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Chapter 1
Introduction

The domain of this thesis is concurrency theory and formal models of distributed
systems. In particular, we work in the fields of modularity and compositionality.
We model the system structure by Petri Nets, in particular Elementary Net Sys-
tems, and system behaviour by Transition Systems or Occurrence Nets. A Petri
Net is a particular graph, whose nodes are of two kinds: local states and local
transformations. The first one represents a local part of the state of the system; a
local transformation models the effects of the occurrence of an action that mod-
ifies the state of the system. Elementary Net Systems are a basic model of Petri
Nets in which every local state is a boolean condition. Transition Systems model
the global states and the global transformations of a system. Occurrence Nets are
a particular kind of Petri Nets that represent the unfolding of an Elementary Net
System. The representation of the behaviour of the system is expressed in the
same formal notation as its structure. Here, each element records the occurrence
of an element of the Elementary Net System. On Occurrence Nets, it is natural to
define relations between elements, such as concurrency, conflict and causality.

We work with morphisms: a theoretical tool used to represent formal relations
between models. The relation modelled can be a transformation, an abstraction,
a refinement or other. Here, we focus on refinement/abstraction. One of the main
challenges consists in developing languages and methods allowing to derive prop-
erties of the refined system from properties of the abstract system. Starting from
some notions of morphisms already defined in the literature (Winskel morphisms
[45] [33], N -morphisms [31] and N̂ -morphisms [38] [6]), we study the possibil-
ity of varying or restricting these definitions so to preserve and reflect structural
and behavioural properties of the related systems. Our main contribution in this
part is the definition of α-morphisms, which preserve reachable markings. Our
approach is motivated by the attempt to define a refinement operation preserv-
ing behavioural properties on the basis of structural and only local behavioural
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8 CHAPTER 1. INTRODUCTION

constraints. Indeed, we characterize the local additional restrictions, with respect
to general morphisms, that aim, on one hand, to capture typical features of re-
finements, and on the other hand to ensure that some behavioural properties of
the abstract model still hold in the refined model, like the reflection of reachable
markings and that α-morphisms induce a bisimulation between the related Net
systems. In order to define a structural morphism able to preserve and reflect
behavioural properties, it is natural to search also a behavioural morphism that
formalises this goal. As we already said, we consider both Occurrence Nets and
Transition Systems to represent the behaviour of systems modelled by Elementary
Net Systems. Clearly it is possible to see an Occurrence Net as an Elementary
Net System, putting a token in each initial place of the Net. So, it is possible
to use the morphisms already defined also on Occurrence Nets. We can use the
concurrency, conflict and causality relations to obtain simpler morphisms on Oc-
currence Nets such that the same results obtained for Elementary Net Systems
still hold. In dealing with morphisms on Elementary Transition Systems, we first
recall G-morphisms [31], a behaviour preserving morphism, and Ĝ-morphisms
[38], that differ from the former in interpreting the morphism as a refinement
of the codomain system. Our contribution is the definition of a more restrictive
version of Ĝ-morphisms, called Γ-morphisms, that take into account also the re-
lations between states and transitions. Γ-morphisms do not allow to map pairs of
dependent events into pair of independent events. Moreover, we want to relate
morphisms between Elementary Net Systems with morphisms between their as-
sociated behavioural models and vice versa, in order to obtain more behavioural
properties relating only structural models.

In the development of distributed systems a central role is played by formal
tools supporting various aspects of modularity such as compositionality. There is
a lot of interest in how to combine models because it makes the analysis of models
simpler and more structured. The use of products in a suitable category of Nets
as a way to model composition by synchronization has been studied by several
authors. One of this works, similar to ours, proposed by Fabre [18], applies to
Safe Nets and is built on the notion of pullback. A survey paper by Padberg [34]
describes a way to compose Nets using morphisms and pushouts. There, the em-
phasis is on refinement rules that preserve specific behavioural properties, within
the wider context of general transformation rules on Nets. Winskel [45] defines
composition as a product in a category built on his morphisms. Following the
approach proposed in [38] and in [3], the basic idea consists in composing two
different refinements of a common abstract view, obtaining a new model which
describes the system comprising the details of both operands, while complying
to the same abstract view. The rules for identifying elements of the components
are expressed by means of morphisms towards another model, called interface.
The interface can be seen as an abstraction of the whole system, shared by the



9

components or, alternatively, it can be interpreted as the specification of the com-
munication protocol. In this case, each operand can be seen as made of the actual,
local, component, and of an interface to the rest of the system. The composed
system is made by local parts corresponding to each component and a global part
corresponding to the interaction between the components. The composed sys-
tem results to be related to both the components and the interface by means of
morphisms, and the resulting diagram is commutative. Our contribution is the
adaptation of this procedure to α-morphisms, so that the results obtained for these
morphisms can be used in composition. Using α-morphisms we are able to obtain
a composed system that is bisimilar to one of the components, if the other compo-
nent respects the behavioural constraint local to each refinement of the interface.

How could a system designer use these results in practice? One way would
consist in defining a set of Net transformations that he or she may use in refining
a system model. Such transformations should be consistent with a suitable class
of morphisms in the following sense: the result of applying a Net transformation
should map onto the initial more abstract model. Our contribution consists on
showing two examples of this kind of Net transformations.

The theoretical framework constituted by the composition guided by mor-
phisms and interface is suitable to be used in the field of information flows and
visibility. In this part of the research we assume to have a system divided in a hid-
den part (called the high part or the defender) and an observable part (called the
low part or the attacker). The observer knows the structure of the whole system,
but he is able to observe only the observable part. The observer can see the state
of a part of the system, and observing this, it is able to derive that one event has
occurred. We want to understand if the observer is able to infer some information
on the local states of the hidden part. Starting with Moore [30], a lot of interest
was in the study of the possibility to infer the state of a hidden part of a system.
We aim at a structural characterization of the hidden internal states of a system
that become visible after its interaction with a defined subsystem. We assume to
have a high-level system that wants to keep secret its internal local states from a
low-level system interacting with the high-level component through an interface.
Basically, we explore the consequences of a proposal originally made by Busi and
Gorrieri for defining non-interference properties. The new part of our proposal is
that we use the local validity of conditions as observable properties and we focus
on structural properties. Our contribution here is in changing the point of view
of the attacker: he is not able to observe events, but only the modification of the
local states. Defining a new kind of observability on states, we obtain results on
the visibility of conditions of the defender that the attacker is able to infer using
invariant properties that concern conditions of the defender and of the interface.
We also define a classification of systems related to the idea of visibility.

The thesis will be structured as follows: in Chapter 2 we present the basic
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definitions we will use. In Chapter 3 we present the morphisms on the three
kinds of models we consider, the categories defined and the relations between
some of them. In Chapter 4 we present the work on the set of well formed Nets
used for transformations and in Chapter 5 we present the work on composition
guided by morphisms. Then, in Chapter 6 we present our work on observability
and visibility. Finally, in Chapter 7 we expose conclusions and we explore the
possible developments of this thesis.



Chapter 2
Basic definitions

2.1 Preliminary definitions
In this section we will recall the main definitions and notions that will be used in
the rest of the thesis.

We then present Elementary Net Systems, a basic type of Petri Nets, and two
different models of the behaviour of an Elementary Net System: Occurrence Nets,
another kind of Petri Nets, and Elementary Transition Systems, a kind of Finite
State Automata.

It is possible to use indifferently vectors and characteristic functions: if v is a
vector x ∈ v⇔ v(x) ≠ 0.

Given a vector, we will use the symbol ⇂ to denote the restriction of the object
on a part of its components.

2.2 Categories, objects, and morphisms
In this section we recall some basic notions from Category theory.

The notion of function is one of the most fundamental in mathematics and
science. Category theory [1] [44] is the algebra of functions; the main operation
on functions is taken to be composition. A category is an abstract structure: a
collection of objects together with a collection of arrows between them.

2.2.1 Categories

The following definitions are taken from [1] and [44] with some adaptations. We
begin by giving the formal definition.

11
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Definition 1. A category C consists of a set of objects (called obj (C)) and a set
of morphisms or arrows. The objects are denoted

A,B,C, ...,X,Y, ...

and the morphisms are denoted

f, g, h, ...α, β, γ, ...

Further:

• each morphism has a designated domain and codomain in obj (C).

When the domain of f is A we write dom (f) = A.

When the codomain of f is B we write cod (f) = B.

When dom (f) = A and cod (f) = B we write f ∶ A→ B;

• given any object A there is a designated identity morphism 1A ∶ A→ A;

• given two morphisms f ∶ A→ B and g ∶ B → C, we define g ○ f ∶ A→ C as
the composite morphism;

• the data above is required to satisfy the following:

Identity laws: if f ∶ A→ B then 1B ○ f = f and f ○ 1A = f ;

Associative law: if f ∶ A→ B,g ∶ B → C and h ∶ C →D then h○(g ○f) =
(h ○ g) ○ f ∶ A→D.

In a category C, given two objects A and B, the collection of all morphisms f
such that f ∶ A→ B is denoted by C[A,B].

Let us define isomorphism between objects and categories.

Definition 2. An arrow α ∶ A → B in a category for which there exists another
arrow α−1 ∶ B → A such that

α ○ α−1 = 1B

α−1 ○ α = 1A

is called an isomorphism.

If there is an isomorphism α from A to B we say that A and B are isomorphic
objects, and we write A ≅ B.

Definition 3. Let A and B be categories.
An isomorphism from A to B is a bijection Φ from the objects and arrows of

A to the objects and arrows of B, respectively, such that:
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• Φ preserves domains and codomains: if f ∶ A1 → A2 in A then Φ(f) ∶
Φ(A1) → Φ(A2) in B,

• Φ preserves composition: if f ∶ A1 → A2 and g ∶ A2 → A3 in A then
Φ(g ○ f) = Φ(g) ○Φ(f) in B,

• Φ preserves identities: if 1A is an identity in A then Φ(1A) = 1Φ(A) in B.

If there is an isomorphism Φ from A to B we say that A and B are isomorphic
categories, and we write A ≅ B. It is possible to think of an isomorphism as
renaming the objects and arrows because isomorphic categories differ only in the
names of the objects and arrows.

An important tool in the practice of Category Theory is the use of diagrams for
representing equations. In a diagram a morphism f ∶ A→ B is drawn as an arrow
labelled f from object A to object B. A diagram commutes if the composition of
the morphism along any path between two fixed objects is equal.

Finally, let us define what is a subcategory.

Definition 4. A category B is a subcategory of a category A, if

• obj (B) ⊆obj (A);

• ∀A,B ∈obj (B),B[A,B] ⊆ A[A,B];

• composition and identities in B coincide with those of A.

A subcategory is full if ∀A,B ∈obj (B),B[A,B] = A[A,B].

A full subcategory is fully determined by its collection of objects.

2.2.2 Functors
If a transformation F between two categories A and B must map the categorical
structure ofA to that of B, it must take objects and morphisms ofA to objects and
morphisms of B; moreover, it must preserve domain, codomain, identities and
composition. Such a transformation F ∶ A → A is called a functor.

Definition 5. IfA and B are categories then a functor fromA to B consists of two
functions, one on objects and one on morphisms; the former is denoted

Fobs ∶obj (A) →obj (B)

and, for each pair of objects A1, A2 of A,

FA1,A2 ∶ A[A1,A2] → B[Fobs(A1),Fobs(A2)]
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satisfying
FA,A(1A) = 1Fobs(A)

FA1,A3(β ○ α) = FA2,A3(β) ○ FA1,A2(α) if A1
αÐ→ A2

βÐ→ A3

Note that we usually denote all the functions Fobs,FA1,A2 by the symbol F.

2.2.3 Pullback and pushout
We now introduce the notion of pullback.

Definition 6. Given two arrows f ∶ B → A and g ∶ C → A with common codomain
A, the pullback of (f, g) is an object P and a couple of arrows pB ∶ P → B,
pC ∶ P → C, such that:

• f ○ pB = g ○ pC ∶ P → A;

• for every other triple (Q, qB ∶ Q→ B, qC ∶ Q→ C) such that f ○qB = g ○qC ,
there exists a unique arrow u ∶ Q→ P such that pB ○u = qB, and pC ○u = qC .

Q

qB

""

u
��?

??
??

??
qC

��
P

pB
��

pC
// C

g

��
B

f
// A

The notion of pushout is dual to that of pullback.

Definition 7. Given two arrows f ∶ A → B and g ∶ A → C with common domain
A, the pushout of (f, g) is an object P and a couple of arrows iB ∶ B → P ,
iC ∶ C → P , such that:

• iB ○ f = iC ○ g ∶ A→ P ;

• for every other triple (Q, jB ∶ B → Q, jC ∶ C → Q) such that jB ○f = jC ○g,
there exists a unique arrow u ∶ P → Q such that u○ iB = jB, and u○ iC = jC .

A

f

��

g // C

iC
�� jC

��

B
iB //

jB ..

P

u
��?

??
??

??

Q



2.3. ELEMENTARY NET SYSTEMS 15

2.3 Elementary Net Systems
Petri Nets were introduced by Carl Adam Petri [36] as a basic model of general
systems. In this section, we recall the basic definitions of Net theory. For a de-
tailed introduction to Net theory, see [40].

In Net theory, models of distributed systems are based on objects called Nets
which specify local states, local transitions and the relations among them.

Definition 8. A Net is a triple N = (B,E,F ), where:

• B is a finite set of local states;

• E is a finite set of local transformations;

• B ∩E = ∅;

• F ⊆ (B ×E) ∪ (E ×B) is the flow relation.

The set of nodes of a Net will be denoted by X = B ∪E; we allow the empty
Net and Nets with isolated nodes. In the following, when we add an index to a
Net, also its components are identified by this index: Ni = (Bi,Ei, Fi).

A Net can be represented as a bipartite graph. We adopt the usual graphical
notation: local states are represented by circles, local transformations by boxes
and the flow relation by arcs.

A local state b ∈ B is a precondition of e ∈ E if (b, e) ∈ F ; it is a postcondition
of e if (e, b) ∈ F . The preset of an node x ∈ X is defined by ●x = {y ∈ X ∣ (y, x) ∈
F}; the postset of x is given by x● = {y ∈ X ∣ (x, y) ∈ F}; the neighbourhood of
x is given by ●x● = ●x ∪ x●. These notations are extended to sets of nodes in the
usual way.

A local state x is the complement of a local state y if ●x = y● and x● = ●y. The
complement of x, if it exists, will be denoted by x′.

For any Net N we denote the in-nodes of N by ◯N = {x ∈ XN ∶ ●x = ∅} and
the out-nodes of N by N◯ = {x ∈XN ∶ x● = ∅}.

A Net N = (B,E,F ) is B-simple iff for each x, y ∈ B, (●x = ●y ∧ x● = y●) ⇒
x = y; N is E-simple iff for each x, y ∈ E, (●x = ●y ∧ x● = y●) ⇒ x = y; finally, N
is simple if it is both B− and E−simple.

A Net is T -restricted when ∀e ∈ E, ●e ≠ ∅ ≠ e●.
Let us define a subnet of a Net generated by a subset of nodes.

Definition 9. A Net N ′ = (B′,E′, F ′) is a subnet of a Net N = (B,E,F ) if
B′ ⊆ B, E′ ⊆ E, and F ′ = F ∩ ((B′ ×E′) ∪ (E′ ×B′)).

Given a subset of nodes H ⊆ B, we say that NH is the subnet of N generated
by H if NH = (H, ●H●, F ∩ ((H × ●H●) ∪ (●H● ×H)).
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Given a subset of nodes K ⊆ E, we say that NK is the subnet of N generated
by K if NK = (●K●,K,F ∩ ((●K● ×K) ∪ (K × ●K●)).

Given a subset of nodesA ⊆X , we say thatN(A) is the subnet ofN identified
by A if N(A) = (B ∩A,E ∩A,F ∩ (A ×A)).

The structure of a Net can be represented by a matrix M called the incidence
matrix.

Definition 10. The incidence matrix of a Net N = (B,E,F ) is the matrix M with
∣B∣ rows (one for each local state) and ∣E∣ columns (one for each local transfor-
mation).

Its (k, j) node is:

M(k, j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if (bk, ej) ∈ F
0 if (bk, ej) /∈ F ∧ (ej, bk) /∈ F
1 if (ej, bk) ∈ F

A State Machine is a connected Net such that each local transformation e has
exactly one input local state and exactly one output local state: ∀e ∈ E, ∣●e∣ = ∣e●∣ =
1.

Let us now define Elementary Net Systems [41]. Whereas a Net describes the
structure of a system, an Elementary Net System adds to this the specification of
an initial global state. A global state is a set of local states, and is a snapshot of
the system at a given time. Moreover, a local transformation is called event and a
local state is called condition. The events are actions that change some local states
of the system. In Elementary Net Systems local states are interpreted as boolean
conditions.

Definition 11. An Elementary Net System is a quadruple N = (B,E,F,m0),
where (B,E,F ) is a simple Net such that:

• self-loops are not allowed: ∀e ∈ E,∀p, q ∈ B ∶ (p, e), (e, q) ∈ F ⇒ p ≠ q;

• isolated nodes are not permitted: dom (F )∪ cod (F ) =X;

• the initial marking is m0 ⊆ B.

In general, a marking (o case) is a subset of conditions that are true at a given
time. If m ⊆ B is a marking and b ∈m, we will say that there is a token in b.

The behaviour of Elementary Net Systems is defined through the firing rule
which specifies when an event can occur, and how event occurrences modify the
holding of conditions, i.e. the state of the system.
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Definition 12. Let N = (B,E,F,m0) be an Elementary Net System, let e ∈ E and
m ⊆ B.

1. e is enabled (or e has concession) at m, denoted m [e⟩, if ●e ⊆ m and
e● ∩m = ∅.

2. If e is enabled at m, e can occur. Its occurrence brings the Net System from
state m to a new state m′, denoted by m [e⟩m′, iff m′ = (m ∖ ●e) ∪ e●; e is
also called a sequential step from m to m′.

3. Let ε denote the empty word in E∗. The firing rule is extended to sequences
of events by

m [ε⟩m

and
∀e ∈ E,∀w ∈ E∗,m [ew⟩m′⇔m [e⟩m′′[w⟩m′

ew and w are then called firing sequences. The set of firing sequences of N
is the set FS(N) = {w ∈ E∗ ∣m0 [w⟩}.

4. m ⊆ B is a reachable marking of N if there exists a w ∈ FS(N) with
m0 [w⟩m. The set of all reachable markings, or state space, of N is de-
noted by [m0⟩.

The sequential behaviour of Elementary Net Systems can be described by
marking sequences and transition systems.

Definition 13. A marking sequence ms of N is a sequence

ms =m1 . . .mn ∶ ∃e1, . . . en−1 ∈ E,m1 [e1⟩m2 . . .mn−1 [en−1⟩mn

We will callMS the set of all marking sequences starting from the initial marking.

Definition 14. The marking graph (or reachability graph) of an Elementary Net
System N is the triple MG(N) = ([m0⟩ ,E, T ), where T = {(m,e,m′) ∣m,m′ ∈
[m0⟩ ∧ e ∈ E ∧m [e⟩m′.

Different Elementary Net Systems can have isomorphic marking graphs. In
this family of systems, there is a model that is maximal in the number of condi-
tions. This Elementary Net System is called saturated.

A set of events U ⊆ E may occur concurrently, i.e. is a step, at a marking
m, denoted m [U⟩m′, if they are pairwise independent, i.e., ∀e1, e2 ∈ U ∶ e1 ≠ e2

implies: (●e1 ∪ e1
●) ∩ (●e2 ∪ e2

●) = ∅, and each one of them is enabled at m. The
new marking m′ is obtained from m by the occurrence of each event in U .
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An Elementary Net System is 1-live if every event can fire in, at least, one
reachable marking: ∀e ∈ E, ∃m ∈ [m0⟩ ∶ m [e⟩. An event is called dead at a
marking m if it is not enabled at any marking reachable from m. A reachable
marking m is called dead if no event is enabled at m. An Elementary Net System
is deadlock-free if no reachable marking is dead.

Definition 15. An Elementary Net SystemN = (B,E,F,m0) is said to be contact-
free iff ∀m ∈ [m0⟩ ,∀e ∈ E, ●e ⊆m⇒ e● ∩m = ∅.

A subnet of an Elementary Net System N identified by a subset of conditions
A and all its pre and post events, N(A ∪ ●A●), is a sequential component of N if
N(A ∪ ●A●) is a State Machine and if it has only one token in the initial marking.

An Elementary Net System is covered by sequential components if every con-
dition of the Net belongs to at least one sequential component. In this case we say
that the system is State Machine Decomposable (SMD).

Intuitively, a State Machine decomposable Net System models a system com-
posed of interacting sequential parts.

If an Elementary Net System is covered by sequential components then it is
contact-free.

Some properties of an Elementary Net System can be studied through the in-
cidence matrix and its invariants. An S-invariant [42] associates positive weights
to conditions so that the weighted sum of tokens is the same in all reachable mark-
ings.

Definition 16. Let N be an Elementary Net System and let M be its incidence
matrix.

A vector I ∶ B → N is an S-invariant iff it is a solution of: IT ○M = 0.

T -invariants allow to identify firing sequences that reproduce a marking.

Definition 17. Let N be an Elementary Net System and let M be its incidence
matrix.

A vector J ∶ T → N is a T -invariant iff it is a solution of: M ○ J = 0.

An S-invariant is basic iff its coefficients are in {0,1}. An S-invariant is
monomarked iff it is basic and exactly one condition corresponding to a 1 in the
invariant belongs to the initial marking m0.

2.3.1 Bisimulations for Elementary Net Systems
We consider now an equivalence notion [39], [46] and [35] that is based on the
observability of sequences of events. Initially, bisimulation has been defined in the
field of Transition Systems. The idea is that two systems are bisimilar if they allow
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the same set of actions in related states. If we take into account the possibility that
some actions of the systems are invisible to an observer, the corresponding notion
is called weak bisimilarity, which will be used in the following.

Since the behaviour of Elementary Net Systems is modeled by Transition Sys-
tems, bisimilarity has been defined also for these models.

We define the observability of events of a system by using a labelling function
which associates the same label to different events, when viewed as equal by an
observer, and the label τ to unobservable events. In order to capture the behaviour
that can be obtained through system observation, it is necessary to define a new
transition rule which takes into account only the images of observable events.

Definition 18. Let N = (B,E,F,m0) be an Elementary Net System, l ∶ E →
L∪{τ} be a labelling function where L is the alphabet of observable actions and
τ /∈ L the unobservable action. Let ε denote the empty word in both E∗ and L∗.
The function l is extended to a homomorphism l ∶ E∗ → L∗ in the following way:

l(ε) = ε

∀e ∈ E,∀w ∈ E∗, l(ew) =
⎧⎪⎪⎨⎪⎪⎩

l(e)l(w) if l(e) ≠ τ
l(w) if l(e) = τ

The pair (N, l) is called Labelled Elementary Net System.
Let m,m′ ∈ [m0⟩ and a ∈ L ∪ {ε} then:

• a is enabled at m, denoted m (a⟩, iff ∃w ∈ E∗ ∶ l(w) = a and m [w⟩;

• if a is enabled atm, then the occurrence of a can lead fromm tom′, denoted
m (a⟩m′, iff ∃w ∈ E∗ ∶ l(w) = a and m [w⟩m′.

Bisimulation relations have been introduced as equivalence notions with re-
spect to event observation [29]. We define weak bisimulation as a relation be-
tween reachable markings of Labelled Elementary Net Systems. The initial mark-
ings must be related. Moreover, if one system is in a marking m and evolves to
another marking m′ with a sequence a of observable actions, it has to be possible
for the other system, that is in a marking c bisimilar to m (c ≈BIS m), to evolve
by means of a to a new marking c′ so that c′ ≈BIS m′ and vice versa.

Definition 19. Let Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net System for i = 1,2,

with the labelling function li ∶ Ei → L ∪ {τ}. Then (N1, l1) and (N2, l2) are
weakly bisimilar, denoted (N1, l1) ≈ (N2, l2), iff ∃r ⊆ [m1

0⟩ × [m2
0⟩ such that:

• (m1
0,m

2
0) ∈ r;
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(a) N1 (b) N2

Figure 2.1: Two Nets

• ∀(m1,m2) ∈ r,∀a ∈ L ∪ {ε} it holds

∀m′
1 ∶m1 (a⟩m′

1 ⇒ ∃m′
2 ∶m2 (a⟩m′

2 ∧ (m′
1,m

′
2) ∈ r

and (vice versa)

∀m′
2 ∶m2 (a⟩m′

2 ⇒ ∃m′
1 ∶m1 (a⟩m′

1 ∧ (m′
1,m

′
2) ∈ r

Such a relation r is called weak bisimulation.

For short, in the rest of the paper we will use the term bisimulation instead of
weak bisimulation.

As an example, consider the systems N1 and N2 of Fig. 2.1. The observ-
able actions are the ones on E2. As labelling function for N1 consider a l1 that
maps each event on the correspondent one in E2 but for g0 that is mapped on
τ . As labelling function for N2 take the identity function. Using the mapping
({bI , d0},{bI}), ({bI , d2},{bI}), ({d1},∅), these two systems are bisimilar. To
better understand the concept of the new transition rule, note that we can write
{bI , d0} (post⟩ {d1} because we have {g0, post} ∈ E∗

2 such that l2({g0, post}) =
post and {bI , d0} [{g0, post}⟩ {d1}.

2.3.2 Occurrence Nets
Given a Net N , if F ∗ is a partial order (the Net is acyclic), we can define other
interesting relations [2] [7] [16] [22] [37].

Causality coincide with F ∗ and can be characterised as the least transitive
relation <N over X such that if x ∈ ●y then x <N y and if x ∈ y● then y <N x. We
denote by ≤N the reflexive closure of <N . Informally, x <N y means that the Net



2.3. ELEMENTARY NET SYSTEMS 21

contains a path with at least one arc leading from x to y. For any x ∈ X we are
now able to define its past, ⌊x⌋ = {y ∈ X ∶ y ≤N x}, and its future, ⌈x⌉ = {y ∈ X ∶
x ≤N y}. For x, y ∈ X , x ≤ y, [x, y] denotes the closed interval between x and
y: [x, y] = {z ∈ X ∣x ≤ z ≤ y}; ]x, y[ denotes the open interval between x and
y: ]x, y[ = {z ∈ X ∣x < z < y}. We will also use the relation li defined as ≤ ∪ ≥,
where ≥ is the inverse of ≤.

Let us proceed with the idea of conflict: x and y are in conflict if the Net con-
tains two paths leading to x and y which start at the same place b and immediately
diverge (although later on they can converge again).

Definition 20. Let N = (B,E,F ) be a Net and let x, y ∈ X . We say that x and
y are in conflict, denoted by x #N y, if there exist two distinct events ex, ey ∈ E,
ex ≠ ey, such that ex ≤ x, ey ≤ y, and ●ex ∩ ●ey ≠ ∅.

Two elements, x and y, are concurrent, denoted by x co y, indicating that
x and y may occur at the same time in some reachable marking, if they neither
causally depend on nor conflict with each other, defined as: x co y iff ¬(x #N y)
and ¬(x ≤N y) and ¬(y ≤N x).

We often drop the subscript N for the defined relations.
A subset of nodes X ⊆ B pairwise concurrent will be called a co-set: ∀x, y ∈

X,x co y. A co-set formed by elements of B will be called a B-co-set. A
maximal co-set with respect to set inclusion is called a cut.

Occurrence Nets are basically acyclic Nets where each condition is generated
by at most one event.

Definition 21. An Occurrence Net is a Net N satisfying:

1. every condition is generated by at most one event: ∀e1, e2 ∈ E, if e1
● ∩ e2

● ≠
∅ then e1 = e2;

2. the Net is acyclic, or, equivalently, the causal relation ≤ is a partial order;

3. each nodes is finitely preceded: ⌊x⌋ is finite for any x ∈X . This implies that
∀x, y ∈X ∶ ∣ [x, y] ∣ < ∞.

4. no node is in conflict with itself: #N is irreflexive,

5. the minimal elements with respect to ≤N form a B-co-set. This set is the
implicitly associated initial marking.

It is easy to see that any two nodes of an Occurrence Net are either in causal,
conflict, or concurrency relation.

A run represents a possible execution, where conflicts have been solved.
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Definition 22. A run R of an Occurrence Net N is a set of events satisfying the
two following properties:

• R is causally left-closed: ∀e1, e2 ∈ E ∶ e1 ∈ R ∧ e2 ≤ e1 ⇒ e2 ∈ R,

• R is conflict-free: ∀e1, e2 ∈ R ∶ ¬(e1 # e2).

We impose that the Nets we consider are T -restricted, as defined in the previ-
ous section.

For any subsetA of elements of an Occurrence NetN = (B,E,F ), by min(A)
we denote the minimal elements of A with respect to the causal relation ≤, i.e. the
elements that have an empty preset, as min(A) = {x ∈ A ∶ ●x ∩ A = ∅}, and by
max(A) the maximal elements of A, i.e. the elements that have an empty postset,
as max(A) = {x ∈ A ∶ x● ∩ A = ∅}. When we consider the set X of nodes of a
Net, min(X) and max(X) consist of conditions, since we consider T -restricted
Nets.

Let us define a subnet of an Occurrence Net generated by a subset of elements.

Definition 23. Let N = (B,E,F ) be an Occurrence Net and let A ⊆X .
We define N(A) as the Net generated by the nodes of A plus the neighbour-

hood of the events of A. Let BA = (A ∩B) ∪ ●(A ∩E)● and EA = A ∩E:

N(A) = (BA,EA, F ∩ (A ×A))

It is easy to see that a subnet of an Occurrence Net is an Occurrence Net.
We are now ready to define the unfolding of an Elementary Net System. Let

us start with an informal definition. Consider an Elementary Net System N with
its initial marking m0. It can be “unfolded” into labelled Occurrence Nets in an
operational way. Take the initial marking of N . Then, add all the events enabled
and their postconditions. Continue in this way, creating a new copy of a node
each time you need to add it to the Occurrence Net. It is possible to stop at any
time, so creating different Occurrence Nets. The nodes of the Occurrence Net are
labelled with the conditions and events of the Net N . The labelled Occurrence
Nets obtained through unfolding of Nets are called processes. The unfolding pro-
cess can be stopped at different times yielding different processes, however there
is a unique, usually infinite, process obtained by unfolding “as much as possible”.
This process is called the unfolding of the Net System. Clearly, this process can
be infinite, generating an Occurrence Net that is infinite.

Hence, a process of N is an Occurrence Net whose elements can be mapped
to the elements of N such that the requirements in the following definition are
satisfied.
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Definition 24. Let N = (B,E,F,m0) be an Elementary Net System, and NΣ =
(BΣ,EΣ, FΣ) be an Occurrence Net (potentially infinite). Let π ∶ XΣ → X be a
map.

