SINGULARITY OF EIGENFUNCTIONS AT THE JUNCTION OF
SHRINKING TUBES. PART 1.

VERONICA FELLI AND SUSANNA TERRACINI

ABSTRACT. Consider two domains connected by a thin tube: it can be shown that, generically,
the mass of a given eigenfunction of the Dirichlet Laplacian concentrates in only one of them.
The restriction to the other domain, when suitably normalized, develops a singularity at the
junction of the tube, as the channel section tends to zero. Our main result states that, under
a nondegeneracy condition, the normalized limiting profile has a singularity of order N — 1,
where N is the space dimension. We give a precise description of the asymptotic behavior of
eigenfunctions at the singular junction, which provides us with some important information
about its sign near the tunnel entrance. More precisely, the solution is shown to be one-sign in
a neighborhood of the singular junction. In other words, we prove that the nodal set does not
enter inside the channel.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

We are concerned with the behavior of eigenfunctions of the Dirichlet Laplacian on dumbbell
domains depending on a parameter and disconnecting in some limit process. More precisely, let
us consider two slightly different domains which are connected by a thin tube so that the mass
of a given eigenfunction is concentrated in one of the two domains. Then the restriction of the
eigenfunction to the other domain develops a singularity right at the junction of the tube, as the
section of the channel shrinks to zero. The purpose of this paper is to describe the features of this
singularity formation.

A strong motivation for the interest in the spectral analysis of thin branching domains comes
from the theory of quantum graphs modeling waves in thin graph-like structures (narrow waveg-
uides, quantum wires, photonic crystals, blood vessels, lungs) and having applications in nanotech-
nology, optics, chemistry, medicine, see e.g. [23, 12] and references therein.

The behavior of the eigenvalues and eigenfunctions of the Laplace operator in varying domains
has been intensively studied in the literature starting from [7, 13, 22, 25, 26] and more recently in
[4, 5,6, 11, 14, 17], where spectral continuity is discussed under different kind of perturbations and
boundary conditions (of either Dirichlet or Neumann type). The problem of rate of convergence for
eigenvalues of elliptic systems was investigated in [27], while in [9] estimates of the splitting between
the first two eigenvalues of elliptic operators under Dirichlet boundary conditions are provided. We
also mention that some results on the behavior of eigenfunctions of the Laplace operator under
singular perturbation adding a thin handle to a compact manifold have been obtained in [3]. As
far as the nonlinear counterpart of the problem is concerned, the effect of the domain shape on
the number of positive solutions to some nonlinear Dirichlet boundary value problems has been
investigated in [15, 16], where domains constructed as connected approximations to a finite number
of disjoint or touching balls have been considered, proving that the number of positive solutions
which are not “large” grows with the number of the balls.

When dealing with a dumbbell domain which is going to disconnect, the spectral continuity
proved e.g. in [17] implies that eigenfunctions of the approximating problem converge to the
eigenfunction of some limit eigenvalue problem on a domain with two connected components,
whose spectrum is therefore the union of the spectra on the two components; as a consequence, if an
eigenfunction of the limit problem is supported in one of the two domains, then the corresponding
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eigenfunction of the approximating problem is going to vanish on the other domain. We are going
to show that a suitable normalization of such eigenfunction develops a singularity at the junction
of the tube, whose rate is related to the order of the zero that the limit eigenfunction has at the
other junction (see Theorem 1.2). The description of the behavior of eigenfunctions at the junction
will also provide informations about nodal sets; more precisely we will prove in Corollary 1.3 that
if the limit eigenfunction has at one junction of the tube a zero of order one, then the nodal regions
of the corresponding eigenfunctions on the dumbbell stay away from the other junction.

In this paper we set up a strategy to evaluate the rate to the singularity at the junction, based
upon a sharp control of the transversal frequencies along the connecting tube. To this aim, we shall
exploit the monotonicity method introduced by Almgren [2] in 1979 and then extended by Garofalo
and Lin [21] to elliptic operators with variable coefficients in order to prove unique continuation
properties. We mention that monotonicity methods were recently used in [18, 19, 20] to prove not
only unique continuation but also precise asymptotics near singularities of solutions to linear and
semilinear elliptic equations with singular potentials, by extracting such precious information from
the behavior of the quotient associated with the Lagrangian energy.

As a paradigmatic example, let us consider the following dumbbell domain in RV = R x RN 1,
N > 3,

Q=D UC.UDT
where ¢ € (0,1),
D™ = {(z1,2") e Rx RN"! .2y <0},
C. = {(xl,x’) eRxRY1:0<z <1, %/ GZ},

Dt = {(z1,2") e Rx RN "1z > 1},

and ¥ € RV~ is an open bounded set with C*“-boundary containing 0. For simplicity of notation,
without loss of generality, we assume that ¥ satisfies

(1) {m’GRN_l:|x'|é%}CZC{x/ERN_1:|x’|<1}.
Ce
ie
D~ Dt
1

FIGURE 1. The domain °.

We also denote, for all £ > 0,
B .= D" nB(ey,t), B; =D NB0,1),

where e; = (1,0,...,0) € RN and B(P,t) := {z € RV : |z — P| < t} denotes the ball of radius ¢
centered at P. Let p € C1(RY ,R) N L>=(RY) satisfying
Ip

(2) p>=0ae inRY, pe LN?RY), Vp(z) -z e LN?*(RY), 5 € LN2(RN),
€1

3) {p;é()inD_, p#0in DT,

p(z) =0 forall v € {(z1,2") ERxRVN"1:1/2< 2 <1, 2/ € S} UBT.

While assumption (2) makes the problem consistent with the usual spectral theory, (3) is introduced
for technical reasons; we don’t believe it is necessary: its only use is in section 2, to prove some
uniform estimates for approximating eigenfunctions close to the right junction uniformly with
respect to the parameter . Possible weakening of assumption (3) is the object of a current
elaboration.
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By classical spectral theory, for every open set Q C RY such that p #Z 0 in ©, the weighted
eigenvalue problem

{Agp = A\pyp, in Q,

=0, on 0f),

admits a sequence of diverging eigenvalues {\;(2) }x>1; in the enumeration
A () S X)) < S (@) <

we repeat each eigenvalue as many times as its multiplicity. We denote 0,(2) = {A\z(Q) : & > 1}.
For all € € (0,1), we also denote

Ap = A(Q9),  op = 0p(F).
It is easy to verify that o,(D~UD%') =0,(D~)Uo,(D"). Let us assume that there exists kg > 1
such that
(4) Ao (D7) is simple and the corresponding eigenfunctions have in e; a zero of order 1,
(5)  Ako(DT) & 0p(D7).

In view of [24], these non degeneracy assumptions hold generically with respect to domain (and
weight) variations. We can then fix an eigenfunction ¢} € DV2(D*)\ {0} associated to Ay, (D),
i.e. solving

—Acpgo = )\kO(D"‘)pcpzo, in DT,
@ZFO =0, on 0D,
such that

(6)

Here and in the sequel, for every open set  C RY, D12(Q) denotes the functional space obtained

as completion of C2°(€2) with respect to the Dirichlet norm ( [, \Vu|2dx)1/2.
We refer to [17, Example 8.2, Corollary 4.7, Remark 4.3] for the proof of the following lemma.

Lemma 1.1. Let
k=card{j € N\ {0} : \;(D-UD") < A, (DT)}
= ko +card {j € N\ {0} : \;(D7) < Ao (D7)},
s0 that Mg, (D7) = X\p(D~ U DY), Then
(7) AL = Mo (DT) ase — 0T,

Furthermore, for every e sufficiently small, A7 is simple and there exists an eigenfunction ¢f
associated to A7, i.e. satisfying

—Ag = Apyr,
v =0, on 0QF,
such that
o — (p',fo in DM2(RY) ase — 07,
where in the above formula we mean the functions ¢, ‘on to be trivially extended to the whole RY .

We mention that uniform convergence of eigenfunctions has been established in [10, §5.2].
Henceforward, for simplicity of notation, we denote

(8) ue = ; and wug = cpgo.
Hence, for small ¢, u, solves

) —Aue = A\fpu., in QF,
ue = 0, on 090°.
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The main result of the present paper is the following theorem describing the behavior as e — 0T
of u. at the junction 0 = (0,...,0). For all ¢ > 0, let us denote
D, :={veC>®(D \B,):suppv € D"}
and let ‘H; be the completion of D, with respect to the norm (fD*\B’ |V1}|2dm) 1/2, ie. H, is
t

the space of functions with finite energy in D~ \Bit_ vanishing on dD~. We also define, for all
t>0,

(10) I; =D NoB;.

Let

(11) VSV SR, Y1(91,927~--79N)=—£,
Ty

where

(12) SE = {0 = (61,0,...,0n) €SV 10, <0}, Tn =/ [gv-108do(0),

being SV~ the unit (N — 1)-dimensional sphere. Here and in the sequel, the notation do is used to
denote the volume element on (N — 1)-dimensional surfaces. We notice that Y7 is the first positive
L?(SY~1)-normalized eigenfunction of —Agn-1 on SV~ under null Dirichlet boundary conditions
and satisfies —Agn-1Y; = (N — 1)Y7 on SN=1 where Agn-1 is the Laplace-Beltrami operator on
the unit sphere SV —1.

Theorem 1.2. Let us assume (2)-(6) hold and let u. as in (8). Then there exists h € (0,1) such
that, for every sequence e, — 0%, there exist a subsequence {e,};, U € C*(D7) U (Upso My ),
U #0, and 8 <0 such that

i) ——————>U asj— +x strongly in H; for every t >0
and in C*(By, \ By,) for all 0 < t; < to;

i) ANTlU(\z) — B ‘jﬁ as A — 0" strongly in H; for everyt >0
and in C*(By, \ By,) for all 0 < t; < to;

A (D+) X\ - (%)
Jox 1 UYydo = 207 [ p(@)U () Vi () (|x|xBl_ (z) + D‘m\%)dx
Ty '

In the forthcoming paper [1], some improvements of Theorem 1.2 will be obtained; more pre-
cisely, the dependence on the subsequence will be removed and the exact asymptotic behavior of
the normalization /[ u2 do will be derived.

R

i) B=-—

The description of the behavior of eigenfunctions at the junction given by Theorem 1.2 provides
us with some important information about the sign of u. near the left junction. More precisely,
the nondegeneracy condition (4) on the right junction implies that the solution is one-sign in a
neighborhood of the left one. In other words, the nodal set of u. does not enter inside the channel.

Corollary 1.3. Let us assume (2)—(6) hold and let u. as in (8). Then there exists R > 0 such
that

for every r € (0, R) there exists €, > 0 such that u. >0 in T for all e € (0,¢,).

The paper is organized as follows. In section 2 we prove some estimates from above and from
below of eigenfunctions of the approximating problem close to the right junction uniformly with
respect to the parameter . In section 3 we introduce a frequency function associated to the
approximating problem and study its behavior at the left, in the corridor, and at the right of
the domain. Sections 4 and 5 contain a blow-up analysis (at the right and at the left junction
respectively) leading to some uniform bounds of the frequency function which allow describing,
in section 6, the asymptotic behavior of the eigenfunctions (suitably normalized) close to the left
junction of the tube, thus proving Theorem 1.2 and Corollary 1.3.
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2. ESTIMATES ON u. ON THE RIGHT

This section collects some estimates of eigenfunctions u. close to the right junction, which will
be crucial to control the frequency function at the right.

Lemma 2.1. There exist 0 < rg < 3, g € (0,79/2), and Cy > 0 such that

1
a(xl —1) Suc(x) < Co(wy —1) forallz € DY NOBY and e € (0,¢p).
PrROOF. From Lemma 1.1 and classical elliptic regularity theory,
(13) u. — ug in C (DT \ {e1}) and Vu. — Vug in CL (DT \ {e1}).
Furthermore (6) implies that there exist C' > 0 and r¢ € (0, 3) such that
(14) %(z) >C, up(z)>0, forallze B},
T
Let t9 € (1,1 4+ 79/4) such that, if z = (z1,2") € Ay == (B;'B \B(‘ETO)M) N{l <z < to}, then
(1,2") € B, \Bjo/? By (14) and continuity of ug, there exist ¢ > 0 such that
(15) ug(x) = ¢ forall x € (B \B(ETO)M) \ Ao.
From (13), there exists g9 € (0,79/2) such that equation (9) is satisfied for € € (0,¢p) and
ou Oug C
(16) 833? x) — a—xl(:ﬂ) < Bl for all z € B, \B:;/z and € € (0,¢e9),
c
(17) |ue(x) — up(z)| < 3 for all z € (B} \BETO)M) \ A and ¢ € (0,ep).
Estimate (17) together with (15) implies that
c
(18) ue(x) > 3 for all z € (B}, \B(ng)/él) \ Ag and ¢ € (0,&9).
On the other hand, (16) together with (14) implies
ou C
(19) 81:? (z) > 5 forallze Bf\ B}, and € € (0,e0).
We notice that, if z € Ay then from (19) it follows that
1 O,
(20) ue(z1,2") = ue(1,2") —|—/ (s,2")ds > 0.
1 31'1
Combining (18) and (20) we conclude that
(21) uc(z) >0 forall z € BY \B(ETO)M and € € (0,¢e9).

If v € DY NOB; and € € (0,&¢), from (19) and (21) we have that

xp—1 Y O, (I—=t)(x1—1) \x1—1 Cxz—1
= — — > i
ue(w) = ue (”“" 4 el) +A o1, (5“ 4 el) 25

thus proving the stated lower bound. The upper bound follows combining (16), (17), and (20). O

The following iterative Brezis-Kato type argument yields a uniform L°°-bound for {u.}..
Lemma 2.2. There exists Cy > 0 such that

lue(z)] < C1 for all z € QF and e € (0,&0).
PROOF. Since u. — ug in DV2(RY), we have that

(22) sup ||uel|p2r (mavy < o0
e€(0,e0)
We claim that

there exists a positive constant C' > 0 independent of ¢ and ¢
such that if u. € LY(RY) for some ¢ > 2* and all € € (0,&¢) then

1 1
< Ca(g—2)7Juc| parn)-

(23)

HUEHL%

(RY)
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The claim can be proved by following the Brezis-Kato procedure [8]. For every n € N, we set
u” = min{n, |u.|} and test (9) with u.(u?)?~2 thus obtaining

(0=2) [ VP e | Va P e = | )
Letting C'(¢q) = mm{ 2,1}, we then obtain
cw [ 19t ufas < o) [ (U5 + 2 v ) e
< A A pu?(u™)9%dx < const / |ue|Tdx
for some const > 0 independent of € and ¢, which, letting n — +o00, implies claim (23) by Sobolev

inequality. Starting from ¢ = 2* and iterating the estimate of claim (23), we obtain that, for all
n € N, n > 1, letting ¢, = 2( ) , there holds

n
n 1
|te | Lan+1 mry < ”ue”L?*(RN)CZk:l = H (qr —2) 5 < const [Juc|| 2= g

for some const > 0 independent of ¢ and n. Lettmg n — 00, (22) yields the conclusion. O
We denote
(24) T ={(z1,2'): 2’ €S, <1}, D=DTUTY,

T- = {(z1,2") % €, z; <1},
Ty = {(z1,2') : 21 €R, 2’ € B},
and, for r € R\ (1, 2),

(25) Q. = {(z1,2") €Ty iz <r}, r<l, o {(z1,2") €Ty 12y =7}, ifr <1,
|\ TruB, if r > 2, "I\, _—

where, for all ¢ > 0, we denote

(26) It =D"noB; .
Let us define
(27) fiTi =R, fag,a) = e VIR,

where \;(X) is the first eigenvalue of the Laplace operator on ¥ under null Dirichlet boundary
conditions and 7 (z') is the corresponding positive L?(¥)-normalized eigenfunction, so that

Dy (2') = M(B)Yr(2'), in %,
Py =0, on 0%,

being A, = SOV 2 a = (z2,...,zN). In particular f € C?(Ty) and satisfies

j=2 Bac?’
—Af == 0, in Tl;
f = 0, on 8T1

Lemma 2.4 below shows how harmonic functions in D% can be extended (up to a finite energy
perturbation) to harmonic functions in D with finite energy at —oco. In order to prove it, the
following Poincaré type inequality is needed.

