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Abstract

The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar
input data an efficient non-linear subdivision algorithm reproducing conic sections and respecting the convexity pro-
perties of the initial data, is here presented. Significant numerical examples are included to illustrate the effectiveness
of the proposed method and the smoothness of the limit curves.
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1. Introduction and state of the art

Subdivision schemes constitute a powerful alternative for the design of curves and surfaces over the widely studied
parametric and implicit forms. In fact, they offer a really versatile tool that is, at the same time, very intuitive and
easy to use and implement. This is due to the fact that subdivision schemes are defined via iterative algorithms which
exploit simple refinement rules to generate denser and denser point sequences that, under appropriate hypotheses,
converge to a continuous, and potentially smooth, function.

In the univariate case, the iteration starts with a sequence of points denoted by p0 = (p0
i : i ∈ Z), attached to

the integer grid, and then for any k ≥ 0 one subsequently computes a sequence pk+1 = S pk, where S : ℓ(Z) → ℓ(Z)
identifies the so-called subdivision operator.

Subdivision operators can be broadly classified into two main categories: interpolating and approximating [1, 2].
Interpolating schemes are required to generate limit curves passing through all the vertices of the given polyline
p0 (note that throughout the paper the terms “polygon” and “polyline” are used as an alternative to refer to point
sequences). Therefore they are featured by refinement rules maintaining the points generated at each step of the
recursion in all the successive iterations. Approximating schemes, instead, are not required to match the original
position of vertices on the assigned polyline p0 and thus they adjust their positions aiming at very smooth and visually
pleasing limit shapes that approximate it. As a consequence, while in the case of approximating subdivision the newly
generated vertices are not on the limit shape, in the case of interpolatory subdivision, in every iteration a finer data
set pk+1 is obtained by taking the old data values pk and inserting new points in between them, so that the limit curve
not only interpolates the initial set of points but also all the points generated through the whole process. Every such
new point is calculated using a finite number of existing, usually neighboring points. In particular, if the computation
of the new points is carried out through a linear subdivision operator S , the scheme is said to be linear, otherwise
non-linear. Then, inside the above identified categories, the schemes can also be further classified. More specifically,
the refinement rules of a scheme can be distinguished between stationary (when they do not alter from level to level)
and non-stationary; between uniform (when they do not vary from point to point) and non-uniform; between binary
(when they double the number of points at each iteration) and N-ary, namely of arity N > 2.

Most of the univariate subdivision schemes studied in the literature are binary, uniform, stationary and linear.
These characteristics, in fact, make it easier to study the mathematical properties of the limit curve, but seriously limit
the applications of the scheme. Exceptions from a binary, or a uniform, or a stationary, or a linear approach, have
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already appeared (see for example [3] and references therein), but none of the methods proposed so far provides an
interpolatory algorithm that can fulfill the list of all fundamental features considered essential in applications. These
features can briefly be summarized as:

(i) generating a visually-pleasing limit curve which faithfully mimics the behaviour of the underlying polyline
without creating unwanted oscillations;

(ii) preserving the shape, i.e., the convexity properties of the given data;

(iii) identifying geometric primitives like circles and more generally conic sections, the starting polyline had been
sampled from, and reproducing them.

Requirement (i) derives from the fact that, despite interpolating schemes being considered very well-suited for han-
dling practical models to meet industrial needs (due to their evident link with the initial configuration of points rep-
resenting the object to be designed), compared to their approximating counterparts, they are more difficult to control
and tend to produce bulges and unwanted folds when the initial data are not uniformly spaced. Recently this prob-
lem has been addressed by using non-uniform refinement rules [4, 5] opportunely designed to take into account the
irregular distribution of the data. But, despite their established merit of providing visually pleasing results, there is no
guarantee that such methods are convexity-preserving, i.e., that if a convex data set is given, a convex interpolating
curve can be obtained. This is due to the fact that, such non-uniform schemes are linear and, as it is well-known [6],
linear refinement operators that are C1 cannot preserve convexity in general.

The property (ii) of convexity preservation is of great practical importance in modelling curves and surfaces
tailored to industrial design (e.g. related to car, aeroplane or ship modelling where convexity is imposed by technical
and physical conditions as well as by aesthetic requirements). In fact, if shape information such as convexity is
not enforced, interpolatory curves, though smooth, may not be satisfactory as they may contain redundant wiggles
and bumps rather than those suggested by the data points, i.e., they feature unacceptable visual artifacts. Preserving
convexity, while a curve is interpolating a given data set, is far from trivial. But much progress has been made in
this field, evidence of which is given by the recent burgeoning literature. In most publications, the introduction of
subdivision schemes fulfilling requirement (ii) has been achieved through the definition of non-linear refinement rules.
In fact, although linear subdivision schemes turn out to be simple to implement, easy to analyze and affine invariant,
they have many difficulties to control the shape of the limit curve and avoid artifacts and undesired inflexions that
usually occur when the starting polygon p0 is made of highly non-uniform edges. Non-linear schemes, instead, offer
effective algorithms to be used in shape-preserving data interpolation [6–12].

On the basis of the well–known, linear Dubuc-Deslauriers interpolatory 4-point scheme [13], for example, several
non-linear analogues have been presented in order to accomplish at least one of the three above listed properties. On
the one hand, non-linear modifications of the classical 4-point scheme have been introduced to reduce the oscillations
that usually occur in the limit curve when applying the refinement algorithm to polylines with short and long adjacent
edges. These have been presented in [14] and [15], and as concerns the case of convexity-preserving strategies
(which are the ones capable of completely eliminating the artifacts arising during the subdivision process), we find
the papers [16] and [11]. On the other hand, for the purpose of enriching the Dubuc-Deslauriers 4-point scheme with
the property (iii) of geometric primitives preservation, a non-linear 4-point scheme reproducing circles and reducing
curvature variation for data off the circle, has been defined [17]. With the same intent, another modification of the
classical 4-point scheme in a non-linear fashion, had been given in [18].

