEV VVE VEV EVV VVV

1 0.7 0 0.950 0.020 0.012 0.018 0.000 0.000 0.000 0.0000.967 0.014 0.010 0.007 0.002 0.000 0.000 0.000
π/4 0.621 0.011 0.0110.351 0.001 0.004 0.001 0.000 0.229 0.004 0.0140.727 0.001 0.017 0.007 0.001
π/2 0.479 0.008 0.0160.476 0.002 0.019 0.000 0.000 0.126 0.001 0.0170.825 0.000 0.023 0.007 0.001

0.3 0 0.049 0.0030.889 0.004 0.028 0.000 0.026 0.001 0.000 0.0000.946 0.000 0.026 0.000 0.024 0.004
π/4 0.000 0.000 0.340 0.044 0.010 0.0000.565 0.041 0.000 0.000 0.085 0.000 0.002 0.0000.847 0.066
π/2 0.000 0.000 0.304 0.031 0.006 0.0000.620 0.039 0.000 0.000 0.073 0.000 0.002 0.0000.877 0.048

2 0.7 0 0.1800.769 0.003 0.008 0.016 0.024 0.000 0.000 0.0140.942 0.000 0.001 0.027 0.016 0.000 0.000
π/4 0.073 0.431 0.002 0.078 0.0350.374 0.000 0.007 0.001 0.113 0.001 0.005 0.0190.841 0.000 0.020
π/2 0.048 0.270 0.004 0.109 0.0310.536 0.000 0.002 0.000 0.045 0.000 0.010 0.0200.901 0.000 0.024

0.3 0 0.007 0.033 0.126 0.0000.783 0.001 0.002 0.048 0.000 0.000 0.007 0.0000.948 0.000 0.000 0.045
π/4 0.000 0.000 0.021 0.004 0.216 0.016 0.0450.698 0.000 0.000 0.000 0.000 0.035 0.000 0.0030.962
π/2 0.000 0.000 0.024 0.002 0.193 0.014 0.0690.698 0.000 0.000 0.000 0.000 0.036 0.000 0.0030.961

3 0.7 0 0.0010.951 0.000 0.001 0.028 0.019 0.000 0.000 0.0000.956 0.000 0.000 0.022 0.021 0.000 0.001
π/4 0.000 0.485 0.000 0.001 0.0260.479 0.000 0.009 0.000 0.123 0.000 0.000 0.0260.826 0.000 0.025
π/2 0.001 0.297 0.000 0.000 0.0410.656 0.000 0.005 0.000 0.035 0.000 0.000 0.0220.907 0.000 0.036

0.3 0 0.000 0.026 0.001 0.0000.914 0.000 0.000 0.059 0.000 0.000 0.000 0.0000.945 0.000 0.000 0.055
π/4 0.000 0.000 0.001 0.000 0.245 0.015 0.0000.739 0.000 0.000 0.000 0.000 0.044 0.000 0.0000.956
π/2 0.000 0.000 0.000 0.000 0.215 0.024 0.0000.761 0.000 0.000 0.000 0.000 0.037 0.000 0.0000.963

30
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
' M

ila
no

 B
ic

oc
ca

] 
at

 0
3:

29
 0

3 
Ju

ne
 2

01
3 



ACCEPTED MANUSCRIPT

Table 11: Simulated acceptance rates from the closed LR testing procedure. Samples are drawn with sizes
n = 100 andn = 200 byk = 2 groups of bivariatet with 10 degrees of freedom, varying the volume (λ2),
the shape (δ2), and the orientation (ϑ2) of the scalar matrixΣ2 with respect toΣ1 (λ1 = 1, δ1 = 0.7, and
ϑ1 = 0). Rates refer to 1000 replications and to a nominal level of 0.05. Bold numbers highlight the true
model in each setting.

n = 100 n = 200
λ2 δ2 θ2 EEE VEE EVE EEV VVE VEV EVV VVV EEE VEE EVE EEV VVE VEV EVV VVV

1 0.7 0 0.894 0.057 0.023 0.019 0.005 0.002 0.000 0.0000.891 0.046 0.027 0.025 0.008 0.002 0.000 0.001
π/4 0.546 0.034 0.0330.355 0.002 0.028 0.001 0.001 0.209 0.013 0.0220.677 0.004 0.047 0.020 0.008
π/2 0.464 0.024 0.0320.426 0.003 0.048 0.002 0.001 0.125 0.006 0.0220.741 0.001 0.074 0.028 0.003

