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Abstract

We study the design of monetary policy in an economy characterized by staggered wage

and price contracts together with limited asset market participation (LAMP). Contrary to

previous results, we �nd that once nominal wage stickiness, an incontrovertible empirical

fact, is considered: i) the Taylor Principle is restored as a necessary condition for equilib-

rium determinacy for any empirically plausible degree of LAMP; ii) the e¤ect of LAMP for

the design of optimal monetary policy are minor; iii) optimal interest rate rules becomes

active no matter the degree of asset market participation. For these reasons we argue that

LAMP does not fundamentally a¤ect the design of monetary policy.
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1 Introduction

In this paper, we study optimal monetary policy in an economy characterized by staggered

wage and price contracts together with limited asset market participation (LAMP henceforth).

We model LAMP as it is now standard in the literature. We assume that a portion of agents

face a liquidity constraint such that they spend their current labor income in each period.

The remaining households hold assets and smooth consumption. This heterogeneity between

households breaks the Ricardian Equivalence. For this reason in the remainder of the paper

we refer to liquidity constrained agents as to non-Ricardian consumers and symmetrically we

de�ne other agents as Ricardian consumers.1

The resulting framework nests two popular environments in the monetary policy literature:

Bilbiie (2008) and Erceg et al. (2000). Bilbiie (2008) studies determinacy properties of simple

interest rate rules and optimal monetary policy in a NK economy with LAMP and a frictionless

labor market. He shows that aggregate demand increases with the real interest rate (so that

the IS curve is upward sloping) for empirically plausible values of asset market participation.

In this case determinacy requires the Central Bank to adopt an Inverted Taylor Principle, i.e.

a passive policy which lowers the real interest rate in response to higher in�ation.

Erceg et al. (2000) develop a NK model characterized by both staggered prices and wages

which features an endogenous trade-o¤ between the stabilization of the output gap, price

in�ation and wage in�ation. This prevents the Central Bank from replicating the �exible

prices equilibrium simply by setting price in�ation to zero in eachperiod, as it is the case in a

model where rigidities are con�ned to price setting. They show that optimal simple rules are

active and that wage targeting rules lead to higher welfare than price in�ation targeting rules.

We study Ramsey monetary policy and optimal monetary policy rules in a framework

encompassing the work of Bilbiie (2008) and Erceg et al. (2000). We �nd that once nominal

wage stickiness is considered: i) the Taylor Principle is a necessary condition for equilibrium

determinacy for any empirically plausible degree of LAMP; ii) the e¤ects of LAMP for the

design of optimal monetary policy are minor; iii) optimal interest rate rules are active for any

plausible degree of LAMP.

In other words, while results in Erceg et al. (2000) are robust to the introduction of LAMP,

Bilbiie�s (2008) �ndings do not survive to the introduction of wage stickiness.

Results i), ii) and iii) have a common intuition. Variations in the real wage lead to

variations in pro�ts and hence in the dividend income of Ricardian agents. This has wealth

e¤ects that can overturn the standard impact of changes in the real interest rate on aggregate

1This modelling choice was originally adopted by Mankiw (2000) to account for the empirical relationship

between consumption and disposable income, which seems to be stronger than suggested by the permanent

income hypothesis.
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demand. Speci�cally, when asset market participation is restricted beyond a certain extent,

the slope of the IS curve could turn positive leading to an inversion in the standard principles

for the conduct of monetary policy. Wage stickiness dampens the changes in the real wage,

and thus in pro�ts, in response to variations in economic conditions. This prevents the reversal

of the slope of the IS curve that could obtain under wage �exibility, restoring standard policy

prescriptions for the monetary authority.

Opposite to Bilbiie (2008), we �nd that LAMP does not invalidate the Taylor Principle: for

any plausible share of non-Ricardian agents an active interest rate rule ensures the uniqueness

of the rational expectation equilibrium (REE, henceforth). With respect to Colciago (2010)

we prove this result analytically, by studying determinacy properties of alternative interest

rate rules in the presence of price-wage stickiness and an arbitrary degree of asset market

participation. This �nding casts shadows on Bilbiie�s reappraisal of the conduct of monetary

policy during the great in�ation period. According to estimates by Clarida et al. (2000)

and Lubik and Schorfheide (2004), monetary policy in the U.S. violated the Taylor Principle

during Burns tenure and switched from passive to active after Paul Volcker became chairman

of the Fed. This lead Clarida et al. (2000) to identify the conduct of monetary policy as a

potential source of the large macroeconomic volatility registered in the U.S. during the 1970s.

Bilbiie (2008), on the basis of the Inverted Taylor Principle argument, argues that the Fed, by

using a passive rule, was actually acting as to implement a unique REE. Our analysis shows

that, as long as nominal wages were sticky during the 1970s, a passive policy would have itself

been a source of instability for any reasonable degree of asset market participation.

Turning to optimal policy analysis, we derive the welfare-loss function by taking a second

order approximation to a weighted average of households�lifetime utilities around the e¢ cient

steady state, where weights mirror the relative importance of agents�groups in the economy.

We �nd that the central bank loss function is characterized by the presence of the real wage-

gap besides the terms identi�ed by Erceg et al. (2000). However, LAMP does not a¤ect the

trade-o¤s faced by the monetary authority. To see this, notice that the trade-o¤ implied by

having both price and wage staggering originates entirely from the supply side of the economy

and therefore is not a¤ected by LAMP which, as it will be clear below, just alters the IS curve.

Contrary to Bilbiie (2008), optimal in�ation targeting rules, contemporaneous or forward

looking, are restored to be strongly active if wages are sticky, as in the standard NK model.

Finally, as in Erceg et al. (2000), we �nd that price in�ation targeting may cause relevant

welfare costs. Price in�ation targeting leads to higher welfare with respect to wage in�ation

targeting just in the case in which asset market participation is restricted to an implausible

extent.

Several authors analyze the implications of LAMP for monetary policy in NK models.
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Galì et al. (2004) study determinacy properties of interest rate rules in a sticky-price economy

with a fraction of non-Ricardian consumers and capital accumulation. They show that if the

share of non-Ricardian agents is su¢ ciently large and prices are sticky enough, determinacy

of the REE requires that the central bank adopts a Reinforced Taylor Principle, whereby

the in�ation coe¢ cient response is considerably larger than unity. Amato and Laubach (2003)

model non-Ricardian behavior as a consumption habit and show that the optimal interest rate

becomes more inertial as the fraction of non-Ricardian consumers increases. Di Bartolomeo

and Rossi (2007) show that monetary policy e¤ectiveness increases with the degree of LAMP.

Leith and Von Thadden (2008) study �scal and monetary policy interaction in a NK model

with non-Ricardian agents. They model non-Ricardian behavior in three alternatives ways:

overlapping generations, distortionary taxation and LAMP. Their main �nding is that the

determinacy properties of �scal and monetary policy rules cannot be characterized without

reference to the steady state level of government debt. Moreover, in the LAMP case, they

conjecture that the existence of the bifurcation found by Bilbiee (2008) cannot be taken as

granted in the presence of capital accumulation.

All the works mentioned so far are characterized by a frictionless labor market.2 The

few papers which consider the interactions between a non-Walrasian labor market and LAMP

focus on �scal policy issues. This is motivated by recent VAR evidence suggesting that an

innovation in government spending causes a persistent rise in private consumption. This

evidence cannot be easily addressed resorting to fully Ricardian business cycle models. For

this reason, Galì et al. (2007) study the e¤ect of government spending shocks in a model with

LAMP. They show that an imperfectly competitive labor market is a fundamental ingredient to

obtain the crowding-in of consumption is response to an expansionary government spending

shock identi�ed, inter alia, by Blanchard and Perotti (2002) and Fatàs and Mihov (2001).

Colciago (2010) and Furlanetto (2007) extend the analysis in Galì et al. (2007) to the case

of nominal wage stickiness.3 Forni et al. (2009) build a medium-scale NK model with LAMP

and a rich description of the �scal side. They use Bayesian techniques to estimate the e¤ects

of innovations in �scal policy variables in the Euro area, �nding only mild Keynesian e¤ects

of public expenditure, but a large fraction of non-Ricardian agents, close to 40%.4

This paper bridges these strands of the literature by providing an exhaustive analysis of

2Sveen and Weinke (2007) �nd that in the presence of �rms speci�c capital a NK model with both staggered

price and wages may generate multiple equilibria. Flaschel et al. (2008) analytically studies the determinacy

properties of the model in the Erceg et al. (2000). However these papers consider a model with full asset

market participation.
3 In a similar framework, Furlanetto and Seneca (2007) concentrate their analysis on the dynamics of hours

worked in response to a productivity shocks.
4Di Bartolomeo et al. (2010)estimate a NK model with external habits in consumption and LAMP for the

G7 countries. They report an average fraction of non-Ricardian agents of about 26%.
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the implications of LAMP for the design of monetary policy in a NK model with price and

wage stickiness.

2 The Model

2.1 Households

There is a continuum of households indexed by i 2 [0; 1]. Households in the interval [0; �]
consume their available labor income in each period and do not hold assets. Households in the

interval (�; 1] hold assets and smooth consumption. The period utility function is common

across households and it has the following separable form:

Ut = 	tu [Ct (i)]� v [Lt (i)] ; (1)

where Ct(i) is agent i�s consumption and Lt(i) are hours worked. The functions u and v

satisfy the usual properties,5 while 	t is a taste shock. Following Colciago (2010) we assume

a continuum of di¤erentiated labor inputs indexed by j 2 [0; 1], and corresponding labor type-
speci�c unions. Given the wage W j

t �xed by union j, agents stand ready to supply as many

hours to the labor market j, Ljt , as required by �rms, that is: L
j
t =

�
W j
t

Wt

���w
Ldt ; where �w is

the elasticity of substitution between labor inputs. Here Ldt is aggregate labor demand andWt

is an index of the wages prevailing in the economy at time t. Formal de�nitions of labor demand

and of the wage index can be found in the section devoted to �rms. Agents are distributed

uniformly across unions; hence aggregate demand for labor type j is spread uniformly across

the households.6 It follows that the individual quantity of hours worked, Lt (i), is common

across households, and we denote it as Lt. This must satisfy the time resource constraint

Lt =
R 1
0 L

j
tdj. Combining the latter with labor demand we obtain Lt = Ldt

R 1
0

�
W j
t

Wt

���w
dj.

The labor market structure rules out di¤erences in labor income between households without

the need to resort to contingent markets for hours. The common labor income is given by

Ldt
R 1
0 W

j
t

�
W j
t

Wt

���w
dj.7

5The function u is increasing and concave and the function v is increasing and convex.
6Thus a share � of the members of each union are non-Ricardian consumers, while the remaining portion is

composed of Ricardian agents.
7Our assumption is similar to Woodford (2003) among others, but di¤erent from the one in Erceg et al.

(2000). As in most of the literature on sticky wages, Erceg et al. (2000) assume that each agent is the

monopolistic supplier of a single labor input. In this case, only households providing the same labor type will

exhibit the same labor income. However, the assumption of complete markets and full insurance against the

risk associated to labor income �uctuations, rule out di¤erences in income between households. In our model

this framework would imply a tractability problem, because non-Ricardian agents do not participates in the

asset market, and thus cannot share the risk associated to labor income �uctuations. Notice also that the union

pools labor income leading agents to work for the same amount of time. This implies that under �exible wages
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2.1.1 Ricardian Households

Ricardian agents face the following �ow budget constraint in nominal terms :

Et�t;t+1Xt+1 +
S;t+1Vt�Xt + L
d
t

Z 1

0
W j
t

 
W j
t

Wt

!��w
dj +
S;t (Vt + PtDt)� PtCS;t: (2)

In each period t, Ricardian agents (indicated with the subscript S) can purchase any desired

state-contingent nominal payment Xt+1 in period t+1 at the dollar cost Et�t;t+1Xt+1. The

variable �t;t+1 denotes the stochastic discount factor between period t+1 and t. A Ricardian

agent has labor income Ldt
R 1
0 W

j
t

�
W j
t

Wt

���w
dj and holds a share 
S;t of the stock market value,

Vt, of �rms producing intermediate goods. Nominal dividends received for the ownership of

�rms are denoted by PtDt. Combining the FOCs with respect to CS;t;
S;t and Xt+1 together

with the arbitrage condition on asset markets, i.e. Et�t;t+1 � (1 + it)
�1 we �nd the Euler

equation for Ricardian agents:

1

1 + it
= Et

�
�
	t+1uc (CS;t+1)

	tuc (CS;t)

Pt
Pt+1

�
: (3)

2.1.2 Non-Ricardian Households

Non-Ricardian agents (indicated with the subscript H) do not enjoy �rms�pro�ts in the form

of dividend income and cannot trade in the �nancial markets. The nominal budget constraint

of a typical non-Ricardian household is thus simply given by:

PtCH;t = Ldt

Z 1

0
W j
t

 
W j
t

Wt

!��w
dj: (4)

Agents belonging to this group consume disposable income in each period and delegate wage

decisions to unions. For these reasons there are no �rst order conditions with respect to

consumption and labor supply.