The pair (NΣ, π) is a process of N if:

• π preserves the nature of nodes: π(BΣ) ⊆ B, π(EΣ) ⊆ E;

• NΣ “starts” at the minimal elements of N :

π restricted to min(XΣ) is a bijection on m0;

• for each e ∈ EΣ, π restricted to ●e is injective and π restricted to e● is
injective;

• π preserves the environments of transitions:

for each e ∈ EΣ, π(●e) = ●(π(e)) and π(e●) = (π(e))●.

The unfolding of an Elementary Net System N , denoted by Unf (N), is the
“maximal” process of N , namely the unique process such that any other process
of N is isomorphic to a subnet of Unf (N). The map associated to the unfolding
will be denoted u and called folding.

2.4 Elementary Transition Systems
The theory of Elementary Transition Systems and regions has been developed
in category context in [31]. Transition Systems consist of states and transitions.
Every state represents a global system state and every transition links global states.
Usually Transition Systems are based on actions which may be viewed as labelled
events. We will consider only finite models.

Definition 25. A Transition System is a quadruple TS = (S,E,T, s0), where

• S is a non-empty and finite set of states,

• E is a finite set of events, actions or labels,

• T ⊆ S×E×S is the transition relation: a set of labelled edges or transitions,

• s0 ∈ S is the initial state.

Let TS = (S,E,T, s0) be a Transition System. When TS is clear from the
context we will often write s

eÐ→ s′ instead of (s, e, s′) ∈ T . An event e is enabled
at the state s (denoted s

eÐ→) if there exists a state s′ such that s
eÐ→ s′.

From now on Transition Systems will be assumed to satisfy the following
axioms:
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(A1) loopfree: s
eÐ→ s′⇒ s ≠ s′,

(A2) no multiple arcs: s
e1Ð→ s′ ∧ s e2Ð→ s′⇒ e1 = e2,

(A3) reduced: ∀e ∈ E,∃s, s′ ∈ S ∶ s eÐ→ s′,

(A4) reachable: ∀s ∈ S∖s0,∃e0, e1, . . . en−1 ∈ E∧∃p0, p1, . . . pn ∈ S ∶ p0 = s0, pn =
s ∧ pi

eiÐ→ pi+1,0 ⩽ i < n.

A region is a subset of states whose border is crossed in a uniform way by
transitions labelled with the same label.

Definition 26. Let TS = (S,E,T, s0) be a Transition System.
Then r ⊆ S is a region of TS iff the following two conditions are satisfied:

• (s eÐ→ s′ ∈ T ∧ s ∈ r ∧ s′ /∈ r) ⇒ (∀s1
eÐ→ s′1 ∈ T ∶ s1 ∈ r ∧ s′1 /∈ r)

• (s eÐ→ s′ ∈ T ∧ s /∈ r ∧ s′ ∈ r) ⇒ (∀s1
eÐ→ s′1 ∈ T ∶ s1 /∈ r ∧ s′1 ∈ r)

S and ∅ are particular regions called trivial regions.
Let RTS denote the set of (non trivial) regions of TS, and for each s ∈ S let

Rs = {r ∣ s ∈ r ∈ RTS} denote the set of non trivial regions containing s.

It is possible to define pre and post-regions of an event.

Definition 27. Let TS = (S,E,T, s0) be a Transition System.
Then the pre and post-regions of an event are defined in the following sense:

∀e ∈ E, ○e = {r ∈ RTS ∣ ∃s eÐ→ s′ ∈ T, s ∈ r ∧ s′ /∈ r}

∀e ∈ E, e○ = {r ∈ RTS ∣ ∃s eÐ→ s′ ∈ T, s /∈ r ∧ s′ ∈ r}

Proposition 1. Let TS = (S,E,T, s0) be a Transition System.

• r ⊆ S is a region iff r = S − r is a region;

• ∀e ∈ E, e○ = {r ∣ r ∈ ○e};

• s
eÐ→ s′, ○e = Rs −Rs′ and e○ = Rs′ −Rs.

Consequently ○e ⊆ Rs and e○ ∩Rs = ∅ and Rs′ = (Rs − ○e) ∪ e○.

Let us define a particular subtype of Transition Systems, that respects two
constraints on regions.

Definition 28. The Transition System TS = (S,E,T, s0) is Elementary if it satis-
fies also these two regional axioms:
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(A5) state separation: ∀s, s′ ∈ S,Rs = Rs′ ⇒ s = s′;

(A6) forward closure: ∀s ∈ S,∀e ∈ E, ○e ⊆ Rs⇒ s
eÐ→.

The behaviour of Elementary Net Systems can be described by marking graphs,
which can be characterized as a subclass of Transition Systems. The marking
graph of an Elementary Net System is an Elementary Transition System (see
[31]).
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Chapter 3
Morphisms

Refinement and composition of modules are among the basic conceptual tools of
a system designer. Several formal approaches are available. One of the main chal-
lenges consists in developing languages and methods allowing to derive properties
of the refined or composed system from properties of the abstract system or the
components.

In this chapter we present different types of morphisms for refinement/abstraction.
These can also be used to relate two subsystems to a common interface in order
to properly compose the subsystems, as we will show in the next chapter.

Here, we present some already defined morphism and we define some new
morphisms for Elementary Net Systems (structural models), Occurrence Nets and
Elementary Transition Systems (behavioural models). At the end of the chapter
we present the relations between some of the categories introduced.

3.1 Elementary Net Systems
Using morphisms to formalize relations between a refined Net system and a more
abstract one is widely used in the literature. Most approaches, in Petri Net theory,
are based on transition refinement and, less frequently, on place refinement; for a
survey, see [10]. Another survey paper, [34], describes a set of techniques which
allow to refine transitions in Place/transition Nets, so that the relation between the
abstract Net and its refinement is given by a morphism. There, the emphasis is
on refinement rules that preserve specific behavioural properties, within the wider
context of general transformation rules on Nets.

A very general class of morphisms, interpreted as abstraction of system re-
quirements, with less focus on strict preservation of behavioural properties, is
defined in [15]. An attempt to define abstractions based on morphisms which pre-

27
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serve both structural and behavioural properties is described in [24] for Coloured
Petri Nets. These morphisms are consistent with an operation of composition of
nets.

In [32] a refinement operation is proposed on Transition Systems, however is
strictly related to refinement of local states in Nets, through the notion of region.

In this section, we start introducing some notions of morphisms already de-
fined in literature: Winskel morphisms [45] [33], N -morphisms [31] and N̂ -
morphisms [38] [6]. We study the possibility of varying or restricting these defi-
nitions so to preserve and reflect properties of the related systems. We start work-
ing on N̂ -morphisms forbidding to relate dependent elements to concurrent ones.
Next, we work on morphisms similar to the one of Winskel, introducing the idea
of subnet mapped on a single node. On this line, in Section 3.1.7, we present
one main results in this area: the definition of α-morphisms, and we show that
reachable markings are preserved. Moreover, we characterize the local conditions
under which reachable markings are reflected, and such that α-morphisms induce
a bisimulation between the related Net systems.

3.1.1 Winskel morphisms
Winskel morphisms are a very basic kind of morphisms and are defined in [45]
for general Net and in [33] for basic types of Net. These are behaviour preserving
morphisms, to be thought of as kinds of simulations.

Vogler [43] and Bednarczyk [27] defined the same variation of these mor-
phisms in two different period. However, their morphisms are more general than
the Winskel ones, hence their are not able to have other properties preserved and
reflected.

Definition 29. Let Ni = (Bi,Ei, Fi,mi
0) be a contact-free EN System, for i = 1,2.

A Winskel morphism is a pair (β, η) ∶ N1 → N2, where:

• β ⊆ B1 ×B2 and β−1 ∶ B2 →∗ B1 is a partial function;

• η ∶ E1 →∗ E2 is a partial function;

• β(m1
0) =m2

0;

• if η(e1) is undefined, then β(●e1) = ∅ = β(e1
●);

• if η(e1) = e2, then β(●e1) = ●e2 and β(e1
●) = e2

●.

Note that this kind of morphisms does not permit the classical folding, as is
illustrated in Fig. 3.1.

Winskel morphisms preserve reachable markings, as stated in the next propo-
sition [33].
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Figure 3.1: Two Nets without a Winskel morphism

Proposition 2. Let Ni = (Bi,Ei, Fi,mi
0) be an EN System, for i = 1,2.

Suppose (β, η) ∶ N1 → N2 is a Winskel morphism.

• If m1 [e1⟩m′
1 in N1 and η(e1) ∈ E2 then β(m1) [η(e1)⟩β(m′

1) in N2.

• If m1 [e1⟩m′
1 in N1 and η(e) ∈ B2 then β(m1) = β(m′

1) in N2.

• If ●e1
● ∩ ●e′1

● = ∅ in N1 then ●(η(e1))● ∩ ●(η(e′1))● = ∅ in N2.

The Wisnkel morphisms are closed by composition, the identity function is a
Winskel morphism, and the composition is associative. Hence, the family of Ele-
mentary Net Systems together with Winkel morphisms forms a category denoted
N [33].

3.1.2 N -morphisms
Nielsen, Rozenberg and Thiagarajan [31] introduced a particular kind of mor-
phisms, N -morphisms, that can be seen like a behaviour preserving transforma-
tions hence corresponding to a form of partial simulation. N -morphisms are a
modified form of Winskel morphisms presented in the previous section. The main
difference between them is, firstly, that Winskel morphisms demand the initial
cases to be correspondent while Nielsen, Rozenberg and Thiagarajan weakened
this assumption since they do not wish to permit isolated elements in the Nets.
The other difference is that they do not require the Net to be contact-free whereas
Winskel morphisms do.

Definition 30. Let Ni = (Bi,Ei, Fi,m0) be an Elementary Net System for i = 1,2.
An N -morphism from N1 to N2 is a pair (β, η), where:
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1. β ⊆ B1 ×B2 and β−1 ∶ B2 →∗ B1 is a partial function;

2. η ∶ E1 →∗ E2 is a partial function;

3. ∀(b1, b2) ∈ β ∶ b1 ∈m1
0 ⇔ b2 ∈m2

0;

4. if η(e1) is undefined, then β(●e1) = ∅ = β(e1
●);

5. if η(e1) = e2, then β(●e1) = ●e2 and β(e1
●) = e2

●.

N -morphisms are behaviour preserving, as stated in the next proposition [31].

Proposition 3. Let Ni = (Bi,Ei, Fi,m0) be an Elementary Net System for i = 1,2
and let (β, η) ∶ N1 → N2 be an N -morphism between them. Let fβ ∶ [m1

0⟩ → 2B2 ,
be given by ∀m ∈ [m1

0⟩ , fβ(m) = β(m) ∪ (m2
0 − β(m1

0)) then

• ∀m ∈ [m1
0⟩ , fβ(m) ∈ [m2

0⟩,

• suppose m [e⟩m′ then fβ(m) = fβ(m′) in case η(e) is undefined, other-
wise, fβ(m) [η(e)⟩ fβ(m′).

In some sense, the morphisms are guided by the mapping on the events, as is
explained in the next proposition [31].

Proposition 4. Let (β1, η1) and (β2, η2) be a pair of N -morphisms from N1 to N2

where Ni = (Bi,Ei, Fi,mi
0) are Elementary Net Systems for i = 1,2. If η1 = η2

then β1 = β2.

The N -morphisms are closed by composition; the identity function 1N =
(idB, idE) is an N -morphisms where idB ∶ B → B and idE ∶ E → E are the
(total) identity functions; the composition is associative. Hence, the family of
Elementary Net Systems together with N -morphisms forms a category denoted
ENS [33].

3.1.3 N̂ -morphisms
Bernardinello, Pomello et al. studied a more restricted version of N -morphisms:
N̂ -morphism. These morphisms are introduced in [38] and studied in [6].

The basic idea is that N1 can be seen like a refinement of N2, so it has to
maintain all the conditions and the events of N2 but it can add other behaviour
adding conditions and events. It is very important to take in mind that also this
kind of morphisms allow to relax some constraints. Instead of N -morphisms, N̂ -
morphisms require η to be surjective and β−1 to be a total and injective function,
that is equivalent to require β to be a partial, injective and surjective function. The
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(a) N1 (b) N2

Figure 3.2: An example of N̂ -morphism

totality of β−1 assures that every condition of N2 must have a counterimage in N1;
the surjectivity of η assures that every event of N2 can be splitted into more than
one event in N1 but have to be part of the refined Petri Net. N̂ -morphisms set
constraints on the pre and post conditions of an event but nothing is said about the
relation of the conditions which are not in the domain of β.

Definition 31. Let Ni = (Bi,Ei, Fi,mi
0) be Elementary Net Systems for i = 1,2.

An N̂ -morphism from N1 to N2 is an N -morphism (β, η) with the following
restrictions:

1. β−1 ∶ B2 → B1 is a total and injective function. Note that this is equivalent
to say that β ∶ B1 →∗ B2 is a partial, injective and surjective function;

2. η is surjective.

N̂ -morphisms allow refining local states and adding constraints between events
but they do not allow to delete events and conditions of N2. Fig. 3.2 shows an
example of N̂ -morphism (elements with the same names are related by the maps
β and η). As we can see N1 has more constraints than N2.

The N̂ -morphisms are closed by composition; the identity function 1N =
(idB, idE) is an N̂ -morphisms where idB ∶ B → B and idE ∶ E → E are the
(total) identity functions; the composition is associative. Hence, the family of
Elementary Net Systems together with N̂ -morphisms forms a category denoted
ÊNS . Note that ÊNS is a subcategory of ENS .

As we have seen before, N̂ -morphism can be seen like a refinement/abstraction
[38].
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Proposition 5. Let N1 and N2 be Elementary Net Systems and (β, η) be an N̂ -
morphism from N1 to N2. Let N ′

1 be the subnet of N1 generated by the set of
conditions B′

1 = β−1
i (B2), and let simp(N ′

1) be obtained from N1 by event simpli-
fication. Then simp(N ′

1) is isomorphic to N2.

N̂ -morphisms are a special kind ofN -morphisms so also them are “behaviour-
preserving” in a slightly different sense.

Proposition 6. Let Ni = (Bi,Ei, Fi,mi
0) be Elementary Net Systems for i = 1,2

and let (β, η) ∶ N1 → N2 be an N̂ -morphism. Let fβ ∶ [m1
0⟩ → 2B2 , be given

by ∀m ∈ [m1
0⟩ , fβ(m) = β(m) and ∀m ∈ [m2

0⟩ , f−1
β (m) = {m1 ∈ [m1

0⟩ ∶ m1 ⊃
β−1(m)}. Hold also that:

• ∀m ∈ [m1
0⟩ , fβ(m) ∈ [m2

0⟩,

• suppose m [e⟩m′ then fβ(m) = fβ(m′) in case η(e) is undefined, other-
wise, fβ(m) [η(e)⟩ fβ(m′).

Proof. By Prop. 3 we know that ∀m ∈ [m1
0⟩ , fβ(m) = β(m) ∪ (m2

0 − β(m1
0)).

The constraint on the surjectivity of β assure that β(m1
0) = m2

0, so ∀m ∈
[m1

0⟩ , fβ(m) = β(m) and we can also write ∀m ∈ [m2
0⟩ , f−1

β (m) = {m1 ∈ [m1
0⟩ ∶

m1 ⊃ β−1(m)}. ♢

As shown in [6], N̂ -morphisms preserve some properties on invariants, as
stated in the next theorems.

S-invariants are reflected, that is: for each S-invariant of N2 there is a corre-
sponding one in N1.

Theorem 1. For i = 1,2, let Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net System,

Mi its incidence matrix and let (β, η) ∶ N1 → N2 be an N̂ -morphism. Let M1 be
ordered so that we put rows corresponding to conditions in the range of β−1 in
the first ∣B2∣ positions of the incidence matrix of N1. If I2 = (α1α2 . . . α∣B2∣), with
αj ∈ N, is an S-invariant ofN2, then I1 = (α1α2 . . . α∣B2∣ 0 . . .0²

∣B1∣−∣B2∣

) is an S-invariant

of N1.

As we can see in Fig. 3.3, I1 = (01011) is an S-invariant of N1, while the
vector I2 = (010), created from I1 by deleting values related to the places without
an image in the right Net, is not an S-invariant of N2.

T -invariants are preserved by N̂ -morphisms.

Theorem 2. For i = 1,2, let Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net System,

Mi its incidence matrix (ordered as seen before); let (β, η) ∶ N1 → N2 be an
N̂ -morphism and let τ1 ∶ E1 → N. If JT

1 = (τ1(e1)τ1(e2) . . . τ1(en)) is a T -
invariant for N1, then JT

2 = (τ2(t1)τ2(t2) . . . τ2(tm)) is a T -invariant for N2, with
τ2(ti) = ∑ej∈η−1(ti) τ1(ej) for all ti ∈ E2.
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(a) N1 (b) N2

Figure 3.3: Two Nets related by an N̂ -morphism

3.1.4 Π-morphisms

N̂ -morphisms are too much permissive relating Nets. As we have seen in the
previous section, they allow to add constraint that are not present in the second
Net, hence breaking the idea that the first Net is a refinement of the second one.

Let us start defining Π-morphisms [26], a subclass of N̂ -morphisms.

Definition 32. Let Ni = (Bi,Ei, Fi,mi
0) be Elementary Net Systems for i = 1,2.

Let (β, η) be N̂ -morphism from N1 to N2. Let Gi =dom (ηi) the set of mapped
events, and Di = {b ∈ Bi∣b /∈ ●(Ei ∖Gi)●} the set of conditions with all neighbours
mapped by the morphism. Let us define reduced(N1)(β,η) = (Di,Gi, Fi ∩ ((Di ×
Gi) ∪ (Gi ×Di)),mi

0 ∩Di).
A Π-morphism from N1 to N2 is an N̂ -morphism (β, η), with the additional

constraint that reduced(N1)(β,η) ∼ N2, that is reduced(N1)(β,η) is isomorphic to
N2.

With this morphism we do not allow to add direct constraints between events
ofN2. But it is still possible to add a constraint if we encode it in a path containing
events not mapped. For example, N1 in Fig. 3.4 has a path from e0 to e2 while in
N2 the two events are independent (elements with the same names are related by
a Π-morphism).

Proposition 7. LetNi = (Bi,Ei, Fi,mi
0) be Elementary Net Systems for i = 1 . . .3.

Let (βi, ηi), with i = 1,2, be Π-morphisms from Ni to Ni+1. The function (β, η) ∶
N1 → N3 (β, η) = (β2, η2) ○ (β1, η1) where β = β2 ○ β1 and η = η2 ○ η1 is a
Π-morphism.
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(a) N1 (b) N2

Figure 3.4: An example of Π-morphism

Proof. We know that (β, η) is an N̂ -morphism, we have to prove that it satis-
fies the additional constraint that characterize Π-morphisms. We know that N r

1 =
reduced(N1)(β1,η1) ∼ N2 and reduced(N2)(β2,η2) ∼ N3. From which reduced(N1)(β,η)
it is equivalent to reduced(reduced(N1)(β1,η1))(β2,η2) ∼ reduced(N2)(β2,η2) ∼ N3.
♢

The Π-morphisms are closed by composition; the identity function 1N = (idB, idE)
is a Π-morphisms where idB ∶ B → B and idE ∶ E → E are the (total) identity
functions; the composition is associative. Hence, the family of Elementary Net
Systems together with Π-morphisms forms a category denoted ENSΠ .

3.1.5 ρ-morphisms
Consider the Reachability Graphs of the two given Nets N1 and N2. These are
Transition Systems and, as we will show in the next section, they are related
by morphisms as well as Elementary Net Systems. We want a morphism be-
tween Nets that assure the surjectivity between the Reachability Graphs, and Π-
morphisms do not give us this assurance.

We now define morphisms different from the others previously seen, ρ-morphisms
[26]. ρ-morphisms are a subtype of the one defined in [15]. Let us consider, from
now on, only contact-free Nets.

Definition 33. Let Ni = (Bi,Ei, Fi,mi
0) be T -restricted Elementary Net Systems

i = 1,2.
A ρ-morphisms from N1 to N2 is a surjective mapping ρ ∶X1 →X2, such that:

1. for every edge (x, y) ∈ F1 it holds:

• (x, y) ∈ F1∩(B1×E1) ⇒ (ρ(x), ρ(y)) ∈ F2∩(B2×E2)∨ρ(x) = ρ(y)
• (x, y) ∈ F1∩(E1×B1) ⇒ (ρ(x), ρ(y)) ∈ F2∩(E2×B2)∨ρ(x) = ρ(y)
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2. ∀b1 ∈ B1, b1 ∈m1
0 ⇔ ρ(b1) ∈m2

0∧ /∃ b′1 ∈ B1, ρ(b′1) = ρ(b1): every condition
in the initial marking of the refined Net has to be the only one mapped in an
initial condition of the abstract Net.

Note that ρ defines an equivalence relation on X1 and the equivalence class of
a node x ∈X1 is [x] = {y ∈X1∣ρ(y) = ρ(x)}.

Note also that if a condition (event) x is mapped to an event (condition) y then
ρ(●x∪x●) = {y}: this correspond in some sense to Def. 30, item 4. The difference
is that in N -morphisms it is not recorded where each undefined element should be
mapped. So it is possible to have a sequence of nodes that are not all “implicitly”
mapped on the same node. For this reason, this morphism does not allow to add
new constraints between nodes of N2.

Also, note that ∀(x, y) ∈ F1s.t.ρ(x) ≠ ρ(y) ∶ ρ(x) ∈ B2 ⇔ x ∈ B1 ∧ ρ(y) ∈
B2 ⇔ y ∈ B1.

Finally, note that Def. 33, item 1 implies that the environment of each node
must be preserved or, at least, must implode in the node itself: ρ(x1) = x2 ⇒
ρ(●x1) = ●x2 ∪ x2 and ρ(x1) = x2 ⇒ ρ(x1

●) = x2
● ∪ x2.

Proposition 8. LetNi = (Bi,Ei, Fi,mi
0) be Elementary Net Systems for i = 1 . . .3.

Let ρi, with i = 1,2, be ρ-morphisms from Ni to Ni+1. The function ρ ∶ N1 → N3

ρ = ρ2 ○ ρ1 is a ρ-morphism.

Proof. • We show the first part on arcs between conditions and events, the
proof on arcs between events and conditions is quite identical:

∀(x, y) ∈ F1 ∩ (B1 ×E1) there are two possible cases:

– ρ1(x) = ρ1(y): hence ρ2(ρ1(x)) = ρ2(ρ1(y));

– (ρ1(x), ρ1(y)) ∈ F2 ∩ (B2 ×E2). We still have two possible cases:

* ρ2(ρ1(x)) = ρ2(ρ1(y));

* (ρ2(ρ1(x)), ρ2(ρ1(y))) ∈ F3 ∩ (B3 ×E3).

• Let us take a condition b1 of B1 such that b1 ∈ m1
0. Then, we know by

definition that b2 is an initial condition. Moreover, we also know by def-
inition that /∃ b′1 ∈ B1, ρ(b′1) = ρ(b1), hence in the equivalence class of b1

there is only one condition: b1 itself. Moreover, in the equivalence class of
b1 there is only one node: b1 itself. By contradiction, assume that e1 is in
the equivalence class of b1. Since the Net is T -restricted, e1 must have at
least one pre condition and one post condition, and b1 cannot be the two of
them, because we work with Elementary Net Systems. Hence, by defini-
tion, the other condition must be in the equivalence class as well, and this is
a contradiction.
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Figure 3.5: Abstract view

Now, take b2 and follow exactly the same reasoning: in the equivalence
class of b2 there is only one nodes: b2 itself.

Hence, ρ(b1) ∈m3
0∧ /∃ b′1 ∈ B1, ρ(b′1) = ρ(b1).

♢

3.1.6 ω-morphisms

The morphisms presented here allow to define a very general kind of refinement.
We allow to refine conditions of a Net substituting them with subnets. Hence,
when en event is mapped on a condition, also its environment should be mapped
on the same condition. On the other hand, when it is mapped on an event it should
have a corresponding environment. We do not impose particular constraints on
each subnet mapped on a single condition.

An example

The example presented here aims at explaining, informally, how ω-morphisms
support refinement of local states in Elementary Net Systems. The morphisms
map nodes of a refined system on a more abstact one.

The Elementary Net System shown in Fig. 3.5 represents an abstract view of
the interaction between a student and an University secretariat office. A student
may ask the office either to emit an English proficiency certificate or to admit her
to the final exam.

Note that, at this level of abstraction, the model does not distinguish a positive
answer from a negative one. Suppose that the local state inspect request corre-
sponds to the actual inspection of the request by a Faculty board, which delivers
the decision to the secretariat.

We might want to refine formal check, in order to distinguish two cases: pos-
itive answer and negative answer.

The actual decision has been taken in state inspect request, so the refinement
of formal check requires splitting the event Faculty decision, thus reflecting the
choice between the two answers.
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Figure 3.6: Refined model

The result of the refinement is shown in Fig. 3.6, where the subnet refining
formal check is enclosed in a shaded circle. Note that the operation has required
also splitting the outgoing transitions, in order to reflect the alternative outcomes.

Definitions

We present here the formal definition of ω-morphisms [5] for State Machine De-
composable Elementary Net Systems (SMD-EN Systems).

Definition 34. Let Ni = (Bi,Ei, Fi,mi
0) be a SMD-EN System, for i = 1,2.

An ω-morphism from N1 to N2 is a total surjective map ϕ ∶ X1 → X2 such
that:

1. ϕ(B1) = B2;

2. ϕ(m1
0) =m2

0;

3. ∀e1 ∈ E1, if ϕ(e1) ∈ E2, then ϕ(●e1) = ●(ϕ(e1)) and ϕ(e1
●) = (ϕ(e1))●;

4. ∀e1 ∈ E1, if ϕ(e1) ∈ B2, then ϕ(●e1
●) = {ϕ(e1)}.

Let us use the example shown in Fig. 3.7 to explain the constraints we use.
We require that the map is total and surjective because N1 refines the abstract

model N2 and the map specifies the relation of any abstract element with its re-
finement. That relation is denoted by labels such that them identify the same node
or each node xij of the refined Net is mapped on xi in the abstract Net.

In particular, a subset of nodes can be mapped on a single condition b2 ∈ B2;
in this case, we call bubble the subnet identified by this subset, N1(ϕ−1(b2)); if
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Figure 3.7: An example of ω-morphism

more than one element is mapped on b2, we say that b2 is refined by ϕ. In the
example we can see that the subnet closed in a gray oval is the bubble of b1, then
b1 is refined by ϕ.

Note that Def. 34 point 2 assures that all conditions in the initial marking of
N1 are in the bubbles of the conditions in the initial marking of N2 and that each
mapped condition can be refined by a subnet with more than one token.

The last constraints are on events: when an event is external to a bubble it is
mapped on an event and its environment is preserved by ϕ, when it is internal to a
bubble, its environment is internal too.

So far we deal only with structural constraints. However, as we know, the
initial marking of a system has a big impact on its behaviour. Another important
constraint we impose is on the initial marking: it has to be made only by in-
conditions of the bubbles and it has to be reachable in some run of the system.

In case the morphism corresponds to the refinement of a marked condition, we
ask all the tokens of the corresponding bubble to be into in-conditions which are
post-conditions of a pre-event, if it exists. System N1 is then called well marked
with respect to ϕ.

Definition 35. Let ϕ ∶ N1 → N2 be an ω-morphism. System N1 is well marked
with respect to ϕ if for each b2 ∈ B2 one of the following conditions hold:

• ϕ−1(b2) ∩m1
0 = ∅ or

• if ●b2 ≠ ∅ then there is e1 ∈ ϕ−1(●b2) such that ϕ−1(b2) ∩m1
0 = e1

● or
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• if ●b2 = ∅ then ϕ−1(b2) ∩m1
0 = ◯ϕ−1(b2)

ω-morphisms are closed by composition, the identity function on X is an ω-
morphism, and the composition is associative. Hence, the family of SMD-EN
Systems together with ω-morphisms forms a category.

Proposition 9. Let Ni = (Bi,Ei, Fi,mi
0) be a SMD-EN System for i = 1 . . .3. Let

ϕi, with i = 1,2, be an ω-morphism from Ni to Ni+1.
The map ϕ ∶ N1 → N3, ϕ = ϕ2 ○ ϕ1 is an ω-morphism.

The proof is a simple verification.
The partition of the nodes of N1 induced by an ω-morphism ϕ ∶ N1 → N2 can

be lifted to a Net structure: the set of nodes mapped to a place b becomes a place,
while the set of nodes mapped to an event e becomes an event; the flow relation is
defined in the obvious way.

Definition 36. Let Ni = (Bi,Ei, Fi,mi
0) be an SMD-EN System, for i = 1,2.

Let ϕ be an ω-morphism from N1 to N2. Then ϕ defines an equivalence rela-
tion on X1, where the equivalence class of x ∈X1 is [x] = {y ∈X1∣ ϕ(y) = ϕ(x)}.

The quotient of N1 with respect ω is N1/ϕ = (B1/ϕ,E1/ϕ,F1/ϕ,m1
0/ϕ),

where

• B1/ϕ = {[x] ∶ x ∈X1, ϕ(x) ∈ B2};

• E1/ϕ = {[x] ∶ x ∈X1, ϕ(x) ∈ E2};

• F1/ϕ = {([x], [y]) ∶ x, y ∈X1, [x] ≠ [y],∃(x, y) ∈ F1};

• m1
0/ϕ = {[x] ∶ x ∈m1

0}.

The resulting Net is isomorphic to N2.

Proposition 10. The quotient of N1, N1/ϕ, is an SMD-EN System isomorphic to
N2.

Proof. Given the totality of the ω-morphism, it determines a partition of the nodes
of N1 and given the surjectivity of the α-morphism we have that the nodes of the
quotient are exactly the same of N2.

1. Every arrow of F1/ϕ is present in F2: note that the arrows remained are not
the ones between nodes of the same equivalence class. So in F1/ϕ there are
only arrows between nodes belonging to different equivalence classes. Let
us take one of these arrows: (x1, y1) ∈ F1/ϕ hence (x1, y1) ∈ F1 and one of
the two nodes is an event and the other is a condition. For Def. 34 point 4
we know that the event is mapped on an event, so for point 3 we know that
ϕ(●e1) = ●e2 and ϕ(e1

●) = e2
●. Hence in N2 we have an arrow between the

two nodes.
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2. Every arrow of F2 is present in F1/ϕ: let us take one of these arrows:
(x2, y2) ∈ F2 and one of the two nodes is an event and the other is a con-
dition. For the surjectivity of the ω-morphism we know that at least an
event of N1 is mapped on the event, and for Def. 34, point 3 we know that
ϕ(●e1) = ●e2 and ϕ(e1

●) = e2
●. Hence in N1, for each inverse image of the

event, we have at least an inverse image of the other node in the neighbour-
hood of the event.

♢

Given a ω-morphism from N1 to N2, we identify particular conditions of N1,
that make canonical the Net.

