
B I C O C C A

U
N

IV
E

R
S
IT

DEGLI STUDID
I M

IL
A

N
O

A
U

D
E
N

T
E
S

F
O

R
T
U

N
A

IU
VAT

A
’

Università degli Studi di Milano–Bicocca

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE

Dottorato di Ricerca in Informatica

XXV Ciclo

Coordinatore: Ch.ma Prof.ssa Stefania Bandini

Making End-Users Autonomous in the
Design of their Active Documents

Iade Gesso

Ph.D Dissertation

Tutor: Ch.mo Prof. Giorgio De Michelis

Supervisor: Ch.ma Prof.ssa Carla Simone

Anno Accademico 2011 – 2012

Ai miei genitori e ai nonni, To my parents and grandparents,

ai miei fraterni amici, to my brotherly friends,

e al nostro grande mentore Galileo and to our great mentor Galileo

Io stimo più il trovar un vero, benché

di cosa leggiera, che ’l disputar

lungamente delle massime questioni

senza conseguir verità nissuna.

Galileo Galilei

I greatly esteem to find a truth, even

though of a light thing, than a lengthy

discussion on the maximum issues

without achieving any truth.

Galileo Galilei

Ci sono solo due modi di vivere la

propria vita: uno come se niente fosse

un miracolo; l’altro come se tutto fosse

un miracolo.

Albert Einstein

There are only two ways to live your

life. One is as though nothing is a

miracle. The other is as though

everything is.

Albert Einstein

Un uomo fa quello che è suo dovere

fare — quali che siano le conseguenze

personali, quali che siano gli ostacoli, i

pericoli o le pressioni — e questa è la

base di tutta la moralità umana.

J. F. Kennedy - Spesso citata da

Giovanni Falcone

A man does what he must — in spite

of personal consequences, in spite of

obstacles and dangers, and pressures —

and that is the basis of all human

morality.

J. F. Kennedy - Often mentioned by

Giovanni Falcone

Acknowledgements

In primo luogo, vorrei ringraziare la First and foremost, I would to thank

Prof.ssa Carla Simone, che ha reso possibi- Prof. Carla Simone, who made possible the

le il lavoro di ricerca che viene presentato research work that is presented in this the-

in questa tesi. Sono determinato a far te- sis. I’m determined to treasure her’s advices

soro di suoi consigli e l’esperienza che ho and the experience that I gained in the last

acquisito nel corso degli ultimi tre anni. three years.

Devo la mia gratitudine anche al Prof. I owe my gratitude also to Prof. Gior-

Giorgio De Michelis per essere stato il pri- gio De Michelis for being the first one who

mo che mi ha proposto di intrapprendere proposed me to attend the doctoral stud-

gli studi di dottorato e per avermi sostenu- ies and for having supported me in the last

to negli ultimi tre anni con i suoi discorsi. three years with his talks. I am also grate-

Sono inoltre grato alla Prof.ssa Alessandra ful to Prof. Alessandra Agostini and Prof.

Agostini e al Prof. Huu Le Van per avermi Huu Le Van for having encouraged me be-

incoraggiato prima di iniziare i miei studi fore starting my doctoral studies and during

di dottorato e durante il loro svolgimento. them.

Ultimo ma non meno importante, voglio Last but not least, I want to thank

ringraziare il Dott. Ing. Federico Cabitza Dr. Eng. Federico Cabitza for having intro-

per avermi presentato alla Prof.ssa Carla duced me to Prof. Carla Simone and for its

Simone e per i suoi utili consigli su studi di useful tips about doctorate studies, English

dottorato, la lingua inglese e la vita accade- language and accademic life.

mica.

Infine, voglio ringraziare tutte le perso- Finally, I want to thank all people that

ne che hanno accettato di sottoporsi alle accepted to undergo to the test sessions to

i

sessioni di test per validare il mio lavoro. validate my work.

Ed ora, è giunto il momento di passare al And now, it is time to turn to the personal

lato personale della mia vita professionale! side of my professional life!

Sono estremamente grato a Julia Weekes I am extremely grateful to Julia Weekes

per la sua dolcezza e per il suo prezioso for her sweetness and for her invaluable help

aiuto con la lingua inglese. with English language.

Vorrei ringraziare le persone che ho co- I would to thank people that I have

nosciuto presso lo Xerox Research Centre known at the Xerox Research Centre Eu-

Europe (XRCE) per i tre mesi felici che ho rope (XRCE) for the happy three months

trascorso con loro. Sentiti ringraziamenti that I spent with them. Heart-felt thanks to

ad Antonietta, Gabriela e Mario, cos̀ı come Antonietta, Gabriela and Mario, as well as

a Patrick, Christophe, Yves e Juan Anto- Patrick, Christophe, Yves and Juan Anto-

nio. Sentiti ringraziamenti anche a Celine, nio. Heart-felt thanks also to Celine, Chris-

Christine, Marie, Pajolma, Karine, Zeinep, tine, Marie, Pajolma, Karine, Zeinep, Dou-

Douglas e tutti i miei colleghi in XRCE. glas and all my colleagues at XRCE.

Un grande ringraziamento ai miei colle- A big thanks to my colleagues in the

ghi del personale tecnico e amministrativo technical and administrative staff of the

dell’Università. In particolare, vorrei ringra- University. In particular, I would to thank

ziare Franca, Rossella, Carmela, Eleonora, Franca, Rossella, Carmela, Eleonora, Rita

Rita e Teresa cos̀ı come Claudio, Daniele, and Teresa as well as Claudio, Daniele, Da-

Davide, Luca, Marco, Maria Grazia, Miche- vide, Luca, Marco, Maria Grazia, Michele e

le e Kaname. I miei più sentiti ringrazia- Kaname. My heartfelt thanks to the myth-

menti alla mitica Tina. ical Tina.

Ultimo ma non meno importante, vorrei Last but not least, I would to thank

ringraziare i miei colleghi di dottorato Elisa, my doctoral colleagues Elisa, Elisabetta,

Elisabetta, Emanuele e Giorgio. Emanuele and Giorgio.

Infine, è giunto il momento di ringraziare Finally, the time to thank who is part of

chi fa parte della mia vita privata. my private life has come.

Prima di tutto, vorrei ringraziare i miei First of all, I wish to thank my parents,

genitori, Dilva e Vito, e tutti i miei nonni, Dilva and Vito, and all my grandparents,

Dina e Paolo, cos̀ı come Anna, Iolanda e Dina and Paolo, as well as Anna, Iolanda

Giuseppe (anche se questi ultimi non sono and Giuseppe (even if the latters are no

più con me). Un enorme grazie anche ai longer with me). An enormous thanks also

miei zii, Carla e Paolo. to my aunt and uncle, Carla and Paolo.

ii

Un immenso grazie a tutti i miei amici, A huge thanks to all my friends, especially

in particolare Antonella, Chiara, Chresele- Antonella, Chiara, Chreselene, Elena, Mar-

ne, Elena, Mariangela, Martina, Stefania, iangela, Martina, Stefania, Ushas e Veron-

Ushas e Veronica, Fabione e Fabietto, Gian- ica, Fabione e Fabietto, Gianluca, Luca,

luca, Luca, Marco, Paolo e Salvatore. Lo Marco, Paolo e Salvatore. The same goes

stesso vale per Jennifer, Rosaria e Fabio cos̀ı for Jennifer, Rosaria and Fabio as well

come Francesca, Stefania e Massimo. Un as Francesca, Stefania and Massimo. A

caro grazie a te che sei lassù, Michael... beloved thanks to you that you’re up above,

Michael...

I miei più sentiti ringraziamenti ai miei Warmest thanks to my graduating stu-

tesisti, Euro, Mario, Matteo, Micael e Ste- dents, Euro, Mario, Matteo, Micael and

fano. Sentiti ringraziamenti anche a Anisa, Stefano. Warmest thanks also to Anisa,

Elena, Enrica, Andrea e Marco cos̀ı come Elena, Enrica, Andrea and Marco as well

ad Andrea e Gabriele. as Andrea and Gabriele.

Infine, grande grazie a te, Giulia, che mi Finally, big thanks to you, Giulia, who

fai sempre rilassante quando ti guido. always make me relaxing when I am driving

you.

Wednesday 31th October, 2012

iii

Contents

Acknowledgements i

Contents v

Introduction 1

Thesis Outline . 3

1. Background 5

1.1. A First, Simple Example: The News Agency 6

1.2. Cooperative Work and Conventions . 9

1.3. A More Complex Scenario: The Healthcare Domain 11

1.4. Promoting Employees’ Awareness . 14

1.4.1. Awareness Promoting Information 15

2. End-User Development 19

2.1. Models of Work to Improve the Design of Collaborative Systems 20

2.2. Involving Users in Design Activities: Participatory Design 22

2.3. When Software Engineering is not Enough: End-User Development 23

2.3.1. End-User Development . 25

2.3.2. End-User Development to Leverage System Appropriation 28

2.4. Meta-design for Practice-oriented Customizable Environments 30

3. The WOAD Framework 33

3.1. Active Documents . 34

v

3.2. WOAD Documents in Detail . 36

3.3. A First WOAD Proof of Concept: ProDoc 38

3.4. LWOAD . 42

3.5. The First WOAD Mechanism Editor . 43

3.6. The WOAD Reference Architecture . 46

4. Open Problems and Proposed Solutions 49

4.1. Customizing Documents as Easily as Using a Word Processor 50

4.2. WOAD Mechanisms for Non-Programmer End-Users 52

4.3. A Platform-independent MVC Model for Digital Documents: XForms . . 54

4.4. The Renewed WOAD Architecture . 55

5. Related Works 59

5.1. The Tailorability of the Electronic Patient Records 61

5.2. A Review of State of the Art of Visual Editors 62

5.2.1. Document Editors . 63

5.2.2. Rule Editors . 70

5.2.3. Visual Languages . 78

6. The WOAD Visual Editors 85

6.1. The WOAD Template Editor . 85

6.2. The WOAD Mechanism Editor . 90

6.2.1. The WOAD Visual Language . 90

6.2.2. The WOAD Mechanism Editor User Interface 92

7. The Implementation of the WOAD Visual Editors 97

7.1. The WOAD Template Editor . 98

7.1.1. Oryx: An Extendable Editing Environment 99

7.1.2. Implementing the WOAD Template Editor Prototype 103

7.2. The WOAD Mechanism Editor . 104

7.2.1. The OpenBlocks Language . 105

7.2.2. The OpenBlocks Visual Editor User Interface 105

7.2.3. Implementing the WOAD Mechanism Editor prototype 106

7.2.3.1. The WOAD Intermediate Language 108

7.2.3.2. The Definition of APIs’ Affordances 111

8. Validating the WOAD Visual Language 113

8.1. Organizational Setting . 114

vi

8.2. The Qualitative Interview . 115

8.3. Identifying the Inpatient’s Adverse Events 117

8.3.1. The Inpatient’s Fall Risk . 118

8.4. WOAD Mechanisms and the Inpatient’s Fall Risk 120

9. Validating the WOAD Mechanism Editor 127

9.1. Designing the User Study . 128

9.2. Performing the User Study . 130

9.3. Discussing the Results . 130

10.Conclusions 137

10.1. Future Works . 139

Appendices 143

Appendix A. The MIT OpenBlocks Grammars 145

A.1. The grammar of the OpenBlocks Language Definition 145

A.2. The grammar of the OpenBlocks Serialization Format 149

Appendix B. The WOAD Intermediate Language XML Schema 153

Bibliography 159

Acronyms 179

List of Figures 181

List of Tables 185

vii

Introduction

Documents are a fundamental player in professional practices. Since the introduction of

computer-based systems and the related digitization of documents, an ever increasing

number of organizations considered the full transition to digital documents as the way to

successfully solve the problem of managing the exponential flow of information that they

generate while performing their activities (see Berry and Goulde [1994]). However, despite

the promise of a more efficient management of information flows, this “imposed” transition

to digital documents has not been painless. Usually, in organizations the employees work

together to reach a common goal, i. e., the goal of the organization to which they belong,

and during time they develop and constantly maintain some unwritten conventions that

support them in performing their collaborative activities. For instance, particular signs

or annotations, with commonly-agreed meanings, can evoke specific conventions in the

mind of the employees, helping them to behave accordingly. Several field studies proved

that in these work settings documents are a fundamental part of these conventions and,

at the same time, these studies highlighted the problems that arose after the transition

to a document-based system (e. g., see [Braa and Sandahl, 1998, 2000]). Actually, the

extreme flexibility of paper-based documents is lost with the transitions to their digital

counterparts, since employees can not autonomously adapt both the informative content

and the arrangement of their digital documents (e. g., see [Morrison and Blackwell, 2009;

Chen and Akay, 2011]). As a consequence, the limits of document-based systems hinder

their acceptance among employees, with the risk of nullifying the advantages that the

organization management expected with the transition to digital documents.

In order to avoid this kind of problems, collaborative systems should be conceived to

not force users to change their work habits. In particular, to be really effective, these

1

Introduction

systems should provide users with (i) a flexible support for their work practices, taking

into account the existence of local and informal conventions and proactively promoting

collaboration awareness among users, and (ii) a customizable environment that they

can autonomously adapt to their actual and constantly evolving needs. These two

requirements are at the basis of the work that is presented in this thesis, which focuses

on document-based collaborative systems.

In order to meet such requirements in the design of this kind of applications, this work

puts its roots in both the Computer Supported Collaborative Work (CSCW) and End-

User Development (EUD) research fields. These research fields are both characterized

by the fact of being strongly multidisciplinary. Moreover, these two fields of research

are not uncorrelated with each other, since the EUD research field draws from the

tenets of the CSCW research field. The CSCW1 was born in the early 80s of the past

century (see [Grudin, 1994]) as a community of multidisciplinary researchers that were

interested in understanding the nature of cooperative work settings and how to support

them with effective computer based systems [Schmidt and Bannon, 1992]; in other

words, «how collaborative activities and their coordination can be supported by means

of computer systems [Carstensen and Schmidt, 1999]». The multidisciplinarity of the

CSCW research field has a positive influence on the design of collaborative systems,

since the principles that inform the involved research fields (e. g., computer science,

human-computer interaction and sociology) allow the design of systems focused on

how to effectively and unobtrusively support those employees that need to cooperate

in order to perform their work activities (see [Schmidt, 1991]). To this aim, CSCW

researchers focus on understaning the real work practices of employees and, consequently,

on applying the results of their empirical studies to conceive and design computer-based

systems aimed at providing employees with a better support for their collaborative work

activities without disrupting their work habits and conventions (see [Bannon and Schmidt,

1991]). On the other hand, the EUD research field is younger than CSCW. Like the

case of the CSCW, even the EUD research is strongly based on a multidisciplinary

approach. Drawing on concepts, notions and findings coming from an heterogeneous set

of research traditions, such as Human-Computer Interaction (HCI), cognitive science,

requirements engineering and, as mentioned, CSCW (see [Lieberman et al., 2006a; Klann

et al., 2006]), the EUD research activities focus on the main goal of empowering end-users

to autonomously customize the software system that they use in order to meet their

1 The term Computer Supported Collaborative Work (CSCW) was firstly introduced in 1984 by Irene
Greif and Paul Cashman in a workshop that they organized, in which participants shared the interest in

how employees work and what role should have the technology within work environments [Grudin, 1994].

2

Thesis Outline

actual needs. Spreadsheets, with their formulas, and CAD environments, with their

scripting capabilities, can be considered the earliest attempts to give users the possibility

to tailor software artifacts to their own and specific needs (see [Nardi, 1993]); moreover,

also recording macros in word processors and defining sets of filters in email clients have

to be considered as EUD activities (see [Lieberman et al., 2006a]). However, it is only

with the advent of the latest technologies, like Web 2.0 and visual programming, that the

EUD research field has grown and allows software designers to provide end-users with

a greater freedom of customization of the software environments that they daily use to

perform their work activities.

In particular, the aim of the presented research work is to give a contribution to the

design and implementation of technologies supportive of cooperative work that allow users

to autonomously tailor their document-based systems to their needs with the flexibility

of paper-based documents. More specifically, tailoring activities must not only involve

the flexible definition of the informative content of documents, even if this possibility

does not have to be considered trivial; rather, users must be autonomous in performing

those tailoring activities that allow them to customize their systems to support the local

conventions of the group in which they work. Putting in the hands of users the ability

to customize systems they use every day strongly contributes in making the transition

from paper-based documents to digital documents less painful, with positive effects on

work practices of users. Moreover, leveraging the possibility to autonomously customize

systems to support local conventions, users can also be supported in the improvement of

their work habits, through a collaborative learning process.

Thesis Outline

Chapter 1 will discuss the role that documents play in supporting the collaborative work

practices within groups of employees and the problems that arise with the transition to

a traditional document-based collaborative system. Subsequently, the chapter focuses

on the need to leverage document-related conventions to improve collaboration and to

promote awareness among employees. Moreover, the chapter will describe the reference

domain of this thesis, i. e., the healthcare domain. Chapter 2 will deal with the discussion

of the approaches that, during time, have been developed in order to allow system

designers to design effective collaborative systems with the aim to provide support for

the actual needs of employees. Subsequently, the chapter describes the main tenets

of the EUD as the way to design tailorable collaborative systems that end-users can

autonomously adapt to meet their constantly evolving needs. Chapter 3 will introduce

3

Introduction

the Web of Active Documents (WOAD) framework, a framework that has been conceived

on the basis of observed practices with the aim to enable the design of document-based

collaborative systems that provide end-users with a support for their needs of awareness

and flexibility. Chapter 4 will deal with the description of the relevant problems that

affect the WOAD framework and that actually limited its applicability: i. e., the need of

users to be autonomous in creating and modifying their document templates and the

rules through which they augment documents in order to proactively convey conventional

awareness information to support their collaborative work activities. Moreover, the

chapter will discuss the solutions that this thesis proposes to make the WOAD framework

compliant with the tenets of the EUD field. Chapter 5 will provide an overview of the

state of the art in the areas of the visual composition of documents and rules respectively,

and in the area of the visual languages, exploring research projects as well as commercial

software. Chapter 6 will describe the two visual editor prototypes that have been

developed to validate the solutions that have been proposed in Chapter 4. Chapter 7

will deal with the description of the implementation of the two prototypes described in

Chapter 6. The remaining part of the thesis will focus on the validation of the proposed

solutions, describing two user-studies that have been conducted in the healthcare domain.

Chapter 8 will discuss a qualitative field study that has been conceived to validate

the expressiveness of the visual language that have been proposed to address problem

to make users autonomous in defining their own WOAD mechanisms. On the other

hand, Chapter 9 will deal with the discussion of a quantitative study that was aimed

at validating the usability of the visual editor prototype that has been developed to

support users in autonomously use the proposed visual language. Finally, Chapter 10 will

summarize the findings of the described work and outline the possible future directions

to further improve the WOAD framework.

4

1
Background

Contents

1.1. A First, Simple Example: The News Agency 6

1.2. Cooperative Work and Conventions 9

1.3. A More Complex Scenario: The Healthcare Domain 11

1.4. Promoting Employees’ Awareness 14

1.4.1. Awareness Promoting Information 15

Most working activities in the tertiary sector involve a certain number of different

documents, and one of their main aims is to store the information that employees need to

perform their work activities [Hertzum, 1999]. The amount of information usually grows

proportionally to the complexity of the work activities and, consequently, employees need

to create and exchange an increasing number of documents. The advent of computer-

based systems, which has developed remarkably since the last decades, has led an ever

increasing number of companies to take into account the transition from traditional

paper-based documents to their digital counterparts for a better management of the

exponential amount of information [Berry and Goulde, 1994] with a tangible reduction of

costs.

During the last decades, paper-based documents overcame their role as a mere storage

medium and became a fundamental part in the work practices that employees developed

to perform their work (e. g., see [Malone, 1983]). In particular, companies usually organize

employees in relatively small work groups in which they cooperate to reach a common

goal: in these work settings, documents assume the key role of tools that help employees

to coordinate themselves and to articulate their work.

5

1. Background

Unfortunately, as shown by several studies (e. g., see [Sellen and Harper, 2003]), this

transition to digital documents might be a highly problematic process, which can affect

the set of consolidated work practices and, consequently, their efficiency and effectiveness.

This chapter will start with a simple example in order to better clarify the problems

that can arise within a collaborative work setting when the organization forces employees

to make the transition from paper-based documents to a computer-based collaboration

system. On the basis of this example, the next section will focus on the role of conventions

in supporting collaborative work and on the scarce attention that software developers

pay to conventions during the design of collaborative systems. Subsequently, the chapter

will discuss the Electronic Patient Record (EPR) as a paradigmatic case of paper-based

digitalization in the healthcare setting which in this thesis has been adopted as the

reference applicative domain. The last section will focus on the proactive provision of

conventional awareness information as a way to support and improve collaboration within

groups of employees.

1.1. A First, Simple Example: The News Agency

The authors of the study presented in [Braa and Sandahl, 2000] observed a real-life case

of a news agency, in which employees cooperated to create the weekly television schedules

that were subsequently published by the press (e. g., newspapers and magazines). Despite

its simplicity, the described scenario is very useful for better understanding the role

played by paper-based documents in coordinating employees and the issues involved by

the transition to their digital counterparts.

Employees involved in this activity cooperated in drawing up the whole weekly television

schedule, starting from the single weekly schedules that the various television channels

sent every week to the news agency by fax (see Figure 1.1 for a quick reference). The

employees of the news agency reorganized and retyped information that they found on

each fax, often integrating it with additional material (e. g., the editorial information);

after retyping information, employees stored it into a central system that subsequently

they would use to create the whole weekly television schedule. During their activities,

employees put faxes on three distinct shelves. The first shelf (i. e., the in-shelf) was

used to temporarily store the new faxes as the news agency received them; at the same

time, the in-shelf was used both to group and sort faxes according to the television

channel that sent them and to the week to which they pertained. In this way, employees

could quickly have an overview of the channels that were still missing or incomplete, and

consequently they became aware of which channels were still outstanding. The second

6

1.1. A First, Simple Example: The News Agency

Figure 1.1.: The news agency scenario, before the transition to digital documents (from
[Braa and Sandahl, 2000])

shelf (i. e., the week-shelf) was used when all television channels had sent their whole

weekly schedules to the news agency. At that point, one of the news agency employees

moved the whole set of faxes, which pertained to a specific week, from the in-shelf to the

week-shelf. This had the consequence of making all the group aware that it was possible

to start working on information that was written in these faxes (i. e., retyping them into

the central system). Finally, the last shelf (i. e., the out-shelf) was used when all the

week’s information had been typed into the central system: faxes were moved again, from

the week-shelf to the out-shelf, and this second shift indicated to employees that all the

information was ready to be used in the final typesetting phase.

Even if faxes represented the most important type of document used by news agency

employees, the example shows how another document, which was called coordination

form, was adopted by employees with the explicit aim to support coordination inside their

group (e. g., employees used this document to indicate either which days were missing in

the schedules they received or that it was necessary to make some corrections).

When the news agency replaced faxes and the other paper-based documents that

7

1. Background

employees used in their daily work with their digital counterparts, the need to use

shelves to organize faxes disappeared, and this resulted in breakdowns in the work

practices that employees had developed over time. The new system stored digital

documents into common files, which were organized using a hierarchical structure, i. e.,

/channel/week/day/file-name. The purpose of system designers was to arrange files,

and consequently digital documents, with the aim to allow future system improvements

that would have to provide other applications the access to documents, in order to

automatize some operations (e. g., making pages ready to be printed). Files were shared

adopting commonly adopted techniques, i. e., email messages (to exchange documents

with external subjects, like the television channels that provide the news agency with

“raw” weekly schedules) and operating system shared folders (to exchange documents

among news agency employees).

This approach immediately showed its limits. Using common files to store and organize

digital documents had drastic consequences on employee collaborative work practices.

Even if standard file systems allow users to enact a basic form of file arrangement,

substituting shelves had the effect of disrupting the above depicted ability of employees

to easily get a complete overview about the status of their work, simply by glancing at

the shelves. This ability was particularly helpful for coordinating employees in their work

activities. In fact, the news agency employees managed a huge amount of faxes (i. e.,

hundreds of faxes per week) and, when faxes had been replaced with digital documents,

they were forced to continuously browse a similar amount of files. Despite document

status could be gathered from file names, browsing files still made it more difficult to get

a complete overview of what had been done, increasing the possibility of concurrent edit

operations on the same documents.

This simple scenario makes it evident how documents (i. e., faxes) are not isolated

entities, rather they are part of a strictly intertwined web of artifacts, people and places.

