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Abstract

This paper describes an algebraic construction of bivariate interpolatory subdivision masks
induced by three-directional box spline subdivision schemes. Specifically, given a three-directional
box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by
constructing an appropriate correction mask to convolve with the three-directional box spline mask.
The proposed approach is based on the analysis of certain polynomial identities in two variables
and leads to interesting new interpolatory bivariate subdivision schemes.
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1 Introduction

Interpolatory subdivision schemes are useful practical tools to generate graphs of functions, curves and
surfaces interpolating given sets of points. As any subdivision scheme, they consist in the repeated
application of linear rules determining successive refinements of coarse initial meshes and converging
to continuous (interpolatory) limits. In the “standard” bivariate situation, the refinement rules are
simple average rules with the average coefficients defining the so called subdivision mask, a finite
sequence of real numbers hereafter denoted by a = {aα, α ∈ Z2}. In the interpolatory case, the mask
a satisfies a2α = δα,0, for all α ∈ Z2. The subdivision mask a is associated with the bivariate Laurent
polynomial, or subdivision symbol,

a(z1, z2) =
∑
α∈Z2

aαz
α, zα = zα1

1 zα2
2 , z1, z2 ∈ C ,

whose algebraic properties translate into analytical properties of the corresponding subdivision scheme
and of its limit (see [2], [3], [10], [21] and references therein). For example, a convergent subdivision
scheme is interpolatory if and only if its symbol satisfies

a(z1, z2) + a(−z1, z2) + a(z1,−z2) + a(−z1,−z2) = 4 ,

or a “shifted” version of it.
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‡Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano, Italy.
tel.: +39-0264485735 - fax: +39-0264485705 - email: lucia.romani@unimib.it

1



This is actually the feature that we are going to exploit in this paper to provide an algebraic procedure
for constructing an interpolatory bivariate symbol from a given non–interpolatory one. In particular,
in this paper we confine our attention to the case of a three-directional box spline symbol i.e.,

a(z1, z2) = 4
(1 + z1)

k1

2k1
(1 + z2)

k2

2k2
(1 + z1z2)

k3

2k3
, ki > 0, i = 1, 2, 3 ,

since, in view of the results in [5], three-directional symbols are building blocks of any reasonable
bivariate subdivision scheme. This subject was started in [19] and further developed in [20] where
interpolatory subdivision masks induced by bivariate box splines were considered for the first time.
There, the regularity and the interpolatory property of the underlying refinable function as well as
the convergence of the corresponding subdivision scheme are established only for three-directional
box splines of type Bk,k,k belonging to the smoothness class C2k−2. Later, the same problem was
investigated by Jia in [15], where existence and uniqueness of interpolatory masks induced by multi-
dimensional box splines of type Bk,k,k is discussed, though no constructive strategies are given. In this
paper, a family of interpolatory masks induced by a more general box spline Bk1,k2,k3 is considered.

At the core of our approach is the idea of looking for a bivariate polynomial correction m(z1, z2) such
that the modified symbol â(z1, z2) = a(z1, z2)m(z1, z2) fulfills the necessary condition â(1, 1) = 4 and
the interpolatory condition

â(z1, z2) + â(−z1, z2) + â(z1,−z2) + â(−z1,−z2) = 4zn1
1 zn2

2 , (1.1)

for suitable even integers n1, n2. More specifically, our strategy may determine a family of bivariate
polynomial corrections

mω(z1, z2) = m(z1, z2) + ωk(z1, z2), ω ∈ R ,

with m(z1, z2) as above and k(z1, z2) a “kernel” polynomial such that k(1, 1) = 0 and ã(z1, z2) =
a(z1, z2)k(z1, z2) satisfies

ã(z1, z2) + ã(−z1, z2) + ã(z1,−z2) + ã(−z1,−z2) = 0 .

In one respect this paper is therefore a continuation of [6], [7] where the unidimensional case is
treated. In fact, in [6], [7] it is shown that, under some reasonable assumptions on the degree of the
correction polynomials and under some primality assumptions on the symbol of the given univariate
non-interpolatory scheme, all the admissible corrections can be determined by solving a set of poly-
nomial equations that are equivalent in a matrix setting to inverting a certain Hurwitz matrix defined
by the coefficients of the given symbol. But, on the other hand, it is clear that the bivariate extension
of the results in [6], [7] is not straightforward at all, since the solution of the analogue bivariate poly-
nomial equation through the use of Hilbert Nullstellensatz generally provides high degree solutions of
poor applicative value.

To circumvent this difficulty, in this paper we follow a different approach motivated by the work of
Rabarison and de Villiers [12] on the characterization of interpolatory bivariate mask symbols. The
proposed strategy proceeds by splitting the correction symbol m(z1, z2) into two components which
can be individually characterized as solutions of Bezout-like equations for univariate polynomials with
coefficients over an integral domain. The results in [6], [7] can thus be applied for both the analysis
of the equations and possibly the computation of the components. Also, the introduction of the real
parameter ω and of the family of kernel polynomials k(z1, z2) greatly extends the flexibility of the
resulting algebraic construction by allowing the computation of solutions with specific requirements
such as symmetry, low degree, polynomial reproduction, etc., that are important in applications. In
other words specific values of the free parameter ω can be set in order the interpolatory subdivision
scheme satisfies extra conditions than the one induced by the interpolatory mask. Moreover, our
strategy can be easily extended to the case where a symbol factor is not of box spline type as, for
example, to

a(z1, z2) = 4
(1 + z1)

k1

2k1
(1 + z2)

k2

2k2
b(z1, z2), ki > 0, i = 1, 2,
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with b(1, 1) = 1, b(−1; z2) ̸= 0 and b(z1,−1) ̸= 0 for at least one z1, z2 ∈ C, a case which is presently
under investigation.

To conclude, we mention that, as in previous works, the complete convergence and regularity anal-
ysis of the subdivision scheme associated to the constructed interpolatory mask is here conducted a
posteriori due to the non linearity of the condition the correction symbol has to satisfy. Nevertheless,
the condition m(1, 1) = 4 guarantees, at least, the existence of an associated compactly supported
distribution which is refinable with respect to the interpolatory mask. At last, we also point out that
there are necessary and sufficient conditions for convergence and smoothness analysis of a subdivision
scheme in terms of the given mask (see, [10], [14], [16], [17], [19], for example). Once we have intro-
duced the algebraic machinery for the solution of (1.1) these techniques can be applied for the analisys
of the resulting subdivision schemes as well as for the selection of specific solutions among the ones of
the algebraic equation (1.1). Some examples of this approach are provided at the end of this paper
where we essentially use the results in [10] for the convergence and smoothness analysis of some novel
schemes.

The paper is organized as follows. Section 2 starts with a brief summary of the strategy proposed in
[7] to determine admissible corrections for a univariate non-interpolatory symbol to become interpola-
tory. Then, it continues with the description of the construction of an interpolatory bivariate symbol
induced by a three-directional box spline symbol. Applications to specific box spline symbols are
illustrated in Section 3 where we show that the proposed algebraic construction leads to interesting
new interpolatory bivariate subdivision schemes analyzed in full detail. Section 4 presents a further
alternative constructive approach for the determination of the polynomial correction. Conclusions and
future work are drawn in Section 5.

2 The algebraic construction

To make the paper self contained we start by briefly summarizing the univariate strategy proposed in
[7] to determine admissible corrections for a non-interpolatory symbol to become interpolatory. The
univariate results that we recall in the sequel will be repeatedly used in the bivariate construction.

2.1 The univariate framework

In [7] the set of minimal–degree univariate polynomials that are eligible to convert a non-interpolatory
subdivision symbol c(z) ∈ R[z] into an interpolatory one is fully characterized. In particular, it is
shown that these polynomials are obtained by solving a set of structured Bezout equations that are
equivalent, in a matrix setting, to inverting a Hurwitz matrix defined by the coefficients of the given
symbol.

