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Chapter 1

Introduction

Due to the continuously growing amount of produced data, methods in computer science

are becoming more and more important in biological studies. More specifically, the

advent of Next-Generation Sequencing (NGS) techniques has opened new challenges

and perspectives that were not even thinkable some years ago. One of the key points of

these new methods is that they are able to produce a huge quantity of data at much lower

costs, with respect to the previous sequencing techniques. Moreover, the growth rate of

these data is higher than the one of semiconductors, meaning that approaches based on

Moore’s law do not work. This also means that algorithms and programs that were used

in the past are no longer applicable in this new “context” and so new solutions must

be found. This is mainly due to two main reasons. On one hand, data are of different

nature. In fact, the produced sequences are much shorter than the ones of the classical

methods. On the other hand, also the volume of data is changed, as the new methods

can produce millions or billions of sequences, that is orders of magnitude more than

before. Hence, efficient procedures are required to process NGS data. Moreover, new

approaches are necessary to face the continuously emerging computational problems,

that are fundamental to take advantage of the produced data. Two of the fields in

bioinformatics that are most influenced, by the introduction of the Next-Generation

Sequencing methods, are transcriptomics and metagenomics. In this thesis we address

two central problems of these latter fields.

The central goal in transcriptome analysis is the identification and quantification of all

full-length transcripts (or isoforms) of genes, produced by alternative splicing. This

mechanism has an important role in the regulation of the protein expressions that in-

fluences several cellular and developmental processes. Moreover, recent studies point

out that alternative splicing may also play a crucial role in the differentiation of stem

cells, thus opening a new perspective in transcriptome analysis [1]. Understanding such

1
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a mechanism can lead to new discoveries in many fields. Therefore, a lot of effort has

been invested in the study of methods for alternative splicing analysis and full-length

transcript prediction, which, however, operate on data produced by the old Sanger tech-

nology. On the other hand, NGS technologies have opened new possibilities in the study

of the alternative splicing, since data from different individuals and cells are available for

large scale analysis. With the specific goal of analyzing NGS data, some computational

methods for assembling full-length transcripts or predicting splice sites from such data

have been recently proposed. However, these tools by alone are not able to provide an

overview of alternative splicing events of a specific set of genes. In particular, a challeng-

ing task is the comparison of transcripts derived from NGS data to predict AS variants

and to summarize the data into a biological meaningful set of AS events. Another issue

involves the prediction of AS events from NGS data without a specific reference genome,

as the currently available tools can perform this task with limited accuracy, even with

the presence of a reference.

In this thesis, to tackle the previously mentioned issues:

1. we face the problem of providing a representation of the alternative splicing vari-

ants, in absence of the reference genome, by using the data coming from NGS

techniques;

2. we provide an efficient procedure to construct such a representation of all the

alternative splicing events.

The solution we propose for the first problem is the definition of the isoform graph, which

is a graph representation that summarize all the full-length transcripts of a gene. We

investigate the conditions under which it is possible to construct such a graph, by using

only RNA-Seq reads, which are the sequences obtained when sequencing a transcript

with NGS methods. These conditions guarantee the possibility to obtain the correct

graph from the NGS data. We analyze each condition in detail, in order to explore the

possibility of reconstructing the isoform graph in absence of a reference genome.

For the second problem we propose a solution to construct the isoform graph, also

when the necessary conditions, for its complete reconstruction, are not satisfied. In the

latter case the obtained graph is an approximation of the correct one. The algorithm we

propose is a three-step procedure in which the reads are first partitioned into two subsets

and then assembled to create the graph. We also provide an experimental validation

of this approach, which is based on an efficient implementation of the algorithm, that

uses the RNA-Seq reads coming from one or more genes. More precisely, in order

to verify its accuracy and its stability, we have performed different tests that reflect
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different conditions of the input set. We show the scalability of our implementation

to huge amount of data. Limiting computational (time and space) resources used by

our algorithm is a main aim of ours, when compared to other tools of transcriptome

analysis. Our algorithmic approach works in time that is linear in the number of reads,

with space requirements bounded by the size of the hash tables used to memorize the

sequences. Finally, our computational approach for representing alternative splicing

variants is different from current methods of transcriptome analysis that focus on using

RNA-Seq data for reconstructing the set of transcripts of a gene and estimating their

abundance. More specifically, we aim to summarize genome-wide RNA-Seq data into

graphs, each representing an expressed gene and the alternative splicing events occurring

in the specific processed sample. On the contrary, current tools do not give a concise

result, such as a structure for each gene, nor they provide a easy-to-understand list of

alternative splicing events for a gene.

Part of this work has been presented in the following international venues:

• S. Beretta, P. Bonizzoni, G. Della Vedova, R. Rizzi, Reconstructing Isoform

Graphs from RNA-Seq data., 2012, IEEE International Conference on Bioinfor-

matics and Biomedicine (BIBM), 2012, Philadelphia PA, USA [2]

• Y. Pirola, R. Rizzi, S. Beretta, E. Picardi, G. Pesole, G. Della Vedova, P. Boniz-

zoni, PIntronNext: a fast method for detecting the gene structure due to alternative

splicing via ESTs, mRNAs, and RNA-Seq data., EURASNET Symposium on Reg-

ulation of Gene Expression through RNA Splicing, 2012, Trieste, Italy

• S. Beretta, P. Bonizzoni, G. Della Vedova, R. Rizzi, Alternative Splicing from

RNA-seq Data without the Genome., ISMB/ECCB - 8th Special Interest Group

meeting on Alternative Splicing (AS-SIG), 2011, Vienna, Austria

• S. Beretta, P. Bonizzoni, G. Della Vedova, R. Rizzi, Identification of Alternative

Splicing variants from RNA-seq Data., Next Generation Sequencing Workshop,

2011, Bari, Italy

The second part of this thesis is focused on a fundamental problem in metagenomics. The

aim of this continuously growing field of research is the study of uncultured organisms

to understand the true diversity of microbes, their functions, cooperation and evolution,

in environments such as soil, water, ancient remains of animals, or the digestive system

of animals and humans. With the advent of NGS technologies, which do not require

cloning or PCR amplification, there has been an increase in the number of metagenomic

projects. As anticipated, the use of NGS methods creates new problems and challenges

in bioinformatics, which has to handle and analyze these datasets in an efficient and
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useful way. A better understanding of the microbial world is one of the main goals of

metagenomic studies and, in order to accomplish this challenge, the comparison among

multiple datasets is a required task. Despite the improvement of various techniques,

there is still a need for new computational approaches and algorithmic methods to find

a solution to emerging problems related to NGS data analysis. One of these problems

is the assignment of reads to a reference taxonomy. This task is crucial in identifying

the species present in a sample and also to classify them. More specifically, starting

from a set of NGS reads coming from a metagenomic sample, the objective is to assign

them to a reference taxonomy, in order to understand the composition of the sample. In

order to solve this problem, a commonly adopted technique is the alignment of reads to

the taxonomy, followed by the correct assignment of ambiguous reads (i.e. the ones that

have multiple valid matches) in the same taxonomy. This latter procedure is usually

based on computing the Lowest Common Ancestor (LCA) of all the alignments of the

read.

In the thesis we address some challenging open questions on the problem of assigning

reads to a taxonomy, mainly:

1. having a fast and at the same time accurate procedure to process reads and assign

them to the tree;

2. making possible the use of taxonomy that differ in the ranking of species.

The two above mentioned tasks are accomplished in this thesis by designing novel pro-

cedures in the TANGO method. TANGO is an example of software that bases the

assignment on the calculation of a penalty score function for each of the candidate

nodes of the taxonomy. In particular, we improve the time efficiency and accuracy of

TANGO by realizing an fast procedure for the computation of the minimum penalty

score value of the candidate nodes, also supported by a more efficient implementation

of the software. To do this, we take advantage of an algorithm for inferring the so called

skeleton tree, given a tree and a subset of its leaves. We prove that it is possible to

compute the penalty score in an optimal way by using the previously mentioned tree,

and we provide an algorithmic procedure to accomplish this task. The latter method is

implemented by using a simple data structure to represent the tree, which contributes

to the improvement of performance of the overall method. The second main issue men-

tioned before has been addresses by developing a method to contract the taxonomic

trees keeping only specific ranks, in order to facilitate the comparison among different

taxonomies. Our contributions provide an improvement to the problem of assigning the

reads to a reference taxonomy, which is a basic step in a metagenomic analysis.

Part of this work has been included in:
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• D. Alonso-Alemany, A. Barre, S. Beretta, P. Bonizzoni, M. Nikolski, G. Valiente,

Further Steps in TANGO: Improved Taxonomic Assignment in Metagenomics.,

2012, (Submitted)

In the rest of this thesis all the results mentioned above are explained in detail. In

Chapter 2 the biological notions, necessary for the understanding of the following

descriptions, are introduced. In addition to this, the basic algorithmic concepts and no-

tations are formalized, providing a complete background. Chapter 3 starts with a brief

introduction and describes the current approaches for the reconstruction of transcripts,

from NGS data. Then the concept of isoform graph is explained and the necessary

and sufficient conditions to construct such a graph, are provided. An algorithm for

the computation of the isoform graph is given, with also a particular attention on its

implementation. After that, an experimental validation, aimed to verify the accuracy

of the predictions and also the stability of this method, is described. Finally, some

conclusions and future developments of this approach are proposed. Chapter 4 re-

ports the work in metagenomics, performed during my period abroad at the Algorithms,

Bioinformatics, Complexity and Formal Methods Research Group of the Technical Uni-

versity of Catalonia in Barcelona, Spain, in collaboration with Daniel Alonso-Alemany,

under the supervision of Prof. Gabriel Valiente. More specifically, after an introduc-

tion to metagenomics, the problem of the taxonomic assignment is described, with a

particular attention on the solution provided by the TANGO software. After that, we

describe the proposed method to contract the main different available taxonomies. We

also provide a description of the new data structures used to represent trees. The focus

is then moved to the minimum penalty score calculation, and in particular, to the proof

of this latter problem that involves the skeleton tree. Finally, all the improvements of

the TANGO software are described and the chapter is concluded by underlining some

possible developments of this work.



Chapter 2

Background

In this chapter basic notions concerning the biological and algorithmic background are

given. After the introduction of fundamental biological concepts, the attention is focused

on the sequencing process by describing classical and new techniques. In particular, the

Next-Generation Sequencing platforms are shown, discussing the methods they adopt.

The produced data are then analyzed and the specific case of RNA-Seq is explained.

Finally some algorithmic concepts and formal notations used in the rest of the thesis

are introduced (for a more detailed explanation see [3]).

2.1 DNA and RNA

The deoxyribonucleic acid (DNA) molecule is the carrier of the genetic information in our

cells. In fact all the information it contains are passed from organisms to their offspring

during the process of reproduction. More specifically, each DNA molecule consists of

the four nucleotides Adenine (A), Cytosine (C), Guanine (G), and Thymine (T), with

backbones made of sugars and phosphate groups joined by ester bonds. It is organized

as a double-helix and the two strands of the DNA molecule are complementary to each

other. The base-pairing is fixed: A is always complementary to T, and G is always

complementary to C. This double-helix model was proposed in 1953 by James Watson,

an American scientist, and Francis Crick, a British researcher, and it has not been

changed much since then. This discovery was made by studying the X-ray diffraction

patterns, and this allowed to the two scientists to build models and to figure out the

double-helix structure of DNA, a structure that enables it to carry biological information

from one generation to the following.

6
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Figure 2.1: The central dogma of molecular biology. The DNA codes for the produc-
tion of messenger RNA during transcription, which is then translated to proteins.

The complete genome is composed of chromosomes which are a set of different DNA

molecules. Eukaryotes, i.e. organisms that have cells with a structure made by mem-

branes, store the chromosomes in the nuclei of their cells. For example, in humans,

the genome has a total of more than 3 billion of nucleotides that are organized in 23

chromosomes, each of which appears in two copies in each cell. An important functional

unit in a chromosome is the gene, which is described by the so called central dogma of

molecular biology.

The central dogma in molecular biology (shown in Figure 2.1) says that portions of

DNA, called gene regions, are transcribed into ribonucleic acid (RNA), which is then

translated into proteins. The RNA molecules differ from the DNA ones because they

are often single strained and the Thymine (T) nucleotide is replaced by Uracil (U). In

addition to this, the half-life of RNA molecules is shorter than that of DNA molecules.

As mentioned before, RNA has a central role in protein synthesis, in fact a particular

type of RNA, called messenger RNA, carries information from DNA to structures called

ribosomes. These ribosomes, that are made from proteins and ribosomal RNAs, can

read messenger RNAs and translate the information they carry into proteins. There are

many types of RNAs with other roles and functions, in particular they can regulate the

expression of some genes, and they are also present in the genomes of most viruses.

2.2 Gene and Alternative Splicing

From a molecular point of view, a gene is commonly defined as the entire nucleic acid

sequence that is necessary for the synthesis of a functional polypeptide. According to

this definition, in a gene there are not only the nucleotides that encode the amino acid
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sequence of a protein (usually referred to as the coding region), but there are also all the

DNA sequences required for the synthesis of a particular RNA transcripts. The concept

of gene has evolved and has become more complex since it was first proposed. There

are various definitions of this term, but all the initial descriptions were focused on the

ability to determine a particular characteristic of an organism and also the heritability

of this characteristic. A modern definition of a gene is “a locatable region of genomic

sequence, corresponding to a unit of inheritance, which is associated with regulatory

regions, transcribed regions, and or other functional sequence regions” [4, 5].

On the other side, the computational biology community has adopted a “definition”

of gene as a formal language to describe the gene structure as a grammar, by using a

precise syntax of upstream regulation, exon, and introns. More specifically, a gene is

composed of exons and introns. The formers, which are usually referred as coding parts,

are the essential parts of the messenger RNA (mRNA), that is the template sequence

for the protein, whereas introns, which are usually referred as non-coding parts, mostly

have a regulatory role. Following the central dogma, the complete gene region is first

transcribed into a precursor mRNA (pre-mRNA) molecule that consists of exons and

introns. Transcription is the first stage of the expression of genes into proteins.

During the transcription process, some proteins, called transcription factors, bind in or

near the promoter region that resides directly upstream of the gene. These proteins have

the controlling role of the transcription. At this point, the splicing process is initiated by

RNA binding proteins, called splicing factors, and the intron sequences of the pre-mRNA

are removed. This is typical in eukaryotes, in which the messenger RNA is subject

to this process, in order have the correct production of proteins through translation.

The recognition of intron-exon boundaries is facilitated through the detection of short

sequences called splice sites.

At the end of the transcription, a process, called polyadenylation, is involved. Polyadeny-

lation consists in the addition of a poly-A tail, which is a series of Adenine nucleotides,

to a RNA molecule. The process of polyadenylation is initiated by the binding of pro-

teins to the polyadenylation site of an exon in the pre-mRNA. After the splicing and the

polyadenylation of the pre-mRNA, the final mRNA is obtained. The poly-A tail added

in the polyadenylation process is important for the transport of the mRNA to the cell

cytoplasm and also for the control of the half-life of the mRNA.

By varying the exon composition of the same messenger RNA, the splicing process can

produce a set of unique proteins. This process is called alternative splicing (AS) and is

the mechanism by which a single pre-mRNA can produce different mRNA variants, by

extending, shortening, skipping, or including exon, or retaining intron sequences. The

most recent studies indicate that alternative splicing is a major mechanism generating
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Figure 2.2: Basic types of alternative splicing events.

functional diversity in humans and vertebrates, as at least 90% of human genes exhibit

splicing variants.

In a typical mRNA (which is composed of several exons), there are different ways in

which the splicing pattern can be altered (see Figure 2.2). Most exons are constitutive

and they are always spliced or included in the final mRNA. A regulated exon that is

sometimes included and sometimes excluded from the mRNA is called a skipped exon (or

cassette exon). In certain cases, multiple cassette exons are mutually exclusive, produc-

ing mRNAs that always include one of several possible exon choices but no more. Exons

can also be lengthened or shortened by altering the position of one of their splice sites.

One sees both alternative 5′ and alternative 3′ splice sites. The 5′-terminal exons of an

mRNA can be switched through the use of alternative promoters and alternative splic-

ing. Similarly, the 3′-terminal exons can be switched by combining alternative splicing

with alternative polyadenylation sites. Finally, some important regulatory events are

controlled by the failure in removing an intron, and such a splicing pattern is called

intron retention.

The combination of these AS events generates a large variability at the post-transcriptional

level, accounting for an organism’s proteome complexity [6]. Changes in the splicing site
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choice can have all manner of effects, especially on the encoded protein. For exam-

ple small changes in the peptide sequence can alter ligand binding, enzymatic activity,

allosteric regulation, or protein localization. In other genes, the synthesis of a whole

polypeptide, or a large domain within it, can depend on a particular splicing pattern.

Genetic switches, based on alternative splicing, are important in many cellular and

developmental processes, including sex determination, apoptosis, axon guidance, cell

excitation and contraction, and many others. In addition, many diseases (e.g. cancer)

have been related to alterations in the splicing machinery, highlighting the relevance of

AS to therapy.

2.3 Sequencing

Sequencing is the determination of the precise sequence of nucleotides in a molecule.

Since the discovery of the structure of DNA by Watson and Crick in 1953 [7], an enor-

mous effort has been done for decoding genome sequences of many organisms, including

humans. If finding DNA composition was the discovery of the exact substance holding

our genetic makeup information, DNA sequencing is the discovery of the process that

will allow us to read that information.

2.3.1 Sanger Technique

Genomic sequencing began with the development, by Frederic Sanger, of the Sanger

sequencing, in the 1970s. This method, also known as dideoxynucleotide or chain termi-

nation method [8], has been the only widely used technology for over three decades. In

this technique, the DNA is used as a template to generate multiple copies of the same

molecule that differ from each other in length, by a single base. The DNAs are then

separated based on their size, and the bases at the end are identified, recreating the

original DNA sequence (see Figure 2.3).

More specifically, in this method a single strained piece of DNA is amplified many times

by the addition of dideoxy-nucleotides instead of deoxy-nucleotides. In fact, when the

DNA is amplified, new deoxy-nucleotides (dNTPs) are usually added as the strand of

DNA grows, but in the Sanger method this bases are replaced by special ones, called

dideoxy-nucleotides (ddNTPs). There are two important differences that characterize

the ddNTPs with respect to the similar dNTPs: they have fluorescent tags attached

to them (a different tag for each of the 4 ddNTPs) and a crucial atom is missing, so

that it prevents new bases from being added to a DNA strand, after that a ddNTP

is added. This means that if during a DNA strand growth a ddNTP is inserted, the
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synthesis process is stopped because no other nucleotides can be added after that, on

the strand. If this amplification process is repeated for many cycles, as a result, all the

possible lengths of DNA will be represented, and every piece of the synthesized DNA

will contain a fluorescent label at its terminus (see Figure 2.3(a)).

At this point, by using a gel electrophoresis, the amplified DNA can be separated ac-

cording to its size. In this way, the DNA is separated from the smallest to the largest,

and while the fluorescent DNA reaches the bottom of the gel, a laser can pick up the

fluorescence of each piece of DNA. Each ddNTP (ddA, ddC, ddG, ddT) emits a different

fluorescent signal that can be recorded on a computer, indicating the presence of a spe-

cific ddNTP at the terminus. Since every possible size of DNA strand is present (each

one with its terminating ddNTP), the DNA strand has a fluorescent ddNTP at every

position, and this also means that every nucleotide in the strand can be determined. At

this point a computer program can convert the data, read by the laser, into a coloured

graph, showing the determined sequence (see Figure 2.3(b)).

In the past, instead of using a computer, the resulting gel needed to be analyzed man-

ually. This was a time consuming step, in fact the separation of the DNA strands

by electrophoresis required the use of radioisotopes for labeling ddNTPs, one for each

ddNTP (four different reactions). Today, thanks to all the improvements in fluorescent

labels and in gel electrophoresis, DNA sequencing is fully automated (including the read

out of the final sequence) and it is also faster and more accurate than before.

Sanger sequencing revolutionized the way in which the biology was studied, providing

a way to learn the most basic genetic information. However, despite large efforts to

improve the efficiency and the throughput of this technique, such as the development of

automated capillary electrophoresis and computer driven assembly programs, the Sanger

sequencing remained costly and time consuming, especially for applications involving the

sequencing of whole genomes of organisms, such as humans.

2.3.2 Next Generation Sequencing

In the past few years a “revolution” occurred in the field of sequencing. This was due to

the development of a number of new high-throughput sequencing technologies, known

as Next-Generation Sequencing (NGS) technologies, that are now widely adopted [9].

These technologies have fundamentally changed the way in which we think about ge-

netic and genomic research, opening new perspectives and new directions that were not

achievable or even thinkable with the Sanger method. They have provided the opportu-

nity for a global investigation of multiple genomes and transcriptomes, in an extremely
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(a) Polymerase reaction.

(b) Electrophoretic separation.

Figure 2.3: Sanger sequencing process. Figure 2.3(a) illustrates the products of the
polymerase reaction, taking place in the ddCTP tube. The polymerase extends the la-
beled primer, randomly incorporating either a normal dCTP base or a modified ddCTP
base. At every position where a ddCTP is inserted, the polymerization terminates; the
final result is a population of fragments. The length of each fragment represents the
relative distance from the modified base to the primer. Figure 2.3(b) shows the elec-
trophoretic separation of the products of each of the four reaction tubes (ddG, ddA,
ddT, and ddC), run in individual lines. The bands on the gel represent the respective
fragments shown to the right. The complement of the original template (read from
bottom to top) is given on the left margin of the sequencing gel.
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efficient and timely manner at much lower costs, if compared with Sanger-based se-

quencing methods. One of the main advantages offered by NGS technologies is their

ability to produce an incredible volume of data, cheaply, that in some cases exceeds one

billion of short reads per instrument run. Applications that have already benefitted from

these technologies, include: polymorphism discovery [10], non-coding RNA discover [11],

large-scale chromatin immunoprecipitation [12], gene-expression profiling [13], mutation

mapping and whole transcriptome analysis.

One of the common technological features that is shared among all the available NGS

platforms is the massively parallel sequencing of DNA molecules (single or clonally am-

plified) that are spatially separated in a flow cell. In fact, the sequencing is performed

by repeated cycles of polymerase-mediated nucleotide extensions or, in one format, by

iterative cycles of oligonucleotide ligation.

In the following, the main available NGS systems will be described, analyzing technolo-

gies and features of the instruments used for the sequencing process [14]. The most

diffuse platforms are the ones produced by Roche/454 Life Sciences, Illumina and Life

Technologies. In addition to these ones, there are also two emerging technologies: Ion

Torrent and Pacific Biosciences.

Roche/454 Life Science

454 Life Sciences, founded in 2000 by Jonathan Rothberg, developed the first commer-

cially available NGS platform, the GS 20, that was launched in 2005. This platform

combined the single-molecule emulsion PCR with pyrosequencing, and was used by

Margulies and colleagues to perform a shotgun sequencing of the entire 580,069bp of

the Mycoplasma genitalia genome, resulting in a 96% coverage and 99.96% accuracy

with a single GS 20 run. In 2007, Roche Applied Science acquired 454 Life Sciences,

and introduced a second version of the 454 instrument, called GS FLX. In this new

platform, that shared the same core technology of the GS 20, the flow cell is referred to

as a “picotiter well” plate, which is made from a fused fiber-optic bundle.

The library of template DNAs used for sequencing is prepared by first cutting the

molecule, and then end-repairing and ligating the obtained fragments (several hun-

dred base pairs long) to adapter oligonucleotides. The library is then diluted to a

single-molecule concentration, denatured, and hybridized to individual beads, contain-

ing sequences complementary to adapter oligonucleotides. By using an emulsion PCR,

the beads are then compartmentalized into water-in-oil mixture, where the clonal ex-

pansions of single DNA molecules bound to the beads. The beads are deposited into

individual picotiter-plate wells, and combined with sequencing enzymes (PTP loading).
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Figure 2.4: Roche 454 sequencing. In the library construction, the DNA is fragmented
and ligated to adapter oligonucleotides, and then the fragments are clonally amplified
by emulsion PCR. The beads are then loaded into picotiter-plate wells, where iterative
pyrosequencing process is performed.

After that, the pyrosequencing is performed by successive flow additions of the 4 dNTPs:

the four DNA nucleotides are added sequentially, in a fixed order across the picotiter-

plate device, during a sequencing run. When a nucleotide flows, millions of copies of

DNA bound to each of the beads and can be sequenced in parallel. In this way, each

nucleotide complementary to the template strand is added into a well, and so the poly-

merase extends the existing DNA strand with one nucleotide. A camera records the

light signal emitted by the addition of one (or more) nucleotide(s) (see Figure 2.4).

The two currently available systems by Roche/454 Life Sciences are the GS FLX+

and the GS Jr., which generate up to 1 × 106 and 1 × 105 reads per run, respectively.

More specifically, there are two instruments using the first system (GS FLX+), that

are: the GS FLX Titanium XLR70 and the newest GS FLX Titanium XL+. These two

instruments produce reads of length 450 and 700 base pairs respectively, with a typical

throughput of 450Mb in 10 hours for the first instrument, and 700Mb in 23 hours for the

second, both maintaining an error rate < 1%. On the other hand, the GS Jr. system

produces reads of length ∼ 400 base pairs, for a throughput of ∼ 35Mb in 10 hours, with

an error rate of < 1%. Table 2.1 summarizes all the previous information on Roche/454

Life Sciences instruments.
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Instrument Read length Throughput Run time
(bp) (Mb/run) (hours)

GS FLX Titanium XLR70 450 450 10
GS FLX Titanium XL+ 700 700 23
GS Jr. system ∼ 400 ∼ 35 10

Table 2.1: Roche/454 Life Sciences NGS instruments.

Illumina/Solexa

Solexa was founded in 1998 by two British chemists, Shankar Balasubramanian and

David Klenerman, and the first short read sequencing platform, called Solexa Genome

Analyzer, was launched in 2006. In the same year the company was acquired by Illumina.