Definition 37. Let ϕ ∶ X1 → X2 be an ω-morphism from N1 to N2. Given a
condition b2 ∈ B2, a condition b1 ∈ ϕ−1(b2) ∩B1 is said to be the representation of
b2, denoted rN1(b2), iff:

• b1 ∈m1
0 ⇔ b2 ∈m2

0;

• ●b1 = ϕ−1(●b2);

• b1
● = ϕ−1(b2

●).

By definition of representation and by Def. 34 we get the following result.

Proposition 11. For every representation b1 = rN1(b2), ϕ(●b1) = ●b2 and ϕ(b1
●) =

b2
●.

A system is canonical with respect to a morphism if it contains a single repre-
sentation for each condition of the abstract Net.

Definition 38. Let ϕ ∶X1 →X2 be an ω-morphism fromN1 toN2. N1 is canonical
with respect to ϕ if for each b2 ∈ B2, there exists a unique b1 ∈ ϕ−1(b2) ∩B1 that
is a representation of b2.

If N1 is not canonical, it is always possible to construct its unique canonical
version, NC1 , by adding the missing representations, and marking them as their
images, or by deleting the multiple ones.

Note that, adding these conditions we, potentially, change the behaviour of the
Net, as we can see in Fig. 3.8 adding the representation of b1. Note also that these
conditions constrain the behaviour of the Net, so we can say that between the case
graphs of NC1 and N1 there is a G-morphism, as defined in Def. 48.

The set of all the representation of the systemN1 is denoted byRC1 . The corre-
sponding morphism, ϕC , coincides with ϕ, plus the mapping of the new conditions
on the corresponding conditions of N2. It is easy to verify that the canonical ver-
sion of a system, with respect to an ω-morphism to another SMD-EN Systems, is
unique up to isomorphisms.
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Figure 3.8: An example of ω-morphism

Proposition 12. ϕC is an ω-morphism from NC1 to N2.

Proof. The defined map is a total surjective function from NC1 to N2 by construc-
tion.

We have to prove all the constraints:

1: ϕC(B1) = B2: given by construction;

2: ϕC(m1
0) =m2

0: given by construction;

3: let e1 ∈ E1 and let e2 ∈ E2 such that ϕC(e1) = e2. The pre and post events
of every new condition have a pre or post condition that is mapped on the
same condition of the second Net, hence ϕC(●e1) = ●e2 and ϕC(e1

●) = e2
●;

4: let e1 ∈ E1 and let b2 ∈ B2 be such that ϕC(e1) = b2: this item is not modified
in ϕC .

♢

In order to study the relations between a condition and its refinement, we need
to define the following auxiliary construction. Given an ω-morphism ϕ ∶ N1 →
N2, and a condition b2 ∈ B2 with its refinement ϕ−1(b2), we define two new EN
Systems. The first one, denoted S1(b2), contains (a copy of) the refinement, its
pre and post-events in E1 and two new conditions: bin1 , which is pre of all the pre-
events, and bout1 , which is post of all the post-events. The initial marking of S1(b2)
is {bin1 } or, if there are no pre events, the initial marking of the bubble in N1. The
second system, denoted S2(b2) contains b2, its pre- and post-events and two new
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Figure 3.9: S1(formal check) of Fig. 3.6.

conditions: bin2 , which is pre of all the pre-events, and bout2 , which is post of all the
post-events. The initial marking of S2(b2) is {bin2 } or, if there are no pre-events,
the initial marking of b2. Note that S2(b2) is an SMD-EN System.

Definition 39. Let ϕ ∶ N1 → N2 be an ω-morphism and b2 ∈ B2.
Construct two EN Systems, S1(b2) = (BS1,ES1, FS1,mS1

0 ) and S2(b2) = (BS2,ES2, FS2,mS2
0 ),

in this way:

BS1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ϕ−1(b2) ∩B1) ∪ {bout1 } if ●b2 = ∅
(ϕ−1(b2) ∩B1) ∪ {bin1 } if b2

● = ∅
(ϕ−1(b2) ∩B1) ∪ {bin1 , bout1 } otherwise

ES1 = (ϕ−1(b2) ∩E1) ∪ ϕ−1(●b2) ∪ ϕ−1(b2
●);

FS1 = (F1 ∩ ((BS1 ∪ES1) × (ES1 ∪BS1))) ∪ F in
S1 ∪ F out

S1 , where
F in
S1 = {(bin1 , e) ∶ e ∈ ϕ−1(●b2)} and
F out
S1 = {(e, bout1 ) ∶ e ∈ ϕ−1(b2

●)};

mS1
0 =

⎧⎪⎪⎨⎪⎪⎩

m1
0 ∩ ϕ−1(b2) if ●b2 = ∅

{bin1 } otherwise

BS2 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{b2, bout2 } if ●b2 = ∅
{b2, bin2 } if b2

● = ∅
{b2, bin2 , b

out
2 } otherwise

ES2 = ●b2
●;

FS2 = (F2 ∩ ((BS2 ∪ES2) × (ES2 ∪BS2))) ∪ F in
S2 ∪ F out

S2 , where
F in
S2 = {(bin2 , e) ∶ e ∈ ●b2} and F out

S2 = {(e, bout2 ) ∶ e ∈ b2
●};
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Figure 3.10: S2(formal check) of Fig. 3.5.

mS2
0 =

⎧⎪⎪⎨⎪⎪⎩

m2
0 ∩ {b2} if ●b2 = ∅

{bin2 } otherwise

In Fig. 3.9 and 3.10 we show the two systems S1(b2) and S2(b2) for the Nets
showed in the initial example with b2 = formal check.

Given an ω-morphism ϕ from N1 to N2, we can define a new mapping, ϕS ,
from S1(b2) to S2(b2), by restricting ϕ to the elements of S1(b2), and extending
it with ϕS(bin1 ) = bin2 and ϕS(bout1 ) = bout2 . It is easy to see that this is still an
ω-morphism.

Relations with other approaches

The ω-morphisms here defined are related to other more general morphisms as we
explain in the next paragraphs.

Relations with Winskel morphisms Given an ω-morphism from N1 to N2 we
associate to it a Winskel morphism, as defined in Def. 29, from a net, obtained by
transforming N1, to N2. This is done taking the canonical version of N1, NC1 , and
the corresponding morphism ϕC . This is then divided in two morphisms, one on
the events and one on the conditions. The one on the conditions is restricted only
to the representations.

Proposition 13. (ϕC ∩ (RC1 ×B2), ϕC ∩ (EC1 ×E2)) is a Winskel morphism.

Proof. We have to prove that the pair (ϕC ∩ (RC1 ×B2), ϕC ∩ (EC1 ×E2)) respects
the constraints of a Winskel morphism. That is:

• ϕC ∩ (RC1 ×B2):

ϕC ∩ (RC1 ×B2) is a partial injective and surjective function from BC1 to B2

for Def. 34, point 1 and for the canonicity of the Net. Its inverse is a total
function from B2 to BC1 , and that is more than what we want to prove;

• ϕC ∩ (EC1 ×E2):

ϕC ∶ XC1 → X2 is a total surjective function, ϕC ∩ (EC1 × E2) is a partial
surjective function for Def. 34, point 1, and that is more than what we want
to prove;
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• (ϕC ∩ (RC1 ×B2))(m1
0) =m2

0: this is given by Def. 34, point 2;

• ∀e1 ∈ E1 there are two possibilities:

– (ϕC∩(EC1 ×E2))(e1) is undefined (so, also its preset is undefined): this
is equivalent to say that ϕ(e1) = b2 ∈ B2, hence for Def. 34, point 4 we
have that ϕ(●e1

●) = b2. Hence ●e1
● ∈ ϕ−1(b2). Hence these conditions

are not mapped by ϕC ∩ (RC1 ×B2), so (ϕC ∩ (RC1 ×B2))(●e) = ∅.
The proof for the postset is almost identical;

– (ϕC∩(EC1 ×E2))(e1) = e2: hence it is equivalent to say that ϕ(e1) = e2.
For Def. 34, point 3 we have that ϕ(●e1) = ●(ϕ(e1)). Moreover, we
know that for each condition in the preset of e1 that is in a bubble, we
have also the representation as precondition of e1.
●((ϕC∩(EC1 ×E2))(e1)) = ●(ϕ(e1)) = ϕ(●e1) = (ϕC∩(RC1×B2))(●e1).
The proof for the postset is almost identical.

♢

Relations with N̂ -morphisms The second type of relation we consider are with
N̂ -morphisms, as defined in Def. 31.

Given an ω-morphism from N1 to N2 we associate to it an N̂ -morphism. This
is possible taking the canonical version of N1, NC1 , and the corresponding mor-
phism ϕC . This is then divided in two morphisms, one on the events and one on
the conditions. The one on the conditions is restricted only to the representations.

Proposition 14. (ϕC ∩ (RC1 ×B2), ϕC ∩ (EC1 ×E2)) is an N̂ -morphism.

Proof. We have to prove that the pair (ϕC ∩ (RC1 ×B2), ϕC ∩ (EC1 ×E2)) respects
the constraints of an N̂ -morphism.

That is:

• ϕC ∶ XC1 → X2 is a total surjective function; ϕC ∩ (RC1 × B2) is a partial
injective and surjective function for Def. 34, point 1 and for the canonicity
of the Net. Its inverse is a total and injective function;

• ϕC ∩ (EC1 ×E2) is a partial surjective function for Def. 34;

• let e1 ∈ EC1 such that (ϕC ∩ (EC1 × E2))(e1) is undefined, this is equiv-
alent to say that ϕ(e1) ∈ B2, hence for Def. 34, point 4 we have that
ϕ(●e1

●) = {ϕ(e1)}, hence ●e1
● ∈ N1(ϕ−1(ϕ(e1))), hence these conditions

are not mapped by ϕC ∩ (RC1 ×B2), and this is what we want to prove;
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• let e1 ∈ EC1 , e2 ∈ E2 such that (ϕC ∩ (EC1 ×E2))(e1) = e2: hence ϕ(e1) = e2.
For Def. 34, point 3 we have that ϕ(●e1) = ●e2 (and ϕ(e1

●) = e2
●).

Let b2 ∈ B2 such that b2 ∈ (ϕC ∩ (RC1 ×B2))(●e1), hence there is a represen-
tation b1 ∈ B1 such that b1 ∈ ●e1 and (ϕC ∩ (RC1 ×B2))(b1) = b2.

For Def. 37 we have that ϕ(●b1) = ●b2 and ϕ(b1
●) = b2

●, hence b2 ∈ ●e2.

On the other direction, let b2 ∈ B2 such that b2 ∈ ●e2, hence for the surjec-
tivity of the function there is a representation b1 ∈ B1 such that (ϕC ∩ (RC1 ×
B2))(b1) = b2. For Def. 37 we have that b1 ∈ ●e1.

The proof for the postset is almost identical

• ∀(b1, b2) ∈ (ϕC ∩ (RC1 ×B2)) ∶ [b1 ∈ m1
0 ⇔ b2 ∈ m2

0]: this is given by Def.
34, point 2 and by the totality and surjectivity.

♢

3.1.7 α-morphisms
In this section we present the formal definition of α-morphisms [5], a subclass of
ω-morphisms, for State Machine Decomposable Elementary Net Systems (SMD-
EN Systems), and discuss some of their properties, particularly with respect to the
preservation of both structural and behavioural properties.

Our approach is motivated by the attempt to define a refinement operation pre-
serving behavioural properties on the basis of structural and only local behavioural
constraints. The additional restrictions, with respect to general morphisms, aim,
on one hand, to capture typical features of refinements, and on the other hand
to ensure that some behavioural properties of the abstract model still hold in the
refined model.

The approach we present here is similar in spirit to the refinement operation
proposed in [32]. In that approach, refinement is defined on Transition Systems,
but is strictly related to refinement of local states in Nets, through the notion of
region.

We require that a bubble does not contain an initialization part; in Fig. 3.11b
we can see a refinement of the Net of Fig. 3.11a in which the bubble contains an
initialization part that will be executed only once. Moreover, each final marking
of the bubble must have all the possibilities the abstract condition has (for a coun-
terexample see Fig. 3.12a). We also do not want that a token can exit (enter) from
(in) the bubble before the bubble reach is end (after the bubble is already started)
and you can see a counterexample in Fig. 3.12b. Finally, we require that all the
pre and post-events of a bubble must be part of the same sequential component; a
counterexample is shown in Fig. 3.13.



46 CHAPTER 3. MORPHISMS

(a) An Elementary Net System (b) Part of the bubble is not generated by one of the pre-
events of the bubble

Figure 3.11: A Net and one of its refinements

(a) Each final marking of the bubble has
only part of the post-events of the ab-
stract condition

(b) The flow can exit from a condition that is not final
in the bubble

Figure 3.12: Two refinements of the Net of Fig. 3.11a
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Figure 3.13: A refinements of the Net of Fig. 3.11a in which does not exist a
sequential component that contains all the pre and post events of the bubble of s

Figure 3.14: Pre events of an in-condition

Definition 40. Let Ni = (Bi,Ei, Fi,mi
0) be a SMD-EN System, for i = 1,2.

An α-morphism from N1 to N2 is an ω-morphism satisfying:

5. ∀b2 ∈ B2

(a) N1(ϕ−1(b2)) is an acyclic Net;

(b) ∀b1 ∈ ◯N1(ϕ−1(b2)), ϕ(●b1) ⊆ ●b2 and (●b2 ≠ ∅ ⇒ ●b1 ≠ ∅);

(c) ∀b1 ∈ N1(ϕ−1(b2))◯, ϕ(b1
●) = b2

●;

(d) ∀b1 ∈ ϕ−1(b2) ∩B1,
(b1 /∈ ◯N1(ϕ−1(b2)) ⇒ ϕ(●b1) = {b2}) and (b1 /∈ N1(ϕ−1(b2))◯ ⇒
ϕ(b1

●) = {b2});

(e) ∀b1 ∈ ϕ−1(b2) ∩B1, there is a sequential component NSC of N1 such
that b1 ∈ BSC and ϕ−1(●b2

●) ⊆ ESC .
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Figure 3.15: Post events of an out-condition

Figure 3.16: Constraints on an internal condition

As we show also in Fig. 3.1.7 and 3.1.7, in-conditions and out-conditions
have different constraints, 5b and 5c respectively. As required by 5c, we do not
allow that choices, which are internal to a bubble, constrain a final marking of that
bubble: i.e., each out-condition of the bubble must have the same choices of the
condition it refines (even if these are only formal choices). Instead, pre-events do
not need this strict constraint (5b). For example, in this particular case, we know
that the choice between e1 and f1 of Fig. 3.1.7 is made before the bubble, and
this is implied also by the requirement 5e) on sequential components. Moreover,
the conditions that are internal to a bubble must have pre-events and post-events
which are all mapped to the refined condition b2, as required by 5d, see also Fig.
3.16.

By constraint 5e, the events in the neighbourhood of a bubble, as well as their
images, cannot be concurrent. However, within a bubble there can be concurrent
events. By the combined effect of 5a-5e, in any execution, when a post-event of a
bubble fires, in the next marking no local state within the bubble will be marked.

Note that cycles outside the bubbles are preserved and reflected by the mor-
phism: this is given by the finiteness of a Petri Net and by the constraints on the
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environment of a node.
The α-morphisms are closed by composition, the identity function on X is an

α-morphism, and the composition is associative. Hence, the family of SMD-EN
Systems together with α-morphisms forms a category denoted ENSα .

Proposition 15. Let Ni = (Bi,Ei, Fi,mi
0) be a SMD-EN System for i = 1 . . .3.

Let ϕi, with i = 1,2, be an α-morphism from Ni to Ni+1.
The map ϕ ∶ N1 → N3, ϕ = ϕ2 ○ ϕ1 is an α-morphism.

Proof. We know by Prop. 9 that ϕ is an ω-morphism, so we have to prove the
additional items of the α-morphism (Def. 40):

5: let b3 ∈ B3, by definition N1(ϕ−1(b3)) = N1(ϕ−1(b3)) = N1(ϕ−1
1 (ϕ−1

2 (b3))).

b1 ∈ N1(ϕ−1(b3)), hence ∃b2 ∈ B2 ∶ ϕ1(b1) = b2 ∧ ϕ2(b2) = b3.

5b: let b1 ∈ ◯N1(ϕ−1(b3)), hence b1 ∈ ◯N1(ϕ−1
1 (b2)).

We want to prove that b2 ∈ ◯N2(ϕ−1
2 (b3)). By contradiction, let e2 ∈

●b2 and ϕ2(e2) = b3. For Def. 40, point 5b ●b1 ≠ ∅, then ∃e1 ∈ E1 such
that e1 ∈ ●b1. Given that b2 /∈ ◯N2(ϕ−1

2 (b3)), then for Def. 40, point 5d
ϕ2(●b2) = {b3}. For Def. 34, point 3 we know that ϕ1(e1) ∈ ●b2, then
ϕ(e1) = b3 but this is a contradiction.
For Def. 40, point 5b:

• ϕ2(●b2) ⊆ ●b3 and if ●b3 ≠ ∅ then ●b2 ≠ ∅ and
• ϕ1(●b1) ⊆ ●b2 and if ●b2 ≠ ∅ then ●b1 ≠ ∅.

Then we have ϕ(●b1) = ϕ2(ϕ1(●b1)) ⊆ ϕ2(●b2) ⊆ ●b3, and if ●b3 ≠ ∅
then ●b2 ≠ ∅ then ●b1 ≠ ∅;

5c: let b1 ∈ N1(ϕ−1(b3))◯, hence b1 ∈ N1(ϕ−1
1 (b2))◯. Given that ϕ1 is an

α-morphism, ϕ1(b1
●) = b2

●.
Now, we want to prove that b2 ∈ N2(ϕ−1

2 (b3))◯. By contradiction, let
e2 ∈ b2

● and ϕ2(e2) = b3. Given that ϕ1 is an α-morphism, ∃e1 ∈ E1,
such that ϕ1(e1) = e2 and e1 ∈ b1

● but this is a contradiction since
b1 ∈ N1(ϕ−1(b3))◯. Given that ϕ2 is an α-morphism, ϕ2(b2

●) = b3
●.

Then ϕ(b1
●) = ϕ2(ϕ1(b1

●)) = ϕ2(b2
●) = b3

●;

5d: let us start whit b1 ∈ N1(ϕ−1(b3)) ∩B1 and b1 /∈ ◯N1(ϕ−1(b3)).
Hence ∃e1 ∈ E1 ∶ e1 ∈ ●b1 ∧ ϕ(e1) = b3.
We want to show that each pre-event of b1 is in the bubble. By con-
tradiction, assume that ∃e′1 ∈ E1 ∶ e′1 ∈ ●b1 ∧ ϕ(e′1) ≠ b3. This implies
that ϕ1(e′1) ≠ b2, hence ∃e′2 ∈ E2 ∧ ∃e′3 ∈ E3 ∶ ϕ(e′1) = ϕ2(ϕ1(e′1)) =
ϕ2(e′2) = e′3 ∧ e′2 ∈ ●b2 ∧ e′3 ∈ ●b3.
There are two cases:
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• b2 /∈ ◯N2(ϕ−1(b3)), then for Def. 40, point 5d ϕ2(●b2) = {b3} and
this is a contradiction;

• b2 ∈ ◯N2(ϕ−1(b3)) then there are two cases:
– ϕ1(e1) ∈ B2, then for Def. 34, point 4 ϕ1(e1

●) = ϕ1(e1),
hence ϕ1(e1) = b2 and then b1 /∈ ◯N1(ϕ−1(b2)). Then for
Def. 40, point 5d ϕ1(●b1) = {b2}, hence ϕ1(e′1) = b2 and this
is a contradiction;

– ϕ1(e1) = e2, then for Def. 34, point 3 ϕ1(e1
●) = e2

● ∧ b2 ∈
e2

● ∧ ϕ2(e2) ≠ b3 because b2 is an in-condition in the bubble
of b3. But then ϕ(e1) = ϕ2(ϕ1(e1)) = ϕ2(e2) ≠ b3 and this is
a contradiction.

For the conditions of the bubble that are not out-conditions the proof
is symmetrical;

5e: we want to prove that there exists a sequential component NSC of N1

such that b1 ∈ BSC and ϕ−1(●b3
●) ⊆ ESC .

Take a sequential component of N3 that contains b3. Using Lemma
2 construct one sequential component of N2 containing b2. Using the
same Lemma construct one sequential component ofN1 containing b1.

♢

Given that any α-morphism is an ω-morphism, the constructions and results
stated for ω-morphisms hold for α-morphisms. Note also that adding to N1 the
representation of each condition does not modify the behaviour, because of the
constraint on sequential components. In this situation the representations, redun-
dant with respect to the behaviour, correspond to abstractions of subnets.

We have proved in the previous section that ϕC is an ω-morphism from NC1
to N2. Here, we need to prove that, if ϕ is an α-morphism, then ϕC is also an
α-morphism, as needed in Section 5.1.2.

Proposition 16. Let ϕ ∶ N1 → N2 be an α-morphism, then ϕC is an α-morphism
from NC1 to N2.

Proof. We know that ϕC is an ω-morphism, so we have to prove only the addi-
tional constraints of an α-morphism:

5: let b2 ∈ B2, take N1((ϕC)−1(b2)), then:

5a: N1((ϕC)−1(b2)) is an acyclic Net because is not modified in ϕC;

5b: let b1 ∈ ◯N1((ϕC)−1(b2)): the only condition we have to check is the
representation and by Prop. 11 we know that ϕ(●b1) = ●b2;
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5c: let b1 ∈ N1((ϕC)−1(b2))◯: the only condition we have to check is the
representation and by Prop. 11 we know that ϕ(b1

●) = b2
●;

5d: let b1 ∈ (ϕC)−1(b2) ∩B1,
(b1 /∈ ◯N1((ϕC)−1(b2) ⇒ ϕC(●b1) = {b2}) and (b1 /∈ N1((ϕC)−1(b2))◯⇒
ϕC(b1

●) = {b2}): this item is not modified in ϕC;

5e: ∀b1 ∈ ϕ−1(b2) ∩B1, there is a sequential component NSC of N1 such
that b1 ∈ BSC and ϕ−1(●b2

●) ⊆ ESC : the only condition we have to
check is the representation toghether with all the pre and post-events
of the bubble. Take the sequential component that contain one of the
other conditions of the bubble, delete all the nodes internal to the bub-
ble and add the representation: clearly this is a sequential component.

♢

Note that dealing with α-morphisms, the systems S1(b2) and S2(b2) are SMD-
EN Systems and that ϕS is an α-morphism.

Properties preserved and reflected by α-morphisms

The idea driving our interpretation of a bubble is that the subnet corresponding to
a condition “behaves” in the same way as the condition it refines. In a SMD-EN
System, each condition at any time can be true or false. It is not possible that this
condition is partially true or partially false; hence, also the bubble should behave
like this. The next lemma states that firing an output event of a bubble empties the
bubble, and that no input event of a bubble is enabled whenever a token is inside
the bubble.

Lemma 1. Let Ni = (Bi,Ei, Fi,mi
0) be a SMD-EN System, for i = 1,2.

Let ϕ ∶ N1 → N2 be an α-morphism. Then:

1. no input event of a bubble is enabled whenever a token is inside the bubble:

Let e1 ∈ E1, b2 ∈ B2: e1 ∈ ϕ−1(●b2); m1,m′
1 ∈ [m1

0⟩: m1 [e1⟩m′
1 then

m1 ∩ ϕ−1(b2) = ∅.

2. firing an output event of a bubble empties the bubble:

Let e1 ∈ E1, b2 ∈ B2: e1 ∈ ϕ−1(b2
●); m1,m′

1 ∈ [m1
0⟩: m1 [e1⟩m′

1, then
m′

1 ∩ ϕ−1(b2) = ∅.

Proof. Take a marking m1 in which a condition b1 ∈ ϕ−1(b2) is marked.
We know by Def. 40, point 5e) that there exists a sequential component NSC

of N1 such that b1 ∈ BSC and ϕ−1(●b2
●) ⊆ ESC .
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1. By contradiction, take e1 ∈ ϕ−1(b2
●) such that b1 /∈ ●e1 and m1 [e1⟩; hence

all its preconditions are marked. Since NSC contains e1, one of its pre-
conditions belongs to NSC as well as b1, this is a contradiction because the
sequential component has only one token.

2. By contradiction, take e1 ∈ ϕ−1(●b2) such that m1 [e1⟩; hence all its precon-
ditions are marked. Since NSC contains e1, one of its preconditions belongs
to NSC as well as b1, and this is a contradiction because the sequential com-
ponent has only one token.

♢

We consider SMD-EN Systems, then it is natural to ask whether α-morphisms
preserve and reflect sequential components. Let ϕ be an α-morphism from N1 to
N2. We know that, if a condition b2 belongs to a sequential component, then also
its pre- and post-events belong to the same sequential component. Hence, if b2

is refined by a bubble, N1(ϕ−1(b2)), by the requirement 5e) of α-morphisms any
condition of the bubble belongs to a sequential component containing any event
in ϕ−1(●b2

●). This allows one to say that the sequential components of N2 are
reflected by ϕ, in the sense that the inverse image of a sequential component is
covered by sequential components.

Lemma 2. Let ϕ ∶ N1 → N2 be an α-morphism.
Let NSC2 be a sequential component of N2. Then ϕ−1(NSC2) is covered by

sequential components, each one containing all the inverse image of the neigh-
bourhood of each condition of NSC2.

Proof. Let us assume that there is a unique condition of NSC2, b2, that is refined
by the morphism.

It is easy to see that ϕ−1(NSC2) is a subnet of N1, and that it is isomorphic to
NSC2 except for b2 and its neighbourhood.

Take b1 ∈ ϕ−1(b2)∩B1. For Def. 40, point 5e we know that there is a sequential
component NSC1 of N1 such that b1 ∈ BSC1 and ϕ−1(●b2

●) ⊆ ESC1.
Now build up a sequential component generated by (BSC1∩ϕ−1(b2))∪ϕ−1(BSC2∖

{b2}).
This procedure can be easily extended to the refinement of multiple conditions

by applying it to a single condition each time. ♢

Sequential components are not preserved, as we can see in Fig. 3.17. The se-
quential component ofN1 generated by {ϕ−1(b1), b5−1, b6−1} is such that its image
{b1, b5, b6} is not a sequential component of N2.

Reflection of sequential components implies reflection of S-invariants.
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Figure 3.17: Two SMD-EN Systems related by an α-morphism

Our morphisms can be seen like a special case of Winskel morphisms [45] and
defined for basic types of Net in [33], as we shall prove in Section 3.1.7. Then,
since Winskel morphisms preserve reachable markings, also α-morphisms do, as
stated in the following proposition.

Proposition 17. Let Ni = (Bi,Ei, Fi,mi
0) be an EN System, for i = 1,2. Suppose

ϕ ∶ N1 → N2 is an α-morphism.

• If m1 [e⟩m′
1 in N1 and ϕ(e) ∈ E2 then ϕ(m1) [ϕ(e)⟩ϕ(m′

1) in N2.

• If m1 [e⟩m′
1 in N1 and ϕ(e) ∈ B2 then ϕ(m1) = ϕ(m′

1) in N2.

• If ●e1
● ∩ ●e′1

● = ∅ in N1 then ●(η(e1))● ∩ ●(η(e′1))● = ∅ in N2.

As for other morphisms in the literature, α-morphisms do not reflect reachable
markings. This fact can be caused by three main cases.

The first one happens when a condition is refined by a subnet leading to a
block before reaching a marking enabling out-events, as we can see in Fig. 3.18.

The second case happens when a condition of the bubble has “formally” the
same possibilities of the refined condition, but in fact some of this are dead or not
fireable, as we can see in Fig. 3.19, event e12 and e21.

The third case deals with the situation in which the refinements of conditions
“interfere” with each others so that, even if in each bubble a “final” local marking
is reached, the global marking doesn’t enable any event. That case is shown in
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Figure 3.18: Two SMD-EN Systems related by an α-morphism.

Figure 3.19: Two SMD-EN Systems related by an α-morphism.
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Figure 3.20: Two SMD-EN Systems related by an α-morphism.

Fig. 3.20: any event in each bubble can fire, but N1 has two deadlocks: {p3, p6}
and {p4, p5}.

The three above cases suggest to require both that any condition is refined
by a subnet such that, when a final marking is reached, this one enables events
which correspond to the post-events of the refined condition; and also that differ-
ent refinements do not “interfere” each other. The first and second requirement is
guaranteed by switching to unfolding, the non interference is guaranteed when any
event of N2 has at most a unique condition in its neighbourhood that is properly
refined in N1.

Then, let us deal with the unfolding of each bubble: if the map between the
unfolding of S1(b2) and S2(b2) is an α-morphism, then we are sure that when a
final marking is reached, this one enables events which correspond to the post-
events of the refined condition.

Let ϕ ∶ N1 → N2 be an α-morphism and ϕS ∶ S1(b2) → S2(b2) as in Def.
39. By using ϕS , consider two labelling functions l1 and l2 such that the events in
ES2 are all observable, i.e.: l2 is the identity function, and the invisible events of
S1(b2) are the ones mapped to conditions, i.e.:

∀e ∈ ES1 ∶ l1(e) =
⎧⎪⎪⎨⎪⎪⎩

ϕS(e) if ϕS(e) ∈ ES2

τ otherwise

Let Unf (S1(b2)) be the unfolding of S1(b2) with folding function, u ∶ Unf (S1(b2)) →
S1(b2). The following lemma shows that, if the map, ϕS ○ u, obtained composing
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ϕS with the folding u is an α-morphism, then S1(b2) and S2(b2) are bisimilar.

Lemma 3. Let ϕ ∶ N1 → N2 be an α-morphism, and ϕS as in Def. 39. Let
Unf (S1(b2)) be the unfolding of S1(b2) with u folding function. If ϕS ○ u is an
α-morphism from Unf (S1(b2)) to S2(b2), then r = {(m1, ϕS(m1)) ∶m1 ∈ [mS1

0 ⟩}
is a bisimulation, and (S1(b2), l1) and (S1(b2), l2) are bisimilar.

Proof. Since ϕS is an α-morphism, Prop. 17 assures that S2(b2) simulates S1(b2).
Then, we need only to prove that S1(b2) simulates S2(b2).
We prove that r is a bisimulation between (S1(b2), l1) and (S2(b2), l2). The

reachable markings of S2(b2) are {{bin2 },{b2},{bout2 }}, let us discuss the three set
of markings separately:

• the initial marking of S2(b2) is mS2
0 = {bin2 } and it is related to the initial

marking of S1(b2), mS1
0 = {bin1 }.