With these papers, the theoretical investigation of non-linear interpolatory subdivision has only begun. A lot is
still to be done, in particular as concerns the use of non-linear rules for reproducing salient curves other than circles,
considered of fundamental importance in several applications. So far, it has been shown that non-linear updating
formulas can be used in the definition of non-stationary subdivision schemes aimed at reproducing polynomials and
some common transcendental functions. In particular, [19] respectively [20–25] present subdivision algorithms that
turn out to be circle-preserving respectively able to exactly represent any conic section. While the first is able to
guarantee reproduction starting from given samples with any arbitrary spacing, for the latter ones the property of
conic precision is confined to the case of equally-spaced samples. Most recently a shape and circle preserving scheme
for any arbitrary data points has been presented in [7].
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Therefore, an outstanding issue that should be considered is the possibility of defining an interpolatory subdivi-
sion scheme that is at the same time shape-preserving and artifact free, as well as capable of generating conic sections
starting from any arbitrarily-spaced samples coming from a conic. This is exactly the purpose of this paper. Based
on an approximation order four strategy presented in [26] for estimating tangents to planar convex data sequences,
we propose a convexity-preserving interpolatory subdivision scheme with conic precision. This turns out to be a new
kind of non-linear and geometry-driven subdivision method for curve interpolation.

The remainder of the paper is organized as follows. In Section 2 we start by describing the refinement strategy,
which relies on a classical cross-ratio property for conic sections and uses the tangent estimator from [26], for the
case of globally convex data. In Section 3 we adapt the scheme to general, not necessarily convex data by segmenting
the given polygon into linear and globally convex segments, and in Section 4 we summarize the whole subdivision
algorithm in all its steps. Section 5 contains proofs for the scheme’s shape preservation and conic reproducing pro-
perties, as well as a proof for the C0 continuity of its limit curve. Moreover, a conjecture for the C1 continuity is also
included. Section 6 is devoted to illustrating the scheme by several significant application examples, and we conclude
in Section 7.

2. Definition of the scheme for globally convex data

In this section we define a convexity preserving subdivision scheme for globally convex data which will then be
the basis for the final shape preserving subdivision algorithm for general data.

Curve subdivision schemes iteratively apply a subdivision operator S to a starting point sequence p0 = (p0
i : i ∈ Z)

yielding a new sequence pk+1 = S pk for any level k ≥ 0. Our scheme, being interpolatory, has refinement rules of the
following form:

pk+1
2i = pk

i ,
pk+1

2i+1 = φ(pk
i−ν, ..., p

k
i ,p

k
i+1, ..., p

k
i+ν,p

k
i+ν+1; p) (1)

where ν = 2 is the number of points taken into account in the left and right hand neighborhoods of the segment pk
i pk

i+1
in order to define the newly inserted vertex pk+1

2i+1, and p is a parameter point specified later. φ is a non linear function,
which we will define in form of an algorithm.

In order to detail the idea at the basis of this convexity–preserving scheme, we thus consider the following problem
where, for simplicity, we omit the upper indices k.

Problem 1. Given n points pi((pi)x, (pi)y), i = 1, . . . , n (n ≥ 5), in convex position in the affine plane, we wish to
obtain one new point ui related to the i-th edge pi pi+1.

We will carry out the construction of the new points in the projectively extended affine plane. To this end we
denote the projective counterparts of the affine points pi((pi)x, (pi)y), i = 1, . . . , n by

Pi(pi,0, pi,1, pi,2) where pi,0 = 1, pi,1 = (pi)x, pi,2 = (pi)y . (2)

By projective geometry’s principle of duality, a line L may be represented either by a linear equation l0x0 +

l1x1 + l2x2 = 0 in variable point coordinates (x0, x1, x2) or by a triple (l0, l1, l2) of constant line coordinates. The line
coordinates of the line L(l0, l1, l2) joining two points X1(x1,0, x1,1, x1,2) and X2(x2,0, x2,1, x2,2) may simply be calculated
by the vector product X1∧X2 = L. In the same way, the point coordinates of the intersection point P(p0, p1, p2) of two
lines L1(l1,0, l1,1, l1,2) and L2(l2,0, l2,1, l2,2) is obtained as L1∧ L2 = P. This elegant way of calculating line intersections
and point connections is well known from projective geometry, see, e.g., [26, 27]. Without loss of generality we apply
a normalization to the homogeneous point coordinates such that x0 ∈ {0, 1} for all calculated points.
We use these notions of projective geometry in the following preprocessing procedure in order to preserve global
convexity of the input point set.
In every given point Pi we estimate a tangent from a subset of five points (including the point Pi) by the conic tangent
estimator presented in [26]. If the given points represent a closed polygon, then the five-point subset is composed
of the point Pi, its preceding two points Pi−1, Pi−2 as well as its successive two points Pi+1, Pi+2 (by considering
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Figure 1: Illustration of the tangent construction in Q3.
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Figure 2: Convex delimiting polygon (dashed line) for a given con-
vex data set (solid line).

P0 = Pn, P−1 = Pn−1, Pn+1 = P1, Pn+2 = P2). If the given points represent an open polygon, then for i = 3, . . . , n −
2 we proceed as above and for i ∈ {1, 2} (respectively i ∈ {n − 1, n}) the points {P1, P2, P3, P4, P5} (respectively
{Pn−4, Pn−3, Pn−2, Pn−1, Pn}) are taken.
In order to apply the conic tangent estimator from [26] we locally rename the five points around Pi by Q3 = Pi, and
by arbitrarily mapping the remaining four points to Q1,Q2,Q4,Q5 by a one–to–one map. The desired tangent in the
point Q3 is then calculated by the formula (see [26])

M33 := Q3 ∧ (M15 ∧ (A ∧ B)) , (3)

where Mi j = Qi ∧ Q j for i , j, A = M12 ∧ M34 and B = M54 ∧ M32. See Figure 1 for an illustration.
We then denote the obtained line in the point Pi by Li, and intersect every two consecutive lines generating the

intersection points Ti = Li ∧ Li+1, see Figure 2.
The dashed lines in Figure 2 constitute a convex delimiting polygon for the new points generated in the next

subdivision level. If the initial points come from a conic section, the constructed lines Li are the tangents to this conic
in the respective points Pi. Otherwise the lines Li approximate the tangents with approximation order 4, see [26].

