
luca manzoni

D Y N A M I C S O F B I O I N S P I R E D C O M P U TAT I O N

Dipartimento di Informatica, Sistemistica e Comunicazione

Università degli Studi di Milano-Bicocca

Dottorato di Ricerca in Informatica – Ciclo XXV

dynamics

of

bioinspired

computation

luca manzoni

Advisor: Leonardo Vanneschi

Tutor: Gabriella Pasi

Coordinator: Stefania Bandini

Real life is, to most men,
a long second-best, a perpetual compromise

between the ideal and the possible;

but the world of pure reason knows no compromise,
no practical limitations, no barrier to the creative activity

embodying in splendid edifices
the passionate aspiration after the perfect

from which all great work springs.

Remote from human passions,
remote even from the pitiful facts of nature,

the generations have gradually created an ordered cosmos,
where pure thought can dwell as in its natural home,

and where one, at least, of our nobler impulses
can escape from the dreary exile of the actual world.

– Bertrand Russell (1872-1967)

A B S T R A C T

Since its birth, Computer Science has been inspired by natural phe-
nomena. Two main approaches where developed through the years.
The first one is concerned with the study of the properties nature-
inspired models that can also be used to model nature. Examples in
this fields are Cellular Automata and Reaction Systems. The second
one uses nature-inspired model to perform optimization tasks where
exact algorithms are not applicable. Evolutionary algorithms, like Ge-
netic Algorithms and Genetic Programming are some of the most
prominent examples.

The main aim of this thesis is the study of the dynamics of four
different nature-inspired models with the goal of providing both an
improvement in the single areas and a cross-pollination of methods
and techniques. The four chosen models are:

• Genetic Algorithms. A traditional optimization techniques that is
inspired by the Darwinian theory of evolution.

• Genetic Programming. A more recent technique, similar to clas-
sical Genetic Algorithms, that uses programs instead of fixed
length binary strings as a representation method.

• Reaction Systems. A recently developed formalism inspired by
chemical reactions.

• Cellular Automata. Am extensively studied model made of a lat-
tice of identical automata that can exchange information only
locally.

As for Genetic Algorithm, one of their main operators, the crossover,
was studied. In particular, the minimum number of iteration of the
crossover operator needed to produce certain individuals was inves-
tigated.

As for Genetic Programming, two new measures to quantify the
quality of the solution learned were developed. To better understand
the dynamics of Genetic Programming a new benchmark, inspired by
a similar benchmark in Genetic Algorithms, was introduced. Finally,
a method to reduce the worst case space requirements of Semantic
Genetic Programming from exponential to polynomial was devised.

Some combinatorial properties of Reaction Systems were studied.
Furthermore, an evolutionary version of Reaction Systems to be used
for optimization was introduced. This new algorithm proved to have
performances comparable to current state-of-the-art machine learning
algorithms.

iv

The dynamical and computational properties of a variation of clas-
sical Cellular Automata, fully-Asynchronous Cellular Automata, have
been studied. Furthermore, a first step in providing a more general
framework to study asynchronicity in Cellular Automata has been
made with the introduction of m-Asynchronous Cellular Automata.

This thesis provides both improvements in these four different ar-
eas and a first step toward an exchange of methods and techniques
between those areas.

v

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

1. Alberto Dennunzio, Enrico Formenti, and Luca Manzoni.
Computing Issues of Asynchronous CA.
Accepted in Fundamenta Informaticae.

2. Alberto Dennunzio, Enrico Formenti, Luca Manzoni, and Giancarlo Mauri.
m-asynchronous cellular automata.
In Georgios Ch. Sirakoulis and Stefania Bandini, editors, Cellular Automata - 10th In-
ternational Conference on Cellular Automata for Research and Industry, ACRI 2012, volume
7495 of Lecture Notes in Computer Science, pages 653–662, Santorini, Greece, September
2012. Springer.
Second International Workshop on Asynchronous Cellular Automata.

3. Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi.
Parameter tuning of evolutionary reactions systems.
In Genetic and Evolutionary Computation Conference, GECCO 2012, pages 727–734, Philadel-
phia, USA, July 2012. ACM.

4. Luca Manzoni, Leonardo Vanneschi, and Giancarlo Mauri.
A distance between populations for one-point crossover in genetic algorithms.
Theoretical Computer Science, 429:213–222, 2012.

5. Luca Manzoni.
Asynchronous cellular automata and dynamical properties.
Natural Computing, 11(2):269–276, 2012.

6. Luca Manzoni, Mauro Castelli, and Leonardo Vanneschi.
Evolutionary reaction systems.
In Mario Giacobini, Leonardo Vanneschi, and William S. Bush, editors, Evolutionary
Computation, Machine Learning and Data Mining in Computational Biology, EvoBIO 2012,
volume 7246 of Lecture Notes in Computer Science, pages 13–25, Màlaga, Spain, April
2012. Springer.

7. Jérôme Chandesris, Alberto Dennunzio, Enrico Formenti, and Luca Manzoni.
Computational aspects of asynchronous cellular automata.
In Mauri Giancarlo and Leporati Alberto, editors, Developments in Language Theory DLT
2011, volume 6795 of Lecture Notes in Computer Science, pages 466–468, Milano, Italy, July
2011. Springer.

8. Leonardo Vanneschi, Mauro Castelli, and Luca Manzoni.
The k landscapes: a tunably difficult benchmark for genetic programming.
In Genetic and Evolutionary Computation Conference, GECCO 2011, pages 1467–1474, Dublin,
Ireland, July 2011. ACM.

9. Mauro Castelli, Luca Manzoni, Sara Silva, and Leonardo Vanneschi.
A quantitative study of learning and generalization in genetic programming.
In Sara Silva, James A. Foster, Miguel Nicolau, Penousal Machado, and Mario Giacobini,
editors, Genetic Programming - 14th European Conference, EuroGP 2011, volume 6621 of
Lecture Notes in Computer Science, pages 25–36, Torino, Italy, April 2011. Springer.

10. Luca Manzoni.
Some formal properties of asynchronous cellular automata.
In Stefania Bandini, Sara Manzoni, Hiroshi Umeo, and Giuseppe Vizzari, editors, Cellu-
lar Automata - 9th International Conference on Cellular Automata for Research and Industry,
ACRI 2010, volume 6350 of Lecture Notes in Computer Science, pages 419–428, Ascoli Pi-
ceno, Italy, September 2010. Springer.
First International Workshop on Asynchronous Cellular Automata.

vi

11. Luca Manzoni, Leonardo Vanneschi, and Giancarlo Mauri.
Definition of a crossover based distance for genetic algorithms.
In Martin Pelikan and Jürgen Branke, editors, Genetic and Evolutionary Computation Con-
ference, GECCO 2010, pages 1473–1474, Portland, Oregon (USA), July 2010. ACM.

Some ideas and figures have appeared in the following preprints:

1. Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi.
An Efficient Genetic Programming System with Geometric Semantic Operators and its
Application to Human Oral Bioavailability Prediction.
arXiv:1208.243v1 [cs.NE].

2. Jérôme Chandesris, Alberto Dennunzio, Enrico Formenti, and Luca Manzoni.
Computational Aspects of Asynchronous CA.
arXiv:1105.0065v1 [cs.FL].

Other publications realized during the doctorate are the followings:

1. James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo
Vanneschi, Wojciech Jas̀kowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong,
and Una-May O’Reilly.
Genetic programming needs better benchmarks.
In Genetic and Evolutionary Computation Conference, GECCO 2012, pages 791–798, Philadel-
phia, USA, July 2012. ACM.

2. Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi.
A method to reuse old populations in genetic algorithms.
In Luis Antunes and Helena Sofia Pinto, editors, XV Portuguese Conference on Artificial
Intelligence EPIA 2011, volume 7026 of Lecture Notes in Computer Science, pages 138–152,
Lisbon, Portugal, October 2011. Springer.

3. Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi.
Reinsertion of old genetic material: Second chance gp.
In XV Portuguese Conference on Artificial Intelligence EPIA 2011, Lisbon, Portugal, October
2011.

4. Stefania Bandini, Lorenza Manenti, Luca Manzoni, and Sara Manzoni.
Dealing with crowd crystals in mas-based crowd simulation: a proposal.
In Roberto Pirrone and Filippo Sorbello, editors, International Conference on Advances in
Artificial Intelligenece AI*IA 2011, volume 6934 of Lecture Notes in Computer Science, pages
92–103, Palermo, Italy, September 2011. Springer.

5. Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi.
The effect of selection from old populations in genetic algorithms.
In Genetic and Evolutionary Computation Conference, GECCO 2011, pages 161–162, Dublin,
Ireland, July 2011. ACM.

6. Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi.
Multi objective genetic programming for feature construction in classification problems.
In Carlos A. Coello Coello, editor, Learning and Intelligent OptimizatioN, LION 5, volume
6683 of Lecture Notes in Computer Science, pages 503–506, Rome, Italy, January 2011.
Springer.

7. Lorenza Manenti, Luca Manzoni, and Sara Manzoni.
Towards an application of graph structure analysis to a mas-based model of proxemic
distances in pedestrian systems.
In Andrea Omicini and Mirko Viroli, editors, Workshop Nazionale degli Oggetti agli Agenti
WOA 2010, volume 621, Rimini, Italy, September 2010. CEUR Workshop Proceedings.

8. Mauro Castelli, Luca Manzoni, Sara Silva, and Leonardo Vanneschi.
A comparison of the generalization ability of different genetic programming frame-
works.
In IEEE Congress on Evolutionary Computation, CEC 2010, pages 94–101, Barcelona, Spain,
July 2010.

vii

A C K N O W L E D G M E N T S

There are many people that I want and need to thank for their support
in the years of my doctorate.

I want to thank my advisor, Leonardo Vanneschi, whose support
and guidance during my doctorate was essential, Alberto Dennun-
zio and Enrico Formenti, for helping me in the research on Cellu-
lar Automata. I also want to thank many people that I met in the
Department of Computer Science at the Università degli Studi di
Milano-Bicocca: Stefania Bandini, Daniela Besozzi, Gianpiero Catta-
neo, Sara Manzoni, Giancarlo Mauri, Gabriella Pasi, Giuseppe Viz-
zari, and many others.

I want to thank all the other PhD students and postdocs that I have
met during these years: Stefano Beretta, Mauro Castelli, Andrea Gor-
rini, Lorenza Manenti, Carlo Maj, Luca “Izzy” Panziera, Yuri Pirola,
Antonio Enrico Porreca (aka “Trippo”), and the “new” PhD students
Andrea Citrolo, Riccardo Colombo, and Marco Nobile.

I want to thank the people of that I have met during my visiting
periods outside Italy: Sara Silva, Alberto Moraglio, Andrea Mambrini,
Antonio Lima, Hiroshi Umeo and all the people from INESC-ID and
ISEGI in Lisbon, from the Department of Computer Science of the
University of Birmingham, and from the Faculty of Information and
Communication Engineering in the Osaka Electro-Communication
University.

I want also to thank all my family, my mother, my father, my sister
Sara, my brother Andrea and also Anna, Hermes and Rina.

I apologize to all the people that are not in this list but that deserve
to be thanked. I know that, despite all the good intentions, I have
certainly forgot someone.

viii

C O N T E N T S

1 introduction 1

1.1 Genetic Algorithms 2

1.2 Genetic Programming 3

1.3 Reaction Systems 4

1.4 Cellular Automata 5

i a theoretical model of genetic algorithms 6

2 introduction to the theory of genetic algorithms 7

2.1 Introduction to GA 7

2.1.1 A Brief Overview of GA Theory 8

2.2 Modeling of Crossover 10

3 pretopologies 12

3.1 Introduction 12

3.1.1 Topology by open or, equivalently, closed sets 12

3.1.2 Topology by closure or, equivalently, interior op-
erators 13

3.1.3 Topology by neighbourhoods 15

3.2 Fréchet Closure Operator 15

3.3 Fréchet (V)-spaces 16

3.3.1 The pre-topology induced from (V)-closure op-
erators 18

3.3.2 The Tarski closure operator induced from pre-
topological spaces 20

3.3.3 The Tarski closure operator induced from a (V)-
closure 21

3.4 Čech topologies 24

3.4.1 From Čech topologies to topologies 25

3.4.2 Finite graph and Čech Topologies 26

3.4.3 Čech topologies and convergence 29

3.5 Iterating the closure operator a transfinite number of
times 30

4 a theoretical model for one-point crossover 33

4.1 Introduction 33

4.2 Basic Notions 34

4.3 Crossover Distance Definition 35

4.3.1 Crossover relations 35

4.3.2 The Structure of the Closure 37

4.3.3 Distance Definition 40

4.4 A Concise Model for Populations 42

4.4.1 An Analysis of Computational Complexity 44

4.5 Final Remarks 45

ix

contents x

ii measuring and increasing solution quality in

genetic programming 47

5 introduction to genetic programming 48

5.1 What is Genetic Programming 48

5.2 State of the art on the use of Semantics in GP 50

5.3 Generalization in GP 53

5.3.1 The Importance of Generalization 53

5.3.2 Studies on Generalization 53

5.4 Benchmarks in GP and the NK landscapes 54

5.5 The NK Landscapes for GAs 56

5.6 Fitness Landscapes 57

5.7 Previous GP Benchmarks 58

6 learning ability 60

6.1 Introduction 60

6.2 The Proposed Measures 60

6.3 Test Problems 63

6.4 Experimental Study 63

6.5 Further Remarks 70

7 benchmarking : the k-landscapes 71

7.1 Introduction 71

7.2 The K Landscapes for GP 71

7.3 Experimental Study 78

7.4 Further Remarks 85

8 fast semantic genetic programming 86

8.1 Geometric Semantic Operators 86

8.2 The Proposed GP Implementation 88

8.2.1 Example 91

8.3 Empirical Study 94

8.3.1 The Application 94

8.3.2 Experimental Settings 95

8.3.3 Experimental Results 95

8.4 Further remarks 97

iii (evolutionary) reaction systems 100

9 introduction to reaction systems 101

9.1 Reaction Systems 101

9.1.1 Basics of Reaction Systems 101

9.1.2 Dynamics of Reaction Systems 102

9.1.3 Equivalence of Reaction Systems 103

9.2 Motivations for Evolutionary Reaction Systems 104

9.3 Motivations for Parameter Tuning 105

9.4 Parameter Tuning: State of the Art 106

9.5 Parameter tuning and parameter control 108

10 combinatorics of reaction systems 110

10.1 Combinatorics 110

10.2 Properties and Bounds of Reaction Systems 111

contents xi

10.3 Further Remarks 115

11 evolutionary reaction systems 117

11.1 Evolutionary Reaction Systems 117

11.1.1 Input and Output for EvoRS 117

11.1.2 Initialization 118

11.1.3 Crossover 118

11.1.4 Mutation 118

11.1.5 Minimization of Reaction Systems 119

11.1.6 Properties of EvoRS 119

11.2 Experimental Study 120

11.2.1 Test Problems 120

11.2.2 Other studied techniques 121

11.2.3 Experimental setting 121

11.2.4 Experimental Results 122

11.3 Parameter Tuning 126

11.3.1 Experimental Settings 126

11.3.2 Experimental Results 127

11.3.3 Discussion 127

11.4 Further Remarks 130

iv asynchronous cellular automata 132

12 introduction to cellular automata 133

12.1 Preliminary Notions 135

13 fully-asynchronous ca 138

13.1 Definition of Fully Asynchronous CA 138

13.2 Dynamical properties of fully-ACA 140

13.3 Further Remarks 148

14 computational power of fully asynchronous ca 149

14.1 Simulation of Turing Machines 149

14.1.1 Construction 1. 151

14.1.2 Construction 2 155

14.1.3 Construction 3 157

14.2 Updating sequences generated by random walks 160

14.2.1 Bounded Random Walks 161

15 m-asynchronous ca 162

15.1 m-ACA 162

15.2 Further Remarks 168

v final remarks 170

16 conclusions and future works 171

16.1 Contributions 171

16.1.1 Genetic Algorithms 171

16.1.2 Genetic Programming 171

16.1.3 Reaction Systems 172

16.1.4 Cellular Automata 172

16.2 Open Problems 173

contents xii

16.2.1 Genetic Algorithms 173

16.2.2 Genetic Programming 173

16.2.3 Reaction Systems 174

16.2.4 Cellular Automata 174

bibliography 176

L I S T O F F I G U R E S

Figure 1 A graphical depiction of GA. 8

Figure 2 The graph induced by the Čech topology N1 27

Figure 3 The graph induced by the Čech topology N2 28

Figure 4 The graph induced by the Čech topology N3 28

Figure 5 Example of GP individual. 49

Figure 6 Comparison of measure for GP. 65

Figure 7 GBC and GBLA cross correlation with the RMSE
on train an test set. 67

Figure 8 RMSE with fitness inspired by learning quality
measures. 69

Figure 9 Summit of a tree. 73

Figure 10 Embedding of trees. 73

Figure 11 An example of a tree that respects the property
of Proposition 7.2.3. 75

Figure 12 Optimum of different depths for K-landscapes. 76

Figure 13 Trees that respect the property of Proposition 7.2.3. 78

Figure 14 The legend for the plots reported in figures
from 15 to 19. 79

Figure 15 Median of the average depth of the GP trees in
the population against generations. 79

Figure 16 Median of the average number of nodes of the
GP trees in the population against generations. 80

Figure 17 Median of the depth of the best GP tree at each
generation. 81

Figure 18 Median of the number of nodes of the best GP
tree at each generation. 81

Figure 19 Normalized median of the best GP tree in the
population at each generation. 82

Figure 20 Average depth of the trees in the population at
the last generation. 82

Figure 21 Average number of nodes of the trees in the
population at the last generation. 83

Figure 22 Fitness of the best individual in the population
at the last generation. 83

Figure 23 Median of train and test error for the consided
techniques at each generation. 97

Figure 24 Train and test error of the best individual pro-
duced in each of the runs. 97

Figure 25 The execution cycle of EvoRS 120

Figure 26 The results for the k-even parity problem. 124

Figure 27 The results for the vote and SPECT datasets. 125

xiii

Figure 28 The box plot of the results for the 5-majority
problem 130

Figure 29 The box plot of the results for the 6-multiplexer
problem 130

Figure 30 The box plot of the results for the 4-parity prob-
lem 130

Figure 31 The box plot of the results for the 5-parity prob-
lem 130

Figure 32 The box plot of the results for the 6-parity prob-
lem 131

Figure 33 Simulation of the first step of a TM using a
fully-ACA built by construction 1. 152

Figure 34 Simulation of the first step of a TM using a
fully-ACA built by construction 2. 156

Figure 35 The initial configuration of a fully-ACA that
scattered strictly simulates a TM. 158

Figure 36 The space-time diagram of the probabilistic xor
CA of Example 15.1.1. 166

Figure 37 Probabilistic xor CA of Example 15.1.2. 168

L I S T O F TA B L E S

Table 1 The p-values given by the t-test. 84

Table 2 The simple initial population P used in the ex-
ample of Section 8.2.1, 92

Table 3 The individuals in the random pool Pmut used
in the example of Section 8.2.1. 92

Table 4 How the individuals in the subsequent genera-
tions are stored in memory for the example of
Section 8.2.1. 93

Table 5 Experimental comparison between different tech-
niques for oral bioavailability predictions. 98

Table 6 The parameters of an EvoRS system. 119

Table 7 The parameters of an EvoRS system and the
values tested. 126

Table 8 The correlation coefficients between the three
considered parameters on different problem and
the fitness. 128

xiv

List of Tables xv

Table 9 p-values obtained for different values of the
symbols parameter. 128

1
I N T R O D U C T I O N

Since its infancy, Computer Science has been inspired by natural pro-
cesses. In fact, between the 1940s and the 1950s, two different ap-
proaches to the use of natual inspiration in computing were born.

The first approach is the use of nature-inspired computational mod-
els as models for natural phenomena. It is important to focus on the
computational part of the model. A model that is computable allows
the scientist to produce predictions of natural phenomena and the
engineer to perform simulations in silico.

A second approach is the use of nature-inspired algorithms to solve
computational problems in an effective way. Since many combinato-
rial problems are currently unsolvable by exact methods for instances
of any significant size [159], many approximation and/or heuristic
methods have been developed [205, 134]. One obvious source of in-
spiration for solving those problems was nature. In fact, some of these
problems have a natural analogue whose solution is efficiently given
by a natural phenomenon. Thus, an algorithm mimicking the phe-
nomenon was considered a possible way to efficiently solve the same
problem on a computing device [93].

The models and algorithms that has been developed following the
two approaches had an history of cross-pollination and sharing of
ideas. The same model used one time to predict the outcome of a
physical experiment could have been used to solve a combinatorial
problem (for example, the recently developed model of Reaction Sys-
tems [51, 52]). Nonetheless, a certain distinction of uses exists. For
example, Cellular Automata are widely used as a model of physical
phenomena (for example for modeling the flow of a liquid [29]) while
Genetic Algorithms main use is function optimization [162].

In this thesis the main theme is the study of the dynamics of dif-
ferent bio-inspired models in order to allow the communication and
sharing of ideas between different approaches. There are four main
approaches studied:

• Genetic Algorithms (GA);

• Genetic Programming (GP);

• Reaction Systems (RS);

1

1.1 genetic algorithms 2

• Cellular Automata (CA).

While the first two share a similar heritage and inspiration, the Dar-
winian theory of evolution [42], and are mainly used in solving opti-
mization problems, the other two were born and are studied as a way
to model natural phenomena and do not share a lot. Reaction Systems
are a newly developed model by Rozenberg and coworkers [51, 52],
while Cellular Automata are one of the oldest models in Computer
Science, that number among its creators some of the founders of the
discipline, like Von Neumann [210, 149].

The study of the dynamics of these models requires different tools
and abilities. Genetic Algorithms have sprout a plethora of different
analysis methods involving different mathematical tools that ranges
from the knowledge of Markov processes [175] to the modeling us-
ing a dynamical process in a continuous space [211]. Genetic Pro-
gramming’s dynamics is difficult to formally study in full generality
and our knowledge needs to resort to experimental validation [199].
Due to their young age, Reaction Systems provides a playground for
various techniques, since there is still no clear preferred method of
research. As one of the oldest method, Cellular Automata have long
been studied for their computational abilities [154], for their link with
language theory [182], and as a discrete time dynamical system [120].
Thus, there is a large body of theory that can make used of results of
ergodic theory, measure theory, and other areas of Mathematics.

Therefore, the study of these four systems seems to be inevitably
separated, with little to no possibility to cross-pollination. However,
a possible exchange of ideas and techniques could provide deeper in-
sight into current results and the generation of new results with dif-
ferent techniques. In other areas of knowledge this sharing was suc-
cessful (see, for example, the unexpected connection, called Monstrous
moonshine, between two different mathematical object [37]). Thus, it
could be wise to explore different areas to show if a beneficial ex-
change could be possible.

In the rest of the chapter we provide an overview of the main con-
tribution of this thesis to the four different considered areas.

1.1 genetic algorithms

GA are a well-known optimization method in which the goal is to
maximize (or, equivalently, minimize) a function, called fitness func-
tion, whose inputs are usually codified as fixed length binary strings.
The algorithms maintains a multiset, called population, of those in-
puts, called individuals. At every iteration, called generation, four
steps are performed. As a first step the fitness function is evaluated
for every individual in the population. Then a selection process take
place in which a new population of the same size of the original is
generated by extracting (with reinsertion) individuals from the origi-

1.2 genetic programming 3

nal population with a probability that depend on their fitness value.
Then the crossover takes place. This operation, that is the main topic
of this part of the thesis, allows different individuals to exchange in-
formation (called genetic material). Finally, an operation, called mu-
tation, that perform bit-flip operations on the individuals according
to a given distribution, is performed. After a termination criterion is
met - for example a sufficient number of generations has passed - the
algorithm returns the best individual found (i.e., the one with the
maximum fitness value).

In this part of the thesis the main object of study is the crossover
operator, that provides an exchange of genetic material between indi-
viduals in the same population. The dynamics of crossover is certainly
the most complex to study when compared to the ones generated by
selection or mutation.

While, given a population and an individual is easy to understand
if the individual can be generated by repeated applications of crossover
between individual of the given population, it is less easy to under-
stand how many of those applications are sufficient. The work pre-
sented provides an answer to this question. An important aspect of
the algorithm that answers this question is that it can be computed
efficiently, thus providing the possibility of an application of theory
to practice.

The tools applied are not widely used when study GA. They are
a weak version of topology - a Čech topology - and the modeling of
crossover as a weak closure operator on this weak topological space.
This is a different application of existing techniques that model the
dynamics of GA and other evolutionary methods as a process inside a
topological space [141, 139, 140], thus providing another example on
how topological techniques can allow to better model and understand
the dynamics of GA.

This part of the thesis is organized as follows: Chapter 2 provides
a very brief overview of the approaches to the study of GA theory, fo-
cusing on approaches that are historically significant, of widespread
use or related to the study performed. Chapter 3 provides an overview
of the weak notions of topologies, from Fréchet to Čech topologies. Fi-
nally, Chapter 4 describes the proposed model of crossover.

1.2 genetic programming

GP is an evolution of GA in which the algorithms modifies, instead of
fixed length binary strings, entire programs. Usually these programs
are in a lisp-like language and codified as trees [162]. The added
complexity of the individuals makes the analysis of the dynamics of
GP more complex than the one of GA. Thus, the study of GP often
needs an empirical part.

1.3 reaction systems 4

In this part of the thesis we studied the learning process of GP
with the definition of measures able to quantify it. In particular, we
studied what instances are difficult to learn for GP. Subsequently,
we defined a new tunable benchmark, inspired by the famous NK-
lanscapes benchmark for GA, with the intention to expose the gener-
ation of programs by GP.

A promising new GP technique, the Semantic GP, has recently be
defined Moraglio and coworkers [142]. This new technique has nice
theoretical properties and produces better solution than standard GP.
However, in its original definition it was expensive in term of com-
putational time and space. We defined a new implementation for Se-
mantic GP that was proved to maintain all the qualities of Semantic
GP but that makes it applicable in real scenario since its computa-
tional requirements have been reduced. In fact, out implementation
of Semantic GP proved to be faster than standard GP by an order of
magnitude.

This part of the thesis is structured as follows: Chapter 5 provides
an introduction to GP and to the main issues that are studies in the
remaining chapters. Chapter 6 introduces and studies the measures
to quantifies the learning ability of GP. Chapter 7 introduces a new
benchmark inspired by NK-landscapes for GA. Finally, Chapter 8 ex-
plains our fast Semantic GP implementation.

1.3 reaction systems

RS are a promising newly developed formal model inspired by chem-
ical reactions. In this model the main concept is the one of reactions,
that is, an object that can be activated by a set of chemicals, can be
inhibited by another set of chemicals, and, when activated and not in-
hibited, generates new chemicals. By combining more reactions and a
starting set of chemical it is possible to obtain dynamics that mimics
the one obtained in nature. Furthermore, this system is particularly
effective as a mean of representing functions.

Up until now, RS have been studied with different approaches.
From a theoretical point of view, we studied their combinatorial prop-
erties, in particular focusing on the extremal combinatorics aspect.
That is, we were searching properties that always hold for “large
enough” RS. Since RS are a new formalism, the early success of this
approach can help shaping a set of methods and tools to explore
them.

From a practical point of view, the simplicity and easiness of ex-
pressing function with RS made them the ideal target for developing
an evolutionary algorithm based on them. This algorithm - a varia-
tion of GP - that uses RS as a way of representing functions, has been
called Evolutionary Reaction Systems (EvoRS). While missing years
of study and fine-tuning, it proved to be on par or superior to cur-

1.4 cellular automata 5

rent machine learning techniques. Thus, we now have a rare case of
a model that can be studied both as a model of chemical reactions
and as a function optimizer, providing a link between two different
approaches to bio-inspired computation.

This part of the thesis is organized as follows: Chapter 9 provides
an introduction to RS. Chapter 10 studies their properties into an ex-
tremal combinatorics setting. Finally, Chapter 11 introduces EvoRS
and provide both a comparison with current state-of-the-art tech-
niques and a first study on the parameter tuning of the new algo-
rithm.

1.4 cellular automata

CA are one of the oldest models in Computer Science. A CA is a n-
dimensional lattice of identical automata that synchronously update
their state according to their internal state and the state of their neigh-
bours. The dynamics of CA has long been studied with the tools of
discrete dynamical systems [120]. Some properties of interest are, for
example, the sensitivity to initial conditions (the effect popularized
as the butterfly effect), positive expansivity, topological transitivity and
many others [120].

Recently, asynchronous models of CA has been introduced. These
models can help in the modeling of real-life systems (see, for example,
the system in defined in [6]). In these systems, synchronicity is not
always present. Thus, the introduction of CA models with different
levels of asynchronicity.

We introduced and studied a CA model with the least possible syn-
chronicity, a fully asynchronous CA. In particular its dynamical prop-
erties and computational ability have been studied. Furthermore, we
introduced a new axiomatic framework for the study of asynchronous
CA. Almost all updating schemes that defines asynchronous CA mod-
els can be seen as different axioms to impose on a distribution of set
of cells to be updated. By studying what are the results obtainable
from different sets of axioms we can infer properties that are valid
for entire classes of updating schemes. In particular we studied the
properties of a particular set of axioms that imposes some “fairness
conditions” on the distribution of updates. We called the model ob-
tained m-ACA, for m-Asynchronous CA.

This part of the thesis is structured as follows: Chapter 12 intro-
duces CA and the necessary notions for the remaining chapters. Suc-
cessively, Chapter 13 defines fully-Asynchronous CA and studies its
dynamical properties. Chapter 14 studies the computational proper-
ties of fully-Asynchronous CA. Finally, Chapter 15 introduces and
studies m-Asynchronous CA.

Part I

A T H E O R E T I C A L M O D E L O F G E N E T I C
A L G O R I T H M S

2
I N T R O D U C T I O N T O T H E T H E O RY O F G E N E T I C
A L G O R I T H M S

In this part of the thesis we will briefly recall what are Genetic Al-
gorithms (GA) and introduces the necessary notations. Successively,
some of the most prominent approaches to the study of GA are
shortly recalled (for a more complete introduction see the book by
Rowe [165] or some survey articles [56, 153]).

2.1 introduction to ga

Let X be a finite set (the solution space) and g : X → R be a function
(the objective function). The goal is to find argminx∈X{g(x)}, i.e., the op-
timum (or one of the optima if it is not unique). To perform this search
using GA it is necessary to encode the elements of X as binary string
of fixed length. That is, there exists a surjective map c : {0, 1}n → X.
The search performed by GA is on the {0, 1}n and not on X.

Let P be a multiset of elements of {0, 1}n. A GA iteratively performs
the following operations depicted in Fig. 1 (each iteration is called a
generation):

1. Fitness evaluation. For every element p ∈ P e compute its fit-
ness, that is g(c(p)).

2. Selection. We perform |P| extractions from P (with reinsertion)
with a probability distribution that depends on the fitness val-
ues of the elements to obtain a new multiset P ′.

3. Crossover. In this phase |P| elements of {0, 1}n are generated by
pairs of elements of P ′ in the following way:

a) Let p1,p2 ∈ P ′ and let k ∈ {1, . . . ,n− 1} be a randomly
chosen integer.

b) Let p ′ be defined as ∀i ∈ {1, . . . ,k}, p ′ in position i is equal
to p1 in position i and ∀j ∈ {k+ 1, . . . ,n}, p ′ in position j is
equal to p2 in position j. In this phase, depending on the
definition, another element may be generated.

In this way a new multiset P ′′ is obtained.

7

2.1 introduction to ga 8

Selection Crossover Mutation

Figure 1: A graphical depiction of the Selection, Crossover and Mutation
phases for GA.

4. Mutation. Each bit of each element of P ′′ is flipped according
to a fixed (small) probability.

The algorithm stops when a termination criteria is met, for example
when a certain number of iterations have been performed.

GA proved to be effective in many real world problems. However,
to supplement the empirical results, a theoretical framework has been
deemed necessary. While the similarity with the Darwinian theory of
evolution can provide an idea on the behaviour of GA, this is not a
formal proof that allow us to conclude that GA can always find one
of the optima.

2.1.1 A Brief Overview of GA Theory

Here we provide an extremely brief overview of some approaches to
the study of GA. We refer to the cited articles for a more complete
and in-depth explanation.

2.1.1.1 Schema Theory

The first theory that was developed to understand the behaviour of
GA was the Schema Theory [80]. While this theory, at least in his orig-
inal form, was criticized, it still represent the first example of the
necessity of a formal analysis of GA. We will recall the concept of
schema and the schema theorem. We will then briefly explain why its
applicability is limited and how schema theory has evolved.

A schema s is a subset of {0, 1}n for which there exists a A ⊆
{1, . . . ,n} such that ∀i ∈ A, ∀x,y ∈ {0, 1}n, xi = yi. For example,
the set {0000, 0001, 0100, 0101} is a schema and it is usually denoted
by 0 ∗ 0∗ ∈ ({0, 1}∪ {∗})n, where this notation indicates that every in-
dividual whose first and third elements are 0 is part of the schema.
Given x ∈ {0, 1}n and a schema s, we say that s is represented in x iff
x ∈ s. The order of a schema is the number of non-∗ symbols in it and
its order is the difference between the first and the last non-∗ symbols
in the schema. The fitness ratio of a schema s in a population P is the
ratio between the average fitness of the individuals of P ∪ s and the
average fitness of P.

2.1 introduction to ga 9

The idea of the original schema theory was to study what schemata
are represented more and more as the generations passes. The schema
theorem states that given a standard GA with fitness-proportional se-
lection, having mutation probability pmut and crossover probability
pcross, a schema s of order k(s), length l(s) and fitness ratio r(s, t)
represented N(s, t) times at generation t is such that:

E[N(s, t+ 1)] =
(
1− pcross

l(s)

n− 1
− pmutk(s)

)
r(s, t)N(s, t)

As it is possible to see, the schema theorem, in its original formu-
lation, gives only an expectation on the number of individuals be-
longing to a certain schema after one generation. Thus, it cannot be
used to give predictions at more than one step. The schema theorem
was originally used to reach some conclusion that it cannot imply, at
least in his original form. This use generated some criticism on the
schema theory (see, for example, [67]). However, this theory survived
and by the use of more refined techniques, it remained an important
tool [161], not only of historical value.

2.1.1.2 The Infinite Population Model

One interesting approach was proposed by Vose [211], which stud-
ied GA as a discrete-time dynamical system over a continuous space.
Consider a vector of positive reals of length 2n such that all entries
sum to 1, and call it a population vector. To every entry of the vector is
associated an element of {0, 1}n and the value of the entry represents
the fraction of the individuals that are present in current population.
While for finite populations this vector has only rational entries, when
the population is assumed to be infinite, irrational entries are also pos-
sible. The study of GA with a population of infinite size simplifies the
study of the dynamics since the system considered is a deterministic
discrete-time dynamical system in a continuous space.

2.1.1.3 GA as Markov Processes

The modeling of GA by means of the Schema Theory, at least in its
first form, had many shortcoming. An approach able to prove the con-
vergence of GA was the modeling as Markov processes [174, 43, 151]
(see [83] for an introduction to stochastic processes). In this case GA
are modeled as a stochastic process. This process, being dependant
only by the current population (at least for classical GA), can be en-
tirely described by a transition matrix. By studying the properties
of this matrix, it is possible to obtain properties of GA. For example,
classical GA without elitism do not converge to a uniform population
of optimal solutions while the use of elitism assures convergence.

2.2 modeling of crossover 10

2.1.1.4 Runtime Analysis

The aim of runtime analysis is to provide an expected upper bound
on the runtime of many Evolutionary Algorithms. The goal is cer-
tainly more ambitious that providing convergence, and the first re-
sults were either about simple problems or simple algorithms. In the
past years runtime analysis techniques become more and more so-
phisticated (for a survey see [153]).

Usually, runtime analysis studies (µ + λ) − EA, that is, an evolu-
tionary algorithm in which λ new individuals are created at every
generation and the best µ between the offspring and the parents sur-
vive into the next generation (a variation is the (µ, λ) − EA in which
the selection happens only between the offspring). The simplest algo-
rithm is obtained when µ = λ = 1. In this case the population has size
1, a new individual is created at every generation and substitutes the
current one if it has a better fitness (the case of equal fitness generates
two different variations of the algorithm with different properties).

One of the first results concerns (1+ 1) − EA on the one-max prob-
lem with the classical GA mutation. In this case it was found that
the expected time to reach the optimal solution is O(n logn), where
n is the length of the individuals. Note that a (1+ 1) − EA does not
resemble commonly used EA. Thus, in the subsequent years, the ef-
fect of using a population was considered. And in some cases it was
found that the optimization time decreases to polynomial from super-
polynomial for a certain class of functions [98]. Current research on
runtime analysis is focused both in providing results for more “real-
istic” EA and problems.

2.2 modeling of crossover

The number of contributions published so far aiming at modelling the
GAs dynamics is so large that it is impossible to discuss all of them.
The interested reader is referred, for instance, to the numerous papers
of Vose and coworkers (for instance [211, 212, 173, 172, 22, 11, 10]).

The study of GAs crossover has been carried on in different ways so
far. The traditional approach dates back to the early years of the field
and it is based on the schema theory [93, 80]. Successively, more ef-
fective methods for investigating the dynamics induced by crossover
have been defined by considering the transition matrix given by it
and then studying the Markov process it induces (see for instance
[211] and [165]).

A different approach is the one discussed in [185, 188, 213], where
the topological space induced by crossover is modelled by structures
such as hypergraphs and recombination spaces. Although related,
here the perspective is different. In fact we aim at defining a distance
between populations, which allows us to simplify the structures re-
quired for formalizing the model.

2.2 modeling of crossover 11

The work produced in the last few years by Moraglio and cowork-
ers deserves a particular discussion, given that it is strongly related
to the one reported here. In many of its references, among which for
instance [141, 139, 140], Moraglio gives a geometrical interpretation
of many kinds of crossover, including one-point crossover. This al-
lows us to derive distance from operators in a conceptually simple
way. One of the many contributions of the Moraglio’s work stands,
in our opinion, in the fact that it shades a light on the importance
of studying topologies induced by genetic operators and defining
operator-based distances to study evolutionary algorithms (EAs). The
main difference in the work presented in this chapter is that we focus
on the definition of a distance between populations. Also, the math-
ematical tools we use to model GAs (presented in Section 4.2) are
different from, although related with, the ones used by Moraglio. At
present, it is difficult to compare the effectiveness of our work to the
Moraglio’s one. However, we believe that an alternative approach to
existing ones can be interesting for a large part of the EAs community,
possibly opening discussions on pros and cons and/or stimulating re-
searchers to investigate possible integrations.

3
P R E T O P O L O G I E S

3.1 introduction

In this chapter the most important weak notions of topologies that
have been described in the past are presented. Their importance is
due to their use in field that are not necessarily linked with topology.
In fact, these weak topologies were used to model aspects of some
crossover operations for genetic algorithm [186] and in defining the
approximation operators of rough set theory [30].

Let us recall that the standard approach to topology con be for-
malized by three different, but logically equivalent approaches which
will be briefly discussed in this section.

3.1.1 Topology by open or, equivalently, closed sets

Let us start with the usual approach to topological spaces defined
assigning to a set X, sometimes called the universe of points, a suitable
collection of subsets as opens sets. Precisely, according to the standard
Kelley textbook about topology [108] we have that:

Definition 3.1.1. A topology of open sets for X is a family O(X) of sub-
sets of X, each member of which is called open set, satisfying the fol-
lowing conditions:

(O1) the empty set ∅ and the whole universe X belong to O(X);

(O2) the union of the members of any arbitrary family from O(X)

belongs to O(X);

(O3) the intersection of the members of any finite family from O(X)

belongs to O(X).

The pair (X,O(X)) is a topological spaces. When no confusion seems
possible we denote a topological space simply by X.

Let us recall that on the power set P(X) of the universe X, the com-
plementation map c : P(X) 7→ P(X) associating with any subset A its
set theoretical complement Ac := X \A is an involutive ((Ac)c = A)
self–duality (i.e., anti-isomorphism with itself) [23, p. 3]. In particular

12

3.1 introduction 13

the involution condition implies that the complementation map is a
bijection of P(X) onto itself, which is self-inverse, i.e., the inverse of
(·)c is just the same mapping: [(·)c]−1 = (·)c.

Let X be a topological space, then a subset of X is said to be closed
iff its set theoretical complement is open. The collection of all closed
set will be denoted by C(X) and so C ∈ C(X) iff Cc ∈ O(X). The
following is a straightforward consequence of the de Morgan laws of
the complementation map on P(X).

Proposition 3.1.1. Let O(X) be a topology of open sets for X. Then the col-
lection C(X) of corresponding closed sets satisfies the following conditions:

(C1) the empty set ∅ and the whole universe X are closed, i.e., they belong
to C(X);

(C2) the intersection of the members of any arbitrary family of closed sets
is closed;

(C3) the union of the members of any finite family of closed sets is closed.

In the now outlined approach to topology open sets are taken as the
primitive notion. An alternative, but logically equivalent, approach
to topology consists in considering as primitive the notion of closed
set by a family C(X) of subsets of X satisfying the condition (C1)–
(C3) and then introducing as derived notion the one of open set as
any subsets of X whose set theoretical complement is closed. The
categories of topologies of open sets and of topologies of closed sets
are isomorphic between them.

Proposition 3.1.2. Let X be a given universe.

1. Let O(X) be a topology of open sets for X, then O(X)N := {C ∈ P(X) :

Cc ∈ O(X)} is a topology of closed sets for X.

2. Let C(X) be a topology of closed sets for X, then C(X)H := {O ∈ P(X) :

Oc ∈ C(X)} is a topology of open sets for X.

3. Let O(X) be a topology of open sets for X, then (O(X)N)H = O(X).

4. Let C(X) be a topology of closed sets for X, then (C(X)H)N = C(X).

3.1.2 Topology by closure or, equivalently, interior operators

The second approach to topology is the one introduced by Kura-
towski, based on the primitive notion of closure operator on a universe
of points X.

Definition 3.1.2. Let X be a set. A Kuratowski closure operator over X
is a mapping · : P(X) 7→ P(X) with the following properties:

(KC1) ∅ = ∅.

3.1 introduction 14

(KC2) For all A ∈ P(X) A ⊆ A.

(KC3) For all A,B ∈ P(X) A∪B = A∪B.

(KC4) For all A ∈ P(X) A = A.

Remark. Since we will use in the sequel the weak notion of Tarski
closure operator, we only mention here that this is a closure operator
in which the additivity condition (KC3) is substituted by the weak
condition of sub-additivity:

(TC3) For all A,B ⊆ X A∪B ⊆ A∪B.

Since in general one has the condition A ⊆ A it is interesting to
consider those subsets for which the equality holds.

Proposition 3.1.3. Let X be a universe of points.

1. Let · : P(X) 7→ P(X) be a Kuratowski closure operator on the universe
X. Then the collection C(X) := {C ∈ P(X) : C = C} is a topology of
closed sets for X, i.e., the conditions (C1)–(C3) are satisfied.

2. On the other hand, let C(X) be a topology of closed sets for X. If for
any subset A of X one defines the subset A :=

⋂
{C ∈ C(X) : A ⊆ C},

then the mapping A ∈ P(X) 7→ A ∈ P(X) is a Kuratowski closure
operator, i.e., the conditions (KC1)–(KC4) are satisfied.

3. Starting from a Kuratowski closure operator, the just introduced topol-
ogy of closed sets C(X) according to point a) is such that the associated
Kuratowski closure operator according to point b) is the original one.

The dual notion of Kuratowski closure is the notion of Kuratowski
interior.

Proposition 3.1.4. Let (X, ·) be a universe equipped with a Kuratowski
closure operator. Then the mapping o : P(X) 7→ P(X) associating with any
subset A ∈ P(X) the subset

Ao := (Ac)c

is a Kuratowski interior operator in the sense that the following conditions
are satisfied:

(KI1) Xo = X.

(KI2) For all A ∈ P(X) Ao ⊆ A.

(KI3) For all A,B ∈ P(X) (A∩B)o = Ao ∩Bo.

(KI4) For all A ∈ P(X) (Ao)o = Ao.

3.2 fréchet closure operator 15

3.1.3 Topology by neighbourhoods

Another approach to define topology that is equivalent to the previ-
ous ones introduced is the use of neighbourhoods.

Definition 3.1.3. Let X be a set. It is a neighbourhood space iff for every
x ∈ X there exists a non-empty family N (x) of subsets of X that
satisfies the following properties:

(P1) For all N ∈ N (x), x ∈ N.

(P2) For all N1,N2 ⊆ X, N1 ∈ N (x) and N1 ⊆ N2 imply N2 ∈ N (x).

(P3) For all N1,N2 ∈ N (x), N1 ∩N2 ∈ N (x)

(P4) For all N ∈ N (x), there exists M ∈ N (x) with M ⊆ N such that
for all y ∈M, M ∈ N (y).

A neighbourhood structure is related to the notion of topology by
the following two definitions

Definition 3.1.4. Let X be a neighbourhood space. A set Y ⊆ X is open
iff for all y ∈ Y, Y ∈ N (y). That is, an open sets is a neighbourhoods
of all its points.

Definition 3.1.5. Let X be a topological space. For all x ∈ X and for all
Y ⊆ X, Y is a neighbourhood of x iff there exists an open set Z such
that x ∈ Z ⊆ Y.

Using the following two definitions it is possible to show that neigh-
bourhoods are another way of define topologies.

3.2 fréchet closure operator

A Fréchet closure operator on a universe X (see [74], and for a more
complete treatment [168]) is the most general form of closure since it
is based on only two very natural axioms expressing the intuitive, but
minimal, requirements about closure: that the closure of the empty set
must be the empty set itself and that the closure of a set contains the
set.

Definition 3.2.1. Let X be a set. A Fréchet closure operator over X is a
mapping · : P(X) 7→ P(X) with the following properties:

(Cl1) ∅ = ∅.

(Cl2) For all A ⊆ X, A ⊆ A.

Example 3.2.1. Let X = {0, 1, 2} and define · on P({0, 1, 2}) as:

∅ = ∅ {0, 1, 2} = {0, 1, 2}

{0} = {0, 1, 2} {0, 1} = {0, 1}

{1} = {0, 1, 2} {0, 2} = {0, 2}

{2} = {1, 2} {1, 2} = {0, 1, 2}

3.3 fréchet (v)-spaces 16

It is immediate that · respects the two properties of Fréchet clo-
sure but neither idempotency nor subadditivity. In fact, {0} ∪ {1} =

{0, 1, 2} ⊃ {0, 1} = {0, 1} (i.e., no subadditivity) and {2} = {1, 2} 6= {2} =

{0, 1, 2} (i.e., no idempotency).

Definition 3.2.2. Let (X, ·) be a universe equipped with a Fréchet
closure operator. Then the mapping on the power set o : P(X) 7→
P(X) associating with any subset A the subset Ao :=

(
Ac
)c, called

the interior of A, defines a Fréchet interior operator which satisfies the
following conditions:

(In1) Xo = X.

(In2) For all A ⊆ X, Ao ⊆ A.

By conditions (Il1) and (Cl1), for any subset A we obtain the follow-
ing inclusion chain

Ao ⊆ A ⊆ A

in such a way that Ao can be considered a lower approximation of A
andA its upper approximation, producing in this way a rough approxima-
tion of the same subset defined by the pair of subsets: r(A) := (Ao,A).

3.3 fréchet (v)-spaces

A slightly more structured closure operator is the one introduced by
Fréchet in [74] and characterized by the additional property of sub-
additivity [177, 136].

Definition 3.3.1. Let X be a set. A (V)-closure operator over X is a
mapping · : P(X) 7→ P(X) with the following properties:

(Cl1) ∅ = ∅.

(Cl2) For all A ⊆ X A ⊆ A.

(Cl3w) For all A,B ⊆ X A∪B ⊆ A∪B.

The following first result is very useful.

Proposition 3.3.1. The condition (Cl3w) is equivalent to the isotonicity
condition:

A ⊆ B implies A ⊆ B (1)

Proof. Let the (CL3w) be true. Then from A ⊆ B, i.e., B = A ∪ B, we
get B = A∪B ⊇ A∪B ⊇ A.

Vice versa, let the isotonicity condition be true. Since both the sub-
sets A,B ⊆ A∪B, then A,B ⊆ A∪B, and so A∪B ⊆ A∪B.

A (V)-space is the first kind of weak topology defined by a notion
of neighborhood for each point of the universe.

3.3 fréchet (v)-spaces 17

Definition 3.3.2. Let X be a set. A neighborhood structure is a mapping
N : X 7→ P(P(X)) assigning to any point x of X a family N (x) =

{Vα(x)} ⊆ P(X) of subsets of X, called neighborhoods of x, satisfying
the two conditions:

(N1) for all x ∈ X the collection N (x) of subsets assigned to x must
be non empty (N (x) 6= ∅). In other words, every point has at
least one neighborhood;

(N2) for any fixed point x ∈ X, each of its neighborhoods Vα ∈ N (x)

must contain x.

The set X equipped with the mapping N is said to be a (V)-space .

Now, it is possible to show the following:

Proposition 3.3.2. Any (V)-space generates in a canonical way an operator
of (V)–closure.

1. First of all it is necessary to define the (V)–closure operator start-
ing from the neighborhood structure of (V)-space.
Let ′ : P(X) 7→ P(X) be the mapping defined for any subset A of
X by the rule:

A ′ = {x ∈ X : ∀N ∈ N (X) , (A∩N) \ {x} 6= ∅}

A ′ is said to be the derived set of A and any of its points is called
an accumulation point of A.
Let cl : P(X) 7→ P(X) be the mapping defined for any subset A
of X by the rule:

cl(A) = A∪A ′

2. Now we need to prove that cl satisfies the properties of (V)-
space closure.

It is immediate that cl(∅) = ∅ and that A ⊆ cl(A) for all A ⊆ X.
The only property that needs proving is sub-additivity.

(A∪B) ′ = {x | ∀N ∈ N (x) (N∩ (A∪B)) \ {x} 6= ∅}
= {x | ∀N ∈ N (x) (N∩A) \ {x} 6= ∅ or (N∩B) \ {x} 6= ∅}
⊇ {x | ∀N ∈ N (x) (N∩A) \ {x} 6= ∅}∪

{x | ∀N ∈ N (x) (N∩B) \ {x} 6= ∅}
= A ′ ∪B ′

The result is then that cl(A) ∪ cl(B) = A ∪A ′ ∪ B ∪ B ′ = (A ∪
B)∪ (A ′ ∪B ′) ⊆ (A∪B)∪ (A∪B) ′ = cl(A∪B) proving that the
sub-additivity property holds.

Remark. The properties that the neighborhoods must all be non-empty
(they must contain at least one subset of X) is necessary to obtain all

3.3 fréchet (v)-spaces 18

the properties of the closure. In fact, let x ∈ X be a point such that
N (x) = ∅. Then cl(∅) = ∅ ′ = {y : ∀N ∈ N (y) , ∅ ∩N 6= ∅} but since
x has no neighborhood then x ∈ cl(∅), contrary to the requirement i):
cl(∅) = ∅.
This also means that every closure operator with less axioms than a
(V)-space but still with ∅ = ∅ cannot also be expressed by a neighbour-
hood structure (since there is no weaker condition on the neighbour-
hood structure if non-emptiness is preserved). In particular, a Fréchet
topology cannot be uniquely expressed with a neighbourhood struc-
ture.

Remark. Note that defining directly the closure as cl(A) = {x ∈ X :

∀N ∈ N (x) , A ∩N 6= ∅} does not work since under this definition it
can be untrue that for all N ∈ N (x) the point x belongs to N, and in
this case it is possible to have that A * cl(A) for some A.

Remark. Another interesting question is whether there is more than
one neighborhood structure that generates the same (V)-closure oper-
ator.
The answer is positive. In fact, given a (V)-space it is easy to see that
for every x ∈ X, when the collection N (x) of neighborhoods of x is
considered then also N ′(x) = {N ′ : ∃N ∈ N (x) s.t N ⊆ N ′} is a col-
lection of neighborhoods of x, both generating the same (V)-closure
operator.

3.3.1 The pre-topology induced from (V)-closure operators

Also if the (V)-space closure operator is sufficiently weak, it is always
possible to induce from it a structure of pre-topological space of closed
elements, but without the further important condition of being closed
with respect to the finite union, condition which characterizes the
topology of closed sets.

Proposition 3.3.3. Any (V)–closure operator determines the collection of
“closed” elements defined as its “fixed” points:

C(X) :=
{
C ∈ P(X) : C = C

}
(2)

which satisfies the following properties:

(PC1) the empty set is closed: ∅ ∈ C(X);

(PC2) the whole space is closed: X ∈ C(X);

(PC3) for any collection of closed elements {Cα} ⊆ C(X) their meet is closed
too: ∩Cα ∈ C(X). In other words, C(X) is a complete meet semi–
lattice.

Proof. (PC1) is nothing else than condition (Cl1) of definition 3.2.1.
Moreover, from condition ii) of the same definition we have that in

3.3 fréchet (v)-spaces 19

particular X ⊆ X, with X a subset of X and so necessarily X = X, i.e.,
(PC2) holds.
Finally, for any arbitrary family of closed sets {Cα)} ⊆ C(X we have
that ∩αCα ⊆ {Cα}, and from the isotonicity condition of proposition
3.3.1 it follows that ∩αCα ⊆ {Cα}, and so ∩αCα ⊆ ∩αCα = ∩αCα,
which making use of condition ii) of definition 3.3.1 leads to (PC3).

Let us recall that, according to [138] (and see also [23, p. 111]),
the only conditions (PC2) and (PC3) defines C(X) as a Moore family,
satisfying the further (in general not required) condition of containing
the least element 0 of the lattice (condition (PC1)). Or, following [36],
the structure CS := 〈X,C(X)〉 is a closure system.

Remark. Also in this case one can put the problem whether a family
of closed sets is characterized by a unique (V)–closure operator.
This problem has a negative answer as the following Monteiro exam-
ple from [137] shows.

Example 3.3.1. Let X = {0, 1, 2} and let us consider the two (V)–closure
operators.
Closure 1.

∅ = ∅ {0, 1, 2} = {0, 1, 2}

{0} = {0, 1} {0, 1} = {0, 1, 2}

{1} = {1} {0, 2} = {0, 1, 2}

{2} = {2} {1, 2} = {0, 1, 2}

Closure 2.