Lemma 2.3. There exists a constant Cp = Cp(N) depending only on the dimension N such that
for every function v : Dt \ B — R satisfying
vE ﬂ HYBE\Bf) and v=0on {z1 =1,|2/| > 1},
R>1
there holds

/ v (x) dr < CPRQ/ |Vo(x)|*de  for all R > 1.
+ \B+ + \B+
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Proor. It follows by scaling of the Poincaré inequality for functions vanishing on a portion of
the boundary. O

Lemma 2.4. For every ¢ € C?(D*) N CY(DV) such that

—~AY =0, inDT,
P =0, on 0D,
there exists a unique function u =T (¢) such that
(28) /~ (|Vu(x)\2 + \u(x)|2) dx < 400 for all R > 2,
Qr
(29) — Au =0 in a distributional sense in D, w =0 on OD,
(30) / |V (u— ) (z)|* de < +o0.
D+
Furthermore
. _ N i D+
(31) TW) -3 eD2(D), where §:=1Y "D
0 mTy.

PRrOOF. Let us define J,, : DV2(D) — R as

(32 =5 [ve@P e [ o) (55) ()

Y+t
t

where (%) +(1,:10’ ) := limy o+ . By standard minimization methods it is easy to prove

that there exists w € D>2(D) such that Jy(w) = ming, » 5, Jy. In particular w satisfies

0=dJy(w)p] = /ﬁ Vw(z) - Vo(z) dx — /z o(1,2") (S—Z)Jr(l,x') dx’

for all ¢ € D>2(D). Hence the function u : D — R,
B {w +1), in DT,

w, in Ty,
satisfies (28), (30), and, for every ¢ € C°(D),
u

/5 Vu(z) - Vo(x)de = /f) Vw(x) - Vo(x)dr + /D+ Vip(z) - V(z) de

:/Ego(l,x’)(g—;pl)Jr(l,x’)dx'—/Zw(l x)(aa;p) (1,2")dz' =0

thus implying (29). To prove uniqueness, let us assume that u; and us both satisfy (29-30); then
the difference u = u; — us solves

(33) —Au =0 in a distributional sense in D, u =0 on dD,

and satisfies

(34) / Vu()Pdz = / V(w1 — ) (@) — V(uz — $)(z)2de < +oo.
D+ D+

For all R > 2 let nr be a cut-off function satisfying

- . 2 -
nr € C®(D), nr=1inQg, nr=0in DT \BQ(R 1y IVnr()] <

1 in D.

Multiplying (33) with n%u and integrating by parts over D we obtain

/ |Vu(z)*nk(x) do :—2/f)u(m)773(x)Vu(:E)~V773(x)da:
<5 [ IVu@)Prite) da+2 [ w3a) Onn(o) do



8 V. FELLI AND S. TERRACINI

thus implying, in view of Lemma 2.3,

5 L IV de < [ ) P de

8
g?/uszn xzdxgi/ w2 () dx
5 ( )‘ R( )‘ (R—1)2 B \B; ) ( )

2(R—1)
< scp/ V(o) de.
B 1\Bh_y
Letting R — 400, from (34) we deduce that [z [Vu|*dz = 0 and hence v must be constant on D.
Since u vanishes on ﬁD we deduce that u = 0 and then u; = us in D thus proving uniqueness. [J
Henceforward we denote
(35) By =T (z; —1).

Since in the case ¥ (z) = 21 — 1 we have that (%)+(1’ z') =1 > 0, the minimum of the functional
Jz, —1 defined in (32) is attained by a nonnegative function w. Hence we deduce that

(36) &y (x1,2') = (#1 — 1T for all (z1,2) € D.

Hence, from the Strong Maximum Principle we deduce that

(37) ®y(21,2') >0 for all (x1,2') € D.

For all r € R, let us denote

(38) Ty, ={(z1,2"): 2" €%, 2y <r}, Tyi={(z1,2"):2 €%, z1 =7},

and define &, as the completion of C2°(T} ) with respect to the norm (me \VU|2dx)1/2 (which is

actually equivalent to the norm (le i |Vol2dx + fFT v2d0)1/2), i.e. &, is the space of finite energy
functions in 73, vanishing on {(z1,2) : 21 <7 and 2’ € 0L}

The following Lemma associate an Almgren type frequency function to harmonic functions in
Er and describe its behavior at —oo

Lemma 2.5. Let R € R and ¢ € Ex \ {0} satisfying

_A¢ =0, in TLR;
¢ =0, on {(z1,2") : x1 < R and 2’ € 9%},

in a weak sense, and let Ny : (—oo, R) — R be defined as
fT |Vé(x)|?dx
Ny(r) = —frr per
Then

i) Ny is non decreasing in (—oo, R);
ii) there exists Ky € N, Ky > 1, such that

lim N¢7( ) V )\KO(E)7

r——o0

where A\, (X) is the Ko-th eigenvalue of the Laplace operator on ¥ under null Dirichlet
boundary conditions;

iii) if Ny =~y for some v € R then v = \/Ak,(X) and ¢(x1,2") = eV Ao B)2Ly (1) for some
eigenfunction ¥ of —A, in ¥ associated to the eigenvalue Mg, (X);

iv) if ¢ >0 in Ty g, then Ky = 1.

PROOF. It is easy to prove that N, € C'(—o0, R) and, for all r € (—o0, R),

U 18 a0) (Jo, 8d0) -~ (o, 68 a0)"
(fr ¢? d0)2

N (r) =
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Hence, Schwarz’s inequality implies that N, q’b(r) > 0 for all » < R. Therefore Ny is non-decreasing
in (—oo, R) and statement i) is proved. By monotonicity, there exists

(39) = rl}I—noo N¢(T> (S [O, +OO)
For every A > 0 let us define

N EN w’):::fégﬁljlftfil.

\ /fl"fo @%do
We have that ¢y € Egya,
(40) p3do =1,
I'r
and ¢, weakly solves
(41) —A¢x =0, inTi gy,
o) =0, on {(z1,2') : 1 < R+ X and 2/ € 9%},

Moreover, the change of variable (z1,2') = (y1 — \,y’) yields

Jr, . IV6x(9) Py

(42) N¢(7‘ - )\) = f gi)id(f
S

for all r < R+ A.

In particular we have that

Ny(R—A) =/

R
T, r 2’

R
Vo (y)|2dy < N¢,(§) for every \ >
and hence {¢x}r>r/2 is bounded in £r. Therefore there exist a sequence A, — +oo and some
® € Er such that or, — ® weakly in £ and a.e. in Ty r. From compactness of the embedding
Er = L*(Tg) and (40) we deduce that fFR ¢%do = 1; in particular ¢ # 0. Passing to the weak
limit in (41) as A, — 400 we have that
~Ap = in T
(43) { (rb 07 m 1,R»

¢ =0, on {(z1,2') : 1 < R and 2’ € 9%}.
By classical elliptic regularity estimates, we also have that ¢, — é in C*(Thyy \ Tty for all
r1 < ro < R. Therefore, multiplying (43) by ¢ and integrating over T} , with r < R, we obtain

0P,

44
(44) v O

0 - T
qzﬁ,\ndo'—>/rr 5301¢d0_/T1 Vo (z)|*dx.

On the other hand, multiplication of (41) by ¢, and integration by parts over T}, yield
0
(45) [ 1vos @ = [ S
T

An do.
” T, 61'1 ¢

From (44) and (45), we deduce that |[¢y, |le, — ||¢|le, and then ¢y, — ¢ strongly in &, for every
r < R. Therefore, for every r < R, passing to the limit as A\, — +o0 in (42) and letting v as in
(39), we obtain that

(46) Ng(r) =~ foralr <R,

where

Jr, | IVo(y)Pdy

3 7") = fpr (;~32d0

Then i i
(IFT |a‘9—i|2da) (IFT $> da) — (fpr é% do
( fr ¢ dg) 2

)2
=0 forall r<R.

Né(r) =2
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Since equality in the Schwarz’s inequality holds only for parallel vectors, we infer that g—i and ¢
must be parallel as vectors in L?(T",.), hence there exists some function 7 : (—oco, R) — R such that

aé -

Tz(xl,x’) =n(x1)p(z1,2") for all 21 € (—oo, R) and 2’ € 3.
Integration with respect to z; yields
(47) d(x1,2') = p(x1)Y(a’) for all z; € (—oo, R) and 2’ € %,

where (z1) = efr’ 19)ds 4 (2/) = G(R,2’). From (43) and (47), we derive
¢ (@)Y (2") + (1) Azt)(2f) = 0.

Taking x; fixed, we deduce that 1 is an eigenfunction of —A,/ in ¥ under homogeneous Dirichlet
boundary conditions. If Ak, (X) is the corresponding eigenvalue then (1) solves the equation

¢ (1) = Ao (B)p(@1) = 0
and hence ¢ is of the form

o) = creV Ao (D) @1=R) oo em VAR @1=R) o1 some ¢, c5 € R.

Since the function e~V <o )@ =Ry, (1) ¢ €5 then ¢, = 0 and p(z1) = ceV 0P @ =R Gince
»(R) =1, we obtain that ¢; = 1 and then

(48) Gy, z') = eV oE@ =By 4 - for all 21 € (oo, R) and 2’ € X,

Substituting (48) into (46) we obtain that v = \/Ak,(X). Hence statement ii) is proved. We notice
that the above argument of classification of harmonic functions ¢ with constant frequency N ; also
proves statement iii).

In order to prove iv), let us assume that ¢ > 0 in 77 g. Then ¢5 > 0 in Ty r+. Hence a.e.
convergence implies that $>0in T1,g. From the Strong Maximum Principle we obtain that >0

in T g, which necessarily implies that ¢» > 0 in ¥. Then 9 must be the eigenfunction associated
to the first eigenvalue, i.e. Ag, () = A1 (2). O

The previous lemma allows describing the behavior of the Almgren type frequengy quotient natu-
rally associated to the function ®; introduced in (35). For all r € R\ (1,2), let N'(r) = N, (r) be
the frequency function associated to ®q, i.e.
An(r) [5 [V®i(2)[dz

ff'r (I)l (33) dO’ ’

(49) N(r) = Ne, (r) =

where

1 ~
(wz\?fl)N_l |FT‘ Nl_l =r-—- 17 if r > 27
(50) An(r) = .

(L) E, vt =1

, if r <1,

IT,.| denotes the (N — 1)-dimensional volume of I',, and wy_; is the volume of the unit sphere
SN e wy_1 = fono1 do(6).
An immediate consequence of Lemma 2.5 and (37) is the following corollary.

Corollary 2.6. limr_>_oo./\7(r) =M ().

As a left counterpart of Lemma 2.4, we now construct a harmonic extension to D of the function
f defined in (27) (up to a finite energy perturbation in the tube) having finite energy at the right.

Lemma 2.7. There exists a unique function ®s : D — R such that

(51) [ (1922 + j0a(0)) do < 426,

D+
(52) — A®, =0 in a distributional sense in D, ® =0 on dD,
(53) V(@2 — f) ()] dz < +o0,

T
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where [ is defined in (27). Furthermore
(54) Dy>f inTy and >0 inD.
PROOF. Let us define J : D2(D) — R as

1 2 af
Je) =y /5\w<x>| d + /( G

1 >
_! / V(o) dz + / plar, a)eVIOI@ D WL 1y 4o
2Jb (1,4-00) xO% Oy

where v denotes the normal external unit vector to 977 and v, the normal external unit vector

to 0X. It is easy to prove that J(p) > Cl”@H%LQ(E) — ¢ for some constants c¢;,co > 0 and all

¢ € DY2(D) and that J is weakly lower semi-continuous. Hence there exists w € DV2(D) such
]

that J(w) = mian(ﬁ) J. Since, by the Hopf Lemma, g;pj/ < 0 on 9%, we can assume that w > 0

(otherwise we take |w| which is still a minimizer). The minimizer w satisfies

0 = dJ(w)[g] = /5 Vu(z) - Ve(z) dz + / o2 o

(1,4-00) X O 5V

for all ¢ € D2(D). Hence the function ®, : D — R,

’LU—|—f, iIl T’l7
@2: . ~
w, in D\ 11,

satisfies (51), (53), (54), and, for every ¢ € C>°(D),

(51), (
/~ V&y(z) - Vo(x)de = /~ Vw(z) - Ve(x)de+ | Vf(z) Ve(x)dz
D D

Ty
:—/ gogda—l—/ gogdgz()
(1,400)x 0% ov (1,400) X O% v

thus implying (52). To prove uniqueness, let us assume that u; and us both satisfy (52-53); then
the difference u = u; — us solves

(55) —Au =0 in a distributional sense in D, u =0 on dD,
and satisfies
(56) / |Vu(z)|?de = |V (u1 — f)(z) — V(ug — f)(x)|?dz < +oo0.
T1 Tl
For all t < 1 let n; be a cut-off function satisfying
n € C®D), mzy,2')=1ifay >t mlz,2)=0ifzy <t—1, |Vn(z) <2in D.

Multiplying (55) with n?u and integrating by parts over D we obtain
/ |Vu(z)|*n?(z) do = 72[ u(x)n(x)Vu(x) - Ve (z) de
D
1
< i/v |Vu(z)|?n? (z) d$+2/~u2(x)|Vm(m)\2dm
D D

thus implying
1

7/ |Vu(z)|? da < / |Vu(z)|*n? (z) da

2 JBAfa>ty

< 2/ u? ()| Ve () |2 dx<8/ u?(z) dzx
D DN{t—1<z, <t}

< 8Cp /~ |Vu(z)|? de
Dn{t—1<z<t}

where the constant C » > 0 depends only on the dimension and is the best constant of the Poincaré
inequality for functions on (—1,0) x X vanishing on 9%. Letting ¢ — —oo, from (56) we deduce
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that [5 |Vu|? = 0 and hence u must be constant on D. Since u vanishes on 0D, we deduce that

u = 0 and then u; = us in ]ND, thus proving uniqueness. |

Remark 2.8. From (54) and the Strong Maximum Principle we deduce that
®y(x1,2') >0 for all (x1,2') € D.

The functions ®; and P, can be estimated as follows.

Lemma 2.9.

(i) For every § > 0 there exists c(§) > 0 such that

31‘1—1

Oy (x) — (1 — 1) < c(6) and  Py(z) < ¢(d)

|z — e[V

for all z € DT\ B ;.
(ii) There exists Cy > 0 such that

O (x) < CreV A (2) = forallz €Ty .