The process of sequencing in the Genome Analyzer system is done by cutting the DNA

molecule into small fragments (several hundred base pairs long) and, after that, oligonu-

cleotide adapters are added to the ends of the these fragments to prepare them for the

binding to the flow cell (see Figure 2.5(a)). This latter cell consists of an optically trans-

parent slide with 8 individual lanes on the surface, on which oligonucleotide anchors are

bound. When the single-stranded template DNAs are added to the flow cell, they are

immobilized by hybridization to these anchors (see Figure 2.5(b)). Once the strand is

attached to an anchor primer, it is “arched” over and hybridized to an adjacent anchor

oligonucleotide (that has a complementary primer) by a “bridge” amplification in the

flow cell (see Figure 2.5(c)). Starting from the primer on the surface, the DNA strand

is replicated in order to create more copies (see Figure 2.6(a)), that are than denatured

(see Figure 2.6(b)). At this point, starting from a single-strand DNA template, multiple

amplification cycles are performed, in order to obtain a “cluster” (of about a thousand

copies) of clonally amplified DNA templates (see Figure 2.6(c)). Before starting the

sequencing process, the clusters are washed, leaving only the forward strands (to make

the sequencing more efficient). To start the sequencing process, primers complementary

to the adapter sequences, polymerase and a mixture of 4 differently colored fluorescent

reversible dye terminators are added to the mix. In this way, the added primers are

bound to the primers of the strand and the terminators are incorporated, according to

sequence complementarity of each strand present in the clonal cluster (see Figure 2.7(a)).

As bases are incorporated, a laser is used to activate the fluorescence (see Figure 2.7(b))

and the color is read by a computer, obtaining the sequence from many clusters (see

Figure 2.7(c)). This iterative process, called sequencing by synthesis, takes more than 2

days to generate a read sequence, but, since there are millions of clusters in each flow

cell, the overall output is > 1 billion base pairs (Gb) per run.
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(a) DNA sample preparation. (b) Binding to the surface. (c) Bridge amplification.

Figure 2.5: Illumina sequencing 1/3. The DNA sample is fragmented and the adapters
are bound to the ends (Figure 2.5(a)); the obtained single-strained fragments are
attached to the flow cell surface (Figure 2.5(b)) and then they are “bridged” (Fig-
ure 2.5(c)).

(a) Double-strained fragments. (b) Denaturation. (c) Amplification.

Figure 2.6: Illumina sequencing 2/3. The fragments become double-strained (Fig-
ure 2.6(a)) and then they are denatured. This process leaves anchored single-strained
fragments (Figure 2.6(b)). After a complete amplification, millions of clusters are
formed on the flow cell surface (Figure 2.6(c)).
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(a) First base determination. (b) Iterative sequencing process. (c) Sequence reading.

Figure 2.7: Illumina sequencing 3/3. The clusters are washed, leaving only the
forward strands and, to initiate the sequencing process, primer, polymerase and a 4
colored terminators are added. The primers are bound to the primers of the strand
and, after that, the first terminator is incorporated (Figure 2.7(a)). By iterating the
incorporation process, all the sequence nucleotides are added and the laser activates
the fluorescence (Figure 2.7(b)). During the incorporation a computer reads the image
and determines the sequence of bases (Figure 2.7(c)).

Instrument Read length Throughput Run time
(bp) (Gb/run) (days)

HiSeq 2000 2× 100 600 11
GAIIx 2× 150 95 14
MiSeq 2× 150 2 1

Table 2.2: Illumina/Solexa NGS instruments.

The newest platforms can analyze higher cluster densities and have been improved in

the sequencing chemistry allowing to obtain longer reads. Currently, there are 3 types

of available instruments by Illumina, all producing paired-end read (see Section 2.4).

More specifically, the HiSeq 2000 system can generate about 600 Gb of 2×100 base pair

reads for run, taking an overall time of about 11 days. There are also other models of

this instrument that have the possibility to perform “rapid runs”, in order to obtain a

smaller amount of reads in less time. Similarly to the previous instrument, the Genome

Analyzer IIx (GAIIx) can produce up to 95 Gb of 2×150 base pair reads per single flow

cell, taking about 14 days. Finally, the MiSeq instrument can produce reads of the same

size of the previous one (2 × 150 base pairs), but with a throughput of 2 Gb in about

one day. The information about these instruments are summarized in Table 2.2.
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Life Technologies

Life Technologies was formed in 2008 by the merging of Invitrogen and Applied Biosys-

tem; to be more precise, the former company bought the latter, and the two became Life

Technologies. It was in 2007 that Applied Biosystem refined the technology of SOLiD

(Supported Oligonucleotide Ligation and Detection) System 2.0 platform, previously

developed in the laboratory of George Church, and released its first NGS system, the

SOLiD instrument.

As for Roche/454 technology, the sample preparation consists of DNA fragments that are

then ligated to oligonucleotide adapters; after that, the fragments are attached to beads

and are clonally amplified by an emulsion PCR. Finally, beads with clonally amplified

template are immobilized onto a derivitized-glass flow-cell surface, where the sequencing

process starts. The major difference between SOLiD and the other NGS platforms is its

sequencing by ligation (instead of sequencing by synthesis). The sequencing by ligation

process starts by annealing a sequencing primer, complementary to the adapter at the

“adapter–template” junction, and adding a mixture of all the 16 possible probes. In the

specific, probes involved in this sequencing process are used to detect two adjacent bases

(16 possible combinations), but there are only 4 different fluorescent dyes. Because of

this, each base in the sequence is interrogated twice in order to obtain the correct original

sequence (see Figure 2.9). Once the primer is annealed, the correct di-base probe, i.e.

the one with the first two bases complementary to the first two bases of the template

sequence, binds to this latter template and ligates to the primer (see Figure 2.8(1)).

Each probe is an octamer, which consists of (3’-to-5’ direction) 2 probe-specific bases

followed by 6 degenerate bases (denoted as nnnzzz) with one of the 4 fluorescent labels

linked to the 5’ end. After the ligation of the probe, the fluorescence signal is recorded

(see Figure 2.8(2)) and then the last 3 degenerated bases are cleaved and washed in order

to obtain the new 5’ phosphate group that is used to ligate the probe in the next cycle

(see Figure 2.8(3)). To extend the first primer, seven cycles of ligation, referred to as a

round, are performed (see Figure 2.8(4)) and then this synthesized strand is denatured.

At this point, the new round is started, and a new sequencing primer, which is shifted

of one base with respect to the previous one, is annealed. This latter has an offset of

(n − 1) with respect to the original template sequence (see Figure 2.8(5)). The overall

sequencing process is composed of five rounds, each of which is performed with a new

primer and with successive offsets (n− 2, n− 3 and n− 4) (see Figure 2.8(6)).

One of the main features of this sequencing process is that the perfect annealing of the

probes is controlled by 2 bases of oligonucleotides. Thus, this method is usually more

accurate and specific than the sequencing by synthesis approaches. Currently, there are

2 available NGS instruments by Life Technologies. The first, the SOLiD 4 system, can
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Figure 2.8: Sequencing by ligation. In (1) the primer is annealed to the adaptor and
the first two bases of the probe are bound to the first two bases of the sequence. The
fluorescence signal is read (2) and the last bases of the probe are cleaved, so that the
new phosphate group is created (3). This ligation process is repeated for seven cycles
(4), in order to extend the primer. Finally, this latter primer is melted off and a new
one is annealed (5). The previous steps are repeated for all the new primers, with
different offsets (6).

Figure 2.9: Summary of the sequencing by ligation process showing, for each base of
the read sequence, the positions of the interrogations (2 for each position).

produce up to 100 Gb of 2 × 50 mate pair reads, in about 12 days. In a similar way,

the second one, called SOLiD 5500xl system, can produce up to 180 Gb of 75× 35 base

pairs (paired-end) or 60×60 base pairs (mate-paired), in about 7 days. All the previous

information on Life Technologies instruments are summarized in Table 2.3.
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Instrument Read length Throughput Run time
(bp) (Gb/run) (days)

SOLiD 4 2× 50 100 12
SOLiD 550xl 75× 75 (paired) 180 7

60× 60 (mate)

Table 2.3: Life Technologies/SOLiD NGS instruments.

Emerging Technologies

In addition to the previously described methods, there are also some other new emerging

technologies, in the sequencing field. In the following, two of them will be briefly pre-

sented. The first one is the so called Ion Torrent technology, in which the information

coming from the chemical sequence is translated into digital form, without any fluores-

cence. In fact, this method relies on a well known biochemical process: in nature, when a

nucleotide is incorporated into a strand of DNA by a polymerase, a hydrogen ion (H+)

is released as a byproduct. This hydrogen ion carries a charge that the system’s ion

sensor can detect. This sensor is composed of a high-density array micro-machined wells

that allow to perform biochemical processes in a parallel manner. In this way, when a

nucleotide is incorporated into a DNA strand, it releases a hydrogen ion which charges

the pH of the solution. This charge can be detected by the ion sensors and translated

into digital form. Any nucleotide that is added to a DNA template is detected as a

voltage change, and if a nucleotide is not a match for a particular template, no voltage

change will be detected and no base will be called for that template. On the other hand,

if there are two identical bases on the DNA strand, the voltage is doubled, and the

chip records two identical base calls. Thanks to this new technology, it is possible to

reach a throughput of 1 Gb in a few hours, depending on the used chip. Moreover, this

technology is still under development in order to improve the read quality and increase

the length of the produced sequences.

In addition to the previous one, Pacific Biosciences developed a single-molecule real-time

(SMRT) sequencing system. This technology uses a progressive sequencing by synthesis

in which the nucleotides, incorporated during the polymerase, have a fluorescent dye at-

tached to the poly-phosphate chain (phospholinked-nucleotides). Such dyes are different

for each of the 4 bases. The sequencing is performed on the SMRT cells, which contain

thousand of zero-mode waveguides (ZMWs), providing a visualization chamber. In this

way, when a base is incorporated, the fluorescent nucleotide is brought into the poly-

merase’s active site and a high-resolution camera, in the ZMW, records this fluorescence

signal. In addition to this, since the sequencing library is prepared in such a way that

the resulting molecule is circular, it is possible to sequence the template using a scheme,

called circular consensus sequencing, that improves the accuracy of the base calls, by
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using the redundant sequencing information. This system gives the longest reads, in

fact, the average read length per run is around 1.5 Kb. These, are two of the currently

emerging technologies, that are continuously evolving in the field of sequencing, and are

usually referred to as Third Generation Sequencing (TGS) technologies.

2.4 Data

NGS technologies have overcame the limitations of the previous sequencing methods

by providing a new “kind” of data, suited for answering a wide range of biological

questions. More specifically, one of the features that is shared among all the previously

illustrated platforms, is that they produce a huge quantity of short sequences (short

reads) that deeply cover the sequenced molecule. In the following, the main features of

NGS technologies will be described.

The first, and probably the most relevant observation, is done by comparing the produced

NGS reads to the ones of classical methods, such as Sanger sequencing, in terms of

sequence length. In fact, depending on the adopted platform, the produced sequences

can range from 35 base pairs of the Illumina machines, to several hundred base pairs of

the Roche/454 systems, which are still shorter than the sequences, few thousand base

pairs long, of the Sanger method. Another key point of this new generation of systems

is the throughput, that is much higher than before. Due to such a massive amount of

involved data, the management and the analysis of the data require dedicated software

and also high-performance and capacity computing resources. This shift, from a low

number of long reads to a huge number of short reads, can be also observed from a

coverage point of view, which is the average number of reads that represent (cover) a

given nucleotide, in the original sequence. In the classical methods, the typical coverage

was 1x - 2x, meaning that each base was present in at most two reads. On the other

hand, with the advent of the NGS technologies, it is now possible to reach a coverage of

10x or 100x of the given sequence, which correspond to an improvement of one or two

orders of magnitude.

It is not easy to directly compare the different NGS platforms, especially from an error

rate point of view. In fact, for example, most of the times the value reported by the

companies is based on sequence reads of particular templates, that are favourable for

their platform. However, in almost all the previously introduced instruments (except the

one by Pacific Biosciences), the errors increase near the end of each platform’s maximum

read length. Indeed, maximum read length is limited by error tolerance. Although

the error rate comparison is difficult for other reasons, in Table 2.4 are reported the

“reasonable approximations” that can be used to compare different platforms [15].
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Instrument Primary Single-pass Final
Errors Error Rate (%) Error Rate (%)

454 - all Models Indel 1 1
Illumina - all models Substitution ∼ 0.1 ∼ 0.1
SOLiD 5500xl A-T bias ∼ 5 6 0.1
Ion Torrent - all chips Indel ∼ 1 ∼ 1
Pacific Biosciences CG Deletion ∼ 15 6 15

Table 2.4: Error rate comparison of different sequencing platforms.

Phred Probability of Base Call
Quality Score Incorrect Base Call Accuracy

10 1 in 10 90%
20 1 in 100 99%
30 1 in 1,000 99.9%
40 1 in 10,000 99.99%
50 1 in 100,000 99.999%

Table 2.5: Quality score and base calling accuracy.

From Table 2.4, it is possible to notice that the error rate varies from 0.1% of the SOLiD

5500xl and Illumina systems, to 15% of the Pacific Biosciences one. These values are

referred to the final error rate, which can be different from the one obtained in a single

passage. This is the case of SOLiD, that has the second highest raw error rate (∼ 5%),

but, by allowing a double or triple encoding of each base (i.e. each base is sequenced

independently two or three times, with inconsistent data becoming inaccessible to users),

it achieves its low error rate (6 0.1%). In a similar way, Illumina refers its error rate not

on the entire data, reaching a ∼ 0.1%; also Pacific Biosciences suggests of reading each

template multiple times, in order to overcome high error rates and to achieve a consensus

sequence with a low error rate, but it gives users the option to obtain single-pass data.

Finally, in addition to raw error rates of sequencing reads, each platform has also its

own biases. To this purpose, each sequencing platform usually provides the quality of

the produced data, by adding an extra information in the read file (or in a separated

one), about the quality of each base present in the sequences. For each nucleotide, it is

used the Phred quality score as a measure of reliability. This measure, denoted as Q, is

logarithmically related to the base-calling error P :

Q = −10 log10P

where Q is the phred quality score and P is the probability that the base call is incorrect.

This means that, the smaller the P , the higher the Q. From another point of view, 1−P
is the probability of correctness of the base, so if P = 0.01, then the quality score Q = 20

and the probability that is correct is 0.99 (i.e. 99%) (see Table 2.5).
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The “old way” to provide the information about the sequences and the associated quality

values was to provide two separated files. The first one, in FASTA format, in which there

were the sequences, and the other one, containing the phred values:

FASTA Sequence file :

>SEQ ID

agtcTGATATGCTgtacCTATTATAATTCTAGGCGCTCATGCCCGCGGATATCGTAGCTA

Quality file :

>SEQ ID

10 15 20 22 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

50 50 50 20 50 50 50 14 50 50 50 11 20 25 25 30 30 20 15 20

35 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

In the specific, in a FASTA file there are two lines for each entry, i.e. for each read: the

first one contains the read id (prefixed with >) and the second one contains the sequence

of the read. The quality file adopts the same format, but instead of the nucleotides,

the second line is a sequence of numeric values, one for each base of the read in the

FASTA file, indicating the quality score. To have a more compact way to provide the

information about read and quality scores, a new format has been adopted. This “new

way”, called FASTQ, incorporates both the information in a single file. In the specific,

it is organized as:

FASTQ file :

@SEQ ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+

!’’*(((***+))%%%++)(%%%%).1***(-+*(’’))**55CCF>>>>>>CCCCCCC65

In the first line of each entry, the sequence identifier starts with the ’@’ symbol (instead

of ’>’) and it is followed by the sequence in another line (as in the FASTA file). After

that, there is a separator line started with a symbol (which usually is ’+’), and finally,

there is a line containing the encoded quality values (one symbol per nucleotide). The

fourth line encodes the quality values of the sequence of nucleotides present in the second

line, and obviously, it must contain the same number of symbols as the number of letters

of the sequence. The quality encoding is done by using letters and symbols to represent

numbers, and the range of adopted symbols depends on the used platform. The following

example refers to the Illumina range of symbols, with associated quality scores from 0

to 41:
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For this reason, one of the first steps in an analysis pipeline that uses NGS data is the

sequencing filter, based on the phred values, in order to discard the reads with poor

qualities or to cut them at a certain length (read trimming).

As a final remark, all the NGS platforms, in addition to the “single” short read sequences,

offer the possibility to produce paired-end reads, i.e. sequences that are derived from both

the ends of the fragment, in the library. Obviously, there are some differences among

read pairs, depending from the used platform. In particular, it is possible to distinguish

between:

• Paired-ends, that are a linear fragment sequenced at both the ends in two separate

reactions;

• Mate-pairs, that are a circularized fragment, usually > 1 Kb long, sequenced by a

single reaction or by two separate end reads.

In general, paired-end reads offer some advantages, e.g. for the sequencing of large and

complex genomes, because they can be more accurately placed (mapped), than the single

ended short reads and so they can be used to disambiguate some complex situations. It

is also possible to distinguish reads that are coming from cDNAs, that carry information

about RNA molecules. In this case they are called RNA-Seq reads.

2.4.1 RNA-Seq

The RNA sequencing method, called RNA-Seq, is the use of the previously described

technologies, for the sequencing RNA molecules [16]. This technique has revolutionized

the way in which transcriptomes are analyzed, providing a new approach to map and

quantify them. As said, by using NGS technologies, a population of RNAs is converted

into a library of cDNA fragments by attaching adaptors to the ends of each sequence.

These fragments are then sequenced, obtaining a set of short reads (or paired-ends

reads).

RNA-Seq has opened new prospectives, like the possibility of identifying the positions

of the transcription boundaries. In fact, novel transcribes regions and introns for ex-

isting genes can be annotated, and moreover, some of the aspects of the existing gene

annotations can be modified and corrected. In addition to this, the information about
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the connection of two or more exons can be obtained by using short and long reads. For

these reasons, RNA-Seq is particularly suited for studying complex transcriptomes, to

reveal sequence variations. Furthermore, from a quantitative point of view, RNA-Seq

can be used to determine the expression levels of RNA molecules, in a more accurate

way, than in the previous methods. Considering all the mentioned advantages, RNA-Seq

has generated a global view of the transcriptome and its composition for a number of

species (known or unknown) and has revealed new splicing isoforms of many genes.

The annotation of alternative splicing variants and events, to differentiate and compare

organisms, is part of the central goal in transcriptome analysis of identifying and quan-

tifying all full-length transcripts. RNA-Seq will help to reach this purpose. It can also

be applied to the biomedical field, in order to compare normal and diseased tissues to

understand the physiological changes between them. Another challenge, involving RNA-

Seq, is its use to target complex transcriptomes, in order to identify rare RNA isoforms

from the genes. In the near future, RNA-Seq is expected to replace microarrays for

many applications involving the structure and the dynamic of transcriptomes.

2.5 Definitions

2.5.1 Strings

Let s = s1s2 · · · s|s| be a sequence of characters over the alphabet Σ, that is a string. The

length of the string s is denoted by |s| and the size of Σ is denoted by |Σ|. If considering

DNA molecules, the typical alphabet is Σ = {A,C,G, T}, where x ∈ Σ is a nucleotide

and the length is measured in the number of nucleotides (nt), or base pairs (bp) when

referring to the double stranded molecule. The ith character of a string s is denoted by

s[i]. Then s[i : j] denotes the substring sisi+1 · · · sj of s, while s[: i] and s[j :] denote

respectively the prefix of s consisting of i symbols and the suffix of s starting with the

j-th symbol of s.

We denote with pre(s, i) and suf(s, i) respectively the prefix and the suffix of length i of

s. Among all prefixes and suffixes, we are especially interested into LH(s) = pre(s, |s|/2)

and RH(s) = suf(s, |s|/2) which are called the left half and the right half of s.

Given two strings s1 and s2, the overlap ov(s1, s2) is the length of the longest suffix

of s1 that is also a prefix of s2. The fusion of s1 and s2, denoted by ϕ(s1, s2), is the

string s1[: |s1| − ov(s1, s2)]s2 obtained by concatenating s1 and s2 after removing from

s1 its longest suffix that is also a prefix of s2. We extend the notion of fusion to a
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G = ( V = {1, 2, 3, 4, 5},
E = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (4, 5)}

)

1 2

3

4

5

(a) Example of Undirected Graph.

G = ( V = {1, 2, 3, 4, 5},
E = {(1, 2), (1, 5), (2, 3), (2, 4), (3, 2), (4, 1), (4, 5)}

)

1 2

3

4

5

(b) Example of Directed Graph.

Figure 2.10: Examples of graphs. Both the graphs have 5 nodes and 7 edges, but in
Figure 2.10(a) the edges are unordered (i.e. (u, v) = (v, u)) and they are represented as
simple lines. Instead in Figure 2.10(b) the edges are ordered (i.e. (u, v) 6= (v, u)) and
they are represented as arrows indicating the direction.

sequence of strings 〈s1, . . . , sk〉 as ϕ(〈s1, . . . , sk〉) = ϕ(s1, ϕ(〈s2, . . . , sk〉)) if k > 2, and

ϕ(〈s1, s2〉) = ϕ(s1, s2).

2.5.2 Graphs and Trees

Graphs

A graph G is an ordered pair (V,E), where V is a finite set called the vertex set and E

is called the edge set. Given two vertexes (or nodes) u, v ∈ V , an edge (or arc) is a pair

(u, v) ∈ E. An edge e = (u, v) is directed if one endpoint is the “head” and the other

the “tail” (making e ordered, i.e. (u, v) 6= (v, u)). In such a case the graph G is called

directed graph (or digraph). Otherwise, if there is no direction in the edges, the graph is

called undirected graph (see Figure 2.10 for an example of graphs). If (u, v) is an edge

in a directed graph G = (V,E), e is incident from (or outgoing) vertex u and is incident

to (or ingoing) vertex v. If (u, v) is an edge in an undirected graph G = (V,E), e is

incident to vertexes u and v. Given a vertex v ∈ V , the indegree of v is the number of

its ingoing edges and the outdegree is the number of its outgoing edges. In a directed

graph the degree of a vertex is the sum of its indegree and its outdegree edges, instead

in an undirected graph the degree of a vertex is the number of edges incident on it.

A path (or walk) of length k from a vertex u to a vertex u′ in a graph G = (V,E) is

a sequence 〈v0, v1, . . . , vk〉 of vertexes such that u = v0, u′ = vk and (vi−1, vi) ∈ E for

i = 1, . . . , k. The length of the path is the number of edges in the path. A path forms

a cycle if its endpoints u and u′ are the same, i.e. u = u′. A graph is called acyclic

if it contains no cycles. A graph that is directed and acyclic is called directed acyclic
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graph (DAG). A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

Given a set V ′ ⊆ V , the subgraph induced by V ′ is the graph G′ = (V ′, E′), where

E′ = {(u, v) ∈ E : u, v ∈ V ′}. An undirected graph is connected if every pair of vertexes

is connected by a path, and a connected component is a maximal connected subgraph of

the graph. A connected graph has one connected component.

An interesting and well studied type of graphs are the so called De Bruijn graphs. This

latter graphs were initially developed to find the shortest cyclic sequence of letters from

an alphabet, in which every possible string of length k appears as a substring in the

cyclic sequence. To construct such a graph, given an alphabet Σ, all possible (k − 1)-

mers (substrings of length k − 1) are assigned to nodes, and there exists a direct edge

between two (k − 1)-mers, x and y, if there is some k-mer whose prefix is x and whose

suffix is y. In this way, the k-mers are represented by the edges of the graph. All the

possible substrings of length k of an alphabet Σ are |Σ|k. For example, if dealing with

the DNA, the usual alphabet is Σ = {A,C,G, T} and so all the possible substrings of

length k are 4k. In the binary alphabet (i.e. Σ = {0, 1}) all the possible substrings of

length 3 are (23 = 8): 000, 001, 010, 011, 100, 101, 110, 111. The corresponding De

Bruijn graph with k = 4, that has all the previous substrings as nodes, is shown in

Figure 2.11. Each k-mer can be obtained by taking the (k− 1)-mer at the starting node

and overlapping the (k − 1)-mer at the ending node. It must be also noticed that two

consecutive nodes (i.e. nodes that are connected by an edge) have an overlap of k − 2

(i.e. the suffix of length k− 2 of the first one is equal to the prefix of length k− 2 of the

second one).

This type of graphs have been recently used for the assembly of sequences from NGS

data in order to provide an efficient approach to solve that computational problem.

One of the differences, with respect to the formulation of the problem for which the De

Bruijn graphs were initially developed, is that, when dealing with short reads, not all the

possible substrings of length k of a given alphabet are present. The advantage of using

De Bruijn graphs is that the sequence can be reconstructed by an Eulerian cycle (in the

example in Figure 2.11 the shortest circular sequence, that contains all the 4-mers as

substrings, is 0000111101100101).

Trees

A (free) tree is a connected, acyclic, undirected graph. Let G = (V,E) be an undirected

graph. The following statements are equivalent.

1. G is a (free) tree.
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Figure 2.11: Example of De Bruijn graph on the binary alphabet, with k = 4. Nodes
represent all the possible substrings of length k − 1 and there is an edge between two
nodes if there is a k-mer that has the first (k− 1)-mer as prefix and the second (k− 1)-
mer as suffix. The k-mer is obtained by the fusion of the (k− 1)-mers at the two ends.
In this example edges are labeled by the symbols that must be concatenated to the first
(k − 1)-mer, to obtain the k-mer.

2. Any two vertexes in G are connected by a unique path.

3. G is connected, but if any edge is removed from E, the resulting graph is discon-

nected.

4. G is connected, and |E| = |V | − 1.

5. G is acyclic, and |E| = |V | − 1.

6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle.

A rooted tree is a (free) tree in which there is a distinguished vertex called root. Let x

be a node in a rooted tree T with root r. Any node y on the unique path from r to x is

called an ancestor of x (and proper ancestor if x 6= y). If y is an ancestor of x, then x

is a descendant of y (and proper descendant if y is a proper ancestor of x). The subtree

of T , rooted at x, is the tree induced by descendants of x, rooted at x, and it is referred

to as Tx.