∅ = ∅ {0, 1, 2} = {0, 1, 2}

{0} = {0, 2} {0, 1} = {0, 1, 2}

{1} = {1} {0, 2} = {0, 1, 2}

{2} = {2} {1, 2} = {0, 1, 2}

These two (V)–closure operators are different since the closure of the
singleton {0} is {0, 1} in the first case whereas it is {0, 2} in the second
one, but the two closure generate the same collection of closed sets.

Summarizing, we have the following implications:

(V) − space ⇒ (V) − closure operator ⇒ pre− Topology

but without any identification among the involved structures, in the
sense that the symbol⇒ means a simple logical implication.

Let us remark that in the (V)–closure induced from (V)-spaces the
only missed axiom with respect to the Tarski approach is idempo-
tency, but this property can be recovered introducing two further clo-
sure operators on the basis of a (V)-closure satisfying the standard
Tarski conditions.

3.3 fréchet (v)-spaces 20

3.3.2 The Tarski closure operator induced from pre-topological spaces

Let us investigate now as any pre-topological space induced in a
canonical way a Tarski closure operator.

Proposition 3.3.4. Let X be a universe.
Then every pre-topology for X, i.e., every collection C(X) of subsets of X
satisfying the conditions (PC1)–(PC3), determines a Tarski closure operator
∗ : P(X) 7→ P(X) defined for any subset A of X as follows:

cll(A) :=
⋂

{C ∈ C(X) : A ⊆ C}

Proof. The resulting operator cll is indeed a Tarski closure operator:

(TC1) cll(∅) = ∅. It is immediate since ∅ = ∅ by condition (Cl1) defin-
ing a (V)-closure.

(TC2) A ⊆ cll(A). It is immediate by the definition of cll.

(TC3) cll (cll(A)) = cll(A). We have that for all C ∈ C such that A ⊆ C,
cll(A) ⊆ C by its definition. Then cll (cll(A)) = cll(A).

(TC4) cll(A) ∪ cll(B) ⊆ cll(A ∪ B). This property, when restated as
A ⊆ B ⇒ cll(A) ⊆ cll(B) is immediately true by the definition
of cll.

The complete lattice abstract proof.
If C(Σ) is any family of elements from a complete lattice Σ, then

for any element a ∈ Σ let us consider the lattice meet a∗ := ∧{c ∈
C(Σ) : a 6 c}, which exists owing to the completeness of the lattice Σ
and the fact that the involved family is not empty since a 6 1 with
1 ∈ C(Σ) by (PC2).

(TC1) Trivially, 0∗ = ∧{c ∈ C(Σ) : 0 6 c} but from condition 0 6 0

and the axiom (PC1), i.e., 0 ∈ C(Σ), it follows that 0 ∈ {c ∈ C(Σ) : 0 6
c}, which leads to the (TC1).

(TC2) Since a∗ is the meet of the family C(a) := {c ∈ C(Σ) : a 6 c}
and in a complete lattice trivially a is the meet of the family Σ(a) :=
{b ∈ Σ : a 6 b}, from C(a) ⊆ Σ(a) it follows the (TC2).

(TC3) Applying the just proved (C2) to the element a∗ we get
a∗ 6 (a∗)∗; moreover, from the particular case a∗ 6 a∗ and the fact
that owing to (PC3) a∗ ∈ C(Σ), it follows that (a∗)∗ = ∧{d ∈ C(Σ) :

a∗ 6 d} 6 a∗, i.e., the (TC3).
(TC4) Finally, if a 6 b then {c ∈ C(Σ) : b 6 c} ⊆ {d ∈ C(Σ) :

a 6 d}, which trivially leads to the monotonicity condition a∗ 6 b∗

equivalent to (TC4).

A closure operator, also if in the weakest form of the Fréchet closure
considered in section 3.2 satisfies the minimal condition of increasing
(the closure of a set always includes this latter). Also in the present
Tarski l-case we have that for any possible subset A one has that

3.3 fréchet (v)-spaces 21

A ⊆ cll(A). So it is interesting to single out the collection of all the
possible subsets for which the equality holds:

Cl(X) := {H ∈ P(X) : H = cll(H)}

This is the collection of all Tarski l-closed subsets, and each elements
of this set is called l-closed.

3.3.3 The Tarski closure operator induced from a (V)-closure

First of all, for a given subset A let us denote by An, with n ∈N, the
(V)-closure operator iterated n times on the set A:

A
0
= A, A1 = A, A2 = A, . . . ,An+1 =

(
A
n), . . .

Let us note that the following ordering chain holds:

A ⊆ A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ An+1 ⊆ . . . (3)

Moreover, from an iterated application of the isotonicity condition of
the (V)-closure operators one obtains the following result:

A ⊆ B implies A
n ⊆ Bn for every n ∈N (4)

To continue it is necessary to recall the definition of semi-continuity.

Definition 3.3.3. Given two lattices P and Q a function f : P 7→ Q is
semi-continuous iff for every subset U of P, if

∨
U exists then f(

∨
U) =∨

f(U).

From now on will be assumed the semi-continuity of the (V)-closure
· on every chain A ⊆ A ⊆ A2 ⊆ The case when the assumption
is not fulfilled will be treated in Appendix 3.5.

We can define another closure operator clu as:

clu (A) =
⋃
n∈N

A
n (5)

We are going to show that clu is a Tarski closure operator.

• clu(∅) = ∅. Immediate since ∅ = ∅.

• A ⊆ clu(A). It is immediate since A ⊆ A ⊆ clu(A).

• clu(clu(A)) = clu(A). From the just proved property applied
to the subset clu(a) we get that clu(A) ⊆ clu(clu(A)). Now,
applying the isotonicity of (4) to the inclusion A ⊆ clu(A) one

has that Ai ⊆ clu(A)
i

and so a fortiori
⋃
i∈NA

i ⊆
⋃
i∈N clu(A)

i
,

i.e., clu(A) ⊆ clu(clu(A)).

3.3 fréchet (v)-spaces 22

To prove the vice versa it is only necessary to show that⋃
n∈N

A
n ⊆

⋃
n∈N

A
n

The inequality give us that cl(cl(A)) ⊆ cl(A). By semi-continuity
we have that:⋃

n∈N

A
n
=
⋃
n∈N

A
n

then it is immediate that:⋃
n∈NA

n
=

⋃
n∈NA

n+1

⊆ A∪
⋃
n∈NA

n

=
⋃
n∈NA

n

This proves that cl(A) ⊆ cl(A) and, as a consequence, that
cl(cl(A)) ⊆ cl(A).

Then for every A one has that cl (A) ⊇ cl (cl (A)). Since cl (A) ⊆
cl (A) ⊆ cl (cl (A)) we conclude that cl (A) = cl (cl (A)).

clu(A) ∪ clu(B) ⊆ clu(A ∪ B). As shown in proposition 3.3.1,
this property can be restated as the isotonicity (1): A ⊆ B ⇒
clu(A) ⊆ clu(B). Since also the isotonicity expressed by (4)
holds, A ⊆ B implies Ai ⊆ B

i for every i ∈ N, as an imme-
diate consequence the required property for clu holds.

It is interesting to note that if for any the proper subset A of X we
have that A ⊃ A, then clu gives the indiscrete topology.

Since the previous result holds only when the closure operator is
semi-continuous it is interesting to find examples of closures that re-
spect this property and closures that do not respect it.

Example 3.3.2. Consider the set R of real numbers where the closure
of a set A is defined as the smallest interval [a,b] such that a,b ∈
N, A ⊆ (a,b). It is easy to verify that this function is a (V)-closure.
It is immediate that for every finite ascending chain A ⊆ A ⊆ . . .

the property of semi-continuity holds. Since the supremum of every
chain is R when the starting set is non-empty, the property of semi-
continuity holds for all ascending chain in the form A ⊆ A The
Tarski closure that can be obtained with from this (V)-closure is the
indiscrete topology.

Example 3.3.3. Consider the set N of natural numbers. Now, define
the closure of a non-empty set A in the following way:

• A = A ∪ {zeven} where zeven is the smallest even number not
contained into A if such a number exists.

3.3 fréchet (v)-spaces 23

• A = A ∪ {zodd} where zodd is the smallest odd number not con-
tained into A if such a number exists and A contains all the
even numbers.

• A = A otherwise.

It can be verified that · is a (V)-closure. This closure does not respect
the semi-continuity property. In fact, consider a set A that does not
contain an infinity of even numbers and contains no odd numbers.
Then

⋃
n∈NA

n is the set of all even numbers. It is immediate that

that
⋃
n∈NA

n is still the set of all even numbers but
⋃
n∈NA

n is the
set of all even numbers plus the number 1. This provides a counter-
example for semi-continuity. In this case a Tarski closure cannot be
recovered in the way previously illustrated.

There is an immediate relation between the three closure operators
clu, cll and · : for every subset A of X one has that

A ⊆ cll(A) ⊆ A ⊆ clu(A) (6)

We can see this relation as a way to approximate a (V)-closure (which
is not idempotent and so it is not Tarski) by using a pair of Tarski
closures. Given a (V)-closure operator · , it is possible to give two
Tarski closure pair (cll, clu) such that the above inequalities (6) holds;
in particular cll is the lower approximation closure and clu the upper
approximation closure of the original (V)-closure operator. Moreover,
for all i ∈N it is Ai ⊆ clu(A).

As usual for any Tarski closure operator one can single out the
collection of all closed sets, as the fixed points with respect to the in-
volved closure operator. In the context of the present closure operator
clu this collection will be denoted by:

Cu(X) := {K ∈ P(X) : clu(K) = K}

Generally,

Proposition 3.3.5. A subset A of X is a closed sets of clu iff A = A. In
other words, and recalling (2),

C(X) = Cu(X) ⊆ Cl(X)

Proof. For proving this statement, first of all let us consider the case
when the first equality is not true. Then either A ⊂ A and A = clu(A),
which is impossible, or A = A and A ⊂ clu(A) which is also impossi-
ble.

On the other hand, if A is u-closed, A = clu(A), then by the above
set theoretical inequalities (6) it is also A = cll(A), i.e., clu(A) ⊆
cll(X).

3.4 čech topologies 24

3.4 čech topologies

A Čech topological space is a slightly more structured version of a
(V)-space where the condition of subadditivity is substituted by a
stronger one of equality[206, 186]. These spaces were called by Čech
closure spaces.

Definition 3.4.1. Let X be a set. A Čech closure over X is a function
· : P(X) 7→ P(X) with the following properties:

i. ∅ = ∅.

ii. For all A ⊆ X A ⊆ A.

iii. For all A,B ⊆ X A∪B = A∪B.

Associated to the Čech topology there is also its neighbourhood
structure.

Definition 3.4.2. Consider a set X. Every Čech topology over X is de-
fined by a neighbours structure N (x) that associates to every element
x ∈ X a non-empty set of subsets of X with the following properties:

P1. x ∈ N for all N ∈ N (x).

P2. If N,N ′ ∈ N (x) then there is N ′′ ∈ N (x) such that N ′′ ⊆ N∩N ′.

P3. If N ∈ N (x) and N ⊆ N ′ then N ′ ∈ N (x).

Recall that a base for a neighbouhood of x is a set B such that
for all V ∈ X such that ∃B ∈ B with B ⊆ V then V is inside the
neighbourhood of x. Recall that a subbase for the neighbourhood of
x is a collectionS of sets whose finite intersections form a base for the
neighbourhood.

A structure NB that satisfy only P1 and P2 is a base for the Čech
topology and a structure NS that satisfy only P1 is a subbase. The
neighbours structure is a stronger version of a filter. In fact, a set of
non-empty sets that satisfy P2 and P3 is a filter.

The Čech closure operator can also be defined using the neighbour-
hood structure:

A = {x ∈ X | ∀N ∈ N (x) N∩A 6= ∅}

It is immediate that the operator defined in this way is a Čech closure
operator:

1. ∅ = {x ∈ X | ∀N ∈ N (x) N∩ ∅ 6= ∅} = ∅

2. Let x ∈ A. Then x ∈ A by property P1.

3.4 čech topologies 25

3. Let A,B ⊆ X, then:

A∪B = {x ∈ X | ∀N ∈ N (x) N∩ (A∪B) 6= ∅}
= {x ∈ X | ∀N ∈ N (x) (N∩A)∪ (N∩B) 6= ∅}
= {x ∈ X | ∀N ∈ N (x) N∩A 6= ∅} ∪

{x ∈ X | ∀N ∈ N (x) N∩B 6= ∅}
= A∪B

In a way similar to the definition of the Čech closure operator, we
can define a Čech interior operator:

(A)◦ = {x ∈ X | A ∈ N (x)}

3.4.1 From Čech topologies to topologies

Since from the Čech closure (resp. Čech interior) operator it is pos-
sible to obtain a closure (resp. interior) operator, every Čech closure
(resp. Čech interior) operator induces a topology on X. Note that the
induced closure operator does not always generate the starting Čech
topology.

Let X be a space and · a Čech closure over it. Then it is possible to
obtain a topological closure operator cl by the following procedure.
Let C be the set {C ⊆ X | ∃B ⊆ X B = C} (i.e., the set of pseudoclosed
sets of X). Let Ctop ⊆ C be defined as {C ∈ C | C = C}. The closure
operator cl is defined as:

cl(A) =
⋂

{B ∈ Ctop | A ⊆ B}

It is now necessary to check that cl respects all the properties of a
topological closure operator:

• cl(∅) = ∅. The empty set is in C and also in Ctop. This implies
that cl(∅) = ∅.

• A ⊆ cl(A). It is immediate since all the sets in the intersection
that defines cl are supersets of A.

• cl (cl(A)) = cl(A). Since cl(A) is the intersection of all the sets
of Ctop that are supersets of A, the same setsare also supersets
of cl(A). Since A ⊆ cl(A), no other set can partecipate in the
intersection. So, cl (cl(A)) = cl(A).

• cl(A) ∪ cl(B) = cl(A ∪ B). The implication for the ⊆ part can be
reformulated to A ⊆ B ⇒ cl(A) ⊆ cl(B). This is immediate by
the definition of cl. The implication in the ⊇ part can be show
in the following way. Let C,D be sets in Ctop. Then C ∪D =

C∪D and C ∪D = C ∪D. Then C∪D = C ∪D = C ∪D =

C∪D = C∪D. So, if both C and D are members of Ctop also

3.4 čech topologies 26

C ∪D is member of Ctop. This means that cl(A ∪ B) =
⋂
{C ∈

Ctop | A ∪ B ⊆ C} ⊆
⋂
{C ∪D | C,D ∈ Ctop A ⊆ C and B ⊆ D} ⊆⋂

{cl(A)∪D | D ∈ Ctop B ⊆ D} = cl(A)∪ cl(B).

Since cl respects all the property of a topological closure, this means
that it is possible to obtain a topological space starting from a Čech
closure.

Example 3.4.1. Consider the Čech topology given by the following
Čech closure operator:

∅ = ∅ {0, 1, 2} = {0, 1, 2}

{0} = {0} {0, 1} = {0, 1, 2}

{1} = {1, 2} {0, 2} = {0, 1, 2}

{2} = {1, 2} {1, 2} = {0, 1, 2}

Now consider the set C ′ of pseudoclosed sets where idempotency
holds:

C ′ = {∅, {0}, {0, 1, 2}}

This set give a topology over {0, 1, 2} but there is no way to recover the
original Čech topology. In fact, the induced topology is also a Čech
topology, meaning that there are at least two possible Čech topologies
that induce this topology.

From the previous example it is immediate that there is a surjective
mapping between Čech topologies and topologies but this mapping
is not injective.

3.4.2 Finite graph and Čech Topologies

If X is finite there is an association between directed graphs and Čech
topologies[186].

Every Čech topology over a finite set has an associated finite directed
graph. Let (X,N) be a Čech topological space. We can build the graph
(X,E) where for every x,y ∈ X the edge (x,y) ∈ E if and only if
x ∈

⋂
N∈N(y)N, i.e., if x is in all the neighbourhoods of y.

Every finite directed graph has an associated Čech topology. Let (V ,E)
be a directed graph. For every vertex v ∈ V let out(v) be the set of
outgoing edges of v. Define N (x) = {A ⊆ V | out(x) ∪ {x} ⊆ A}. The
neighbourhood structure defined immediately respects P1, it respects
P2 since out(x)∪ {x} is a subset of every set in N (x) and also respects
P3.

On finite graphs the notion of Čech closure and Čech interior can
be easily defined. Given a graph G = (V ,E) and a set A ⊆ V , A is the
set of all vertex v ∈ V such that:

1. v ∈ A or

3.4 čech topologies 27

2. There exists v ′ ∈ A such that (v, v ′) ∈ E (i.e., v is directly con-
nected to a node in A).

On the other side the Čech interior of A (i.e., (A)◦) is defined as the
set of all vertex v ∈ A with the property that @v ′ ∈ V \A such that
(v ′, v) ∈ E (i.e., all the vertex of A that does not have an ingoing edge
from a vertex outside A). It is possible to show that this definition
of Čech interior and Čech closure is the same as the neighbourhood
based one.

Example 3.4.2. Consider the following Čech topology structure N1
over X = {0, 1, 2}:

N (0) = {{0, 1}, {0, 1, 2}}

N (1) = {{1, 2}, {0, 1, 2}}

N (2) = {{2}, {0, 2}, {1, 2}, {0, 1, 2}}

0 1 2

Figure 2: The graph induced by the Čech topology N1

In this structure consider the following Čech interiors:

({0})◦ = ∅ ({0, 1})◦ = {0}

({1})◦ = ∅ ({0, 2})◦ = {2}

({2})◦ = {2} ({1, 2})◦ = {1, 2}

The fact that ·◦ is not idempotent is evident: ({0, 1})◦ = {0} but
(
({0, 1})◦

)◦
=

∅.
We can also consider the pseudoclosed sets:

{0} = {0} {0, 1} = {0, 1}

{1} = {0, 1} {0, 2} = {0, 1, 2}

{2} = {1, 2} {1, 2} = {0, 1, 2}

Also in this case it is evident that the Čech closure is not idempotent:
{2} = {1, 2} but {2} = {0, 1, 2}.

The closure operator induced by · is the following:

Cl{0} = {0} Cl{0, 1} = {0, 1}

Cl{1} = {0, 1} Cl{0, 2} = {0, 1, 2}

Cl{2} = {0, 1, 2} Cl{1, 2} = {0, 1, 2}

An other question is if A∩B is A∩B for every set A,B ⊆ X. A short
example show that it is not true.

3.4 čech topologies 28

Example 3.4.3. Consider the following Čech topology structure N2
over X = {0, 1, 2}:

N (0) = {{0}, {0, 1}, {0, 2}, {0, 1, 2}}

N (1) = {{0, 1, 2}}

N (2) = {{2}, {0, 2}, {1, 2}, {0, 1, 2}}

0 1 2

Figure 3: The graph induced by the Čech topology N2

Now consider A = {0} and B = {2}. We immediately have that:

A∩B = {0, 1}∩ {1, 2} = {1}

A∩B = ∅ = ∅

In fact, we only have the condition that A∩B ⊆ A∩B from the fact
that C ⊆ D =⇒ C ⊆ D

A∩B ⊆ A

A∩B ⊆ B

⇓
A∩B∩B ⊆ A∩B

A∩B ⊆ A∩B

A similar condition holds for the Čech interior operator. Consider A
and B. We are interested in checking if the property (A)◦ ∪ (B)◦ =

(A∪B)◦ holds. Like in the previous case, the property is not true.

Example 3.4.4. Consider the neighbourhood structure N3 over X =

{1, 2, 3} defined as follows:

N (0) = {{0, 1}, {0, 1, 2}}

N (1) = {{2}, {0, 1}, {1, 2}, {0, 1, 2}}

N (2) = {{1, 2}, {0, 1, 2}}

0 1 2

Figure 4: The graph induced by the Čech topology N3

Now consider A = {0} and B = {1, 2}. We immediately have that:

(A)◦ ∪ (B)◦ = ∅ ∪ {1, 2} = {1, 2}

(A∪B)◦ = ({0, 1, 2})◦ = {0, 1, 2}

3.4 čech topologies 29

In fact, the property that holds is that for all A,B ⊆ X, (A)◦∪ (B)◦ ⊆
(A∪B)◦. This follows directly from the fact that A ⊆ B ⇒ (A)◦ ⊆
(B)◦:

(A)◦ ⊆ (A∪B)◦

(B)◦ ⊆ (A∪B)◦

⇓
(A)◦ ∪ (B)◦ ⊆ (A∪B)◦ ∪ (B)◦

(A)◦ ∪ (B)◦ ⊆ (A∪B)◦

An other interesting property is the following: given two setsA,B ⊆
X, exists C ⊆ X such that C = A ∩ B? The answer is, in the general
case, negative, as it is possible to see in Example 3.4.2. The result of
{1} ∩ {2} is {1}, which is not the Čech closure of any subset of {0, 1, 2}
since it is not the closure of any of its subsets.

A similar consideration is valid when considering the Čech interior
operator and the following property: given two sets A,B ⊆ X, exists
C ⊆ X such that (C)◦ = (A)◦ ∪ (B)◦? In the general case the answer
is negative. This can be seen in Example 3.4.3. The result of ({0, 1})◦ ∪
({1, 2})◦ is {0, 2} which is not he Čech interior of any subset of {0, 1, 2}
since it is not the interior of itself or of any of it supersets.

3.4.3 Čech topologies and convergence

Let (X,N) be a Čech topological space. Consider a filter F on X. The
filter F converges to the point x ∈ X if it contains the neighbourhood
filter of x (i.e., N(x) ⊆ F). The notation for this is F→ x.

The relation defined in this way denotes a convergence space. We
recall that the relation→ must satisfy the following properties:

1. Centered. The set of all the sets that contains x must converge to
x:

{A | x ∈ A}→ x

2. Isotone. Let F,G be two filters with F ⊆ G. If F→ x the G→ x.

3. Directed. Let F and G be two filters that converges to x. Then
there exists H ⊆ F ∩ G such that H → x. Note that from the
scond property we also have that F∩G→ x.

In fact in a Čech topological space with the given relation→ the last
properties holds in a stronger way. The relation is not only directed
but also infinitely directed since the convergence to x is assured not
only for finite but also for infinite intersection.

From the convergence structure we can recover the Čech topologi-
cal space. A set N is a neighbourhood of x iff N ∈ F for all F→ x. This
means that

N(x) =
⋂

{F | F→ x}

3.5 iterating the closure operator a transfinite number of times 30

Note that every convergence space that is infinitely directed has a
representation in terms of Čech topological spaces (the converse is
also true).

The procedure to obtain the neighborhood of a point from a con-
vergence space can be also carried out when the space is not infinitely
directed. In this case the resulting Čech topology, when converted to
a convergence space, has a weaker notion of convergence.

3.5 iterating the closure operator a transfinite num-
ber of times

Definition 3.5.1. A set P with a linear order < is well-ordered iff every
non-empty subset of P has a least element.

The well-ordering principle states that every set can be well-ordered.
This principle is unprovable in Zermelo-Fraenkel set theory (ZF) with-
out the axiom of choice. In fact, the well-ordering principle is equiva-
lent to the axiom of choice.

Definition 3.5.2. A set P is transitive iff ∀x x ∈ P ⇒ x ⊆ P. A set is an
ordinal if it is transitive and well-ordered by ∈.

The first ordinal is 0 = ∅, the second ordinal is 1 = {∅} = {0}, the
third ordinal is 2 = {∅, {∅}} = {0, 1}. Over ordinals it is possible to
define a successor operator: given an ordinal α, α+ 1 is α ∪ {α}. An
ordinal α is called a successor ordinal if α = β+ 1 for some ordinal
β. An ordinal is called a limit ordinal if it is not 0 or the successor
of some other ordinal. The ordinals obtainable starting from ∅ and
iterating only the successor operator are called finite ordinals. Some
properties of ordinal numbers are:

1. If α and β are ordinals, then either α ⊆ β or β ⊆ α. In other
words, two ordinals are always comparable.

2. Given a non-empty set of ordinals X, then ∪X is an ordinal. The
ordinal ∪X is sup{X}.

The first limit ordinal is denoted by ω and it is the set of all finite
ordinals. It is possible to take is successor ω+ 1 and also repeat the
limit taking process to obtain ω · 2, ω · 3, ω2, etc.

As an example, consider the set N of natural numbers. Its order
type with the usual ordering is ω. If we consider the same set but
with a different well-ordering we can obtain different order types.
For example with the ordering <1, such that 1 <1 2 <1 3 . . . <1 0
the order type obtained is ω+ 1. With an ordering where every even
number is greater than every odd number the order type obtained is
ω ·2. This examples show that different order types do not necessarily
correspond to different cardinalities. The ordinals presented up to
now are all countable. To obtain the first uncountable ordinal ω1 we

3.5 iterating the closure operator a transfinite number of times 31

consider the supremum of the set of countable ordinals. For every
ordinal it is always possible to find a bigger ordinal by taking the
successor or the supremum of all smaller ordinal. This means that
Ord, the class of all ordinals, is not a set since otherwise it would
be an ordinal and we could take its successor negating the fact the it
contains all ordinals.

With the notion of ordinals it is possible to define the iteration of
the closure operator for every λ ∈ Ord. Given a set X equipped with
a closure operator · for all A ⊆ X, Aλ is defined as:

A
λ
=


A if λ = 0

A
β if ∃β : λ = β+ 1⋃
β<λA

β otherwise

A first question that can arise is the real necessity of this definition.
In fact, it is possible to produce some examples where the necessity
of an uncountable number of iterations is needed. For example, con-
sider a well ordering of the reals and the (V)-space closure operator
given by A = min{R \A} for all proper subsets of R. The closure op-
erator defined in this way is idempotent only for the empty set and
for R. Consider a countable set A ⊂ R. Now consider a countable
union B = A∪A∪A2 ∪ Every set in the union is countable since
the closure operator adds only one element at time. Since B is the
countable union of countable sets it is itself countable. This means
that B 6= R and it is not a fixed point for the iteration of the (V)-space
closure. The previous example shows that to reach a fixed point it
may be necessary to iterate more than a countable number of times.

Recall that for any cardinal κ, κ+ denotes the next cardinal, also
in the usual construction every cardinal κ is also an ordinal and, in
particular, it is the first ordinal to have cardinality κ.

Proposition 3.5.1. Let X be a set, with |X| = κ. Let · : P (X) 7→ P (X) be
a function such that A ⊆ A for all A ⊆ X. Then

cl (A) =
⋃
λ<κ+

A
λ

is such that that cl (cl (A)) = cl (A).

Proof. Suppose otherwise. Then there exists a set A such that cl (A) ⊂
cl (cl (A)). This means that it is possible to build the following family
of sets:

A0 = A \A, A1 = A
2
\A, . . . ,Aω = A

ω+1
\A

ω, . . .

and, generally, Aλ = A
λ+1

\A
λ. Everyone of these sets is non-empty

and disjoint from all the others. Consider two distinct sets Aβ and Aλ.
Withous loss of generality suppose β < λ. Then Aλ = A

λ+1
\A

λ ⊆

3.5 iterating the closure operator a transfinite number of times 32

A
λ+1

\A
β+1 ⊆ Aλ+1 \

(
A
β+1

\A
β
)
= A

λ+1
\Aβ. This means that

for all β, λ ∈ Ord with β 6= λ the set Aλ is disjoint from Aβ.
Let B be a set defined as

⋃
λ<κ+ Aλ. Since all the sets in the union

are disjoint and non-empty:

|B| =

∣∣∣∣∣ ⋃
λ<κ+

Aλ

∣∣∣∣∣ = ∑
λ<κ+

|Aλ| = κ
+ sup
λ<κ+

{|Aλ|} > κ
+

where the first two equalities are by definition and the last equal-
ity can be found in Lemma 5.8 of [99]. Also, since every element
of the union is a subset of X, B ⊆ X and |B| 6 κ. This means that
the assumption that there exists a set such that cl (A) ⊂ cl (cl (A))
is wrong. Then cl (A) ⊇ cl (cl (A)). Since cl (A) ⊆ cl (A) ⊆ cl (cl (A))
then cl (A) = cl (cl (A)).

Remark. The previous proposition assumes the axiom of choice since
the existance of a unique successor cardinal and the inequality used
in the proof require it.

The passage from a (V)-closure to a Tarski closure has been done
using semi-continuity by defining the Tarski closure as:

cl(A) =
⋃
n∈N

A
n

When the hypothesis of semi-continuity is dropped a Tarski closure
can still be recovered in a similar way but the definition must allow
iteration after ω. A working definition could be:

cl(A) =
⋃
λ∈Ord

A
λ

The proof that cl is a Tarsky closure follow a pattern similar to the one
used when semi-continuity was assumed. When using this definition
from every (V)-space closure it is always possible to obtain a Tarski
closure.

4
A T H E O R E T I C A L M O D E L F O R O N E - P O I N T
C R O S S O V E R

4.1 introduction

Defining a distance based on the neighborhood structure induced by
the genetic operators is a basic step for analysing various dynamics
of the search process of Genetic Algorithms (GAs) [93, 80]. For in-
stance, it is useful if we want to monitor population diversity (see for
instance [80, 85, 26, 192, 59]) or if we want to calculate well-known
indicators of problem hardness such as fitness distance correlation
(see among others [102, 193]). Operator-based distance can make cal-
culating distance and analysing the search process more accurate
[102, 199]. Defining a distance, or a function to measure similarity,
that is, in some sense “bound” to (or “consistent” with) the genetic
operators informally means that if two objects (individuals or popu-
lations) are close to each other, or similar, one can be transformed into
the other with a few applications of the operator(s). This has been
recently formalized in [128] and we rely on that definition here.

We want to define a distance that is bound to standard one-point
GAs crossover [93, 80]. While defining a mutation-based distance can
be an easy task for GAs (for instance, Hamming distance is natu-
rally bound to one-point mutation [102]), defining a crossover-based
distance can be an issue, mainly because the neighborhood induced
by crossover strongly depends on the population where individuals
evolve (this difficulty has already been recognized in many references,
for instance [102, 193]). Nevertheless, defining a crossover-based mea-
sure would be extremely important, given that crossover is often the
main operator used by GAs to carry out search.

Here, we solve the problem of the influence of populations on
neighborhoods by focusing on the definition of a crossover-based dis-
tance between populations. Once that function is defined, we show
how it can be used to define a family of distances between individu-
als.

The definition of a crossover based distance that respects the dy-
namics of crossover could be used to obtain fitness-distance corre-
lation (fdc) values that are more representative of the real problem
difficulty. In fact, fdc value strongly depends on the distance chosen.

33

4.2 basic notions 34

Hence, a distance that better models the GA dynamics could allow
an assessment of the problem difficulty of GA that could be more
reliable. Another use of a crossover based distance is the study of the
mean distance between a population and all the other possible popu-
lation. A population with a low mean distance can be a better initial
population for GA because it can allow a better exploration of the
search space. Furthermore, the study of a topology over populations
can lead to a better understanding of the possible dynamics of GA.

The distance between populations that we introduce is (consistently
with the definition given in [128]) strictly related to the minimum
number of steps required to transform a population P1 into another
population P2 by iteratively applying one-point crossover to randomly
chosen individuals in P1. It is important to note that here the pro-
posed model diverges from the classical GA definition. In fact, we
do not track the presence of multiple instances of the same individ-
ual (since it does not provide new genetic material) and we are not
restricting the population size. However, the results obtained give a
lower bound on the minimum number of steps required by a tradi-
tional GA.

Contrary to what one may imagine, we also show that calculating
this distance can be computationally cheap and we present an algo-
rithm that performs this calculation in polynomial time with respect
to the population size and the number of genes composing the indi-
viduals.

This chapter is organized as follows. In Section 2.2 we revise pre-
vious and related work. In Section 4.2, some basic mathematical no-
tions that we use to model GAs are recalled. In Section 4.3, the model
used for computing the proposed distance is studied and some of its
general properties are discussed. In Section 4.4, an alternative and
more concise way of representing populations is introduced and an
efficient algorithm to compute the proposed distance using this rep-
resentation is given. Finally, Section 4.5 discusses and concludes the
chapter.

4.2 basic notions

In this section some basic notions and some notations that are neces-
sary for the continuation of this chapter are introduced.

We denote by [i, j] with i, j ∈N the set {i, i+ 1, . . . , j− 1, j} ⊆N. We
denote by SCn the set {[i, j] | 1 6 i 6 j 6 n} for a fixed n ∈N.

A finite alphabet will be denoted by Σ. The set of all the strings
of a given length composed of symbols from Σ is denoted by Σn.
A element x ∈ Σn is denoted by x1, . . . , xn. The notation x[i,j] is a
shortcut for xi, xi+1, . . . , xj−1, xj.

Recall that a lattice L is a non-empty set L endorsed with a partial
ordering <L such that for any two elements a,b ∈ L the join a∨b (i.e.,

4.3 crossover distance definition 35

the least upper bound of a and b) and the meet a∧b (i.e., the greatest
lower bound of a and b) operators are uniquely defined inL [23].

A lattice is bounded if
∨
L (i.e., a maximal element for L) and

∧
L

(i.e., a minimal element for L) exist. A lattice is complete if for every
subset S of L then both

∨
S and

∧
S exist. Note that every finite lattice

is complete.
Given a lattice L = (L,<L) a subset O of L is a lower set if for all

x ∈ L such that there exists y ∈ O with x <L y we have that x ∈ O.
The set of all lower sets of a lattice L is denoted by O (L) and it is by
itself a lattice with respect to set inclusion. See [23] for a reference on
lattices.

4.3 crossover distance definition

4.3.1 Crossover relations

In this section we introduce the simplified model for GA with one-
point crossover used to define the proposed distance. In this model,
populations can be any subset of the set of strings of length n over
an alphabet Σ. Hence, we are not considering fixed-size populations
and we are not considering presence of multiple copies of the same
individual in the population.

Definition 4.3.1. A one-point crossover relation RI is a binary relation
over Σn × Σn such that for all x,y, x ′,y ′ ∈ Σn:

(x,y)RI(x ′,y ′) ⇔ ∃k ∈ [0,n] s.t. x ′ = x[1,k]y[k+1,n]

and y ′ = y[1,k]x[k+1,n]

In other words, two pairs of elements are in one-point crossover
relation when the second pair can be obtained by one-point crossover
from the first pair. The relation RI is reflexive, symmetric but not
transitive. It is immediate that its transitive closure is an equivalence

relation that partitions Σn×Σn into
((

|Σ|
2

)
+ |Σ|

)n
equivalence classes

(i.e., for every position it is possible to choose a pair of symbols that
are not necessarily distinct).

Definition 4.3.2. A one-point crossover relation RP over P = P (Σn)

is a relation such that for all P1,P2 ∈ P:

P1RPP2 ⇔ ∀x ′ ∈ P2 ∃y ′ ∈ Σn ∃x,y ∈ P1
s.t. (x,y)RI(x ′,y ′)

In other words, two subsets of Σn are in relation if and only if every
element of the second subset can be obtained by crossover from ele-
ments of the first subset. Notice that there are some assumptions in
this model of crossover. First of all not all elements of the first popula-
tion need to contribute to obtain the second population. Furthermore,

4.3 crossover distance definition 36

only one of the offspring need to be inserted into the resulting popu-
lation. Finally, the current model does not take into account the size
of the population that can be obtained (e.g., ΣnRP∅).

Example 4.3.1. Consider the following two populations:

P1 = {0110, 0101, 0011}

P2 = {0111, 0001, 0000}

We have that P2RPP1 since all of the element of P1 can be obtained
with one application of one-point crossover to pair of elements of P2.
In fact, 0110 can be obtained from 0111 and 0000, 0101 can be obtained
from 0111 and 0001, while 0011 can be obtained from 0000 and 0111.
It is not true that P1RPP2 since 0000 cannot be obtained from one
application of one-point crossover from any pair of elements of P1.

The relation RP is reflexive. The Example 4.3.1 shows that RP is not
a symmetric relation. Neither the relation is transitive. Note that, by
definition, if P1RPP2 then for all P ′2 ⊆ P2 and for all P ′1 ⊇ P1 it is true
that P ′1RPP

′
2.

The main idea that will be carried on is to define a Čech closure ·
such that for any population P we have that {P}

i
is the set of popula-

tions that can be obtained after i generations using only crossover as
genetic operator. In this way it is possible to define a closure J·K such
that for any two populations P1 and P2:

• P2 can be obtained using only crossover from P1 iff P2 ∈ J{P1}K.

• The minimal k ∈ N such that P2 ∈
⋃k
i=0 {P1}

i
is the minimum

number of generations needed to obtain P2 from P1.

Such a closure can be defined in the following way:

Definition 4.3.3. The crossover closure is a function · : P (P) 7→ P (P)
defined, for every A ⊆ P, as :

1. When A = ∅, A = ∅.

2. When A = {P}, {P} = {P ′ ∈ P | PRPP
′}.

3. Otherwise, {P1,P2, . . . ,Pk} =
⋃k
i=1 {Pi}.

The first property we need to prove is that · is a Čech closure. In
this way we will be able to use the properties of Čech closures when
needed.

Proposition 4.3.1. The crossover closure is a Čech closure.

Proof. The closure of ∅ is ∅ by definition. Since the relation RP is re-
flexive, for all A ⊆ P it is immediate that A ⊆ A. The property of
additivity holds by the definition of crossover closure.

4.3 crossover distance definition 37

Furthermore, for all P1,P2 ∈ P, P2 ∈ {P1}
k

iff there exist

P1 = Q0,Q1, . . . ,Qk−1,Qk = P2 ∈ P

such that QiRPQi+1 for all i ∈ [0,k− 1]. In other words, we are re-
quiring that one application the closure · effectively represents one
generation.

Proposition 4.3.2. For all P1,P2 ∈ P and for all k ∈ N, P2 ∈ {P1}
k

(Property 1) iff there exists Q0, . . . ,Qk ∈ P with Q0 = P1, Qk = P2 and
such that QiRPQi+1 for i ∈ [0,k− 1] (Property 2).

Proof. Suppose that Property 1 holds. We prove by induction on k that
Property 2 follows. When k = 0 it is immediate that for any P1,P2 ∈ P
P2 ∈ {P1} iff P1 = P2 which immediately gives P1RPP1 by reflexivity
of RP.

Suppose that Property 1 implies Property 2 up to k. We prove that the
implication is also true for k+ 1. Take any P1,P2 ∈ P such that P2 ∈
{P1}

k+1
. There exists a population P ′ ∈ {P1}

k
such that P ′RPP2 by defi-

nition of · . By induction hypothesis there exists P1 = Qo,Q1, . . . ,Qk =

P ′ such that QiRPQi+1 for all i ∈ [0,k − 1]. The sequence P1 =

Q0, . . . ,Qk = P ′,Qk+1 = P2 is such that QiRPQi+1 for all i ∈ [0,k]
proving that Property 2 holds for k+ 1.

Now assume Property 2. We prove that it implies Property 1. When
k = 0 the statement is vacuously true.

Suppose that Property 2 implies Property 1 up to k. We prove that the
implication also holds for k+ 1. Take any P1,P2 ∈ P such that there
exists P1 = Q0,Q1, . . . ,Qk,Qk+1 = P2 such that Property 2 holds. By

induction hypothesis Qk ∈ {P1}
k

. By definition of · we have that

P2 ∈ {P1}
k+1

. Thus, Property 1 holds for k+ 1.

Proposition 4.3.2 shows that iterating the closure of a set of pop-
ulations k times is equivalent to collecting all the populations reach-
able from the considered set in at most k generations using one-point
crossover.

4.3.2 The Structure of the Closure

We study the structure of {P} for all P ∈ P. In many cases a chain of

sets of populations {P} ⊆ {P} ⊆ {P}
2 ⊆ . . . could be substituted by a

chain of populations P ⊆ P ′ ⊆ P ′′ ⊆ . . . that is more easily tractable.

Definition 4.3.4. Let µP : P (P) 7→ P be defined as:

µP ({P1, . . . ,Pk}) =
k⋃
i=1

Pi

Proposition 4.3.3. For all P ∈ P, {P} is the lattice
(
P
(
µP

(
{P}
))

,⊆
)

.

4.3 crossover distance definition 38

Proof. It is immediate that for all P ′ ∈ {P} =⇒ P ′ ⊆ µP
(
{P}
)

. We

only need to prove the inverse implication. Note that {x} ∈ {P} ⇔
{x} ⊆ µP

(
{P}
)

and that ∅ ∈ {P}. Then we only need to prove that {P}

is closed under finite union. Let P1,P2 ∈ {P} then for all x ′ ∈ P1 ∪ P2
there exists y ′ ∈ Σn and x,y ∈ P such that (x,y)RI(x ′,y ′) since either
x ′ ∈ P1 or x ′ ∈ P2. This means that P1 ∪ P2 ∈ {P}.

Since {P} is the power set of µP
(
{P}
)

it is a lattice with respect
to the set inclusion ordering with union and intersection as join and
meet operations.

Note that {P} has µP
(
{P}
)

as maximal element and ∅ as minimal
element.

Proposition 4.3.4. For all P ∈ P and for all i ∈N, {P}
i

is a lattice.

Proof. {P} is a lattice. {P} is a lattice by Proposition 4.3.3. Suppose

that {P}
i

is a lattice. We prove that {P}
i+1

is also a lattice. Due to the
additivity property of Čech closures we have that A ⊆ B =⇒ A ⊆ B.

Also, since for all P ′ ∈ {P}
i
, P ′ ⊆ µP

(
{P}
i
)

we have that

{P}
i+1

=
⋃

P ′∈{P}i
{P ′} ⊆ µP

(
{P}
i
)

The other direction of the inclusion is immediate because µP
(
{P}
i
)
∈

{P}
i
. Since µP

(
{P}
i
)
∈ P we have that the closure of µP

(
{P}
i
)

is a
lattice.

As a direct corollary given by the proof of the previous proposition,
we have that:

Corollary. For all P ∈ P and for all i ∈N with i > 0, {P}
i

is the lattice of
P
(
µP

(
{P}
i
))

ordered by set inclusion.

To a sequence {P} ⊆ {P} ⊆ {P}
2 ⊆ . . . we can associate the sequence

µP ({P}) ⊆ µP

(
{P}
)
⊆ µP

(
{P}
2
)
⊆ . . . that is also equivalent to

the sequence S0(P) ⊆ S1(P) ⊆ S2(P) ⊆ . . . where S0(P) = P and
Si(P) = µP

(
{Si−1}

)
when i > 0. This means that, in order to know

if a population P ′ exists inside {P}
i
, all we have to do is to determine

if P ′ is a subset of Si(P). Also, to know if there exists a population

P ′ inside {P}
i

such that a certain element x is in P ′, all we have to do
is seeking if x ∈ Si. Now, we study the properties that hold in both
representations.

4.3 crossover distance definition 39

Definition 4.3.5. Let P ∈ P. Then for all i ∈ N the set Si(P) ∈ P is
defined as:

Si(P) =

P if i = 0

µP

(
{Si−1(P)}

)
otherwise

The function next : P 7→ P is defined as next (P) = S1(P).

The first property that can be reported from a representation to the
other is the presence of a population in a closure. In this case the

sentence P2 ∈ {P1}
i

simply becomes P2 ⊆ Si(P1). First of all we need
the following proposition linking Si(P) with the Čech closure.

Proposition 4.3.5. For all P ∈ P and for all i ∈ N with i > 1, {P}
i
=

{Si−1(P)}.

Proof. By induction on i, consider i = 1, then {P} = {S0(P)} by defi-
nition of S0(P). Consider the equivalence true for i, we are going to

prove it for i+ 1. {P}
i+1

= {P}
i
= {Si−1(P)}. By the proof of Proposi-

tion 4.3.4 we have that {Si−1(P)} = µP
(
{Si−1(P)}

)
that, by definition

of Si(P), is equal to Si(P).

The desired corollary is then the following one.

Corollary. For all P1,P2 ∈ P and for all i ∈ N with i > 0, P2 ∈ {P1}
i

iff
P2 ⊆ Si(P1).

Proof. P2 ∈ {P1}
i

is equivalent to P2 ∈ {Si−1(P1)}. Since for i > 0, {P}
i

contains all the subsets of µP
(
{P}
i
)

, P2 ∈ {Si−1(P1)} is equivalent to

P2 ⊆ µP
(
{Si−1(P1)}

)
= Si(P1).

Proposition 4.3.6. Let P1,P2 ∈ P such that there exists i ∈ N with P2 ⊆
Si(P1). Then the following holds:

min{i ∈N | P2 ⊆ Si(P1)} = max{min{i ∈N | {x} ⊆ Si(P1)} | x ∈ P2}

Proof. Let the two sides of the equation be called `1 and `2 respec-
tively and suppose `1 and `2 are different from 0 (the proposition is
immediately proved otherwise). Suppose `1 < `2. This is impossible
since when P2 ⊆ S`1(P1) we have also that {x} ⊆ S`1(P1) for all x ∈ P2.
Hence, `1 > `2. Suppose `1 > `2. This is also impossible since we
have that {x} ⊆ S`2(P1) for all x ∈ P2. By Corollary 4.3.2 this means

that {x} ∈ {P1}
`2 for all x ∈ P2. By the lattice structure of the closure

of {P1}
`2 we also have that

⋃
x∈P2 {x} = P2 ∈ {P1}

`2 . This means that
P2 ∈ S`2(P1). Hence `1 = `2.

4.3 crossover distance definition 40

Now we prove that computing these minimal values on the sets

{P}
i

is similar to computing them on the sets Si(P), hence we can use
the latter sets to obtain information on the former ones.

Proposition 4.3.7. For all P1,P2 ∈ P such that there exists i ∈ N with
P2 ∈ {P1}

i
the following holds:

min{i ∈N | P2 ∈ {P1}
i
} =


1 if P2 ⊂ P1

0 if P1 = P2

min{i ∈N | P2 ⊆ Si(P1)} otherwise

Proof. In the first case we have that P2 ⊂ P1 implies that the value
of i must be at least 1. It is 1 because of the fact that the closure
{P1} is a lattice of subsets that contains P1 and, consequently, P2. The
second case is immediate since P1 ∈ {P1}. The third case is provided
by Corollary 4.3.2 if we assume that the minimal i is not 0. Since
P2 ⊆ S0(P1) is equivalent to P2 ⊆ P1 we have that this conditions are
covered by the other two cases.

4.3.3 Distance Definition

First of all, we define a quasi-metric that will be successively used to
define a metric over P.

Recall that a quasi-metric is a function d such that:

1. For all x,y, d(x,y) > 0 and d(x,y) = 0⇔ x = y.

2. For all x,y, z, d(x,y) 6 d(x, z) + d(y, z).

Note that iterating the closure operator · , we always reach a fixed
point after a finite number of steps (i.e., there exists k ∈ N such that
· k and · k+1 are the same function), since the Čech closure in mono-
tone and the domain P is finite. In fact, the fixed point is necessarily
reached after at most |P| iterations.

Let k∗ be the integer min{k ∈ N | ∀U ⊆ P : U
k
= U

k+1
} (i.e., the

first k ∈ N that allows any possible iteration of · to reach a fixed

point). Note that for any two populations P1,P2 if P2 /∈ {P1}
k∗

then
P2 is not reachable by crossover from P1.

Definition 4.3.6. Let fP : P× P 7→ R+ be defined as:

fP(P1,P2) =

min{k ∈N | P2 ∈ {P1}
k
} if P2 ∈ {P1}

k∗

k∗ + 1 otherwise

Proposition 4.3.8. The function fP is a quasi-metric.

4.3 crossover distance definition 41

Proof. It is immediate that fP is always not negative. Also, fP(P1,P2) =
0 iff P2 ∈ {P1} (i.e., iff P1 = P2).

For the sake of argument, suppose that the triangle inequality does
not hold. Then there exist P1,P2,P ′ ∈ P such that fP(P1,P ′)+ fP(P ′,P2) <
fP(P1,P2). Without loss of generality suppose all considered values of
fP less than k∗+1. By Proposition 4.3.2 there exist P1 = Qo, . . . ,QfP(P1,P ′) =

P ′ and P ′ = S0, . . . ,SfP(P ′,P2) = P2 such that QiRPQi+1 for all i ∈
[0, fP(P1,P ′) − 1] and SiRPSi+1 for all i ∈ [0, fP(P ′,P2) − 1]. It is possi-
ble to concatenate the two sequences to obtain P1 = Q0, . . . ,QfP(P1,P ′) =

P ′ = S0, . . . ,SfP(P ′,P2). Also by Proposition 4.3.2 we have that P2 ∈
{P1}

k
with k = fP(P1,P ′) + fP(P ′,P2). By the definition of fP we have

that fP(P1,P2) 6 fP(P1,P ′) + fP(P ′,P2), contradicting the initial as-
sumption of triangle inequality to be false.

From a quasi-metric it is immediate to define a metric by summing
to fP itself with swapped arguments in order to obtain symmetry.

Definition 4.3.7. Let dP : P× P 7→ R+ be defined as:

dP(P1,P2) =
1

2
(fP(P1,P2) + fP(P2,P1))

Note that for every population it is possible to define a distance
between individuals.

Definition 4.3.8. Let P ∈ P. Then the function dPI : Σn × Σn 7→ R+ is
defined as:

dPI (x,y) = dP ((P \ {x})∪ {y} , (P \ {y})∪ {x})

Proposition 4.3.9. For all P ∈ P, the function dPI is a distance.

Proof. Both symmetry and the triangle inequality are inherited from
the fact that dP is a distance. The only property that need proving is
that for all x,y ∈ Σn, x = y ⇔ dPI (x,y) = 0. This is immediate since
(P \ {x})∪ {y} can be equal to (P \ {y})∪ {x} only when x = y.

Note that all the steps from Definition 4.3.3 are not dependent on
the explicit definition of the crossover relation. In fact, all the defini-
tions and propositions remain valid also for any other relation. Their
extension to other kinds of crossover is then immediate.

Also, note that it is possible to use Corollary 4.3.7 and Proposi-
tion 4.3.6 to decompose the computation of the distance between pop-
ulations into a series of computations of min{i ∈ N | {x} ∈ Si(P)} for
some individual x and population P. Therefore an efficient method to
carry on this computation translates immediatly in an efficient way
of computing the proposed distance.

4.4 a concise model for populations 42

4.4 a concise model for populations

In this section we define a succinct representation for populations.

Definition 4.4.1. We define as crossover granules (SCn,⊆) the set SCn =

{[i, j] | 1 6 i 6 j 6 n} ordered by set inclusion.

Proposition 4.4.1. (SCn,⊆) is a lattice.

Proof. Let [i, j], [h,k] ∈ SCn. We show that both [i, j]∧ [h,k] and [i, j]∨
[h,k] exist and are [max{i,h}, min{j,k}] (that will be denoted by [M1,m1])
and [min{i,h}, max{j,k}] (that will be denoted by [m2,M2]) respec-
tively.

It is immediate that [M1,m1] ⊆ [i, j] and [M1,m1] ⊆ [h,k]. It is
necessary to prove that every other [`1, `2] ∈ SCn such that [`1, `2] ⊆
[i, j] and [`1, `2] ⊆ [h,k] is also such that [`1, `2] ⊆ [M1,m1]. Suppose
[M1,m1] 6= ∅ otherwise the property is vacuously true. For the sake of
argument suppose that there exists a ∈ [`1, `2] such that a /∈ [M1,m1].
This means that either a < M1 or a > m1. Without loss of generality
suppose we are in the first case. Then either a < i or a < h. This
means that a /∈ [i, j] or a /∈ [h,k] in contradiction with one of the
hypotheses. Thus, [i, j]∧ [h,k] = [M1,m1].

It is also immediate that [m2,M2] ⊇ [i, j] and [m2,M2] ⊇ [h,k]. It is
necessary to prove that every other [`1, `2] ∈ SCn such that [`1, `2] ⊇
[i, j] and [`1, `2] ⊇ [h,k] is also such that [`1, `2] ⊇ [m2,M2]. For the
sake of argument suppose that there exists a ∈ [m2,M2] such that
a /∈ [`1, `2]. By definition m2 6 a 6M2. Since a /∈ [`1, `2] then either
`1 > a > m1 or `2 < a 6 M2. Without loss of generality suppose
that we are in the first case. Then m2 /∈ [`1, `2] but m2 = i or m2 = h.
This means that [`1, `2] 6⊇ [i, j] or [`1, `2] 6⊇ [h,k], negating one of the
hypotheses. Thus [i, j]∨ [h,k] = [m2,M2].

Since both the meet and the join exist for every and are unique for
every pair of elements, (SCn,⊆) is a lattice.

Definition 4.4.2. Let x ∈ Σn, [i, j] ∈ SCn and P ∈ P. We say that x (i, j)
is represented in P iff there exists y ∈ P such that y[i,j] = x[i,j].

Note that if x (i, j) is represented in P it is also true that for all h > i
and for all k 6 j, x (h,k) is represented in P. Also note that if x (1,n)
is represented in P then x ∈ P.

It is now possible to define the concept of representation for a pop-
ulation.

Definition 4.4.3. Fix x ∈ Σn. We define rx : P 7→ P (SCn) as rx (P) =
{[i, j] ∈ SCn | x (i, j) is represented in P}.

We now prove that rx (P) is always a lower set of SCn.

Proposition 4.4.2. For all P ∈ P and for all x ∈ Σn, rx (P) ∈ O (SCn).

4.4 a concise model for populations 43

Proof. Consider [i, j] ∈ rx (P). By definition x (i, j) is represented in P.
This means that also all x (h,k) with h > i and k 6 j are represented
in P. In other words, [h,k] ∈ rx (P). Recall that the elements of SCn in
the form [h,k] with h > i and k 6 j are all the elements of SCn with
[h,k] ⊆ [i, j]. Since they are in rx (P) we have that it is a lower set.

Now we define a function on O (SCn) that can be used to “mimic”
the Čech closure defined over P.

Definition 4.4.4. LetU ∈ O (SCn). We define µSC : O (SCn) 7→ O (SCn)
as

µSC (U) = {[i, j] ∈ SCn | ∃[h1,k1], [h2,k2] ∈ U s.t.

[i, j] = [h1,k1]∨ [h2,k2] = [h1,k1]∪ [h2,k2]}

Note that µSC (U) can also be formulated as:⋃
[h1,k1], [h2,k2] ∈ U
k1 > h2 − 1 or

k2 > h1 − 1

[h1,k1]∨ [h2,k2]

We are now going to state and prove the main result that allow us
to work on the lower set of the lattice SCn instead of P.

Theorem 4.4.3. For all x ∈ Σn, the following diagram commutes:

P

rx
��

next // P

rx
��

O (SCn)
µSC // O (SCn)

In other words, rx ◦ next = µSC ◦ rx.