PROOF. Let us first prove (i) for the function w = ®1(z) — (z1 —1)" = T (1 — 1)(z) — (z1 — 1)T
(the analogous estimate for ®5 can be proved in a similar way). We observe that w belongs to
DL2(D) in view of (31) and weakly solves —Aw = 0 in D! \ By by (29); moreover w(z) = 0 for
all z € {(z1,2") : 21 = 1, |x — e1| > 1}. Therefore, its Kelvin transform

~ _ _ xr —e
’lU(LE) = |I*ell (N 2)w<{[,‘—el1|2 +el)

belongs to H'(B;") and weakly satisfies

(z) =0, in B,
w(x) =0, on {(x1,2') 121 = 1,|z —e1]| < 1}.
By classical elliptic estimates, for any ¢ > 0 there exists ¢(d) > 0 such that | < ¢(d) in B 1/(541)"
thus implying
lena)| = o)+ [ 5 s [ st ds < e(@)wn — 1)
w(xy, x z') axlsm </ 8x13x s < e(0) (2

for all (zq1,2") € 1/(5+1), BT, ..., which 1mpheb (i). To prove (ii), it is enough to observe that, in view of

(1), the function v(zy, 2’) = eV} ()75 wz( ’/2) is well-defined, harmonic and strictly positive in
T, , bounded from below away from 0 on {(x1,2') € T} : z1 = 1}, and fo(|Vv|2 + ") < +oo.

Hence, from the Maximum Principle we deduce that ®(x) < constwv(x) in Ty , thus implying
statement (ii). O

In order to control u. with suitable sub/super-solutions and obtain the needed upper and lower
estimates, let us introduce the following functions:

(57) O DYUTS SR, 0% () ==y (e + T ) + 27605 (e + ;Eel ).
(58) ;IV)E DT U TE_ — R, ;IV)E(J}) =ecd, (el + T el) — \/5&@5@2 (el + i el),

V2e
where

%:@“m(%EEDA,%:(ﬂwW(;%?D*.

We notice that ®, ®° are well-defined in view of (1).
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Lemma 2.10. There exists C3 > 0 such that
lue(z)] < C5P°(x) for all e € (0,e0) and x € Be,

where
(59) BE:B;u{(xl,x')eRN:%’ea%<x1<1}.
PROOF. Let us first observe that
(60) ~A®F =0, inDYUTC.
Moreover, if z € T}, = B, N D and ¢ € (0,0), then Lemma 2.1 implies that
(61) Jua(2)] < Coln — 1),
while (36) and (54) ensure
1)t
(62) D (x) EEM:(ml—l)Jr in DY UTt.
€

From (61-62) we deduce that
(63) luc(z)] < Co®°(x) forall z € I'} and ¢ € (0,¢).

On the other hand, if = (21,2’) € T and 21 = 3, then from (36), (54), (27), and (1), it follows
that

Nesten /
°(2) > 2veee” = wF () > min ¢P(y)=Ci>0
¢ y/eRN—l
ly'1<1/2
thus implying, in view of Lemma 2.2, that
C 1
(64) lue ()] < C—ltbs(x) for all x = (z1,2") € T such that z; = 3
4
From (63) and (64) we conclude that
C
(65) |ue(z)] < max {C’o, CI}CDE(QC) for all « € 0B..
4
Since, from (3) and Kato’s inequality, —Alu.| < 0 in B., from (60), (65), and the Maximum
Principle we reach the conclusion. O
Let us define
P ~ 1
(66) U : Q= R, u(r) = e (e1 +e(x —eq)),
where
OF QO —ey N 3
(67) O :=e; + ={zeR" :e1+e(z—e1) €N}

We observe that u. solves

(68) :Aﬂa(x) =e2Xip(er +e(x —e1))tic(z), in a,
ue =0, on O0§F.

From Lemma 2.10, the following uniform estimate on the gradient of u. on half-annuli with radius
of order ¢ can de derived.

Lemma 2.11. For every 1 <ry <rg < ;—g there exists C.., ,, > 0 such that

|Vue(z)] < Cry oy for allz € BE \ BY,. and e € (0,¢0).

ET2 ET1
PrROOF. From Lemma 2.10 and (57), it follows that, letting u. as in (66-67),
~ C
(69) [t (z)| < ??’CbE (e1 +e(x — el))

= Oy <¢>1(:c) + 2%@2(“;‘31)> forall z € BY _, € € (0,20).
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Let us fix Ry, Ry such that 1 < Ry <11 <1y < Ry < ;—g From (69) it follows that
|tie(z)| < const  for all z € Bf; \ Bf , € € (0,),

for some const > 0 independent of € (but depending on Ry, Rs). Hence, from (68) and classical
elliptic estimates, we deduce that

|V (z)| < Cp,ry, forallze B\ B, ee(0,e),
thus proving the statement. O
A lower bound for u. can be given in terms of the function @< defined in (58).
Lemma 2.12. There exist C5 > 0 and &1 € (0,20) such that
us(z) = C5®°(x) for all e € (0,e,) and x € B,
where B, is defined in (59) and ®° in (58).
PRrROOF. Let us first observe that
(70) ~A®* =0, inDTUT".
Moreover, if z € T}, and € € (0,&¢), then Lemma 2.1 implies that
1

(71) us(x) > 6(391 —1).

0
Furthermore, from (54) and (58), we have that
(72) b°(2) < e (e + =) forallwe DFUT.
From Lemma 2.9, there exist Cg, C7 > 0 such that

C
(73) Dy (z) < (21— 1) <1 + |ZN) < Cr(xy —1) forallze DT\ BS.
€r — e

Combining (72) and (73), we obtain that

°(2) < Cr(zy —1) forallz € Dt B,
which, together with (71), yields
(74) 3% (2) < CoCrus(z) forallz € T and 0 < ¢ < &.

On the other hand, if z = (z1,2") € T and 21 = 3, then (58), (72), Lemma 2.9(ii), (54), (27),
and Lemma 2.2 yield

- Vet , 1 ue(z)
(75)  °(2) < Cpze™ %™ — min Vi) < =3 | min Ury) < 5a min ()

ly'I<1/v2 ly'1<1/v2 ly'1<1/v2

provided ¢ is sufficiently small. Estimates (74) and (75) imply the existence of some C5 > 0 and
g1 > 0 such that N
us(x) = C5®°(x) for all e € (0,e1) and x € 08,

which, together with (70) and the Maximum Principle, yields the conclusion. O

Lemma 2.13. There exists e5 € (0,e1) such that
> &

us(x) = 7(1}1—1) for allz € B} \ By, € € (0,e2).
PROOF. From (58), (36), and Lemma 2.9, it follows that, for all z € B} \ By,
~ xr —eq - r —eq
76 % () = ed (e—l— )—\/§5€® (e —1—7)
( ) ( ) 1 1 - Y 2 1 \/55

~ 1
> (x; — 1) —const e (x; — 1) > 5(;101 —1)

provided ¢ is sufficiently small. The conclusion follows from Lemma 2.12 and (76). 0
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3. THE FREQUENCY FUNCTION

In this section we introduce an Almgren type quotient associated to problem (9) and study its
monotonicity properties with the aim of uniformly controlling the transversal frequencies along the
connecting tube.

For every ¢ > 0, let & : R\ —&,0) U (1,14 s)) — R be such that

&(r) = if r < —e,
(r) ifo<r<1,
=r—1, ifr>e+1.
For r € R\ ((—¢,0) U (1,1+¢)), we define
D~ \ng(r)v if r < —e,
Q=D U{(r1,2/)€Cc:ay <r}, if0OL<r<1,
D~ UC. UBg(T), ifr>e+1,
D~ ﬂ@Bg(T), if r < —¢,
Fi: {(331, )EC.mlzr}, ifo<r<1,
+
D+ﬁan () ifr>e+1.
We also denote
(77) Q. :=D"\BZ, forallr<0
and notice that
Qr=Q, forall r<—e.
(a) Q% with r < —¢ (b) QE with0<r <1 (c) Q% withr >¢

FIGURE 2. The moving domains €2 for different values of the parameters.

A key role in the definition and in the study of the frequency associated to problem (9) is
played by Lemmas 3.4 and 3.6 below, which give a Poincaré type lemma on domains Q_4, t > 0,
for functions in H, and, respectively, a uniform coercivity type estimate for the quadratic form
associated to equation (9) in domains QF, » < 1. An important ingredient for their proof is the

(3]

Kelvin transform, which is described in the following remark.

Remark 3.1. For all R > 0, v € H}, if and only if its Kelvin transform v(z) = |z[~(NV=2v (—I)
belongs to Hl(Bl/R) and has null trace on 5‘B1/R N 0D~ ; furthermore

/7 \Vﬁ(z)|2dx+(Nf2)R/i “Qda_/Qva(z)Fdx,

1/R 1/R

[ = [ [ = [ e

1/R - 1/R
Functions in H; satisfy the following Sobolev type inequality.

Lemma 3.2. There exists a constant Cs = Cs(N) depending only on the dimension N such that
for allt >0 and v € H; there holds

2/2*
cs(/ |v(z)|2*dx> g/ |Vo(z)|?d.
Q_y Q4
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PROOF. By scaling it is enough to prove the inequality for ¢ = 1, which, in view of remark 3.1, is
equivalent to prove that

(.

for all w € H'(By ) such that w = 0 on dB; N JD~. Such inequality follows easily from classical
Sobolev embeddings by trivially extending w in B(0, 1) and observing that

/ |Vw(z)]*de + (N — 2)/ w?do
B(0,1)

9B(0,1)

2/2*
|w(x)|2*dx> g/ |Vw(x)|2da:+(N—2)/ wido
By r

1 1

is an equivalent norm in H'(B(0,1)). O
The Poincaré inequality we will state in Lemma 3.4 with its best constant is a consequence of the

following lemma, which is the counterpart of Lemma 2.5 for the frequency of harmonic functions
in H, .
Lemma 3.3. Let R >0 and ¢ € Hy, \ {0} satisfying

—A¢ = 0, m Q_R,

¢ =0, on 0Q_rNID™,
in a weak sense, and let Ny : (R, +00) — R be defined as

N7(r) im eriT |V (x)|?d

A fr; (152(35) do

Then
i) N, is non-increasing in (R, +00);
ii) there exists Ko € N, Ko > 1, such that
lim Ny (r) =N — 2+ Ko;

T—>00
iii) if N, =~ for somey € R theny= N —2+ Kg and ¢(z) = |z| N +2=KoY (x/|z|) for some
eigenfunction Y of —Agn-1 associated to the eigenvalue Ko(N — 2 + Ky), i.e. satisfying
—Agn1Y = Ko(N -2+ Ky)Y on SNfl,'
iv) if ¢ >0 in Q_g, then Ky =1.

PROOF. Let ¢ € Hl(Bl_/R) be the Kelvin transform of ¢, i.e. ¢(z) = |x\*(N’2)¢(ﬁ). Then ¢
satisfies

¢ =0, on (‘9B17/R08D_7

and, by Remark 3.1, the frequency function N, s can be rewritten as

{—A$ =0, in Byp,

(78) N¢(r):N—2+]\~f<i),

where ~
- ~ t|,—|V d
N: <0,1>%R, N(t) = Jo; | f(w)I °
R fr; ¢?do

Let us define

- _ 7 n o &;(xl?x/)? lfﬂ?l <O7
¢O(x) a ¢0($1’z ) B {_(b(_xla‘r/)? if x>0,
and observe that ¢o € H'(B(0,1/R)) satisfies ¢po(—x1,2') = —do(z1,2’) and weakly solves
—A¢y =0, in B(0,1/R).

Moreover

N t Vo(z)|2d
(79) N(t) = Jnon| qﬁfix)‘ °
faB(o,t) podo
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From the classical Almgren monotonicity formula [2]
2 ~ ~ 2
2t [( Joso. df") (faB(o,t) d)gd") - (faB(O,t) ¢0%d‘7) }
= 2
( faB(o,t) ¢3d‘7>

forallt € (0,1/R), where v = v(z) = +7» hence from Schwarz’s inequality N’ > 0 and the function

Tz]

9o
ov

(80) N'(t) =

)

t € (0,1/R) — N(t) is non-decreasing, thus implying, in view of (78), that N, is non-increasing
in (R,400) and proving statement i). Furthermore from [18, Theorem 1.3] there exist Ky € N
and an eigenfunction Y of —Agn-1 associated to the eigenvalue Ko(N — 2 + Kj), i.e. satisfying
~Agn 1Y = Ko(N — 2+ Ky)Y on SV~ such that

(81) lim Kr(t):—N_2+\/(N_2)2+KO(N—2+KO):KO
t—0+ 2 2

and

(82) A Kogo(MN) — Y (6) in CLT(SNTY,

(83) A K0T, (A0) — KoY (0)0 + Ven-1Y(0) in COT(SNY),

as A — 07T, for every 7 € (0,1). Since ¢ vanishes on B(0,1)N ({0} x RN=1), from (82) we infer that
Y vanishes on the equator S¥=1 N ({0} x R¥~1). Therefore, Y can not be the first eigenfunction
of —Ag~-1 and hence Ko > 1 necessarily. Statement ii) then follows from (78) and (81).

Let us now assume that Ny = for some 7 € R, so that N(t) =~ — N +2in (0,1/R) and
hence N'(t) = 0 for any t € (0,1/R). By (80) we obtain

72 e 2
(/ 990 da) : (/ $3da> - (/ 508"5%10) =0 forallte (0,1/R),
0B(0,t) 0B(0,t) 0B(0,t) ov

v
i.e. ¢y and % have the same direction as vectors in L?(9B(0,t)) and hence there exists a function

n = n(t) such that %%’(t,@) = n(t)do(t,0) for t € (0,1/R) and § € SN=1. After integration we
obtain

(84) do(t,0) = elirm g, (;,9> — o()(0), te(0,1/R), 6 SN 1,
where ¢(t) = eJi/r 1) anq »(0) = QNSO(%, 6). Since —Ado = 0in B(0,1/R), (84) yields
N -1
(-0 - Fe0) 006 - Z s wuie) 0.

Taking ¢ fixed we deduce that ¢ is an eigenfunction of the operator —Agn-1. If Ko(N — 2+ K))
is the corresponding eigenvalue then ¢(t) solves the equation

N—-1 Ko(N — 2 + Ko)
; o(t) + ( 2

—"(t) - p(t) =0

and hence ¢(t) is of the form
o(t) = cit™o + et~ V=2=Fo 61 some 1, ¢ € R.
Since the function [z|~(N=2~Koy( L) ¢ H'(By/p), then c; = 0 and o(t) = ¢1t%0. Since (%) = 1,

]
we obtain that ¢; = R¥° and then

(85) do(t,0) = RF0t"0u(9), for all t € (0,1/R) and 6 € SV~
Therefore ¢(y) = RK0|y|_N+2_K0¢(ﬁ) in Q_g. Substituting (85) into (79) and taking into
account that N(t) =~ — N + 2, we obtain that necessarily v — N + 2 = K, i.e. v=N — 2+ K.
Claim iii) is thereby proved.

