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Abstract

In this paper we introduce a multiple testing procedure to assess a common covariance
structure betweek groups. The new test allows for a choice among eigfiedint patterns
arising from the three-term eigen decomposition of the group covariances. It is based on the
closed testing principle and adopts local likelihood ratio tests. The approach reveals richer in-
formation about the underlying data structure than classical methods, the most common one
being only based on honfeeteroscedasticity. At the same time, it provides a more parsimo-
nious parameterization, whenever the constrained model is suitable to describe the real data.
The new inferential methodology is then applied to some well-known data sets chosen from the
multivariate literature. Finally, simulation results are presented to investigate its performance
in different situations representing gradual departures from homoscedasticity and to evaluate
the reliability of using the asymptotig? to approximate the actual distribution of the local

likelihood ratio test statistics.

Keywords: Closed Testing Procedures; Common Principal Components; Eigen Decomposi-

tion; Homoscedasticity; Likelihood Ratio Tests; Proportional Covariance Matrices.
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1 Introduction

Let x, be theith p-dimensional observation in grodpi = 1,...,ny, h = 1,...,k. Suppose
that data in each group are randomly drawn from a normal distribution with mean ygciod
covariance matrixy,, h=1,..., k.

Unlike multivariate analysis of variance (MANOVA), where the interestis in comparjng ., y,,
here the attention is focused on the detection of a common structypat{ern) among the group
covariance,, ..., X The assessment of a common pattern provides a more informative esti-
mation of the group conditional densities on the training set in normal discriminant analysis (see,
e.g., Fluryet al, 1994 and Bagnatet al., in press) and it is of intrinsic interest in such fields
as psychometrics or genetics, where the similarity of genetic covariance structures among species
is a fundamental subject of investigation. Moreover, discovering a common structure for group
covariances allows one to reduce the number of estimated paranpetecgple of parsimony.

To face the issue, this paper considers a very general framework given by the (three-term) eigen

decomposition
Xh = AhARLY, h=1,...,k (@D)

where, = |Z4/YP, with |-| denoting the determinana,, is the scaled|dn| = 1) diagonal matrix

of the eigenvalues af;, sorted in decreasing order, ahg is a p x p orthogonal matrix whose
columns are the normalized eigenvector&gfordered according to their eigenvalues (note Ihat

is not unique when eigenvalues have multiplicities greater than one). This decomposition is widely
employed in the mixture framework (see Celeux and Govaert, 1995 and Bensmail and Celeux,
1996, among many others). Each component in the right side of (1) hdfeeedt geometric
interpretation in terms of the hyper-ellipsoids of equal concentration (sections qfthaate
normal distribution having a given probability). The volume is determinedyynore precisely,

it is proportional to/lﬁ/2 = |2, see Rencher and Christensen, 2012, Sections 3.11 and 4.1.3

for details). Shape and orientation are governedbgandI'y,, respectively. Now, considering the
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triplet (An, Ap, I'n), @and allowing to its elements to be equal (E) or variable (V) among groups, we

obtain the following family of parsimonious and easily interpretable models
M= {EEE, VEE, EVE, EEV, VVE, VEV, EW,WV}.

With this convention, writingtI' ALy, or EEV, means that we consider groups with equal volumes,
equal shapes, andftirent orientations. The present approach is quite general because it includes
many previously studied models as special cases. Table 1 schematizes all the Mhaeletd,

giving their mapping with the covariance restrictions already known in the literature. Figure 1
exemplifies the models providing a graphical representation in thepcade= 2.

To detect the best model iM, we use a closed multiple testing procedure. This is done
according to a very familiar MANOVA paradigm, where three treatment groups are compared
with a common control group, or a single treatment is evaluated against a single control on the
basis of three dierent variables (see, e.g., Westfall and Wolfinger 2000 and ®itesit. 2011,

Chapter 4.1). Generalized likelihood ratio (LR) tests are considered as local tests in the procedure.
The result is a “global procedure” in the sense that the model, for the observed data, is detected by
simultaneouslgonsidering all the elements k. Conversely, in the MANOVA framework (see,

e.g. Christensen, 1996, p. 461) the user often follows a path that inaa@ssebf the models.

The paper is organized as follows. Section 2 shows some geometrical features on real data
that suggested the development of the new approach. Section 3 gives basic notation about closed
testing procedures, and Section 4 describes how to use LR tests as local tests. The new inferential
procedure is then applied, in Section 5, to some well-known data in the multivariate literature
to show how it works, in terms of improved information and parsimony. A simulation study is
developed in Section 6 to assess the performances of the closed testing procedure under normal
and heavy tailed densities and to evaluate the reliability of using the asymptdtic the actual

distribution of the local LR test statistics. Final considerations are given in Section 7.