Proof. Fix P ∈ P and x ∈ Σn. Consider z, v ∈ P. Also, recall that
rx (P) can be seen as

⋃
y∈P rx ({y}). Firstly, we are going to prove that

rx (next (P)) ⊆ µSC (rx (P)). Let y ∈ Σn be such that there exists w ∈
Σn such that (z, v)RI(y,w). Then y ∈ next (P). Consider rx ({y}). Let
[i, j] ∈ rx ({y}). This means that y[i,j] = x[i,j] there can be two cases:

1. Either [i, j] ∈ rx ({z}) or [i, j] ∈ rx ({v}). In this case [i, j] ∈ µSC (rx ({z}))

or [i, j] ∈ µSC (rx ({v})) (since µSC is monotone).

2. Neither [i, j] ∈ rx ({z}) nor [i, j] ∈ rx ({v}). In this case, by defi-
nition of crossover there we must have k such that i 6 k < j,
z[i,k] = x[i,k] and v[k+1,j] = x[k−1,j] (or the same with z and
v swapped). Hence [i,k] ∈ rx ({z}) and [k+ 1, j] ∈ rx ({v}). We
have that [i,k] ∨ [k + 1, j] = [i,k] ∪ [k + 1, j] = [i, j]. Therefore
[i, j] ∈ µSC (rx ({z})∪ rx ({v})).

4.4 a concise model for populations 44

Combining both cases for all [i, j] ∈ rx (next (P)) we have that [i, j] ∈
µSC (rx (P)).

We are now going to prove that rx (next (P)) ⊇ µSC (rx (P)) and,
combining with the previous result, that rx (next (P)) = µSC (rx (P)).
Consider [i, j] ∈ µSC (rx (P)). This means that there exists [i,k] and
[h, j] in rx (P) such that [i,k] ∨ [h, j] = [i, j]. Note that this means
that i 6 h, k 6 j and h 6 k + 1. Since [i,k] and [h, j] are in rx (P)
there exists two individuals z, v ∈ P such that z[i,k] = x[i,k] and
v[h,k] = x[h,k]. Now consider the individual y = z[i,k]v[k+1,j]. Since it
is obtained by the crossover z and v it is inside next (P). But rx ({y})
contains [i, j] since y[i,j] = z[i,k]v[k+1,j] = x[i,k]x[k+1,j] = x[i,j]. Hence
the rx (next (P)) ⊇ µSC (rx (P)).

As a corollary we immediately have that:

Corollary. For all P ∈ P and for all x ∈ Σn, {x} ∈ S1(P) iff [1,n] ∈
µSC (rx (P)).

Consequently, we have another way of computing a property of the
Čech closure defined over populations by simply using the function
µSC defined on SCn:

min{i ∈N | {x} ⊆ Si(P)} = min{i ∈N | [1,n] ∈ µiSC (rx (P))}

Also, note that since the function µSC maps lower sets to lower sets,
finding the first i ∈ N such that iterating µSC for i times gives a set
containing [1,n] is equivalent to calculating the number of iterations
necessary to obtain SCn as a result. Furthermore, it is immediate that
µSC is monotone, hence we can always iterate µSC until a fixed point is
reached (the monotonicity of µSC and the finiteness of SCn assures us
the this is always the case). If the fixed point reached is SCn, then the
number of steps used is the minimum number i such that {x} ⊆ Si(P),
otherwise no such i exists.

4.4.1 An Analysis of Computational Complexity

The algorithm to compute the distance between two populations P1
and P2 is composed of two parts that must be carried on for all x ∈ P1
(symmetrically, also for all x ∈ P2):

1. Computing rx (P2).

2. Finding the fixed point of µSC.

First of all, it is necessary to note that SCn has size O(n2). Hence,
the first step can be carried on in time O

(
|P2|n

3
)

steps (for any ele-
ment we assume that we are comparing two strings of length n). In
the second step we have that computing the fixed point of µSC can
be carried on in time O(n7) steps. This time complexity is obtained

4.5 final remarks 45

in the following way: since µSC is monotone we can have at most
|SCn| steps before reaching a fixed point. Every set U we are man-
aging is of size at most |SCn| and the computation of µSC considers
a comparison (in time O(n)) of all the pairs of U. This means that
we are doing at most O(n2) iterations, where every iteration consists
of O(n4) operations that can be performed in time O(n). Since these
operations must be carried on for all elements of P1, assuming all
populations of size bounded by a certain constant m we have that the
total computational time is O

(
m2n3 +mn7

)
.

The time complexity bounds can be made more strict by consider-
ing two facts. The first one is that every lower set is defined by its
set of maximal elements (that forms an antichain, i.e., a set such that
every pair of elements is not comparable). The size of the maximal
antichain of SCn is n (its elements are [1, 1], [2, 2], . . . , [n,n]). There-
fore, we can consider only sets of size O(n) instead of size O(n2)
and reduce the number of comparisons to O(n2) instead of O(n4).
Furthermore, we may notice that if the previously cited maximal an-
tichain is not inside rx (P), we cannot obtain [1,n] into the fixed point,
hence we can consider only computations when the representation
of a population contains the maximal antichain. Note that when we
have a set with the maximal antichain, the first iteration will contain
all the elements in the form [i, i+ 1], the second iteration all the sets
in the form [i, i+ 2] and, more generally, the jth iteration will contains
all the sets in the form [i, i+ 2j−1]. Since µSC applied to a lower set
gives a lower set, we have that a fixed point is reached in O(log(n))
iterations (instead of our previous bound of O(n2)). Thus, the total
running time can then be bounded by O

(
m2n3 +mn3 log(n)

)
.

4.5 final remarks

A crossover-based distance for genetic algorithms (GAs) has been de-
fined. Furthermore, an algorithm of polynomial complexity in the
population size and individuals length to compute this distance has
been introduced. The novelty of the proposed approach consists in
the following points:

• the defined distance is between populations (from which it is
straightforward to obtain a family of distances between individ-
uals), which makes modelling crossover easier;

• the representation of the GA dynamics by means of iteration of
a Čech closure;

• the mathematical tools used for representing populations in our
model (lower sets of a lattice).

The proposed distance could be applied to many different scenar-
ios in GA. For example it can be of help in determining problem

4.5 final remarks 46

difficulty when used for computing the fitness distance correlation.
Also, it can improve the performances of GA when used as the dis-
tance for fitness sharing. There are also other applications specific to
distances between populations. For example we can try to quantify
the “quality” of the genetic material of a population by computing its
distance to a set of other populations. A low average distance means
that the genetic material in the population is “good” (i.e., it is easy to
generate new individuals).

Future work is focused on the extension of this distance to other
kinds of crossover, also with the long term goal of extending it to a
wider range of evolutionary algorithms (EAs). In particular, a general
(representation-independent) way of extending and computing this
distance should be devised, in order to provide a coherent framework
for the analysis of the EAs dynamics.

Part II

M E A S U R I N G A N D I N C R E A S I N G S O L U T I O N
Q U A L I T Y I N G E N E T I C P R O G R A M M I N G

5
I N T R O D U C T I O N T O G E N E T I C P R O G R A M M I N G

In this part of the thesis we focus on introducing methods to as-
sess and increase the performances of Genetic Programming (GP).
We must firstly introduce Genetic Programming in Section 5.1, and
then we will focus on a particular variation called Semantic GP (Sec-
tion 5.2). We will then focus on the importance of generalization in GP
(Section 5.3), that is essential to allow any machine learning algorithm
to be used beyond the data provided as a training set. The remaining
part of the chapter provides an overview on the benchmarks in GP
(Section 5.4) and introduces a famous benchmark for Genetic Algo-
rithms, the NK landscapes (Section 5.5), and the important concept
of fitness landscape (Section 5.6) that is necessary to understand the
significance of the NK landscapes benchmark for Genetic Algorithms.
Finally, previous GP benchmarks are discussed in Section 5.7.

In the next chapters we will first introduce a way to measure the
generalization ability of GP (Chapter 6) and then a benchmark for GP
based on NK landscapes for GA (Chapter 7). Finally, we introduce a
method that makes Semantic GP viable for real world problems and
we test its generalization ability (Chapter 8).

5.1 what is genetic programming

Genetic Programming [162, 114] is the youngest paradigm inside the
computational intelligence research area called Evolutionary Compu-
tation (EC) and consists in the automated learning of computer pro-
grams by means of a process mimicking Darwinian evolution. A GP
algorithm works by maintaining and evolving a set (often called pop-
ulation) of so called individuals, each of which representing a program
that is a potential solution to a problem. A fitness function (sometimes
also called cost or quality function), defined over the space of all in-
dividuals, quantifies the ability of each one of them in solving the
problem. After a (typically) random initialisation of the population,
the evolutionary process, aimed at progressively improving the fit-
ness of the individuals in the population, takes place by iterating two
phases: selection (where the most promising solutions are probabilis-
tically chosen for mating), and the application of the genetic opera-
tors (used to explore the space of solutions), which typically consist

48

5.1 what is genetic programming 49

in crossover (that exchanges parts of two parent solutions in order to
generate new offspring) and mutation (that randomly modifies parts
of some solutions). In GP individuals are traditionally represented as
LISP-like trees. The standard convention for tree execution is that it
proceeds by repeatedly evaluating the nodes in postfix order. For ex-

-

+ *

+d e a

b c

Figure 5: Example of GP individual.

ample, the tree in Fig. 5 represents the function (d+ e) − (a(b+ c)),
where a,b, c,d, e are variables.

In the last few years, GP has been extensively used both in Indus-
try and Academia and it has produced a wide set of results that
have been defined human-competitive [115]. These results cover a wide
variety of applicative domains, including quantum computing cir-
cuits, analog electrical circuits, design of antennas, mechanical sys-
tems, photonic systems, optical lens systems and sorting networks.

While these results have demonstrated the suitability of GP in tack-
ling real-life problems, research has recently focused on developing
new variants of GP in order to further improve its performances. In
particular, efforts have been dedicated to an aspect that was only
marginally considered up to some years ago: the definition of meth-
ods based on the semantics of the solutions [195, 131, 25, 19, 197, 117,
19, 20, 95, 96]. Though there is no universally accepted definition of
semantics in GP, this term often refers to the behavior of a program,
once it is executed on a set of data. For this reason, in many refer-
ences, the term semantics is intended as the set of input-output pairs
on the training data, and this is the terminology that we will adopt
from now on.

In this research track, very recently, new genetic operators, called
geometric semantic genetic operators, have been proposed in [142].
These operators have the interesting property of inducing a unimodal
fitness landscape on any problem consisting in finding the match be-
tween a set of input data and a set of known output ones. Classifi-
cation and regression (which are typical applications of Evolutionary
Computing in general [190, 4] and GP in particular [39, 87]) are ex-

5.2 state of the art on the use of semantics in gp 50

amples of this kind of problem. According to the theory of fitness
landscapes [122], this should allow GP to easily solve all these prob-
lem.

Nevertheless, as stated in [142], these operators also have a serious
limitation: they construct offspring that are bigger than their parents,
and this makes the size of the individuals in the population grow ex-
ponentially with generations. In this way, after few generations, the
population is composed by individuals that are so big that their fit-
ness evaluation is unmanageable. This limitation makes these opera-
tors impossible to use in practice.

The solution suggested in [142] as a future work is to integrate
in the GP algorithm a "simplification" phase, aimed at transforming
each individual in the population into an equivalent (i.e. with the
same semantics), but smaller program. However, also this solution
has some problems: according to the language used to code individ-
uals, simplification can be very difficult, and it is often a very time
consuming task.

5.2 state of the art on the use of semantics in gp

The genetic operators in GP systems are usually designed with the
only constraint of ensuring syntactic closure, i.e. producing syntacti-
cally valid offspring from any syntactically valid parent(s). As stated
in [195], using such purely syntactical genetic operators, GP evolu-
tionary search is conducted on the syntactical space of programs,
with the only semantic guidance offered by the fitness function em-
ployed by selection.

As stated before, GP has been used to successfully solve real life
problems; however the usage of purely syntactical genetic operators
it is not able to describe the entire dynamic of the evolutionary pro-
cess. Thus incorporating semantic awareness in the GP process could
improve performance, extending its applicability to problems that
are difficult with purely syntactic approaches. Under this perspective,
several recent works have proposed the definition of semantic based
methods.

These methods appeared in combination with crossover. McPhee et
al. [131] used truth tables to analyze behavioral changes in crossover
for boolean problems. They considered the semantics of two compo-
nents in each tree: semantics of subtrees and semantics of context
(the remainder of an individual after removing a subtree). They ex-
perimentally measured the variation of these semantic components
throughout the GP evolutionary process. They payed special atten-
tion to fixed-semantic subtrees: subtrees such that the semantics of
the entire tree does not change when they are replaced by another
subtree. They showed that there may be many such fixed semantic
subtrees when the tree size increases during evolution; thus it be-

5.2 state of the art on the use of semantics in gp 51

comes very difficult to change the semantics of trees with crossover
and mutation once the trees have become large.

While it is possible to represent behavior using truth tables, a more
efficient technique is that of using reduced ordered binary decision
diagrams (ROBDDs) [25] to create reduced canonical representations
to measure behavioral difference.

In [19] semantic is used to define an algorithm called Semanti-
cally Driven Crossover (SDC). The SDC algorithm has been devel-
oped based on analysis of the behavioral changes caused by crossover.
The key feature of this method is the use of a canonical representa-
tion of members of the population (reduced ordered binary decision
diagrams-ROBDDs) to check for semantic equivalence without hav-
ing to access the fitness function. Two trees are semantically equiva-
lent if and only if they reduce to the same ROBDD. This is used to
determine which participating individuals are copied into the next
generation. If the offspring are semantically equivalent to their par-
ents, the children are discarded and the crossover is repeated. This
process is iterated until semantically different children are found. The
authors argue that this results in increased semantic diversity in the
evolving population, and a consequent improvement in the GP per-
formance.

A new mechanism for studying the impact of subtree crossover in
terms of semantic building blocks was proposed [130] in 2007. This
approach allows to completely and compactly describe the seman-
tic action of crossover, and provides insight into what does (or does
not) make crossover effective. Results make it clear that a very high
proportion of crossover events (typically over 75% in the presented ex-
periments) are guaranteed to perform no immediately useful search
in the semantic space.

In [196] the authors investigate the role of syntactic locality and se-
mantic locality of crossover in GP. The results show that improving
syntactic locality reduces code growth, and that leads to a slight im-
provement of the ability to generalize. By comparison, improving se-
mantic locality significantly enhances GP performance, reduces code
growth and substantially improves the ability of GP to generalize.

In [150] the authors proposed Semantics Aware Crossover (SAC),
a crossover operator promoting semantic diversity, based on check-
ing semantic equivalence of subtrees. It showed limited improvement
on some test problems; it was subsequently extended to Semantic
Similarity based Crossover (SSC) [197], which turned out to perform
better than both standard crossover and SAC [197]. In particular, au-
thors aim to incorporate semantics into the design of new crossover
operators, so as to maintain greater semantic diversity and provide
higher locality than standard crossover. The idea of SSC was then
extended to mutation leading to a counterpart semantic mutation:
Semantic Similarity based Mutation (SSM) [164]. The experimental

5.2 state of the art on the use of semantics in gp 52

results in [164] confirm the superior performance of SSM compared
to standard mutation.

In [19] semantics is used to test the effects of behavioral control at
the point of the mutation operator. Using semantic analysis, authors
present a technique known as semantically driven mutation (SDM),
which can explicitly detect and apply behavioural changes caused
by the syntactic modifications in programs caused by mutation. The
SDM algorithm does not allow mutated programs to be produced
when they are behaviorally equivalent to the original program. The
aim of this is to avoid getting stuck in areas of the search space that
have already been investigated. As in [19], the key feature of the se-
mantically driven operator is the ability to canonically represent pro-
grams in such a way that it is possible to compare them, looking for
equivalent behaviors.

In [116] the authors proposed a class of crossover operators for ge-
netic programming aimed at making offspring programs semantically
intermediate (medial) with respect to parent programs by modifying
short fragments of code (subprograms). The approach is applicable
to problems that define fitness as a distance between program out-
put and a desired target. Based on that metric, the authors defined
two measures of semantic “mediality”, which they employed to de-
sign two crossover operators: one aimed at making the semantic of
offspring geometric with respect to the semantic of parents, and the
other aimed at making them equidistant to parents’ semantics. When
compared experimentally with four other crossover operators, both
operators lead to success ratio at least as good as for the non-semantic
crossovers, and the operator based on equidistance outperformed all
others on some test cases.

Krawiec and coworkers in [117] have used a notion of semantic dis-
tance to propose a crossover operator for GP that is approximately a
geometric crossover [141] in the semantic space. In the class of prob-
lems considered in [117], the fitness function is usually defined as a
metric that measures the divergence between target and output val-
ues. As reported in [117], metric-based fitness functions are unimodal
by definition because such fitness is a distance in the semantic space.
Any linear combination of a pair of semantics is guaranteed to be
not worse than the worse of them. Authors pointed out that there is
no obvious way of exploiting this property due to the complexity of
the genotype-phenotype mapping in GP. Thus, the prospects of de-
signing a crossover operator that works in the genotype space and
behaves geometrically in the corresponding semantic space are even
more gloomy. Hence, rather than guaranteeing the geometric behav-
ior, their operator tries to approximate it by analysing the offspring
after it has been bred. This limit is overcome by the geometric se-
mantic operators proposed in [142] and described in section 8.1. The
work in [142] introduces a general method to derive exact semantic

5.3 generalization in gp 53

geometric crossovers and mutations for different problem domains
that search directly the semantic space. However, these operators by
construction produce offspring that have approximately the double
of the size of their parents (expressed as the total number of tree
nodes). As a consequence, the size of the individuals in the popula-
tion grows exponentially (as proven in [142]) and this makes these
operators unusable in practice.

5.3 generalization in gp

5.3.1 The Importance of Generalization

The issue of generalization in Genetic Programming (GP) [162] has
received a growing attention in the last few years (see [121] for a sur-
vey and [156] and references therein for a more recent discussion). A
common agreement of many researchers is the so called minimum
description length principle (see for instance [170]), which states that
the best model is the one that minimizes the amount of information
needed to encode it. Simpler solutions are thought to be more robust
and generalize better [171], while complex solutions are more likely
to incorporate specific information from the training set, thus overfit-
ting it. A superficial interpretation of the minimum description length
may be that bloat (i.e. an excess of code growth without a correspond-
ing improvement in fitness [122, 178]) and overfitting should be two
related phenomena: bloated programs could in fact use too much
information, thus overfitting training data. Nevertheless, the observa-
tions in [179, 200] seem to contradict this idea. In [203] Vanneschi and
coworkers defined measures to quantify bloat, overfitting and func-
tional complexity of GP solutions, and they showed that functional
complexity, rather than bloat, seems to be related to generalization.
But the experimental results reported in [203] show that the proposed
complexity measure has a positive correlation with overfitting only
for a subset of the studied test problems, while for other problems
no clear relationship appeared between this measure and the ability
of GP to find general solutions.

5.3.2 Studies on Generalization

The contributions on generalization in GP are so numerous that it
is impossible to analyze all of them. Thus, we focus on those con-
tributions that we consider more similar and related to the present
work, referring the interested reader to [121] for a survey on the is-
sue. In 1995 Zhang and Mühlenbein investigated the relationship be-
tween generalization and parsimony and proposed an adaptive learn-
ing method that automatically balances these two factors. One year
later, in [72], a new GP system called Compiling GP System was intro-

5.4 benchmarks in gp and the nk landscapes 54

duced and in [16], Banzhaf and coworkers showed the positive effect
of an extensive use of the mutation operator on generalization in GP
using sparse data sets. More recently, in [77], Gagné and coworkers
have investigated two methods to improve generalization in GP: the
selection of individuals using a three data sets methodology, and the
application of parsimony pressure to reduce the size of the solutions.
In the last few years the idea of quantitatively studying the relation-
ship between generalization and solution complexity was tackled in
several contributions. For instance, in [7] the authors propose a theo-
retical analysis of GP from the perspective of statistical learning the-
ory and prove the advantage of a parsimonious fitness using Vapnik-
Chervonenkis theory. Another important contribution, even though
not explicitly focused on GP, but on evolutionary algorithms in gen-
eral, is represented by [81], where the authors measure behavioral
complexity explicitly using compression, and use it as a separate ob-
jective to be optimized. In [209], the authors define two measures of
complexity for the GP individuals: a genotypic measure and a phe-
notypic one. While the genotypic measure is related to counting the
number of nodes of a tree and its subtrees, the phenotypic one, called
order of nonlinearity, is related to functional complexity and consists
in calculating the degree of the Chebyshev polynomial approximation
of the function. The authors then use these two measures as criteria
in a multi-objective system and they show that this system is able to
counteract both bloat and overfitting. As already pointed out in the
previous section, in [203] indicators of bloat, overfitting and complex-
ity have been introduced and their mutual relationships have been
investigated. The overfitting measure quantified the relationship be-
tween training and test fitness, normalizing it with the training and
test fitness of the point with the best test fitness found by GP so far
(the reader is referred to page 878 of [203] for the pseudo-code used
to calculate this measure). The complexity measure was used to ap-
proximate the "degree of curvature" (or "ruggedness") of the function
expressed by GP solutions and it was basically a weighted sum of
the slopes of the segments joining the various training points in the
single dimensions (the formal definition of this complexity measure
can be found at page 880 in [203]).

5.4 benchmarks in gp and the nk landscapes

As already pointed out by Altenberg in 1997 [5], in the first part of
the twentieth-century Wright [220] discovered an interesting feature
of evolutionary dynamics: when the effect on fitness from altering the
state of one gene depends on the state of other genes, the population
can often evolve into multiple basins of attraction. This kind of inter-
action between genes is called epistasis. In other words, the presence
of epistasis makes it possible for a population to converge towards dif-

5.4 benchmarks in gp and the nk landscapes 55

ferent genotypic configurations, depending on its initial state. Thus,
it is possible to indentify two different levels of abstraction, that are
different to, but dependent from, each other: the microscopic level
(the level of the single individuals, in which fitness depends on the
reciprocal interactions between genes) and the macroscopic one (the
level of populations, where it is possible to identify multiple differ-
ent attractors). To clarify these ideas, Wright brought up the analogy
with a landscape with multiple peaks, in which the evolution of a
population can be seen as the movement up hill of its individuals,
until they reach a (local or global) fitness peak. The term "adaptive
landscape" or "fitness landscape" is nowadays frequently used to de-
scribe the presence of multiple basins of attraction in the space of
genotypes for evolutionary dynamics. Under this perspective, it be-
comes interesting to investigate how a population can escape from
a local fitness peak. Wright proposed the idea of stochastic fluctua-
tions, thus introducing an embryonic version of a stochastic process
for the optimization of multimodal functions. More recently, based
on the concepts introduced by Wright, Kauffman proposed the NK
landscapes set of functions, to investigate the way epistasis controls
the number of local peaks of a fitness landscape [106, 107]. In these
functions, the ruggedness of the fitness landscape can be controlled
by modifying a single parameter that influences the epistatic level
of the genome. Thus, the NK landscapes is a stochastic set of tunably
difficult optimization problems. Described in Section 5.5, theNK land-
scapes have often been used as a benchmark for theoretical studies of
Genetic Algorithms (GAs) [93, 80].
NK landscapes are based on the idea that potential solutions are

represented as fixed length strings of symbols, and thus they are par-
ticularly suitable for GAs. To the best of our knowledge, no exten-
sion to this problem has been proposed so far for Genetic Program-
ming (GP) [114, 162], where individuals are characterized by a dy-
namic size representation. Nevertheless, as clearly stated by the panel
members and attendees of the EuroGP 2008 debate on Grand Chal-
lenges of GP (which took place on 27 March 2008 at the Evo* event in
Naples, and whose main ideas have recently been developed and pub-
lished in [156]), and as reasserted during the subsequent EuroGP 2009

and EuroGP 2010 debates, the GP community has the pressing ne-
cessity of defining new and reliable benchmarks. Those benchmarks
should possibly be of tunable difficulty, thus allowing practitioners
and theoreticians to study the dynamics of GP for difficult, as well
as easier problems. These benchmarks should, above all, be used to
study and discover new properties of the GP method itself, as it has
been the case for NK landscapes in GAs.

Indeed, some efforts have already been done in the direction of
defining useful benchmarks for GP (they are reviewed in Section 5.7),
but still the goal of having many rigorous test problems is far from be-

5.5 the nk landscapes for gas 56

ing achieved, probably due to the larger complexity of GP compared
to GAs or other methods for parameters optimization.

5.5 the nk landscapes for gas

The NK family of landscapes, introduced by Kauffman between the
end of the eighties and the first part of the nineties [106, 107], is a
problem-independent model for constructing multimodal landscapes
for GAs that can gradually be tuned from smooth to rugged. In the
model, N refers to the number of (binary) genes in the genotype (i.e.
the string length) and K to the number of genes that influence a par-
ticular gene (the epistatic interactions). By increasing the value of K
from 0 to N− 1, NK landscapes can be tuned from smooth to rugged.
The fitness of a NK landscape is a function fNK : {0, 1}N → [0, 1), de-
fined on binary strings with N bits. An “atom” with fixed epistasis
level is represented by a fitness component fi : {0, 1}K+1 → [0, 1) asso-
ciated to each bit i. Its value depends on the allele at bit i and also on
the alleles at K other epistatic positions. (K must fall between 0 and
N− 1). The fitness fNK(s) of s ∈ {0, 1}N is the average of the values
of the N fitness components fi: fNK(s) = 1

N

∑N
i=1 fi(si, si1 , . . . , siK),

where {i1, . . . , iK} ⊂ {1, . . . , i− 1, i+ 1, . . . ,N}. Many ways have been
proposed to choose the K other bits from the N bits forming the bit
string. Two possibilities are mainly used: adjacent and random neigh-
borhoods. With an adjacent neighborhood, the K nearest bits to the
bit i are chosen. With a random neighborhood, the K bits are chosen
randomly on the bit string. Each fitness component fi is specified
by extension, i.e. a number yisi,si1 ,...,siK

from [0, 1) is associated with
each element (si, si1 , . . . , siK) from {0, 1}K+1. Those numbers are usu-
ally random numbers, uniformly distributed in the range [0, 1).

As reported by Kauffman, epistasis have a repercussion on fitness
that is similar to a house of cards [110]: if a bit is modified in a given
position, all the fitness components that interact with it are changed,
without any correlation with their previous values. Thus, the modi-
fication of one single bit, for instance by the application of a bit-flip
mutation operator, has on fitness the same disruptive effect as remov-
ing a card from a house of cards: to find the same fitness value again
(i.e. to build the same house of cards once again) one has to restart
from scratch and it is not possible to use any of the previously pro-
cessed information for doing it. Thus, any algorithm that works by
trying to optimize all genes at the same time clearly encounters se-
rious problems in this kind of benchmark. The interested reader is
referred to [5] for a survey on NK landscapes, where some proper-
ties of this benchmark, like the computational complexity, as well as
some implementation details and alternative variants are discussed.
Examples of the numerous contributions in which the NK landscapes

5.6 fitness landscapes 57

have been used to investigate the GA dynamics are [107, 214, 71, 102,
101, 3, 15, 79, 180, 207, 202, 152, 208].

5.6 fitness landscapes

The concept of fitness landscape was first proposed in [219] to study
the evolutionary process in Biology. The notion of a fitness landscape
underlying the dynamics of evolutionary adaptation optimization has
proved to be one of the most powerful concepts in evolutionary the-
ory, and it has been widely used to model the problem difficulty in
evolutionary algorithms (EAs) [165, 199]. As reported in [187], im-
plicit in the idea of fitness landscape is a collection of genotypes ar-
ranged in an abstract metric space, with each genotype next to those
other genotypes which can be reached by a single application of a
given genetic operator, as well as the fitness value.

As described, for instance, in [198], a fitness landscape can be seen
as a three-dimensional map, which may contain peaks and valleys
and the problem solver as a short-sighted explorer searching for the
highest peak (for maximization problems). They can be formally mod-
eled and are helpful to understand the ability of a searcher like GP to
solve a problem. For example, a smooth and regular landscape with
a single hill top (i.e. unimodal) is typical of an easy problem, while
the opposite is true for a very rugged (i.e. multimodal) landscape,
with many hills which are not as high as the best one. In the latter
case, it is more difficult to find solutions (the highest peaks), since the
algorithms can be trapped in any local peak.

Even though not without faults, the general knowledge associated
to fitness landscapes is the more rugged landscape, the more diffi-
cult the problem. It has been known since Eigen’s work [57] that
the dynamics of optimization on a landscape depends crucially on
detailed structure of the landscape itself. Extensive computer simula-
tions [69, 70], have made it very clear that a complete understanding
of the dynamics is impossible without a thorough investigation of the
underlying landscape [58].

In practice, however, the visualization of the whole search space of
a problem is difficult, if not even impossible given its generally huge
size and the multi-dimensionality of the neighborhoods imposed by
canonic genetic operators. Therefore, a number of methods that at-
tempt to describe the relevant features of fitness landscapes by means
of numeric indicators have been proposed [215, 204, 100]. For a com-
plete review on fitness landscapes in EC (and GP in particular) the
reader is referred to [199]. The most used indicator that relates prob-
lem difficulty with the underlying fitness landscape is fitness distance
correlation (FDC), studied for GP in [201]. FDC quantifies the diffi-
culty of a problem by expressing the correlation between the fitness

5.7 previous gp benchmarks 58

of a sample of individuals and their distance to one globally optimal
solution.

5.7 previous gp benchmarks

In Koza’s 1992 book [114], several problems that can be solved with GP
are defined: k-even parity, h-multiplexer, various forms of symbolic
regression, the artificial ant on the Santa Fe trail, the intertwined spi-
rals problem, etc. For many years, and with few exceptions, those
problems have mainly represented the only benchmarks that have
been used in GP experimental studies. Only recently, the GP com-
munity has begun to use a larger set of test functions. It is the case,
for instance, of the UCI repository datasets suite [73]. Among them,
one can identify problems of different complexities, from trivial ones,
like the IRIS dataset, to more difficult ones, like the thyroid cancer
datasets and many others. Also, contributions have appeared using as
test problems applications like classification of network intrusion (see
for instance [183, 157]). As stated in [156], we could broadly classify
currently used test function in GP into three categories: regression,
classification and design. Typical used regression functions are sinus,
polynomials, mexican hat, Mackey-Glass time series, etc. For classifi-
cation, one may quote the UCI examples, the intertwined spirals, the
parity problems, the multiplexer, Protein Localization, etc. The class
of test problems classified as design contain applications like adder,
multiplier, several other circuits, trusses, tables and other structures.

All the above quoted test problems, from the early ones introduced
by Koza in 1992 to the more recent ones, are definitely interesting,
because they cover a set of different possible applications. Neverthe-
less, it is also true that compared to the set of typical test problems
used for other optimization methods, like for instance GAs or parti-
cle swarm optimization, this set of benchmarks is still a restricted one
and, even more importantly, lacks a rigorous evaluation. In particu-
lar, the majority of these problems have their own, so to say, "fixed"
complexity: it is not possible to define several instances of them, of
different difficulties (from very easy problems to very hard ones, and
including many intermediary cases) by changing some parameters
(this is partially false, for instance, for the even parity and multiplexer
problems, as already pointed out in [199], but it is surely true for all
the problems that consist in mining a given dataset like, for instance,
the UCI ones). Furthermore, as remarked in [156], the above quoted
set of test problems is composed by functions of similar nature, and
thus they are too similar to each other. For instance, these functions
would require too a restricted set of operators and terminals to build
individuals, compared to the huge variety of possibilities offered by
GP.

5.7 previous gp benchmarks 59

Some attempts of defining new and tunably difficult test problems
for GP have been made so far. One of the earliest ones probably con-
sists in the introduction of the Royal Trees by Punch and cowork-
ers [163]. The goal of that contribution was to devise a problem for
GP that could be similar to, and share interesting properties with, the
the Royal Road problem for GAs [133]. In particular, the Royal Trees
are an example of "constructional problems", in the same vein as the
Royal Roads, a concept that had already been introduced in GP by
Tackett [189]. More or less in the same vein, contributions [199, 193]
contain the extension of tunably difficult problems typical of GAs,
like various forms of trap functions [45], to GP. In [86], Gustafson
and coworkers introduced the Tree-String problem. The goal of this
problem is to derive specific structure and content elements simulta-
neously. Instances are defined using a target solution consisting of a
tree shape and content. Candidate solutions are then measured for
their similarity to the target solution with respect to both tree shape
and content objectives. Separating these two concepts, the Tree-String
problem makes thus possible to shade a light on the complex dy-
namics created by the interdependencies of solution structures and
contents. Furthermore, the authors show how the difficulty of the
Tree-String problem can be tuned by simply modifying the number
of used nodes and the size of the alphabet employed to code con-
tents. Another interesting contribution, that is related to, but slightly
different from, the previously quoted ones, is [41], where Daida and
coworkers introduce the Lid problem. The Lid problem is tunably
difficult, but, contrarily to Royal Trees, trap functions, and others, it
has this property because tuning is accomplished through changes
in structure. So, the difficulty of the problem, and the possibility to
tune it, depend on structural mechanisms and not on the fitness land-
scape.

6
L E A R N I N G A B I L I T Y

6.1 introduction

This chapter has three different, but related, goals:

1. Defining a new measure of functional complexity, that is ro-
tationally invariant and that overcomes the limitations of the
measure proposed in [203];

2. Defining a new measure to quantify the ability of GP to learn
“difficult” points (our intuition of what a “difficult” point is will
be explained in Section 6.2 where the measure will be defined)
and studying its correlation with generalization;

3. defining a new fitness function (inspired by the two previously
defined measures) to improve GP generalization ability in those
cases where standard GP (i.e. GP that calculates fitness using
the root mean squared error between outputs and targets) has
poor generalization ability.

The chapter is structured as follows: In Section 6.2 we present the
proposed measures. Section 6.3 introduces the real-life problems used
as test cases. In Section 15.1.5 we present our experimental settings
and we discuss the obtained results. The measures of overfitting and
complexity proposed in [203] will be experimentally compared with
the measures introduced in this work. Finally, Section 7.4 provides a
summery and future directions of research.

6.2 the proposed measures

The complexity measure proposed in this work, as the one introduced
in [203], is inspired by the idea that complex functions should have a
larger "degree of curvature" (or "ruggedness") than simple ones. But,
contrarily to [203], in the present work we quantify the idea of "degree
of curvature" using the following intuition: let g be a GP individual;
the "degree of curvature" of g can be expressed by counting the num-
ber of pairs of “close” training points a and b (where both a and b are
points that belong to the domain of g) for which the corresponding
values g(a) and g(b) are “far”.

60

6.2 the proposed measures 61

In more formal terms, given a GP individual g, let S be the set
{(x1,g(x1)), (x2,g(x2)), . . . , (xm,g(xm))} that is, the set that contains
training points x1, x2, . . . , xm associated with the corresponding val-
ues assumed by g on them.

Let x1, x2, . . . , xm ∈ X and g(x1),g(x2), . . . ,g(xm) ∈ Y, with both X
and Y being metric spaces equipped with metrics dX and dY respec-
tively. For any i = 1, 2, ...,m, and for any prefixed constant value δ,
let Bδ(xi) be the open ball of radius δ centered on xi in metric space X,
i.e. Bδ(xi) = {xj | dX(xi, xj) < δ}. Analogously, for any i = 1, 2, ...,m,
and for any prefixed constant value ε, let Bε(g(xi)) be the open ball
of radius ε centered on g(xi) in metric space Y.

For every training point xi, we define the set:

V(xi) = {xj ∈ Bδ(xi) | g(xj) /∈ Bε(g(xi)) and xj 6= xi}

This set contains all the points of the sample set that are close (i.e.
nearer than a given δ) to xi in the X metric space, but whose values
under g are not close (i.e. farther than a given ε) to the value of g(xi)

in the Y metric space.
We now consider the set V =

⋃m
i=1 V(xi). V can be addressed as

the set of points in X in which the function represented by the GP
individual g is rugged, thus the fraction of training points that be-
long to set V can be used as a measure to quantify our intuition of
"degree of curvature" (or "ruggedness"): |V |

m . Clearly, values near 1

denote a very rugged function, while values near 0 indicate flat (or
straight) and thus less complex functions. It is interesting to consider
not only the set V(xi) containing the points of ruggedness since, in
the union

⋃m
i=1 V(xi) one misses the information about which pairs of

points that are close to each other have corresponding function values
which are far apart.

So, we introduce the set E =
⋃m
i=1 ({xi}× V(xi)), which is a relation

that associates each xi with all the corresponding points in V(xi). Now,
if we define the set Etot = {(xi, xj) | xj ∈ Bδ(xi) \ {xi}}, we can define
our complexity measure as:

GBC =
|E|

|Etot|

We remark that, in case of symbolic regression problems, we usually
have X ⊆ Rn and Y ⊆ R. Thus, it is possible to calculate GBC, for
instance, using the Euclidean distance as the dX and dY metrics. Thus
GBC is rotationally invariant, contrarily to what happens for the com-
plexity measure defined in [203].

The acronym we have chosen as the name of this measure (GBC,
which stands for Graph Based Complexity) depends on the fact that it
is possible to represent it in terms of counting operations on a graph.
Let G = ({x1, . . . , xm},Etot) be a graph defined on the training points,
where two vertices are connected if their distance on the metric space

6.2 the proposed measures 62

X is less than δ. Now consider the subgraph Gε = ({x1, . . . , xm},E)
which only contains the edges (xi, xj) of G such that the distance be-
tween g(xi) and g(xj) in the Y metric space is greater or equal than ε.
The GBC measure is clearly equal to the ratio between the number of
connections in Gε and the number of connections in G.

The GBC function can be used to quantify the complexity of GP
individuals. However, it is also clear that the same calculation can be
performed using the known target values (instead of using the values
assumed by the learned function) on the different training points. In
particular, if we indicate by f(xi) the target value on a training point xi,
it is possible to define a set V ′ (analogous to the set V previously
defined) as follows: V ′(xi) = {xj ∈ Bδ(xi) | f(xj) /∈ Bε(f(xi)) and xj 6=
xi}. And thus, it is also possible to define a set E ′ as follows: E ′ =
∪mi=1 ({xi}× V ′(xi)). Following the same idea that we have used to
define the GBC measure, we can state that GBCtarget = |E ′|/|Etot| is
a measure that can be used to quantify the ruggedness of the target
function.

Furthermore, we can also use both information coming from sets E
and E ′ to quantify the ability of a GP individual to learn “difficult”
points. For this aim we define the following measure, that we call
GBLA (Graph Based Learning Ability):

GBLA =
|E 4 E ′|
|Etot|

where 4 represents the operator of symmetrical difference between
sets. GBLA quantifies the number of training points where the target
function is rugged and the learned function is flat, plus the number
of training points where the learned function is rugged and the target
function is flat. For simplicity, we call these points “difficult” points.

Both the definitions of GBC and GBLA are based on the definition
of the V(xi) set. The elements of V(xi) depend on the choice of the
two parameters δ and ε. Consequently, also the values of GBC and
GBLA depend on these two parameters. Nevertheless, a set of prelim-
inary experiments have indicated an interesting fact concerning these
two parameters: if we consider many series composed by the values
of the GBC of the best individual in the population for each iteration
for several pairs of values of δ and ε, all these series have a positive
value of their mutual cross correlation coefficient, with a magnitude
of this coefficient approximately equal to 1. The same fact has also
been observed for GBLA. Given that in the experimental study pre-
sented in Section 15.1.5 we are mainly interested in understanding
the correlation of GBC and GBLA with other quantities during the GP
runs (rather than the particular values of GBC and GBLA), we can as-
sert that parameters δ and ε qualitatively affect neither the results of
Section 15.1.5, nor the conclusions that we are able to draw from them.
We have also repeated all the experiments reported in Section 15.1.5
for several other pairs of values of δ and ε and all the experimental

6.3 test problems 63

results (not shown here for lack of space) have confirmed that the
values of δ and ε do not affect the qualitative interpretation of the
results.

6.3 test problems

The real-life applications considered in this chapter to test the pro-
posed measures are three multidimensional regression problems, whose
goal is to predict the value of as many pharmacokinetic parameters
of a set of candidate drug compounds on the basis of their molecular
structure. The first pharmacokinetic parameter we consider is human
oral bioavailability (indicated with %F from now on), the second one
is median lethal dose (indicated with LD50 from now on), also in-
formally called toxicity, and the third one is called plasma protein
binding levels (indicated with %PPB from now on). %F measures the
percentage of the initial orally submitted drug dose that effectively
reaches the systemic blood circulation after the passage from the liver.
LD50 refers to the amount of compound required to kill 50% of the
considered test organisms (cavies). %PPB quantifies the percentage
of the drug initial dose that reaches blood circulation and binds the
proteins of plasma. For a detailed discussion of these three pharma-
cokinetic parameters the reader is referred to [8]. The datasets we
have used are the same as in [8]: the %F dataset consists in a matrix
composed by 260 rows (instances) and 242 columns (features). Each
row is a vector of molecular descriptor values identifying a drug;
each column represents a molecular descriptor, except the last one,
that contains the known target values of %F. Both the LD50 and the
%PPB datasets consist in a matrix composed by 234 rows (instances)
and 627 columns (features). Also in this case, each row is a vector of
molecular descriptors identifying a drug and each column represents
a molecular descriptor except the last one, that contains the known
values of the target. For all these datasets training and test sets have
been obtained by random splitting: at each different GP run, 70% of
the molecules have been randomly selected with uniform probability
and inserted into the training set, while the remaining 30% formed
the test set.

6.4 experimental study

Experimental setting. A total of 120 runs were performed to obtain
the results reported in this section. All the runs used a population of
200 individuals. The number of generations that we have performed
was equal to 100 for the LD50 and %F datasets and to 500 for %PPB
(the reason why we have executed a larger number of generations
for %PPB will be clear on page 67 in the current section). Tree initial-
ization was performed with the Ramped Half-and-Half method [114]

6.4 experimental study 64

with a maximum initial depth of 6. The function set contained the
four binary operators +, −, ×, and /, protected as in [114]. The ter-
minal set contained 241 floating point variables for the %F dataset
and 626 floating point variables for the LD50 and %PPB datasets. No
random constants were added to the terminal set. Because the cardi-
nalities of the function and terminal sets were so different, we have
imposed a balanced choice between functions and terminals when
selecting a random node.

Unless where explicitly pointed out, fitness was calculated as the
root mean squared error (RMSE) between outputs and targets. Tour-
nament selection was used with size 10. The reproduction (replica-
tion) rate was 0.1, meaning that each selected parent has a 10% chance
of being copied to the next generation instead of being engaged in
breeding. Standard tree mutation and standard crossover (with uni-
form selection of crossover and mutation points) were used with prob-
abilities of 0.1 and 0.9, respectively. Selection for survival used elitism
(i.e. unchanged copy of the best individual in the next population). A
fixed maximum depth equal to 17 was used for the trees in the popu-
lation.

We remark that these parameters are absolutely identical to the
ones used in [203]. Given that, as pointed out in the previous section,
the δ and ε parameters do not affect the qualitative interpretation of
the results contained in this section, we report the results obtained for
two arbitrary values, i.e.: δ = 0.06 and ε = 0.05. All distance values
have been normalized into the range [0,1] before comparing them
with the values of δ and ε.
Experimental results: GBC and GBLA. In Figure 6 we report the me-
dian over 120 independent runs of the RMSE on the training set, the
RMSE on the test set, the value of GBC, the value of 1-GBLA and fi-
nally the complexity and overfitting measures introduced in [203] for
all the performed generations (first column: LD50; second column:
%F; third column: %PPB). From now on we use the terms “complex-
ity” and “overfitting” to indicate the complexity and overfitting mea-
sures introduced in [203] and with the terminology “RMSE on the
test set” we indicate the RMSE on the test set of the individual with
the best RMSE on the training set.

Let us focus first on the relationship between RMSE on the train-
ing and test set for the studied problems. For LD50 the RMSE on the
training set steadily decreases during the whole evolution, while the
RMSE on the test set keeps increasing after generation 30, also show-
ing an irregular and oscillating behaviour. For %F both the RMSE
on training and test set are steadily decreasing during the studied
100 generations. For %PPB the RMSE on the training set steadily de-
creases during the whole evolution, while the RMSE on the test set
is decreasing until generation 50, and then increasing until genera-
tion 500, also showing some oscillations. We conclude that GP has a

6.4 experimental study 65

1850

2250

LD50
Training RMSE

30

48

%F
Training RMSE

20

65

%PPB
Training RMSE

2040

2200
Test RMSE

32

48
Test RMSE

35

65
Test RMSE

0.44

0.54
GBC

0.78

0.86
GBC

0.72

0.88
GBC

0.49

0.54
1−GBLA

0.72

0.79
1−GBLA

0.65

0.75
1−GBLA

1.2

2.2
x 10

7 Complexity

0

2
x 10

6 Complexity

0.6

1.7
x 10

5 Complexity

0 50 100
0

125
Overfitting

Generations
0 50 100

0

0.75
Overfitting

Generations
0 250 500

0

90
Overfitting

Generations

Figure 6: The first (respectively second and third) column reports the results
for LD50 (respectively %F and %PPB). For each column, from top
to bottom, we report the RMSE on the training set, the RMSE on
the test set, the GBC, 1-GBLA and the values of the complexity
and overfitting measures introduced in [203]. All these results are
reported against generations and they are medians of the value
assumed by the best individual (i.e. the one with the best RMSE
on the training set) over 120 independent runs.

worse generalization ability for LD50 and %PPB than for %F. Let us
now focus on the curves representing GBC and 1-GBLA. Both GBC
and 1-GBLA are increasing after generation 30 for LD50, steadily de-
creasing (except for the initial part of the run) for %F and increasing
(except for the first 50 generations) for %PPB. These results hint a
relationship between the trend of the RMSE on the test set and the
GBC and GBLA measures for all the studied problems. In particular,
GBC seems to have a positive correlation with the RMSE on the test
set and GBLA seems to have a negative correlation with the RMSE
on the test set. Before studying in details these correlations, let us

6.4 experimental study 66

first look at the trend of the complexity and overfitting measures.
The complexity measure seems to have a less clear relationship with
the RMSE on the test than GBC and GBLA for LD50 and %F. On the
other hand, for %PPB the complexity measure seems to be growing
with a higher speed than GBC and 1-GBLA, and thus it seems to have
a stronger correlation with the RMSE on the test set. Finally, we point
out that the overfitting measure has a more oscillating and less regu-
lar behavior than the other measures. Nevertheless, its general trend
seems related to GBC and to the complexity measure for LD50 and
to GBC, GBLA and complexity for %PPB. On the other hand, no clear
relationship appears between the overfitting measure and any of the
other measures for %F.

In order to better understand the mutual relationships between the
quantities plotted in Figure 6, in Figure 7 we report the median values
of the cross correlation at delay zero between them. Cross correlation
is a standard method of estimating the degree to which two series
S1 = {x1, x2, ..., xn} and S2 = {y1,y2, ...,yn} are correlated. It is de-
fined by r = (

∑n
i=d+1 |(xi− S1)(yi−d− S2)|)/(σS1σS2), where S1 and

S2 are the averages of the elements in the series S1 and S2 respec-
tively, σS1 and σS2 are their respective standard deviations, and d is
the delay (in this work, we have used d = 0). An introduction to cross
correlation can be found, for instance, in [50]. Assume we want to
calculate the correlation between GBC and RMSE on the test set, as
it is the case, for instance, in the left-top plot of Figure 7. This can be
done by considering as S1 the series composed by the GBC values of
the best individuals in the population at each generation and as S2
the series of the respective RMSE values on the test set of the same
individuals. Applying the same method, it is possible to calculate the
cross correlation of any pair of measures reported in Figure 6. In Fig-
ure 7, we also draw two horizontal lines at the values −0.15 and 0.15,
often empirically identified as thresholds between the presence of a
correlation (either positive or negative) and the absence of it.

For LD50: during the whole run, GBC has a positive cross corre-
lation with the RMSE on the test set and overfitting and a negative
cross correlation with the RMSE on the training set after generation
40. GBLA has a negative cross correlation with the RMSE on the test
set after generation 50, a positive cross correlation with the RMSE
on the training set and cross correlation approximately equal to zero
with overfitting. Complexity has a positive cross correlation with over-
fitting and a negative cross correlation with the RMSE on the training
set. The cross correlation between complexity and RMSE on the test
set is approximately equal to zero, except for some small oscillations
at the end of the run.

For %F: GBC has a positive cross correlation with RMSE both on
the training and test set (in particular after generation 50 and this
value is steadily increasing during the run) and a cross correlation

6.4 experimental study 67

−1

−0.5

−0.15
0.15

0.5

1

LD50
GBC

−1

−0.5

−0.15
0.15

0.5

1

%F
GBC

−1

−0.5

−0.15
0.15

0.5

1

%PPB
GBC

−1

−0.5

−0.15
0.15

0.5

1
GBLA

−1

−0.5

−0.15
0.15

0.5

1
GBLA

−1

−0.5

−0.15
0.15

0.5

1
GBLA

10 50 100
−1

−0.5

−0.15
0.15

0.5

1
Complexity

Generations
10 50 100

−1

−0.5

−0.15
0.15

0.5

1
Complexity

Generations
10 250 500

−1

−0.5

−0.15
0.15

0.5

1
Complexity

Generations

Figure 7: The first (respectively second and third) column reports the results
for LD50 (respectively %F and %PPB). For each column, from top
to bottom, we report the cross correlation of GBC, GBLA and com-
plexity with the RMSE on the training set (dashed dark grey line),
the RMSE on the test set (black line) and the overfitting measure
(solid light grey line). All these results are reported against gener-
ations and they are medians over 120 independent runs.

approximately equal to zero with overfitting. GBLA has a negative
(and steadily decreasing) cross correlation both with the RMSE on
the training and on the test set and a cross correlation approximately
equal to zero with overfitting. Finally, complexity has a cross correla-
tion approximately equal to zero with overfitting and a positive cross
corrlation with both RMSE on the training and test set (even though
in both cases the cross correlation becomes larger than 0.15 only in the
final part of the run). One general interesting thing to be remarked
is also that in some cases the the cross correlations seem, so to say,
to "lag" the raw data; e.g., in Figure 6, for %F, GBC appears to be
strongly correlated with test RMSE after generation 10-20, but in Fig-
ure 7 the cross correlation is not positive until generation 50. For this
reason we are planning to investigate other measures instead of cross
correlation in the future.

For %PPB: the value of the cross correlation between GBC and the
RMSE on the training and test set is negative, but steadily increas-
ing, in the first 100 generations. For this reason, we have executed the
simulations until generation 500, to see if some of these correlations
became positive later in the evolution. We can see that the correla-
tion between GBC and the RMSE on the test set becomes positive
more or less at generation 350, and it keeps on growing, although

6.4 experimental study 68

without becoming larger than 0.15. Because of the steadily growing
trend of the curve of the cross correlation between GBC and RMSE on
the test set, we hypothesize that this cross correlation would become
positive later in the run. On the other hand, the cross correlation be-
tween GBC and RMSE on the training set is clearly negative during
the whole run. Finally, the cross correlation between GBC and over-
fitting is positive (it becomes larger than 0.15 around generation 280,
and it remains larger than 0.15 until the end of the run). GBLA has a
negative cross correlation with both overfitting and RMSE on the test
set and a positive cross correlation with RMSE on the training set. Fi-
nally, complexity has a positive cross correlation with both overfitting
and RMSE on the test set and a negative cross correlation with RMSE
on the training set.

Summarizing: GBC is positively correlated with the RMSE on the
test set and GBLA is negatively correlated with the RMSE on the test
set. These facts seem independent on the generalization ability of GP
(i.e. they hold for all the studied problems). Furthermore, the magni-
tude of the correlation with the RMSE on the test set is larger for GBC
and GBLA than for the complexity measure for all studied problems
except %PPB. The negative values of the correlation between GBLA
and RMSE on the test set can be interpreted as follows: GBLA quan-
tifies the ability of GP to learn the “difficult” training points. It is
intuitive that a good learning of those points leads GP to a poor gener-
alization ability, because the solutions are too specialized on training
data and thus overfit them. This can be caused, for instance, by the
fact that those “difficult” points correspond to “noise”, or even errors
in the training data, or they are generally not useful to reliably re-
construct the target function. The existing relationship between GBC
and GBLA with the RMSE on the test set seems to hint that the ideas
used to define GBC and GBLA could be useful to build a new fitness
function able to reduce the error on the test set. This is the goal of the
next paragraph.
Experimental results: New Fitness Function. Using either GBC or
GBLA as new fitness functions does not allow us to obtain interest-
ing results. Consider, for instance, the case of GBLA: each function
able to learn some particular points (the ones that are not considered
as difficult) would have a good fitness, and thus it would receive a
high probability of surviving and mating in the GP population, inde-
pendently of the distance of that function from the target one. Besides
our intuition, also a set of preliminary experimental results confirm
that using either GBC or GBLA as fitness functions does not allow us
to obtain better results than standard GP (i.e. GP that uses the RMSE
as fitness) on the test set. Nevertheless, the ideas used to define GBC
and GBLA can be used to define a new fitness function, assuming
to integrate them with the error between learned values and target
ones. A possibility could be to use them together with RMSE in a

6.4 experimental study 69

0 50 100

2050

2100

2150

2200

Generations

T
es

t R
M

S
E

LD50

0 50 100
30

35

40

45

50

Generations

T
es

t R
M

S
E

%F

regular
weighted

0 250 500
35

40

45

50

55

60

65

Generations

T
es

t R
M

S
E

%PPB

Figure 8: RMSE on the test set of standard GP (i.e. GP that uses the RMSE
as fitness, indicated by "regular" in figure) and of GP that uses the
new fitness function (indicated by "weighted" in the figure). Left:
LD50. Middle: %F. Right: %PPB.

multi-objective method. Even though the idea is interesting, we want
to define one new fitness function able to incorporate both the infor-
mation derived from the RMSE and from the new measures.