Documents are not only instrumental to the goal that employees have to reach, rather

they are integrated into their «social activities, and cannot be separated from the practice

in which they are incorporated» [Braa and Sandahl, 2000]. In this light, it is easy to

understand how faxes played an implicit, but very important role in the news agency

work practices and in coordinating employees, making them aware of the context in

which they were acting [Dourish and Bellotti, 1992]. The coordination form, which is

an example of what in [Schmidt and Simone, 1996] is called “coordination mechanism”,

makes news agency employees aware of the status of their work activities in an explicit

way (e. g., see [Rogers, 1993]). On the other hand, shelves provide employees with the

same awareness, but in an implicit way (e. g., see [Heath and Luff, 1992; Hughes et al.,

8

1.2. Cooperative Work and Conventions

1992]). In the latter case, employees can obtain the awareness information according

to some conventional meanings, which employees collaboratively defined and bound to

documents and to the related statuses.

1.2. Cooperative Work and Conventions

The group of employees described in the news agency example adopts some document-

related coordinative conventions (e. g., the conventional meaning that is evoked in their

minds by the position of faxes on the different shelves), which have a strong influence on

their work practices. Before going forth, it is important to clearly define the concept of

conventions (which includes coordinative conventions) in relation to collaborative work

practices. In [Lewis, 1969], conventions are defined as a social phenomenon originated by

the need to solve recurrent coordination problems. In [Mark et al., 1997], conventions

are defined as «rules or arrangements established in a group, common and accessible to

its members, that users need in order to cooperate effectively». Another definition of

convention is reported in [Cabitza et al., 2009a] and is obtained by combining «the common-

sense meaning of ‘shared agreements and related practice that is either established or

consolidated by usage’ with the emphasis on the modalities by which practitioners

articulate their activities in their mutual cooperative effort». All these definitions

emphasize the role of conventions to support groups of employees in performing their

collaborative work activities.

In fact, cooperating employees are fully-fledged communities and, in particular, they

can be seen as Communities of Practice. A Community of Practice can be defined as

a circumscribed but open community of cooperating employees that are characterized

by common interests and a common ground of knowledge and experience, but their

autonomous behaviors and objectives are limited by the organization in which they work

(for a more detailed description, see [Wenger, 1998, 2006]). Members of a community

cooperate and coordinate among each other through a well defined and domain-related set

of artifacts, which can be either local to the community or imposed by the organization,

and conventions contribute in intertwining these artifacts in a network of more or less

explicit relationships that can be seen as a web of coordinative artifacts [Bardram and

Bossen, 2005]. Document-based conventions are only a specific case of the more general

concept of artifact-mediated conventions: taking again into account the case of the

news agency, also shelves that are used to store and sort faxes can be considered as

artifacts. Since employees autonomously and socially develop conventions to cope with

the collaborative and coordinative needs of the community they belong to, conventions

9

1. Background

are characterized by a highly local nature. Moreover, conventions are often strictly bound

to the contingency, extemporaneous and constantly evolving needs of the community of

employees within which they have been developed. For these reasons, conventions are

more informal than the organization’s policies that define and constraint the goals of the

employees’ work activities. Due to the informal nature of conventions and thanks to their

extensive work experience, employees can continuously refine and internalize conventions,

and in so doing they make a significant contribution in increasing the effectiveness of their

collaborative work practices. In particular, as described in [Mark, 2002], conventions

are the foundation of a continuous process of learning that concerns both the tasks that

employees must perform and the social interactions within their group.

Unfortunately, as shown in [Braa and Sandahl, 2000], most document-based collab-

orative systems provide employees with poor support (if any) for the conventions that

they developed during their collaborative activities. This lack is mainly imputable to the

very little attention that IT professionals (i. e., software analysts and designers) dedicate

to work practices during the collection and the analysis of requirements (in particular,

functional requirements): they focus their design activities only on the storage function

of documents (e. g., the content and how it is structured) and on how documents have to

be presented to users. Thus, the transition to a computer-based system in a collaborative

work environment could have the side effect of compromising the convention-based work

practices [Ash et al., 2004] which characterizes the members of the host community.

Some paper-based conventions could “survive” in traditional document-based systems

thanks to the unconventional use of some parts of these systems, which in [Cabitza

et al., 2009a] are called “gray zones”, e. g., when employees use a long-text field in a

form to annotate some acronym that is well-known and often used inside their group

but is not defined at the organization level; however, this is only a workaround enacted

by employees and does not represent a true form of support for conventions. In this

light, in order to avoid the occurrence of the depicted work practice breakdowns, the

main issue in the design of digital document systems that effectively support cooperative

work settings, is to spend the right amount of time, during the requirement collection

and the design phases, to identify and provide support to those conventions that «keep

the practice together» [Braa and Sandahl, 2000], keeping in mind that, due to their

local, informal and often extemporaneous nature, conventions can be different from one

community to another. Chapter 2 provides a description of the problems related to the

design of collaborative systems that provide employees with an effective support to their

conventions, analyzes the different approaches that have been proposed to reach this

goal, and finally focuses on the approach that has been adopted in the work described in

10

1.3. A More Complex Scenario: The Healthcare Domain

this thesis. The next section focuses on a scenario in the healthcare domain and on how

awareness promotion plays a role in consolidating work practices.

1.3. A More Complex Scenario: The Healthcare Domain

The news agency example is very useful to give a first, but quite exhaustive overview

about the role played by documents in coordinating employees, and demonstrates how

documents must become a central point of interest [Lortal et al., 2005] in companies and,

more generally, in organizations, which act in a heterogeneous set of domains.

The healthcare domain represents a very complex work setting in which doctors and

nurses need careful coordination of their activities [Reiser, 1984; Strauss et al., 1985;

Atkinson, 1995; Timmermans and Berg, 2003]. In this work setting, a very heterogeneous

set of professional stakeholders [Morrison et al., 2011] needs to cooperate to provide

patients with increasingly better medical care. During their work, doctors and nurses

widely use well defined sets of paper-based documents with the twofold aim of better

helping their patients through the process of healing (e. g., prescribing specific medical

treatment and following the evolution of the illness) and managing the flow of information

with the hospital management. Usually, these sets of documents, which often are called

patient records [Dick et al., 1997], encompass a heterogeneous number of documental

artifacts that differ both in structure and function, but that are highly interconnected and

cross-referenced [Cabitza et al., 2005]. For these reasons, computer-based health systems

should be designed to support collaboration within this work environment. Frequently,

these systems do not provide users with the results they expect (in terms of supporting

their local work practices) [Kuziemsky and Varpio, 2011]. This happens not for purely

technical reasons, rather because those systems have not been designed paying the proper

consideration to the complex web of relationships that characterize the healthcare work

settings. In fact, the healthcare setting, for its criticality, has been chosen as the reference

domain of this thesis.

Clinical work practices involve a rich set of conventional annotations (e. g., acronyms

and signs) that doctors and nurses inscribe on paper-based documents in order to enrich

them with additional, contextual data with the aim to better support the coordination of

the whole group of colleagues [Bringay et al., 2006]. For instance, a doctor can detect an

anomalous value in the maximum blood pressure of a patient and, accordingly, she can

draw a red circle around this value (see Figure 1.2), in order to make all her colleagues

(i. e., both other ward doctors and nurses) aware that the patient is in a potentially critical

situation; in this way, when another doctor or a nurse reads the document, the presence

11

1. Background

of the red circle immediately makes her aware of the potential criticality, and she can

enact the most suitable clinical practices to cope with that situation. The use of these

conventional annotations can be either local for a single hospital ward or, otherwise, shared

within different wards, but often with different conventional meanings. For instance, in

both the Internal Medicine and the Neonatal Intensive Care Unit that were investigated

in [Cabitza et al., 2009a], an exclamation mark drawn close to the request for a blood

culture examination means “urgent”. While in the Internal Medicine ward “urgent” means

“within a day”, in the Neonatal Intensive Care Unit “urgent” is interpreted as “within ten

minutes”. Local conventional annotations contribute to enhancing clinicians’ efficiency

and effectiveness, providing a better quality of care and the appropriate services to the

patients. On the other hand, this shows how documents with their data and annotations

play the role of “boundary object” [Star, 1988] when they cross different organizational

units.

In fact, there is constant need for the hospital management to reach a higher level

of efficiency and effectiveness in healthcare activities, with the consequent reduction of

operating costs. This need leads the hospital management to adopt computer-based

solution, i. e., the Electronic Patient Record (EPR), in order to replace traditional paper-

based records (e. g., see [Chen and Akay, 2011]). Moreover, this transition to digitalized

patient records is strongly promoted by public institutions, which have the same need of

efficiency and effectiveness, in order to improve the healthcare services for the citizens,

reducing at the same time the costs of the public health: e. g., in 2009, U.S. President,

Barack Obama, «pledged that by 2014, all American health records would exist in an

electronic format» [Jacques, 2011]. Thus, public health institutions are increasingly

adopting complex ICT solutions, in order to build big “data banks”1 with the aim to

monitor and coordinate different healthcare service providers (e. g., both public and

private hospitals). In order to promote interoperability, public health institutions impose

the adoption of standards (e. g., HL7 or ISO 13606) to define the digital representation

of clinical documents. As standards focus on giving documents a well-defined structure,

they do not however provide any support to the local and informal conventions of doctors

and nurses.

Consequently, traditional EPRs usually follow an “imposed” structure enforced by the

adoption of standardized documents that have been conceived by ICT professionals at

design time to provide hospitals with an unified, global solution. As in other domains, this

1 For instance, in Italy, and in particular the Regione Lombardia, institutions promoted and funded the
building of the DENALI data warehouse. See http://www.pfizer.it/cont/pop_camuni.asp. Accessed:
2012-06-20. (Archived by WebCite® at http://www.webcitation.org/68Z4BHcul).

12

http://www.pfizer.it/cont/pop_camuni.asp
http://www.webcitation.org/68Z4BHcul

1.3. A More Complex Scenario: The Healthcare Domain

(a) The “blood pressure” field in
the paper-based “Vital Signs”
document

(b) Some clinician filled in the “Vi-
tal Signs” document with the
patient’s blood pressure value

(c) Some other clinician highlights
the critical situation drawing
a red circle around the “blood
pressure” field

Figure 1.2.: A simple example of how clinicians can conventionally highlight a critical
situation on paper-based documents (the patient’s blood pressure example)

could have negative effects on collaborative clinical activities. Indeed, the heterogeneity

of the needs, work practices and conventions of each hospital ward, would require greater

flexibility in digital document definition. For instance, taking again into account the

Internal Medicine and the Neonatal Intensive Care Unit, these two wards have radically

different purposes, and they adopt different working practices and conventions, despite

they belong to the same hospital. As a consequence, the Neonatal Intensive Care Unit can

adopt some peculiar (paper-based) documents that are meaningful only for its clinicians,

and that do not exist in the Internal Medicine ward. In addition, these two wards can

share some documents that, for the kind of patients they manage, need to be structured

adopting different arrangements, in order to give more or less visibility to different pieces

of relevant information or to incorporate even different kinds of contents.

When the hospital management imposes the transition to a “paper-less” system, clini-

cians of a ward are forced to use a well defined set of rigid digital interfaces, which allow

them to interact with the system. This rigidity is reflected in two distinct facts: (i) the

absence of any possibility to customize the contained information (both in its structure

and in its appearance), and (ii) users are forced to follow fixed fill-in paths, which have

been conceived at design-time. The system rigidity leads to a breakdown of all those

conventions that doctors and nurses usually follow in their daily working practices. For

instance, digital documents do not allow clinicians to inscribe any kind of annotation

(instead of what is shown in Figure 1.2 for paper-based documents), and this results

in the invalidation of all those conventions that are based on this kind of contextual

information. This is a major drawback, as this kind of additional information contributes

to promote awareness in clinicians, enhancing the effectiveness of their activities.

13

1. Background

1.4. Promoting Employees’ Awareness

The above depicted scenarios show how any form of computer-based support for coopera-

tive work settings, and the related practices, should necessarily take into account the

existence of conventions in order to be really effective. More generally, these systems

must support employees in their daily activities in a way that is as much aligned as

possible with how they really work and also prevent the imposition of unnecessary and

undue constraints on their work practices. Thus, as extensively discussed in [Mark, 2002;

Cabitza et al., 2009a], conventions can be leveraged to improve coordination and to

promote collaboration awareness [Lauwers and Lantz, 1990] in a proactive way, mak-

ing employees aware of contextual information, but only when this information can be

considered relevant with respect to specific conventions or situations.

The idea to proactively provide contextual, convention-based information to support

employees who act in cooperative settings was emphasized in [Mark, 2002], which

conceptualized awareness as an ‘active learning device’. Mark described conventions

as a framework for awareness, since conventions allow to understand and anticipate

the behaviors of the various groups of employees, in addition to their ability to involve

employees in a continuous learning process (see Section 1.2). In order to design a

system that supports the proactive provision of contextual information in an effective

way, software analysts and designers have to consider an important aspect that can be

summarized with the question “what is the right amount of information to be provided?”.

This problem is related to the concept of information overload [Mark, 2002; Ash et al.,

2004]. In fact, providing too much information can lead to the opposite result with

respect to the aimed goal of supporting employees: providing employees with a huge

amount of information can lead them to consider contextual information as a nuisance,

with the risk of neglecting it totally.

In order to avoid this risk, during the design phase of the system, it is necessary

to identify the best way to provide different types of awareness information that will

cohabit over the same artifact (e. g., a document). Due to the informal nature of the

conventions, it is necessary to find the right level of “visibility” and formality of contextual

information that the system will convey to employees. On the other hand, the local

nature of conventions requires the identification of the best way to provide users with

this awareness information, ensuring that the identified methods can be easily tailored

to the needs of each community, with respect to the specificities of different domains.

In this light, during the design phase it can be useful to detect common features and

recurrent provision patterns. This can help to extract the necessary requirements to

14

1.4. Promoting Employees’ Awareness

(a) The “blood pressure” field in
the “Vital Signs” document

(b) Some clinician filled in the
“Vital Signs” digital document
with the patient’s blood pres-
sure value

(c) The filled in value triggers the
computer-based system that
mimics the draw of a red cir-
cle around the “blood pressure”
field

Figure 1.3.: An example of “graphical clue” to proactively convey awareness information
over a digital document, in a way that mimics what employees usually do
with paper-based documents (see the patient’s blood pressure example in
Figure 1.2 for a comparison)

conceive an effective supportive technology and mechanisms of information provision that

are able to evoke conventions without constraining or imposing them within employee

daily practices.

Thus, taking into account the role of conventions and the related contextual information

in supporting employee collaboration, a computer-based system conceived to support

cooperative work settings could proactively provide awareness information through

contextual indications that can be conveyed over the artifacts as “graphical clues” [Cabitza

et al., 2009a], in a way that reflects the conventional annotations that employees used

to inscribe on paper-based documents (e. g., as shown in Figure 1.3, the indication in

the patient record of an anomalous situation by the highlighting of some data with a

red border). Moreover, it is essential to provide users with graphical indications in a

seamless and unobtrusive way, leaving to them the task of discerning if the conventions

that have been evoked are relevant or not, and if they need to behave accordingly.

1.4.1. Awareness Promoting Information

The goal to reach in the design of document-based systems that proactively promote

collaboration awareness among actors is to use documents as a way to convey additional

contextualized information (see Figure 1.4). To this aim, the notion of Awareness

Promoting Information (API) [Cabitza et al., 2009a] can be usefully applied.

During their observational studies in the healthcare domain, the authors identified

nine main types of APIs (the whole list of the identified APIs, with the description of the

related meaning, is reported in Table 1.1). Even if these nine APIs can cover most of the

15

1. Background

Figure 1.4.: The concept of Awareness Promoting Information (API) (extracted from
[Cabitza and Simone, 2009a])

awareness information that clinicians consider crucial to support their cooperative work

practices, this set of APIs does not constitute an exhaustive solution that cover the needs

of all kinds of work settings. In fact, due to the local nature of conventions (see Section

1.2), the domain in which work activities take place has a strong influence on the work

practices that employees develop to better cooperate, and consequently they can need

different types of awareness information to effectively support their collaborative work.

Thus, to give better support to collaborative work in other applicative domains, in the

future, the set of APIs could be enlarged and refined to include new types of awareness

information.

APIs can be grouped into three different categories, which represent the different

aspects of work that they aim to support. The first category groups those APIs with the

aim to support the articulation of work activities and the related cooperative work. At

present, only the Appropriateness API belongs to this category, which conveys information

about the activities that should be accomplished taking into account the current context2.

The second category is related to the interpretation of the context. The Inquiry API

conveys information that makes the employees aware about the existence of additional

2 The context in which an activity can be considered appropriate or not can pertain to both the content

of the artifact and other contextual conditions.

16

1.4. Promoting Employees’ Awareness

Type of API Description

Appropriateness Any information that provides indications on what could be appropriate to do or not to
do regarding the artifact’s data

Criticality Any information that indicates the need to consider the situation reported in the artifact
as critical

Deviation Any information that indicates the need to consider some data of the artifact’s content as
either unusual or produced by a deviation with respect to some expectation

Inconsistency Any information that indicates the need to check whether some data of the artifact is
inconsistent with some other data or the current context

Inquiry Any information that indicates the opportunity to get further information about the data
reported in the artifact

Provisionality Any information that indicates the need to consider some data of the artifact’s content
still provisional or unofficial

Quality & Safety Any information that indicates the need to consider precise quality/safety requirements
and expectations in managing the data

Revision Any information that indicates the need to correct some data of the artifact

Table 1.1.: A taxonomy of API and their conventional meanings (extracted from Cabitza
and Simone [2012])

data that could be helpful to better understand the data that is inscribed on the

documental artifacts. Quite obviously, the Revision API and the Inconsistency API

respectively provide to employees information about possible errors and inconsistencies in

the document content. The Provisionality API makes employees aware that a document

content is to be considered as provisional or unofficial. Finally, the Criticality API conveys

indications about a situation that employees consider critical (e. g., the case of low blood

pressure in a non-anemic patient).

Finally, under the third category are grouped those APIs that convey information about

the compliance with some expectations about either the normal work practice or the

quality. The Deviation API provides information to make the employees aware about

some deviations with respect to an expected outcome (e. g., a drug prescription with drug

dosages that are significantly different from those that normally have to be prescribed).

Similarly, the Quality API provides indications about a possible content “deviation”

with respect to some precise quality requirements and targets. Finally, the Safety API

conveys to employees some indications to inform them that either the activity they are

performing or that they are about to perform can lead to the occurrence of an adverse

event (e. g., some adverse drug reactions, due to a patient’s allergy).

As already mentioned, awareness information should be unobtrusively conveyed to

the actors. This can be done through graphical cues, adopting four different provision

methods:

17

1. Background

Message displaying. Messages can display their textual content either as notes, remarks

or comments. The message content can be either a default message, which is related

to a particular condition, or a comment that has been annoted by an employee.

Moreover, each message can be shown either in the case of particular interaction

events (e. g., the insertion of particular data) or in the case of contextual events

(e. g., a specific date or time).

Highlighting data values. A specific data value can be highlighted in order to make it

more evident, or just different, with respect to the others in the same portion of a

document (e. g., in a clinical examination report, values that are out of the standard

ranges could be displayed using the red color).

Highlighting data structures. This method is similar to the previous one, but it differs

in the target of the highlight action. In this case, a specific data structure (e. g.,

fields, sections or the whole document) can be highlighted to convey the contextual

information that is related to the document structure rather than to its content.

Displaying icons, pictures or other graphical items. In this case, either data values or

data structures can be coupled with graphical indications (e. g., marks, signs, lines,

icons and pictures) that are conventionally associated to a well defined set of

meanings (e. g., alerts, reminders, warnings or helps).

These provision methods will be mentioned in the document-based framework described

in Chapter 3. Before that, the next chapter will consider issues related to the digitization

process.

18

2
End-User Development

Contents

2.1. Models of Work to Improve the Design of Collaborative

Systems . 20

2.2. Involving Users in Design Activities: Participatory Design . 22

2.3. When Software Engineering is not Enough: End-User De-

velopment . 23

2.3.1. End-User Development . 25

2.3.2. End-User Development to Leverage System Appropriation . . . 28

2.4. Meta-design for Practice-oriented Customizable Environments 30

Since the first decade of the CSCW research field, it became immediately clear that, to

be really effective, CSCW systems «should be sensitive to the work context in which they

will be used [Bentley and Dourish, 1995]» and, consequently, they «should reflect the

understanding of work practices [Agostini et al., 1997]», in particular obtaining «a better

understanding of the way in which work is carried out in groups [Bentley and Dourish,

1995]». Moreover, as widely recognized in the CSCW literature, employees «are the

ultimate custodians of and experts in their own practices [Shapiro, 1994]». However, in

traditional software engineering techniques too little «attention has been paid to modes of

use [De Michelis, 2003]», focussing system design on the features to provide to users (i. e.,

what in [Bentley and Dourish, 1995] goes under the concept of “system-as-mechanism”).

In fact, a sharp distinction between designer and users exists in traditional software

design techniques. Consequently, during the elicitation of system requirements, designers

focus on the functional needs of clients (i. e., organizations) and completely neglect the

19

2. End-User Development

existence of users’ needs (e. g., the social organization of existing work activities, their

constant evolution and their flexibility with respect to the context). Traditional techniques

are «developer-centric [Harker et al., 1993]», i. e., they represent system requirements

in a format that is suitable to be used by software engineers and developers to design

and develop the system, rather than to represent the real users’ needs. As a direct

consequence, adopting traditional design techniques results in systems that do not meet

the real needs of users, with negative effects on the efficiency of their work practices.

Moreover, users’ requirements constantly change and evolve. Systems designed in this

manner are prone to become outdated or insufficient fairly quickly. On the other hand,

conventional design and development cycles would be too slow and time consuming with

respect to dynamic changes in system requirements (e. g., an extemporaneous need to

provide support for a specific and unforeseen situation).

Thus, traditional design techniques are to be considered unuseful for developing

systems that effectively support collaborative work. This chapter will describe the various

approaches that have been developed over time in order to improve this situation. First

of all, a set of approaches that try to extend and refine traditional software engineering

techniques will be described. The next sections will deal with the approaches that

encompass end-users as systems’ co-designers: from participatory design up to End-User

Development (EUD). Finally, the end of the chapter will focus on meta-design as an

approach to design effective EUD environments to support work practices.

2.1. Models of Work to Improve the Design of Collaborative

Systems

A first step towards the design of more effective collaborative systems is represented

by the attempts to address this need through the definition of increasingly refined

analysis techniques, with the aim to define models of cooperative work (e. g., see the

model of awareness presented in [Rodden, 1996] or the DIPA1 model [Lewkowicz and

Zacklad, 2000]) that allow software engineers to design collaborative systems, which

give systems end-users the ability to interact with them in a way that is closer to their

actual work practices. Even if models of collaborative work can be helpful to allow

software engineers to better elicit system requirements, similarly to traditional software

engineering techniques, this approach shows its limits soon, especially when users ask

the system to provide support in a way that software engineers did not envision during

1 DIPA is the acronym of the French words Données, Interprétations, Propositions, Accord, which mean

Data, Interpretations, Propositions, Agreement.

20

2.1. Models of Work to Improve the Design of Collaborative Systems

the design phase. As discussed in [Sommerville et al., 1994], the limits of this approach

can be mainly imputed to the gap that still exists between the information needed by

software engineers and those obtained with analysis methods and models that are aimed

at representing the actual work context.

A lot of research efforts have been made to try to fill this gap. The interdisciplinary

nature of the CSCW research area (e. g., see [Schmidt and Bannon, 1992]) suggested

opening the design process to analysis techniques coming from other disciplines and

research fields (e. g., from social sciences). For instance, the social nature of collaborative

work (see Chapter 1) gave a significant boost to the adoption of ethnographic techniques

to try to adapt analysis methods, with the aim to better elicit system requirements and

to uncover the ‘real world’ character of work [Hughes et al., 1994]. The adoption of

ethnographic techniques in the design process of systems was not free from criticisms:

Anderson, for instance, argued that the interest of designers in ethnography is motivated

by a fundamental misunderstanding of its role in the process of requirements elicitation,

since ethnography has often been used as a method of data collection rather than focusing

on its analytic aspects [Anderson, 1994]. Despite any criticisms, ethnography gained an

ever increasing consensus in the design of collaborative systems (e. g., see [Greenhalgh and

Swinglehurst, 2011]). In fact, it introduces a social dimension within software engineering

techniques and models. More specifically, ethnographers, through qualitative techniques

(i. e., surveys, field studies, observations and interviews), collect useful information and

requirements that, once analyzed, give software engineers the ability to better understand

the social relations and the organization of work settings in which the designed system

will be used. Consequently, the expected result is a system designed to more suitably

support the actual work practices.