After this preprocessing step we now get back to the initial subdivision Problem 1, i.e., between every two points
Pi and Pi+1 insert a new point Ui by applying a classical result from projective geometry which, for the readers
convenience, we recall in the following Proposition (see, e.g., [28–30]).

Proposition 1. a) Let X, E, E0, E1 be four points of a projective line P1, where the points E, E0, E1 are mutually
distinct, and let (x0, x1) be the projective coordinates of the point X with respect to the projective coordinate
system {E0, E1; E} of P1. Then, the cross ratio cr(X, E, E0, E1) of the four points X, E, E0, E1 in this order is
defined by cr(X, E, E0, E1) = x1

x0
.

b) Let P1, P2 be two points on a conic section C, and t1, t2 the tangents of C in P1, P2 respectively, and let T be
the intersection point of t1 and t2 (T = t1 ∩ t2). Then, the point T and the line P1P2 are pole and polar with
respect to the conic C. If we further denote the intersection points of any line lT through T with the conic C
by P and U, and the intersection point of lT and T’s polar P1P2 by X (lT ∩ C = {P,U}, lT ∩ P1P2 = X), then
cr(U, P, X,T ) = −1 and the four points (U, P, X,T ) are said to be in harmonic position.

Therefore, chosen any point P on the conic section C, Proposition 1 gives us the means of constructing a point U
from the known collinear points P, X,T such that the harmonic cross ratio condition for conic sections is satisfied, i.e.
U is a point between P1 and P2 that lies on the conic section C. For an illustration see Figure 3.

More precisely, according to Proposition 1, for any pair of points Pi, Pi+1 in the given polyline, we need to choose
another point P ji (that we call parameter point) in order to get a new point Ui inside the triangle ∆(Pi,Ti, Pi+1), with
Ti = Li ∧ Li+1. For the choice of the parameter point P ji the whole region bounded by the lines Li, Li+1 and PiPi+1
containing the given convex polygon (see Figure 4) is suitable. In particular, any point P ji of the given convex polygon
can be taken as parameter point (with exception of Pi and Pi+1), and since such a choice guarantees the reproduction
of conic sections whenever the given points are samples coming from a conic, we opt for it.
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Figure 4: Suitable region for the choice of the parameter point P ji .

Let us thus denote by Xi the intersection point of the lines PiPi+1 and P ji Ti for a chosen ji ∈ {1, . . . , n} \ {i, i + 1},
i.e., Xi = PiPi+1 ∩ P ji Ti.

In order to guarantee a regular distribution of the inserted points we propose to choose the index ji by the following
angle criterion. Let mi be the midpoint of each segment pipi+1. Then let gi = timi, hi j = tip j be the connecting lines
of the points ti and mi respectively ti and p j, and αi

j = ∠(gi, hi j) the angle between these two lines (the smaller one of
the two complementary angles is taken in each case) for j = i + 2, . . . , n + i − 1 by considering pn+r = pr for r ≥ 1.
For every i ∈ {1, . . . , n} in the case of a closed polygon and for every i ∈ {1, . . . , n − 1} in the case of an open polygon,
we then obtain a value ji from the condition

αi
ji = min

j=i+2,...,n+i−1
αi

j. (4)

Once the point P ji has been selected by exploiting the illustrated criterion, we then establish the projective coordi-
nate system {Xi,Ti; P ji } on the straight line P ji Ti by calculating the projective representatives of Xi and Ti by solving
the linear equation system γiXi + µiTi = P ji for γi and µi. We obtain γi = Di,1/Di , µi = Di,2/Di, where

Di = det
(

xi,l ti,l
xi,m ti,m

)
, Di,1 = det

(
p ji,l ti,l
p ji,m ti,m

)
, Di,2 = det

(
xi,l p ji,l

xi,m p ji,m

)
, l , m ∈ {0, 1, 2}. (5)

Let us recall that in the above matrices yi,k are the coordinates of the projective counterpart Yi of a point yi, see
(2). For details on projective coordinate systems see, e.g, [28]. By Proposition 1 the point Ui is thus obtained as
Ui = Di,1Xi − Di,2Ti.

3. Modification of the scheme for non-convex data

In Section 2 we have described the fundamental steps of our new interpolatory subdivision scheme in the case of
globally convex data. This section is devoted to an accurate illustration of the modification of the scheme in case of
general, non-convex data.
If the input data are not convex, the idea is to segment them according to the following criteria in order to obtain a
sequence of rectilinear and piecewise convex segments.

First of all, consecutive collinear points are identified in the following way.

We check if the inner angle between any two consecutive segments of the given polyline is close to 180◦

within a given threshold and, if this is the case, we select the outer end points of these collinear segments
as the delimiting points of a sequence of collinear vertices. Let us denote them by p0

j and p0
l .

(6)
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Since in CAD applications linear features are usually intentional, we do not smooth the angle between a subpolygon
consisting of (at least 3) collinear points and its neighbors. The insertion rule for these straight line subpolygons
between the points pk

j and pk
l (k = 0, 1, 2, 3, . . .) simply reads as:

pk+1
2i+1 =

1
2

(pk
i + pk

i+1) , i = j, . . . , l − 1. (7)

The remaining subpolygons no longer contain collinear segments. For these remaining subpolygons, inflection edges
are identified by the following criterion, see also [7, 31].

An edge p0
i p0

i+1 is identified as inflection edge if the points p0
i−1 and p0

i+2 lie in different half planes with
respect to it. From a computational viewpoint, this translates into calculating vl = (p0

i−1)y − (p0
i )y + ((p0

i )x −
(p0

i−1)x) (p0
i+1)y−(p0

i )y

(p0
i+1)x−(p0

i )x
, vr = (p0

i+2)y − (p0
i )y + ((p0

i )x − (p0
i+2)x) (p0

i+1)y−(p0
i )y

(p0
i+1)x−(p0

i )x
and checking if sign(vl vr) is negative.