The idea is to give a weight to the error in each training point. For
this reason, we call the new fitness function “weighted_fitness”. The
weight should depend on how rugged the learned function is in that
point, reducing the weight of the rugged points. The new fitness mea-
sure is:

weighted_fitness(g) =
m∑
i=0

(f(xi) − g(xi))
2

1+ |V(xi)|

where x1, x2, . . ., xm are the training points, g is a GP individual,
the values f(x1), f(x2), . . ., f(xm) represent the targets on those points.
The fact that the denominator in the equation of the new fitness is
1+ |V(xi)| instead of |V(xi)| is due to the fact that the value of |V(xi)|

could be equal to zero. In Figure 8 we report an experimental compar-
ison between standard GP and GP that uses the new fitness function
The same experimental settings and number of runs used for the ini-
tial analysis are used also here. We report the median of the RMSE
on test data for each performed generation for both these models. For
LD50, GP that uses the new fitness function is able to obtain better
results. For both %F and %PPB, GP using the new fitness function
seems to return very similar results than standard GP. We conclude
that GP using the proposed fitness function is able to better general-
ize (compared to standard GP) for some problems where standard GP
has a poor generalization ability (as it is the case of the LD50), while
it behaves comparably to standard GP when standard GP itself has
a good generalization ability (like for %F). Nevertheless, problems
where standard GP has a poor generalization ability and the new fit-
ness function is not able to improve it exist (it is the case of %PPB).
But at least, we have shown that in this last case, the new fitness
function does not worsen the results. These results suggest that the

6.5 further remarks 70

proposed fitness function could be a suitable one, given that in some
cases it gives an advantage when standard GP has poor generaliza-
tion, and when it doesn’t, at least, it does not give any disadvantage.
Furthermore, the new fitness function is simple to implement and
computationally reasonable (we do not report statistics about the ex-
ecution time for lack of space).

6.5 further remarks

A study of Genetic Programming (GP) learning ability has been pre-
sented, offering the three following contributions: first, we have de-
fined a new measure (GBC) to quantify the functional complexity
of GP individuals. Compared to another complexity measure defined
in [203], GBC is rotationally invariant and it has a higher correlation
with the quality of GP solutions on out-of-sample data. Secondly, we
have presented a new measure (GBLA) aimed at quantifying the abil-
ity of GP to learn “difficult” points and we have shown that this
measure is negatively correlated with the quality of GP solutions on
out-of-sample data. Based on these ideas, the third contribution con-
sisted in defining a new fitness function for GP. Experimental results
have shown that this new fitness function allows GP to better general-
ize for some problems where standard GP has a poor generalization,
without worsening the results in all other cases. This seems to indicate
the suitability of this fitness function in any possible case. However,
the new fitness function has to be further studied in the future.

7
B E N C H M A R K I N G : T H E K - L A N D S C A P E S

7.1 introduction

The work presented in this chapter extends the NK landscapes prob-
lem to GP. The new GP benchmark that we introduce is called K land-
scapes1. Its definition, together with a first experimental study aimed
at showing the GP behavior on this benchmark, is contained in the
continuation of the chapter.

The chapter is chapter as follows: in Section 7.2 we describe the K
landscapes benchmark for GP. In Section 7.3, we present our experi-
ments, including both a description of the used experimental settings
and a discussion of the obtained results. Finally, Section 7.4 provides
some further remarks and directions of research.

7.2 the k landscapes for gp

We denote a GP individual by T , the root of T by R (T), the depth of
T by D (T) and the set of children of a node N by S (N). The set of
all nodes of T is denoted by N (T). The set of all possible subtrees of
T is denoted by Ψ(T). The set of all functional symbols used to code
individuals is denoted by F and the set of terminal symbols by T.

Given two numbers a,b ∈ R, with a < b, let v : F ∪ T 7→ [a,b]
be a function chosen randomly between all (representable) functions
from F ∪ T to [a,b]. The map v returns a number in [a,b] for each
possible tree node, i.e. for each possible element of the set F∪T. Also,
given two numbers c,d ∈ R such that c < d, let w : F × (F ∪ T) 7→
[c,d] be a randomly chosen function that returns a number in [c,d]
for each possible connection between two nodes in a tree. Here we
choose a = −1, b = 1, c = 0 and d = 1 and from now on all the
considerations will be done assuming these values for a, b, c and
d. Choosing a negative value for a, we give to the v function the
possibility of returning negative values. For a given K ∈ N, with K
smaller or equal to the maximum admissible depth for the trees in

1 The “N” in the NK landscapes model represents the length of the genome codifying
GAs individuals. This does not make sense in GP, where individuals have typically
a variable sized representation. For this reason, we just use the term “K” landscapes
to indicate the proposed benchmark.

71

7.2 the k landscapes for gp 72

the population (if any maximum depth is imposed) and a tree T , we
define:

fK(T) =


v (R (T)) +

∑
C∈S(R(T))

(1+w (R (T) ,C)) fK−1 (C)

if K > 0

v (R (T)) otherwise

When K = 0, fK(T) simply returns the value of the v function on the
root of T . In all the other cases, fK(T) returns a weighted sum of the
values of v applied to the nodes of T for the first K levels, where the
weights are determined by the values of w.

The fitness function that we propose for the GP K landscapes is
defined as the maximum value of fK calculated over all the nodes of
a GP tree, with a penalty given by a function of the difference between
the depth of the tree and K:

FK (T) =
1

1+ |K−D (T) |
max

T ′∈Ψ(T)

{
fK
(
T ′
)}

The problem that we define introducing this fitness function is a max-
imization one (i.e. larger values of the fitness are better).

Now we want to enunciate and prove some properties of the K
landscapes problem defined by such a fitness function. But before
doing it, we need to introduce the following concept:

Definition 7.2.1. Given a tree T and a K ∈ N, we indicate with the
term summit of T of level K a structure T ′ that respects the following
properties:

• if K = 0, T ′ is only composed by the node R(T).

• otherwise, R(T ′) = R(T) and if the subtrees of R(T) in T are
S1,S2, ...,Sh, then the subtrees of R(T ′) in T ′ are U1,U2, ...,Uh,
where for each i = 1, 2, ...,h Ui is a summit of level K − 1 of
Si if Si is different from the empty tree, and the empty tree
otherwise.

The concept of summit of a tree should be clarified by Figure 9:
the structure in Figure 9(b) is a summit of the tree in Figure 9(a),
while the one in Figure 9(c), even though it is a subtree of the tree in
Figure 9(a), is not a summit of the tree in Figure 9(a). In very informal
terms, we could say that the summit of a tree T is a "top part" of T :
for each path from the root to a leaf in T , a summit of T contains
a subset of this path, from the root to a given node up to a given
prefixed level K, or the whole path if the length of the path is 6 K. It
is also worth pointing out that a summit of level K of a tree T does
not necessarily have a depth equal to K, but can also have a smaller
depth than K if it is the whole tree T . Furthermore, it is immediate to

7.2 the k landscapes for gp 73

(a) (b) (c)

Figure 9: The structure in figure (b) is a summit of the tree in figure (a),
while the one in figure (c) is not a summit of the tree in figure (a).

remark that, if T is the representation of a GP individual, a summit of
T may not represent any GP individual, given that it may lack some
terminals (indeed, it can represent an individual only if it is equal to T
itself). For instance, if we indicate with X a general terminal symbol,
the summit in Figure 9(b) contains one branch that is not complete
(it is not ended by a terminal symbol), and thus it cannot represent
a GP individual. It is possible to "transform" a summit of a tree into
a GP individual by adding terminal symbols at the last level, where
needed. We call this process embedding2:

Definition 7.2.2. Given a summit T ′ of a tree T , an embedding of T ′ is
a tree that is identical to T ′ except for the fact that terminal symbols
are added in the branches that are not ended by terminal symbols in
T ′.

Figure 10 should clarify the concept of embedding: the tree in Fig-

(a) (b)

Figure 10: The tree in figure (b) is an embedding of the summit in figure (a).

ure 10(b) is an embedding of the summit in Figure 10(a), given that a
terminal symbol is added in all the branches that are not ended by a
terminal symbol.

We are now ready to enunciate and prove some properties of the
proposed K landscapes.

2 An alternative, and maybe more suitable, term may be "extension", since with this
process a tree is "extended" rather than "embedded" in another structure. Neverthe-
less, given the generality of the term "extension", we prefer to use the term "embed-
ding".

7.2 the k landscapes for gp 74

Proposition 7.2.1. For each admissible value of K, if there exists a tree T
such that fK(T) > 0 then all the optima in the search space must necessarily
have a depth of at most K+ 1.

Proof. Let us consider the definition of fK(T). It is composed by a sum
of terms. To calculate each one of these terms, the nodes of T have to
be considered from the root up to the level K, or from the root to
the leaf for the paths where the leaf is at depth smaller than K. Let
us consider the structure composed by all the nodes that have to be
analyzed in order to calculate fK(T). It is clearly a summit of level K
of T . This summit can be transformed into a tree T ′: if the summit is
equal to T , then T ′ = T . Otherwise T ′ is an embedding of T . In the
first case T ′ has a depth of at most K, in the second case T ′ has a
depth equal to K+ 1.

It is interesting to remark that, in the first case, if the depth of T ′ is
smaller than K, a tree T ′′ of depth K can be considered that has T ′ as
one of its subtrees. By the definition of FK, this new tree will have a
better fitness value than T ′. In fact, given that T ′ is a subtree of T ′′, we
have that maxS1∈Ψ(T ′′){fK(S1)} > maxS2∈Ψ(T ′){fK(S2)} and the term

1
1+|K−D(T ′′)| is equal to 1, while 1

1+|K−D(T ′)| is smaller than 1. Thus,
we can say that for each tree T it is possible to generate a tree U that
either has a depth equal to K or to K+ 1: depending on the depth of
the summit of T of level K, U can be equal to T itself, an embedding
of its summit or a tree (like T ′′) that has its summit as a subtree.

Now we want to show that each tree that has a depth larger than
K+ 1 cannot be an optimum. Let T be a tree with a larger depth than
K + 1. Let us consider the tree U obtained from T by applying the
process described so far. Given that fK(T) is calculated using only the
nodes that belong to the summit of level K of the subtrees of T , and
given that the subtrees of T and the subtrees of U that maximize fK
have the same summit of level K, we have that maxS1∈Ψ(T){fK(S1)} =

maxS2∈Ψ(U){fK(S2)}. But given that T has a larger depth than U and
the depth of U is either K or K+ 1, 1

1+|K−D(T)| <
1

1+|K−D(U)| . Thus
the fitness of T must be smaller than the one of U. We conclude that
T cannot be an optimum.

Proposition 7.2.2. For each K > 0, we have that fK(T) > 0 for some tree
T if and only if there exists N ∈ F ∪ T such that v (N) > 0.

Proof. To prove this property, we prove separately both implications.
First, let us prove that if fK(T) > 0 for some tree T then N ∈ F ∪ T

such that v (N) > 0 exists. The case K = 0 is obvious: if fK(T) > 0 then
v applied to the root of T must return a positive value. In the other
cases, fK(T) > 0 implies that at least one of the terms of the sum that
defines fK must be positive. fK is defined as a sum of terms, where
each term is composed by an application of function v to a node of T
multiplied by an application of function w to a connection in T . Given

7.2 the k landscapes for gp 75

that w can only return positive values, there must exist at least one
N ∈ N (T) ⊆ F ∪ T such that v (N) > 0.

Let us now prove that if an N ∈ F ∪ T such that v (N) > 0 exists,
then fK(T) > 0 for some tree T . Let us assume first that there exists
N ∈ T such that v (N) > 0. Then the tree having N as the only node
has a value of fK equal to v (N) > 0. Now let us assume that N ∈ F

such that v (N) > 0 exists and let us consider a tree T of depth K+ 1

with all the leaves at level K+ 1 and all the internal nodes equal to N.
The summit T ′ of level K rooted at R (T) is composed only of nodes
with weight v (N). This means that fK(T) = fK(T ′) > v (R(T)) > 0.

We also remark that, when fK(T) 6 0 for all trees, and the tree
depth is unbounded, for every tree it is always possible to find a tree
with an higher fitness, even if this fitness is always negative. This
is due to the penalty given by the term 1

1+|K−D(T)| that appears in
the definition of FK: as D(T) increases, a negative value of the fitness
increases too.

In our definition of the K landscapes, we want all the global op-
tima to have a depth not larger than K+ 1, because, as it will be clear
shortly, this allows us to define an algorithm to compute the globally
optimal fitness. Thus, for obtaining this goal, from now on we im-
pose that the v function must assume a positive value for at least one
element of its domain.

We are now ready to enunciate and prove the following property:

Proposition 7.2.3. At least one of the optima of the K landscapes is a tree
T that has all the nodes at the same level identical to each other.

The tree represented in Figure 11 is an example of a tree that re-
spects the property of Proposition 7.2.3. In fact, level 1 is composed
by only B symbols, level 2 is composed by only C symbols and level 3

is composed by only X symbols; thus only symbols that are identical
to each other appear in the same level.

Figure 11: An example of a tree that respects the property of Proposi-
tion 7.2.3.

Now we prove Proposition 7.2.3:

Proof. Let us consider an optimum T for the K landscapes. Let Ψ(T) =
{U1,U2, ...,Uh} be the set of all the possible subtrees of T . For each

7.2 the k landscapes for gp 76

i = 1, 2, ...,h, let U ′i be the tree of depth at most K+ 1 obtained from
Ui by considering its summit of level K and eventually embedding it
(the process that allows us to generate U ′i from Ui is explained at the
beginning of the proof of Proposition 7.2.1). Now, among the trees
U ′1,U ′2, ...,U ′h, let us consider the one that maximizes fK and let us
call it T ′ (actually the nodes that compose the summit of level K of T ′

are the ones that are used to calculate the fitness of T). We call T ′ an
fK-optimum.

It is easy to convince oneself that Proposition 7.2.3 holds by looking
at Figure 12: let us assume that the tree in Figure 12(a) is fK-optimum.
Let T1 be the left subtree of the tree in Figure 12(a) and T2 be its right
subtree (T1 and T2 are the subtrees respectively surrounded by a rect-
angle and an oval in Figure 12(a)). First of all, we remark that the
property fK(T1) = fK(T2) must hold. In fact, (without loss of gener-
ality) let fK(T1) be larger than fK(T2). If this is true, it is possible to
build a new tree that is identical to the one in Figure 12(a), but with
the only difference that the occurrence of T2 is replaced by another
occurrence of T1; this new tree, represented in Figure 12(b), would
have a larger value of fK than the tree in Figure 12(a). But this would
contradict the hypothesis that the tree in Figure 12(a) is fK-optimum.
We conclude that fK(T1) = fK(T2) and also that the trees represented
in Figures 12(b) and (c) have the same value of fK as the one in Fig-
ure 12(a), and thus are also fK-optima.

(a) (b) (c)

Figure 12: Suppose that (a) is a fk-optimum. Then both (b) and (c) must
also be fk-optima (see the proof of Proposition 7.2.3).

This argument can be generalized, abstracting from the example of
the trees represented in Figure 12: given an fK-optimum, it is always
possible to build another fK-optimum that has all the subtrees of its
root identical to each other (simply by "replicating" one of them, as it
has been done for transforming the tree in Figure 12(a) into the tree
in Figure 12(b)). In case these subtrees do not respect the property
of Proposition 7.2.3, it is possible to iterate the process, transforming
them into trees that have all the subtrees of the root identical to each
other and that have the same value of fK. Iterating this process until
the last level of the tree, it is possible to build an fK-optimum that
respects the property of Proposition 7.2.3.

7.2 the k landscapes for gp 77

So far we have shown that, for every K, there exists an fK-optimum
that respects the property of Proposition 7.2.3. Now, we have two pos-
sibilities to define a candidate optimum for the K landscapes problem:
(1) consider an fK-optimum chosen between the trees of depth at most
K. If it has depth K, then it is the candidate optimum. Otherwise, if
its depth is smaller than K, we candidate a tree of depth K that re-
spects the property of Proposition 7.2.3 and contains it as a subtree;
(2) consider an fK-optimum chosen between the trees of depth K+ 1

and that respects the property of Proposition 7.2.3. One optimum T

of the K landscapes problem can be obtained either by possibility (1)
or by possibility (2), because in both cases T contains an fK-optimum
and the value of the term 1

1+|K−D(T)| is either 1 or 12 . In both cases,
it respects the property of Proposition 7.2.3 and this allows us to con-
clude.

So far, we have proven some properties that at least one optimum
of the proposed K landscapes must have. Using these properties, we
are now able to calculate the optimal fitness of this problem. The
argument that we use is similar to the one used in the proof of Propo-
sition 7.2.3. Let T6K be an fK-optimum of depth at most K. Let TK+1
be an fK-optimum of depth K + 1. To find an optimum for FK we
can suppose that both T6K and TK+1 respect the property of Proposi-
tion 7.2.3. Also, it is possible to consider T6K of depth K since, if its
depth is less than K, it is possible to define a deeper tree that has T6K
as a subtree. Thus, by the definition of FK, it is possible to express the
K landscapes optimal fitness as follows:

Proposition 7.2.4. The optimal fitness of the K landscapes is:

Fopt = max{ 1
1+|K−K|fK

(
T6K

)
, 1
1+|K−(K+1)|fk (TK+1)}

= max{fK
(
T6K

)
, 12fK (TK+1)}

Furthermore, we are also able to define an algorithm to compute
the optimal fitness and the structure of at least one of the optima: for
all the tree depths form 0 to K+1, we simply exhaustively consider all
the trees that respect the property of Proposition 7.2.3 (the number of
these trees is much smaller than the number of all the trees of depth
at most K+ 1), finding the one with the maximum fitness. Because of
the properties that we have proven so far, we are sure that it will be
one of the global optima. Even if the algorithm is exponential in K, it
is usable in practice because K cannot be larger than the maximum
depth allowed for the trees in the population. Thus, only "limited"
values of K are used in practice.

We finally point out an interesting characteristic of the K landscapes
problem introduced here: given a fK-optimum of depth d, its subtrees
of depth d− 1 are not necessarily fK−1-optima. This fact implies that
it is difficult for GP to build an optimum starting from smaller sub-
optima, as it is the case of the NK landscapes for GAs. The following

7.3 experimental study 78

example shows a case where the subtrees of depth d − 1 of a fK-
optimum of depth d are not fK−1-optima.
Example. Let us consider the following set of functional and terminal
symbols used to build GP individuals: F = {A}, T = {X, Y}. Let us
consider the following values of the v and w functions: v(A) = 1,
v(X) = 0.75, v(Y) = 1; w(A,X) = 1, w(A, Y) = 0. It is clear that it is
possible to build only two trees of depth 1 that respect the property
of Proposition 7.2.3. They are shown in Figure 13. Let T1 be the tree

(a) (b)

Figure 13: The only two trees of depth 1 that respect the property of Proposi-
tion 7.2.3 and that can be built using the sets of symbols F = {A},
T = {X, Y}.

represented in Figure 13(a) and T2 the one represented in Figure 13(b).
The value of f1 for these two trees is: f1(T1) = 1+ 2 ∗ (1+ 1) ∗ 0.75 =
1+3 = 4 and f1(T2) = 1+2∗1∗1 = 3. Thus, T1 is an f1-optimum. But,
given that v(Y) > v(X) the f0-optimum is not the tree composed by
the only X symbol (subtrees of depth 0 of T1), but the one composed
by the only Y symbol.

7.3 experimental study

Experimental Settings. All the results presented in this section have
been obtained performing 100 runs of GP with a population size of
100 individuals running for 100 generations. The initialization method
was ramped half-and-half with an initial maximum tree depth of 2.
The selection method used was tournament selection with a tourna-
ment size of 10. The crossover method used was the standard subtree
swapping crossover [114] with a crossover probability of 0.9. The mu-
tation method used was point mutation [114] with a probability of
0.1. During the experiments elitism (i.e. unchanged copy of the best
individual in the next population at each generation) was used and
the maximum allowed tree depth was 17. The experiments were per-
formed using values for the K parameter ranging from 2 to 13. Indi-
viduals have been built using 2 functional symbols, both with arity
2, and 4 terminal symbols. Since the fitness is computed consider-
ing only the values of the v and w functions, it was unnecessary to
define a semantic for the functional and terminal symbols used. At
each generation the fitness, size and depth of the best individual were
recorded. Also the average fitness, depth and size of the population

7.3 experimental study 79

were recorded. The median of these values over the 100 runs is re-
ported in this section. A t-test has been performed over the fitness
values obtained in the last generation for every value of K with the
equality of the means considered as the null hypothesis.

Experimental Results. In all the figures from 15 to 19, different
curves represent different values of K. For the same value of K we
have used, in all these figures, the same line. For this reason, we
report the legend of this figures only once, in Figure 14.

Figure 14: The legend for the plots reported in figures from 15 to 19.

In Figure 15 the median of the average depth of the GP trees in
the population for the different values of K is presented. We can see
that, for every considered K, the average depth after generation 20 is
slightly above K. This result shows that the largest part of the search
process is concentrated on trees of a depth near K. This means that
the region of the search space that contains the individuals with the
best fitness increases exponentially with K. This can be considered
as a first hint of the fact that the problems get more difficult as K
increases. It is also interesting to remark that the average size rises
quickly from the initial value. This means that the penalization of
individuals with depth different from K is effective in forcing the
search process to sample trees of depth close to K.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

A
ve

ra
ge

 d
ep

th

Generations

Figure 15: Median of the average depth of the GP trees in the population
against generations.

Another indication of the different difficulty of the problem for dif-
ferent values of K is given by the plots of the median of the average
number of nodes of the trees in the population, reported in Figure 16.
The average number of nodes increases generation by generation for

7.3 experimental study 80

all the considered values of K. The main difference between the vari-
ous cases is that, for small values of K, the increase in size stops after
some generations, while for high values of K the process continues
up to the last studied generation. This curves show that even if the
search process is quickly directed towards the “right tree depth”, ob-
taining the optimum is still a process that increases in difficulty with
K. In other words, while reaching the depth of the optimal tree is
easy, producing an optimal tree of a given depth remains a difficult
process for GP.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

A
ve

ra
ge

 s
iz

e

Generations

Figure 16: Median of the average number of nodes of the GP trees in the
population against generations.

Given this information on the average size and the depth of the
trees, it is interesting to explore the same information on the best el-
ement of the population. In Figure 17 the median of the depth of the
best individual is presented. As it is possible to see, for each stud-
ied value of K, the depth quickly rises to the corresponding value
of K and remains constant for all the considered generations. This is
consistent with the previous observations and shows that the best in-
dividual in the population after few generations has a depth that is
close to the depth of at least one global optimum.

Figure 18 reports the median of the number of nodes of the best
individual at each generation. These results are consistent with the
ones of the average number of nodes in the population reported so
far. This means that the depth of the best individual, as the depth of
many other individuals in the population, quickly rises to K, and then
GP concentrates on finding the optimal number of nodes, focusing
on the space of trees of depth close to K. Since at least one of the
optima is a tree of a depth close to K that respects the property of
Proposition 7.2.3, the number of nodes of that optimum increases
exponentially with K, making the search process more difficult for
high K values.

7.3 experimental study 81

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

B
es

t i
nd

iv
id

ua
l d

ep
th

Generations

Figure 17: Median of the depth of the best GP tree at each generation.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

B
es

t i
nd

iv
id

ua
l s

iz
e

Generations

Figure 18: Median of the number of nodes of the best GP tree at each gener-
ation.

The fact that the difficulty of the problem increases with K is con-
firmed by Figure 19, where the median of the best fitness in the popu-
lation at each generation is reported. Fitness values have been normal-
ized by dividing them by the optimal fitness (that has been calculated
using the algorithm reported at the end of Section 7.2). In this way,
the global optimum has a normalized fitness equal to 1. The figure
clearly shows that the difficulty increases with K, and this is visible
since the very first generations. Furthermore, we point out that for
K = 2, K = 3, K = 4 and K = 5 a global optimum has been reached by
GP before generation 100 in the majority of the studied runs, while
this is not the case for higher values of K. In particular, for values of K
higher than 10 the displacement from a random individual (that has
expected fitness equal to 0 because of the uniform random choice of

7.3 experimental study 82

the v function) is very low. This indicates that for values of K larger
than 10, GP is behaving in a way that is comparable to random search,
and the optimization process is extremely slow.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

B
es

t f
itn

es
s

Generations

Figure 19: Median of the fitness of the best GP tree in the population at
each generation. All fitness values have been normalized dividing
them by the optimal fitness.

A more in-depth analysis has been done for the last studied gener-
ation of the runs. In the box plot in Figure 20 the average depth of the
GP trees at the last generation is considered. It is interesting to note

Figure 20: Average depth of the trees in the population at the last genera-
tion.

that the variabilities of the measured depths are low. This means that
the search almost always remains near the desired value.

The box plot of the average number of nodes at the last generation
is presented in Figure 21. It shows that the variability on the number
of nodes increases with K. This behavior can be explained by the fact
that the number of trees of a given depth increases with K.

7.3 experimental study 83

Figure 21: Average number of nodes of the trees in the population at the last
generation.

The box plot of the best fitness at the last generation is presented
in Figure 22. This figure shows that for different values of K there

Figure 22: Fitness of the best individual in the population at the last genera-
tion.

are different behaviors: for low values of K the fitness remains near
1. For intermediate values of K the fitness decreases steadily when K
increases. Finally, for high values of K the fitness still decreases but at
a slower rate, since the fitness values approach 0, the expected fitness
of a randomly generated GP tree.

We have also performed a t-test over the best fitnesses registered
at the last studied generation for the performed 100 runs. The null
hypothesis is that two means are identical. In Table 1 the p-values of
the t-test are reported for all the different possible combinations of
K. The combinations where the p-value is larger than 0.05 are written
in italic. The results show that the differences between the recorded
fitness values is almost always statistically significant for different
values of K.

In conclusion, the presented experiments show that GP is able to
find a global optimum in few generations for low values of K; increas-

7.3 experimental study 84

k=
3

k=
4

k=
5

k=
6

k=
7

k=
8

k=
9

k=
10

k=
11

k=
12

k=
13

.0
1
9
3

.0
0
0
1

.0
0
0
0

.1
71

3
.0

0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

k=
2

.0
3
0
1

.0
0
0
2

.2
72

8
.0

0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

k=
3

.0
3
6
5

.5
14

8
.0

0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

k=
4

.9
65

0
.0

0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

k=
5

.0
1
1
5

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

k=
6

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

k=
7

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

.0
0
0
0

k=
8

.0
0
0
0

.0
0
0
0

.0
0
0
9

.0
0
0
1

k=
9

.0
0
0
0

.2
29

3
.0

84
5

k=
10

.7
66

9
.9

04
5

k=
11

.7
64

5
k=

12

Ta
bl

e
1

:T
he
p

-v
al

ue
s

gi
ve

n
by

th
e

t-
te

st
.T

he
p

-v
al

ue
s

gr
ea

te
r

th
at
0

.0
5

ar
e

pr
es

en
te

d
in

ita
lic

.

7.4 further remarks 85

ing K, the best normalized fitness found by GP gets worse until, for
large values of K, the behavior of GP becomes comparable to the one
of random search. Interestingly, the size of the individuals inside the
population increases with K. This allows us to conclude that, for large
values of K, we have a progressive code growth without a correspond-
ing improvement in fitness. This is exactly the definition of bloat, as
presented, for instance, in [156]. This means that the difficulty of the
proposed problem can be effectively tuned by changing the value of
K: increasing K we create problems in which GP is more and more
unable to optimize and in which GP is more and more affected by
bloat.

7.4 further remarks

An extension of the NK landscapes to tree based GP, simply called
K landscapes, has been presented. In this benchmark, the epistatic
interaction is quantified by the mutual influence on fitness of larger
and larger structures in a tree as the value of the K parameter in-
creases. The fact that the hardness of the problem increases with K
has been experimentally shown. Furthermore, we have shown that
GP produces more bloat as K increases.

A formal proof of the fact that the number of local optima increases
with K is needed in the future. Furthermore, we plan to investigate
the use of many landscape indicators, like fitness distance correlation,
auto-correlation, density of states and many others, on the proposed
benchmark, in order to further corroborate the hypothesis that a more
and more rugged fitness landscape is induced by increasing K. Finally,
we plan to extend the proposed benchmark, overcoming some of its
major limitations, namely: (1) the current model does exhibit epistatic
behavior under point mutation, but this is no longer true when con-
sidering subtree crossover; (2) the current benchmark cannot model
dead code: every subtree contributes to the fitness; (3) an ideal solu-
tion is very repetitive in terms of used subtrees and this is very far
from real world, where it is rarely the case that an ideal solution can
be built from cloned and systematically arranged subtrees.

8
FA S T S E M A N T I C G E N E T I C P R O G R A M M I N G

In this chapter we propose a new solution to the problem of exponen-
tial increase of the size of the trees in Semantic GP. We present a new
GP system incorporating an implementation of geometric semantic
genetic operators that not only makes them usable in practice, but
even very efficient, without requiring any simplification of the indi-
viduals during the GP run. In this way, we are for the first time able
to exploit the great potentialities of these operators, consisting in the
fact that they induce unimodal fitness landscapes.

In order to experimentally validate our new GP system, we have
applied it to a complex real-life problem in the field of pharmacoki-
netic: the prediction of human oral bioavailability of new potential
drugs. The results we have obtained have been compared not only
to the ones returned by standard GP, but also to the ones of several
other state of the art Machine Learning methods reported in [9].

The chapter is organized as follows: Section 8.1 describes the geo-
metric semantic operators, shows that the fitness landscapes induced
by them are unimodal and outlines their limitations. In Section 8.2 we
present our new GP system that overcomes the current limitations of
geometric semantic operators, making them usable (and efficient) for
real-life applications. Section 8.3 presents the test problem used, the
experimental settings and the obtained results. Finally, Section 8.4
provides some further remarks and directions of research.

8.1 geometric semantic operators

While the semantically aware methods cited in Section 5.2 often pro-
duced superior performances with respect to traditional methods,
they are indirect: search operators act on the syntax of the parents
to produce offspring, which are successively accepted only if some
semantic criterium is satisfied. As reported in [142], this has at least
two drawbacks: (i) these implementations are very wasteful as heav-
ily based on trial-and-error; (ii) they do not provide insights on how
syntactic and semantic searches relate to each other.

To overcome these drawbacks, in [142], using a formal geometric
view on search operators and representations, the authors introduced
a novel form of GP that directly searches the space of the underlying

86

8.1 geometric semantic operators 87

semantics of the programs. This perspective provides new insights
on the relation between program syntax and semantics, search oper-
ators and fitness landscapes, and allows principled formal design of
semantic search operators for different classes of problems.

To explain the idea, let us first consider Genetic Algorithms (GAs),
which are similar to GP with the major difference that the solutions
are fixed length strings of characters and not computer programs. Let
us consider a GA problem in which the target solution is known and
the fitness of each individual corresponds to its distance to the target
(our reasoning holds for any distance measure used). This problem is
easy. In fact, for instance, if we use point mutation, any possible in-
dividual different from the global optimum has at least one neighbor
(individual resulting from its mutation) that is closer than itself to the
target, and thus fitter. So, there are no local optima: the fitness land-
scape is unimodal. This is also confirmed by the FDC that is clearly
equal to 1, because fitness and distance to the goal are identical. Simi-
lar considerations hold for many types of crossover, including various
kinds of geometric crossover [141].

Now, let us consider the typical GP problem of finding a function
that maps sets of input data into known target ones. As already dis-
cussed, regression and classification are particular cases. The fitness
of an individual for this problem is typically a distance between its
calculated values and the target ones (error measure). Now, let us as-
sume that we can find a transformation on the syntax of the individ-
uals, whose effect is a random perturbation of one of their calculated
values. In other words, let us assume that we are able to transform
an individual G into an individual H whose output is like the output
of G, except for one value, that is randomly perturbed. Under this
hypothesis, we are able to map the considered GP problem into the
GA problem discussed above. So, this transformation would induce
a unimodal fitness landscape with FDC equal to 1 and every problem
like the considered one (e.g. regressions and classifications) should
be easily solvable by GP. The same also holds for transformations on
pairs of solutions that correspond to GAs semantic crossovers.

Under this perspective, the objective of [142] was to find operators
on the syntactic (or genotypic) space that map well-known operators
on the semantic space. Here we report the definition of geometric
semantic operators given in [142] for real functions domains, since
these are the operators we will use in the experimental phase. For
applications that consider other kinds of data, the reader is referred
to [142].

Definition 8.1.1. (Geometric Semantic Crossover). Given two parent
functions T1, T2 : Rn → R, the geometric semantic crossover returns
the real function:

TXO = (T1 · TR) + ((1− TR) · T2)

8.2 the proposed gp implementation 88

where TR is a random real function whose output values range in the
interval [0, 1].

Reference [142] formally proves that this operator corresponds to
geometric crossover on the semantic space, and thus induces a uni-
modal fitness landscape. To constrain TR in producing values in [0, 1]
we use the sigmoid function: TR = 1

1+e−Trand
where Trand is a ran-

dom tree with no constraints on the output values.

Definition 8.1.2. (Geometric Semantic Mutation). Given a parent
function T : Rn → R, the geometric semantic mutation with muta-
tion step ms returns the real function:

TM = T +ms · (TR1 − TR2)

where TR1 and TR2 are random real functions.

Reference [142] formally proves that this operator corresponds to a
box mutation on the semantic space, and induces a unimodal fitness
landscape.

We point out that at every step of one of these operators, offspring
contain the complete structure of the parents and one or more ran-
dom trees as subtrees, plus some arithmetic operators: the size of
each offspring is thus clearly much larger than the one of their par-
ents. The exponential growth of the individuals in the population
(demonstrated in [142]) makes these operators unusable in practice:
after a few generations the population becomes unmanageable and
the fitness evaluation process becomes unbearably slow. The solution
that is suggested in [142] as a future work consists in performing an
automatic simplification step after every generation in which the pro-
grams are substituted by (hopefully smaller) semantically equivalent
ones. However, this additional step adds to the computational cost
of GP and is only a partial solution to the progressive program size
growth. Last but not least, according to the particular language used
to code individuals, automatic simplification can be a very hard task.

Due to all these limitations, it is important to make an effort in
implementing a framework that will allow an efficient use of the geo-
metric semantic operators. The objective is to present a GP implemen-
tation that overcomes this limitation, without performing any simpli-
fication step and without imposing any particular representation for
the individuals (for example the traditional representation of GP indi-
viduals as trees can be used). This implementation is presented in the
next section. For simplicity, from now on, GP using only geometric
semantic crossover and mutation to explore the search space will be
indicated as GS-GP (Geometric Semantic GP).

8.2 the proposed gp implementation

The implementation we propose can be described by the following
steps:

8.2 the proposed gp implementation 89

• We create an initial population of (typically random) programs,
exactly as in standard GP (let P be the name of this population
from now on).

• Given that geometric semantic crossover and mutation need the
generation of random trees to be used, we create beforehand
all the random trees that will be needed during the whole evo-
lution (this pool of random trees will be called Pmut from now
on).

• During the first generation, at the moment of evaluating the
fitness of the individuals, we create two tables that we call Tvp

and Tvm. Tvp (respectively Tvm) contains, for each individual in
P (respectively in Pmut), the value resulting from the evaluation
on all fitness cases (in other words, it contains the semantics of
that individual). Hence, having a training set with k training
instances and P (respectively Pmut) containing n (respectively
m) individuals, results in a table Tvp (respectively Tvm) with k
rows and n (respectively m) columns.

• For every generation p > 1, a new empty table T ′vp is created
and, whenever a new individual T must be generated by crossover
between selected parents T1 and T2, the following actions are
performed:

– T is represented by a triple T = 〈α(T1),α(T2),α(R)〉, which
is stored in an apposite structure (this structure is called M

from now on), where R is one of the random trees in Pmut

and, for any tree τ, α(τ) is a reference (or memory pointer)
to τ.

– The first line that is still empty in T ′vp is successively filled
with the values of the semantics of T , which can be easily
obtained by calculating (T1 · R) + ((1− R) · T2) for each fit-
ness case, according to the definition of geometric semantic
crossover.

• Analogously, whenever at generation p a new individual T has
to be obtained by applying mutation to an individual T1, the
following actions are performed:

– T is represented by a triple T = 〈α(T1),α(R1),α(R2)〉 (this
triple is also stored in M), where R1 and R2 are two among
the random trees in Pmut.

– The first line that is still empty in T ′vp is this time filled
with the values of the semantics of T which can be easily
obtained by calculating T1 +ms · (R1 − R2) for each fitness
case, according to the definition of geometric semantic mu-
tation.

8.2 the proposed gp implementation 90

• When generation p is completed, table T ′vp is copied into Tvp

and erased.

• The process is iterated for the prefixed number of generations.

In synthesis, this algorithm is based on the idea that, when seman-
tic operators are used, an individual can be fully described by its se-
mantics (which makes the syntactic component much less important
than in standard GP), a concept discussed in depth in [142]. In order
to implement this idea, at every generation we update table Tvp by us-
ing the values contained in it and the ones in Tvm, without explicitly
building the syntactic structures of the individuals, but incorporating
all the information to do it in a second time.

We point out that:

1. This process of updating table Tvp can be performed efficiently
and no evaluation of the whole tree is needed anymore. As a
consequence, in this implementation the fitness calculation is
rather efficient. Indeed the fitness evaluation process requires,
for each individual and except for the first generation, a con-
stant time, which is independent from the size of the individual
itself. On the other hand, at the initial generation, the fitness
evaluation requires a time that is dependent on the size of the
individuals, as it is usual in GP.

2. Conceptually, population P evolves during a GP run, while Pmut

does not change until the end of each run. This is implemented
by continuously updating table Tvp, while Tvm stays unchanged
during a run.

3. The structure M (that contains, for each individual, the triplet
of references to the ancestors) increases in size during a GP run.
However, given that this structure contains only pointers, we
can manage it for several thousands of generations in a very
efficient way.

4. The fact that all the random trees used by crossover and muta-
tion are generated in one step before the beginning of the evolu-
tionary process (instead of generating them at the moment they
are needed) does not change the expected behaviour of the algo-
rithm (there is no reason to imagine that a random tree should
have different properties if generated in two different instants).
Nevertheless, they still can be generated and stored in Tvm at
the moment they are needed, instead of doing it all at once in
the beginning, with no significant modification in the behavior
of the algorithm.

5. Generating all the random trees that will be needed in one step
before starting the evolutionary process and storing them in

8.2 the proposed gp implementation 91

Pmut is a procedure that can efficiently be managed from a com-
putational viewpoint.

6. Tables Tvp and Tvm contain the values of the evaluation of the
individuals on the fitness cases (i.e. the semantics of the indi-
viduals), not their fitness values. This information (and not the
fitness) is the one that is needed to reconstruct the semantics
of the individuals in the subsequent generations and iterate the
process. It is nevertheless easy to calculate the fitness using the
semantics and knowing the corresponding target values.

The final part of the algorithm has to be performed after the end of
the last generation, in order to reconstruct the individuals. For doing
that, we need to “unwind” our compact representation and make the
syntax of the individuals explicit. In this way, we will still have the
large trees that characterize the standard implementation of geomet-
ric semantic operators. However, all the evolutionary process can be
performed efficiently and, if we are interested only in the best indi-
vidual found by GP (which is the typical situation, where the best
individual is interpreted as the model explaining data), we can per-
form the simplification of the expression on only one tree, instead of
every tree in the population at each generation as proposed in [142].
Furthermore, the simplification is not performed during the evolu-
tion, but it can be done offline in a second step.

Excluding the time needed to simplify the best individual, the pro-
posed implementation allowed us to evolve populations for thou-
sands of generations with a speed up to at least 20 times higher than
standard GP.

In the continuation of this section, we show a simple example that
should clarify the functioning of the proposed algorithm.

8.2.1 Example

Let us consider the simple initial population P shown in Table 2 and
the simple pool of random trees Pmut shown in Table 3 (usually Pmut

contains a number of individuals much larger than P; in this example
we consider both P and Pmut containing five individuals for simplic-
ity). Besides the representation of the individuals in infix notation,
these tables also contain an Id for each individual (T1, T2, T3, T4 and
T5 for the individuals in P and R1, R2, R3, R4 and R5 for the indi-
viduals in Pmut). For simplicity, these Ids will be used from now on
to address the different individuals, and individuals that will be cre-
ated in the subsequent generations will be indicated using letter T
follwed by progressive numbers (for example, the five individuals in
the population at the second generation will be called T6, T7, T8, T9
and T10).

8.2 the proposed gp implementation 92

Id Individual

T1 x1 + x2 · x3
T2 x3 − x2 · x4
T3 x3 + x4 − 2 · x1
T4 x3 · x1
T5 x1 − x3

Table 2: The simple initial population P used in the example of Section 8.2.1.
The leftmost column reports the Ids of the individuals. These Ids
will be used in the text for simplicity.

Id Individual

R1 x1 + x2 − 2 · x4
R2 x2 − x1

R3 x1 + x4 − 3 · x3
R4 x2 − x3 − x4

R5 2 · x1

Table 3: The individuals in the random pool Pmut used in the example of
Section 8.2.1. The leftmost column reports the Ids of the individuals.
These Ids will be used in the text for simplicity.

We now describe all the operations involved in the creation of the
new population at the next generation, which we indicate as popula-
tion P ′ from now on. Let us assume that the (non-deterministic) se-
lection process imposes that T6 is generated by crossover between T4
and T5. Analogously, let us assume that T7 is generated by crossover
between T1 and T4, T8 is generated by crossover between T1 and T5,
T9 is generated by crossover between T3 and T4 and T10 is generated
by crossover between T3 and T5. Furthermore, let us assume that to
perform these five crossovers, individuals R2, R1, R4, R5 and R3 of
Pmut have to be used, respectively.

In our implementation, the individuals in P ′ are simply represented
by the set of entries reported in Table 4, and stored in structure M. In
synthesis this table contains, for each new individual, a reference to
the ancestors that have been used to generated it and the name of the
operator used to generate it (either "crossover" or "mutation").

The only structures that we have to keep in memory during the
GP run, besides the ones depicted in Tables 2, 3 and 4, are the two
tables Tvp and Tvm that contain, at each generation, the values of the
evaluation of the individuals in the current population and in Pmut
for each fitness case. The size of the structure M reported in Table 4

grows during the GP run (in this example, five new entries are added
to this table at each new generation, corresponding to the five new
individuals in the population); however, it is very compact, because

8.2 the proposed gp implementation 93

Id Operator Entry

T6 crossover 〈T4, T5,R2〉
T7 crossover 〈T1, T4,R1〉
T8 crossover 〈T1, T5,R4〉
T9 crossover 〈T3, T4,R5〉
T10 crossover 〈T3, T5,R3〉

Table 4: How the individuals in the subsequent generations are stored in
memory for the example of Section 8.2.1 (this structure is called M

in the text). The leftmost column reports the Ids of the individuals.
These Ids will be used in the text for simplicity. The central column
reports the operation that has been used to generate the individ-
ual (it can be either "crossover" or "mutation". In this example, we
use only crossover for simplicity). The rightmost column contains
references to the ancestors used to generate the individual.

it only contains references, and thus we can manage it for several
thousands of generations.

Let us assume that now we want to reconstruct the genotype of one
of the individuals in P ′ (this typically happens only once, at the end
of the run, for the best individual in the population). For instance, let
us assume that the want to reconstruct T8. Tables 2, 3 and 4 provide us
with all the information we need to be able to do that. In particular,
from Table 4 we learn that T8 is obtained by crossover between T1
and T5, using random tree R4. Thus, from the definition of geometric
semantic crossover, we know that it will have the following structure:
(T1 · R4) + ((1− R4) · T5). Table 2, that contains the syntactic structure
of T1 and T5, and Table 3, that contains the syntactic structure of R4,
finally provide us with all the information we need to completely
reconstruct the syntactic structure of T8, which is:

((x1 + x2 · x3) · (x2 − x3 − x4)) + ((1− (x2 − x3 − x4)) · (x1 − x3))

For simplicity, we have omitted mutation in this example and we
have generated all the individuals in the new population using only
crossover. Mutation works in a similar way, with the only differences
that the central column in Table 4 contains the label "mutation" (and
this information is useful because it tells us that, this time, we have
to use the definition of geometric semantic mutation in order to re-
construct the individual) and the triplet associated to the newly gen-
erated individual this time contains one reference to an individual in
P and two references to two individuals in Pmut.

It is important to remark that the time and space costs associated
to this implementation of the geometric semantic operators are linear
w.r.t. both the number of generations and the population size. In fact,
at every generation we need O(|P|) additional space (where |P| is the
population size). Thus, after g generations the space needed isO(g|P|).

8.3 empirical study 94

As for the time complexity, at every generation we need to produce |P|

new individuals, each one requiring a constant time. Thus, the time
complexity for g generations is also O(g|P|).

8.3 empirical study

8.3.1 The Application

The implementation provided so far makes the geometric semantic
operators efficiently usable also on complex real-life applications. For
this reason, for the first time, we are now able to validate those oper-
ators on one of those applications. We choose a real life problem in
the field of pharmacokinetic.

As stated in [9], the availability of reliable pharmacokinetics pre-
diction tools would permit to reduce the risk of late stage research
failures in drug discovery and will enable to decrease the number
of experiments and cavies used in pharmacological research, by op-
timizing the screening assays. Furthermore, predictive pharmacoki-
netic models would be of critical relevance for preventing Adverse
Drug Reactions (ADRs), like those involved in the Lipobay-Baycol
(cerivastatin) toxicity [194]. The potential of predictive modeling in
terms of ADRs prediction is an hot research topic in medicine. Hu-
man oral bioavailability (indicated with %F from now on) is the pa-
rameter that measures the percentage of the initial orally submitted
drug dose that effectively reaches the systemic blood circulation af-
ter the passage from the liver. This parameter is particularly relevant,
because the oral assumption is usually the preferred way for supply-
ing drugs to patients and because it is a representative measure of
the quantity of active principle that can actuate its therapeutic effect.
Being able to reliably predict the %F value for a potential new drug
is outstandingly important, given that the majority of failures in com-
pounds development from the early nineties to nowadays are due to a
wrong prediction of this pharmacokinetic parameter during the drug
discovery process [112, 109].

We have obtained a set of molecular structures and the correspond-
ing %F values using the same data as in [221], using a public database
of Food and Drug Administration (FDA) approved drugs and drug-
like compounds [217]. The data has been gathered in a matrix com-
posed by 359 rows and 242 columns. Each row (instance) is a vector of
molecular descriptor values identifying a candidate new drug; each
column (feature) represents a molecular descriptor, except the last
one, that contains the known values of %F.

In our experiments, training and test sets have been obtained by
randomly splitting the dataset: at each GP run, 70% of the molecules
have been randomly selected with uniform probability and inserted
into the training set, while the remaining 30% form the test set.

8.3 empirical study 95

8.3.2 Experimental Settings

We tested the proposed implementation of GP with geometric seman-
tic operators (GS-GP from now on) against a standard GP system
(STD-GP). A total of 30 runs were performed with each technique
considering different randomly generated partitions of the dataset
into training and test set at each run. All the runs used populations
of 100 individuals and the evolution stopped after 2000 generations.
Trees initialization was performed with the Ramped Half-and-Half
method [162] with a maximum initial depth equal to 6. The function
set contained the four binary arithmetic operators +, −, ∗, and / pro-
tected as in [162]. Fitness was calculated as the root mean squared
error between outputs and targets (thus the lower the fitness, the bet-
ter the individual). The terminal set contained 241 variables, each one
corresponding to a different feature in the dataset. To create new in-
dividuals, STD-GP used standard (subtree swapping) crossover [162]
and (subtree) mutation [162] with probabilities equal to 0.9 and 0.1 re-
spectively. For GS-GP, crossover rate is 0.9, while mutation rate is 0.5.
The motivation for this different mutation rate for the two GP systems
is that a preliminary experimental study has been performed (inde-
pendently for the two systems) for finding the parameter setting able
to return the best results. Only the parameter settings that returned
the best results for the two systems are presented here. Survival from
one generation to the other was always guaranteed to the best indi-
vidual of the population (elitism). No maximum tree depth limit has
been imposed during the evolution.

In the next section, experimental results are reported using curves
of the root mean square error on the training and test set. In particular,
at each generation the best individual in the population (i.e. the one
that has the smaller training error) has been chosen and the value of
its error on the training and test has been stored. The reported curves
finally contain the median of all these values collected at each gener-
ation. The median was preferred over the mean in the reported plots
because of its higher robustness to outliers. The root mean square er-
ror on the training and test set, calculated as described above, will
be in some cases informally indicated as training and test fitness, or
training and test error, in the next section for simplicity.

8.3.3 Experimental Results

Figure 23 reports training and test error for STD-GP and GS-GP and
clearly shows that GS-GP outperforms STD-GP on both training and
test sets. In particular, GS-GP has a suitable behaviour: the curve of
the error on the test set is quite “regular” and steadily decreasing
during the whole evolutionary process. This behaviour on the test set
gives us a hint of the fact that, contrarily to STD-GP, GS-GP does not

8.3 empirical study 96

overfit training data for the considered application. Here we are using
the number of generations as a the unit on the abscissa. While STD-
GP and GS-GP generations are not the same in term of complexity,
this does not give an advantage to GS-GP since, in term of execution
time, GS-GP was always significantly faster than STD-GP.

Figure 24 reports a statistical study of the test fitness of the best
individual, both for GS-GP and STD-GP, for each of the 30 performed
runs. Let IQR be the interquartile range. The ends of the whiskers
represent the lowest datum still within 1.5· IQR of the lower quartile,
and the highest datum still within 1.5· IQR of the upper quartile. As
it is possible to see, GS-GP produces solutions with a lower standard
deviation with respect to the ones produced by STD-GP.

To analyze the statistical significance of these results, a set of tests
has been performed on the median errors.

As a first step, the Kolmogorov-Smirnov test has shown that the
data are not normally distributed and hence a rank-based statistic
has been used. Successively, the Wilcoxon rank-sum test for pairwise
data comparison has been used under the alternative hypothesis that
the samples do not have equal medians. The p-values obtained are
6.0 · 10−11 when test fitness of STD-GP is compared to test fitness of
GS-GP and 7.1 · 10−9 when training fitness of STD-GP is compared to
training fitness of GS-GP. Therefore, when using a significance level
α = 0.05, we can clearly state that GS-GP produces fitness values that
are significantly lower (i.e., better) than the STD-GP both on training
and test data.

Besides comparing GS-GP with standard GP, we are also interested
in comparing GS-GP with other well known state of the art Machine
Learning methods, just to have an idea of the competitiveness of the
results returned by GS-GP. Previous studies have appeared so far
comparing several Machine Learning techniques for the prediction
of the bioavailability of potentially new drugs. For instance, in [9] the
following methods have been tested: linear regression, least square re-
gression, multilayer perceptron, support vector machines regression
with first degree polynomial and support vector machines regression
with second degree polynomial kernel. In [9] all these methods are
used with and without an explicit feature selection, performed on
the original data as a preprocessing phase.

In [9] the feature selection methods used are principal component
based feature selection and correlation based feature selection. Here,
we take up exactly the same perspective, by using all these methods
with and without these feature selection strategies on our dataset. As
in [9] we used the implementations provided by the Weka public do-
main software [88] and, for each one of the used Machine Learning
methods and feature selection strategies, we have used the default
parameter setting of Weka. The results are reported in Table 5, where
we can observe that the best performance was obtained by linear re-

8.4 further remarks 97

gression with correlation based feature selection, that returned a root
mean square error on the test set approximately equal to 27.52. Given
that GS-GP, in the last performed generation, has returned a median
test fitness equal to 30.44, and given that the best test fitness over
the performed 30 runs was equal to 26.97, we state that GS-GP is
able to find better, or at least comparable, results than the best one
of the state of the art Machine Learning methods. We also point out
that these results have been obtained by GS-GP without any explicit
feature selection (given that GP is in general able to perform an au-
tomatic feature selection during the learning phase [143, 9]), while
the best results of the state of the art methods have been obtained by
explicitly selecting features by the correlation based technique. The
explicit use of a preprocessing phase to select features has also been
used so far in Evolutionary Computation in general [125], and in GP
in particular [84], with excellent results. This should further improve
GS-GP performances, and new experiments including explicit feature
selection are part of our current research.

0 500 1000 1500 2000

20

30

40

50

60

Number of Generations

T
ra

in
 E

rr
or

Standard GP
Geometric GP

0 500 1000 1500 2000

30

40

50

60

70

Number of Generations

T
es

t E
rr

or

Standard GP
Geometric GP

Figure 23: Median of train and test error for the consided techniques at each
generation calculated over 30 independent runs.

Figure 24: Train and test error of the best individual produced in each of the
30 runs at the last performed generation.

8.4 further remarks

New genetic operators, called geometric semantic operators, have
been defined so far for genetic programming. They have the extremely

8.4 further remarks 98

Method Test RMSE

(a) No feature selection

Linear regression 48.1049

Least square regression 37.2211

Multi layer perceptron 51.28

SVM regression-first degree polynomial kernel 34.804

SVM regression-second degree polynomial kernel 44.323

(b) Principal component based feature selection (PCFS)

Linear regression 30.5568

Least square regression 40.4503

Multi layer perceptron 48.9771

SVM regression-first degree polynomial kernel 36.185

SVM regression-second degree polynomial kernel 42.3377

(c) Correlation based feature selection (CorrFS)

Linear regression 27.5212

Least square regression 31.7826

Multi layer perceptron 32.5782

SVM regression-first degree polynomial kernel 28.8875

SVM regression-second degree polynomial kernel 29.7152

Table 5: Experimental comparison between different non-evolutionary Ma-
chine Learning techniques for oral bioavailability predictions. Error
on the test reported for each technique.

interesting property of inducing a unimodal fitness landscape for any
problem consisting in matching input data into known output ones
(regression and classifications are instances of this general problem).
This, at least at a theoretical level, should make all the problems of
this kind easily solvable by genetic programming. Nevertheless, as
demonstrated in the literature, these new operators, in their current
definition, have a strong limitation, that makes them unusable in prac-
tice: they produce offspring that are larger than their parents, and this
comports an exponential growth in the size of the individuals in the
population.

We have overcome this limitation by proposing a new genetic pro-
gramming system, in which geometric semantic operators are imple-
mented in a very efficient way. The proposed implementation basi-
cally keeps in memory only the initial (randomly generated) popula-
tion of programs, plus a set of randomly generated programs that will
be used by the operators during the evolution. Furthermore, the im-
plementation stores and maintains updated some tables containing
pointers to those programs. The size of these tables grows linearly
with generations, and thus managing those tables is quite feasible.

Thanks to this compact and efficient implementation, it is possible,
for the first time, to employ the framework to solve complex prob-

8.4 further remarks 99

lems, characterized by a large number of features. In particular, an
important real life problem in the field of pharmacokinetic has been
considered.

The presented experimental results demonstrate that the new sys-
tem outperforms standard genetic programming and returns results
that are better, or at least comparable to the best state of the art ma-
chine learning method for this application. Besides the fact that the
new genetic programming system has excellent results on training
data (which was expected, given that the fitness landscape is uni-
modal), we are positively surprised by its excellent generalization
ability on the studied application, testified by the good results we
have obtained on test data.