2.2 Wage Setting

Nominal wage rigidities are modeled according to the Calvo (1983) mechanism. In each period

a union faces a constant probability 1� �w of being able to reoptimize the nominal wage. As
in Colciago (2010) the nominal wage newly reset at t, fWt, is chosen to maximize a weighted

average of agents� lifetime utilities. The weights attached to the utilities of Ricardian and

the model does not fully nest Bilbiie (2008), where ricardian and non-ricardian agents are free to make di¤erent

labor choices. In the on-line Appendix we propose an alternative labor market arrangement where the wage

depends solely on the preference of ricardian agents, and agents are not forced to work for the same amount of

time. In that case the model fully nests Bilbiie (2008). We take the framework spelled out in the text as the

baseline because it has the same implications and we think it has a more rigorous microfoundation.
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non-Ricardian agents are (1� �) and �, respectively. The union problem is

maxfWt

Et

1X
k=0

(�w�)
k f[(1� �)u (CS;t+k) + �u (CH;t+k)]� v (Lt+k)g

subject to Lt =
R 1
0 L

j
tdj, (2) and (4). The FOC with respect to fWt is

Et

1X
s=0

(��w)
t+s�t;t+s

(�
�

1

MRSH;t+s
+ (1� �) 1

MRSS;t+s

� fWt

Pt+s
� �w

)
= 0 (5)

where �t;t+s = vL (Lt+s)L
d
t+sW

�w
t+s and �

w = �w
(�w�1) is the, constant, wage mark-up in the

case of wage �exibility. The variables MRSH:t and MRSS;t denote the marginal rates of sub-

stitution between labor and consumption of non-Ricardian and Ricardian agents respectively.

2.3 Firms

In each period t, a �nal good Yt is produced by perfectly competitive �rms combining a

continuum of intermediate inputs Yt (z) according to the following standard CES production

function: Yt =
�R 1

0 Yt(z)
�p�1
�p dz

� �p
�p�1

; with �p > 1: The competitive �nal good producers�

demand of the intermediate good z and the price of the �nal good are thus equal to: Yt(z) =�
Pt(z)
Pt

���p
Yt and Pt =

hR 1
0 Pt(z)

1��pdz
i 1
1��p :

Intermediate inputs are produced by a continuum of monopolistic �rms indexed by z 2
[0; 1] : The production technology is simply linear in labor services, Lt (z) :

Yt (z) = AtLt (z) ; (6)

where At represents, exogenous, technology.

The labor input is de�ned as Lt (z) =
�R 1

0

�
Ljt (z)

� �w�1
�w dj

� �w
�w�1

. Firm�s z demand for

labor type j and the aggregate wage index are then respectively: Ljt (z) =
�
W j
t

Wt

���w
Lt (z) and

Wt =

�R 1
0

�
W j
t

�1��w
dj

�1=(1��w)
. Finally, given that the production function has constant

return to scale, the nominal marginal cost, MCt; is common across producers.

2.4 Price Setting

Intermediate producers set prices according to the same mechanism assumed for wage setting.

Firms in each period have a �xed chance 1� �p to re-optimize their price. A price setter takes
into account that the choice of its time t nominal price, ePt, might a¤ect not only current but
also future pro�ts. The FOC for price setting is:

Et

1X
k=0

�
��p
�k

t+kP

�p
t+kYt+k

h ePt � (1 + �p)MCt+k

i
= 0; (7)
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which has the usual interpretation.8 Notice that �p = (�p � 1)�1 represents the net markup
over the price which would prevail in the absence of nominal rigidities.

2.5 Aggregation and Market Clearing

Aggregate consumption is given by

Ct = �CH;t + (1� �)CS;t: (8)

The variable 
t = (1� �) 
S;t represents aggregate asset holdings. In equilibrium 
t = 1,

thus each Ricardian agent has asset holdings equal to 1
1�� : The clearing of good and labor

markets requires:

Yt(z) =
�
Pt(z)
Pt

���p
Y d
t 8z Y d

t = Yt; (9)

Ljt =
�
W j
t

Wt

���w
Ldt 8j Lt =

R 1
0 L

j
tdj (10)

where Y d
t = Ct represents aggregate demand, L

j
t =

R 1
0 L

j
t (z) dz is total aggregate demand of

labor input j and Ldt =
R 1
0 Lt (z) dz denotes �rms�aggregate demand of the composite labor

input Lt.

2.6 Pareto-e¢ cient Equilibrium

For comparability with Bilbiie (2008) and Erceg et al. (2000), we follow the bulk of the litera-

ture (see Woodford, 2003) and impose an e¢ cient steady state. To induce equality between the

steady state marginal product of labor and the steady state marginal rate of transformation

we assume that the Government subsidies �rms by means of a constant employment subsidy,

� . Firms are also taxed through a constant lump-sum tax which leads to zero steady state

pro�ts. This device allows to study the welfare properties of the economy without resorting

to a full second order approximation to the model equations. We assume a period utility of

the form
	tC

1��
i;t

1�� � L1+�t
1+� for i = S;H, where � is the relative risk aversion (and the inverse

intertemporal elasticity of substitution), while � is the elasticity of marginal disutility of labor.

Next, we de�ne the equilibrium of the model under �exible prices and wages. Appendix

A.1 shows that the log-deviations from the e¢ cient steady state of the e¢ cient output, the

e¢ cient real wage and the e¢ cient real rate of interest are respectively given by:9

yEfft =
1 + �

� + �
at +

1

(� + �)
 t; (11)

!Efft = at; (12)

8The variable 
t is the lagrange multiplier on Ricardian househols nominal �ow budget constraint. Thus 
t

represents the value of an additional dollar for ricardian households, who own the �rm shares.
9We denote log-deviations by lower case letters, and ! stands for the log-deviation of the real wage.
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rEfft = �

�
1 + �

� + �
�at+1 �

�

� (� + �)
� t+1

�
: (13)

Assuming an AR(1) process for the logarithms of the exogenous state variables

at = �aat�1 + "
a
t (14)

 t = � at�1 + "
 
t (15)

fully speci�es the dynamics of the log-deviations from the e¢ cient equilibrium.

2.7 The Log-linear model

The following equations summarize log-linear equilibrium dynamics:

(M1) �t = �Et�t+1 + �p~!t NKPC

(M2) �wt = �Et�
w
t+1 + �w[(� + �)xt � ~!t] Wage Inflation Curve

(M3) ~!t = ~!t�1 + �wt � �t ��!
Eff
t Real Wage Gap

(M4) xt = Etxt+1 � 1
�Et

�
it � �t+1 � rEfft

�
� �

(1��)Et�~!t+1 IS curve

Equation (M1) is the NKPC obtained from the �rms�price setting problem. The variable

~!t = !t � !Efft represents the real wage gap, which is de�ned as the gap between the current

and the e¢ cient equilibrium real wage. Given the linear in labor production function it follows

that mct = !t � yt + lt = !t � at = ~!t, i.e. the real wage gap is equal to the log-deviations

of the real marginal cost from the e¢ cient steady state. For this reason ~!t appears on the

RHS of equation (M1). The real wage gap in the NKPC identi�es a labor demand gap being

equal to the di¤erence between the current wage and the marginal productivity of labor. The

parameter �p =
(1���p)(1��p)

�p
is the slope of the NKPC. Equation (M2) is a wage in�ation

curve, similar to that in Erceg et al. (2000) with slope �w =
(1���w)(1��w)

�w
. Symmetrically

to the NKPC, the term [(� + �)xt � ~!t] in (M2) identi�es a labor supply gap being equal to
the di¤erence between the average (across agent types) marginal rate of substitution between

labor and consumption and the real wage. Given the period utility, the production function,

the market clearing and the de�nition of e¢ cient output, it follows that:

(1� �)mrsS;t + �mrsH;t � !t

= [(� + �) yt � �at �  t]� !t = (� + �)xt � ~!t; (16)

where xt = yt � yEfft denotes the output gap, i.e. the gap between actual output and the

e¢ cient output. The parameters � and � are respectively the elasticity of intertemporal

substitution in labor supply and in consumption. Equation (M3) simply provides the de�nition

of the real wage gap in terms of wage and price in�ation and �!Efft = !Efft � !Efft�1 .
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Equations (M1)� (M3) are identical to those which would characterize a fully Ricardian
NK model with price and wage stickiness, as in Erceg et al. (2000).10 Notice that the

heterogeneity between households does not a¤ect wage in�ation dynamics.11

Aggregating the Euler equation of Ricardian agents with the budget constraint of non-

Ricardian agents delivers the IS curve, equation (M4).12 The latter di¤ers from a standard

IS equation because of the extra term �
1��Et�~!t+1, which represents the expected growth of

the real wage gap. The wage gap a¤ects aggregate demand relative to the e¢ cient allocation

through the consumption of non-Ricardian consumers and for this reason appears in the IS

curve.

Note that our framework encompasses the models in Erceg et al. (2000) and Bilbiie (2008).

Indeed, the extra term in the IS disappears if the model is fully Ricardian (i.e. if � = 0) as in

Erceg et al. (2000). Further, under nominal wage �exibility the labor supply gap is nil and

equation (16) implies a strict proportionality between the wage gap and the output gap given

by:

~!t � (� + �)xt = 0: (17)

By substituting the latter into equation M4 the IS curve can be rewritten solely in terms

of the output gap, as in Bilbiie (2008).

It is worth stressing that the supply side of the model, constituted by equations (M1) �
(M3), is isomorphic to that of a fully Ricardian economy with sticky prices and wages. On

the contrary the demand side of the model, represented by equation (M4), is a¤ected by the

degree of asset market participation and hence characterizes a LAMP economy with sticky

wages and prices.

To close the model the behavior of the nominal interest rate needs to be speci�ed. To this

end we will consider both interest rate rules and a welfare maximizing policy. We will show

that, in both cases, the presence of non-Ricardian agents does not fundamentally alter the

design of monetary policy once nominal wage stickiness is considered.

3 Slopes of the IS curve and the determinacy properties of

simple interest rate rules

In this section we explore the role played by nominal wage stickiness for the dynamics of the

model and for the determinacy properties of simple interest rate rules.

10The only minor di¤erence with Erceg et al. (2000) is in the expression for �w. This is due to the di¤erent

assumption regarding the labor market explained in footnote 7.
11As emphasized in Colciago (2010), the is due to the fact that the union maximizes a weighted average of

agents utilities.
12Please see Appendix A.2 for analytical details
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We will naturally compare our results to those in Bilbiie (2008), who considers a model

with �exible wages. The aforementioned author shows that, when asset market participation

is restricted beyond a certain threshold, the slope of the IS curve may turn positive leading to

what he calls and Inverted Aggregate Demand Logic (IADL). In the parameter space where the

IADL holds, aggregate demand increases with the real interest rate. Importantly, the inversion

of the slope of the IS curve requires an inversion of the Taylor Principle for monetary policy

to support a unique REE. Thus, given a simple policy rule as

it = ��Et�t+1; (18)

in the IADL region the in�ation response coe¢ cient, ��, must be less than 1 to induce equi-

librium uniqueness. In Leeper�s (1991) words, monetary policy should be passive. Moreover,

Bilbiie (2008) claims that the IADL case is empirically relevant and proposes an intriguing

reinterpretation of the great in�ation versus great moderation debate on the basis of the

Inverted Taylor Principle.

In the remainder of this section, we show that in a model with nominal wage rigidity most

of these results are overturned. In particular wage stickiness con�nes the IADL to extreme

parameterizations, re-establishing the relevance of the Taylor Principle for the conduct of

monetary policy.

3.1 The slope of the IS curve

To make our point fully transparent we consider three alternative scenarios resulting from

polar parameterization of the model: 1) �exible prices and sticky wages ; 2) �exible wages and

sticky prices; 3) sticky prices and wages.

1. Flexible Prices and Sticky Wages. In this case, given that �rms�are always on

their labor demand schedule, !t = at, the real wage-gap is zero. Hence, there is no NKPC,

i.e. equation (M1). As a result the IS curve, equation (M4), coincides with the standard

one. It does not depend on �, ruling out the possibility of the inversion of the slope of the IS

curve. The intuition for this result is as follows. Under �exible prices �rms�price markup, real

marginal costs and pro�ts are constant. Thus, consumption of both agents deviates from the

e¢ cient steady state only because of �uctuations in labor income. Since the latter is common

across households and consumption of Ricardian agents must obey an Euler equation, the

resulting setup is isomorphic to a fully Ricardian framework.13

13This result does not rely on the assumption of an e¢ cient steady state. If steady state pro�ts are non zero,

agents have di¤erent steady state levels of consumption. In this case the IS curve would be a¤ected by the

share of non-Ricardian consumers, but it can be shown that the interest rate elasticity of aggregate demand

cannot turn positve.
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2. Flexible Wages and Sticky Prices. This case amounts to that considered by Bilbiie

(2008). Appendix A.2.1 shows that the IS equation can be expressed as:

xt = Etxt+1 �
�
�fw
��1
�

Et

�
it � �t+1 � rEfft

�
(19)

where �fw = 1 � �(�+�)
1�� :14 The slope of the IS becomes positive if �fw < 0 which requires

� > ��
fw
= 1

1+�+� .

3. Sticky Prices and Sticky Wages. The counterpart of equation (19) is:

xt = Etxt+1 �
(�sw)�1

�
Et

�
it � �t+1 � rEfft

�
+

�

1� �
(�sw)�1

1 + � + �w
Et
�
��wt+1 ��~!t+1 � �

�
�~!t+1 +��

w
t+2

��
(20)

where �sw = 1 � �(�+�)
1��

�w
1+�+�w

. Note that under �exible wages, i.e., �w = 0; then �w ! 1;
and �sw ! �fw: Equation (20) thus collapses to (19). We state the main �nding of this section

in Proposition 1.

Proposition 1: The slope of the IS curve. Under sticky prices and wages the slope of

the IS curve, i.e., �sw:(i) is always larger than the one under �exible wages, i.e. �fw;

(ii) it increases with the degree of wage stickiness; (iii) it turns positive if � > ��
sw
=

1
1+(�+�) �w

1+�+�w

, where the threshold value ��sw increases with the degree of wage stickiness.

Proof See Appendix A.2.2.