There are two possible cases:

– {bin2 } [ε⟩ {bin2 }: in S1(b2) it is not possible to fire one of the pre-events
of the bubble, that are the one enabled in the initial marking, because
they are all labelled, so it is only possible to fire the empty word and
remain in the initial marking,

– {bin2 } [a⟩ {b2}: for the surjectivity of the α-morphism, in S1(b2) there
is, at least, one event mapped on a, let us call it a1. For Def. 34,
point 3, a1 has an environment corresponding to the one of a, hence
{bin1 } [a1⟩ {m1} with ϕS(m1) = b2. After this firing, all the events
internal to the bubble can freely fire because each one is mapped on
b2, hence for Def. 34, point 4 the new marking is again related to {b2}.
It is not possible that a post-event of the bubble fires, because in that
case the visible action is not a;

• let (m1,{b2}) ∈ r such that m1 ⊆ ϕ−1(b2).

There are two possible cases:

– {b2} [ε⟩ {b2}: this part of the proof is equivalent to the last part of the
previous item,

– {b2} [a⟩ {bout2 }: we prove m1 (a⟩ {bout1 } by induction on the distance
between one of the initial marking of the bubble and m1.
base ∃e1 ∈ S1(b2) ∶ ●e1 = bin1 ∧ e1

● =m1.
Note thatm1 is generated, in the unfolding, by an event in conflict with
all the other pre-events of the bubble, hence all its future is completely
disjoint from the rest of the unfolding of the bubble. Def. 40, point
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5c assure that in its future there will be, at least, one event for each
post-events of b2, hence it is possible to fire one event mapped on a,
induction let m1 be a marking internal to the bubble such that
m1 (a⟩, let m′

1,m1 [e1⟩m′
1, be such that ¬(m′

1 (a⟩). Hence e1 is in
conflict with all the events with label a. Thus all the future of e1 is
in conflict with all the events with label a. This is a contradiction be-
cause the morphism from the unfolding to S2(b2) assure that each run
ends in bout1 and Def. 40, point 5c assure that each out-condition of the
bubble should have a post-event with label a.

• the final marking of S2(b2) is {bout2 } and it is related to the final marking of
S1(b2), {bout1 }. Both are deadlock markings.

♢

The following proposition states the conditions under which reachable mark-
ings are reflected by α-morphisms.

Proposition 18. Let ϕ ∶ N1 → N2 be an α-morphism such that N1 is well marked
w.r.t. ϕ and ϕS ○ u be an α-morphism from Unf (S1(b2)) to S2(b2) then, for all
m2 ∈ [m2

0⟩, there is m1 ∈ [m1
0⟩ such that ϕ(m1) =m2.

Proof. We actually show a slightly stronger property, namely that m1 can be cho-
sen so that its intersection with the set of conditions in the bubble refining b2 only
contains elements in (N1(ϕ−1(b2)))◯. The proof is by induction on the length of
a firing sequence σ from m2

0 to m2.
Suppose ∣σ∣ = 0. Then m2 = m2

0. By definition, ϕ(m1
0) = m2

0. If b2 /∈ m2
0, then

m1
0 ∩ ϕ−1(b2) = ∅. If b2 ∈ m2

0, then we use Lemma 3 to reach in N1 a marking in
the bubble of b2 that contains only out-conditions, and we are done.

Suppose now ∣σ∣ = n+1. Then we can write σ = σ1e2, withm2
0 [σ1⟩m2

1[e2⟩m2.
By the induction hypothesis, there is m1

1 ∈ [m1
0⟩ such that ϕ(m1

1) = m2
1 and m1

1 ∩
ϕ−1(b2) ⊆ (N1(ϕ−1(b2)))◯.

Since ϕ is surjective, there is at least one event in E1 that ϕ maps on e2. If
b2 /∈ ●e2, then there exists e1 ∈ ϕ−1(e2) such that m1

1 [e1⟩. If b2 ∈ ●e2, by Lemma 3
there exists e1 ∈ ϕ−1(e2) such that m1

1 [e1⟩. ♢

Let Ni = (Bi,Ei, Fi,mi
0) be a SMD-EN System for i = 1,2 and let ϕ ∶ N1 →

N2 be an α-morphism. By using ϕ, two labelling functions are defined such that
E2 are all observable, i.e.: l2 is the identity function, and the invisible events of
N1 are the ones mapped to conditions, i.e.:

∀e ∈ E1 ∶ l1(e) =
⎧⎪⎪⎨⎪⎪⎩

ϕ(e) if ϕ(e) ∈ E2

τ otherwise
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From Prop. 17 and Prop. 18 follows that N1 and N2 are bisimilar.

Proposition 19. Let ϕ ∶ N1 → N2 be an α-morphism such that N1 is well marked
and ϕS ○ u is an α-morphism from Unf (S1(b2)) to S2(b2) then, (N1, l1) and
(N2, l2) are bisimilar (N1, l1) ≈ (N2, l2).

Prop. 18 and Prop. 19 are stated in the case in which only one condition is
refined, but they can be easily generalized to multiple refinements, provided that
in the neighbourhood of each event of N2 there is, at most, one refined condition.
The examples in Fig. 3.20 show why this constraint is required.

Relations with other approaches

The α-morphisms here defined are related to other more general morphisms as we
explain in the next paragraphs.

Relations with Winskel morphisms Let us now study the relation between α-
morphisms and Winskel morphisms, as introduced in Def. 29.

In the previous section we proved that ω-morphisms can be seen as Winskel
morphisms, if the refined system we are dealing with is canonical. An ω-morphism
does not assure that a system and his canonical version have an isomorphic case
graph, so we are not able to say that ω-morphisms can be seen as a special case of
Winskel morphisms.

Any α-morphism is an ω-morphism. In the case of α-morphisms, adding toN1

some representations of each condition does not modify the behaviour, because of
the constraint on sequential components, i.e.: condition 5e of Def. 40. Hence,
the result stated here holds for α-morphisms. In this sense, we consider them as a
special case of Winskel morphisms.

The converse is not true, as shown in Fig. 3.21 and 3.22, where a Winskel
morphism from N1 to N2 is given. In the first figure, the morphism shown is not
an α one, in the second figure it is easy to see that there is no α-morphism from
N1 to N2.

If we impose the totality and the surjectivity to Winskel morphisms, we obtain
a morphism without a lot of important features of the Winskel one. In the other
direction, comparing this to α-morphisms we lost the central feature of bubbles:
we can handle only bubble of conditions, loosing the possibility of mapping a
subnet on a condition.

Relations with N̂ -morphisms The second type of relation we consider are with
N̂ -morphisms, as defined in Def. 31.
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Figure 3.21: An example of Winskel morphism which is not an α-morphism

Figure 3.22: An example of Winskel morphism which is not an α-morphism

In the previous section we prove that ω-morphisms can be seen as N̂ -morphisms
if the refined system we are dealing with is canonical. An ω-morphism do not as-
sure that a system and his canonical version have an isomorphic case graph, so
we are not able to say that ω-morphisms can be seen as a special case of N̂ -
morphisms.

Any α-morphism is an ω-morphism. Adding to N1 some representations does
not modify the behaviour, because of the constraint on sequential components.
Hence, the result stated here holds for α-morphisms. By these, we consider α-
morphism as a special case of N̂ -morphisms.

The converse is not true, as shown in Fig. 3.23, where an N̂ -morphism from
N1 to N2 is given by identical names of elements; it is easy to see that there is no
α-morphism from N1 to N2, since there is no way to map b3 and b5.

3.2 Occurrence Nets

As we have seen in the previous section, using morphisms to formalize the relation
between two Nets is widely used in the literature.

Clearly it is possible to see an Occurrence Net as an Elementary Net System,
putting a token in each initial place of the Net. So, it is possible to use the mor-
phisms already defined also on Occurrence Nets. We can use the concurrency,
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Figure 3.23: An example of N̂ -morphism which is not an α-morphism

conflict and causality relations to obtain simpler morphisms on Occurrence Nets
such that the same results obtained for Elementary Net Systems, as seen in the
previous section, still hold. Moreover, we want to relate morphisms between El-
ementary Net Systems with morphisms between their Unfoldings and vice versa,
so that we are able to obtain more behavioural properties relating only structural
models.

In the rest of this section, we present different notion of morphisms on Occur-
rence Nets and the properties they preserve/reflect.

3.2.1 N̂O-morphisms
Let us define a morphism on Occurrence Nets taking advantage of the relations of
this kind of Net.

Definition 41. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2.
An N̂O-morphism from N1 to N2 is a map ϕ such that:

1. ϕ ∶X1 →∗ X2 is a partial surjective function;

2. x ≤N1 y, then ϕ(x) ≤N2 ϕ(y),

3. ϕ(B1) = B2;

4. if ϕ(e1) is undefined, then ϕ(●e1
●) is undefined;

5. if ϕ(e1) ∈ B2, then ∀b ∈ ●e1
●, ϕ(b) = ϕ(e1);
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6. if ϕ(e1) = e2, then ϕ(●e1) = ●e2 and ϕ(e1
●) = e2

● and ●e1
● ⊆dom (ϕ);

7. ∀b2 ∈ B2, take N1(ϕ−1(b2)), then:

(a) ∀b2 /∈ max(N2), then ∣XN1(ϕ−1(b2))∣ < ∞
(b) ∀b ∈ min(N1(ϕ−1(b2))), ϕ(●b) = ●b2;

(c) ∀b ∈ N1(ϕ−1(b2)) ∶ b /∈ max(N1(ϕ−1(b2))), then ϕ(b●) = b2;

(d) ∀b ∈ max(N1(ϕ−1(b2))), ϕ(b●) = b2
●;

(e) ∀b ∈ max(N1(ϕ−1(b2))),∀e1 ∈ b●,∃C ⊆ B1:
C is a cut ofN1 and b ∈ C and C∩N1(ϕ−1(b2)) ⊆ max(N1(ϕ−1(b2)))
and C ∩max(N1(ϕ−1(b2))) ⊆ ●e1.

N̂O-morphisms allow refining local states with a subnet, they allow to map
two different events in one event only if they are concurrent or in conflict. So we
can see N1 as a more detailed version of N2, where we have refined conditions
with bubbles.

In the rest of the section we state properties on N̂O-morphisms. In the follow-
ing let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2 and let ϕ ∶ N1, then N2

be an N̂O-morphism.
If a bubble is not infinite, then it is always possible to find a path from a nodes

internal to the bubble to a maximal node.

Proposition 20. Let us take N1(ϕ−1(b2)) with b2 ∈ B2.
∣XN1(ϕ−1(b2))∣ < ∞, then ∀x ∈XN1(ϕ−1(b2)),∃y ∈ max(N1(ϕ−1(b2))) ∶ x ≤N1 y.

Proof. Let x ∈XN1(ϕ−1(b2)), we have:

• x ∈ max(N1(ϕ−1(b2)): take y = x, then x ≤N1 x;

• x /∈ max(N1(ϕ−1(b2)): then ∃z ∈ XN1(ϕ−1(b2)) and z ∈ x● and we should
continue until we find a condition that is maximal in the bubble. We know
that this maximal condition should exists because the bubble is finite.

♢

Let us show which kind of properties N̂O-morphisms preserve and reflect.
Note that causality is preserved by definition. Moreover, causality is, in some
sense, reflected.

Proposition 21. Let us take x2, y2 ∈X2, x2 ≤N2 y2, then ∃x1, y1 ∈X1 ∶ ϕ(x1) = x2

and ϕ(y1) = y2 and x1 ≤N1 y1.
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Figure 3.24: An example of N̂O-morphism

Proof. We prove that by induction on the length of the interval between x2 and
y2.

base case : ∣ ]x2, y2[ ∣ = 0 hence x2 ∈ ●y2 and we have two different situation:

• x2 ∈ E2 and y2 ∈ B2: let us take y1 ∈ min(N1(ϕ−1(y2))), for Def. 41,
point 7b we know that ϕ(●y1) = ●y2 hence ∃x1 ∈ E1 ∶ x1 ∈ ●y1 and
ϕ(x1) = x2;

• x2 ∈ B2 and y2 ∈ E2: for Def. 41, point 7a we know that N1(ϕ−1(x2))
is finite, so it has at least a maximal condition. Let us take x1 ∈
max(N1(ϕ−1(x2))), for Def. 41, point 7d we know that ϕ(x1

●) = x2
●

hence ∃y1 ∈ E1 ∶ y1 ∈ x1
● and ϕ(y1) = y2.

induction step : ∣ ]x2, z2[ ∣ = n and ∃x1, z1 ∈ X1 ∶ ϕ(x1) = x2 and ϕ(z1) = z2 and
x1 ≤N1 z1 now add the n+1 step: z2 ∈ ●y2. There are two different situation:

• z2 ∈ E2 and y2 ∈ B2: for Def. 41, point 6 we know that ϕ(z1
●) = z2

●

hence ∃y1 ∈ B1 ∶ y1 ∈ z1
● and ϕ(y1) = y2;

• z2 ∈ B2 and y2 ∈ E2: for Def. 41, point 7a we know that N1(ϕ−1(z2))
is finite, so it has at least a maximal condition. For Prop. 20 we know
that ∃v1 ∈ max(N1(ϕ−1(z2))) ∶ z1 ≤N1 v1. For Def. 41, point 7d we
know that ϕ(v1

●) = z2
● hence ∃y1 ∈ E1 ∶ y1 ∈ v1

● and ϕ(y1) = y2.

♢

Conflict is not preserved, not even weakly (# ∪ id). Fig. 3.24 shows an exam-
ple of N̂O-morphism, where the map is given by the names. As we can see, in N1

the nodes in conflict are (e1, e2), (e1, x2), (e1, y2), (x1, e2), (x1, x2), (x1, y2), (y1, e2),
(y1, x2), (y1, y2); in N2 there are not nodes in conflict. However, as an example,
x1 is mapped on x and y2 is mapped on y and these two nodes are concurrent.
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Now we state some closure properties of the bubbles created by the morphism.
Each node internal to a bubble, in particular not minimal (maximal), has a pre

(post) set internal to the bubble.

Proposition 22. Let us take N1(ϕ−1(b2)) with b2 ∈ B2.
Let x ∈XN1(ϕ−1(b2)), if x /∈ min(N1(ϕ−1(b2))), then ∀y ∈ ●x,ϕ(y) = b2.

Proof. Let x ∈XN1(ϕ−1(b2)) and x /∈ min(N1(ϕ−1(b2)). We have:

• x ∈ B1: because N1 is an Occurrence Net ∃!e1 ∈ N1 ∶ e1 = ●x but since x is
not minimal in the bubble, e1 ∈ N1(ϕ−1(b2)) hence ϕ(e1) = b2;

• x ∈ E1: for Def. 41, point 5 we have ∀b ∈ ●x,ϕ(b) = b2.

♢

Proposition 23. Let us take N1(ϕ−1(b2)) with b2 ∈ B2.
Let x ∈XN1(ϕ−1(b2)), if x /∈ max(N1(ϕ−1(b2))), then ∀y ∈ x●, ϕ(y) = b2.

Proof. Let x ∈XN1(ϕ−1(b2)) and x /∈ max(N1(ϕ−1(b2)). We have:

• x ∈ B1: for Def. 41, point 7c we have ϕ(x●) = b2; we know also that, if ∃e1 ∈
x● s.t. ϕ(e1) is undefined, then ϕ(●e1

●) = ∅ and this is a contraddiction;

• x ∈ E1: for Def. 41, point 5 we have ∀b ∈ x●, ϕ(b) = b2.

♢

N̂O-morphisms preserves and reflects minimal conditions.

Proposition 24. Let b1 ∈ B1 such that b1 ∈ min(N1) and ϕ(b1) = b2, then b2 ∈
min(N2).

Proof. By contraddiction, let e2 ∈ ●b2. Given that b1 ∈ min(N1), we know also that
b1 ∈ min(N1(ϕ−1(b2))). Then, for Def. 41, point 7b we know that ϕ(●b1) = ●b2

but this is a contraddiction because b1 ∈ min(N1) hence ●b1 = ∅. ♢

Proposition 25. Let b1 ∈ B1 such thatϕ(b1) = b2 and b2 ∈ min(N2), thenϕ(⌊b1⌋) =
b2.

Proof. By contraddiction, let x ∈ ⌊b1⌋ ∶ ϕ(x) ≠ b2 and ∃y ∈ x● ∶ ϕ(y) = b2. x
cannot be a condition for Def. 41, point 5 so it should be an event.

There are three possibilities:

• ϕ(x) is undefined: but it is impossible because its post conditions should
not be mapped and one of them is mapped on b2;
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• ϕ(x) = b′2 ≠ b2: but it is impossible because its post conditions should be
mapped on the same condition and one of them is mapped on b2;

• ϕ(x) = e2: we know that y ∈ x● and ϕ(y) = b2, then for Def. 41 point 6 we
have b2 ∈ e2

● but it is impossible because b2 ∈ min(N2).

♢

N̂O-morphisms preserves and reflects maximal conditions.

Proposition 26. Let b1 ∈ B1 such that b1 ∈ max(N1) and ϕ(b1) = b2, then b2 ∈
max(N2).

Proof. By contraddiction, let e2 ∈ b2
●. Given that b1 ∈ max(N1), we know also

that b1 ∈ max(N1(ϕ−1(b2))). Then, for Def. 41, point 7d we know that ϕ(b1
●) =

b2
● but this is a contraddiction because b1 ∈ max(N1) hence b1

● = ∅. ♢

Proposition 27. Let b1 ∈ B1 such that ϕ(b1) = b2 and b2 ∈ max(N2), then
ϕ(⌈b1⌉) = b2.

Proof. By contraddiction, let x ∈ ⌈b1⌉ ∶ ϕ(x) ≠ b2 and ∃y ∈ ●x ∶ ϕ(y) = b2. x
cannot be a condition for Def. 41, point 5 so it should be an event.

There are three possibilities:

• ϕ(x) is undefined: but it is impossible because its pre conditions should not
be mapped and one of them is mapped on b2;

• ϕ(x) = b′2 ≠ b2: but it is impossible because its pre conditions should be
mapped on the same condition and one of them is mapped on b2;

• ϕ(x) = e2: we know that y ∈ ●x and ϕ(y) = b2, then for Def. 41 point 6 we
have b2 ∈ ●e2 but it is impossible because b2 ∈ max(N2).

♢

3.2.2
«
NO -morphisms

Let us define another morphism on Occurrence Nets that it is stricter than the
previous one.

Definition 42. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2.

An
«
NO -morphism from N1 to N2 is a map ϕ such that:

1. ϕ ∶X1 →∗ X2 is a partial surjective function;
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2. x ≤N1 y, then ϕ(x) ≤N2 ϕ(y),

3. x coN1 y, then ϕ(x) coN2 ϕ(y) or ϕ(x) = ϕ(y),

4. ϕ(B1) = B2;

5. if ϕ(e1) is undefined, then ϕ(●e1
●) is undefined;

6. if ϕ(e1) ∈ B2, then ϕ(●e1
●) = ϕ(e1) and ●e1

● ⊆dom (ϕ);

7. if ϕ(e1) = e2, then ϕ(●e1) = ●e2 and ϕ(e1
●) = e2

● and ●e1
● ⊆dom (ϕ);

8. ∀b2 ∈ B2, take N1(ϕ−1(b2)), then:

(a) ∀b2 /∈ max(N2), then ∣XN1(ϕ−1(b2))∣ < ∞;

(b) ∀b ∈ min(N1(ϕ−1(b2))), ϕ(●b) = ●b2;

(c) ∀b ∈ N1(ϕ−1(b2)) ∶ b /∈ max(N1(ϕ−1(b2))), then ϕ(b●) = b2;

(d) ∀b ∈ max(N1(ϕ−1(b2))), ϕ(b●) = b2
●;

The only difference between
«
NO -morphisms and N̂O-morphisms is that

«
NO -

morphisms ask for the co-preservation while N̂O-morphisms constrain on the re-
lation between maximal places of each bubble and its post-events.

In the rest of the section we state properties on
«
NO -morphisms.

«
NO -morphisms implies N̂O-morphisms.

Proposition 28. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2 and let

ϕ ∶ N1 → N2 be an
«
NO -morphism. ϕ is an N̂0-morphisms.

Proof. We have to prove that x coN1 y, then ϕ(x) coN2 ϕ(y) or ϕ(x) = ϕ(y) im-
plies ∀b2 ∈ B2,∀b ∈ max(N1(ϕ−1(b2))),∀e1 ∈ b●,∃C ⊆ B1 ∶ C is a cut of N1 and
b ∈ C and C ∩N1(ϕ−1(b2)) ⊆ max(N1(ϕ−1(b2))) and C ∩max(N1(ϕ−1(b2))) ⊆
●e1.

Let us take a b2 ∈ B2 ∶ b2 /∈
max(N2), hence there is an e2 ∈ E2

such that e2 ∈ b2
●. Let us take b0 ∈

max(N1(ϕ−1(b2)), then for Def.
42, point 8d there is an e0 ∈ E1 such
that e0 ∈ b0

● and ϕ(e0) = e2.
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By contradiction, suppose that there exists no cut of N1 such that b0 ∈ C and
C ∩ N1(ϕ−1(b2)) ⊆ max(N1(ϕ−1(b2))) and C ∩ max(N1(ϕ−1(b2))) ⊆ ●e1. So,
it must exists a b1 ∈ N1(ϕ−1(b2)) such that b1 co b0 and b1 ∈ max(N1(ϕ−1(b2)))
and b1 /∈ ●e0. Then, for Def. 42, point 8d we know that ∃e1 ∈ E1 and e1 ∈ b1

● and
ϕ(e1) = e2.

Now, we can say that b0 coN1 e1 (and also b1 coN1 e0). But this it is a

contradiction because ϕ(b0) = b2 ≤NI
e2 = ϕ(e1) but the

«
NO -morphism is co-

preserving. ♢

In the following let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2 and let

ϕ ∶ N1 → N2 be an
«
NO -morphism.

The set of events that are mapped on the same event is a #-set.

Proposition 29. Let e2 ∈ E2, then ϕ−1(e2) is a #-set.

Proof. Let us take e2 ∈ E2, e0, e1 ∈ E1 ∶ ϕ(e0) = ϕ(e1) = e2.

For Def. 42, point 7 we
know that ϕ(●e0) = ϕ(●e1) =
●e2 and ϕ(e0

●) = ϕ(e1
●) =

e2
● and ●e0

● ⊆dom (ϕ) and
●e1

● ⊆dom (ϕ).

By contradiction, there are two cases:

• e0 li e1: assume that e0 ≤ e1. Let us take ]e0, e1[. It is impossible that
ϕ(]e0, e1[) is a single condition b, because in that case b ∈ ●e2 and b ∈ e2

●

and this is impossible. So, there must be an event e ∈ ]e0, e1[ ∶ ϕ(]e0, e[) =
b5 and ϕ(]e, e1[) = b2 and ϕ(e) ≠ e2. Moreover, ϕ(e) cannot be unde-
fined, because in that case its neighbourhood must be undefined, but the
neighbourhood of e0 and e1 must not. For the li-preservation we have that
e0 <N1 e <N1 e1, then ϕ(e0) = e2 ≤N2 ϕ(e) ≤N2 e2 = ϕ(e1) and this is
impossible.

• e0 co e1: there must be an b0 ∈ E1 ∶ b0 ∈ ●e0. Let ϕ(b0) = b2, for Def. 42,
point 7 we know that b2 ∈ ●e2. Clearly, b0 co e1 but ϕ(b0) = b2 ≤N2 ϕ(e1)
and this is impossible.
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♢

A run is mapped on a run.

Proposition 30. Let R1 ⊆X1 be a run of N1; then ϕ(R1) is a run of N2.

Proof. This is given by the fact that a run is a clique of li ∪ co and an
«
NO -

morphism is li-preserving and co-preserving. ♢

Let us now define the composite morphism.

Proposition 31. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1 . . .3. Let

ϕi, with i = 1,2, be an
«
NO -morphism from Ni to Ni+1.

The map ϕ ∶ N1 → N3 defined as ϕ = ϕ2 ○ ϕ1 is an
«
NO -morphism.

Proof. We have to prove all the conditions of an
«
NO -morphism:

1: ϕ ∶X1 →∗ X3 is a partial surjective function: given by the composition of two
partial surjective functions;

2: x ≤N1 y: given by the composition of two monotone functions;

3: x coN1 y, there are two possibilities:

• ϕ1(x) coN2 ϕ1(y), there are two cases:

– ϕ2(ϕ1(x)) coN3 ϕ2(ϕ1(y)) or
– ϕ2(ϕ1(x)) = ϕ2(ϕ1(y));

• ϕ1(x) = ϕ1(y) hence ϕ2(ϕ1(x)) = ϕ2(ϕ1(y));

4: ϕ(B1) = B3: given by the composition;

5: let ϕ(e1) is undefined, there are three cases:

• ϕ1(e1) is undefined then ϕ1(●e1) = ∅ = ϕ1(e1
●) and ϕ2(∅) = ∅;

• ϕ1(e1) = b2, then ϕ1(●e1) = b2 = ϕ1(e1
●) and ϕ2(b2) is undefined;

• ϕ1(e1) = e2, then ϕ1(●e1) = ●e2 and ϕ1(e1
●) = e2

● and ϕ2(e2) is
undefined then ϕ2(●e2) = ∅ = ϕ2(e2

●);

6: let ϕ(e1) ∈ B3, there are two cases:

• ϕ1(e1) = b2, then ϕ1(●e1
●) = b2 and ●e1

● ⊆dom (ϕ1) and ϕ2(b2) = b3;
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• ϕ1(e1) = e2, then ϕ1(●e1) = ●e2 and ϕ1(e1
●) = e2

● and ●e1
● ⊆dom

(ϕ1) and ϕ2(e2) = b3, then ϕ2(●e2
●) = b3;

7: let ϕ(e1) = e3, then ∃e2 ∈ E2 ∶ ϕ(e1) = ϕ2(ϕ1(e1)) = ϕ2(e2) = e3.

ϕ1(e1) = e2, then ϕ1(●e1) = ●e2 and ϕ1(e1
●) = e2

● and ●e1
● ⊆dom (ϕ1).

ϕ2(e2) = e3, then ϕ2(●e2) = ●e3 and ϕ2(e2
●) = e3

● and ●e2
● ⊆dom (ϕ2).

By these, we have ϕ(●e1) = ϕ2(ϕ1(●e1)) = ϕ2(●e2) = ●e3 and ϕ(e1
●) =

ϕ2(ϕ1(e1
●)) = ϕ2(e2

●) = e3
●.

By contraddiction, let b1 ∈ B1, b1 ∈ ●e1
● ∶ b1 /∈dom (ϕ). Then it should be

that ϕ1(b1) is undefined but this is a contradiction because we know that
●e1

● ⊆dom (ϕ1) or that ϕ1(b1) = b2 ∈ B2 such that b2 ∈ ●e2
● and ϕ2(b2) is

undefined but this is a contradiction because we know that ●e2
● ⊆dom (ϕ2).

8: Let b3 ∈ B3, and take N1(ϕ−1(b3)).

Let b1 ∈ N1(ϕ−1(b3)) hence ∃b2 ∈ B2 ∶ ϕ1(b1) = b2 and ϕ2(b2) = b3.

8a: b3 /∈ max(N3) hence ∣XN2(ϕ−1
2 (b3))∣ < ∞. Moreover ∃e3 ∈ E3 ∶ b3 ∈

●e3. For Def. 42, point 8d ∀b2 ∈ max(N2(ϕ−1
2 (b3))), ϕ(b2

●) = b3
●

and this means that these conditions are not maximal in N2. Hence
∣XN1(ϕ−1

1 (b2))∣ < ∞, then N1(ϕ−1(b3)) is the sum of finite set, that is a
finite set: ∣XN1(ϕ−1(b3))∣ < ∞;

8b: let b1 ∈ min(N1(ϕ−1(b3))), then for Prop. 24 we know that b2 ∈
min(N2(ϕ−1

2 (b3))), and then for Def. 42, point 8b we have ϕ2(●b2) =
●b3.
Given that b1 ∈ min(N1(ϕ−1(b3))) it easy to see that b1 ∈ min(N1(ϕ−1

1 (b2))),
then for Def. 42, point 8b we have ϕ1(●b1) = ●b2.
Hence ϕ(●b1) = ϕ2(ϕ1(●b1)) = ϕ2(●b2) = ●b3.

8c: let b1 ∈ N1(ϕ−1(b3)) such that b1 /∈ max(N1(ϕ−1(b3))). Hence ∃e1 ∈
E1 ∶ e1 ∈ b1

● and ϕ(e1) = b3.
By contradiction, assume that ∃e′1 ∈ E1 ∶ e1 ∈ b1

● and ϕ(e1) ≠ b3. For
Def. 42, point 5 we know that this event is in the domain of the func-
tion. This implies that ∃e′2 ∈ E2 and ∃e′3 ∈ E3 ∶ ϕ(e′1) = ϕ2(ϕ1(e′1)) =
ϕ2(e′2) = e′3 and For Def. 42, point 7 we have that e′2 ∈ b2

● and e′3 ∈ b3
●.

There are two possibilities:

• b2 /∈ max(N2(ϕ−1
2 (b3))), then for Def. 42, point 8c ϕ2(b2

●) = b3,
then ϕ2(e′2) = b3 and this is a contradiction;

• b2 ∈ max(N2(ϕ−1
2 (b3))) then, for Prop. 27 we know that ϕ1(⌈b1⌉∩

N1(ϕ−1(b3))) = b2. Hence, ϕ1(e1) = b2. Hence, b1 /∈ max(N1(ϕ−1
1 (b2))).
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Hence, for Def. 42, point 8c we know that ϕ(b1
●) = b2, hence

ϕ1(e′1) = b2 but this is a contradiction.

8d: let b1 ∈ max(N1(ϕ−1(b3))). Then, for Prop. 26, we know that b2 ∈
max(N1(ϕ−1

2 (b3))), hence ϕ2(b2
●) = b3

●.
Since b1 ∈ max(N1(ϕ−1(b3))) it is easy to see that b1 ∈ max(N1(ϕ−1

1 (b2))),
hence ϕ1(b1

●) = b2
●.

Then we have ϕ(b1
●) = ϕ2(ϕ1(b1

●)) = ϕ2(b2
●) = b3

●.

♢

3.2.3 θ-morphisms
Let us define another morphism on Occurrence Nets that it is the total version of
the previous one.

Definition 43. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2.

a θ-morphism from N1 to N2 is an
«
NO -morphism with the additional restric-

tion that ϕ ∶X1 →X2 is a total surjective function.

Let us rewrite the complete definition of θ-morphisms.