ACCEPTED MANUSCRIPT
3



Downloaded by [Universita' Milano Bicocca] at 03:29 03 June 2013

ACCEPTED MANUSCRIPT

2 Real data motivating inference onM

In this section two real data sets will be shown to motivate inferenctfon

The first example refers to the crab data set of Campbell and Mahon (1974) on thd_gpnus
tograpsus Attention is focused on the samplemf= 100 blue crabs, there beimg = 50 males
(group 1) and, = 50 females (group 2), each specimen hayjirng 2 measurements (in millime-
ters) for the rear width (RW) and the length along the midline (CL) of the carapace. By Mardia’s
test, the two group-conditional distributions can be considered bivariate normal, while the LR test
of homoscedasticity (versus heteroscedasticity) rejects the null hypothesis at any reasonable signif-
icance level. Figure 2(a) displays the scatter plot of RW versus CL. In both groups, the estimated
ellipses of equal (95%) concentration (giving the graphical counterpart of the covariance matrices
estimated under VVV) are superimposed to facilitate our understanding. Although the LR test
points out heteroscedasticity, Figure 2(a) suggests that the two scatters for male and female crabs
have approximately the same volume and the same shape (i.e., same proportion between the axes
in the ellipse) but dterent orientations (directions of the main axes in the ellipses). This pattern is
represented by model EEV. On the other hand, noting soffereince in volumes in Figure 2(a),
someone could lean toward VEV. As a consequence, we would appreciate a testing procedure to
assess our conjectures with the aim of gaining information about the data and obtaining a more
parsimonious model.

As a second example, we consider the turtle data set of Jolicoeur and Mosimann (1960) focus-
ing on the variables carapace length (LH) and height (HT), measured in millimetens,-0124
male andh, = 24 female painted turtle€hrysemys picta marginataAlthough homoscedasticity
does not hold, Figure 2(b) shows some similarity in terms of shape for the two group scatters. If we
were able to assess this conjecture, concluding that model VEV describes the covariance structure
between groups, then we would obtain a gain in information and in parsimony, as in the previous

example. Moreoveshapeis a well-known and fundamental concept for the analysis of variation
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in living organisms, allowing for significant classification (Jolicoeur and Mosimann, 1960, p. 339).
In this paper, we show how the new inferential method provides a rigorous systematization of

these considerations.

3 Model assessment via closed testing procedures

In this section we provide a method for model assessmemtjrin the framework ofmultiple
testing procedure@MTPs; see e.g., Hochberg and Tamhane, 1987). Let us dendi¢ lilre null
hypothesis related to the generic motiele M = M\ (VWV} Among the available alternatives
for each null, we seil}VV as the unique (benchmark) alternative hypothesis. This positions allows
us to define seveomnibustests, with VVV being the most general, unconstrained model. The
seven null hypotheses are represented in Figure 3.

Now, let us denote by = {HyVE, HYEY, H5VV} the subfamily ofelementanhypotheses in the
bottom layer of Figure 3. They play a crucial role: depending on the true moad]| imone, some,
or all of the hypotheses ifif may be the true null. Thus, for example, if the true modeMnis
EEV, thenHSYY andH®" hold true, whileHyVE is false. Figure 3 is represented as a hierarchy
where arrows indicate implications, because, for instaHEES implies HYF (see Hochberg and
Tamhane, 1987, p. 344); in other words, EEE is more restrictive than VEE.

The natural choice for our context is to adoptlased testing procedu@€TP; Marcuset al.,
1976). It is the most powerful, among the available MTPs, that strongly contrdiarthiywise er-
ror rate (FWER) at levelr (as recently further corroborated via simulations by Giancristofaro Ar-
boretti et al, 2012). Controlling the FWER in a strong sense means to control the probability
of committing at least one Type | error, under any partial configuration of true and false null hy-
potheses iH{. This is the only way to make inference on each hypothesid inOperationally
we reject, say, the elementary hypothed}§" if and only if each test on the more restrictive hy-
pothesedHy=E, HEEY, HEEE, and also orHYEY itself, yields a significant result. Denoting Ipyee,

Peev, Peee, and pyey the p-values forHy®E, HEEY, HEEE andHYEY, respectively, we report the
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adjusted pvalue fong’ BV asqvev = max{pvee, Peev, Pees Pvev ). An adjustedo-value represents
the natural counterpart, in the multiple testing framework, of the claspivalue (see, e.g., Bretz

etal, 2011, p. 18).

4 Local likelihood ratio tests

To complete the definition of the closed testing procedure we still need to specify how to test
elementary and non-elementary hypotheses.

For the elementary hypotheses, we adopt lackdvel tests based on the LR statistic because
they represent the standard method to comga&@variance matrices (Manly and Rayner, 1987).

For what concerns the non-elementary hypotheses, we first have to recall that és¥gnti
method for testing them leads to a new anlestent CTP, and CTPs are best when these methods
are as powerful as possible. The simplest approach consists of using MTPs such as, for example,
the classical Bonferroni method or the slightly more complex, but much less conservative, method
of Holm (1979). They are both applicable under arbitrary dependence among tests statistics. How-
ever, a non-multiple approach in this phase could guarantee a better performance, and this is the
reason why we prefer to move towards loadlkvel tests, based on the LR test statistics, also for
the non-elementary hypotheses.

For eachM € M, the joint likelihood function is

K eXp{—_ Z (Xin = p1p)’ [ﬂﬁ”Fr“fAh (Fh ) ] (Xih - ﬂh)}
M AM MK i—1
) ] |

; )

h=1 (27)2P™ ‘/lrr;/lrrr\]/lArI\]A (Fr':/l) i

The corresponding joint log-likelihood functioly = In Ly, is given by

k
My M
13 ' [AMPMAM (pMY 7L
-5 Z O — ) [ AT AN (CN) |~ O — pan) ¢ (3)
i=1
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Regardless fronM e M, the maximum likelihood (ML) estimate ¢4, is the sampleneanx;, and

it is obtained as solution of

olm ({ﬂh’ AL AN, Fm:—l)

oy,

A T () =0, h=1..k
i=1

Since the maximizing value qf,, does not depend o, A, andT}, we can obtain the ML
estimates for the latter three components by maximizing eitheor |; then, through (1), we
get the estimate &£}. The estimates of/VV, AYYY andI}V will be defined in the following as
sample volumesample shape-matrixndsample orientation-matrixespectively.