As in the �exible wages case there exists a threshold value ��sw 2 [0; 1] such that we can
de�ne a region where the IADL holds. Only in the limiting case in which wages are �xed (i.e.,

�w ! 1 =) �w ! 0) the slope of the IS schedule never changes sign, regardless of the value of

�. Importantly, the value ��sw increases as the average duration of wage contract gets longer.

Proposition 1 leads to the following corollary.

Corollary 1: The IADL region. Nominal wage stickiness severely restricts the IADL re-

gion, and con�nes it to extreme parameterizations.

Our baseline calibration implies a threshold value ��sw = 0:7115. The IADL holds if the

share of non-Ricardian agents is larger than 71%, a value much higher than any available

estimate.16 Notice that under �exible wages ��fw = 0.17, i.e. 4 and half times smaller.
14The expression is slightly di¤erent from Bilbiie (2008) again because of our assumption on the labor market.
15Section 4.2 reports the baseline calibration. Throughout the current section, as in the coming Figures, we

will use the parameters�values reported there.
16Note that we are choosing a parameterization against our argument, since we assume high values for � = 2

and � = 3; and an average duration of wage contracts of 3 quarters. By choosing a rather standard alternative

calibration, as log-utility in consumption and labor, and an average duration for wage contracts of 4 quarters,

then ��sw would have been equal to 0.92.
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Figure 1: The wage schedule under sticky wages (WSsw) and �exible wages (WSfw) and the

equilibrium in the labor market.

3.2 Intuition and the role of the labor market

Rarranging equation (M2) delivers the wage schedule

WSsw : !t = ��w(� + �)lt + ��t + ��w

�
1 + (� + �)

�
1� 1 + �

� + �

��
at

where � = �w
1+��2w

and �t = [!t�1 � �t + �Et!t+1 + �Et�t+1]. Notice that the product ��w =
(1���w)(1��w)

1+��2w
is decreasing in the degree of wage stickiness and equals 1 in the case of �exible

wages. In the latter case, the wage schedule reduces to

WSfw : !t = (� + �)lt +

�
1 + (� + �)

�
1� 1 + �

� + �

��
at

As expected, wage stickiness dampens the sensitivity of the real wage to changes in hours.

Also, the coe¢ cient on hours increases linearly with the elasticity of marginal disutility of

labor. Figure 1 depicts curves WSsw and WSfw in the space (Lt; !t), where we also represent

labor demand. For the reasons mentioned above, the wage schedule is �atter under wage

stickiness. To see how the interaction between non ricardian agents and wage stickiness a¤ects

the slope of the IS curve consider the following mental experiment, which builds on Bilbiie

(2008).

Consider an increase in the interest rate. Ricardian agents reduce their demand, while

�rms which cannot change price reduce labor demand. This is depicted in Figure 1, where the

labor demand curve shifts inward in Ld2 (we assumed that in�ation and expectations of future

12



variables, i.e. the variable �t, remain unchanged in the face of the change in the interest rate).

Under �exible wages this translates into a large reduction in the real wage and to a modest

change in hours, and the more so the higher the elasticity of the marginal disutility of working,

�; and the inverse intertemporal elasticity of substitution in consumption, �. The decrease in

the real wage depresses demand by non-ricardian agents and reinforces the e¤ects on aggregate

demand due to the initial increase in the real interest rate. However, as emphasized by Bilbiie,

this e¤ect is not monotonic in �.

The sizeable decrease in the real wage, and hence in marginal costs, together with the

small change in hours, and hence in output and sales, imply a potential increase in pro�ts.

This leads, in turn, to a positive income e¤ect on ricardian agents. The latter is stronger the

larger �, since ricardian agents would obtain a higher individual dividend income.

If asset market participation is restricted enough (� > �fw), the positive income e¤ect

may counteract the substitution e¤ect induced by the interest rate change and �nally lead to

an increase in aggregate demand.17 As a result labor demand would shift rightward, in Ld3,

leading to an equilibrium with higher-that-intitial real wage and output, i.e. where the initial

interest rate increase is associated with higher aggregate demand.

Consider now the case of sticky wages. The inward shift in labor demand due to the

reduction in consumption by ricardian agents, results in a large response in hours worked

together with a modest reduction in the real wage. The potential negative wealth e¤ect is

thus less likely and, however, dampened with respecect to the case of �exible wages. For this

reason, under wage stickiness the inversion of the IS curve requires a much larger share of non

ricardian agents (� > �sw) to magnify the, eventual, wealth e¤ect at the individual level. To

see the link between the labor market and the likelihood of an inversion of the slope of the IS

curve, notice that

�sw = 1� �

1� � ��w(� + �)| {z }
slope of wage schedule

For any given share of non ricardian agents, the inversione of the slope of the IS curve

becomes more likely as wages become more �exible, i.e. as ��w approaches one. Notice that

our results do not depend on having a union which prevents ricardian agents from substituting

labor intertemporally. In the on-line Appendix we propose alternative labor market arrange-

ments where the real wage depends solely on the preferences of asset holders and agents are

free to make di¤erent labor choices. In this case changes in the interest rate or in dividend

income a¤ect the willingness to supply labor by ricardian consumers, reinforcing the link be-

tween the asset and the labor market. Nevertheless, we show that the area where the IADL

holds is basically unchanged with respect to that we obtain here.

17Notice that �fw is lower the steeper the wage schedule, i.e. the higher are � and �, as emphasized above.
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3.3 Determinacy analysis

In this section, we prove analytically the condition for the determinacy of the REE, despite

the dynamic system is 4th order.18 As in Bilbiie (2008), sticky prices lead to the inversion

of the Taylor principle in the IADL region of the parameter space. Similarly to the section

above, with staggered wages the inversion of the Taylor principle is con�ned to implausible

parameterizations.

3.3.1 Forward Looking Rule

It is instructive to start with samee the polar case of sticky wages and �exible prices.

Proposition 2: Flexible prices and sticky wages. Under �exible prices and sticky wages,

and the policy rule (18) the rational expectation equilibrium is unique i¤ �� 2
�
1; 1 + 2�(1+�)

�w(�+�)

�
,

i.e. i¤ the Taylor Principle is satis�ed.

Proof See Appendix A.3.1.

As expected from the discussion in the previous section, this case is isomorphic to a fully

Ricardian economy, there is no inversion of the IS slope and hence the standard Taylor principle

applies.

The following proposition holds, instead, in the case of both sticky wages and sticky prices.

Propositon 3: Forward-looking price in�ation targeting rule. Let it = ���t+1: The

REE is determinate i¤:

1) either �� 2
�
1; ��

FR
�

�
if ��FR� > 1 ;

2) or �� 2
�
��
FR
� ; 1

�
if ��FR� < 1;

where ��FR� = 1 +
2�(1+�)[2(1+�)+�p+�w� �

1���w(�+�)]
�w�p(�+�)

:

Proof. See Appendix A.3.3.

A necessary condition for the inversion of the Taylor principle it is thus given by ��FR� < 1;

since otherwise the standard Taylor principle applies. The condition ��FR� < 1; however, de�nes

a threshold value ��FR; since:

��
FR
� 7 1, ��

FR ? 2(1 + �) + �w + �p
�w(� + �) + 2(1 + �) + �w + �p

: (21)

Figure 1 depicts determinacy areas in the space (�; ��). The solid curved line represents

the threshold value ��FR� described in Proposition 3 as a function of �. Note that ��FR� decreases

with the degree of LAMP, �.
18We follow the strategy of transforming the polynomial derived from the characteristic equation (see Samuel-

son, 1941, and section 4 in Felippa and Park, 2004 ).
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If � = 0; ��FR� > 1, and the standard Taylor principle holds. As � increases, however, ��FR�

decreases, and the interval for �� described in case 1) of Proposition 3 shrinks and eventually

becomes empty when � = ��
FR
: As � increases further, then, condition 2) applies and the

interval for �� in the inverted Taylor principle case enlarges, becoming �� 2 (�1; 1) at the
limit when �! 1:

Moreover, wage stickiness shifts to the right the ��FR� curve, because @��
FR
�

@�w
< 0:19 Hence,

the threshold value ��FR increases with the degree of wage stickiness. As �w tends to 0; i.e.

with �x wages, then ��FR� �! 1; and the Taylor principle is restored, because Proposition 3
guarantees determinacy if and only if �� 2 (1;1). Indeed, in the limiting case of �x wages
the slope of the IS schedule does not change sign for any value of � � 1. In the case of �exible
wages, instead, (�w �!1), the threshold value becomes ��FR;fw = 1

�+�+1 ; that is lower than

��
FR and coincides with ��fw, i.e., the threshold value for the inversion of the slope of the IS

curve and, hence, for the de�nition of the IADL region.

Furthermore, since @��
FR

@�p
> 0; the threshold value, ��FR decreases with the degree of price

stickiness (lower �p): In the limiting case of fully �exible prices (�p �! 1), ��FR� �! 1 +
2�(1+�)
�w(�+�)

and Proposition 3 collapses to Proposition 2:

Corollary 2: Numerical results. Let it = ���t+1. Under sticky wages and sticky prices

the Taylor Principle is a necessary condition for equilibrium determinacy for all the

plausible parameterizations of the share of non-Ricardian agents.

To give a quantitative �avour of Proposition 3, Figure 2 depicts indeterminacy regions in

the parameter space (��; �), obtained by numerical simulations. Panel (i) displays the case

of �exible wages. A share of non-Ricardian agents larger than 0:167 requires the inverted

Taylor Principle to ensure equilibrium uniqueness. Thus, "the inverted Taylor principle holds

�generically� (i.e., if we exclude some extreme values for some of the parameters)"(Bilbiie,

2008, p. 180). Panel (ii) refers to the case of sticky wages, with an average duration of wage

contracts equal to three quarters.20 Unless the share of non-Ricardian consumers assumes

values which are not compatible with any possible estimate, the Taylor Principle leads to

equilibrium determinacy. Thus, wage stickiness "generically" restores standard determinacy

conditions. The intuition for this result is straightforward. When the relationship between

aggregate demand and the real interest rate has the conventional sign, a real interest rate

19Recall that the higher the degree of stickiness in wages, the lower is �w:
20To understand that Figure 1 and panel (ii) of Figure 2 are equivalent, recall that Proposition 3 only focuses

on the necessary and su¢ cient conditions for determinacy of the REE, and do not consider the di¤erence

between indeterminacy and instability whenever the REE is not unique. Moreover, given our calibration, the

curve that de�nes ��FR� in the space (��; �) is almost horizontal at ��
FR and it bends only for extreme values of

� (or ��):
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increase is required to rule out increase in aggregate demand generated by sunspot variations

in output.

Finally, it is worth to notice that numerically the curve that de�nes ��FR� in the space

(��; �) is almost horizontal at ��
FR
; meaning that the Taylor principle (i.e., the condition

�� ? 1) is what really matters to de�ne the uniqueness of the REE, while ��FR� numerically

matters only in determining ��FR; i.e., the threshold value for � where the inversion of the

Taylor principle occurs.

3.3.2 Contemporaneous Rules

We now consider the contemporaneous rule it = ���t:

Proposition 4: Current price in�ation targeting rule. Let it = ���t: The REE is de-

terminate i¤:

1) either �� > max
n
1; ��

a;CR
� ; ��

b;CR
�

o
;

2) or �� < min
n
1; ��

a;CR
� ; ��

b;CR
�

o
;

where ��a;CR� = �1�2�(1+�)[2(1+�)+(�p+�w)� �
1�� (�+�)�w]

(�+�)�p�w
and ��b;CR� =

�(1��)[ �
1�� (�+�)�w�(�p+�w)]
(�+�)�p�w

:

Proof. See Appendix A.3.5.21

This case is di¤erent from the previous one. Figure 3 visualizes the determinacy regions

in the (��; �) space. Note that the two curves de�ning ��
a;CR
� and ��b;CR� are now both in-

creasing, rather than decreasing, in �: The two cases 1) and 2) in proposition 4 characterize

two frontiers: max
n
1; ��

a;CR
� ; ��

b;CR
�

o
and min

n
1; ��

a;CR
� ; ��

b;CR
�

o
; respectively. Determinacy,

thus, occurs below the lower frontier (max
n
1; ��

a;CR
� ; ��

b;CR
�

o
) and above the upper frontier

(min
n
1; ��

a;CR
� ; ��

b;CR
�

o
). In this case, it is impossible to de�ne an "inversion of the Taylor

principle". On the one hand, for each value of �; there exist two values of ��; such that the

REE is unique: one satis�es the Taylor principle, while the other does not. On the other hand,

we can de�ne threshold values for the share of non-Ricardian agents, such that: if � < ��a;CR;

then �� > 1 is a su¢ cient (but not necessary) condition for the uniqueness of the REE; if

� > ��
b;CR

; then �� < 1 is a su¢ cient (but not necessary) condition for the uniqueness of the

REE. These threshold values are given by the intersection between �� = 1, and ��a;CR� and

��
b;CR
� ; respectively (see Appendix A.3.5).22

21The Appendix shows that this Proposition assumes:
�(1��)[(�+�)�p�w+4�(1+�)2]

(�+�)�p�w�[1+3�]
< 1; that holds for value

of � su¢ ciently close to one and for our benchmark calibration.
22Depending on parameter values ��a;CR� can be larger or smaller than ��b;CR� : In general, ��a;CR� 7 ��

b;CR
� i¤

(1��)(1+�)2
�

7 (�+�)�p�w
�

. Hence for values of � su¢ ciently close to 1, then ��a;CR� < ��
b;CR
� ; as in Figure 3.
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Moreover, wage stickiness shifts to the left both the ��a;CR� and the ��b;CR� curves in Figure

3, because @��
a;CR
�
@�w

< 0 and @��
b;CR
�
@�w

< 0: Hence, both the threshold values ��a;CR and ��b;CR

increase with the degree of wage stickiness: Again as �w tends to 0 (limiting case of �x wages),

Proposition 4 collapses to the standard Taylor principle (�� > 1), because �
a
� and �

b
� tend to

(�1) :
Furthermore, both ��a;CR and ��b;CR are decreasing with the degree of price stickiness (i.e.,

increases with �p): In the limiting case of fully �exible prices (�p �!1), Proposition 4 de�nes
the following condition for determinacy: either �� > 1 or �� < �1 � 2�(1+�)

(�+�)�w
. Thus, as in

the case of a forward rule, in an economy with �exible prices and sticky wages, the degree of

LAMP has no e¤ect on the shape of the determinacy regions, and the Taylor principle holds,

at least for positive values of ��:

It is worth noting that if � �= 1; then ��b;CR�
�= 0; so that the standard Taylor principle

holds for positive values of ��; because the REE is always indeterminate for 0 < �� < 1, as

in the standard case.