If the last edge on a path from the root r of a tree T to a node x is (y, x), then y is

the parent of x, and y is a child of y. The root is the only node in T with no parent.

If two nodes have the same parent, they are siblings. A node with no children is a leaf.

A node that is not a leaf is an internal node (see Figure 2.12 for an example). In a

rooted tree T , the number of children of a node x is called the degree of x in T . The
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Figure 2.12: Example of rooted tree. The node r is the root of the tree, the nodes
n3, n4, n5, n7, n9, n10 and n11 are the leaves and n1, n2, n6 and n8 are the internal
nodes. As an example, n6 is the parent of n8 and n2 is one of the children of n1 (the
other one is n5).

length of the path from the root r to a node x is the depth of x in T . The largest

depth of any node in T is the height of T . An ordered tree is a rooted tree in which the

children of each node are ordered, i.e. if a node has k children, then there is the first

child,. . . , the k-th child. In general, rooted trees are referred as n-ary trees, in which n

represents the maximum number of children of each node. From this point of view, one

of the most studied type of trees are the binary trees, in which every node has at most

2 children. Given a tree T , it is also possible to identify its set of nodes as N(T ) and

its set of edges as E(T ). In addition to this, L(T ) represent the set of all the leaves,

i.e. L(T ) = {n ∈ N(T ) : n is a leaf}, while I(T ) denotes its set of internal nodes, i.e.

I(T ) = {n ∈ N(T ) \ L(T )}.

Given a rooted tree T with root r and two nodes x and y, the Lowest Common Ancestor

(LCA) of x and y, denoted as LCA(x, y), is the lowest node in the tree (the farthest

from the root r) that has both x and y as descendants.

There are several algorithms to traverse a rooted tree and the difference among them

is the order in which they visit the nodes. In particular, it is possible two distinguish

between two main approaches: breadth-first traversal and depth-first traversal. In the

breadth-first traversal of a rooted tree T with root r, the nodes are visited according

to their depth in T . The first visited node is the root r (which is at zero depth), then

all the nodes at depth one (i.e. the children of r) are visited, then the nodes at depth

two (i.e. the children of the children of r) are visited, and so on until the leaves are

reached. On the other hand, the depth-first traversal can be performed in preorder or

in postorder. In the former, starting from the root, a node is visited and then, for all

the subtrees rooted at each of its children, a preorder visit is performed. The recursive

definition is the following:

1. Visit the root; and then
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Breadth-first: A, B, G, C, F, H, I, L, D, E, J, K

Depth-first (preorder): A, B, C, D, E, F, G, H, I, J, K, L

Depth-first (postorder): D, E, C, F, B, H, J, K, I, L, G, A

Figure 2.13: Example of tree traversals. Given the tree, this example shows the order
in which the nodes are visited, for each of the three types of traversal.

2. do a preorder traversal at each of the subtrees of the root.

Indeed, in a postorder traversal, the node is visited last, and before doing that, a pos-

torder traversal is performed for the subtrees rooted at each of the children of the

considered node. The recursive definition is the following:

1. Do a postorder traversal each of the subtrees of the root; and then

2. visit the root.

In this latter case the root is visited after all the other nodes. For an example of the

three described traversals, see Figure 2.13.



Chapter 3

Reconstructing Isoform Graphs

from RNA-Seq data

Next-generation sequencing (NGS) technologies allow new methodologies for alternative

splicing (AS) analysis. Current computational methods for AS from NGS data are

mainly focused on predicting splice site junctions or de novo assembly of full-length

transcripts. These methods are computationally expensive and produce a huge number

of full-length transcripts or splice junctions, spanning the whole genome of organisms.

Thus summarizing such data into the different gene structures and AS events of the

expressed genes is a hard task.

To face this issue, in this work we investigate the computational problem of reconstruct-

ing from NGS data, in absence of the genome, the structure for each gene, which is

represented by the isoform graph: we introduce such graph and we show that it uniquely

summarizes the gene transcripts. We define the computational problem of reconstruct-

ing the isoform graph from a set of RNA-Seq reads and we provide some conditions that

must be met to allow such reconstruction. Finally, we describe an efficient algorithmic

approach to solve this latter problem, validating our approach with both a theoretical

and an experimental analysis.

Part of the work presented in this chapter has been presented in international venues,

including the ISMB/ECCB - 8th Special Interest Group meeting on Alternative Splicing

(AS-SIG) in Vienna, and the Next Generation Sequencing Workshop in Bari. Moreover,

it has been published in [2].

31
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3.1 Introduction

Challenging tasks of transcriptome analysis via RNA-Seq data analysis [17, 18] are re-

constructing full-length transcripts (or isoforms) of genes and their expression levels.

Moreover, the annotation of alternative splicing variants and AS events, to differentiate

and compare organisms, is part of the central goal in transcriptome analysis of iden-

tifying and quantifying all full-length transcripts. However, the extraction of splicing

variants or significant AS events from the different transcripts produced by a set of genes

requires to compare hundreds of thousands of full-length transcripts. Graph represen-

tations of splice variants, such as splicing graphs [19], have emerged as a convenient

approach to summarize several transcripts from a gene into the putative gene structure

they support. The current notions of splicing graphs rely on some sort of gene anno-

tations, such as the annotation of full-length transcripts by their constitutive exons on

the genome.

In this work, we first define the notion of isoform graph which is a gene structure

representation of genome annotated full-length transcripts of a gene. The isoform graph

is a variant of the notion of splicing graph that has been originally introduced in [20]

in a slightly different setting. When using only RNA-Seq data, the genome annotation

cannot be given, and thus it is quite natural to investigate and characterize the notion of

splicing graph which naturally arises when a reference genome is not known or available.

Thus, in the work we focus on the following main question: under which conditions the

reconstruction of a gene structure can be efficiently accomplished using only information

provided by RNA-Seq data?

In order to face this problem, we give some necessary or sufficient conditions to infer

the isoform graph, we introduce an optimization problem that guides towards finding a

good approximation of the isoform graph and finally we describe an efficient heuristic

for our problem on data violating the conditions necessary to exactly infer the isoform

graph.

The novelty of our approach relies on the fact that it allows the reconstruction of the

splicing graph in absence of the genome, and thus it is applicable also to data where

the genomic sequence is not available, or is highly fragmented or altered data, as found

in cancer genomes. Moreover we focus on methods that can effectively be used for a

genome-wide analysis on a standard workstation. Such goal implies that we have to avoid

computing the complete assembly of full-length transcripts or listing the set of splice

site junctions, as those tasks are usually computationally intensive when performed on

the whole transcriptome, i.e. when the input data consists of RNA-Seq sampled from

the transcripts of several genes.
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In the work, we aim to advance towards the understanding of the possibilities and

limitations of computing the distinct gene structures from which genome-wide RNA-Seq

or short reads data have been extracted. In this sense our approach aims to keep separate

gene structures in the reconstruction from genome wide RNA-Seq, even in absence of a

reference.

Our proposed approach is validated from both theoretical and experimental points of

view. First we will prove that some conditions must be met in order to guarantee the

correct reconstruction of the isoform graph from RNA-Seq data. Then we describe a

simple and efficient algorithm that reconstructs the isoform graph under some more

restrictive conditions. At the same time, a more refined algorithm (sharing the main

ideas of the basic one) is able to handle instances where the aforementioned conditions

do not hold due to, for example, errors in the reads or lower coverage that typically

affect real data.

We show experimentally, as well as theoretically, the scalability of our implementation to

huge quantity of data. In fact limiting the time and space computational resources used

by our algorithm is a main aim of ours, when compared to other tools of transcriptome

analysis. More precisely, our algorithmic approach works in time that is linear in the

number of reads, while having space requirements bounded by the size of hashing tables

used to memorize reads.

Moreover, we show that our method is able to distinguish among different gene structures

though processing a set of reads from various genes, limiting the process of fusion of

graphs structures from distinct genes due to the presence of repeated sequences.

The theoretical and experimental analysis have pointed out limitations that are inherent

the input data. As such, we plan to further improve our algorithms and our implemen-

tations to be able to deal with the different situations coming from these limitations.

It must be underlined that our computational approach to AS is different from current

methods of transcriptome analysis that focus on using RNA-Seq data for reconstructing

the set of transcripts (or isoforms) expressed by a gene, and estimating their abundance.

In fact, we aim on summarizing genome-wide RNA-Seq data into graphs, each repre-

senting an expressed gene and the alternative splicing events occurring in the specific

processed sample. On the contrary, current tools do not give a concise result, such as

a structure for each gene, nor they provide a easy-to-understand list of AS events for a

gene.

Observe that, in absence of a reference, the information given by the predicted full-

length transcripts spanning the whole genes does not imply a direct procedure to built

the isoform graph. In fact, the annotation against a genome is required to compute such
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a graph, as we need to determine from which gene a given transcript is originated, may

lead to a complex and time consuming procedure.

As said before, our work is not focused on full-length transcripts reconstruction, such as

Cufflinks [21], and Scripture [22] or de novo assembly methods that build a De Brujin

graph such as TransAbyss [23], Velvet [24], and Trinity [25]. These tools are computa-

tionally expensive and are able to find only the majority of the annotated isoforms while

providing a large amount of non annotated full-length transcripts that would need to be

experimentally validated.

3.1.1 Transcriptome Reconstruction

The advent of RNA-Seq methods has opened new opportunities in the field of trascrip-

tomics (as underlined in Section 2.4.1). For this reason, in the recent years, new compu-

tational challenges have emerged and new solutions have been proposed in order to tackle

these recent problems. In particular, it is possible to identify three main “categories” of

addressed computational challenges [26]: read mapping, transcriptome reconstruction

and expression quantification. Although these different analysis can be performed sin-

gularly, RNA-Seq data studies often require to use methods from all three categories,

in fact, the built pipelines, for RNA-Seq based analysis, combine the output of some

programs as input of others.

More specifically, we mainly focus on the transcriptome reconstruction, describing the

different adopted approaches. The reconstruction of the transcriptomes from RNA-Seq

data is done by assembling the reads or their alignments, depending on the adopted

strategy, into contigs. There are some main factors that make this task much difficult.

First of all, since different transcripts have different expression levels, it can happen that

for the less expressed ones there are only few a reads coming from them, making the

reconstruction hard. Moreover, due to the fact that reads have short length, it is not

easy to determine where each sequence is coming from, also because a gene can have

very similar transcripts. To overcome these issues, there have been developed some tools

that falls into two main categories, depending on the fact that they use or not a reference

sequence (usually the genome) to guide the assembly.

Genome-guided Reconstruction

As pointed out in [27], the methods for the genome-guided reconstruction (also called

reference based or ab initio assembly) involve the use of a splice aligner, in fact the

introduction of RNA-Seq data has opened new issues, like the possibility that a sequence
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(read) spans a splice junction. When using RNA-Seq sequences it is possible to perform

alignments against a transcriptome but also a genome. In the first case (referred to as

unspliced alignment), the whole sequence is searched into the reference, and this is the

same as mapping a read coming from a DNA molecule into a genome. On the contrary, in

the second case (referred to as spliced alignment), the read can be split and the obtained

substrings can be aligned to different positions in the reference. This is for example the

case of reads that span a splice junction between two exons that are separated by an

intron in the genome. For this reason it is necessary to introduce a gap in the alignment.

It must be clarified that also the unspliced aligners can introduce small gaps in order to

deal with deletions or insertions few (usually one or two) bases long.

In particular, the unspliced aligners are usually based on the seed technique or on the

Burrows-Wheeler transform, which is used to index the reference sequence. The ad-

vantage in using this transform is that it is particularly efficient for searching for ex-

act matches in fact, by using some optimized implementation, an alignment against

the human genome can be performed on a standard laptop. Finally, by performing

a backtracking it is possible to deal with errors, but in this case the performance de-

creases exponentially. Two examples of programs that use the BWT are Bowtie [28]

and BWA [29]. Indeed, seed based methods can be useful when for example the original

transcriptome is not available and so the mapping must be done against the genome

or a distant transcriptome (from another species). On the other hand, spliced aligners

are capable of align reads with long gaps. Most of the used software are based on two

main approaches, called exon-first and seed and extend. The former method is a two

steps process, in which the reads are first aligned using an unspliced aligner, in order to

identify the ones that are “entirely contained” into an exon and then the remaining ones

are split into substrings and mapped singly. The assumption is that reads including

one or more splice junctions require a gapped alignment. Example of programs that

adopt this approach are MapSplice [30], SpliceMap [31] and TopHat [32]. In the second

method, called “seed and extend”, reads are cut into small substrings that are aligned

into the genome. When a candidate match is found, the mapping is extended (using for

example the Smith-Waterman algorithm) until the splice junction is correctly identified

and the exact spliced alignment of the read is found. GSNAP [33] and QPALMA [34]

are two software that use this approach. In general, exon-first methods are faster than

the others and require less computational resources but, in contrast, seed and extend

methods perform better than exon-first approaches when most of the mapping reads are

on splice junctions.

As we said, for the genome-guided reconstruction, reads are usually aligned against the

reference genome to obtain the mapping across introns. After that, by using the over-

lapping reads in each position, a graph is built and finally, all the isoform are composed
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by a graph traversal. There are different strategies used to build and traverse the graph

representing the isoforms. In particular, Scripture [22] builds a “connectivity graph” in

which two bases in the genome are connected if they are immediate neighbors either in

the genomic sequence itself or within a spliced read. At this point, the transcripts are

created by scoring each path in the graph based on a statistical segmentation approach

in order to keep only the relevant ones. This is why Scripture may produce a larger set of

transcripts for each locus. In a similar way, Cufflinks [21] generates an “overlap graph” in

which the spliced reads (split into fragments) are divided into non-overlapping loci, and

each locus is assembled independently from the others. To do this, the fragments that

are compatible and that overlap in the genome (based on the position) are connected,

so that each fragment has one node in the graph and there is an edge between every

pair of compatible fragments. In this graph, each path corresponds to a set of mutually

compatible fragments that can be contracted to a single isoform. In this way, Cufflinks

finds the minimum path cover of the overlap graph. This idea is based on Dilworth’s

Theorem which states that the number of mutually incompatible reads is the same as

the minimum number of transcripts needed to “explain” all the fragments. Cufflinks

implements a proof of Dilworth’s Theorem that produces a minimal set of paths that

cover all the fragments in the overlap graph, by finding the largest set of reads with the

property that not two of them could have originated from the same isoform. Since it

is possible to have more than one minimal set of isoforms, Cufflinks uses a statistical

model on the coverage of the paths by weighting the edges in the graph. Both the

previous programs can be efficiently executed on a standard laptop and guarantee good

performances, also in presence of low expressed transcripts.

Genome-Independent Reconstruction

The second category of transcriptome assembly methods is called genome-independent

(also referred to as de novo strategy). The difference, with respect to the previously

described approaches, is that in this case the reads are directly assembled to build the

transcripts. To do this, (almost all) the genome independent methods use the De Bruijn

graphs, which give an efficient way to represent a sequence in terms of all its possible

substrings of length k, called k-mers (see Section 2.5.2). In the specific, given a sequence

S and an integer k, S is split into overlapping k-mers (all its substrings of length k) and

the De Bruijn graph is built with k-mers as nodes and there is an edge between two

k-mers if they have an overlap of k − 1 (i.e. they are consecutive in the string S). In

this way, there exists an edge between two nodes x and y, if x (after removing its first

digit) is prefix of y, and y (after removing its last digit) is suffix of x. Here, there is an

example of De Bruijn graph with k = 4:
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S : acctgacgtaac

⇓
De Bruijn graph:

acct → cctg → ctga → tgac → gacg → acgt → cgta → gtaa → taac

A key point of the De Bruijn graphs is that, to build the original sequence, it is necessary

to find an Eulerian path in the graph (i.e. a path that visits every edge exactly once). By

using this property, it is possible to use the De Bruijn graphs to assemble (overlapping)

sequences in an efficient way, making the choice of k crucial. There are also some

problems in the use of these graphs for the assembly of sequences, like for example

sequencing errors that generate spurious branches or cycles. Another problem in finding

the “assembled sequence” is that it can happen that an Eulerian path is not possible

and so a path that visits at least every edge once is chosen. A common strategy, used

by the genome independent assemblers, is to build a De Bruijn graph from all the reads

by splitting the reads into k-mers and then contracting all the linear paths. After that,

the transcripts are composed by traversing this collapsed graph, as shown in Figure 3.1

from [27].

TransABySS [23] uses the previously described procedure and, in order to prune the

spurious branches, it uses the paired-end sequences. More specifically, by using the

empirical distribution (coverage), branches that are not supported by reads and paired-

ends are deleted. In a similar way, Velvet [24] performs a series of operations to remove

errors in the graph. It must be underlined that Velvet is a “generic” de novo assembler

and it is not specifically designed for transcriptome reconstruction. Finally, a recently

developed tool, called Trinity [25], that uses a three steps process based on De Bruijn

graphs, is becoming one of the most used de novo assembly programs. In the first step

of the Trinity software, named Inchworm, a dictionary with all the k-mers extracted

from the reads is constructed, filtering out the erroneous and the less frequent ones

(e.g. singletons). After this, contigs are assembled in a greedy way: starting from

the most frequent k-mer, the contig is extended, in both the directions, by extracting

(and deleting from the dictionary) the most frequent k-mers, which has a k− 1 overlap.

The extension process is repeated until a k − 1 overlapping k-mer exists. New contigs

are created until there are available k-mers in the dictionary. As pointed out by the

authors, this approach is much more efficient than computing a full graph from all reads

at once, and it quickly provides a meaningful intermediate output of the contigs that are

strongly supported by many k-mers in the reads. In the second step, called Chrysalis,

the assembled contigs are partitioned into subsets that are likely to be derived from

alternative splice transcripts. These contigs are grouped if there is an overlap of k − 1

bases among them and if there is a minimal number of reads that span the junction
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Figure 3.1: Genome Independent assembly. Reads are split into k-mers (1) and the De
Bruijn graph is built, with the possibility of having sequencing errors or SNPs and also
deletions or introns, that generate different branches (2). The graph is then contracted
by collapsing all its linear paths (3). The contracted graph is traversed (4) and each
isoform is assembled from an identified path (5).
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among the contigs. Finally, for each cluster, a De Bruijn graph is built by assigning

to each of the edges, a weight corresponding to the number of k-mer sets supporting

it. In the last step, named Butterfly, the graph is contracted and then transcripts are

assembled by finding paths and looking for reads (and paired-end) supporting them.

Since genome independent approaches are usually memory and time consuming tasks

(because of the huge number of reads to assemble), clustering the graph into independent

subgraphs allows to speed up the procedure by executing it in parallel.

It is also possible to combine the two complementary approaches, in order to take advan-

tage of the sensitivity of the genome guided methods and the ability in identifying novel

transcripts of the genome independent ones. To this purpose, it is possible to align the

reads into a reference genome (when available) and then assemble the remaining ones (or

assemble the obtained transcripts by using a genome guided procedure). On the other

hand, it is also possible to assemble the reads in order to obtain the transcripts and then

map these latter contigs into the genome (maybe coming from a distant species), as a

validation. The choice depends on what it is available and on the scope of the analysis.

As a last remark, it must be said that some of the previously introduced programs allow

to quantify the expression levels of the (reconstructed) isoforms. To this purpose there

have been introduced some metrics because in general there are some issues in estimating

the expression. In fact, when sequencing a sample, longer transcripts will produce more

reads compared to shorter transcripts and also, in different samples, the number and

the quality of the reads could vary a lot. A widely adopted measure to quantify the

gene expressions, is the reads per kilobase of exon model per million mapped reads

(RPKM) [35].

3.1.2 Splicing Graph

A conceptual tool that has been used to investigate the reconstruction of full-length

transcripts from ESTs (Expressed Sequence Tags) [19, 36] or RNA-Seq data [20] is the

splicing graph which, give a “compact” view of the alternative splicing variants.

Before the advent of the NGS technologies, one of the most used strategy for the iden-

tification and quantification of the different full-length transcripts was the “single pass”

sequencing of random cDNA clones. Thanks to this technique, also know as Expressed

Sequence Tag (EST), it was possible to produce short partial sequences of a specific

transcript. Due to the alternative splicing mechanism, the different isoforms produced

from a RNA molecule can share part of their sequence. This was reflected also in the

ESTs, making the reconstruction of the original full-length transcripts or the identifi-

cation of the original isoform that has generated a specific EST, difficult. To face this
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problem, a graph data structure was defined, in order to describe the relationship among

different isoforms and the exon connections that compose them. This data structure,

called splicing graph, instead of representing each transcript, gives a global representa-

tion of all the potential splicing variants, starting from the available EST and cDNA

data. The splicing graph was defined in [19] as follows. Let {s1, . . . , sn} be the set of all

RNA transcripts for a given gene of interest. Each transcript si corresponds to a set of

genomic positions Vi with Vi 6= Vj for i 6= j. Define the set of all transcribed positions

V =
⋃n

i=1 Vi as the union of all sets Vi. The splicing graph G is the directed graph on

the set of transcribed positions V that contains an edge (v, w) if and only if v and w are

consecutive positions in one of the transcripts si. Every transcript si can be viewed as a

path in the splicing graph G and the whole graph G is the union of n such paths. Finally,

in order to obtain a more compact representation of the splicing graph, the vertexes with

indegree=outdegree=1 are usually collapsed. The splicing graph can be built starting

from a set S = {s1, . . . , sn} of ESTs by considering the set of all its possible k-mers,

named Speck(S). In this way, the vertex set V is obtained by the set of all the possible

(k− 1)-mers (i.e. V = Speck−1(S)) and for each k-mer x1 . . . xk ∈ Speck(S) there exists

an edge e = (x1 . . . xk−1, x2 . . . xk) between vertexes (x1 . . . xk−1) and (x2 . . . xk).

From the above construction process, it must be noticed that errors in the input se-

quences can produce fake branches in the graph or can add spurious edges among ver-

texes. For this reason, it is necessary to use error correction tools that consider also

the presence of SNPs (that can cause bulges in the graph). In fact, it is important to

distinguish between errors and nucleotide variants for the correct identification of valid

paths in the graph.

A more recent study involving the splicing graph was made to address the same problem

as before, but starting from NGS data [20]. In particular, the authors face the problem

of characterizing the transcript variants and their abundances, from a set of short reads

(and paired-ends). In this case, the definition of the splicing graph, used to formulate

such a problem, is the following.

Definition 3.1. Given a set S0 of transcripts coming from an RNA (variants), the

splicing graph is a directed acyclic graph whose vertexes are the maximal sequences of

adjacent exons or exon fragments that always appear together in S0 (called blocks), and

whose directed edges join two blocks if the corresponding junctions is in at least one

variant of S0.

This definition introduces the concept of block. In this way, a variant (i.e. an isoform)

is a directed path in the graph that corresponds to a sequence of blocks. It must be

also noticed that the opposite is not always true, i.e. not all the paths in the splicing
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graph are isoform of the input set. This means that there are valid directed paths that

are not real variants. As anticipated before, this representation was used to estimate

the transcript abundances. More specifically, this was done by formulating a system of

linear equations, in which the abundances of block junctions are expressed as sum of the

abundances of transcripts in which the blocks appear.

3.2 The Isoform Graph and the SGR Problem

In this work we use a notion of a splicing graph that is close to the one in [20], where

splicing graphs provide a representation of variants. Since our main goal is the recon-

struction of the splicing graph from the nucleotide sequences of a set of short reads

without the knowledge of a genomic sequence, some definitions will be slightly different

from [20] where the notion of abundance of reads spanning some splicing junction sites is

central. Moreover our goal is to study transcripts data originating from different tissues

or samples, where the expression level of each single transcript greatly varies among

samples. Therefore introducing abundance into consideration is likely to introduce a

number of complications in the model as well as in the algorithms, while increasing the

presence of possible confounding factors.

Informally, a splicing graph is the graph representation of a gene structure, inferred from

a set of RNA-Seq data, where isoforms correspond to paths of the splicing graphs, while

splicing events correspond to specific subgraphs.

In this work we consider discrete genomic regions (i.e. a gene or a set of genes) and

their full-length isoforms or transcript products of the genes along these regions. Let us

recall that the genomic region of a gene consists of a sequence of coding regions (exons)

alternating with non-coding ones (introns). A gene isoform is a concatenation of some of

the coding regions of the gene respecting their order in the genomic region. Alternative

splicing regulates how different coding regions are included to produce different full-

length isoforms or transcripts, which are modeled here as sequences of blocks. Formally,

a block consists of a string, typically taken over the alphabet Σ = {a, c, g, t}, and an

integer called rank, such that no two blocks share the same rank. The purpose of

introducing the rank of a block is to disambiguate between blocks sharing the same

nucleotide sequence (i.e. string) and to give an order among blocks, reproducing the

order of exons in the genomic region.

Given a block b, we denote by s(b) and r(b) its string and rank respectively. In our

framework a gene coding region is a sequence (that is, an ordered set) B = 〈b1, b2, · · · , bn〉
of blocks with r(bi) = i for each i. Then, the string coding region for B is the string
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Genome A B C D

Isoforms

B C D

A D

A C

B = 〈 A , B , C , D 〉

G=〈B = 〈 A, B, C, D 〉,
F = { f1 = 〈 B, C, D 〉,

f2 = 〈 A, D 〉,
f3 = 〈 A, C 〉 } 〉

Figure 3.2: Example of expressed gene. Given a gene in which its isoforms are com-
posed of blocks (that for simplicity are associated to exons: A, B, C and D) extracted
from the genome, we represent the sequence B of blocks based on the (genomic) posi-
tion. The expressed gene G = 〈B,F 〉 is constructed from the block sequence B and its
isoform composition.

s(b1)s(b2) · · · s(bn) obtained by orderly concatenating the strings of the blocks in B.