To maximizeLy, (or ly), iterative procedures are occasionally needed. The second column
of Table 2 indicates if ML estimation can be achieved in a closed form (CF) or if an iterative
procedure (IP) is needed. Details on the estimates can be found in Celeux and Govaert (1995) and
Biernackiet al. (see 2008, pp. 22—-24). Note that, contrarily to what described in the above cited
works, the constraint of decreasing order of the diagonal elemeng im= 1,...,k, should be
implemented for EVE and VVE.

Now, a natural way to compare eabhe M with the diagnostic model VVVVV, consists of using

the (generalized) likelihood ratio (LR) statistic

L
LRy = —2In— (4)
VVV

.....

degrees of freedom, whergyy, andny, denote the number of (free) parameters for VVV angd
respectively (see Anderson, 1984, pp. 405406, for detailsRgpg). The value ofvy is the gain
in parsimony that could be obtained, improving at the same time the information about the group
covariance structures. Table 2 specifies the number of paramegteasd the degrees of freedom
vm Of the LR statistic, for eacM ¢ M.

Finally, note that Box’s test and the test discussed in Flury (1986) are already existing LR tests

for the null hypothesesiSEF and HYFF, respectively. However, they are based on the unbiased
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version of the maximum likelihood estimators Bf=F andX=F. For methodological uniformity,
since we employ ML estimators of the covariance matrices for the other modals e prefer

to do the same also fai5== andHy=.

5 Applications

In this section we will show how the proposed closed LR testing procedure acts on real data. To
this end, some well-known examples in the multivariate literature, in addition to those already
presented in Section 2, will be used. A nominal level of 0.05 is adopted hereafter for the FWER-
control. We will compare our approach with the likelihood-based Information Criteria (IC) sum-
marized in Table 3.

Note that a preliminary Mardia’s test is performed on each set of sample data to check the
underlying assumption of multivariate normality. TReode R Development Core Team, 2012)
providing the ML-estimates iM, and implementing the closed LR testing procedure, with both
adjusted and unadjustgdvalues, is available &tttp://www.economia.unict.it/punzo. In
particular, to maximizé.y in (2) for the models requiring an IP, we employed the general purpose

optimizeroptim, in theR-packagestats.

Example 1: Iris data

This data set was made famous by Fisher (1936) illustrating discriminant analysis. The sample
containsn = 150 observations on, = 50 flowers,h = 1,2, 3, from each ok = 3 species of iris:
setosaversicolorandvirginica. The p = 4 variables, measured in centimeters, aepal length
sepal widthpetal length andpetal width The matrix of scatter plots for the grouped-data is shown
in Figure 4. Mardia’s test is consistent with multivariate normality in each of the 3 groups.

Sample volumes, sample shape-matrices and sample orientation-matrices, for each group, are

given in Table 4. A glance to Table 4 and Figure 4 indicates that the covariance structure among
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groups is quite dferent, although some similarities in terms of shape are observed. The LR test for
HGEE is rejected peee ~ 0). Also, at the 0.05-level, heteroscedasticity has been detected for these
data by Flury (1984, 1988, Example 4.4) after the use of the CPC, and by Gresalirf2011)

via an augmentation multiple testing procedure conceived for the family of hypotheses composed
by homoscedasticity, homometroscedasticity (EEV), and homotroposcedasticity (VVE).

Additional information about the degree of similarity between the three covariance matrices
can be gained by employing the closed LR testing procedure. The diagram in Figure 5 lists unad-
justedp-values, for all the hypotheses in the hierarchy, and adjustemlues (in round brackets)
for the elementary hypotheses. This way of proceeding, in line with Westfall and Young (1993,
p. 10), highlights their disparity. The hierarchical arrangement of Figure 5 better illustrates how
to compute the adjusteptvalues. Thus, for example, the adjustedalue forH5"V is given by
gevv = MaX Pevv, Peevs Peve, Peee} = Max5.20-1012,5.17-101%,0,0} = 5.17-10°1L,

Atthe 0.05-levelHYEY is the only elementary hypothesis that is not rejectet iny the closed
LR testing procedure (see Figure 5). Table 5 contains further details about the models, the results
obtained by the LR testing procedure, and the adopted IC. Here all the considered IC agree with
the closed LR testing procedure.

To summarize, the proposed inferential approach allows us to conclude that scatters in the three
iris species dter in orientation and volume but are consistent with having the same shape. We have
obtained a more parsimonious model with a gain of 6 parameters with respect to VVV. The analysis
could be made even more accurate and parsimonious by applying the closed LR testing procedure
to the two groupwersicolorandvirginica only, omitting setosathat appear well separated from

them (see Flury, 1984, Example 1).

Example 2: Bank notes data

From Flury (1988, pp. 51-56), the = 2 variables “width, measured on left side” (LEFT) and

“width, measured on right side” (RIGHT), measured (in millimeters) on former Swiss 1000-franc
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bank notes, will be considered. There &re= 2 groups of bills, genuine (group 1) and forged
(group 2), each of them consisting of = 100, h = 1,2, observations. Mardia’s test assesses
bivariate normality for the group of forged bills, but it leaves some doubt with respect to the
genuine one. However, we will proceed with the analysis, as Flury (1988) also does. The LR test
of homoscedasticity rejects the null hypothesis providingvalue pgge = 0.00258.