Despite these attempts to introduce increasingly better analysis techniques and models,

the previously mentioned design techniques (from traditional approaches to the more

multidisciplinary ones) still are limited and consider systems in terms of “mechanisms”

that provide functions to support users in performing their tasks. Moreover, all of them

still do not consider users as a fundamental and active part in the system design process;

at most, with the use of ethnographic techniques users become part of the design process

of the system, but actually they remain a totally passive part of this process, since they

are only an ‘object’ for the techniques of analysis and requirement elicitation.

A diametrically opposite approach to system design, which aims to overcome these

limits, is focused on the idea that, due to its flexible nature, work «is better supported

when systems provide a ‘medium’ which can be tailored to suit each participant’s needs

and organised around the detail of their work [Bentley and Dourish, 1995]». This shift of

21

2. End-User Development

the point of view on the role played by the system consequently highlights the need for a

greater involvement of users (who, it is remembered, are the end-users of the system)

within the design process.

2.2. Involving Users in Design Activities: Participatory Design

The idea to give users (e. g., employees of organizations) a more prominent place has been

considered and acknowledged to design many types of systems. As reported in [Telier,

2011, Chapter 8], examples of this kind of approach range from (i) user-centered design

(e. g., see [Norman and Draper, 1986; Vredenburg et al., 2002]), in which the focus is on

system use and usability, (ii) contextual design (e. g., see [Beyer and Holtzblatt, 1998;

Reffat and Gero, 2000]), which is focused on the situatedness of use, to (iii) experience

design (e. g., see [Sanders and Dandavate, 1999; Sanders, 2001]), in which designers focus

on the quality of the user experience. Notwithstanding these approaches explicitly pose

the emphasis on users, they are still relegated to a passive role in the design process,

such as what happens in the already described approaches to system design.

In order to adopt the metaphor of “system-as-medium” (see [Bentley and Dourish,

1995]), users need to be promoted to the role of co-designers. This is the main tenet of

the design approach that is called participatory design (for an overview, see [Greenbaum

and Kyng, 1991; Schuler and Namioka, 1993; Kensing and Blomberg, 1998; Bødker

et al., 2004]). The adoption of this approach to system design means that software

engineers recognize the need of users «to express themselves and to participate directly

and proactively in the design development process [Sanders, 2002]». In this light, in

participatory design users, and more generally all potential system stakeholders (including,

for instance, managers of organizations), are actively involved in each phase of the design

process of the system with the aim «to meet the unattainable design challenge of fully

anticipating or envisioning use before actual use takes place [Telier, 2011, Chapter 8]»: it

is for this reason that participatory design can be summarized as “design for use before

use” [Redström, 2008]. To reach this ambitious goal, participatory design techniques

require to identify and consider relevant human factors in the system design phases. As

reported in [Sharma et al., 2008], the typical methods that system designers use to elicit

and evaluate ideas include mock-ups and simulations [Clemensen et al., 2007], as well

as the examination of similar products, scenarios, sketches, models and prototypes (see

Figure 2.1).

Notwithstanding the fact that participatory design is a significant step forward to

allow IT professionals to design systems that rely on a better understanding of actual

22

2.3. When Software Engineering is not Enough: End-User Development

From http: // www. personal. psu. edu/ cwc5/ blogs/ coursedesign/

lesson-04-interface-design. html . Accessed: 2012-08-09. (Archived by
WebCite® at http: // www. webcitation. org/ 69nmAT7RG).

Figure 2.1.: The participatory design cycle

collaborative work practices, it is an approach that is still too close to traditional software

engineering design practices: in fact, even if users actively contribute to the design of

their system, after the completion of the design phases, they return to a passive role,

i. e., the role of users of the system, with scarce chances to modify the system in case

of unexpected and unforeseen situations (which can still exist, even though in smaller

amounts due to the contribution of users during the design phases). Consequently, even

if participatory design contributes in narrowing the misalignment between the needs of

software engineers and work practice models and analysis techniques, this gap continues

to exist and it is still far from being filled.

2.3. When Software Engineering is not Enough: End-User

Development

Providing software engineers, and more generally IT professionals, with a set of knowledge,

languages and tools, which allows them to design and build collaborative systems, might

not be sufficient to fulfil the expected results. Moreover, even if participatory design

techniques allow the active participation of users in the design process, this approach

23

http://www.personal.psu.edu/cwc5/blogs/coursedesign/lesson-04-interface-design.html
http://www.personal.psu.edu/cwc5/blogs/coursedesign/lesson-04-interface-design.html
http://www.webcitation.org/69nmAT7RG

2. End-User Development

still presents some limits, since it does not allow a timely management of unexpected

(and often extemporaneous) changes in system requirements. In fact, during design

and development phases of (complex) software systems, and more generally any kind of

software artifact, designers and developers can anticipate only a part of the whole future

uses and problems sets that those systems can support and address respectively. Thus,

it is common that, at use time, users have the possibility to discover some mismatches

between their real needs and the support that the system they are using can provide to

them (see Figure 2.3). Following traditional software engineering approaches, existing

software systems must be (partially or fully) re-designed, and consequently (partially or

fully) re-developed, in order to adapt them to cope with these new needs and requirements.

As a direct implication, this requires users to wait a certain amount of time between the

detection of either new needs or unexpected problems and a newer release of their system

that addresses them. But, in most common situations, new requirements and problems

are related to local and extemporaneous needs of restricted groups of end-users, and

this leads to the frequent case in which end-users autonomously address these needs in

some unconventional ways2 (i. e., performing some workarounds) before IT professionals

delivers a new system releases. However, users are the only stakeholders that could act

with a certain timeliness to adapt the system making it compliant to these new and

unforeseen requirements.

Thus, as proposed by Dourish, collaborative systems should be conceived and designed

to provide users with a tailorable “medium”. In this way, users can constantly and

autonomously adapt to the ever changing needs both in the applicative domain itself and

in the execution context (see [Costabile et al., 2003a]). The direct involvement of users

in system customization activities reinforces their role of active players in the design of

collaborative systems that effectively support them in doing their tasks. Adopting this

approach results in systems that can be continuously adapted and refined (coherently

with the “task-artifact cycle” [Carroll et al., 1991] shown in Figure 2.2), with positive

influences on work effectiveness and on the degree of confidence with which users interact

with them.

2 In this case, the ‘unconventional ways’ meaning indicates all those behaviors and uses autonomously
performed by users to cope with their needs that have not been “foreseen” during system design, e. g.,
exploiting some system design weaknesses that generate what can be called information system “gray

zones” [Cabitza et al., 2009a].

24

2.3. When Software Engineering is not Enough: End-User Development

From http: // www. interaction-design. org/ encyclopedia/ task_

artifact_ cycle. html . Accessed: 2012-08-11. (Archived by WebCite® at
http: // www. webcitation. org/ 69qlRIkzy).

Figure 2.2.: The task-artifact cycle

2.3.1. End-User Development

The ever increasing availability of new technologies and applications that are specifically

designed to be easily understood, used and customized by end-users contributes to

increase the number of users who start to approach the systems they use as active

actors (e. g., [Boehm et al., 2000; Scaffidi et al., 2005] show how this phenomenon is known

since the past century and researcher estimated that it would have increasingly gained

a relevant position in various types of software systems). The End-User Development

(EUD)3 approach was born to meet these users’ needs. With respect to participatory

design (see Section2.2), in which users play an active role only in the design phases

of their systems, in EUD the «tasks that are traditionally performed by professional

software developers at design time are transferred to end users at use time [Costabile

et al., 2008a]», and consequently the sharp distinction between design time and use time,

which characterizes all the approaches described until now, becomes vague [Pipek and

Wulf, 2009].

Within the EUD scope, end-users can be defined as «people who have certain software

development skills but are not interested in software per se. They do not develop software

for other people; rather they are developing software to solve specific problems that

they own [Ardito et al., 2009]». As discussed in [Costabile et al., 2003b], end-users are

interested in EUD mainly to reach goals that range from changing some user interface

behaviours and aspects to fully customize the user interface of the system they use to meet

3 See [Lieberman et al., 2006b; Pipek et al., 2009a; Costabile et al., 2011] for a complete overview about

End-User Development (EUD) and the evolution of the related research field.

25

http://www.interaction-design.org/encyclopedia/task_artifact_cycle.html
http://www.interaction-design.org/encyclopedia/task_artifact_cycle.html
http://www.webcitation.org/69qlRIkzy

2. End-User Development

Figure 2.3.: Design and Use time (from [Fischer and Scharff, 2000])

their needs, from customizing existing functionalities to adding new ones to the system

(e. g., to implement some aspects of a business process or to automate some tasks that

rely on the user’s domain expertise). Thus, an EUD-compliant software system must be

designed to be easily tailorable at runtime by end-users, who can be able to autonomously

adapt the system to their work situation, preferences and habits (see [Costabile et al.,

2008a]). In this light, EUD can be defined «as a set of methods, techniques, and tools that

allow users of software systems, who are acting as non-professional software developers,

at some point to create, modify or extend a software artefact [Lieberman et al., 2006b]».

To reach this ambitious goal, i. e., «empowering end-users to develop and adapt systems

themselves [Lieberman et al., 2006a]», EUD must also take into account the tenets of other

disciplines and research fields [Klann et al., 2006]. In order to be really effective, an EUD-

compliant system must take into account the tenets coming from the Human-Computer

Interaction research field, which can play a key role in making the designed system easy

to be understood, to be learned and to be used. EUD-compliant systems should adapt to

the changes that occur in contexts and in users’ needs (e. g., according to users’ skills or

to the tasks they must accomplish), and EUD functionalities should be presented to users

as unobtrusively as possible and only when they are needed. Moreover, EUD-compliant

systems must take into account the social and collaborative dimensions that are related

to end-users’ customization activities (coherently to CSCW tenets). Providing support

to EUD techniques requires software engineers to design systems in which end-users play

an active role in their evolution, giving life to a long-term collaboration among system

26

2.3. When Software Engineering is not Enough: End-User Development

stakeholders (e. g., system end-users and managers) and software engineers [Mørch and

Mehandjiev, 2000]. As described in [Klann et al., 2006], «cooperation is an essential part

of end-user development». As a matter of fact, end-users collaborate and group into

communities that allow them to discuss their adaptation problems and needs, negotiate

optimal solutions, and share both the expertise they acquire and the new artifacts they

create with their EUD activities [Fischer, 2009], e. g., influencing the ways through

which end-users concur in creating organizational expertise and the related knowledge

[De Paula, 2004]. In this light, EUD can be seen as «a socio-cultural activity, depending

on place, time, and people involved [Lieberman et al., 2006a]», i.e., in other words, EUD

is a participative process [Fischer, 2009] that is strongly influenced by the context in

which it takes place. This results in software systems that give end-users the possibility

«to improve their work practice and determine an increase in their productivity and

performance [Costabile et al., 2008a]».

The operations through which end-users can customize their EUD-compliant systems

cover a wide range of possibilities (see Figure 2.4). The simplest operations belong to

the parameterization category: in this case, end-users have very limited possibilities

to customize their systems, since they can only change the behaviors of the system

functions by specifying the values of the related parameters (e. g., the possibility of

doctors to select the desired data field within their EPR to generate customized medical

reports, as described in [Morrison and Blackwell, 2009, Section 3.1]). The diametrically

opposite approach, i. e., tailoring, allows end-users to customize their systems with deeper

interventions, which often require them to write some kind of executable code (e. g., word

processor macros) that can have different levels of complexity. Due to the absence of a

background in programming techniques, which contributes to characterize end-users as

unwitting developers [Costabile et al., 2008b] (see Figure 2.5), system tailorability can

result in a hard task for end-users. Providing users with modular software environments,

through the adoption of component based approaches (e. g., see [Wulf et al., 2008]), can

be helpful to ease systems’ tailorability. With respect to tailoring systems through the

creation of executable code from scratch, component-based approaches allow to create

highly customizable systems that do not require end-users undue efforts to learn complex

programming techniques. Rather, end-users need only to know how to compose (and

eventually parameterize and extend) existing components, as though they were doing

“bricolage” activities (see [Hovorka and Germonprez, 2009; Teoh et al., 2012]), without

any concern about details of component implementation. However, end-users should

at least have or acquire basic programming skills in order to connect the components

they need. This significantly reduces the efforts required to users to customize their

27

2. End-User Development

Figure 2.4.: The different approaches to system customization (from [Ardito et al., 2009])

systems, as component-based approaches constitute a middle layer between the pure

parameterization of systems and programming (see [Mørch et al., 2004]).

2.3.2. End-User Development to Leverage System Appropriation

Even if, in some cases, supporting EUD could expose software systems to some security

issues (e. g., see [Harrison, 2004]), giving end-users the ability to tailor systems they use

to meet their local needs could result in an increasing acceptance degree of the system in

their daily work practices. In fact, end-users who perform EUD activities constantly gain

an increasing level of confidence with the software systems they use in their daily work;

this has the positive effect of making «users feel confident or not afraid of technology

[Cabitza and Loregian, 2008]». This results in a virtuous circle in which end-users increase

their level of appropriation of the system (in which they can tailor to meet their real

needs) and, as a consequence, this produces positive repercussions on the efficiency of

the work practices that the system is aimed to support.

As described in [Dourish, 2003], appropriation is a process through which users adopt

software systems, performing adaptations, to fit them into their already consolidated

work practices (which can eventually evolve as a consequence of the introduction of such

systems within them [Stevens et al., 2009]). To be more precise, the term ‘appropriation’

represents the «collaborative effort of end users, who perform “appropriation activities”

to make sense of the software in their work context [Pipek, 2005]». Being appropriation

28

2.3. When Software Engineering is not Enough: End-User Development

Figure 2.5.: The wide range of systems’ end-users (from [Costabile et al., 2008b])

strictly related to the tailoring activities of end-users, these activities do not only concern

the mere understanding of the functionalities that the system provides to its users. Rather,

due to the collaborative nature of EUD (see Section 2.4) and tailoring activities (e. g.,

see [Pipek and Kahler, 2006]), appropriation is a set of social activities (see [Pipek et al.,

2009b]) aimed at integrating and shaping the appropriate usage of the system within work

practices. As described in [Wulf et al., 2008], especially dealing with collaborative work

practices, it is necessary to take into account the fact that system tailoring activities, and

consequently the related appropriation activities, involve a heterogeneous set of end-users

who are characterized by different levels of qualification and interest, and which can

change over the time.

In this light, supporting EUD is a way to provide end-users with software systems

that can be considered as an infrastructure with the native support for appropriation

activities. In particular, as depicted in [Stevens et al., 2009], an EUD-compliant system

provides end-users with a tool that is characterized by an adequate level of flexibility,

with the result of encouraging its end-users to undertake appropriation activities.

29

2. End-User Development

2.4. Meta-design for Practice-oriented Customizable

Environments

Since EUD gives end-users the possibility to customize their systems, this requires

software engineers to conceive, design and develop software environments that provide

end-users with a set of tools that empower them to autonomously adapt their own

collaborative systems. Meta-design [Fischer, 2003; Fischer et al., 2004] provides software

engineers with set of useful principles to design software environments that users can

autonomously customize to their specific needs. As described in [Giaccardi, 2005], «the

notion of meta-design has been applied in many fields, including graphic design, industrial

design, information architecture, and system design». Focusing on the system design

field, meta-design can be defined as “design for designers” [Fischer and Scharff, 2000]. As

described in [Ardito et al., 2012], this concept can be represented as a two-phase design

process: while the first phase concerns the design and development of the environment

that end-users can customize, the second phase consists of the operations that end-users

perform to customize this environment to cope with their local needs.

Like what happens in participatory design (see Section 2.2), but more deeply, in

Meta-design techniques end-users are active contributors in the design of their systems,

relaxing the rigid boundaries between the different stakeholders involved in the design

processes and promoting them to the role of co-designers (Table 2.1 summarizes Meta-

design features, comparing them with those of both traditional and participatory design

approaches). Meta-design adopts a bottom-up approach that allows end-users to create

spaces of solutions rather than specific solutions to address specific problems. In fact,

meta-design allows to create new solutions that are the result of a co-creation process

in which context and exceptions constitute one of the most relevant aspects, and this

requires the involvement of all the system stakeholders (i. e., all kinds of end-users, like

employees and managers) in order to negotiate the optimal solution by choosing it within

a range of possible ones.

Thus, adopting a meta-design approach asks software engineers to provide users with a

“new generation” of open, evolvable, domain-oriented environments (see Table 2.2). How-

ever, the construction of such environments is not easy since the proposed functionalities

could introduce the rigidity that the approach aims to eliminate: for example, implicitly

imposing a domain model. A way to overcome this risk is to adopt ethnographic tech-

niques to uncover the work practices (in terms of collaborative actions and conventions)

and to distil on their basis the requirements of the environment that would support the

construction of applications coherent with the observed practices. This approach has

30

2.4. Meta-design for Practice-oriented Customizable Environments

Traditional Design Meta-design

Guidelines and Rules Exceptions and Negotiations

Content Context

Certainty Contingency

Resolution Emergence

Top-Down Bottom-Up

Creation Co-Creation

Specific Solutions Solutions Spaces

Table 2.1.: Traditional design versus meta-design (extracted from [Fischer and Giaccardi,
2006])

been followed in the definition of the WOAD framework that is presented in the next

chapter.

31

2. End-User Development

Concept Implications

Convivial Tools Allow users to invest the world with their meaning and to use
tools for the accomplishment of a purpose they have chosen

Domain-
Orientation

Bring task to the forefront; provide time on task

Open, Evolvable
Systems

Put owners of problems in charge; in open systems, extension is
an essential part of use

Underdesigned
Systems

Create seeds and constructs for design elaboration at use time

Collaborative
Work Practices

Support design communities and the emergence of power users

Table 2.2.: Meta-design core concepts and the related implications (from [Fischer and
Scharff, 2000])

32

3
The WOAD Framework

Contents

3.1. Active Documents . 34

3.2. WOAD Documents in Detail 36

3.3. A First WOAD Proof of Concept: ProDoc 38

3.4. LWOAD . 42

3.5. The First WOAD Mechanism Editor 43

3.6. The WOAD Reference Architecture 46

Documents are fundamental in supporting collaborative work practices, which are strictly

related to the conventions that each group of employees has developed over time. Conse-

quently, to be really effective, any kind of document-based collaborative system should

take into account the existence of local conventions related to documents, and it should

also provide end-users with the ability to use its functions without needing to change

their work habits (see Chapter 1). Moreover, during the design of the system, it is

crucial to take into account that, in collaborative work settings, each document is not an

isolated artifact, rather it is intertwined in a set of relationships that constitute a web of

coordinative artifacts (see Section 1.2). Therefore, to provide an effective support for

cooperative work practices, document-based collaborative systems should support users

to perform the same operations that they are accustomed to doing with paper-based

documents in order to promote collaboration awareness inside their work group. To reach

this goal, collaborative systems can convey additional, commonly agreed Awareness Pro-

moting Information (API) on top of documents (see Section 1.4.1). However, due to the

heterogeneity of work domains and to the local nature of collaborative work conventions,

33

3. The WOAD Framework

the current document-based systems provide a limited support to the wide range of col-

laborative work practices. As discussed in Chapter 2, allowing end-users to autonomously

tailor their document systems to their local (and, in some cases, extemporaneous) needs

can result in a better support to their cooperative activities.

In light of these requirements the Web of Active Documents (WOAD) framework [Cab-

itza and Simone, 2010] has been conceived. WOAD is a design-oriented framework that

encompasses both a conceptual model and a reference software architecture, and combines

the concept of web of documental artifacts with the notion of active document.

First of all, this chapter will describe the notion of active document and in which way it

has been adopted within the WOAD framework. Subsequently, the chapter focuses on the

description of the documents in the WOAD framework. The third section will describe the

first WOAD-compliant proof of concept, i. e., Process-oriented Documentation (ProDoc),

that has been conceived as a prototypical EPR. The next two sections go through the

description of two attempts to make WOAD EUD-compliant, in order to allow end-users

to be autonomous in the definition of WOAD mechanisms, i. e., the proactive rules that

allow WOAD documents to be active. Finally, the last section focuses on the description

of the WOAD reference architecture that has been conceived to fully support the features

of the WOAD framework described in the initial sections of the chapter.

3.1. Active Documents

The concept of active document is straightforward: an active document is a digital

document that is augmented with a set of active behaviors. The active document

notion was born at the Xerox PARC 1 from the work of Robert Spinrad [Spinrad,

1988]. This concept led to a rapid spread of different, but in some case intertwined

variants (e. g., see [Zellweger, 1988, 1989; Bier and Goodisman, 1990; Bier and Pier, 1991;

Bier, 1992; Terry and Baker, 1990]). Scripted Documents [Zellweger, 1989] augmented

digital documents with active behaviors with the aim to support the creation of paths

among multimedia documents (e. g., to couple a text written in a foreign language with

a sequence of audio documents that contain the related pronunciation). Bier proposed

EmbeddedButtons [Bier and Pier, 1991; Bier, 1992], a prototypical architecture in which

documents were conceived as user interfaces, and each one of their elements could act as

buttons that trigger some active behavior: for instance, elements of a document could be

configured to show a menu with a list of entries that allow, when a user selects them, to

execute some commands, e. g., to change both the font face and font size of the selected

1 http://www.parc.com/

34

http://www.parc.com/

3.1. Active Documents

text or to draw a box around it. Active Tioga [Terry and Baker, 1990] made digital

documents able to be active in two distinct ways: dynamically computing parts of the

content of a document (e. g., to insert a Table of Contents) and reacting to changes in a

document with some activities (e. g., checking constraints on some parts of the document,

for instance, checking if Table of Contents’ entries have the correct text in the headings

of each section of the document).

Nevertheless, active documents have not been an exclusive interest of Xerox researchers.

Rather, as described in [English and Tenneti, 1994], active documents aroused research

interests of a quite assorted group of companies and academic researchers. Also in these

cases, active documents covered a wide range of specific behaviors: from the Apple

CADoc™ [Towner, 1988], which allows the definition of active behaviors to perform

automatic data updates, to the IBM Quill document editor [Chamberlin et al., 1988],

which allows documents to perform active changes in the text formatting. In [English et al.,

1990], Interleaf researchers proposed active documents as structured documents in which

the objects constituting documents can interact among themselves, for instance with the

aim to change the language of the user interface or to manage multimedia objects (e. g.,

pictures). Köppen [Köppen and Neumann, 1998] proposed the platform-independent

Active Hyperlinked Documents (AHDs), in which active behaviors can be defined to

support a set of heterogeneous situations: from the control of contents and layouts of

documents to the support of collaboration within groups. Werle [Werle and Jansson,

2001] presented active documents as a way to support collaborative work: documents

were considered as an active participant in work activities that can perform some active

behavior according to both their content and the context in which they are used (e. g.,

when a document detects the presence of more than one users in a meeting room, it

autonomously starts to present itself through the projector in the room). Finally, Nam

proposed the concept of active documents as documents that include both data and

business rules [Nam and Bae, 2002; Nam et al., 2003], with the aim to support business

constraints over content in documents (in a purchase order document, for instance,

required fields must be filled in and, if the customer is a premium one, the document will

automatically apply a discount).

The WOAD framework active documents has been inspired by Placeless Documents

[Dourish et al., 2000b]. Placeless Documents were conceived adopting a property-based

approach, in order to overcome many of the limits of traditional hierarchical techniques

that are usually adopted to organize documents (e. g., traditional file systems): while

hierarchical approaches force users to define a rigid organization of documents that poorly

reflects the true organization needed by users, document properties contribute to make

35

3. The WOAD Framework

the organization of documents more flexible and meaningful to support users in doing

their tasks. Moreover, Dourish introduced the concept of active property, i. e., a document

property that carries some user-defined executable code to specify a specific document

behavior [Dourish et al., 2000a]. For instance, users can augment a document with an

active property that makes the document itself able to automatically create a backup

copy on a secure storage medium. Moreover, active properties can be defined to monitor

changes in documents and, accordingly, either to send notifications to some user or to

manage document versioning.

However, despite the flexibility level that active properties allow to reach, they require

system end-users to have a certain degree of skill in formalized languages and their

syntax contraints. As described in Chapter 2, system end-users are not interested in

programming, and this could result in the nullification of the advantage of being able

to augment documents with user-defined active behaviors. The WOAD framework

overcomes this limit by adopting an approach similar to that proposed by Nam (see [Nam

and Bae, 2002]): documents are augmented with a set of user-defined proactive rules,

which can be defined through symbolic and declarative expressions. The proactivity of

rules has been inspired by the result of some observational studies, which showed that

the most simple and, at the same time, powerful concept that the unskilled end-user can

understand is reactive behavior [Cabitza and Simone, 2009b]. The concept of reactivity

as a way to define computable sequences is not new: it has already been proposed in

the Chemical Reaction Model [Banătre et al., 2001] and the related Gamma formalism.