Part III

(E V O L U T I O N A RY) R E A C T I O N S Y S T E M S

9
I N T R O D U C T I O N T O R E A C T I O N S Y S T E M S

In this part of the thesis we introduce the concept of Reaction Sys-
tems and we study some combinatorial properties. Then, we will
link the idea behind genetic programming with the representation
for functions provided by reaction systems. This provide us with a
new promising GP system: Evolutionary Reaction Systems. Since this
GP system is new, after its introduction we will focus on its tuning,
concluding with some further remarks and directions of future re-
search.

9.1 reaction systems

In this section the notion of reaction system is introduced. We will
recall some of the formal properties that they have and the ideas that
led to their creation.

Reaction systems have been introduced by Ehrenfeucht and Rozen-
berg in 2004 as a formalism inspired by chemical reactions [51]. Its
main aim was to be simple and easily extensible. In fact, in the fol-
lowing years the formalism was extended to also include, for exam-
ple, the notion of time [53]. Extending the basic model is a necessity
to allow the modelling of more complex phenomena, even if it makes
a formal analysis more complex. This means that it is possible to have
a trade-off between clarity, that simplifies the study of formal proper-
ties, and adherence to the modelled system.

9.1.1 Basics of Reaction Systems

The first concept to be defined is the concept of reaction that, being
inspired to chemical reactions, comprises reactants, inhibitors and the
products of the reaction.

Definition 9.1.1. A reaction a = (Ra, Ia,Pa) is a triple of non-empty
sets where Ra is called the set of reactants, Ia the set of inhibitors
and Pa the set of products, with Ra ∩ Ia = ∅. For any set S such that
Ra ⊆ S, Ia ⊆ S and Pa ⊆ S we say that a is a reaction on S.

Given a set S, the set of all reactions on S is denoted by rac(S).
Given a set T ⊆ S and a reaction a ∈ rac(S), we say that a is enabled

101

9.1 reaction systems 102

in T iff Ra ⊆ T and Ia ∩ T = ∅. The result of a on T (denoted by
resa(T)) is Pa if a is enabled in T and ∅ otherwise. All these notions
can be extended to sets of reactions. Given a set A of reactions, the
reactant set is RA =

⋃
a∈A Ra, the inhibitor set is IA =

⋃
a∈A Ia

and the product set is PA =
⋃
a∈A Pa. The result set of A on T is

resA(T) =
⋃
a∈A resa(T). Furthermore, we say that A is enabled on

T iff for all a ∈ A, a is enabled on T .

Definition 9.1.2. A reaction system A = (S,A) is a pair where S is a fi-
nite set of symbols and A ⊆ rac(S). The set S is called the background
set of A.

The result set of A = (S,A) on T is resA(T) = resA(T). The set of
all enabled reactions of A on T (called the T -activity of A) is denoted
by enA(T). We will consider the size of a reaction system A = (S,A)
as |A|.

9.1.2 Dynamics of Reaction Systems

An important characteristic of reaction systems is their dynamics, that
is quite different from other system.

Definition 9.1.3. Let A = (S,A) be a reaction system. An interac-
tive process π = (γ, δ) is a pair of sequences of subsets of S where
γ = C0C1 . . . Cn, δ = D1D2 . . . Dn and for all i ∈ {2, . . . n}, Di =

resA (Di−1 ∪Ci−i1) and D1 = resA (C0).

The sequence D1 . . . Dn is called the result sequence of π. It repre-
sents the set of results obtained at every steps from the components
that are present in the system at the previous step. Note that even if a
component is present at a certain time step if it is not produced again
by a reaction then it is discarded at the next time step. This is a pe-
culiarity of reaction systems, where the actions do not modify a state
but are used to create a new state. So, if it is necessary to maintain
an information for more that one time step then we need to have it
recreated or inserted in the system at every time step.

The sequence C0 . . . Cn is called the context sequence of π. It repre-
sents the components that are introduced in the system at every time
step. Note that C0 represents the initial state. We may be also inter-
ested in systems where the intervention is limited at the generation
of the initial state (i.e., where Ci = ∅ for all i > 1). These systems are
called context-independent.

We will denote by Wi the set Wi = Di ∪Ci for all i ∈ {1, . . . ,n} and
W0 = C0. The set of enabled reactions at a time step i ∈ {0, . . . ,n− 1}

is denoted as Ei and is enA(Wi).

Example 9.1.1. Boolean functions can be easily represented by RS.
As an example consider the and function with two inputs. It can be

9.1 reaction systems 103

represented as a reaction system with S = {x1, x2, True, i}, where x1
and x2 are the input variables, True is a constant that represents the
output true of the system and i is a dummy inhibitor (a symbol that
can only be in an inhibitor set and is never inserted in the system nor
produced by other reaction). The set of reactions A contains only the
reaction α = ({x1, x2}, {i}, {True}). The outputs of the system with all
possible inputs are the following:

{x1} // ∅ {x2} // ∅ ∅ // ∅ {x1, x2}
α // {True}

where on the left of the arrow there is the initial state, on the right
the state at time 1 and the superscript over the arrow indicates the
reactions that were enabled. This notation means that, if we have only
x1 in the system, no reaction is enabled and hence we obtain the
empty set as a result. If only x2 is present in the system then we also
obtain the empty set as a result. Moreover, when we have no symbols
in the system we do not generate other symbols. Finally, when both x1
and x2 are present in the system the reaction α is enabled (indicated
by the superscript over the arrow) and we generate the symbol True.
Denoting a true variable by inserting its corresponding symbol in the
initial state of the system and a false variable by not inserting it, the
reaction α clearly represents an and gate. Also notice that it is always
possible to insert a dummy inhibitor (a symbol that is never present)
and a dummy reactant (a symbol that is always present) in order to
avoid the use of empty sets in the definition of reactions. Therefore,
when using RS in practice (i.e., as a GP variant), we will allow empty
sets either as reactant sets or as inhibitor sets since they can be easily
simulated using dummy symbols.

9.1.3 Equivalence of Reaction Systems

In reaction systems it is important the study of equivalence between
two reactions or two sets of reactions.

The first notion that is needed is the notion of functional equiva-
lence. Two reactions a,b ∈ rac(S) are said to be functionally equiva-
lent (denoted by a ∼ b) if for all T ⊆ S, resa(T) = resb(T).

Ehrenfeucht and Rozenberg found the necessary conditions for ob-
taining the functional equivalence of two reactions [52]. They proved
that two reactions a,b ∈ rac(S) are functionally equivalent iff Ra =

Rb, Ia = Ib and Pa = Pb. The notion of functional equivalence
can also be extended to sets of reactions. Two sets A,B ⊆ rac(S)

are functionally equivalent (denoted by A ∼ B) iff for all T ⊆ S,
resA(T) = resB(T). It has been proved [52] that the problem of the
functional equivalence between sets of reactions is coNP-complete.

It is possible to introduce a notion of partial ordering between re-
actions. Given two reactions a,b ∈ rac(S), a covers b (denoted by
a > b) iff for all T ⊆ S, resa(T) ⊇ resb(T). It is immediate that

9.2 motivations for evolutionary reaction systems 104

a ∼ b⇔ a > b∧b > a. It has been proved [52] that a > b iff Ra ⊆ Rb,
Ia ⊆ Ib and Pb ⊆ Pa.

9.2 motivations for evolutionary reaction systems

It is nowadays about fifty years since the very first computational
experiments that originated Genetic Programming (GP) and about
twenty years since John Koza named and popularised the method [114].
During the past two decades there has been a significant range and
volume of development in the theory and application of GP and GP is
nowadays recognized as a well established research field [162]. Large
part of the efforts of researchers has been dedicated to the study of
the evolution of several different computational formalisms, that can
help practitioners to solve problems with different levels of expres-
siveness. Under this perspective, from the very earliest experiments
in the automatic generation of executable structures [66] a variety
of representations have been explored starting with binary string
machine code [75], finite state automata [68], generative grammati-
cal encodings [216] to the dominant tree-based form popularised by
Koza [114]. To this day numerous alternative representations have
been proposed including graph [191], strongly-typed [135], linear-
tree [104], and linear-graph [105]. Among the many variants, partic-
ularly popular are the developments in grammar-based GP (see for
instance [155]) and cartesian GP (see for instance [132]). Besides [162],
the interested reader is referred to [156] for an in-depth discussion
of the open issues opened by the several different GP representation
models that have been proposed along the years.

This work is situated in this vast research field, and its aim is
the one of proposing a new GP system, able to evolve programs ex-
pressed in a new and challenging computation formalism called Reac-
tion Systems (RS) and recently introduced by Rozenberg and cowork-
ers [51]. This new GP variant will be called Evolutionary Reaction Sys-
tems (EvoRS).

Why introducing a new GP variant, evolving another computa-
tional formalism, despite the many variants already defined so far?
Many answers could be given to this question, justifying the fact that
evolving RS is interesting and relevant. First of all, RS is a powerful
and expressive computation formalism, that is particularly intuitive.

Another reason why the introduction of EvoRS is, in our opinion,
relevant is that it lightens the final user from the burden of defining
the set of functional symbols used to build up the evolved programs.
This definition is clearly a crucial step in many of the most currently
used GP variants, including tree based GP and grammar-based GP,
since it has a direct impact on the ability of the GP system to find
good solutions and it must be completely hand-defined by the final
user.

9.3 motivations for parameter tuning 105

Last but not least, RS is a bio-inspired computational formalism,
and in [156], O’Neill and coworkers dedicate an entire section of their
GP open issues chapter to “The Influence of Biology on GP”, claiming
that we currently do not use a sufficient set of features from biological
evolution to embody its full potential in our artificial evolutionary
process, and that in order to provide GP with new potentials and
power we need to go back to the natural example of biology and to
study what else can be learned from it.

Not only our objective is introducing EvoRS and discussing its func-
tioning, but we also want to give an idea of the potentialities of this
new evolutionary algorithm, by comparing its performances with the
ones of other well known machine learning methods (including stan-
dard tree-based GP) and by discussing the expressiveness of its re-
turned solutions.

9.3 motivations for parameter tuning

While the choice of individual representation, genetic operators and
fitness function are fundamental ingredients for an Evolutionary Al-
gorithm (EA) to achieve good results, a correct choice of these can still
lead to poor results if the algorithm’s parameters are not carefully set.
Choosing the right parameter values, however, is a very difficult and
time-consuming task, given their usually large number and their high
level of inter-dependency. Thus, methods to address this problem are
one of the priorities of the EA community. Although EvoRS produce
results that are comparable to (and in some cases even better than)
the ones produced by standard tree-based genetic programming and
other well established machine learning techniques for a large set of
problems, it is necessary to investigate the effect of its parameters
values on the search process.

According to [55], it is possible to distinguish two major forms of
setting parameter values: parameter tuning and parameter control.
Parameter tuning is the commonly practiced approach that consists
in finding good values for the parameters (for instance by means of a
set of preliminary experiments) before the final runs of the algorithm
and then running the algorithm using these values, which remain
fixed during the run. On the other hand, parameters control consists
in starting a run with initial parameter values which are dynamically
changed during the run. Thus, the main difference is that while pa-
rameter control is done online (i.e., during the execution of the EA),
parameter tuning is made a priori, with the parameters remaining
static during the EA evolution [114].

As stated in [44], parameter tuning is a hard problem because there
is a great number of possible parameter value combinations, which
have to be set with very little available information regarding the ef-
fect that each parameter has on the EA performance [147]. Nowadays,

9.4 parameter tuning : state of the art 106

most EA users rely on some rules that emerged by the experience in
using well-known EAs (e.g., crossover rates should be high and mu-
tation rates should be low). But this empirical approach should not
be followed when a new EA, like EvoRS, is proposed for the first
time. In fact, while EvoRS presents several parameters that are com-
monly used in other evolutionary techniques, it is also characterized
by its own parameters. Hence, an accurate analysis of their reciprocal
interactions should be pursued.

9.4 parameter tuning : state of the art

In this section, a literature review of parameter tuning in EAs is pre-
sented. As reported before, most EA users rely on rules of thumb and
ad hoc choices of parameters [17]. However, in recent years, a few
methods for making this task more systematic have been proposed.
In [40] authors use a rigorous yet practical statistical methodology for
the exploratory study of genetic algorithms. In their research, they
examine the relationship between the statistical significance of inter-
action among crossover and mutation and increasing modality of a
problem. They find that, as their test function increases in modality,
the interaction between crossover and mutation becomes statistically
significant. The effect of the interaction is striking when examining
response curves, which illustrate distinct inflection. They conjecture
that for highly modal functions the possibility of interaction between
crossover and mutation must be considered. The practical implication
of interaction is that when attempting to fine tune a genetic algorithm
on a highly modal problem, the suitable/optimal rates for crossover
and mutation cannot be obtained independently. All combinations of
crossover and mutation, within given starting ranges, must be inves-
tigated in order to allow for the interaction effect.

In our work we evaluate the effects that different values of the pa-
rameters that characterize an EvoRS have on the search process. In
doing this, we consider the fitness of the solutions and we try to draw
some general consideration considering the statistical significance of
the obtained results. It is important to underline that we do not study
the interaction between different parameters. Our goal is to study the
effect that a single parameter produces by itself on the search process.

In [146], authors underline how calibrating the parameters of an
EA is a laborious task. In particular, authors focus on the fact that the
highly stochastic nature of an EA typically leads to a high variance
of the measurements. The standard statistical method to reduce vari-
ance is measurement replication, (i.e., averaging over several test runs
with identical parameter settings). The computational cost of mea-
surement replication scales with the variance and is often too high to
allow for results of statistical significance. In their work, the authors
study an alternative, that they call the REVAC method for Relevance

9.4 parameter tuning : state of the art 107

Estimation and Value Calibration, and they investigate how different
levels of measurement replication influence the cost and quality of
its calibration results. Two sets of experiments are reported: calibrat-
ing a genetic algorithm on standard benchmark problems, and cali-
brating a complex simulation in evolutionary agent-based economics.
They find that measurement replication is not essential to REVAC,
which emerges as a strong and efficient alternative to existing statisti-
cal methods.

Because our work represents a first attempt in tuning the parame-
ters of an EvoRS, we decided to use existing statistical methods to per-
form this task. Nevertheless, REVAC method could represent a good
choice for a future study. In fact the computational cost of measure-
ment replication may be too high, especially if we decide to analyze
the interaction between the different parameters.

In [147], an empirical study on the impact of different design choices
on the performance of an EA is proposed. Four EA components are
considered (parent selection, survivor selection, recombination and
mutation) and, for each component, the authors study the impact of
choosing the right operator, and of tuning its free parameter(s). They
tune 120 different combinations of EA operators to 4 different classes
of fitness landscapes, and measure the cost of tuning. They find that
components differ greatly in importance. Typically, the choice of the
operator for parent selection has the greatest impact, and mutation
needs the most tuning.

Our work is similar to the one proposed in [147]. An empirical
study on the impact that different parameters setting have on the
performance of the final solution is proposed. As said before, the
analysis we propose regards only the parameters that characterize an
EvoRS. The aim is to find which parameter has the greatest effect on
the quality of the solutions.

In [18], an approach for determining adequate parameters of opti-
mization algorithms is proposed. The approach is called sequential
parameter optimization (SPO). SPO is a heuristic that combines clas-
sical and modern statistical techniques to improve the performance
of search algorithms. Although sequential parameter optimization re-
lies on enhanced statistical techniques such as design and analysis
of computer experiments, it can be performed algorithmically and
requires basically the specification of the relevant algorithm’s param-
eters. In their work, the authors demonstrate the usefulness of SPO
for very different algorithms and optimization tasks and explain how
it works. Moreover they discuss possible SPO use cases highlighting
strengths and weaknesses of the method.

Regarding our work, SPO can be used in a future investigation.
In fact, whenever parameters for an algorithm-problem combination
have not been thoroughly searched before, application of SPO makes

9.5 parameter tuning and parameter control 108

sense if we want to have a competitive parameter set. Obviously, it is
important to consider the limitations of SPO also reported in [18].

In [44], a new methodology is described for tuning parameters of
genetic programming using factorial designs, one-factor designs and
multiple linear regression [97]. The presented experiments show that
factorial designs can be used to determine which parameters have the
largest effect on the algorithm’s performance. This way, parameter set-
ting efforts can focus on them, largely reducing the parameter search
space. The use of factorial design is also proposed in [65], where the
authors evaluate the individual and combined effects of genetic pro-
gramming parameters.

The use of factorial designs to determine which parameters have
the largest effect on the algorithm’s performance is related to our
work, where we look for the parameter (between the ones that char-
acterize an EvoRS) that has the greater impact on the search process.
As stated before, in our work we use standard statistical analysis.

In [181] the most important issues related to tuning EA parameters
are discussed, describing a number of existing tuning methods, and
presenting an experimental comparison among them.

9.5 parameter tuning and parameter control

As already pointed out so far, there exist two major forms of setting
parameter values: parameter tuning and parameter control. While pa-
rameter tuning is performed before starting the EA, parameter con-
trol is an online process and allows a dynamic change of the param-
eter values. This work is a first attempt to understand the role of the
parameters that characterize EvoRS, thus a tuning of the parameter is
sufficient for our purposes. Nonetheless we are aware that parameter
tuning presents some drawbacks and better performances could be
achieved using parameter control.

In [55], drawbacks of different tuning methods are discussed. The
authors underline that a general drawback of the parameter tuning
approach, regardless of how the parameters are tuned, is based on
the observation that a run of an EA is an intrinsically dynamic, adap-
tive process. The use of rigid parameters that do not change their
values is thus in contrast to this spirit. Additionally, it is intuitively
obvious that different values of parameters might be optimal at differ-
ent stages of the evolutionary process [12, 13, 92, 184]. For instance,
large mutation steps can be good in the early generations, helping
the exploration of the search space, and small mutation steps might
be needed in the late generations to help fine tuning the suboptimal
chromosomes. This implies that the use of static parameters itself can
lead to inferior algorithm performance.

Thus, it is clear that parameter tuning is not the best choice if the
main objective is to improve the performances of an EA. On the other

9.5 parameter tuning and parameter control 109

hand, when the aim is simply to study which parameters mainly af-
fect the search process, a static parameter settings could produce a
better understanding.

10
C O M B I N AT O R I C S O F R E A C T I O N S Y S T E M S

In this chapter a first study on the behaviour of large reaction sys-
tems has been performed. We used for the first time the concepts of
extremal combinatorics in the field of reaction system.

10.1 combinatorics

Combinatorial statements arise almost naturally in many fields. Par-
ticularly important are the statements about the properties that a cer-
tain kind of structure can have when its size increases. A famous
statement of this kind is the Ramsey theorem, that states that for any
k ∈ N, any large enough complete graph that is two-colored has a
monochromatic subgraph of k nodes. Other examples come from the
most different mathematical structures. These statements can be pre-
sented in many ways. We can either give importance to the existence
of a size bound after which a certain property holds (a more Ram-
sey-like view). Otherwise we can try to find the exact value of this
bound or, at least, to obtain some information on its order of magni-
tude (an extremal combinatorics point of view). To prove statements
of this kind a large body of work regarding proof techniques has
been produced, from various counting techniques to combinatorial
proofs to linear algebra methods. Since it is impossible to give a de-
tailed account of all the results and the techniques, we refer the reader
to specific books (see, for example, [103] for extremal combinatorics
and [82] for Ramsey theory).

The properties that we want to study are the following:

• The minimal size after which a reaction system includes two re-
actions such that the chemicals necessary for one of them inhibit
the other.

• The minimal size after which a reaction system necessarily has
a reaction that produces the inhibitor of another reaction.

• The minimal size after which a reaction system can be substi-
tuted by a smaller reaction system without having an external
observer noticing it.

110

10.2 properties and bounds of reaction systems 111

These properties can clarify the limits in size and parallelism that are
inherent in the definition of reaction systems. Many of the results ob-
tained can also be restated as Ramsey-style statements (i.e., in terms
of presence of an “ordered” substructure inside a large enough struc-
ture).

In Section 9.1 the basic notions regarding reaction systems are re-
called. The results of this chapter are exposed in Section 10.2 and
some further remarks and directions of future works are presented in
Section 10.3.

10.2 properties and bounds of reaction systems

The behaviour of reaction systems has been studied focusing on the
construction of reaction systems with the desired behaviour. Only
recently some work on the study of the properties and the dynami-
cal behaviour of a random reaction system has been carried on [54].
An important insight on the behaviour of a large group of reaction
system can be obtained by studying the properties that any reaction
system with a large enough size must have. In this section we will
define three properties that a reaction system can have and we will
prove that any large enough reaction system possess all these prop-
erties. Furthermore, since the minimal size to certainly have these
properties is asymptotically smaller than the number of possible re-
action systems when the number of symbols increases, we have that
these properties are verified by the large majority of reaction systems.

When there exists a threshold after which a certain property surely
happens we will denote this threshold by R(P,n1, . . . ,nk) where P
is the name of the property and n1, . . . ,nk are parameters, usually
positive integers.

The first property to be studied will be called is No-Concurrency
(NC). This property states that in a set of reactions A there exist two
reactions that cannot be executed at the same time step.

Definition 10.2.1. Given a reaction system A = (S,A), A has the prop-
erty NC if there exist a,b ∈ A such that for all T ⊆ S, a /∈ enA(T) or
b /∈ enA(T).

Note that this property can also be stated as the existence of two
reactions a,b ∈ A such that Ra ∩ Ib 6= ∅.

Proposition 10.2.1. For any n ∈ N+ there exists R(NC,n) = (2n −

1)
(
2n − 2d

n
2 e − 2b

n
2 c + 1

)
+1, such that for any reaction system A = (S,A)

with |S| = n, if |A| > R(NC,n) then A has the property NC.

Proof. Let A be a set of reactions over S. When A = rac(S) we have
two reactions a = (Ra, Ia,Pa) and b = (Rb,Ra,Pa). This proves that
R(NC,n) always exists. Now it is necessary to prove that R(NC,n) =
(2n − 1)

(
2n − 2d

n
2 e − 2b

n
2 c + 1

)
+ 1. The set A does not have any pair

10.2 properties and bounds of reaction systems 112

of reactions that satisfy property NC iff Ra ∩ Ia 6= ∅. For the sake
of argument, suppose otherwise. Then there exists a reaction a such
that Ra ∩ IA 6= ∅. Furthermore, there exists a reaction b such that
Ra ∩ Ib 6= ∅. But this is property NC that we have assumed not to
hold.

Let |RA| = k then there exist 2k − 1 possible subsets of RA that can
be reactant sets for a reaction in A. Since IA is disjoint from RA its car-
dinality is at most n− k, allowing a number of possible inhibitor sets
of 2n−k−1. Since we have no condition on PA its cardinality can be as
high as n, allowing 2n−1 different product sets. Hence the maximum
number of reactions inA is (2k−1)(2n−k−1)(2n−1) = (2n−1)(2n−

2k− 2n−k+ 1). This is maximized when k = n
2 (if n is not even we ei-

ther take the floor or the ceiling of n2). All others reactions necessarily
have a reactant set that intersects IA or an inhibitor set that intersects
RA. Thus, R(NC,n) = (2n − 1)

(
2n − 2d

n
2 e − 2b

n
2 c + 1

)
+ 1.

A similar proposition regards the property of having at least one
reaction that produces at least one of the inhibitors of another reaction
(property Inh). In a system without this property the dynamics is
given only by the reactants and the products, since the inhibitors play
no role in the dynamics.

Definition 10.2.2. Given a reaction system A = (S,A), it has property
Inh if there exist a,b ∈ A such that Pa ∩ Ib 6= ∅.

Proposition 10.2.2. For any n ∈ N+ there exists R(Inh,n) ∈ N with(
2n−1 − 1

)2
< R(Inh,n) < (2n − 1)

(
2n − 2d

n
2 e − 2b

n
2 c + 1

)
such that

for all reaction systems A = (S,A) with |S| = n, if |A| > R(Inh,n) then A

has property Inh.

Proof. The existence of R(Inh,n) is immediate since the system given
by (S, rac(S)) has the desired property. We need to prove that at least
one system with

(
2n−1 − 1

)2 reactions without property Inh exists.
First of all, consider a system A = (S,A) such that PA ∩ IA = ∅ and
RA ∩ IA = ∅ (note that this condition is stronger than the requirement
that Ra ∩ Ia = ∅ for all a ∈ A). Once fixed the cardinality of |IA| = n−

k with 1 6 k 6 n− 1, the cardinality of PA and RA can be at most k.
Hence, the number of reactions in A can be at most

(
2k − 1

)2
(2n−k−

1). This value is maximized when k = n− 1, so that the maximum
number of reactions in A is at most

(
2n−1 − 1

)2.
The last claim to prove is that R(Inh,n) is strictly smaller than (2n−

1)
(
2n − 2d

n
2 e − 2b

n
2 c + 1

)
. Let A = (S,A) and such that PA ∩ Ia = ∅

with no restriction on Ra ∩ Ia for all a ∈ A (i.e., we also count triples
that are not reactions). When the cardinality of PA is fixed to 0 < k <
n, the cardinality of IA is n− k. Since we are not posing restrictions
on RA, its cardinality can be maximized to be n. Hence the number of
triples is (2n − 1)(2n−k − 1)(2k − 1), a value that is maximized when
k = dn2 e. Consequently the maximum number of triples that can be

10.2 properties and bounds of reaction systems 113

inAwithout obtaining property Inh is (2n−1)
(
2n − 2d

n
2 e − 2b

n
2 c + 1

)
.

To prove that the inequality is strict is only necessarily to note that at
least one triple in A is not a reaction (i.e., (Ia, Ia,Pa) for any Ia and
Pa is not a reaction).

Note that

lim
n→+∞

(
2n−1 − 1

)2
(2n − 1)

(
2n − 2b

n
2 c − 2d

n
2 e + 1

) =
1

4

hence the two bounds differs asymptotically only by a multiplicative
factor.

Another property that can be interesting is the possibility for a
system to be equivalent to a proper subset of itself.

Definition 10.2.3. Given a reaction system A = (S,A), it is shrinkable
if there exists B ⊂ A such that A ∼ B.

In other words, a reaction system is shrinkable if its set of reactions
contains reactions that have no impact on the dynamics of the sys-
tem. It is useful to provide sufficient conditions to have a shrinkable
reaction system. One of these conditions is linked to the presence of
a maximal antichain inside the set of reactions.

Definition 10.2.4. Given a reaction system A = (S,A) it has property
Comp if for all a ∈ rac(S), there exists b ∈ A such that either a > b

or b > a.

In other words, a system has property Comp if it contains a maxi-
mal antichain of reactions.

Proposition 10.2.3. Let A = (S,A) be a reaction system. If there exists
B = (S,B) with B ⊂ A and B has property Comp then A is shrinkable.

Proof. First of all it is necessary to note that given two reactions a,b ∈
A if a > b then the system A ′ = (S,A \ {b}) is equivalent to A. Let
C ⊆ A be the set of maximal elements of A. The reaction system
C = (S,C) is equivalent to A since no element of A \C is greater or
incomparable to any element of A. It is only necessary to prove that
A \ C 6= ∅. Since there exists a set B ⊂ A that has property Comp,
there exists a ∈ B \ A such that there exists b ∈ B with a > b or
b > a. Because of this at least one between a and b cannot be an
element of C, hence C ⊂ A.

By the previous proposition, it is useful to find a bound after which
every system has property Comp. Then every reaction system having
at least one reaction more than the bound is shrinkable.

Proposition 10.2.4. For any n ∈ N+ there exists R(Comp,n) ∈ N with
n!(2n−2)
dn2 e!b

n
2 c!

6 R(Comp,n) 6 n!(3n−2n+1+1)
dn2 e!b

n
2 c!

such that for all reaction system
A = (S,A) with |S| = n, if |A| > R(Comp,n) then A has property Comp.

10.2 properties and bounds of reaction systems 114

Proof. The existence of R(Comp,n) is immediate since the system
whose set of reactions is the set of all possible reaction certainly sat-
isfies Comp. To prove that R(Comp,n) > n!(2n−2)

dn2 e!b
n
2 c!

we have to show a

reaction system with an antichain of n!(2n−2)
dn2 e!b

n
2 c!

reactions. Consider the
set A all the reactions in the form (R,S \ R,P) with |P| = dn2 e. These
reactions are pairwise incomparable. Consider two distinct reactions
a,b. If Pa 6= Pb then the two reactions are not comparable since all
the product sets are of the same cardinality and, hence, Pa and Pb
are non-comparable. If Pa = Pb then to have a > b (the case b > a

is symmetric) we must have that Ra ⊆ Rb and S \ Ra ⊆ S \ Rb, that
is equivalent to Ra ⊇ Rb. This conditions hold only when Ra = Rb.
Since we have supposed a distinct from b we have that they are non-
comparable. It is now necessary to prove that the number of reactions
in the form (R,S \ R,P) is n!(2n−2)

dn2 e!b
n
2 c!

. First of all, recall that for a fixed

cardinality k there are
(
n
k

)
subsets of S with that cardinality. This

value is maximized when k = n
2 (or, when n is odd, either dn2 e or

bn2 c). Hence, for the product set there are
(
n
dn2 e
)

possible sets. The set
of inhibitors is completely determined by the set of reactants. The
possible sets of reactants are 2n − 2 since all proper subsets of S are
valid.

To prove that R(Comp,n) is at most n!(3n−2n+1+1)
dn2 e!b

n
2 c!

we are going
to show a system with property Comp with this number of reac-
tions such that any set of reactions with no comparable reactions has
smaller size. Let B be a set of all reactions in the form (R, I,P) with
|P| = dn2 e. By using the proof of Proposition 10.2.5 and the count-

ing done for |A|, we can see that the cardinality of B is n!(3n−2n+1+1)
dn2 e!b

n
2 c!

.
Consider a set of reactions C such that it contains no comparable reac-
tions. Let a = (Ra, Ia,Pa) ∈ C. We claim that there exists an injective
map f from C to B in the form (Ra, Ia,Pa) 7→ (Ra, Ia,Pg(a)) (i.e., only
Pa can have an image that is not itself). Suppose such a map does
not exists. This means that there exists a,b ∈ C with a 6= b such
that (Ra, Ia,Pg(a)) = (Rb, Ib,Pg(b)). This holds only when Ra = Rb,
Ia = Ib and Pg(a) = Pg(b). Let Ca = {(Ra, Ia,P) ∈ C} (equiv. Ba).
We have that a map f such that its restrictions to Ca are injective for
any Ca is injective. This holds because f|Ca has as image as a subset
of Ba and all Ba are disjoint. Since all Ca are also antichains, for all
a,b ∈ Ca, Pa and Pb are not comparable. Thus, when we consider the
set {P | (Ra, Ia,P) ∈ Ca} we have that it contains only non-comparable
sets. But the set {P | (Ra, Ia,P) ∈ Ba} is a maximum antichain in P(S)

(i.e., there is no antichain with more elemsnts), hence an injection
from the first to the second set is possible, contradicting the existence
of two distinct reactions in C with the same image. This means that
|C| 6 |B|.

The previous proposition can also be reformulated into a Ramsey-
like statement. That is, every large enough reaction system contains a

10.3 further remarks 115

maximal antichain of reactions. Or, with more emphasis on the prop-
erty of being shrinkable, every large enough reaction system contains
a subset of it that is equivalent to the whole system.

We can study how all the properties and bounds above relates with
the number of possible reaction systems over a set of symbols of a
fixed cardinality. The number of reaction systems is given by the fol-
lowing proposition.

Proposition 10.2.5. For all n ∈ N, given a set S of symbols with |S| = n,
|rac(S)| = (2n − 1)(3n − 2n+1 + 1).

Proof. The number of reactions is given by the number of possible
combinations of reactants, inhibitors and products. Let |S| = n. Then
the number of possible combinations of reactants and inhibitors is:

n−1∑
i=1

(
n

i

)n−i∑
j=1

(
n− i

j

)
=

n−1∑
i=1

(
n

i

)
(2n−i − 1) =

n−1∑
i=1

(
n

i

)
2n−i −

n−1∑
i=1

(
n

i

)
=

n−1∑
i=1

(
n

i

)
2n−i − 2n + 2

Also, by the properties of of binomial coefficient we have that:

n−1∑
i=1

(
n

i

)
2n−i = −2n − 1+

n∑
i=0

(
n

i

)
2n−i = −2n − 1+ (2+ 1)n

Obtaining a total of 3n− 2n+1+ 1. By multiplication with the number
of possible product sets we obtain a total of (2n − 1)(3n − 2n+1 + 1)

reactions.

It is easy to see that, as the number of symbols increases, the ma-
jority of reactions systems are not fully parallel, cannot sustain full
parallelism and are equivalent to smaller reaction system.

10.3 further remarks

In this section the main results of this work are recalled and some
directions of future research are illustrated.

This work provided a first application of extremal combinatorics
in the study of large reaction systems. The results regard some basic
properties of reaction systems. In particular the presence of reactions
that cannot be enabled at the same time, the presence of a reaction
that can inhibit another reaction and the presence of comparable reac-
tions in a reaction system. All those properties are satisfied by large
enough reaction systems. For all these properties bound on the mini-
mal size to certainly have the desired properties have been provided.

Future works should focus on finding other properties that can aid
in the analysis of reaction systems. A particular attention should be

10.3 further remarks 116

taken in establishing a collection of proof techniques that can be easily
and widely applied. In particular proof techniques that are common
in extremal combinatorics and related field could be easily applied to
reaction systems.

The studies on the extremal properties and the appearance of or-
der for large enough reaction systems can provide insights on the
behaviour of large reaction systems and, possibly, on the likeliness of
having a certain property given a random reaction system.

11
E V O L U T I O N A RY R E A C T I O N S Y S T E M S

This chapter introduces Evolutionary Reaction Systems and presents
a comparison with known machine learning techniques and experi-
ments on the parameter tuning of this new evolutionary algorithm.
This Chapter is structured as follows: Section 11.1 presents EvoRS,
illustrating the main ideas behind it, and its composing elements;
Section 15.1.5 discusses the test problems that we have used to val-
idate EvoRS and the experimental settings and obtained results. Sec-
tion 11.3 describes the test problems and the experimental settings
used for parameter tuning. Subsequently, experimental results con-
cerning the role of the different parameters in EvoRS is proposed.
Finally, Section 11.4 provides a summary of the presented work and
proposes ideas for future research.

11.1 evolutionary reaction systems

In this section an evolutionary version of reaction systems is pre-
sented. We will call it Evolutionary Reaction Systems (EvoRS). An EvoRS
individual is a RS. A population is a set of RS. We will discuss only
the phases of EvoRS that are different from others evolutionary algo-
rithms. For example, selection, being based on the phenotype, it does
not depend on the particular representation used and then could be
performed using one of the standard algorithms (i.e., roulette-wheel,
tournament, etc.).

11.1.1 Input and Output for EvoRS

One first aspect to note is that it is necessary to allow both input
and output from a RS. Let x1, . . . , xm be the set of input variables.
Suppose that every variable can assume only a finite number ni of
values: xi ∈ {k1, . . . ,kni}. Fix i ∈ {1, . . . ,m}. To the variable xi we
will associate ni − 1 input symbols, that represents the predicates
xi = k2, . . . , xi = kni . The predicate xi = k1 will be represented by
the absence of an input symbol. Thus, there will be

∑m
i=1(ni − 1)

input symbols. An important characteristic of RS is that the symbols
that are not explicitly preserved from one step to the other disappears
(e.g., in 9.1.1 the symbol True is not preserved, hence we can have it at

117

11.1 evolutionary reaction systems 118

t = 1 but not at t = 2). In fact, using a set of output symbols, if one of
them appears at time t, we are not assured that in the subsequent time
steps it will be preserved. Therefore, we decided to fix a parameter
execution length that is a positive natural number. Suppose we have
o0,o1, . . . ,on possible output values. Choose o0 as a default value.
We will prevent it from being generated by any reaction. We run the
RS for execution length steps and, if during the execution one of the
output symbols o1, . . . ,on is produced then it is returned as output.
Otherwise the default value o0 is returned. In this way we are certain
that a RS will always produce an output. Hence, a fitness evaluation
can be performed.

11.1.2 Initialization

The initialization of an EvoRS is simply the creation of a popula-
tion of randomly generated RS. Three parameters are needed: (1) the
population size, (2) the number of symbols that can be used in the
system (note that they need to be at least as many as the input sym-
bols plus the output symbols); (3) the maximum initial size (when
a RS is randomly generated, the number of reactions that it contains
– i.e., its size – is chosen randomly but its value is bounded by the
initial size parameter).

11.1.3 Crossover

Given the list of individuals A1, . . . ,An obtained by selection, for any
pair A2i−1,A2i with 1 6 i 6 n

2 , there is a probability pc that it will
be subject to crossover. Given two RS, A = (S,A) and B = (S,B)
a crossover of A and B is a stochastic operator that generates two
reactions systems A ′ and B ′ in the following way: (1) let C = A ∪ B;
(2) let k ∈ {1, . . . , |C|− 1}; (3) let A ′ be a subset of cardinality k of C
(it can be randomly selected, or, if the element of C are ordered, it
is possible to take the first k elements); we define: A ′ = (S,A ′) and
B ′ = (S,C \A ′). Note that since A ∩ B can be non-empty, we have
that |A|+ |B| > |A ∪ B| = |A ′|+ |B ′|, thus possibly reducing the total
number of reactions.

11.1.4 Mutation

We have defined three kind of mutation for RS. One type of mutation
is the random reaction insertion. Fix a RS A = (S,A). With probability
pin for any of the reactions in A, another randomly generated reaction
is inserted. The second type of mutation is the random reaction removal.
Let A = (S,A) be a RS. All reactions in A have probability prm of
being removed. The last kind of mutation, called renewal, is, in fact, a
random recreation of the RS with probability pren. The system that is

11.1 evolutionary reaction systems 119

Parameter Meaning

population size Number of RS in the population

number of symbols Number of symbols used in the creation of reactions

initial size Initial size (i.e., number of reactions) of the RS

execution length Number of iterations to perform during the fitness evaluation

pc Crossover probability

pin Probability of inserting a random reaction into a system

prm Probability of removing a random reaction from a system

pren Probability of regenerate randomly the current RS

Table 6: The parameters of an EvoRS system.

generated has a number of reactions chosen randomly and bounded
by the initial size parameter.

11.1.5 Minimization of Reaction Systems

To simplify the individuals that are in the population, we introduce
another genetic operator, that we call minimization, that reduces the
number of reactions that comprises a RS without altering its behaviour,
by eliminating reactions that have no impact on the results (equiva-
lent of “dead code”). This operator is always applied and is based on
the following observation: given a RS A = (S,A), the set B ⊆ A of all
maximal reactions in A can replace A without altering the behaviour
of the system.

After the introduction of all the genetic operator we can recall all
the parameters that are necessary for EvoRS (see Table 7).

There are four parameters related to the entire system (from the
population size to the length of the execution of a RS). There is one
parameter for crossover and three parameters for the three different
types of mutation. The operators are applied as specified by Fig. 25.
After the selection phase the more destructive kind of mutation, the
renewal, is applied. The next operator to be applied is the crossover,
followed by the two less destructive kind of mutation. The EvoRS
cycle is ended by the application of the minimization operator.

11.1.6 Properties of EvoRS

Before describing the experimental results of EvoRS, it is interesting
to note some of the advantages that they may have compared to other
machine learning techniques. First of all, RS are not black boxes: their
reactions, and the interactions between them, can be read and inter-
preted by humans. A second advantage with respect to other tech-
niques, as GP, is that it is not necessary to define a set of functional
and terminal symbols specific to the problem under exam. In fact,
only the number of symbols used by the reactions is a necessary pa-
rameter. The operations are carried on by the reactions an the inter-

11.2 experimental study 120

�� ���� ��Initialization

��

�� ���� ��Selection

$$

The EvoRS cycle

�� ���� ��Termination criteria

33

�� ���� ��Renewal

���� ���� ��RS minimization

OO

�� ���� ��Crossover

���� ���� ��Random insertion

OO

�� ���� ��Random removaloo

Figure 25: The execution cycle of EvoRS

actions between them. As currently defined, EvoRS also has a disad-
vantage: since for any input variable it is necessary to have a number
of symbols comparable to the number of values that the variable can
assume, we cannot use EvoRS on problems with continuous variable.
An extension of EvoRS capable of handling this kind of problems is
currently under study and will be presented in the future.

11.2 experimental study

To validate EvoRS, we compared it to some well-known machine
learning methods on three different test problems. In this section we
present the test problem used, then we will briefly introduce the other
machine learning method used. Finally, the experimental settings are
described.

11.2.1 Test Problems

We report the problems used in the experimental phase. All the con-
sidered test problems concern the classification of instances in two
target classes.

The first problem is the well known k-even parity problem (see [114]
for a definition of this problem). In the experimental phase we con-
sidered binary sequences of length from 2 to 8.

In the second test problem the task is to distinguish democrat votes
from republican votes in the 1984 United States Congressional Voting
Records. The data are the position taken by the representative on 16
key votes identifies by the Congress Quarterly Almanac. The dataset
(available in WEKA [88]) has 435 instances and 17 attributes (where
the last attribute is the target class). All the non-target attributes as-
sume three possible values: yes, no and unknown (corresponding to a
position that is neither yes or no). The target attribute assumes only
two values: republican and democrat.

11.2 experimental study 121

The last test problem regards diagnosing of cardiac Single Pro-
ton Emission Computed Tomography (SPECT) images. Each of the
patients is classified into two categories: normal and abnormal. The
dataset has 267 instances that are described by 23 binary attributes
(where the last attribute is the target class). Each row of the dataset
represent an image of a different patient, where the attributes are
the result of a processing that extracted 44 continuous features that
describe the image, 22 of whom were selected in a subsequent phase.
This dataset is available at the UCI Machine Learning Repository [73].

11.2.2 Other studied techniques

In the experimental phase, performances obtained with EvoRS have
been compared with the results obtained considering different ma-
chine learning techniques. The machine learning techniques chosen
to make the comparison are: feed-forward artificial neural networks
trained with back-propagation (ANN), Bayesian networks (Bayes Net),
naive Bayes classifier (Naive Bayes), radial basis function networks
(RBF Net), and support vector machines using the sequential mini-
mal optimization algorithm (SVM/SMO). For a complete description
of these methods we refer to [33] for ANN, to [90] for Bayes Net,
to [169] for Naive Bayes, to [158] for RBF net and to [38] and [160] for
SVM/SMO. Furthermore, we compared EvoRS standard tree-based
Genetic Programming (GP) [162].

11.2.3 Experimental setting

Due to the fact that both deterministic and non-deterministic machine
learning methods are used in the experimental phase, it is important
to explain how the experiments have been performed in order to pro-
duce a fair comparison of the results. Fitness was calculated as the
number of correctly classified instances. We used the same set for
both training and testing the algorithm. Hence, in these tests, we are
not concerned with the issues of overfitting or generalization ability.

For all the non-evolutionary techniques we used the implementa-
tion of WEKA [88]. For the two Bayesan techniques (Bayes Net and
Naive Bayes) only one run using the default WEKA’s parameter set-
ting has been performed. For ANN, RBF Net and SVM/SMO, 100
independent runs using the default WEKA’s parameters have been
performed. In each run we changed the seed used to generate ran-
dom numbers in the algorithm.

For GP, 100 independent runs have been performed for each of the
considered test problems. All the runs used populations of 100 indi-
viduals allowed to evolve for 100 generations. Tree initialization was
performed with the Ramped Half-and-Half method [162]. The maxi-
mum initial depth was 4 for the SPECT and voting datasets, while it

11.2 experimental study 122

was equal to k for k-even parity problems. The function set contained
the three boolean operators and, or, and not. For the vote dataset they
where interpreted as three-valued logic operators (i.e., the conjunc-
tion of a true or unknown value with an unknown value gives an un-
known value, the negation of an unknown value remains unknown
and the disjunction of a false or unknown value with an unknown
value remains unknown). When the evaluation of a tree returned un-
known instead of a specific class, its value was considered equal the
one of the most represented class. The terminal set contained a num-
ber of variables equal to the number of attributes of each test prob-
lem. We have explicitly imposed functions and terminals to have the
same probability of being chosen when a random node is needed.
The reproduction (replication) rate was 0.1. Standard tree mutation
and standard crossover (with uniform selection of crossover and mu-
tation points) were used with probabilities of 0.1 and 0.9, respectively.
The new random branch created for mutation has maximum depth 4.
Selection for survival was elitist, with the best individual preserved
in the next generation. The maximum tree depth is 17 except for the
even parity problem, where the maximum tree depth is 2k.

For EvoRS, 100 independent runs allowed to evolve for 100 gen-
erations were performed. In all the run elitism was used. Hence, the
individual with the best fitness was preserved across generations. For
all the problems a population size of 50 individuals was used (half
of the population size with respect to GP). The number of symbols
was two times the number of input variables for the k-even parity
problem and the SPECT problem. For the vote dataset we used two
times the number of input variables plus 10 additional symbols. This
variation was necessary since every input variable in the vote dataset
can assume three values instead of two. The initial size of the RS was
two times the number of input variables. For all the problems the ex-
ecution length was 3. A crossover probability of 0.8 was chosen. The
probability of a random insertion was fixed to 0.2. The probability of
random removal was fixed to 0.2 and the probability of renewal was
0.1 for all the considered problems. Furthermore, elitism was used. It
is important to note that a research of the best set of parameters has
not been performed. Hence, these parameters need to be considered
a guess based on a very limited number of test runs. A more detailed
explanation of the parameters setting will be the focus of successive
researches.

11.2.4 Experimental Results

In this section the results of the experimental phase are presented.
Furthermore, an example of the structure of the solutions generated
by EvoRS is presented. All the box plots presented have the end of the
two whiskers representing one standard deviation above and below

11.2 experimental study 123

the mean of the data. The cross represents the mean of the data. The
fraction of successfully classified instances for GP and EvoRS is the
one obtained after the last considered generation.

k-even parity. The results for the k-even parity problem are pre-
sented in Fig. 26. EvoRS and GP perform better than the other con-
sidered techniques for all the tested values of k. In particular, EvoRS
is the best performer for values of k between 2 and 5, while GP per-
forms better for values of k greater than 5. To test whether or not
the differences in terms of fitness between the considered techniques
are statistically significant, a test of statistical significance has been
performed. First of all, a Kolmogorov-Smirnov (KS) test with a signif-
icance level of α = 0.05 has been performed to test whether or not the
fitness values are normally distributed. The (KS) test rejects the null
hypothesis (hence the fitness values are not normally distributed) for
all the k values and for all the non-deterministic techniques. Because
the data are not normally distributed, a rank-based statistic has been
used. The Wilcoxon rank-sum test for pairwise data comparison with
a Bonferroni correction for the value of α is used under the alterna-
tive hypothesis that the samples do not have equal medians. The test
has been performed by comparing EvoRS with the other techniques.
We obtained that we can not reject the null hypothesis only in three
cases: with k = 2 when comparing EvoRS with GP and RBF Net and
also when k = 5 when comparing EvoRS with GP. In all the other
cases the presented results have a statistically significant difference.

vote dataset. The results for the vote problem are presented in
Fig. 27(a). In this case, ANNs is the best performer with the 99%
of correctly classified instances. SVM/SMO produce a 97% of cor-
rectly classified instances followed by EvoRS and RBF Net with 94%.
It is important to underline that EvoRS is a newly defined evolution-
ary technique, hence the tuning of its parameters is quite difficult.
Nonetheless it produces results that are comparable with the ones
produced by other well-known (and well studied) machine learning
techniques. Also for this problem the same statistical tests as for the
k-even parity have been performed. The null hypothesis cannot be
rejected only when comparing EvoRS with RBF Net.

spect dataset. Results for the last dataset, i.e., the SPECT dataset,
are presented in Fig. 27(b). In the SPECT problem EvoRS performance
is lower than the other contenders except Naive Bayes. The same sta-
tistical tests performed for the other test problems have been con-
sidered for this problem. From the results of the Wilcoxon test we
obtained that, for this problem, the null hypothesis has been always
rejected. So difference in performance of the different studied meth-
ods is statistically significant. Nonetheless EvoRS performances are

11.2 experimental study 124

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

k = 2 k = 3

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

k = 4 k = 5

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

k = 6 k = 7

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

k = 8 k = 9

Figure 26: The results for the k-even parity problem. The two whiskers rep-
resent one standard deviation above and below the mean of the
data.

11.2 experimental study 125

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

E

vo
R

S

 G

P

 A

N
N

 B
ay

es
 N

et

N
ai

ve
 B

ay
es

 R
B

F
 N

et

 S
V

M
/S

M
O

F
itn

es
s

(a
cc

ur
ac

y)

Vote Dataset Spect Dataset

(a) (b)

Figure 27: The results for the vote and SPECT datasets. The two whiskers
represent one standard deviation above and below the mean of
the data.

non very low compared to the other techniques. We do not consider
this a negative result for a newly-developed and still-to-be-tuned evo-
lutionary algorithm.

some individuals found by evors. Contrarily to many other
machine learning techniques and similarly to GP, EvoRS provides
models that are directly interpretable by humans. Let us consider, for
instance, a solution generated by EvoRS for the even parity problem
with k = 2. It is composed by the following three reactions:

a1 = ({x1, x2}, {t1}, {x1, x2, t1, True})

a2 = ({t1}, ∅, {x1, x2}) a3 = (∅, {x1, x2, t1}, {x1, t1})

Where x1 and x2 are the input symbols, True is the output symbols
representing true and t1 is a temporary symbol. The dynamic evolu-
tion of the system can be represented by the following graph, where
the nodes are states and the transitions between them are represented
by the edges labeled with the reactions that are activated:

{x1} // ∅
a3 // {x1, t1}

a2 // {x1, x2}
a1// {x1, x2, t1, True}
a2

dd

{x2}

??~~~~~~~~

Recall that the test were performed with an execution length of
three. Hence, both {x1, x2} and ∅ reach a state containing True in no
more than three steps. But {x1} and {x2} reach it in four steps, too
many to obtain True as output. This example shows how the solu-
tions generated achieve the goal of producing the correct output not
by rote memorization of the inputs but by producing a complex inter-
actions between the different reactions.

11.3 parameter tuning 126

11.3 parameter tuning

After having affirmed the suitability of EvoRS as an EA, it is neces-
sary to study how its parameters influences its performances and be-
haviour. This is an essential study in every new EA techniques, since
it allows to comprehend how the algorithm behave and it is the first
step to allow a new EA to be effectively used.

11.3.1 Experimental Settings

The values of the EvoRS parameters used in our experiments are re-
ported in Table 7.

Parameter Values tested

population size 20

number of symbols 1, 1.5, 2, 2.5, and 3 times the number of input
and output symbols

initial size 1, 1.5, 2, 2.5, and 3 times the number of input
and output symbols

execution length From 2 to 5

pc 0.8

pin 0.2

prm 0.2

pren 0.1

Table 7: The parameters of an EvoRS system and the values tested.

To study different combinations of the parameters that characterize
an EvoRS we have considered different test problems:

• the n-multiplexer problem [113] with n = 3 and n = 6;

• the n-parity problem [114] with n = 4, n = 5 and n = 6;

• the n-majority problem [14] with n = 3 and n = 5;

For each problem, 100 different parameters settings have been con-
sidered and, for every setting 30 runs have been performed. Thus,
considering 7 test problems instances, a total of 21000 runs of EvoRS
have been performed.

The parameters that were studied are the ones that are typical of
EvoRS, i.e. the ones that have no equivalent in other EAs, and thus
there is no “rule of thumb” that can be inherited for suitably setting
their values. While it is possible that the parameters common with
others EA do not have the same influence on the behaviour of EvoRS,
the fact that they behave quite similarly across many different EA is
a good indication that the study should begin from parameters pecu-
liar to EvoRS. Thus, we limited our study to the number of symbols,
the initial size and the execution length. While the number of

symbols can be thought as similar to the choice of functional or ter-
minal symbols in GP, in EvoRS these symbols, except for input and

11.3 parameter tuning 127

output symbols, do not carry any semantics. Only the initial size

of RS can have a counterpart in the tree size of GP.
In all the tests, the populations size was set to 20 individuals (while

the population size is small, a set of preliminary runs with size 50
showed that its influence on the results is limited), a tournament se-
lection of size 2 was chosen as selection method. The crossover prob-
ability was set to 0.8, the random insertion and removal probabilities
were set to 0.2 and the renewal probability to 0.1. The initial size

was k times the number of input plus output symbols, where k var-
ied between 1 and 3 with a step of 0.5. The same range was used for
the number of symbols. The execution length was varied from 2 to
5 time steps. All the test were performed using a Python implemen-
tation of EvoRS.

11.3.2 Experimental Results

To show the influence of a particular parameter, we present the re-
sults in the following way: for a particular parameter, we find the
best configuration of the other two parameters with respect to the
average best fitness. By doing this, we find what is the best possible
fitness obtainable with that particular value of that particular param-
eter. The results for the 5-majority problem are presented in Fig. 28

and the ones for 6-multiplexer are presented in Fig. 29. The results
for 3-majority and 3-multiplexer are not outlined since in almost all
the cases the algorithm finds the optimal solution. The results for
4-parity, 5-parity, and 6-parity are presented in Fig. 30, Fig. 31, and
Fig. 32 respectively. In all figures, the box represents the 25% and the
75% percentile, while the whiskers represent the average fitness plus
or minus the standard deviation.

Furthermore, we present the correlation between the different pa-
rameters and the fitness of the best solutions in Table 8. To statisti-
cally validate the results, we have performed a Mann-Whitney U-test
with the alternative hypothesis that the probability of having an ob-
servation of one population exceeding an observation from the other
population is not 0.5. This statistical test was chosen since the data ob-
tained were not normally distributed, as confirmed by a Kolmogorov-
Smirnov test. The p-values obtained are presented in Table 9.

11.3.3 Discussion

In this section we discuss the effect that different values of the consid-
ered parameters produce on the evolutionary process. In particular,
for each problem, we discuss how the initial size, the number of sym-
bols and the execution length affect the fitness of the solutions.

11.3 parameter tuning 128

Test Problem Initial Size Number of Symbols Execution Length

3-majority 0.15148 −0.34724 −0.11884

5-majority 0.15323 −0.48272 −0.15576

3-multiplexer 0.15451 −0.33660 −0.10644

6-multiplexer 0.18661 −0.50796 −0.16092

4-parity 0.15028 −0.73576 −0.09214

5-parity 0.13698 −0.77359 −0.12872

6-parity 0.10845 −0.79002 −0.11516

Table 8: The correlation coefficients between the three considered parame-
ters on different problem and the fitness.