Table 6 summarizes the decomposition (1) in each group, and Figure 6 shows the scatter plots
with the ellipses of equal (95%) concentration superimposed. The scatter plots for genuine and
forged bank notes are separately displayed to avoid a large overlapping between sample points.
Although the LR test for EEE points out heteroscedasticity, the data in Table 6 suggest some
similarity in orientation and shape, while somdteience in their volume emerges for the two
ellipses in Figure 6(a) and Figure 6(b). This conjecture is statistically corroborated by Flury (1988,
p. 154): within his hierarchy of similarity between tkecovariance matrices, he leans towards
PCM, that coincides with VEE.

Results obtained by the closed LR testing procedure, given in Figure 7 and Table 7, confirm the
validity of VEE. Some concern arises when noting hoWedtent IC can lead to fferent choices.

In particular, the AIC leads to VEV, while the remaining ones choose VEE. However, this disagree-
ment may be partly illuminated by thefférences in the complexity penalizations of the criteria
(e.qg., the AIC features a rather weak penalization whereas the penalization of the BIC is more

stringent).

Example 3: Crab data

The crab data set introduced in Section 2, and graphically represented in Figure 2(a), will be con-
sidered. For sake of brevity, we present only the final findings by means of Table 8 that corroborate
the considerations we made previously; in particular, at the 0.05-l4§€Y,is not rejected because

its component#H§YY andHYEY are also not rejected. Moreover, comparigy with geyy, we

note that the former provides stronger evidence of similarity between groups in terms of shape.
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On the contrary, the AIC and the AiTean towards the less parsimonious VEV (as VEV adds one

parameter with respect to EEV).

Example 4: Turtle data

The turtle data set introduced in Section 2, and graphically represented in Figure 2(b), will be taken
into account. The overall results are given in Table 9. We can seélf#tis the only elementary
hypothesis that is not rejected at the 0.05-level, meaning that VEV is able to describe the covariance
structure between groups with a slight gain of one parameter with respect to heteroschedasticity

(VVV) assessed by the LR test of homoscedasticity.

6 A simulation study

We present here the results of a simulation study, implement&d developed with a twofold
aim: to show the performance of the proposed closed LR testing procedulféeiredi situations
of gradual departure from homoscedasticity (EEE), and to ascertain that the actual distribution of
the test statisti€. Ry, M € M, can be well approximated by the expeci€dwith vy degrees of

freedom.

6.1 Performance evaluation of the closed LR testing procedure

We measure howfective is the proposed testing procedure in assessing the correct structure be-
tween groups by measuring the acceptance ratesterelnt settings. As a lot of factors come into
play (the number of grougsand their size, the dimensignof the observed variables, the overall
sample sizen, the nominal levelr of the test, the volume, shape, and orientation components of
the eigen decomposition), some of them have been necessarily considered fixed.

Three diferent scenarios have been taken into account. We work with bivariateat&),

andk = 2 groups of equal sizen{ = n,). We have considered overall sample sizes ef100 and
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n = 200.
In the first scenario, data have been drawn from the bivariate normal distribution, with mean
vectorsu, = p, = 0 and covariance matric&; andX,, respectively. Eacl, according to the

eigen decomposition (1), can be written as

1/6, 0
Zh = ALhARLE = AR (9h) R (@), (5)
0 Oh
where
costy, —sindy
R (%) =

sindy, cosdy
is the rotation matrix of angléy,, andd;, € (0, 1]. The elements in the shape matrix arise from the
constraint:|Ay| = 1. Hence, we have a single parameter for each eigen decompositioniigisn:
the volume parametefy, is the shape parameter, afiglis the orientation parameter. In the case
p = 2, this is an alternative way to explain wly, as well as its eigen decomposition, has three
free parameterdy = 1,. ..,k (analogous considerations hold true fos 2).

To simulate diferent ways of gradual departure from homoscedasticity, after séitiry
A1 = 1,6, = 0.7, and?¥; = 0, we have considered some values Agrd,, andd, to specifyX,:
three values for, (1, 2, and 3), two values f@, (0.7 and 0.3), and three values &y (0, 7/4, and
/2 inradiants, i.e.,Q 45, and 90 in degrees). All the 18 combinations of these three parameters
have been taken into account in the simulations.

Table 10 displays the simulated acceptance rates for this first setting. The rates refer to a
nominal level of 005 and are calculated simulating 1000 samples for each of the 18 possible
settings of(1,, §,, ¥») and for both the values of Bold numbers highlight the true model in each
setting. As expected, the proposed procedure appears to be consistent since its power increases
with n. To give an example, for model VVE given Ify, = 2,5, = 0.3,9, = 0), the simulated
acceptance rate raises from 0.783 to 0.948 wherL00 moves ta = 200. Moreover, given, the

acceptance rates for the true model gradually increase in line with its strength; thus, for example,
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with reference to the case= 100, model VEE is better assessedfge= 3 (simulated acceptance

rate of 0.951), than fat, = 2 (simulated acceptance rate of 0.769). Analogous considerations hold
for model VEV in the casd, = 3, forn = 200; here, the acceptance rate increases fr&2a0to

0.907 whend, increases fromr/4 to /2. It is also interesting to note that, with reference to the
complete null (EEE), the procedure is able to maintain the size in thencas&00; in the case

n = 200, in accordance with the classical MTPs, the procedure appears to be slightly conservative
(simulated acceptance rate of 0.967).