If ¢ > 0in Q_g, then ¢ > 0 in B;/R, and Hopf’s Lemma implies that
99

1
87(0,33’) <0, forallz’ e RV-"1st. |2 < =.
1

(86) 7
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(86) and (83) imply that Ky < 1. Hence Ky = 1 and statement iv) is proved. O
We are now ready to prove the following Poincaré type inequality.

Lemma 3.4. For allt >0 and v € H, there holds

1 N -1
ﬂ/ |Vo(x)2de > NI / v2do,
t Q_, t r-

t

being N — 1 the optimal constant.

PROOF. By scaling it is enough to prove the inequality for t = 1, i.e. the statement of the lemma
is equivalent to prove that the infimum

Vw(z)|*dx
I Jo | i )l
weH\{0}  Jp- wido

is equal to N — 1. By standard minimization arguments and compactness of the embedding
H; < L*(T7), it is easy to prove that the infimum Z is strictly positive and attained by some
function wy € Hy \ {0} satisfying

—A’wo = 0, in Qfl,

wy > 0, in Q_q,
%‘—V"’ = —Zwy, onl7,
wo = 0, on 02_1NOD,

iz

being v = =

. Then Lemma 3.3 implies that

fQ |Vwg(x)|>dx
7= =N (1)> lim N, (r)>N—1.
Jp- wido 0 rotoo WO
1

On the other hand the quotient (fﬂ_l |V (z)[2dz) ( fr; deO')_l evaluated in w(zy, ') = fv is
equal to N — 1, thus implying that Z < N — 1. O

Remark 3.5. By remark 3.1, Lemma 3.4 is equivalent to

7"/ |Vw(x)|*de > / w?do for all w € H'(B,) such that w =0 on 0B, NIdD".

By ry

Lemma 3.6 below provides a uniform coercivity type estimate for the quadratic form associated to
equation (9), whose validity is strongly related to the nondegeneracy condition (5).

Lemma 3.6.

i) For every f € LN/2(RN) and M > 0, there exist 7as ;> 0 and Epr ¢ € (0,€0) such that for
alle € (0,€nr,f) and v € (e,7p1,7)

Arw%wMM>MAwammwx

ii) For every f € LN/2(RN) and M > 0, there exists £y ¢ € (0,0) such that for all v € (0,1)
and € € (0,&n,f)

[ Vu@Pde > [ (f@h s,
Qf Qs

ProoF. To prove i), we argue by contradiction and assume that there exist f € LY/2(RY),
M > 0, and sequences &, — 07, r,, — 0", such that r, > ¢, and, denoting u,, = u.,,

(87) /Q Vi () 2der < M/Q 1 (2) U2 (2)dz.

Let us define

—Tn

() {un x), ifreQ_, ,
Un\T) = L\ N—2 row . —
(ILI) u"(lw\z)’ ifrze B, .
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We notice that v,, € DV2(D~) and, by Remark 3.1,

N -2
/_ |V1}n(f£)|2d$+ . A_ vid(j:/ |Vun(x)|2dft,

Tn n -

thus implying

N -2
(88) / |V, (z)]?de < / |V, (x)]*de + / vido = 2/ |V, (z)2dz.
- D~ r;

n

From (87) and (88) it follows that, if

Un

(Jo, @) (@)dz) ">

Wy =

then w,, € D12(D~) and
/ |Vw, (z)|*de < 2M.
Hence there exists a subsequence {wy, }; such that
Wy, — W Weakly in DI’Q(D_)
for some w € DM?(D~). From [, |f(x fQ u2 (z)dz we deduce that

/ @) (@)de > 1
which implies that w # 0. Since w,, solves

—Aw, = A\"pwy,, in Q.
wy = 0, on 0D,

and r, — 07, from (7) we conclude that w weakly solves

—Aw = Ao (DY)pw, in D™,
w =0, on 0D,

thus implying A, (DT) € 0,(D ™) and contradicting assumption (5).
Let us now prove ii). We argue by contradiction and assume that there exist f € LN/2(RV),
M > 0, and sequences g, — 0%, r, € (0,1), such that denoting u, = u._,

(89) / |Vuy, (x )| de < M |f(x)|ui(x)dx
0z o5
Let us define
Up (), if x € Qfr,
vn(T) =  un(2rpe1 — ), if 2r,ep —x € Q5
0, otherwise.

We notice that v,, € DV2(RY) and, by (89),
/ Vo (2) 2z = 2/ IV (2)2dz < 20 [ 1F(2)]d (@)de,
RN Qsn Qsn

thus implying that, letting
Un

(Jogy 1F @)l (@)da)

Wn =

then w,, € DL2(RY) and

/ |Vw, (z)|*dr < 2M.
RN



20 V. FELLI AND S. TERRACINI

Hence there exist a subsequence {w,, }x and some w € DV2(RY) such that w,, — w weakly in
DL2(RY) and a.e. in RY. From

1= [ Vo= [ @i [ e

- Q;n\D~—

/| oy M@ <l o | sy = o) a7 o

[ @ @iz = [ 1@t e +o1) as k4o
we deduce that
| @t =1
.

and hence w # 0 in D~. On the other hand, a.e. convergence of w,, to w implies that w = 0
on 0D~. Furthermore, passing to the weak limit in the equation —Aw,, = )\;"’“pwnk satisfied by
Wy, in D™, we conclude that w weakly solves

—Aw = Ao (DY)pw, in D™,
w =0, on 0D,
thus implying A, (D") € 0,(D ™) and contradicting assumption (5). O
From Lemma 3.6 and (3), there exist R € (0,1) and & € (0,&0) such that, for every ¢ € (0, ),
1 .
(90) / <|Vu6|2 - A%pu?)dw > 5/ |Vu.|?dr for all r € (=R, —¢) U (0, 1),
Q Q

€ €
T T

and
1
(91) / (|Vu£|2 - A%pu?)dw > 5/ |Vue|?dz  for all r € (14 ¢,4).
Qs Q1)
Estimates (90) and (91), together with equation (9) and classical unique continuation principle,
imply that
/ W2(z)do >0 forall e € (0,2) and r € (—R, —£) U (0,1) U (1 + =, 4).
s

Therefore, for all € € (0,&), the frequency function N; : (=R, —) U (0,1) U (1 +¢,4) — R,

AN (1,2) for (190(@)? = Np(@)ul (@) )do

A= Jr w2y do ’

where

1
[ GE)TTI YT =), ifr € (—00,—2) U(1+ ¢, +00),
AN(T,E) = 1 .
(X=L)¥=re 77 =¢,  ifre(0,1],

and || denotes the (N — 11;—d2imensi0nal volume of I'%, is well defined.

3.1. The frequency function at the right. If ¢ € (0,¢) and r € (1 +&,4), then
(92) Ne(r) = NI (r = 1)

where, for ¢ € (g, 3),

(93) NI(t) = =3

1
DO =5 [ (Vu@) o).

1
) = s [ (oo

t

with T as defined in (26). The behavior of Nt for small ¢ and ¢ is described by the following
proposition.
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Proposition 3.7. There holds
. . + . . . .
tli%1+ (sli%l+ Ne (t)) N rligh (sli%h NE(T)> =1

PROOF. Let us first notice that the strong D'2(R™) convergence of u. to <p;:0 ensured by Lemma
1.1 implies that, for all ¢ € (0, 3),

(94) lim N (t) = N (t)

e—0+

where
N*(t) = tfgr (1908, (@) = My (DVIp(@) (6, (2))? ) da
- Jor (0, (2))2 do :

Let us define
QD;O(acl—i—l,m’)7 if z1 >0,
_90;:0(_351 +1,2"), ifxz <0,

wo(z) = po(1,2") = {

and observe that ¢o € DV2(RY) satisfies po(—x1,2") = —¢o(z1,2") and weakly solves
—Apo(z) = Ak (DT )po (@) o (),
where
_ N o p(‘rl"_lax/)v lfxl >Oa
po(.’L’) _po(‘rlv'r ) - {p(_xl + 1’.,1,:/)7 lf 21 < 0.

Moreover N'* can be rewritten as

o (17900) P = Ao (D7 )po(2)gB(2) ) e
N*(@t) = 5 .
Jon o, #6(x) do
Hence, from [18, Theorem 1.3] it follows that there exist jo € N and an eigenfunction Y of —Agn-1

associated to the eigenvalue jo(N — 2 + jo), i.e. satisfying —Agnv 1Y = jo(N — 2+ jo)Y on SV—1,
such that

2
(95) tgr&N*(t):—N;ﬂ\/(N;Q) £ o(N =2+ jo) = o
and
(96) A 0p0(N0) — Y(0) in CLT(SNTY),
(97) ATV 00 (MN) — oY (0)0 + Venv 1Y (0)  in COT(SN1),

as A — 0%, for every 7 € (0,1). Since the nodal set of g is {0} x R¥~! we infer that Y vanishes
on the equator S¥ =1 N ({0} x RY~1). Therefore, Y can not be the first eigenfunction of —Agn 1
and hence jo > 1 necessarily. On the other hand, (6) and (97) imply that jo < 1. Hence jo = 1.
The conclusion hence follows from (94) and (95). O

2

Lemma 3.8. For alle € (0,¢) and t € (2¢,3) there holds
Due do.

2
[ vapir =2 [ (vep-of G e [ WP [ |
vy rs, v B \Bj, ry | Ov

ProOOF. The stated identity follows from multiplication of equation (9) by (x — e1) - Vu. and
integration by parts over B} \ B;‘E. O

Lemma 3.9. For all € € (0,¢), N € C'(2¢,3) and

2 (Jrr |35 *d0) (Jr v2do) = (frr ueFdo)’] e

€

+ )
+uldo 2 fr+ uzdo
T € t

N (1) =

for all t € (2¢,3), where

ou, Ou, |2
= — (N =du.—= 42 12 =4 £ :
(98) R /ﬁ( (N = 2)uc % 4 22] V| — 4| 2 )do
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ProoOF. Multiplication of equation (9) by u. and integration by parts over D~ U C. U B;" yield,
for every t > ¢,

(99) /D*uc - (|Vu€(x)\2 — A%pu?(w))daz =

From Lemma 3.8 and (99) we deduce

d 1 1
1 DrY = € 2= Apu? / € 2
(100) (DI)'(¢) dt<tN2/DUCEUB2+€(|VU ()] )\kpug(x))dx—&- vz ). [Vue(x)] dm)
N -2
= —— Vue(z)|* — AepuZ () ) dx
tN=1 /DUCEUB; (‘ (@)l BP ( ))

N -2 1
- v *d Vu.|*d
Wt g V@Rt i [ Vo

2

ou,

N —2 Ou, 2e 9 Ou, |2 2
- /r; Goouedo + /F; <|vu€| —2‘ o >d0+tN_2 /rr =| do
2 u. |2 RY
T N—2 /F? o do + N-1
for all ¢ € (2¢,3). Furthermore
2 ou
(101) (HEY(0) = g | Guedo
which, in view of (99), implies
2
(102) (HI)'(t) = n Df(t) forallte (e 3).
From (93) and (102) it follows that
2
N (t) = (D) () HS () — 5((H)'(t))
) (HZ ()2
which yields the conclusion in view of (100) and (101). O

Lemma 3.10. Fore € (0,¢), let RY as in (98). There exists Cs > 0 such that, for all € € (0,¢),
|R;_| < CgEN.
PrOOF. From (98), Lemmas 2.10 and 2.11, and (57), it follows that, for all € € (0, ¢),

|RY| < const /

(€ + ®°) do = const (QN_QstNl + eV / Prdo + 2NV~ eN / <I>2da>
s rs ri

2e 2 1

thus implying the conclusion. |

As a consequence of the above estimates, we finally obtain the following uniform control of the
frequency close to the right junction of the tube.

Lemma 3.11. There exists Cg > 0 such that, for all e € (0, min{es,£}) and t € (2e,1),

N
€
(103) (N (1) = —Cornt
ProOOF. From Lemma 2.13, we deduce that, for all ¢t € (2e,7¢) and ¢ € (0, min{es, £}),
2 C3 2 C3 Nt 2
(104) uzdo > —> (x1 — 1)°do = —t |0 -ei]°do(0).
F:r 4 Fz' 8 gN—1
The conclusion follows from Lemma 3.9, Schwarz’s inequality, Lemma 3.10, and (104). O

Corollary 3.12. For all € € (0,min{es,€}) and 1,79 such that 1 + 2 < ry < ry <1+ 1o there
holds
Cy

NN~

C N
Nelri) S Ne(ra) + 57 (g ) < NVelra) +
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PRrOOF. It follows from (92) and integration of (103). O

Corollary 3.13. For every § > 0 there exist Ts, Ea > 0 such that
N.(1+Re)<1+6 foralR>Rs ande € (0,2).
PrOOF. Let 6 > 0. From Proposition 3.7 there exist 75 € (0,79) and s > 0 such that

)
(105) N-(1+75) <1+ 3 for all € € (0,&5).

Let Rs > max{2, s/ min{e,,&}} be such that %E;N < £. Then, from Corollary 3.12, for all
R > Rs and € € (0, %‘5) there holds

N

. C . Co ~_ .
(106) Ne(1+ Re) S Ne(L475) + 2 RN SN(L+79) + 2 By Y S Ne(1+75) +
The conclusion follows from (105) and (106). O
3.2. The frequency function at the left. If ¢ € (0,¢) and r € (—R, —¢), then

NE(T) = Ne_(_r)
where, for t € (¢, R),

(107) N ()= g,

_ 1 2 2
(108) D-0)= vz | (Vo) = plopda) ) da,
(109) Ho ()= iy [ w@)do

with T, defined in (10).
Lemma 3.14. Fort > ¢ there holds

t/, (\Vu5|2 - )\%pug)da = 2t/
r; r

Oug

v

2
do — (N — 2)/Q |V, (2)|*dx

t

+&4(anmvmm@mm

where v = v(x) = To]-

ProOOF. The stated identity follows from multiplication of equation (9) by z - Vu. and integration
by parts over Q_;. |

Lemma 3.15. Fore € (0,€) and t € (¢, R) there holds
2

d _ 2 Ou, P
d .. 2 Que 2
(111) e () =5 /F: ue = do = ——D_ (t),
— 8,71«5 2d(7 _ u?(m) da- _ _ UE ng do’ 2
(112) dﬂjva—(t) — o (frt ov ) (th ) : (frt o )
t (fr; uZ(x) dU)

Jo_,@p(2) +z - Vp(2))ui(z)de
fF; u2(z)do

-
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PROOF. Since

d N -2 2 ) 1 2 )
&DE (t) = —GNTT /Qt (|Vu€(x)\ - AEpuE(x))dx - tN_2/F; (|Vu5\ - AEpus)dJ,

(110) follows from Lemma 3.14. From direct calculation, we obtain that
d 2 Ou,
SH() = —— e

while testing equation (9) with u. and integration over Q_; yield

ou
2 ¢ 2 _ €
/_t (\ Ve ()| )\kpua(x))dx = /F Ug » do,

t

. . . _ D) HZ —DZ(HD)
thus implying (111). Finally, (112) follows from (110), (111), and (N )" = (D) G U)o

The following estimates strongly rely on Lemmas 3.4 and 3.6.