Proposition 2.1. [7] Let c(z) = c0+ c1z+ . . . ckz
k ∈ R[z] be a polynomial of degree k relatively prime

with c(−z). Let H− ∈ Rk×k and H+ ∈ Rk×k be the Hurwitz matrices defined by

H− :=



c1 c0 0 . . . . . . . . .
c3 c2 c1 c0 0 . . .
c5 c4 c3 . . . . . .
...

...
...

... . . .
...

...
...

... . . .
c2(k−1)+1 c2(k−1) c2(k−1)−1 . . . . . .


,
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H+ :=



c0 0 . . . . . . . . .
c2 c1 c0 0 . . .
c4 c3 c2 . . . . . .
...

...
...

... . . .
...

...
...

... . . .
c2(k−1) c2(k−1)−1 c2(k−1)−2 . . . . . .


,

where cj = 0 if j > k. Then H− and H+ are invertible and, moreover, the polynomials p−i (z) and
p+i (z), with coefficients given by the entries of the i-th column (1 ≤ i ≤ k) of (H−)−1 and (H+)−1 are
respectively the unique polynomials of degree less than k such that

c(z)p−i (z) − c(−z)p−i (−z) = 2 z2i−1, 1 ≤ i ≤ k, (2.1)

and
c(z)p+i (z) + c(−z)p+i (−z) = 2 z2i−2, 1 ≤ i ≤ k. (2.2)

Observe that the solution of the Bezout equations (2.1) and (2.2) is a linear problem which is
customarily reformulated into a matrix setting as the solution of a Sylvester resultant linear system of
order 2k. For the very special case considered here the k×k Hurwitz matrices H− and H+ encompass
the properties of the Sylvester-based formulation by providing a simplified approach. This can also
be extended to deal with polynomials having coefficients over an integral domain rather than a field.

2.2 The bivariate framework

Let us start investigating the problem of constructing a bivariate interpolatory symbol given the
bivariate polynomial associated with the (approximating) three-directional subdivision symbol

a(z1, z2) = 22−k1−k2−k3(1 + z1)
k1(1 + z2)

k2(1 + z1z2)
k3 , z1, z2 ∈ C, (2.3)

for some integers k1, k2, k3 ∈ N. Our problem consists of finding (if it exists) a correction m(z1, z2)
that is a bivariate polynomial such that the modified symbol

â(z1, z2) = a(z1, z2)m(z1, z2)

fulfills the interpolatory condition

â(z1, z2) + â(−z1, z2) + â(z1,−z2) + â(−z1,−z2) = 4zn1
1 zn2

2 , (2.4)

for suitable even integers n1 and n2. As we are interested in finding a correction of degree (in some
specified sense) as low as possible, we impose the additional condition that 0 ≤ n1 ≤ 2(k1 − 1) and
0 ≤ n2 ≤ 2(k2 − 1). Such interval ranges may be translated by considering shifted solutions. The
modified symbol â(z1, z2) can also be expressed as

â(z1, z2) = 22−k1−k2(1 + z1)
k1(1 + z2)

k2 b̂(z1, z2), (2.5)

where

b̂(z1, z2) =
(1 + z1z2)

k3

2k3
m(z1, z2).

Let us consider the polynomial h(z1, z2) defined by

h(z1, z2) = â(z1, z2) + â(z1,−z2), z1, z2 ∈ C.

From (2.4) it follows that this polynomial should satisfy

h(z1, z2) + h(−z1, z2) = 4zn1
1 zn2

2 , z1, z2 ∈ C. (2.6)
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In addition, from (2.5) we obtain that

h(z1, z2) = 22−k1−k2(1 + z1)
k1{(1 + z2)

k2 b̂(z1, z2) + (1− z2)
k2 b̂(z1,−z2)},

which gives
h(z1, z2) = 22−k1−k2(1 + z1)

k1g(z1, z2), z1, z2 ∈ C, (2.7)

where
g(z1, z2) = (1 + z2)

k2 b̂(z1, z2) + (1− z2)
k2 b̂(z1,−z2). (2.8)

By combining (2.7) and (2.6) we find that

2−k1−k2(1 + z1)
k1g(z1, z2) + 2−k1−k2(1− z1)

k1g(−z1, z2) = zn1
1 zn2

2 . (2.9)

Since c(z1) = (1 + z1)
k1 and c(−z1) = (1 − z1)

k1 are relatively prime, we know from Subsection 2.1
that there exists a unique univariate polynomial p0(z1) ∈ R[z1] of degree less than k1 such that

2−k1−k2(1 + z1)
k1p0(z1) + 2−k1−k2(1− z1)

k1p0(−z1) = zn1
1 . (2.10)

The general solution of (2.9) can thus be obtained from the solution p0(z1) of (2.10) by linearity. In
fact we observe that the bivariate polynomial ĝ(z1, z2) = g(z1, z2)−zn2

2 p0(z1) satisfies the homogeneous
equation

2−k1−k2(1 + z1)
k1 ĝ(z1, z2) + 2−k1−k2(1− z1)

k1g(−z1, z2) = 0,

which says that
ĝ(z1, z2) = g(z1, z2)− zn2

2 p0(z1) = (1− z1)
k1t(z1, z2), (2.11)

where t(z1, z2) is any bivariate polynomial which is odd in z1, that is,

t(z1, z2) + t(−z1, z2) = 0.

By expressing t(z1, z2) as a univariate polynomial in z2 whose coefficients are polynomials in z1, it is
shown that this property implies that these coefficients are also odd polynomials. The proof immedi-
ately follows by using interpolation techniques and the identity principle for univariate polynomials.
By replacing (2.11) into (2.8) we find that

zn2
2 p0(z1) + (1− z1)

k1t(z1, z2) = (1 + z2)
k2 b̂(z1, z2) + (1− z2)

k2 b̂(z1,−z2). (2.12)

It is easy to see that the polynomial on the right hand side of (2.12) is even in z2, and, therefore,
since n2 is an even integer, the same property should be fulfilled by t(z1, z2). Summing up, t(z1, z2) is
a bivariate polynomial which is odd in z1 and even in z2 and, hence, it can be expressed as

t(z1, z2) =
ℓ∑

j=1

pj(z1)z
2(j−1)
2 ,

where pj(z1), 1 ≤ j ≤ ℓ, are suitable odd polynomials and ℓ ∈ N, ℓ ≥ k2.
Thus (2.12) can be rewritten as

zn2
2 p0(z1) + (1− z1)

k1

ℓ∑
j=1

pj(z1)z
2(j−1)
2 = (1 + z2)

k2 b̂(z1, z2) + (1− z2)
k2 b̂(z1,−z2). (2.13)

The relation (2.13) is a specific instance for zn2
2 p0(z1) =

∑ℓ
j=1 fj(z1)z

2(j−1)
2 of the more general equa-

tion of the form

ℓ∑
j=1

(f
(0)
j (z1) + (1− z1)

k1pj(z1))z
2(j−1)
2 =

= (1 + z2)
k2(1 + z1z2)

k3m(z1, z2) + (1− z2)
k2(1− z1z2)

k3m(z1,−z2),

(2.14)

where f
(0)
j (z1) = fj(z1) are given prescribed polynomials.
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Remark 2.2. We observe that when k1, k2 ≥ 1 from (2.10) and (2.13) follows that b̂(1, 1) = 1.
Moreover, if fj(z1) = 0 (which is the case to get a ”kernel” solution) we have b̂(1, 1) = 0.