Definition 44. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2.
a θ-morphism from N1 to N2 is is a map ϕ such that:

1. ϕ ∶X1 →X2 is a total surjective function;

2. x ≤N1 y, then ϕ(x) ≤N2 ϕ(y);

3. x coN1 y, then ϕ(x) coN2 ϕ(y) or ϕ(x) = ϕ(y);

4. ϕ(B1) = B2;

5. if ϕ(e1) ∈ B2, then ϕ(●e1
●) = ϕ(e1);

6. if ϕ(e1) = e2, then ϕ(●e1) = ●e2 and ϕ(e1
●) = e2

●;

7. ∀b2 ∈ B2, take N1(ϕ−1(b2)), then:

(a) ∀b2 /∈ max(N2), then ∣XN1(ϕ−1(b2))∣ < ∞;

(b) ∀b ∈ min(N1(ϕ−1(b2))), ϕ(●b) = ●b2;

(c) ∀b ∈ N1(ϕ−1(b2)) ∶ b /∈ max(N1(ϕ−1(b2))), then ϕ(b●) = b2;

(d) ∀b ∈ max(N1(ϕ−1(b2)), ϕ(b●) = b2
●.
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(a) (b)

Figure 3.25: Examples of θ-morphisms

li and co ∪ id are preserved by definition of the morphism.
The map ϕ = {(b1, b2), (e0, e2), (e1, e2), (c11, c2), (c12, c2)} between N1 and

N2 shown in Fig. 3.25a is a θ-morphism. As we can see # is not preserved:
c11 # e1 but ϕ(c11) = c2 li e2 = ϕ(e1).

The mapϕ = {(b11, b2), (e01, b2), (e02, b2), (b12, b2), (b13, b2), (e1, e2), (c1, c2)}
between N1 and N2 shown in Fig. 3.25b is a θ-morphism. Note that co does not
imply point 7a of Def. 44.

We assume now that the Occurrence Nets we deal with are finite. We are then
able to define the morphism in a more compact way.

Definition 45. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2.
A θ-morphism from N1 to N2 is a map ϕ such that:

1. ϕ ∶X1 →X2 is a total surjective function;

2. x ≤N1 y, then ϕ(x) ≤N2 ϕ(y);

3. x coN1 y, then ϕ(x) coN2 ϕ(y) or ϕ(x) = ϕ(y);

4. ϕ(B1) = B2;

5. if ϕ(e1) ∈ B2, then ϕ(●e1
●) = ϕ(e1);

6. if ϕ(e1) = e2, then ϕ(●e1) = ●e2 and ϕ(e1
●) = e2

●;

7. ∀b2 ∈ B2, take N1(ϕ−1(b2)), then:
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(a) ∀b ∈ min(N1(ϕ−1(b2))), ϕ(●b) = ●b2;

(b) ∀b ∈ N1(ϕ−1(b2)) ∶ b /∈ max(N1(ϕ−1(b2))), then ϕ(b●) = b2;

(c) ∀b ∈ max(N1(ϕ−1(b2))), ϕ(b●) = b2
●.

As we stated before, the existence of a morphism between two Nets leads to
the recognition of bubbles. Moreover, it is possible to partition every bubble into
sub-bubbles, each associated to one of the events that are mapped on the unique
pre event of the refined condition. Let us define in a more formal way bubbles and
sub-bubbles.

Definition 46. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2 and let
ϕ ∶ N1 → N2 be a θ-morphism.

For each condition b2 ∈ B2 the bubble of b2 is given by the counterimage of b2:
N1(ϕ−1(b2)).

The representation of b2, denoted rN1(b2), is a condition b1 of N1 that respect
the following constraint: b1 ∈ min(N1(ϕ−1(b2))) ∩max(N1(ϕ−1(b2))).

For each condition b2 ∈ B2 that is not minimal inN2 and for each e1 ∈ ϕ−1(●b2)
the sub-bubble of b2 associated to e1 is given by the subnet of the bubble of b2 that
is in the future of e1: N1((ϕ−1(b2)) ∩ ⌈e1⌉).

As we saw before, a set of events mapped on the same event is a #-set: by
this, we infer that every sub-bubble is disjoint from the others and that dividing a
bubble in sub-bubbles is like partitioning the bubble.

Let us now define the composite morphism.

Proposition 32. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1 . . .3. Let
ϕi, with i = 1,2, be a θ-morphism from Ni to Ni+1.

The map ϕ ∶ N1 → N3 with ϕ = ϕ2 ○ ϕ1 is a θ-morphism.

The proof follow by the proof of composition of
«
NO -morphisms, Prop. 31.

An Occurrence Net is canonical with respect to a morphism if it contains a
single representation for each condition of the abstract Net.

Definition 47. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2 and let
ϕ ∶ N1, then N2 be a θ-morphism.

N1 is canonical with respect to ϕ if for each b2 ∈ B2, there exists a unique b1

in each sub-bubble that is a representation of b2.

If N1 is not canonical, it is always possible to construct its unique canonical
version, NC1 , by adding the missing representations or by deleting the multiple
ones. It is easy to verify that the canonical version of a system, with respect to an
θ-morphism to another Occurrence Net, is unique up to isomorphisms.

We list here an algorithm to do this:
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Algorithm 1. B = B1, F = F1;ϕϕ = ϕ
∀b2 ∈ B2

∀e1 ∈ ϕ−1(●b2) (note that e1 ∈ E1∪ the initial event, the one that “gen-
erate” the Occurrence Net)

if /∃ b1 ∈ B1 ∶ b1 ∈ (min(N1((ϕ−1(b2)) ∩ ⌈e1⌉)) ∩ max(N1((ϕ−1(b2)) ∩
⌈e1⌉))) then

B+ = b2(e1)

if e1 ∈ E1 then
F+ = (e1, b2(e1))

ϕϕ+ = (b2(e1), b2)
∀ep ∈ (max(N1((ϕ−1(b2)) ∩ ⌈e1⌉)))●
F+ = (b2(e1), ep)

The corresponding morphism, ϕC , coincides with ϕ, plus the mapping of the
new conditions on the corresponding conditions of N2.

Proposition 33. ϕC is a θ-morphism from NC1 to N2.

Proof. We have to prove all the constraints:

1: ϕC ∶X1 →X2 is a total surjective function by construction;

2: x ≤N1 y, then ϕC(x) ≤N2 ϕ
C(y): every representation we add is resuming an

“hidden” relation of dependency between the pre event of a sub-bubble and
its post events;

3: x coN1 y, then ϕC(x) coN2 ϕ
C(y) or ϕC(x) = ϕC(y): every representation we

add is co with the other elements of its sub-bubble and both are mapped on
the same condition. By this we preserve the same co relations;

4: ϕC(B1) = B2: given by construction;

5: let e1 ∈ E1 and let b2 ∈ B2 such that ϕC(e1) = b2: this item is not modified in
ϕC .

6: let e1 ∈ E1 and let e2 ∈ E2 such that ϕC(e1) = e2: the pre and post events of
every new condition have a pre or post condition that is mapped on the same
condition of the second Net, hence ϕC(●e1) = ●e2 and ϕC(e1

●) = e2
●;

7: ∀b2 ∈ B2, take N1((ϕC)−1(b2)), then:

7a: let b ∈ min(N1((ϕC)−1(b2))), ϕC(●b) = ●b2: given by construction;

7b: let b ∈ N1((ϕC)−1(b2)) ∶ b /∈ max(N1((ϕC)−1(b2))), then ϕC(b●) = b2:
not modified in this new mapping;



3.3. ELEMENTARY TRANSITION SYSTEMS 73

7c: let b ∈ max(N1((ϕC)−1(b2))), ϕC(b●) = b2
●: given by construction.

♢

3.3 Elementary Transition Systems
Using morphisms to formalize the relation between two Systems is widely used
in the literature, also if the Systems are represented by Transition Systems.

We start recalling G-morphisms [31], a behaviour preserving morphism be-
tween Elementary Transition Systems. We recall then Ĝ-morphisms [38], that
differ from the former asking for the surjectivity on states and transitions. This is
required to interpret the morphism as a refinement of the codomain system. We
define a more restrictive version of Ĝ-morphisms, called Γ-morphisms, that take
in to account also the relations between states and transitions. Γ-morphisms do not
allow to map pairs of dependent events into pair of independent events. Moreover,
we want to relate morphisms between Elementary Net Systems with morphisms
between the associated Elementary Transition Systems and vice versa, so that we
are able to obtain more behavioural properties relating only structural models.

In the rest of this section, we present different notion of morphisms on Ele-
mentary Transition Systems and the properties they preserve/reflect.

3.3.1 G-morphisms
Relations between Elementary Transition Systems have been studied in [31] and
can be expressed by G-morphisms that bind systems preserving their behaviour.

Definition 48. Let TSi = (Si,Ei, Ti, si0) be an Elementary Transition System for
i = 1,2.

A G-morphism from TS1 to TS2 is a pair (f, g), where f ∶ S1 → S2, and
g ∶ E1 →∗ E2 is a partial function, such that:

1. f(s1
0) = s2

0;

2. if g(e1) is undefined, then ∀(s, e1, s′) ∈ T1, f(s) = f(s′);

3. if ∃e2 ∈ E2 ∶ g(e1) = e2, then ∀(s, e1, s′) ∈ T1,∃(f(s), e2, f(s′)) ∈ T2.

The idea is that TS2 is capable of ”partially simulating” TS1 as specified by f .
If the event e1 is mapped on the event e2, TS2 simulate TS1 executing this event
when the first system execute e1. The simulation is partial means that some events
of TS1 is not seen by TS2, then if (s, e, s′) ∈ T1 and e fires in TS1, TS2 does not
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change its state: f(s) = f(s′). Moreover, all the occurrences of an event should
be simulated in an uniform manner.

Note that the map on states determines the map on events.

Proposition 34. Let TS1 and TS2 be two Elementary Transition Systems and
(f, g) and (f ′, g′) two G-morphisms from TS1 to TS2 such that g = g′.

Then f = f ′.

A basic property of G-morphisms is that they preserve regions in the sense
that the inverse image of a region of TS2 is a region in TS1. The inverse image
of a region r2 of TS2 is a pre-region (post-region) of an event e1 iff e1 is in the
domain of g and r2 is a pre-region (post-region) of the image of e1.

Proposition 35. Let TSi = (Si,Ei, Ti, si0) be an Elementary Transition System for
i = 1,2 and (f, g) be a G-morphism from TS1 to TS2.

If we take r2 ⊆ S2 region of TS2, then f−1(r2) is a region in TS1.
Furthermore, for every e1 ∈ E1, f−1(r2) ∈ ○e1(e1

○) iff ∃e2 ∈ E2, g(e1) = e2 and
r2 ∈ ○e2(e2

○), respectively.

It is possible to define the composition of two G-morphisms in the usual way.

Proposition 36. Let TSi = (Si,Ei, Ti, si0) be Elementary Transition Systems for
i = 1 . . .3. Let (fi, gi) be a G-morphism from TSi to TSi+1 for i = 1,2.

The function (f, g) ∶ TS1 → TS3 (f, g) = (f2, g2) ○ (f1, g1) where f = f2 ○ f1

and g = g2 ○ g1 is a G-morphism.

Let ET S denote the category whose objects are Elementary Transition Sys-
tems and whose arrows are G-morphisms. For each object TS = (S,E,T, s0) let
1TS = (idS, idE) be the identity morphism where idS ∶ S → S and idE ∶ E → E are
the (total) identity functions. For (f1, g1) ∶ TS1 → TS2 and (f2, g2) ∶ TS2 → TS3

take the composition of these two G-morphisms.

3.3.2 Ĝ-morphisms
In [38] has been defined a more restrictive version of G-morphism: Ĝ-morphism.
These morphisms differ from the original one by the fact that they require sur-
jectivity on states and transitions. This is required to interpret the morphism as a
refinement of the codomain system.

Definition 49. Let TSi = (Si,Ei, Ti, si0) be an Elementary Transition System for
i = 1,2.

A Ĝ-morphism from TS1 to TS2 is a G-morphisms (f, g), with the additional
constraint that f ∶ S1 → S2 is surjective, and g ∶ E1 →∗ E2 is a surjective partial
function.
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(a) TS1 (b) TS2

Figure 3.26: Two Elementary Transition Systems related by a Ĝ-morphisms

The idea is that TS1 can be seen as a refinement of TS2, so it has to maintain
the structure of TS2 but it should add other behaviours refining states of the sys-
tem. It is very important to take in mind that this kind of morphism allows also to
relax some constraints. The surjectivity (and the absence of the injectivity) of f
and g assures that every state and every event of TS2 should be splitted into more
than one element in TS1 but have to be part of the refined Elementary Transition
System. Constraints 2 and 3 of Def. 48 assure that every occurrence of the same
event in TS1 have to be mapped in the same way. Nothing is said about the mul-
tiple occurrences of one event in TS2 and this can lead to the relax of contraints
between TS1 and TS2.

As we see in Fig. 3.26 the maps given by identical labels are a Ĝ-morphism
between TS1 and TS2. The events c and d are present in TS2 twice. As we see,
TS1 has more constraints than TS2: c need to fire first than d instead in TS2 they
are independent.

It is possible to define the composition of two Ĝ-morphisms in the usual way.

Proposition 37. Let TSi = (Si,Ei, Ti, si0) be Elementary Transition Systems for
i = 1 . . .3. Let (fi, gi) be a Ĝ-morphism from TSi to TSi+1 for i = 1,2.

The function (f, g) ∶ TS1 → TS3 (f, g) = (f2, g2) ○ (f1, g1) where f = f2 ○ f1

and g = g2 ○ g1 is a Ĝ-morphism.

Proof. We know that (g, f) is a G-morphism, we have to prove that it satisfies the
additional constraints that characterize a Ĝ-morphism:

• f ∶ S1 → S3 is surjective: given by the composition of two surjective func-
tions,

• g ∶ E1 →∗ E3 is a surjective partial function: given by the composition of
two surjective partial functions.
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♢

Let ÊT S denote the category whose objects are Elementary Transition Sys-
tems and whose arrows are Ĝ-morphisms. For each object TS = (S,E,T, s0) let
1TS = (idS, idE) be the identity morphism where idS ∶ S → S and idE ∶ E → E are
the (total) identity functions. For (f1, g1) ∶ TS1 → TS2 and (f2, g2) ∶ TS2 → TS3

take the composition of these two Ĝ-morphisms.

Proposition 38. ÊT S is a subcategory of ET S .

Proof. As required in Def. 4:

• ObÊT S = ObET S ,

• ∀TS1, TS2 ∈ ObÊT S , ÊT S [TS1, TS2] ⊆ ET S [TS1, TS2] because all Ĝ-
morphisms are G-morphisms but the contrary does not hold,

• composition and identities in ÊT S are the same that the ones in ET S .

♢

3.3.3 Γ-morphisms
Ĝ-morphisms are too much permissive relating Elementary Transition Systems.
As we have seen in the previous section, they allow to remove constraints to cou-
ple of events making them independent while they are sequential in the refined
system. Let us now define a more restrictive version of Ĝ-morphisms.

Definition 50. Let TSi = (Si,Ei, Ti, si0) be an Elementary Transition System for
i = 1,2.

A Γ-morphism from TS1 to TS2 is a Ĝ-morphisms (f, g), with the additional
constraint that ∀(s2, e2, s′2) ∈ T2,∃(s1, e1, s′1) ∈ T1 so that s1 ∈ f−1

1 (s2), e1 ∈
g−1

1 (e2), s′1 ∈ f−1
1 (s′2).

This new requirement binds multiples occurrences of one event in TS2 with
events of TS1.

As we see in Fig. 3.27 the maps f = {(s0, s0), (s5, s0), (s1, s1), (s6, s1),
(s2, s2), (s7, s2), (s3, s3), (s8, s3), (s4, s2)} and g given by identical names are a
Γ-morphism between TS1 and TS2. The event t1 is not present in TS1. As we see,
TS1 does not have more or less constraints than TS2: it has only new behaviours.

The partition of the nodes of TS1 induced by a Γ-morphism from TS1 to TS2

can be lifted to a graph structure: the class of nodes mapped to a node s becomes
a node, while the class of events mapped to an event e becomes an event; the flow
relation is defined in the obvious way.
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Figure 3.27: An Elementary Transition System, TS1, related to TS2, Fig. 3.26b,
by a Γ-morphisms

Definition 51. Let TSi = (Si,Ei, Ti, si0) be an Elementary Transition System for
i = 1,2. Let (f, g) be a Γ-morphism from TS1 to TS2. Then f defines an equiva-
lence relation on S1, where the equivalence class of s ∈ S1 is [s] = {s′ ∈ S1∣f(s′) =
f(s)}. Also g defines an equivalence relation on E1, where the equivalence class
of e ∈ E1 is [e] = {e′ ∈ E1∣g(e′) = g(e)}.

The quotient of TS1 with respect to Γ is TS1/(f, g) = (S1/f,E1/g, T1/(f, g), [s1
0]),

where

• S1/f = {[s] ∶ s ∈ S1},

• E1/g = {[e] ∶ e ∈ E1, e ∈dom (g)},

• T1/(f, g) = {([s], [e], [s′]) ∶ s, s′ ∈ S1, e ∈ E1, [s] ≠ [s′],∃(s, e, s′) ∈ T1}.

The resulting system is isomorphic to TS2.

Proposition 39. The quotient of TS1, TS1/(f, g), is an Elementary Transition
System isomorphic to TS2.

Proof. Given the surjectivity of the Γ-morphism we have that the nodes and the
events of the quotient are exactly the same of TS2.

1. Every arrow of TS1/(f, g) is present in TS2: note that the arrow remained
are not the ones between nodes of the same equivalence class and not the
ones labelled by events undefined. These events lead the states they bind
to one state of TS2. So in TS1/(f, g) there are only arrows with, as la-
bels, events mapped by g. Let us take one of these arrows: ([s], [e], [s′]) ∈
T1/(f, g) hence (s, e, s′) ∈ T1. For Def. 48 point 3 we know that (f(s), g(e), f(s′)) ∈
T2.
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Figure 3.28: TS1

2. Every arrow of TS2 is present in TS1/(f, g): by definition of Γ-morphism
∀(s2, e2, s′2) ∈ T2,∃(s1, e1, s′1) ∈ T1 so that s1 ∈ f−1(s2), e1 ∈ g−1(e2), s′1 ∈
f−1(s′2) hence there is ([s1], [e1], [s′1]) ∈ T1/(f, g).

♢

Note that this is not given by Ĝ-morphisms and g-morphisms, and an example
is shown in Fig. 3.26.

It is possible to define the composition of two Γ-morphisms in the usual way.

Proposition 40. Let TSi = (Si,Ei, Ti, si0) be Elementary Transition Systems for
i = 1 . . .3. Let (fi, gi) be a Γ-morphism from TSi to TSi+1 for i = 1,2.

The function (f, g) ∶ TS1 → TS3 (f, g) = (f2, g2) ○ (f1, g1) where f = f2 ○ f1

and g = g2 ○ g1 is a Γ-morphism.

Proof. We know that (g, f) is a Ĝ-morphism, we have to prove that it satisfies the
additional constraints that characterize a Γ-morphism.

Let us take a (s3, e3, s′3) ∈ T3 we know that ∃(s2, e2, s′2) ∈ T2 so that s2 ∈
f−1

2 (s3), e2 ∈ g−1
2 (e3), s′2 ∈ f−1

2 (s′3). We know also that ∃(s1, e1, s′1) ∈ T1 so that
s1 ∈ f−1

1 (s2), e1 ∈ g−1
1 (e2), s′1 ∈ f−1

1 (s′2). So it is proved. ♢

Let ET SΓ denote the category whose objects are Elementary Transition Sys-
tems and whose arrows are Γ-morphisms. For each object TS = (S,E,T, s0) let
1TS = (idS, idE) be the identity morphism where idS ∶ S → S and idE ∶ E → E are
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Figure 3.29: TS2

the (total) identity functions. For (f1, g1) ∶ TS1 → TS2 and (f2, g2) ∶ TS2 → TS3

take the composition of these two Γ-morphisms.

Proposition 41. ET SΓ is a subcategory of ÊT S .

Proof. As required in Def. 4:

• ObET SΓ
= ObÊT S ,

• ∀TS1, TS2 ∈ ObET SΓ
,ET SΓ [TS1, TS2] ⊆ ÊT S [TS1, TS2] because all Γ-

morphisms are Ĝ-morphisms but the contrary does not hold,

• composition and identities in ET SΓ are the same that the ones in ÊT S .

♢

It is although true that this new constraint does not assure that the two Elemen-
tary Transition System have exactly the same sets of concurrent events as we see,
for example, in Fig. 3.28 and 3.29. The maps f = {(s0, s0), (s1, s1), (s2, s3), (s3, s0),
(s4, s2), (s5, s0), (s6, s3), (s7, s2), (s8, s1), (s9, s3), (s10, s0), (s11, s1), (s12, s2),
(s13, s2), (s14, s3), (s15, s1)} and g given by identical names of events constitute a
Γ-morphism between TS1 and TS2. For example in s15 there must start a concur-
rent square t1, t2.

Moreover, the refined Elementary Transition System can reach a deadlock,
while the abstract one cannot, as we see in Fig. 3.30. The maps f = {(s0, s0),
(s1, s1), (s2, s0), (s3, s0), (s4, s1), (s5, s0), (s6, s1), (s7, s1)} and g given by iden-
tical names of events constitute a Γ-morphism between TS1 and TS2. As we see,
state s7 of TS1 is a deadlock.
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(a) TS1 (b) TS2

Figure 3.30: An example of Γ-morphism

3.4 Relation between the categories introduced
In this section, we relate the categories we introduced in the previous part of this
chapter. We recall thatN -morphisms correspond toG-morphisms. Then we prove
that Ĝ-morphisms imply N̂ -morphisms but the contrary does not hold. On the
other hand, α-morphisms imply Ĝ-morphisms.

3.4.1 From Elementary Net Systems to Elementary Transition
Systems

Nielsen, Rozenberg, and Thiagarajan defined in [31] a functor from ENS to
ET S , denoted by H , which coincides with the computation of the case graph
of a Net.

Let N ∈ ENS ,N = (B,E,F,m0) be an Elementary Net System, the Ele-
mentary Transition System associated with N is its reachability graph TSN . The
model obtained is an Elementary Transition System.

We have also to associate to morphisms of ENS morphisms of ET S [31].

Definition 52. Let Ni ∈ ENS ,Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net Sys-

tems for i = 1,2.
Let H be a map which assigns to each object Ni, the Elementary Transition

System associated with Ni.
Furthermore, H assigns to each arrow (β, η) ∶ N1 → N2 in ENS the pair

(fβ, η), where fβ ∶ [m1
0⟩ → [m2

0⟩, given by ∀m1 ∈ [m1
0⟩ , fβ(m1) = β(m1) ∪ (m2

0 −
β(m1

0)).
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(a) N1 (b) N2

Figure 3.31: An example of N̂ -morphism

Note that fβ defined above is the same that the function defined in Prop. 3.
The map obtained by H on an N -morphism is a G-morphism [31].

Proposition 42. Let Ni ∈ ENS ,Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net Sys-

tems for i = 1,2 and let (β, η) be an N -morphism from N1 to N2.
The map (fβ, η), constructed as specified in Definition 52, is a G-morphism

from H (N1) to H (N2).

H ∶ ENS → ET S is a functor.
Let us show that the functor H does not necessarily map an N̂ -morphism to

a Ĝ-morphism. For example, in Fig. 3.31 and Fig. 3.32 we see two Elementary
Net Systems (the N̂ -morphism relates elements with the same label) and their
reachability graphs: no state of TS1 can be mapped on s2.

Let us show that the functor H does not necessarily map a Π-morphism to
a Ĝ-morphism. For example, take the Elementary Net System of Fig. 3.33a
and the one of Fig. 3.31b. The map β = {(p0, p0), (p1, p1), (p8, p2), (p9, p3)}
and the map η = {(t0, t0), (t2, t1)} constitute a Π-morphism between N1 and
N2. In Fig. 3.33b and 3.32b we see the reachability graphs associated with
Elementary Net Systems mentioned before. The functor create the map f =
{(s0, s0), (s1, s2), (s2, s2), (s3, s3)}. As we see, (f, η) does not constitute a Ĝ-
morphism between TS1 and TS2.

We have to associate to ϕ-morphism morphisms of ET S .

Definition 53. Let Ni ∈ ENSα ,Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net Sys-

tems for i = 1,2.
Let H be a map which assigns to each object Ni its reachability graph.
Furthermore, H assigns to each arrow ϕ ∶ N1 → N2 in ENSα the pair

(fϕ, gϕ), where fϕ ∶ [m1
0⟩ → [m2

0⟩ given by ∀m1 ∈ [m1
0⟩ , fϕ(m1) = ϕ(m1) ∩B2

and gϕ ∶ E1 →∗ E2 given by ∀e1 ∈ E1s.t.ϕ(e1) ∈ E2, gϕ(e1) = ϕ(e1).
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(a) TS1 (b) TS2

Figure 3.32: The reachability graphs of Elementary Net Systems of Fig. 3.31

(a) N1 (b) TS1

Figure 3.33: An Elementary Net System and its reachability graph
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The map obtained by H on a ϕ-morphism is a Ĝ-morphism.

Proposition 43. Let Ni ∈ ENSα ,Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net

Systems for i = 1,2 and let ϕ be a ϕ-morphism from N1 to N2.
The map (fϕ, gϕ), constructed as specified in Definition 53, is a Ĝ-morphism

from H (N1) to H (N2).

Proof. To prove the thesis we have to argue that all the condition of a Ĝ-morphism
are satisfied. We know that a ϕ-morphism is an N̂ -morphism, which is an N -
morphism. As we have seen before, (fϕ, gϕ) is a G-morphism, so we need to
prove only the additional requirements of a Ĝ-morphism.

The functions fϕ ∶ S1 → S2 and gϕ ∶ E1 →∗ E2 are surjective by definition. ♢

The map H ∶ ENSα → ÊT S is a functor since it is immediate to see that it
preserve composition and identity.

3.4.2 From Elementary Transition Systems to Elementary Net
Systems

Nielsen, Rozenberg, and Thiagarajan defined in [31] a functor from ET S to
ENS , denoted by J , that gives a procedure of synthesis which, given an Ele-
mentary Transition System, builds an Elementary Net System whose case graph
is isomorphic to the Transition System.

We have to associate to every object of ET S objects of ENS [31].

Definition 54. Let TS ∈ ET S , TS = (S,E,T, s0) be an Elementary Transition
System.

The Elementary Net System associated with TS is defined asNTS = (RTS,E,FTS,Rs0)
where FTSi

= {(r, e)∣r ∈ RTSi
∧ e ∈ E ∧ r ∈ ○e}∪ {(e, r)∣r ∈ RTSi

∧ e ∈ E ∧ r ∈ e○}.

The model obtained is an Elementary Net System saturated and, hence, contact-
free.

We have also to associate to morphisms of ET S morphisms of ENS [31].

Definition 55. Let TSi ∈ ET S , TSi = (Si,Ei, Ti, si0) be an Elementary Transition
System for i = 1,2.

Let J be a map which assigns to each object TSi the Elementary Net System
associated with TSi.

Furthermore, J assigns to each arrow (f, g) ∶ TS1 → TS2 in ET S the pair
(β, g), where β ⊆ RTS1 ×RTS2 , given by (r1, r2) ∈ β⇔ f−1(r2) = r1

The map obtained by J on a G-morphism is an N -morphism.
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(a) TS1 (b) N1 (c) N2

Figure 3.34: An Elementary Transition System, two Elementary Net Systems:
one associated to it and one to the System of Fig. 3.30b

Proposition 44. Let TSi ∈ ET S , TSi = (Si,Ei, Ti, si0) be an Elementary Transi-
tion System for i = 1,2 and let (f, g) be a G-morphism from TS1 to TS2.

The map (β, g), constructed as specified in Definition 55, is an N -morphism
from J (TS1) to J (TS2).

J ∶ ET S → ENS is a functor.
We construct now a functor from ÊT S to ÊNS using the map specified in

Definition 55.
The map obtained by J on a Ĝ-morphism is an N̂ -morphism.

Proposition 45. Let TSi ∈ ÊT S , TSi = (Si,Ei, Ti, si0) be an Elementary Transi-
tion System for i = 1,2 and let (f, g) be a Ĝ-morphism from TS1 to TS2.

The map (β, g), constructed as specified in Definition 55, is an N̂ -morphism
from J (TS1) to J (TS2).

Proof. To prove the thesis we have to argue that all the condition of an N̂ -morphism
are satisfied. Nielsen, Rozenberg, and Thiagarajan proved that (β, g) = J((f, g))
is an N -morphism from J(TS1) to J(TS2), so we need to prove only the addi-
tional requirements of an N̂ -morphism.

The function g ∶ E1 →∗ E2 is surjective by definition.
By definition β ⊆ RTS1 ×RTS2 and (r1, r2) ∈ β iff f−1(r2) = r1, hence β−1 is a

function. The fact that f is surjective assure that f−1 exists ∀r2 ∈ RTS2 , hence β−1

is total. We have to prove injectivity. By contradiction, let r2, r′2 ∈ RTS2 , r2 ≠ r′2,
and let r1 ∈ RTS1 such that β−1(r2) = f−1(r2) = r1 = f−1(r′2) = β−1(r′2). Assume
that ∃s2 ∈ r2 ∖ r′2. Since f is surjective, ∃s1 ∈ S1∣f−1(s2) = s1. We know also
that s1 ∈ f−1(r2) = r1 = f−1(r′2). Since f is total ∃s′2 ∈ r′2∣f(s1) = s′2 and this is a
contradiction because function f cannot assign to s1 both s2 and s′2.
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For the case ∃s2 ∈ r′2 ∖ r2 the prove is similar. ♢

The map J ∶ ÊT S → ÊNS is a functor given that it is immediate to see that it
preserves composition and identity.

Since ET SΓ is a subcategory of ÊT S , the previously defined functor J binds
also ET SΓ with ÊNS .

Let us show that the functor J does not assure that, if there is a Γ-morphism
between two Elementary Transition Systems, there is a Π-morphism between
the Elementary Net Systems associated with them. For example, take the Ele-
mentary Transition System of Fig. 3.34a and the one of Fig. 3.30b. The map
f = {(s0, s0), (s1, s1), (s2, s0)} and the map given by identical names of events
constitute a Γ-morphism between the two. In Fig. 3.34b and 3.34c we see the
Elementary Net Systems associated with the Elementary Transition Systems men-
tioned before. J create the map β = {(p1, p1), (p0, p0)}. As we see, (β, g) do not
constitute a Π-morphism between N1 and N2.
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Chapter 4
Nets transformations and
morphisms

The results and notions presented in the previous chapter are a theoretical ba-
sis supporting methods for modular development. From a practical viewpoint, a
designer prefer to use a set of Net transformations in order to refine a Net. In
this chapter, starting from N̂ -morphism, we will try to define such transformation
instead of constraining the morphism. Formally, refining a Net with these trans-
formation, there will be an N̂ -morphism from the refined Net to the abstract one
and a Γ-morphism between the corresponding reachability graphs.

Here we present two examples of such transformations as a first step in this
direction. Esparza and Silva in [17] defined three kinds of structures in Place
Transition Nets and they proved results on desirable properties by using these
structures. The first refinement we present is based on one of them, called handle,
and consists in adding to the Net a path refining a single condition relating two
events. The second one is a live Net synchronized on one event of the original net.