Gamma formalism allows users to define a program as a simple pair composed of a

reaction condition and an action. Moreover, such formalism has the advantage to allow

users to express executable code in a very abstract way, without forcing them to comply

with the constraints of traditional programming languages (e. g., sequentiality) and to

focus on the definition of the logic of the active behavior.

3.2. WOAD Documents in Detail

WOAD documents are composed of two distinct but strictly intertwined parts: (i) the

passive part, which is responsible for displaying and storing the document contents

that users inscribe in the document as in any kind of traditional digital document, and

(ii) the active part, which is called mechanism and contains the set of document-related

rules. These rules do not change document contents; rather, the aim of the rules is to

proactively convey the needed APIs, according to local work practices and conventions

36

3.2. WOAD Documents in Detail

(see Section 1.4.1). In particular, APIs change document’s affordances2, modifying how

documents appear.

To define the passive part of a document, WOAD adopts an approach that has become

quite common in many applications (e. g., see [Morrison and Blackwell, 2009]): in short,

WOAD tries to mimic the paper-based documents look-and-feel. The structure of the

passive part of a document is defined by a document template that describes only the

topological arrangement of the basic document components, which are called Documental

widgets (Didgets) [Cabitza et al., 2009b], i. e., coherent sets of (one or more) data fields

(e. g., simple text fields, multi-line text areas, or check boxes). For instance, with respect

to the healthcare scenario (see Section 1.3), a clinical document template could contain

the patient didget, which reports the usual patient personal data (e. g., name, surname

and date of birth), and the vital parameter Didget, which summarizes the values of the

inpatient’s vital parameters (e. g., body temperature, minimum and maximum blood

pressure, and the heart rate). Didgets are reusable document components that can be

used to define different document templates. A Didget can be defined as multiple, to

handle those data that are needed to be organized in a tabular format (e. g., the set of

vital parameters of a newborn within few moments after delivery or the data of all the

previous inpatient’s clinical examinations). Moreover, a Didget can be defined to be local

or global, and accordingly it can replicate or not its data among the instances of a single

document template. This approach results in a high level of flexibility with respect to the

need to change both document layout and the pieces of information managed through

the document: in fact, defining document templates only as a spatial arrangement of

Didgets strongly increases the possibility of users to customize the document templates

like what they were accustomed to doing with paper-based documents, since with respect

to traditional document-based systems the underlying data model can be continuously

adapted according to the Didgets that will be further added or removed.

On the other hand, defining the active part of documents (i. e., WOAD mechanisms)

corresponds to the definition of sets of document-related rules, i. e., if-then conditional

statements composed of two complementary parts: (i) the if-part contains a set of

conditions that could be defined on both documents’ contents (e. g., to check that the

value of the inpatient’s maximum blood pressure exceeded a certain threshold) and

contextual information (e. g., the current date and time, or the expertise level of the

clinician who is managing the document), and (ii) the then-part contains a set of one

2 The concept of affordance was first introduced by the psychologist James J. Gibson in [Gibson, 1977],
but it was thanks to Donald Norman [Norman, 1988] that this concept was introduced in the Human-
Computer Interaction (HCI) research field: affordances provide users with additional information that

can be useful to understand how they can interact with an “object”.

37

3. The WOAD Framework

or more actions with the aim «to support the access to the content, its use, the ways it

is displayed to make it more meaningful, as well as towards how to make a connection

between the content and some other documents either explicit or tacitly meaningful

[Cabitza and Simone, 2010]» by conveying the suitable APIs, when all conditions are met.

The mechanism conditions are evaluated using a congiuntive logic (i. e., the AND logic

operator): the whole set of mechanism conditions must be verified in order to trigger the

related set of actions. On the other hand, to define a disjiunctive set of conditions (i. e.,

in which some conditions requires to apply the OR logic operator), it is sufficient to split

the original mechanism into a set of mechanisms whose if-parts are not valid at the same

time.

3.3. A First WOAD Proof of Concept: ProDoc

The WOAD framework sees its first prototypical implementation in ProDoc, which has

been designed as an innovative Electronic Patient Record (EPR) (EPR). The development

of ProDoc has given the possibility to undertake some preliminary validation sessions of

the WOAD framework within the healthcare reference domain [Cabitza et al., 2009b],

in which clinicians cooperate intensely and their care activities are mediated by the

documents they use.

ProDoc is a prototypical document-based application that has been tailored to meet

the requirements of the healthcare domain. ProDoc is as a highly flexible EPR that

acknowledges three particular requirements of clinicians [Cabitza et al., 2009b]. With

“let me keep my folders!” clinicians express the need to have an abstraction of the concept

of folder, in which they can enact a non-static arrangement of documents they need

to perform the care tasks for their inpatients, e. g., allowing an easy re-arrangement of

the documents that pertain to an inpatient according to the extemporaneous needs of

the doctor who is examining the inpatient. “Let me do what I do on paper” is related

to the need to keep alive all the interactions that clinicians perform with paper-based

documents, e. g., the possibility to annotate some information on documents to promote

the awareness of colleagues for relevant issues (see Section 1.4). Finally, “integrate data

and processes but don’t mix’em up” expresses the need to keep a non-mandatory process

map with the aim to promote group awareness and coordination, and to provide an

alternative way of organizing documents in terms of when they need to be created and

for what aim.

ProDoc allows clinicians to use a graphical user interface, with the same look and feel

of paper-based documents they usually adopt in their daily work practices, both for data

38

3.3. A First WOAD Proof of Concept: ProDoc

Figure 3.1.: The ProDoc Data Panel (from [Cabitza et al., 2009b])

entry and document retrieval operations. Moreover, documents are grouped according to

the inpatient to which they refer to (the “let me keep my folders!” requirement).

ProDoc digital documents rely on the Portable Document Format (PDF) technology

that provides clinicians with digital documents with the ability to reproduce some of the

typical interactions of the paper-based documents (the “let me do what I do on paper”

requirement). For instance, ProDoc provides clinicians with the possibility to annotate

documents (see Figure 3.1). Moreover, ProDoc allows clinicians to create and fill in

documents without being forced to follow a rigid sequence, which usually in traditional

EPRs, is “imposed” at design-time. ProDoc leaves clinicians free to progressively create

the documents they need according to their local conventions. For instance, with respect

to the other hospital wards, in the Emergency Ward the creation of the patient’s Personal

Data document has a lower priority than the creation of the Anamnesis document.

With respect to the “integrate data and processes but don’t mix’em up” requirement,

ProDoc keeps a particular kind of document always visible: an active process map

that clinicians have locally defined on the basis of their common agreements and that

depicts the care process according to which inpatient care activities should be carried

out. Through this particular type of document, which in the healthcare work setting is

called Clinical Pathway (e. g., see [Bleser et al., 2006]), ProDoc allows clinicians to get

39

3. The WOAD Framework

Figure 3.2.: The ProDoc process map (from [Cabitza et al., 2009b])

access to any part of the whole set of documents without being constrained by any kind

of rigid workflow. At the same time, this process map promotes clinicians’ awareness of

the intended flow of care activities: it is possible with a glance to get an overview about

the current activity, activities that have already been performed and those that have not

yet been performed (see Figure 3.2).

Finally, ProDoc user interface embeds a timelined view that provides a browsable view

of the sequence of relevant events, which are arranged according to the moment in which

they occurred and are augmented with the reference to the activity in which they have

been generated (see Figure 3.3). In fact, the timeline allows clinicians to be aware of

both the process history and any relevant event that occurred during their care activities

(e. g., the creation of a new document or the update of an existing one).

The healthcare domain provides a very good work setting to validate WOAD framework

support for collaborative practices. Nevertheless, the practice to couple documents with a

process map, which allows to manage documents according to well-defined work practices

and conventions, is not a peculiarity of the healthcare setting; rather it is a common

practice in a wide range of domains. This makes it possible to use ProDoc in other

document-based cooperative work domains. in this light, for instance, ProDoc has been

also tested and validated in the archaeological domain [Locatelli et al., 2010]. In this

case, ProDoc has been validated in some user sessions involving archaeology students

during their practical study activities in the excavations with archaeological finds: these

40

3.3. A First WOAD Proof of Concept: ProDoc

Figure 3.3.: The ProDoc events’ timeline (from [Cabitza et al., 2009b])

activities require archaeologists to cooperate and to continuously produce and update a

huge amount of documents.

ProDoc was conceived to check the main tenets of the WOAD framework concerning

the possibility to collaboratively annotate documents and to express the relationships

between documents and the process that uses them. As such, it offers limited capability

for the promotion of awareness among the collaborative actors. However, it was helpful

for checking the overall approach and defining an initial architecture of the WOAD

framework.

The next effort was dedicated to the design of the functionality supporting the definition

of the WOAD mechanisms supporting awareness promotion. The next two sections will

go through the description of two attempts to overcome this limit. The former is on the

LWOAD denotational language (see next section). The latter is on a form-based visual

mechanism editor, which has also been the first attempt to make the WOAD framework

compliant to the EUD tenets (see Section 3.6).

41

3. The WOAD Framework

3.4. LWOAD

In order to define WOAD mechanisms, the WOAD framework was endowed with a

denotational language that is called LWOAD [Cabitza and Simone, 2009b]. The aim of

LWOAD is to make domain-expert end-users autonomous in defining their own WOAD

mechanisms, and this contributes in making the WOAD framework consistent with the

End-User Development (EUD) tenets (see Chapter 2). The idea behind LWOAD is to

let users define their mechanisms using a semi-structured natural language that can be

easily translated into machine readable formalisms (LWOAD) and then executed by a

rule engine.

The LWOAD syntax reflects the WOAD mechanism structure (see Section 3.2). The

antecedent represents the mechanism’s if-part and contains the set of conditions that

the Mechanism Interpreter has to check (e. g., with reference to Figure 3.4a, to check if

the newborn’s blood pressure is lower than 70 mmHg). In the antecedent, end-users must

define a list containing entities of two different types: (i) facts (e. g., the document-fact),

which are evaluated to check their truthfulness and to provide access to the related data

(e. g., the ?bp placeholder gives access to the value of the current-blood-pressure

document field), and (ii) tests, which allow to define comparisons of data values (e. g.,

test (< ?bp 70mmHg)). In particular, facts can be characterized by specifying their

attribute values, or placeholders (e. g., ?bp) that allow to refer to these values “outside”

the fact in which they are declared, using a prefix notation3. The values are managed

through a key-value data structure (e. g., (document-fact (record-id ?pr) (name

SS) (latest-weight ?lw)), as shown in Figure 3.4a). For instance, LWOAD provides

the relation-fact (see Figure 3.4b) that is useful for checking if someone has previously

defined any kind of relationship between two different documents, e. g., in the case of the

so called “positive redundancy” [Cabitza and Simone, 2008]. This fact is characterized

to allow users to specify five distinct parameters: (i) the name of the relation, (ii) its

description, (iii) the granularity level of the relation (i. e., class, e. g., clinicians and

patients, or instance, e. g., Dr. Red and Mrs. White), (iv) the reference to its source,

and (v) the reference to its target.

On the other hand, the consequent, which represents the mechanism’s then-part (see

Section 3.2), defines the sequence of actions that the Mechanism Interpreter must execute

to convey the right API, when all the conditions in the antecedent are met (e. g., taking

again into account Figure 3.4a, to convey the Criticality API to make clinicians aware of

3 The prefix notation is also known as Polish notation and consists in declaring the operator followed
by the list of its operands, e. g., (operator operand_1 operand_2 ... operand_n). Some high-level

programming languages, like the LISP family, use the prefix notation.

42

3.5. The First WOAD Mechanism Editor

the existence of a newborn’s critical situation).

3.5. The First WOAD Mechanism Editor

LWOAD was useful for checking the overall acceptance of a rule-based approach by the

end-users, but its usage would require the presence of a designer, since its syntax is too

close to one of the classic programming languages, although the translation from the

natural language formulation was understood by the end-users.

Thus, in order to overcome this LWOAD limit, the visual composition of mechanisms

is the approach that has been considered to be more intuitive to give to a larger number

of end-users the possibility to autonomously create the mechanisms they need. The

first attempt to create a visual editor to allow the visual composition of the WOAD

mechanisms resulted in a form-based editor by which users can create their mechanisms

following a predefined and step-like process (an extensive description of this visual

mechanism editor is reported in [Cabitza et al., 2011a,b]).

As shown in Figure 3.5, the user interface is arranged in a three-column layout. The

smaller column, positioned on the left side of the user interface, contains three distinct

panels: (a) the list of existing document templates, (b) the trash area, and (c) the list of

already created mechanisms. The remaining part of the user interface is composed of two

columns with the same width: while the most central one represents the mechanism’s

antecedent (i. e., the if-part), in which users define the set of medchanism conditions, the

right one represents the mechanism’s consequent (i. e., the then-part), in which users define

the set of APIs that the mechanism will convey when conditions are met (see Section 3.2).

Most of the mechanism composition process is based on drag’n’drop operations and

selections from short closed-option menus. The user who wants to compose a mechanism

simply picks up the document template she needs in the list on the top of the left column

and drags it over one of the other two columns. When the user drops the selected

document template in one of these columns, a new panel representing the document

template is added to the column in which the drop took place. According to the column

in which the document template is dropped, the related panel allows to define a set of

conditions or a set of APIs to be conveyed respectively. Each one of these panels contains

a set of three drop-down menus that are followed by an input text field. The drop-down

menus allow the user to select one of the Didgets in the document template (e. g., the

Personal Data Didget), one of the selected Didget data fields (e. g., the inpatient’s name),

and the conditional operator (e. g., either the “equals” or the “contains” operator) or

the API to be conveyed respectively. On the other hand, the input text field allows

43

3. The WOAD Framework

(a) A WOAD mechanism to convey an API related to a newborn’s critical situation (Criticality API).

(b) A WOAD mechanism to convey an API (Inquiry API) to make clinicians aware of the existence of a relation
between two documents.

Figure 3.4.: Two examples of the LWOAD mechanisms, compared with the same specifi-
cations in natural language (from [Cabitza and Simone, 2009b])

44

3.5. The First WOAD Mechanism Editor

Figure 3.5.: The first WOAD Mechanism Editor (from [Cabitza et al., 2011a])

Figure 3.6.: The mechanism’s if-part form (from [Cabitza et al., 2011b]).

to specify a value that parameterizes either the condition the user is defining or the

API the user wants to convey. These four input fields are followed by a button that

allows to add either the new condition or the new API to the mechanism. The remaining

part of the panel below the set of input fields is taken up by a table that summarizes

the already defined conditions or APIs related to the document template to which the

panel is pertaining (Figure 3.6 shows a document template’s panel to specify the set of

conditions). Unlike what happens in the panels pertaining conditions, in which the users

can only specify a single value to parameterize the condition they are defining, in some

cases (e. g., to react in different ways, according to the user’s expertise level), when users

add a new API in the panel pertaining a mechanism’s consequent, they may specify more

than a single value for the same API parameter: to make this operation as simple as

possible, the visual editor shows to users some specialized dialog boxes, one for each type

of APIs (e. g., Figure 3.7 shows the dialog to parameterize the Criticality API), through

which they can easily specify all the API’s parameter values.

45

3. The WOAD Framework

Figure 3.7.: The dialog box through which users can specify the Criticality API parameter
values (from [Cabitza et al., 2011b])

3.6. The WOAD Reference Architecture

To support the concepts that have been outlined in the previous sections, the WOAD

framework encompasses a reference architecture (see Figure 3.8), which is described

in [Cabitza and Zorzato, 2010, Section 3].

The Layout Engine is the component that receives users’ requests for documents and

renders the retrieved active documents4. As shown in Figure 3.9, a request for a document

is forwarded to the Document Manager, which is the component responsible for building

the passive part of the document. The Document Manager interacts with two distinct

components to complete its task: the Document Data Repository and the Template

Manager. While the role of Document Data Repository is to manage data persistence, the

Template Manager is the component that is responsible for storing and providing access

to document templates. As a matter of fact, the Document Manager simply couples the

document template with the contents that are related to the requested document. In order

to do this task, the Document Manager is divided into two cooperating subcomponents:

the Didget Manager and the Document Builder : while the former manages Didgets

and maintains them synchronized with the Document Data Repository, the latter is

responsible for retrieving the needed document template from the Template Manager

and to fill in it with the needed Didgets, which are retrieved from the Didget Manager.

On the other hand, the Document Manager also interacts with the Mechanism In-

4 Since the initial implementation of the WOAD framework, the Layout Engine is any Internet browser

with the full support for the World Wide Web standards, i. e., HTML, CSS and JavaScript.

46

3.6. The WOAD Reference Architecture

terpreter. The Mechanism Interpreter is the component responsible for asynchronously

checking the WOAD mechanism conditions and to activate the mechanisms whose condi-

tions are met. The Mechanism Interpreter is the rule engine that constitutes the heart of

WOAD active documents: currently, it is based on the RETE algorithm [Forgy, 1982] and

in particular on its Java implementation, i. e., JBoss Drools5. This algorithm executes

rules, i. e., WOAD mechanisms, adopting a resolution strategy that is based on both

specificity and currentness. RETE is an efficient pattern matching algorithm aimed at

implementing rule-based systems in which that rules are quickly and efficiently6 executed.

The execution of a WOAD mechanism requires the Mechanism Interpreter to interact

with the Markup Tagger component that is responsible for coupling the passive part

of the requested document, coming from the Document Builder, with the metadata

that have been produced by the Mechanism Interpreter, in order to convey to users

the APIs specified by the WOAD mechanisms. The Markup Tagger translates WOAD

mechanism metadata into a format that the Layout Engine can manage (e. g., HTML

tags’ attributes), and, in so doing, the Markup Tagger makes the requested document

active.

Moreover, the Mechanism Interpreter constantly monitors Didgets interacting with the

Document Manager, and in particular with the Didget Manager. In this way, when the

content of a WOAD active document is modified, the Mechanism Interpreter automatically

re-processes WOAD mechanisms to best fit the updated context.

This architecture was the starting point for the implementation effort described in this

theses. The next chapter describes how it has been modified and extended.

5 http://www.jboss.org/drools/
6 The RETE algorithm is designed to increase rule execution speed, even if this implies a higher
memory usage (see [Forgy, 1982] for details). The algorithm efficiency is mainly due to the following
features: (a) node sharing reduces, or eliminates, certain types of redundancy, (b) storing partial matches
allows to avoid complete re-evaluation of all facts each time the knowledge base changes, and (c) an

efficient removal of memory elements is enacted when facts are retracted from working memory.

47

http://www.jboss.org/drools/

3. The WOAD Framework

Figure 3.8.: The UML Composite Structure diagram of the original WOAD reference
architecture (from [Cabitza and Zorzato, 2010])

Figure 3.9.: The UML Sequence diagram of the original WOAD reference architecture
(from [Cabitza and Zorzato, 2010])

48

4
Open Problems and Proposed Solutions

Contents

4.1. Customizing Documents as Easily as Using a Word Processor 50

4.2. WOAD Mechanisms for Non-Programmer End-Users 52

4.3. A Platform-independent MVC Model for Digital Documents:

XForms . 54

4.4. The Renewed WOAD Architecture 55

Even if the WOAD framework (see Chapter 3) represented a significant improvement

toward the design of effective document-based collaborative systems that can be easily

customized to meet cooperative local needs and work practices, the framework presented

some relevant problems that actually limited its applicability.

In particular, two aspects have the effect to hinder the effectiveness of a WOAD-

compliant collaborative system: (i) usually, employees are accustomed to be autonomous

in defining and managing both the structure and the informative content of the paper-

based documents they use in their daily work: they perform this task simply using a

common word processor to create and modify their document templates, which they can

print when it is needed; and (ii) in most cases employees are domain-experts without (or,

at most, with very poor) competences and interests in any kind of computer programming

techniques: this feel prevents them from being autonomous in the composition of the

WOAD mechanisms they need.

In order to avoid to fall back into the same problems and limits of traditional collabo-

rative systems, which have been described in Chapter 2, the challenge is to make the

WOAD framework compliant to the EUD tenets. In this light, the idea is to provide

49

4. Open Problems and Proposed Solutions

end-users with a customizable environment that allows them to be autonomous in both

creating and adapting the document templates they need and in defining the related

WOAD mechanisms.

First of all, this chapter will deal with the description of the main requirements of

the two solutions that have been conceived to address the above open issues of the

WOAD framework, and which contributed to make it compliant to the EUD tenets.

Subsequently, the chapter focuses on the description of the architectural choices that

allowed to improve the flexibility of the WOAD framework and the tailorability of

WOAD-compliant collaborative systems.

4.1. Customizing Documents as Easily as Using a Word

Processor

Paper-based documents require employees a very little effort either to be created or to

change their structure, both in terms of their arrangement and their informative content,

i. e., the data they can manage. Indeed, users can be autonomous in performing these

operations thanks to the use of traditional word processors as design environments for

their paper-based document templates. In fact, this kind of office automation software

unwittingly provides end-users with a What You See Is What You Get (WYSIWYG)

environment in which they can easily build the document templates they need through

simple drag’n’drop interactions: users pick up data fields they need, drag them over

documents and drop them in documents at the desired positions. When document

template editing is completed, users can store or print it like they are already accustomed

to do with any other document they manage with the same word processor.

End-users strongly expressed their need to have document-based systems that allow

them manage digital document as they did with their paper-based documents, i. e., the

“let me do what I do on paper” requirement that have been described in Section 3.3. Even

if Didgets allow the flexible composition of the WOAD documents following a component-

based approach (see [Won et al., 2006; Wulf et al., 2008]), the WOAD framework lacks

in supporting end-users to autonomously design the documents they need. Thus, the

idea is to support them in doing this task through a visual editing environment (namely,

the WOAD Template Editor). The visual editor must provide users with a user interface

similar to those provided by traditional word processors, without the need to force them

to learn to use a completely new and unknown user interface. In particular, the user

interface must provide users with (i) an editing area that mimics the look and feel of a

traditional paper-based document (as in most part of word processors); (ii) the possibility

50

4.1. Customizing Documents as Easily as Using a Word Processor

to compose document templates through a drag’n’drop-based interaction; and (iii) the

flexible management of the informative content of document templates, i. e., by adding

or removing Didgets, allowing users to adapt them to their constantly evolving needs,

without the constraints imposed by a rigid data model. This last feature implies that the

editor should be able to constantly adapt the data structures underlying the documents,

acting in a transparent manner according to the changes that users make to the document

templates.

In this way, the efforts required to employees to move from a traditional word processor

to a document-based system would be reduced as the interface looks familiar to them.

This contributes to increase the acceptance degree of such systems when they replace

traditional paper documents.

The need to cope with the requirement of flexibility of data structures revealed a

relevant lack in the initial formulation of the concept of Didget. In particular, this lack

is related to the Didgets’ ability to share data among different document instances. As

Didgets have been defined, they support only a binary level of data sharing: while in local

Didgets data pertains only to the document instance in which it has been entered, global

Didgets can only share data among all document instances. In fact, limiting data sharing

in this way results in a feature that does not meet real-life situations. For instance,

from the analysis of the documents adopted in the healthcare domain emerged the need

of clinicians to share some pieces of data only among all the documents pertaining to

a single inpatients (e. g., the inpatient’s personal data). This required to conceive a

more flexible Didgets’ data sharing capability (see [Cabitza et al., 2011a,b]). In order

to be more consistent with respect to real-life situations, this Didgets’ capability has

been extended to have more granularity with respect to its initial binary definition (see

Table 4.1). This resulted in three distinct levels of data sharing, in addition to the case

in which data is not shared and remains local to the single document template instance

(namely, G0): for instance, the value of the daily measurement of the inpatient’s body

temperature. The other three levels have been conceived to have an increasing degree

of data sharing among documents. With the G1 level the content of a Didget is shared

among all the instances of a specific document template that are related to a specific

resource (e. g., the same patient). With the G2 level, a Didget can share pieces of data

among the documents that are based on different document templates, but this data is

still related to the same resource (e. g., some pieces of patient’s personal data, like the

patient id, her name and surname). Finally, the G3 level allows a Didget to share its

content among all documents, without any constraint both on document template and

resource.

51

4. Open Problems and Proposed Solutions

Data Shared Between
Instances Templates Resources

G0

G1

G2

G3

Table 4.1.: The redefined levels of the Didget’s data sharing capability (from [Cabitza
et al., 2011a])

Users should be able to autonomously configure the level of data sharing of a Didget.