When the integer ℓ and the polynomials pj(z1), 1 ≤ j ≤ ℓ are fixed, then under some additional
mild assumptions we can determine a solution m(z1, z2) which is a polynomial in the variable z2 with
coefficients that are rational functions in the variable z1. The main question to be addressed here is
if for some suitable choices of ℓ and the polynomials pj(z1), 1 ≤ j ≤ ℓ, these rational functions reduce
to Laurent polynomials so that m(z1, z2) becomes a bivariate Laurent polynomial. We summarize the
ultimate computational task as follows:

Given the polynomials f
(0)
j (z1) = fj(z1), 1 ≤ j ≤ k2, we have to determine the integer

ℓ ≥ k2 and the odd polynomials pj(z1), 1 ≤ j ≤ ℓ, such that (2.14) holds for a suitable
bivariate Laurent polynomial m(z1, z2). This solution is the candidate correction.

For solving (2.14) we can rely upon the natural isomorphism

R[z1, z2] ∋ f(z1, z2) → f̂(z2) ∈ R[z1][z2],

mapping bivariate polynomials to univariate polynomials with (univariate) polynomial coefficients.
Specifically, it is worth noting that (1 + z1z2)

k3 can be viewed as a univariate polynomial in z2 of
degree k3 with coefficients in R[z1], that is,

(1 + z1z2)
k3 =

k3∑
i=0

bi(z1)z
i
2, with bi(z1) =

(
k3
i

)
zi1.

There follows that the univariate procedure described in Subsection 2.1 can in principle be applied to

c(z2) = (1 + z2)
k2(1 + z1z2)

k3 =

k2+k3∑
i=0

gi(z1)z
i
2 (2.15)

where

gi(z1) =



i∑
j=0

(
k2
j

)(
k3

i− j

)
zi−j
1 , i = 0, · · · ,min{k2, k3}

∞∑
j=0

(
k2
j

)(
k3

i− j

)
zi−j
1 , i = min{k2, k3}, · · · ,max{k2, k3}

k2∑
j=i−k3

(
k2
j

)(
k3

i− j

)
zi−j
1 , i = max{k2, k3}, · · · , k2 + k3

and the binomial coefficients in the second expression are interpreted in terms of the Gamma function.
We continue by exploiting the association between the pair of univariate polynomials c(z2) and c(−z2)
with the Hurwitz matrices H+ and H− of order n = k2 + k3, having entries over the integral domain
F = R[z1]. Namely, we have

H+ :=



g0(z1) 0 . . . . . . . . .
g2(z1) g1(z1) g0(z1) 0 . . .
g4(z1) g3(z1) g2(z1) . . . . . .

...
...

...
... . . .

...
...

...
... . . .

g2(k2+k3−1)(z1) g2(k2+k3−1)−1(z1) g2(k2+k3−1)−2(z1) . . . . . .


,
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and

H− :=



g1(z1) g0(z1) 0 . . . . . . . . .
g3(z1) g2(z1) g1(z1) g0(z1) 0 . . .
g5(z1) g4(z1) g3(z1) . . . . . .

...
...

...
... . . .

...
...

...
... . . .

g2(k2+k3−1)+1(z1) g2(k2+k3−1)(z1) g2(k2+k3−1)−1(z1) . . . . . .


.

And so, virtually, we can think to attack the computation of m(z1, z2) satisfying (2.14) by using
Proposition 2.1 applied to this novel Hurwitz matrix H+ ∈ Fn×n. The resulting approach can be
summarized as follows:

The basic idea of the correction polynomial construction

1. Set ℓ = k2 + k3 = n;

2. Solve H+x(j) = (f
(0)
j (z1) + (1 − z1)

k1pj(z1))ej , 1 ≤ j ≤ ℓ with f
(0)
j (z1) and pj(z1) specified

above;

3. Define the polynomials xj(z2) =

n−1∑
i=0

x
(j)
i zi2, 1 ≤ j ≤ ℓ;

4. Set m(z1, z2) =

ℓ∑
j=1

xj(z2).

It is worth observing that, from one hand, theoretical and computational problems can be encoun-
tered at step 2 where we have to solve a linear system defined by a polynomial matrix whose solutions
generally lie in the quotient field of rational functions. On the other hand, the known vectors are
partially undetermined since they depend on the unknown polynomials pj(z1), 1 ≤ j ≤ ℓ. Our pri-
mary goal is to exploit these two issues simultaneously in such a way to find an eligible strategy for
computing odd polynomials pj(z1) corresponding with polynomial solutions of the system. In order
to investigate the properties of this system we start by proving a result about the determinant of
H+ ∈ Fn×n. The proof follows by using a suitable generalization of the techniques employed in [7] to
computations with matrices having entries over an integral domain. In particular we relate H+ ∈ Fn×n

and H− ∈ Fn×n with the Sylvester-resultant matrix S ∈ F2n×2n generated from the coefficients of c(z2)
and c(−z2), that is,

S =



g0(z1) g0(z1)

g1(z1)
. . . −g1(z1)

. . .
... g0(z1)

... g0(z1)

gn(z1)
... (−1)ngn(z1)

...
. . .

...
. . .

...
gn(z1) (−1)ngn(z1)


.

Theorem 2.3. Let c(z2) as in (2.15) with k2, k3 ∈ N and let r(z1) = res(c(z2), c(−z2)) = detS be the
resultant, i.e., the determinant of the Sylvester matrix of order 2(k2 + k3), of c(z2) and c(−z2). We
have that

r(z1) = ±2nzk31 (det(H+))2.
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Proof. Let Pn ∈ R2n×2n, Pn = (δi,σ(j)) be the permutation matrix associated with the “perfect shuffle”
permutation given by

σ : {1, . . . , 2n} → {1, . . . , 2n}, σ(j) =


(j + 1)/2 + n, if j is odd;

j/2, if j is even.

Furthermore, let Gn ∈ R2n×2n be the matrix defined by

Gn :=

[
In −Dn

Dn In

]
,

where Dn := diag[−1, (−1)2, . . . , (−1)n−1, (−1)n]. It is straightforward to verify that

G−1
n =

1

2

[
In Dn

−Dn In

]
.

By premultiplying the Sylvester-resultant matrix S by Pn we find that

Pn S =

[
H− H−Dn

H+ −H+Dn

]
.

Hence, there follows that

Pn S G−1
n =

[
0n H−Dn

H+ 0n

]
.

From the Binet theorem this gives

±r(z1)

(
1

2

)n

= ±zk31 (det(H+))2

which completes the proof.

Based on Theorem 2.3 we obtain an explicit expression for the determinant of H+ ∈ Fn×n. First,
we make use of a classical result in elimination theory to find an explicit expression for the resultant
r(z1) = res(c(z2), c(−z2)).

Theorem 2.4. Let c(z2) as in (2.15) with k2, k3 ∈ N. For the resultant r(z1) = res(c(z2), c(−z2)) ∈
R[z1], it holds that

r(z1) = α z
k23
1 (1 + z1)

2k2k3 ,

for a suitable α ∈ R\{0}.

Proof. Setting c(z2) = (1+z2)
k2(1+z1z2)

k3 = f(z1, z2), by using well-known properties of the resultant
polynomial [1], it is easy to see that

{z1 ∈ C : r(z1) = 0} = {z1 ∈ C : ∃z2 ∈ C, f(z1, z2) = 0 = f(z1,−z2)} ∪ {z1 ∈ C : gk2+k3(z1) = zk31 = 0}

where the roots are counted with their “multiplicity” which is the sum of the corresponding intersection
multiplicities including points at infinity. From this characterization we deduce that the distinct roots
of r(z1) are z1 = 0 and z1 = −1. In order to evaluate the corresponding multiplicities we perform a
perturbative analysis. Let us start considering the root z1 = −1. Observe that the polynomial system{

f(−1, z2) = 0
f(−1,−z2) = 0,
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has two roots z2 = 1 and z2 = −1. For the multiplicity of (−1, 1) we perform the substitution
z1 = −1 + s and z2 = 1 + t, obtaining the system{

f1(s, t) = f(−1 + s, 1 + t) = (2 + t)k2 [s(1 + t)− t]k3 = 0
f2(s, t) = f(−1 + s,−1− t) = (−1)k2tk2 [2 + t− s(1 + t)] = 0.