Finally, if there are no non-Ricardian consumers, i.e., � = 0; then both ��a;CR� and ��b;CR�

are negative, so that case 1) in Proposition 4 restores the standard Taylor principle for positive

value of ��.

To sum up, our analysis shows that, given a contemporaneous in�ation targeting rule, it

is not appropriate to refer to an "inversion of the Taylor principle". First, for each value of �;

there exist two values of ��; such that the REE is unique: one satis�es the Taylor principle,

while the other is negative. Second, if the share of non-Ricardian agents is lower than a certain

threshold, i.e., ��a;CR; then �� > 1 is a su¢ cient condition for the uniqueness of the REE.

From a numerical point of view, Figure 4 shows that the result in the Corollary 2 is

con�rmed also in the case of contemporaneous rule: under sticky wages, the Taylor principle

is a necessary and su¢ cient condition for the uniqueness of the REE, for all the plausible

values of � (abstracting from highly negative values of ��): This is not the case instead when

wages are �exible, since the ��a;CR� curve shifts downward. Indeed, ��a;CR = 0:831; given our

standard calibration, and it lowers to 0.197 in the case of �exible wages.23

In a model that features both sticky wages and sticky prices, it is natural to consider also

a monetary policy rule that targets both price and wage in�ation, as it = ���t+��w�
w
t : Both

Erceg et al. (2000) and Galí (2008) numerically study the properties of such a rule. Galí

(2008) numerically shows that, for ��; ��w 2 (0;1); the condition �� + ��w > 1 is necessary

and su¢ cient (see also Flaschel et al., 2008) for the uniqueness of the REE. Proposition 5

shows analytically that such a condition is still crucial in a model with LAMP.

23Moreover, similarly to the case of the forward-looking rule, Figure 4 reveals that the curve ��a;CR� is �at at

��
a;CR

; given our standard calibration.
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Proposition 5: Price In�ation and Wage In�ation Targeting Rule Let it = ���t +

��w�
w
t : A necessary condition for the REE to be determined is either (�� + ��w) >

max
�
1; ���;�w

	
or (�� + ��w) < min

�
1; ���;�w

	
where

���;�w = �1�
2�(�+1)[2(�+1)+(�p+�w)� �

1�� (�+�)�w+
1
�
(�+�)�w��w ]

(�+�)(1+��+��w )�p�w
:

Proof. See Appendix A.3.6.

The conditions in Proposition 5 refers now to the sum (��+��w):
���;�w is increasing in �.

Thus, it is possible to de�ne a threshold for the share of non-Ricardian agents, such that if �

is lower than this threshold, then (��+��w) > 1 is a necessary condition for the uniqueness of

the REE for positive values of �� and ��w : This is always true for either �x wages or �exible

prices.

4 Optimal Monetary Policy

In this section we look at the optimal policy problem, cast in the standard linear quadratic

framework (see Woodford, 2003). First, we derive the welfare loss function and describe the

relevant trade-o¤s faced by the monetary authority. Next, we characterize optimal monetary

policy under full commitment, which we take as a benchmark for the remainder of the analysis.

Finally, as in Erceg et al. (2000), we consider strict targeting rules, i.e. rules which fully close

one of the gaps in the welfare loss, and optimal simple interest rate rules a là Schmitt-Grohé

and Uribe (2007).

4.1 The Welfare Loss Function

We assume that the central bank maximizes a convex combination of the utilities of two types

of households, as in Bilbiie (2008). Weights correspond to the relative importance of agents�

groups in the economy. In this case the period welfare function is given by:

Wt = 	t [�u (CH;t) + (1� �)u (CS;t)]� v (Lt) (22)

Proposition 6: The aggregate welfare loss function. The aggregate welfare loss func-

tion approximated at second-order around the e¢ cient steady state is given by:

L = �1
2

1X
t=0

�t
�
(� � 1)�
1� � ~!2t + (� + �)x

2
t +

�w
�w
(�wt )

2 +
�p
�p
�2t

�
(23)

Proof. See Appendix A.4.
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The interaction between nominal wage stickiness and non-Ricardian agents implies that the

loss function is characterized by the additional term (��1)�
1�� ~!2t with respect to the loss function

of a fully Ricardian model. The wage gap enters the loss function for the same reasons it

appears into the IS equation (20): deviations of the real wage from its e¢ cient counterpart

lead to deviations of aggregate demand from the e¢ cient level.24Note that when � = 0 the

welfare loss function reduces to that in Erceg et al. (2000).

When wages are �exible, wage in�ation does not a¤ect welfare. Moreover, the labor supply

gap is nil, because the real wage equals the average marginal rate of substitution between

consumption and labor. In this case equation (17) holds and by closing the output gap the

central bank automatically closes the wage gap. Further note that substituting (17) into (23),

the loss function reduces to (see Appendix A.4.1 for details)

L = �1
2

1X
t=0

�t
�
(� + �)

�
1 +

(� � 1) (�+ �)�
1� �

�
x2t +

�p
�p
�2t

�
; (24)

which has a form similar to that in Bilbiie (2008), and collapses to the standard text-book

welfare-loss for � = 0:

How monetary policy should be conducted in the LAMP economy with price and wage

stickiness? Let us consider the trade-o¤s faced by monetary policy in the aftermath of a

technology shock. Price-wage stickiness induces an endogenous in�ation-output trade-o¤ for

monetary policy. Given (M1) and (M2) monetary policy should contemporaneously close the

wage and the output gap to fully stabilize wage and price in�ation. However this is unfeasible

since after a technology shock, that a¤ects �!Efft ; price and wage in�ation should jointly

move according to (M3). The intuition is also straightforward: in the social optimum the

real wage follows one-to-one the marginal productivity of labor (at), but this is simply not

possible if the variance of both price and wage in�ation is stabilized. Importantly, this trade-

o¤ originates entirely from the supply side of the model and therefore it is not a¤ected by

LAMP. As a result LAMP does not change the trade-o¤s faced by the monetary authority.

However , LAMP alters the IS curve and the welfare loss function, thus it may a¤ect the

optimal response to shocks. Nevertheless, in the next section we show that, once nominal

wage stickiness is brought into the picture, LAMP has only marginal quantitative e¤ects on

the optimal path of the main macro-variables in response to a technology shock.25

24The wage gap terms disappears from the loss function also when � = 1. This is for purely technical reasons.

The term (� � 1) is due to two di¤erent approximations applied to U(C) : 1) � derives from the second-order

approximation of the utility function; 2) 1 is instead the curvature of the logarithmic function used to transform

C into log deviations from steady state.
25We focus on technology shocks given that preference shocks do not imply any trade-o¤ for the monetary

authority.
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4.2 Commitment

Model Calibration. Given that our results are partly numerical, we detail the baseline

calibration of the model. Time is measured in quarters. The discount factor � is set to 0:99;

so that the annual interest rate amounts to 4%. The utility parameters � and � are equal

to 2 and 3, respectively. According to the estimates in Basu and Fernald (1997) the value

added mark-up of prices over marginal cost is around 20%, for this reason we set �p to 6:

We assign an identical value to the elasticity of substitution between labor inputs, �w. We

set �p = �w = 0:75, which implies an average duration of price and wage contracts of one

year, a value which is in compatible with most available empirical estimates (see for example

Smets and Wouters 2003 and Levine et al. 2005). However, we evaluate the dependence of

our results on the average duration of wage contracts which is a fundamental magnitude in

our analysis.

We draw the autoregressive coe¢ cient and the standard deviation of the technology shock

from Schmitt-Grohé and Uribe (2007), while for what concerns the preference shock we refer

to the estimates by Galí and Rabanal (2004). Selected values are �a = 0.855, �a = 0.0064,

� = 0.93 and � = 0.025. Notice that we assume that the technology and the preference

shock are independent from each other.

Optimal Monetary policy in response to technology shocks. In the presence

of a credible commitment, the central bank maximizes the welfare function (23) subject to

(M1) � (M3), taking ~!t�1 as given. Then, the IS curve determines the optimal path of the
nominal interest rate, while the resource constraint of non-Ricardian agents and the de�nition

of aggregate consumption determine the sharing of resources between agents. Figure 5 depicts

the optimal deviations from the e¢ cient steady state of the main macroeconomic variables in

response to a persistent technology shock. We consider alternative degrees of asset market

participation. Consider the fully Ricardian case (� = 0). Since the monetary policy is endowed

with a single instrument, it must trade-o¤ between the competing distortions due to sticky

prices and sticky wages. The resulting optimal dynamics feature a persistent reduction in

in�ation and a prolonged adjustment of the output gap. Remarkably, in response to an

increase in productivity, hours worked fall. The contraction in hours following a positive

productivity shock is in line with recent U. S. evidence (see, for example, Galì and Rabanal,

2004).

Restricting asset market participation has just quantitative implications on the optimal

IRFs. This does not come as a surprise since, as discussed above, LAMP does not a¤ect the

trade-o¤s faced by the Central Bank in response to a technology shock. Speci�cally, restricting

asset market participation (i.e. higher �) ampli�es the propagation of the technology shock to

the economy. The intuition for this outcome is as follows. The rise in technology leads to lower
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marginal costs and higher output which translate into an increase in total pro�ts. This has

a positive income e¤ect on Ricardian households. The latter gets stronger as the portion of

non-Ricardian agents enlarges, resulting into a more pronounced reaction of Ricardian agents�

consumption to the shock. To support such an outcome the Euler equation requires lower

asset market participation to be associated with more aggressive cuts of the nominal interest

rate. Because of price stickiness �rms satisfy higher demand of the �nal good via an increase in

labor demand. This ultimately a¤ects the real wage and hours worked and thus consumption

of non-Ricardian agents.

The main point, however, is that the e¤ect of LAMP on welfare relevant variables such as

gaps and in�ation rates are minor also from a quantitative point of view. The optimal policy

response of a NK model with price and wage stickiness is, therefore, only marginally a¤ected

by the LAMP assumption.26

Moreover, when � = 1; the LAMP hypothesis has no e¤ect at all on the optimal monetary

policy response. In this case, neither the objective function (23) nor the constraints, (M1)�
(M3) ; depend on the share of non-Ricardian agents. Thus, in response to shocks, the optimal

policy implements the same equilibrium path for the welfare relevant variables as in a full

participation economy. In this case, society welfare will not be a¤ected by the presence of

non-Ricardian agents and just the interest rate will be a¤ected by LAMP assumption through

the IS curve.

To conclude this section we report in Table 1 the unconditional welfare loss under full

commitment as a function of the share of non-Ricardian agents and the average durations of

wage contracts (i.e., (1� �w)�1). The unconditional welfare loss is expressed as a percentage
of aggregate consumption at the e¢ cient steady state . As well known, in the case of �exible

wages (i.e., �w = 0 => (1� �w)�1 = 1) the monetary authority faces no trade-o¤at stabilizing
welfare relevant variables in response to a technology shock, for this reason the welfare loss

in nil. As expected, the welfare loss increases with the magnitude of the two distortions

considered.

4.3 Strict targeting rules

In this section we consider policy rules aimed at fully stabilizing, at each date and state, one of

the welfare relevant variables, that is either one between ~!t; �t; �wt ; or xt. These rules are often

de�ned as strict targeting rules. The next proposition provides a general result concerning

LAMP and strict targeting policies.

26The response of the e¢ cient level of output is somewhat in between the responses in the top left panel

of Figure 5. Hence the output gap switches sign from negative to positive as � changes, but this e¤ect is

quantitatively negligible.
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Proposition 7: LAMP and strict targeting rules. Under a strict targeting rule (what-

ever the target among (~!t; �t; �wt ; xt)) the path f~!t; �t; �wt ; xtg
1
t=0 is not a¤ected by

LAMP. As a consequence the unconditional variances of welfare relevant variables do not

depend on �: The path of the instrument, fitg1t=0, required to implement the allocation
depends, instead, on the degree of asset market participation.

Proof. This follows from the fact that the supply side of the model does not depend on the

degree of asset market participation, �. Once either one between ~!t; �t; �wt ; xt is set

equal to zero, equations (M1) � (M3) are su¢ cient to generate the path of the other
three variables. Since � enters only in the IS equation, its value only matters for the

behavior of it; but not for the allocation of welfare relevant variables.

We can further specialize the previous proposition showing that strict price in�ation tar-

geting and strict wage gap targeting amount to the same policy.

Proposition 8: LAMP, strict price in�ation and real wage-gap targeting. Strict price

in�ation targeting and strict real wage gap targeting are implemented by the same path

of the policy instrument fitg1t=0. They also deliver the same welfare loss given by

W = �2a
2�2w(�+�)

h
1

1��2a
((�a � 1) (1� ��a))2 + (1� �(�a � 1))2

i
+ �w

�w(1+�a)
�2a which: (i)

is independent of the degree of asset market participation, (ii) tends to zero in the case

of �exible wages and (iii) increases with the average duration of wage contracts.