Intuitively a gene coding region is the sequence of all the coding regions on the whole

genomic sequence for the studied gene. We define a block isoform f compatible with

B, as a subsequence of B, that is f = 〈bi1 , · · · , bik〉 where ij < ij+1 for 1 6 j < k.

We distinguish between classical isoforms (defined on exons or genomic regions) and

block isoforms (defined on blocks). Nonetheless, we will use interchangeably the terms

isoforms and block isoforms whenever no ambiguity arises. By a slight abuse of language

we define the string of f , denoted by s(f), as the concatenation of the strings of the

blocks of f .

Definition 3.2. An expressed gene is a pair 〈B,F 〉, where B is a gene coding region,

F is a set of block isoforms compatible with B where (1) each block of B appears in

some isoform of F , and (2) for each pair (bi, bj) of blocks of B, appearing consecutively

in some isoform of F , there exists a isoform f ∈ F s.t. exactly one of bi or bj appears in

f .

We point out that Definition 3.2 is mostly compatible with that of [20], where a block

is defined as a maximal sequence of adjacent exons, or exons fragments, that always

appear together in a set of isoforms or variants. Therefore their approach downplays the

relevance of blocks with the same string. Observe that Definition 3.2 implies that the

set B of blocks of a string coding region of an expressed region 〈B,F 〉 is unique and is

a minimum-cardinality set explaining all isoforms in F . Thus, the pair 〈B,F 〉 describes

a specific gene (see Figure 3.2).

In fact, from Definition 3.2, given two consecutive blocks b, b′ ∈ B, if for all the isoforms

f ∈ F either both b and b′ occur in f , or neither b nor b′ occur in f , then such blocks b

and b′ can be concatenated into a new block b′′ that can replace b, b′ in B obtaining a

new set of blocks B′ of cardinality |B| − 1, that preserves the characteristics of B.
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(a) Exon Skipping.

Isoforms
A’ C

B

B E

A D E

Blocks b1 b2 b3 b4 b5 b6

Graph b1

b2

b3

b4

b5

b6

(b) Alternative Donor Site and Mutually Exclusive Exons.

Figure 3.3: Examples of Isoform Graphs. These two examples show the isoform
composition of a gene (1) with the corresponding block sequence (2) and their isoform
graphs (3). Capital letters correspond to exons. In (a) is represented a skipping of
the two consecutive exons B and C of the second isoform w.r.t. the first one. In
(b) is represented an alternative donor site variant between exons A and A′ and two
mutually exclusive exons C and D. Notice that, in this figure, the isoforms represented
are classical.

Now assume that an expressed region for a set F of isoforms is not unique, but there

exists two sets of blocks B1 and B2 such that are gene representations for F and satisfy

the definition of expressed region given in Definition 3.2. Then there must exists a block

b1 ∈ B1 − B2 and a block b2 ∈ B2 − B1. Clearly there exists an isoform f1 ∈ F such

that b1 is a block of f1. Then, since b1 6∈ B2 but f1 ∈ F , it must be that there exists

a different composition of f1 that uses block b2 instead of block b1. But this fact holds

if and only if a block b0 of f1 includes another block b of f1. But being blocks not-

overlapping, it must be that b0 consists of two blocks, thus contradicting the minimality

of blocks proved before.

The uniqueness of blocks of an expressed gene allows us to define the associated graph

representation, or isoform graph. Given an expressed gene G = 〈B,F 〉, the isoform

graph of G is a directed graph GI = 〈B,E〉, where an ordered pair 〈bi, bj〉 is an arc of

E, iff bi and bj are consecutive in at least an isoform of F . Notice that GI is a directed

acyclic graph, since the sequence B is also a topological order of GI . Notice that isoforms

correspond to paths in GI . Moreover, all the alternative splicing events of the considered

transcripts (such as exon skipping, mutually exclusive exons, . . . ) correspond to specific

subgraphs of GI (see Figure 3.3).

Our first aim of the work is to characterize when and how accurately the isoform graph

of an expressed gene can be reconstructed from a set of substrings (i.e. RNA-Seq data)

of the isoforms of the gene. More precisely, we want to investigate the following two

main questions.
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Figure 3.4: Alternative splicing graph compatible with the reads of the expressed
gene of Figure 3.3(b)

Question 1: What are the conditions under which the isoform graph of a gene can be

reconstructed from a sample of RNA-Seqs (without putting any bounds on the compu-

tational resources)?

Question 2: Can we build efficiently such a graph or an approximation of it?

Notice that the isoform graph is the real gene structure that we would like to infer from

data but, at the same time, we must understand that the transcript data might not be

sufficient to determine the isoform graph, as we have no information on the genomic

sequence and on the blocks in particular. Therefore we aim at computing a slightly

less informative kind of graph: the splicing graph, which is a directed graph where each

vertex v is labeled by a string s(v). Notice that the splicing graph gives no assurance

that a vertex is a block, not does it contain any indication regarding whether (and where)

the string labeling a vertex appears in the genomic region.

For instance, let us consider the isoform graph of Figure 3.3(b). Assume that s(b4) and

s(b5) share a common prefix s(b′), that is the exons C and D can be respectively written

as XC’ and XD’. Then if no information about the block positions and rank on the

genomic sequence is provided as input data, the splicing graph of Figure 3.4 could be as

plausible as the isoform graph of Figure 3.3(b).

This observation leads us to the notion of splicing graph compatible with a set of isoforms.

Definition 3.3. Let 〈B,F 〉 be an expressed gene, and let G = 〈V,E〉 be a splicing

graph. Then G is compatible with F if, for each isoform f ∈ F , there exists a path

p = 〈w1, . . . , wk〉 of G such that s(f) = s(w1) · · · s(wk).

Since we have no information on the blocks of the expressed gene, computing any graph

that is compatible with the isoform graph is an acceptable answer to our problem.

We need some more definitions related to the fact that we investigate the problem of
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reconstructing a splicing graph compatible with a set of isoforms only from RNA-Seqs

obtained from the gene transcripts.

Let 〈B,F 〉 be an unknown expressed gene. Then, a RNA-Seq read (or simply read)

extracted from 〈B,F 〉, is a substring of the string s(f) of some isoform f ∈ F . Notice

that we know only the nucleotide sequence of each read. Just as we have introduced the

notion of splicing graph compatible with a set of isoforms, we can define the notion of

splicing graph compatible with a set of reads.

Definition 3.4. Let R be a set of reads extracted from an expressed gene 〈B,F 〉, and

let G = 〈V,E〉 be a splicing graph. Then G is compatible with R if, for each read f ∈ R,

there exists a path p = 〈w1, . . . , wk〉 of G such that r is a substring of s(w1) · · · s(wk).

Problem 1. Splicing Graph Reconstruction (SGR) Problem

Input: a set R of reads, all of length l, extracted from an unknown expressed gene

〈B,F 〉.
Output: a splicing graph compatible with R.

Clearly SGR can only be a preliminary version of the problem, as we are actually inter-

ested into finding a splicing graph that is most similar to the isoform graph associated to

〈B,F 〉. Therefore we need to introduce some criteria to rank all splicing graphs compat-

ible with R. The parsimonious principle leads us to a natural objective function (albeit

we do not claim it is the only possibility): to minimize the sum of the lengths of strings

associated to the vertices (mimicking the search for the shortest possible string coding

region). In the rest of paper the SGR problem will ask for a splicing graph minimizing

such sum.

3.3 Unique solutions to SGR

In this section we will show some conditions must be satisfied if we want to be able

to optimally solve the SGR problem. Notice that, given an isoform graph GI there is

a splicing graph GS naturally associated to it, where the two graphs GI and GS are

isomorphic (except for the labeling) and the label of each vertex of GS is the string of

the corresponding vertex of GI .

Let R be an instance of SGR originating from an expressed gene 〈B,F 〉. Then R is a

solvable instance if: (i) for each three blocks b, b1 and b2 s.t. b and b1 are consecutive in an

isoform, b and b2 are consecutive in another isoform, then b1 and b2 begin with different

characters. Also, for each three blocks b, b1 and b2 s.t. b1 and b are consecutive in an

isoform, b2 and b are consecutive in another isoform, then b1 and b2 end with different
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characters; (ii) for each subsequence B1 of B, the string s(B1) does not contain two

identical substrings of length l/2 (where l is the length of the reads). We will show here

that our theoretical analysis can focus on solvable instances, since for each condition of

solvable instance we will show an example where there exists an optimal splicing graph

– different from the isoform graph – compatible with the instance.

Condition (i). Let B = {b, b1, b2}, and let F = {〈b, b1〉, 〈b, b2〉}. Moreover s(b1)[1] =

s(b2)[1] = x, that is the strings of both blocks b1 and b2 begins with the symbol x,

which does not appear in any other position of the string coding region. Consider now

the expressed gene B′ = {b′, b′1, b′2}, and let F ′ = {〈b′, b′1〉, 〈b′, b′2〉}, where s(b′) = s(b)x,

s(b′1) = s(b′1)[2 :], and s(b′2) = s(b′2)[2 :] (informally, the symbol x is removed from b1 and

b2 and attached to the end of b). It is immediate to notice that |s(b)|+ |s(b1)|+ |s(b2)| >
|s(b′)| + |s(b′1)| + |s(b′2)| and any set of reads that can be extracted from one gene can

also be extracted from the other. A similar argument holds for the condition on the

final character of the string of each block.

Condition (ii). Let us consider three blocks b1, b2 and b3 such that b2 and b3 contains

the same l/2-long substring z, that is s(b2) = p2zs2 and s(b3) = p3zs3. There are two

isoforms: 〈b1, b2〉 and 〈b1, b3〉. Besides the isoform graph, there is another splicing graph

v1, . . . , v5 where s(v1) = s(b1)p2, s(v2) = s(b1)p3, s(v3) = z, s(v4) = p2, s(v5) = p3

that is compatible with any set of reads extracted from 〈B,F 〉. The arcs of this splicing

graphs are (v1, v2) and (v1, v3). Notice that the sum of lengths of the labels of this new

splicing graph is smaller than that of the isoform graph.

3.4 Methods

In order to investigate the two main questions stated before, we propose a method

for solving the SGR problem. Our approach to compute the isoform graph GS first

identifies the vertex set BS and then the edge set ES of GS . Moreover we focus on fast

and simple methods that can possibly scale to genome-wide data. For ease of exposition,

the discussion of the method assumes that reads have no errors, and l = 64.

The basic idea of our method is that we can find two disjoint subsets R1, and R2 of the

input set R of reads, where reads of R1, called unspliced, can be assembled to form the

nodes in BS , while reads of R2, called spliced, are an evidence of a junction between two

blocks (that is an arc of GS).

We will discuss how our method deals with problems as errors, low coverage.
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= Unspliced RNA-Seq Read

= Spliced RNA-Seq Read

A C
suf(A,k)

pre(C,k)

A B C
suf(A,k) pre(C,k)

Figure 3.5: Example of read classification. The example shows two transcripts, where
the first one is composed of 3 blocks (A, B and C) and the second one of 2 blocks (A
and C). Moreover, reads coming from those blocks are partitioned into unspliced (white
rectangles) and spliced (gray rectangles). Notice that the two reads sharing the same
suffix of block A (of length k) and those two sharing the same prefix of block C (of
length k) are labeled with suf(A, k) and pre(C, k), respectively.

The second main tenet of our algorithm is that each read is encoded by a 128-bit binary

number, divided into a left fingerprint and a right fingerprint (respectively the leftmost

and the rightmost 64 bits of the encoding). Then two reads r1 and r2 overlap for at

least l/2 = 32 base pairs iff the right fingerprint of r1 is a substring of the encoding of

r2 (a similar condition holds for the left fingerprint of r2). Bit-level operations allows to

look for such a substring very quickly.

Definition 3.5. Let r be a read of R. Then r is spliced if there exists another r′ ∈ R,

s(r) 6= s(r′), such that pre(r, k) = pre(r′, k) or suf(r, k) = suf(r′, k), for l/2 6 k.

Moreover a read r is perfectly spliced if there exists another r′ ∈ R, s(r) 6= s(r′), such

that the longest common prefix (or suffix) of r and r′ is exactly of length l/2. A read

that is not spliced is called unspliced.

More specifically, from Definition 3.5, in an ideal situation, unspliced reads represent

the substrings of the blocks, while spliced reads identify junctions among them (see

Figure 3.5).

In our framework, a junction site between two blocks b1 and b3, that appear consecutively

within an isoform, is detected when we find a third block b2 that, in some isoform,

appears immediately after b1 or immediately before b3. For illustrative purposes, let us

consider the case when b2 appears immediately after b1 in an isoform (Figure 3.3(a)).

The strongest possible signal of such junction consists of two reads r1 and r2 such that

ov(s(b1), r1) = ov(r1, s(b3) = l/2 and ov(s(b2), r2) = ov(r2, s(b3)) = l/2, that is r1 is

cut into halves by the junction separating b1 and b3, while r2 is cut into halves by the

junction separating b2 and b3 (i.e. r1 and r2 are perfectly spliced). In a less-than-ideal
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scenario, we still can find two reads r1 and r2 sharing a common prefix (or suffix) that

is longer than l/2, in which case the two reads are spliced.

Notice that all reads extracted from the same block can be sorted so that any two

consecutive reads have large overlap. More formally, we define a chain as a sequence

C = 〈r1, r2, · · · , rn〉 of unspliced reads where ov(ri, ri+1) = l/2 for 1 6 i < n (notice

that the RH(ri) = LH(ri+1), which allows for a very fast computation). Let C be a

chain. Then the string of C is the string s(C) = ϕ(C), moreover C is maximal if

no supersequence of C is also a chain. Under ideal conditions (i.e. no errors and high

coverage) s(C) is exactly the string of a block. Coherently with our reasoning, a perfectly

spliced read r is called a link for the pair of chains (C,C ′), if LH(r) = suf(s(C), l/2)

and RH(r) = pre(s(C ′), l/2). In this case we also say that C and C ′ are respectively

left-linked and right-linked by r.

Given a set R of reads extracted from the isoforms F of an unknown expressed re-

gion 〈B,F 〉, our algorithm outputs a likely isoform graph GR = (C, ER), where C =

{C1, · · · , Cn} is a set of maximal chains that can be derived from R, and (Ci, Cj) ∈ ER

iff there exists in R a link for (Ci, Cj). The remainder of this section is devoted to

show how we compute such graph efficiently even under less-than-ideal conditions. The

algorithm is organized into three steps that are detailed below. In the first step we build

a data structure to store the reads in R. We use two hash tables which guarantee a fast

access to the input reads. The second step creates the nodes of GR by composing the

maximal chains of the unspliced reads of R. In the last step of the creation of GR, the

maximal chains obtained in the second step are linked.

Step 1: Fingerprinting of RNA-Seq reads

For each read longer than 64bp we extract some substrings of 64bp that are represen-

tative of the original read. Depending on the adopted strategy, it is possible to extract

all the 64bp substrings or only the leftmost and rightmost ones. Then each 64bp read

is unambiguously encoded by a 128-bit binary number, exploiting the fact that we can

encode each symbol with 2 bits as follows: enc(a) = 0 = 002, enc(c) = 1 = 012,

enc(g) = 2 = 102, enc(t) = 3 = 112. Since such encoding is a one-to-one mapping

between reads and numbers between 0 and 2128−1, we will use interchangeably a string

and its fingerprint.

Moreover, given a read r, we define φ1(r) (also called left fingerprint) and φ2(r) (also

called right fingerprint) respectively as the leftmost and the rightmost 64 bits of the

encoding of r.
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The main data structures are two tables Ll and Lr, both of which are indexed by 64-bit

fingerprints. More precisely, Ll has an entry indexed by each left fingerprint, while Lr
has an entry indexed by each right fingerprint. The entry of Ll, associated to the left

fingerprint fl, consists of a list of all the right fingerprints fr such that the concatenation

flfr is a read in the input set. The role of Lr is symmetrical. The purpose of those

tables is that they allow for a very fast labeling of each read into unspliced or perfectly

spliced reads. In fact, a read r is unspliced iff both the entry of Ll indexed by its left

fingerprint and the entry of Lr indexed by its right fingerprint are lists with only one

element. In this way, if a collision is detected during the insertion of a fingerprint in a

table, the read is labeled as spliced. Moreover, let fl be a left fingerprint of some reads,

let fr,1 and fr,2 be two fingerprints in the list of Ll indexed by fl, such that the first

character of fr,1 is different from that of fr,2. Then the two reads flfr,1 and flfr,2 are

perfectly spliced. Also, constructing Ll and Lr requires time proportional to the number

of the input reads.

Step 2: Building the set C of Maximal Chains

The procedure BuildChains described in Algorithm 1 takes as input a set R of RNA-

Seq reads and produces the set C of all maximal chains that can be obtained from R.

Let R1 ⊆ R be the set of the unspliced reads. The algorithm selects any read r of

R1 and tries to find a right extension of r, that is another unspliced read rr such that

ov(r, rr) = l/2. Afterwards the algorithm iteratively looks for a right extension of rr,

until such a right extension no longer exists. Then, the algorithm iteratively looks for a

left extension of r, while it is possible.

Also, the time required by this procedure is proportional to the number of unspliced

reads. In fact, each unspliced read is considered only once, and finding the left or right

extension of a read r can be performed in constant time.

At the end, we will merge all pairs of chains whose strings have an overlap at least l/2

bases long, or one is a substring of the other. In this step, called chain merging, for

decreasing values of k ranging from 63 to 32, we determine if there exists a read rr such

that ov(r, rr) = k, exploiting the Ll table. This step is necessary to overcome to the

absence of some unspliced reads, that can cause the shortening of chains. Moreover, by

assembling reads that have a l/2 overlap, it happens that there will be more than one

chain representing the same block. In ideal conditions, such chains are all the possible

(l/2) − 1 shifts of the reads in the block. The chain merging this step is achieved

by extracting all possible 32-base substrings of r and looking in the Ll table for that
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substring. If such a substring is found, the fusion of the two strings (representing the

same block) is preformed.

We recall that the maximal chains are the vertices of the isoform graph we want to build.

Algorithm 1: BuildChains(R)

Data: a set R of RNA-Seq reads
C ← ∅;1

R1 ← {r ∈ R|r is unspliced};2

while R1 6= ∅ do3

r ← any read from R1;4

R1 ← R1 \ {r};5

C ← 〈r〉;6

r1 ← r;7

// Extend the chain on the right

while ∃ a right extension r2 ∈ R1 of r1 do8

append r2 to C;9

R1 ← R1 \ {r2};10

r1 ← r2;11

// Extend the chain on the left

while ∃ a left extension r2 ∈ R1 of r do12

prepend r2 to C;13

R1 ← R1 \ {r2};14

r ← r2;15

C ← C ∪ C;16

return C;17

Step 3: Linking Maximal Chains

Algorithm 2 computes the arcs of the output graph using the set R2 of perfectly spliced

reads and the set C of maximal chains computed in the previous step. More precisely,

given a perfectly spliced read r, we denote with D(r) and A(r) the set of maximal chains

that are, respectively, left-linked and right-linked by r. In other words, r is a link for

each pair of chains in D(r)×A(r).

Moreover each such pair will be an arc of the graph. All sets D(r) and A(r) are computed

in the cycle at line 4 of Algorithm 2. The cycle at line 11 obtains the whole set ER of

arcs of GR. Algorithm 2 is greatly sped up if Algorithm 1 also stores the prefix and the

suffix of length 32bp of each maximal chain in C.

3.4.1 Isomorphism between predicted and true isoform graph

Let R be an instance of SGR originating from an expressed region 〈B,F 〉. We can prove

that a simple polynomial time variant of our method computes a splicing graph GR that
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Algorithm 2: LinkChains(R2, C)
Data: a set R2 of perfectly spliced reads, and the set C computed by Algorithm 1
ER ← ∅;1

foreach r ∈ R2 do2

D(r)← ∅; A(r)← ∅;3

foreach C ∈ C do4

f ← pre(s(C), l/2);5

foreach r ∈ R2 such that RH(r) = f do6

A(r)← C;7

f ← suf(s(C), l/2);8

foreach r ∈ R2 such that LH(r) = f do9

D(r)← C;10

foreach r ∈ R2 do11

if D(r) 6= ∅ and A(r) 6= ∅ then12

foreach p ∈ D(r)×A(r) do13

ER ← ER ∪ p;14

return ER15

is isomorphic to the true isoform graph, when R is a good instance. More precisely, R

is a good instance if it is solvable and (iii) for each isoform f there exists a sequence

r1, . . . , rk of reads such that each position of f is covered by some read in r1, . . . , rk (i.e.

s(f) is equal to the fusion of r1, . . . , rk) and |ov(ri, ri+1)| > l/2 for each i < k.

First of all, notice that two reads r1 and r2 with overlap at least l/2 can be extracted

from the same isoform. Let us build a graph G whose vertices are the reads and an arc

goes from r1 to r2 if and only if ov(r1, r2) > l/2 and there exists no read r3 such that

ov(r1, r3) > ov(r1, r2) and ov(r3, r2) > l/2. By the above observation and by condition

(iii) there is a 1-to-1 mapping between maximal paths in such graph and isoforms and

the string of an isoform is equal to the fusion of the reads of the corresponding path.

Compute the set R1 of all l-mers that are substrings of the string of some isoforms. Then

classify all reads of R1 into unspliced, perfectly spliced and (non-perfectly) spliced reads,

just as in our method. Notice that the halves of each perfectly spliced read are the start

or the end of a block. Assemble all unspliced reads into chains where two consecutive

reads have overlap l − 1 (each unspliced read belongs to exactly one chain), using the

putative start/end l/2-mers computed in the previous step to trim the sequences of each

block. At the end, each perfectly spliced read links two blocks of the splicing graph.

3.4.2 Low coverage, errors and SNP detection

We will consider here what happens when the input instance does not satisfy the re-

quirements of a good instance. There are at least two different situations that we will

have to tackle: data errors and insufficient coverage.
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One of the effects of the chain merging phase is that most errors are corrected. In fact

the typical effect of a single-base error in a read r is the misclassification of r as spliced

instead of unspliced, shortening or splitting some chains. Anyway, as long as there are

only a few errors, there exist some overlapping error-free unspliced reads that span the

same block as the erroneous read. Those unspliced reads allow for the correction of the

error and the construction of the correct chain spanning the block.

Notice that the chain merging also lessens the impact of partial coverage – that is when

we do not have all possible l-mers of a block. When working under full coverage, we can

identify a sequence of reads spanning a block and such that two consecutive reads have

overlap equal to l − 1, while the chain merging step successfully reconstruct the blocks

with reads overlapping with at least l/2 characters.

A similar idea is applied to pairs of reads r1, r2 with ov(r1, r2) > l/2 and that are likely

to span more than one block. Those reads can be detected by analyzing the hash tables.

In this case a set of additional reads, compatible with the fusion of r1 and r2 is added

to the input set, obtaining an enriched set which includes the perfectly spliced reads

required to correctly infer the junction, even when the original reads have low coverage.

Also the fact that the definition of perfectly spliced read asks for two reads with the

same left (or right) fingerprint, makes our approach more resistant to errors, as a single

error is not sufficient to generate an arc in the splicing graph.

Finally, we point out that our approach allows for SNP detection. The main problem

is being able to distinguish between errors and SNPs: let us consider an example that

illustrates a strategy for overcoming this problem. Let e be an exon containing a SNP,

that is s(e) can be yaz or ybz, where y and z are two strings and a, b are two characters.

Moreover notice that, since this situation is a SNP, roughly the same number of reads

support yaz as ybz. Therefore, as an effect of our read enrichment step, there are two

reads r1 and r2 s.t. r1 supports yaz and r2 supports ybz, and LH(r1) = LH(r2) or

RH(r1) = RH(r2). Equivalently, r1 and r2 are two spliced reads supporting the SNP.

This case can be easily and quickly found examining the list of reads sharing the left

(or right) fingerprints and then looking for a set of reads supporting the SNP (again

exploiting the fact that the fingerprint of a half of the reads in the set is known).

3.4.3 Repeated sequences: stability of graph GR

When compared with approaches based on de Bruijn graphs, our method is stable

w.r.t. repeated sequences shorter than l/2, that is our method is not negatively in-

fluenced by those short repeats.
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Let us state formally this property. An algorithm to solve the SGR problem is k-stable

if and only if we obtain a new isoform set F ′ from F by disambiguating each k-long

substring that appears in more than one isoform but originates from different parts of

the string coding region, then the graph obtained from F is isomorphic to that obtained

from F ′.

Notice that de Brujin graphs are highly sensitive to this case, as they must merge k-long

repetitions into a single vertex. On the other hand, our approach can avoid merging

(l/2 − 1)-long repetitions, as the chain construction step is based on finding l/2-long

identical substrings in the input reads. Validating this property is one of the features of

our experimental analysis.

Let us consider the following example. Let sA = yvz and sB = uvw be respectively a

block of gene A and B, therefore sA and sA belong to two different weakly connected

components of the isoform graph. Assume that v is a sequence of length k < l/2, where

k is the parameter length used in the construction of de Brujin graphs (i.e. the vertices

correspond to k-mers), and consider the case where reads coming from both genes are

given in input to compute a splicing graph. If the instance is good, our approach is able

to reconstruct the isoform graph, while a typical algorithm based on de Brujin graphs

would have a single vertex for x. Notice also that the resulting graph would be acyclic,

hence the commonly used technique of detecting cycles in the graph to determine if there

are duplicated strings is not useful.

3.5 Experimental Results

We have run our experimental analysis on simulated (and error-free) RNA-Seq data

obtained from the transcript isoforms annotated for a subset of 112 genes extracted

from the 13 ENCODE regions used as training set in the EGASP competition (we refer

the interested reader to [37] for the complete list of regions and genes). We have chosen

those genes because they are well annotated and, at the same time, are considered quite

hard to be analyzed by tools aiming to compute a gene structure, mainly due to the

presence of repeated regions. Moreover, the presence of high similar genes makes this

set very hard to be analyzed as a whole. Also, we decided to focus on a relatively small

number of (hard to analyze) genes so that we could manually inspect the results to

determine the causes of incorrect predictions.