Since this operation affects the configuration of the underlying data structures of docu-

ments, the visual editor must allow users to set this Didget feature in a visual manner.

Similarly, since users can need to manage repeatable data, Didgets have been conceived

to support users in the management of this kind of data (see Section 3.2). Thus, also in

this last case, the visual editor must allow users to configure this feature of Didgets in a

visual manner.

A final issue emerged during the identification of the requirements of the WOAD

Template Editor: the initial definition of the three entities that concur in defining the

concept of Didget generated a confusion in the interaction between users and WOAD

designers. In order to give a more clear definition of this fundamental concept of

the WOAD framework, these three entities have been renamed (see Figure 4.1 for a

comparison): (i) the Didget schema, which defines the group of data fields and their

specific features (e. g., format and data type), became Documental atom (Datom); (ii) the

Didget structure, i. e., the instance of a Didget within a document template (e. g., in

the Clinical Examinations document template), simply became Didget; and (iii) the

Didget content, which represents the data users filled in (e. g., some vital parameters that

clinicians filled in one instance of the Clinical Examinations document template), simply

became Content.

4.2. WOAD Mechanisms for Non-Programmer End-Users

The WOAD framework has been conceived to design document-based collaborative

systems that proactively support users in their work practices, providing them with

conventional awareness information, i. e., the Awareness Promoting Information (API)

that have been described in Section 1.4.1. Nevertheless, since users are the only ones

who have the full knowledge of the conventions of the group in which they act, in order

to provide a really effective support to their collaborative work practices, users must be

52

4.2. WOAD Mechanisms for Non-Programmer End-Users

(a) The original entities in the WOAD framework
(from [Cabitza and Zorzato, 2010])

(b) The more clearly defined WOAD framework’s en-
tities (from [Cabitza and Gesso, 2011])

Figure 4.1.: The relationships among WOAD concepts

able to autonomously define their own WOAD mechanisms, i. e., proactive rules, even if

they do not have any computer programming skill.

Despite the WOAD framework encompasses the LWOAD denotational language for the

definition of the WOAD mechanisms in a flexible and powerful manner, this language is

still far to be widely usable by domain-expert end-users, since, like any other formalized

language, it must comply with strict syntactic constraints, requiring users to have some

skill with programming languages and techniques. In order to make users autonomous in

the definition of their WOAD mechanisms, the visual approach has been considered to

be more intuitive with respect to LWOAD. Nevertheless, the first attempt to make users

autonomous in defining WOAD mechanisms resulted in a dead end. Since this first visual

mechanism editor adopted a form-based user interface, which forced users to follow a

predefined and step-like process (see Section 3.5), the WOAD mechanisms created using

this visual editor were extremely simple and not suitable to represent the most part of

real-life conventional rules.

However, the idea to adopt a visual approach to make users able to autonomously

define WOAD mechanism has not been discarded. Rather, wanting to adopt a visual

approach to design the new WOAD Mechanism Editor, the main requirement is to provide

users with an intuitive visual metaphor and a usable user interface, which minimize

the users’ efforts to both learn and use them. In the literature, a heterogeneous set

of metaphors have been proposed to visually represent rules, and at present it does

not exist a universally recognized or a predominant approach to perform this task (see

53

4. Open Problems and Proposed Solutions

Section 5.2.2). However, the WOAD Mechanism Editor should adopt a visual metaphor

that is sufficiently simple to be used without requiring to train users prior using it.

Moreover, once a user completed the creation of a new document template, through the

WOAD Template Editor, the WOAD Mechanism Editor should immediately give her the

possibility to seamlessly use the Didgets related to the new document template within

the WOAD mechanisms she wants to create or to modify. On the other hand, since users

can also remove Didgets from their document templates, the WOAD Mechanism Editor

should be able to make the user aware that the rule she is modifying refers to some Didgets

that do not still exist in a particular document template. Consequently, a fundamental

requirement is that the WOAD Mechanism Editor must be strictly integrated with the

WOAD Template Editor.

4.3. A Platform-independent MVC Model for Digital

Documents: XForms

A useful approach that allows to meet the need of a modular user interface (i. e., docu-

ments) is the Model-View-Controller (MVC) design pattern (e. g., see [Reenskaug et al.,

1996]), which allow to separate the data model (namely, the Model) from the presentation

layer (i. e., the View) and the applicative logic (i. e., the Controller). Thus, this approach

allows to easily design and implement the user interface (i. e., the View) without the

need of a deep knowledge of applicative logic: it is only needed know the data model. In

this way it is easier to design platform-independent user interfaces. The WOAD relies on

the MVC design pattern since its initial design, but its first prototypical implementation

(i. e., ProDoc) lacks in the full platform independence, even if it has been conceived as a

web application. This is due to the fact that document templates have been mimicked

using standard PDF forms. In order to overcome this limit, the idea is to adopt a

platform-independent solution to define form-based digital documents. In particular, the

need is to apply this approach in order to define Datoms.

XForms1, which is a World Wide Web Consortium (W3C) standard that have been

conceived to replace the standard HyperText Markup Language (HTML) forms, can be

useful to combine the MVC design pattern with the need to design and implement a

fully platform-independent web application. Through its XML-based syntax, XForms

provide a flexible way to define both the user interface and the underlying data model.

Thus, XForms is one of the best candidates to simplify the design and the development

of platform-independent web application (for instance, see [Cardone et al., 2005]).

1 http://www.w3.org/MarkUp/Forms/

54

http://www.w3.org/MarkUp/Forms/

4.4. The Renewed WOAD Architecture

In this light, the idea is to adopt a subset of the XForms syntax to define Datoms,

which end-users (e. g., clinicians) would find in the WOAD Template Editor in order to

use them to autonomously compose their own document templates (e. g., the Vital Signs

document template). As a direct consequence, due to the fact that each Datom describes

both a piece of user interface and the related piece of the underlying data model, when

end-users either compose or modify their own document templates, at the same time they

implicitly and increasingly define the underlying data structure. In this way it is possible

to easily overcome the limitations of traditional approaches, in which data is stored in

pre-defined data structures (e. g., tables) that software engineers define at design-time

and that are difficult to adapt to the ever changing users’ requirements.

4.4. The Renewed WOAD Architecture

The introduction of the two visual editing component in the WOAD framework (see

Section 4.1 and Section 4.2) and the other improvements of the WOAD framework required

a (partial) refactoring of the original WOAD reference architecture (see Figure 3.8). The

resulting WOAD reference architecture (see Figure 4.2) mainly differs from the original

one for the presence of the two visual editors. Moreover, the already existing WOAD

components have undergone a substantial reorganization, with the aim to better define

the conceptual role played by each WOAD component, with an improvement of the

overall maintainability of each WOAD component. On the other hand, the adoption of

the XForms standard to define the structure of documents required the redefinition of the

Document Builder component. In particular, the Document Builder is composed of two

sub-components: the Document Composer and the Markup Manager. The Document

Composer interacts with both the Template Manager and the Didget Manager with

the aim to retrieve the document template and all the needed Didgets respectively, in

order to compose an empty instance of the requested document (see Figure 4.3). On

the other hand, the Markup Manager gets the empty document instance, i. e., an empty

XForms document, and it fills in this document instance with the related Didgets’ content;

subsequently, the Markup Manager translates the resulting document from the XForms

syntax to the HTML syntax, which can be managed by the Layout Engine. With regard

to both the other phases of creating instances of the documents and those pertaining to

the execution mechanisms, the reorganization of the architecture had no effect on the

interactions among the components, which actually are the same as those described in

Section 3.6.

On the other hand, the introduction of the two visual editors required to support

55

4. Open Problems and Proposed Solutions

<<component>>

Active Document Designer

<<component>>

Document Data

Repository

<<component>>

Active Document Manager

<<component>>

Layout Engine

<<component>>

Mechanism Editor

<<component>>

Template Editor

<<component>>

Datom Editor

<<component>>

Template Manager

<<component>>

Didget Manager

<<component>>

Markup Tagger

<<component>>

Mechanism

Interpreter

<<component>>

Document Builder

<<component>>

Document

Composer

<<component>>

Markup Manager

setDocument

setContent

setMetadata

getTemplate

GUI

[get/set]Mechanism

getActiveDocument

getDatom

setDatom

[get/set]Data

[get/set]Template

getContent

setObjectContent

getObjectDocument

getObjectContent

getDatom

setContent

setRawDocument

getDocumentTemplate

Figure 4.2.: The UML Composite Structure diagram of the renewed WOAD reference
architecture (from [Cabitza et al., 2011a])

the communication among these new components and the already existing ones. The

WOAD Template Editor needs to communicate with both the Template Manager and

the Didget Manager. When a user starts to modify an existing document template, the

WOAD Template Editor queries the Template Manager to retrieve the data representing

the document template; similarly, WOAD Template Editor queries the Didget Manager

with the aim to update the list of existing Datoms and Didgets that the user can add

to the document template. When the user drops a Datom, as described in Section 6.1,

the WOAD Template Editor creates the related new Didget. This requires the WOAD

Template Editor to interact with the Didget Manager in order to make persistent the

new Didget. Finally, when the user stores the document template, the WOAD Template

Editor interacts again with the Template Manager, with the aim to make persistent the

document template. Similarly, the WOAD Mechanism Editor needs to communicate with

both the Template Manager and the Didget Manager, but in addition it also needs to

communicate with the Mechanism Interpreter. When a user starts to create or modify a

WOAD mechanism, the WOAD Mechanism Editor queries both the Template Manager

and the Didget Manager with the aim to collect all the existing document templates

and the related Didgets, in order to allow the user to use the latter to compose the her

WOAD mechanism (see Section 6.2). On the other hand, once the WOAD mechanism is

completed and the user chooses to make it available to the system to be executed, the

WOAD Mechanism Editor interacts with the Mechanism Interpreter, with the aim to

put the mechanism in the set of rules that the rule engine of the Mechanism Interpreter

can execute.

Even if the work that has been done also concerned the redesign and the development

of most part of the components of the WOAD reference architecture (see Figure 4.2), in

56

4.4. The Renewed WOAD Architecture

alt

Template ManagerDidget Data RepositoryMechanism InterpreterDidget ManagerMarkup ManagerDocument ComposerMarkup TaggerLayout Engine

End-User

24: update ActiveDocument

23: apply Metadata

22: send Metadata

25: set DocumentContent

21: return StoreStatus

20: return StoreStatus

19: store DocumentContent

18: set DocumentContent
17: modify Document

16: modify Document

14: return ActiveDocument

5: return DocumentTemplate

4: request DocumentTemplate

10: return DocumentContent

9: request DocumentContent

11: return DocumentContent

7: return Datom

8: request DocumentContent

6: request Datom

13: return Document

12: send RawDocument

3: load DocumentInstance

2: request Document

15: display ActiveDocument

1: request Document

Figure 4.3.: The UML Sequence diagram of the renewed WOAD reference architecture
(from [Cabitza et al., 2011a])

the following, next chapters will focus on the description of both the WOAD Template

Editor and the WOAD Mechanism Editor, since these two components of the WOAD

framework architecture are those that users can interact with and therefore have been

validated, as it will be show in Chapter 8 and Chapter 9.

57

5
Related Works

Contents

5.1. The Tailorability of the Electronic Patient Records 61

5.2. A Review of State of the Art of Visual Editors 62

5.2.1. Document Editors . 63

5.2.2. Rule Editors . 70

5.2.3. Visual Languages . 78

The previous chapters introduced both the concept of awareness promotion, with the

aim to support and enhance convention-based collaborative work practices, and a rule-

based approach to proactively convey conventional awareness information to users on

top of their digital documents, i. e., the WOAD mechanisms. The number of solutions

to convey awareness informations to users has grown over time. Consequently, these

solutions have been adopted to support the needs of awareness of different applicative

domains, such as the healthcare domain (e. g., see [Ray et al., 2008; Bardram and Hansen,

2010]). Awareness information are conveyed adopting different approaches that range

from notification systems up to complex 3D representations of a virtual environment

where actors interact. For instance, Prinz proposed NESSIE [Prinz, 1999], an application

independent environment aimed at supporting collaboration by conveying awareness

information through an event-based notification system. Benford [Benford and Fahlén,

1993] proposed a spatial model to manage group interaction in virtual environments, in

which the objects within the virtual space (including members of the group) interact on

the basis of a mutually defined level of awareness. A similar approach has been proposed

in [Sandor et al., 1997], which discusses the Aether spatial model and its prototypical

59

5. Related Works

implementation. Nevertheless, in most cases these awareness systems do not give users the

possibility to autonomously define the awareness information they want to convey as the

awareness functionality usually flanks other collaborative applications as an application

that can be at most customized. In [Simone and Bandini, 2002] a language to allow users

to define awareness promoting mechanisms is proposed: however, its implementation

does not offer a user-friendly way to construct those mechanisms as required by the

EUD approach. On the other hand, also rule-based systems have been widely adopted in

an heterogeneous set of applicative domains, but with radically different purposes than

the proactive provision of awareness information: the rule-based approach is adopted in

expert systems to perform inferences on data in order to derive useful information (e. g.,

see [Waterman et al., 1986]). For instance, the rule-based approach is widely adopted in

the healthcare domain to support clinician in a wide range of activities: from the detection

of diseases outbreaks [Wong et al., 2002] to the telemonitoring of inpatients [Seto et al.,

2012], from data validation [Supekar et al., 2002] and data analysis [Sun et al., 2010] up

to automatic adaptation of the care workflow [Müller and Rahm, 1999]. Nevertheless,

adding new rules in rule-based systems is not a task that end-users can autonomously

perform, since these operations still require a certain degree of IT skills to be performed.

On the other hand, as discussed in Chapter 2, software engineers have high level IT skills,

but they lack in having the full understanding of the jargon through which domain-expert

end-users express their needs and requirements. Thus, the task to add new rules, as

well as to modify or delete existing ones, requires to be performed by another kind

of stakeholder of rule-based systems, i. e., the knowledge engineer, which gathers the

new requirements from end-users and updates the set of rules accordingly. In this way,

the adaptation process requires a certain amount of time, since, once the knowledge

engineer gathered end-users’ requirements and developed the related set of rules, the

outcome of her work must be validated by end-users before being applied to the rule-based

system [Bultman et al., 2000].

The first section of this chapter will deal with a concise review of some relevant

approaches that have been proposed to cope with the need of tailorability of the EPRs.

Subsequently, according to the purposes of the work presented in this thesis, the focus of

this chapter will be restricted to those solutions that are related to the open issues of the

WOAD framework that have been described in Chapter 4, i. e., the visual composition

of documents and rules respectively. To this aim, the second section of the chapter

is composed of three subsections. The first subsection will deal with a set of existing

approaches that allow the visual composition of documents. The second subsection

will focus on the description of a set of solutions that allow the visual composition

60

5.1. The Tailorability of the Electronic Patient Records

of rules, although these solutions are aimed at supporting knowledge engineers rather

than end-users. Nevertheless, since one of the goals of this thesis is to make end-users

autonomous in defining the rules that they need through the use of a visual metaphor,

the last subsection of the chapter will go through the description of a set of purely visual

programming languages.

5.1. The Tailorability of the Electronic Patient Records

Within the healthcare domain the need to make the definition of the user interfaces

of an EPR more flexible, typically more or less structured forms, so that these can be

tailored in order to better meet the local needs of each single group of clinicians has been

recognized long ago and confirmed in a number of recent field studies (e. g., see [Mamlin

et al., 2006; Morrison and Blackwell, 2009; Chen and Akay, 2011]). Nevertheless, despite

this recognition, the tailoring activities that are necessary to reach this goal still require

that IT professionals work together with clinicians in order to be able to perform the

due customizations in a timely and aptly manner: in other words, clinicians can not

autonomously tailor their EPRs.

Mamlin [Mamlin et al., 2006], for instance, proposed OpenMRS, an open-source,

modular solution to allow the implementation of EPRs that are flexible with respect

to the fact that they can be tailored to meet the specific needs of different healthcare

institutions. OpenMRS relies on a fixed patient-centric data model that is compliant with

the HL7 standard [Dolin et al., 2006, p. 7]. In this project, clinical records can be defined

using the template engine of the Velocity project1. Moreover, OpenMRS encompasses

both a decision support module employing the Arden syntax2 and a compliant rule

builder module. On the other hand, OpenMRS adopts a data-driven approach in order

to perform data entry operations: a form is a collection of data pointers; this allows for

the creation of flexible data entry forms, which do not require any programming activity

to be created.

In [Morrison and Blackwell, 2009] two commercially available EPRs that provide

clinicians with advanced customization features are described: i. e., Centricity Electronic

Medical Record3 and MetaVision4. The customizability of Centricity concerns the

possibility of clinicians to generate their unstructured textual reports by selecting the

contents that they need through menus and checkboxes. Moreover, Centricity allows

1 http://velocity.apache.org/ 2 http://www.hl7.org/special/Committees/arden/index.

cmf 3 http://www3.gehealthcare.com/ 4 http://www.idm-soft.com/

61

http://velocity.apache.org/
http://www.hl7.org/special/Committees/arden/index.cmf
http://www.hl7.org/special/Committees/arden/index.cmf
http://www3.gehealthcare.com/
http://www.idm-soft.com/

5. Related Works

clinicians to customize both terminology and boilerplate sections of their reports through

a “medical specification language”; yet this approach requires them to learn general

purpose programming skills. MetaVision allows for the definition of customized forms and

operations, by means of an ad-hoc scripting language. In this light, performing MetaVision

customizations requires that clinicians work in collaboration with IT professionals.

A more lightweight approach to EPRs customizability is proposed in [Chen and Akay,

2011]. The proposed approach is to adopt FileMaker5 to develop flexible EPRs for small-

and medium-size clinical settings. Such an approach leverages the FileMaker’s capability

of generating databases on the basis of the composition of intuitive form-like Graphical

User Interfaces (GUIs) through simple drag’n’drop interactions. In this project, EPRs

can be dynamically updated to meet the constantly evolving needs of clinicians with

little effort as modifications performed at interface level are seamlessly reflected in the

underlying data structures. Moreover, the authors corroborate their idea by arguing that

FileMaker has already been extensively adopted in a number of Japanese hospitals to

develop flexible frontends for their institutional EPRs. Nevertheless, even if FileMaker

provides its users with a user-friendly graphical interface, deep customizations, like those

related to active behaviors to attach to the defined interfaces, still require the involvement

of IT professionals to be accomplished and deployed safely.

5.2. A Review of State of the Art of Visual Editors

The idea to switch from complex, text-based editing interfaces to the ones that follow a

What You See Is What You Get (WYSIWYG) approach dates back to the last quarter

of the past century (e. g., see [Lampson, 1978]). Given the benefits that this approach

leads to end-users in the use of their software systems, in less than a decade, researcher

started to conceive a similar idea to make easier tools to write software source code,

i. e., switching from text-based programming languages to new ones that adopt a visual

approach (e. g., see Chang [1987]; Pau and Olason [1991]). Even if WYSIWYG solutions

was born with the aim to display digital documents (e. g., letters and articles that usually

users typeset using word processors) as they would have been at printing time, during

the years visual editing solutions have been progressively applied to an increasingly wider

and heterogeneous set of applicative domains, including rule programming.

5 http://www.filemaker.com/

62

http://www.filemaker.com/

5.2. A Review of State of the Art of Visual Editors

5.2.1. Document Editors

In recent years, visual document editing solutions gained a constantly increasing attention

by both commercial software producers and IT researchers. This interest has led to the

proliferation of heterogeneous solutions, ranging from general-purpose solutions to the

most strictly domain-related ones (a concise, cursory comparison can be seen in Table 5.1).

Walking through the commercial solutions landscape, it is possible to see how the

set of tools that allow to edit documents in a visual manner has grown over time, and

how user-friendliness and richness of features of these tools have reached an impressive

level, establishing the standard de facto for this kind of tools. Even performing a cursory

analysis, it is possible to identify some features that characterize the approaches adopted

by these software solutions: (i) the adoption of a strong paper-based document metaphor

rather than organizing documents using“simple” forms, (ii) the use of desktop technologies

and standards rather than those belonging to the world wide web (even if technology

and market evolution are making this separation increasingly blurred), and (iii) the need

to interact with external data services rather than to be self-contained entities.

Adobe Systems Inc. provides a set of distinct commercial products, for different usage

areas, which allow end-users to create and edit their form-based documents. Acrobat

is the professional, market reference solution that allows desktop users to fully manage

PDF forms6. Users can create their forms directly inside the digital representation of

a paper-based document (see Figure 5.1a) simply picking the desired form field control

and dragging it to the preferred position. Entered data can be either sent to an external

data service or stored directly inside the PDF file. On the other hand, LiveCycle is

the Adobe enterprise business oriented platform that includes LiveCycle Designer7 a

tool that allows users, through a WYSIWYG environment (see Figure 5.1b), to create

and modify their own form document templates8, which can be converted at runtime in

a variety of formats (e. g. PDF forms, HTML forms or Flash applications). LiveCycle

Designer allows to define reusable form fragments9, with the aim to avoid the need

to create every form from scratch. This LiveCycle Designer feature is quite similar

to the component-based approach adopted to define WOAD document templates (see

Section 3.2). Finally, the pair Dreamweaver10 and ColdFusion11 allows users to build their

6 According to their standard revision, PDFs can handle two mutually incompatible forms format:
AcroForms (the original PDF form standard introduced in the 1.2 format revision) and XFA (since PDF

1.5 format revision; http://partners.adobe.com/public/developer/xml/index_arch.html). 7 http:

//www.adobe.com/products/livecycle/designer/. 8 http://www.adobe.com/products/livecycle/

forms/ 9 http://www.adobe.com/products/livecycle/designer/capabilities/ 10 http:

//www.adobe.com/products/dreamweaver.html 11 http://www.adobe.com/products/coldfusion/

63

http://partners.adobe.com/public/developer/xml/index_arch.html
http://www.adobe.com/products/livecycle/designer/
http://www.adobe.com/products/livecycle/designer/
http://www.adobe.com/products/livecycle/forms/
http://www.adobe.com/products/livecycle/forms/
http://www.adobe.com/products/livecycle/designer/capabilities/
http://www.adobe.com/products/dreamweaver.html
http://www.adobe.com/products/dreamweaver.html
http://www.adobe.com/products/coldfusion/

5. Related Works

interactive web pages, containing the needed forms (either in HTML or PDF format),

using a graphic environment and without the need to code anything, but this goal is

mainly achieved through the massive use of option dialog boxes.

OpenOffice.org12, and consequently the family of office automation tools which rely

on the Open Document Format (ODF)13, provide end-users with the support for the

XForms technology14. Users can easily and quickly create and edit their document-

centric form-based applications, just putting form elements directly inside word processor

documents, picking them up from a palette and positioning them through drag’n’drop

actions. Document created in this way can be filled in with data using the word processor

application, but the data that users enter in the form fields has to be stored into an

external data structure (e. g., into a XML document or sending it to a remote data storage

service). Similarly, IBM Lotus Symphony Documents15 provides support for paper-like

documents coupled with XForms fields, but in addition it provides an easy way to use

the IBM Lotus Forms technology as storage and data manager backend.

Microsoft Sharepoint Designer16 (also known as Microsoft Office SharePoint Designer)

provides users with a WYSIWYG environment that allows them to build and maintain

their SharePoint web pages, including those that contain SharePoint-related forms.

SharePoint Designer is part of the Microsoft SharePoint infrastructure and actually

provides a way to build end-user front-ends for those kind of web applications. During

editing activities, SharePoint Designer inserts Extensible Stylesheet Language (XSL)17

code directly within the HTML code, without requiring users to learn it.

FileMaker Pro18 is a user-friendly, easy to use relational database application with a

database engine that is strictly integrated with its GUI. This allows end-users to create

and modify their database schemas just designing the related forms (e. g., screen, layouts

and reports), which are subsequently used to access and display data. The design phase

consists in dragging elements that the user desires into forms, and in so doing the database

engine will automatically handle them in the right way.

Finally, SAP NetWeaver Visual Composer19 is a web-based visual modelling tool, which

12 http://www.openoffice.org/
13 http://www.odfalliance.org/
14 See http://www.w3.org/TR/xforms11/ and http://opendocument.xml.org/node/192
15 IBM Lotus Symphony (http://symphony.lotus.com/) is an office automation suite distributed by
IBM’s Lotus Software division that supports Open Document Format (ODF) an integrates some pieces of
OpenOffice.org source code.
16 http://sharepoint.microsoft.com/en-us/product/related-technologies/pages/sharepoint-

designer.aspx 17 http://www.w3.org/Style/XSL/ 18 http://www.filemaker.com/ 19 SAP AG
(http://www.sap.com/).