(8)

On an inflection edge we insert a new point, e.g. the midpoint of the edge corners, and we split the polygon at the
newly inserted point. In the sequel we refer to such kind of inserted junction point as inflection point. Notice that,
once all inflection points have been inserted, we have a sequence of subpolygons without inflections.

Last, we check each of these subpolygons for global convexity (since by construction, see (6), the considered sub-
polygons no longer contain collinear points) by means of the following criterion:

If for every edge of the subpolygon all the points of the subpolygon lie either on the edge or in the same half
plane with respect to the edge, then the subpolygon is globally convex, otherwise it is not globally convex. (9)

Since in case of not globally convex subpolygons the tangent estimation in (3) does not produce a convex delimiting
polygon, we need to divide the given subpolygon into two new consecutive convex subpolygons that satisfy criterion
(9) and repeat the procedure until we have a sequence of globally convex subpolygons, each of which we suppose to
be composed of at least five points. If this is not the case we insert additional points in the following way. Note that
two cases are possible, depending if the globally convex subpolygon consists of either three or four points, see Figure
5.

i
p0

p
i+1
0

0p
i−1

p
i+2
0

p0
i+1p

i
0

p
i−1
0

vi
0

Figure 5: Rules to define an initial globally convex subpolygon of five vertices starting from three (left) or four (right) given points.

In the case of three points p0
i−1, p0

i , p0
i+1, we insert the two new points by sampling the parametric quadratic curve

interpolating the given points at the centripetal parameter values {τi−1, τi, τi+1} at the intermediate parameter values
τi−1+τi

2 and τi+τi+1
2 . In the case of four points p0

i−1, . . . , p
0
i+2 we choose as fifth point the barycenter of the triangle

∆(p0
i , v

0
i ,p

0
i+1), where v0

i = p0
i−1p0

i ∩ p0
i+1p0

i+2.

In the sequel we refer to the vertex where two globally convex subpolygons meet as convex junction point. We
point out that it is necessary to introduce these points because the triangles of the convex delimiting polygon around a
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convex junction point might not correctly be positioned, see Figure 10 (a), (b). We let the reader notice that any point
of the given polygon that identifies two consecutive globally convex subpolygons is a good candidate to be a convex
junction point. So the user can arbitrarily select this point, taking into account that the visual quality of the curve is
only very slightly influenced by the selection of different candidates.

In conclusion, the result of the proposed segmentation process is:

an initial polygon p0 made of straight line segments (consisting of at least three points) as well as globally
convex segments, the latter ones separated by inflection points or convex junction points and consisting of
at least five points each.

(10)

Whereas in the interior of every globally convex subpolygon we apply the tangent estimation algorithm detailed
in the previous section, the next subsections are devoted to the description of the method we use to compute tangents
in inflection points and convex junction points.

3.1. Tangent computation in inflection points
In the case of an inflection point p0

i let us denote the line of the inflection edge p0
i−1p0

i p0
i+1 by ei, and the convex

subpolygons meeting in p0
i by s0

l,i and s0
r,i. We estimate a left and a right tangent in p0

i , l0l,i and l0r,i respectively, by
applying the tangent estimation method from [26] to the five points p0

i−4, . . . ,p
0
i−1,p

0
i of polygon s0

l,i, respectively
p0

i , . . . ,p
0
i+3,p

0
i+4 of polygon s0

r,i. We then combine these two lines l0l,i and l0r,i for defining an initial tangent l0i in p0
i (see

Figure 6) as follows:
l0i = λ

0
i l0l,i + (1 − λ0

i )l0r,i , λ0
i ∈ (0, 1). (11)

In all the computational examples presented in this paper we have chosen λ0
i =

1
2 . This choice of λ0

i defines l0i as the
bisector of the angle between l0l,i and l0r,i, and yields a symmetric behavior of the curve around the inflection point.

l0l,i

p0
i+1

p0
ip0

i−1

l0i
l0r,i

Figure 6: Definition of an initial tangent l0i in an inflection point p0
i .

ei

γk
l,2ki

pk
2ki+1

γk
r,2ki

gk
r,2ki

lk−1

2k−1i
lk2ki

pk
2ki−1

gk
l,2ki

p0
i = pk

2ki

Figure 7: Tangent definition in an inflection point.

The tangents in the other vertices of the polygons s0
l,i and s0

r,i, and thus their new vertices, are calculated as described
in the previous section by treating s0

l,i and s0
r,i separately. In this way we obtain the new polygons s1

l,i and s1
r,i. Let us

now describe how to compute the tangents lk2ki in the point p0
i = pk

2ki in the following iterations (k = 1, 2, 3, . . .), see
Figure 7 for an illustration. Let

gk
l,2k i = pk

2k i−1pk
2ki and gk

r,2k i = pk
2kip

k
2ki+1 (12)

be the edges that are incident in p0
i = pk

2ki, and γk
r,2ki = ∠(gk

r,2ki, ei) and γk
l,2k i = ∠(gk

l,2k i, ei) their respective angles with
the initial inflection edge ei. We then define the line gk

2ki by choosing that one of the lines gk
l,2k i and gk

r,2ki from (12)
yielding the maximum angle

γk
2k i = max{γk

l,2ki, γ
k
r,2ki} . (13)

The tangent lk2k i in the point p0
i = pk

2ki is then defined as
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lk2ki = λ
k
2kil

k−1
2k−1i + (1 − λk

2ki)g
k
2ki , λk

2ki ∈ (0, 1). (14)

In all the computational examples presented in this paper we have chosen λk
2k i =

1
2 for all k > 0, so that lk2k i identifies

the bisector of the angle formed by the lines lk−1
2k−1i and gk

2ki, and guarantees a symmetric behavior of the curve around
the inflection point.
In the other vertices of sk

l,i and sk
r,i we proceed as in Section 2 for estimating the tangents; this allows us to calculate

the new polygons sk+1
l,i and sk+1

r,i by separately applying the “convex” procedure from the previous section.
In Figure 8 we show an application example of the presented subdivision algorithm in the case of a given starting

polygon containing an inflection point.

 p
6
0

Figure 8: Application of the subdivision algorithm in case of a poly-
line with an inflection point (p0

6): given polyline (left); refined poly-
line after 6 steps of the subdivision algorithm (right).

lk
2kipk

2ki
lkr,2ki

lkl,2ki

Figure 9: Tangent definition in a convex junction point.