A primary goal of our implementation is to use only a limited amount of memory, since

this is the main problem with currently available programs [25]. In fact, we have run

our program on a workstation with two quad-core Intel Xeon 2.8GHz processors and
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12GB RAM. Even on the largest dataset, our program has never used more 30 seconds

or more than 250MB of memory. Our implementation is available under AGPLv3 at

http://algolab.github.com/RNA-Seq-Graph/.

Now let us detail the experiments. For each of the 112 ENCODE genes, the set of the

annotated full-length transcripts has been retrieved from NCBI GenBank. From those

transcripts we have extracted two sets of 64bp substrings corresponding to our simulated

reads. The first set consists of all possibile 64-mers and corresponds to the maximum

possible coverage (full coverage dataset), while the second set consists of a random set

of 64-mers simulating an 8x coverage (low coverage dataset). In the first experiment

we have analyzed the behavior on the full coverage dataset where data originating from

each gene have been elaborated separately and independently. The second experiment

is identical to the first, but on the low coverage dataset. Finally, the third experiment

has been run on the whole full coverage dataset, that is all reads have been elaborated

together and without any indication of the gene they were originating from. Notice that

the whole full coverage dataset consists of 1.4 Million unique 64bp simulated reads. For

each input gene, the true isoform graph has been reconstructed from the annotation.

To evaluate how much the splicing graph computed (denoted as GR) is similar to the

isoform graph (denoted as GS), we have designed a general procedure to compare two

labeled graphs, exploiting not only the topology of the graph, but also the labeling of

each vertex with the goal of not penalizing small differences in the labels, like for example

the lack of some bases at the end of a block (which corresponds to a correct detection

of the AS events and a mostly irrelevant error in computing the nucleotide sequence of

a block). The comparison of the graphs GR and GS is not straightforward, therefore we

discuss next the procedure we have designed.

For clarity’s sake, we consider that vertexes of both graphs are strings instead of blocks.

Let s, t be two strings. Then s and t are p-trim equivalent if it is possible to obtain the

same string by removing from s and t a prefix and/or a suffix no longer than p (notice

that the removed prefixes and suffixes might be empty and can differ, in length and

symbols, between s and t). Let v and w be respectively a vertex of GR and of GS . Then

v maps to w, if v and w are 5-trim equivalent. Moreover we say that v predicts w if v

maps to w and no other vertex of GR maps to w. We can generalize those notions to

arcs and graphs, where an arc (v1.v2) of GR maps (resp. predicts) an arc (w1, w2) of GS

if v1 maps to (resp. predicts) w1 and v2 maps to (resp. predicts) w2. Finally, the graph

GR correctly predicts GS if those two graphs have the same number of vertexes and arcs

and each vertex/arc of GR predicts a vertex/arc of GS .

In all experiments, the accuracy of our method is evaluated by two standard measures,

Sensitivity (Sn) and Positive Predictive Value (PPV) considered at vertex and arc level.

http://algolab.github.com/RNA-Seq-Graph/
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Sensitivity is defined as the proportion of vertices (or arcs) of the isoform graph that

have been correctly predicted by a vertex (or arc) of the computed splicing graph, while

PPV is the proportion of the vertices (or arcs) of the splicing graph that correctly predict

a vertex (or an arc) of the isoform graph. In the specific the sensitivity is defined as:

Sn =
TP

TP + FN

and the positive predicted value as:

PPV =
TP

TP + FP

where the True Positives (TP ) are the vertexes (resp. arcs) that have been correctly

predicted, the False Negatives (FN) are the correct vertexes (resp. arcs) that have not

been correctly predicted and the False Positives (FP ) are the not correct nodes (resp.

arcs) that are predicted (as if they were).

The goal of the first experiment (each gene separately, full coverage) is to show the

soundness of our approach, since obtaining satisfying results under full coverage is a

requisite even for a prototype. More precisely our implementation has perfectly recon-

structed the isoform graph of 43 genes (out of 112), that is Sn and PPV are 1 both at

vertex and arc level. Notice that the input instances are usually not good instances,

mostly due to the presence of short blocks or relatively long repeated regions, therefore

we have no guarantee of being able to reconstruct the isoform graph. Moreover we have

obtained average Sn and PPV values that are 0.86 and 0.92 at vertex level, respectively,

and 0.72 and 0.82 at arc level, respectively. Also, the median values of Sn and PPV are

0.91 and 1 at vertex level, 0.83 and 0.93 at arc level, respectively.

The second experiment (separated gene, 8x coverage) is to study our method under a

more realistic coverage. In this case, we have perfectly reconstructed the isoform graph

of 39 genes (out of 112), and we have obtained average Sn and PPV values that are

respectively 0.87, 0.91 at vertex level and 0.75, 0.81 at arc level. The median values of

Sn and PPV are 0.93 and 1 at vertex level, 0.84 and 0.91 at arc level, respectively.

The details of the first two experiments are reported in Appendix A. More specifically,

Table A.1 show the values of the 112 genes obtained in the first experiment, while

Table A.2 reports the same values for the second experiment.

The graphics in Figure 3.6 give a detailed overview of the quality of the predictions in

the first two experiments, in which each point correspond to a gene. More specifically,

for each gene in the considered dataset, the Sn versus PPV values are plotted (Sn on the

x axis and PPV on the y axis), for both nodes and arcs. Figures 3.6(a) and 3.6(b) show
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these values at node level in the first two experiments, underlining the goodness of the

predictions. In fact, as it is possible to notice, the points are concentrated in the right-

upper corner, which corresponds to values of Sn and PPV close to 1. In Figures 3.7(a)

and 3.7(b) the same results at arc level are shown. In this latter case the points are

more scattered in the graphics, with respect to the previous plots, but it is important to

notice that the same “distribution” is conserved in both the graphics. This means that

the reduction in the coverage does not have a big impact on the results of the prediction.

The same holds for the nodes, in fact, also in this case, the distribution is the same in

the graphics corresponding to the two experiments.

The main goal of the third experiment (whole dataset, full coverage) is to start the study

of the scalability of our approach towards a genome-wide scale, determining if repetitions

that occur in different genes are too high obstacles for our approach. A secondary goal

is to determine if our implementation is stable, that is the computed splicing graph is

not too different from the disjoint union of those computed in the first experiment. In

this experiment the expected output of is a large isoform graph GI with 1,521 vertices

and 1,966 arcs, with a 1-to-1 mapping between connected components and input genes.

To determine such mapping, we have used a strategy based on BLAST [38], aligning

labels of the vertexes and the genomic sequences. In particular, we have mapped all

the obtained sequences (i.e. the nodes) into the original transcripts, keeping only the

best matches reported by BLAST. After that, each connected component was considered

separately, by checking the alignment of all its nodes, in order to assess the correct gene.

At the same time, the connected component is inspected by a traversal to obtain the

information on nodes and arcs. Finally, the identified structure is compared with the

correct one (i.e. the one of the correct isoform graph). We report that only 7 connected

component have been mapped to more than one gene – 4 of them are genes with very

similar sequence composition (i.e. CTAG1A, CTAG1B and CTAG2).

In practice, such a 1-to-1 mapping exists for almost all components. Moreover only 17

genes have been associated to more than one connected components. Overall results are

quite similar to those of the first experiment. In fact, the number of correctly identified

vertices goes from 1,303 (first experiment) to 1,274 (third experiment). Similarly, the

number of correctly identified arcs goes from 1,415 to 1,396 – the quality of our predic-

tions is only barely influenced by the fact that the program is run on the data coming

from 112 different genes. The overall vertex sensitivity is 0.837, the vertex positive

predicted value is 0.778, while the arc sensitivity is 0.71 and the arc positive predicted

value is 0.679. Figure 3.8 shows the isoform graph and the predicted graph for the gene

POGZ.
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Figure 3.6: Sn and PPV values at vertex level in the first 3.6(a) and in the sec-
ond 3.6(b) experiments. Each point represents a gene.



Chapter 3. Reconstructing Isoform Graphs from RNA-Seq data 58

Sn

PP
V

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Arcs First Experiment.

Sn

PP
V

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) Arcs Second Experiment.

Figure 3.7: Sn and PPV values at arc level in the first 3.7(a) and in the second 3.7(b)
experiments. Each point represents a gene.
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Figure 3.8: Gene POGZ. The correct isoform graph (on the left) and the predicted
isoform graph (on the right) predicted in the third experiment. Number in the nodes
represent the lengths of the blocks. The difference between the two graphs consists of
the gray vertex that is missing in the predicted graph.
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The final part of our analysis is a comparison with Trinity [25] – the most advanced

available tool for full-length transcript reconstruction from RNA-Seqs without a refer-

ence genome, to determine how much it is stable. We have run Trinity on the two full

coverage datasets, corresponding to the first and third experiments. Since Trinity com-

putes transcripts and not the splicing graph, we use the variation of number of predicted

full-lengths transcripts as a proxy for the (in)stability of the method. We observed that,

for the two datasets, Trinity has predicted 2,689 and 1,694 full-length transcripts (on

the genes from which the simulated read are generated, there are 1,020 annotated tran-

scripts). The variation is significant and hints at a desired property of our algorithm

that is not shared with other state-of-the-art tools.

3.6 Conclusions and Future Work

Next-Generation Sequencing techniques have revolutionized many fields of bioinformat-

ics. In the last few years new challenges have emerged, especially in trascriptomics,

where these new sequencing methods have opened new research directions. Due to its

importance in many biological processes, alternative splicing is one of the most studied

topics from both a computational and a functional point of view. In this thesis we have

given contributions to the computational problem of predicting alternative splicing from

NGS data.

In particular, we have faced the computational problem of reconstructing splicing vari-

ants from RNA-seq data in absence of a reference genome. To accomplish this task

we have propose a graph representation of expressed isoforms and alternative splicing

events in a sample and we have provided an algorithm for building such a graph for each

gene that works in linear time in the size of the input data.

This work is focused on the analysis of this data structure and in particular on the

identification of the conditions under which it is possible to construct a graph, called

isoform graph, starting from RNA-Seq reads. More specifically, we have identified the

necessary and sufficient conditions for a correct reconstruction of the graph in absence

of a reference genome. We have also proposed a new efficient algorithm to compute

isoform graphs that is particularly suited for elaborating RNA-Seq data in absence of a

genomic sequence. We have proved that, under some assumptions, our algorithm, which

is linear in the number of input reads, correctly computes the graph. We have shown

that also when the conditions are not satisfied, our algorithm is able to reconstruct an

approximation of the correct isoform graph, that represents the same splicing events. To

do this, we have studied each condition singly, in order to verify that the algorithm is

capable of finding the “correct” solution. At the same time, an extensive experimental
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analysis on simulated data has confirmed the soundness of our approach and its efficiency.

In order to verify the accuracy of the method, but also its stability and scalability,

we have designed 3 experiments. The first 2 are performed by considering each gene

separately, while in the third one, all the reads of the genes are mixed. In the first

experiment we have tested the ability of the algorithm in reconstructing the graph in

optimal conditions, when the coverage is high. In the second one, we have reduced the

coverage in order to verify its predictions in conditions that are closer to the real ones. In

the last experiment, we have tested the stability of the algorithm and also its scalability

with an increased number of reads, by mixing reads coming from different genes.

Our theoretical analysis has identified cases that can be problematic for our approach –

for instance because of short exons or relatively long repeated regions in the isoforms.

Future work will be devoted to address those specific problems that do not allow the

construction of a completely correct isoform graph.

Moreover, future work would be also devoted to the integration of the novel algorithm

into the tool PIntron, which is a software for predicting alternative splicing from ESTs

and transcripts data [39]. In fact, combining predictions of AS from traditional data

with ones from NGS data would greatly improve our knowledge of alternative splicing

phenomena in human genes. Moreover, the integration would be useful for the routine

work of molecular biologists.

This work opens new research directions on alternative splicing investigation that take

advantage of the graph structure, used to represent the alternative splicing variants.

One research direction concerns the differential analysis of alternative splicing from

NGS samples. More specifically, it is possible to design a procedure to compare graphs

coming from different RNA-Seq experiments, in order to assess the differences in the

structures. This is useful to study, for example, sick organisms in comparison with

healthy ones, to check if there are changes in the alternative splicing variants of the

two organisms. In addition to this, it is possible to use the same approach to monitor

diseases, in particular if they affect the alternative splicing mechanisms, by adding or

removing variants. Moreover, the most relevant events can be detected and used as

reference in the comparison of the different experiments.

Another research direction concerns the use of RNA-Seq data for the detection of dis-

eases that specifically affect alternative splicing events directly, without the assembly of

full-length transcripts or the use of a reference. A useful development, which is closely

related to the previous one, regards the extraction of alternative splicing events from

the produced isoform graphs. In fact, recalling from Section 3.2, all the main alter-

native splicing events, such as exon skipping, mutually exclusive exons or alternative

splicing sites, can be represented in the isoform graph as specific subgraphs. Inferring
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these events could support the previous comparison and confirm the annotations of the

considered genes.

This technique can be also used to inspect organisms for the first time, when obviously

the genomic sequence is not available, in order to have a preliminary overview of the

transcript variants of the sequenced genes. The produced graph can be used to support

more specific studies based on the comparison with other organisms. In general we want

to explore the possibility of not using a reference sequence for the analysis of RNA-Seq

data and for comparing unknown transcripts.

Finally, we would like to remark the importance of having a convenient representation

of all the alternative splicing variants of a gene. This graph structure, provided by the

isoform graph, avoids all the problems related to the reconstruction of the isoforms and

can be incorporated into a pipeline of transcript analysis to support and confirm some

steps from a different point of view.



Chapter 4

Taxonomic Assignment to

Multiple Trees in Metagenomics

The term metagenomics is used to refer to the study, at the genetic level, of the organisms

present in an environmental sample. It is a powerful tool that can be used to analyze

microbial communities, including the ones that can not be cultured in the laboratory.

The aims of such a study are to characterize the different organisms present in a specific

sample or also to group them, based on similarities. This is now possible due to the

recent introduction of the NGS techniques, that allow to have information from all the

genetic material of a sample. In this way, in metagenomic experiments, the reads are

obtained by all the organisms present in the sequenced environment. One of the main

tasks in a metagenomic analysis is the correct assignment of the reads (usually coming

from a sequenced sample) to a reference taxonomy, in order to identify the species

present in the sample and also to classify them. A common strategy to do this, is to

align the input reads to the sequences of a database (that usually represents the species

of the taxonomy) and then assign those reads to the correct rank. This is not a trivial

operation for reads that match multiple sequences in the reference database with the

same confidence in the alignment. There are several approaches to solve this problem

that usually rely on the tree structure of the reference taxonomy.

TANGO [40] is an example of program that assigns reads into a reference taxonomy

based on a parameter q that influences a penalty score calculation for each of the possible

candidate representatives of the taxonomy. In the specific, by choosing values of q that

are close to 0, the assignments are guided to lower ranks of the taxonomy (that are

usually species). On the contrary, by choosing values of the parameter that are close to 1,

the assignments are guided to higher ranks (close to the LCA of the matched sequences).

This method introduces more flexibility than other approaches that always assign a

63
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read to the LCA of the possible matches, since in this latter case there could be some

descendants that are not in the match set (that are indeed considered by the penalty score

calculation in TANGO). Although this approach performs better than other LCA-based

methods, there is a common problem shared among all the taxonomy-based approaches:

the taxonomic assignment (obviously) depends on the chosen taxonomy. This means

that by changing the taxonomy, the assignment can change too, in particular if the

two taxonomies do not agree. This fact has motivated our work. More specifically,

our objective is to provide a support to different taxonomies used for the taxonomic

assignment with TANGO, allowing the user to choose among them. A possible solution

to this problem is to develop a mapping among taxonomic trees that gives the possibility

to transfer the assignment on a tree into another one. This also avoids recomputing

the assignment on the new tree. Furthermore, we have decided to improve the TANGO

method both in the algorithm and the implementation, adding the possibility to manage

different taxonomies. Although it is necessary to recompute the assignment to bring the

results from a tree to another one, the improved version of the program is sensibly

faster than the previous one, justifying this decision. In fact, we have made a new

implementation of the software, based on different data structures (with respect to the

ones used in the actual version) and it uses a new algorithm for the calculation of the

penalty scores of the candidate nodes of the taxonomic tree. This latter algorithm is

more efficient than the previous one, since it allows to obtain the same calculation of

the penalty score function on a different tree, which is “smaller” than the one actually

used (see Section 4.3). This optimal solution led us to develop a procedure that finds

the minimum penalty score value (i.e. the correct taxonomic assignment) by looking

at a subset of nodes. In addition to this, it also offers the possibility to perform the

assignment on a different taxonomy with respect to the one used for the alignment of

the reads.

In this chapter we start by presenting the main available taxonomies for the bacterial

16S rRNA used in metagenomic studies, analyzing the structures and the data formats.

In fact, we are particularly interested in comparing them, in order to realize a mapping of

nodes, that will be used to convert the input among different taxonomies. We have found

some disagreements among tree representations of the most used reference databases.

For this reason, we have implemented a function equivalent to the merge lineage pro-

cedure1 of the bioperl project to construct taxonomic trees starting from the lineages of

the organisms, with the precise objective of doing the taxonomic assignment.

From this point of view, we add an intermediate step of tree contractions, that is useful to

reduce the taxonomies to the same taxonomic ranks. Moreover, in the improved version

of TANGO, we have added the support to different reference databases, offering more

1http://doc.bioperl.org/bioperl-live/Bio/Tree/TreeFunctionsI.html#POD7

http://doc.bioperl.org/bioperl-live/Bio/Tree/TreeFunctionsI.html#POD7
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flexibility in the choice of the taxonomy on which to perform the assignment. The other

main point of this work is the realization of an optimal procedure to find the minimum

value of the penalty score function, used in the taxonomic assignment (by TANGO).

This latter procedure is based on a data structure, called skeleton tree, which is induced

by the set of matches of a read, in the taxonomy. We use such a structure to compute the

penalty score of the nodes in the tree, in an optimal way (see Lemma 4.5). Before that,

we also prove its correctness in the calculation of such a function (see Lemma 4.4). The

skeleton tree is based on the calculation of the LCA among pairs of nodes, which can

be done in O(1) time, after a pre-processing of the tree. We take advantage of this fact

to realize the computation of the taxonomic assignments of the reads, in the taxonomy.

After this, we describe the new data structures used for the representation of the tree

and the new algorithm based on the skeleton tree, that are part of the improved version

of TANGO. We also detail some implementing aspects, used for the realization of this

task.

The research described in this chapter was carried out during my period abroad as

a visiting student at the Algorithms, Bioinformatics, Complexity and Formal Methods

Research Group of the Technical University of Catalonia in Barcelona, Spain. The work

was realized in collaboration with Daniel Alonso-Alemany under the supervision of Prof.

Gabriel Valiente.

4.1 Introduction to Metagenomics

Metagenomics is usually referred to the study of genetic material coming from an envi-

ronmental sample [41]. Typically, in these samples are present communities of microbial

organisms in their native environment that makes the sequencing difficult, expensive, or

simply impossible. In fact, in many cases it is not possible to separate the organisms and

sequence them individually. Studies of metagenomics are necessary for the discovery of

novel genes and they can also help in the identification of novel species. These latter

results give a better understanding of the composition of the microbial communities.

Some closely related problems in this field are to assess the diversity and estimates the

abundances of organisms present in an environmental sample. To do this, the reads

are usually obtained from the 16S ribosomal RNA (rRNA) of the organisms and then

they are compared with known databases (by clustering or assigning them to a refer-

ence taxonomy). The motivation is that the 16S rRNA genes (that have the length of

about 1500bp) are conserved among organisms within a species while diverging across

species [42, 43].
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Taxonomies are usually represented as n-ary trees in which each depth correspond to a

taxonomic rank. In this way it is possible to classify organisms and establish relations

among them. The usually adopted characterization is based on 7 levels (i.e. taxonomic

ranks), that are:

Kingdom ⇒ Phylum ⇒ Class ⇒ Order ⇒ Family ⇒ Genus ⇒ Species

that are usually abbreviated as KPCOFGS. In some cases further ranks have been

introduced to refine the classification, like for example sub or super ranks (e.g. subfamily

or superclass). Following the previously introduced characterization, species are usually

the leaves of the tree (see Figure 4.1 for an example). The classification levels become

more specific descending from the top to the bottom. In fact, there are many organisms

that belong to the same kingdom, fewer that belong to the same phylum, and so on,

with species being the most specific classification. For example humans are classified in

the following way:

Kingdom: Animalia/Metazoa

Phylum: Chordata

Class: Mammalia

Order: Primates

Family: Hominidae

Genus: Homo

Species: Homo sapiens

With the advent of NGS technologies it is now possible to have a direct access to some

microbial species and to small genes that were not available with the previous techniques.

In the specific, some genes that were small enough to be entirely contained into Sanger

reads, can be now isolated with the produced short sequences. The 454 technology is

the most widely used technique for metagenomics analysis (among all the previously

introduced next-generation sequencing methods) [44]. The advantage of this method

is that it produces sequences with length shorter than the ones produced by Sanger

technique but these reads are long enough to identify genes. In addition to this, due to

its high throughput, it helps in uncovering numerous new species with low abundance

in an environmental sample. On the other hand, sequencing machines like the Illumina

Genome Analyzer can achieve an even higher throughput, but the produced sequences

are much shorter (see Section 2.3.2). This generates more uncertainty in the metage-

nomic analysis. For this reason, the adopted sequencing technology has a main role in

the species accessibility and also in the resolution that can be achieved in the analysis.
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Figure 4.1: Example of taxonomic tree. The example shows a rooted tree with
maximum depth 8 (7 taxonomic ranks plus the Root), underling a subset of nodes and
their associated taxonomic ranks.

As pointed out in [45], in addition to the issues related to the use of NGS data (like

short length reads and sequencing errors), there are other factors that make difficult and

complex the metagenomic analysis. First of all, the samples can vary a lot in terms of

complexities and distributions of the relative abundances. In fact, the number of species

present can be different between two samples, influencing also the number of dominant

ones. Another factor that must be considered is the way in which the reads are assigned

to the taxonomy (in some analysis). There are several methods using different models

and algorithms having advantages and disadvantages with respect to various measures of

performance. The last but very important factor that influences metagenomics analysis

is the taxonomy used as a reference for reads assignment. Since the chosen taxonomy

influences all the analysis, so the way in which it is modeled poses constraints on the

ability to discriminate or relate some species.

Since the beginning of the application of NGS technologies to metagenomics, several

methods have been developed to classify (by aligning to a known reference taxonomy)
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metagenomic data. As an example, NAST [43] performs a 16S rRNA reads align-

ment into a taxonomy (which is composed of a set of 16S rRNA reference sequences

of the database). This program filters the reads and then performs an alignment with

BLAST [38] against all the reference sequences. As underlined earlier, one of the first

computational challenges in metagenomics is the alignment of reads against a taxonomic

reference (e.g. database of 16S rRNA sequences of different organisms).

4.1.1 Taxonomic Alignment

There are several programs capable of mapping NGS data. Since these aligners have to

deal with a huge amount of sequences (millions or billions), the primary requirement is

speed. In fact, they can outperform the existing methods (like the previously introduced

BLAST) by aligning up to millions of reads per hour. The problem of these approaches

arises when considering mismatches because they usually consider only a limited number

of differences in the alignment, making them less accurate if compared with BLAST.

This latter tool is able to identify big differences between the short sequences and the

genome used as reference in the mapping process. For example, by default Bowtie [28]

allows 2 mismatched in the “seed” of the first L base pairs of the read (where L is

set by default to 28) that corresponds to ∼ 93% of similarity in the seed, and similarly

BWA [29], by default, sets its maximum edit distance value to 4%, providing a similarity

of 96%. Moreover, although they are usually capable of finding all the possible alignment

of a read, the default behaviour is to report only one of those mapping; so, in addition

to the previous problems, there is also the limitation related to the number of reported

hits. This is because in the NGS aligners the performances decrease exponentially if

they have to consider more possible solutions, so they have as a default behavior that of

reporting one match (the best based on some criteria), becoming much slower if asked to

find them all. For example, Bowtie has the possibility to look for all the valid alignments

but by default it reports only the first one encountered. However, it is still unknown

whether “new” mappers are suitable to address metagenomic problems, in particular

when the reference is composed by many sequences very close to each other. This can

cause problems for example in the assignment of those reads in the taxonomy because

with only one match it is not possible to assess if there are other valid mappings (making

its attribution in terms of a taxonomic tree ambiguous) or not.

In [45], some alignment programs are analyzed in order to underline properties related

to metagenomics studies. In particular, the mapping of simulated “long” reads (e.g. 454

sequences) and simulated “short” reads (e.g. Illumina sequences) are considered. For

the former alignments, BWA/SW [46] (that is a component of BWA still based on the
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Burrows-Wheeler transform) and BLAT [47] (that is similar to BLAST) are compared,

and for the latter reads the chosen programs are BWA [29] and GEM[48].

The results of such analysis showed that, for the longer reads, although the BWA/SW

software is significantly faster than BLAT, this latter program can identify a higher

number of correct alignments. Moreover, both these aligners have problems, in fact, the

output produced by BLAT is huge when working on NGS data, while BWA/SW reports

only one match for read. For the mapping of the shorter reads, GEM, differently from

BWA, implements an exhaustive search, reporting all the matches of a sequence up to

a specific number of mismatches. However, as pointed out by the authors, the ability

of recovering the genomic location that originates the read is not the only important

feature as far as metagenomics is concerned. In fact, it is also paramount to be able to

correctly estimate and output the exact number of hits, in order to make the successive

attribution of the read to the correct part of the taxonomy tree as precise as possible (see

Section 4.1.2). From this point of view, BWA makes some misclassifications, and this

underlines the importance for metagenomic studies, of having approaches that perform

exhaustive searches.