A small perturbation of the coefficients of the polynomials yields the system{
f̃1(s, t) = (2 + t)k2{[s(1 + t)− t]k3 − ϵ} = 0

f̃2(s, t) = (−1)k2(tk2 − ϵ)[2 + t− s(1 + t)] = 0,

where the common root at s = t = 0 is spread out into k2k3 distinct roots and, therefore, k2k3 is
the multiplicity of (−1, 1). A similar analysis applies to (−1,−1), which implies that 2k2k3 is the
multiplicity of z1 = −1. For the root z1 = 0, which annihilates the leading coefficient gk2+k3(z1) of
c(z2), see (2.15), we can proceed as follows. Let us introduce the perturbed polynomial

f̃(z1, z2) = (1 + z2)
k2 [(1 + z1z2)

k3 − ϵzk32 ].

We find that the solutions of {
f(z1, z2) = 0
f(z1,−z2) = 0,

at “infinite points” for z1 = 0 are replaced by k3 solutions of{
f̃(z1, z2) = 0

f̃(z1,−z2) = 0,

given by z
(j)
1 = ϵk

−1
3 e2π

√
−1(j − 1)/k3 , 1 ≤ j ≤ k3, each of them corresponding with k3 distinct

intersection points. In this way we conclude that the multiplicity of z1 = 0 is k23.

By virtue of Theorem 2.3 and Theorem 2.4, we obtain the desired expression of H+.

Corollary 2.5. For the matrix H+ ∈ Fn×n, F = R[z1], generated from the coefficients of c(z2) =
(1 + z2)

k2(1 + z2z3)
k3, with c(z2) as in (2.15), it holds

detH+ = α z
k3(k3−1)/2
1 (1 + z1)

k2k3 ,

for a suitable α ∈ R\{0}.

It is worth noting that the scaled polynomial

h(z1) =
detH+

z
k3(k3−1)/2
1

(2.16)

satisfies the following properties:

P.1 h(z1) and h(−z1) are relatively prime;

P.2 h(0)h(1) ̸= 0.

These properties play a fundamental role to ensure the reliability of the four steps construction de-
scribed above for computing m(z1, z2) satisfying (2.14). The possibility of choosing the odd polyno-
mials pj(z1) freely is exploited in the following result.

Theorem 2.6. Let f(z1) ∈ R[z1] be a given polynomial. Then for the polynomial h(z1) defined as in
(2.16) there exist a polynomial m(z1) ∈ R[z1] and an odd polynomial p(z1) = z1p̂(z

2
1) ∈ R[z1] such that

m(z1)h(z1) = f(z1) + z1(1− z1)
k1 p̂(z21).

9



Proof. Since from P.2 h(z1) and z1(1 − z1)
k1 are relatively prime, by using the extended Euclidean

algorithm we can find polynomials m̃(z1) and t(z1) such that

m̃(z1)h(z1)− z1(1− z1)
k1t(z1) = f(z1). (2.17)

Further, from Proposition 2.1 and P.1 it follows that the following equation

ρ(z1)h(z1)− ρ(−z1)h(−z1) = t(−z1)− t(z1), (2.18)

is also solvable. This implies that ρ(z1)h(z1) + t(z1) is an even polynomial, that is,

ρ(z1)h(z1) + t(z1) = p̂(z21).

Now let us define
m(z1) = m̃(z1) + z1(1− z1)

k1ρ(z1).

We have
m(z1)h(z1)− f(z1) = m̃(z1)h(z1) + z1(1− z1)

k1ρ(z1)h(z1)− f(z1)

= z1(1− z1)
k1(t(z1) + ρ(z1)h(z1))

= z1(1− z1)
k1 p̂(z21).

This theorem can be used to guarantee that the solutions of the systems at step 2 of the proposed
construction are indeed Laurent polynomials. Recall that for an invertible square matrix A the adjoint
matrix B = Adj(A) satisfies B = (detA)A−1. If A is a polynomial matrix then B is a polynomial
matrix and, therefore, if we require that

f
(0)
j (z1) + (1− z1)

k1pj(z1) = f
(0)
j (z1) + z1(1− z1)

k1 p̂j(z
2
1) = mj(z1)h(z1), 1 ≤ j ≤ ℓ, (2.19)

then the solution x(j) can be expressed as

x(j) =
mj(z1)

z
k3(k3−1)/2
1

Adj(H+)ej , 1 ≤ j ≤ ℓ,

which is a vector whose entries are Laurent polynomials. By incorporating this modification into our
strategy we arrive at the following.

The revised idea of the correction polynomial construction

1. Set ℓ = k2 + k3 = n and h(z1) as defined in (2.16);

2. Compute the polynomials pj(z1) and mj(z1), 1 ≤ j ≤ ℓ, satisfying (2.19);

3. Solve H+x(j) = (f
(0)
j (z1) + (1− z1)

k1pj(z1))ej = h(z1)mj(z1)ej , 1 ≤ j ≤ ℓ;

4. Define the polynomials xj(z2) =
n−1∑
i=0

x
(j)
i zi2, 1 ≤ j ≤ ℓ;

5. Set m(z1, z2) =

ℓ∑
j=1

xj(z2).
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In light of Remark 2.2 we easily see that the described construction defines a correction m(z1, z2)
satisfying the necessary condition m(1, 1) = 1 as formalized in the following

Proposition 2.7. If
∑ℓ

j=1 f
(0)
j (1) = 2k2+k3 and k1, k2 > 1 then the polynomial m(z1, z2) is such that

m(1, 1) = 1.

Remark 2.8. It is important to remark that the degree of polynomial reproduction of the interpolatory
subdivision scheme associated with a three-directional box spline obtained by the algebraic strategy just
described, is at least the degree of polynomial generation of the box spline subdivision scheme it is built
upon. This result simply follows from the algebraic construction of the interpolatory scheme and from
the Leibniz rule for the derivatives of a product of symbols (see, for example, [4]).

Remark 2.9. From a computational point of view the solution of the linear systems at step 3 raises
several interesting issues. The approach considered above is based on the multiplication of the inverse
matrix by the known vector. On the contrary, the typical numerical strategy employs recursive factor-
ization techniques. An alternative recursive method exploiting the factorization properties of Hurwitz

matrices is described in Section 4. Furthermore, the case where f
(0)
j (z1) = 0, 1 ≤ j ≤ ℓ, providing the

so-called “kernel” solutions deserves special attention. Although both solution methods –recursive and
inverse-based– can be used, a complete description of the kernel of the associated Hurwitz matrices
requires more sophisticated tools like the Smith normal form of polynomial matrices [13]. Applications
of this form are presented in the next section.

In the next section we discuss the properties of some interpolatory schemes generated by means of
this procedure.

3 Application examples

This section is devoted to the application of the described algebraic procedure to four different three-
directional box spline symbols. In particular, we are going to derive the polynomial corrections needed
to construct the interpolatory symbols corresponding to the B111, B221, B222 (and B331) box splines.
For the corresponding interpolatory subdivision schemes a convergence and smoothness analysis is also
conducted together with a polynomial reproduction investigation. For all related theoretical results
and definitions we refer the reader to [4] (multivariate extension of the results contained in the papers
[8], [9]).

The convergence and smoothness analysis of the considered novel schemes follows here from some
results in [10] exploiting functional properties of the associated symbols. Alternative approaches based
on a linear algebra technology exploiting the properties of the eigen-decomposition of certain matrices
directly constructed from the associated masks have been proposed in [19]. Although these techniques
are useful to enlighten several properties of the considered schemes, our preference here is motivated
by the intent to focus on the polynomial framework.