Lemma 3.16. For every 6 € (0,1) there exist 7s € (0,R) and &5 € (0,€) such that, for every
e €(0,8),

4 H(t) 2(1 —8§)(N —1)

(113) He ) < — ; for allt € (e,75),
#D-(t) _ 201 -9)(N 1) )
(114) dDE_ 0 < - : for allt € (e,7s),

tq
t 2(1-8)(N—1)
tq

£ \2(L=O(N-1)
2) H_ (t2) for allty,ty € (e,7s) such that t1 < ta,

(115) H: (t1) > (
(116) DZ(t1) > ( DZ (ta) for all t1,t2 € (g,7s) such that t1 < ta.

PrROOF. From Lemmas 3.15, 3.6, and 3.4, we deduce that, for every ¢ € (0, 1), there exist 75 > 0
and &5 > 0 such that, for every ¢ € (0,&5) and t € (g, 7s), there holds

G0 =i [ (1Tl Aple)ed(a) ) ds
=L R e e U

which yields (113). From (111), we have that

0
[ (19uP - sponda)do = - [ u a0
Q_, 1'\; aV
which, by Schwarz’s inequality, Lemmas 3.6 and 3.4, up to shrinking 75 > 0 and &5 > 0, for every
€€ (0,65) and t € (e,7s) yields

Ou,
(117) /F : ‘ L

2o (1Vu=(@)P = Agp(a)e(z) ) da / (
- fr; uZ do Q_y

- 1-¢ tN%QfQ% |Vue(z)*dx

Tt T th_ u2 do

AW -1 [ (9@ = Niatayzo))as.

Ve (@) = Ap(@)ud(z) ) de

/Qt <|VUE($)|2 _ )\Ep(x)ug(x))dm

t
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From (110), (117), (2), and Lemma 3.6, up to shrinking 7s > 0 and &5 > 0, there holds

u |? AL 5
Pr 0= [ |G|t [ @) v O @
_9 _
> L [ (9ol = diata)ad o))
- [ (R = Mpteni o))
> [ (Ve - @) de = 202 =D b

thus proving (114).
Estimate (115) follows by integration of (113), while (116) follows by integration of (114). O

Lemma 3.17. For every § > 0 there exist Rs € (0, R), and &5 € (0,€) such that

LN (1) 1
118 datt e 10 L§ d / Vue|? = Xepu? )d 27/ Vu.|%d
(118) =0 ond | (IVul? = Xpu2 ) do > 3 | IVucPds

for every e € (0,&5) and t € (g, Rs).

PrROOF. From Lemma 3.16, letting §y = 4%%:?) € (0,1), there holds

to

(119) D (t1) = (

N+1
; > D (ty) for every e € (0,&5,) and t1,ts € (&,7s,) such that t; < to.
1

Let us fix 6 > 0. From (2), Lemma 3.6, (90), and (7), there exist Rs € (0, min{7s,, R}) and
€s € (0, min{és,,€}) such that

IN )N Csd

(20 20t Vbl o (57 ) S (wN 1) 8 (D)
) - 0

(121) A <2\, (DT) for all € € (0,¢5),
1 9
(122) /Q <|Vu5|2 - A%pu?)dw > 5/9 |Vu|*dz, for all e € (0,&5), t € (¢, Rs)

(123) / <|Vu5|2 Arpuz )dw M""’fwﬂ/ 12p + 2 - Vp|uZda, for all € € (0,&s), t € (¢, Rs).
Q_¢ Q_¢

Let Rs = Rg/g. From (112), (121), and Schwarz’s inequality, we have that, for all ¢ € (0,&5) and
te (e Ra)

(124) A L UREAT
where
€T - X U2 T )ax
G () = Dl ) Jo_, 12p(@) +2- Vp(@)|ui(z)de 2)\k°(D+)(IE(t)+IIE(t))
[ fn,t (\Vug(x)p _ A%p(m)u?(w))dx t

with
[ tann 1)+ o TR )
T (Vu @R - Xz s
Jo . I2pe) + 2 Vp< >|u (2)de
Jo, (IVuc(@)[2 = Xep()u2(a) ) dz
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By Holder inequality, (122), Lemma 3.2, and (120), I.(t) can be estimated as

5 (fQ,t e (2) 2*alx)2/2*
fQ,t (|Vu5(:1:)|2 - /\%p(x)ug(z))dx

2 WN -1 )
<= 2 t< ——— ¢
CS( ) H P vp”L3N( Ré) 4>‘k0(D+)

for all t € (¢, Rs) and € € (0,£5). On the other hand, from (123) and (119)
Jo o, 120@) 42 Vp@l@de [, (IFu@)? - Xplepd(@) )de
oo (IVae@P = Xp@y@)de fo_, (Ve = Xplaud(a >)dz

(126)  L.(t) < ||2p +a- Vp)| ‘Q A\ Qs

L3N

(127)  IL(t) =

< 0 3wy De (#°) < i t—%(N—2)(L)N+2 _ J
AN, (DT) DZ (t) AN, (DT) t3/5 4/\k0(D+)
for all t € (¢, Rs) and € € (0,£5). (125), (126), and (127) imply that
(128) Z.(t) <0
for all ¢ € (¢, Rs) and € € (0,£5). Estimate (118) follows from (128) and (124). O

Corollary 3.18. For every 6 > 0, let Rs € (0, 1) and s > 0 as in Lemma 3.17. Then, for every
e € (0,¢5) and ri,ry such that —Rs < ry1 < ro < —¢, there holds

N:(r) € NE(rg)e‘S(”*”).

Proor. It follows from integration of (118). ]

3.3. The frequency function in the corridor. If ¢ € (0,&) and 0 < r < 1, then
eDS(r)

(129) No(r) = s

where
Di(r) = [ (Ve = Ny ))do. Ho(r) = [ u(o) o

Lemma 3.19. For all ¢ € (0,¢0) and r € (0,1)

ou. |* ou. |* Op
v2—A€2)d=2/ =l d / Sldo— X | L (@)ul(w)de,
/i <| ue| KPle )07 re | 071 i 5. |07y 7T Q= 011 @)z (@)dw
where S. = 9D~ \T5={(0,2/) e RxRN-1: Z g5},
PRrROOF. The stated identity follows from multiplication of equation (9) by ggi and integration
by parts over {25. O
Lemma 3.20. For all ¢ € (0,€) and r € (0,1) there holds
d du. |? du. |? ap
130 —DE(r) =2 =l d Sldo =X [ o (2)ui(z)d
o) o =2 [ |Gk [ (gElar g [ g e,
d . ou .
(131) aH (r )2/$ueaxj do = 2D<(r),
du, |2 Ou u
J (oo 122 ) ( fr, w2 do) — (o, o3 do)’ AL
(132) TN(r) =¢ |2 . T
" (fre u? dU) fFE e
fQE Bar (z)dz

fFE u2 da
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PROOF. Since
d

7 nec — 2 e 2
erE(r) /1“5 <|Vu5| /\kpua)da,

(130) follows from Lemma 3.19. From direct calculation, we obtain that

d ou
—HC¢ -9 57‘5 :
o °(r) /Fi U oz, do

while, testing equation (9) with u. and integrating over Q%, we have that

ou
2 \&p02 — e
/ﬂi (O O oo

thus implying (131). Finally, (N2)' = e P02 (130), and (131) yield (132). O

Lemma 3.21. For every § > 0 there exists &5 € (0,&) such that

4\,
(133) dj\/_jg) >0 foralle € (0,8) and r € (0,1),
(134) No(r1) S Ne(r2)e 27 forall e € (0,85) and 0 <7y < 1y < 1.

ProOOF. From (132) and Schwarz’s inequality we have that, for all € € (0,¢) and r € (0, 1),

- A (x)ud(z)da
iNE(’r) 2 —{:‘A% fQT Oxy
Jpe u2do

dr
By part ii) of Lemma 3.6, for every § > 0 there exists &2 € (0,¢) such that, for every ¢ € (0,22)
and r € (0,1),
9p

136 / —(x
(136) 5 2 (a)
Estimate (133) follows from (135), (136), and (129). (134) follows from integration of (133). [

(135)

(|Vu€(ff)\2 - A%p(x)ug(x))dx > M

5 Jo u?(z)dz.

4. BLOW-UP AT THE RIGHT

Throughout this section, u. will denote the scaling of u. introduced in (66-67). For every R > 1
we define as ’HE the completion of

D = {v e O%(((~o0, 1] x RY-1) UBE) : suppv € RN \ {(1,#') € R x RV : [¢/| > R} }

with respect to the norm ( Ji \uBE |Vv\2d:r)1/ ? (which is actually equivalent to the

—00,1) xRN 1
norm (f((—oo,anN—l)uBg |Vol?dx + fFE v2da) 1/2 by Poincaré inequality), i.e. 7-[;5 is the space of
functions with finite energy in ((—oo, 1] x RN ~1)U B} vanishing on {(1,2') € RxRN=1: |2/| > R}.
Lemma 4.1. For every sequence &, — 07 there exist a subsequence {e,, }r and u € UR>2 ’HE
such that
i) Egnk — u strongly in 7—[?2 for every R > 2 and a.e.;
ii) =0 in RN\ D;
iil) u weakly solves
—At(z)=0, inD,
(137) - u(x) in D,
u =0, on 0D,
with D as in (24);
iv) u(z) > S (21 — 1) for allz € DT\ By.
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PROOF. Let R > 2. From Lemma 2.10 and (57), there exists Cg > 0 such that

2
- 1
(138) / [u.|?do = —2/ uZ(e; +e(z —ey))do < C%/ <<I>1(a:) + 275<I>2(91j i e1)> do < Cgr
ri e Jrg o 2
for all € € (0,79/R). By the change of variable = e; 4+ ¢(y — e1) we have that

R [5. (IVi(y)]* — Ase?pler +e(y —e1))uZ(y) )d
(139) N1 4 Re) = - Fs (v ) ; kfzf;)(i (v~ e))Tw) dy
F;ua g

where
0%y = {(yuy’) ERXRY ™y < lfé}U{(yl,y') ERxRY1:i1-1<y <1, € Z}UBE-
From Corollary 3.12

C
(140) No(1+ Re) S Ne(1+ 7o) + N—;N
for all ¢ € (0,min{ro/R,e5}). From the strong D"*(R") convergence of u. to ¢ ensured by
Lemma 1.1, we deduce that there exists some positive constant Cjo > 0 (depending on rg but
independent of €) such that MV.(1 4 r¢) < Cyg for all € € (0,¢¢), so that (138-140) yield

() do
(141) /ﬁ (IViE. (1) = Xge*pler + ely — e1))i(y) ) dy < (Cw + NC;9N> Jry

£ R
R+1
Cy \ Cr
< A Bt}
< (CIO + N2N> 7
for all € € (0, min{ro/R,e2}). From (141), Lemma 3.6, and assumption (3), we obtain that
~ Cy \ Cr
142 Ve (y)Pdy < 2( Cro + —x | —-
(142) [, 1va-wPy (ot 2 ) S

for all € € (0,min{ro/R,e2,822x, (p+)p}). In view of (138) and (142), we have proved that for
every R > 2 there exists ez > 0 such that

(143) {tc}ec(0,e) is bounded in HF.

Let £, — 07. From (143) and a diagonal process, we deduce that there exist a subsequence
en, — 0T and some & € Up., Hf; such that a., — @ weakly in H}; for every R > 2. In
particular u., — u a.e., so that u =0 in RN\ D. Passing to the weak limit in (68), we obtain
that u is a weak solution to (137). By classical elliptic estimates, we also have that @., — uin

C%(B, \ BY,) for all 1 < ry < ry. Therefore, multiplying (137) by @ and integrating over 7, U B},
with 77 as in (24), we obtain

8ﬂan ~ ou ~ 2
(144) 2 U, do— —udo = |Vu(z)|*de  as k — +oo.
e
rt Ov 0 T UB}

+ v
FR

On the other hand, multiplication of (68) by ﬂenk and integration by parts over ﬁ;ﬁl yield

145 Vi 2dr = Otter, do 4+ Xk e? + —e1))u? d
(145) ~€nk| ugnk(x)| T = Sy Ue, do+ A" ey, _— pler +en, (z el))uenk(x) T.

+
R+1 R R+1

We claim that

(146) 53% /~ pler +en, (v — e1))u? . (r)dr -0 as k — +oo.
Eng n

R+1

Indeed, from Lemma 3.6, for every § > 0 there exists kg such that for all & > kg

[ v, iy <5 [ 90, )Py
Q. k Q. k

1/2 1/2
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and hence, from the change of variable y = 1 4+ &, (z —e1), assumption (3), and (142), we deduce
that

ene . plerten (z—e))ul (z)de=c,N [ plyul (y)dy
ok k Q=" k

Ri1 14+ Repy
=cny / _opyu?, (y)dy < de,Y / Ve, (w)Pdy
Q1/ziC 1+’3?,snk
~ Cy \ Cr
=9 d 20( C —
o IV e <23(Coo i )

thus proving claim (146). Combining (144), (145), and (146), we conclude that ||u.,, ||H; — ||m|7{;

and then ., — u strongly in HE for every R > 2.
To prove iv), it is enough to observe that Lemma 2.13 implies that, for k large,

U, () = 025 (x1—1) forallz e B:“/g \ By,

which yields iv) thanks to a.e convergence of ., to u. O

Remark 4.2. We notice that the function @ found in Lemma 4.1 satisfies

/~ \Vii(2)|2dz = +oo.
D

Indeed, [5|Va(z)|*de < +oo would imply, by testing (137) with @, that & = 0 in D, thus
contradicting statement iv) of Lemma 4.1.

Lemma 4.3. Let u be as in Lemma 4.1 and, for r € R\ (1,2), let ./\717(1") be the frequency function
associated to wu, i.e.
(r) Jg, IVi(z)*dx

ffr u? ((E) do ’
with Q. and T, defined in (25) and Ax(r) as in (50). Then

D) limy, s oo Na(r) = 1;
ii) there exists ¢ > 0 such that [, |V (@ —é(z1 —1))(2)]* do < +oc.

- A
Ni(r) = =

PROOF. We notice that N is well defined in R\ (1,2) in view of equation (137) and classical
unique continuation (in particular u # 0 by part iv) of Lemma 4.1)). Let us first prove that

(147) lim sup N (r) < 1.

r—+00
Indeed, letting &, — 0% and {e,, }; as in Lemma 4.1, passing to the limit as k — +o0 in (139),
and using (146), we have that

lim Nsn (14 Repn,) =Nz(1+R) for every R >0,

k—+
which, together with Corollary 3.13, implies for every d > 0 the existence of some Rg such that
Na(1+R)<1+46 forall R> Ry,
thus proving claim (147).
It is easy to prove that there exists g € H[ (DT) such that
—Ag =0, in DT,
g =1, on 0D,
[ IVg(@)[2de < +oc,

i.e. g is a finite-energy harmonic extension of ﬂ| op+ ML D*. We observe that the Kelvin transform
g(z) = |z — e |~V -Dg( 2= e + e1) belongs to H'(B") and weakly satisfies

|z—e

{ Ag(z) =0, in By,
g(x) =0, on {(z1,2) :x1 = 1,]2'| < 1}.