3.2. Tangent computation in convex junction points

Let us denote the convex subpolygons meeting in p0
i by s0

l,i and s0
r,i. As in the case of an inflection point we estimate

a left and a right tangent in p0
i , l0l,i and l0r,i respectively, by applying the tangent estimation method from [26] to the

five points p0
i−4, . . . , p

0
i−1, p

0
i of polygon s0

l,i, respectively p0
i , . . . , p

0
i+3, p

0
i+4 of polygon s0

r,i. If the points p0
i−1 and p0

i+1 lie
in different half planes with respect to l0l,i (l0r,i respectively) we replace l0l,i (l0r,i respectively) by the line p0

i p0
i+1 (p0

i−1p0
i

respectively). We then combine these two lines l0l,i and l0r,i for defining an initial tangent l0i = λ
0
i l0l,i + (1 − λ0

i )l0r,i in p0
i .

The tangents in the other vertices of the polygons s0
l,i and s0

r,i, and thus their new vertices, are calculated as described
in the previous section by treating s0

l,i and s0
r,i separately. In this way we obtain the new polygons s1

l,i and s1
r,i. We

then iterate this procedure and in all the following iterations (k = 1, 2, 3, . . .) we compute the tangents lk2k i in the point
p0

i = pk
2k i as

lk2ki = λ
k
2kil

k
l,2k i + (1 − λk

2ki)l
k
r,2ki , λk

2k i ∈ (0, 1) (15)

where lkl,2k i and lkr,2k i is the respective left and right tangent in pk
2k i (see Figure 9 for an illustration). In all the computa-

tional examples presented in this paper we have chosen λk
2k i =

1
2 for all k ≥ 0.

Note that, by the nature of the subdivision rules, after a few steps and in all remaining iterations, the following
condition is satisfied in a convex junction point p0

i = pk
2ki for k ≥ k0 (see Figure 10):

the intersection points pk
2ki−2pk

2ki−1 ∩ pk
2kip

k
2ki+1 and pk

2k i−1pk
2k i ∩ pk

2k i+1pk
2k i+2 lie in the same half plane with

respect to the line pk
2k i−1pk

2k i+1 as the point p0
i .

(16)

Application examples of the above described subdivision algorithm in the case of a starting polygon with a convex
junction point are shown in Figure 11.
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Figure 10: Illustration of condition (16): (a) initial polyline with convex junction point p0
5; (b) condition (16) not satisfied for k = 0; (c) situation

after one refinement step (k = 1, p0
5 = p1

10); (d) condition (16) satisfied for k = 1.

 p
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0

(a) (b)

 p
5
0

(c) (d)

Figure 11: Application of the subdivision algorithm to a polygon with a convex junction point: (a) given polygon with junction in p0
8; (b) refined

polygon obtained from the data set in (a) after 6 steps of the algorithm; (c) given polygon with junction in p0
5; (d) refined polygon obtained from

the data set in (c) after 6 steps of the algorithm.

4. The subdivision algorithm

The basic subdivision scheme with its generalization previously detailed in Sections 2 and 3, may be summarized
in the following algorithm, which we apply to the given point sequence p0 = (p0

i : i ∈ Z). For the sake of clarity we
will first describe the procedure to be used in the case of globally convex data (Subsection 4.1), which constitutes an
essential ingredient of the final algorithm for general non-convex data presented in Subsection 4.2.

4.1. Algorithm for globally-convex data

Let pk = (pk
i : i = 1, . . . , nk) be the vertices of the globally convex polygon at the k-level refinement. Hereafter

we denote by Pk
i the projective counterparts of the affine points pk

i , see Section 2.
The algorithm that implements the function φ from (1) proceeds as follows in order to calculate the points pk+1

2i+1 =

φ(pk
i−2,p

k
i−1,p

k
i ,p

k
i+1,p

k
i+2,p

k
i+3 ; p).

9



Step 1: Preprocessing

a) For a closed polygon we set Pk
0 = Pk

nk
, Pk

−1 = Pk
nk−1, Pk

nk+1 = Pk
1, Pk

nk+2 = Pk
2.

For an open polygon we set Pk
0 = Pk

5, Pk
−1 = Pk

4, Pk
nk+1 = Pk

nk−4, Pk
nk+2 = Pk

nk−3.
For i = 1, . . . , nk we then assign Q1 = Pk

i−2, Q2 = Pk
i−1, Q3 = Pk

i , Q4 = Pk
i+1, Q5 = Pk

i+2,
and apply formula (3) for obtaining the tangent Lk

i in Pk
i . Please note that, according to [26],

we can arbitrarily number the five points for calculating the tangent at any one of them.
b) According to the angle criterion, we calculate the angles αi

j for j = i + 2, . . . , nk + i − 1 and
for i = 1, . . . , nk in the case of a closed polygon, while for i = 1, . . . , nk − 1 in the case of an
open polygon. We then select the value αi

ji
satisfying condition (4).

Step 2: For a closed polygon we set Lk
nk+1 = Lk

1 and we consider i = 1, . . . , nk, whereas for an open
polygon we consider i = 1, . . . , nk − 1. We thus calculate the intersection points T k

i = Lk
i ∧ Lk

i+1.

Step 3: Calculate the lines (for i = 1, . . . , nk for a closed polygon, and for i = 1, . . . , nk − 1 for an open
polygon) Nk

i = Pk
i ∧ Pk

i+1 , Λ
k
i = Pk

ji
∧ T k

i , as well as their intersection points Xk
i = Nk

i ∧ Λk
i .

Step 4: Calculate the points Pk+1
2i+1 as Pk+1

2i+1 = Dk
i,1Xk

i − Dk
i,2T k

i with Dk
i,1,D

k
i,2 according to (5).