Definition 56. Let N1 = (B1,E1, F1,m1
0) be an Elementary Net System. Let us

take two events e1, e′1 in N1 such that there exist a condition b1 connecting the two
events: b1 ∈ e1

● ∧ b1 ∈ ●e′1. Condition b1 is connected only to e1 and e′1.
A handle of N1 is an Elementary Net System Nh = (Bh,Eh, Fh,mh

0), with
Eh ∩ E1 = {e1, e′1} and Bh ∩ B1 = ∅, consisting of a directed path, containing
at least one event different from e1 with e′1, connecting e1 with e′1. If the path
is in the same direction of the connection in N1 and b1 is (not) marked one (no)
condition of the handle has to be marked. If the path is in the opposite direction
of the connection in N1 and b1 is (not) marked no (one) condition of the handle
has to be marked.

87
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(a) N1 (b) N2 (c) N3

Figure 4.1: A Net N1, the net N2 obtained by adding in N1 a handle between
e1 and e2 in the same direction of b2 and the net N3 obtained by adding in N1 a
handle between e1 and e2 in the opposite direction of b2

We can see examples of handle in Fig. 4.1 and 4.2.
Let us call bfirst the first condition of the handle and blast the last one. We start

showing some properties on the marking of the handle. Note that the handle is a
path that contains only one token. If there is a path from the event e1 (e′1) to e′1
(e1) through b1 and the handle start in e1 (e′1) and ends in e′1 (e1) we will say that
the handle is directed as b1.

Lemma 4. Let N1 = (B1,E1, F1,m1
0) be an Elementary Net System. Let Nh be

a handle directed as b1. Let N2 = (B2,E2, F2,m2
0) be the net constructed by

synchronizing N1 and Nh on the two common events e1 and e′1: N2 = (B1 ∪
Bh,E1 ∪Eh, F1 ∪ Fh,m1

0 ∪mh
0).

For all m2 ∈ [m2
0⟩, the following holds: m ∩ Bh ≠ ∅ if, and only if, b1 ∈ m2

and, in that case, ∣m ∩Bh∣ = 1.

Proof. b1 is marked in the initial condition iff one condition of the handle is
marked.

b1 becomes un-marked only when e′1 fires, and e′1 consumes a token also from
blast, hence all the conditions of the handle are un-marked after that firing.

b1 becomes marked only when e1 fires, and e1 produces a token also in bfirst,
hence one condition of the handle is marked after that firing. ♢

Lemma 5. Let N1 = (B1,E1, F1,m1
0) be an Elementary Net System. Let Nh be

a handle not directed as b1. Let N2 = (B2,E2, F2,m2
0) be the net constructed
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(a) H (N1) (b) H (N2) (c) H (N3)

Figure 4.2: Reachability Graphs of Nets of Fig. 4.1

by synchronizing N1 and Nh on the two common events e1 and e′1: N2 = (B1 ∪
Bh,E1 ∪Eh, F1 ∪ Fh,m1

0 ∪mh
0).

For all m2 ∈ [m2
0⟩, the following holds: m ∩ Bh ≠ ∅ if, and only if, b1 /∈ m2

and, in that case, ∣m ∩Bh∣ = 1.

Proof. b1 is marked in the initial condition iff all conditions of the handle are not
marked,

b1 becomes un-marked only when e′1 fires, and e′1 produces a token also in
bfirst, hence one condition of the handle is marked after that firing.

b1 becomes marked only when e1 fires, and e1 consumes a token also from
blast, hence all the conditions of the handle are un-marked after that firing. ♢

Now we prove that from a Net enriched with a handle to the original Net there
is an N̂ -morphism.

Theorem 3. Let N1 = (B1,E1, F1,m1
0) be an Elementary Net System. Let N2 =

(B2,E2, F2,m2
0) be the net constructed by synchronizing N1 and a handle Nh on

the two common events e1 and e′1: N2 = (B1 ∪Bh,E1 ∪Eh, F1 ∪ Fh,m1
0 ∪mh

0).
The pair of functions (β, η) given by the identity functions from N2 to N1,

restricted to the nodes of N1, is an N̂ -morphism from N2 to N1.

Proof. We have to prove all the constraints of N̂ -morphisms (see Def. 30 and 31):

31.1: β−1 is total injective since β is the identity function and B1 ⊆ B2,

31.2: η is a partial surjective function because all events of N1 are in N2,
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30.3: given that β is the identity function and that new conditions which are
marked in the initial state are not in the domain of β, we have

∀(b2, b1) ∈ β ∶ b2 ∈m2
0 ⇔ b1 ∈m1

0

30.4: take an event e2 such that η(e2) is undefined. This implies that e2 is in the
handle, and all the handle (but for e1 and e′1) is not mapped, hence also the
pre and the post of e2 are not mapped,

30.5: take an event of N2 in the domain of η. This event is not in the handle,
hence it is present also in N1. For all the events but e1, e′1 the proof that the
neighbourhood is preserved is trivial.

Events e1 and e′1 have one new neighbour in N2, but these conditions are
not mapped by β so the neighbourhood is preserved also for e1 and e′1.

♢

The following is one of the major results of this chapter: from the reachability
graph of the Net enriched with a handle to the reachability graph of the original
Net there is a Γ-morphism. To show this fact, we will use the functor H , as
defined in Def. 52. This shows that this transformation consistently reflects on the
behaviour of the Net.

Theorem 4. Let N1 = (B1,E1, F1,m1
0) be an Elementary Net System. Let N2 =

(B2,E2, F2,m2
0) be the net constructed synchronizing N1 and a handle Nh on the

two common events e1 and e′1: N2 = (B1 ∪Bh,E1 ∪Eh, F1 ∪ Fh,m1
0 ∪mh

0).
The pair of functions H (β, η), with (β, η) given by the identity functions be-

tween N2 and N1 restricted to the nodes of N1, is a Γ-morphism from H (N2) to
H (N1).

Proof. We know by Theorem 3 that (β, η) is an N̂ -morphism from N2 to N1.
Hence we know that there is a G-morphism between H (N2) and H (N1), so we
need first to prove the additional constraints of Ĝ-morphisms:

• it can be proved by induction on the reachable states that fβ ∶ [m2
0⟩ → [m1

0⟩
is a surjective total function,

• η ∶ E2 →∗ E1 is a surjective partial function by construction.

Now we need to prove only the additional constraint of Γ-morphisms. We
have to prove that each arrow in N1 has a corresponding arrow in N2. Let us take
s1 ∈ [s1

0⟩. We know that there exists a set of states in H (N2) that are mapped on
s1. Now, take an event e ∈ E1 such that (s1, e, s′1) ∈ T1.

There are three possibilities:
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• e ≠ e1, e′1: we know that there is an arrow (s2, e, s′2) such that fβ(s2) = s1

and fβ(s′2) = s′1 given that we have not changed the neighbourhood of e in
N2,

• e = e1: hence b1 /∈ s1. Hence no (one) condition of the handle is marked
in s1. Hence there is an arrow labelled with the event e1 (after some other
arrows labelled with events of the handle, there is an arrow labelled with
the event e1) that leads to a state s′2 containing b1 and bfirst (not containing
blast). Hence, s′2 is related to s′1,

• e = e′1: hence b1 ∈ s1. Hence one (no) condition of the handle is marked
in s1. Hence, after some other arrows labelled with events of the handle,
there is an arrow labelled with the event e′1 (there is an arrow labelled with
the event e′1) that leads to a state s′2 not containing b1 and blast (containing
bfirst). Hence, s′2 is related to s′1;

♢

Let us now define the second transformation.

Definition 57. Let N1 = (B1,E1, F1,m1
0) be an Elementary Net System. Let us

take one event e1 in N1.
An aquarium of N1 is a live Elementary Net System Na = (Ba,Ea, Fa,ma

0),
with Ea ∩E1 = {e1} and Ba ∩B1 = ∅.

We can see an example of aquarium in Fig. 4.3.
Now we prove that from a Net enriched with an aquarium to the original Net

there is an N̂ -morphism.

Theorem 5. Let N1 = (B1,E1, F1,m1
0) be an Elementary Net System. Let N2 =

(B2,E2, F2,m2
0) be the net constructed by synchronizing N1 and an aquarium Na

on the common event e1: N2 = (B1 ∪Ba,E1 ∪Ea, F1 ∪ Fa,m1
0 ∪ma

0).
The pair of functions (β, η) given by the identity functions from N2 to N1,

restricted to the nodes of N1, is an N̂ -morphism from N2 to N1.

Proof. We have to prove all the constraints of N̂ -morphisms:

31.1: β−1 is total injective since β is the identity function and B1 ⊆ B2,

31.2: η is a partial surjective function because all events of N1 are in N2,

30.3: given that β is the identity function and that new conditions which are
marked in the initial state are not in the domain of β, we have

∀(b2, b1) ∈ β ∶ b2 ∈m2
0 ⇔ b1 ∈m1

0



92 CHAPTER 4. NETS TRANSFORMATIONS AND MORPHISMS

(a) N4 (b) H (N4)

Figure 4.3: The net N4 obtained by adding in N1 of Fig. 4.1a an aquarium on e0

(note that it is also a loop) and its Reachability Graph

30.4: take an event e2 such that η(e2) is undefined. This implies that e2 is in the
aquarium, and all the aquarium (but for e1) is not mapped, hence also the
pre and the post of e2 are not mapped,

30.5: take an event of N2 in the domain of η. This event is not in the aquarium,
hence it is present also in N1. For all the events but e1 the proof that the
neighbourhood is preserved is trivial.

Events e1 have new neighbours in N2, but these conditions are not mapped
by β so the neighbourhood is preserved also for e1 and e′1.

♢

The following is another results of this chapter: from the reachability graph
of the Net enriched with an aquarium to the reachability graph of the original Net
there is a Γ-morphism.

Theorem 6. Let N1 = (B1,E1, F1,m1
0) be an Elementary Net System. Let N2 =

(B2,E2, F2,m2
0) be the net constructed synchronizing N1 and an aquarium Na on

the common event e1: N2 = (B1 ∪Ba,E1 ∪Ea, F1 ∪ Fa,m1
0 ∪ma

0).
The pair of functions H (β, η), with (β, η) given by the identity functions be-

tween N2 and N1 restricted to the nodes of N1, is a Γ-morphism from H (N2) to
H (N1).

Proof. We know by Theorem 5 that (β, η) is an N̂ -morphism from N2 to N1.
Hence we know that there is a G-morphism between H (N2) and H (N1), so we
need first to prove the additional constraints of Ĝ-morphisms:
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• it can be proved by induction on the reachable states that fβ ∶ [m2
0⟩ → [m1

0⟩
is a surjective total function,

• η ∶ E2 →∗ E1 is a surjective partial function by construction,

Now we need to prove only the additional constraint of Γ-morphisms. We
have to prove that each arrow in N1 has a corresponding arrow in N2. Let us take
s1 ∈ [s1

0⟩. We know that there exists a set of states in H (N2) that are mapped on
s1. Now, take an event e ∈ E1 such that (s1, e, s′1) ∈ T1.

There are two possibilities:

• e ≠ e1, e′1: we know that there is an arrow (s2, e, s′2) such that fβ(s2) = s1

and fβ(s′2) = s′1 given that we have not changed the neighbourhood of e in
N2,

• e = e1: we know by the liveness of the aquarium that there are a set of arrows
that leads to a state s2 (still mapped on s1) in which start an arrow labelled
with the event e1. It lead to a state s′2 that contains the post conditions of e1

in N1 plus the ones of the aquarium, hence it is mapped on s′1.

♢

The results of this section form a basis upon which one can construct a set
of Net transformations to be used by a designer. The final aim along this line of
research is to define a complete collection of Net transformations which guarantee
the existence of a Γ-morphism from the refined Net to the abstract one.
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Chapter 5
Composition

In the development of distributed systems a central role is played by formal tools
supporting various aspects of modularity such as compositionality, refinement and
abstraction. Several formal approaches are available. One of the main challenges
consists in developing languages and methods allowing to derive properties of the
refined or composed system from properties of the components. There is a lot
of interest in how to combine models because it makes the analysis of models
simpler and more structured.

Following the approach proposed in [38] and in [3], the basic idea consists in
composing two different refinements of a common abstract view, obtaining a new
model which describes the system comprising the details of both operands, while
complying to the same abstract view.

The rules for identifying elements of the models being composed are ex-
pressed by means of morphisms towards another model, called interface. The
interface can be seen as an abstraction of the whole system, shared by the com-
ponents or, alternatively, it can be interpreted as the specification of the commu-
nication protocol. In this case, each operand can be seen as made of the actual,
local, component, and of an interface to the rest of the system. The composed
system is made by local parts corresponding to each component and a global part
corresponding to the interaction between the components. The composed sys-
tem results to be related to both the components and the interface by means of
morphisms, and the resulting diagram is commutative.

The use of products in a suitable category of Nets as a way to model compo-
sition by synchronization has been studied by several authors. One of this works,
similar to ours, proposed by Fabre [18], applies to Safe Nets and is built on the
notion of pullback.

A survey paper, [34], describes a way to compose Nets using morphisms and

95
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pushouts. There, the emphasis is on refinement rules that preserve specific be-
havioural properties, within the wider context of general transformation rules on
Nets.

Winskel introduced a new kind of morphism in [45] and defined its composi-
tion using products in the corresponding category.

The chapter is structured as follows. We start considering systems modelled
by Elementary Net Systems, then we skip to Occurrence Nets and to Elementary
Transition Systems.

5.1 Elementary Net Systems

5.1.1 N̂ -morphisms
We recall an operation of composition defined by Pomello and Bernardinello in
[38]. The starting point is a set of three Elementary Net Systems; one of them,NI ,
plays the role of an interface between the other two, N1 and N2. The composition
is driven by a pair of N̂ -morphisms, (β1, η1) and (β2, η2), respectively from N1

to NI , and from N2 to NI . We can see NI also as the protocol of the interaction
between them. In that sense, it is important that the morphisms are surjective,
because each system has to respect the protocol entirely. The composition of these
two systems is given by the union of a local part of each system and a common
part corresponding to the protocol. All the definitions and results of this section
are taken from [38].

Definition 58. Let Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net System for i = 1,2,

NI = (BI ,EI , FI ,mI
0) be an Elementary Net System and let (β, η) ∶ Ni → NI be

an N̂ -morphism. Let Di denote the domain of the binary relation βi, Di = {b ∈
Bi∣βi(b) ≠ ∅}, andGi denote the domain of the partial function ηi,Gi =dom (ηi).

We define N1⟨NI⟩N2 = N = (B,E,F,m0) as follows:

1. B = (B1 ∖D1) ∪ (B2 ∖D2) ∪BI ,

2. E = (E1 ∖G1) ∪ (E2 ∖G2) ∪Esync,
where Esync = {⟨e1, e2⟩∣e1 ∈ G1, e2 ∈ G2, η1(e1) = η2(e2)},

3. F is defined by the following clauses:

(a) ∀b ∈ (Bi ∖Di),∀e ∈ (Ei ∖Gi), i = 1,2 we have

(b, e) ∈ F ⇔ (b, e) ∈ Fi

(e, b) ∈ F ⇔ (e, b) ∈ Fi
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(b) ∀b ∈ (Bi ∖Di),∀e ∈ Gi,∀ej ∈ G3−i and es = ⟨e, ej⟩ if i = 1 or es =
⟨ej, e⟩ if i = 2 we have

(b, es) ∈ F ⇔ es ∈ E, (b, e) ∈ Fi

(es, b) ∈ F ⇔ es ∈ E, (e, b) ∈ Fi

(c) ∀b ∈ BI ,∀e = ⟨e1, e2⟩ ∈ Esync we have

(b, e) ∈ F ⇔ (β−1
1 (b), e1) ∈ F1, (β−1

2 (b), e2) ∈ F2

(e, b) ∈ F ⇔ (e1, β
−1
1 (b)) ∈ F1, (e2, β

−1
2 (b)) ∈ F2

4. m0 = (m1
0 ∖D1) ∪ (m2

0 ∖D2) ∪mI
0.

From this construction it follows immediately that N = N1⟨NI⟩N2 as defined
above is an Elementary Net Systems. Moreover, the Net system N maps onto N1

and N2.

The idea that guides this composition is that the morphisms identify the con-
ditions of the interface in each component. Therefore, the events that modify
each local copy of a common condition must be synchronized. If one of these
conditions changes its state, it is because one of the neighbouring events is fired.
These events must be given by the synchronisation of corresponding local events.
Hence, the composed Net is given by the local conditions and events of the two
components plus the conditions of the interface and the synchronized events.

The following statement define the natural relations between the composed
Net and its components.

Definition 59. Define the pair (β′i, η′i), with β′i ⊆ B × Bi and η′i ∶ E → Ei as
follows:

• β′i = {(b, b)∣b ∈ Bi ∖Di} ∪ {(b, β−1
i (b))∣b ∈ BI},

• ∀e ∈ E1 ∖G1 ∶ η′1(e) = e, η′2(e) = undefined,

• ∀e ∈ E2 ∖G2 ∶ η′1(e) = undefined, η′2(e) = e,

• ∀⟨e1, e2⟩ ∈ E ∶ η′i(⟨e1, e2⟩) = ei.

As shown in [38], the diagram formed by the N̂ -morphisms between the in-
terface, the two components, and the composed Net commutes.
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Theorem 7. The pair (β′i, η′i) is an N̂ -morphism from N = N1⟨NI⟩N2 to Ni, i =
1,2 and the following diagram commutes.

NI

N1

β1,η1

==||||||||
N2

β2,η2

aaBBBBBBBB

N
β′1,η

′

1

aaCCCCCCCC β′2,η
′

2

=={{{{{{{{

From the previous commutative diagram and from Prop. 5 it follows that
N contains N1, N2 and NI as subnets, possibly with some elements duplicated.
However, as discussed in [3], the operation is not a pullback in ENS .

As shown in [6], this operation preserves some properties. Let NI ,Ni be El-
ementary Net Systems for i = 1,2 and let (βi, ηi) be an N̂ -morphism from Ni

to NI . Let N = N1⟨NI⟩N2 be the composition of N1 and N2 using (βi, ηi). Let
(β′i, η′i) be the N̂ -morphism from N to Ni created by the composition operation.
We can say that:

n1 the composition is associative;

n2 if the components reflect the sequences of the interface, the composed Net
reflects the sequences of the two components;

n3 if one component is weakly bisimilar to the interface, then the composed
Net is weakly bisimilar to the other component.

5.1.2 α-morphisms
Given that α-morphisms preserve and reflect more properties than N̂ -morphisms
(see Section 3.1.7), we want to use them to drive a composition in a way similar
to the one introduced in the previous section [4].

A simple example of the composition guided by α-morphisms is shown in
Fig. 5.1. We have an interface,NI , that is a simple sequence of two operations and
three local states. Each component refines the same condition, b1, with a condition
bordered subnet related to events mapped on the pre and post events of b1. The
composed Net, N1⟨NI⟩N2, contains the two subnets local to the components, but
for the condition representing b1 that is taken only once; the rest of the Net, not
refined by the components, is taken as it is.

To correctly relate all the systems involved in the composition, it is necessary
to work with a canonical systems. Hence, starting from a pair of systems that we
want to compose, it is always possible to build up their canonical versions with
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Figure 5.1: An example of composition based on α-morphisms
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Figure 5.2: How to create the environment of an identified condition

respect to the α-morphisms and to use these systems to construct the composed
Net.

N1
ϕ1 //

�� �O
�O
�O

NI N2
ϕ2oo

�� �O
�O
�O

NC
1

ϕC
1

>>||||||||
NC

2

ϕC
2

``BBBBBBBB

The crucial point in the definition concerns the choice of synchronizing events.
Suppose that the morphisms onto the interface maps bubbles A1 and A2 to the
same local state b (where Ai is taken in Ni). Then, the representations of A1 and
A2 are local states which are identified as b in composing the two Nets. This
implies that any event in N1 which puts a token in the representation of A1 must
be synchronized with any event doing the same in the representation of A2, as we
can see in Fig. 5.2. This explains the definition of the sets Esync, below.

Definition 60. Let Ni = (Bi,Ei, Fi,mi
0) be an SMD-EN System for i = 1,2, I .

Let ϕi, with i = 1,2, be an α-morphism from Ni to NI . Let Ni be canonical with
respect to ϕi.

For each condition bI of the interface, we define its bubble in the composed
system:

Bubble(bI) = ((ϕ−1
1 (bI) ∩B1 ∖ {rN1(bI)}) ∪ {bI} ∪ (ϕ−1

2 (bI) ∩B2 ∖ {rN2(bI)}),
(ϕ−1

1 (bI) ∩E1) ∪ (ϕ−1
2 (bI) ∩E2),
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FN1(ϕ−1
1 (bI)∖{rN1

(bI)}) ∪ FN2(ϕ−1
2 (bI)∖{rN2

(bI)}))

and its connection to the rest of the Net, F (bI) = ●F (bI) ∪ F ●(bI).
Let e = ⟨e1, e2⟩ ∈ ⋃eI∈●bI Esync(eI),

●F (bI) = {(e, b) ∶ b ∈ ◯Bubble(bI), (e1, b) ∈ F1} ∪
{(e, bI)} ∪
{(e, b) ∶ b ∈ ◯Bubble(bI), (e2, b) ∈ F2}

Let e = ⟨e1, e2⟩ ∈ ⋃eI∈bI● Esync(eI),

F ●(bI) = {(b, e) ∶ b ∈ Bubble(bI)◯, (b, e1) ∈ F1} ∪
{(bI , e)} ∪
{(b, e) ∶ b ∈ Bubble(bI)◯, (b, e2) ∈ F2}

Synchronized events are given by synchronizing two events mapped on the
same event of the interface:

Esync(eI) = {e = ⟨e1, e2⟩ ∶ e1 ∈ E1, e2 ∈ E2, ϕ1(e1) = eI = ϕ2(e2)}

We define the composed Net N = N1⟨NI⟩N2 = (B,E,F,m0) as

B = ⋃
bI∈BI

BBubble(bI)

E = ( ⋃
eI∈EI

Esync(eI)) ∪ ( ⋃
bI∈BI

EBubble(bI))

F = ⋃
bI∈BI

(F (bI) ∪ FBubble(bI))

By construction, N = N1⟨NI⟩N2 as defined above is an Elementary Net Sys-
tem.

The composition maintains sequential components of the components.

Proposition 46. Let Ni = (Bi,Ei, Fi,mi
0) be an Elementary Net System for i =

1,2, I . Let ϕi, with i = 1,2, be an α-morphism from Ni toNI . Let Ni be canonical
with respect to ϕi. Let N = N1⟨NI⟩N2 = (B,E,F,m0).

For each sequential component of Ni, there is a corresponding sequential
component of N .

Proof. Take a sequential component NSC of Ni. For each bi ∈ BSC :



102 CHAPTER 5. COMPOSITION

• if bi is the representation of a condition of the interface bI ∈ BI , that is
bi = rN1(bI), then take bI ∈ B,

• else take bi ∈ B.

It’s easy to see that these conditions, with their pre and post-events, are a sequen-
tial component of N . ♢

Hence, the composed Net is covered by sequential components. To see this,
take a condition of the composed Net. This condition belongs to one of the com-
ponents of the system, then it belongs also to a sequential component in that com-
ponent, and the sequential components are maintained by the composition.

We now define a map from N onto N1 and N2.

Definition 61. Define ϕ′i ∶ N → Ni as follows, for each x ∈X:

ϕ′i(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, if x ∈Xi

rNi
(x), if x ∈ BI

rNi
(ϕ3−i(x)), if x ∈ B3−i

ei, if x = ⟨e1, e2⟩
rNi

(ϕ3−i(x)), if x ∈ E3−i

Theorem 8. The map ϕ′i is an α-morphism from N = N1⟨NI⟩N2 to Ni, i = 1,2.

Proof. ϕ′i ∶X →Xi is a total surjective function by construction.
Let x, y ∈X,e ∈ E,

1: ϕ′i(B) = Bi: take b ∈ B; there are three cases:

• b ∈ Bi, hence ϕ′i(b) = b,
• b ∈ BI , hence ϕ′i(b) = rNi

(b),

• b ∈ B3−i, hence ϕ′i(b) = rNi
(b);

2: ϕ′i(m0) =mi
0: given by construction;

3: let ϕ′i(e) ∈ Ei; there are two cases:

• e ∈ Ei: this means that e is an event in a bubble of Ni and the con-
struction respects its pre and post conditions and all the arcs;

• e = ⟨e1, e2⟩, hence ϕi(ei) = eI . Let us start with preconditions.
Take b ∈ ●e, then for Def. 34, points 1 ∃bi ∈ Bi ∶ ϕ′i(b) = bi ∧ ∃bI ∈ BI ∶
ϕi(bi) = bI ; if (b, e) ∈ F there are two cases:
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– bi ∈ Bubble(bI)◯ and (bi, ei) ∈ Fi,
– b ∈ BI or bi ∈ Bubble(bI)◯ and (bi, e3−i) ∈ F3−i, hence ϕ′i(b) =
rNi

(bI), hence (rNi
(bI), ei).

In the other direction, take bi ∈ ●ei; then for Def. 34 there is a condition
of N mapped on it. For construction, there are that bi ∈ Bubble(bI)◯,
and it can be a representation or not. If it is not a representation, bi ∈ B,
ϕ′i(bi) = bi and (bi, e) ∈ F . If it is a representation, bI ∈ B, ϕ′i(bI) = bi
and (bI , e) ∈ F .
The proof for post-conditions is analogous;

4: ϕ′i(e) = rNi
(bI) ∈ Bi, hence it was in a bubble of bI in N2: e ∈ E3−i and

ϕ3−i(e) = bI ∈ BI , hence by construction also ●e● is in that bubble: ϕ′i(●e●) =
rNi

(bI);

5: take bi ∈ Bi, N(ϕ′−1
i (bi)) and bI = ϕi(bi) ∈ BI .

If bi is not a representation in Ni, by construction its bubble inN consists in
the condition itself alone: in that case all the constraints are easily verified.

If bi is a representation in Ni (bi = rNi
(bI)), by construction, its bubble in N

is made by bI plus the bubble of bI in the other component. For bI , the proof
is exactly as we stated before. That bubble is clearly acyclic. The composi-
tion rebuilds the same relations between elements in the bubble of the other
component, respecting constraint 5d. It creates the Cartesian product of
events of N1 and N2 mapped on the same event of NI and, consequently,
it creates an arc between all these copies and the neighbouring conditions,
respecting constraints 5b and 5c.

We now prove, for representation bi, the constraint 5e on the conditions in
the bubble of the other component, b ∈ B3−i. Let b ∈ ϕ′−1

i (bi) ∩B, such that
b /∈ BI .

Let NSCi
be a sequential component of Ni containing bi. Clearly, this se-

quential component contains also its pre and post events. Given that bi is a
representation, these are exactly all the events in the inverse image of pre
and post events of bI .

LetNSC3−i
be a sequential component ofN3−i containing b and all the events

in the inverse image of pre and post events of bI .

Take a sequential component generated by all the conditions ofNSCi
but for

bi plus the conditions of NSC3−i
that are in the bubble of bI . That sequential

component contains all the events in the neighbourhood of these conditions,
hence also all the events in the inverse image of pre and post events of bi.
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♢

The diagram formed by the α-morphisms between the interface, the two com-
ponents, and the composed Net commutes.

Proposition 47. The following diagram commutes.

NI

NC
1

ϕC
1

99sssssssssss
NC

2

ϕC
2

eeKKKKKKKKKKK

NC
1 ⟨NI⟩NC

2

ϕ′1

eeKKKKKKKKKK

ϕ′2

99ssssssssss

Proof. We have to prove that, for every elements x ∈XN ∶ ϕC
1 (ϕ′1(x)) = ϕC

2 (ϕ′2(x)).
The elements of the composed Net are of three kinds:

elements local to the components : take x ∈ X such that x ∈ Xi. Hence there is
a condition of the interface, bI ∈ BI , such that ϕC

i (x) = bI . Hence there is a
representation of bI in the other component rN3−i

(bI).

ϕC
i (ϕ′i(x)) = ϕC

i (x) = bI = ϕC
3−i(rN3−i

(bI)) = ϕC
3−i(ϕ′3−i(x));

representation conditions: take x ∈ BI . Hence there is a representation of x in
the two components rNi

(x) and rN3−i
(x).

ϕC
i (ϕ′i(x)) = ϕC

i (rNi
(x)) = x = ϕC

3−i(rN3−i
(x)) = ϕC

3−i(ϕ′3−i(x));

synchronized events: take x ∈ E such that x = ⟨e1, e2⟩. Hence ϕC
1 (e1) = eI =

ϕC
2 (e2) with eI ∈ EI .

ϕC
1 (ϕ′1(⟨e1, e2⟩)) = ϕC

1 (e1) = eI = ϕC
2 (e2) = ϕC

2 (ϕ′2(⟨e1, e2⟩)).

♢

By construction we get the following result:

Proposition 48. The system N = N1⟨NI⟩N2 is canonical with respect to ϕ′1 and
to ϕ′2.

The result of the composition can not be seen as the pullback, as shown in
Fig. 5.1. It is easy to see the α-morphisms from Ni to NI and from N1⟨NI⟩N2

to Ni. If we build up a new diagram in which we substitute N1⟨NI⟩N2 with N2,
it is possible to build up α-morphisms from N2 to Ni. But it is not possible to
build up an α-morphism from N2 to N1⟨NI⟩N2, hence the resulting Net from the
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composition operation is not a pullback. In this category it is not possible to find
the pullback, due to the fact that the morphisms are surjective [25].

It is still an open problem whether, in general, the diagram of a composition
operation is a pushout.

This operation, essentially, coincides with composition of Nets based on N̂ -
morphisms.

Proposition 49. Let Ni = (Bi,Ei, Fi,mi
0) be an SMD-EN System for i = 1,2, I .

Let ϕi, with i = 1,2, be an α-morphism from Ni to NI . Let Ni be canonical with
respect to ϕi. Let Nα = N1⟨NI⟩αN2 = (B,E,F,m0) be the composition of N1

and N2 using ϕ1 and ϕ2. Let ϕ′i be the α-morphism from N to Ni created by the
composition operation.

Now, consider the N̂ -morphism (ϕCi ∩ (RCi ×BI), ϕCi ∩ (ECi ×EI)). Let N N̂ =
N1⟨NI⟩N̂N2 = (B,E,F,m0) be the composition of N1 and N2 using (ϕC1 ∩ (RC1 ×
BI), ϕC1 ∩ (EC1 ×EI)) and (ϕC2 ∩ (RC2 ×BI), ϕC2 ∩ (EC2 ×EI)). Let (β′i, η′i) be the
N̂ -morphism from N to Ni created by the composition operation.

The systems Nα and N N̂ are isomorphic, β′i = ϕ′i ∩ (RC × Bi) and η′i = ϕ′i ∩
(E ×Ei).