4.1.2 Taxonomic Assignment with TANGO

One of the most important tasks in a metagenomic analysis is the assignment of the

reads into a reference taxonomy (if available) or to cluster them based on the mapping

too. It must be specified that the previous alignment phase is not necessary for all the

assignment methods. To this purpose it is possible to distinguish between methods that

rely on a taxonomy in order to assign the reads at the correct taxonomic rank using

the mapping information and methods that try to group reads into cluster of related

species. In this latter category there is the Quantitative Insights into Microbial Ecology

(QIIME) [49]. This method does not require a genomic reference and groups reads into

Operational Taxonomic Units (OTUs) by aligning the reads with different thresholds.

These latter values are used to fix the identity among sequences and then for each clus-

ter the longest read is selected as representative by performing a statistical analysis of

the k-mer frequencies. Another software that makes a non-taxonomic assignment is

MOTHUR [50] which uses reference sequences to perform a multiple alignment of the

reads (by choosing a cutoff threshold to impose the similarity among species) followed

by a clustering of those reads with different methods (like nearest neighbor, furthest

neighbor or average neighbor). This software has also the possibility of assigning reads

into a specified taxonomy (taxonomic assignment). Another common strategy to per-

form this latter task is to assign reads that have multiple hits (i.e. reads that can be

assigned with equal significance to more than one species in the reference taxonomy) to
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the lowest common ancestor of the set of species that match it. An example of tool that

uses this method is MEGAN [51]. In the specific, after the alignment of the sequences

with BLAST, the ambiguous reads (i.e. the one that have multiple matches) are assigned

to the LCA of all the matched species, in the adopted taxonomy. In the specific, the

adopted taxonomy in MEGAN is the NCBI taxonomy [52]. One of the problems in this

strategy is that by using the LCA there could be false positives, i.e. there are species

in the subtree rooted at the LCA the are not matched in the alignment. In fact, if

considering the LCA of the match set of a read, not all of its descendant leaves are in

that set. This last consideration motivated the development of TANGO.

TANGO [40] is a tool for the Taxonomic Assignment in Metagenomics that uses the

LCA to refine the assignment process. From a computational point of view the problem

is formulated as follows: given a reference taxonomy tree T with leaf set L(T ) (i.e. the

subset of nodes of T that are leaves), each ` ∈ L(T ) is a species and has an associated

sequence. Given a set of reads R, for each Ri ∈ R there exists a subset Mi ⊆ L(T ) of

leaves such that each sequence (associated to nodes) in Mi has at most k mismatches

with respect to Ri (which are the set of matches or hits of an alignment program,

see 4.1.1). As anticipated before, the objective is to identify for each Ri ∈ R, with

|Mi| > 1, the best representing node in T of all matches in Mi. Obviously, the choice

for Ri ∈ R such that |Mi| = 1 is trivial (unambiguous reads), but this is not true for

the ones that have |Mi| > 2 (ambiguous reads). To solve this latter problem TANGO

implement an algorithm, based on a parameter q, that calculate a penalty score of the

nodes in T (see Algorithm 3).

Algorithm 3: TANGO

Data: a reference taxonomy T , a set R of reads with associated the set of matches Mi

for each Ri ∈ R and the parameter q ∈ [0, 1].
Assignments← [ ];1

foreach Ri ∈ R do2

if |Mi| = 0 then3

// No assignment.

Assignments[i]← ∅;4

else if |Mi| = 1 then5

// The only leaf in Mi.

Assignments[i]← {x ∈Mi};6

else7

calculate the penalty score PSi,j for all the nodes in the subtree Ti of T ;8

Assignments[i]← {j|j ∈ T, have the smallest value of PSi,j};9

return Assignments;10

In the specific, the key point of such algorithm is the calculation of the penalty score

(PS) for the nodes of T . To this purpose, it is necessary to introduce some additional
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concepts. Given a rooted tree T and a read Ri ∈ R, let Ti be the subtree of T rooted at

the LCA of Mi. In this way it is possible to introduce the following notations:

• Ti,j = the subtree of Ti rooted at node j;

• TPi,j (True Positives) = leaves in Ti,j that belong to Mi;

• FPi,j (False Positives) = leaves in Ti,j that do not belong to Mi;

• TNi,j (True Negatives) = leaves in Ti \ Ti,j that do not belong to Mi;

• FNi,j (False Negatives) = leaves in Ti \ Ti,j that belong to Mi.

In this way, given a read Ri ∈ R, it is possible to partition the leaf set of Ti (i.e. the

subtree induced by the LCA of Mi) into the 4 previously introduced subsets, for each

node j in the subtree Ti (see Figure 4.2). Since Ti,j represents the subtree of Ti induced

by the choice of node j as representative of Mi, the algorithm selects the node that

better represent each read in R. This is done by calculating the penalty score value for

every node j in the subtree Ti and then by selecting the node that minimize such value.

More specifically, given a node j in the subtree Ti and the parameter q, the penalty

score is defined as:

PSi,j = q · |FNi,j |
|TPi,j |

+ (1− q) · |FPi,j |
|TPi,j |

(4.1)

For all the nodes j of T that are not in Ti, PSi,j = ∞. Also in the case in which

|TPi,j | = 0, PSi,j =∞. So, the representative of Mi for every read Ri ∈ R is selected as

the node j in Ti such that the value of the penalty score PSi,j is minimum, with respect

to the parameter q.

It is easy to notice that the choice depends on the value of the parameter q ∈ [0, 1]. In

the specific, if q = 0, then:

PSi,j =
|FPi,j |
|TPi,j |

This implies that the minimum value of the penalty score is obtained by minimizing the

false positive set. For this reason, the optimal assignment is done by selecting a leaf in

Mi for which the value of |FPi,j | (and consequently the value of PSi,j) is equal to 0. On

the other hand, if q = 1, then:

PSi,j =
|FNi,j |
|TPi,j |

This implies that the minimum value of the penalty score is obtained by minimizing the

false negative set. This means that the optimal assignment is done by selecting the LCA

of Mi (i.e. the root of Ti) for which the value of |FNi,j | (and consequently the value
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. . . Ti

s1 s2 s3 s4

Ti,j

s5 s6 s7 s8

. . .

FNi,j TNi,j TPi,j FPi,j

Figure 4.2: Leaf set partition used for the Penalty Score calculation in TANGO. In
this example, given a read Ri ∈ R the matches are represented as circled leaves, i.e.
Mi = {S1, S5, S6, S7}. The leaves of Ti, which is the subtree rooted at the LCA of
Mi, can be partitioned into 4 disjointed subsets (TPi,j , FPi,j , TNi,j and FNi,j) for
each node j in Ti. Ti,j represents the subtree of Ti induced by the choice of node j as
representative of Mi.

of PSi,j) is equal to 0. To summarize, the value of q influences the choice of the best

assignment in the following way: if q = 0 then the representative is selected among the

leaves in Mi; if q = 1 the representative is the LCA of Mi; for all the values 0 < q < 1

the representative is an internal node of the subtree Ti. To be more precise, in [40] the

authors have shown that by selecting q = 0.5, the process of selection is equivalent to

maximize the F-measure (Fi,j) which is defined as a combination of precision (Pi,j) and

recall (Ri,j):

Fi,j =
2 · Pi,j ·Ri,j

Pi,j +Ri,j

Finally, the best representative node for an ambiguous read can be computed in an

efficient way in O(|Ti|) (i.e. the number of nodes in the subtree Ti) time, and, if a O(|T |)
time preprocessing is performed, it is possible to find the best j in T that minimizes the

value of PSi,j for any Mi ⊆ L in O(|Mi|) time. An example of taxonomic assignment

with TANGO is shown in [53].

4.2 Taxonomy Analysis

Metagenomics studies are mainly focused on bacterial communities, and the interest

is due to the fact that Bacteria have important roles in the life of organisms. Several

reference databases and taxonomies have been built in order to classify and determine

the sequence and the relationship among Bacteria. To achieve this purpose, selected

regions of the 16S ribosomal RNA (rRNA), that constitute optimal species molecular
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Database N. Sequences (Taxon)

NCBI 2,159,030 (Bacteria)
20,150 (Archaea)

RDP 1,052,807 (Bacteria)
20,408 (Archaea)

Greengenes 400,259 (Bacteria)
6,738 (Archaea)

SILVA 629,125 (Bacteria)
38,721 (Archaea)

LTP 8,931 (Bacteria)
348 (Archaea)

Table 4.1: List of the main databases for 16S ribosomal RNA (rRNA) and the number
of Bacteria and Archaea (high-quality) sequences present in the current version of the
database.

markers, are usually sequenced (see [54] for a more detailed analysis about the reference

databases used in metagenomics). Although the NCBI database is a huge source of

sequence information, its content can have low quality and also erroneous sequence data.

In addition to this, the amount of submitted data is continuously growing and this has

contributed to the development of the previously mentioned reference databases. In

fact, due to a so huge quantity of data, the quality and the annotation of such sequences

are difficult of assess. For this reason, more specific and accurate resources have been

developed. Currently, the main available reference databases for Bacteria and Archaea

(reported in Table 4.1) are: NCBI taxonomy, RDP, Greengenes, SILVA and LTP.

4.2.1 16S Databases

NCBI taxonomy [52] is the most used database that provides a classification and a

nomenclature for all the organisms present in it. At the moment of the writing of this

thesis, there are 11,585 prokaryotic (of which 454 are Archaea and 11,131 are Bacteria)

and 245,949 eukaryotic species in the NCBI database. This taxonomy is updated with

user submissions that are confirmed by the literature, and all of this is done manually.

The NCBI taxonomy is available at http://www.ncbi.nlm.nih.gov/taxonomy/ and

there is also a ftp site that includes dumps, to download such a taxonomy. Although

this latter reference database is not specific for bacterial organisms, it is however used

for that purpose (i.e. 16S based analysis).

The Ribosomal Database Project (RDP) [55] is the second example of reference database

used in metagenomics. The current version of such taxonomy, which is RDP 10.29 (Re-

lease 10, Update 29), consists of 2,320,464 aligned and annotated 16S rRNA sequences.

More specifically, these sequences are divided into Bacteria (which consists of 2,212,243

http://www.ncbi.nlm.nih.gov/taxonomy/
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sequences) and Archaea (which consists of 107,969 sequences), plus 252 unclassified se-

quences. This taxonomy (which also provides a set of tools for taxonomic analysis) is

available http://rdp.cme.msu.edu/.

Greengenes [56] is a dedicated full-length 16S rRNA gene database that provides users

with a curated taxonomy. This taxonomy consists of 1,049,116 aligned sequences with

a length that is greater than 1,250nt and is based on a De novo phylogenetic tree

calculated from sequences (previously filtered by quality). In this way, it is possible

to infer relationships among the considered sequences. It is available for download

and browsing at http://greengenes.lbl.gov/. It also provides an automatic tool for

assigning names to novel (unclassified) clusters of sequences.

SILVA [57] database provides a classification for both small subunits (SSU), like the 16S

rRNAs, and long subunits (LSU) quality checked rRNA sequences for all three domains

of life (which are Bacteria, Archaea and Eukarya). The actual version (111) of SILVA,

released in July 2012, has more than 3,500,000 available sequences (SSU and LSU).

For the 16S rRNA it is possible to distinguish the SSU Parc, which contains only a

quality filtered sequences and the SSU Ref, which contains high quality sequences (with

length above 1,200nt for Bacteria and 900 for Archaea). In the current version of the

taxonomy, which is available at http://www.arb-silva.de/, there are 3,194,778 SSU

Parc (of which 2,651,771 are Bacteria and 129,147 are Archaea) and 739,633 SSU Ref

(of which 629,125 are Bacteria and 38,721 are Archaea) sequences.

“The All-Species Living Tree” Project (LTP) [58–60] provides phylogenetic classifica-

tion for the organisms that appear in the Systematic and Applied Microbiology journal

after an accurate validation. The current version of the LTP taxonomy (which is the

s108 of July 2012) contains 8,931 Bacteria and 348 Archaea 16S rRNA sequences (from

SILVA database). This taxonomy is available at http://www.arb-silva.de/projects/

living-tree/.

4.2.2 Tree Analysis

For each of the introduced databases, we have downloaded the taxonomy, which is

usually represented as a tree, in order to analyze its structure and its nomenclature. It

is important to underline that 16S databases do not always agree in the names used for

the identification of the species, nor they always agree in the taxonomic structure. We

have analyzed such taxonomies in order to provide a support for some of them in the

improved version of the TANGO software.

http://rdp.cme.msu.edu/
http://greengenes.lbl.gov/
http://www.arb-silva.de/
http://www.arb-silva.de/projects/living-tree/
http://www.arb-silva.de/projects/living-tree/
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Newick format:

((((D,E)C,F )B, (H, (J,K)I, L)G)A);

Figure 4.3: Example of tree with its representation in Newick format.

As a first step we have downloaded the taxonomic trees of the previous 16S databases,

that for all but the NCBI, are available in Newick format. This latter format is widely

adopted for the representation of trees, using parenthesis and commas (in its simplest

definition). It also allows to add weights (that in the case of taxonomic trees can

represent the evolutionary distances) on the edges. Interior nodes are represented by a

pair of matched parentheses. Between them there are the representations of nodes that

are immediately descended from that node, separated by commas. Finally, the names

of the interior nodes follow the right parenthesis of that interior node. In this way, all

the taxonomic trees can be represented by nested parenthesis as shown in Figure 4.3.

On the other hand, instead of using this latter format, the NCBI taxonomy is available

in dump format. In this case, it is used a column representation of the tree, i.e. each

node is represented by an identifier and the identifier of its parent (which is unique in a

tree). In this way, in the first column there are the identifiers of the nodes and in the

second one the identifiers of the parents of those nodes. It is also possible to add further

columns to provide additional information.

Once obtained the trees we have analyzed their structure by performing a traversal that

visits all the nodes. In the specific, taxonomic trees are n-ary trees in which leaves are

usually labeled with species (or with sequences representing them) and internal nodes

can be labeled with name of higher ranks (see Figure 4.1). However, from the performed

analysis, we have discovered that 3 (Greengenes, SILVA, LTP) of the 5 considered taxon-

omy are binary. This is probably due to a “binarization process” in which every internal

node is “divided” into sub-nodes with two children each. In the specific, for each in-

ternal node i with n children, its leftmost child (assuming that children are ordered)

is maintained as it is and the remaining n − 1 children are moved as descendants of a

created right child. At this point, this latter node (which is the right child of i) has the

n − 1 children of i as its children. Then this procedure is repeated (n − 1 times) until

each node has two children (see Figure 4.4 for an example). For this reason, the “new”

produced tree has more internal nodes than the original one, but more important the
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Figure 4.4: Example of “binarization process”. On the left there is an example of
tree in which a node r has 4 children (named n1, n2, n3 and n4). On the right there
is the same tree after the binarization, in which the circled node are the ones added in
the process.

depth of the nodes (as also the depth of the tree) changes drastically. In addition to

this, it is not easy to “de-binarize” (perform the reverse process) in order to obtain the

original tree because it is not always possible to identify the added nodes and the others.

In fact, since in a taxonomic tree the internal nodes could not be labeled, they can’t be

distinguished from the new ones that must be contracted to recover the original tree.

The results of the analysis that we have performed on the considered taxonomy trees,

are reported in Table 4.2. In particular, the maximum depth of the tree is calculated

starting from the root (which has depth = 1) and looking for the farthest leaf. As

expected, n-ary taxonomies have a maximum depth that is some order of magnitude

smaller than the one of binary trees. Also LTP, that is two order of magnitude smaller

(in the number of leaves and nodes) than NCBI, has a maximum depth that is one

order of magnitude greater than this latter taxonomy. An additional confirmation of

the fact that Greengenes, SILVA and LTP taxonomies are (perfect) binary, is given

by the property that the total number of nodes |V | is twice the number of the leaves

|L|, minus one: |V | = 2 · |L| − 1. This is true for all the three previously mentioned

taxonomies. For the “real” n-ary trees the maximum depth is higher than the expected

(7 rank levels) but this is justified by the fact that NCBI adds more subdivisions and

new ranks (for a total of 28 valid ranks), and also the possibility of having (internal)

nodes with “no rank”. In the case of RDP there are 2 more ranks, with respect to

KPCOFGS, which are subclass and suborder. This leads to a maximum depth of 10: the

7 KPCOFGS ranks + 2 other ranks (subclass and suborder) + the root.

4.2.3 Inferring Trees from Lineages

Due to the highlighted problems, we have decided to build the taxonomic trees by

inferring them from the lineages. In the specific, a lineage is the “complete classification”

of an organism, involving all the taxonomic ranks that, in the case of the tree, correspond

to the path from the root to that organism. We have done this operation for the
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Database Tree Type N. Leaves Total N. Nodes Max. Depth

NCBI n-ary 831,261 934,329 42
RDP n-ary 1,073,220 1,075,623 10
Greengenes binary 408,135 816,269 2,479
SILVA binary 739,633 1,479,265 2,795
LTP binary 9,279 18,557 130

Table 4.2: Statistics on the taxonomic trees. In the specific, the second column
reports the type of the tree which can be n-ary or binary; the third and fourth columns
report the number of leaves and total nodes, respectively; the last column reports the
maximum depth of the tree.

three main used databases in metagenomic analysis: NCBI, RDP and Greengenes. For

the NCBI taxonomy, we have used the previously mentioned dump file which reports

the information about the “node - parent” relationship, allowing us to reconstruct the

correct tree. In addition to this, we have used the third column of the file, containing

the taxonomic rank, to correctly label the nodes of the reconstructed tree. For the

remaining two databases, RDP and Greengenes, we have used a GenBank and a FASTA

file, respectively. In the former file there is a record for each of the available leaves of the

tree, reporting all the information about such species (see http://www.ncbi.nlm.nih.

gov/Sitemap/samplerecord for details about the format). Among all the fields, in the

one named “ORGANISM” the taxonomic lineage of such organism is detailed. Each of the

lineages in the GenBank file of RDP is a sequence of names (one for each rank of the

taxonomy), separated by semicolons, of fixed length. In agreement with the n-ary tree

in Newick format, the lineages of RDP have length 10 (including the root), reflecting the

depth of such a tree. The following example shows the lineage of an organism present

in the GenBank file of RDP:

ORGANISM Acidimicrobium sp. Y0018

Root; Bacteria; Actinobacteria; Actinobacteria;

Acidimicrobidae; Acidimicrobiales; Acidimicrobineae;

Acidimicrobiaceae; Acidimicrobium.

The first name present in the ORGANISM field is the species name (which is the leaf name

of the tree) and then there is the lineage from the Root of the Genus level (which is the

one before species). In the specific, each position in the lineage correspond to a specific

rank in the taxonomy, following the KPCOFGS ranks plus the two introduced subranks

(subclass and suborder):

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord
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Depth N. Nodes (N. Leaves)

1 1 (0)
2 3 (0)
3 295 (252)
4 134,128 (134,016)
5 102,529 (102,334)
6 197,936 (197,559)
7 117,188 (115,446)
8 1,540,555 (1,540,464)
9 22,784 (22,484)
10 207,909 (207,909)

Total: 2,323,328 (2,320,464)

Table 4.3: Statistics on the reconstructed RDP taxonomy. In the specific, for each
depth of the tree, the number of nodes (resp. leaves) is reported.

1 Root: Root

2 Kingdom: Bacteria

3 Phylum: Actinobacteria

4 Class: Actinobacteria

5 Subclass: Acidimicrobidae

6 Order: Acidimicrobiales

7 Suborder: Acidimicrobineae

8 Family: Acidimicrobiaceae

9 Genus: Acidimicrobium

10 Species Acidimicrobium sp. Y0018

It must be noticed that there are also cases in which the lineage is truncated at a

certain level, meaning that the precise classification for such a species is not available

(and so the leaves are at a different depth in the tree). In this way the taxonomic tree

can be reconstructed as an n-ary tree. In Table 4.3 the number of nodes (and leaves)

for each depth of the reconstructed tree of the last version of the RDP taxonomy are

reported. As it is possible to notice, the root has 3 children, Bacteria, Archaea and the

unclassified organisms (this last with 252 leaves) and there are a total of 2,320,464 leaves

(see description of the RDP database in 4.2.1).

A similar process is done for the Greengenes taxonomy. In this case the file containing the

information about the lineages is in FASTA format. This latter is a well know format,

and is commonly used to represent sequences of nucleotides in which each record is

composed of two lines: the header (that starts with >) and the sequence. In Greengenes

the first field of such format, i.e. the first line of each entry, is used to describe the

lineage of an organisms (with its associated sequence of nucleotides in the second line).
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The following is an example of FASTA entry of the Greengenes database (which is split

on multiple lines to ease the reading):

>37 M36507.1 Methanococcus vannielii k__Archaea; p__Euryarchaeota;

c__Methanococci; o__Methanococcales; f__Methanococcaceae;

g__Methanococcus; s__Methanococcus vannielii; otu_144

More specifically, after the initial symbol there is a numeric identifier associated to the

organism followed by its specific name and by its taxonomic classification (which respects

the KPCOFGS ranks). Moreover, each taxonomic rank is identified by a prefix added

to the corresponding rank name, which is composed of the first letter of the rank (i.e. k

for Kingdom, p for Phylum, and so on) followed by two “underscore” characters. The

lineage is then terminated by the otu identifier and, when creating the tree, the root

node must be added. In the previous example the classification of the organism is:

1 Kingdom: Archaea

2 Phylum: Euryarchaeota

3 Class: Methanococci

4 Order: Methanococcales

5 Family: Methanococcaceae

6 Genus: Methanococcus

7 Species: Methanococcus vannielii

In addition to the procedure introduced before for inferring the taxonomic tree from

their lineages, we have decided to perform a contraction of such trees in order to have

only the KPCOFGS ranks. This KPCOFGS contraction is done with a process that is

similar to the inverse of the previously described “binarization”. It is possible to define

the contracted taxonomic tree, given a subset of its ranks, in the following way:

Definition 4.1. Let T be a taxonomic tree in which every node x is labeled with its

taxonomic rank, i.e. rank(x) ∈ Ranks, and let Ranks′ ⊆ Ranks be a set of valid ranks.

The contracted tree T ′, derived from T w.r.t. Ranks′, is the tree such that L(T ′) = L(T )

and the two trees T ′ and T have the same root r. Moreover, for each node x ∈ I(T ) \ r,
if rank(x) ∈ Ranks′, then x ∈ I(T ′) \ r, and for each edge (x, y) ∈ T ′, y is a proper

descendant of x in T .

Starting from Definition 4.1, we have formulated the general problem as follows.

Problem 2. Taxonomic Tree Contraction

Input: a taxonomic tree T in which every node x is labeled with its taxonomic rank
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rank(x) ∈ Ranks and a set Ranks′ ⊆ Ranks of valid ranks.

Output: the contracted tree T ′, derived from T w.r.t. Ranks′.

This problem can be solved by performing a postorder traversal of the tree T , which

guarantees that, when visiting a node, all its children are already visited. During the

visit, if a node has a label that is not among the valid ranks, it is contracted by assigning

all its children to the parent node. Otherwise the node is maintained as it is. A special

condition holds for both the root node and the leaves, which are both always kept in

the contracted tree T ′. More specifically, let x be a node of T , parent(x) is its parent

node and children(x) is the set of its children. Algorithm 4 propose a recursive solution

to Problem 2. For ease of reading, we have adopted a simple data structure for the tree

representation, which is slightly different form the one used in the improved version of

TANGO. We remand the reader to Section 4.4.1 for a more detailed explanation of the

adopted data structures.

Algorithm 4: Tree-Contraction(r,Ranks′)

Data: a rooted tree with root r in which nodes are labeled with labels in Ranks and a
set Ranks′ ⊆ Ranks of valid ranks.

if r is a leaf then1

return;2

foreach x ∈ children(r) do3

Tree-Contraction(x,Ranks′);4

// Root is a special case.

if r is the Root then5

return;6

// Check if the node r has a valid rank.

if rank(r) /∈ Ranks′ then7

// Node r must be contracted.

foreach x ∈ children(r) do8

parent(x) = parent(r);9

Delete r from children(parent(r));10

return;11

The correctness of Algorithm 4 is guaranteed by the use of a postorder traversal of the

tree. In particular, the base case is verified by the leaves and also the root that are

always preserved. Then, for each node x the pre-conditions are that all its children are

already contracted and this is guaranteed by the properties of the postorder traversal.

The post-conditions are that if x has a valid rank the node is maintained, otherwise all

its children are moved as children of the parent of x. These conditions are obviously

verified by the presence of the conditional statement in the algorithm.

In our case, the set Ranks′ consists of exactly the KPCOFGS ranks, meaning that the

contracted taxonomic trees have all the same rank levels (and also the maximum depth).
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A last but fundamental step performed in this “pre-processing” of the taxonomies is

the mapping of the nodes. As anticipated before, we have decided to do that only for

the leaves, in fact, by reconstructing the tree from the lineages, each entry (i.e. each

lineage) corresponds to a leaf (this is also why we keep all the leaves in the contraction

procedure of the tree). The idea is to map these entries in order to create a mapping file

that associates the leaves of a taxonomy to the nodes of another one. As an example,

we have mapped RDP and Greengenes databases to NCBI (i.e. RDP ⇒ NCBI and

Greengenes ⇒ NCBI). For the first case (RDP to NCBI) it is possible to extract such

information from the GenBank file, while for the second case Greengenes provides an

additional file. Although this operation can be easily accomplished by simply reading

two files, it must be noticed that there could be a problem. In fact, there is the possibility

that one entry (that is a leaf in the first taxonomy) is mapped to an internal node of

another taxonomy, causing some problems in the read assignment preformed by TANGO

software.

4.3 Minimum Penalty Score Calculation

The main problem in the taxonomic assignment in TANGO regards the calculation of

the penalty score (PS). Recalling Section 4.1.2, this function is computed for each node

in the subtree induced by the set of matches of a read. For each read Ri ∈ R with

its associated set of matches Mi (i.e. the subset of leaves the match the read Ri), the

induced subtree Ti of T is the tree rooted at the LCA of Mi. Then for each node j ∈ Ti,
its penalty score is calculated (based on the chosen parameter q) and the node j which

has the lowest value is chosen as representative of Mi. In other words, the read Ri is

assigned to node j.