To verify the robustness of the procedure with respect to departures from normality, we have
considered two further scenarios, where data have been drawn from two bivatistebutions
with mean vectorg, = u, = 0, scale matrice¥; andX,, and degrees of freedom = v, = 10,
in the first case, and; = v, = 5 in the second one. We recall that the covariance matrix of a
multivariatet distribution is proportional to the scale matiixvia the relationv/ (v — 2) £. For
simplicity, the same scheme above described for the normal case has been applied to the scale
matricesx; andX, when drawing samples from thelistribution.

Table 11 displays the simulated acceptance rates for the second scenario. As before, the rates
refer to a nominal level of .05 and are calculated simulating 1000 samples for each of the 18
possible settings df1,, 6, 9,) and for both values af; bold numbers are in correspondence to the
true model in each setting. The performance of the test worsens (compare Table 10 with Table 11)
when considering samples drawn from thaistribution with 10 degrees of freedom. Only as an
example, compare the simulated acceptance rates under the complete null in both tables. When the
degrees of freedom decrease to 5, as expected, the simulations give even worse results, here omitted
for sake of brevity. This attests the importance, for the proposed procedure, of the underlying

assumption of multivariate normality in each group.
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6.2 Asymptoticy? distributions of the local LR statistics

We are interested in comparing the simulated distribution function (SDF) of the test stafgtic
M e M, with its asymptotige2-distribution withvy, degrees of freedom. According to the simu-
lation scheme of Section 6.1, we have considered: sample sizes @D0 andn = 200, bivariate
data p = 2), andk = 2 groups of equal sizen{ = n,). As before, data in group 1 are gen-
erated with parametetyy = 1, 6; = 0.7, and®; = 0, while departures in volume, shape, and
orientation are obtained by specifying = 3, 6, = 0.3, and¥, = /2, respectively. Thus, for
example, data undety= have been randomly generated from two bivariate normal distributions
having zero-mean and covariance matrices respectively definéth by1, 6, = 0.7,9; = 0) and
(12=3,6,=0.7,9, = n/2).

Since the obtained results are very similar between models, we report only those referred to
EVV (see Figure 8). A quick look at the plots confirms that the discrepancy between the curves
is negligible; moreover, as expected, the increase ¢ems to improve this agreement. These

results confirms the validity of the theoretical asymptgfidistribution in our context.

7 Concluding remarks and discussion

This paper shows how some relevant configurations of similarity between covariance n&jrices
referring tok normal groups, can be described by considering the three-term eigen decomposition
Xy = AhpARl,. Each of these terms denotes specific geometric features (volume, shape, and
orientation). This approach leads to eighffelient models by allowing each of the terms to be
common or not between groups. However, no statistical test to assess the “correct” model among
them exists and, still today, thmmnibusBox test of homoscedasticity (versus heteroscedasticity)

is widely used; unfortunately, beingmnibus after a rejection of the null hypothesis it leaves

the practitioner without any further information. In this paper, such a gap has been addressed by

providing a closed multiple testing procedure, using local likelihood ratio tests, to assess the choice
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between the eight models. Although, in principle, an information criterion could be employed, a
large number of these criteria has been proposed in literature (possibly leadifigterdichoices)

and practitioners tend to use one of them almost randomly or routinely. On the other hand, the
closed LR test proposed herd&fars a straightforward assessment of covariance configurations
and is based on only one subjective element, the significancedevahiose meaning is clear to
everyone. Moreover, the adjust@evalues provide also a measure of “how significant” the test
result is. We have evaluated, through simulations, the ability of the proposed procedure to detect
the true underlying structure. Further, the real data sets analyzed in this paper have shown the gain
in information and in parsimony that can be obtained via the new inferential method.

A further remark refers to the field of application that is not restricted to the (completely)
supervised paradigm, as it could be inferred by the underlying assumptions. Our proposal provides
indeed a suitable way to select a common covariance structure on labelled data, hence it can be
naturally translated into the framework of model-based classification (see, e.g., Bagj@io
2013). The estimation of the underlying mixture model could be also improved by employing this
procedure in semi-supervised mode.

A direct application of this test can be devised in the field of biology, where a researcher may
be interested in studying isometric or allometric scaling with respect to groups induced by species,
gender, age, and so on. Isometric scaling occurs when changes in size (during growth or over
evolutionary time) do not lead to changes in proportion. An example is found in frogs: aside from
a brief period during the few weeks after metamorphosis, they grow isometrically (see Emerson,
1978). Instead, allometric scaling is any change that deviates from isometry. A classic example is
the skeleton of mammals, that becomes much more robust and massive, relative to the size of the
body, as the body grows (Schmidt-Nielsen, 1984). Three of the four data sets we employed come
from biology. However, our procedure is far more widely applicable, as illustrated by the Swiss
bank notes example herein.