From results in Sections 3.1.7 and 3.1.6 we can derive a property valid for
composition based on α-morphisms. We know that, if N1 is weakly bisimilar to
NI then N is weakly bisimilar to N2. By Prop. 19 we can infer weak bisimilarity
betweenN1 andNI . This property is based on an α-morphism from a well marked
N1 to NI plus a check on the final markings of each bubble, non interferent, using
the unfolding. These constraints are either structural or locally behavioural, while,
in the case of N̂ -morphisms, checking bisimilarity must be made globally. Fig.
5.3 shows an example in which N1 and N2 are weakly bisimilar to NI . Hence
N1⟨NI⟩N2 is weakly bisimilar to N1, N2 and NI .

Algorithms

The following algorithm builds up the composed system starting from canonical
components.

Algorithm 2. B = ∅;E = ∅;F = ∅;ϕ = ∅;ϕ′1 = ∅;ϕ′2 = ∅
First, create the synchronized events:

∀eI ∈ EI
∀e1 ∈ (ϕC

1 )−1(eI)
∀e2 ∈ (ϕC

2 )−1(eI)
E+ = ⟨e1, e2⟩
ϕ′1+ = (⟨e1, e2⟩, e1)
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Figure 5.3: An example of composition based on α-morphisms
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ϕ′2+ = (⟨e1, e2⟩, e2)
ϕ+ = (⟨e1, e2⟩, eI)

Then, create the conditions, the bubbles and the arcs:

∀bI ∈ BI

Pre1 = ●(◯N1(ϕ−1
1 (bI)))

Pre2 = ●(◯N2(ϕ−1
2 (bI)))

Post1 = (N1(ϕ−1
1 (bI))◯)●

Post2 = (N2(ϕ−1
2 (bI))◯)●

r1 = ◯N1(ϕ−1
1 (bI)) ∩N1(ϕ−1

1 (bI))◯
r2 = ◯N2(ϕ−1

2 (bI)) ∩N2(ϕ−1
2 (bI))◯

addCondition(bI , P re1, P re2, Post1, Post2, r1, r2)
if ∣N1(ϕ−1

1 (bI))∣ > 1 then
addBubble(bI ,1,N1(ϕ−1

1 (bI)), P re2, Post2, r2)
if ∣N2(ϕ−1

2 (bI))∣ > 1 then
addBubble(bI ,2,N2(ϕ−1

2 (bI)), P re1, Post1, r1)

where we use the following sub-algorithms:

Algorithm 3. addCondition(bI , P re1, P re2, Post1, Post2, r1, r2):
B+ = bI
ϕ′1+ = (bI , r1)
ϕ′2+ = (bI , r2)
ϕ+ = (bI , bI)
∀p1 ∈ Pre1

∀p2 ∈ Pre2

if ⟨p1, p2⟩ ∈ E then
F+ = (⟨p1, p2⟩, bI)

∀q1 ∈ Post1
∀q2 ∈ Post2

if ⟨q1, q2⟩ ∈ E then
F+ = (bI , ⟨q1, q2⟩)

Algorithm 4. addBubble(bI ,net,bubble, P reother, Postother, r):
∀b ∈ ◯bubble ∖ bubble◯

B+ = b
ϕ′net+ = (b, b)
ϕ′3−net+ = (b, r)
ϕ+ = (b, bI)
Pre = ●b
∀p1 ∈ Pre
∀p2 ∈ Preother
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if ⟨p1, p2⟩ ∈ E then
F+ = (⟨p1, p2⟩, b)

∀x ∈ b● ∩ bubble
addNodeBubble(bI , b, x,Net,bubble, Postother, r)

Algorithm 5. addNodeBubble(bI , ante, y,Net,bubble, Postother, r):
if y /∈X then
X+ = y
ϕ′net+ = (y, y)
ϕ′3−net+ = (y, r)
ϕ+ = (y, bI)
Post = y●
∀x ∈ Post ∩ bubble

addNodeBubble(bI , y, x,Net,bubble, Postother, r)
if y ∈ bubble◯

∀q1 ∈ Post
∀q2 ∈ Postother

if ⟨q1, q2⟩ ∈ E then
F+ = (y, ⟨q1, q2⟩)

F+ = (ante, y)

5.2 Occurrence Nets
We now define an operation of composition for Occurrence Nets. This operation
composes two Occurrence Nets, N1 and N2, with respect to a third Occurrence
Net NI . The composition is driven by a pair of θ-morphisms, ϕ1 and ϕ2, respec-
tively from N1 to NI , and from N2 to NI . In this way, N1 and N2 can be seen
as refinement of conditions of NI using bubbles. We can interpret this as two
components and a protocol of interaction between them.

We impose that the subsystems and the interface are simple Nets. To obtain
the correct relations between the composed system, the two subsystems and the
interface system, it is necessary that the two subsystems are canonical with respect
to their morphisms.

Definition 62. Let Ni = (Bi,Ei, Fi) be an Occurrence Net for i = 1,2, I . Let ϕi,
with i = 1,2, be a θ-morphism from Ni to NI . Let Ni be canonical with respect to
ϕi.

Synchronized events are given by synchronizing two events mapped on the
same event of the interface:

Esync(eI) = {e = ⟨e1, e2⟩ ∶ e1 ∈ E1, e2 ∈ E2, ϕ1(e1) = eI = ϕ2(e2)}
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For each condition bI of the interface, we define its bubble in the composed
system and its connection to the rest of the Net.

• if bI ∈ min(NI) then

Bubble(bI) = ((ϕ−1
1 (bI) ∩B1 ∖ {rN1(bI)}) ∪ {bI} ∪ (ϕ−1

2 (bI) ∩B2 ∖ {rN2(bI)}),
(ϕ−1

1 (bI) ∩E1) ∪ (ϕ−1
2 (bI) ∩E2),

FN1(ϕ−1
1 (bI)∖{rN1

(bI)}) ∪ FN2(ϕ−1
2 (bI)∖{rN2

(bI)}))

Let e = ⟨e1, e2⟩ ∈ ⋃eI∈bI● Esync(eI),

F (bI) = {(b, e) ∶ b ∈ max(Bubble(bI)), (b, e1) ∈ F1} ∪
{(bI , e)} ∪
{(b, e) ∶ b ∈ max(Bubble(bI)), (b, e2) ∈ F2}

• otherwise
Bubble(bI) = ⋃e∈Esync(●bI) SB(bI , e), where e = ⟨e1, e2⟩:

SB(bI , e) = (((ϕ−1
1 (bI) ∩B1 ∖ {rN1(bI)}) ∩ ⌈e1⌉) ∪ {bI,e} ∪

((ϕ−1
2 (bI) ∩B2 ∖ {rN2(bI)}) ∩ ⌈e2⌉),

(ϕ−1
1 (bI) ∩E1 ∩ ⌈e1⌉) ∪ (ϕ−1

2 (bI) ∩E2 ∩ ⌈e2⌉),
FN1(ϕ−1

1 (bI)∖{rN1
(bI)})∩⌈e1⌉ ∪ FN2(ϕ−1

2 (bI)∖{rN2
(bI)})∩⌈e2⌉)

The arcs are defined as F (bI) = ⋃e∈Esync(●bI)F (bI , e), where F (bI , e) =
●F (bI , e) ∪ F ●(bI , e)

●F (bI , e) = {(e, b) ∶ b ∈ min(SB(bI , e))}

Let f = ⟨f1, f2⟩ ∈ ⋃fI∈bI● Esync(fI),

F ●(bI , e) = {(b, f) ∶ b ∈ max(SB(bI , e)), (b, f1) ∈ F1, e1 ≤ f1, e2 ≤ f2} ∪
{(bI,e, f), e1 ≤ f1, e2 ≤ f2} ∪
{(b, f) ∶ b ∈ max(SB(bI , e)), (b, f2) ∈ F2, e1 ≤ f1, e2 ≤ f2}

We define the composed Net N = N1⟨NI⟩N2 = (B,E,F ) as

B = ⋃
bI∈BI

BBubble(bI)
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E = ( ⋃
eI∈EI

Esync(eI)) ∪ ( ⋃
bI∈BI

EBubble(bI))

F = ⋃
bI∈BI

(F (bI) ∪ FBubble(bI))

By construction, N = N1⟨NI⟩N2 as defined above is an Occurrence Net.
We now define a map from N onto N1 and N2.

Definition 63. Define ϕ′i ∶ N → Ni as follows, for each x ∈X:

ϕ′i(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, if x ∈Xi

bI,ei , if x = bI,⟨e1,e2⟩ ∈ BI

bI,ei , if x ∈ B3−i and x ∈ SB(bi,e3−i) and e ∈ ⌊x⌋ = ⟨e1, e2⟩
ei, if x = ⟨e1, e2⟩
bI,ei , if x ∈ E3−i and x ∈ SB(bi,e3−i) and e ∈ ⌊x⌋ = ⟨e1, e2⟩

Theorem 9. The map ϕ′i is a θ-morphism from N = N1⟨NI⟩N2 to Ni, i = 1,2.

Proof. Let x, y ∈X,e, f ∈ E,

1: ϕ′i ∶X →Xi is a total surjective function by construction;

2: x ≤N y: for every elements mapped on themselves the causality relation is
weakly preserved, hence ϕ′i(x) ≤Ni

ϕ′i(y). The elements of the other subnet
are mapped on a representation and this is enough because it is present also
in the composed Net;

3: x coN y: for every elements mapped on themselves the concurrency relation
is preserved, hence ϕ′i(x) coN2 ϕ

′
i(y) or ϕ′i(x) = ϕ′i(y). The elements of

the other subnet are mapped on a representation and this is enough because
it is present also in the composed Net;

4: ϕ′i(B) = Bi: take b ∈ B; there are two cases:

• b ∈ Bi, hence ϕ′i(b) = b,
• b /∈ Bi, hence ϕ′i(b) = rNi

(ϕ3−i(b));

5: ϕ′i(e) = rNi
(bI) ∈ Bi, hence it was in a bubble of bI in N3−i: e ∈ E3−i and

ϕ3−i(e) = bI ∈ BI , hence by construction also ●e● is contained in that bubble:
ϕ′i(●e●) = rNi

(bI);
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6: let ϕ′i(e) ∈ Ei; there are two cases:

• e ∈ Ei: this means that e is an event in a bubble of Ni and the con-
struction respects its pre and post conditions and all the arcs;

• f = ⟨f1, f2⟩, hence ϕi(fi) = fI ∈ EI . Let us start with preconditions.
Take b ∈ ●f , then for Def. 45, points 4 ∃bi ∈ Bi ∶ ϕ′i(b) = bi ∧ ∃bI ∈ BI ∶
ϕi(bi) = bI ; if (b, f) ∈ F there are two cases:

– b ∈ Bi and bi ∈ max(SB(bI , e)) and (bi, fi) ∈ Fi,
– b /∈ Bi, hence ϕ′i(b) = rNi

(bI), hence (rNi
(bI), fi) ∈ Fi.

In the other direction, take bi ∈ ●fi, then by Def. 45 there is a condition
ofN mapped on it. By construction, we have that bi ∈ max(Bubble(bI)),
and it can be a representation or not. If it is not a representation, bi ∈ B,
ϕ′i(bi) = bi and (bi, f) ∈ F . If it is a representation, bI ∈ B, ϕ′i(bI) = bi
and (bI , f) ∈ F .
The proof for post-conditions is analogous;

7: take bi ∈ Bi, N((ϕ′i)−1(bi)) and bI = ϕi(bi) ∈ BI .

If bi is not a representation in Ni, by construction its bubble inN consists in
the condition itself alone: in that case all the constraints are easily verified.

If bi is a representation in Ni (bi = rNi
(bI)), by construction, its bubble in

N is made by bI plus the bubble of bI in the other component. For bI , the
proof is exactly as we stated before. The composition creates the Cartesian
product of events of N1 and N2 mapped on the same event of NI and, con-
sequently, it creates an arc between all these copies and the neighbouring
conditions, respecting constraints 7a and 7c. It rebuilds the same relations
between elements in the bubble of the other component, respecting con-
straint 7b.

♢

The diagram formed by the θ-morphisms between the interface, the two com-
ponents, and the composed Net commutes.

Proposition 50. The following diagram commutes.

NI

NC
1

ϕC
1

99sssssssssss
NC

2

ϕC
2

eeKKKKKKKKKKK

NC
1 ⟨NI⟩NC

2

ϕ′1

eeKKKKKKKKKK

ϕ′2

99ssssssssss
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Proof. We have to prove that, for every element x ∈XN ∶ ϕC
1 (ϕ′1(x)) = ϕC

2 (ϕ′2(x)).
The elements of the composed Net are of three kinds:

elements local to the components : take x ∈ X such that x ∈ Xi. Hence there is
a condition of the interface, bI ∈ BI , such that ϕC

i (x) = bI . Hence there is a
representation of bI in the other component rN3−i

(bI).

ϕC
i (ϕ′i(x)) = ϕC

i (x) = bI = ϕC
3−i(rN3−i

(bI)) = ϕC
3−i(ϕ′3−i(x));

representation conditions: take x ∈ BI . Hence there is a representation of x in
the two components rNi

(x) and rN3−i
(x).

ϕC
i (ϕ′i(x)) = ϕC

i (rNi
(x)) = x = ϕC

3−i(rN3−i
(x)) = ϕC

3−i(ϕ′3−i(x));

synchronized events: take x ∈ E such that x = ⟨e1, e2⟩. Hence ϕC
1 (e1) = eI =

ϕC
2 (e2) with eI ∈ EI .

ϕC
1 (ϕ′1(⟨e1, e2⟩)) = ϕC

1 (e1) = eI = ϕC
2 (e2) = ϕC

2 (ϕ′2(⟨e1, e2⟩)).

♢

By construction we get the following result:

Proposition 51. The system N = N1⟨NI⟩N2 is canonical with respect to ϕ′1 and
to ϕ′2.

5.3 Elementary Transition Systems

5.3.1 Ĝ-morphisms
We recall an operation of composition defined by Pomello and Bernardinello in
[38]. The starting point is a set of three Elementary Transition Systems; one of
them, TSI , plays the role of an interface between the other two, TS1 and TS2. The
composition is driven by a pair of Ĝ-morphisms, (f1, g1) and (f2, g2), respectively
from TS1 to TSI , and from TS2 to TSI . We can see TSI also as the protocol of
the interaction between them. In that sense, it is important that the morphisms are
surjective, because each system has to respect the protocol entirely. The composi-
tion of these two systems is given by the union of a local part of each system and
a common part corresponding to the protocol.

Definition 64. Let TSi = (Si,Ei, Ti, si0) be an Elementary Transition System for
i = 1,2, TSI = (SI ,EI , TI , sI0) be an Elementary Transition System and let (f, g) ∶
TSi → TSI be a Ĝ-morphism. Let Li denote the set of events which are in Ei and
not in the domain of the partial function gi, Li = {e ∈ Ei ∶ gi(e) = undefined};
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and let H denote the set of pairs of events ⟨e1, e2⟩ which are mapped by the two
morphisms on the same event of TSI , H = {⟨e1, e2⟩ ∶ g1(e1) = g2(e2)}.

We define TS1⟨TSI⟩TS2 = TS = (S,E,T, s0) as follows:

1. S = {(s1, s2) ∈ S1 × S2 ∶ f1(s1) = f2(s2)},

2. E = L1 ∪L2 ∪H ,

3. ((s1, s2), e, (s′1, s′2)) ∈ T iff one of the following clauses holds:

(a) (s1, e1, s′1) ∈ T1 ∧ (s2, e2, s′2) ∈ T2 ∧ e = ⟨e1, e2⟩ ∈H ,

(b) (s1, e, s′1) ∈ T1, s2 = s′2 ∧ e ∈ L1,

(c) s1 = s′1, (s2, e, s′2) ∈ T2 ∧ e ∈ L2,

4. s0 = (s1
0, s

2
0).

From this construction it follows immediately that TS = TS1⟨TSI⟩TS2 as defined
above is a Transition System.

The reachable part of the composed Transition System is an Elementary Tran-
sition System [38].

Definition 65. Define the pair (f ′i , g′i), with f ′i ⊆ S × Si and g′i ∶ E →∗ Ei as
follows:

• f ′i is the projection of an element of S into Si, i = 1,2: f ′i = {((s1, s2), si) ∶
si ∈ Si},

• ∀e ∈ L1 ∶ g′1(e) = e, g′2(e) = undefined,

• ∀e ∈ L2 ∶ g′1(e) = undefined, g′2(e) = e,

• ∀⟨e1, e2⟩ ∈H ∶ η′i(⟨e1, e2⟩) = ei.
As shown in [38], the diagram created by the Ĝ-morphisms between the inter-

face, the two components, and the composed system commutes.

Theorem 10. The pair (f ′i , g′i) is a Ĝ-morphism from TS = TS1⟨TSI⟩TS2 to
TSi, i = 1,2 and the following diagram commutes.

TSI

TS1

(f1,g1)
<<xxxxxxxx

TS2

(f2,g2)
bbFFFFFFFF

TS
(f ′1,g

′

1)

ccFFFFFFFF (f ′2,g
′

2)

;;xxxxxxxx

However, as discussed in [3], the operation is not a pullback in ET S .
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5.3.2 Γ-morphisms
We want to use Γ-morphisms here defined to drive the composition introduced in
Def. 64.

The diagram created by the Γ-morphisms between the interface, the two com-
ponents, and the composed system commutes.

Theorem 11. The pair (f ′i , g′i) as defines in Def. 65 is a Γ-morphism from TS =
TS1⟨TSI⟩TS2 to TSi, i = 1,2 and the following diagram commutes.

TSI

TS1

(f1,g1)
<<xxxxxxxx

TS2

(f2,g2)
bbFFFFFFFF

TS
(f ′1,g

′

1)

ccFFFFFFFF (f ′2,g
′

2)

;;xxxxxxxx

Proof. It has already been proved in the previous section that (f ′i , g′i) is a Ĝ-
morphism. We need to prove only that ∀(si, ei, s′i) ∈ Ti,∃(s, e, s′) ∈ T so that
s ∈ (f ′i)−1(si), e ∈ (g′i)−1(ei), s′ ∈ (f ′i)−1(s′i).

Let us take (s1, e1, s′1) ∈ T1 (for arrows of TS2 the proof is identical, up to
indexes). There are two cases:

• e1 ∈ L1: so e1 is not mapped by g1 and this implies that ∃sI ∈ SI ∶ f1(s1) =
f1(s′1) = sI . For the surjectivity of f2 we know that ∃s2 ∈ S2 ∶ f2(s2) =
sI and by construction of S we know that ∃(s1, s2), (s′1, s2) ∈ S and by
construction of T we know that ∃((s1, s2), e1, (s′1, s2)) ∈ T ;

• ∃e2 ∈ E2 ∶ ⟨e1, e2⟩ ∈ H: this implies that ∃eI ∈ EI ∶ g1(e1) = g2(e2) = eI .
The Γ-morphism between TS1 and TSI assures that ∃(f1(s1), eI , f1(s′1)) ∈
TI . The Γ-morphism between TS2 and TSI assures that ∃(s2, e2, s′2) ∈
T2 ∧ s2 ∈ f−1

2 (f1(s1)), s′2 ∈ f−1
2 (f1(s′1)). By construction of S we know that

∃(s1, s2), (s′1, s′2) ∈ S. By construction of T we know that ((s1, s2), ⟨e1, e2⟩, (s′1, s′2)) ∈
T .

The diagram commutes by definition of the composed Transition System. ♢



Chapter 6
Observability

The theoretical framework constituted by the composition guided by morphisms
and interface is suitable to be used in the study of information flows and visibility.

In this chapter we assume to have a system divided in a hidden part (called
the high part or the defender) and an observable part (called the low part or the
attacker). The observer knows the structure of the whole system, but he is able to
observe only the observable part. The observer can see the state of a part of the
system, and observing this, it is able to derive that one event is fired. We want to
understand if the observer is able to infer some information on the local states of
the hidden part.

A lot of interest was in the study of the possibility to infer the state of a hidden
part of a system. Let us cite some of the main works present in the literature.

Moore [30] considers sequential machines with a finite number of states, a
finite number of possible input symbols, and a finite number of possible output
symbols. He investigates what kinds of conclusions about the internal conditions
of the machine it is possible to draw from external experiments.

The experimenter chooses the finite sequence of input symbols he puts into
the machine, either a fixed sequence, or one in which each symbol depends on
the previous output symbols. There will be a sequence of output symbols and,
possibly, a conclusion which the experimenter emits. That conclusion depend
only on which experiment is being performed and what the sequence of output
symbols was.

There is a second kind of experiment in which the experimenter has access to
several copies of the same machine, each of which is initially in the same state.
The experimenter can send different sequences of inputs to each of these copies,
and receive from each one the corresponding output sequence.

In each of these two kinds of experiments the experimenter is a human who is

115
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trying to learn the answer to some question about the nature of the machine or its
initial state.

There is an artificial restriction that is imposed on the action of the experi-
menter. He is not allowed to open up the machine and look at the parts to see what
they are and how they are interconnected. At any rate, we always impose this ar-
tificial restriction that the machines under consideration are always just what are
sometimes called “black boxes”, described in terms of their inputs and outputs,
but no information on the internal construction can be gained.

We aim at a structural characterization of the hidden internal states of a system
that become visible after its interaction with a defined subsystem. We assume to
have a high-level system that wants to keep secret its internal local states from a
low-level system interacting with the high-level component through an interface.

Basically, we explore the consequences of a proposal originally made by Busi
and Gorrieri for defining non-interference properties. The newly part of our pro-
posal is that we use the local validity of conditions as observable properties and
we focus on structural properties.

The general context of our study is known today as non-interference in the
literature. The notions of opacity and interference between subsystems have been
originally defined formally for process algebras [20].

One of the first definitions of opacity is given in [28]. Mazaré wants to hide a
piece of information from an intruder. He says that the verification of a protocol
should include a way of formalizing the information that were leaked and that
the intruder could guess. In his work he assumes that the intruder has a passive
view of a protocol session in which two agents exchange encrypted messages.
He defines an opaque property as a property for which there exist two possible
sessions of the protocol such that in one the property is true whereas in the other it
is not, and it is impossible for the intruder to differentiate from these two sessions
seeing only their messages.

The work of Sutherland is reviewed in [47]. It is a theory of information flow
based on logical deduction, which he intended as a means of facing the security
problem. The broad theme of Sutherland’s work is that in a secure computer
system the users or processes at low security levels should not be able to deduce
with certainty anything about the activities of the high users or processes. We can
say that the information flows from a high user to a low one, if what the low user
is able to see is strictly related to what the high user sees. He call these notion
non-deductibility.

Bryans, Koutny and Ryan [11] use the notion of non-deducibility due to Suther-
land and a variant of this idea: the notion of opacity. Whereas non-interference
tries to capture the complete absence of information flow, opacity is specific to a
particular item of information. Thus, for example, the value of a variable said v,
is deemed to be opaque for a particular run of a protocol if the adversary is unable
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to deduce its value from the observations and deductions available to him during
the run. The adversary is able to observe the local states of a low-level part of the
system as well as actions. For the protocol to satisfy such a requirement it must
be the case that, for any alternative value of v, there is another possible run of the
protocol that gives rise to observations by the adversary that are indistinguishable
from the original observations. As standard in these cases, they assume that the
adversary has full knowledge of the construction of the system. This is in effect a
worst case assumption. The authors extend the notion of opacity to general sys-
tems modelled by Petri Nets with weighted arcs. They also define different kinds
of opacity. They show that other concepts commonly used in the formal secu-
rity community, like anonymity, non-interference and downgrading of a channel,
can be modelled with this approach. They extend opacity to Transition Systems
and give flexible definition of the adversary’s observational capabilities. Since the
majority of opacity problems are undecidable, they define an approximation of
opacity that is decidable under certain constraints.

Information Flow is a concept widely used but with a weak formal defini-
tion. There have been several attempts to formalize it, as in [9]. Boudol works
on developing “security-minded” programming languages. He shows that secure
information flow property is guaranteed by a standard security type system, and
that, for a simple language, it is strictly stronger than non-interference. With non-
interference he means a property stating that “variety in a secret input should not
be conveyed to public output”. He exposes two reasons why non-interference
does not provide him with an appropriate semantical setting to use: one is that it
does not easily account for dynamic manipulations of the security policy, and the
second is that it does not rely on an intuitive notion of a security error that could
be used to explain why a program is faulty. Non-interference does not formalize
the intuitive notion of secure information flow, which is, that “no execution results
in a flow unless this is allowed by the information flow policy”. But, to make this
definition precise, it is necessary to give a formal meaning to “execution results in
a flow”. That is, it has to give an information-flow-aware semantics to programs.
He uses lattice of security levels in which “objects” - information containers - of
a system are labelled by security levels, and information is allowed to flow from
one object to another if the source object has a lower confidentiality level than the
target one. Moreover, he shows that this notion of secure information flow allows
him to give natural semantics to various security-minded programming constructs,
including declassification.

In the context of Petri Nets, Busi and Gorrieri [12] applied the notion of non-
interference to Elementary Net Systems, as we will see in next section, and Best,
Darondeau and Gorrieri [8] extended recently the results to unbounded P/T Sys-
tems.

In these latter works, non-interference is basically defined as language equiva-
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lence. The equivalent languages are, respectively, the one generated by the restric-
tion of the system to the low-level component alone, and the language generated
by the composition of the low-level component with any high-level component.

The definition of non interference in terms of languages forces at consider-
ing events as basic observable entities, but this is partly in contradiction with the
traditional view of events in Nets as entities observable only indirectly, via the
modifications of their pre- and post-conditions.

We consider as basic observables entities the local properties of systems rep-
resented by conditions and we call the property we describe visibility. In terms of
visibility, two interacting systems can be seen as defender and attacker. The de-
fender offers a service to the environment and wants to keep secret part of its local
states. The attacker uses the service of the defender and tries to get information
about its internal local states.

In some way, our definition is similar to the one in [39], but our idea is that,
even if we can see only a subset of the conditions of the system, we can observe
not only the cases completely observable, but also a part of the other cases.

6.1 Observability of states in Petri Nets
We consider systems as divided in a high part and a low one. The high one should
be hidden to the low part. Non-interference has been defined in the literature as
a property based on some observational semantics: the high part of a system is
non-interfering with the low part if whatever is done at the high level produces no
visible effect on the low part of the system.

Busi and Gorrieri bring this approach in the field of Petri Nets [12]; in their
work, security properties are based on the dynamics of systems: all their defini-
tions use one (or more) equivalence check(s). Hence, non-interference checking
is as difficult as equivalence checking, a well-studied hard problem in concur-
rency theory. They analyse systems, modeled by safe P/T nets, that can perform
two kinds of actions: high level actions, representing the interaction of the sys-
tem with high level users, and low level actions, representing the interaction with
low level users. They want to verify if the interplay between the high user and the
high part of the system can affect the view of the system as observed by a low user.
They assume that the observer knows the structure of the system, and they check
if, in spite of this, he is not able to infer the behavior of the high user by observing
the low view of an execution of the system. They define properties characterizing
the security of systems:

• Strong Nondeterministic Non-Interference (SNNI) is a trace-based property,
that intuitively says that a system is secure if what the low part can see does
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not depend on what the high level part sees

N ≈Λ
tr N ∖H

where ≈Λ
tr is the trace equivalence as sees by the low user and N ∖H is the

system without the high events.

• Nondeducibility on Composition (NDC) is a trace-based property and says
that the low view of a system N in isolation is not to be altered when con-
sidering each potential interaction of N with the high users of the external
environment

∀ high-level Net K ∶ N ∖H ≈Λ
tr (N ∣K) ∖ (H ∖HK)

where N ∣K is the parallel composition of N and K.

• Bisimulation SNNI (BSNNI) is similar to SNNI but use a kind of bisimula-
tion that considers low-view traces of the systems

N ≈Λ
bis N ∖H BSNNI ⊆ SNNI

where ≈Λ
bis is the weak bisimulation equivalence on the events of the low

user.

• Bisimulation NDC (BNDC)

∀ high-level Net K ∶ N ∖H ≈Λ
bis (N ∣K) ∖ (H ∖HK)

• Strong BNDC (SBNDC) is an alternative characterization of BNDC which
is practically checkable

∀m ∈ [m0⟩ ,∀h ∈H ∶ m [h⟩m′⇒ ∃ low-view bisimulation
R∶ N → N ∖H s.t. (m,m′) ∈R

To recognize if a system has one of these properties they define two other
kinds of properties. These properties permits to check if the system contains some
condition that flows information between high and low users.

• A condition s of N such that s● ∩ L = ∅ is a potentially causal condition if
it link a high event to a low one, ●s ∩H = ∅. A potentially causal condition
s is a causal condition if it is marked in the initial marking and there is an
event sequence that contains two of its low post events, if m0(s) > 0 then
there exists an event sequence t1 . . . tn and i < n s.t. ti, tn ∈ s● ∩L.

A condition s of N such that s● ∩ L = ∅ is a conflict condition if it is a
precondition of an high event, s● ∩H = ∅.

N is Place Based Non-Interference (PBNI) if, for all s ∈ S, s is neither a
causal condition nor a conflict condition.
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• Causal region and conflict region are defined in a similar way. N is Region-
Based Non-Interference (RBNI) if, for all regions r ∈ Reg(MG(N)), r is
neither a causal region nor a conflict region. If N is RBNI then N is also
PBNI. N is RBNI iff Sat(MG(N)) is PBNI.

These two properties, PBNI and RBNI, are structural because no notion of ob-
servational equivalence is considered in their definition; however, to be precise,
the definition of RBNI requires an exploration of the state space (marking graph),
hence it is in some sense a behavioural property.

The main results of Busi and Gorrieri [12] are:

• N is SNNI iff N is NDC,

• if N is BNDC then N is BSNNI,

• N is BNDC iff N is SBNDC,

• if N has no causal conditions then N is SNNI,

• if N is PBNI then N is SBNDC,

These concepts have been implemented in a software tool [21].

6.2 Visibility
In our approach we consider an Elementary Net System, N = ND⟨NI⟩NA =
(B,E,F,m0), made by two subsystems. The defender,ND = (BD,ED, FD,mD

0 ),
is a high-level system that offers a service to the environment through an interface.
The attacker, NA = (BA,EA, FA,mA

0 ), is a low-level system that wants to use the
service and wants to infer something on the defender system or wants to control
it. Let (βi, ηi) ∶ Ni → NI and (γi, δi) ∶ N → Ni be N̂ -morphisms that connect the
systems.

We assume that the defender wants to take hidden part of his local conditions.
We do not want that the attacker infer something about that conditions of the
defender. In our approach the observer (the attacker) is able to see only a part of
the system: the part of the composed system that mirrors itself and the interface
[19].

As an example, consider the three Elementary Net Systems shown in Fig. 6.1.
We compose the Net N1 and N2 using the interface NI . The label suggest the

correspondence given by the morphisms; the resulting Net is shown in Fig. 6.2.
We want to know if a modification of the internal state of the defender can

affect the view of the system as observed by the observer. We assume that the
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(a) N1 (b) NI (c) N2

Figure 6.1: The two Net to be composed through the Net interface

Figure 6.2: The composed Net
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observer knows the structure of the system, and we want to know if he is not able
to infer the internal state of the defender by observing how the execution of the
system changes the state of the part of the system he is able to observe.