3.1 Interpolatory subdivision schemes associated with the Courant hat function

We start with the simplest three-directional box spline symbol (the so-called Courant hat function)

a(z1, z2) = (1 + z1)(1 + z2)
1 + z1z2

2
,

which is already interpolatory, though with an associated basic limit function which is only continu-
ous. Therefore, the described construction is used to obtain an interpolatory scheme with increased
regularity. In particular, we look for a polynomial correction m(z1, z2) such that the modified symbol
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a(z1, z2)m(z1, z2) fulfills the interpolatory condition (2.4) with n1 = n2 = 2. It is straightforward to
see that for c(z) = (1 + z)2, the general solution (2.11) can be expressed as

g(z1, z2) = z22p0(z1) + (1− z1)t(z1, z2) = 2z1z
2
2 + (1− z1)t(z1, z2),

for a suitable bivariate polynomial t(z1, z2) which is odd with respect to z1. Since ℓ = 1 + 1 = 2, we
are now going to determine a bivariate polynomial m(z1, z2) of the form

m(z1, z2) =

1∑
j=0

mj(z1)z
j
2,

satisfying (2.14) for

f
(0)
1 (z1) = 0, f

(0)
2 (z1) = 2z1.

The coefficients of the polynomial c(z2) = (1 + z2)
1 + z1z2

2
are used to generate the Hurwitz matrix

H+ =

[
1/2 0
z1/2 1/2 + 1/2 z1

]
,

whose determinant is h(z1) = 4−1(1 + z1) in accordance with Corollary 2.5. It is easily observed that

H+

[
0
2z1

]
=

[
0
2z1

]
+

[
0

−z1(1− z1)

]
,

which gives m(z1, z2) = z1z2.
Some other interesting solutions can be obtained by linearly combining m(z1, z2) with bivariate

polynomials satisfying (2.14) with f
(0)
j (z1) = 0, 1 ≤ j ≤ ℓ. A simple modification is obtained by

considering an admissible known vector of the form

f = [z1(1− z1){(1 + z1)(1− z1)p0(z1)}, z1(1− z1){(1 + z1)(1− z1)p1(z1)}]T ,

where p0(z1) and p1(z1) are suitable even polynomials. Then it follows that the solution of the linear
system H+x = f satisfies

x = ((1 + z1)(H+)−1)
[
z1(1− z1)

2p0(z1), z1(1− z1)
2p1(z1)

]T
= 4Adj(H+)

[
z1(1− z1)

2p0(z1), z1(1− z1)
2p1(z1)

]T
= 2z1(1− z1)

2 [(1 + z1)p0(z1), p1(z1)− z1p0(z1)] .

This gives a parameterized family of symbols defined by

âω(z1, z2) = a(z1, z2){z1z2 + ω 2z1(1− z1)
2[(1 + z1)p0(z1) + z2(p1(z1)− z1p0(z1))]}.

More general modifications can be obtained by computing the Smith normal form [13] of a Hurwitz
matrix. For instance, let us consider the Hurwitz matrix H+ ∈ F6×6 generated by the coefficients of

the polynomial c(z2) = (1 + z2)
1 + z1z2

2
, namely

H+ = 2−1



1 0 0 0 0 0
z1 1 + z1 1 0 0 0
0 0 z1 1 + z1 1 0
0 0 0 0 z1 1 + z1
0 0 0 0 0 0
0 0 0 0 0 0

 .
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Then by computing the Smith normal form of H+ we get that

UH+V = D,

where U and V are unimodular matrices given by

U =



2 0 0 0 0 0
−2z1 2 0 0 0 0
2z21 −2z1 2 0 0 0
−2z31 2z21 −2z1 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

V =



1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 −1− z1 0
0 0 0 0 0 1
0 0 1 0 z1 + z21 −1− z1
0 0 0 1 −z21 z1

 ,

and D is a diagonal matrix defined by

D = diag[1, 1, 1, 1 + z1, 0, 0].

In this way we obtain that the general solution of

H+x = f = [0, (1− z1)
2(1 + z1)z1p0(z1), 0, (1− z1)

2(1 + z1)z1p1(z1), 0, 0]
T ,

for suitable even polynomials p0(z1) and p1(z1) can be determined as

x = V {diag[1, 1, 1, (1 + z1)
−1, 0, 0]U f + q0(z1)e5 + q1(z1)e6},

where q0(z1) and q1(z1) are any polynomials. This means that m1(z1, z2) = x1 +x2z2+x3z
2
2 +x4z

3
2 +

x5z
4
2 + x6z

5
2 satisfies (2.14) with f

(0)
j (z1) = 0, 1 ≤ j ≤ 6. If p0(z1) = 1 and p1(z1) = z21 , for a certain

choice of q0(z1) and q1(z1), the symbol

âω(z1, z2) = a(z1, z2){z1z2 + ωm1(z1, z2)}

defines the Butterfly scheme on the three-directional grid [11] which is C1 for ω ∈ (0, 0.08). In general,
the convergence of the subdivision scheme with symbol âω(z1, z2) depends on the specific properties
of ω and m1(z1, z2). Nevertheless, in view of Remark 2.8, whenever the scheme is C0, it certainly
reproduces at least linear polynomials.

3.2 Interpolatory subdivision schemes associated with the B221 box spline

In this second example we consider the non-interpolatory box spline symbol defined by

a(z1, z2) = 2−2(1 + z1)
2(1 + z2)

2 1 + z1z2
2

,

and we look for a polynomial correction m(z1, z2) such that the modified symbol fulfills the interpo-
latory condition (2.4) with n1 = n2 = 2. Since for c(z) = (1 + z)2 we have

H+ =

[
1 0
1 2

]
,
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we find that

(H+)−1 =

[
1 0

−1/2 1/2

]
,

and, therefore, for n1 = 2 the general solution (2.11) can be expressed as

g(z1, z2) = z22p0(z1) + (1− z1)
2t(z1, z2) = 4z1z

2
2 + (1− z1)

2t(z1, z2),

for a suitable bivariate polynomial t(z1, z2) which is odd with respect to z1. Since ℓ = 2 + 1 = 3, we
are now going to determine a bivariate polynomial m(z1, z2) of the form

m(z1, z2) =

2∑
j=0

mj(z1)z
j
2,

satisfying (2.14) for

f
(0)
1 (z1) = 0, f

(0)
2 (z1) = 4z1, f

(0)
3 (z1) = 0.

The coefficients of the polynomial c(z2) = (1 + z2)
2 1 + z1z2

2
are used to generate the Hurwitz matrix

H+ =

 1/2 0 0
1/2 + z1 1 + z1/2 1/2

0 z1/2 1/2 + z1

 ,

whose determinant is h(z1) = 4−1(1 + z1)
2 in accordance with Corollary 2.5 (i.e., k3(k3 − 1) = 0 and

k2k3 = 2). For the solution of (2.19) we find that

4z1 = 4(1 + z1)
2 z1(2− z1)

4
− z1(1− z1)

2(−2− z1) ,

which gives
m̃(z1) = 4z1(2− z1), t(z1) = −2− z1.

Then we have that ρ(z1) = 2 fulfills (2.18) and, therefore, we get

m(z1) = 4z1(2− z1) + 2z1(1− z1)
2 = 2z1(5− 4z1 + z21).

Hence, we obtain
x(2) = m(z1)Adj(H+)e2 ,

which gives

x(2) = m(z1)
1

4

 2(1 + z1)
2 0 0

−(1 + 2z1)
2 1 + 2z1 −1

z1(1 + 2z1) −z1 2 + z1

 e2.

In this way we arrive at

m(z1, z2) =
z1(5− 4z1 + z21)

4
{(1 + 2z1)z2 − z1z

2
2}.