30 V. FELLI AND S. TERRACINI

By classical elliptic estimates, there exists ¢, > 0 such that | | cg in B1 /20 thus implying
1 9g g
)l =g+ [ P saa| < [ )| s < eyt - 1)
for all (zq,2') € BT/Q. Then
(148) o)l < g 1
TENS Co "N

for all # € D\ By . Let us observe that the function v :=u — g € H}

Lo (DT)\ {0} satisfies
~ o) =0, in D*,
(149) v =0, on DT,
fBj |VU($)|2dx < 400, forall r > 0.
Let us define
th+ |VU )‘deﬂ

fF:rv () do

Ny (0,400) = R, Ny(t) :=
Direct calculations yield
Qt{(frz, 2% do) (Jrs v?do) = (s v52do) }
(e u2da)

where v = v(x) = T particular, Schwarz’s inequality implies that A/, is non decreasing in
(0, 400). From Remark 3.5 it follows that

(150) N (t) = , forallt>o0,

(151) Ny(t) = lim Ny(r) >1 forallt > 0.
r—0+

From (148) and Lemma 4.1, it follows that, if 2 € T’} and ¢ > 2, then

(1— 025%)&(9;) <o(@) < (1+ Ci%)a@),

1-— 2¢q ] Wldo < vido < |1+ 2¢ ] Wdo
C5tN Fj— = Fz— = C5tN Fz—

for all t > max {2, (2¢,/C5)"/N'}. Let us fix § > 0. For every R > 2 there holds

I,

R

so that

Vo(a)[2dz — (1+6) / Vii(r) Pz

QRr+1

/ |Vg(x)*dr — 2 / Vg(z) - Vu(z)dx —§ \Vi(z)|?dx
B,

Qrt1

2
<(1+3)/ oo ! | Vi@ —s [ [Vt
) B, 2 B}, Qr41

and hence, for all R > max {27 (209/05)1/N},
(1+6) Rlg,,, Vi)Pds ( 142 [ps [Vg(a)Pdz )
(1—- %RiN)Q fr; u2do 144 fﬁml |Vu(z)|?dx
(1+0) 142 [p: [V(@)?da >

= —./\7’@ R+1)|1+ ~
(1- %:RfN)Q ( ) ( 144 fﬁml |Vu(z)|?dx

(152) Ny(R) <
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On the other hand, for every R > 2 there holds

v(z)2de — (1 — () Pdx
L§v<nd 1 &émﬂv(ﬂd

Qry1

2
> f/ |Vu(x)|*de + <1 - > / |Vg(z)|>dz
" o B}
and hence, for all R > max {2, (2¢,/C5)'/N},

(1—86)Na(R+1) 1 S V() Pd L1 2 [ps [Vg(2)Pdz
(1+ QC%R_N)Q 1-90 f§R+1 |[Vu(z)]2de 1-9 fﬁRﬂ |Vu(x)|2dz |
Since [+ [Vg(x)[*dz = O(1) and me |Va(x)|?dz — +00 as R — 400 (see Remark 4.2), passing
R 1
to limsup and liminf the in (152-153) we obtain that
(1 —6)limsup Nz (R) < limsup N, (R) < (1 + ) limsup Nz (R) for all § > 0,
R—o0

R—o0 R—o0

=— /T’ |Va(z)|*de + /B+ |Vg(x)*dx — 2/3* Vy(z) - Vau(z)dr +6 [ |Vi(z)|*ds

(153)  Nu(R) >

(1 —6)liminf Nz(R) < liminf NV,(R) < (14 6) liminf Nz (R) for all § > 0,
R—o0 R—o00 R—o00
thus implying, in view of from (151),

(154) lim inf N(R) = lim inf NV, (R) > 1,

R—o0 R—o0

and, in view of (147),

(155) 1 > limsup Nz (R) = limsup N, (R).
R—o0 R—00
From (154) and (155) we deduce that
(156) lim N3(R) = lim N,(R) =1,
R—o00 R—o00

thus proving statement i). Furthermore (156), (151), and the fact that A, is non decreasing imply
that

(157) Ny(t) =1 in (0, 400).
Therefore N/ (¢) = 0 for any ¢ > 0. From (150) we obtain

o |? 9 o, Y
do vido | = v—do for all £ > 0,
rf rf rf v

v
which implies that v and % are linearly dependent as vectors in L?(T'}"), i.e. there exists a function
1 = n(t) such that %(el +t0) = n(t)v(e; +t0) for t > 0. After integration we obtain

v(er + t0) = e/t 1)y (e +6) = p(t)p(0) ¢ >0, 6 SV,

where SN 71 i= {0 = (01,62,...,0x) € SN7L 1 61 > 0}, (t) = /1199 and ¢(0) = v(e; + 0).
Since v satisfies (149), then

(¢4 e 0) w(0) + EP 8w 0) =0,

Taking t fixed, we deduce that v is an eigenfunction of the operator —Agn-1 on Sﬁ ~1 under null

Dirichlet boundary conditions on BS{E ~1 ie. there exists Ky € N, Ky > 1, such that

(158) —Agv-19) = Ko(N — 2+ Kg)¢p, in SY ™,
=0, on oS 1.

Then ¢(t) solves the equation
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and hence ¢ is of the form
p(r) = extK0 4 eyt~ (V-2
for some c1,co € R. Since, by elliptic regularity theory, v is smooth in DF, ¢, must be 0 and
@(t) = c1t¥0. Since p(1) = 1, we obtain that ¢; = 1 and then
(159) v(er +t0) = tX0y(0), forallt>0and@eSY

Substituting (159) into (157), we find that 1 = N, () = Ky and therefore Ky = 1. Being N —1 the
first eigenvalue of problem (158), v is simple. Hence there exists & € R such that 1 (0) = é0;" and
v(z) = ¢(z; —1)T. Lemma 4.1 part iv) and estimate (148) imply that ¢ > 0, thus proving ii). [J

Corollary 4.4. Let w be as in Lemma 4.1 and ¢ as in Lemma 4.3. Then
where @y is defined in (35).

Proor. It follows from Lemmas 4.1 and 4.3, taking into account Lemma 2.4 and the fact that
T(cd) = eT(W). O

Lemma 4.5. For every R >0

lim N.(1— Re)=N(1-R),

e—0t
with N as in (49).
PrRooOF. Fix R > 0. Let &, — 0. From Lemma 4.1 and Corollary 4.4, there exist a subsequence
{en, }x and ¢ > 0 such that ., — ¢®; strongly in #,} for every > 2. By the change of variable
x =e; +e(y —ey1), we have that, for ¢ < %,

e Vi, 2 _AeeZp(e e 17? d
(160) N.(1— Re) = Jas_, (' W)I" = Xge f’( +e(y—e)) (y)) y
Jr,_, wE(y)do

where 'y _p is defined in (25) and
05 pi= {(yl,y') eRxRY ™y < 1—%}U{(y1,y') ERxRVN1:1-1<y<1-R, y € Z}-

From strong convergence of u., to ¢®; in H,' for every r > 2, passing to the limit in (160) along
the subsequence {e,, } and using (146), we obtain that

(1 Re) Ja, IVEP)W)Pdy  [5, , IVP1(y)Pdy N R
— [i&p, ) = = = = - y
’ J5, (€@1)%(y)do Jr, , ®ily) do
where Q;_ g is defined in (25). Since the limit depends neither on the sequence {&,, },en nor on its

subsequence {&,, }ren, we conclude that the convergence actually holds as e — 01 thus proving
the lemma. |

lim WM,

k— o0 Sk

Lemma 4.6. For every R >0 and 6 > 0, there exists £ € (0,€) such that
No(r) < (148 (X)) forallr € (0,Re] and € € (0,€R ).

PROOF. Let § > 0 and choose & > 0 sufficiently small such that (1 4 §)%e% < 1+ 4. From
Corollary 2.6, there exists Rs > 0 such that

(161) N1 = Rs) < (1+8)V/ ().

From Lemma 4.5, there exists €5 > 0 such that

(162) N.(1—=Rse) < (14 6)N(1—Rs) forall e € (0,e5).

Let R > 0. Letting &0 as in Lemma 3.21 and using (134), (161), and (162), for all € (0, Re) and
0 < &€ < min {sg,s‘g/, ﬁ} we obtain

N(r) S Ne(1 = Rse)e® 0=Roe=m) < (1 4 §)2e5 /A1 (D) < (14 8) /M (D).
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The lemma is thereby proved. O

5. BLOW-UP AT THE LEFT

Let us define

(163) 60 SR, G(r) = D)
VN [r utdo
where

QCi={zeRY :ex e} =D U{(a1,2/) €Ty : 0< 2y < 1/e} U{(z1,2) 1 21 > 1/e}.
We observe that . solves
We denote
Tj = {(z1,2') : ' € 21 20}, D=D" UT;.
For every R > 0 we define
(165) Qr =D U{(z1,2') €T} 121 <R}, Tp=Tg=/{(21,2') €T} : 21 = R},
and Hp as the completion of

Dgr = {v € Coo(ﬁiR) Ssuppv € lA)}
1/2>

)

with respect to the norm ( [ |Vv|2dgc)1/2 (which is equivalent to ( [5 [Vv[*dz + [5 v?do)

i.e. Hp is the space of functions with finite energy in Qp vanishing on {(z1,2") € OQp 111 < R}.
The change of variable 3y’ = ex’ yields

(166) /A wdo = 1.
Iy

Lemma 5.1. For every R > 1, there exists £g > 0 such that

/ W2do < eVMNOED g a1l € (0,25).
I'r

PrOOF. For R > 1, let ép = £p1 > 0 as in Lemma 4.6. From Lemma 4.6, (131), and (129) it
follows that

d pye (r) 2 4
dr 22 2 — SNL(r) < =AM (2) forall r € (0, Re] and € € (0,£R),
Her) € €
which after integration between ¢ and Re yields
HE(Re) < HE(e)eVMEE=D for all € € (0,2R).
(163) and the change of variable y' = ex’ yield
HS(R
/ Wido = e (Fe)

Tr He(e)

thus implying the conclusion. O

Lemma 5.2. For every sequence e, — 07 there exist a subsequence {e,, }x and U € Jpo Hr
such that

i) Ue,, — u strongly in Hr for every R>1 and a.e.;
i) W#0 in D;
iii) u weakly solves

(167)
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PROOF. Let R > 1. By the change of variable 2 = ey we have that, for ¢ € (0, min{1/R,}),

Ja (I ()2 = Ase2p(ey)a(y) ) dy

(168) No(Re) =

5, ©E(y) do
From Lemma 4.6, for every § > 0 there exists £ s > 0 such that
(169) No(Re) < (14 8)/M(X) forallee (0,éry).

Choosing 6 = 1, from (168), (169), and Lemma 5.1, we have that
a70) [ (19800 - Xe*plen)@w) dy < 2VN(E) [ a2()do < 2/ M)tV AR
Qr I'r

for all e € (0,éR), where ég = €r1 > 0 (accordingly with the notation of Lemma 5.1). From (170)
and Lemma 3.6, we obtain that for all £ € (0, min{ép, 5’2,2)%(1%)]0})

(171) /A|Vu5 2dy < 4/ A1 (B)eVMEE-D,
Qr

In view of (171) and Lemma 5.1, we have that for every R > 1 there exists eg > 0 such that
(172) {Ue }ee(0,e) is bounded in Hg.

Let £, — 07. From (172) and a diagonal process, we deduce that there exist a subsequence
en, — 07 and some @ € |Jp., Hr such that U, — @ weakly in Hp for every R > 1 and

almost everywhere. From compactness of the embedding Hr — L? (fl) and (166) we deduce that
ff‘l u%do = 1; in particular u # 0.

Passing to the weak limit in (164), we obtain that u is a weak solution to (167). By classical
elliptic estimates, we also have that u., — U in C?({(x1,2") € Ty : r1 < 21 < 1o}) for all

0 < 71 < rg. Therefore, multiplying (167) by @ and integrating over Qg, we obtain

ou, m
(173) / g doo | e = / Va(x)|2de.
£, Or1 K £, 011 On
n the other hand, multiplication o v ue, and integration by parts over 0 R yie
On the other hand Itiplicati f164bAnk di ion b, Q 1d
~ 2 Jue,,, Enp 2 ~2
(174) . Vi, (z)]"dx= - on U, do+ N ey, . p(enkz)uenk (x) du.
R R R

We claim that, for every R > 1,
(175) e /A p(&nkx)ﬁgnk (r)dz — 0 asn — +oo.
Qr

Indeed, from Lemma 3.6, for every § > 0 there exists kg such that for all & > kg

/ _opyuZ, (y)dy <6 / Ve, (y)Pdy
0 0
8

Ren,

and hence, from the change of variable y = ¢, x and (171), we deduce that

2 ~2 Eny, 2
€ € dr = —2—— d
ik /ﬁR ( nkx)uen,k (x) dx frjzz 2 do /ank p(y)uenk (y)dy

Eny Ren,

Eny0

< 7/ Ve, (y)*dy
h frZ:j'; Uz, do Jagn o

=5 [ V., (¢))dr <46/ A (S)e VIR,

Qr

thus proving claim (175). Combining (173), (174), and (175), we conclude that [|ue, |la, — [|@]#x
and then 4., —  strongly in Hp for every R > 1. O
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Remark 5.3. We notice that the function @ found in Lemma 5.2 satisfies
/A |Vii(x)|*dr = +oo.
D

Indeed, [3 |Vi(z)|?dz < 400 would imply, by testing (167) with @, that @ = 0 in 13, thus
contradicting statement ii) of Lemma 5.2.
We also observe that, denoting as H(r) = [x u?do for all > 0, multiplication of (167) by u

and integration over Q, yield
d = _o0u SR B
7H(T) = 2 Uid()’ = 2 |V’LL(.’,E)| dI — |V’U,(I)| dx = 400 as r — +OO7
dr fr 81‘1 Qr B

thus implying that

lim H(r)= lim Wdo = 400.
r—+00 r—>+00 r,

Lemma 5.4. Let u as in Lemma 5.2 and, forr > 0, let ./\Afa(r) be the frequency function associated
to u, i.e.
N 5 |Va(z)|?dx
Na(r)z—fm| A( ) , >0,
J5, u(x) do

with (AZT and ﬁ« defined in (165). Then

1) im0 Na(r) = /A1 (D)5
ii) there exists ¢ € R\ {0} such that le |V (@ — eh)(x)|? dzx < +o0,

where
(176) h:Ti =R, h(zy,2')=f(1—z,a") =eVETyE (1),
being [ defined in (27).

PROOF. Letting &, — 0 and {e,,, }x as in Lemma 5.2, passing to the limit as k¥ — +oc in (168),
and using (175), we have that

lim AN, (Ren,)=Na(R) for every R >0,

k—4o00 k

which, together with (169), implies that, for every § > 0 and R > 0,
Na(R) < (1+8)v/A(%).

Therefore
(177) Na(R) < /A (%) for every R > 0.
It is easy to prove that there exists ¢ € H{\ (T1) N L°(T}) such that
“AC =0, in T},
¢ =u, on 0T,

Jr, IVG(@)Pda < +o0,

i.e. ¢ is a finite-energy harmonic extension of a‘an in 1. Since w(xy, ') = e VME 1711/)12(%,) is
harmonic and strictly positive in 77, bounded from below away from 0 in {(z1,2’) € T} : 21 < 0},
and f{(xl o)eTs: ml>r}(\Vw|2 +|w|*") < 400 for all 7, from the Maximum Principle we deduce that
|¢| < constw in Ty, thus implying that, for some ¢ > 0,
IC(z)| < cce™V MODE for all z € T4
Let us observe that the function v :=u — ¢ € H} _(T1) \ {0} satisfies
—Av(z) =0, in Ty,
=0, on 0T7.