Proof See Appendix A.4.2

The intuition for this result is straightforward. The NKPC implies that whenever �t = 0

it has to be the case that ~!t = 0 and vice-versa. In this case the extra term in the IS curve

vanishes and the path of the interest rate needed to implement the allocation is the same, and

it is independent of the share of non-Ricardian agents. Since both policies lead to the same

path for welfare relevant variables, and in particular imply that ~!t = 0 at all t, the welfare

loss is also independent of �. Price in�ation targeting gets more costly as the mean duration

of wage contracts gets longer. Finally, we consider the case of strict wage in�ation targeting.

Proposition 9: LAMP and strict wage in�ation targeting. Under strict wage in�ation

targeting the wage gap is proportional to the output gap. The path f�t; ~!tg1t=0 is indepen-
dent of the degree of asset market participation, while the path of the instrument needed

to implement the equilibrium does depend on it. The unconditional welfare loss increases

with the degree of LAMP.

Proof. Equation (M2) implies that (� + �)xt = ~!t. In this case equations (M1) and (M3)

su¢ ce to determine the path f�t; ~!tg1t=0. The latter is independent of the degree of asset
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market participation. Equation (M4) suggests, instead, that the path of the instrument

required to implement this policy depends on �. Since the coe¢ cient on the wage gap

variable, (��1)�
1�� , in the welfare loss function (23) is increasing in the share of non-

Ricardian agent, society�s welfare loss get larger as asset market participation becomes

more restricted.

Finally, we compare the welfare performance of strict targeting rules. As a Corollary to

Proposition 8 and Proposition 9 we can state the following.

Corollary 3. Under nominal wage stickiness, there exist a threshold value ~�, such that for

� > ~� wage in�ation targeting delivers a higher society�s welfare loss with respect to

price in�ation targeting.

LAMP could overturn the optimality of strict wage in�ation targeting over strict price

in�ation targeting emphasized by Erceg et al. (2000) in a full participation framework. For

any empirically relevant degree of asset market participation, however, the Erceg et al. (2000)

result holds. This is evident from Figure 6 that depicts welfare losses under strict wage

in�ation targeting and strict price in�ation (or wage gap) targeting. The latter is shown for

two alternative mean durations of wage contracts.

4.4 Optimal simple rules

To conclude our analysis we evaluate how the interaction between LAMP and wage stickiness

a¤ects the design of optimal simple Taylor-type interest rate rules. Motivated by the analysis

in Bilbiie (2008) we initially consider two pure in�ation targeting rules, where the interest

rate responds solely to current and expected in�ation, respectively. Next, as in Erceg et al.

(2000), we consider a hybrid rule where the interest rate reacts to current price in�ation

and to the deviations of output from the steady state. Finally, we consider a hybrid rule in

which the interest rate is a function of current price and wage in�ation. Following Schmitt-

Grohé and Uribe (2007), we require the simple rules described above to be implementable

and optimal. The implementability condition requires policies to deliver local uniqueness of

the REE. Optimality requires, instead, selecting policy coe¢ cients in order to minimize the

unconditional expectation of the welfare loss function (23). We search for optimal policy

coe¢ cients numerically. In doing this we limit attention to the interval [-10, 10] for each

coe¢ cient. Notice that larger coe¢ cients response would fall out of any plausible estimate

and would have little credibility. We evaluate the performance of each rule for a range of

values of the two relevant parameters: � and �w.
27

27To facilitate understanding we report in the tables below the average duration of wage contracts:

(1� �w)
�1 :The latter is expressed in quarters.
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In the remainder we state two main results. Result 1 refers to pure in�ation targeting

rules, while Result 2 to hybrid rules.

Result 1. Pure in�ation targeting rules In the case of pure in�ation targeting rules the

optimal rule calls for a strong response of monetary policy. LAMP makes the optimal

rule highly passive if wages are �exible. However, if wages are sticky, the optimal rule

is restored to be highly active, as in the standard NK model.

Table 2 reports optimal policy coe¢ cients and the associated welfare loss for the con-

temporaneous and forward-looking in�ation targeting rules. Consider the current pure in-

�ation targeting rule (Panel A). In a fully Ricardian economy (� = 0) with �exible wages

((1� �w)�1 = 1) the optimal response coe¢ cient implies a strong anti-in�ationary stance.

The reason is that in the absence of a trade-o¤ between in�ation and the output gap, stabi-

lizing in�ation also results in output stabilization.

In our exercise, thus, the in�ation coe¢ cient hits the upper bound (i.e. �� = 10): Removing

the upper bound on policy parameters would result in an unbounded in�ation coe¢ cient

response and zero welfare loss. The optimal rule is extremely e¤ective, as it delivers a welfare

loss equal to 0.002 % of steady state consumption. These results resembles those in other

studies such as Schmitt-Grohé and Uribe (2007).

Introducing LAMP in this environment has dramatic consequences for the design of optimal

interest rate rules. The optimal contemporaneous rule turns passive and features a strongly

negative in�ation response, indeed �� hits the lower bound equal to -10. We are in the IADL

region implying that the relationship between aggregate demand and the real interest rate is

reversed with respect to the standard case. It is worth emphasizing that the negative in�ation

coe¢ cient obtained under LAMP and �exible wages does not merely serve the purpose of

ensuring the uniqueness of the REE. Under the contemporaneous rule also a very strong

increase in the real interest rate in response to a positive change in in�ation would, in fact,

guarantee determinacy in the LAMP economy (See Figure 4). However, it would deliver a

lower welfare with respect to the passive rule considered here.

Even a very low, and below estimates, degree of wage stickiness restores the optimality of

an active rule for any empirically plausible share of non-Ricardian agents. Moreover, when the

degree of wage stickiness assumes values compatible with the empirical evidence, the optimal

policy is highly active no matter the extent to which we limit asset market participation.

Again, wage stickiness limits the likelihood of a reversal in the slope of the IS curve and it

restores standard policy prescriptions. In other words, once wage stickiness is considered,

LAMP has just minor quantitative implications for the design of optimal simple rules. In

particular, the optimal policy calls for a stronger reaction to in�ation as the share of non-

Ricardian agents increases.
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Similar considerations extend to the forward looking in�ation targeting rule in Table 2

(Panel B). As in a standard economy, the simple rules considered here perform quite well in

terms of welfare even in the presence of non-Ricardian agents. The welfare loss gets large just

in the case where wage stickiness is coupled with an implausibly large share of non-Ricardian

consumers. However, this is partly due to the fact that we restrict the interval of admissible

values for ��. We next turn to the second result, concerning hybrid rules.

Result 2. Hybrid Rules In the case of hybrid rules (i) Result 1 is con�rmed: nominal

wage stickiness makes the optimal rule active; (ii) a rule targeting both price and wage

in�ation delivers the best performance in terms of welfare; (iii) responding to output

only marginally improves the performance of a pure in�ation targeting rule.

Table 3 reports the performance of the hybrid rules we consider. Results 1 is con�rmed:

nominal wage stickiness makes the optimal policy strongly active, no matter the degree of

LAMP. In line with Erceg et al. (2000), a rule responding to both price and wage in�ation

substantially reduces the welfare loss with respect to a pure price in�ation targeting rule.

The relative magnitude of the optimal coe¢ cients on price and wage in�ation depends on

the relative degree of stickiness between prices and wages. The larger between the two coef-

�cients is the one multiplying the in�ation of the stickier variable. Further, both coe¢ cients

are increasing in the degree of LAMP and are generally very large (possibly unbounded in the

case of wage in�ation targeting for high degree of wage stickiness). It follows that for realistic

values of the degree of wage stickiness, this rule calls for complete wage stabilization.

5 Conclusions

We design a model to study monetary policy in an economy characterized by staggered wage

and price contracts an by and by an arbitrary degree of asset market participation. Our model

nests two widely used framework for the analysis of monetary policy. The LAMP model by

Bilbiie (2008) and the sticky prices-sticky wages model by Erceg et al. (2000).

We �nd that wage stickiness fundamentally a¤ects results obtained by the �rst author,

while LAMP leaves the main results in Erceg et al. (2000) unchanged. In particular, determi-

nacy and welfare properties of simple interest rules and the design of optimal monetary policy

di¤er from those observed in a full participation model just in the case in which asset market

participation is limited to an empirically implausible extent. For values of the share of non-

Ricardian agents consistent with the estimates, monetary policy prescriptions are isomorphic

to those which characterize a standard NK model with no LAMP.

This suggests that reappraisals of the conduct of monetary policy in speci�c past periods,

such as that of the great in�ation, based on the presence of non-Ricardian agents cannot
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neglect nominal wage stickiness. The latter is, in fact, an incontrovertible empirical fact.

Our analysis is conducted in the context of a highly stylized economy. For instance, as in

Bilbiie (2008), we assume that the government has access to a subsidy, �nanced with lump-

sum taxes, which o¤set the distortions introduced by imperfect competition in the product

and factor markets. Also we neglect the role of capital accumulation. These assumptions

allow to obtain many of our results analytically but are empirically unrealistic. An extension

of our analysis would be that of considering a larger scale business cycle model similarly to

those in Christiano et al. (2005) or Smets and Wouters (2003). While this would add in terms

of realism, we believe that it would not alter the main message of this paper.
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A Technical Appendix

A.1 The E¢ cient Steady State and the E¢ cient Equilibrium Output

As in Bilbiie (2008) society�s welfare loss will be represented by a second order approximation

to a weighted average of households lifetime utilities, where weights are given by the relative

importance of agents�s groups in the economy. In order to study the welfare properties of

the economy without resorting to a full second order approximation to the model equations,

we assume an e¢ cient steady state of the economy. More precisely, we assume that the

government imposes a lump sum tax, T , on �rms such that steady state pro�ts are zero. The

tax proceeding are then used by the government to subsides steady state �rms�labor demand

at the constant rate � :28 In this case steady state pro�ts read as

D = Y � (1� �)W
P

L� T; (25)

where T = � WP L. Pro�t maximization implies

W

P
=

1�
1 + �p

�
(1� �)

MPL

where MPL is the steady state marginal product of labor. Given steady state pro�ts are

zero it follows that CS = CL = C and, thus, that agents have a common marginal rate of

substitution between labor and consumption, denoted by MRS. As a consequence the steady

state wage set by unions reads as

W

P
= (1 + �w)MRS:

The steady state labor market equilibrium implies

1�
1 + �p

�
(1� �)

MPL = (1 + �w)MRS: (26)

Given the selected production function, and normalizing labor productivity to unity, at the

e¢ cient steady state it has to be the case that

MPL =MRS = 1; (27)

From equation (26), the latter condition is satis�ed if

� = 1� 1�
1 + �p

�
(1 + �w)

(28)

As argued above the implied value of � leads to zero steady state pro�ts

D = Y � (1� �)W
P

L� T = Y � Y�
1 + �p

�2
(1 + �w)

�
 
1� 1�

1 + �p
�2
(1 + �w)

!
Y = 0

28Out of steady state taxes are zero: � = T = 0. This allows to preserve inequality between agents out of

the steady state and at the same time delivers steady state equality. Since the focus of the paper is not on the

long-run di¤erences across households, we view this devise as innocuous.
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Next, we solve the Social Planner problem (SPP). The equilibrium output which solve the

SPP corresponds to e¢ cient equilibrium output. The SPP reads as

max
fCH;t;CS;t;Ltg

�
	tC

1��
H;t

1� � + (1� �)
	tC

1��
S;t

1� � � �
L1+�H;t

1 + �
� (1� �)

L1+�S;t

1 + �
(29)

s:t: Ct = Yt = AtLt = �CH;t + (1� �)CS;t = At (�LH;t + (1� �)LS;t)

Writing the Lagrangian L,and taking the �rst order condition with respect to CH;t; CS;t; LH;t
and LS;t we �nd

CH;t = CS;t = Ct (30)

LH;t = LS;t = Lt: (31)

In short, at the e¢ cient equilibrium the economy behaves as if there was a representative agent

with marginal rate of substitution between consumption and hours given by 	�1t C�t L
�
t . The

social planner sets the latter equal to the marginal product of labor, At , which also represents

the equilibrium real wage, (W=P )Efft . Using the relationship just described, imposing the

market clearing condition Yt = Ct and using the production function, delivers the e¢ cient

level of output as

Y Eff
t = A

1+�
�+�

t 	
1

�+�

t (32)

Log-linearizing and considering that 	 = 1 delivers the log-deviations of the e¢ cient level

of output from the e¢ cient steady state as in equation (11) in the main text. In the e¢ cient

equilibrium the Euler equation for Ricardian must be satis�ed. Since the consumption is equal

for the two class of agents, then the Euler equation must be satis�ed by output. The natural

rate of interest is equal to the one speci�ed in equation (13) of the main text.