It can be easily verified that
â(z1, z2) = a(z1, z2)m(z1, z2) ,

is such that
â(z1, z2) + â(−z1, z2) + â(z1,−z2) + â(−z1,−z2) = 8z21z

2
2 .

As described in the previous example the properties of the computed solution can be improved by
performing a linear combination with some polynomials in the “kernel” of (2.14). In this case a simpler
approach comes by reducing the coefficients of m(z1, z2) modulo (1− z1)

2. From

(5− 4z1 + z21)(1 + 2z1) = (−3 + 2z1)(1− z1)
2 + (8− 2z1),
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and
−z1(5− 4z1 + z21) = (2− z1)(1− z1)

2 − 2,

we deduce that
m(z1, z2) = z1z2(4− z1 − z2) +m1(z1, z2),

where
m1(z1, z2) = z1z2(1− z1)

2{(−3 + 2z1) + (2− z1)z2}.

It is straightforward to verify that m1(z1, z2) satisfies (2.14) with f
(0)
j (z1) = 0, 1 ≤ j ≤ 3, and, hence,

we conclude that

m2(z1, z2) =
1

2
z1z2(4− z1 − z2), (3.1)

also defines a suitable correction so that â(z1, z2) = a(z1, z2)m2(z1, z2) fulfills

â(z1, z2) + â(−z1, z2) + â(z1,−z2) + â(−z1,−z2) = 4z21z
2
2 .

Similarly, by employing the shifted solution p0(z1) = z1(2z1 − 1) it is found that the polynomial

m3(z1, z2) =
1

2
z1z2(4z1z2 − z1 − z2) ,

modifies the symbol in such a way to satisfy the interpolatory condition (2.4) with n1 = n2 = 4. As
noticed in [6] (though in the univariate setting), any affine combination of the corrections m2(z1, z2)
and m3(z1, z2) suitably shifted, also generates an interpolatory scheme. In particular the symbol

â(z1, z2) = 1
4a(z1, z2)

(
m2(z1, z2) + z−2

1 z−2
2 m3(z1, z2)

)
= 1

4a(z1, z2)
(
4− z−1

1 − z−1
2 + 4z1z2 − z21z2 − z1z

2
2

)
,

(3.2)

is such that

â(z1, z2) + â(−z1, z2) + â(z1,−z2) + â(−z1,−z2) = 4z21z
2
2 and â(z1, z2) = â(z2, z1) .

The mask of the new interpolatory subdivision scheme is

â =
1

32



0 0 0 −1 −2 −1 0
0 0 −1 0 2 0 −1
0 −1 4 17 16 2 −2
−1 0 17 32 17 0 −1
−2 2 16 17 4 −1 0
−1 0 2 0 −1 0 0
0 −1 −2 −1 0 0 0


, (3.3)

and the corresponding basic limit function is displayed in Figure 1.

Remark 3.1. It is worthwhile to observe that m2(z1, z2) in (3.1) is the only solution with symmetric
coefficients and degrees (in each variable) less than or equal to 2, a fact that can be proved via the Smith
form. Our computational experience with many other symbols of the form Bk1,k1,k3 indicates that a
similar property holds more generally. For instance, in the case B3,3,1 after reduction our procedure
generates the correction m(z1, z2) given by

m(z1, z2) =
1

8
z1z2

(
2− 9z2 + 3z22 + z1(−9 + 34z2 − 9z22) + z21(3− 9z2 + 2z22)

)
,

which is the only solution with symmetric coefficients and degrees (in each variable) less than or equal
to ℓ − 1 = 3 + 1 − 1 = 3. This property extends the uniqueness results in [19] for symbols of the
form Bk,k,k. A theoretical proof of the property as well as the analysis of the associated interpolatory
schemes is an ongoing work.
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Figure 1: Graph of the basic limit function of the subdivision scheme with mask in (3.3).

3.2.1 Analysis of the symmetric scheme

The interpolatory subdivision scheme with symbol (3.2) is symmetric, C1 and reproduces polynomials
up to degree 2. For its smoothness analysis we make use of [10, Theorem 4.26] exploiting the existence
of the three-directional factors (1 + z1)

2(1 + z2)
2(1 + z1z2) in the subdivision symbol.

Proposition 3.2. The interpolatory subdivision scheme with symbol

â(z1, z2) =
1

32
(1 + z1)

2(1 + z2)
2(1 + z1z2)

(
4− z−1

1 − z−1
2 + 4z1z2 − z21z2 − z1z

2
2

)
,

is C1 and reproduces polynomials in Π2.

Proof. Following [10, Section 4], to prove that the scheme with symbol â(z1, z2) is C1 we show that
any two of the schemes with symbols

2
â(z1, z2)

(1 + z1)
, 2

â(z1, z2)

(1 + z2)
, 2

â(z1, z2)

(1 + z1z2)
,

are C0. In particular we consider the first and the second symbols above, that is

1

16
(1 + z1)(1 + z2)

2(1 + z1z2)
(
4− z−1

1 − z−1
2 + 4z1z2 − z21z2 − z1z

2
2

)
,

and
1

16
(1 + z1)

2(1 + z2)(1 + z1z2)
(
4− z−1

1 − z−1
2 + 4z1z2 − z21z2 − z1z

2
2

)
,

and check that their difference schemes are contractive. To this purpose, for

b1(z1, z2) =
1

16
(1 + z1)(1 + z2)(1 + z1z2)

(
4− z−1

1 − z−1
2 + 4z1z2 − z21z2 − z1z

2
2

)
,

and
b2(z1, z2) = 1

16(1 + z1)
2(1 + z2)

(
4− z−1

1 − z−1
2 + 4z1z2 − z21z2 − z1z

2
2

)
,

b3(z1, z2) = 1
16(1 + z1)(1 + z2)

2
(
4− z−1

1 − z−1
2 + 4z1z2 − z21z2 − z1z

2
2

)
,

we verify that bi(z1, z2)bi(z
2
1 , z

2
2), i = 1, 2, 3 are indeed contractive.

The polynomial reproduction properties of the scheme follow from the polynomial generation proper-
ties of the box spline subdivision scheme a(z1, z2) =

1
8(1 + z1)

2(1 + z2)
2(1 + z1z2).
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The properties of the new interpolatory subdivision scheme have been analyzed by relying on the
results in [10]. Obviously, the same conclusions can be derived regardless the approach taken in the
analysis. As a matter of fact, we have also generated the 49× 49 matrix H determined by the mask
elements (that is the 7 × 7 block matrix with blocks Hk,ℓ, k, ℓ = 1, . . . , 7 defined as Hk,ℓ(i, j) =
â(2j − i, 2ℓ − k), i, j = 1, . . . , 7 ). It is easily found that this matrix has 1 as a simple eigenvalue
with (1, · · · , 1)T as its eigenvector. Hence, from [19, Theorem 1.2] we can conclude the existence
of a function refinable with respect to the given mask, which is a fundamental solution for cardinal
interpolation.

3.3 Interpolatory subdivision schemes associated with the B222 box spline

As third application example we consider the approximating box spline symbol defined by

a(z1, z2) = 2−2(1 + z1)
2(1 + z2)

2

(
1 + z1z2

2

)2

.

Again, we look for a polynomial correction m(z1, z2) such that the modified symbol fulfills the interpo-
latory condition (2.4) with n1 = n2 = 4. It is found that the general solution (2.11) can be expressed
as

g(z1, z2) = z42p0(z1) + (1− z1)
2t(z1, z2),

where
p0(z1) = z1(−1 + 2z1 + 31z21) ,

and t(z1, z2) is a suitable bivariate polynomial which is odd with respect to z1. Then, by using the
same approach described in the previous example, after some simplifications, the correction m(z1, z2)
given by

m(z1, z2) = −z1z2
4

(
1 + z1 + z2 − 10z1z2 + z21z2 + z1z

2
2 + z21z

2
2

)
, (3.4)

is computed. The mask of the new interpolatory subdivision scheme â(z1, z2) = m(z1, z2)a(z1, z2) is

â =
1

64



0 0 0 −1 −3 −3 −1
0 0 −3 0 6 0 −3
0 −3 6 33 33 6 −3
−1 0 33 64 33 0 −1
−3 6 33 33 6 −3 0
−3 0 6 0 −3 0 0
−1 −3 −3 −1 0 0 0


. (3.5)

Note that the interpolatory mask in (3.5) is the one obtained for B222 in [19].