The improvement of this procedure is based on two fundamental observations: (i) the

penalty score value can be the same for adjacent nodes and (ii) we want to select a node

that is as far as possible from the root. In the specific, the penalty score value changes

only if the sets FN , FP and TP change, and we want to find a node for which this

value is minimum. In this way, it is possible to define the following problem.

Problem 3. Minimum Penalty Score Calculation

Instance: a rooted tree T , a set S ⊆ L(T ) of leaves and the parameter q.

Solution: a node n in T .

Measure: the value of the penalty score function, PS.

Goal: minimization.

Let us recall the Definition 4.1 of the penalty score (PS) function. In particular, once

the parameter q is fixed, given a node x ∈ N(T ) we want to obtain its penalty score,
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Figure 4.5: An example of rooted tree T is shown in 4.5(a), where the circled leaves
are the ones in the set S, i.e. S = {3, 4, 9, 11}. In 4.5(b) the skeleton tree obtained from
Definition 4.2, starting from the tree T and the subset of leaves S.

expressed as:

PS(x) = q · |FNx|
|TPx|

+ (1− q) · |FPx|
|TPx|

(4.2)

where the sets TPx, FNx and FPx are respectively the set of true positives, false nega-

tives and false positives, with respect to the node x of T .

Instead of computing such a function for all the nodes n ∈ N(T ) to find the minimum

value, it is possible to consider only the nodes present in the LCA skeleton tree. In the

following we show the correctness of the penalty score calculation by using such a tree

and we also describe an efficient way to do it.

4.3.1 An Asymptotically Optimal Algorithm

To solve the Problem 3 in a correct and efficient way, we have developed an algorithm

based on the LCA skeleton tree computation. In the specific, in this section we prove

that the procedure involving such a tree to find the minimum value of the PS function

is correct and we also describe an optimal procedure to compute it. The LCA skeleton

tree was defined in [61] as follows.

Definition 4.2. Given a rooted tree T and a subset of its leaves S ⊆ L(T ), the LCA

skeleton tree TLCA
S has node set N(TLCA

S ) ⊆ N(T ) and edge set E(TLCA
S ). In particular,

a node n ∈ N(TLCA
S ) if and only if there exist x, y ∈ S such that n = LCA(x, y) and an

edge (x, y) ∈ E(TLCA
S ) if and only if there are no other nodes in N(TLCA

S ), except for x

and y, on the unique path from x to y in T (see Figure 4.5 for an example).

Using Definition 4.2, we start by showing the correctness in the use of the LCA skeleton

tree for the calculation of a node that has the minimum value of PS. In fact, by
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computing the PS function only in the nodes of the LCA skeleton tree, it is guaranteed

that the minimum value (and consequently a node) will be found. The following lemma

states this fact.

Lemma 4.3. Let T be a rooted tree and let S ⊆ L(T ) be a set of leaves, and let also

TLCA
S be the LCA skeleton tree. Given a node x ∈ TLCA

S , then the same value of the

penalty score PS(x) can be obtained in both the trees, T and TLCA
S .

Proof. In order to proof this lemma, it is necessary to add an additional information on

the tree T (and consequently on the LCA skeleton tree TLCA
S ). Let us suppose, without

loss of generality, that for each node x ∈ T , nDesc(x) is its set of descendant leaves

(obtained with a traversal of T , which is independent from S). This set is kept also for

the nodes of TLCA
S . Let us recall from Definition 4.2 that N(TLCA

S ) ⊆ N(T ) and also

that the set of descendant leaves of a node x ∈ N(TLCA
S ) correspond to TPx. The same

set for the node x ∈ T can be obtained by TPx = {y ∈ nDesc(x) : y ∈ S}.

At this point, by having for each node x ∈ TLCA
S the same set nDesc(x) and the same

set TPx in both the trees, the same penalty score value PS(x) can be obtained in both

the trees. In particular, the sets FNx and FPx can be calculated in the following way:

FNx = S \ TPx and FPx = nDesc(x) \ TPx

As it is possible to notice, the two sets depend on TPx and nDesc(x) that are the same

in both the trees (and also S that is a fixed input parameter). This means that also

FNx and FPx are the same in the two trees, and consequently the value of PS(x).

Lemma 4.4. Let T be a rooted tree and let S ⊆ L(T ) be a set of leaves. A node

x ∈ N(T ) has the minimum penalty score value PS(x) if and only if x ∈ N(TLCA
S ) and

it has the same minimum penalty score value.

Proof. (⇒) Let us suppose that x /∈ N(TLCA
S ). It is always possible to find a node

y ∈ N(TLCA
S ) such that x is a proper ancestor of y. In fact, the only case in which there

are no proper descendant of x that are in TLCA
S , is when x has no descendant leaves in

S. Anyway, in such a case TPx = ∅ and so PS(x) = ∞. This lead to an absurd. Let

us also suppose, without loss of generality, that there are no other nodes z ∈ N(TLCA
S )

on the path from x to y in T .

From Definition 4.2, x and y have the same set TP , because such a set changes only

among nodes in TLCA
S . It follows that TPx = TPy. For the same reason, also the

set FN must be the same, i.e. FNx = FNy. In the specific, both TP and FN involve

descendant leaves in the set S, so these sets can only vary in nodes the are LCA of nodes
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in such a set (i.e. nodes of TLCA
S ). On the other hand, the set FP strictly increase when

climbing the tree T (until reaching the next node in TLCA
S ) by adding leaves that are not

in S. This means that FPx > FPy, so PS(x) > PS(y). Recall from Definition 4.2 that

N(TLCA
S ) ⊆ N(T ), so y ∈ N(TLCA

S ). This lead to an absurd because from hypothesis x

has the minimum penalty score value, so x ∈ N(TLCA
S ). In addition, from Lemma 4.3,

the penalty score value of x (which is the minimum in T ) is the same also in TLCA
S .

(⇐) Let x ∈ N(TLCA
S ) be a node with the minimum penalty score value PS(x) in TLCA

S .

From Definition 4.2, N(TLCA
S ) ⊆ N(T ), so x ∈ N(T ). Now we have to proof that the

value of PS(x) is minimum also in T .

Let us suppose that there exists a node y ∈ N(T ) \N(TLCA
S such that PS(y) < PS(x).

This means that there exists a node in T , but not in TLCA
S , that has the minimum

penalty score value. As shown in the previous case, it is always possible to find a node

z ∈ N(TLCA
S ) such that y is a proper ancestor of z and also PS(z) < PS(y). This lead

to a contradiction because PS(z) < PS(y) < PS(x) in which z, x ∈ N(TLCA
S ), but from

hypothesis x has the minimum penalty score value in TLCA
S . This means that x has the

minimum value of PS(x) also in T .

It has been shown in [62] that, starting from a rooted tree T and a subset of its leaves

S, the LCA skeleton tree TLCA
S can be computed in O(|S|) time, after having done a

pre-processing of T (that is independent of S) in O(|T |) time. Moreover, each step of

the construction of the skeleton tree can be used to make some calculations. For this

reason, we have decided to use the skeleton tree construction, or better its traversal, to

compute the penalty score function, in order to find the minimum value. In fact, for this

latter function, the tree (the input of the LCA skeleton tree) correspond to the subtree

Ti induced by the read Ri (i.e. the subtree of T that is rooted at the LCA of Mi) and

the subset of leaves correspond to the match set, i.e. S = Mi.

We have already proved in Lemma 4.4 that given a tree T and a set S ⊆ L(T ) of

leaves, to find a node that has the minimum value of the penalty score function can be

equivalently done in the LCA skeleton tree TLCA
S . In fact, it is guarantee that a node

x that has the minimum value PS(x) in a tree, has also the minimum value of such

a function in the other tree (correctness property). Now we show how to perform this

calculation in an optimal way, by using the LCA skeleton tree.

Lemma 4.5. Problem 3 can be solved in O(|S|) time.

Proof. In the proof of Lemma 4.3 we said that it is necessary to store, for each node

x ∈ N(T ), its number of descendant leaves |nDesc(x)|. This can be done during the

pre-processing of T , in O(|T |) time. In fact, by preforming a postorder traversal of T ,
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for each node x ∈ N(T ), its number of descendant leaves is the sum of the numbers of

descendant leaves of all its children, i.e.

|nDesc(x)| =
∑

y∈children(x)

|nDesc(y)|

For the leaves, this value is 1, i.e. if x is leaf, then |nDesc(x)| = 1.

The algorithm for the construction of the LCA skeleton tree, given a rooted tree and a

subset of its leaves, described in [62] requires O(|S|) time. Such a procedure calculates

the tree by adding nodes following a postorder traversal order of the LCA skeleton tree.

For this reason we start from the LCA skeleton tree TLCA
S , and we perform a postorder

traversal of it, that require O(|S|) time (in fact the leaves are the nodes of the set S).

We now prove that, when visiting a node, it is possible to calculate the penalty score

function in constant time.

The first step is to show how to calculate the number |TP | for each node in TLCA
S . In

particular, this set corresponds to the set of descendant leaves of each node. Since we

are doing a postorder traversal, it is guaranteed that when visiting a node, its children

are already visited. In this way, starting from the leaves that have |TP | = 1, for each

node x ∈ N(TLCA
S ):

|TPx| =
∑

y∈children(x)

|TPy|

At this point for each node x ∈ N(TLCA
S ) we have |nDesc(x)| (obtained in the pre-

processing of T ) and |TPx|. As anticipated before, the two values |FNx| and |FPx| can

be obtained as:

|FNx| = |S| − |TPx| and |FPx| = |nDesc(x)| − |TPx|

Both these operations require constant time, so the calculation of the penalty score

function, which is:

PS(x) = q · |FNx|
|TPx|

+ (1− q) · |FPx|
|TPx|

can be done in constant time. This means that the overall procedure for the penalty

score calculation in TLCA
S requires O(|S|) time.

As a final remark, we recall the necessity of a pre-processing of the tree T in the LCA

skeleton tree construction. In the specific, a first pre-process of T that requires O(|T |)
time is done, so that it is possible to obtain the LCA of any pair of nodes of T in O(1)

time (see [63, 64] for details). Moreover, we perform and additional postorder traversal

of T , that takes O(|T |) time, in order to calculate the depth (necessary for the efficient
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construction of the LCA skeleton tree) and to compute the set of descendant leaves of

each node.

4.4 TANGO Improvement

We start now describing the main improvements in the new version of the TANGO

software. As anticipated in the previous sections, the objectives of this work are to

realize a version of the software that performs the taxonomic assignment in a much

faster way and also offers more flexibility in the choice of the taxonomy. To achieve

the first goal, we have changed both the data structure and the algorithms used for

the calculation of the penalty score. Moreover, the calculation of this last function is

done by implementing the optimal algorithm described in the previous section. Indeed,

to accomplish the second task, we have developed a procedure to contract the input

taxonomies and to provide a support to them. In the rest of this section these steps are

explained in detail.

4.4.1 New Data Structures

The first change in the TANGO program regards the data structures used to represent

the taxonomic trees. More specifically, the chosen language of the program is perl2, and

in particular we adopted the bio-perl project [65] which is a collection of perl modules

that are particularly suited for bioinformatics purposes. One of the main advantages in

using this programming language is that it has the support of regular expression, for the

processing of strings. Its regular expression support is the most versatile in existence

and it is integrated into the language. In addition to this, the perl language can be

used to realize stand-alone programs but it also offers the possibility of being integrated

into other applications. Moreover, in bio-perl are present modules that provide an

implementation of the tree data structure that can be used to represent n-ary trees.

Although this data structure works well for general trees (also for taxonomic trees), it

has some “limitations” for our purposes. In particular, one of the main issues is related

to the size of the considered taxonomies: by dealing with entire taxonomic trees such

as NCBI or RDP (that can have up to ∼ 106 nodes), the memory occupation increases

causing also a significant decrease of the (time) performance.

For this reason, for our objective, we have decided to use a simple representation of

the tree based on the parent, first-child, next-sibling data structure, with no additional

information (except for the node identifier and its taxonomic rank). This widely adopted

2http://www.perl.org/

http://www.perl.org/
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Root

1

2

3 4

5

6

7 8

9 10

11

Node Root 1 2 3 4 5 6 7 8 9 10 11

parent Root Root 1 2 2 1 Root 6 6 8 8 6
first-child 1 2 3 null null null 7 null 9 null null null

next-sibling null 6 5 4 null null null 8 11 10 null null

Figure 4.6: Example of tree and the corresponding data structure obtain by taking
the nodes as ordered from left to right (according to the picture). In particular, for each
node we use three pointers: parent, first-child and next-sibling. Notice the following
special cases: the Root node (which has itself as parent), the leaves (which do not have
a first child) and the last siblings (which do not have the next sibling).

tree representation is particularly suited for trees which do not have a fixed number of

children. For each node, the information on its parent, its first child (if exists) and its

next sibling (if exists) are stored. Taxonomic trees are not ordered trees, but the adoption

of this data structure imposes an order among the children of any node. The resulting

order is, however, immaterial with respect to our final goals. More specifically, given

a rooted tree T , each node x ∈ N(T ) (where x is the identifier of such node) contains

the pointer to its parent node (denoted by parent(x)), the pointer to its first child node

(denoted by first-child(x)), the pointer to its next sibling (denoted by next-sibling(x))

and a value associated to its taxonomic rank (denoted by rank(x)). The root r of T is a

special case, in fact it has no parent; for this reason we decided to assign itself as parent,

i.e. parent(r) = r. This property has allowed us to define the condition for the correct

identification of the root in the taxonomic tree: the root r is the (only) node x ∈ N(T )

such that parent(x) = x. The other special case involves the leaves of the tree, because

they (by definition) do not have children. This means that, in particular, they do not

have any “first child” and so the corresponding value is undefined, i.e. null. This means

that if a node x is a leaf, then first-child(x) = null. As in the previous case, this has

allowed us to define the condition for the correct identification of such nodes: the leaves

are the (only) nodes x ∈ N(T ) such that first-child(x) = null. A similar condition

holds for the “last siblings” because they do not have any next sibling. This means

that the corresponding value is null, i.e. next-sibling(x) = null (see Figure 4.6 for an

example).

The only other information used in the adopted data structure is the (taxonomic) rank
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of the nodes. This is done with a bijective function val, that assigns to each rank in

the set Ranks of ranks, an integer value, i.e. val : Ranks → N. In particular, starting

with the root which has value 1, higher taxonomic ranks will have lower values, while

lower taxonomic ranks will have higher values. As stated before, let Ranks be the set

of ranks of a considered taxonomy, then it is possible to order such a set according to

the taxonomic rank, from the highest to the lowest. Then for each rank ri ∈ Ranks,
val(ri) = i, where 1 6 i 6 |Ranks| is the position in the ordered set of ranks. Without

loss of generality, it is possible to insert the root in the set Ranks, as the element with

the highest taxonomic rank r1, so that val(r1) = 1. Recalling from Section 4.2.3, we

have considered contracted trees in which nodes have only labels in Ranks′ ⊆ Ranks.

As a result, given a node x in a contracted tree T ′ (with ranks in Ranks′), it could

happen that there exists a node y, child of x, which has a non-consecutive val value,

with respect to the one of x, i.e. val(y) 6= val(x) + 1. As an example, consider the NCBI

taxonomy which has 29 taxonomic ranks, meaning that the associated values of such

ranks are from 1 to 29. The rank “Phylum” has val = 6, instead “Class” has val = 9.

When contracting such taxonomy to the KPCOFGS valid ranks, the two previous ranks

will not have consecutive values (although they could be consecutive in a lineage).

For each node x of the taxonomic tree, we have stored the value of the function val,

calculated on the taxonomic rank of the node x, in the structure rank(x). This means

that rank(x) = val(ri), where ri ∈ Ranks is the taxonomic rank of the node x ∈ N(T ).

The property that is conserved by the contraction of a tree T with rank set Ranks to

a tree T ′ with rank set Ranks′ ⊆ Ranks, is the following: each path 〈x1, . . . , xn〉 from

the root r′(= x1) to a leaf xn (lineage) has strictly increasing ranks, i.e. rank(xi) <

rank(xi+1) for 1 6 i < n (meaning that the taxonomic rank of node xi is higher than

the one of the node xi+1). In general, in each lineage by definition, the rank values

increase while descending from the root to the leaves.

We have implemented these data structures by using perl hash tables (for details see perl

documentation at http://www.perl.org/docs.html). More specifically, to represent

the parent, first-child, next-sibling and rank structures we have used the hash tables,

one for each of them. In this latter tables node identifiers are the keys of corresponding

the entries. The use of hash tables guarantee us a fast access to each entry, so all the

operations on the trees take advantage of this fact. Finally, one of the main advantages

in using this data structure is that it is the simplest one which allow us to perform all

the required operations on trees, in an efficient way.

http://www.perl.org/docs.html
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4.4.2 Optimal Algorithm Implementation

The second contribution of this work is the realization of the new procedure for the

penalty score calculation used in the taxonomic assignment. Let us just recall the

algorithm showed in Section 4.3.1. We have proved that looking for the minimum value

of the penalty score function can be equivalently done in both the trees (taxonomy

and skeleton). Moreover, the calculation of such a function can be performed while

constructing the skeleton tree, also maintaining an optimal time. We have implemented

this procedure, that is based on the skeleton tree, and more specifically, instead of

constructing it from the taxonomy, it is traversed (in postorder). In fact, as anticipated

before, the building process is equivalent to a postorder traversal of the skeleton tree,

so we have realized a procedure that visits only the nodes of this latter tree in the

taxonomy, simulating the traversal.

In the algorithmic procedure, the only information needed for the computation of the

penalty score function (done in constant time) are the number of descendant leaves in

the taxonomy (that correspond to the |nDesc| value) and in the skeleton tree (that

correspond to the |TP | value). We have obtained the first of them with a postorder

traversal of the taxonomy, and we have stored this information in an additional hash

table (with respect to the ones used to represent the tree, as described in Section 4.4.1).

Such a table has the node identifiers as keys and the respective |nDesc| as values. Indeed,

we have incorporate the calculation of the second information (i.e. the |TP | values) in

the process for the read assignments, described in Algorithm 5.

As it is possible to notice, lines from 2 to 7 are the same as the first 6 lines (from 1 to 6)

of Algorithm 3. Indeed, we want to detail the new adopted procedure for the non-trivial

case (i.e. the one where the match set |Mi| > 1). Before this, the number of descendant

leaves in the taxonomy is obtained with a postorder traversal (line 1) and these values

are stored in the nDescV al hash table. The first performed step is the calculation of

the skeleton tree TLCA
Mi

(line 9) and then a “postorder traversal” of it in which, for each

node of such a tree, its number of descendant leaves is calculated (line 10), is performed.

These values are stored in the TPV al hash table, having node identifiers as keys and

|TP | as values. It must be noticed that this table contains only the nodes of the skeleton

tree, i.e. the ones for which the penalty score function must be computed (let us recall

that N(TLCA
Mi

) ⊆ N(T )). At this point, for each element k in the TPV al table, the

penalty score value is calculated, starting from nDescV al(k), TPV al(k) and q (lines 13

and 14). Then, if the new penalty score value PS(k) is lower than the current minimum,

it becomes the new minimum value, and a new list of “best” nodes is created by inserting

the only element k. Otherwise, if the new penalty score value is the same as the current

minimum, the element k is simply appended to the latter list (lines 15–19). In this way,
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Algorithm 5: Improved-TANGO

Data: a reference taxonomy T , a set R of reads with associated the set of matches Mi

for each Ri ∈ R and the parameter k ∈ [0, 1].
nDescV al← postorder traversal of T ;1

Assignments← [ ];2

foreach Ri ∈ R do3

if |Mi| = 0 then4

// No assignment.

Assignments[i]← ∅;5

else if |Mi| = 1 then6

// The only leaf in Mi.

Assignments[i]← (0, {x ∈Mi});7

else8

TLCA
Mi

← compute LCA skeleton tree;9

TPV al← postorder traversal of skeleton tree TLCA
Mi

;10

minPS ←∞;11

bestNodeSet← ∅;12

// Penalty score calculation for the nodes of the skeleton tree.

foreach k in keys of TPV al do13

PS(k)← penalty score of k with values nDescV al(k), TPV al(k) and q;14

if PS(k) < minPS then15

minPS ← PS(k);16

bestNodeSet← {k};17

else if PS(k) = minPS then18

append(bestNodeSet, k);19

Assignments[i]← (minPS, bestNodeSet);20

return Assignments;21

at the end of the procedure, the minimum value of the penalty score (for the read Ri)

and also the bestNodeSet set of nodes having this value, are inserted into the list of the

assignments, which is then returned.

By using the data structure introduced in Section 4.4.1, it is easy to see that such

procedure is optimal. In fact, the pre-processing that traverses the taxonomy takes

O(|T |) time. Moreover, the loop at line 3 is executed |R| times, and at each iteration

there is the traversal of the skeleton tree that requires O(|Mi|) time, and the same applies

to the loop at line 13. All the other operations in the inner loop can be done in constant

time, i.e. O(1). This means that the overall time for executing the lines 4–20 is O(|Mi|),
where Mi depends on the specific Ri ∈ R. The total required time for executing the

algorithm 5 is O(|T |+M), where

M =

|R|∑
i=1

|Mi|
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This time can also be split to distinguish between the O(|T |) time, needed to pre-process

the taxonomy (that is independent from the set R of reads), and the time required for

the assignment of the reads, that is O(M). This computational time is equivalent to the

one showed in Section 4.3.1. Moreover, we consider contracted taxonomies as input of

TANGO. Recalling Section 4.2.3, the contraction process performed with Algorithm 4

mimics a postorder traversal of the tree (that can be performed in O(T )), in which every

visited node can be contracted. This latter operation requires time that is proportional

to the number of children of the node being contracted.

Here we have showed how to obtain, for each read Ri ∈ R, all the nodes in TLCA
Mi

with

an optimal penalty score value. Moreover, by Lemma 4.4, these are all the nodes in the

tree T , having the minimum value of the penalty score. As anticipated before, since we

want to report one representative, we select the one with the lowest taxonomic rank (in

order to be more specific). If there is more than one node, with both the same value

and rank, we can arbitrary choose among them. This is done in a “post-processing” of

the results of the assignments.

4.4.3 Input Mapping

As a final step, we have also developed a procedure to convert the input of TANGO

to allow the assignment on a different taxonomy, with respect to the one used for the

alignment of the reads. Let us recall from Section 4.1.2 that, in addition to the reference

taxonomy T , the input to the TANGO software is a set of reads R and, for each Ri ∈ R
its match set Mi. This latter is the set of nodes (usually leaves) of the reference taxonomy

T (represented as a tree), for which the read Ri has a valid match. It is easy to see

that this can be seen as the result of an alignment of Ri in the reference taxonomy

T (obviously allowing multiple valid hits). One of the simplest way to represent such

information is the following:

Read1 Node1 Node5 Node8 Node13

Read2 Node2 Node6

Read3 Node9

Read4 Node7 Node10 Node13

...

in which each row identify the alignment of a single read Ri ∈ R. In the specific, for

each row there is the read identifier, followed by a space-separated list of nodes that are

the ones for which the read has a valid match.
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The conversion of this input into another taxonomy can be easily done by using the

mapping among taxonomic trees, introduced at the end of Section 4.2.3. This latter

process, which is done during the pre-processing step of the taxonomies, consists of

creating a mapping file, in which there are the correspondences among nodes of two

taxonomic trees. This mapping from taxonomy T1 to taxonomy T2, indicated as T1 ⇒ T2,

assigns to each node x1 ∈ T1 that has a genomic sequence, the corresponding node

x2 ∈ T2. For this reason, usually only the leaves are mapped into another taxonomy

because these are the only nodes having a genome. In fact, the internal nodes, which

correspond to higher taxonomic ranks, do not usually have a sequence of nucleotides.

This also means that the read alignments are usually referred to leaves. In addition

to this, when constructing a tree starting from the lineages, the only nodes having a

sequence are the leaves. For this reason the list of nodes in the input file, representing

the set of matches, is composed of leaves of the reference taxonomy.

The problem arises when we want to convert such a input into another taxonomy. The

simplest way to do this, is to use the mapping among taxonomic trees (built in the

pre-processing step) and to substitute each node in the list of matches, with the cor-

responding node in the other taxonomy. As anticipated before, the mapping does not

guarantee that a leaf node is mapped to another leaf (in the other taxonomic tree). This

can cause some problem in the calculation of the penalty score because the match set is

not well identified (and consequently the set of true positives). To overcome this limita-

tion, we have decided to ignore such mappings and to not report them in the conversion.

This is equivalent to the situation for which the mapping of a node is not available, or

simply not present, in the other taxonomy.

As a final remark, we want to underline the choice, in the tree contraction procedure

(see Section 4.2.3), to keep the leaves also if they do not have a valid rank. In fact, as

explained before, the matches of reads usually refer to such nodes, so we want to keep

them also in the contracted tree.

4.5 Conclusions and Future Work

In this work we have presented an improvement of the taxonomic assignment procedure

performed by the TANGO software. This is one of the main tasks in metagenomics

and it is the base of analysis aimed, for example, to identify the composition specific

microbial communities. The advent of NGS techniques has made possible such studies,

that were non achievable before. In fact, such methods are widely used for sequencing

samples, allowing us to obtain a set of reads coming from the organisms present in the

environment. One of the most used approaches to distinguish and identify the organisms
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present in a sample, starting from a set of short reads coming from it, is to assign them

into a reference taxonomy. To do this, the sequences are firstly aligned to such taxonomy

and then a representative node is chosen for each read. As underlined, this method has a

big limitation: the assignment depends on the chosen taxonomy. To overcome this fact,

the first part of the presented work was aimed to analyze the available taxonomies. We

have discovered that when considering the tree representation, they have some problems,

especially in the structure, making the comparison difficult. For this reason we have

decided to construct the tree starting from the lineages, which helped us to solve some

inconsistencies among trees. More specifically, we have constructed different taxonomies

in order to make the read assignment process more flexible. Moreover, we have developed

a method to contract the taxonomic trees with respect to a subset of taxonomic ranks,

in order to reduce the analyzed trees to the same set of ranks. This procedure can help

the comparison of the taxonomic assignments of the reads. We have also provided the

support to different taxonomies, allowing the user to choose among them for the read

assignments.