A.2 Derivation of the IS curve

Log-linearization of the Euler equation of Ricardian agents leads

cs;t = Etcs;t+1 �
1

�
Et (it � �t+1)�

1

�
� t+1 (33)

while from the consumption function of non-Ricardian consumer we get:

cH;t = lt + !t: (34)

Aggregate consumption is

ct = (1� �) cs;t + �cH;t (35)

combined with the Euler equation:

ct = Et (ct+1 � ��cH;t+1)�
(1� �)
�

Et (it � �t+1)�
(1� �)
�

� t+1: (36)
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Substituting for ct = yt, for Et�cH;t+1 = Et (�lt+1 +�!t+1) and for lt = yt � at we get

yt = Etyt+1 +
�

1� �Et�at+1 �
�

1� �Et�!t+1 �
1

�
Et (it � �t+1)�

1

�
� t+1 (37)

rewriting equation (37) in terms of output gap from the e¢ cient equilibrium output (xt =

yt�yEfft ), considering that rEfft = ��yEfft+1 �� t+1 and given the de�nition of the real wage
gap ~!t = !t � !Efft , we can �nally write the IS as

xt = Etxt+1 �
1

�
Et

�
it � �t+1 � rEfft

�
� �

1� �Et�~!t+1: (38)

A.2.1 The slope of the IS curve

Flexible wages In the case of �exible wages the real wage is given by

!t = �ct + �lt �  t; (39)

mct = !t � (yt � lt) = !t � at = (� + �)xt: (40)

Hence �~!t+1 = (� + �)�xt+1 +�at+1: Substitute in (38) to get

xt = Etxt+1 �
�
�fw
��1
�

Et

�
it � �t+1 � rEfft

�
(41)

where �fw = 1� �
1�� (� + �) :

Sticky wages In the case of sticky wages the real wage is given by

!t =
1

1 + � + �w
[wt�1 � pt] +

�

1 + � + �w
Et (wt+1 � pt) +

�w
1 + � + �w

((� + �)xt + at) (42)

This is a weighted average between: (i) the past nominal wage at current prices; (ii) the future

nominal wage at current prices; (iii) the �exible wage (mc+ a). Note that as �w �! 0; then

�w �!1; and this expression collapses to the usual �exible wage case. Then

�~!t+1 = z+
�w

1 + � + �w
((� + �)�xt+1 +�at+1) (43)

where z = 1
1+�+�w

[�wt ��pt+1] + �
1+�+�w

Et (�wt+2 ��pt+1)
Substituting (43) into (38) we get

xt = Etxt+1 �
(�sw)�1

�
Et (it � �t+1)�

(�sw)�1

�
� t+1 + (�

sw)�1�yEfft+1 +

�

1� �
(�sw)�1

1 + � + �w

�
(1 + �)Et�at+1 � Et

�
(�wt � �t+1) + �

�
�wt+2 � �t+1

��	
(44)

where �sw = 1� �
1��

�w(�+�)
1+�+�w

; which is equivalent to (20) in the main text.
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A.2.2 Proof of Propositions 1

When wages are �exible �w = 0 ;which implies that �w ! 1; and �sw ! �fw = 1 � �(�+�)
1�� ,

where �fw de�nes the slope of the IS curve in the case of �exible wages.29 Notice that

�sw � �fw = �(�+�)
1��

�
1� �w

1+�+�w

�
= �(�+�)

1��
1+�

1+�+�w
> 0 which proves (i). Moreover @�sw

@�w
=

@�sw

@�w
@�w
@�w

: Since @�sw

@�w
= ��(�+�)

1��
1+�

(1+�+�w)
2 < 0 and @�w

@�w
= ��w+�(1��w)+(1���w)

�w
< 0; it follows

that @�sw

@�w
> 0 which proves (ii). Since �sw < 0 , � > ��

sw
= 1

1+(�+�) �w
1+�+�w

; and @��
sw

@�w
=

@��
sw

@�w
@�w
@�w

= �
h
1 + (� + �) �w

1+�+�w

i�2
1+�

(1+�+�w)
2
@�w
@�w

> 0. It follows that (iii) is also proved.

A.3 Determinacy analysis

A.3.1 Proof of Propositions 2: Flexible prices and sticky wages

De�ne, as in Bilbiie (2008), dt = Dt
Y as the deviation of pro�ts�share over output from its

(zero) steady state level. Deviations of consumption of Ricardian agents from the e¢ cient

steady state can thus be written as 1
Y cS;t =

WL
Y (!t + lt) +

1
1��dt, while consumption of

non-Ricardian agents reads as 1
Y cH;t =

WL
Y (!t + lt). Also notice that dt = �mct. Under

�exible prices mct = 0, implying dt = 0: In this case cS;t = cH;t = ct, i.e. up to a log-linear

approximation the economy behaves as if there was a representative agent. Price �exibility

implies that the supply side of the model is de�ned solely by equation M2. Further, since

the wage gap is nil, it follows that the extra term in the IS curve, �
1��Et�~!t+1 vanishes.

Equilibrium dynamics are thus given by the system

(M2fp) �wt = �Et�
w
t+1 + �w(� + �)xt�

M4fp
�

xt = Etxt+1 � 1
�Et

�
it � �t+1 � rEfft

�
where the superscript fp stands for �exible prices. The latter is independent of the share

of non-Ricardian agents. As a consequence when monetary policy is conducted according to

policy rule (18) the requirement for determinacy is also isomorphic to that to be imposed on

a fully Ricardian model. To see this notice that �wt = �t +�!
eff
t = �t +�at in this case the

system (M2fp)�
�
M4fp

�
in matrix form reads as

A0

24 �t

xt

35 = A1

24 �t+1

xt+1

35 (45)

Where A0 =

24 1 ��w(� + �)
0 1

35 and A1 =
24 � 0

1
� (1� ��) 1

35. De�ning B = A�10 A1, con-

ditions for having two roots within the unit circle are: 1) detB < 1;2) trB � detB < 1

and 3) trB + detB > �1. Given Det (B) = � condition 1 is always satis�ed. Trace (B) =

�� 1
��w (�� � 1) (� + �) + 1, thus condition 2 is satis�ed if �� > 1. If condition 2 is satis�ed,

condition 3 imposes an upper bound on the value of ��, i.e. �� < 1 +
2�(1+�)
(�+�)�w

. QED

29Notice also that under �exible wages the second lines in (20) vanishes.
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A.3.2 Determinacy Analysis of the full 4X4 system

To obtain analytical results regarding the stability properties of the dynamic system resulting

from the model equations, we follow the strategy of transforming the polynomial derived from

the characteristic equation (see, Samuelson, 1941, and more recently section 4 in Felippa and

Park, 2004). More formally, as explained in Felippa and Park (2004), given the characteristic

polynomial

PA(
) = 
4 + a1

3 + a2


2 + a3
 + a4; (46)

the stability properties would depend on the location of the root inside the unit circle j
j < 1
(such a polynomial is known in the literature as ampli�cation polynomial): One can transform

this polynomial in an Hurwitz polynomial, PH(s); whose stability properties would depend on

the location of the roots in the left-hand plane <(s) � 0: To pass from PA(
) to PH(s), one

uses the conformal involuntary transformation


 =
1 + s

1� s: (47)

Given (47), it is easy to check that j
j 7 1, s 7 0:
In our case, the fourth order characteristic (ampli�cation) polynomial can be transformed

into the Hurwitz polynomial by using 
 = 1+s
1�s

~PH(s) =

�
1 + s

1� s

�4
+ a1

�
1 + s

1� s

�3
+ a2

�
1 + s

1� s

�2
+ a3

1 + s

1� s + a4: (48)

Expanding the polynomial, one obtains a quotient of two polynomials: ~PH(s) =
PH(s)
QH(s)

where

the roots of ~PH(s) are the roots of PH(s): Hence one needs to study the stability properties

of the following Hurwitz polynomial:

PH(s) = ~a4|{z}
a1+a2+a3+a4+1
a2�a1�a3+a4+1

+ s ~a3|{z}
2(2+a1�a3�2a4)
a2�a1�a3+a4+1

+ s2 ~a2|{z}
2(3a4�a2+3)

a2�a1�a3+a4+1

+ s3 ~a1|{z}
2(a3�a1�2a4+2)
a2�a1�a3+a4+1

+ s4 (49)

A.3.3 Forward Rule: Proof of Propositions 3

We consider the following policy rule

it = ���t+1: (50)

So the system is in matrix formulation (where �
1�� = �) :

2666664
�wt+1

�t+1

xt+1

~!t+1

3777775 =
2666664

1
� 0 � 1

��w(� + �) � 1
��w

0 1
� 0 � 1

��p
1
��

1
�
1
� (�� � 1)� �

1
� 1� � 1��w(� + �) � 1� (�w + �p)�

1
�
1
� (�� � 1)�p

1
� � 1

� � 1
��w(� + �) 1 + 1

� (�w + �p)

3777775

2666664
�wt

�t

xt

~!t

3777775
(51)
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The the coe¢ cient of the characteristic polynomial are

a1 = �
1 � 
2 � 
3 � 
4 = �trace(J0)(= � sum of the principal �rst-order minors of Jo)

a2 = 
1
2+ 
1
3+ 
1
4+ 
2
3+ 
2
4+ 
3
4 = sum of the principal second-order minors

of Jo

a3 = �
1
2
3 � 
1
2
4 � 
1
3
4 � 
2
3
4 = � (sum of the principal third-order minors

of Jo)

a4 = 
1
2
3
4 = det(J0) (= principal of fourth-order).

The characteristic polynomial is then equal to

p(
) = 
4 +

�
1

�
[�2� 2� � (�w + �p) + ��w(� + �)]

�

3

+

�
1

�
(�p + �w + � + 1)�

1

�
�w (� + �)

�
�

�
1 +

1

�

�
+
1

��
�p (�� � 1)

�
+
1

�2
(1 + 3� + �w + �p)

�

2

+

�
� 1

�2
(2 + 2� + �w + �p � ��w (� + �))

�

 +

1

�2

Applying the above transformation in (49) to get the Hurwitz polynomial, it yields

� 1
��w�p (� + �) (�� � 1)

D| {z }
~a4

+s
2 (� � 1) [��w � �p + ��w(� + �)]

D| {z }
~a3

+s2

26644�2 + 4� 8� + 2 (1 + �) [��p � �w + �w (� + �)�] + 2
��w (� + �)�p (�� � 1)

D| {z }
~a2

3775

+s3

0BB@�8 + 8�2 + 2 (1� �) [� (�w + �p) + ��w(� + �)]D| {z }
~a1

1CCA+ s4 (52)

where

D = 4�2 + 4 + 8� + 2 [� + 1] (�p + �w)�
1

�
�w�p (� + �) (�� � 1)� 2 (1 + �)��w(� + �):

Note there should be 3 positive roots and 1 negative root for the REE to be unique. It

follows that a necessary condition must be that ~a4 < 0: Proof strategy: we look at the signs

of the coe¢ cients ~ai, and we exploit the Decartes�rule of sign.

Look separately at the case when �� > 1 and when �� < 1.

Case �� > 1:
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~a4) In this case the numerator of ~a4 (i.e., N~a4)
30 is negative, hence the denominator must

be positive. For D to be positive, the following restriction must hold:

�� < 1 +
4��2+4�+8��+2�(1+�)([�p+�w���w(�+�)]

�w�p(�+�)
:

~a3) Then, since D > 0, there are two cases:

i) N~a3 > 0 => ~a3 > 0; that happens for low values of �; more precisely when

� <
�w+�p
�w(�+�)

:

Note that in this case 4��2+4�+8��+2�(1+�)([�p+�w���w(�+�)]
�w�p(�+�)

+ 1 > 1 and so the set is non

empty. Moreover N~a1 = �8 + 8�2 + 2 (1� �) [� (�w + �p) + ��w(� + �)] < 0 => ~a1 < 0:

Whatever the sign of ~a2, the signs of the coe¢ cients in (52) are: -,+,?,-,+. By Decartes�

rule of sign, PH(s) then admits then 1 or 3 positive roots. However, PH(�s) = +,-,?,+,+,

and hence there can be only one negative root. It follows that under the above conditions

2�(1+�)[2(1+�)+�p+�w���w(�+�)]
�w�p(�+�)

+ 1 > �� > 1

� <
�w+�p
�w(�+�)

the REE is determinate.

ii) N~a3 < 0 => ~a3 < 0; that happens for high values of �; more precisely when

� >
�w+�p
�w(�+�)

: In this case, however, the set 2�(1+�)[2(1+�)+�p+�w���w(�+�)]�w�p(�+�)
+1 > �� > 1 is non

empty i¤ � < �p+�w
�w(�+�)

+ 2(1+�)
�w(�+�)

: Hence now we are looking at values of � such that

�p + �w
�w(� + �)

+
2(1 + �)

�w(� + �)
> � >

�w + �p
�w(� + �)

(53)

Since the �rst two coe¢ cients (~a4; ~a3) are negative and the last is positive, it must be that

~a2 > 0 and ~a1 < 0 to have three signs inversions. This is always true if �� > 1 and (53) hold.

It follows that under the above conditions

2�(1+�)[2(1+�)+�p+�w���w(�+�)]
�w�p(�+�)

+ 1 > �� > 1

�p+�w
�w(�+�)

+ 2(1+�)
�w(�+�)

> � >
�w+�p
�w(�+�)

the REE is determinate.

Putting together i) and ii), the equilibrium is determinate i¤

2� (1 + �) [2 (1 + �) + �p + �w � ��w(� + �)]
�w�p (� + �)

+ 1 > �� > 1 (54)

and
�p + �w
�w(� + �)

+
2(1 + �)

�w(� + �)
> � >

�w + �p
�w(� + �)

: (55)

Case �� < 1:

~a4) N~a4 > 0; hence it must be that D < 0. For D to be negative, the following restriction

must hold: 2�(1+�)[2(1+�)+�p+�w���w(�+�)]�w�p(�+�)
+ 1 < ��: In this case, however, the set

1 > �� > 1 +
2� (1 + �) [2 (1 + �) + �p + �w � ��w(� + �)]

�w�p (� + �)
(56)

30N stands for numerator, D for denominator and the pedix for the correspondent coe¢ cient ~ai.
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is non empty i¤:

� >
�p + �w
�w(� + �)

+
2(1 + �)

�w(� + �)
: (57)

~a3) Given (57); =) N~a3 < 0 => ~a3 > 0; since D < 0: In this case, since the �rst two

coe¢ cients: ~a4 < 0; ~a3 > 0, and the last is positive, the only way to have three signs inversions

is that at least one between ~a2 and ~a1 is negative (in other words they cannot be both positive).