Test Problem symbols = 1.5 symbols = 2 symbols = 2.5 symbols = 3

3-majority 0.657380 0.375044 0.375044 0.505859

5-majority 0.004128 0.000033 0.002439 0.000017

3-multiplexer 1.000000 0.657380 0.824496 0.375044

6-multiplexer 0.790147 0.594560 0.487138 0.496452

4-parity 0.000000 0.000000 0.000000 0.000000

5-parity 0.000002 0.000000 0.000000 0.000000

6-parity 0.000000 0.000000 0.000000 0.000000

Table 9: The p-values obtained by comparing the best results obtained with
symbols=1 with the best results obtained with the other values of
symbols using the Mann-Whitney U-test.

11.3.3.1 Initial Reaction System Size

The initial reaction system size seems to have a weak effect on the
performance of EvoRS. Considering the box plots related reported in
Fig. 28 and Fig. 29, it is possible to see that using different values
of the parameters, we produce comparable solutions, that present a
difference in terms of fitness that is not statistically significant. The
situation slightly changes considering the box plots reported in Fig.
30, in Fig. 31 and in Fig. 32. In this case, it seems that a value of the
considered parameter (2.5) produces solutions that present a differ-
ent fitness with respect to the fitness values obtained with the other
values of the parameter, but this difference is not statistically signifi-
cant. To summarize, the initial EvoRS size seems to have a faint effect
on the fitness of the solutions. This fact is also strengthened by the
values of the correlation coefficients reported in Table 8. The marginal
effect produced by the initial EvoRS size is desirable; it suggests that,
at least for the considered test problems, it is not necessary to have
an EvoRS with a high number of reactions to find a solution with a
“good” fitness value.

11.3.3.2 Number of Symbols

The results obtained considering the effects of different number of
symbols is somewhat surprising. The values of the correlation coef-
ficients reported in Table 8 show a negative correlation between the

11.3 parameter tuning 129

number of symbols of the EvoRS and the fitness of the solutions. Be-
cause we have considered maximization problems, this fact suggests
that better fitness values could be reached using a “small” number
of symbols. While this result may be counterintuitive, it has a very
simple explanation: using a large number of symbols enhances the
number of possible reactions that may occur. In turn, this can lead
to obtain the true value in a large number of fitness cases. But, obvi-
ously, the true value is not the correct value for all the fitness cases.
The effect of the number of symbols used is particularly clear when
the three instances of the n-parity problem are considered. As shown
in Fig. 30, Fig. 31 and Fig. 32, the number of symbols has a strong
impact on the fitness of the solutions, with a fitness that increases
steadily with the decrease in the number of symbols. This difference
in terms of fitness is statistically significant as showed in Table 9, and
suggests that the EvoRS practitioners should pay attention in choos-
ing the number of symbols of the system with parsimony. The impact
that the number of symbols has on the fitness of the best solutions is
also visible in Fig. 28 and in Fig. 29. As it is possible to see, the best
solutions for the considered test problems have been obtained with
“small” values of this parameter. Table 9 also reports the p-value ob-
tained by comparing the best results obtained with symbols=1 with
the best results obtained with the other values of symbols for all the
considered test problems.

11.3.3.3 Execution Length

The execution length seems to have a weak effect on the performance
of EvoRS. Considering the box plots reported from Fig. 28 to Fig. 32, it
is possible to see that different values of the parameter result in com-
parable solutions, that present a difference in terms of fitness that is
not statistically significant. This fact is also confirmed by the values
of the correlation coefficients reported in Table 8. It is important to
recall that the execution length is defined as the number of time steps
in which the dynamic of an EvoRS is observed. In particular, if the
symbol True appears in one of the observed states of the RS then the
output of the system is true, otherwise (i.e., the symbol True has not
appeared in the first execution length time steps), the output of the
RS is false. From the definition, it seems that this parameter should
have an important effect on the fitness of the best solution, because
it allows a RS to reach (or not reach) the True value in a certain time
steps. Results arising from the experimental phase should be taken
with caution. The weak effect that the execution length has on the
fitness of the final solution, may be due to the fact that, for the con-
sidered test problems, the system already reach the True value for
“low” values of the parameter. Further investigations about the role
of this parameter are needed. In particular, the effect of this parameter
could emerge when more complex problems are considered.

11.4 further remarks 130

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

1.0 1.5 2.0 2.5 3.0
 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

1.0 1.5 2.0 2.5 3.0
 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

2 3 4 5

initial size number of symbols execution length

(a) (b) (c)

Figure 28: The box plot of the results for the 5-majority problem

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

1.0 1.5 2.0 2.5 3.0
 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

1.0 1.5 2.0 2.5 3.0
 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

2 3 4 5

initial size number of symbols execution length

(a) (b) (c)

Figure 29: The box plot of the results for the 6-multiplexer problem

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

1.0 1.5 2.0 2.5 3.0
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

1.0 1.5 2.0 2.5 3.0
 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

2 3 4 5

initial size number of symbols execution length

(a) (b) (c)

Figure 30: The box plot of the results for the 4-parity problem

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

1.0 1.5 2.0 2.5 3.0
 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

1.0 1.5 2.0 2.5 3.0
 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

2 3 4 5

(a) (b) (c)

Figure 31: The box plot of the results for the 5-parity problem

11.4 further remarks

In this chapter a new biologically inspired evolutionary algorithm,
called evolutionary reaction systems (EvoRS), has been defined. It is
based on reaction systems, an expressive and powerful computational
formalism inspired by chemical reactions, recently defined by Rozen-
berg and coworkers. We have shown that the performances of EvoRS

11.4 further remarks 131

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

1.0 1.5 2.0 2.5 3.0
 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

1.0 1.5 2.0 2.5 3.0
 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

2 3 4 5

initial size number of symbols execution length

(a) (b) (c)

Figure 32: The box plot of the results for the 6-parity problem

are comparable, and in some cases even better, than the ones of other
well known machine learning algorithms (including Bayesian meth-
ods, neural networks, support vector machines and standard genetic
programming) on a set of case studies including real-life applications.

Since EvoRS is a new GP variant, parameter tuning plays an impor-
tant role for its successful application. Given the stochastic nature of
evolutionary techniques, a large literature has faced this problem. All
the practitioners of evolutionary techniques have had to deal with
this problem, and they know how the choice of parameters’ values
represents one of the most important and delicate phases prior to the
execution of the algorithm itself. A wrong or inaccurate choice of the
parameters’ values may undermine the subsequent search process,
leading the algorithm to find poor quality solutions.

Thus, the parameter tuning problem for EvoRS has been studied.
This is an important step towards the application of this new evolu-
tionary technique. The analysis involved the parameters that charac-
terize an EvoRS: (1) the initial reaction system size, (2) the number of
symbols, and (3) the execution length. With respect to the considered
test problems, we can conclude that: (1) the initial reaction system
size has a weak impact on the fitness of the best solutions returned
by EvoRS. This point deserves a further analysis, in particular consid-
ering more test problems; (2) the number of symbols has an important
effect on the fitness of the best individual: making a wrong choice for
this parameter results in poor quality solutions. It is interesting that
better solutions have been found when a “small” number of symbols
has been used; (3) the execution length seems to show a weak effect
on the best solution’s fitness. This point needs further investigation,
as we believe that this parameter could play an important role when
more complex problems are considered. Once we achieve a complete
understanding about the effects of all the parameters, our goal will
be the development of a parameter control method, thus defining a
more dynamical EvoRS framework, where the values of the parame-
ters will be adapted during the evolution.

Part IV

A S Y N C H R O N O U S C E L L U L A R A U T O M ATA

12
I N T R O D U C T I O N T O C E L L U L A R A U T O M ATA

Cellular automata (CA) are a formal model used in many scientific
fields [61, 34, 35]. They are composed of a grid of identical finite state
automata, or cells, that update their own state according to a local
rule that depends only on a fixed number of neighbour automata. The
update of all the cells happens at the same time. The synchronicity is
then a main characteristic of classical CA. Several formal properties
concerning the dynamical behaviour of classical CA has been exten-
sively studied in the recent past (for an up-to-date bibliography see,
for instance, [120, 49, 2, 47, 48, 78, 1, 32, 31, 46]).

When CA are used for the modeling of various physical phenom-
ena the assumption of synchronicity can be a problem. In fact, a syn-
chronous behaviour is a quite rare event in nature. To more closely
simulate real systems, the introduction of asynchronicity in models
has been considered (think, for instance of the model from [6] used
to simulate biochemical processes in living cells). In the last 20 years
empirical studies focused on asynchronous updating schemes [21, 27,
62, 176, 145, 167]. According to which updating policy is chosen, the
behavior of the ACA under consideration can be very different. This
empirical observation motivated successive formal studies. However
they were not as extensive as the ones for synchronous CA and fo-
cused mainly on particular examples [76, 166] or classes of proba-
bilistic cellular automata [63, 64] (i.e., CA where every cell updates
with a certain probability p).

In Chapter 13 we consider a fully asynchronous scheme in which,
as in a continuous time process, two cells are never updated simul-
taneously (or, equivalently, one and only one cell is updated at each
time step). A sequence of integers, named update sequence, specifies
the cell which is updated at each time.

In classical CA the behaviour of the system is studied by some
formal properties which give important information either on the CA
global map (e.g., injectivity, surjectivity) or the CA dynamics (e.g.,
transitivity, sensitivity to initial conditions). These notions cannot be
directly used for studying asynchronous CA. Here we suitably adapt
them to the asynchronous case and we study them.

Motivated by the fact that update sequences are often ruled by real
processes, we also study the stability of some properties with respect

133

introduction to cellular automata 134

to perturbation on the update sequence. Indeed, the computational
models used to simulate these real processes may give update se-
quences with errors.

Another aspect of the study of fully asynchronous CA is the ability
to perfrom fully asynchronous computation. This is quite interesting
since, in some sense, it represents the worst case from the complexity
point of view when a network of processors is considered. The ACA
setting is also similar to token ring networks of which it represents the
case of single token, lattice network and finite automata on nodes. A
pletora of protocols and algorithms have been designed in the recent
past for token ring networks, thus, we give the conditions on the
token distribution which enable anetwork of finite automata (ACA)
to cooperate to simulate step by step an universal Turing machine.

Furthermore, it is well-known that CA are capable of universal com-
putation (see [154] for an up-to-date survey). Various mechanisms
have been introduced to show how ACA can emulate classical CA or
circuits [145, 148, 123, 218]. As a consequence of these results, Turing
universality of ACA is also proved.

In Chapter 14 we focus on the way by which an ACA simulates
a Turing Machine (TM for short). We analyse two different modes:
strict simulation and scattered strict simulation. Roughly speaking,
strict simulations require that the ACA exactly reproduces the steps
of the TM (up to some encoding) admitting that at most a possibly
unbounded amount time is wasted between two steps of the TM. The
latter mode is essentially the same as strict simulation but considers
the case that only a subset of cells can be used to perform the sim-
ulation, the others being “inactive” because of failure for example.
We characterize all updating schemes allowing these two simulation
modes (Theorems 14.1.3 and 14.1.5). Moreover, we show that in both
cases, the time slowdown due to asynchronicity is quadratic w.r.t.
the running time of the TM under simulation (Propositions 14.1.4
and 14.1.6).

The quadratic slowdown is essentially due to the fact that the token
travels back and forth through the network passing through a lot of
nodes (cells) that are not interested by the calculation (recall that we
are on a lattice and that only cells having the token are allowed to
update their state). Introducing some degree of randomness in the
token distribution improves complexity to linear time at the price
of low probability of obtaining the correct result (Proposition 14.2.1).
This complexity vs. probability tradeoff seems to be necessary, indeed,
maximising the probability of obtaining the correct results pumps
up complexity to cubic time w.r.t. the time used by the original TM
(Proposition 14.2.2).

The construction of sequences that allow quadratic simulations at
a first glance might seem artificial, classifying our results in the do-
main of computability but of no use in practical simulations. Indeed,

12.1 preliminary notions 135

for example, consider the program described in [6]. It is used to simu-
late biochemical processes in living cells. It is essentially based on an
ACA (although the authors do not clearly state this) which represents
proteins (and other chemicals) by particles. The current configuration
is updated in two steps: diffusion and collision/reaction. In the diffu-
sion step a particle is randomly chosen, a direction is randomly cho-
sen and then the particle makes a move in this direction. This system
can be seen as an ACA with the sequence of activations generated
by a random walk. Since a random walk passes with probability 1
infinitely many time through every cell, the system described in [6] is
capable of universal computation.

Finally, in Chapter 15, we study a more general setting relaxing the
synchronicity constraint. Indeed, at each time step, the subset of cells
to be updated is extracted using a probability measure µ on subsets
of Z. Clearly, one should put some conditions on µ to grant both a
non-trivial behavior and substantial asynchronicity. We called these
constraints “fairness conditions” (see Definition 15.1.2).

This new point of view asked to adapt the classical notions about
dynamical behavior such as injectivity, surjectivity, expansivity, etc..
We proved a somewhat surprising result, namely, µ-almost surely sur-
jective CA are µ-almost surely injective and vice-versa. Curiously, this
result is much similar to the case of fully-ACA (ACA in which only
one cell is allowed to be updated per time step [126], the ones studied
in Chapters 13 and 14) and much different different from the classical
CA setting where injective CA are surjective but the vice-versa is false.

We also proved that almost sure injectivity has also a combinato-
rial facet through the classical notion of diamond (Proposition 15.1.4).
The existence of diamonds has also been related to almost sure ex-
pansivity (Proposition 15.1.5).

The study of m-ACA has just been started over and as usual there
are more questions than answers. For instance, in the classical CA set-
ting, it is well-known that a CA is either sensible to initial conditions
or it has equicontinuity points. It would be interesting to investigate
if this dichotomy is still true or which weakened form it can take.

The remaining part of this Chapter is focused on the introduction
of some preliminary notions necessary to understand the remaining
Chapters 13 throught 15.

12.1 preliminary notions

For all i, j ∈ Z with i 6 j (resp., i < j) we denote by [i, j] the set
{k ∈N| i 6 k 6 j} (resp., [i, j) = {k ∈N| i 6 k < j}). Also, ∀i ∈ Z, let
(i,+∞) = {i, i+ 1, . . .} and (−∞, i) = {i, i− 1, . . .}. The set of positive
integers (resp., reals) is denoted by N+ (resp., R+). Given a set X,
P (()X) denotes the collection of subsets of X. As usual, for a finite set
X, |X| is the number of its elements.

12.1 preliminary notions 136

Let Σ be a finite alphabet. A configuration is a function from Z to Σ.
As usual, for any two sets A and B, AB is the set of all functions from
B to A. The configuration set ΣZ is usually equipped with the metric d
defined as follows:

∀x,y ∈ ΣZ d(x,y) = 2−n

where n = min{i ∈N | xi 6= yi or x−i 6= y−i}

The set ΣZ is a compact, totally disconnected and perfect topological
space (i.e., it is a Cantor space) (see, for example, [108], [144] or [118]
for an introduction to these topological concepts). For any pair i, j ∈
Z, with i 6 j, and any configuration x ∈ ΣZ we denote by x[i,j] the
word xi · · · xj ∈ Aj−i+1. Similarly, for every u ∈ A` and for every
i, j ∈ [0, `), u[i,j] = ui . . . uj is the portion of a word inside [i, j]. In
both the previous notations, [i, j] can be replaced by [i, j), with the
obvious meaning. A configuration x is said to be a-finite for some
a ∈ Σ if the number of positions i with xi 6= a is finite. In the first one
it can also be replaced by either [i,∞), or (i,∞), or (−∞, j] or (−∞, j)
with the obvious meaning. By |u| we will denote the length of any
word u.

A 1D CA is a structure (Σ, λ, r) where Σ is the alphabet or set of
states, r ∈ N is the radius, and λ : Σ2r+1 → Σ is the local rule of the
automaton. The local rule λ induces a global rule F : ΣZ → ΣZ defined
as follows:

∀x ∈ ΣZ, ∀i ∈ Z, F(x)i = λ(xi−r, . . . , xi, . . . , xi+r) .

Note that F is a uniformly continuous map with respect to the metric
d. For any CA, the pair (ΣZ, F) is a (discrete time) dynamical system.
From now on, for the sake of simplicity, we identify a CA with the
dynamical system that it induces or even with its global rule F.

The orbit of a configuration x ∈ ΣZ is the sequence

γx = (x, F(x), (F ◦ F) (x), . . .)

associating with each time step t the configuration γx(t) = Ft(x) of
the CA at that time.

A local rule λ : Σ2r+1 → Σ is rightmost-permutive (resp. leftmost-
permutive) (resp. center-permutive) iff for any w ∈ Σ2r and any b ∈ Σ
there exists a unique a ∈ Σ such that λ(aw) = b (resp. λ(wa) = b)

(resp. λ(w[0,r)aw[r,2r)) = b).
Let T be a monoid of continuous functions from ΣZ to ΣZ.
The family T is sensitive to initial conditions (or, simply, sensitive) if

there exists ε > 0 such that for any x ∈ ΣZ and any δ > 0, there is an
element y ∈ ΣZ with d(x,y) < δ such that d(T(x), T(y)) > ε for some
T ∈ T.

The family T is said to be positively expansive (or, briefly, expansive)
if there exists a constant ε > 0 such that for every pair of distinct
elements x,y ∈ ΣZ, we have d(T(x), T(y)) > ε for some T ∈ T.

12.1 preliminary notions 137

Also, T is said to be equicontinuous at the point x ∈ ΣZ if ∀ε > 0 ∃δ >
0 such that ∀y ∈ ΣZ, d(x,y) < δ implies that ∀T ∈ T, d(T(x), T(y)) < ε.
The family T is equicontinuous if it is equicontinuous at every point.

A CA with global rule F is said to be sensitive (resp. expansive)
(resp. equicontinuous) iff its family of functions {Id, F, F2, . . .} is sensi-
tive (resp. expansive) (resp. equicontinuous), where Id is the identity
map on ΣZ.

A σ-algebra over a topological space X is a non-empty collection of
subsets of X closed under countable union and complementation. The
Borel σ-algebra on X is the smallest σ-algebra containing all the closed
and the open sets of X. A measure µ is a function from a σ-algebra on
X to R+ ∪ {+∞} such that µ is countably additive. A measure µ is said
to be a probability measure if µ(X) = 1. For a given set X of outcomes,
a σ-algebra on X represents the set of events and, once introduced a
probability measure µ on the σ-algebra, the probability of an event E
is µ(E).

For any i ∈ Z, the principal ultrafilter Ui of i is the collection of
all subsets of Z containing i. The complement of Ui is denoted by Ui.
From now on, we consider P (Z) equipped with a topology for which
the principal ultrafilters are clopen (i.e., closed and open) sets.

A Turing Machine M is a 7-tuple (Q,Σ, Γ , b, δ,q0, F), where Q is the
set of states, Σ ⊂ Γ is the input alphabet, Γ is the working alphabet and
b ∈ Γ \Σ is the blank symbol. The map δ : Q× Γ 7→ Q×Σ× {L,R} is the
transition function, where L and R denote the left and right movements
of the head, q0 ∈ Q is the initial state and F ⊆ Q the set of final
states (see [94], for an introduction on this subject). An instantaneous
configuration c of M is a triple (T ,q,p), where T ∈ ΓZ is the content of
the tape, q ∈ Q is the current state of M and p ∈ Z is the position of
its head.

Denote bω and ωb the infinite repetition of b towards right and left,
respectively. A run of M on the initial input x ∈ Σ∗ is the sequence
Rt = {(Tt,qt,pt)}t∈N where for t = 0 (T0,q0,p0) = (ωbxbω,q0, 0)
and the first symbol of x is at position 0, while for any t ∈ N,
(Tt+1,qt+1,pt+1) is the instantaneous configuration of M at time
t+ 1, where Tt+1 is equal to Tt except that in position pt in which
the symbol (Tt)pt is replaced by the symbol s with (qt+1, s,X) =

δ(qt, (Tt)pt), and pt+1 = pt + 1 if X = R and pt+1 = pt − 1 if X = L.
For any given run, note that if qt ∈ F at some time t ∈ N, then
Rk = Rt, for any k > t. In other words the computation halts on the
instantaneous configuration Rt and the output is the word from the
head of the TM to the first blank symbols on the tape, excluded.

13
F U L LY- A S Y N C H R O N O U S C A

In this chapter the simplest case of asynchronous CA are introduced
and their dynamical properties are studied. This kind of CA have the
strongest possible asynchronicity: only one cell is updated at every
time step.

The chapter is organized as follows. In Section 4.2 some basic no-
tions are recalled. In Section 13.1 fully asynchronous CA and some
of their properties are defined. In Section 13.2 the focus is on the
study of the dynamical behaviour of asynchronous CA. Finally, in Sec-
tion 13.3 some concluding remarks and future works are presented.

13.1 definition of fully asynchronous ca

In this section we introduce fully asynchronous cellular automata (fully-
ACA). Furthermore we reformulate the classical notions of surjectiv-
ity and injectivity for fully-ACA.

Let λ : Σ2r+1 → Σ be a local rule of radius r. We consider the
following asynchronous updating for λ. At each time t the local rule
λ is applied on one and only one cell. A sequence (τt)t>0 of integers
specifies the index τt ∈ Z of the cell which is updated at the time
step t > 0.

Definition 13.1.1. A fully-ACA is a quadruple (Σ, λ, r, τ) where Σ is
a finite alphabet, λ : Σ2r+1 → Σ is the local rule of radius r ∈ N and
τ = (τt)t>0, with τt ∈ Z is a sequence of cell positions.

Every fully-ACA C = (Σ, λ, r, τ) induces a global behaviour de-
scribed as follows. For any fixed k ∈ Z, let Fk : ΣZ → ΣZ be the
map such that:

∀x ∈ ΣZ, ∀i ∈ Z, Fk(x)i =

λ(xi−r, . . . , xi, . . . , xi+r) if i = k

xi otherwise

For any t > 0, C transforms the generic configuration x ∈ ΣZ at
the time step t into the configuration Fτt(x) at the time step t+ 1. The
dynamics of a fully-ACA is described by the family of functions TC =

{Id, Fτ1 , Fτ2 ◦ Fτ1 , . . . , Fτt ◦ · · · ◦ Fτ1 , . . .}. Remark that all the elements
from T are a continuous maps w.r.t. d. The orbit of a configuration

138

13.1 definition of fully asynchronous ca 139

x ∈ ΣZ is the sequence γx = (x, Fτ1(x), (Fτ2 ◦ Fτ1) (x), . . .) associating
with each time step t the configuration γx(t) = (Fτt ◦ . . . ◦ Fτ1) (x) of
the fully-ACA at that time.

In many situations we are interested in properties that do not de-
pend on the particular sequence τ. In those cases, we will refer to
the class C = (Σ, λ, r) of all fully-ACA in which the sequence τ is
not fixed and we will call uninstantiated fully-ACA such a class. In the
sequel, when no misunderstanding is possible, the term “uninstanti-
ated” will be omitted.

Injectivity and surjectivity are important properties for classical CA.
Their adaptation to fully-ACA takes into account the whole family of
functions {Fk}k∈N.

Definition 13.1.2. A fully-ACA C = (Σ, λ, r), is said to be α-injective
if ∀k ∈N, ∀x,y ∈ ΣZ, x 6= y⇒ Fk(x) 6= Fk(y)

Definition 13.1.3. A fully-ACA C = (Σ, λ, r), is said to be α-surjective
if ∀k ∈N, ∀x ∈ ΣZ, F−1k (x) 6= ∅

In other words, an uninstantiated fully-ACA is injective (resp. sur-
jective) if every instantiated fully-ACA has all the global functions Fk
injective (resp. surjective). Furthermore injectivity (resp. surjectivity)
of all the global functions implies α-injectivity (resp. α-surjectivity).

In classical CA injectivity implies surjectity [127]. A stronger rela-
tion holds between α-injectivity and α-surjectivity:

Proposition 13.1.1. Let C = (Σ, λ, r) be a fully-ACA. Then, the following
statements are equivalent:

i) C is α-injective.

ii) C is α-surjective.

iii) f is center permutive.

Proof. i)⇔ii). Fix k ∈ Z. Consider the function h : Σ2r+1 → Σ2r+1 de-
fined as h(u) = Fk(x)[k−r,k+r] where x is any configuration such that
x[k−r,k+r] = u. Then, Fk injective ⇔ h is injective and Fk surjective
⇔ h is surjective. Since the domain and the codomain of h are equal
and of finite cardinality h injective⇔ h is surjective.

i)⇔iii). Suppose that C is α-injective and fix u, v ∈ Σr and b ∈ Σ.
Since h is injective there exists only one c ∈ Σ such that h(ucv) = ubv
and in particular λ(ucv) = b. Thus λ is center permutive. Vice versa,
if λ is center permutive, then every block w = ubv ∈ Σ2r+1 has an
unique preimage h−1(w) = ucv for a certain c ∈ Σ.

Remark. Unlike classical CA, fully-ACA defined by a rightmost/left-
most permutive local rule are not necessarily α-surjective. As an ex-
ample consider the local rule f : {0, 1}3 → {0, 1} such that f(a,b, c) = a.
The rule is leftmost permutive but not center permutive, hence it is

13.2 dynamical properties of fully-aca 140

not α-surjective. In fact, the set of preimages of the configuration
. . . 0101010101 . . . is empty (since f(0,b, c) = 0 and f(1,b, c) = 1, one
application of any global function to any configuration will produce
either 00 or 11 in its image).

In this chapter we also ask whether a property that holds for a cer-
tain fully-ACA Ca = (Σ, λ, r, τ) also holds for all fully-ACA defined
by a sequence b “similar” to a. Expressing the similarity by the dis-
tance d may have some drawbacks. First of all, when changing the
updating sequence the conservation of a property also depends on
the value of δ such that d(a,b) < δ. Moreover, the conservation de-
pends only on a prefix of a. Here, we adopt the following similarity
notion: a sequence b is similar to a iff b ∈ Edit (a), where Edit (a) is
the set of all the sequences that can be obtained from a applying only
a finite number of deletions, insertions and substitutions of elements.
This is a direct generalization of the Levenshtein distance, an edit dis-
tance used in approximate string matching, for finite strings [124]. We
can then define the stability of a property P.

Definition 13.1.4. A property P is stable for a fully-ACA Cτ = (Σ, λ, r, τ)
if P holds for all the fully-ACA Cτ ′ = (Σ, λ, r, τ ′) with τ ′ ∈ Edit (τ).

In other words, a property P which holds for a fully-ACA Ca is
stable iff it still holds in presence of a finite number of modifications
in the sequence a.

Remark. Define the relation R as ∀a,b ∈ ZN, (a,b) ∈ R iff a ∈ Edit (b).
Clearly R is an equivalence relation.

13.2 dynamical properties of fully-aca

The adaptation of CA dynamical properties to fully-ACA needs to
take into account that there is an uncountable number of possible up-
dating sequences. We will distinguish behaviours that can emerge for
every sequence from the ones that can only appear for one particular
sequence.

A sequence (st)t∈N is ultimately periodic iff there exists a period
p ∈N+ and a preperiod q ∈N such that ∀i ∈N sp+q+i = sq+i.

The dynamics of a fully-ACA is strictly related to the structure of
the updating sequence. In particular the following property holds.

Proposition 13.2.1. Let C = (Σ, λ, r, τ) be a fully-ACA. If a is ultimately
periodic, then the orbit γx of every configuration x ∈ ΣZ is ultimately
periodic.

Proof. Suppose that a is ultimately periodic with period p an prepe-
riod q and let n be the number of the distinct values that appear in a.
Fix a configuration x ∈ ΣZ. Let B ⊆ ΣZ×AN+ be the set of pair (c,b)
where c is any configuration in γx and b = a(m,+∞) for any m ∈ N.

13.2 dynamical properties of fully-aca 141

Since a is ultimately periodic and there are at most |A|n distinct con-
figurations in γx, it holds that |B| 6 (p+ q)|A|n. Define G : B → B as
follows: ∀(c,b) ∈ B, G(c,b) =

(
Fb1(c),b(1,+∞)

)
. Thus, since B is finite

there exist p ′,q ′ ∈ N such that ∀(c,b) ∈ B, Gp
′+q ′(c,b) = Gq

′
(c,b).

Since ∀t ∈ N the first component of Gt(x,a) is γx(t), the orbit γx is
ultimately periodic.

Remark. Note that the converse of Proposition 13.2.1 is not true. In-
deed, let C = (Σ, λ, r) be an uninstantiated fully-ACA where f is a
constant function. Then, for any update sequence a such that ∃k ∈N

∀i ∈ N, |ai| 6 k, all the orbits of the fully-ACA Ca = (Σ, λ, r, τ) are
ultimately periodic.

Note that the property of having an ultimately periodic orbit is
stable for a fully-ACA with an ultimately periodic sequence a. In
fact, all the sequences obtained from a by a finite number of deletions,
substitutions and insertions are still ultimately periodic.

The classical notion of sensitivity to initial conditions is adapted to
both instantiated and uninstantiated fully-ACA.

Definition 13.2.1. An instantiated fully-ACA Cτ = (Σ, λ, r, τ) is α-
sensitive if its family TCτ is sensitive. An uninstantiated fully-ACA
C = (Σ, λ, r) is α-sensitive if there exists a sequence (τt)t>0 such that
the instantiated fully-ACA Cτ = (Σ, λ, r, τ) is sensitive.

Remark. α-sensitivity means that at least one of the instantiated fully-
ACA from the class C is α-sensitive to initial conditions. Requiring
that all the instantiated fully-ACA are α-sensitive is a meaningless
condition. Indeed, choose an integer k > 0 and consider the sequence
τ = (k,k,k, . . .). The orbits of two arbitrary configurations x and y
such that d(x,y) < 2−k cannot separate by a distance greater than
2−k.

Definition 13.2.2. An instantiated fully-ACA Cτ = (Σ, λ, r, τ) is α-
expansive if its family TCτ is expansive. An uninstantiated fully-ACA
C = (Σ, λ, r) is α-expansive if there exists a sequence a = (at)t>0
such that the instantiated fully-ACA Cτ = (Σ, λ, r, τ) is α-expansive.

Like classical CA, α-expansivity implies α-sensitivity.

Proposition 13.2.2. Let C = (Σ, λ, r) be a fully-ACA with r > 0. If λ is
either leftmost permutive or rightmost permutive then C is α-sensitive.

Proof. Suppose that λ is rightmost-permutive. Set ε = 2−r and define
the sequence τ as:

τ = (0︸︷︷︸, 1, 0︸︷︷︸, 2, 1, 0︸ ︷︷ ︸, 3, 2, 1, 0︸ ︷︷ ︸, 4, 3, 2, 1, 0︸ ︷︷ ︸ . . .) (7)

Choose an arbitrary x ∈ ΣZ and an integer n > r. Let y ∈ ΣZ with
d(x,y) < 2−n and xn+1 6= yn+1. There exists a first time t1 ∈N such

13.2 dynamical properties of fully-aca 142

that τt1 + r = n+ 1. Since λ is rightmost permutive and γx(t1− 1)i =
γy(t1 − 1)i for i ∈ [−n,n], the smaller cell position in which γx(t1)
and γy(t1) differ is n− r+ 1. Repeat the previous argument k times
with k = bn+1r c. In this way, for any 1 6 j 6 k there exists tj such that
γx(tj) and γy(tj) differ in position n− jr+ 1 (this is possible since τ
contains any positive integer infinitely many times). So, at a certain
time tk, the smallest cell position in which γtk(x) and γtk(y) differ
will be smaller than r. In other words, there exists a time tk such
that d(γx(tk),γy(tk)) < 2−r = ε, and so the fully-ACA (Σ, λ, r, τ) is
α-sensitive.

If λ is leftmost permutive the proof is similar by considering the
following sequence:

τ ′ = (0︸︷︷︸,−1, 0︸ ︷︷ ︸,−2,−1, 0︸ ︷︷ ︸,−3,−2,−1, 0︸ ︷︷ ︸, . . .) (8)

Remark. Note that the sequence a defined in (7) is not the unique one
which gives an α-sensitive instantiated fully-ACA. In fact, for every
n ∈ N the sequence τ(n,+∞) can still be used in the proof. Moreover,
for all u ∈ ZN

− all sequences obtained by interposing symbols of τ
and u gives α-sensitivity.

Remark. As for classical CA, leftmost/rightmost permutivity is not a
necessary condition for α-sensitivity. For example consider the alpha-
bet Σ = {0, 1, 2} and the function λ : Σ3 → Σ defined as λ(x1, x2, x3) =
0 if x3 = 0, λ(x1, x2, x3) = 1 otherwise. The fully-ACA C = (Σ, λ, r, τ)
where λ is defined in (7) is sensitive but λ is neither leftmost nor
rightmost permutive.

The property of being α-sensitive is stable for fully-ACA with a
rightmost or leftmost permutive local rule and defined by the se-
quence λ from (7). Indeed, fix τ̂ ∈ Edit (τ). Since the number of in-
sertions and deletions in τ is finite, there exist k ∈ N and h ∈ Z

(depending on τ̂) such that τi+h = τi for all i > k. For all x ∈ ΣZ

choose y ∈ ΣZ with x(p,+∞) 6= y(p,+∞) where p = max{|τ̂i| | i < k}.
Then, by the same idea of the proof of Proposition 13.2.2, the differ-
ence between x and y is “pushed” in [−r, r], and so the fully-ACA
(Σ, λ, r, τ̂) is also α-sensitive.

Proposition 13.2.3. Let C = (Σ, λ, r) be a fully-ACA with r > 0. If λ is
both leftmost permutive and rightmost permutive then C is α-expansive.

Proof. We show that C is α-expansive with expansivity constant ε =

2−r. Let

τ ′′ = (0, 0, 1, 0,−1, 0, 2, 1, 0,−2,−1, 0, 3, 2, 1, 0, . . .) (9)

be the sequence obtained by interleaving the sequence τ and τ ′ de-
fined in (7) and (8), respectively. We claim that the dynamics of the

13.2 dynamical properties of fully-aca 143

fully-ACA (Σ, λ, r, τ ′′) “push” a difference between two arbitrary con-
figurations into the window [−r, r]. Indeed, let x,y ∈ ΣZ with x 6= y

and let i ∈ Z be a position such that xi 6= yi. Without loss of gen-
erality suppose that i > r. By a similar argument as in the proof of
Proposition 13.2.2, the subsequence τ produces a dynamical evolution
such that the difference is “pushed” in [−r, r]. Notice that the two sub-
sequences τ and τ ′ operate distinctly on the positive and the negative
positions, respectively. Hence the difference between two configura-
tions cannot be cancelled if it is outside [−r, r].

The property of being α-expansive is stable for fully-ACA with a
leftmost and rightmost local rule and defined by the sequence τ ′′

from (9).
Indeed, fix τ̂ ∈ Edit (τ). Let ε = 2−m where m = max{|τ̂i| | i <

min{k ∈ N | ∃h ∈ Z : τ̂j = τj+h ∀j > k}}. Using the same idea of
the proof of Proposition 13.2.3, for any two configurations x,y ∈ ΣZ

with d(x,y) < 2−m = ε, it follows that there exist t ∈ N such that
d(γt(x),γt(y)) > ε.

Remark that the α-expansivity constant ε depends on τ̂, and if we
choose τ̂ ∈ Edit (τ ′′), the fully-ACA Cτ̂ = (Σ, λ, r, τ̂) may not be α-
expansive with the same constant ε = 2−r as Cτ ′′ . Indeed, fix k ∈ N

and consider τ̂ = (k, 0, 0, 1, 0,−1, . . .). Let Cτ̂ be the fully-ACA defined
by τ̂ and by λ : {0, 1}3 → {0, 1} with λ(c,d, e) = c xor e. Obviously λ is
both leftmost and rightmost permutive. Consider x,y ∈ {0, 1}Z with
xj = yj∀j 6= k and xk 6= yk. Then γx(1) = γy(1). Hence Cτ̂ is not
α-expansive with constant ε 6 2−k.

Proposition 13.2.4. Let (Σ, λ, r) be a fully-ACA where f is both right-
most and leftmost permutive. Let τ ′′ be the sequence from (9). For any
τ̂ ∈ Edit (τ ′′) the fully-ACA Cτ̂ = (Σ, λ, r, τ̂) is α-expansive with expan-
sivity constant ε = 2−r iff λ is center permutive.

Proof. Suppose that λ is not center permutive. Then, there exist u, v ∈
Σ2r+1 such that ur+1 6= vr+1, ui = vi ∀i 6= r+ 1 and λ(u) = λ(v).
Choose x,y ∈ ΣZ with x[1,2r+1] = v and y[1,2r+1] = u. Let Cτ̂ =

(Σ, λ, r, τ̂) where τ̂ = (r+ 1, 0, 0, 1, 0,−1, . . .) ∈ Edit (τ ′′). Since γx(1) =
γy(1), Cτ̂ is not α-expansive with constant ε = 2−r.

Conversely, assume now that f is center permutive. Fix x,y ∈ ΣZ

with x 6= y and τ̂ ∈ Edit (τ ′′). Then there exists k ∈N and h ∈ Z such
that τi+h = τ̂i for all i > k. Since center permutivity is equivalent to
α-surjectivity, it holds that γx(k) 6= γy(k). Using the same technique
of the proof of Proposition 13.2.2 with γx(k) and γy(k) as initial con-
figurations and τ̂[k,+∞) as the updating sequence, it follows that Cτ̂
is α-expansive with expansivity constant ε = 2−r.

Another interesting dynamical property of CA is transitivity. As
with sensitivity and expansivity, the notion of transitivity can be
adapted to fully-ACA.

13.2 dynamical properties of fully-aca 144

Definition 13.2.3. An instantiated fully-ACA Cτ = (Σ, λ, r, τ) is α-
transitive if its family TCτ is transitive. An uninstantiated fully-ACA
C = (Σ, λ, r) is α-transitive if there exists a sequence τ = (τt)t>0 such
that the instantiated fully-ACA Cτ = (Σ, λ, r, τ) is α-transitive.

Lemma 13.2.5. Let C = (Σ, λ, r) be a fully-ACA with r > 0 and let λ be
rightmost permutive. Consider the predicate P(k) defined as follows:

P(k) =

 ∀x ∈ ΣZ, ∀b ∈ Σ, ∀m ∈ Z ∃x ′ ∈ ΣZ

s.t. xi = x ′i ∀i 6= m+ rk and(
Fm ◦ Fm+r ◦ . . . ◦ Fm+r(k−2) ◦ Fm+r(k−1)

)
(x ′)m = b


Then, ∀k ∈N+, P(k) is true.

Proof. We proceed by induction on k. When k = 1 fix x ∈ ΣZ, b ∈ Σ
and m ∈ Z. Let x ′ ∈ ΣZ with xi = x ′i ∀i 6= m + r and x ′m+r = a

where, by permutivity of λ, a is such that λ(x[m−r,m+r)a) = b. It
immediately follows that Fm(x ′)m = b and so P(1) is true.

Suppose now that P(k) is true for a certain k ∈N+. Choose x ∈ ΣZ,
b ∈ Σ and m ∈ Z. By induction hypothesis there exists y ∈ ΣZ

with xi = yi ∀i 6= m+ rk such that
(
Fm ◦ . . . ◦ Fm+r(k−1)

)
(y)m = b.

Let x ′ ∈ ΣZ be with x ′i = xi ∀i 6= m + r(k + 1) and x ′m+r(k+1) =

a where, by permutivity of λ, a is the unique symbol such that
λ(x[m−r(k−1),m+r(k+1))a) = ym+rk. Then,(

Fm ◦ . . . ◦ Fm+r(k−1) ◦ Fm+rk

)
(x ′)m =(

Fm ◦ . . . ◦ Fm+r(k−1)

)
(y(−∞,m+r(k+1))ay(m+r(k+1),+∞))m = b

This proves that P(k+ 1) is true.

The previous lemma states that for any configuration x and for any
position m there exists a configuration x ′ that differs from x in at
most one position (arbitrarily far from m) and an updating sequence
such that after a certain number t of time steps γx(t)m 6= γx ′(t)m. We
now generalize this result to more than one position.

Lemma 13.2.6. Let C = (Σ, λ, r) be a fully-ACA with r > 0 and let λ be
rightmost permutive. Consider the predicate Q(`) defined as follows:

Q(`) =

 ∀x ∈ ΣZ, ∀k ∈N+, ∀w ∈ λ`, ∀m ∈ Z

∃x ′ ∈ ΣZ s.t. xi = x ′i ∀i /∈ [m+ rk,m+ rk+ `) and

(G`−1 ◦ . . . ◦G0) (x ′)[m,m+`) = w


where for all j ∈ [0, `),

Gj = Fm+j ◦ . . . ◦ Fm+j+r(k−1)

Then, ∀` ∈N+, Q(`) is true.

13.2 dynamical properties of fully-aca 145

Proof. We proceed by induction on `. The predicate Q(1) is true by
Lemma 13.2.5.

Assume now that Q(`) is true for a certain ` ∈ N+. Fix x ∈ ΣZ,
k ∈N+, m ∈ Z and w ∈ Σ`+1. Then w can be written as w = vb with
v ∈ Σ` and b ∈ Σ. By induction hypothesis there exists y ∈ ΣZ with
yi = xi ∀i /∈ [m+ rk,m+ rk+ `) such that:

(G`−1 ◦ . . . ◦G0) (y)[m,m+`) = v.

Let z = (G`−1 ◦ . . . ◦G0) (y). By Lemma 13.2.5 there exists z ′ with
z ′i = zi ∀i 6= m+ rk+ ` and(

Fm+` ◦ . . . ◦ Fm+`+r(k−1)

)
(z ′)m+` = b,

i.e., G`(z ′)m+` = b. Let x ′ ∈ ΣZ be such that x ′i = yi ∀i 6= m+ `+ rk

and x ′m+`+rk = z ′m+`+rk. Then:

(G` ◦G`−1 ◦ . . . ◦G0) (x ′) = G`(z ′)

Since G` leaves z ′[m,m+`) unchanged, we have that:

(G` ◦G`−1 ◦ . . . ◦G0) (x ′)[m,m+`+1) = G`(z
′)[m,m+`+1) = vb = w.

This proves that Q(`+ 1) is true.

Similar results hold for fully-ACA with a leftmost permutive local
rule.

For any pair of configurations x,y, the previous Lemma assures
the existence of a configurations x ′ in the neighbourhood of x and an
update sequence individuating an orbit of the configuration x ′ which
intersects a neighbourhood of y. This is not enough to conclude that
rightmost permutive fully-ACA are α-transitive since the sequence of
updates depends on the choice of the neighbourhoods of x and y.

In order to proceed, for a fixed r > 0, we will denote by S(h,k)
with k,h ∈N the finite sequence:

−h+ r(k− 1),−h+ r(k− 2), . . . ,

−h+ r,−h,−h+ 1+ r(k− 1), . . . ,

r(k− 1), r(k− 2), . . . , 0, 1+ r(k− 1), . . . ,

h+ r(k− 1),h+ r(k− 2), . . . ,h+ r,h.

Roughly speaking, with m = −h and ` = 2h + 1, S(h,k) is the (fi-
nite) update sequence individuating the orbit γx ′ from Lemma 13.2.6
which at time k(2h + 1) has the desired word w between positions
−h and h. Define now succ (S(h,k)) as the sequence S(h ′,k ′) where
h ′ = h+ rk and k ′ = min{m ∈ N | − h ′ + rm > h+ rk}. Consider
now the sequence:

τ = v0v1 . . . where v0 = S(0, 1) and ∀i ∈N+, vi = succ (vi−1) (10)

13.2 dynamical properties of fully-aca 146

Example 13.2.1. If r = 1 the sequence τ = v0v1 . . . defined in (10) is
the following:

τ = (0︸︷︷︸
v0=S(0,1)

, 1, 0,−1, 2, 1, 0, 3, 2, 1︸ ︷︷ ︸
v1=S(1,3)

, . . .)

Furthermore, if r = 2 the sequence is:

τ = (0︸︷︷︸
v0=S(0,1)

, 2, 0,−2, 3, 1,−1, 4, 2, 0, 5, 3, 1, 6, 4, 2︸ ︷︷ ︸
v1=S(2,3)

, . . .)

Proposition 13.2.7. Let C = (Σ, λ, r) be a fully-ACA with r > 0. If λ is
permutive then C is α-transitive.

Proof. Suppose that λ is rightmost permutive (the proof for a left-
most permutive rule is similar). We claim that the sequence τ de-
fined in (10) is such that the instantiated fully-ACA Cτ = (Σ, λ, r, τ)
is α-transitive.Choose ε > 0 and x,y ∈ ΣZ. Let i ∈ N be such that
vi = S(h,k) for some h,k ∈N with 2−h < ε. Let z = γx(|v0 . . . vi−1|).

By Lemma 13.2.6 there exists z ′ with z ′j = zj ∀j /∈ [−h+ rk,−h+

rk+ 2h+ 1) such that γz ′(|vi|)[−h,h] = y[−h,h].
Note that x[−h+rk,−h+rk+2h+1) is equal to z[−h+rk,−h+rk+2h+1).

Define now x ′ as x ′j = xj ∀j /∈ [−h+ rk,−h+ rk+ 2h+ 1) and x ′j = z
′
j

∀j ∈ [−h + rk,−h + rk + 2h + 1). We have that d(x, x ′) 6 2−h < ε

and γx ′(|v0 . . . vi|)[−h,h] = γz ′(|vi|)[−h,h] = y[−h,h]. Therefore Cτ is
α-transitive.

Proposition 13.2.8. Let Cτ = (Σ, λ, r, τ) be an instantiated fully-ACA
with a defined in (10). If λ is either rightmost permutive or leftmost permu-
tive then α-transitivity is stable for Cτ.

Proof. Let τ̂ ∈ Edit (τ). Since the number of differences between τ

and ˆsus is finite, there exists i ∈N such that ˆsus = cvivi+1 . . . where
c = c1, . . . , cq and vi = S(h,k) for some h,k ∈N with ∀j ∈ [1,q] cj <
−h+ rk. Fix x,y ∈ ΣZ. Let z =

(
Fcq ◦ . . . ◦ Fc1

)
(x). Applying the same

idea of the proof of Proposition 13.2.7 to z and y using vivi+1 . . .
as the updating sequence, we obtain that C ˆsus = (Σ, λ, r, ˆsus) is α-
transitive.

Remark. All the sequences that are needed to obtain α-sensitivity
and α-transitivity have to be unbounded. Indeed for α-sensitivity, we
need to consider differences that can be arbitrarily far from the cen-
ter. For α-transitivity, the reason is similar: the update sequence has
to contain arbitrarily far positions in order to define orbits reaching
arbitrarily small neighbourhoods.

Another important notion regarding the dynamics of a CA is DPO.
Before defining α-DPO, we need the notion of periodic point for a
fully-ACA.

13.2 dynamical properties of fully-aca 147

Definition 13.2.4. Let Cτ = (Σ, λ, r, τ) be an instantiated fully-ACA.
A point x ∈ ΣZ is called periodic if there exists p ∈ N+ such that for
all n ∈N, γx(n) = γx(n+ p).

Definition 13.2.5. Let Cτ = (Σ, λ, r, τ) be an instantiated fully-ACA.
Cτ has α-DPO if its set of periodic points is dense in ΣZ. An uninstan-
tiated fully-ACA C = (Σ, λ, r) has α-DPO if there exists a sequence
τ = (τt)t>0 such that the instantiated fully-ACA Cτ = (Σ, λ, r, τ) has
α-DPO.

Proposition 13.2.9. Let C = (Σ, λ, r) be a fully-ACA. If C is α-surjective
then it has α-DPO.

Proof. Consider the sequence τ = (k,k,k, . . .) for any k ∈ N. Fix
x ∈ ΣZ and consider the possible values that the orbit γx(t)k of the
fully-ACA Cτ can assume. For every b = Fk(x)k there is exactly one
b ′ ∈ Σ such that Fk(x(−∞,k−1]b

′ x[k+1,+∞)) is equal to b. Because only
the cell in position k changes, neither an aperiodic orbit (indeed the
number of elements in the orbit of x is finite) nor an ultimately peri-
odic orbit exist (indeed every configuration has exactly one preimage).
This means that x is a periodic point for Cτ, hence the fully-ACA has
α-DPO.

Remark that α-DPO is not a stable property. Indeed, let Cτ =

({0, 1}, 0, λ, τ) with λ(c) = 1 − c ∀c ∈ {0, 1} and τ = (0, 0, . . .). Let
ˆsus = (1, 0, 0, . . .) ∈ Edit (τ). Clearly, there are no configurations that

are periodic points for C ˆsus.

Remark. We remark that α-DPO is a property meaningful also for
uninstantiated fully-ACA (i.e.,, there exists an uninstantiated fully-
ACA that does not have α-DPO). In fact, let λ : {0, 1} → {0, 1} be
defined as λ(c) = 0 ∀c ∈ {0, 1} and fix τ = (τ1, τ2, . . .). Choose x ∈
{0, 1}Z such that xτ1 = 1. It is immediate that the orbit of x is not
periodic, also, any y ∈ {0, 1}Z such that d(x,y) < 2|τ1| cannot have a
periodic orbit. This means that C = ({0, 1}, λ, 1) does not have α-DPO.

Remark. There exists an α-injective uninstantiated fully-ACA with a
leftmost and center permutive local rule, i.e., a fully-ACA that is α-
surjective, α-sensitive, α-transitive and has α-DPO. Let Σ = {0, 1} and
λ : {0, 1}3 → {0, 1} defined as λ(a,b, c) = a xorb. The local rule is both
leftmost permutive and center permutive. Then, by Proposition 13.1.1,
13.2.2, 13.2.7 and 13.2.9 the fully-ACA ({0, 1}, λ, 1) is α-surjective, α-
sensitive, α-transitive and has α-DPO.

An other important property of classical CA is equicontinuity.

Definition 13.2.6. An instantiated fully-ACA Cτ = (Σ, λ, r, τ) is α-
equicontinuous if its family TCτ is equicontinuous. An uninstantiated
fully-ACA C = (Σ, λ, r) is α-equicontinuous if for every sequence τ =
(τt)t>0 the instantiated fully-ACA Cτ = (Σ, λ, r, τ) is α-equicontinuous.

13.3 further remarks 148

Trivially, any α-equicontinuous fully-ACA is not α-sensitive. All
constant local rules of any radius as well as all local rules of radius 0
define α-equicontinuous fully-ACA.

It is useful to remark that, unlike other properties as α-sensitivity,
α-equicontinuity requires that every sequence τ defines a fully-ACA
Cτ with an equicontinuous family TCτ . Indeed, for any uninstantiated
fully-ACA C there always exists a sequence τ = (0, 0, 0, . . .) such that
the family TCτ is equicontinuous. In particular, for any ε > 0, the
equicontinuity condition is satisfied with δ = 2−r.

Recall that for classical CA equicontinuity is equivalent to ultimate
periodicity [119] (i.e., all the configurations are ultimately periodic).
On the contrary, the equivalence between α-equicontinuity and fully-
ACA-ultimate periodicity is not true. Indeed, consider the fully-ACA
C = ({0, 1}, 0, λ) with λ defined as ∀c ∈ {0, 1}, λ(c) = 0. Clearly, C is
α-equicontinuous. However, the orbit of x = (. . . , 1, 1, 1, . . .) w.r.t. the
updating sequence τ = (0, 1, 2, . . .) is not ultimately periodic.

13.3 further remarks

In this chapter fully asynchronous cellular automata have been stud-
ied. The classical notions of surjectivity and injectivity have been
adapted to the new setting where there is not a single global map.
We have proved that their fully-ACA counterparts are equivalent.
The study of the dynamics of asynchronous cellular automata has
been performed with the adapted notions of transitivity, sensitivity,
expansivity, DPO and equicontinuity. We found that leftmost/right-
most permutivity of the local rule is strictly linked to many of these
properties. In fact, leftmost/rightmost permutivity implies both α-
transitivity and α-sensitivity.

14
C O M P U TAT I O N A L P O W E R O F F U L LY
A S Y N C H R O N O U S C A

In this chapter we focus on the way in which an ACA simulates a
Turing Machine. We provides three different constructions, depend-
ing on the way the TM is simulated.

14.1 simulation of turing machines

It is well-known that CA are a universal computational model ac-
cording to different notions of universality (for a survey see [154]).
The main point to prove Turing universality is to simulate a TM. Of
course, one can apply similar ideas and constructions to prove com-
putational universality or computational capability of ACA (see for
example [145, 148, 123]). In this section we would like to precise the
computational cost of such simulations. While Turing universality of
fully-ACA is expected, it still provides an indication of the possibility
of using many natural systems that are “natural ACA” as a way to
perform computation.

The basic idea when simulating a TM using a fully-ACA is to act by
“extracting” first the information about the state of the TM from the
current configuration of the fully-ACA, and then to operate the TM
transition saving information on the fully-ACA configuration again.
The way of saving the TM state and the way we extract it from the
current configuration lead to the two following notions of simulation.

notation. Given a collection of finite and pairwise disjoint sets
A1,A2, . . . ,An, for each i ∈ [1,n] define the projection map ΠAi :

A1 ×A2 × . . .×An → Ai as

∀(a1,a2, . . . ,an) ∈ A1 ×A2 × . . .×An
ΠAi(a1,a2, . . . ,ai . . . ,an) = ai

These projection maps can be naturally extended to work with con-
figurations. Indeed, for any i ∈ [1,n] and any configuration c ∈
(A1 × . . .×An)Z with a little abuse of notation we denote by ΠAi(c)
the configuration defined as ΠAi(c)j = ΠAi(cj), for all j ∈ Z.

Given a configuration c ∈ ΣZ and a function ψ : Z → Z, cψ is the
configuration defined as cψi = cψ(i) for all i ∈ Z.

149

14.1 simulation of turing machines 150

Definition 14.1.1. Let M = (Q,Σ, Γ , b, δ,q0, F) be a TM and C =

(A, λ, r, τ) be a fully-ACA. C strictly simulates M iff A = Γ ×B for some
finite set B and there exists a strictly increasing function ζ : N → N

such that for any input x ∈ Σ∗ of M, there exists a configuration
c ∈ ΣZ satisfying the conditions:

1. ΠΓ (c) = ωbxbω and ΠB(c) = ωsusω for some u, s ∈ B;

2. for any time t ∈N,

ΠΓ (f
(ζ(t))(c)) = Tt

In other words, a fully-ACA C strictly simulates a TM M if its con-
figurations can represent in a direct way the tape of M, possibly using
an additional amount of information (stored in the alphabet B) and
some additional time. Relaxing the condition on the representation of
the tape, the following weaker notion of simulation is obtained.