<)
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We notice that ¥ Z 0 in view of Remark 5.3. Let

le,r |Vo(x)|[2dx
Jp 02(z)do

s

N; R —= R, N’ﬁ(”’) =

be as in Lemma 2.5, where, for all » € R, 77, and I', are defined in (38). From Lemma 2.5 it
follows that Nz is non decreasing in R and

(178) N3(t) = lim Ng(r) = /A (%) forall t € R.

rT——00

For all R >0, § € (0,1),

/52d0—(1—5)/ ﬂQda:/ §2d0—2/ Cido+6 | @do
FR FR FR FR FR
2 2 g ~2 2 2 2\ wNn—2 o _. /% (DR
> 175 Cd0+§ udo>1— = “do>(1—-— cce 1
I'r I'r I'r

0 6)N—-1

and

o(z)|?de — u(2)*dx
/:;1,RIV (2)2d (1+6>[ Va)d

Qr

2de — x) - Vu(x)dx — () Pdx
</TLR|vc<x>|d:c 2 [ V(@) va(n)d 6[ Va(z)*d

Qr
2 0

< <1 + > / |V¢(x)2da + 7/ |Va(z)|*de — 5/ \Va(z)|*dx
0 T1,r 2 Ti,r Qr

2 2
<(1+3) [ Ve,

L3, Ve s
146 o 1+6 [5, [Vi(z)[de

(1 - $wn-2¢f - Al(E)R.
(1-0)(N 1) J._i2do

T1,r

thus implying

(179) N3(R) <

On the other hand, for all R > 0, ¢ € (0, 1),

/ﬁ2d07(1+6)/ wdo = | (*do—2 Cﬂdcrfé/ w2 do
T'r I'r I'r I'r I'r
2 5 PR 2 2 WN—-2 _
< 1 = 2d Y 2d < 1 “ 2d < 1 “ 2 V(2R
(+6> b 2/FR“ 7 (*6) R <+6>N—1C<e
and

[, Wi — - [ it

Qr

= —/ \Vi(z)|*dx +/ \V¢()|2da — 2 V((z) - Vi(z)dz + 6 [ |Va(z)|*dz
D-\Ty

T1,r T1,rR Qr

2
> —/ Vai()|2dz + (1 _ 5)/ V¢ () 2de — g/ Va(e)Pdz+ 5 | Vi) de
- Tl,R Tl,R

Qr

> [ wa@pe s (1-3) [ ELE
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thus implying

[p- |Vii(2)|2dz 1- 2[5, [V¢(2)Pda
L <1—®1@Jvamn%w =0 Jg, Va()Pds
1+ N-2%¢ e~ VM (DR

1+ 0)(N —1 ) Jp, @2do

Since [, |V¢(2)Pdz = O(1), [g, [Vu(z)]Pde — 400, and [i. @’do — 400 as R — +oo (see
Remark 5. 3) passing to limsup and liminf in (179-180) we obtain that

-0 1+6 N
lim sup Nz (R) < limsup N3(R) < 1+ limsup Nz(R) for all § > 0,

(5 R—00 R— o0 - R—o0
1 -0 - +4
o R < T inf N -

s lﬁq“i}ngu(R) < l%glgéf N3(R) < -— 5 i hmlan (R) forall § >0,
thus implying, in view of (178),
(181) lim inf N (R) = lim inf No(R) = /A1 (Z)

R—o00 R—o00
and, in view of (177),
(182) A (E) > limsup Nz (R) = lim sup Ny (R).
R—o00 R—o0

From (181) and (182) we deduce that
(183) lim Ng(R) = Rlim Ni(R) = VM (2),
—00

R—00
thus proving statement i). Furthermore (183), (178), and the fact that N3 is non decreasing imply
that
N;(t) =M (2) inR.
From Lemma 2.5 iii), it follows that there exists ¢ € R\ {0} such that v(z1,2") = éh(xy,2’) with
h as in (176). Since [, [V(U — ¢h)(z)|* dz = [} [V((2)|* dz < 400, also claim ii) is proved. [

Corollary 5.5. Let u be as in Lemma 5.2 and ¢ as in Lemma 5.4. Then
U(xy,x') = Pyl — 21, 2)

where ®y is as in Lemma 2.7.

Proor. It follows from Lemmas 5.2 and 5.4, taking into account Lemma 2.7. ]
Let us define @(xl,x’) = ®y(1 — 2q,2’) and, for all r < —1
_ _ (—r) [, |V®(x)|?da
N(r)=Nz(r) = L

Jr- @(z)do

with €, asin (77) and ', as in (10), so that, according to notation of Lemma 3.3, ./\A/'(r) =Ng (—r)
for all r < —1.

Lemma 5.6. limrﬁ,oo/\/?(r) =N-1.

PrOOF. The proof follows from Lemma 3.3 and Remark 2.8. (]

Lemma 5.7. For every R > 1
lim N.(—Re) = N(—R).

e—0t

Proor. Fix R > 1. Let ¢, — 0". From Lemma 5.2 and Corollary 5.5, there exist a subsequence
{eny }r and ¢ # 0 such that @, — ¢® strongly in H, for every r > 1. By the change of variable
x = ey we have that, for € € (0,¢) and R > 1,

R [y, (Vi) = Xeep(ey)ad(y) ) dy

(184) Ne(—Re) = T 70 do
rp e
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with Q_p and 'y as in (77) and (10) respectively. From strong convergence of @, to ¢d in H,
for every r > 1, passing to the limit in (184) along the subsequence {e,, }» and using (175) we
obtain that

~

RfQ_R V(c®)(y)|*dy _ RfQ_R IV (y)[2dy

lim M., (—Rep,) = ~ ~ = N(-R).
k—doo  TTE fFE (¢®)2(y) do fFE D2 (y) do
Since the limit depends neither on the sequence {e,}nen nor on its subsequence {e,, }ren, we
conclude that the convergence actually holds as ¢ — 0 thus proving the lemma. (]

Lemma 5.8. For every 6 > 0 there exist K5 > 1, ks € (0,1), and ps € (O7 %), such that

1
(185) N(r) K N—1+446 and /Q (\VUE|2 — A%pu?)dx > 5/9 |V, |*dx

for allr € (—ks, —Ks¢e) and e € (0, ps).
PrOOF. Let § > 0 and fix ¢’ € (0,1) such that
(N—1+2§)e =N —1+06.

From Lemma 5.6 there exists some K5 > 1 such that N'(—Kj) < N—1+04". From Lemma 5.7 there
exists some €5 > 0 such that, for all € € (0,¢}), No(—Kse) < N(=Ks)+68 < N —1+25. Letting
R/, €5 as in Lemma 3.17 and Corollary 3.18, we have that for all € € (O,min {53,55/,R5//K5})
and r € (*R(;/, *K(se)

N:(r) < /\/’E(—K(;s)e‘s/Rﬁ' <(N -1+ 25')66/15”5’ <N-1+4946

and [, (|[Vuc* = Apu?)de > 3 Jo |Vue|*dz. Then the lemma follows choosing ks = Rs and
p(;:min{ag,éy,R(;//Kg}. O

6. ASYMPTOTICS AT THE LEFT JUNCTION
Throughout this section, we fix 0 € (0,1) so that N — 1+ < N. Let us denote K=Ks>1,
h=ks € (0,1), and p = ps € (0, %) with K5, ks, ps as in Lemma 5.8, so that
(186) Ne(r)SN—=140<N forallre(—h,—Ke)and ¢ € (0,7).
Let us denote

ue ()

/fri u2do

with I';" as in (10). Let us notice that, for € € (0,2), Ue solves

(187) Ue(x) =

(188) —AU: = AjpU;, in P,
U. =0, on J€F,

and

(189) /F UZdo = 1.

3
Proposition 6.1. For every sequence €, — 0T there exist a subsequence {en, }r and a function
UeC*D7)U(UssoHy ) such that
i) Ue, — U strongly in H, for everyt >0 and in C?(Bg, \ By,) for all 0 <ty < ty;
i) U#£0in D~ ;
iii) U solves

(190) {—AU(I) = Ay (DT)p(2)U(x), in D™,

U =0, on 0D
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iv) if Ny : (—00,0) — R is defined as
") Jo, (IVU@) = X\ (D)p(2)U2 () ) do

(101) Nus(r) = ST ,
then
(192) Nu(r) < N =146 forallr € (—h,0).
PRrROOF. Letting HZ (t) as in (109), from (111), (107)—(109), and Lemma 5.8 it follows that
CrLL O Y P
HZ (1) t t

for all t € (Ke,h) and ¢ € (0, 5), which after integration yields
(193) H-(t) <PNH- (W)t~ for all t € (Ke, h).
From (187), (107)-(109), (193), and Lemma 5.8, we deduce that

1

5 [ U@ [ (VU@ - Xp@)UA)ds

2 Ja_, Q

—t

Jo., (IVuc@)? = Xep(a)ed () )dz - v H (1)

- Ji u2do = N g S

for all t € (Ke,h) and ¢ € (0, ). Hence for every t > 0
(194) {Uf}ae(o,min{ﬁ,t/f{}) is bounded in H; .

Let €, — 0%. From (194) and a diagonal process, there exist a subsequence &, — 07 and some
U € Upso Hi such that Ue,, —U weakly in H, for every ¢ > 0 and a.e. in D~. From compactness

of the embedding #; < L?(I';), passing to the limit in (189) we obtain that [,- U?do = 1; in
h
particular U # 0 in D~. Passing to the weak limit in (188), we obtain that U is a weak solution

o (190). By classical elliptic estimates, we also have that U., — U in C*(B \ B,)) for all
0 < t1 < ty. Therefore, multiplying (190) by U and integrating over )_;, we obtain

(195) /_ Wew, U., do - g—UUdo = */Q (|VU(9:)|2 - AkO(D+)p(x)U2(x))dx

ov r;
being v = v(x) = | Tl On the other hand, multiplication of (188) by U. ., and integration by parts
over )_; yield
2 e 2 8U€"lc
(196) ) <|VU€% (@)]? = Xop() U (m))dx = | U, do.
Since weak H,; -convergence of Ue,, to U implies that
(197) / p(a:)Ufnk (x)dx — p(2)U?(z)dx  as k — +oo,
Q_¢ Q_4

combining (195), (196), and (197), we conclude that ||U.

strongly in H, for every t > 0.
Finally, we notice that strong H; -convergence of Ue,, toU implies that, for every r < 0,

1) Jo (190 il (@02, @))dz
Nenk (r) = f D) do
-

En

Iy = U]l and then U, — U

n

= Ny(r) ask — 4oo,

hence, passing to the limit in (186) as € = &,,, — 0, we obtain (192) and complete the proof. [

Lemma 6.2. Let U be as in Proposition 6.1 and let Ny : (—00,0) — R be the frequency function
associated to U defined in (191). Then

(i) Tim, - Ny (r) = N — 1;
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(ii) for every sequence N\, — 07 there exist a subsequence {\,, } and some constant ¢ € R\ {0}

such that
U(An,x) N 1

C
HU()\nk) k=400 |x|N

strongly in Hy for every t > 0 and in C*(By, \ By,) for all 0 <ty < ta, where
1
(198) Ho(\) = —— / U2(z) do.
A\N-1 rs
PRrROOF. We first notice that, letting ¢, — 07 and {e,, }x as in Proposition 6.1, passing to the
limit as k — +o00, from (185) and strong H, -convergence of U.,, to U we obtain that

(199) / (|VU|2 - AkO(D+)pU2)d:c > %/ VU [2da
Q. Q.

for all 7 € (—h,0). In particular

(200) Ny(r) =0 for all ¥ € (—h,0).

Arguing as in the proof of Lemma 3.15, we can prove that, for all r» < 0,

(201) d%/\/u(r) = vi(r) +v2(r),

where

(oo 122 Pdo) (fi U2y do) — (f UBLdo)

(202) vi(r)=—2r 5
(fFir U2 (z) da)

Jo 2p(z) + x - Vp(2))U? (z)dx
2 = A\, (D)= .
(209) (1) = Ay (D) T
Schwarz’s inequality implies that
(204) vi(r) >0 forall r <O0.
Furthermore

2p(x) + x - Vp(x)|U?(z)dx -

%({)) < M (D* Ja, 120(@) p@)U7(z) <6, forallre (—h,0),
Uu\r

(=) Jo, (IVU@)12 = Mo (DH)p()U2 () ) d

where the last inequality is obtained passing to the limit as € = &,, — 0% in (128). Hence from
(192) we obtain that

(205) va(r)| < 6(N —1+446), forallre (=h,0).
From (204) and (205) it follows that LA is the sum of a nonnegative function and of a bounded

function on (—h,0). Therefore Ny (r) = Ny (—h) + [75 (1(s) + v2(s)) ds admits a limit as r — 0"
which is necessarily finite in view of (192) and (200). More precisely, denoting as

(206) vi= lim Ny (),
(192) and (200) ensure that

(207) v€e[0,N—1+04]C[0,N).
For all z € D~ and X > 0, let us consider

U(\x)

VHy(A)

(208) UMNz) =
where Hy () is defined in (198). We notice that

(209) / Uido = 1.
I

1
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Furthermore, by direct calculation (see also the proof of Lemma 3.15 which is analogous), we have
that

H{ (M) 2

Hy () R

which after integration yields

(210) (N —1+46) forall Xe(0,h),

> o

A 2(N—1+46) ~
2> forall 0 < A\p < A\g < h.

(211) Hy(\) < HUuz)(Al

From (199), (211), and (192), for every ¢ € (0,1) and A € (0, h/t), we have that

L Hy(OM) A o, VU (@) de I
(212) /Q VU 2)|2dz =tV QH[Z](()\) f; e < AN TH TN AR N (—AE)

<A NTB(N —149).
Hence for every ¢t € (0,1) there exists A\; > 0 such that
(213) {U*}5e(0,n,) is bounded in ;.

Let A\, — 07. From (213) and a diagonal process, we deduce that there exist a subsequence
An, = 07 and some U € |J,.,H; such that Urni — U weakly in H, for every t > 0 and a.e. in

D~. Since U” solves
—AUMz) = \2 + A o
(214) { AU ) = A Ak, (DF)p(Az)UN(z), in D™,

U* =0, on 0D,
passing to the weak limit in (214), we obtain that U satisfies
{—Aﬁ(m) =0, inD",

(215) ~
U =0, on 0D

By compactness of the embedding H; < L*(T']), passing to the limit in (209), we have that
Jr- U2do = 1. In particular U % 0.
1From Lemma 3.6, for every o > 0 there exists k, € N and t, > 0 such that for all & > k, and
t e (enyrta)
/Q P2, (@) < o /Q VU, (@)
Strong H, -convergence of U, to U then implies that

/ \p(x)|U2(a:)dx<oz/ VU (2)2dz, for all € (0, 1,).
Q_y Q_y

Hence, by the change of variable x = Ay and (212), we obtain that, for every s > 0,
to h
/\2/ pOW)||U () 2dy < a/ VU () 2dy < 205~ N~ (N—1+6), for all A < min {a, }

s S

—s —s

thus implying that, for every s > 0,

(216) XZ/ PO [T (@) 2dy — 0 as A — 0.
By classical elliptic estimates, we also have that UM — U in C?(By, \ Bry) for all 0 < ry < 7.
Therefore, multiplying (215) by U and integrating over {_;, we obtain

OU Nk
(217) /F 5, Uedo — B

ou

Udo = 7/ VU (z)|?dz,
: Q_,

while multiplication of (214) by U+ and integration by parts over Q_; yield

>\77. .
(218) / |VUx |2dx = f/ 6% : U’\"kdo+>\%k>\k0(D+)/ P, )| Uk (2) | da.
Q. r; v Q.
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Combining (217), (218), and (216), we conclude that ||U*»x
strongly in H, for every t > 0.
From (191), strong convergence U*» — U in H; , and (216), we have that, for every ¢ > 0,

s oy, (IFU@P = Ay (D )p(@)U2(@)) do
Jrr,, U*@)do
o, (IVD (@) = 22, 00 (DF)p(n )| U ()2 )
Joo [UAx (2) ]2 do
th \VU )2dz
fl"7 U2
Combining (206) and (219) we conclude that
o, |VU |2das

— = ||U||l,,— and then U — U
e = 1Tl

(219) NU(*t)\nk) =

as k — +oo.