Condition for ~a2 < 0 => N~a2 > 0 =>

�� > 1�
� (1 + �) [�w (� + �)�� �p � �w]

�w (� + �)�p
� 2� (1� �)2

�w (� + �)�p

which, if (56) holds, is satis�ed i¤:

� <
�p + �w
�w(� + �)

+
4 (1 + �)

�w(� + �)
+

2 (1� �)2

�w(� + �) (1 + �)
: (58)

In other words, (58) guarantees that

1 +
2�(1+�)[2(1+�)+�p+�w���w(�+�)]

�w�p(�+�)
> 1� �(1+�)[�w(�+�)���p��w]

�w(�+�)�p
� 2�(1��)2

�w(�+�)�p
.

Condition for ~a1 < 0 => N~a1 > 0 =>

� >
4(1 + �) + �w + �p

�w(� + �)
: (59)

Note that: if (57) holds, at least one between (58) and/or (59) is satis�ed, since �p+�w
�w(�+�)

+
2(1+�)
�w(�+�)

<
4(1+�)+�w+�p

�w(�+�)
<

�p+�w
�w(�+�)

+ 4(1+�)
�w(�+�)

+ 2(1��)2
�w(�+�)(1+�)

: Hence (57) guarantees that at

least one between ~a2 and ~a1 is negative. Decartes�rule of signs then implies 3 positive roots.

To conclude, in the case �� < 1, the equilibrium is determinate i¤

1 > �� > 1 +
2� (1 + �) [2 (1 + �) + �p + �w � ��w(� + �)]

�w�p (� + �)
(60)

and

� >
�p + �w
�w(� + �)

+
2(1 + �)

�w(� + �)
: (61)

Putting together the two cases �� > 1 and �� < 1., it yields Proposition 3. QED

A.3.4 Contemporaneous Rule

We consider the following policy rule:

it = ���t + ��w�
w
t (62)

The corresponding matrix formulation of our dynamic system is:

2666664
�wt+1

�t+1

xt+1

~!t+1

3777775 =
2666664

1
� 0 � 1

��w(� + �) + 1
��w

0 1
� 0 � 1

��p
1
���w +

1
��

1
��� �

1
�
1
� � �

1
� 1� � 1��w(� + �) � 1� (�w + �p) +

1
�
1
��p

1
� � 1

� � 1
��w(� + �) 1 + 1

� (�w + �p)

3777775

2666664
�wt

�t

xt

~!t

3777775 :
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The coe¢ cients of the characteristic polynomial are:

a1 = �trace(J0) = �
1

�
[2 (1 + �) + (�p + �w)� ��w (� + �)]

a2 = 1+
4

�
+
1

�2
+
1

�

�
1 +

1

�

�
(�p + �w)�

1

�

�
1 +

1

�

�
��w (� + �)+

1

��

�
��w +

1

�
�p

�
(�+ �)�w

a3 = �
2

�

�
1

�
+ 1

�
� 1

�2
(�p + �w)+

�
�

�2
� 1

��2
(� + �)�p�w (�� + ��w)�

1

��

�
1 +

1

�

�
��w

�
(�+ �)�w

a4 =
1

�2

�
1 +

1

�
(� + �)�w��w

�
:

Repeating the steps above in (49), the Hurwitz polynomial is given by:

1
� (1� (�� + ��w)) (� + �)�p�w

D| {z }
~a4

+s
2 (1� �) [�p + �w � �w(��w + (� + �)�)] + 2

��w [(� + �) (�� + ��w)�p + (� � 1)���w ]
D| {z }
~a3

+s2
4 (1� �)2 � 2 (1 + �) [�p + �w � ��w (� + �)]� 2

��w (� + �) [�p � (� � 3)��w ]
D| {z }
~a2

+s3
8
�
�2 � 1

�
+ 2 (� � 1) [�p + �w � (� + �)��w]� 2

� (�+ �)�w [(� + 3)��w � �p (�� + ��w)]
D| {z }
~a1

+s4 (63)

where

D = 2 (1 + �) [2 (1 + �) + (�p + �w)� (� + �)��w]

+
2

�
(� + 1) (� + �)�w��w +

1

�
(� + �) (1 + �� + ��w)�p�w

Note there should be 3 positive roots and 1 negative root for the REE to be unique. It

follows that a necessary condition must be that ~a4 < 0: As for the proof above in A.3.3, we

look at the signs of the coe¢ cients ~ai, and we exploit the Decartes�rule of sign.

A.3.5 Proof of Propositions 4: Case ��w = 0

If ��w = 0; the Hurwitz polynomial is:
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1
� (1� ��) (� + �)�p�w

den| {z }
~a4

+

s
2 (1� �) [(�p + �w)� (� + �)��w] + 2

� (� + �)���p�w

den| {z }
~a3

+

s2
4 (1� �)2 � 2 (1 + �) [(�p + �w)� ��w (� + �)]� 2

� (� + �)�p�w

den| {z }
~a2

+

s3
8�2 � 8 + 2 (� � 1) [(�p + �w)� (� + �)��w]� 2

��p�w (�+ �)��
den| {z }
~a1

+s4

where

den = 2 (1 + �) [2 (1 + �) + (�p + �w)� (� + �)��w] +
1

�
(� + �) (1 + ��)�p�w

Look separately at the case when �� > 1 and when �� < 1.

Case �� > 1:

~a4) In this case N~a4 < 0, hence D must be positive. For D to be positive, the following

restriction must hold:

�� > �1�
2� (1 + �) [2 (1 + �) + (�p + �w)� (� + �)��w]

(� + �)�p�w
= ��

a;CR
� : (64)

~a3) Then, since D > 0, there are two cases:

i) N~a3 > 0 => ~a3 > 0; that happens for:

�� >
� (1� �) [(� + �)��w � (�p + �w)]

(� + �)�p�w
= ��

b;CR
� : (65)

Note that in this case ~a1 < 0; since ~a1 = �~a3 � 8(1 � �2): It follows that, whatever the sign

of ~a2; PH(s) exhibits three sign changes, while PH(�s) only one. So there will be 3 positive
roots and 1 negative root. This proves that if is �� > max

n
1; ��

a;CR
� ; ��

b;CR
�

o
; the REE is

determinate.

ii) N~a3 < 0 => ~a3 < 0; that happens for: �� <
�(1��)[(�+�)��w�(�p+�w)]

(�+�)�p�w
= ��

b;CR
� :

Since anyway, it should be �� > 1 and �� > ��
a;CR
� ; the condition �� < ��

b;CR
� then requires

��
b;CR
� > 1 and ��b;CR� > ��

a;CR
� to have an interval where the 3 conditions are all jointly satis�ed.

This implies the following conditions:

� >
�p

� (1� �) +
�p + �w
(� + �)�w

and

� <
� (�p + �w) [1 + 3�] + (� + �)�p�w + 4� (1 + �)

2

� (� + �)�w [1 + 3�]
:
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Under this conditions, since the �rst two coe¢ cients (~a4; ~a3) are negative and the last is

positive, then it must be that ~a2 > 0 and ~a1 < 0 to have three signs inversions.

Condition for ~a2 > 0 => N~a2 > 0 =>

� >
�p

�(1+�) �
2(1��)
�w(�+�)

+
�p+�w
�w(�+�)

:

Condition for ~a1 < 0 => N~a1 < 0 =>

�� >
��
b;CR
� � 4�(1��2)

�p�w(�+�)
:

So determinacy can occur i¤ all the following conditions are jointly satis�ed:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�� > �1�
2�(1+�)[2(1+�)+(�p+�w)�(�+�)��w]

(�+�)�p�w
= ��

a;CR
�

�� <
�(1��)[(�+�)��w�(�p+�w)]

(�+�)�p�w
= ��

b;CR
�

�� > 1

�� >
��
b;CR
� � 4�(1��2)

�p�w(�+�)

� >
�p

�(1+�) �
2(1��)
�w(�+�)

+
�p+�w
�w(�+�)

� >
�p

�(1��) +
�p+�w
(�+�)�w

� <
�(�p+�w)[1+3�]+(�+�)�p�w+4�(1+�)

2

�(�+�)�w[1+3�]

It is easy to show that this case is extremely unlikely. First, since it should be ��b;CR� �
4�(1��2)
�p�w(�+�)

< �� < ��
b;CR
� ; then if � = 1 this case does not admit determinacy. More-

over, for � ! 1; also the set that de�ne the conditions on � becomes empty. Second,

for our benchmark calibration for the conditions above that de�ne the admissible values

of � imply: � >
�p

�(1+�) �
2(1��)
�w(�+�)

+
�p+�w
�w(�+�)

= 0:42246; � >
�p

�(1��) +
�p+�w
(�+�)�w

= 9:3275;

� <
�(�p+�w)[1+3�]+(�+�)�p�w+4�(1+�)

2

�(�+�)�w[1+3�]
= 4:8919; that can not be jointly satis�ed.

Finally, ��a;CR� and ��b;CR� are equal for a value of � that implies ��a;CR� = ��
b;CR
�

=
�(1��)[(�+�)�p�w+4�(1+�)2]

(�+�)�p�w�[1+3�]
: It is su¢ cient to assume that

�(1��)[(�+�)�p�w+4�(1+�)2]
(�+�)�p�w�[1+3�]

is less

than one to get rid of this case. So in what follows we will assume this mild condition, that is

very likely to be satis�ed.

Case �� < 1:

~a4) In this case N~a4 > 0, hence D must be negative. Thus:

�� < �1�
2� (1 + �) [2 (1 + �) + (�p + �w)� (� + �)��w]

(� + �)�p�w
= ��

a;CR
� (66)

~a3) Then, since D < 0, there are two cases:

i) N~a3 < 0 => ~a3 > 0; that happens for

�� <
� (1� �) [(� + �)��w � (�p + �w)]

(� + �)�p�w
= ��

b;CR
� (67)

Note that in this case ~a1 < 0; since ~a1 = �~a3�8(1��2): It follows that, whatever the sign
of ~a2; PH(s) exhibits three sign changes, while PH(�s) only one. So there will be 3 positive
roots and 1 negative root. This proves that if is �� > min

n
1; ��

a;CR
� ; ��

b;CR
�

o
; the REE is

determinate.
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ii) N~a3 > 0 => ~a3 < 0; that happens for: �� >
�(1��)[(�+�)��w�(�p+�w)]

(�+�)�p�w
= ��

b;CR
� :

Since anyway, it should be �� < 1 and �� < ��
a;CR
� ; the condition �� > ��

b;CR
� then requires

��
b;CR
� < 1 and ��b;CR� < ��

a;CR
� to have an interval where the 3 conditions are all jointly satis�ed.

This implies the following conditions:

� >
�p

� (1� �) +
�p + �w
(� + �)�w

and

� <
� (�p + �w) [1 + 3�] + (� + �)�p�w + 4� (1 + �)

2

� (� + �)�w [1 + 3�]
:

Under this conditions, since the �rst two coe¢ cients (~a4; ~a3) are negative and the last is

positive, then it must be that ~a2 > 0 and ~a1 < 0 to have three signs inversions.

Condition for ~a2 > 0 => N~a2 < 0 =>

� <
�p

�(1+�) �
2(1��)
�w(�+�)

+
�p+�w
�w(�+�)

:

Condition for ~a1 < 0 => N~a1 > 0 =>

�� <
��
b;CR
� � 4�(1��2)

�p�w(�+�)
:

This latter condition, however, contradicts the condition above that yields ~a3 < 0; that is:

�� >
��
b;CR
� : Hence this case does not admit determinacy of REE.

The two conditions that are necessary and su¢ cient for the determinacy of the equilibrium

are therefore: �� > max
n
1; ��

a;CR
� ; ��

b;CR
�

o
or �� < min

n
1; ��

a;CR
� ; ��

b;CR
�

o
: QED

A.3.6 Proof of Proposition 5: Case ��w 6= 0

Let�s now consider the general case, where the Hurwitz polynomial is (63).

A �rst important result is that 1 = �� + ��w identi�es a zero root. This analytically

suggests that the numerical result in Galí (2008) regarding the model of Erceg et al. (2000)

still survives in a model with LAMP.

Here we are just looking for a necessary condition that involves �� + ��w 7 1: We know
that a necessary condition is ~a4 < 0: This is satis�ed i¤:

1) either N~a4 > 0; D < 0

2) or N~a4 < 0; D > 0:

That implies:

1) either (�� + ��w) < min
�
1; ���;�w

	
2) or (�� + ��w) > max

�
1; ���;�w

	
:

QED

A.4 Proposition 6: derivation of the Welfare-based Loss Function

Remember that the steady state of our economy is e¢ cient, therefore:

vL;H
uC;H

=
vL;S
uC;S

=
W

P
=
Y

L
= 1 (68)
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where LH = LS = L = Y and CH = CS = C = Y: The last equality in (68) holds since the

economy production function is: Yt = LtAt; where A = 1 in steady state.