3.3.1 Analysis of the new interpolatory subdivision scheme

Also in this case, the algebraic construction leads to a new interesting interpolatory bivariate sub-
division scheme: the interpolatory scheme with correction (3.4) is symmetric, C1 and reproducing
Π3.

Proposition 3.3. The interpolatory subdivision scheme with symbol

â(z1, z2) =
1

64
z1z2(1 + z1)

2(1 + z2)
2(1 + z1z2)

2
(
10z1z2 − 1− z1 − z2 − z21z2 − z1z

2
2 − z21z

2
2

)
,

is C1 and reproduces polynomials in Π3.
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Figure 2: Graph of the basic limit function of the subdivision scheme with mask in (3.5).

Proof. Following [10, Section 4], to prove that the scheme with symbol â(z1, z2) is C1 we show that
any two of the schemes with symbols

2
â(z1, z2)

(1 + z1)
, 2

â(z1, z2)

(1 + z2)
, 2

â(z1, z2)

(1 + z1z2)
,

are C0. In particular we consider the first and the second symbols above that is

1

32
z1z2(1 + z1)(1 + z2)

2(1 + z1z2)
2
(
10z1z2 − 1− z1 − z2 − z21z2 − z1z

2
2 − z21z

2
2

)
,

and
1

32
z1z2(1 + z1)

2(1 + z2)(1 + z1z2)
2
(
10z1z2 − 1− z1 − z2 − z21z2 − z1z

2
2 − z21z

2
2

)
.

For these symbols we check whether their difference symbols

b1(z1, z2) =
1
32z1z2(1 + z1)(1 + z2)(1 + z1z2)

2
(
10z1z2 − 1− z1 − z2 − z21z2 − z1z

2
2 − z21z

2
2

)
,

b2(z1, z2) =
1
32z1z2(1 + z1)(1 + z2)

2(1 + z1z2)
(
10z1z2 − 1− z1 − z2 − z21z2 − z1z

2
2 − z21z

2
2

)
,

b3(z1, z2) =
1
32z1z2(1 + z1)

2(1 + z2)(1 + z1z2)
(
10z1z2 − 1− z1 − z2 − z21z2 − z1z

2
2 − z21z

2
2

)
,

(3.6)

are contractive. Indeed it holds that the norm of bi(z1, z2)bi(z
2
1 , z

2
2), for all i = 1, 2, 3 is less than 1.

The polynomial reproduction properties of the scheme follow from the polynomial generation proper-
ties of the box spline subdivision scheme a(z1, z2) =

1
64(1 + z1)

2(1 + z2)
2(1 + z1z2)

2.

Remark 3.4. We remark that the scheme with mask (3.5), due to the extra smoothing factor (1+z1z2),
is somehow smoother than the one with mask (3.3), even if this does not emerge form the conducted
regularity analysis.

4 A recursive approach for solving Hurwitz systems over integral
domains

The constructions presented in the previous section basically reduce the computation of a polynomial
correction m(z1, z2) to solving some linear systems whose coefficient matrix is a Hurwitz matrix with
entries over the integral domain F = R[z1]. The computation of the determinant of a polynomial
matrix as well as the solution of a linear system can be carried out by using the Hermite normal form
of the matrix [18] or some other triangularization procedure working on the integral domain R[z]. In
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the case of Hurwitz and Sylvester matrices it is common to reinterpret matrix factorization methods
in the context of a polynomial framework. In this section we provide a polynomial method for solving
(2.14) as a supplementary material. The computational interest of the procedure is that it generally
leads to a different solution and would make possible to exploit special properties of the symbol.

For the sake of illustration, let us start by continuing the discussion with the example presented
in Subsection 3.2. Recall that our task is to compute univariate polynomials mj(z1), j = 0, 1, 2, such
that  1/2 0 0

1/2 + z1 1 + z1/2 1/2
0 z1/2 1/2 + z1

 m0(z1)
m1(z1)
m2(z1)

 =

 (1− z1)
2z1p1(z

2
1)

4z1 + (1− z1)
2z1p2(z

2
1)

(1− z1)
2z1p3(z

2
1)

 ,

for suitable polynomials pj(z1), j = 1, 2, 3. The first equation can be satisfied by setting m0(z1) = 0
and p1(z1) = 0. This yields the reduced system[

1 + z1/2 1/2
z1/2 1/2 + z1

] [
m1(z1)
m2(z1)

]
=

[
4z1 + (1− z1)

2z1p2(z
2
1)

(1− z1)
2z1p3(z

2
1)

]
.

The coefficient matrix on the left hand side can be reduced to a triangular form by multiplication on
the right by the triangular matrix

G =

[
1 −1/2
0 1 + z1/2

]
.

We have that [
1 + z1/2 1/2
z1/2 1/2 + z1

]
G =

 1 + z1/2 0

z1/2
(1 + z1)

2

2

 .

Since [
1 −1/2
0 1 + z1/2

] [
1 + z1/2 1/2

0 1

]
= (1 + z1/2)I2,

then we can rewrite the reduced system in the following form[
1 + z1/2 0

z1/2
(1+z1)2

2

][
m

(1)
1 (z1)

m
(1)
2 (z1)

]
= (1 + z1/2)

[
4z1 + (1− z1)

2z1p2(z
2
1)

(1− z1)
2z1p3(z

2
1)

]
,

where [
m

(1)
1 (z1)

m
(1)
2 (z1)

]
=

[
1 + z1/2 1/2

0 1

] [
m1(z1)
m2(z1)

]
. (4.1)

We look for a solution of the reduced system where the polynomials m
(1)
j (z1), j = 1, 2, are such that

m
(1)
j (z1) = (1 + z1/2)m̂

(1)
j (z1), j = 1, 2. In this way from the first equation we obtain that

(1 + z1/2)m̂
(1)
1 (z1) = 4z1 + (1− z1)

2z1p2(z
2
1).

This equation has the form (2.19) and it can be solved by setting

m̂
(1)
1 (z1) =

8

9
z1(4− z1), p2(z1) = −4

9
.

Hence, by replacing m̂
(1)
1 (z1) into the second equation it is found that

(1 + z1)
2

2
m̂

(1)
2 (z1) =

4

9
z21(z1 − 4) + (1− z1)

2z1p3(z
2
1).

This is again a polynomial equation of the form (2.19) and a solution is given by

m̂
(1)
2 (z1) = z1(−1 +

4

9
z1 −

1

9
z21), p3(z1) =

1

2
+

1

18
z1.
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Now we are in position to determine the polynomial coefficients m1(z1) and m2(z1). By using (4.1)
we deduce that

(1 + z1/2)

[
m̂

(1)
1 (z1)

m̂
(1)
2 (z1)

]
=

[
1 + z1/2 1/2

0 1

] [
m1(z1)
m2(z1)

]
.

Hence, we find that

(1 + z1/2)

[
m̂

(1)
1 (z1)

m̂
(1)
2 (z1)

]
=

[
1 + z1/2 1/2

0 1

] [
1 −1/2
0 1 + z1/2

] [
m̂

(1)
1 (z1)

m̂
(1)
2 (z1)

]
,

which gives [
1 −1/2
0 1 + z1/2

][
m̂

(1)
1 (z1)

m̂
(1)
2 (z1)

]
=

[
m1(z1)
m2(z1)

]
,

and, therefore, [
m1(z1)
m2(z1)

]
= z1

 73

18
− 10z1

9
+

z21
18

−1− z1
18

+
z21
9

− z31
18

 .