The likelihood ratio tests for patterned covariance matrices, used asoldead! tests in our
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procedure, are however sensitive to violations of the normality assumption (as also noted in the
simulation results of Section 6). The problem of their generalization to wider classes of distri-
butions has generated a huge amount of literature (see, e.g., Hallin and Paindaveine, 2009, and
the references therein, for EEE, VEE and EVV; and Boente and Orellana, 2004, for VEE). Future
work will consider extending these results to the remaining lael@vel tests in our hierarchy to

robustify the multiple testing procedure.
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Table 1: Models in M described by their covariance restrictions

Volume Shape Orientation Decomposition

Relationship with

An An I}, of Xy, existingmodels
EEE Equal Equal Equal ALAI” Homoscedasticity
VEE Variable Equal Equal A TAT Proportional Covariance Matrices
(PCM; Flury, 1986)
EVE Equal Variable Equal ATA I -
EEV Equal Equal Variable  ATWATY Homometroscedasticity
(Greselinet al,, 2011)
Common Principal Compone#ts
. . (CPC,; Flury, 1984)
VVE Variable Variable Equal A LAY
Homotroposcedasticity
(Greselinet al,, 2011)
VEV Variable Equal Variable Anl'hATY, -
EVV Equal Variable Variable ATRARL, -
VVV Variable Variable Variable AnlhARL, Heteroscedasticity

a|f the constraint on the decreasing order of the diagonal elemensisfrelaxedh=1,..., k.
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Table 2: Scheme of computation ofy, for the asymptotig2-approximation olLRy, starting frommp
andny, for each modeM € M.

M ML npuw iy i
EEE CF |<'°('°2+ U p(p2+ 0, - (k—1)w
VEE IP k@ - p(p2+ Dik-1 - (k—l)(@—l)
eve P kXY - PR -1y — - PE R )
EEV CF kp(p2+ D _ kp(p2+ Dok-pp =  k-Dp
WE |P k|0(|02+ 1) p(p2+ 1)+(k_1)p - k-1 p(p2— 1)
vev ip kBEED PRI g o= k-np-n)
EVV CF k@ - kp(p2+ D k-1 = (k-1)

VW CF kw _ kw _ 0
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Table 3: Definitions and references for the adopted likelihood-based information criteria.

Information Criterion Definition Reference
AIC —2ly + 2nm Akaike (1973)
AIC3 =2l + 3nwm Bozdogan (1994), Cavanaugh (1999)
BIC =2y +nuinn Schwarz (1978)
CAIC =2y +nm (1 +Inn) Bozdogan1987)
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Table 4: Three-term decomposition &'VV, h = 1,2, 3, in the Fisher iris data.

Group \Volume Shape Orientation
6202 O 0 0 ] [0.669 —-0.599 -0.440 Q036
setosa W _ 0037 AW = 0 098 O 0 W _ 0.734 0621 Q275 Q020
(ny = 50) - 1 710 0O 0703 O 1 710.097 -0490 0832 0240
0 0 0 0237 |0.064 -0.131 Q195 -0.970
(7396 O 0 0 ] [0.687 0669 —-0.265 Q102
versicolor W Z 0065 AV 0 1097 O 0 W _ 0.305 -0.567 -0.730 -0.229
(n, = 50) 2 = 2 71 o0 0O 0830 O 2 710624 -0.343 0627 -0.316
0 0 0 Q148§ |0.215 -0.335 Q064 Q915
6.477 O 0 0 ] [0.741 -0.165 0534 Q371]
virginica W Z 0105 AW — 0 0993 O 0 W _ 0.203 Q749 0325 -0.541
(ns = 50) 3 = s 7 o 0O 0487 O 3 710628 -0.169 -0.652 -0.391
0 0 0 Q319 |0.124 0619 -0.429 Q646
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Table 5: Fisher iris data. Details on: models € M, closed LR testing procedure, and likelihood-based
IC. Bold numbers refer to the “not rejected” hypothesegfimt the 0.05-level (columgy) and to the best
model (minimum column value) for each IC.

M nm LRy vm Pm dm —2||\/| AlIC A|C3 BIC CAIC
EEE 10 14966 20 =0 196.82 216.82 226.82 246.93 256.93
VEE 12 11461 18 =0 161.78 185.78 197.78 221.91 233.91
EVE 16 107.24 14 =0 154.41 186.41 202.41 234.58 250.58
EEV 22 64.85 8 57-10 112.02 156.02 178.02 222.25 244.25

VVE 18 66.31 12 156:10° 1.56-10° 113.47 149.47 167.47 203.67 221.67
VEV 24 11.34 6 0.07831 0.07831 58.51106.51 130.51 178.77 202.77
EVV 28 51.96 2 501012 517-10! 99.13 155.13 183.13 239.43 267.43
VVV 30 47.17 107.17 137.17 197.4827.49
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Table 6: Three-term decomposition &YV, h = 1,2, in the Bank notes data.

Group \Volume Shape Orientation

genuine .\ _ wv 2226 0| ww _[0720 -0.694
(m=100) 4 =009 ATT=170 g450 i =|oee4 0720

forged W wv _[2088 0 | . _[0.613 -0.790
(o =100) "2 =009 A7 =1"6"" g479 T2" =|0700 613
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Table 7: Bank notes data. Details on: mod&se M, closed LR testing procedure, and likelihood-based
IC. Bold numbers refer to the “not rejected” hypothesegfimt the 0.05-level (columgy) and to the best
model (minimum column value) for each IC.