As in Bilbiie (2008) we assume that the Central Bank maximizes a convex combination of

the utilities of two types of households, weighted by the mass of agents of each type, i.e.:

Wt = � [u (CH;t)� v(LH;t)] + (1� �) [u (CS;t)� v(LS;t)] (69)

we know that in our model, because of the presence of the union, LH;t = LS;t = Lt for each t,

this means that (69) can be rewritten as

Wt = �u (CH;t) + (1� �)u (CS;t)� v (Lt) (70)

A second order approximation of �u (CH;t) and (1� �)u (CS;t) delivers

�u (CH;t)� �u (CH) ' �uCHCH

�
ch;t +

1

2
(1� �) c2h;t + ch;t t

�
+ tip (71)

(1� �)u (Cs;t)� �u (Cs) ' (1� �)uCsCs
�
cs;t +

1

2
(1� �) c2s;t + cs;t t

�
+ tip (72)

Also a second order approximation to v (Lt) yields:

v (Lt)� v (L) ' vLL

�
lt +

1 + �

2
l2t

�
(73)

Summing all the terms and considering steady state consumption levels of the two households

are identical

Wt �W = �uCC

�
ch;t +

1

2
(1� �) c2h;t

�
+ uCCct t

+(1� �)uCC
�
cs;t +

1

2
(1� �) c2s;t

�
� vLL

�
lt +

1 + �

2
l2t

�
+ tip (74)

From the economy production function we know that

lt = yt + dw;t + dp;t � at (75)

where dw;t = log
R 1
0

�
W j
t

Wt

���w
dj is the log of the wage dispersion and dp;t = log

R 1
0

�
P it
Pt

���p
di

is the log of the price dispersion. Both terms are of second order and therefore they cannot

be neglected in a second order approximation. Notice that

l2t = (ŷt + dw;t + dp;t � at)
2 = y2t + a

2
t � 2ytat (76)

using (75), the e¢ cient steady state condition uCC = vLL; the equilibrium condition ct = yt

we get:

Wt �W
uCC

= yt +
(1� �)
2

�
�c2h;t + (1� �) c2s;t

�
+ ct t +

�
�
yt + dw;t + dp;t � at +

1 + �

2
y2t � (1 + �) ytat

�
+ tip (77)

41



Next notice that cH;t = wt + lt;then

c2H;t = w2t + l
2
t + 2wtlt

= w2t + y
2
t + a

2
t � 2ytat + 2wtyt � 2wtat

= (yt � at)2 + w2t + 2wtyt � 2wtat

and cS;t = 1
1��ct �

�
1��cH;t;thus

c2S;t =
1

(1� �)2
c2t +

�
�

1� �

�2
c2H;t � 2

�
1

1� �

��
�

1� �

�
ctcH;t

=
1

(1� �)2
c2t +

�
�

1� �

�2 �
ŵ2t + l

2
t + 2ŵtlt

�
� 2�

(1� �)2
ct (ŵt + lt)

=
1

(1� �)2
ŷ2t +

�
�

1� �

�2 �
ŵ2t + ŷ

2
t + a

2
t � 2ŷtat + 2ŵtŷt � 2ŵtat

�
� 2�

(1� �)2
�
ŷtŵt + ŷ

2
t � ytat

�
then �

�c2H;t + (1� �) c2S;t
�

= �
�
y2t + a

2
t � 2ytat + ŵ2t + 2ŵtŷt � 2wtat

�
+

1

(1� �) ŷ
2
t +

�2

(1� �)
�
ŵ2t + ŷ

2
t + a

2
t � 2ŷtat + 2ŵtŷt � 2ŵtat

�
� 2�

(1� �)
�
ŷtŵt + ŷ

2
t � ytat

�
collecting terms and simplifying�

�c2H;t + (1� �) c2S;t
�
=

�
�

(1� �)

�
w2t + y

2
t +

�

(1� �)a
2
t � 2

�
�

(1� �)

�
wtat

Using this results and considering that at is independent of policy the welfare function can

be rewritten as

Wt �W
uCC

=
1

2

�
(1� �)�
(1� �) w

2
t � (� + �) y2t � 2

(1� �)�
(1� �) wtat + 2yt t + 2 (1 + �) ytat

�
� (dw;t + dp;t) + tip

Next we have to rewrite some terms. Recall that (� + �) yEfft = (1 + �) at +  t, thus

(� + �) yty
Eff
t = (1 + �) ytat + yt t

and

(� + �)
�
yt � yefft

�2
= (� + �)

�
y2t +

�
yefft

�2
� 2ytyefft

�
= (� + �)

�
y2t +

�
yefft

�2�
� 2 (� + �) ytyefft

substituting for the previous result

(� + �)
�
yt � yefft

�2
= (� + �)

�
y2t +

�
yefft

�2�
� 2 (1 + �) ytat � 2yt t
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In this case

Wt �W
uCC

=
1

2

�
(1� �)�
(1� �)

�
w2t � 2wtat

�
� (� + �)x2t

�
� (dw;t + dp;t) + tip

where xt =
�
yt � yEfft

�
and given that yEfft is independent of policy. Also notice that

wefft = at; which is a term independent of policy. Multiplying wEfft by wt we get: wtw
eff
t =

wtat, and therefore�
wt � wefft

�2
= w2t +

�
wefft

�2
� 2wtwefft = w2t � 2wtat +

�
wefft

�2
which implies

w2t � 2wtat =
�
wt � wefft

�2
�
�
wefft

�2
= ~!2t �

�
wefft

�2
Substituting the latter into the welfare loss function and considering that wefft is a term

independent of policy, we get

Wt �W
uCC

=
1

2

�
(1� �)�
(1� �) ~!

2
t � (� + �)x2t

�
� (dw;t + dp;t) + tip

Using Woodford Lemma 1 and Lemma 2, we can �nally write the present discounted value of

the Central Bank loss function as

L = �1
2

1X
t=0

�t
�
(� � 1)�
(1� �) ~!

2
t + (� + �)x

2
t +

�w
�w
(�wt )

2 +
�p
�p
�2t

�
+ tip

Notice that if � < 1 deviation of the real wage from its e¢ cient level leads to a lower society�s

loss.

A.4.1 Derivation of the welfare function under �exible wages

Remember that in the case in which wages are fully �exible, the labor supply is:

!t = �ct + �lt �  t = (� + �) yt � �at �  t � �dp;t (78)

hence, subtracting the e¢ cient equilibrium to the LHS and the RHS of the previous equation

~!t = (� + �)xt � �dp;t (79)

where we use the fact that dp;t � dEffp;t = dp;t (given that d
Eff
p;t = 0). Moreover, we know

at = aEfft and that  t =  Efft and terms multiplied by ��dp;t are terms higher than second
order. Then

~!2t = (� + �)
2 x2t

this means that the welfare-loss can be re-written as follows:

L = �1
2

1X
t=0

�t
�
(� + �)

�
1 + (� � 1) (� + �) �

1� �

�
x2t +

�p
�p
�2t

�

43



Notwithstanding wage �exibility there is and additional term with respect to a fully Ricardian

framework, given by (�+�)(��1)�
1�� x2t . Two conditions are necessary for the presence of this

additional term. Once again this is due to the presence of rot agents and similarly it disappears

when � = 1. Also, when � < 1, the identi�ed additional term leads to a reduction in society�s

welfare loss.

A.4.2 Proofs of Proposition 8

Given (M1) it follows immediately that strict price in�ation targeting and strict wage gap

targeting are equivalent. Indeed, �t = 0;8t, ~!t = 0;8t:In this case the model reduces to

(M2) �wt = �Et�
w
t+1 + �w(� + �)xt

(M3) �wt = �!
Eff
t

(M4) xt = Etxt+1 � 1
�Et

�
it � rEfft

�
from which we can determine the path f�t; �wt ; xtg

1
t=0 independently of �: The loss function

also does not depend on �: From (M3) and Given at = �aat�1 + "at ; then �
w
t = �!Efft =

�at = (�a � 1)at�1 + "at . For �a < 1

V ar(�w) = V ar(�at) = (�a � 1)2V ar(at) + �2a =
2

1 + �a
�2a

Then substituting (M3) into (M2) :

�wt = �Et�
w
t+1 + �w(� + �)xt

�!Efftt = �Et�!
Eff
t+1 + �w(� + �)xt

then assuming that at is known at t it follows that

xt =
1

�w(� + �)
[�at � �Et�at+1] =

1

�w(� + �)
[(�a � 1) (1� ��a) at�1 + (1� �(�a � 1)) "at ]

One can found a value for the variance of the output gap as

V ar (xt) =

�
(�a � 1) (1� ��a)

�w(� + �)

�2 �2a
1� �2a

+

�
1� �(�a � 1)
�w(� + �)

�2
�2a

Substitute the unconditional variances in unconditional expectation of the loss function to

get unconditional society�s loss.
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Figure 1. Determinacy and Indeterminacy regions when

it = ���t+1

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

a) Flexible Wages

φ
π

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ
π

λ

b) Sticky Wages

Indeterminacy region

Determinacy region

Indeterminacy
 region

Instability region

Indeterminacy region

Indeterminacy
regionDeterminacy region

Determinacy region

Determinacy region

Figure 2. Determinacy and Indeterminacy regions under the rule: it = ���t+1. Panel a):

�exible wages, Panel b): sticky wages
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Figure 3. Determinacy and Indeterminacy regions when it = ���t:
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�exible wages, Panel b): sticky wages.

46



2 4 6 8 10 12 14 16 18 20
0

0.5

1
(a) Output

2 4 6 8 10 12 14 16 18 20
­0.4

­0.2

0
(b) Hours

2 4 6 8 10 12 14 16 18 20
­0.5

0

0.5
(c) Wage Inflation

2 4 6 8 10 12 14 16 18 20
­0.5

0

0.5
(d) Price Inflation

2 4 6 8 10 12 14 16 18 20
0

0.5

1
(e) Consumption non ricardian

2 4 6 8 10 12 14 16 18 20
0

0.5

1
(f) Real wage

2 4 6 8 10 12 14 16 18 20
0

1

2

3
(g) Consumption ricardian

quarters
2 4 6 8 10 12 14 16 18 20

0

5

(h) Individual profits

quarters
λ=0 λ=0.25 λ=0.5 λ=0.75

Figure 5. Impulse response function to a technology shock under full commitment for

alternative values of the share of non-Ricardian agents (�)
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Figure 6. Unconditional welfare loss under strict wage in�ation targeting and strict price

in�ation targeting. The latter is reported for two alternative average durations of wage

contracts: 3 quarters (�w = 2=3) and 4 quarters (�w = 3=4).
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C Tables

Average duration

of wage contracts

(1��w)�1

� = 0 � = 0:25 � = 0:5 � = 0:75

Full Commitment

1 0 0 0 0

2 0.0046 0.0054 0.007 0.0108

3 0.0059 0.0066 0.008 0.0125

4 0.0066 0.0071 0.0084 0.0125

5 0.0069 0.0075 0.0086 0.0124

Table 1: Unconditional welfare loss under full commitment. We consider alternative parame-

terizations for the share of non-Ricardian consumers and alternative average duration of wage

contracts. The welfare loss is expressed as a percentage of the e¢ cient steady state level of

consumption, while the average duration of wage contracts is expressed in quarters.
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Average duration

of wage contracts

(1��w)�1

� = 0 � = 0:25 � = 0:5 � = 0:75

A) it = ���t

1 10,0.03 -10,0.02 -10,0.02 -10,0.02

2 5,1.3 5.1,1.1 6.1,0.9 -10,4.8

3 4.3,2.1 4.5,1.9 5.4,1.6 10,1.4

4 4.3,2.8 4.6,2.5 5.4,2.1 9.6,1.9

5 4.4,3.5 4.8,3.2 5.6,2.8 9.4,2.4

B) it = ��Et�t+1

1 10,0.06 -5.2,0.1 -10,0.06 -10,0.06

2 7.8,1 8.4,0.9 10,0.8 -10,0.6

3 6.5,1.6 7.1,1.4 9.4,1.3 10,2.2

4 6.4,2.2 7.1,2 9,1.8 10,2.7

5 6.7,2.8 7.3,2.6 9.1,2.3 10,3.4

Table 2: Panel A: Optimal contemporaneuos in�ation response coe¢ cient (left), welfare loss

(right). Panel B: Optimal expected in�ation response coe¢ cient (left), welfare loss (right).

The welfare loss is expressed as a fraction of the e¢ ceint steady state consumption multiplied

by one hundred. The average duration of wage contracts is expressed in quarters

49



Average duration

of wage contracts

(1��w)�1

� = 0 � = 0:25 � = 0:5 � = 0:75

A) it = ���t + �yyt

1 10,0.05,0.04 -10,0.04,0.03 -10,0.05,0.03 -10,0.05,0.03

2 5.5,0.2,1.2 5.6,0.16,1.1 6.45,0.08,0.9 -10,-1.3,3.4

3 4.42,0.15,1.9 4.7,0.12,1.8 5.59,0.07,1.5 10,-0.07,1.4

4 4.8,0.2,2 5.04,0.17,1.8 5.8,0.1,1.5 9.5,-0.04,1.8

5 5.05,0.2,3.2 5.37,0.18,3 6.5,0.13,2.7 9.4,-0.01,2.4

B) it = ���t + ���
w
t

1 10,-0.006,0.04 -10,-0.13,0.02 -10,-0.11,0.03 -9.2,0.5,0.04

2 10,7.24,0.4 10,6.13,0.5 10,4.18,0.6 -10,-10,0.7

3 6.75,10,0.6 7.9,10,0.7 10,10,0.8 10,7.8,1.2

4 4.33,10,0.7 5.2,10,0.8 7.2,10,0.9 10,10,1.2

5 3.3,10,0.8 4.12,10,0.8 5.82,10,0.9 10,10,1.3

Table 3: Panel A: Optimal in�ation response coe¢ cient (left), optimal output response co-

e¢ cient (center), welfare loss (right). Panel B: Optimal in�ation response coe¢ cient (left),

optimal wage in�ation response coe¢ cient (center), welfare loss (right). The welfare loss is

expressed as a fraction of the e¢ ceint steady state consumption multiplied by one hundred.

The average duration of wage contracts is expressed in quarters
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