64

http://www.openoffice.org/
http://www.odfalliance.org/
http://www.w3.org/TR/xforms11/
http://opendocument.xml.org/node/192
http://symphony.lotus.com/
http://sharepoint.microsoft.com/en-us/product/related-technologies/pages/sharepoint-designer.aspx
http://sharepoint.microsoft.com/en-us/product/related-technologies/pages/sharepoint-designer.aspx
http://www.w3.org/Style/XSL/
http://www.filemaker.com/
http://www.sap.com/

5.2. A Review of State of the Art of Visual Editors

(a) The Acrobat form designer (b) The LiveCycle Designer

Figure 5.1.: Adobe form design solutions

(a) Designing form view layout (b) The designed form view at runtime

Figure 5.2.: The SAP NetWeaver Visual Composer Layout Board user interface

is oriented towards business processes. This visual modeler enables users to quickly build

their own business application (reusable) components, without the need to code anything

and in a graphical manner (see Figure 5.2). Users can select the views to be used to

display data requests and results (e. g., forms, tables or charts), and connect them with

the required data sources, just drawing connection links.

Enlarging the view to look towards the scientific research landscape, it is possible to

identify a set of relevant contributions related to the visual composition of document

templates (which often are conceived as user interfaces [Boyer, 2008]).

Visual TDL Document Editor (VTDE) [Yamazaki et al., 2000] is a document editor

that is oriented towards the healthcare domain and its aim is to create and edit Electronic

Patient Record (EPR) templates. In particular, VTDE manages only a specific eXtensible

65

5. Related Works

Markup Language (XML) dialect, i. e., the Template Definition Language (TDL)20, which

has been conceived and developed to reach the goal of promoting EPR templates sharing

among clinicians and institutions. The VTDE user interface is composed of two distinct

windows: a text editor and a graphic preview. Users can define their EPR templates by

entering TDL constructs, i. e., tags, in the text editor window and, at the same time, they

can immediately see the results of their editing operations, which are directly rendered

within the graphic preview window. Despite the presence of the ‘visual’ word in its name,

VTDE is not really a visual editing solution, and this is due to the fact that the only

graphical help that it provides to users comes from the preview window: the editing

operations still imply that users should define document templates directly typing the

TDL code. Moreover, authors report that VTDE completely lacks in supporting users in

the definition of any kind of rule to dynamically change templates. The only way they

propose to achieve this goal is to describe rules using TDL code comments: starting from

these comments, other users or software developers could implement the described rules.

Finally, even if it has been conceived with sharing purposes, with respect to WOAD

documents (see Section 3.2), VTDE seems to not support any kind of content sharing

among documents.

AgentFlow System [Chen and Wang, 2001], which is the basis of the commercial Internet

workflow environment provided by the FlowRing company21, provides users with its

FormDesigner (see Figure 5.3), which is a graphic development tool that allows to build

and modify the application forms. Users, even without programming skills, can edit their

forms simply using drag’n’drop to position the desired basic UI components. Moreover,

users with some programming skills may autonomously build and plug into the system

their own components. In order to do this, FormDesigner provides at least two different

methods. The former is based on the idea that users may build components using some

user-specified properties with the aim to represent a complex application logic. The

latter requires the user to describe the application logic using an intermediate scripting

language, simply implementing some programming interfaces and using system objects

and functions (e. g., Agenda and Form objects). If the scripting language is still considered

an unsatisfying way to reach the desired goals, users can also implement their own native

code22. The main difference with respect to WOAD relies on the work environment to

which these two solutions are addressed. While WOAD is a framework conceived to

develop flexible document-based and collaborative applications, FormDesigner is part of

20 The Template Definition Language is used to define both EPR templates content and structure. A

TDL description is presented and discussed in [Yamazaki and Satomura, 2000]. 21 http:

//flowring.com/ 22 The integration with user-defined native code relies on the Java Native
Interface (JNI) technology.

66

http://flowring.com/
http://flowring.com/

5.2. A Review of State of the Art of Visual Editors

Figure 5.3.: The FormDesigner of AgentFlow System (from [Chen and Wang, 2001])

a WYSIWYG environment that aims to support business application development, and

this makes it to all intents and purposes a tool only for developers. Moreover, even if

FormDesigner allows to extend its set of components using its visual environment, it does

not completely avoid the need for using a traditional programming language in order to

define complex application logic.

Despite a lot of WYSIWYG tools populate the landscape of web design, most of them

provide users with some graphical helps with the only aim to create static web pages

(i. e., documents). WebSheets [Wolber et al., 2002] is a solution to allow end-users (e. g.,

web designers) to create dynamic web pages with the capability to access and modify

an underlying database, without imposing the need to enter any kind of programming

statements. WebSheets provides a standard WYSIWYG HTML editing environment

coupled with a specific Programming by Example (PBE) technique, which is called Query

by Example (QBE): users can enter either some sample tabular data (see Figure 5.4),

telling the system to automatically create and map the related database table, or some

expressions directly into table cells, setting up a set of conditions to filter or delete some

table rows. Moreover, WebSheets allows end-users to insert spreadsheet formulas directly

inside the editing environment, in order to perform computations on data. WebSheets

allows users to define, through database standard operation and spreadsheet formulas,

some interactive behaviors that are triggered by events and depend on document data,

67

5. Related Works

Figure 5.4.: WebSheets Development of a BookStore (from [Wolber et al., 2002])

which can be both entered directly in the page or collected from other pages. To directly

enter data through the page, users have just to specify in a specific table row what are

the names of input boxes, which at runtime are rendered in the related table. Similarly

to what happens in WOAD document templates, WebSheets automatically creates and

maps the underlying data structure. On the other hand, WebSheets is constrained to

use a database and consequently it is limited in handling data using only a tabular

organization. Moreover, like in WOAD, WebSheets allows for data sharing between

different pages, although with a very limited granularity degree: it is possible to refer to

external pieces of data from the other pages inside the development environment just

qualifying the field name with the page name (e. g., page_name.field_name).

Mobile Form-Editor [Chande and Koivisto, 2006] is a WYSIWYG solution that allows

end-users to easily create their Mobile Forms. This kind of forms is conceived to be

conveyed to users through mobile devices (i. e., mobile phones), and consequently the

Mobile Form-Editor environment has been conceived to be executed on this particular

kind of devices. Mobile Form-Editor is a simple graphic wizard with the aim to assist

end-users in doing three different, but strictly connected, operations: (i) to define the set

of form fields (i. e., field names and types) that the user has to fill in (see Figure 5.5a),

(ii) to specify form field attributes (e. g., label and position) and form look-and-feel (see

Figure 5.5b), and (iii) to define how to present responses to users once data has been

received. Due to the particular kind of device to which Mobile Forms are targeted, Mobile

Form-Editor turns out to be radically different with respect to any WOAD framework

feature.

68

5.2. A Review of State of the Art of Visual Editors

(a) Data type definition for From Fields (b) Form user interface design

Figure 5.5.: The Mobile Form-Editor wizard (from [Chande and Koivisto, 2006])

Oryx Editor [Decker et al., 2008a] is an web-based visual design environment that

has been initially conceived to model business process. Oryx Editor is an open source

solution with a plug-in architecture, which makes easier to augment its visual design

capabilities (e. g., to include the support for the UML and XForms). Focusing on the

design of XForms documents, the editor allows end-users to drag XForms component

from a palette and place them inside a drawing area, which mimics the final aspect of

the form. Moreover, with the same interaction mode, users can add to these components

the desired XForms interactive features (e. g., alert messages and actions). On the other

hand, users can define the underlying XML data structure, but this operation needs

to be done through a property panel, which allows users to type the related XPath23

syntax into a simple textual input field. Moreover, Oryx Editor encompasses only the

visual editing support for XForms, leaving the task to use them through the software

solution that users prefer. In order to do this, once users complete the design of their

forms, they have to export their models, translating them from the Oryx Editor internal

representation to the XForms standardized syntax (see Section 7.1.1 for further details).

Data-Interactive DOcument (Dido) Karger et al. [2009] has been conceived to be a

self-contained single web page application, which also embeds an application development

environment. Dido is an active document (see Section 3.1) and allows end-users to

23 http://www.w3.org/TR/xpath/

69

http://www.w3.org/TR/xpath/

5. Related Works

author (not program) applications that meet their specific information management

needs. Dido’s target are CRUD (i. e., Create, Read/visualize, Update, and Delete)

applications24. Moreover, Dido implements an in-document data store system that makes

unnecessary the use of storage servers, like database servers. In this light, Dido is aimed

at focusing end-users on editing (not coding) operations and, in order to reach this goal, it

encompasses (i) a data editor, which allows users to define their own rich and structured

data items, (ii) an interactive tool to visualize (see Figure 5.6a) and edit data, directly

within the page, and (iii) a “metaeditor” that allows users to modify the visualizer/editor

(see Figure 5.6b) in a WYSIWYG manner. Dido uses three different structures to build

the page: (a) the lens25, which is a template that is used to define how a data item has

to be rendered (i. e., a HTML fragment that specifies arrangement and appearance of

“data slots” to be filled with contents), (b) the facet, namely a widget with the aim to

filter data items according to the value of some specific property, and (c) the view that

shows (filtered) data in some way according to both lens and facet. When users load a

Dido page, the page is presented in visualization mode, and users can enter data just

clicking the “Edit Data” or the “New Item” buttons, in order to modify existing data

or create new data items respectively. Using the “Display Editor” button users switch

Dido to the meta-editing mode, which invokes a WYSIWYG editor (i. e., an extended

version of the TinyMCE26 editor) on the entire web page, and they can customize the

page by adding static contents, formatting some page portions, specifying the layout

and configuring views and facets (e. g., using the appropriate configuration dialog box

the view can be switched from a list to a timeline). Finally, “Lens Editor” allows users

to customize lens, using the above mentioned WYSIWYG editor to shape them. As

mentioned, similarly to WOAD, Dido is based on the concept of active document. In

both approaches, documents can be augmented with active behaviors by end-users using

a WYSIWYG environment and are triggered by data changes and users’ interactions.

On the other hand, unlike WOAD, Dido documents seem to be not able to share any

piece of data among each others.

5.2.2. Rule Editors

In recent years rule-based system earned increasing popularity in business applications,

and consequently the number of visual rule editors is increasing. Nevertheless, unlike what

24 The CRUD approach is the basis of most Content Management Systems (CMS), e. g., Drupal, Microsoft

Sharepoint, and Semantic Mediawiki. 25 Lens-based architecture is the direct consequence of using the

Exhibit framework [Huynh et al., 2007]. 26 http://tinymce.moxiecode.com/

70

http://tinymce.moxiecode.com/

5.2. A Review of State of the Art of Visual Editors

(a) Visualizing data in Dido (b) Editing the Visualization to add a timeline

Figure 5.6.: The Dido UI (from Karger et al. [2009])

happens in the WOAD framework, usually these rule-based systems are not associated

to the user interfaces through which users fill in and inquire data (i. e., documents);

rather, these visual editors are aimed at supporting users in the definition of traditional

business rules for their applications. Similarly to what regards document visual editors,

undertaking a cursory analysis of the commercial landscape, it is possible to identify

those software solutions that established the standard de facto for editing rules in a visual

manner. On the other hand, both commercial and scientific research landscapes include

visual rule editors that ranges from the more general-purpose to the more domain-related

ones (a concise, cursory comparison can be seen in Table 5.2).

SAP NetWeaver Business Rules Management27 encompasses the Rules Composer.

Rules Composer is part of SAP NetWeaver Developer Studio, which is an Eclipse-based

visual editing environment (see Figure 5.7), and allows users to build and maintain rules

through a rich set of user-friendly rule representation formats (e. g., decision tables).

JBoss provides a visual rule editor bundled in the Drools Guvnor28 suite, which is a

centralized, web-based repository for Drools knowledge bases. The provided rule editor

allows users to define their own Drools rules, through an user interface that is pretty like

to a wizard: users can enqueue rule conditions and actions simply acting on a button

(see the plus green icon in Figure 5.8).

Bosch proposes the Visual Rules Suite29 that encompasses two different rule editors.

The former is called Visual Rules Modeler and is an Eclipse-based solution that allows

users to pick up rule components from a palette and drop them into the rule flow (see

27 SAP AG (http://www.sap.com/). 28 http://www.jboss.org/drools/drools-guvnor.html 29 http:

//www.visual-rules.com/business-rules-management-software-rules-engine.html

71

http://www.sap.com/
http://www.jboss.org/drools/drools-guvnor.html
http://www.visual-rules.com/business-rules-management-software-rules-engine.html
http://www.visual-rules.com/business-rules-management-software-rules-engine.html

5. Related Works

Type Aged a Features

C
o
m

m
e
r
c
ia
l

O
p
e
n

S
o
u
r
c
e

R
e
se

a
r
c
h

S
td

.
T
e
c
h
n
o
lo
g
ie
s

b

D
r
a
g
’n

’D
r
o
p

P
a
p
e
r
M

e
ta

p
h
o
r

A
u
to

m
.
M

a
p
p
in

g
c

F
o
r
m
u
la
s

F
r
a
g
m

e
n
ts

d

Adobe Acrobat x - - n/a x x x - - -

Adobe LiveCycle x - - n/a x x x - - x

Adobe Dreamweaver (with ColdFusion) x - - n/a x x - - - -

AgentFlow FormDesigner [Chen and Wang, 2001] x e - x x x x - - - -

Data-Interactive DOcument Karger et al. [2009] - x x - x - - x - -

FileMaker Pro x - - n/a - x - x - -

IBM Lotus Symphony Documents - f - - n/a x x x - - -

Microsoft SharePoint Designer - - - n/a x x - - - -

Mobile Form-Editor [Chande and Koivisto, 2006] - - x - x - - - - -

OpenOffice.org - x - n/a x x x - - -

Oryx Editor [Decker et al., 2008a] - x x - x x - - - -

SAP NetWeaver Visual Composer x - - n/a - x - - - -

Visual TDL Document Editor [Yamazaki et al., 2000] - - x x - - - x - -

WebSheets [Wolber et al., 2002] - - x x x - - x x -

a Research project older than five years. b Based either on open or proprietary standardized technology.
c Underlying data structures are automatically mapped with the related visual component.
d Reusable components that can be shared between different documents.
e AgentFlow FormDesigner is the basis of a commercial software produced by FlowRing. f Freeware license.

Table 5.1.: Summary of the analyzed documents visual editing solutions

Figure 5.9). The latter is the web-based counterpart of the desktop editor and is called

Visual Rules WebModeler. Despite the adoption of a visual user interface, all these rule

editing solutions are still strongly tied to be used by IT professionals (i. e., software

analysts or developers).

The Oryx Knowledge Base Editor30 has been conceived and developed within Mandarax

Project31. It encompasses a visual rule editor (see Figure 5.10), which allows end-users

to define their own set of derivation rules. In this project, rules are composed of a

set of prerequisites (i. e., conditions) and a conclusion (e. g., either logic expressions or

actions), which is a rule structure similar to how WOAD mechanisms are structured.

30 Oryx Knowledge Base Editor is not part of the same project in which the Oryx Editor (see Section
5.2.1) has been developed: this is only a case of homonymy. See http://oryx.sourceforge.net/
31 Mandarax is a project with the aim to integrate derivation rules into Java (see http://mandarax.

sourceforge.net/).

72

http://oryx.sourceforge.net/
http://mandarax.sourceforge.net/
http://mandarax.sourceforge.net/

5.2. A Review of State of the Art of Visual Editors

Figure 5.7.: SAP NetWeaver BRM Rules Composer

End-users add rules to the knowledge base using a simple wizard that allows them to

specify both prerequisites and conclusions in the same window. Rules can contain both

simple logic predicates, complex functions and expression in a formal natural language,

which end-users can define according to the needs related to their specific application

domain.

Finally, a very niche solution have been conceived at the N.A.S.A. Work Systems Design

& Evaluation Group of the Intelligent Systems Division, which developed the OCAMS

Rule Editor32 on the basis of OCA officers work practices. OCAMS Rule Editor has been

conceived as an engineering system with the aim to be easily adapted to the changing

requirements while minimizing maintenance costs. OCAMS Rule Editor allows Orbital

Communications Adapter Monitoring System (OCAMS) officers to manage decision-

making rules that specify which files (e. g., schedules, procedures, commands, e-mail,

photographs and news) to mirror and archive: officers can easily view deployed rules,

seeing which rule is related to a specific mirroring or archiving decision, and manage rules

as requirements change. In compliance to one of the basic EUD tenets, this tool is aimed

at supporting OCAMS officers to adapt the system without requiring any intervention

by the OCAMS developers to change source code.

Like in the case of the visual editors of documents, the scientific research landscape, as

well as the commercial one, is populated by a set of relevant contributions concerning

32 http://ti.arc.nasa.gov/news/ocams-rule-editor/

73

http://ti.arc.nasa.gov/news/ocams-rule-editor/

5. Related Works

Figure 5.8.: JBoss Drools Guvnor visual rule editor

the visual composition of rules.

Andersen Consulting33 developed Eagle [Davidowitz, 1996], which is a set of integrated

tools, architectures and reusable components with the aim to allow end-users to externalize

business object behaviors. This goal is achieved through the definition of rules that rely

on the Smalltalk language. End-users are supported in creating their rules through a

“point-and-click” user interface, which allows them to visually check the correctness of

their rules by building and displaying the related abstract syntax tree. On the other

hand, similarly to what happens in Visual TDL Document Editor (see Section 5.2.1),

end-users have to type the rule executable code into a textual editor, like in any traditional

development environment, using the traditional Smalltalk language constructs.

Restricting the point of view to the healthcare domain, [Chen et al., 2002] describes

a rule-based real-time alerting system, which has been tailored to meet the needs of

an Intensive Care Unit (ICU). This alerting system has been designed to rely on the

database of a clinical information system and to convey notices to clinicians through

mobile phones or pagers. The conditions of rules involve some physiological parameters

and must comply with a simple, intuitive, and easy to use grammar. This grammar allows

clinicians, i. e., system end-users, to define two kinds of conditions that are called basic

rules, i. e., some simple logic expressions, and advanced rules, i. e., time bounds, parameter

33 http://www.ac.com/

74

http://www.ac.com/

5.2. A Review of State of the Art of Visual Editors

Figure 5.9.: Bosch Visual Rule Modeler

changes, or any valid combination of any kind of rule. Rules can be defined using the

graphic editor, which lists physiological parameters and provides a set of buttons that

specify the allowed conditional constructs (see Figure 5.11). On the other hand, the text

message to be conveyed can be only entered through an input dialog box, which requires

to specify the clinician who will be alerted, a priority value and, obviously, the text of

the alert message. Similarly to Eagle Rule Editor, the alerting rules editor displays to

users the code of rule conditions in its textual representation. The user interface does

not provide any kind of drag’n’drop interaction; thus, users interact with the editor in a

way that is more similar to a wizard.

MARBLS [Krebs et al., 2012], i. e., Medical Alert Rule BuiLding System, is an end-user

programming environment that allow to design and test clinical alert rules in a visual

manner. MARBLS user interface encompasses two relevant components (see Figure 5.12),

i. e., the rule workspace and the query explorer. MARBLS allows end-users to define

rules in two ways: by (i) composing visual blocks in the rule workspace; and by (ii) acting

directly on the charts in the query explorer (to update rules in the rule workspace).

The MARBLS visual language relies on the MIT OpenBlocks library [Roque, 2007] that

will be described in the Section 7.2, since it has been adopted to develop the WOAD

Mechanism Editor.

75

5. Related Works

Figure 5.10.: The Oryx Knowledge Base Editor

The DRREd Rule Editor [Bassiliades et al., 2005] is a Java-based RuleML34 visual

editor, which is part of a visual development environment that allows end-users to define

defeasible logic35 rule bases over ontologies. The goal of this editing solution is to provide

end-users with a tool that enhances user-friendliness and efficiency in the development

of this kind of rules. Being RuleML a XML dialect, the DRREd Rule Editor has been

conceived to follow the hierarchical structure of this kind of meta-languages: the left area

of the user interface displays the entire rule organized in a tree, while in the right area users

can manage the attributes related to the selected node in the left tree. Moreover, users

can add new rule elements interacting directly with the tree representation in the left area,

according to the constraints imposed by either the Document Type Definition (DTD) or

the XML Schema Definition (XSD)36 that defines the RuleML grammar. Visual editing

is achieved only through the use of menus and dialog boxes, which allow end-users to

interact with the XML syntax tree; the editor does not support any kind of drag’n’drop

interaction.

34 http://ruleml.org/
35 For more details about defeasible logic, see [Nute, 1994; Antoniou et al., 2001] and http://defeasible.

org/.
36 During the project evolution, RuleML migrates from DTD to XSD for a better specification of language

properties.

76

http://ruleml.org/
http://defeasible.org/
http://defeasible.org/

5.2. A Review of State of the Art of Visual Editors

Figure 5.11.: The Real-Time Clinical Alerting System rules visual editor (from [Chen
et al., 2002])

In [Li et al., 2010], authors present a visual editor that allows to create rules with

the aim of optimizing airplane load plannings. The system allows users to define rule

conditions expressing them using the formalized Object Constraint Language (OCL),

which is a standard object relationship description language. The editor uses graphic

elements (e. g., condition, action and flow) to build rules. Users have just to pick up

those elements from a palette and dropping them into the model, and they compose the

rule flow creating connections between the elements that have been previously placed in

the model. This rule editor adopts a different approach to define rules. While most part

of rule editors keep conditions separated from actions, grouping them into two distinct

and homogeneous sets, this editor allows users to build rules as a flow, which contains an

intertwined set of both conditions and actions.

77

5. Related Works

Figure 5.12.: The MARBLS visual rule editor (from [Krebs et al., 2012])

5.2.3. Visual Languages

To the increase of adoption of visual editing (e. g., see the two previous sections) solu-

tions corresponds a similar increase in the proliferation and widespread use of visual

programming languages. Even performing a cursory analysis, it is possible to see how

this kind of languages can be adopted in a wide set of heterogeneous domains, ranging

from general-purpose software development (e. g., Fabrik [Ingalls et al., 1988] and its

“successor”, i. e., Lively Fabrik) to multimedia compositions (e. g., the case of vvvv37 and

Buzz Machines38) and embedded software (e. g., Figure 5.15 shows a Minibloq39, a visual

language to visually generate Arduino40 sketches). Nevertheless, most visual languages

have been conceived and developed by researchers and companies in the educational field

(e. g., see [Maloney et al., 2010; Repenning et al., 2011; Stolee and Fristoe, 2011]).

AgentSheets [Repenning et al., 2011] is an educational visual language with the aim

to teach young students IT concepts and skills, in particular computer programming,

allowing them to create their own web-based games. Basically, AgentSheets provides

a drag’n’drop programming interface that allows users to fill in a computational grid,

which looks like a spreadsheet, with numbers and strings, but also with programmable

agents. Those agents are represented through iconic pictures, and they can be customized

37 http://vvvv.org/ 38 http://www.buzzmachines.com/ 39 http:

//blog.minibloq.org/ 40 http://www.arduino.cc/

78

http://vvvv.org/
http://www.buzzmachines.com/
http://blog.minibloq.org/
http://blog.minibloq.org/

5.2. A Review of State of the Art of Visual Editors

Figure 5.13.: The DDREd Rule Editor (from [Bassiliades et al., 2005])

through a block-based visual language, e. g., to react to mouse and keyboard interactions,

to play an animation or to produce sounds.

Another relevant visual language in the education field is Scratch [Maloney et al., 2010].

Scratch is an open-source solution that is born at the MIT Media Lab with the aim to

allow kids, but in general any kind of user, to learn computer programming by creating

their own simple games or interactive (and animated) stories. Scratch is based on the

Squeak41 programming language and maps its formal constructs (e. g., conditional or loop

constructs) with a set of graphic building block, which the user can arbitrarily compose

to define the game or the story application logic. Microsoft Kodu [Stolee and Fristoe,

2011] represents a third example of visual language that is aimed at helping its users (i. e.,

kids) to learn computer programming concepts and skills. Kodu allows its users to create

their own Microsoft Xbox video games. Through the Kodu developing environment, users

can define both the game world and the game characters. More in deep, Kodu is an

interpreted, rule-based language in which rules are simple “when-do” constructs. Rules

can be grouped by pages. Pages are constructs that can be evaluated atomically, and

they represent the “place” where users define the application logic that controls their

video game characters.