4.2. Algorithm for non-convex data
Step 1: Preprocessing

We preprocess the data according to the criteria (6), (8) and (9) thus identifying subpolygons
contained in a straight line and introducing and /or identifying inflection vertices and convex
junction vertices within the initial data points of the remaining subpolygons yielding a sequence
composed of globally convex subpolygons and “straight line” subpolygons as described in (10).

Step 2: For a globally convex subpolygon (p0
j , . . . ,p

0
l ) = . . . = (pk

2k j, . . . ,p
k
2kl) (where l ≥ j + 4) we apply

the algorithm of Subsection 4.1 (Step 1, open case) in order to calculate the tangents in its points.
In inflection points and convex junction points tangents are computed by applying rule (14) and
(15) respectively. Finally in transition points to straight line segments we fix the tangents equal to
the straight line subpolygon.

Step 3: In order to compute the new points for a straight line subpolygon we apply the insertion rule (7),
while for globally convex subpolygons we apply the procedure of Subsection 4.1.

The algorithm has been implemented in Matlab, and its most expensive parts are steps 1-4 of subsection 4.1 which
employ the following number of operations (for each refinement level):

• The computation of each tangent Lk
i in step 1.a) requires 10 cross products, which correspond to 30 addi-

tions/subtractions and 60 multiplications/divisions.

• The computation of each angle αi
j in step 1.b) requires 9 additions/subtractions, 10 multiplications/divisions

and 2 square roots.

• The computation of the point Pk+1
2i+1 in step 4 requires 27 additions/subtractions and 50 multiplications/divisions.

5. Properties of the scheme

In this section we will be showing that the presented scheme is

• shape preserving,

• conic reproducing,

• convergent to a continuous limit curve.

Moreover, we will present numerical tests to support a C1 continuity conjecture on the limit curves. In fact, since the
proposed scheme is non-linear and of a new geometry-driven type, it cannot be analyzed by existing techniques.
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5.1. Theoretical analysis

We start this section by proving the shape preserving and conic reproducing properties of the proposed subdivision
scheme.

Proposition 2. For an initial polygon p0 that satisfies condition (10), the presented interpolatory subdivision scheme
produces a limit curve that preserves the shape of the initial data, i.e., if the starting point sequence p0 consists of
convex, straight line and concave segments, then all generated subsequent point sequences pk, for k ≥ 1, respect the
same behavior.

Proof. By construction straight line segments are reproduced. The convexity of an initial data set is preserved by
inserting the new points pk+1

2i+1 in the triangles ∆(pk
i , t

k
i ,p

k
i+1) of the convex delimiting polygon with vertices pk

i , tk
i .

Proposition 3. The presented interpolatory subdivision scheme reproduces conic sections, i.e., if the data come from
a conic section C, then the limit curve coincides with C.

Proof. If the point sequence pk comes from a conic section C, then the lines lki generated in the preprocessing step
are the tangents of C in the points pk

i . Since the parameter points pk
ji

come from the conic C, by Proposition 1 the
constructed points pk+1

2i+1 lie on C.

Remark 1. If the data come from a curve composed by contiguous conic sections our scheme reproduces the single
conics in the case where the individual conic segments can be identified upfront and every point sequence correspond-
ing to a single conic is treated separately. Otherwise, if the whole polyline is processed all together the inner parts of
the single conics are reproduced, but next to the junctions we have slight deviations. See Figure 12 for an illustration.

Figure 12: Result of the proposed subdivision algorithm when applied to a polyline including a parabolic and a circular arc (left), and contiguous
conic sections of different type, namely parabolic, circular, hyperbolic and elliptic arcs (right). Full small circles are used to identify vertices
separating the different pieces of conics drawn with dashed lines.

As concerns the proof for C0 continuity, we start by considering the case where the starting polygon p0 is globally
convex, which means that it might contain convex junction points but no inflection points. In the convex junction
points we suppose condition (16) to be satisfied from a certain iteration level k0 ≥ 0 onwards. Thus, denoted by qk

i the
intersection point of the edges pk

i−1pk
i and pk

i+1pk
i+2, it follows by construction that the point tk

i lies inside the triangle
∆(pk

i ,q
k
i ,p

k
i+1) for k ≥ k0 and the point pk+1

2i+1 lies inside the triangle ∆(pk
i , t

k
i ,p

k
i+1). Denoted by pk the polygon with

vertices pk
i and by qk the polygon with vertices qk

i , we can formulate the following:

Proposition 4. If the starting polygon p0 is convex, then all the polygons pk are convex and they are bounded by the
polygon qk0 .

Proof. Being p0 a convex polygon, then, by construction (see Proposition 2), this property is transferred from level k
to level k+1 for all k ≥ 0. Thus each pk is convex. Moreover, the triangles ∆(pk+1

2i ,q
k+1
2i ,p

k+1
2i+1) and ∆(pk+1

2i+1,q
k+1
2i+1,p

k+1
2i+2)

lie inside the triangle ∆(pk
i ,q

k
i ,p

k
i+1) for all k ≥ k0. Therefore the polygon qk0 is an outer bound of all polygons pk.

Since by construction pk ⊂ pk+1, the sequence of polygons {pk} is a monotone and bounded sequence of convex
polygons yielding the following proposition.
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Proposition 5. If the starting polygon p0 is convex, then limk→∞ pk exists and is a C0 convex curve.

For the proof of this result we refer the reader to [8, Prop. 2].
We now turn our attention to non-convex starting polygons p0. As described in Section 3, given an initial non-

convex polygon p0, we identify straight line segments, introduce inflection points and thus treat every convex subseg-
ment separately as a standalone convex polygon in the subdivision procedure. Since both in the transition points to
straight line segments and in the inflection points the limit curve is C0 by construction, with Proposition 5 we obtain
the following result.

Corollary 1. The limit of the presented interpolatory subdivision scheme is a C0 curve.

5.2. Experimental analysis of smoothness

As explained in [11], for non-linear schemes the conventional tools for checking the regularity of the limit curves
are not applicable. Thus we exploit experimental methods for analyzing the smoothness properties of the proposed
scheme.
Following the work done in the recent papers [11, 15, 17, 31], we present two numerical tests which strongly suggest
that the limit curves generated by the proposed subdivision scheme are C1 continuous with respect to chord length
parameterization.