=~ forallt>0.

fr* U(z)
From Lemma 3.3 there exists Kg € N, Ky > 1, such that
(220) y=N-2+ K,

and U(z) = |z| "N +2- Koy (2/|z|) for some cigenfunction Y of —Agwn-1 associated to the eigenvalue
Ko(N — 2+ Ky), i.e. satisfying —Agn 1Y = Ko(N — 2+ K)Y on S¥~1. From (207) and (220)
we infer that necessarily Ky = 1, so that

y=N-1 and U(z) = |z| V'Y (2/|2]).

From U = 0 on 9D~ we deduce that Y = 0 on {0 = (01,04,...,0n) € S¥71 1 0, = 0}, hence
Y is an eigenfunction of —Agn-1 on S¥ 71 = {0 = (01,0,,...,0x5) € SN : 6, < 0} under null
Dirichlet boundary conditions associated to the eigenvalue N — 1. It is easy to verify that N —1 is
the first eigenvalue of such eigenvalue problem and hence it is simple; furthermore an eigenfunction
associated to the eigenvalue N — 1 is 0 = (61,60s,...,0N) € SN=1 s ;. Therefore we conclude
that there exists some constant ¢ € R\ {0} such that Y (0) = ¢f, and then

~ T

The proof is thereby completed. ]

Lemma 6.3. Let U as in Proposition 6.1 and let Hy : (0,+00) — R be defined in (198). Then
(i) Hy(\) < ePWN=140Rp2(N=1) g ())A=2N=1) for all A € (0, h);
(i) for every o > 0 there exists A\, > 0 such that Hy(\) > HU()\g)/\g(N_l_g))\”(N’l*Q) for all
A€ (0,X);
(iil) limy_,o+ A2N=DHy (N\) exists and is finite.

PrROOF. From Lemma 6.2 (i), (201), (204), (205), we obtain that
N—-1-Ny(- / N (s / vo(s)ds = —6(N — 1+ )\ for all A € (0,h)

where v is defined in (203), and then
No(=A) K N —148(N =1+ forall X e (0,h),
which, together with (210), yields
Hy (M)
Hy(X)

2N — 1 ;
_(f>_25(zv_1+5) for all A € (0, 7).

2
= _XNU(—)\) 2

Integration of the above inequality between A and h proves estimate (i).
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From Lemma 6.2 (i), for any p > 0 there exists A\, > 0 such that Ny (r) > N —1 — p for any
7 € (=X, 0) and hence
Hy() 2 2N —1-p)
=—— —A) < ———— forall A€ (0,,).
Ho Oy )\NU( ) < ) or all A € (0,),)
Integration over the interval (A, \,) yields (ii).
In view of (i), to prove (iii) it is sufficient to show that the limit exists. From (210), Lemma 6.2
(i), and (201) it follows that

@
d\

A Hy (M)
2 Hy(\)

()\Z(Nfl)HU()\)) _ 2/\2N73HU(/\) (N — 14 ) = 2)\2N73HU(/\)(N -1 —NU(—/\))

0 0
— AN g, () [ N (5)ds = 2022y (3 / (v1(s) + va(s)) ds

-

where vy and vy are defined in (202) and (203) respectively. By integration of the above identity

we obtain that, for all A € (0, ﬁ),
h 0
(221) NWN=D 5N — RPNV, (h) = — 2/ 52N3HU(3)</ vy (t) dt) ds
A —s

—2/:L SQN_BHU(S)([i vo(t) dt)ds.

lim /\il s N3 Hy(s) ( /0 v (t) dt) ds

A—=0t _s

From (204) the limit

exists. On the other hand from (i) and (205) it follows that
0
(222) 32N_3HU(5)</ va(t) dt) =0(1) ass—0"

thus proving in particular that s — sV =3 Hy (s)( f_OS vo(t) dt) € L*(0, h). We conclude that both
terms at the right hand side of (221) admit a limit as A — 0T, the second one being finite in view
of (222), thus completing the proof of the lemma. a

Lemma 6.4. Let U be as in Proposition 6.1, Y1 as in (11), and let Hy : (0,400) — R be defined
in (198). Then

(i) /S _UQOYA(0) do(0)

| [ vt - 2920 [ g (s, @) + )

+ONN) as A — 0T,
i) lim AP -DHy(\) > 0.
(if) lim v(A) >
PROOF. Let us define, for all A > 0,
W= [ U060 d0), <) =M (D) [ pO8U(6)Y(6) do6).
gh-1

SN71

From (190) p satisfies
N -1 N-1

—p'(\) = Tﬂl()\) + TM(A) =<(A), in (0,+o0).

Hence there exist ¢1,co € R such that

(223)  p(\) = )\(cl + % /: g(t)dt) + AN (CQ — Jb/: tNg(t)dt> for all A € (0, +00).
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Since p € LY/2(RN) and U € H; ensure that % € LY(Q_y) for all @ € [0, %) and,

for all A > 1,
1
/ tag(t)dt — _)\ko(D+>/ p( )U(]\I)Y;l(z/lml) $7
A BY\By 2|

A
/ ts(t)|dt < )\ko(DJ”)/i ) p(x)|(|](|1\[)|31/1(ax/|$|) .,
! B, \B; x

we deduce that fA to(t)dt admlts a finite limit and fl t¥[s(t)|dt = O(1) as X — +oo for every
€ 0,5 ). In partlcular f y, §(t)dt admits a finite limit as A\ — 400 and

A
‘/ th(t)dt‘ g/ tN*1t|g(t)|dt<AN*1/ tls(®)|dt = OAN"1)  as A — +oo.
A 1 1

Hence from (223) we deduce

[t

(224) w(A) = )\(01 N S(t)dt + 0(1)) +0(1) as A — +oo.
1

Since U € H; yields f N () [* dt < 400, (224) necessarily implies that ¢; = & 1+Oo (t)dt.

Then (223) becomes

—+oo 1 1
(225) () = A / s(tydt + AN <cQ i — / tNg(t)dt> for all A € (0, +o0).
N Jx N Jx
The above formula at A = 1 yields

1 AkO(Dﬂ/ p@)U(x)Y1(57)
Q_

+oo
220) =) - [ g(t)dt:/SN_l U(6)Yi(6) do(6) — Yo\ s,

Since
[S(A)] < Ak (DT) sup [p|ly/Hy () for all A € (0,1),
By

from Lemma 6.3 (i) we deduce that
sA)=0\"N) asA—07.

Hence
+oo
(227) 2 / O N) as X - 0%

tNe(t) € L(0,1), and tN¢(t) = O(t) as t — 0%, so that

(228) —% :tN = N/ tV( dt—i—N/ tN(
_ )\kN)/B [2lp(@)U (@)Yi(%)dz + O(A?) as A — 0.

Combining (225-228) we obtain statement (i).
To prove (ii), let us assume by contradiction that limy_,q+ X>N"DHy (M) = 0. Since, by
Schwarz’s inequality, Hy (A) = [ov-1 U2(A0) do(0) > |(N)]?, it would follow that

lim AN ~tu(\) =o.
SR

Hence (i) would imply that
Xa 1(:1:)

| vz de - 2P0 [ v i) (e @)+ ) de =0

and

/ UMN)Y1(0)do(8) = ON>N) as A — 0.
SN—l
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Therefore, letting U™ as in (208) and using Lemma 6.3 (ii) with o < 2, we obtain that

(229) /SN ) UMNO)Y1(0)do(0) = O(N\>72) as A — 0.

From Lemma 6.2 (ii), for every sequence A\, — 0% there exist a subsequence {\,, }x and some
constant ¢ € R\ {0} such that

(230) UMk — cYy in LA(SY 7).
From (229) and (230) we infer that

0= dim_ [ UMOiO)d0) =c [ vi6)dole) = c
SZ

k— 400 S§71
thus reaching a contradiction and proving statement (ii). O

Proposition 6.5. Let U be as in Proposition 6.1. Then

N—-1
AU (Or) — B IxIN

strongly in H; for every t >0 and in CQ(B;2 \ By;,) for all 0 < t; < ty, where

Jo; V@) de = 222 [, p@)U @) (I, <>+X§;|;<f>)dx#0

Ty

(231) B=-

and Y is defined in (12).
PrROOF. Let {\,}nen C (0,+00) such that lim, 1o A, = 0. Then, from part (ii) of Lemma 6.2
and part (i) of Lemma 6.4, there exist a subsequence {\,, }ren and some constant § € R\ {0}
such that

(232) AU, 0) — B

k—too’ x|V

T

strongly in H; for every ¢t > 0 and in C? (m) for all 0 < t1 < to. In particular
AU, 0) — B0 in C*(SNT) as k — +oo.
) ) k—4o00

From Lemma 6.4

lim )\flvljl/SN_lU()\nk@)Yl(H) do ()

= [ v =22 [ p@U@viE) (e, @)+ T )

thus implying that

Jom U@)Yi () do 20D (@)Y (5 )(IxIX ~(z )+X|f|zv1(f))d$

fgfj—l@lYl( )do (0)

* Ao (DT Xo_, (2)
Jos U@al) de = 2222 [ p(@)U @)V () (el (2) + s ) da
Ty ’
Hence we have proved that § depends neither on the sequence {\,},en nor on its subsequence

{\n,. }ken, thus implying that the convergence in (232) actually holds as A — 07 and proving the
proposition. O

B =

The following lemmas investigate the sign of the 8 in (231), thus allowing the study of the nodal
properties of u. close to the left junction.

Lemma 6.6. Let U be as in Proposition 6.1 and B # 0 as in (231). If 5 > 0 (respectively 5 < 0)
then there exists R > 0 such that

for every r € (0, R) there exists €, > 0 such that
ue < 0 (respectively u. > 0) in T for all e € (0,¢,).
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PROOF. Let us prove the lemma under the assumption S > 0 (under the assumption 8 < 0 the
argument is exactly the same). We claim that

(233) there exists R > 0 such that U < 0 in By,.

To prove (233), let us assume by contradiction that there exist A, — 0%, 0,, € SN-1 g esh-t
such that 6,, — 6 and U(\,0,,) > 0. If § € S¥~! then from Proposition 6.5 we obtain that

OgAN*UQﬁ@:(W”UQJ@—ﬁ@m)+M%h:6@+dU as 1 — +00

which yields a contradiction. On the other hand, if § € SV 1, i.e. if §; = 0, then, letting s > 0
sufficiently small to have |z|¥ — N|z|¥N =222 > ¢ > 0 for all x € A; := {z € By \31/2 x1 > —s},
we have that ()\ ,00) € A for all t € (M\,(0,,)1,0) and n large. Since from Proposition 6.5

ANV EL (\r) — 5% in C'(4,), we deduce that §%(\,z) > 0 for all z € A, and n
large. Hence

0

ou
Ub,) = — / O (4 andlydt < 0

An(00): 01
thus giving a contradiction. Claim (233) is thereby proved. It remains to prove that
(234) for every r € (0, R) there exists €, > 0 such that u. < 0in ', for all € € (0,¢,).

To prove (234), let us assume by contradiction that there exist r € (0,R), ¢, — 01, 6, € SV,

6 € SV such that 6, — 6 and u., (r6,) > 0 (and hence U.(r6,) > 0). If § € S¥~! then from
Proposition 6.1 it follows that

0< U, (r8,) = (Usn (r,) — U(rﬁn)) +U(r0,) =U(rf) +o(1) asn — +oo

which contradicts (233). On the other hand, if § € SV !, then by Hopf’s Lemma aU (1"0) > 0. If
t € (r(0n)1,0), Proposition 6.1 yields

Wew o) (Peny vy O o) 4 2 = U
(00 = (G 0rtl) = 50 0r81) )+ 5 0r6h) = S 08) + o)

as n — +00, so that

oU.,
al‘l
provide n is sufficiently large. Therefore

(t,70!) >0

o aU.
Ugnren:—/ t,r0l)dt <0
(rfn) o 8%1( n)

leads to a contradiction proving claim (234). O
In fact, condition (6) forces the sign of § to be negative, as we show below.
Lemma 6.7. Let U be as in Proposition 6.1 and 8 # 0 as in (231). Then

B < 0.

PROOF. Let us assume by contradiction that 5 > 0. From Lemma 6.6, for every n (sufficiently
large), there exists ¢,, € (0,1/n) such that

(235) . <0 on Fl/n

Let us denote u_ := max{0, —u., }. From Lemma 2.13, uZ =0 on 0Q7%,_ . Therefore, letting

Ue,, in Q—1/717
P — s En
vp = q —ug, in Q7 \Q_1/n,
TN €n
0, in RY \ Q7o »

(235) ensures that v, € D»?(Q71,. ) C DV*(RY), v, #0in D™



Testing equation —Au., = A\;"pu., with v,, we obtain [oe,  [Vou,[?dz = A7" [,
1426,
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o pv%dm,
142ep

hence, defining

Un

b
2

[ eyen v2dx
f52i+25n p n

Wy =

we have that w, € D2(Qf1,. ) € DV (RN),

/N pwide = / pwidr =1, /N |Vw, |*dx = / |Vw, |*dx = AL
R s R &

n
1426y 142ep

Hence {w,, }, is bounded in D%2(RY) and there exists a subsequence {w,, }x such that w,, — w
weakly in DH2(RY) and w,,, — w a.e. in RY, for some w € D*(RY). Since suppw, C Qf7%,, ,

a.e.

convergence implies that suppw C D~ so that w € DV?(D~). From fRN pwidr = 1 we

deduce that | D pw?dx = 1 which implies that w # 0. Since w,, solves

_Awn = /\%prm in Qfl/na
wy, =0, on 9Q_y,, NOD™,

weak convergence and (7) imply that w weakly solves

—Aw = Ao (DY)pw, in D™,

w =0, on 0D,
thus implying A, (DT) € 0,(D ™) and contradicting assumption (5). O
The proofs of the main results of the paper follow by combining the previous results.

Proof of Theorem 1.2. It follows by combining Propositions 6.1, 6.5 and Lemma 6.7. (]
Proof of Corollary 1.3. It follows from Lemmas 6.6 and 6.7. |
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