This solution can be simplified by operating modulo (1 − z1)
2. The remainder of m1(z1)/z1 and

m2(z1)/z1 by (1 − z1)
2 is 4 − z1 and −1, respectively. Therefore, in this way we arrive at the same

solution m2(z1, z2) determined in Subsection 3.2.

The approach described above for solving (2.14) in the case of the B221 box spline symbol can be
suitably generalized and reinterpreted in a polynomial framework.

Let H+
0 ∈ Fn×n, F = R[z1], n = ℓ = k2 + k3, be the Hurwitz matrix generated from the coefficients of

c(0)(z2) = c(z2) =
∑k2+k3

i=0 gi(z1)z
i
2, namely

H+
0 :=



g0(z1) 0 . . . . . . . . .
g2(z1) g1(z1) g0(z1) 0 . . .
g4(z1) g3(z1) g2(z1) . . . . . .

...
...

...
... . . .

...
...

...
... . . .

g2(n−1)(z1) g2(n−1)−1(z1) g2(n−1)−2(z1) . . . . . .


.

We have to solve a linear system

H+
0

 m
(0)
0 (z1)
...

m
(0)
n−1(z1)

 =

 f
(0)
1 (z1) + (1− z1)

2z1p1(z
2
1)

...

f
(0)
n (z1) + (1− z1)

2z1pn(z
2
1)

 ,

where f
(0)
j (z1) are given and, moreover, pj(z1) have to be suitably chosen in such a way to admit a

polynomial solution. The first step is trying to solve the first equation having the form of (2.19), that
is

g0(z1)m0(z1) = f
(0)
1 (z1) + (1− z1)

2z1p1(z
2
1). (4.2)

If we succeed to do that, then we can reduce the size of the system by obtaining

H+
0 (2 : n; 2 : n)

 m
(0)
1 (z1)
...

m
(0)
n−1(z1)

 =

 f
(1)
2 (z1) + (1− z1)

2z1p1(z
2
1)

...

f
(1)
n (z1) + (1− z1)

2z1pn(z
2
1)

 .
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Let G+ ∈ F2×2 and G− ∈ F2×2 be the triangular matrices defined by

G+ =

[
1 −g0(z1)
0 g1(z1)

]
, G− =

[
g1(z1) g0(z1)

0 1

]
.

Observe that
G+G− = G−G+ = g1(z1)I2. (4.3)

According to the parity of n − 1 we introduce the cumulative elimination matrix G+ ∈ F(n−1)×(n−1)

defined as follows: if n− 1 is even then

G+ = G+ ⊕G+ ⊕ . . .⊕G+,

otherwise, if n− 1 is odd
G+ = G+ ⊕G+ ⊕ . . .⊕G+ ⊕ 1.

Similarly, we define G− ∈ F(n−1)×(n−1) by setting

G− = G− ⊕G− ⊕ . . .⊕G−,

or
G− = G− ⊕G− ⊕ . . .⊕G− ⊕ g1(z1).

From (4.3) there follows that
G+ G− = G− G+ = g1(z1)In−1.

By using this relation we can rewrite the reduced system into the equivalent form

H+
0 (2 : n; 2 : n)G

+ G−

 m
(0)
1 (z1)
...

m
(0)
n−1(z1)

 = g1(z1)

 f
(1)
2 (z1) + (1− z1)

2z1p1(z
2
1)

...

f
(1)
n (z1) + (1− z1)

2z1pn(z
2
1)

 .

The matrix H+
1 = H+

0 (2 : n; 2 : n)G+ is the Hurwitz matrix associated with a transformed polynomial
c(1)(z2) generated according to the following rules: given the even–odd decomposition of c(0)(z2), i.e.,

c(0)(z2) = c(0)e (z22) + z2c
(0)
o (z22),

then we obtain

c(1)(z2) = c(0)o (z22) + z2
c
(0)
o (0)c

(0)
e (z22)− c

(0)
e (0)c

(0)
o (z22)

z22
,

which gives the transformation rules

c(1)e (z2) = c(0)o (z2), c(1)o (z2) =
c
(0)
o (0)c

(0)
e (z2)− c

(0)
e (0)c

(0)
o (z2)

z2
. (4.4)

It is worth noting that the degree of c(1)(z2) is at least 1 minus the degree of c(0)(z2). The solution of
the reduced system of order n− 1 is denoted by m

(1)
1 (z1)
...

m
(1)
n−1(z1)

 := G−

 m
(0)
1 (z1)
...

m
(0)
n−1(z1)

 .

Suppose that we are looking for polynomials m
(1)
j (z1) satisfying m

(1)
j (z1) = g1(z1)m̂

(1)
j (z1), j =

1, . . . , n − 1 and then define m1(z1, z2) =
∑n−1

j=1 m̂
(1)
j (z1)z

j−1
2 . The coefficient of this correction poly-

nomial solves

H+
1

 m̂
(1)
1 (z1)
...

m̂
(1)
n−1(z1)

 =

 f
(1)
2 (z1) + (1− z1)

2z1p1(z
2
1)

...

f
(1)
n (z1) + (1− z1)

2z1pn(z
2
1)

 ,
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which is equivalent in a polynomial setting to the equation of reduced degree

n−1∑
j=1

(f
(1)
j+1(z1) + (1− z1)

k1pj(z1))z
2(j−1)
2 = c(1)(z2)m1(z1, z2) + c(1)(−z2)m1(z1,−z2).

The transformation from (2.14) to this equation of reduced degree can be summarized as follows:

The polynomial reduction process

1. Compute m0(z1) by solving (4.2);

2. Compute the polynomial f
(1)
j (z1) = f

(0)
j (z1)−m0(z1)g2(j−1)(z1) , 2 ≤ j ≤ n;

3. Compute the coefficients of c(1)(z2) =

k2+k3−1∑
i=0

g
(1)
i (z1)z

i
2 from (4.4).

This process can in principle be continued until we arrive at a polynomial equation in one single
variable (i.e., of degree zero). After that, we have to reconstruct the coefficients of the initial correction
m0(z1, z2) starting from the coefficients of the polynomials mj(z1, z2) generated step-by-step in the
degree-reduction procedure. Let us suppose that m1(z1, z2) is known and we have to proceed with the
reconstruction of m0(z1, z2). From

G−

 m
(0)
1 (z1)
...

m
(0)
n−1(z1)

 =

 m
(1)
1 (z1)
...

m
(1)
n−1(z1)

 = g1(z1)

 m̂
(1)
1 (z1)
...

m̂
(1)
n−1(z1)

 = G−G+

 m̂
(1)
1 (z1)
...

m̂
(1)
n−1(z1)

 ,

we deduce that  m
(0)
1 (z1)
...

m
(0)
n−1(z1)

 = G+

 m̂
(1)
1 (z1)
...

m̂
(1)
n−1(z1)

 ,

which makes possible to compute the coefficients m
(0)
j of m(z1, z2) = m0(z1, z2) starting from the

coefficients m̂
(1)
j of m1(z1, z2) by performing polynomial multiplications only.

5 Conclusions and future work

In this paper we devise a general algebraic strategy for the construction of interpolatory bivariate
subdivision schemes induced by the three-directional box spline symbols. The proposed approach
is able to generate large families of interpolatory schemes depending on the algebraic properties of
the Hurwitz matrices associated with the symbols. Future work includes the systematic analysis of
these schemes as well as the characterization of the properties of the Hurwitz matrices in terms of the
properties of the related box spline symbols. Also, it is our intention to extend these results to the
case where a symbol factor is not of box spline type.
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