Definition 14.1.2. Let M = (Q,Σ, Γ , b, δ,q0, F) be a TM. Let C =

(A, λ, r, τ) be a fully-ACA. C scattered strictly simulates M iff A = Γ ×B
for some finite set B, and there exists a strictly increasing function
ζ : N → N such that for any input x ∈ Σ∗ of M there exist a strictly
increasing function ψ : Z 7→ Z and a configuration c ∈ ΣZ satisfying
the following conditions:

1. a) ΠB(cψ) = ωsusω, for some u, s ∈ B ;

b) ∀i ∈ Z \ψ(Z),ΠB(ci) = q, for some q ∈ B ;

c) ΠΓ (cψ) = ωbxbω ;

2. for any time t ∈N,

ΠΓ ((f
(ζ(t))(c))ψ) = Tt

A scattered strict simulation assumes that only a subset of cells par-
ticipates to the simulation and the others are somehow inactive. For
this reason, in the fully-ACA configurations there can be an offset
made for example by bs between the symbols of the TM tape con-
tent. Note that when the function ψ is ψ(i) = i, then scattered strict
simulation and strict simulation coincide.

According to the above definitions, even if a fully-ACA can simu-
late a TM on a fixed input x, it might not be able to simulate the same
TM on a different input simply because of an inappropriate updating
sequence τ.

14.1 simulation of turing machines 151

14.1.1 Construction 1.

Given a TM M = (Q,Σ, Γ , b, δ,q0, F) build a family of fully-ACA
Cτ = (A, λ, 1, τ) such that A = Γ ×Q×D×C, where D = {L,R} ,C =

{ready, active, inactive}, and the local rule λ : A3 → A is defined as
follows

λ(u, v, z) =



(σ,q,m, ready)

if u = (σu,qu,R, active),

v = (σv,qv,mv, inactive)

and δ(qu,σv) = (q,σ,m)

(σv,qv,R, inactive)
if v = (σv,qv,R, active),

z = (σz,qz,mz, ready)

(σv,qv,mv, active)
if u = (σu,qu,R, inactive),

v = (σv,qv,mv, ready)

(σ,q,m, ready)

if z = (σz,qz,L, active),

v = (σv,qv,mv, inactive)

and δ(qz,σv) = (q,σ,m)

(σv,qv,L, inactive)
if v = (σv,qv,L, active),

u = (σu,qu,mu, ready)

(σv,qv,mv, active)
if z = (σz,qz,L, inactive),

v = (σv,qv,mv, ready)

v otherwise.

Every cell of the fully-ACA contains the symbol of the correspond-
ing cell on the TM tape, the state of the TM, the direction of move-
ment of the TM head, and a value ξ ∈ C to control the simulation. At
TM time t, the cell i with ξ = active is the one where the TM head
is positioned at time t − 1, i.e., pt−1 = i (with p−1 = −1). During
the fully-ACA evolution, at most one cell in whole configuration has
ξ = active. If the updating sequence allows the cell i+ 1 (resp., i− 1)
to be updated and the cell i has m = R (resp., m = L), then the cell
i+ 1 (resp., i− 1) changes its state according to the TM rule and its

14.1 simulation of turing machines 152

active

R

q0

b

inactive

m1

q1

x0

t ′ = 0 t = 0

active

R

q0

b

ready

m

q

σ

t ′ = 1

inactive

R

q0

b

ready

m

q

σ

t ′ = 2

inactive

R

q0

b

active

m

q

σ

t ′ = 3 t = 1

Figure 33: Simulation of the first step of a TM using a fully-ACA built by
construction 1 with updating sequence τ = (0,−1, 0, 1, . . .). The
fully-ACA and TM times are denoted by t ′ = ζ(t) and t, re-
spectively. The arrow points at the current active cell of the fully-
ACA. The transition function of the simulated TM is such that
δ(q0, x0) = (q,σ,m).

own value of ξ is set to ready to indicate that the information about
the head position has to be moved to this cell. To perform it, at subse-
quent times fully-ACA will set the cell with ξ = active to inactive and
the cell with ξ = ready to active. An example of this behavior is shown
in Figure 33.

In order to (strictly) simulate a TM on input x = x0 . . . xn−1 ∈
Σ∗, fully-ACA given by the above construction have to start on the
following configuration c

∀i ∈ Z, ci =


(xi,q,m, inactive) if 0 6 i < |x|.

(b,q0,R, active) if i = −1.

(b,q,m, inactive) otherwise,

where q and m are an arbitrarily chosen state and movement (since
they will not be used in the simulation, their choice can be arbitrary).
The last point to precise is which updating sequences can be used. Of
course, that depends on the TM to simulate but there are sequences
that can be used in “all occasions”, they are called universal.

Roughly speaking, a sequence is universal on the set K ⊆ Z if
any cell of K is updated infinitely many times. When no misunder-
standing is possible, we will simply refer to a universal sequence as
a sequence which is universal on the whole Z.

14.1 simulation of turing machines 153

Definition 14.1.3. An updating sequence τ is universal on the set K ⊆
Z iff it holds that |{i ∈N, τi = k}| =∞ for every k ∈ K.

Lemma 14.1.1. Consider a fully-ACA C = (A, λ, 1, τ) given by Construc-
tion 1 and let τ be universal. Then, C is Turing universal.

Proof. Consider a TM M = (Q,Σ, Γ , δ, b,q0, F) and a fully-ACA C =

(A, f, 1, τ) with τ universal. For any x ∈ Σ∗ input of M, let c be the
initial configuration built in construction 1. Let us prove that C strictly
simulates M.

Let Rt = (Tt,qt,pt) be the configuration of the M at time t. We
claim that for all t ∈N there exists t ′ ∈N such that the configuration
c ′ = f(t

′)(c) of C has the following properties

1. ΠΓ (c ′) = Tt.

2. ΠQ(c ′pt−1) = qt (p−1 = −1).

3. ΠC(c ′pt) = active and ΠC(c ′i) = inactive, for all i ∈ Z \ {pt}.

4. ΠD(c ′pt) = R if pt > pt−1; L if pt < pt−1.

We proceed by induction. For t = 0, the claim is true by construc-
tion (t ′ = 0 and c ′ = c).

Assume now that the claim is true for t > 0, i.e.,, there exists t ′ such
that the configuration c ′ = f(t

′)(c) satisfies the four stated properties.
Remark that ΠC(c ′pt) = active and hence the only cells that can change
their value are at positions pt + 1 or pt − 1, depending on the value
of ΠD(c ′pt). Suppose that ΠD(c ′pt) = R (the other case is similar).

Marking of the ready cell. Since τ is universal, there exists t ′′ > t ′

such that τt ′′ = pt + 1 and for any other t̄ ∈ N either τt̄ 6= pt + 1 or
t̄ > t ′′. According to the definition of f, at time t ′′ the cell pt + 1 will
become (σ,q,m, ready), where (σ,q,m) = δ(ΠQ(c

′′
pt
),ΠΓ (c ′′pt+1)) and

c ′′ = f(t
′′)(c). Moreover, no other cell can change its content between

time t ′ + 1 and t ′′ − 1. Therefore ΠΓ (c ′′) = Tt+1 and ΠQ(c
′′
pt+1

) =

qt+1, i.e.,, c ′′ satisfies the first and second properties.
Deactivation of the active cell. Again, since τ is universal, there exists

t ′′′ > t ′′ such that τt ′′′ = pt and for any other t̄ ∈ N either τt̄ 6=
pt + 1 or t̄ > t ′′′. According to f, the forth component of the cell at
position τt ′′′ is set to inactive. Once more, remark that no changes in
the configuration of the fully-ACA occur between time t ′′ + 1 and
t ′′′ − 1.

Activation of the ready cell. Finally, by the universality of τ, there
exists t̃ > t ′′′ such that τt̃ = pt + 1 and for any other t̄ ∈ N either
τt̄ 6= pt + 1 or t̄ > t̃. From the definition of f, one deduces that the
only possibility is that the fourth component of the cell at position
pt + 1 in f(t̃)(c) is set to active. Since no changes in the configuration
of the fully-ACA occur between time t ′′′ + 1 and t̃− 1, the claim is
proved.

14.1 simulation of turing machines 154

Lemma 14.1.2. Let C = (A, λ, 1, τ) be the fully-ACA given by Construc-
tion 1. If C is Turing universal, then τ is universal.

Proof. Consider the TM M = ({qR,qL} , {0, 1} , {0, 1, b} , b, δ,qR, ∅) in
which the function δ is defined as follows

(q,σ) (qR, b) (qR, 0) (qR, 1)

δ(q,σ) (qL, 1,L) (qR, 1,R) (qR, 1,R)

(q,σ) (qL, b) (qL, 0) (qL, 1)

δ(q,σ) (qR, 0,R) (qL, 0,L) (qL, 0,L)

On any input, M writes a symbol 1 on the cell 0, then it writes 1s
towards the right until a blank symbol is reached. When a blank is
reached, it moves left writing a symbol 0 until a blank is encountered
at this point it starts moving right writing 1s and so forth. It is clear
that the head of M passes through any cell of the tape infinitely many
times. Therefore any fully-ACA given by Construction 1 needs an
universal updating sequence to strictly simulate it.

According to Lemma 14.1.1 and Lemma 14.1.2 we have the follow-
ing.

Theorem 14.1.3. A fully-ACA C = (A, λ, 1, τ) given by Construction 1 is
Turing universal if and only if τ is universal.

The previous result proves that the class of fully-ACA given by
Construction 1 are computational universal but it seems that requir-
ing an universal updating sequence involves a considerable time loss
(see the proof of the Theorem 14.1.3). The following proposition shows
that there exist (carefully chosen) updating sequences such that the
time loss is acceptable (quadratic).

Proposition 14.1.4. Given a TM M that executes in time T(n), there
exists a fully-ACA C given by Construction 1 that simulates M in time
O
(
T(n)2

)
.

Proof. For any i ∈ N, let si be the finite sequence si = (−i,−i +
2, . . . , i − 1, i). Define the sequence τ by the concatenation of the si
sequences as follows:

τ = s0(−1)s0︸ ︷︷ ︸ s1s0s1︸ ︷︷ ︸ s2s1s2︸ ︷︷ ︸ . . .
= 0,−1, 0︸ ︷︷ ︸,−1, 1, 0,−1, 1︸ ︷︷ ︸,−2, 0, 2,−1, 1, . . .

Clearly, τ is universal. Consider now the fully-ACA C = (A, λ, 1, τ)
where λ and A are as in Construction 1. It is easy to verify that
the every segment of the fully-ACA evolution individuated by the
block sisi−1si simulates one step of M. The size of the block in-
creases by a (multiplicative) constant 3 for every i. The total length
of the simulation is then bounded by 1+ |s0|+

∑T(n)
i=1 2 · |si|+ |si−1|

= 2+
∑T(n)
i=1 3i+ 2 = O

(
T(n)2

)
.

14.1 simulation of turing machines 155

Remark. The timeO
(
T(n)2

)
is the best asymptotic limit for a sequence

if we do no restrict the kind of TM that can be simulated. Indeed,
consider a TM that reads an input of length n that is the description
of the next n head movements (i.e.,, it stops in T(n) = 2n+ 1 steps).
Since the updating sequence is the same for all the inputs, it needs
to account for all the possible head movements. The position of the
head at time n+ 1 is n, either n+ 1 or n− 1, at time n+ 2, and so on.
Let us introduce the graph G = (V ,E) where V = {n+ 1, . . . , 2n+ 1}×
{0, . . . , 2n} and E = {((t,a), (t+ 1,b)) | t ∈ {n+ 1, . . . , 2n} and |a−b| =

1}. Any path starting from (n+ 1,n) and ending to (2n+ 1,b) with
b ∈ {0, . . . , 2n} represents a possible sequence of a TM head. In order
to simulate all the head movements, all the nodes of the graph must
be visited at least once by these paths. Since the graph has O(T(n)2)
vertexes, the simulation time must be O(T(n)2).

Remark. Actually, for any a TM M executing in O(T(n)), there are
uncountably many fully-ACA given by Construction 1 that simulate
M in time O(T(n)2). An infinite set of them is individuated by the
sequences obtained from the one illustrated in the Prop. 1 “inserting”
in it any integer in one or more positions.

The slowdown in the simulation of TM using fully-ACA given by
Construction 1 is essentially given by the fact that we want a strict
simulation and we must keep track (among other things) of the po-
sition of the head of the TM. Relaxing this last constraint brings to a
different notion of simulation and construction, like, for example, in
Construction 2.

14.1.2 Construction 2

Construction 1 needs three steps in order that both the movement of
the TM head and the update of a the state are effectively simulated.
Since the asymptotic time needed for the simulation is already opti-
mal, the goal is now to reduce the multiplicative constant 32 in the
asymptotic time from Proposition 14.1.4 without loss of generality.
Next construction is an example of how this constant can be reduced
down to 1

2 , but only by tying the construction to a specific updating
sequence. This shows that there is a trade-off between a general con-
struction (i.e.,, in which every universal sequence can be used) and
one producing a faster simulation. If this gap actually exists or if it
can be eliminated remains an open question.

Given a TM M = (Q,Σ, Γ , b, δ,q0, F) build a family of fully-ACA
Cτ = (A, λ, 1, τ) such that A = Γ ×Q×D×C, where D = {L,R} ,C =

{active, inactive} and λ : A3 → A is defined as follows

14.1 simulation of turing machines 156

active

R

q0

b

inactive

m1

q1

x0

t ′ = 0 t = 0

active

R

q0

b

active

m

q

σ

t ′ = 1 t = 1

Figure 34: Simulation of the first step of a TM using a fully-ACA built by
construction 2. The fully-ACA and TM times are denoted by t ′ =
ζ(t) and t, respectively. The arrow points at the current active cell
of the fully-ACA. The transition function of the simulated TM is
such that δ(q0, x0) = (q,σ,m).

λ(u, v, z) =



(σ,q,m, active)

if u = (σu,qu,R, active),

v = (σv,qv,mv, cv),

z = (σz,qz,mz, inactive)

and δ(qu,σv) = (q,σ,m)

(σ,q,m, active)

if u = (σu,qu,mu, inactive),

v = (σv,qv,mv, cv),

z = (σz,qz,L, active)

and δ(qz,σv) = (q,σ,m)

(σv,qv,mv, inactive) otherwise

The initial configuration used for the simulation is the same as
the one given for Construction 1. Such fully-ACA Cτ can simulate
M only for sequences τ which are able to suitably store a piece of
information concerning the position of the TM head. Indeed, for the
specific updating sequence τ = s0s1s2..., the fully-ACA Cτ simulates
M. Moreover, using similar techniques as in Theorem 14.1.3, one can
prove that Cτ simulates M on any input with a total running time∑T(n)
i=0 |si| =

∑T(n)
i=0 (i+ 1) = O

(
T(n)2

)
,

where T(n) is the running time of M (see Figure 34 for the simu-
lation of one M step) and the multiplicative constant is 12 instead of
3
2 .

14.1 simulation of turing machines 157

14.1.3 Construction 3

Construction 1 and 2 assume that potentially all cells of the fully-ACA
cooperate to the simulation of the TM. Assume now that only a subset
of cells participates to the simulation and the others are somehow
inactive. In this section, we are going to show that the fully-ACA
can still (scattered strictly) simulate any TM whenever the updating
sequence has some specific properties.

A set S ⊂ Z is syndetic if there exists some finite E ⊂ Z such that
∪n∈E(S− n) = Z, where (S− n) = {k ∈ Z |k+n ∈ S}. Syndetic sets
have bounded gaps i.e., there exists g ∈N (which depends on S) such
that for any h ∈ Z, {h,h+ 1, . . . ,h+ g} ∩ S 6= ∅. Given a sequence
α = {αi}i∈N, the support of α is the set supp(α) = ∪i∈N {αi}.

notation. To shorten up the notation in what follows, given an
ordered sequence of states u(−r), . . . ,u(0), . . . ,u(r) and k ∈ C, denote
by ER(k) the set

{
i ∈ [1, r] |ΠC(u(i)) = k

}
and, similarly, by EL(k) the

set
{
i ∈ [−r,−1] |ΠC(u(i)) = k

}
. Finally, denote j(k)R = minER(k) if

ER(k) 6= ∅ and j(k)L = maxEL(k) if EL(k) 6= ∅.
Given a TM M = (Q,Σ, Γ , δ,q0, F) build a family of fully-ACA C =

(A, λ, r, τ) such that A = Γ ×Q×D×C, D = {L,R}, and C is the set
{ready, active, inactive, disabled}. The local rule λ : A2r+1 → A is defined
as follows (when the movement of the head is to the right):

λ(u(−r), . . . ,u(0), . . . ,u(r)) =

(σ,q,m, ready)

if EL(active) 6= ∅,

u(j
(active)
L) = (σu,qu,R, active),

u(0) = (σv,qv,mv, inactive),

and δ(qu,σv) = (q,σ,m)

(σv,qv,R, inactive)

if u(0) = (σv,qv,R, active),

ER(ready) 6= ∅,

and u(j
(ready)
R) = (σz,qz,mz, ready)

(σv,qv,mv, active)

if EL(inactive) 6= ∅,

u(j
(inactive)
L) = (σu,qu,R, inactive),

u(0) = (σv,qv,mv, ready)

14.1 simulation of turing machines 158

active

R

q0

b

inactive

m

q

x0

disabled

m

q
b

disabled

m

q
b

inactive

m

q

x1

disabled

m

q
b

inactive

m

q

x2

Figure 35: The initial configuration of a fully-ACA that scattered strictly sim-
ulates a TM. The dark cells are the disabled ones (i.e.,, they do not
contribute to the simulation).

Similarly, when the movement of the head is to the left:

λ(u(−r), . . . ,u(0), . . . ,u(r)) =

(σ,q,m, ready)

if ER(active) 6= ∅,

u(j
(active)
R) = (σz,qz,L, active),

u(0) = (σv,qv,mv, inactive)

and δ(qz,σv) = (q,σ,m)

(σv,qv,L, inactive)

if u(0) = (σv,qv,L, active),

EL(ready) 6= ∅,

u(j
(ready)
L) = (σu,qu,mu, ready)

(σv,qv,mv, active)

if ER(inactive) 6= ∅,

u(j
(inactive)
R) = (σz,qz,L, inactive),

u(0) = (σv,qv,mv, ready)

In all the other cases λ(u(−r), . . . ,u(0), . . . ,u(r)) = u(0).
In order to be able to (scattered strictly) simulate a TM on input

x0 . . . xn−1 ∈ Σ∗, fully-ACA given by the above construction have to
be started on the following configuration c

∀i ∈ Z, cαi =



(b,q0,R, active) if i = α−1

(xi,q,m, inactive) if i ∈ {α0, . . . ,αn−1}

(b,q,m, inactive) if i ∈ supp(α) \ {α0, . . . ,αn−1}

(b,q,m, disabled) otherwise

where α is a subsequence of τ such that α0 < α1 < . . . < αn, and
q ∈ Q, m ∈ D are arbitrarily chosen. An example of an initial con-
figuration can be found on Figure 35. Clearly, the whole construction
(and hence the simulation) depends on τ and its subsequence α. The
following result characterizes them.

Theorem 14.1.5. A fully-ACA C = (A, λ, r, τ) given by Construction 3
scattered strictly simulates any TM on any input if and only if τ contains

14.1 simulation of turing machines 159

a subsequence α such that supp(α) is a syndetic set and α is universal on
supp(α).

Proof. For any TM M = (Q,Σ, Γ , b, δ,q0, F) consider a fully-ACA C =

(A, λ, r, τ) given by Construction 3. Assume that C scattered strictly
simulates M. First of all, let us prove that |supp(τ)| = ∞. Indeed, if
|supp(τ)| < ∞, only a finite number of cells can be used for simu-
lation and therefore, according to Condition 2 of Definition 14.1.2
only a finite portion of the tape can be simulated. Choose a subse-
quence α of τ such that α0 < α1 < . . . < αn (this is possible since
|supp(τ)| = ∞). By contradiction, assume that no sequence α is uni-
versal on an infinite set. This means that the set of cells that can be
updated infinitely many times is finite or empty. Without loss of gen-
erality assume that it has finite cardinality and j > 0 is the maximal of
its elements (the case j 6 0 is similar). Let k be the index of last occur-
rence of j in α. Consider the TM M from the proof of Theorem 14.1.3
on the empty input. Since, for all t > k, f(t)(cα)j = cαj , Condition 2
of Definition 14.1.2 is violated.

Now, always by contradiction, assume that there exist subsequences
of τ but none of them has a syndetic support set on which it is uni-
versal. This means that there are larger and larger sets [a,b] ⊂N not
contained in supp(α). Choose one of them such that b− a > r and let
M be the TM which on the empty input writes 2b symbols 1 as an
output. Set h = minj∈supp(α) {b < j}. According to the definition of λ,
for all t ∈ N, f(t)(cα)h = cαh . Hence Condition 2 of Definition 14.1.2
is false.

Therefore if C scattered strictly simulates M, τ has to contain a
subsequence α with a syndetic support on which α is universal.

On the other hand, assume that τ contains an subsequence α with
a syndetic support on which α is universal. Then, there exists a sub-
sequence α ′ with α ′0 < α

′
1 < . . . < α

′
n, where n is the length of the

input of M. Build the initial configuration cα
′

as described in Con-
struction 3. Since supp(α) has bounded gaps, let p be the longest one
and set the radius r = p. The rest of the proof is essentially the same
as the one given for Theorem 14.1.3 with α ′ playing the role of τ.

Proposition 14.1.6. For any TM M that executes in time T(n), consider a
fully-ACA C given by Construction 3 and an updating sequence τ contain-
ing a subsequence α with syndetic support on which α is universal. Then,
C scattered strictly simulates M in time O

(
T(n)2

)
.

Proof. Consider C = (A, λ,p, τ) where λ and A are as in Construction
3. For i ∈N, let si be as in the proof of Proposition 14.1.4. Let α be the
subsequence of τ given in the hypothesis and let p ∈ N be the mini-
mal gap. Consider the subsequence α ′ = s2ps4p . . . s2ip . . . Similarly
to the proof of Proposition 14.1.4, s2ips4ips6ip can be used to encode
the simulation of a step of M. The total length of the simulation is

14.2 updating sequences generated by random walks 160

then bounded by
∑T(n)
i=1 |s2ip| + |s4ip| + |s6ip| =

∑T(n)
i=1 12ip + 3 =

O
(
T(n)2

)
.

14.2 updating sequences generated by random walks

The quadratic slowdown in the simulation time observed in the pre-
vious section is essentially due to the signalling for the active cell
(token) has to go back and forth through lots of cells that are not
interested by the current calculation. TM heads are the place where
the calculation takes place and they can move only one cell at a time.
This simple remark induced us to modify the definition of fully-ACA
introducing some randomness in the distribution of the token i.e., the
token can go right with probability p and left with probability q for
example. In this way a certain degree of non-determinism is intro-
duced producing a time speed-up.

More formally, consider a countable number of independent iden-
tically distributed random variables Xi with values in {+1,−1}. The
position of the token (active cell) at time t ∈ N can be represented
by τt =

∑
i=0 Xi which is a random variable with values in Z. There-

fore, practically speaking, the updating sequence is a random walk
(see [111] for more on random walks). In order to simplify the exposi-
tion, in the sequel, we will assume that all Xi have uniform Bernoulli
distribution. The generalisation of the results to the non-uniform case
is strightforward. The following definition adapts the notion of fully-
ACA to this new setting.

Definition 14.2.1. A random-walk fully-ACA (or rw-ACA for short) is
the class of all fully-ACA (A, λ, r, τ) where τ is generated by a simple
random walk starting at position τ0 = 0.

Remark. The definition of Crw is consistent with our purposes. In-
deed, consider any TM M. Since 1D random walks pass through all
sites infinitely many times with probability 1, by Theorem 14.1.3, the
the rw-ACA Crw with alphabet and local rule given by Construction
1 strictly simulates M with probability 1.

Concerning simulation time, the following proposition shows that
any TM executing in time T(n) can be simulated by rw-ACA in
O(T(n)) steps. This means that a simulation using rw-ACA can be
faster than a deterministic one performed by fully-ACA. Unfortu-
nately, the probability of such a simulation decreases exponentially
with T(n).

Proposition 14.2.1. For every TM M halting in T(n) steps there exists a
rw-ACA Crw simulating M in time 3T(n) with probability 2−3T(n).

Proof. Using Construction 1, the simulation of one TM step requires
at least 3 cell updates by the fully-ACA and then a TM halting in
T(n) steps requires at least 3T(n) applications of the fully-ACA local

14.2 updating sequences generated by random walks 161

rule. Since the involved cells are adjacent, random walks are poten-
tially able to produce the sequence where the first 3T(n) elements
are exactly the cells that need to be updated. The number of possible
sequences of length 3T(n) generated by a random walk is 23T(n). So,
the probability (favorable cases over total number of cases) of obtain-
ing the right sequence simulating the TM is 2−3T(n).

14.2.1 Bounded Random Walks

In the previous section we have seen that the simulation of a TM by
a fully-ACA can be speed-up to linear time at the cost of low prob-
ability in getting the correct result. On the other hand, if one allows
infinite simulation time then we obtain the correct result with proba-
bility one (see Remark 14.2). There is also another possible tradeoff:
simulation space.

The new idea is to use update sequences generated by a random
walk bounded between −n and n. Since 1D random walks pass in-
finitely many times through every cell with probability 1, the prob-
ability of obtaining a bounded sequence is 0. Nonetheless bounded
sequences are interesting since when modeling real systems the used
space needs to be large enough to complete the computation but is
certainly not infinite.

Note that the considered bounded sequences can be generated by
random walks on finite linear graphs (i.e.,, in which the next node in
the random walk is uniformly selected among the neighbors of the
current node). Recall that the expected cover time for a random walk
is the expected time after which every node in the graph has been
visited. The expected cover time for a linear graph is O(|V |2) (see [24]
for example).

Proposition 14.2.2. For any TM M halting in T(n) steps, there exists an
rw-ACA Crw working on the bounded sequences between −T(n) and T(n),
simulates M in an expected time O

(
T(n)3

)
.

Proof. If a random walk {zi}i∈N is bounded between −T(n) and T(n)
then it can be considered as a random walk on a linear graph with
2T(n) + 1 vertexes and 2T(n) edges. The expected cover time of a
linear graph is bounded by O((2T(n) + 1)2) = O(T(n)2). Consider
the local rule given by Construction 1. The simulation of M requires
3T(n) fully-ACA applications and one graph cover is performed for
each fully-ACA application assuring the involved cells are updated.
By linearity of the expectation operator, the rw-ACA Crw simulates
M in expected time

∑3T(n)
i=1 O(T(n)2) = O(T(n)3).

15
M - A S Y N C H R O N O U S C A

In this chapter, we introduce a model of ACA (m-ACA) in which
there is partial synchronicity given by a fair probability measure over
the subsets of cells that can be updated. That is, a measure that, in-
tuitively, gives to any cell the possibility to be updated and limit the
difference between the most and the lest frequently updated cells.

15.1 m-aca

In this section we introduce the notion of m-ACA as a generalization
both of classical CA and of fully-ACA. The basic idea is to augment
the classical CA model by a measure µ. Updating sequences will be
generated using µ. In this manner, it is possible to precisely define
when a property holds for almost all updating sequences or only for
a negligible set of them. Differently from classical CA and fully-ACA,
the definition of m-ACA can capture, depending on the probability
measure used, many different updating scheme (including fully-ACA
and classical CA). Thus, when proving the presence of a property
for a particular class of measures, we are including many different
possible updating schemes. Hopefully, this approach would reveal
itself more general than many ad-hoc methods tied to a particular
updating scheme.

Definition 15.1.1 (m-ACA). An m-ACA C is a quadruple (Σ, r, λ,µ)
where A is a finite alphabet, r > 0 is the radius, λ : Σ2r+1 → Σ is the
local rule and µ is a probability measure on the Borel σ-algebra on
P (Z).

Given the local rule λ and a set U ∈ P (Z) define FU : ΣZ → ΣZ as
follows

∀x ∈ ΣZ, ∀i ∈ Z FU(x)i =

λ(xi−r, . . . , xi, . . . , xi+r) if i ∈ U ,

xi otherwise .

Given a sequence υ ∈ P (Z)N extracted using µ (all extractions
are considered as independent), the dynamics of the m-ACA is de-
scribed by the family of functions Tυ = {id, Fυ1 , Fυ2 ◦ Fυ1 , . . .}. Re-
mark that all the elements from T� are continuous functions w.r.t.

162

15.1 m-aca 163

the metric d. The orbit of a configuration x ∈ ΣZ is the sequence
γx,υ = (x, Fυ1(x), (Fυ2 ◦ Fυ1)(x), . . .) associating with each time step
t ∈N the configuration γx,υ(t) = (Fυt ◦ . . . ◦ Fυ1)(x) of the m-ACA at
that time.

Remark. The notion of m-ACA includes both classical CA and fully-
ACA. Indeed, the former case is obtained choosing a measure µ1
such that µ1(A) = 1 if Z ∈ A, 0 otherwise. The latter is obtained
by choosing µ2 such that µ2(Ui) > 0 for i ∈ Z and µ2(Ui ∩Uj) = 0

for i 6= j. Note that in the last case we cannot have a shift-invariant
measure.

In order to study the core behavior of the model, the “extremal”
cases reported in Remark 15.1 should be avoided. This goal can be
reached, for instance, by adding some further requirements to the
measure µ used to produce the updating sequences. Therefore, the
following “fairness” requirements are put on µ:

1. at any time step (extraction), each single cell is updated or non
updated with a positive probability. This means that events like
“always updated” or “always non updated” for the same cell
happen with probability 0.

2. for any cell the probability of being updated is independent
from the probability of being updated of any other cell.

3. any event that fix the update/non update condition of an infi-
nite number of cells has zero probability.

The following definition formalizes the above requirements.

Definition 15.1.2. A probability measure µ on the Borel σ-algebra on
P (Z) is fair iff:

1. ∀i ∈ Z, 0 < µ(Ui) < 1.

2. ∀A ⊆ Z with A finite, µ
(⋂
a∈AUa

)
=
∏
a∈A µ(Ua), where

each Ua can be either Ua or Ua.

3. ∀A ⊆ Z with A infinite, µ
(⋂
a∈AUa

)
= 0, where each Ua can

be either Ua or Ua.

Remark. The class of α-asynchronous CA are an example of m-ACA.
Indeed, each cell i is updated with a fixed probability α > 0. This is
equivalent to take µ(Ui) = α for every i ∈ Z. Note that m-ACA also
allow the non-shift invariant case of a probability of updating a cell
that depends on its position.

Remark. For both classical CA and fully-ACA it is impossible to define
a fair measure to generate the correct updating sequences. In fact, for
classical CA we need that µ(Ui) = 1 for every i ∈ Z. Also, for fully-
ACA we need that µ(Ui ∩Uj) = 0 whenever i 6= j.

15.1 m-aca 164

The following lemma illustrates a first consequence of the fairness
requirements on the measure µ: for a given cell, the probability of
being updated or not can be arbitrarily close neither to 0 nor to 1.

Lemma 15.1.1. Consider a fair measure µ on the Borel σ-algebra on P (Z).
There exist h,k ∈ R with 0 < h 6 k < 1 such that ∀i ∈ Z, h 6 µ(Ui) 6 k.

Proof. Let h = inf {µ(Ui) | i ∈ Z} > 0. We claim that h > 0. By contra-
diction, assume h = 0. Then, there exists a sequence {ai}i∈N of ele-
ments of Z such that µ(Uai) 6 1

(i+2)2
. Remark that

∏
i∈N µ(Uai) >∏+∞

i=2

(
1− 1

i2

)
= 1
2 . This fact contradicts the assumption that every

event concerning the update/non update condition of infinitely many
cells has probability 0 (i.e.,

∏
i∈A µ(Uai) = 0 for every infinite subset

A ⊆ Z).
Let k = sup {µ(Ui) | i ∈ Z} 6 1. We claim that k < 1. Again, by con-

tradiction, assume that k = 1. Then, there exists a sequence {ai}i∈N of

elements of Z such that µ(Uai) >
(i+2)3−1
(i+2)3+1

. Remark that
∏
i∈N µ(Uai) >∏+∞

i=2
i3−1
i3+1

= 2
3 contradicting the assumption that µ is fair.

Remark. As a direct consequence of Lemma 15.1.1, the measure of the
complements of ultrafilters is also bounded between 1− k and 1− h.
Moreover, there exists 0 < p 6 q < 1 such that for every finite set
A ⊆ Z, p|A| 6 µ(

⋂
a∈AUa) 6 q

|A|.

Denote by S the set of all updating sequences. In the model pro-
posed in this chapter, µ is used to extract the subset of Z indicating
which cells are allowed to be updated. At each time step, a new ex-
traction is performed and we made the hypothesis that extractions
are independent. Therefore, it is natural to consider the product mea-
sure µs of the measure µ to measure sets of updating sequences i.e.,
subsets of S (µs always exists and is unique, see [89, Thm. B, pag.
157]).

In the sequel, the notion of control pattern will play a central role
in the proofs concerning injectivity and surjectivity properties.

A control pattern of length n is an updating mask for n contiguous
cells. More formally,

Definition 15.1.3. A control pattern of length n ∈ N+ is a pair B =

(B1,B2) of sets such that {B1,B2} is a partition of [0,n).

Definition 15.1.4. Given a control pattern B = (B1,B2) and τ ∈ P (Z),
B is represented in τ at position k iff ∀b ∈ B1, b+ k ∈ τ and ∀c ∈ B2,
c+ k /∈ τ. B is represented at least m times in τ if there exist m distinct
positions at which B is represented. If B is represented at least m
times for any m ∈ N+, then B is said to be represented infinitely
many times.

Lemma 15.1.2. For any fair measure µ, the following statements hold.

15.1 m-aca 165

1. For every n ∈N+ and for every control pattern B of length n, the set
of all τ ∈ P (Z) in which B is represented infinitely many times has
measure 1.

2. Every countable family of subsets of Z has measure 0.

Proof.

1. Consider a control pattern B of length n. For any t ∈ N, let Et
be the set of all subsets of Z in which the pattern is represented
at position tn. Note that µ(Et ∩ Eq) = µ(Et)µ(Eq) whenever
t 6= q. Each Et has a positive measure and, by Lemma 15.1.1
there exists p > 0 such that for all t ∈N, µ(Et) > pn.
Since

∑+∞
i=0 µ(Et) >

∑+∞
i=0 p

n =∞, by the second Borel-Cantelli
Lemma [28], it follows that

µ(lim sup
t→∞ Et) = µ

 ∞⋂
i=1

∞⋃
j=i

Ej

 = 1

Hence, B is represented almost surely infinitely many times.

2. Consider A ⊆ Z then µ({A}) = µ
(
∩a∈AUa

⋂
∩a/∈AUa

)
= p. By

Condition 3. from Definition 15.1.2, we have p = 0. Finally, the
thesis follows by countable additivity of µ.

By Lemma 15.1.2, for every control pattern B, the set of τ ∈ P (Z) in
which B is represented infinitely many times has full measure. More-
over, for every control pattern B and every position i ∈ Z, the set of
τ ∈ P (Z) in which B is represented infinitely many times at positions
greater (or smaller) than i has full measure too. Furthermore, from
item 2. of Lemma 15.1.2, one can deduce that the set of all τ ∈ P (Z)

for which the number of updated cells is finite or cofinite (i.e., with
finite complement) has null measure.

Definition 15.1.5. An m-ACA C = (Σ, λ, r,µ) is surjective (resp. injec-
tive) iff ∀U ∈ P (Z) , FU is surjective (resp. injective). The m-ACA C

is µ-almost surely surjective (resp., injective) iff

µ ({U ∈ P (Z) , FU is surjective (resp. injective)}) = 1 .

From Definition 15.1.5, it trivially follows that if an m-ACA C =

(Σ, λ, r,µ) is surjective, the corresponding CA (Σ, λ, r) is surjective.
The shift CA ({0, 1} ,σ, 1) where σ(a,b, c) = c for all a,b, c ∈ {0, 1} is bi-
jective but its corresponding m-ACA ({0, 1} ,σ, 1,µ) is not µ-surjective
for any fair µ.

Recall, from Chapter 13, that for fully-ACA, injectivity is equivalent
to surjectivity [126]. Indeed, a similar result holds also for m-ACA as
illustrated by the following proposition.

15.1 m-aca 166

Proposition 15.1.3. Consider an m-ACA C = (Σ, λ, r,µ), where µ is fair.
Then, C is µ-almost surely surjective iff C is µ-almost surely injective.

Proof. Consider a control pattern B = (∅, [0, r)) and let τ ∈ P (Z) be
generated by µ. By Lemma 15.1.2, B is represented infinitely many
times in τ. Hence, τ can be decomposed in intervals separated by
gaps of non updated cells of length at least r. Call F = {[hi,ki]}i∈Z the
sequence of such intervals, namely ∀i, j ∈ Z, i < j implies ki + r < hj
(i.e., the intervals are ordered and the distance between the extremes
is at least r) and ∀j ∈ Z, if j /∈

⋃
i∈Z[hi,ki] then ∀x ∈ ΣZ, Fτ(x)j = xj.

Note that Fτ is injective iff ∀i ∈ Z and ∀x,y ∈ ΣZ, x[hi,ki] 6= y[hi,ki]
implies Fτ(x)[hi,ki] 6= Fτ(y)[hi,ki]. This is equivalent to the follow-
ing condition: ∀i ∈ Z and ∀w ∈ Σ(ki−hi+1), ∃x ∈ ΣZ such that
Fτ(x)[hi,ki] = w, that in its turn is equivalent to the surjectivity of
Fτ. Thus, Fτ is injective iff it is surjective.

Remark. By the proof of Proposition 15.1.3, it follows that every m-
ACA that is µ-almost surely injective has a center-permutive local
rule for any fair measure µ. Indeed, this property holds since the
set of all τ in which the control pattern B = ({r}, [0, r) ∪ (r, 2r + 1))
occurs has full measure for any fair measure. When B occurs at some
position in τ, injectivity or surjectivity of Fτ holds only if the local
rule is center-permutive.

Example 15.1.1. Consider the m-ACA C = ({0, 1}, λ, 1,µ) where µ is
fair and ∀a,b, c ∈ {0, 1}, λ(a,b, c) = a xor b. Since ∀n ∈ N+ and
∀x,y ∈ ΣZ, x[0,n) 6= y[0,n) implies F(x)[0,n) 6= F(y)[0,n), C is almost
surely injective and surjective. Figure 36 gives an example of evolu-
tion of C.

Figure 36: The space-time diagram of the probabilistic xor CA of Exam-
ple 15.1.1. A black (resp., white) box stands for a 1 (resp., 0). µ is
the uniform measure over {0, 1}Z. Time goes downward.

Similarly to classical CA, we introduce the concept of diamond and
relate it to injectivity/surjectivity properties [91].

Definition 15.1.6. An m-ACA C = (Σ, λ, r,µ) has a diamond if there
exist a control pattern B = (B1,B2) of length n ∈ N+ and words

15.1 m-aca 167

z,w ∈ Σn, with z 6= w, u, v ∈ Σr such that λB(uwv) = λB(uzv) where
λB : Σn+2r → Σn is defined as

∀α ∈ Σn+2r, ∀i ∈ [0,n), λB(α)i =

λ(α[i,i+2r)) if i+ r ∈ B1

αi+r otherwise

notation. For notational convenience, for any τ ⊆ Z and for
all h,k ∈ N with h < k, let τ[h,k) be the pattern (B1,B2) where
B1 = {i ∈ [0,k− h) | i+ h ∈ τ} and B2 = {i ∈ [0,k− h) | i+ h /∈ τ}.

Proposition 15.1.4. Consider anm-ACA C = (Σ, λ, r,µ) with µ fair. Then
the following statements are equivalent:

1. C is not µ-almost surely injective.

2. C has a diamond.

Proof.

1.⇒ 2. If C is not almost surely injective then there exists a collection
A of subsets of Z with positive measure such that ∀τ ∈ A,
∃x,y ∈ ΣZ, with x 6= y and Fτ(x) = Fτ(y). Since A has pos-
itive measure, there exists at least a set τ ∈ A in which the
pattern B = (∅, [0, r)) is represented infinitely many times. Let
x,y ∈ ΣZ be two distinct configurations such that Fτ(x) = Fτ(y)
and let i ∈ Z be a position such that xi 6= yi. Let h,k be two
positions such that h+ r < i < k− r and B is represented in τ at
positions h and k− r. It is immediate that x[h,h+r) = y[h,h+r),
x[k−r,k) = y[k−r,k), x[h+r,k−r) 6= x[h+r,k−r), and λτ[h,k)(x[h,k)) =

λτ[h,k)(y[h,k)). Thus, there exists a diamond.

2.⇒ 1. Suppose that there exists a diamond. Let B = (B1,B2) and
z,w ∈ Σn, u, v ∈ Σr be the control pattern of length n and the
words, respectively, that define the diamond. Let B ′ = (∅, [0, r)).
An integer i ∈ τ ⊆ Z is said to have property I if it is a mul-
tiple of n + 2r such that B ′ is represented in τ at positions i
and i + n + r and B is represented in τ at position i + r. Let
τ ∈ P (Z) be a set with property I for an integer i. Consider the
configurations x,y ∈ ΣZ with xj = yj for all j /∈ [i, i+ n+ 2r),
x[i,i+n+2r) = uwv, and y[i,i+n+2r) = uzv. Then, Fτ(x) = Fτ(y).
Thus Fτ is not injective. Let A be the collection of all subsets of
Z having at least an integer with property I. By the same idea
used in the proof of Lemma 15.1.2, one can show that µ(A) = 1.
Thus C is not µ-almost surely injective.

In this section, we adapt the notion of expansivity to m-ACA and
we show that it is related to surjectivity in a similar way to classical
CA [60, 119].

15.2 further remarks 168

Definition 15.1.7. An m-ACA C = (Σ, λ, r,µ) is υ-expansive, for a se-
quence υ ∈ P (Z)N extracted by µ, if the family Tυ is expansive. C is
said to be almost surely expansive, if the set of sequences υ ∈ P (Z)N

such that C is υ-expansive has measure 1 (w.r.t. the measure µs).

Proposition 15.1.5. Let C = (Σ, λ, r,µ) be an almost surely expansive m-
ACA. Then, C is µ-almost surely injective.

Proof. Suppose that C is not µ-almost surely injective. By Proposi-
tion 15.1.4, C has a diamond. So, there exist a control pattern B of
length n, and words w, z ∈ Σn, u, v ∈ Σr such that λB(uwv) =

λB(uzv). By Lemma 15.1.2, for any k ∈ N, B is represented in al-
most all sets τ ⊆ Z infinitely many times at positions greater than
k. For every k ∈ N, define now the non empty set Ak = {(x,y) ∈
ΣZ × ΣZ | ∃h > k, ∀i /∈ [h,h + 2r + n) xi = yi, x[h,h+2r+n) =

uwv, y[h,h+2r+n) = uzv}. Since for almost all τ ⊆ Z, there are in-
finitely many pairs (x,y) ∈ Ak such that Fτ(x) = Fτ(y), the set of
sequences υ having τ as first component has non null measure (w.r.t.
µs). This means that µs{υ ∈ P (Z)N

| C is not υ-expansive} 6= 0. By
additivity of µs, it follows that µs{υ ∈ P (Z)N

| C is υ-expansive} 6= 1,
i.e., C is not almost surely expansive.

Example 15.1.2. Let C = (Σ, λ, r,µ) be an m-ACA with λ : {0, 1}3 →
{0, 1} defined as λ(a,b, c) = a xor c. The local rule λ is not center-
permutive, hence C is not almost surely surjective. Note that, when
we start from the two finite configurations 000 and 010, 0λ(0, 0, 0)0
is equal to 0λ(0, 1, 0)0 = 000 (i.e., C has a diamond). Thus, C is not
almost surely expansive. Remark that, in the case of fully-ACA, λ is
the local rule of an α-expansive ACA. Figure gives an example of
evolution of C.

Figure 37: Probabilistic xor CA of Example 15.1.2. A black (resp., white) box
stands for a 1 (resp., 0). µ is the uniform measure over {0, 1}. Time
goes downward.

15.2 further remarks

In this chapter we introduced a new model of asynchronicity for CA
where the set of cells where the local rule is applied is given by a prob-

15.2 further remarks 169

ability measure with some fairness conditions. This model represents
a first step in trying to unify different approaches to asynchronic-
ity under a common framework. We adapted to this new setting the
usual notions of injectivity, surjectivity, diamond and expansivity. We
found that both injectivity and surjectivity are almost always equiv-
alent and they are related to a generalized version of the classical
notion of diamond. Moreover, an almost always expansive CA is also
almost always injective. This fact is a bit surprising since in the classi-
cal case, expansive CA are never injective.

Part V

F I N A L R E M A R K S

16
C O N C L U S I O N S A N D F U T U R E W O R K S

As final remarks, we summarize the contribution of this thesis and
we state some future directions of research and open problems.

16.1 contributions

The contributions of this thesis must be placed into two different cat-
egories. One is about the single areas where new results have been
found. The other one is about the different cross-pollination between
the areas.

16.1.1 Genetic Algorithms

In the field of Genetic Algorithms theory, a new study of the dynam-
ics of the crossover operator has been performed. With the introduc-
tion of concepts of topology, it has been possible to answer in an
efficient manner the following question:
Given a population and in individual, how many generations are needed to
generate the individual from the population using only crossover operations?
Also important are the tools used to answer this question. Topology
has been used in different ways to study the dynamics of different
evolutionary algorithms. In particular, we think that the methods
used to answer this question can be extended to answer other sim-
ilar questions both in Genetic Algorithms and in other evolutionary
techniques.

16.1.2 Genetic Programming

There are multiple contributions in the field of Genetic Programming.
First of all, two different measures to quantify the learning ability
of Genetic Programming. These measures provide a way to find the
training points that are difficult to learn, thus allowing to modify the
learning process to either focus or ignore these points.

A second step has been the definition of a tunable benchmark, the
K-landscapes, inspired by NK-landscapes for Genetic Algorithm. This

171

16.1 contributions 172

benchmark allows to better explore the process that allows Genetic
Programming to build solutions.

Finally, a fast way of implementing Semantic GP has been devised.
Semantic GP is a recently introduced GP variant that proved to be
very effective. However, previous implementations could have an ex-
ponential increase in the space needed to store solutions and were
computationally expansive. A new implementation that avoids these
problems has been developed, thus allowing a greater applicability of
Semantic GP.

16.1.3 Reaction Systems

The young formalism of Reaction Systems has been explored in two
ways. In the first case we studied some combinatorial properties of
Reaction Systems with a focus on properties that necessarily holds
for “large enough” Reaction Systems.

As a second step, we used the ability of Reaction System to repre-
sent boolean functions in an effective way to develop an evolution-
ary version of them, called Evolutionary Reaction Systems. This new
evolutionary algorithms proved to have performances comparable or
superior to many other well-established machine learning techniques.
These results provide a first step to make this new algorithm a widely
used evolutionary algorithm.

16.1.4 Cellular Automata

Some dynamical and computational properties of asynchronous Cel-
lular Automata have been studied.

For fully-asynchronous Cellular Automata a link has been found
between properties of the local rule, in particular permutivity, and the
global dynamical behaviour - sensitivity to initial conditions, expan-
sivity, and transitivity. For the same class of asynchronous Cellular
Automata we have studied the ability to simulate step-by-step a Tur-
ing Machine. We have found that this simulation can be performed
with only a limited (polynomial) slowdown, thus showing that some
biological systems that are a natural analogue of this kind of Cellu-
lar Automata could be worth studying with the aim of performing
computation with them.

We have also defined and studied m-Asynchronous Cellular Au-
tomata, in which the asynchronicity is given by a probability mea-
sure over the subsets of the cells of the automaton. We studied some
formal properties of these automata, proving, for example, that in al-
most all cases either the update of the automaton is a bijection or it is
neiter injective nor surjective. This class of automata seems promising
since it encompass other classes of Asynchronous Cellular Automata
while avoiding to be too general to be effectively studied.

16.2 open problems 173

While the single improvements and discoveries made in the differ-
ent areas are, by themselves, interesting, it is important to note the
interactions between the different areas. This is particularly promi-
nent in the case of Reaction Systems, in which both combinatorial
techniques and evolutionary algorithms were used in their study. In
all cases a - albeit limited - exchange of ideas and techniques has been
carried on between the different ares. In the future, we want to extend
and make it more prominent.

16.2 open problems

While there are many directions for future research and open prob-
lems, here we want to illustrate the most important ones, while refer-
ring for other open problems to the specific chapters.

16.2.1 Genetic Algorithms

Future research should focus on the extension of the techniques cur-
rently used for one-point crossover of fixed-length strings to other
types of representation and crossover. It is important to devise an ex-
tension that is not ad-hoc for the particular representation or crossover,
otherwise no general structure or comparison of algorithm would be
possible.

The current model makes some simplifying assumption. It would
be interesting to remove them in order to be more faithful to the
real behaviour of Genetic Algorithms. For example, we are currently
modeling only the presence of a particular genetic material, but not
his quantity, even if this is an important aspect in the determination
of Genetic Algorithms dynamics. Thus, an important part in the ex-
tension of the current model is the introduction of more and more
previously non-considered aspects of Genetic Algorithms.

16.2.2 Genetic Programming

There are many possible directions of future research for Genetic Pro-
gramming. In particular, the study and the evaluation of the perfor-
mances of Genetic Programming will greatly benefit from the defini-
tion of a standard set of benchmarks. A first step in this direction has
been recently made [129], with an analysis of the current benchmarks
and a the formation of a community1 to reach this goal. However,
many steps remain to be taken.

Another direction of research is about Semantic Genetic Program-
ming. This new method should be more extensively compared with
traditional Genetic Programming and its formal properties should be

1 see http://gpbenchmarks.org/.

http://gpbenchmarks.org/

16.2 open problems 174

studied. In particular, some first steps toward its runtime analysis
are currently being made. With the elimination of the performance
penalty of Semantic Genetic Programming with respect to classical
GP, we expect a wider and wider application of it. However, the
current representation, while providing many advantages, does not
give an easy understandable individual (because of its size when un-
folded). To attaining this a simplification process must still be per-
formed. Thus, for domains in which this aspect of GP is required,
we need to study a way to balance the ability to efficiently perform
thousands of generations with the need to successively perform a
simplification.

16.2.3 Reaction Systems

There are two main directions of research for Reaction Systems. The
first one is about a more extensive use of combinatorial techniques
to explore and study their behaviour. This studies, if successful, will
have the opportunity to establish these techniques as a powerful tool
to understand Reaction Systems. Following this ideas, a new study on
the minimum complexity (number of reactants, inhibitors and prod-
ucts) needed in a reaction to remain able to simulate any reaction
systems with “less-complex” reaction systems. This study, currently
in progress, is expected to give a complete characterization of the
“minimum-complexity” needed in a reaction system. Hopefully, it
will be possible to concentrate the study on less complex reaction
systems, knowing that, after a certain size or complexity, no new dy-
namics is possible.

As an evolutionary algorithms, Evolutionary Reaction Systems need
to be extended to continuous domains and to be more extensively
tested. Only this kind of study can effectively bring this new tech-
nique among the other widely used and well established evolution-
ary algorithms. Furthermore, while we stressed the importance of the
parallel nature of Reaction Systems, a corresponding implementation
taking advantage of it is still to be done. Since more and more com-
putationally intensive workload is being moved to GPU architectures,
this point is essential in understanding the real applicability of Evo-
lutionary Reaction Systems.

16.2.4 Cellular Automata

The research of Asynchronous Cellular Automata is currently frag-
mented due to the different ways of introducing asynchronicity. The
definition and study of m-Asynchronous Cellular Automata repre-
sented a first step in providing a subdivision of the different updat-
ing scheme in classes that are large enough to cover many different
schemes but still particular enough to be obtain interesting results. In

16.2 open problems 175

the future, we plan to provide an axiomatic framework to work with
asynchronicity in Cellular Automata. By providing a set of axioms
that a probability measure must respect in order to obtain a property
we immediately have that any new updating scheme that is defined
and that respects that axioms has the desired property, without the
need to perform ad ad-hoc study.

A particularly interesting result that has been obtained is that sur-
jectivity and injectiviy are the same in all the asynchronous models
studied. Thus, we want to study the largest possible conditions in
which this equality remains true. Furthermore, we are interested in
discovering if there is a sharp boundary between the cases in which
the equality holds and the ones in which it does not hold (i.e., if we
immediately pass from an “almost always” case to an “almost never”
one without nothing in between).

In conclusion, there are many possibilities to continue the research
in the different topics introduced in this thesis. However, what would
be also interesting is a convergence of the methods used across the
different areas. In this way, it would be possible to allow a fruitful
exchange of ideas between different communities.

B I B L I O G R A P H Y

[1] L. Acerbi, A. Dennunzio, and E. Formenti. Shifting and lifting of
cellular automata. In CiE, volume 4497 of LNCS, pages 1–10. Springer,
2007. ISBN 978-3-540-73000-2. (Cited on page 133.)

[2] L. Acerbi, A. Dennunzio, and E. Formenti. Conservation of some
dynamcal properties for operations on cellular automata. Theoretical
Computer Science, 410:3685–3693, 2009. (Cited on page 133.)

[3] H. E. Aguirre and K. Tanaka. Genetic algorithms on NK-landscapes:
effects of selection, drift, mutation, and recombination. In Proceed-
ings of the 2003 international conference on Applications of evolutionary
computing, EvoWorkshops’03, pages 131–142, Berlin, Heidelberg, 2003.
Springer-Verlag. ISBN 3-540-00976-0. (Cited on page 57.)

[4] M. Alam, M. Islam, X. Yao, and K. Murase. Recurring two-stage evo-
lutionary programming: A novel approach for numeric optimization.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
41(5):1352 –1365, oct. 2011. ISSN 1083-4419. (Cited on page 49.)

[5] L. Altenberg. B2.7.2 NK fitness landscapes. In T. Baeck, D. Fogel,
and Z. Michalewicz, editors, Handbook of evolutionary computation. New
York: Oxford University Press, 1997. (Cited on pages 54 and 56.)

[6] P. Amar, G. Bernot, and V. Norris. Hsim: a simulation programme
to study large assemblies of proteins. Journal of Biological Physics and
Chemistry, 4:79–84, 2004. (Cited on pages 5, 133, and 135.)

[7] N. M. Amil, N. Bredeche, C. Gagné, S. Gelly, M. Schoenauer, and
O. Teytaud. A statistical learning perspective of genetic programming.
In Proceedings of the 12th European Conference on Genetic Programming,
EuroGP ’09, pages 327–338, Berlin, Heidelberg, 2009. Springer-Verlag.
ISBN 978-3-642-01180-1. (Cited on page 54.)