M nm LRv vm Pwm dm —2||V| AIC AIC; BIC CAIC

EEE
VEE
EVE
EEV
VVE
VEV
EVV
VWV

3 14.25
4 3.10
4 13.98
4 11.51
5 2.88
5 0.20
5 11.32
6

3 0.00258 115.53 121.53 124.53 131.43 134.43
2 0.21221 104.38 112.386.38 125.58 129.58

2 0.00092 115.26 123.26 127.26 136.45 140.45
2 0.00316 112.79 120.79 124.79 133.99 137.99

1 0.089460.21221104.17 114.17 119.17 130.66 135.66

1 0.651220.65122101.49111.49116.49 127.98 132.98

1 0.00077 0.00316 112.60 122.60 127.60 139.09 144.09
101.28 113.28 119.28 133.0¥39.07
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Table 8: crab data. Details on: models € M, closed LR testing procedure, and likelihood-based IC. Bold
numbers refer to the “not rejected” hypothesesHmat the 0.05-level (columny) and to the best model
(minimum column value) for each IC.

M nm LRy vwm Pwm dm _ZIM AIC A|C3 BIC CAIC
EEE 3 69.09 3 ®6-10% 834.61 840.61 843.61 848.43 851.43
VEE 4 67.42 2 2331071 832.95 840.95 844.95 851.37 855.37
EVE 4 67.89 2 17810 833.42 841.42 845.42 851.84 855.84
EEV 4 325 2 0.19724 768.77 776.77 780.787.19 791.19
VWE 56729 1 =0 6.66-101° 832.81 842.81 847.81 855.84 860.84
VEV 5 0.01 1 0.93579 0.93579 765.53775.53 780.53788.55 793.55
EVV 5 324 1 0.07185 0.19724 768.76 778.76 783.76 791.79 796.79
VVV 6 765.52 777.52 783.52 793.1%99.15
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Table 9: turtle data. Details on: modeM € M, closed LR testing procedure, and likelihood-based IC.
Bold numbers refer to the “not rejected” hypothesesHrat the 0.05-level (columiy) and to the best
model (minimum column value) for each IC.

M nw LRy vm Pwm dm —2||\/| AIC AIC; BIC CAIC

EEE 3 25.27 3 B6-10° 593.70 599.70 602.70 605.31 608.31
VEE 4 13.66 2 0.00108 582.09 590.09 594.09 597.58 601.58
EVE 4 23.97 2 @210° 592.41 600.41 604.41 607.89 611.89
EEV 4 1497 2 0.00056 583.41 591.41 595.41 598.89 602.89
VVE 5 1348 1 0.00024 0.00108 581.92 591.92 596.92 601.27 606.27
VEV 5 0.11 1 0.735040.73504568.55578.55 583.55 587.90 592.90
EVV 51489 1 0.00011 0.00056 583.32 593.32 598.32 602.68 607.68
VVV 6 568.43 580.43 586.43 591.6697.66
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Table 10: Simulated acceptance rates from the closed LR testing procedure. Samples are drawn with sizes
n = 100 andn = 200 byk = 2 groups of bivariate normal, varying the volume) the shape&;), and the
orientation §,) of the covariance matriX, with respect t&2; (1; = 1,6, = 0.7, and, = 0). Rates refer

to 1000 replications and to a nominal level of 0.05. Bold numbers highlight the true model in each setting.

Ay 02 6

n=100 n=200
EEE VEE EVE EEV VVE VEV EVV VVV EEE VEE EVE EEV VVE VEV EVV VWV

107 0
/4
/2

03 0
n/4
/2

207 0
n/4
/2

03 O
n/4
/2

307 0
/4
/2

03 0
/4
/2

0.9500.020 0.012 0.018 0.000 0.000 0.000 0.0am967 0.014 0.010 0.007 0.002 0.000 0.000 0.000
0.621 0.011 0.01D.3510.001 0.004 0.001 0.000 0.229 0.004 0.00.#27 0.001 0.017 0.007 0.001
0.479 0.008 0.01®.476 0.002 0.019 0.000 0.000 0.126 0.001 0.00.825 0.000 0.023 0.007 0.001

0.049 0.003.889 0.004 0.028 0.000 0.026 0.001 0.000 0.0mO46 0.000 0.026 0.000 0.024 0.004
0.000 0.000 0.340 0.044 0.010 0.00(6650.041 0.000 0.000 0.085 0.000 0.002 0.0m@47 0.066
0.000 0.000 0.304 0.031 0.006 0.0006200.039 0.000 0.000 0.073 0.000 0.002 0.0m@&77 0.048

0.1800.769 0.003 0.008 0.016 0.024 0.000 0.000 0.01.49420.000 0.001 0.027 0.016 0.000 0.000
0.073 0.431 0.002 0.078 0.035374 0.000 0.007 0.001 0.113 0.001 0.005 0.01.841 0.000 0.020
0.048 0.270 0.004 0.109 0.031536 0.000 0.002 0.000 0.045 0.000 0.010 0.02901 0.000 0.024

0.007 0.033 0.126 0.00m.783 0.001 0.002 0.048 0.000 0.000 0.007 0.0mO48 0.000 0.000 0.045
0.000 0.000 0.021 0.004 0.216 0.016 0.02t698 0.000 0.000 0.000 0.000 0.035 0.000 0.0D362
0.000 0.000 0.024 0.002 0.193 0.014 0.0m898 0.000 0.000 0.000 0.000 0.036 0.000 0.0D361