The second part of this work is focused on the realization of a new version of the TANGO

software, with the precise objective of improving its performances. The core of this work

is the realization of a new algorithms for the calculation of the minimum penalty score

value, used to select the representative node, in the taxonomic assignment. In particular,

we have showed how it is possible to use the skeleton tree for the calculation process, and

we have proved its optimality. This means that, instead of computing the penalty score

in each node in the subtree induced by the match set, this function can be calculated

while traversing the skeleton tree for its construction. We have showed that, looking

for the minimum value of this function in the skeleton tree, instead of in the taxonomic

tree, is equivalent. This guarantees that the minimum value is found. Moreover, we

showed that the computations in each node of the skeleton tree can be done in constant

time, so that the overall time required, remains the same to the one required for the

construction of the skeleton tree.

We have implemented these features in the new version of the TANGO program, with

the additional scope of making the assignment process faster than the actual one. To

accomplish this task, we have used new data structures to represent the taxonomic trees.

We have decided to use the hash table of the perl language to speed up the interrogations

and the basic operations on the trees.

Although TANGO provides an optimal assignment with respect to the penalty score

value, there could exist more nodes in the tree, with such a (optimal) value. This means

that they can be equally chosen as representative of the read, and actually, this choice

is done by selecting the node with the lower taxonomic rank. If there are more nodes
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with the same lower taxonomic rank too, we chose one of these nodes randomly (in order

to have only one representative node for read). For this reason, we need to develop a

method that allows to weigh the reads in the tree, to identify the most relevant ones.

This can be done for example, by assigning probabilistic values, based on the taxonomic

assignment of all the reads. This can be seen as a global view of the assignment that

guide the choice on relevant nodes.

Another problem that is closely related to the previous one, is the choice of the parameter

q used for the calculation of the penalty score function. In fact, such a value influences the

assignment by preferring lower or higher taxonomic ranks (see Section 4.1.2). We want

to realize a procedure to automatize this choice, maybe based of external information. So

doing, the entire process of taxonomic assignment in TANGO could become transparent

to the user.

In addition to the two previously introduced future developments, that regard the as-

signment process, there are other possible improvement of the TANGO software. One

of these, is to provide the support for the NGS aligning programs. More specifically,

since the input is the set of valid matches of a read (which is the result of an alignment

of such a read in the taxonomy), we want to provide the support for the most widely

used programs. Some examples are BLAST[38], which is still used also for NGS data or

Bowtie[28] that is one of the most used software, due to its speed.

On the other hand, a further future work is about the produced output. Up to now,

we only give, for every read in the input set, its optimal taxonomic assignment, i.e. a

node in the taxonomic tree that best represents such a read. In some cases, this kind

of output could be too specific, because sometimes it is necessary to have a complete

overview on all the assignments. To do this, we want to produce visual output that gives

a “compact view” of these assignments in order to have, for example, for each taxonomic

rank, the partition of the reads. More specifically, how the reads are subdivided among

the nodes of the taxonomic tree. Recalling the previously introduced taxonomies, we

have Bacteria and Archaea as kingdoms. A possible interrogation of the assignment

process could be to know how the reads are split between the two previous kingdoms, or

alternatively to know how many reads are assigned directly to these specific taxonomic

ranks. All these information can be summarized in tabular format or graphics, such as

pie-charts or histograms.

An additional future work, regards the process of mapping between taxonomic trees. As

underlined, there could be some problems during this procedure, especially when the

mapping (that usually starts from a leaf node) ends in an internal node of the tree. We

want to realize a procedure to manage this case. A possible direction is the propagation

of the mapping on all the leaf descendants of the internal nodes to which the mapping is
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directed. Alternatively, the mapping could be partitioned among the descendant nodes

by assigning a weight to them.

Finally, we have the objective of extending the support to other available taxonomies,

offering to the user the possibility to choose among them porting the results, or better to

perform the assignment on all of them and to compare the results, highlighting differences

an similarities. All these future works can result in a very powerful tool for the taxonomic

assignment of read in metagenomics, and considering the so fast development of NGS

techniques, this task is going to be a central one in bioinformatics.



Appendix A

Additional Data

Table A.1: Details of the first experiment of Section 3.5 on 112 genes. For each
gene, the data concerning the predicted splicing graph (denoted as GR) and the correct
isoform graph (denoted as GS) are reported. For GS , its total number of nodes and
arcs are shown. For the nodes of GR, the total number, the number of correct ones,
Sn and PPV values are reported. The same values are shown also for the arcs of GR.
Finally, the sum of total (and correct) nodes and arcs are reported. The average and
median values of Sn and PPV are calculated. Two average values are present, denoted
as Global and Single. The first one is obtained starting from the Total values, while
the second one is the average of all the values present in the table.

GS GR

Nodes Arcs Nodes Arcs

Gene Tot. Tot. Tot. Correct Sn PPV Tot. Correct Sn PPV

ARHGAP4 34 47 32 31 0.91 0.97 45 41 0.87 0.91

ATP11A 20 23 20 17 0.85 0.85 21 14 0.61 0.67

ATP6AP1 9 12 9 8 0.89 0.89 11 10 0.83 0.91

AVPR2 7 8 7 7 1.00 1.00 8 8 1.00 1.00

BPIL2 5 5 5 5 1.00 1.00 5 5 1.00 1.00

BRCC3 11 15 9 9 0.82 1.00 11 10 0.67 0.91

C20orf173 5 6 5 5 1.00 1.00 6 6 1.00 1.00

C22orf24 5 5 5 5 1.00 1.00 5 5 1.00 1.00

C22orf28 11 13 11 11 1.00 1.00 12 12 0.92 1.00

C22orf30 12 15 12 10 0.83 0.83 15 11 0.73 0.73

C6orf150 7 7 7 7 1.00 1.00 7 7 1.00 1.00

C9orf106 1 0 1 1 1.00 1.00 0 0

CEP250 22 29 18 15 0.68 0.83 25 13 0.45 0.52

CGN 11 12 11 10 0.91 0.91 11 10 0.83 0.91

CPNE1 33 54 23 19 0.58 0.83 29 21 0.39 0.72

CRAT 13 18 12 12 0.92 1.00 16 14 0.78 0.88

CTAG1A 3 3 3 3 1.00 1.00 3 3 1.00 1.00

CTAG1B 3 3 3 3 1.00 1.00 3 3 1.00 1.00

(continue)
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Table A.1: Details of the first experiment of Section 3.5.

GS GR

Nodes Arcs Nodes Arcs

Gene Tot. Tot. Tot. Correct Sn PPV Tot. Correct Sn PPV

CTAG2 3 3 3 3 1.00 1.00 3 3 1.00 1.00

DDX43 5 4 5 5 1.00 1.00 4 4 1.00 1.00

DEPDC5 34 42 37 31 0.91 0.84 44 36 0.86 0.82

DKC1 19 25 17 16 0.84 0.94 19 16 0.64 0.84

DNASE1L1 10 14 10 10 1.00 1.00 14 14 1.00 1.00

DOLPP1 9 11 9 9 1.00 1.00 11 11 1.00 1.00

DRG1 5 5 5 5 1.00 1.00 5 5 1.00 1.00

EEF1A1 25 36 23 22 0.88 0.96 32 28 0.78 0.88

EIF4ENIF1 19 23 17 17 0.90 1.00 20 20 0.87 1.00

EMD 14 18 12 11 0.79 0.92 12 8 0.44 0.67

ENPP1 5 5 8 4 0.80 0.50 9 4 0.80 0.44

ERGIC3 33 46 30 26 0.79 0.87 41 26 0.56 0.63

F10 1 0 1 1 1.00 1.00 0 0

F7 12 16 10 10 0.83 1.00 12 8 0.50 0.67

F8 8 8 8 8 1.00 1.00 8 8 1.00 1.00

F8A1 1 0 1 1 1.00 1.00 0 0

FAM3A 21 31 17 15 0.71 0.88 18 14 0.45 0.78

FAM50A 12 13 12 12 1.00 1.00 13 13 1.00 1.00

FAM73B 25 35 24 20 0.80 0.83 29 20 0.57 0.69

FAM83C 5 6 6 5 1.00 0.83 6 6 1.00 1.00

FBXO7 14 19 13 12 0.86 0.92 17 16 0.84 0.94

FER1L4 42 59 44 41 0.98 0.93 61 57 0.97 0.93

FLNA 40 57 38 34 0.85 0.90 53 42 0.74 0.79

FOXP4 11 14 10 10 0.91 1.00 12 12 0.86 1.00

FRS3 8 8 8 8 1.00 1.00 8 8 1.00 1.00

FUNDC2 10 11 10 10 1.00 1.00 12 11 1.00 0.92

G6PD 19 24 16 13 0.68 0.81 18 12 0.50 0.67

GAB3 10 12 9 9 0.90 1.00 10 10 0.83 1.00

GDF5 3 2 3 3 1.00 1.00 2 2 1.00 1.00

H2AFB1 1 0 1 1 1.00 1.00 0 0

HCFC1 7 9 6 5 0.71 0.83 7 6 0.67 0.86

IER5L 1 0 1 1 1.00 1.00 0 0

IKBKG 19 25 19 17 0.90 0.90 31 15 0.60 0.48

IRAK1 30 46 23 22 0.73 0.96 29 23 0.50 0.79

KATNAL1 7 8 10 6 0.86 0.60 9 6 0.75 0.67

KCNQ5 10 11 10 7 0.70 0.70 9 3 0.27 0.33

L1CAM 25 31 22 21 0.84 0.95 27 22 0.71 0.81

LACE1 6 7 5 4 0.67 0.80 4 3 0.43 0.75

(continue)
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Table A.1: Details of the first experiment of Section 3.5.

GS GR

Nodes Arcs Nodes Arcs

Gene Tot. Tot. Tot. Correct Sn PPV Tot. Correct Sn PPV

LAGE3 1 0 1 1 1.00 1.00 0 0

MCF2L 48 58 46 44 0.92 0.96 56 49 0.84 0.88

MDFI 11 14 11 11 1.00 1.00 14 14 1.00 1.00

MECP2 16 21 15 13 0.81 0.87 19 8 0.38 0.42

MMP24 1 0 1 1 1.00 1.00 0 0

MOXD1 5 5 5 5 1.00 1.00 5 5 1.00 1.00

MPP1 23 33 22 22 0.96 1.00 32 32 0.97 1.00

MTCP1 7 10 6 5 0.71 0.83 8 3 0.30 0.38

MTO1 15 21 14 13 0.87 0.93 19 18 0.86 0.95

NCR2 5 6 5 5 1.00 1.00 6 6 1.00 1.00

NFS1 18 24 17 16 0.89 0.94 22 21 0.88 0.95

NR2E1 6 5 6 6 1.00 1.00 5 5 1.00 1.00

NUP188 21 23 19 17 0.81 0.90 20 16 0.70 0.80

OPN1LW 3 3 3 3 1.00 1.00 3 3 1.00 1.00

OPN1MW 3 3 3 3 1.00 1.00 3 3 1.00 1.00

OSTM1 12 15 11 9 0.75 0.82 12 8 0.53 0.67

PCDH15 19 27 18 18 0.95 1.00 23 23 0.85 1.00

PGC 7 8 7 7 1.00 1.00 8 8 1.00 1.00

PHYHD1 13 19 12 11 0.85 0.92 18 14 0.74 0.78

PIP5K1A 19 23 17 15 0.79 0.88 19 13 0.56 0.68

PISD 23 32 18 15 0.65 0.83 19 15 0.47 0.79

PLXNA3 16 17 14 13 0.81 0.93 15 12 0.71 0.80

POGZ 22 28 22 21 0.95 0.95 27 27 0.96 1.00

PPP2R4 25 32 25 25 1.00 1.00 32 32 1.00 1.00

PSMB4 12 17 11 11 0.92 1.00 15 14 0.82 0.93

PSMD4 23 31 21 19 0.83 0.91 30 20 0.65 0.67

RBM12 5 7 4 4 0.80 1.00 4 4 0.57 1.00

RBM39 41 58 35 33 0.81 0.94 41 36 0.62 0.88

RENBP 16 23 15 15 0.94 1.00 20 20 0.87 1.00

RFPL2 3 2 3 3 1.00 1.00 2 2 1.00 1.00

RFPL3 3 2 1 0 0.00 0.00 0 0 0.00

RFPL3S 5 5 5 5 1.00 1.00 5 5 1.00 1.00

RFX5 25 36 18 14 0.56 0.78 21 12 0.33 0.57

RP11-374F3.4 15 17 15 15 1.00 1.00 17 17 1.00 1.00

RPL10 16 25 13 12 0.75 0.92 13 13 0.52 1.00

SEC63 2 0 2 2 1.00 1.00 0 0

SELENBP1 22 33 21 21 0.95 1.00 26 26 0.79 1.00

SFI1 43 54 42 42 0.98 1.00 54 50 0.93 0.93

(continue)
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Table A.1: Details of the first experiment of Section 3.5.

GS GR

Nodes Arcs Nodes Arcs

Gene Tot. Tot. Tot. Correct Sn PPV Tot. Correct Sn PPV

SH3GLB2 18 26 16 14 0.78 0.88 21 16 0.61 0.76

SLC10A3 7 9 7 7 1.00 1.00 9 9 1.00 1.00

SLC5A1 5 4 3 2 0.40 0.67 2 1 0.25 0.50

SLC5A4 1 0 1 1 1.00 1.00 0 0

SNX27 6 6 5 5 0.83 1.00 5 5 0.83 1.00

SNX3 5 7 5 5 1.00 1.00 7 7 1.00 1.00

SPAG4 14 19 13 12 0.86 0.92 17 13 0.68 0.77

STAG2 26 37 31 22 0.85 0.71 58 21 0.57 0.36

SYN3 19 19 19 19 1.00 1.00 19 19 1.00 1.00

TAZ 30 48 25 23 0.77 0.92 28 24 0.50 0.86

TFEB 24 29 20 17 0.71 0.85 22 8 0.28 0.36

TIMP3 5 6 3 3 0.60 1.00 2 1 0.17 0.50

TKTL1 10 12 9 8 0.80 0.89 10 9 0.75 0.90

TUFT1 12 14 12 12 1.00 1.00 14 14 1.00 1.00

USP49 6 7 6 6 1.00 1.00 7 7 1.00 1.00

VPS72 6 7 4 3 0.50 0.75 3 2 0.29 0.67

YWHAH 6 7 6 6 1.00 1.00 7 7 1.00 1.00

ZNF687 10 13 10 10 1.00 1.00 13 13 1.00 1.00

Total 1521 1966 1415 1303 1719 1415

Global Avg. 0.86 0.92 0.72 0.82

Single Avg. 0.88 0.93 0.77 0.86

Median 0.91 1.00 0.83 0.93
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Table A.2: Details of the second experiment of Section 3.5 on 112 genes. For each
gene, the data concerning the predicted splicing graph (denoted as GR) and the correct
isoform graph (denoted as GS) are reported. For GS , its total number of nodes and
arcs are shown. For the nodes of GR, the total number, the number of correct ones,
Sn and PPV values are reported. The same values are shown also for the arcs of GR.
Finally, the sum of total (and correct) nodes and arcs are reported. The average and
median values of Sn and PPV are calculated. Two average values are present, denoted
as Global and Single. The first one is obtained starting from the Total values, while
the second one is the average of all the values present in the table.

GS GR

Nodes Arcs Nodes Arcs

Gene Tot. Tot. Tot. Correct Sn PPV Tot. Correct Sn PPV

ARHGAP4 34 47 33 30 0.88 0.91 45 40 0.85 0.89

ATP11A 20 23 21 19 0.95 0.91 23 20 0.87 0.87

ATP6AP1 9 12 9 8 0.89 0.89 11 10 0.83 0.91

AVPR2 7 8 7 7 1.00 1.00 8 8 1.00 1.00

BPIL2 5 5 5 5 1.00 1.00 5 5 1.00 1.00

BRCC3 11 15 9 8 0.73 0.89 11 9 0.60 0.82

C20orf173 5 6 5 5 1.00 1.00 6 6 1.00 1.00

C22orf24 5 5 5 5 1.00 1.00 5 5 1.00 1.00

C22orf28 11 13 11 11 1.00 1.00 12 12 0.92 1.00

C22orf30 12 15 12 10 0.83 0.83 15 11 0.73 0.73

C6orf150 7 7 7 7 1.00 1.00 7 7 1.00 1.00

C9orf106 1 0 1 1 1.00 1.00 0 0

CEP250 22 29 19 16 0.73 0.84 28 15 0.52 0.54

CGN 11 12 13 9 0.82 0.69 14 8 0.67 0.57

CPNE1 33 54 25 24 0.73 0.96 35 31 0.57 0.89

CRAT 13 18 12 12 0.92 1.00 16 14 0.78 0.88

CTAG1A 3 3 3 3 1.00 1.00 3 3 1.00 1.00

CTAG1B 3 3 3 3 1.00 1.00 3 3 1.00 1.00

CTAG2 3 3 3 3 1.00 1.00 3 3 1.00 1.00

DDX43 5 4 5 5 1.00 1.00 4 4 1.00 1.00

DEPDC5 34 42 36 31 0.91 0.86 41 36 0.86 0.88

DKC1 19 25 17 16 0.84 0.94 19 16 0.64 0.84

DNASE1L1 10 14 10 10 1.00 1.00 14 14 1.00 1.00

DOLPP1 9 11 9 9 1.00 1.00 11 11 1.00 1.00

DRG1 5 5 5 5 1.00 1.00 5 5 1.00 1.00

EEF1A1 25 36 23 22 0.88 0.96 32 28 0.78 0.88

EIF4ENIF1 19 23 18 16 0.84 0.89 21 19 0.83 0.91

EMD 14 18 13 12 0.86 0.92 14 11 0.61 0.79

ENPP1 5 5 8 4 0.80 0.50 9 4 0.80 0.44

ERGIC3 33 46 33 25 0.76 0.76 45 26 0.56 0.58

F10 1 0 1 1 1.00 1.00 0 0

(continue)
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Table A.2: Details of the second experiment of Section 3.5.

GS GR

Nodes Arcs Nodes Arcs

Gene Tot. Tot. Tot. Correct Sn PPV Tot. Correct Sn PPV

F7 12 16 10 10 0.83 1.00 12 8 0.50 0.67

F8 8 8 8 8 1.00 1.00 8 8 1.00 1.00

F8A1 1 0 1 1 1.00 1.00 0 0

FAM3A 21 31 17 15 0.71 0.88 18 14 0.45 0.78

FAM50A 12 13 12 11 0.92 0.92 12 11 0.85 0.92

FAM73B 25 35 24 19 0.76 0.79 29 19 0.54 0.66

FAM83C 5 6 7 4 0.80 0.57 6 4 0.67 0.67

FBXO7 14 19 16 13 0.93 0.81 21 17 0.90 0.81

FER1L4 42 59 44 41 0.98 0.93 61 57 0.97 0.93

FLNA 40 57 40 36 0.90 0.90 59 47 0.82 0.80

FOXP4 11 14 10 9 0.82 0.90 12 10 0.71 0.83

FRS3 8 8 8 8 1.00 1.00 8 8 1.00 1.00

FUNDC2 10 11 10 10 1.00 1.00 12 11 1.00 0.92

G6PD 19 24 16 13 0.68 0.81 18 12 0.50 0.67

GAB3 10 12 9 9 0.90 1.00 10 10 0.83 1.00

GDF5 3 2 3 3 1.00 1.00 2 2 1.00 1.00

H2AFB1 1 0 1 1 1.00 1.00 0 0

HCFC1 7 9 7 6 0.86 0.86 9 7 0.78 0.78

IER5L 1 0 1 1 1.00 1.00 0 0

IKBKG 19 25 22 17 0.90 0.77 38 21 0.84 0.55

IRAK1 30 46 23 22 0.73 0.96 30 23 0.50 0.77

KATNAL1 7 8 17 6 0.86 0.35 38 6 0.75 0.16

KCNQ5 10 11 12 7 0.70 0.58 12 3 0.27 0.25

L1CAM 25 31 22 21 0.84 0.95 27 22 0.71 0.81

LACE1 6 7 5 4 0.67 0.80 4 3 0.43 0.75

LAGE3 1 0 1 1 1.00 1.00 0 0

MCF2L 48 58 46 46 0.96 1.00 56 52 0.90 0.93

MDFI 11 14 10 10 0.91 1.00 12 12 0.86 1.00

MECP2 16 21 15 13 0.81 0.87 19 8 0.38 0.42

MMP24 1 0 1 1 1.00 1.00 0 0

MOXD1 5 5 5 5 1.00 1.00 5 5 1.00 1.00

MPP1 23 33 22 22 0.96 1.00 32 32 0.97 1.00

MTCP1 7 10 7 7 1.00 1.00 10 10 1.00 1.00

MTO1 15 21 15 15 1.00 1.00 21 21 1.00 1.00

NCR2 5 6 5 5 1.00 1.00 6 6 1.00 1.00

NFS1 18 24 17 17 0.94 1.00 22 22 0.92 1.00

NR2E1 6 5 9 5 0.83 0.56 9 3 0.60 0.33

NUP188 21 23 19 17 0.81 0.90 20 16 0.70 0.80

(continue)
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Table A.2: Details of the second experiment of Section 3.5.

GS GR

Nodes Arcs Nodes Arcs

Gene Tot. Tot. Tot. Correct Sn PPV Tot. Correct Sn PPV

OPN1LW 3 3 3 3 1.00 1.00 3 3 1.00 1.00

OPN1MW 3 3 3 3 1.00 1.00 3 3 1.00 1.00

OSTM1 12 15 10 9 0.75 0.90 12 8 0.53 0.67

PCDH15 19 27 18 18 0.95 1.00 23 23 0.85 1.00

PGC 7 8 7 7 1.00 1.00 8 8 1.00 1.00

PHYHD1 13 19 12 11 0.85 0.92 18 14 0.74 0.78

PIP5K1A 19 23 17 15 0.79 0.88 19 13 0.56 0.68

PISD 23 32 19 17 0.74 0.90 22 18 0.56 0.82

PLXNA3 16 17 14 13 0.81 0.93 15 12 0.71 0.80

POGZ 22 28 22 21 0.95 0.95 27 27 0.96 1.00

PPP2R4 25 32 25 25 1.00 1.00 32 32 1.00 1.00

PSMB4 12 17 11 11 0.92 1.00 15 14 0.82 0.93

PSMD4 23 31 23 22 0.96 0.96 36 28 0.90 0.78

RBM12 5 7 4 4 0.80 1.00 4 4 0.57 1.00

RBM39 41 58 35 33 0.81 0.94 41 36 0.62 0.88

RENBP 16 23 15 14 0.88 0.93 20 18 0.78 0.90

RFPL2 3 2 3 3 1.00 1.00 2 2 1.00 1.00

RFPL3 3 2 1 0 0.00 0.00 0 0 0.00

RFPL3S 5 5 5 5 1.00 1.00 5 5 1.00 1.00

RFX5 25 36 19 16 0.64 0.84 22 15 0.42 0.68

RP11-374F3.4 15 17 15 15 1.00 1.00 17 17 1.00 1.00

RPL10 16 25 13 12 0.75 0.92 13 13 0.52 1.00

SEC63 2 0 2 2 1.00 1.00 0 0

SELENBP1 22 33 21 20 0.91 0.95 26 24 0.73 0.92

SFI1 43 54 42 42 0.98 1.00 54 50 0.93 0.93

SH3GLB2 18 26 17 14 0.78 0.82 24 17 0.65 0.71

SLC10A3 7 9 7 7 1.00 1.00 9 9 1.00 1.00

SLC5A1 5 4 3 2 0.40 0.67 2 1 0.25 0.50

SLC5A4 1 0 1 1 1.00 1.00 0 0

SNX27 6 6 5 5 0.83 1.00 5 5 0.83 1.00

SNX3 5 7 5 5 1.00 1.00 7 7 1.00 1.00

SPAG4 14 19 14 13 0.93 0.93 18 15 0.79 0.83

STAG2 26 37 32 23 0.89 0.72 64 24 0.65 0.38

SYN3 19 19 19 19 1.00 1.00 19 19 1.00 1.00

TAZ 30 48 26 22 0.73 0.85 29 23 0.48 0.79

TFEB 24 29 21 19 0.79 0.91 24 20 0.69 0.83

TIMP3 5 6 3 3 0.60 1.00 2 1 0.17 0.50

TKTL1 10 12 10 10 1.00 1.00 12 12 1.00 1.00

(continue)
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Table A.2: Details of the second experiment of Section 3.5.

GS GR

Nodes Arcs Nodes Arcs

Gene Tot. Tot. Tot. Correct Sn PPV Tot. Correct Sn PPV

TUFT1 12 14 12 12 1.00 1.00 14 14 1.00 1.00

USP49 6 7 6 6 1.00 1.00 7 7 1.00 1.00

VPS72 6 7 4 3 0.50 0.75 3 2 0.29 0.67

YWHAH 6 7 6 6 1.00 1.00 7 7 1.00 1.00

ZNF687 10 13 10 10 1.00 1.00 13 13 1.00 1.00

Total 1521 1966 1458 1322 1819 1477

Global Avg. 0.87 0.91 0.75 0.81

Single Avg. 0.89 0.92 0.78 0.85

Median 0.93 1.00 0.84 0.91
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F. O. Glöckner, “SILVA: a comprehensive online resource for quality checked

and aligned ribosomal RNA sequence data compatible with ARB,” Nucleic

Acids Research, vol. 35, no. 21, pp. 7188–7196, 2007. [Online]. Available:

http://nar.oxfordjournals.org/content/35/21/7188.abstract

[58] P. Yarza, M. Richter, J. Peplies, J. Euzeby, R. Amann, K.-H. Schleifer, W. Ludwig,
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