[8] F. Archetti, S. Lanzeni, E. Messina, and L. Vanneschi. Genetic pro-
gramming for human oral bioavailability of drugs. In M. Keijzer,
M. Cattolico, D. Arnold, V. Babovic, C. Blum, P. Bosman, M. V. Butz,
C. Coello Coello, D. Dasgupta, S. G. Ficici, J. Foster, A. Hernandez-
Aguirre, G. Hornby, H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Roth-
lauf, C. Ryan, and D. Thierens, editors, GECCO 2006: Proc. of the 8th an-
nual conference on Genetic and evolutionary computation, volume 1, pages
255–262. ACM Press, 2006. ISBN 1-59593-186-4. (Cited on page 63.)

[9] F. Archetti, S. Lanzeni, E. Messina, and L. Vanneschi. Genetic pro-
gramming for computational pharmacokinetics in drug discovery and
development. Genetic Programming and Evolvable Machines, 8:413–432,
2007. ISSN 1389-2576. (Cited on pages 86, 94, 96, and 97.)

[10] D. Arnold, T. Jansen, J. Rowe, and M. Vose. 06061 executive summary
– theory of evolutionary algoritms. In Arnold et al. [11]. (Cited on
page 10.)

176

bibliography 177

[11] D. Arnold, T. Jansen, M. D. Vose, and J. Rowe, editors. The-
ory of Evolutionary Algorithms, 05.02. - 10.02.2006, volume 06061 of
Dagstuhl Seminar Proceedings, 2006. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many. (Cited on pages 10 and 176.)

[12] T. Bäck. The interaction of mutation rate, selection, and self-
adaptation within a genetic algorithm. In R. Männer and B. Mand-
erick, editors, PPSN, pages 87–96. Elsevier, 1992. (Cited on page 108.)

[13] T. Bäck. Optimal mutation rates in genetic search. In Proceedings of the
fifth International Conference on Genetic Algorithms, pages 2–8. Morgan
Kaufmann, 1993. (Cited on page 108.)

[14] T. Bäck and R. Breukelaar. Using genetic algorithms to evolve behavior
in cellular automata. In C. Calude, M. Dinneen, G. Paun, M. Pérez-
Jiménez, and G. Rozenberg, editors, UC, volume 3699 of Lecture Notes
in Computer Science, pages 1–10. Springer, 2005. ISBN 3-540-29100-8.
(Cited on page 126.)

[15] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Physical
Review A, 38(1):364–374, Jul 1988. (Cited on page 57.)

[16] W. Banzhaf, F. D. Francone, and P. Nordin. The effect of extensive use
of the mutation operator on generalization in genetic programming
using sparse data sets. In W. E. et al, editor, 4th Int. Conf. on Parallel
Problem Solving from Nature (PPSN96), pages 300–309. Springer, Berlin,
1996. (Cited on page 54.)

[17] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming
– An Introduction; On the Automatic Evolution of Computer Programs and
its Applications. Morgan Kaufmann, San Francisco, CA, USA, Jan. 1998.
(Cited on page 106.)

[18] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Sequential parame-
ter optimization. In 2005 IEEE Congress on Evolutionary Computation,
volume 1, pages 773–780. IEEE, 2005. (Cited on pages 107 and 108.)

[19] L. Beadle and C. Johnson. Semantically driven crossover in ge-
netic programming. In J. Wang, editor, Proceedings of the IEEE World
Congress on Computational Intelligence, pages 111–116, Hong Kong, 1-6
June 2008. IEEE Computational Intelligence Society, IEEE Press. (Cited
on pages 49, 51, and 52.)

[20] L. Beadle and C. G. Johnson. Semantic analysis of program initialisa-
tion in genetic programming. Genetic Programming and Evolvable Ma-
chines, 10(3):307–337, Sept. 2009. ISSN 1389-2576. (Cited on page 49.)

[21] H. Bersini and V. Detours. Asynchrony induces stability in cellular
automata based models. In Proceedings of Artificial Life IV, pages 382–
387. MIT Press, Cambridge, 1994. (Cited on page 133.)

[22] H.-G. Beyer, T. Jansen, C. Reeves, and M. Vose, editors. Theory
of Evolutionary Algorithms, 15.-20. February 2004, volume 04081 of
Dagstuhl Seminar Proceedings, 2006. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.
(Cited on page 10.)

bibliography 178

[23] G. Birkhoff. Lattice theory. American Mathematical Society, 1967.
(Cited on pages 12, 19, and 35.)

[24] A. Z. Broder and A. R. Karlin. Bounds on the cover time. J. Theoretical
Probab, 2:101–120, 1988. (Cited on page 161.)

[25] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Comput., 35:677–691, August 1986. ISSN 0018-9340.
(Cited on pages 49 and 51.)

[26] E. Burke, S. Gustafson, and G. Kendall. Diversity in genetic program-
ming: An analysis of measures and correlation with fitness. IEEE
Transactions on Evolutionary Computation, 8(1):47–62, 2004. (Cited on
page 33.)

[27] R. Buvel and T. Ingerson. Structure in asynchronous cellular automata.
Physica, D 1:59–68, 1984. (Cited on page 133.)

[28] F. Cantelli. Sulla probabilità come limite della frequenza. Rend. Accad.
dei Lincei, 24:39–45, 1917. (Cited on page 165.)

[29] R. Cappuccio, G. Cattaneo, G. Erbacci, and U. Jocher. A parallel imple-
mentation of a cellular automata based model for coffee percolation.
Parallel Computing, 27(5):685–717, 2001. (Cited on page 1.)

[30] G. Cattaneo and D. Ciucci. Lattice with interior and closure operators
and abstract approximation spaces. In J. P. et al., editor, Foundations
of Rough Sets, LNCS – Transactions on Rough Sets X, pages 67–116.
Springer, 2009. (Cited on page 12.)

[31] G. Cattaneo, A. Dennunzio, and L. Margara. Chaotic subshifts and
related languages applications to one-dimensional cellular automata.
Fundamenta Informaticae, 52:39–80, 2002. (Cited on page 133.)

[32] G. Cattaneo, A. Dennunzio, and L. Margara. Solution of some conjec-
tures about topological properties of linear cellular automata. Theor.
Comput. Sci., 325(2):249–271, 2004. (Cited on page 133.)

[33] M. Caudill. Neural networks primer, part i. AI Expert, 2:46–52, De-
cember 1987. ISSN 0888-3785. (Cited on page 121.)

[34] P. Chaudhuri, D. Chowdhury, S. Nandi, and S. Chattopadhyay. Addi-
tive Cellular Automata Theory and Applications, volume 1. IEEE Press,
New York, 1997. (Cited on page 133.)

[35] B. Chopard. Modelling physical systems by cellular automata. In G. R.
et al., editor, Handbook of Natural Computing: Theory, Experiments, and
Applications. Springer, 2011. To appear. (Cited on page 133.)

[36] P. M. Cohn. Universal Algebra. Harper and Row, 1965. (Cited on
page 19.)

[37] J. Conway and S. Norton. Monstrous moonshine. Bull. London Math.
Soc, 11(3):308–339, 1979. (Cited on page 2.)

[38] N. Cristianini and J. Shawe-Taylor. An introduction to support vector
machines: and other kernel-based learning methods. Cambridge University
Press, 2000. (Cited on page 121.)

bibliography 179

[39] R. Curry, P. Lichodzijewski, and M. I. Heywood. Scaling genetic pro-
gramming to large datasets using hierarchical dynamic subset selec-
tion. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 37(4):
1065–1073, 2007. (Cited on page 49.)

[40] A. Czarn, C. MacNish, K. Vijayan, and B. Turlach. Statistical ex-
ploratory analysis of genetic algorithms: the importance of interaction.
In Evolutionary Computation, 2004. CEC2004. Congress on, volume 2,
pages 2288 – 2295 Vol.2, june 2004. (Cited on page 106.)

[41] J. M. Daida, R. Bertram, S. Stanhope, J. Khoo, S. Chaudhary, and
O. Chaudhary. What makes a problem GP-hard? analysis of a tun-
ably difficult problem in genetic programming. Genetic Programming
and Evolvable Machines, 2:165–191, 2001. (Cited on page 59.)

[42] C. Darwin. The Origin of Species. John Murray, 1859. (Cited on page 2.)

[43] T. Davis and J. Principe. A markov chain framework for the simple
genetic algorithm. Evolutionary computation, 1(3):269–288, 1993. (Cited
on page 9.)

[44] E. B. de Lima, G. Pappa, J. M. de Almeida, M. Goncalves, and
W. Meira. Tuning genetic programming parameters with factorial
designs. In IEEE Congress on Evolutionary Computation (CEC 2010),
Barcelona, Spain, 18-23 July 2010. IEEE Press. (Cited on pages 105

and 108.)

[45] K. Deb and D. E. Goldberg. Analyzing deception in trap functions. In
D. Whitley, editor, FOGA-2, pages 93–108. Morgan Kaufmann, 1993.
(Cited on page 59.)

[46] A. Dennunzio and E. Formenti. Decidable properties of 2d cellular
automata. In Developments in Language Theory, volume 5257 of LNCS,
pages 264–275. Springer, 2008. (Cited on page 133.)

[47] A. Dennunzio, P. Di Lena, E. Formenti, and L. Margara. On the di-
rectional dynamics of additive cellular automata. Theoretical Computer
Science, 410:4823–4833, 2009. (Cited on page 133.)

[48] A. Dennunzio, B. Masson, and P. Guillon. Sand automata as cellular
automata. Theoretical Computer Science, 410:3962–3974, 2009. (Cited on
page 133.)

[49] A. Dennunzio, E. Formenti, and P. Kůrka. Cellular automata dynam-
ical systems. In G. R. et al., editor, Handbook of Natural Computing:
Theory, Experiments, and Applications. Springer, 2010. To appear. (Cited
on page 133.)

[50] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis.
New York: Wiley, 1973. (Cited on page 66.)

[51] A. Ehrenfeucht and G. Rozenberg. Basic notions of reaction systems.
In Developments in Language Theory 8th International Conference, DLT
2004, volume 3340 of Lecture Notes in Computer Science, pages 27–29,
Auckland, New Zealand, 2004. Springer. (Cited on pages 1, 2, 101,
and 104.)

bibliography 180

[52] A. Ehrenfeucht and G. Rozenberg. Reaction systems. Fundamenta
Informaticae, 75:263–280, 2007. (Cited on pages 1, 2, 103, and 104.)

[53] A. Ehrenfeucht and G. Rozenberg. Introducing time in reaction
systems. Theoretical Computer Science, 410:310–322, 2009. (Cited on
page 101.)

[54] A. Ehrenfeucht, M. Main, and G. Rozenberg. Combinatorics of life
and death for reaction systems. International Journal of Foundations of
Computer Science, 21:345–356, 2010. (Cited on page 111.)

[55] A. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in
evolutionary algorithms. Evolutionary Computation, IEEE Transactions
on, 3(2):124 –141, jul 1999. (Cited on pages 105 and 108.)

[56] A. Eibena and G. Rudolphb. Theory of evolutionary algorithms: A
birds eye view. Theoretical Computer Science, 229:3–9, 1999. (Cited on
page 7.)

[57] M. Eigen. Selforganization of matter and the evolution of biological
macromolecules. Naturwissenschaften, 58:465–523, 1971. ISSN 0028-
1042. (Cited on page 57.)

[58] M. Eigen, J. Mccaskill, and P. Schuster. The molecular quasi-species.
Adv. Chem. Phys., 75:149–263, 1989. (Cited on page 57.)

[59] A. Ekárt and S. Z. Németh. Maintaining the diversity of genetic pro-
grams. In J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tet-
tamanzi, editors, Genetic Programming, Proceedings of the 5th European
Conference, EuroGP 2002, volume 2278 of LNCS, pages 162–171, Kin-
sale, Ireland, 3-5 Apr. 2002. Springer, Berlin, Heidelberg, New York.
ISBN 3-540-43378-3. (Cited on page 33.)

[60] F. Fagnani and L. Margara. Expansivity, permutivity, and chaos for
cellular automata. Theory Comput. Syst., 31(6):663–677, 1998. (Cited on
page 167.)

[61] F. Farina and A. Dennunzio. A predator-prey cellular automaton with
parasitic interactions and environmental effects. Fundamenta Informat-
icae, 83:337–353, 2008. (Cited on page 133.)

[62] N. Fatès and M. Morvan. An experimental study of robustness to
asynchronism for elementary cellular automata. Complex Systems,
16(1):1–27, 2005. (Cited on page 133.)

[63] N. Fatès, M. Morvan, N. Schabanel, and E. Thierry. Fully asyn-
chronous behaviour of double-quiescent elementary cellular au-
tomata. Theoretical Computer Science, 362:1–16, 2006. (Cited on
page 133.)

[64] N. Fatès, D. Regnault, N. Schabanel, and E. Thierry. Asynchronous
behaviour of double-quiescent elementary cellular automata. In Pro-
ceedings of LATIN’2006, volume 3887 of LNCS, pages 455–466. Springer,
2006. (Cited on page 133.)

bibliography 181

[65] R. Feldt and P. Nordin. Using factorial experiments to evaluate the ef-
fect of genetic programming parameters. In Genetic Programming, Pro-
ceedings of EuroGP 2000, volume 1802 of LNCS, pages 271–282. Springer-
Verlag, 2000. (Cited on page 108.)

[66] D. Fogel. Evolving computer programs. In D. Fogel, editor, Evolu-
tionary Computation: The Fossil Record, chapter 5, pages 143–144. MIT
Press, 1998. (Cited on page 104.)

[67] D. Fogel and A. Ghozeil. The schema theorem and the misallocation
of trials in the presence of stochastic effects. In Evolutionary Program-
ming VII, pages 313–321. Springer, 1998. (Cited on page 9.)

[68] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence Through
Simulated Evolution. John Wiley and Sons, New York, 1966. (Cited on
page 104.)

[69] W. Fontana and P. Schuster. A computer model of evolutionary op-
timization. Biophysical Chemistry, 26(2-3):123 – 147, 1987. (Cited on
page 57.)

[70] W. Fontana, W. Schnabl, and P. Schuster. Physical aspects of evolu-
tionary optimization and adaptation. Phys. Rev. A, 40:3301–3321, Sep
1989. (Cited on page 57.)

[71] W. Fontana, P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L.
Hofacker, M. Tacker, P. Tarazona, E. D. Weinberger, and P. Schuster.
Rna folding and combinatory landscapes. Physical Review E, 47(3):
2083–2099, Mar 1993. (Cited on page 57.)

[72] F. D. Francone, P. Nordin, and W. Banzhaf. Benchmarking the general-
ization capabilities of a compiling genetic programming system using
sparse data sets. In J. R. K. et al., editor, Genetic Programming: Proceed-
ings of the first annual conference, pages 72–80. MIT Press, Cambridge,
1996. (Cited on page 53.)

[73] A. Frank and A. Asuncion. UCI machine learning repository, 2010.
http://www.ics.uci.edu/~mlearn/. (Cited on pages 58 and 121.)

[74] M. Fréchet. Sur la notion de voisinage dans les ensembles abstraits.
Comptes rendus de l’Acadmie des Sciences, 165:359–360, 1917. (Cited on
pages 15 and 16.)

[75] R. Friedberg. A learning machine: Part 1. IBM J. Research and Develop-
ment, Vol. 2:1:2–13, 1958. (Cited on page 104.)

[76] H. Fuks̀. Non-deterministic density classification with diffusive prob-
abilistic cellular automata. Physical Review, E 66(2), 2002. (Cited on
page 133.)

[77] C. Gagné, M. Schoenauer, M. Parizeau, and M. Tomassini. Genetic
programming, validation sets, and parsimony pressure. In P. C. et
al., editor, Genetic Programming, 9th European Conference, EuroGP2006,
Lecture Notes in Computer Science, pages 109–120. Springer, Berlin,
Heidelberg, New York, 2006. ISBN 3-540-33143-3. (Cited on page 54.)

http://www.ics.uci.edu/~mlearn/

bibliography 182

[78] G.Cattaneo, A. Dennunzio, E. Formenti, and J. Provillard. Non-
uniform cellular automata. In LATA, volume 5457 of LNCS, pages
302–313. Springer, 2009. ISBN 978-3-642-00981-5. (Cited on page 133.)

[79] N. Geard, J. Wiles, J. Hallinan, B. Tonkes, and B. Skellett. A compar-
ison of neutral landscapes - NK, NKp and NKq. Proceedings of the
World Congress on Computational Intelligence, 1:205–210, 2002. (Cited
on page 57.)

[80] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989. (Cited on pages 8, 10, 33, and 55.)

[81] F. Gomez, J. Togelius, and J. Schmidhuber. Measuring and optimiz-
ing behavioral complexity for evolutionary reinforcement learning. In
ICANN ’09, pages 765–774. Springer, 2009. (Cited on page 54.)

[82] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory.
Wiley-Interscience Series in Discrete Mathematics and Optimization
Advisory. Wiley-Interscience, 1990. (Cited on page 110.)

[83] G. Grimmett and D. Stirzaker. Probability and random processes. Oxford
university press, 2001. (Cited on page 9.)

[84] H. Guo, L. B. Jack, and A. K. Nandi. Feature generation using genetic
programming with application to fault classification. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 35(1):89–99, 2005. (Cited on
page 97.)

[85] S. Gustafson, A. Ekárt, E. Burke, and G. Kendall. Problem difficulty
and code growth in genetic programming. Genetic Programming and
Evolvable Hardware, 5(3):271–290, 2004. (Cited on page 33.)

[86] S. Gustafson, E. Burke, and N. Krasnogor. The tree-string problem:
An artificial domain for structure and content search. In M. Keijzer,
A. Tettamanzi, P. Collet, J. van Hemert, and M. Tomassini, editors,
EuroGP 2005, pages 215–226. Springer, 2005. (Cited on page 59.)

[87] B. H, J. M, and Z. M. Developing new fitness functions in genetic pro-
gramming for classification with unbalanced data. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, pp(99):1–16, 2011. (Cited on
page 49.)

[88] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Wit-
ten. The weka data mining software: an update. SIGKDD Explor.
Newsl., 11:10–18, November 2009. ISSN 1931-0145. http://www.cs.

waikato.ac.nz/ml/weka/. (Cited on pages 96, 120, and 121.)

[89] P. Halmos. Measure theory, volume 38 of Graduate texts in Mathematics.
Springer-Verlag, 1974. (Cited on page 164.)

[90] D. Heckerman. A tutorial on learning with bayesian networks. In In-
novations in Bayesian Networks, volume 156 of Studies in Computational
Intelligence, pages 33–82. Springer Berlin / Heidelberg, 2008. ISBN
978-3-540-85065-6. (Cited on page 121.)

[91] G. Hedlund. Endomorphisms and automorphisms of the shift dynam-
ical system. Mathematical Systems Theory, 3:320–375, 1969. (Cited on
page 166.)

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

bibliography 183

[92] J. Hesser and R. Männer. Towards an optimal mutation probability
for genetic algorithms. In Proceedings of the 1st Workshop on Parallel
Problem Solving from Nature, PPSN I, pages 23–32, London, UK, 1991.
Springer-Verlag. ISBN 3-540-54148-9. (Cited on page 108.)

[93] J. H. Holland. Adaptation in Natural and Artificial Systems. The Univer-
sity of Michigan Press, Ann Arbor, Michigan, 1975. (Cited on pages 1,
10, 33, and 55.)

[94] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979. ISBN 0-201-02988-X.
(Cited on page 137.)

[95] D. Jackson. Phenotypic diversity in initial genetic programming pop-
ulations. In A. I. Esparcia-Alcazar, A. Ekart, S. Silva, S. Dignum, and
A. S. Uyar, editors, Proceedings of the 13th European Conference on Ge-
netic Programming, EuroGP 2010, volume 6021 of LNCS, pages 98–109,
Istanbul, 7-9 Apr. 2010. Springer. (Cited on page 49.)

[96] D. Jackson. Promoting phenotypic diversity in genetic programming.
In R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph, editors, PPSN
2010 11th International Conference on Parallel Problem Solving From Na-
ture, volume 6239 of Lecture Notes in Computer Science, pages 472–481,
Krakow, Poland, 11-15 Sept. 2010. Springer. (Cited on page 49.)

[97] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley/In-
terscience, New York, NY, USA, 1 edition, Apr. 1991. ISBN 978-0-471-
50336-1. (Cited on page 108.)

[98] T. Jansen and I. Wegener. On the utility of populations in evolutionary
algorithms. In GECCO 2001: Proceedings of the 3rd annual conference
on Genetic and evolutionary computation, pages 1034–1041. ACM, 2001.
(Cited on page 10.)

[99] T. Jech. Set Theory. Springer Verlang, Berlin, 2006. (Cited on page 32.)

[100] T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD
thesis, University of New Mexico, 1995. (Cited on page 57.)

[101] T. Jones. One operator, one landscape. Working Papers 95-02-025,
Santa Fe Institute, Feb. 1995. (Cited on page 57.)

[102] T. Jones and S. Forrest. Fitness distance correlation as a measure
of problem difficulty for genetic algorithms. In L. Eshelman, editor,
Proceedings of the Sixth International Conference on Genetic Algorithms,
pages 184–192, San Francisco, CA, 1995. Morgan Kaufmann. (Cited
on pages 33 and 57.)

[103] S. Jukna. Extremal combinatorics: with applications in computer science.
Springer, 2001. (Cited on page 110.)

[104] W. Kantschik and W. Banzhaf. Linear-tree GP and its comparison
with other GP structures. In Genetic Programming, Proceedings of Eu-
roGP’2001, volume 2038 of LNCS, pages 302–312, Lake Como, Italy,
18-20 Apr. 2001. Springer-Verlag. (Cited on page 104.)

bibliography 184

[105] W. Kantschik and W. Banzhaf. Linear-graph GP—A new GP structure.
In Genetic Programming, Proceedings of the 5th European Conference, Eu-
roGP 2002, volume 2278 of LNCS, pages 83–92, Kinsale, Ireland, 3-5
Apr. 2002. Springer-Verlag. (Cited on page 104.)

[106] S. Kauffman and S. Levin. Towards a general theory of adaptive walks
on rugged landscapes. J. Theoret. Biol., 128(1):11–45, 1987. ISSN 0022-
5193. (Cited on pages 55 and 56.)

[107] S. A. Kauffman. The Origins of Order. Oxford University Press, New
York, 1993. (Cited on pages 55, 56, and 57.)

[108] J. L. Kelley. General topology. Springer-Verlag, 1955. (Cited on pages 12

and 136.)

[109] T. Kennedy. Managing the drug discovery/development interface.
Drug Discovery Today, 2(10):436–444, 1997. (Cited on page 94.)

[110] J. Kingman. Mathematics of genetic diversity. Number 34 in CBMS-NSF
regional conference series in applied mathematics. Society for Indus-
trial and Applied Mathematics, Philadelphia, Pa., 2. druck edition,
1980. ISBN 0898711665. (Cited on page 56.)

[111] J. F. C. Kingman. Poisson Processes. Oxford University Press, 1993.
(Cited on page 160.)

[112] I. Kola and J. Landis. Can the pharmaceutical industry reduce attrition
rates? Nat Rev Drug Discov, 3(8):711–716, 2004. (Cited on page 94.)

[113] J. Koza. A hierarchical approach to learning the boolean multiplexer
function. In G. J. E. Rawlins, editor, Foundations of genetic algorithms,
pages 171–192. Morgan Kaufmann, Indiana University, 15-18 July 1990

1991. (Cited on page 126.)

[114] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
ISBN 0-262-11170-5. (Cited on pages 48, 55, 58, 63, 64, 78, 104, 105,
120, and 126.)

[115] J. R. Koza, D. Andre, F. H. Bennett, and M. A. Keane. Genetic Pro-
gramming III: Darwinian Invention & Problem Solving. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1st edition, 1999. ISBN
1558605436. (Cited on page 49.)

[116] K. Krawiec. Medial crossovers for genetic programming. In
A. Moraglio, S. Silva, K. Krawiec, P. Machado, and C. Cotta, editors,
Proceedings of the 15th European Conference on Genetic Programming, Eu-
roGP 2012, volume 7244 of LNCS, pages 61–72, Malaga, Spain, 11-13

Apr. 2012. Springer Verlag. (Cited on page 52.)

[117] K. Krawiec and P. Lichocki. Approximating geometric crossover in
semantic space. In G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler,
T. Stuetzle, M. Birattari, C. B. Congdon, M. Middendorf, C. Blum,
C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer,
K. Stanley, J. F. Miller, J. van Hemert, T. Lenaerts, M. Ebner, J. Bacardit,
M. O’Neill, M. Di Penta, B. Doerr, T. Jansen, R. Poli, and E. Alba, ed-
itors, GECCO ’09: Proceedings of the 11th Annual conference on Genetic

bibliography 185

and evolutionary computation, pages 987–994, Montreal, 8-12 July 2009.
ACM. (Cited on pages 49 and 52.)

[118] K. Kuratowski. Introduction to Set Theory and Topology. Pergamon Press,
1961. (Cited on page 136.)

[119] P. Kůrka. Languages, equicontinuity and attractors in cellular au-
tomata. Ergodic Theory & Dynamical Systems, 17:417–433, 1997. (Cited
on pages 148 and 167.)

[120] P. Kůrka. Topological dynamics of one-dimensional cellular automata.
In B. Meyers, editor, Mathematical basis of cellular automata, Encyclo-
pedia of Complexity and System Science, pages 2232–2242. Springer
Verlag, 2009. (Cited on pages 2, 5, and 133.)

[121] I. Kushchu. An evaluation of evolutionary generalization in genetic
programming. Artificial Intelligence Review, 18(1):3–14, 2002. (Cited on
page 53.)

[122] W. B. Langdon and R. Poli. Foundations of Genetic Programming.
Springer, Berlin, 2002. (Cited on pages 50 and 53.)

[123] J. Lee, S. Adachi, F. Peper, and S. Mashiko. Delay-insensitive com-
putation in asynchronous cellular automata. J. Comput. Syst. Sci., 70:
201–220, 2005. (Cited on pages 134 and 149.)

[124] V. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966. (Cited
on page 140.)

[125] Y. Lin and B. Bhanu. Evolutionary feature synthesis for object recog-
nition. IEEE Transactions on Systems, Man and Cybernetics, Part C: Appli-
cations and Reviews, 35(2):156–171, May 2005. ISSN 1094-6977. (Cited
on page 97.)

[126] L. Manzoni. Asynchronous cellular automata and dynamical prop-
erties. Natural Computing, 11(2):269–276, 2012. (Cited on pages 135

and 165.)

[127] A. Maruoka and M. Kimura. Injectivity and surjectivity for parallel
maps for CA. J. Comp. and Sys. Sci, 18:47–64, 1979. (Cited on page 139.)

[128] J. McDermott, U. O’Reilly, L. Vanneschi, and K. Veeramachaneni. How
far is it from here to there? A distance that is coherent with GP opera-
tors. In S. Silva, J. A. Foster, M. Nicolau, M. Giacobini, and P. Machado,
editors, Proceedings of the 14th European Conference on Genetic Program-
ming, EuroGP 2011, volume 6621 of LNCS, pages 191–202, Turin, Italy,
27-29 Apr. 2011. Springer Verlag. (Cited on pages 33 and 34.)

[129] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Van-
neschi, W. Jas̀kowski, K. Krawiec, R. Harper, K. D. Jong, and U.-M.
O’Reilly. Genetic programming needs better benchmarks. In Genetic
and Evolutionary Computation Conference, GECCO 2012, pages 791–798,
Philadelphia, USA, July 2012. ACM. (Cited on page 173.)

bibliography 186

[130] N. F. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks
in genetic programming. Working Paper Series Volume 3 Number
2, University of Minnesota Morris, 600 East 4th Street, Morris, MN
56267, USA, 12 Dec. 2007. (Cited on page 51.)

[131] N. F. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks
in genetic programming. In Proceedings of the 11th European conference
on Genetic programming, EuroGP’08, pages 134–145, Berlin, Heidelberg,
2008. Springer-Verlag. (Cited on pages 49 and 50.)

[132] J. Miller and P. Thomson. Cartesian genetic programming. In Ge-
netic Programming, Proceedings of EuroGP’2000, volume 1802 of LNCS,
pages 121–132, Edinburgh, 15-16 Apr. 2000. Springer-Verlag. (Cited
on page 104.)

[133] M. Mitchell, S. Forrest, and J. Holland. The royal road for genetic
algorithms: fitness landscapes and ga performance. In F. J. Varela and
P. Bourgine, editors, Toward a Practice of Autonomous Systems, Proc. of
the First European Conf. on Artif. Life, pages 245–254. The MIT Press,
1992. (Cited on page 59.)

[134] T. Mitchell. Machine learning. New York: McGraw-Hill, 1997. (Cited
on page 1.)

[135] D. Montana. Strongly typed genetic programming. Evolutionary Com-
putation, 3(2):199–230, 1995. (Cited on page 104.)

[136] A. Monteiro and H. Ribeiro. Sur l’axiomatique des espaces (V). Portu-
galiae Mathematica, 1:275–288, 1937. (Cited on page 16.)

[137] A. Monteiro, H. Ribeiro, J. Paulo, and M. Z. Nunes. Les ensembles
fermés et les fondaments de la topologie. Portugaliae Mathematica, 2:
56–66, 1941. (Cited on page 19.)

[138] E. H. Moore. Introduction to a form of general analysis, volume 2 of
AMS Colloq. Publ. American Mathematical Society, Providence, Rhode
Island, 1910. (Cited on page 19.)

[139] A. Moraglio. One-point geometric crossover. In R. Schaefer, C. Cotta,
J. Kolodziej, and G. Rudolph, editors, PPSN (1), volume 6238 of Lecture
Notes in Computer Science, pages 83–93. Springer, 2010. ISBN 978-3-642-
15843-8. (Cited on pages 3 and 11.)

[140] A. Moraglio. Geometry of evolutionary algorithms. In N. Krasnogor
and P. Lanzi, editors, GECCO (Companion), pages 1439–1468. ACM,
2011. ISBN 978-1-4503-0690-4. (Cited on pages 3 and 11.)

[141] A. Moraglio and R. Poli. Topological interpretation of crossover. In
In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1377–1388. Springer, 2004. (Cited on pages 3, 11, 52, and 87.)

[142] A. Moraglio, K. Krawiec, and C. Johnson. Geometric semantic genetic
programming. In Parallel Problem Solving from Nature (PPSN), pages
21–31. Springer, 2012. (Cited on pages 4, 49, 50, 52, 53, 86, 87, 88, 90,
and 91.)

bibliography 187

[143] D. P. Muni, N. R. Pal, and J. Das. Genetic programming for simul-
taneous feature selection and classifier design. IEEE Transactions on
Systems, Man, and Cybernetics, Part B, 36(1):106–117, 2006. (Cited on
page 97.)

[144] J. Munkres. Topology: a first course, 1975. (Cited on page 136.)

[145] K. Nakamura. Asynchronous cellular automata and their computa-
tional ability. Systems, Computers, Control, 5:58–66, 1974. (Cited on
pages 133, 134, and 149.)

[146] V. Nannen and A. Eiben. Efficient relevance estimation and value
calibration of evolutionary algorithm parameters. In IEEE Congress
on Evolutionary Computation, pages 103–110. IEEE, 2007. (Cited on
page 106.)

[147] V. Nannen, S. Smit, and A. Eiben. Costs and benefits of tuning param-
eters of evolutionary algorithms. In Proceedings of the 10th international
conference on Parallel Problem Solving from Nature: PPSN X, pages 528–
538, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-87699-
1. (Cited on pages 105 and 107.)

[148] C. L. Nehaniv. Evolution in asynchronous cellular automata. Artificial
Life VIII, pages 65–73, 2002. (Cited on pages 134 and 149.)

[149] J. Neumann and A. Burks. Theory of self-reproducing automata. Univer-
sity of Illinois Press, 1966. (Cited on page 2.)

[150] Q. U. Nguyen, X. H. Nguyen, and M. O’Neill. Semantic aware
crossover for genetic programming: The case for real-valued function
regression. In Proceedings of the 12th European Conference on Genetic
Programming, EuroGP ’09, pages 292–302, Berlin, Heidelberg, 2009.
Springer-Verlag. (Cited on page 51.)

[151] A. Nix and M. Vose. Modeling genetic algorithms with markov chains.
Annals of mathematics and artificial intelligence, 5(1):79–88, 1992. (Cited
on page 9.)

[152] G. Ochoa, M. Tomassini, S. Vèrel, and C. Darabos. A study of NK
landscapes’ basins and local optima networks. In Proceedings of the
10th annual conference on Genetic and evolutionary computation, pages
555–562. ACM, 2008. (Cited on page 57.)

[153] P. Oliveto, J. He, and X. Yao. Time complexity of evolutionary algo-
rithms for combinatorial optimization: A decade of results. Interna-
tional Journal of Automation and Computing, 4(3):281–293, 2007. (Cited
on pages 7 and 10.)

[154] N. Ollinger. Universalities in cellular automata. In G. R. et al., editor,
Handbook of Natural Computing: Theory, Experiments, and Applications.
Springer, 2011. To appear. (Cited on pages 2, 134, and 149.)

[155] M. O’Neill and C. Ryan. Grammatical evolution. IEEE Transactions on
Evolutionary Computation, 5(4):349–358, Aug. 2001. (Cited on page 104.)

bibliography 188

[156] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf. Open issues
in genetic programming. Genetic Programming and Evolvable Machines,
11:339–363, 2010. ISSN 1389-2576. (Cited on pages 53, 55, 58, 85, 104,
and 105.)

[157] A. Orfila, J. M. Estevez-Tapiador, and A. Ribagorda. Evolving high-
speed, easy-to-understand network intrusion detection rules with ge-
netic programming. In M. Giacobini, I. De Falco, and M. Ebner,
editors, App. of Evolutionary Computing, EvoWorkshops2009, LNCS.
Springer Verlag, 2009. (Cited on page 58.)

[158] M. Orr. Introduction to radial basis function networks. Technical
report, Centre For Cognitive Science, University of Edinburgh, Edin-
burgh, Scotland, 1996. (Cited on page 121.)

[159] C. Papadimitriou. Computational complexity. John Wiley and Sons Ltd.,
2003. (Cited on page 1.)

[160] J. Platt. A fast algorithm for training support vector machines. Tech-
nical report, Microsoft Research, Redmond, USA, 1998. (Cited on
page 121.)

[161] R. Poli. Exact schema theory for genetic programming and variable-
length genetic algorithms with one-point crossover. Genetic Program-
ming and Evolvable Machines, 2(2):123–163, 2001. (Cited on page 9.)

[162] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J.
R. Koza). (Cited on pages 1, 3, 48, 53, 55, 95, 104, and 121.)

[163] B. Punch, D. Zongker, and E. Goodman. The royal tree problem, a
benchmark for single and multiple population genetic programming.
In P. Angeline and K. Kinnear, editors, Advances in Genetic Program-
ming 2, pages 299–316, Cambridge, MA, 1996. The MIT Press. (Cited
on page 59.)

[164] U. N. Quang, X. H. Nguyen, and M. O’Neill. Semantics based muta-
tion in genetic programming: The case for real-valued symbolic regres-
sion. In R. Matousek and L. Nolle, editors, 15th International Conference
on Soft Computing, Mendel’09, pages 73–91, Brno, Czech Republic, June
24-26 2009. (Cited on pages 51 and 52.)

[165] C. Reeves and J. Rowe. Genetic algorithms: principles and perspectives : a
guide to GA theory. Springer, 2002. (Cited on pages 7, 10, and 57.)

[166] D. Regnault. Abrupt behaviour changes in cellular automata under
asynchronous dynamics. In Electronic proc. of 2nd European Conference
on Complex Systems, ECCS. Oxford, UK, 2006. (Cited on page 133.)

[167] D. Regnault, N. Schabanel, and E. Thierry. Progresses in the analy-
sis of stochastic 2d cellular automata: A study of asynchronous 2d
minority. Theoretical Computer Science, 410:4844–4855, 2009. (Cited on
page 133.)

[168] H. Ribeiro. Sur l’axiomatique des espaces topologiques de m. fréchet.
Portugaliae Mathematica, 1:260–274, 1937. (Cited on page 15.)

http://lulu.com
http://www.gp-field-guide.org.uk

bibliography 189

[169] I. Rish. An empirical study of the naive bayes classifier. In IJCAI-01
workshop on “Empirical Methods in AI”, 2001. (Cited on page 121.)

[170] J. Rissanen. Modeling by shortest data description. Automatica, 14:
465–471, 1978. (Cited on page 53.)

[171] J. Rosca. Generality versus size in genetic programming. In e. a.
J.R. Koza, editor, GP 1996, pages 381–387. MIT Press, 1996. (Cited
on page 53.)

[172] J. Rowe, M. Vose, and A. Wright. Neighborhood graphs and sym-
metric genetic operators. In FOGA, pages 110–122, 2007. (Cited on
page 10.)

[173] J. Rowe, M. Vose, and A. Wright. Representation invariant genetic
operators. Evolutionary Computation, 18(4):635–660, 2010. (Cited on
page 10.)

[174] G. Rudolph. Convergence analysis of canonical genetic algorithms.
Neural Networks, IEEE Transactions on, 5(1):96–101, 1994. (Cited on
page 9.)

[175] G. Rudolph. Convergence properties of evolutionary algorithms. Kovac,
1997. (Cited on page 2.)

[176] B. Schönfisch and A. de Roos. Synchronous and asynchronous up-
dating in cellular automata. BioSystems, 51:123–143, 1999. (Cited on
page 133.)

[177] W. Sierpiǹski. General Topology. University of Toronto Press, 1952.
(Cited on page 16.)

[178] S. Silva and E. Costa. Dynamic limits for bloat control in genetic
programming and a review of past and current bloat theories. Genetic
Programming and Evolvable Machines, 10(2):141–179, 2009. ISSN 1389-
2576. (Cited on page 53.)

[179] S. Silva and L. Vanneschi. Operator equalisation, bloat and overfitting:
a study on human oral bioavailability prediction. In F. Rothlauf, editor,
GECCO, pages 1115–1122. ACM, 2009. ISBN 978-1-60558-325-9. (Cited
on page 53.)

[180] B. Skellett, B. Cairns, N. Geard, B. Tonkes, and J. Wiles. Maximally
rugged NK landscapes contain the highest peaks. In Proceedings of
the 2005 conference on Genetic and evolutionary computation, GECCO ’05,
pages 579–584, New York, NY, USA, 2005. ACM. ISBN 1-59593-010-8.
(Cited on page 57.)

[181] S. Smit and A. Eiben. Comparing parameter tuning methods for evo-
lutionary algorithms. In Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on, pages 399 –406, may 2009. (Cited on page 108.)

[182] A. Smith. Cellular automata and formal languages. In Switching and
Automata Theory, 1970., IEEE Conference Record of 11th Annual Sympo-
sium on, pages 216–224. IEEE, 1970. (Cited on page 2.)

bibliography 190

[183] D. Song, M. I. Heywood, and A. N. Zincir-Heywood. A linear genetic
programming approach to intrusion detection. In E. Cantú-Paz, J. A.
Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Stan-
dish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta,
M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller,
editors, Genetic and Evolutionary Computation – GECCO-2003, volume
2724 of LNCS, pages 2325–2336, Chicago, 12-16 July 2003. Springer-
Verlag. ISBN 3-540-40603-4. (Cited on page 58.)

[184] T. Soule and J. Foster. Code size and depth flows in genetic pro-
gramming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon,
H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings
of the Second Annual Conference, pages 313–320, Stanford University,
CA, USA, 13-16 July 1997. Morgan Kaufmann. (Cited on page 108.)

[185] B. Stadler, P. Stadler, M. Shpak, and G. Wagner. Recombination spaces,
metrics, and pretopologies. Z. Phys. Chem, 216:2002, 2002. (Cited on
page 10.)

[186] B. M. Stadler, P. F. Stadler, M. Shpak, and G. P. Wagner. Recombination
spaces, metrics and pretopologies. Zeitschrift für Physikalische Chemie,
216:217–234, 2002. (Cited on pages 12, 24, and 26.)

[187] P. Stadler. Towards a theory of landscapes. In R. López-Peña, H. Wael-
broeck, R. Capovilla, R. García-Pelayo, and F. Zertuche, editors, Com-
plex Systems and Binary Networks, volume 461-461 of Lecture Notes in
Physics, pages 78–163. Springer Berlin / Heidelberg, 1995. ISBN 978-
3-540-60339-9. (Cited on page 57.)

[188] P. Stadler and G. Wagner. Algebraic theory of recombination spaces.
Evololutionary Computation, 5(3):241–275, 1997. ISSN 1063-6560. (Cited
on page 10.)

[189] W. A. Tackett. Recombination, Selection, and the Genetic Construction
of Computer Programs. PhD thesis, University of Southern California,
Department of Electrical Engineering Systems, USA, 1994. (Cited on
page 59.)

[190] K. C. Tan, Q. Yu, and T. H. Lee. A distributed evolutionary classifier
for knowledge discovery in data mining. IEEE Transactions on Systems,
Man, and Cybernetics, Part C, pages 131–142, 2005. (Cited on page 49.)

[191] A. Teller and M. Veloso. PADO: A new learning architecture for object
recognition. In K. Ikeuchi and M. Veloso, editors, Symbolic Visual Learn-
ing, pages 81–116. Oxford University Press, 1996. (Cited on page 104.)

[192] M. Tomassini, L. Vanneschi, F. Fernández, and G. Galeano. A study
of diversity in multipopulation genetic programming. In 6th Interna-
tional Conference on Evolutionary Computation EA’03, pages 69–81, 2003.
(Cited on page 33.)

[193] M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue. A study of
fitness distance correlation as a difficulty measure in genetic program-
ming. Evolutionary Computation, 13(2):213–239, Summer 2005. ISSN
1063-6560. (Cited on pages 33 and 59.)

bibliography 191

[194] A. Tuffs. Bayer faces shake up after lipobay withdrawn. BMJ British
Medical Journal, 323(7317):828, 10 2001. (Cited on page 94.)

[195] N. Q. Uy, N. X. Hoai, M. O’Neill, B. McKay, and E. Galvan-Lopez.
An analysis of semantic aware crossover. In Z. Cai, Z. Li, Z. Kang,
and Y. Liu, editors, Proceedings of the International Symposium on Intel-
ligent Computation and Applications, volume 51 of Communications in
Computer and Information Science, pages 56–65. Springer, 2009. (Cited
on pages 49 and 50.)

[196] N. Q. Uy, N. X. Hoai, M. O’Neill, and B. McKay. The role of syn-
tactic and semantic locality of crossover in genetic programming. In
R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph, editors, PPSN 2010
11th International Conference on Parallel Problem Solving From Nature, vol-
ume 6239 of Lecture Notes in Computer Science, pages 533–542, Krakow,
Poland, 11-15 Sept. 2010. Springer. (Cited on page 51.)

[197] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. Galvan-Lopez.
Semantically-based crossover in genetic programming: application to
real-valued symbolic regression. Genetic Programming and Evolvable
Machines, 12(2):91–119, June 2011. ISSN 1389-2576. (Cited on pages 49

and 51.)

[198] N. Q. Uy, X. H. Nguyen, and M. O’Neill. Examining the land-
scape of semantic similarity based mutation. In N. Krasnogor, P. L.
Lanzi, A. Engelbrecht, D. Pelta, C. Gershenson, G. Squillero, A. Fre-
itas, M. Ritchie, M. Preuss, C. Gagne, Y. S. Ong, G. Raidl, M. Gallager,
J. Lozano, C. Coello-Coello, D. L. Silva, N. Hansen, S. Meyer-Nieberg,
J. Smith, G. Eiben, E. Bernado-Mansilla, W. Browne, L. Spector, T. Yu,
J. Clune, G. Hornby, M.-L. Wong, P. Collet, S. Gustafson, J.-P. Wat-
son, M. Sipper, S. Poulding, G. Ochoa, M. Schoenauer, C. Witt, and
A. Auger, editors, GECCO ’11: Proceedings of the 13th annual conference
on Genetic and evolutionary computation, pages 1363–1370, Dublin, Ire-
land, 12-16 July 2011. ACM. (Cited on page 57.)

[199] L. Vanneschi. Theory and Practice for Efficient Genetic Programming. PhD
thesis, Faculty of Sciences, University of Lausanne, Switzerland, 2004.
(Cited on pages 2, 33, 57, 58, and 59.)

[200] L. Vanneschi and S. Silva. Using operator equalisation for prediction
of drug toxicity with genetic programming. In L. S. Lopes, N. Lau,
P. Mariano, and L. M. Rocha, editors, EPIA, volume 5816 of Lecture
Notes in Computer Science, pages 65–76. Springer, 2009. ISBN 978-3-
642-04685-8. (Cited on page 53.)

[201] L. Vanneschi and M. Tomassini. Pros and cons of fitness distance cor-
relation in genetic programming. In A. M. Barry, editor, GECCO 2003:
Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary
Computation Conference, pages 284–287, Chigaco, 11 July 2003. AAAI.
(Cited on page 57.)

[202] L. Vanneschi, S. Verel, M. Tomassini, and P. Collard. NK landscapes
difficulty and negative slope coefficient: How sampling influences the

bibliography 192

results. In Proceedings of the EvoWorkshops 2009 on Applications of Evo-
lutionary Computing, EvoWorkshops ’09, pages 645–654, Berlin, Hei-
delberg, 2009. Springer-Verlag. ISBN 978-3-642-01128-3. (Cited on
page 57.)

[203] L. Vanneschi, M. Castelli, and S. Silva. Measuring bloat, overfitting
and functional complexity in genetic programming. In GECCO ’10,
pages 877–884. ACM, 2010. (Cited on pages 53, 54, 60, 61, 64, 65,
and 70.)

[204] V. K. Vassilev, T. C. Fogarty, and J. F. Miller. Information characteristics
and the structure of landscapes. Evol. Comput., 8(1):31–60, Mar. 2000.
ISSN 1063-6560. (Cited on page 57.)

[205] V. Vazirani. Approximation algorithms. Springer Verlag, 2001. (Cited on
page 1.)

[206] E. Čech. Topological Spaces. Wiley, London, 1966. (Cited on page 24.)

[207] S. Vérel, P. Collard, and M. Clergue. Where are bottleneck in NK
fitness landscapes ? In CEC 2003: IEEE International Congress on Evo-
lutionary Computation. Canberra, Australia, pages 273–280. IEEE Press,
Piscataway, NJ, 2003. (Cited on page 57.)

[208] S. Verel, G. Ochoa, and M. Tomassini. Local Optima Networks of NK
Landscapes with Neutrality. IEEE Transactions on Evolutionary Compu-
tation, volume 14(6):to appear, 2010. (Cited on page 57.)

[209] E. J. Vladislavleva, G. F. Smits, and D. den Hertog. Order of nonlin-
earity as a complexity measure for models generated by symbolic re-
gression via pareto genetic programming. IEEE Transactions on Evolu-
tionary Computation, 13(2):333–349, Apr. 2009. ISSN 1089-778X. (Cited
on page 54.)

[210] J. Von Neumann. The general and logical theory of automata. Cerebral
mechanisms in behavior, pages 1–41, 1951. (Cited on page 2.)

[211] M. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT
Press, Cambridge, MA, USA, 1998. ISBN 026222058X. (Cited on
pages 2, 9, and 10.)

[212] M. Vose. Course notes: genetic algorithm theory. In M. Pelikan and
J. Branke, editors, GECCO (Companion), pages 2647–2660. ACM, 2010.
ISBN 978-1-4503-0073-5. (Cited on page 10.)

[213] G. Wagner and P. Stadler. Complex adaptations and the structure of
recombination spaces. In School of Mathematics, UEA, Norwich NR4 7TJ,
1997. (Cited on page 10.)

[214] E. D. Weinberg. Local properties of kauffman’s n-k model, a tuneably
rugged energy landscape. Physical Review A, 44(10):6399–6413, 1991.
(Cited on page 57.)

[215] E. Weinberger. Correlated and uncorrelated fitness landscapes and
how to tell the difference. Biological Cybernetics, 63:325–336, 1990. ISSN
0340-1200. (Cited on page 57.)

bibliography 193

[216] P. A. Whigham. Grammatical Bias for Evolutionary Learning. PhD thesis,
School of Computer Science, University College, University of New
South Wales, Australian Defence Force Academy, Canberra, Australia,
14 October 1996. (Cited on page 104.)

[217] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali,
P. Stothard, Z. Chang, and J. Woolsey. Drugbank: a comprehensive
resource for in silico drug discovery and exploration. Nucleic Acids
Res, 34:668–672, 2006. (Cited on page 94.)

[218] T. Worsch. A note on (intrinsically?) universal asynchronous cellular
automata. Preprint, 2010. (Cited on page 134.)

[219] S. Wright. The roles of mutation, inbreeding, crossbreeding, and se-
lection in evolution. Proceedings of the Sixth International Congress on
Genetics, 1932. (Cited on page 57.)

[220] S. Wright. The roles of mutation, inbreeding, crossbreeding and selec-
tion in evolution. In D. F. Jones, editor, Proceedings og the Sixth Interna-
tional Congress on Genetics, volume 1, pages 356–366, 1932. (Cited on
page 54.)

[221] F. Yoshida and J. G. Topliss. Qsar model for drug human oral bioavail-
ability1. Journal of Medicinal Chemistry, 43(13):2575–2585, 2000. (Cited
on page 94.)

Milano, Italia (Milan, Italy)
Lisboa, Portugal (Lisbon, Portugal)

Birmingham, UK
寝屋川市、日本 (Neyagawa, Japan)

X

October MMXII

	Foreword
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Genetic Algorithms
	1.2 Genetic Programming
	1.3 Reaction Systems
	1.4 Cellular Automata

	A Theoretical Model of Genetic Algorithms
	2 Introduction to the Theory of Genetic Algorithms
	2.1 Introduction to GA
	2.1.1 A Brief Overview of GA Theory

	2.2 Modeling of Crossover

	3 Pretopologies
	3.1 Introduction
	3.1.1 Topology by open or, equivalently, closed sets
	3.1.2 Topology by closure or, equivalently, interior operators
	3.1.3 Topology by neighbourhoods

	3.2 Fréchet Closure Operator
	3.3 Fréchet (V)-spaces
	3.3.1 The pre-topology induced from (V)-closure operators
	3.3.2 The Tarski closure operator induced from pre-topological spaces
	3.3.3 The Tarski closure operator induced from a (V)-closure

	3.4 Cech topologies
	3.4.1 From Cech topologies to topologies
	3.4.2 Finite graph and Cech Topologies
	3.4.3 Cech topologies and convergence

	3.5 Iterating the closure operator a transfinite number of times

	4 A Theoretical Model for One-Point Crossover
	4.1 Introduction
	4.2 Basic Notions
	4.3 Crossover Distance Definition
	4.3.1 Crossover relations
	4.3.2 The Structure of the Closure
	4.3.3 Distance Definition

	4.4 A Concise Model for Populations
	4.4.1 An Analysis of Computational Complexity

	4.5 Final Remarks

	Measuring and Increasing Solution Quality in Genetic Programming
	5 Introduction to Genetic Programming
	5.1 What is Genetic Programming
	5.2 State of the art on the use of Semantics in GP
	5.3 Generalization in GP
	5.3.1 The Importance of Generalization
	5.3.2 Studies on Generalization

	5.4 Benchmarks in GP and the NK landscapes
	5.5 The NK Landscapes for GAs
	5.6 Fitness Landscapes
	5.7 Previous GP Benchmarks

	6 Learning Ability
	6.1 Introduction
	6.2 The Proposed Measures
	6.3 Test Problems
	6.4 Experimental Study
	6.5 Further Remarks

	7 Benchmarking: the K-Landscapes
	7.1 Introduction
	7.2 The K Landscapes for GP
	7.3 Experimental Study
	7.4 Further Remarks

	8 Fast Semantic Genetic Programming
	8.1 Geometric Semantic Operators
	8.2 The Proposed GP Implementation
	8.2.1 Example

	8.3 Empirical Study
	8.3.1 The Application
	8.3.2 Experimental Settings
	8.3.3 Experimental Results

	8.4 Further remarks

	(Evolutionary) Reaction Systems
	9 Introduction to Reaction Systems
	9.1 Reaction Systems
	9.1.1 Basics of Reaction Systems
	9.1.2 Dynamics of Reaction Systems
	9.1.3 Equivalence of Reaction Systems

	9.2 Motivations for Evolutionary Reaction Systems
	9.3 Motivations for Parameter Tuning
	9.4 Parameter Tuning: State of the Art
	9.5 Parameter tuning and parameter control

	10 Combinatorics of Reaction Systems
	10.1 Combinatorics
	10.2 Properties and Bounds of Reaction Systems
	10.3 Further Remarks

	11 Evolutionary Reaction Systems
	11.1 Evolutionary Reaction Systems
	11.1.1 Input and Output for EvoRS
	11.1.2 Initialization
	11.1.3 Crossover
	11.1.4 Mutation
	11.1.5 Minimization of Reaction Systems
	11.1.6 Properties of EvoRS

	11.2 Experimental Study
	11.2.1 Test Problems
	11.2.2 Other studied techniques
	11.2.3 Experimental setting
	11.2.4 Experimental Results

	11.3 Parameter Tuning
	11.3.1 Experimental Settings
	11.3.2 Experimental Results
	11.3.3 Discussion

	11.4 Further Remarks

	Asynchronous Cellular Automata
	12 Introduction to Cellular Automata
	12.1 Preliminary Notions

	13 Fully-Asynchronous CA
	13.1 Definition of Fully Asynchronous CA
	13.2 Dynamical properties of fully-ACA
	13.3 Further Remarks

	14 Computational Power of Fully Asynchronous CA
	14.1 Simulation of Turing Machines
	14.1.1 Construction 1.
	14.1.2 Construction 2
	14.1.3 Construction 3

	14.2 Updating sequences generated by random walks
	14.2.1 Bounded Random Walks

	15 m-Asynchronous CA
	15.1 m-ACA
	15.2 Further Remarks

	Final Remarks
	16 Conclusions and Future Works
	16.1 Contributions
	16.1.1 Genetic Algorithms
	16.1.2 Genetic Programming
	16.1.3 Reaction Systems
	16.1.4 Cellular Automata

	16.2 Open Problems
	16.2.1 Genetic Algorithms
	16.2.2 Genetic Programming
	16.2.3 Reaction Systems
	16.2.4 Cellular Automata

	Bibliography
	Colophon