In recent times, due to the diffusion of increasingly powerful smart mobile devices,

end-users felt the need to autonomously develop their own mobile applications. This need

41 Squeak is a Smalltalk implementation (http://www.squeak.org/).

79

http://www.squeak.org/

5. Related Works

Figure 5.14.: The Airline Load Planning System rules visual editor (from [Li et al., 2010])

has aroused the interest of researchers for the adoption of visual languages with the aim of

developing mobile applications directly through such kind of devices. Danado e Paternò,

for instance, proposed Puzzle [Danado and Paternò, 2012], which is a visual language that

relies on the “jigsaw” metaphor, i. e., the language constructs are represented through

composable “jigsaw pieces”. Puzzle allows the users to autonomously create their own

applications directly on their mobile devices.

Enlarging the view to the general-purpose languages, it is possible to see how visual

languages had been adopted in a heterogeneous set of application domains. Yahoo Pipes42,

for instance, is a free of charge web-based solution that is aimed at empowering end-users

in creating their own views of some raw data (mashups), using a metaphor that is inspired

by UNIX pipes. On the other hand, LabVIEW 43 is a proprietary, commercial graphic

development and execution environment for the language that is called “G”, which can

be used to create applications, for instance, in the fields of industrial automation and

data acquisition.

SourceBinder [Conradi et al., 2010] is an example of general-purpose visual language

that empowers end-users to develop their own Adobe Flash applications. SourceBinder

is based on web standard technologies, and it maps most part of standard ActionScript

42 http://pipes.yahoo.com/pipes/ 43 http://www.ni.com/labview/

80

http://pipes.yahoo.com/pipes/
http://www.ni.com/labview/

5.2. A Review of State of the Art of Visual Editors

Type Aged a Features

C
o
m

m
e
r
c
ia
l

O
p
e
n

S
o
u
r
c
e

R
e
se

a
r
c
h

D
r
a
g
’n

’D
r
o
p

D
o
c
u
m

e
n
t-
r
e
la
te

d

N
e
e
d

C
o
d
in

g

Airline Load Planning System [Li et al., 2010] - - x - x - -

Bosch Visual Rules Modeler x n/a - n/a x - -

Bosch Visual Rules WebModeler x n/a - n/a x - -

DRREd [Bassiliades et al., 2005] - - x x n/a - -

Eagle Rule Editor [Davidowitz, 1996] - - x x - - x

JBoss Drools Guvnor - x - n/a - - -

MARBLS [Krebs et al., 2012] - - x - x - -

OCAMS Rule Editor - - - n/a - - n/a

Oryx Knowledge Base Editor - - - n/a - - -

Real-Time Clinical Alerting System [Chen et al., 2002] - - x x - - x

SAP NetWeaver Business Rules Management x - - n/a n/a - -

a Research project older than five years.

Table 5.2.: Summary of the analyzed rules visual editing solutions

classes with the concept of nodes. Nodes can be “wired” to define the control “flow” (see

Figure 5.17). Moreover, in order to support different levels of complexity, each node

can be managed accordingly: from the simple ability of being only composed with other

nodes to the possibility of being customized by editing the node source code.

On the other hand, Pure Data [Puckette, 1996] is an open source, visual programming

environment with the aim to support end-users in building multimedia applications,

focussing on the data-flow rather than on the textual code to reach the same goal. Pure

Data applications rely on three basic types of text entities: atoms, which are the basic

units of data (e. g., float number or symbols), objects, which are programming language

functions (i. e., both basic operators, like mathematical and logical functions, and both

general and specialized functions, e. g., the the Fast Fourier transform), and messages,

which are composed of atoms and can be used as parameter for objects (e. g., the classic

“Hello, world!” string). Users can visually connect entities, and in so doing they creates

the “patches”44 through which users defines the application logic.

Finally, Lively Fabrik [Lincke et al., 2009] is a web-based end-user environment, which

44 The concept of “patch” is a metaphor that comes from world of analog audio synthesizers, which

created sound effects according to how their pins were connected with patch cables.

81

5. Related Works

Figure 5.15.: A Minibloq “code” snippet, with the related C sketch

Figure 5.16.: A Scratch “code” snippet

extends the original Fabrik system through the integration with the Lively Kernel45,

in order to allow end-users to create their own web applications and mashups directly

within their preferred web browser. The integrated development environment provides

users with a general purpose visual programming language. Like most visual languages,

also Lively Fabrik adopts a graphic building blocks metaphor. Users can build their own

applications composing different language blocks, which at this abstraction level can be

seen as “black boxes”, in particular connecting the input and output pins that are exposed

by each block (see Figure 5.18). Moreover, similarly as what happens in AgentSheets

(described above), users can define or customize the application logic that is endowed in

blocks: the application logic of a block is defined through a scripting language, i. e., the

45 http://www.lively-kernel.org/lively/index.html

82

http://www.lively-kernel.org/lively/index.html

5.2. A Review of State of the Art of Visual Editors

Figure 5.17.: A SourceBinder visual language example

Figure 5.18.: A weather monitor built with Lively Fabrik

standard JavaScript (see the two blocks at the left and the right sides in Figure 5.18).

Summarizing (see Table 5.3), despite the applicative domain to which they are addressed,

it is possible to notice how visual languages adopt recurrent types of metaphor and

concepts. Most visual languages rely on the “building block” metaphor (e. g., Minibloq

and Scratch), others implement application logic using pipes and connectors (e. g., Yahoo

Pipes and Pure Data), and some of them combine these two approaches (e. g., Lively

Fabrik and SourceBinder). In some cases, like Microsoft Kodu, visual languages are

coupled with the notion of rule-based programming.

83

5. Related Works

Type Aged a Domain Features

C
o
m

m
e
r
c
ia
l

O
p
e
n

S
o
u
r
c
e

R
e
se

a
r
c
h

G
e
n
e
r
a
l-
p
u
r
p
o
se

E
d
u
c
a
ti
o
n

M
u
lt
im

e
d
ia

O
th

e
r

b

B
u
il
d
in

g
b
lo
c
k
s

C
o
n
n
e
c
to

r
s

R
u
le
-b

a
se

d

AgentSheets [Repenning et al., 2011] - - x n/a - x - - - - -

Buzz Machines - - - n/a - - x - x x -

Fabrik [Ingalls et al., 1988] - - x x x - - - x x -

LabVIEW x - - n/a - - - x - x -

Lively Fabrik [Lincke et al., 2009] - - x - x - - - x x -

Microsoft Kodu [Stolee and Fristoe,
2011]

- n/a x - - x - - - - x

Minibloq - - - n/a - - - x x - -

Pure Data [Puckette, 1996] - x x x - - x - x x -

Puzzle [Danado and Paternò, 2012] - - x - - - - x x - -

Scratch [Maloney et al., 2010] - x x n/a - x - - x - -

SourceBinder [Conradi et al., 2010] - x x n/a x - - - x x -

Yahoo Pipes - - - n/a - - - x x x -

vvvv - - - n/a - - x - x x -

a Research project older than five years. b E. g., embedded software, industrial automation and mashups.

Table 5.3.: Summary of the analyzed visual languages

84

6
The WOAD Visual Editors

Contents

6.1. The WOAD Template Editor 85

6.2. The WOAD Mechanism Editor 90

6.2.1. The WOAD Visual Language 90

6.2.2. The WOAD Mechanism Editor User Interface 92

Drawing upon the solutions to the open problems described in Chapter 4, two distinct,

but integrated prototypical visual editing solutions have been designed and developed: the

WOAD Template Editor and the WOAD Mechanism Editor respectively. This chapter

describes the user interface of the two visual editors and how users can perform their tasks

with them. On the other hand, implementation details will be described in Chapter 7.

6.1. The WOAD Template Editor

The WOAD Template Editor prototype was conceived to provide users with an editing

environment with a familiar user interface (see Section 4.1). Moreover, a key aspect

concerned the need to reduce any kind of user interaction that requires users to perform

operations in a non-visual manner, in order to reduce their efforts to learn how to use

the WOAD Template Editor.

The user interface of the WOAD Template Editor presents a three-column layout (see

Figure 6.1) [Cabitza et al., 2011b]. In particular, both left and right columns are

resizable panels, which can be minimized to leave more space for document templates

editing purposes. The left column (which is referred as A in Figure 6.1) contains the

85

6. The WOAD Visual Editors

Figure 6.1.: An overview of the WOAD Template Editor user interface

palette that lists all the available document components that users can use to build

their own document templates, grouping them into three homogeneous categories. Since

documents are not only composed of data fields, the first group in the palette (namely

“Support Elements”) contains a set of document components that allow users to enrich

their document templates with pieces of text and images (e. g., to create the heading

of a document or to add some descriptive texts). Below this first group of document

components, the palette contains the groups pertaining both to the existing Datoms and

(if any) the already created Didgets (i. e., the instances of Datoms that have already

been placed either in the document template that the user is currently editing or within

another one that the user has previously edited). The central area (B in Figure 6.1)

contains the WYSIWYG representation of a document (with the same proportions of a

standard A4 paper sheet) in which users can put and manage the Didgets and the other

document components they need to add to their document templates. Finally, the right

column (C in Figure 6.1) contains the list of properties that allow to simply customize

the value of some parameters (if any) pertaining to the selected element in the editing

area: for instance, assuming that the user added to the document template an image,

with the aim to add the hospital logo to the heading of the document, she can reach this

goal just specifying the value of the picture Uniform Resource Identifier (URI) in the

properties exposed by the image document component (see Figure 6.2).

When users want either to create or edit a document template, they simply have to

86

6.1. The WOAD Template Editor

Figure 6.2.: The Properties panel of the WOAD Template Editor (showing the image
component’s properties)

select the Datoms they needs from the palette in the left column (A in Figure 6.1), drag

them over the WYSIWYG representation of the document template in the central area

(B in Figure 6.1) and drop them at the desired position. Once a Datom has been dropped,

the related new Didget is created and added in the left palette (see Figure 6.3). As

described in Section 3.2, already existing Didgets can be reused within different document

templates. Using an already existing Didget in a document template requires users to

perform the same drag’n’drop operations they have to perform when they place a Datom.

However, in this case, when the existing Didget is dropped within the document template,

nothing new is added to the left palette.

For instance, clinicians of an hospital ward could need to define their own customized

document template of the Patient Data Sheet. Using the WOAD Template Editor, a

clinician can autonomously complete this task: using drag and drop, she picks up the

Patient Data, the Sex and the Address Datoms in the left palette and she drops them in

the empty document template, creating their respective Didgets. Similarly, the clinicians

can complete the document template by adding a simple piece of text, in order to create

a heading for the document (the final result can be seen in Figure 6.4).

In some cases, which are strictly dependent on the applicative domain (typically the

healthcare domain), users can have the need to share pieces of data among different

documents. Since Didgets can be reused and they have been conceived to meet the users’

need to share their content among different documents (see Section 3.2 and Section 4.1),

87

6. The WOAD Visual Editors

Figure 6.3.: The WOAD Template Editor’s palette, after the creation of some new
Didgets

the user interface of the WOAD Template Editor makes users able to specify the level of

data sharing of Didgets in a fully visual manner. When users drop a Datom and create

the related new Didget, by default the latter will hold only local data (see Table 4.1).

Subsequently, users can simply set the level of data sharing of a Didget through the first

four icons of the contextual menu that appears below the Didget (see the icons labelled

with numbers from 0 to 3 in Figure 6.5).

Moreover, users often need to manage data that, in their paper-based documents, is

organized in tabular form, and accordingly they have the need to create similar tables in

their document templates. Didgets meet this users’ need since they have been conceived

to be configured either as “single” or as “multiple” (as described in Section 3.2). The user

interface of the WOAD Template Editor allows users to set this Didgets’ feature in a

visual manner: using the last icon on the right side of the Didget’s contextual menu (see

Figure 6.5), users can select the “multiple” option. Once a Didget has been configured as

“multiple”, users must set the number of times that Didget’s fields will be displayed. This

operation can be simply performed through the list of properties in the right column:

users need just to specify the value of the Table Rows property.

88

6.1. The WOAD Template Editor

Figure 6.4.: The Patient Data Sheet document template

Figure 6.5.: A detailed view of the Didget’s contextual menu

Once the user completes all the editing operations she is performing, in order to make

the WOAD document template persistent, she just has to act on the Save button in the

WOAD Template Editor toolbar, which can be easily recognized by the familiar “floppy

disk” icon as in traditional word processors (see Figure 6.1). This simple operation has

the effect to store the document template within both the Repository (this function will

be described in Section 7.1.1), with the aim to make it available for further changes (also

by other users), and the WOAD Template Manager, making it available to the other

WOAD framework components (see Section 7.1.2). In this way, when users switch back to

the main user interface of their WOAD-compliant systems, they can immediately create

the documents as instances of the new document template and fill them in with data.

89

6. The WOAD Visual Editors

Figure 6.6.: Setting the number of repetitions for a “multiple” Didget

6.2. The WOAD Mechanism Editor

Similarly to the WOAD Template Editor prototype, even the WOAD Mechanism Editor

prototype was conceived to be as simple as possible. In this case, the choice to create the

WOAD mechanisms through a visual language (see Section 4.2) had a strong influence

on how the need of intuitiveness and usability has been addressed: (i) the visual language

should contain the constructs users need to compose their own WOAD mechanisms, and

(ii) the editor’s user interface should be conceived to reduce the interactions performed

in a non-visual manner (i. e., typing some textual data).

For this reason, this section will first go through the description of the WOAD Visual

Language and, subsequently, of the user interface of the WOAD Mechanism Editor.

6.2.1. The WOAD Visual Language

The WOAD Visual Language is based on the“building block”metaphor (see Section 5.2.3).

According to this metaphor, the language constructs are represented through a set of

composable blocks. In particular, the WOAD Visual Language relies on the visual

language defined within the MIT OpenBlocks framework [Roque, 2007] (further details

about the choice of this particular visual language will be provided in Section 7.2).

The WOAD Visual Language encompasses a set of simple constructs, which have

been defined according to the findings of previous field studies in the healthcare domain

Cabitza et al. [2009a]; Cabitza and Simone [2012] and validated as it will be described

in Chapter 8. These constructs allow users to define mechanisms that reach a discrete

level of complexity: the complete list of language constructs is reported in Table 6.1.

The mechanism construct provides users with the visual representation of a WOAD

90

6.2. The WOAD Mechanism Editor

mechanism, with the distinction between when- and then-part (see Figure 6.7). In order

to define their WOAD mechanisms, users need to make reference to the Didgets’ data

fields both within mechanisms’ conditions and actions. To this aim, the visual language

provides a dynamically populated set of data field constructs, which represent Didgets

that have already been created within the WOAD Template Editor. These constructs are

labelled following the template_id.didget_id.field_id notation. Furthermore, users

often need to specify some constant value (e. g., a positive number, a string of characters

or a boolean value). To this aim, the visual language encompasses a set of four constructs:

while two of them represent the boolean values (i. e., true and false), the other two

constructs allow users to specify the textual or the numeric values they need. This is

the only type of construct that requires users to insert textual values. Similarly, also the

value of Didgets’ data fields can be numeric, boolean or textual. For this reason, the

shape of both constant value blocks and Didgets’ data fields blocks changes according to

the data type of their values (e. g., numeric blocks have a triangular shape on their left

side). Consequently, also the other language constructs (e. g., comparators) are defined

to be connected with blocks representing different types of data.

In the mechanism’s when-part, users can define the set of conditions picking the language

constructs they need within a predefined range of choices: comparators, arithmetical

operators and aggregators. The first two are very simple and intuitive, while aggregators

deserve some more attention. In some cases, users may need to define conditions on

sets of values: for instance, a clinician may need to define a condition that checks

if a particular allergy is reported in the list of patient’s allergies. Another example

may involve the need to check if a patient has more than a certain number of allergies

(e. g., more than three allergies). Through aggregators, users can define this kind of

complex conditions. Aggregators encompass two constructs that are similar to some

spreadsheets’ functions (i. e., count and avg) and the inclusion operator (i. e., in), which

allow users to define conditions over sets of fields1. In the WOAD Visual Language, a

basic assumption is that all conditions in the mechanism’s when-part are evaluated as

in strictly logical conjunction (i. e., in AND); if users need to define a disjunctive set of

conditions (i. e., OR), they simply must define distinct mechanisms, each one containing

the portions of conditions to be evaluated. For instance, if a clinician wants to check that

an inpatient is in a critical situation of hypothermia or high fever, the related condition

is “body temperature < 35 OR body temperature > 40”. In this case, the clinician

must define a mechanism to check if “body temperature < 35” (i. e., hypothermia)

1 The sets of fields are defined using the * wildcard character and are referenced through the tem-

plate_id.didget_id.* notation.

91

6. The WOAD Visual Editors

and another one to check if “body temperature > 40” (i. e., high fever). This choice

guarantees on the one hand a simpler formulation of the when-part of the mechanisms and

on the other hand a greater independence between rules in case of their modifications.

In the then-part of a mechanism, the only available constructs are the set actions,

which allow users to specify the APIs they want to convey. For instance, when a clinician

defines a mechanism to check if a patient is in a critical situation (e. g., the patient’s

body temperature is greater than 40 Celisus degrees), in order to proactively convey this

awareness information among her colleagues, she just need to pick the set criticality

construct and to specify the data field construct that refers to the Didget’s data field

close to which she wants to convey the Criticality API (e. g., the body_temperature field

in the Didget called vital_parameters). Even if APIs are conveyed as graphical clues

(see Section 1.4.1), the set constructs do not allow users to specify the graphic features

of APIs, since the definition of the graphic style of APIs is not part of the WOAD Visual

Language. This is motivated by the aim to decouple the definition of WOAD mechanisms

from the definition of the affordances that are shown to users when APIs are conveyed.

In this way, such affordances can be defined according to the well-known conventions of

the group to which users belong (see Chapter 7 for further details). Nevertheless, in some

cases users might want to partially modulate the APIs they want to convey, in order to

give more specificity to the conveyed information. This goal can be simply reached by

specifying the value of some optional, API-related parameters, the value of which can be

specified using the constructs to define constant values. For instance, the set safety

action accepts a parameter, called risk level, which allows users to convey different

affordances (e. g., different icons), giving more granularity to the conveyed awareness

information. A further example is represented by the set appropriateness action

that accepts a parameter aimed at specifying a message to be conveyed through the

Appropriateness API.

6.2.2. The WOAD Mechanism Editor User Interface

The WOAD Mechanism Editor is a window-based application that provides users with a

visual editing environment within which they can use the WOAD Visual Language to

autonomously define their own WOAD mechanisms.

The WOAD Mechanism Editor main window presents a two-column layout (see Fig-

ure 6.7). While in the left column there is the palette that makes accessible to users

the WOAD Visual Language constructs (i. e., blocks), the central part of the window is

the editing area in which users can drop and connect the blocks they need to compose

the mechanism. Moreover, the top region of the user interface contains the toolbar that

92

6.2. The WOAD Mechanism Editor

Constructs When-part Then-part Recursive a

Action set API b x

Aggregation average, count, in x

Arithmetical +, −, ∗, /, % x x

Comparison =, 6=, < c, ≤ c, > c, ≥ c, like d x

Constant Values true, false, «constant value» x x

Field Accessors template_id.didget_id.[field_id, *] x x

Logic not x x

Rule mechanism

a The constructs can be recursively composed.
b API is a placemark for APIs’ names (e.g., set criticality). c Only for numbers.
d Only for strings.

Table 6.1.: The constructs of the WOAD Visual Language

provide users with familiar buttons, through which they can perform operations, for

instance, to store WOAD mechanisms for further modifications. The bottom part of the

editing area contains the trash icon to delete the currently selected mechanism.

The editing area allows users to drop and connect the visual language blocks that they

pick up and drag from the palette, in order to visually define their own mechanisms. The

palette gives access to the language blocks grouping them in homogeneous sets, which are

presented to the users as a list of tabs. The first eight tabs pertain the constructs of the

WOAD Visual Language different from the Didgets’ data fields; the other tabs give access

to the blocks related to Didgets’ data fields, grouping them according to the document

template in which users inserted them using the WOAD Template Editor. Tabs are

characterized by a color and a label, which allow users to quickly identify the kind of

blocks they give access: e. g., with reference to Figure 6.7, white tabs group blocks that

provide access to the data fields in the document templates’ Didgets. Moreover, the tabs

pertaining to blocks with similar meanings and purposes share the same color (e. g., the

three tabs that group comparator blocks are coloured in blue). Each tab in the palette

gives access to its set of WOAD Visual Language blocks by showing a scrollable panel.

Inside these panels, blocks are presented to users directly in their graphic look. Moreover,

on the top of each panel there is an icon (see Figure 6.8) that suggests at a glance the

category of language blocks that are visualized. In particular, in the panels that group

blocks related to the Didgets’ data fields of a specific document template, the icon is a

small thumbnail that represents how the document template looks like. This allows users

to view the related document template in a zoomable preview window (see Figure 6.9).

For instance, clinicians of a Neonatal Intensive Care Unit (NICU) of a hospital could

93

6. The WOAD Visual Editors

Figure 6.7.: An overview of the WOAD Mechanism Editor user interface

have the need to create a mechanism that conveys a Criticality API if the APGAR score

of a premature newborn is lower than 4, within five minutes after the delivery. This

mechanism only requires data fields from the document template that clinicians call

Newborn Sheet. Using the WOAD Mechanism Editor, a clinician can autonomously

create this mechanism. When she starts to create the new mechanism, the WOAD

Mechanism Editor automatically places a “mechanism” block in the editing area. At this

stage, to define conditions in the mechanism’s when-part, the clinician would perform a

simple sequence of operations: picking up the “less than” operator block (i. e., “<”) in

the palette; dragging and dropping the selected block in the editing area; connecting it

to the “mechanism” block. Then, the clinician would repeat these operations to put in

connection with the “<” block both the block related to the APGAR field in the Newborn

Sheet document template and the block in which she will specify a numeric constant

value, i. e., 4 (see Figure 6.10a). By repeating this sort of drag’n’drop operations, the

clinician would define the second condition of the mechanism, in order to check if the

premature newborn is in her first five minutes of life. In regard to the then-part, the

clinician would complete the mechanism by adding a specific action block (i. e., the

set criticality block) to convey a Criticality API close to the APGAR field in the

Newborn Sheet. This requires the user to perform the same drag’n’drop operation that

she performed to connect blocks in the when-part of the mechanism (the final result can

94

6.2. The WOAD Mechanism Editor

(a) (b)

Figure 6.8.: A detailed view of the WOAD Mechanism Editor palette

be seen in Figure 6.10b).

Once the user completes all the editing operations she is performing, in order to make

persistent the WOAD mechanism, she just has to act on the ‘Save’ button in the toolbar

(i. e., the button labelled with the “floppy disk” icon, as in the WOAD Template Editor).

In this way, users can make further changes to the WOAD mechanism. Nevertheless,

this operation does not make the mechanism available to the Mechanism Interpreter (see

Section 3.6) in order to be executed. To reach this goal, the user has to act on the

‘Export’ button (i. e., the fifth button from the left in the toolbar) in order to translate

the WOAD mechanism into the format that the rule engine of Mechanism Interpreter

is able to execute (further details about this translation process will be described in

Section 7.2.3).

95

6. The WOAD Visual Editors

Figure 6.9.: The blocks to access Didgets’s data fields and the document template preview
window

(a) Checking the APGAR score field.

(b) The completed “APGAR” mechanism.

Figure 6.10.: Building the mechanism to check premature newborns’ APGAR score

96

7
The Implementation of the WOAD Visual Editors

Contents

7.1. The WOAD Template Editor 98

7.1.1. Oryx: An Extendable Editing Environment 99

7.1.2. Implementing the WOAD Template Editor Prototype 103

7.2. The WOAD Mechanism Editor 104

7.2.1. The OpenBlocks Language . 105

7.2.2. The OpenBlocks Visual Editor User Interface 105

7.2.3. Implementing the WOAD Mechanism Editor prototype 106

7.2.3.1. The WOAD Intermediate Language 108

7.2.3.2. The Definition of APIs’ Affordances 111

The development of articulated, even if prototypical, software systems involves software

functions (e. g., to manage drag’n’drop interactions) that have already been developed by

different teams of developers and made available to software designers according to the

open-software approach. This triggered a virtuous circle that led these software artifacts

to be increasingly improved and purged of errors and bugs, with the result to produce a

set of roughly equivalent software solutions.

In this light, in order to avoid to re-implement all functionalities from scratch, to

develop the two prototypes of WOAD Visual Editors, respectively to compose the WOAD

Document Templates and the WOAD Mechanisms, the approach that has been adopted

involves the reuse of existing software solutions (e. g., see [Lenz et al., 1987; Krueger,

1992; Basili et al., 1996]). This approach allows to focus on the development of new and

innovative features, rather than to lose time and efforts to re-develop already existing basic

97

7. The Implementation of the WOAD Visual Editors

functionalities (e. g., components’ palettes and drag’n’drop management). However, one

has to notice that sometimes the poor documentation associated with the open-software

components hinders this virtuous process.