0.3 0 0.069 0.0060.799 0.006 0.068 0.000 0.041 0.011 0.002 0.0000.861 0.000 0.085 0.000 0.043 0.009
π/4 0.001 0.000 0.322 0.049 0.023 0.0040.511 0.090 0.000 0.000 0.091 0.000 0.007 0.0010.785 0.116
π/2 0.001 0.000 0.281 0.046 0.024 0.0050.553 0.090 0.000 0.000 0.072 0.001 0.004 0.0000.818 0.105

2 0.7 0 0.2070.701 0.008 0.004 0.034 0.044 0.001 0.001 0.0340.878 0.002 0.003 0.036 0.046 0.000 0.001
π/4 0.103 0.385 0.012 0.089 0.0350.364 0.001 0.011 0.005 0.155 0.001 0.018 0.0330.738 0.001 0.049
π/2 0.061 0.250 0.009 0.108 0.0510.505 0.001 0.015 0.002 0.064 0.000 0.017 0.0210.856 0.000 0.040

0.3 0 0.014 0.037 0.161 0.0010.693 0.008 0.004 0.082 0.000 0.000 0.029 0.0000.875 0.000 0.000 0.096
π/4 0.000 0.000 0.051 0.004 0.185 0.026 0.0910.643 0.000 0.000 0.001 0.000 0.056 0.000 0.0170.926
π/2 0.000 0.000 0.044 0.005 0.193 0.030 0.0860.642 0.000 0.000 0.001 0.000 0.052 0.000 0.0150.932

3 0.7 0 0.0080.907 0.002 0.000 0.039 0.044 0.000 0.000 0.1040.795 0.000 0.000 0.055 0.045 0.000 0.001
π/4 0.003 0.491 0.000 0.004 0.0560.440 0.000 0.006 0.101 0.140 0.000 0.000 0.0380.692 0.000 0.029
π/2 0.003 0.321 0.000 0.004 0.0600.601 0.000 0.011 0.095 0.045 0.000 0.000 0.0280.785 0.000 0.047

0.3 0 0.001 0.030 0.006 0.0000.869 0.009 0.000 0.085 0.102 0.001 0.000 0.0000.815 0.000 0.000 0.082
π/4 0.000 0.000 0.004 0.000 0.273 0.029 0.0010.693 0.093 0.000 0.000 0.000 0.059 0.000 0.0000.848
π/2 0.000 0.000 0.000 0.000 0.246 0.021 0.0030.730 0.089 0.000 0.000 0.000 0.047 0.000 0.0000.864
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EEE VEE EVE EEV

VVE VEV EVV VVV

Figure 1: Examples of the models iñM. The bivariate case (p = 2), andk = 2 groups, are considered.
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Figure 2: Scatter plots, and related ellipses of equal (95%) concentration, for crab and turtle data (in both
cases,◦ denotes female and• male).
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HEEE
0

HVEE
0 HEVE

0 HEEV
0

HVVE
0 HVEV

0 HEVV
0

Figure 3: Graph of the hierarchy of relationships between the null hypotheses.
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Figure 4: Matrix of scatter plots of Fisher’s iris data (× denotes setosa,◦ denotes versicolor, and• denotes
virginica)
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Figure 5: Unadjusted and adjustedp-values (in round brackets) related to the closed LR testing procedure
applied to the Iris data set. Rejected hypotheses, at the 0.05-level, are displayed in gray.
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(b) Forged

Figure 6: Scatter plots, and related ellipses of equal (95%) concentration, of variables LEFT and RIGHT in
two groups of Swiss bank notes. Coinciding points are marked by a single symbol only.
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Figure 7: Unadjusted and adjustedp-values (in round brackets) related to the closed LR testing procedure
applied to the bank notes data. Rejected hypotheses, at the 0.05-level, are displayed in gray.
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Figure 8: Model EVV: SDF of the LR test statistic compared with the asymptoticχ2 distribution, from
10000 replications.
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