0.0010.951 0.000 0.001 0.028 0.019 0.000 0.000 0.00O56 0.000 0.000 0.022 0.021 0.000 0.001
0.000 0.485 0.000 0.001 0.02K479 0.000 0.009 0.000 0.123 0.000 0.000 0.02826 0.000 0.025
0.001 0.297 0.000 0.000 0.041656 0.000 0.005 0.000 0.035 0.000 0.000 0.02207 0.000 0.036

0.000 0.026 0.001 0.00m914 0.000 0.000 0.059 0.000 0.000 0.000 0.0m@450.000 0.000 0.055
0.000 0.000 0.001 0.000 0.245 0.015 0.0m@39 0.000 0.000 0.000 0.000 0.044 0.000 0.0mO56
0.000 0.000 0.000 0.000 0.215 0.024 0.0m@61 0.000 0.000 0.000 0.000 0.037 0.000 0.0mO63
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Table 11: Simulated acceptance rates from the closed LR testing procedure. Samples are drawn with sizes
n = 100 andn = 200 byk = 2 groups of bivariate with 10 degrees of freedom, varying the volume)(

the shapedy), and the orientationd,) of the scalar matrix, with respect taz; (11 = 1,61 = 0.7, and

¥1 = 0). Rates refer to 1000 replications and to a nominal level of 0.05. Bold numbers highlight the true
model in each setting.

Ay 62 6

n=100 n=200
EEE VEE EVE EEV VVE VEV EVV VVV EEE VEE EVE EEV VVE VEV EVV VWV

107 0
/4
/2

03 O
/4
/2

207 0
/4
/2

03 0
n/4
/2

307 0
n/4
/2

03 0
/4
/2

0.894 0.057 0.023 0.019 0.005 0.002 0.000 0.0an891 0.046 0.027 0.025 0.008 0.002 0.000 0.001
0.546 0.034 0.033®.3550.002 0.028 0.001 0.001 0.209 0.013 0.02B77 0.004 0.047 0.020 0.008
0.464 0.024 0.03D.426 0.003 0.048 0.002 0.001 0.125 0.006 0.02Z2410.001 0.074 0.028 0.003

0.069 0.006).799 0.006 0.068 0.000 0.041 0.011 0.002 0.0D@61 0.000 0.085 0.000 0.043 0.009
0.001 0.000 0.322 0.049 0.023 0.004110.090 0.000 0.000 0.091 0.000 0.007 0.00¥850.116
0.001 0.000 0.281 0.046 0.024 0.00%53 0.090 0.000 0.000 0.072 0.001 0.004 0.00@18 0.105

0.2070.701 0.008 0.004 0.034 0.044 0.001 0.001 0.038780.002 0.003 0.036 0.046 0.000 0.001
0.103 0.385 0.012 0.089 0.035364 0.001 0.011 0.005 0.155 0.001 0.018 0.03338 0.001 0.049
0.061 0.250 0.009 0.108 0.0515050.001 0.015 0.002 0.064 0.000 0.017 0.02856 0.000 0.040

0.014 0.037 0.161 0.000.693 0.008 0.004 0.082 0.000 0.000 0.029 0.0m@750.000 0.000 0.096
0.000 0.000 0.051 0.004 0.185 0.026 0.02643 0.000 0.000 0.001 0.000 0.056 0.000 0.01826
0.000 0.000 0.044 0.005 0.193 0.030 0.08642 0.000 0.000 0.001 0.000 0.052 0.000 0.01932

0.0080.907 0.002 0.000 0.039 0.044 0.000 0.000 0.1@#950.000 0.000 0.055 0.045 0.000 0.001
0.003 0.491 0.000 0.004 0.05B54400.000 0.006 0.101 0.140 0.000 0.000 0.03892 0.000 0.029
0.003 0.321 0.000 0.004 0.06D601 0.000 0.011 0.095 0.045 0.000 0.000 0.028850.000 0.047

0.001 0.030 0.006 0.00m.869 0.009 0.000 0.085 0.102 0.001 0.000 0.00@150.000 0.000 0.082
0.000 0.000 0.004 0.000 0.273 0.029 0.am&93 0.093 0.000 0.000 0.000 0.059 0.000 0.0DB48
0.000 0.000 0.000 0.000 0.246 0.021 0.am330 0.089 0.000 0.000 0.000 0.047 0.000 0.0DG64
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Figure 1: Examples of the models iM. The bivariate casex(= 2), andk = 2 groups, are considered.
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Figure 2: Scatter plots, and related ellipses of equal (95%) concentration, for crab and turtle data (in both
casese denotes female andmale).
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Figure 3: Graph of the hierarchy of relationships between the null hypotheses.
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Figure 4: Matrix of scatter plots of Fisher’s iris data denotes setosa,denotes versicolor, anddenotes

virginica)
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Figure 5: Unadjusted and adjustg@values (in round brackets) related to the closed LR testing procedure
applied to the Iris data set. Rejected hypotheses, at the 0.05-level, are displayed in gray.
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Figure 6: Scatter plots, and related ellipses of equal (95%) concentration, of variables LEFT and RIGHT in
two groups of Swiss bank notes. Coinciding points are marked by a single symbol only.
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Figure 7: Unadjusted and adjustqdvalues (in round brackets) related to the closed LR testing procedure
applied to the bank notes data. Rejected hypotheses, at the 0.05-level, are displayed in gray.
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Figure 8: Model EVV: SDF of the LR test statistic compared with the asymptefidistribution, from
10000 replications.
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