The non-interference properties we want to define use the notion of observ-
ability of low conditions of a system, i.e., what can be observed of a system from
the point of view of the observer.

We can now be more precise about what the attacker can infer about the valid-
ity of conditions of the whole system.

Definition 66. The attacker-view of a markingm of the systemN is the restriction
of the marking on the conditions of NA and NI:

∀m ∈ [m0⟩ ,m⇂I∪A =m ∩ (BA ∪BI)

In general, the attacker is able to distinguish only subsets of markings of the
composed system.

Definition 67. We say that two distinct markings m,m′ ∈ [m0⟩ are attacker-view
equivalent if m⇂I∪A =m′

⇂I∪A
.

A marking m ∈ [m0⟩ is distinguishable by the attacker if ∄m′ ∈ [m0⟩ ∶m⇂I∪A =
m′
⇂I∪A

.
The attacker has a complete distinguishability of the markings of the whole

system if:
∀m,m′ ∈ [m0⟩ ,m⇂I∪A =m′

⇂I∪A
⇒m =m′

The interesting cases are those in which there is no complete distinguishability.
We define as follows the conditions visible or invisible to the attacker.

Definition 68. A condition p ∈ BD ∖BI is invisible at a marking mA ∈ [mA
0 ⟩ by

an attacker NA in isolation iff

∃m,m′ ∈ [m0⟩ ∶m(p) = 0 ∧m′(p) = 1 ∧m⇂I∪A =m′
⇂I∪A

=mA

Condition p ∈ BD ∖BI is invisible by NA iff p is invisible for every mA ∈ [mA
0 ⟩. If

a condition is not invisible then we say that it is visible.

We call SD ⊆ BD ∖ BI the set of invisible conditions computed as in the
procedure reported below for an attacker NA, in the system N = ND⟨NI⟩NA.

We call S∗D ⊆ BD ∖ BI the set of invisible conditions by all attacking Net
Systems NA, in the system N = ND⟨NI⟩NA.
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(a) N1 (b) NI (c) N2

Figure 6.3: Two Nets to be composed through the Net interface

6.2.1 Invisible conditions

To determine which conditions are in SD we follow this procedure:

• partition the reachable markings of the composed system according to the
markings of the attacker;

• for each marking of the attacker, compute the invisible conditions and

• compute the intersection of the sets of invisible conditions above.

Since the computation of all the markings of a Petri Net is exponential, to find
the set of invisible conditions is an exponential computation too.

Let us explain this procedure by means of the example of Fig. 6.3. The mor-
phisms from the Nets in Fig. 6.3a and 6.3c to the one in Fig. 6.3b are given by
identical names; the composed Net is shown in Fig. 6.4.

We use the markings of the composed system, shown in Table 6.1, and of the
attacker, Table 6.2, to compute SD. Starting by the markings of the attacker N2,
let us partition the markings of the composed system in sets of undistinguishable
markings as in Table 6.2. The same Table lists also the conditions invisible by
each marking of the attacker; the conditions invisible for N2 are {c0N3, c2N3},
given by the intersection of all of the computed SD sets.

To compute S∗D we deal with every possible attacker compatible with the inter-
face NI with respect to the composition operation. We conjecture that the condi-
tions invisible by the interface (or to an attacker isomorphic to the interface) allow
to infer an upper bound to the set S∗D. The cases in which the attacker is bisimilar
to the interface are discussed below.
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Figure 6.4: The composition of the Nets of Fig. 6.3

c0N3 c1N3 c2N3 c3N3 c4N3 c5N3 bI d0N4 d1N4 d2N4

S0 0 1 0 0 0 1 1 0 0 1
S1 1 0 0 0 1 0 0 0 1 0
S2 0 1 0 1 0 0 1 0 0 1
S3 0 0 1 0 1 0 0 0 1 0
S4 1 1 0 0 0 0 1 1 0 0
S5 1 1 0 0 0 0 1 0 0 1
S6 0 1 1 0 0 0 1 1 0 0
S7 0 0 0 0 1 1 1 1 0 0
S8 0 1 1 0 0 0 1 0 0 1
S9 0 0 0 0 1 1 1 0 0 1
S10 0 0 0 1 1 0 1 1 0 0
S11 0 0 0 1 1 0 1 0 0 1
S12 0 1 0 0 0 1 1 1 0 0
S13 0 1 0 1 0 0 1 1 0 0

Table 6.1: Reachable states of system N1⟨NI2⟩N2 of Fig. 6.4

bI d0 d1 d2
possible markings of
the composed system

conditions invisi-
ble

S0A 1 0 0 1 S0, S2, S5, S8, S9, S11
{c0N3, c1N3, c2N3,
c3N3, c4N3, c5N3}

S1A 0 0 1 0 S1, S3 {c0N3, c2N3}

S2A 1 1 0 0
S4, S6, S7, S10, S12,
S13

{c0N3, c1N3, c2N3,
c3N3, c4N3, c5N3}

Table 6.2: Reachable states of system N2 of Fig. 6.3c
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a0 a1 p0 p1 b0 b1 I ⋅m0

I1 0 0 1 1 0 0 1
I2 1 1 0 1 0 0 1
I3 0 0 1 0 1 1 1
I4 1 1 0 0 1 1 1

(a) N1⟨NI⟩N2

p0 p1 I ⋅m0

II1 1 1 1
(b) NI

a0 a1 p0 p1 I ⋅m0

Ia1 0 0 1 1 1
Ia2 1 1 0 1 1

(c) N1

p0 p1 b0 b1 I ⋅m0

Ib1 1 1 0 0 1
Ib3 1 0 1 1 1

(d) N2

Table 6.3: The invariants of the Nets of Fig. 6.1 and 6.2

6.2.2 Invariants
We focus now on the study of what we can infer using invariant properties.

We see in Table 6.3 the invariants of the Nets of Fig. 6.1 and 6.2. Each
row represent an invariant on the conditions of the net and its last value is the
number of token the invariant contains. We see that the S-invariant II1 is reflected
in Ia1, I

b
1, I1, the S-invariant Ia2 is reflected in I2 and Ib3 is reflected in I3. I4 is not

preserved in N1 and N2.
Looking at the invariants of the composed Net we can infer something on the

marking of the subsystems without directly observe their local states.
For example, take the initial marking of N1⟨NI⟩N2

m0 = (011000)

and the invariant
I2 = (110100)

Now, project m0 on m0⇂I∪A , the marking observable by N2:

m0⇂I∪A = (1000)

Which is the simpler hypothesis thatN2 could make on the marking ofN1⟨NI⟩N2?
It could hypothesize that in all the conditions that he is not able to observe there
are no tokens. Let us call this “operator of extension” ext(mi) ∶ Bi → B, this
operator puts a zero for all the elements that were cancelled by the projection
operator, in the original position:

ext(m0⇂I∪A) = (001000)
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Now, do the product:

IT2 ● ext(m0⇂I∪A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

● (001000) = 0

but N2 knows that this product gives 1. So, N2 infer that in one of the 2 new
elements of ext(m0⇂I∪A) (the first two) there must be 1. N2 hypothesizes that the
true marking of N1⟨NI⟩N2 can be either (011000) or (101000). N2 has gained
information through the use of the invariants and the attacker-view of a marking.

Table 6.4 presents all the possible inferences we can do using the invariants in
case of partial observation of N2. The cell colored in green are components of the
invariants.

Definition 69. For i = D,A, I , let Ni = (Bi,Ei, Fi,mi
0) and N = ND⟨NI⟩NA =

(B,E,F,m0) be Elementary Net Systems and let (γi, δi) ∶ N → Ni be an N̂ -
morphism. Let

• IDb be the set of all the basic invariants that contain local conditions of ND,

• IA∪Ib be the set of all the basic invariants that contain conditions of NA,

• I⋆b be the set of all the basic invariants that contain conditions of ND and
NA, in other words the basic invariants concerning ND and visible by the
attacker:

I⋆b = IDb ∩ IA∪Ib

We are interested in all the invariants I ∈ I⋆b and we can see these invariants as
composed of three parts:

I = I⇂D ∪ I⇂I ∪ I⇂A

Note that, in every invariant, I⇂I or I⇂A shall be equal to 0 because these invariants
can only concern ND or be invariants of both subnets, created in the composition
(and that do not concern the interface).

For a marking m of the composed system we are able to infer some informa-
tion about the validity of some defender’s conditions in the following way:

• (∃I ∈ I⋆b , ∥m⇂A ⋅ I⇂A∥1 + ∥m⇂I ⋅ I⇂I∥1 < ∥I ⋅m0∥1) ⇒ ∃c ∈ I⇂D ∶m(c) > 0

• (∃I ∈ I⋆b , ∥m⇂A ⋅ I⇂A∥1 + ∥m⇂I ⋅ I⇂I∥1 = ∥I ⋅m0∥1) ⇒ ∀c ∈ I⇂D ∶m(c) = 0
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a0 a1 p0 p1 b0 b1
Product
result

Marking m0 of N1⟨NI⟩N2 0 1 1 0 0 0
m0 observed from N2 0 0 1 0 0 0

I2 0 0 0 0 0 0 0
I4 0 0 0 0 0 0 0

(a)

a0 a1 p0 p1 b0 b1
Product
result

Marking m1 in N1⟨NI⟩N2 0 0 0 1 1 0
m1 observed from N2 0 0 0 1 1 0

I2 0 0 0 1 1 0 1
I4 0 0 0 1 1 0 1

(b)

a0 a1 p0 p1 b0 b1
Product
result

Marking m2 in N1⟨NI⟩N2 0 0 0 1 0 1
m2 observed from N2 0 0 0 1 0 1

I2 0 0 0 1 0 1 1
I4 0 0 0 1 0 1 1

(c)

a0 a1 p0 p1 b0 b1
Product
result

Marking m3 in N1⟨NI⟩N2 1 0 1 0 0 0
m3 observed from N2 0 0 1 0 0 0

I2 0 0 1 0 0 0 0
I4 0 0 1 0 0 0 0

(d)

Table 6.4: Example of markings of N1⟨NI⟩N2



128 CHAPTER 6. OBSERVABILITY

In the Net of Fig. 6.2 the interesting invariants are I⋆b = {I2, I4}. We see in
Table 6.4a that N2 infers that a0 or a1 is marked.

Therefore the attacker is able to make assertions on the possible states the
whole system is in. However, as we have seen above, the attacker is able to make
assertions only on certain conditions of the defender. This way the attacker is able
to construct a range of possible markings of the whole system.

In the above example N2 hypothesizes that the original marking is (011000)
or (101000).

But in a real system the set of possible markings is larger and also is too
difficult to construct the set of reachable markings. Checking the reachability of
a marking is NP-complete, while a sufficient condition for non reachability of a
given marking m ∈ S is non existence of σ′ ∈ Z∣T ∣ such that C ⋅σ′ =m−m0, which
is polynomial time [42]. Using this remark, the attacker can reject some of the
possible markings, in the best case remaining with only one possible marking.

We can also assert that under certain constraints the attacker is always able to
block the defender choosing not to fire some event. For example, in the system
shown in Fig. 6.2, the attacker is able to decide to not fire the event f0. So, when,
in the composed system, the event t1 fires, the attacker, with its decision of not
doing an action, blocks the whole system.

Is it possible to decide how much a defender is dependent or independent on
its interface? In a very simple way we can decide if a system is dependent on its
interface in the following way:

Definition 70. Let b, c ∈ B; we say that b weakly covers c if it exists a basic
invariant I that contains b and c.

A condition b ∈ S weakly covers a set of conditions C if it weakly covers each
condition ci ∈ C.

If b ∈ BI weakly covers all the conditions of the defender, BD, we say that the
defender is weakly dependent from the interface.

If we restrict the above definitions using only monomarked invariants, we use
the word cover.

Let S/c ⊆ BD be the set of all the conditions of the defender not covered by
conditions of the interface:

S/c = {p ∈ BD ∶ ∄b ∈ BI , b covers p}

In the Net of Fig. 6.2, as we see from the invariants shown in Table 6.3c, we
say that N1 depends from the interface through p1.

In Fig. 6.5 we see a Net, 6.5a, that is not covered by any condition of the
interface and, so, that is not dependent from the interface.
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(a) N1 (b) N2

Figure 6.5: Two Nets to be composed through the Net interface shown in Fig.
6.3b

p0 p1 b0 b1 b2 b3 b4 b5 b6 I ⋅m0

0 0 1 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 1
1 1 0 0 0 0 0 0 0 1

(a) Invariants of the Net in Fig. 6.5a

p0 p1 b0 b1 I ⋅m0

0 1 1 1 1
1 1 0 0 1

(b) Invariants of the Net in Fig.
6.5b

Table 6.5: The invariants of the Nets of the Fig. 6.5
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Figure 6.6: The reachability graph of the Net of Fig. 6.2 with the observability of
the attacker

The dependence condition is sufficient to assert that there exists an attacker
able to block the defender, however we don’t know if it necessary. And, more
important, is the contrary true? If a Net is not dependent on the interface is that
Net independent? Is it impossible to block an independent Net?

We conjecture that it is not possible to block a non-dependent Net. This is
because, informally, the attacker is able to block the interface but in this case this
is not sufficient to block the defender. How can we formally prove this aspect?

Proposition 52. For i = D,A, I , let Ni = (Bi,Ei, Fi,mi
0) and N = ND⟨NI⟩NA =

(B,E,F,m0) be Elementary Net System and let (γi, δi) ∶ N → Ni be an N̂ -
morphism. Let Gi denote the domain of the partial function ηi.

If there is a reachable marking mb ∈ [m0⟩ that is distinguishable for the at-
tacker and that enables only events local to the attacker

∀e ∈ E∣mb [e⟩ , e /∈ ((E1 ∖G1) ∪Esync)

then we say that the attacker blocks the whole system.

We also check this condition in a graphical way by using the reachability
graph. We have to modify the graph in order to underline the observability of
the attacker, as we see in Fig. 6.6.

We see that N2 blocks the system in the marking S1 not firing tb1.
It is possible for a defender to expose an interface that do not permits the cre-

ation of unwanted invariants? With this composition it is impossible to generate
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c0 c1 c2 c3 c4 c5 bI I ⋅m0

0 1 0 0 1 0 0 1
1 0 1 1 0 1 0 1

Table 6.6: The invariants of the Nets of Fig. 6.3a

b0 bI b1 b2 I ⋅m0

1 1 1 1 1

Table 6.7: The invariants of the Nets of Fig. 6.7a

new T -invariants in the composition. As we see in Theorem 1, all the invari-
ants of the composed Net are reflected in invariants of the subnets. So with this
composition we only resolve global conflicts in local way.

Now we show that, even if a condition of the defender is not covered by a
condition of the interface, it is possible that this condition is visible, that is SD ≠
S/c.

The invariants of the Net in Fig. 6.3a are listed in Table 6.6. As we see, no one
of the conditions of N1 are in an invariant with the only condition of the interface,
so S/c = {c0, c1, c2, c3, c4, c5} so how can be possible that one of these condition is
visible by the attacker?

Nevertheless, consider all the markings of the attacker, N2, listed in Table 6.2
and the markings of the composed system, listed in Table 6.1. The condition c4

of the defender, that is in S/c, is visible because in the marking S1A the attacker
is sure that there is a token in c4 because there are no markings of the composed
system in which c4 is not marked and such that this marking is seen as S1A by the
attacker.

So, now we know that S/c ≠ SD and that S/c /⊆ SD.
Let us show you another example. In Fig. 6.7 you see the defender (6.7a), the

attacker (6.7c) and the interface (6.7b).
The morphisms from the Nets in Fig. 6.7a and 6.7c to the one in Fig. 6.7b are

given by identical names; the composed Net is shown in Fig. 6.7d.
The invariants of 6.7a are listed in Table 6.7. As we see, all the conditions of

N1 are in an invariant with the only condition of the interface, so S/c = φ and how
can be possible that one of these condition is invisible by the attacker?

Nevertheless, consider the only marking of the attacker, N2, c0 = 0, bI = 0, c1 =
0, and the markings of the composed system, listed in Table 6.8. The conditions
b0 and b1 of the defender, that are not in S/c, are invisible because the only marking
of the attacker correspond to all the markings of the composed Net and in these
markings b0 and b1 are once marked and once not.

Now we are able to say that SD /⊆ S/c.
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(a) N1 (b) NI (c) N2 (d) N1⟨NI⟩N2

Figure 6.7: Two Nets to be composed through the Net interface and the resulting
Net

b0 b1 b2 bI c0 c1

S0 1 0 0 0 0 0
S1 0 1 0 0 0 0

Table 6.8: The markings of the Nets of Fig. 6.7d
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6.2.3 Invisible and visible conditions: results
Let us now prove the central result. We define a necessary constraint for a defined
attacker NA such that a condition of the defender is not in SD. This happens when
a condition of the defender is in a monomarked invariant with a condition of the
interface. In this case, it is possible to construct an attacker (isomorphic to the
interface itself) with a marking in which that condition is visible.

Theorem 12. Let ND, NI be bisimilar Elementary Net Systems, and (βD, ηD) ∶
ND → NI an N̂ -morphism. If NI is 1-live and b ∈ BD ∖ β−1

D (BI), i ∈ β−1
D (BI)

satisfies b, i ∈ ID with ID monomarked S-invariant of ND, then b is visible by
each attacker bisimilar to the interface.

Proof. Consider an attacker isomorphic to the interface, NA = NI . Given that we
consider each attacker bisimilar to the interface, if we prove that this result holds
for the interface, it holds for all these attackers too.

Since S-invariants are reflected, ID is an invariant of the composed Net (that
in this case is isomorphic to ND). So, if we reach a marking m in which m(i) = 1
then we are sure that m(b) = 0 and then b is visible. If m0(i) = 1 this is the
marking we are looking for. Suppose m0(i) = 0. Since NI is an Elementary Net
System, βD(i) is not isolated. If ●βD(i) = ∅, then βD(i) should have at least a
post-event. In this case this post-event is dead while NI is 1-live by hypothesis.
So, the preset of βD(i) is not empty. Given that NI is 1-live, an event in the preset
of βD(i) fires at some reachable case. Let us call u ∈ E∗

I a sequence of events
such that mI

0 [u⟩mI
1 and mI

1(βD(i)) = 1. From the assumption that ND ≈ NI with
the labelling function h ∶ ED → EI ∪ {τ} we deduce that ∃w ∈ E∗

D ∶ h(w) =
u,mD

0 [w⟩mD
1 ,m

D
1 (i) = 1. ♢

The Theorem does not state conditions of bisimilarity between the attacker
and the interface. Nevertheless, an attacker not bisimilar to the interface is of
no interest since it can introduce some limitations of behaviour of the composed
system and hide to itself some visible parts of the defender.

As an example, in Fig. 6.8 (where the N̂ -morphisms are implicitly defined by
the identical labels on conditions and events), the attacker is not bisimilar to the
interface and event ⟨e0, e0⟩ of the composed system is dead. Conditions c3 and c4

are visible by the attacker, as we see in Fig. 6.9 and Tables 6.10 and 6.9. Instead,
if we modify the initial marking for the attackerN2 by adding a token in condition
d1, the attacker becomes bisimilar to the interface. In this case, conditions c1 and
c2 of N1 become visible together with c3 and c4.

The explicit request in the Theorem for a defender bisimilar to the interface is
motivated by the fact that the interface is the protocol of interaction of the defender
with the other systems. Consequently, it is reasonable to expect that the defender
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(a) N1 (b) NI (c) N2

Figure 6.8: Two Elementary Net Systems to be composed through the interface
NI

Figure 6.9: The composition of the Elementary Net Systems of Fig. 6.8

b0 b1 b2 d0 d1

possible markings of
the composed sys-
tem

invisible condi-
tions

S0A 0 1 0 0 0 S0, S2 {c1ND, c2ND}
S1A 0 0 1 0 0 S1, S3 {c1ND, c2ND}

Table 6.9: Reachable states of system N1 of Fig. 6.8a
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b0 b1 b2 c0ND c1ND c2ND c3ND d0NA d1NA

S0 0 1 0 0 1 0 0 0 0
S1 0 0 1 0 1 0 0 0 0
S2 0 1 0 0 0 1 0 0 0
S3 0 0 1 0 0 1 0 0 0

Table 6.10: Reachable states of system N1⟨NI⟩N2 of Fig. 6.9

respects its own contract with the environment. The request for a live interface
is reasonable as well for the same motivation. Finding an S-invariant containing
a condition of the interface and a condition local to the defender is necessary to
establish a channel that brings information from the local part of the defender to
a part shared with the attacker. Computing the minimal invariants of a Net is an
NP -complete problem [14], nevertheless, several tools compute it. For instance
CPN-AMI, GreatSPN, mist2, Petruchio, Platform Independent Petri Net Editor,
PNetLab, ProM framework.

6.2.4 Measuring visibility
In this section, we sketch a first attempt to give a measure of the uncertainty related
to visibility. Intuitively, visible or invisible conditions are opposite ends of some
kind of spectrum of visibility and, in Def. 68, we do not weight the relative
persistence of the invisible condition p in marking m or m′.

For example, in Table 6.2, attacker case S0A, condition b0N3 is more frequently
un-marked than marked. Consequently, we could consider b0N3 as a random vari-
able whose average information content - persistence in a given local state - de-
pends on the chosen marking of the attacker.

Traditionally, entropy is a measure of the uncertainty associated with a ran-
dom variable. Consequently, a measure of the uncertainty of the marking for a
given defender condition in a given attacker marking can be given, as usual in
information science, using Shannon’s entropy:

the entropy H of a discrete random variable X = {x1, ..., xn} with p denoting the
probability mass function of X is H(X) = −∑n

i=1 p(xi) log2 p(xi).

For example, with reference to Table 6.2, let us calculate the entropy of b0N3

seen as variable with possible values in {0,1} with respect to the attacker marking
S0A. Marking S0A “covers” {S0, S2, S5, S8, S9, S11} and, with reference to Table
6.1, we can divide this set in two subsets: one in which b0N3 = 0, {S0, S2, S8, S9, S11},
and one with b0N3 = 1, {S5}. By plain computation of the relative frequen-
cies of persistence in a state, the entropy is H(b0N3) = −∑2

i=1 p(xi) log2 p(xi) =
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−5/6 log2 5/6 − 1/6 log2 1/6 = 0,65. So b0N3 in S0A is invisible at 65%.

6.3 Classes of systems
Definition 71. The attacker-view of a marking sequence ms = m1 . . .mn of the
system N is the sequence of the attacker-view of every marking mi,1 ≤ i ≤ n of
ms, if this view is different from the previous one:

ε⇂I∪A = ε

ms⇂I∪A = { {m1 . . .mn−1}⇂I∪Amn⇂I∪A if mn⇂I∪A ≠mn−1⇂I∪A

{m1 . . .mn−1}⇂I∪A otherwise

Definition 72. Two marking sequences ms,ms′ ∈MS are attacker-view equiva-
lent if ms⇂I∪A =ms′⇂I∪A .

A marking sequence ms ∈ MS is distinguishable by the attacker if ∄ms′ ∈
MS ∶ms⇂I∪A =ms′⇂I∪A .

Definition 73. The attacker has a complete distinguishability of the marking se-
quences of the whole system if:

∀ms,ms′ ∈MS,ms⇂I∪A =ms′⇂I∪A ⇒ms =ms′

Definition 74. We say that N is attacker-view equivalent to NA, denoted by N ∼
NA, iff [m0⟩⇂I∪A = [mA

0 ⟩. In this case we say that N is Nondeterministic Non-
Visible (NNV for short).

We say that N is strong attacker-view equivalent to NA, denoted by N ≈ NA,
iff MS⇂I∪A = MSA. In this case we say that N is Strong Nondeterministic Non-
Visible (SNNV for short)

Intuitively, the property Strong Nondeterministic Non-Visible says that a sys-
tem is secure if what the attacker see does not depend on the fact that it is com-
posed with the defender.

Now, take ND ≈BIS NI with rD as bisimulation function

rD = {(mD,mI) ∶mD⇂I =mI}

and let EI be a set of labels, with the label functions:

lI is the identity function

lD = ηD ∪ {∀eD∣ηD(eD) = undefined , (eD, τ)}
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then the Theorem 4.5 in [6] states that N ≈BIS NA with r as bisimulation function

r = {(m,mA) ∶m⇂I∪A =mA}

taking EA as the set of labels, with the label functions:

lA is the identity function

l = δA ∪ {∀e∣δA(e) = undefined , (e, τ)}

Theorem 13. If ND ≈BIS NI , N is NNV for every NA.

Proof. • [m0⟩⇂I∪A ⊇ [mA
0 ⟩ ?

the existence of the bisimulation between N and NA implies that

∀mA ∈ [mA
0 ⟩ ,∃m ∈ [m0⟩ ∶ (m,mA) ∈ r⇒m⇂I∪A =mA

• [m0⟩⇂I∪A ⊆ [mA
0 ⟩ ?

the existence of the bisimulation between N and NA implies that

∀m ∈ [m0⟩ ,∃mA ∈ [mA
0 ⟩ ∶ (m,mA) ∈ r⇒m⇂I∪A =mA

♢

Theorem 14. If ND ≈BIS NI , N is SNNV for every NA.

Proof. • MS⇂I∪A ⊇MSA ?
by induction on the length of the marking sequence:

base ε⇂I∪A = ε
induction step let us take a marking sequence msnA ∈ MSA ∶ msnA =

msn−1
A mA

n , by hypothesis ∃msi ∈MS ∶msi⇂I∪A =msn−1
A , i ≥ n − 1.

Now, take the event eA ∈ EA ∶mA
n−1 [eA⟩mA

n and take the last marking
of msi: mi,mi⇂I∪A =mA

n−1; the bisimulation states that

∃m ∈ [m0⟩ ,∃v ∈ E∗, lA(v) = eA ∶mi [v⟩m, (m,mA
n ) ∈ r⇒m⇂I∪A =mA

n

Assume that v = e1 . . . ekeAek+1 . . . ej , with ez ∈ ED ∖GD, z = 1 . . . j
(otherwise the label function map the event in EA). The construction
of the composed Net assure that these events are pre or post only of
local conditions of ND, and so they do not change the projection of
the marking.
So, msnA =msn−1

A mA
n =mi⇂I∪Am⇂I∪A =ms⇂I∪A .
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• MS⇂I∪A ⊆MSA ?
by induction on the length of the marking sequence:

base ε⇂I∪A = ε
induction step let us take a marking sequencemsn ∈MS ∶msn =msn−1mn,

by hypothesys, we know that ∃msiA ∈MSA ∶msn−1
⇂I∪A

=msiA, i ≤ n − 1.
Now, take the event e ∈ E ∶mn−1 [e⟩mn, this event can be:

– e ∈ ED ∖ GD (the labelling function does not map it): the con-
struction of the composed Net assure that this event are pre or
post only of local conditions of ND, and so it do not change the
projection of the marking

mn⇂I∪A =mn−1⇂I∪A =mA
i

msn⇂I∪A =msn−1
⇂I∪A

=msiA
– e ∈ E∖(ED∖GD) (the labelling function does map it): the bisim-

ulation states that

∃mA
i+1 ∈ [mA

0 ⟩ ∶mA
i [e⟩mA

i+1, (mn,m
A
i+1) ∈ r⇒mn⇂I∪A =mA

i+1

msn⇂I∪A =msn−1
⇂I∪A

mn⇂I∪A =msiAmA
i+1 =msi+1

A

♢

6.4 Final remarks on Observability
We aimed at defining structurally the notion of visibility between composed sub-
systems in order to isolate the unwanted information flows between a hypothetical
defender system and an attacker system whose interactions are coordinated by an
interface. In the context of information science, our work is naturally placed in
the field of non-interference as reported in the introduction.

We managed to use traditional tools in the study of Petri Nets like invariants,
for the definition of the properties of our interest. In the context of this work we
did not use T -invariants because they are more related to the concept of control-
ling the defender than to the concept of visibility. We reached a preliminary result
in a direction worth to be explored further. Next steps will be in the direction
of a finer characterization of the statistical dependence between the subsystems,
in proving the conjecture concerning the dependence between all the possible at-
tackers and the interface, and in using different α-morphisms for the definition of
the composition in order to avoid the use of bisimilarity relations in the proofs.
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Conclusions

In this thesis, we take inspiration from morphisms already presented in the liter-
ature to define new morphisms for the refinement of systems. In particular, we
focus on the refinement on local states and choose, as reference model, Elemen-
tary Net Systems. The morphism we define, called α-morphism, relies mainly
on structural constraints; the only exceptions are based on the local behaviours
of subnets. With this definition, α-morphisms preserve reachable markings and
reflect sequential components, meaning that the inverse image of a sequential
component is a subnet of the refined Net covered by sequential components. By
imposing additional behavioural constraints on the refining subnet and its envi-
ronment, the α-morphisms reflect behaviour and induce a bisimulation between
the refined Net and the abstract one. A natural development of this part consists
in defining and studying categories related to the new morphisms, and functors
relating these categories. These functors would set a correspondence between a
structural view and a behavioural view of concurrent systems. In a different direc-
tion, we plan to define and study morphisms analogous to α-morphisms for more
general classes of Petri Nets, such as Place Transition or High level Nets.

From a more practical point of view, the results summarised so far can be used
as theoretical basis upon which to build a set of tools for system designers. In this
thesis we present a couple of examples in the form of simple Net transformations
that guarantee the existence of morphisms from the refined Net to the original one.
The final target is a set of complete transformations for a given kind of morphism.

A notion of visibility related to information flow in a distributed system has
been studied by several authors. We applied to this field the idea of composition
presented in this thesis. We consider a system made of an attacker and a defender
interacting through an interface. The defender wants to keep secrets some infor-
mation represented by its local conditions. We assume that the attacker is not able
to directly observe the local state of the defender, however it knows its structure.

139
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In this field we define a new kind of observability, related to conditions. We obtain
a first result based on invariant properties of the model, that states the conditions
under which some local states of the defender become visible to the attacker. The
results presented here are stated in terms of N̂ -morphisms. We plan to explore
the applicability of α-morphisms. This would allow to relax some behavioural
constraints.
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[28] Laurent Mazaré. Using unification for opacity properties. In In Proceedings
of the Workshop on Issues in the Theory of Security (WITS), pages 165–176,
2004.

[29] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[30] Edward F. Moore. Gedanken Experiments on Sequential Machines. In
Claude Elwood Shannon and John McCarthy, editors, Automata Studies,
volume 34 of Annals of mathematics studies, pages 129–153. Princeton Uni-
versity Press, 1956.

[31] Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary
Transition Systems. Theoretical Computer Science, 96(1):3–33, 1992.

[32] Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary
Transition Systems and Refinement. Acta Informatica, 29(6/7):555–578,
1992.

[33] Mogens Nielsen and Glynn Winskel. Petri Nets and Bisimulation. Theoret-
ical Computer Science, 153(1&2):211–244, 1996.
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