In our first test we let θki be the angle of the local, inward-pointing unit normal vector with respect to the direction
(1, 0)

nk
i = (cos(θki ), sin(θki )) ⊥ (pk

i+1 − pk
i ) (17)

and let θk : R → R be the piecewise linear function that interpolates the data (t̃k
i , θ

k
i ), with t̃k

i denoting the chordal
parameter values associated with the points pk

i .
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π/2

π

−π

−π/2
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π

Figure 13: First row: refined polylines displayed after 6 subdivision steps. Second row: plot of normal angle over arc length for all the examples in
top row.

For any initial data not containing straight line segments, the sequence {θk}k≥0 converges to a continuous limit θ, as
shown in Figure 13. Here each plot starts at the rightmost point of the curve where the normal is (-1,0) and follows the
curve in counterclockwise orientation, as indicated by the arrow. We assume the positive θki to be the counterclockwise
angle from the vector (1, 0) to nk

i . Moreover, to better understand the normal angle behaviour, we insert in all the plots
dashed vertical lines referring to the positions of the initial polyline vertices. We observe that, only in the last picture,
the normal angle curve is discontinuous in correspondence to the transition points to straight line segments where we
know the limit curve being C0 by construction and on purpose.
From the results obtained by applying this first test on a wide range of examples, we can conclude that the sequence
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of the piecewise linear functions f̃k,[1] which interpolate the data (t̃k
i , p̃

k,[1]
i ), with p̃k,[1]

i denoting the first divided differ-
ences with respect to the chordal parameter values t̃k

i ,

p̃k,[1]
i =

pk
i+1 − pk

i

t̃k
i+1 − t̃k

i

= (− sin(θki ), cos(θki )), (18)

converges to a continuous limit, namely f̃[1] = (− sin(θ), cos(θ)).
In the second test we show that the lengths of the difference vectors δk,[1]

i = p̃k,[1]
i+1 −p̃k,[1]

i converge to 0 as the refinement
level k increases, which is a necessary condition for the uniform convergence of the functions f̃k,[1]. As we can see
from Figure 14, in all our tests, the maximum length ∆k,[1] = supi∈Z ∥δk,[1]

i ∥2 decreases towards 0 when k increases,
but we observe that, in some examples (see for instance the second example in Figure 14), it may happen that in the
first few subdivision steps ∆k,[1] increases before finally going to 0, which suggests that it might be hard to establish a
general proof for C1 continuity.
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Figure 14: Maximum difference of the first divided differences with respect to chordal parameterization over the number of iterations for the first
three examples in Figure 13. First row: plots of ∆k,[1]; second row: log-plots of ∆k,[1].

6. Numerical examples

Subdivision curves are visualized by drawing a highly refined polyline which gives the impression of being visu-
ally smooth. For a high quality rendering, the requirement is therefore to reach a level of refinement which guarantees
a visually sufficient approximation of the limit shape. The subdivision algorithm presented in Section 4 provides a
process of global refinement at every level. Therefore, when the starting polyline is highly non-uniform (namely it
is made of adjacent edges with highly non-uniform lengths) the required level of refinement is determined by those
locations which approximate the limit curve most unfavorably. Obviously, these may cause unnecessary fine subdi-
visions at other locations of the curve, thus leading to an unreasonable resource demanding algorithm. To overcome
this problem, in the case of highly non–uniform data we propose a uniformizing variant of our subdivision algorithm:
when starting from a highly non-uniform polyline, the same refinement rules presented before are applied at each step
to introduce new points only where needed, in order to produce a sequence of refined polylines having vertices with
a more and more regular distribution. In this way we apply the mechanism of subdivision only at those locations of
the starting polyline that are not approximated with the desired visual quality. The decision where a higher resolution
refinement is needed, strongly depends on the underlying application. As concerns our algorithm, it may be controlled
either by the user or by an automatic criterion. In fact, the user may specify which portions of the polygon should
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be subdivided or the process may be automated by controlling whether the length of an edge is greater or not than a
specified threshold. Only in the positive case we insert a new point in correspondence to the considered edge. As a
consequence, this version of the scheme strongly reduces the computational cost of the algorithm (for instance, the
last shape in Figure 20 may be represented either by a refined polyline connecting 1153 points obtained after 6 steps
of the basic algorithm, or by only 257 points produced via its uniformizing variant).
As concerns the forthcoming examples, we start by applying the subdivision algorithm of Subsection 4.1 to globally
convex closed and open polylines with nearly uniform edges (Figure 15, first row), and successively we exploit the
uniformizing version of the scheme in the case of polylines with highly non-uniform edges (Figure 15, second row).
As it appears, the generated curves are always convex and visually pleasing. Moreover, in Figure 16, we illustrate the
conic precision property of the proposed algorithm focussing our attention on very general non-uniform examples.
We then continue by showing that the curves computed by the algorithm presented in Subsection 4.1 are really artifact
free. In fact, although a limit curve can be apparently artifact free, it is hard to tell from the display on the screen if it
is acceptable or not. Two curves may look very similar on the screen, but their curvature plots may reveal important
differences. The most commonly used tool for revealing significant shape differences is provided by the curvature
comb of the curve. In pictures 17–19 we have used the graphs of the discrete curvature combs of the refined polylines
to show that the limit curves generated by our algorithm are indeed artifact free. In particular, if we compare the
results we get by refining the polyline in Figures 19(a) and 17(c) (representing data that do not come from a conic
section) through our uniformizing algorithm and through the subdivision algorithms in [4], [15] and [17] (Figures
19(b), (c) and (d) respectively, as well as Figures 18(a), (b) and (c) left images respectively), they are only apparently
very similar. Yet their curvature combs reveal substantial differences showing that neither every non-linear nor every
non-uniform subdivision scheme is indeed artifact free (see Figures 19 (e)-(f)-(g)-(h) and 17(c)-18(a)-(b)-(c) right
images). Whereas Figures 17(a)-(b) and 19(e) suggest an even higher order smoothness of the presented algorithm,
Figure 17(c), right image, shows that the smoothness is in fact limited to C1.

Figure 15: Application examples of the subdivision algorithm of Subsection 4.1 (first row) and its uniformizing variant (second row). The displayed
results have been obtained after 6 steps of the algorithm.

In the following we proceed by illustrating the results of the subdivision algorithm of Subsection 4.2 and its
uniformizing version. In the first example of Figure 20 we take the D-shape polyline of [7] in order to show the ability
of the scheme to reproduce collinear vertices. In the second and third examples we apply the subdivision scheme to an
open, respectively closed, sequence of non-convex data to illustrate its smoothness and shape-preserving interpolation
properties.
In Figure 21 we show the results of the uniformizing variant of the subdivision algorithm of Subsection 4.2 when
applied to a sequence of non-convex data containing a convex subpolygon with less than five vertices (center and
right pictures). In this case the convex subpolygon is preprocessed via the procedure described in Figure 5 such that
it contains five initial points.
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Figure 16: Reproduction of conic sections from non-equispaced samples by applying the uniformizing version of the subdivision algorithm of
Subsection 4.1. The displayed results have been obtained after 6 steps of the algorithm.

(a) (b) (c)

Figure 17: Application examples of the subdivision algorithm of Subsection 4.1 (a) and its uniformizing variant (b, c) to globally convex closed
polylines that do not come from a conic section, with the corresponding curvature combs.

(a) (b) (c)

Figure 18: Application example of the subdivision algorithms in [4, 15] (a, b) using centripetal parameterization and that in [17] (c), with the
corresponding curvature combs.

We close this section by showing the performance of the algorithm on real world data. In order to illustrate its
versatility we apply the scheme to two rather different application scenarios. On the one hand we consider profile
curves from mechanical engineering, see Figures 22 and 23 for an airfoil and a gear. On the other hand we look at
profile curves of so called “organic” shapes used for freeform object design, see Figure 24 for the cover of a mobile
phone, Micky Mouse head and a bottle opener. The models in the first two rows of Figure 24 contain several convex
segments where most of them have been sampled from conic sections. The shape in the third row is made of 4
independent closed polygons, some of which are non-convex. The data of the first and third example are courtesy of
the CAD company think3 (www.think3.com).

For the big variety of models considered in this section, the proposed subdivision scheme turns out to work very
well and clearly manifests its versatility as well as its characteristic features of (i) reproducing conic sections, (ii)
preserving convexity of the data and (iii) producing smooth curves.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19: Comparison with the linear, non-uniform scheme in [4] and with the non-linear schemes in [15] and [17]. First row: refined polylines
obtained after 6 steps of (a) our uniformizing algorithm; (b) algorithm in [4] with chord length parameterization; (c) algorithm in [15] with chord
length parameterization; (d) algorithm in [17]. Second row: corresponding curvature combs.

Figure 20: Refined polylines after 6 steps of the subdivision algorithm of Subsection 4.2 (left and center) and its uniformizing variant (right).

Figure 21: Examples of application of the uniformizing variant of the subdivision algorithm of Subsection 4.2 to a piecewise globally convex
polyline (dashed line) with a convex subpolygon (confined between the two inflection points marked by the blue crosses in the lower part of the
subfigure on the left) consisting of five points (left) and less than five points (three and four respectively in the center and right subfigures). Black
stars depict the initial vertices inserted by the procedure described in Section 3.
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Figure 22: Application example of the subdivision algorithm of Subsection 4.2 for the reconstruction of an airfoil. Left: starting polyline taken
from the UIUC Airfoil Coordinates Database (www.ae.illinois.edu/m-selig/ads/coord database.html). Center and Right: refined polyline obtained
after 7 steps of our algorithm.

Figure 23: Application example of the subdivision algorithm of Subsection 4.2 for the reconstruction of a 20 tooth gear. First line: starting polyline
taken from the CAD drawings library www.traceparts.com (left) and refined polyline obtained after 7 steps of our algorithm (center and right).
Second line: zoom of the pictures in the first line.

7. Conclusions and ongoing research

Even though in the last years important steps forward have been taken both in the construction and analysis of
interpolatory subdivision schemes [3], several problems are still open and need to be tackled in order to increase the
strength and popularity of subdivision in more and more fields of application.

First of all, unlike the non-interpolatory subdivision schemes, the interpolatory ones usually generate shapes of
inferior quality because, if applied to points with an irregular distribution, they provide a limit curve with more con-
vexity changes than the starting polygon. Since, in several applications it is important to guarantee shape preservation,
in this paper we have described a new interpolating subdivision algorithm enjoying this important property.

Because in CAGD it is also often necessary to have schemes able to generate classical geometric shapes, we have
enriched our interpolating subdivision scheme with the capability of including the exact representation of all conic
sections. The different methods of the literature [20–25] give solutions only when the assigned points have a regular
distribution. These linear subdivision schemes use non-stationary refinement rules associated with functional spaces
defined via the union between polynomial and exponential functions with a free parameter.

The idea we have explored in this paper is to provide a subdivision scheme in which the conic section repro-
duction is obtained by adaptive geometric constructions on the given points. The advantage of doing this is that the
presented non–linear scheme is able to adapt itself to any data configuration, i.e., to arbitrary irregularly distributed
point sequences. Due to the underlying construction, the properties of shape preservation and conic reproduction
follow straightforwardly. The method has been illustrated by several significant examples which strongly suggest that
the limit curves are C1. Due to the acknowledged difficulty of the problem, C1 continuity is only conjectured and
supported by a wide range of numerical tests. A detailed smoothness analysis of the proposed subdivision scheme
is a topic of ongoing research since it requires the development of more general theoretical tools that so far are not
available in the literature.
At hand of a big variety of application examples, the method shows excellent performance and high versatility. To
the best of our knowledge this is the first interpolatory subdivision scheme combining the properties of reproducing
conics, preserving convexity and producing smooth and pleasing shapes.
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Figure 24: Application examples of the subdivision algorithm of Subsection 4.2 to real world data. Left: starting polylines. Center and Right:
refined polylines obtained after 7 steps of our algorithm. Data of first and third row are courtesy of think3.
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