This chapter describes the most important implementation details of the two WOAD

visual editors that have been described in Chapter 6. For the sake of uniformity with

Chapter 6, the first part of this chapter describes the implementation of the WOAD

Template Editor, followed by the description of the implementation of the WOAD

Mechanism Editor.

7.1. The WOAD Template Editor

In the light of software reuse, before starting to build the WOAD Template Editor

prototype, an analysis of the existing XForms editing solutions has been undertaken (see

Table 7.1), since to meet the need of flexibility in the document structure it has been

chosen to adopt the XForms standard to define Datoms (see Section 4.3), and consequently

the generated documents. Unlike the survey of the existing document visual editors that

has been presented in Section 5.2.1, which was aimed at describing the most relevant

feature of this kind of solutions without any technology-related constraint, the aim of this

second, and more focused analysis was to find a suitable XForms editing solution that

allows to be extended and customized in order to build the WOAD Template Editor.

The initial idea was to customize an existing word processor with XForms editing

capabilities, in order to provide end-users with a well-known user interface. Due to its

features and its extendability, OpenOffice.org Writer (see Section 5.2.1), and consequently

its “brothers” (e. g., LibreOffice Writer and IBM Lotus Symphony Documents), was the

perfect candidate to be customized: it provides end-users with (i) a user interface that

mimics a paper-based document, within which they can drag and drop the desired

XForms components, and (ii) an easy way to define the underlying XForms data model.

Nevertheless, despite its apparent simplicity, a more detailed analysis has immediately

shown the limits of OpenOffice.org Writer. In particular, the XForms support is only

partial: XForms documents are stored directly into binary Open Document Format (ODF)

files, like what happens with any other OpenOffice.org document. This results in the

limit to be unable to communicate with an external, centralized data storage service,

i. e., the WOAD Document Data Repository component (see Figure 3.8 and Figure 4.2).

Moreover, storing XForms documents in the binary ODF format would require to adopt

OpenOffice.org Writer as the WOAD Layout Engine component, rather than a simple

web browser.

98

7.1. The WOAD Template Editor

The alternative solutions to edit XForms documents that are available can be grouped

in two families: (a) the editors that relies on some Integrated Development Environment

(IDE)1, and (b) the web-based ones. While the editors belonging the first group must be

discarded, because they are too much far from end-users skills, web-based editors resulted

the best choice to be used to build the WOAD Template Editor. With the advent of

the Web 2.0, web applications have been subjected to a remarkable development, which

has led their usability to compete and, in some cases, to overtake the one of desktop

applications.

The most notable web-based XForms editors that emerged from the analysis of existing

solutions were Orbeon Forms and the already mentioned Oryx XForms Editor (see

Section 5.2.1). Orbeon Forms encompasses a XForms processor, a XForms repository and

the visual editor. The editor vaguely mimics the appearance of paper-based documents

and does not allow the free arrangement of XForms components (i. e., users can only

split up XForms documents in different sections, within which they can arrange XForms

components following a grid layout). On the other hand, Oryx XForms Editor provides

users with an environment that is composed of a repository and the visual editor. In

particular, the visual editor provides users with the ability to define the arrangement of

XForms documents without any constraint. Moreover, the editor can be easily extended

through the creation of plug-ins to support any kind of document (e. g., Business Process

Model and Notation (BPMN) diagrams). This flexibility has been the key feature that

promoted Oryx XForms Editor as the foundation upon which to build the WOAD

Template Editor.

7.1.1. Oryx: An Extendable Editing Environment

Oryx is an open source2, web-based visual environment that was born in the academic

landscape (see [Decker et al., 2008a,b]). To be precise, Oryx is a suite of two distinct, but

intertwined web applications: the Oryx Editor, which provides users with a visual editing

environment, and its complementary application, i. e., the Repository (see Figure 7.1),

which is responsible store the XForms documents that have been created using the editor.

Moreover, Oryx provides some basic social and collaborative features, which make it

compliant with some of the EUD tenets (see Section 2.3.1). In fact, the Repository

application is responsible to manage both the sharing of XForms documents within the

working environment (through the integration of simple social features, like comments

and ratings) and their collaborative improvement (using a simple lock strategy based

1 Most of the IDE-based XForms visual editors rely on Eclipse (http://www.eclipse.org/). 2 Oryx is
distributed under the MIT License (http://opensource.org/licenses/mit-license.php).

99

http://www.eclipse.org/
http://opensource.org/licenses/mit-license.php

7. The Implementation of the WOAD Visual Editors

XForms Features

U
I

M
o
d
e
l

L
ic

e
n
s
e

T
y
p
e

E
x
p
o
r
t

E
x
t
e
n
d
a
b
le

X
S
D

I
m

p
o
r
t

D
r
a
g
’n

’D
r
o
p

F
r
e
e

L
a
y
o
u
t

C
S
S

S
u
p
p
o
r
t

Oryx XForms Editor x x Open
source
(MIT)

Web-based
Application

x x
(Plug-ins)

- x x x

Orbeon Forms x - Open
source
(LGPL) a

Web-based
Application

- x
(Source
code)

- - - -

OpenOffice.org Writer - b x Open
source
(LGPL)

Standalone
Application

- x
(Extensions)

- x x -

IBM Visual XForms Designer x x Free c Plug-in
(Eclipse)

x - x x x x

JBoss VPE XForms Plug-in x x Open
source
(LGPL)

Plug-in

(JBoss Tools d)

x x
(Source
code e)

- x x x

a The Orbeon Forms commercial version provides more functions, e. g., Oracle and Alfresco integration, PDF and XML Schema
Definition (XSD) support, and resources versioning.
b OpenOffice.org Writer uses its own standard form controls to render XForms and ONLY within its GUI.
c For non-commercial use. The commercial counterpart is called IBM Lotus Forms Designer.
d JBoss Tools is a set of Eclipse plug-ins for JBoss and the related technologies
e http://anonsvn.jboss.org/repos/jbosstools/workspace/kukeltje/xforms/nl.fortythree.jbosstools.vpe.xforms/

Table 7.1.: Summary of existing XForms visual editors

on the mutual exclusion technique). Leveraging these collaborative and social features,

employees are encouraged to autonomously create and continuously refine the XForms

documents they need, in order to better cope with the actual needs of the group in which

they perform their activities (see Chapter 1).

Both the Oryx Editor and the Repository are based on a platform-independent client-

server architecture that heavily uses AJAX techniques: while the server-side part is

implemented using the standard Java programming language, the client-side part relies on

the W3C standard languages, i. e., the eXtensible HyperText Markup Language (XHTML),

the Scalable Vector Graphics (SVG) and the JavaScript language (in particular the whole

environment is based on the ExtJS3 framework).

Within the Oryx XForms Editor visual environment, all editing operations are managed

by its client-side component. As a direct consequence, the Oryx XForms Editor is only

able to produce a SVG-based graphic representation of the XForms documents that users

are editing, and accordingly, it stores them within the Repository using a JSON-based

representation. In this light, XForms documents need to be translated into the XForms

syntax, in order to make them available to other applications (e. g., a XForms processor).

This translation process is executed on the server-side part of the Oryx XForms Editor.

3 http://www.sencha.com/products/extjs

100

http://anonsvn.jboss.org/repos/jbosstools/workspace/kukeltje/xforms/nl.fortythree.jbosstools.vpe.xforms/
http://www.sencha.com/products/extjs

7.1. The WOAD Template Editor

From http: // bpt. hpi. uni-potsdam. de/ pub/ Oryx/ DeveloperNetwork/

repository-sketchy-models. png . Accessed: 2012-08-28. (Archived by
WebCite® at http: // www. webcitation. org/ 6AFtXJd7t).

Figure 7.1.: The Oryx Repository user interface

The main components of the Oryx XForms Editor user interface have already been

described in Section 6.1. Summarizing, with reference to Figure 7.2, the central area of

the page4, i. e., the editing area (namely, the canvas) is devoted to receive the various

XForms components that users drop in the document they are editing. On the left side,

Oryx XForms Editor presents to users the palette of XForms components (which are

grouped by category) they can pick up, drag and drop within the canvas area. On the

other hand, on the right side, the Oryx XForms Editor provides users with the possibility

to specify the values of some properties of XForms components (e. g., a XForms input

field) with the aim to customize it (e. g., specifying the id or background color).

As mentioned, one of the most peculiar feature of the Oryx XForms Editor is its

plug-in based architecture, which significantly contributes to make it easily adaptable

and extendable. In fact, the Oryx Editor core only implements the basic parts of the user

4 The ExtJS framework allows to arrange web pages to simulate the window-based layout that users

usually find in the traditional desktop applications.

101

http://bpt.hpi.uni-potsdam.de/pub/Oryx/DeveloperNetwork/repository-sketchy-models.png
http://bpt.hpi.uni-potsdam.de/pub/Oryx/DeveloperNetwork/repository-sketchy-models.png
http://www.webcitation.org/6AFtXJd7t

7. The Implementation of the WOAD Visual Editors

Figure 7.2.: The Oryx XForms Editor user interface

interface (i. e., the empty toolbar, the empty lateral panels and the canvas) and exposes

the plug-ins’ Application Programming Interface to interact with them, constituting

the “backbone” of its visual editing capabilities. On the other hand, XForms editing

capabilities are obtained through a pre-installed set of plug-ins.

Each plug-in is subdivided into client-side part and server-side part. The latter is

not mandatory and it is needed only when the same goal cannot be achieved by the

client-side counterpart5. On the other hand, the client-side part of a plug-in is mandatory

and it implements the JavaScript code to manage the user interface (e. g., to add buttons

to the toolbar or additional user interface components to the two panels) and users’

interactions with model components, their properties and the canvas area (e. g., when a

user selects a XForms component to drag it to a new position). One of the most relevant

part of a plug-in is constituted by StencilSets6. At a glance, a StencilSet can be seen

as a JavaScript Object Notation (JSON)-based list of palette components; however, this

description of StencilSets is too much reductive. The StencilSet main aim is to map

the XForms components with their SVG-based representation, to define the relations

5 Since using the JavaScript programming language within a standard web browser makes impossible to
directly interact with the objects and the other data structures that are stored on the web application
server, in order to reach this goal it is needed to delegate this task to a custom server-side Java code
(e. g., to interacting with a database or executing complex operation to convert a XForms document into
the XForms syntax).
6 Each plug-in can encompass more than one StencilSet, in order to support different types of document

components.

102

7.1. The WOAD Template Editor

among them (e. g., which XForms components can be positioned within each other and

which cannot) and the groups to which they belongs (which allow to create collapsible

subcategories in the palette of components placed on the left panel).

7.1.2. Implementing the WOAD Template Editor Prototype

The preliminary activity that has been undertaken to move a step towards the implemen-

tation of the WOAD Template Editor (which has been described in Section 6.1) was to

configure the Oryx Editor to provide users with an environment that mimics the ones

that they can find in traditional word processors (see Section 4.1).

The development of WOAD Template Editor’s features made necessary to define a

new StencilSet and to create a set of plug-ins, just like what happens in adding to the

Oryx Editor the ability to support any other kind of model.

First of all this required to map Datoms within a suitable StencilSet7, in order to

dynamically populate the palette in the left panel of the user interface, as required when

a user drops a Datom in the canvas, this would cause the creation of a new Didget that

would appear in the palette to make it reusable within the other document templates.

To reach this goal the JSON object corresponding to a StencilSet should be suitably

structured and a specific plug-in, which encompasses both client-side and server-side

code, has to be created: while the server-side part is responsible to generate the new

Didget and to accordingly update the StencilSet data structure, the client-side code

manages drop operations of the Datoms in the canvas and updates the palette when the

server-side part communicates that the new Didgets have been successfully created.

Moreover, since in the WOAD Template Editor the Didget’s contextual menu allows

to visually manage the Didgets’ ability to both share their content among different

instances of document templates and their ability to manage multiple data in a tabular

arrangement, the development of a second plug-in was required. The aim of this plug-in

is to manage users’ interactions with the contextual menu, and accordingly to update

the Didgets’ status in the StencilSet.

Finally, the development of a third plug-in was needed to both manage storage

operations and the communication among the Oryx Editor core and the other two

7 The operation of automatically filling in the StencilSet of the WOAD Template Editor is a task of
another WOAD framework component, i. e., the Datom Editor (see Figure 4.2). Taking into account
that the detailed description of the Datom Editor is out of the purposes of this thesis, it is sufficient to
know that this component has been obtained by customizing the Oryx Editor plug-in for XForms in
two ways: (i) reducing the set of available XForms elements (leaving only those aimed at filling in data),
and (ii) adding a custom plug-in to manage the integration with the other WOAD components, i. e., the

WOAD Template Editor and the Didget Manager.

103

7. The Implementation of the WOAD Visual Editors

WOAD Template Editor plug-ins. In particular, to store a document template, this

plug-in needs to perform two distinct operations: (i) to store the internal Oryx Editor

data structure that represents the document template in the Repository, to allow further

changes and their sharing among users, and (ii) to serialize the same document template,

using a XML-based representation, to make it available to the other components of the

WOAD framework, i. e., to both the Template Manager and the Didget Manager (see

Figure 4.2).

7.2. The WOAD Mechanism Editor

Similarly to what happened for the development of the WOAD Template Editor, also

the development of the WOAD Mechanism Editor prototype was based on a software

reuse approach. As proposed in Section 4.2, a fundamental guideline that has been taken

into account during the design and the development of the WOAD Mechanism Editor

is intuitiveness. Since the survey of visual rule editors (see Section 5.2.2) encompasses

solutions that resulted to be scarcely customizable to meet the WOAD framework

concepts (i. e., Datoms, Didgets and document templates), the choice was to use a visual

language to make them autonomous in the definition of their own WOAD mechanisms.

As highlighted in Section 5.2.3, most of the existing visual languages rely on the “building

block” metaphor, and some of them couples this metaphor with the concept of rule (i. e.,

Microsoft Kodu).

However, like in the case of visual rule editors, most visual language are very specialized

and are not easy to customize. Thus, the primary need was to find a general-purpose visual

language solution that would allow to be easily customized, in order to be integrated

in the WOAD framework in compliance with its modularity and extensibility. The

solution which has proved to be best suited to meet these needs was the OpenBlocks

library [Roque, 2007]. OpenBlocks is an open-source Java library that was born at the

Massachusetts Institute of Technology (MIT) and has become quite popular even among

big IT vendors8. In particular, to develop the WOAD Mechanism Editor prototype, the

choice has been to customize the demonstrative Java-based application provided with

the OpenBlocks Sample project9, which encompasses a basic implementation of a visual

editing environment (further details will be provided in Section 7.2.2 and Section 7.2.3).

8 For instance, MIT OpenBlocks had been also used by Google Inc. within the App Inventor for Android

project (now App Inventor Edu at MIT Media Lab). See http://appinventoredu.mit.edu/. 9 http:

//education.mit.edu/openblocks

104

http://appinventoredu.mit.edu/
http://education.mit.edu/openblocks
http://education.mit.edu/openblocks

7.2. The WOAD Mechanism Editor

7.2.1. The OpenBlocks Language

The MIT OpenBlocks library encompasses a block-based visual language in which visual

blocks can be defined in a declarative manner, through an XML-based syntax (see

Appendix A for details). This makes easy to map the constructs (e. g., the if-then-else

and the atan consturucts) of the most part of traditional programming languages with

their OpenBlocks-based visual representation (e. g., the OpenBlocks sample application

encompasses the mapping with the language underlying the MIT StarLogo TNG10).

Each visual block is displayed through a specific set of visual features: a shape, a color

and a label. Within their labels, which is mandatory, blocks display to users the name of

the related the language constructs. Blocks’ shapes and colors contribute in making users

able to better recognize blocks at a glance (for instance, if a block represents a boolean

function rather than a procedure or an arithmetical function). Visual blocks can expose

an arbitrary number of different connectors (see Figure 7.3), which allow to compose

them to visually define sequences of code. In particular, connectors can be grouped by

two complementary macro-types, i. e., sockets and plugs. Connectors can be configured

to represent different types of data: for instance, a socket connector can be defined to

accept connections with numeric data type plugs only. Connector’s data type determines

the shape that the related connector will expose (e. g., numeric data type can be related

to an angular connector shape). Moreover, also connectors can be coupled with a label,

which in this case is optional, to provide users with a very short but intuitive description

of the role played by the labelled connector. For instance, as shown in Figure 7.3, the

ifelse block, which is a function block that represents an if-then-else construct, exposes

three connectors: (i) the test socket connector, which represent a set of conditions and

accepts to be connected only with blocks that exposes a boolean plug connector, and

(ii) both the then and the else socket connectors that accept other function blocks. All

these blocks’ visual features contributes to make the composition of complex sequences

of blocks more intuitive and less prone to errors.

7.2.2. The OpenBlocks Visual Editor User Interface

The OpenBlocks Sample project encompasses a minimal visual editing environment with

a two-column layout (see Figure 7.4), which allows users to focus on OpenBlocks features

and visual editing operations.

Since the OpenBlocks visual editor constitutes the“backbone”of the WOAD Mechanism

10 StarLogo TNG is an educational simulation environment that has been developed at MIT Media Lab

(see http://education.mit.edu/projects/starlogo-tng for more details).

105

http://education.mit.edu/projects/starlogo-tng

7. The Implementation of the WOAD Visual Editors

Figure 7.3.: An example of the OpenBlocks visual language

Editor, the most relevant parts of the user interface have already been described in

Section 6.2.2. On the other hand, with respect to the WOAD Mechanism Editor, the

editing area is organized in collapsible pages. Each page represents an independent entity

of the application (e. g., the turtles of the sample environment). Moreover, the editing

area provides users with two useful widgets, i. e., the MiniMap, in the upper right corner,

and the Trash in the lower right corner. The MiniMap shows a thumbnail of the whole

editing area, which gives users the ability to understand at a glance the status of their

coding activities. On the other hand, the Trash icon provides users with a meaningful

and well-known metaphor, which meaning is trivial.

Similarly, a user who wants to code using the OpenBlocks visual editor must perform

the same drag’n’drop operations that have been already described to use the WOAD

Mechanism Editor.

7.2.3. Implementing the WOAD Mechanism Editor prototype

The first activity that has been undertaken to develop the WOAD Mechanism Editor was

to map the WOAD Visual Language constructs to the OpenBlocks language definition.

To reach this goal, it has been necessary to customize the language definition file

(i. e., the lang_def.xml11 file), in order to declare the blocks pertaining to the WOAD

11 The lang_def.xml is responsible to store the definition of the visual blocks (i. e., block’s label, type
and color, its connectors and the related data type). Moreover, the lang_def.xml file stores the whole
configuration of the visual editing environment. It allow to define the configuration of the editing area (i. e.,
the set of pages in which to split the editing area, and the features of both the MiniMap and the Trash
widgets), the tabs in the palette and which blocks pertain to a specific tab. Further details about the

lang_def.xml file and its grammar definition (i. e., the lang_def.dtd) will be provided in Appendix A.

106

7.2. The WOAD Mechanism Editor

Figure 7.4.: The OpenBlocks Sample user interface

Visual Language. Moreover, a fundamental aspect to be considered was the need to

strictly integrate the WOAD Mechanism Editor with the WOAD Template Editor, in

order to automatically populate the palette with the tabs corresponding to the existing

document templates and, consequently, with the corresponding visual blocks related

to their Didgets’ data fields (see Section 6.2.2). To this aim, a translation module is

responsible to query the WOAD Template Manager and to update the definition of the

blocks pertaining to the Didgets’ data field within the lang_def.xml file.

The reuse of the OpenBlocks demonstration editor user interface required a simplifi-

cation of its features, in order to give users the possibility to focus on the composition

of their mechanisms, minimizing at the same time any possible risk to confuse them

with unnecessary graphical elements. The first step towards the simplification mainly

concerned the editing area, and it has been achieved by customizing its basic configuration

(within the lang_def.xml file): the number of pages in which users can drop the visual

language blocks (see the description of the editing area in Section 7.2.2) has been reduced

to a single page and the MiniMap widget has been removed.

After this preliminary simplification, the OpenBlocks demonstration editor has been

customized to automatically place a “mechanism” block in the editing area when the user

starts to create a new mechanism and to make the palette more intuitive. In order to

107

7. The Implementation of the WOAD Visual Editors

<Block id=”12 ” genus−name=”not−equa l s ”>
<Locat ion>

<X>151</X>
<Y>25</Y>

</ Locat ion>
<BeforeBlockId>9</ BeforeBlockId>
<Sockets num−s o cke t s=”3 ”>

<BlockConnector
connector−kind=”socket ”
connector−type=”number ”
. . .
con−block−id=”17 ”>

</ BlockConnector>
. . .

</ Sockets>
</ Block>

Listing 7.1: An example of the OpenBlocks serialization format

provide users with an intuitive description of visual blocks, meaningful icons and short

pop-up messages have been added on top of the scrollable panels that are associated to

the tabs in the palette. In particular, the icons of the scrollable panels that pertain to

document templates are thumbnails that are automatically generated and show how the

related document templates look like. These particular panels’ icons provide users with

another feature that can be helpful to make them able to better contextualize the blocks

they are using with respect to the document template those blocks refer to. In fact, each

document template icon acts as a clickable button that opens a preview window in which

is displayed the zoomable preview of the related document template.

7.2.3.1. The WOAD Intermediate Language

Since the OpenBlocks library heavily relies on XML to define visual blocks’ features, as a

direct consequence, also its serialization format (see Listing 7.1) relies on the same meta-

language (the grammar of the serialization format is defined in the save_format.dtd file12).

On the other hand, as described in Section 3.6, the actual implementation of the Mecha-

nism Interpreter is based on JBoss Drools, which requires to express rules using its native

Drools Rule Language (DRL) syntax. Thus, in order to obtain the full integration of the

WOAD Mechanism Editor with the other component of the WOAD framework, it was

needed to make the visually defined mechanisms readable by the JBoss Drools engine in

the Mechanism Interpreter.

This goal has been reached with the definition of an intermediate, XML-based language,

which preserves the mechanism application logic and discards all the topological data of

12 A more detailed description of the OpenBlocks serialization grammar will be provided in Appendix A.

108

7.2. The WOAD Mechanism Editor

the OpenBlocks serialization format. First of all, the need was to formalize the WOAD

Intermediate Language grammar13. To this aim, the XML Schema Definition (XSD)

language allows to define XML-based grammars and provides a level of flexibility and

expressiveness greater than that of the more traditional Document Type Definition (DTD)

language. Moreover, the adoption of the Java Architecture for XML Binding (JAXB)

framework has been helpful to easily integrate the translation stack within the Java-based

source code the OpenBlocks demonstrative editor, since the XSD grammar has been

transparently mapped into the corresponding set of Java classes. In addition, the joint use

of the JAXB framework and XPath expressions has led to the development of lightweight

translation components.

The introduction of the WOAD Intermediate Language required to develop two distinct

translators: while the former translates the OpenBlocks language into the WOAD Inter-

mediate Language (e. g., see Listing 7.2), the latter translates the WOAD Intermediate

Language into the DRL syntax. Each generated DRL rule is stored into a file within a

shared directory, which is readable by the WOAD Mechanism Interpreter. Even if this

solution requires a two-pass translation process (see Figure 7.5), at the same time, it

introduces the substantial advantage to have a visual editing solution that is integrated

within the WOAD reference architecture, but it is also independent of the underlying

execution engine, and vice versa. This results in the possibility to change the execution

engine without affecting the features of the WOAD Mechanism Editor.

Nevertheless, the execution of this process of translation is not in itself sufficient

to maintain constantly updated the set of mechanisms that the WOAD Mechanism

Interpreter can execute. In fact, even if the visually defined mechanisms are translated

into the DRL syntax, this does not imply that they are automatically loaded in the

working memory of the rule engine of the WOAD Mechanism Interpreter. This is due

to the fact that the JBoss Drools rule engine requires to statically load rules during its

initialization phase, and it does not encompass any process of automatic update of the

already loaded rules. In order to overcome this limit, the WOAD Mechanism Interpreter

has been endowed with a module, i. e., the Rule Watcher, that asynchronously monitors

Figure 7.5.: The translation process from OpenBlocks serialization format to DRL

13 A detailed description of the WOAD Intermediate Language grammar is provided in Appendix B.

109

7. The Implementation of the WOAD Visual Editors

<?xml version=”1 .0 ” encoding=”utf−8” standalone=”yes ”?>
<n s 2 : r u l e xmlns:ns2=”ht tp : //www. maclab . d i s c o . unimib . i t /WOADMechanism”>

<when>
<cond i t i on type=”&l t ; ”>

< l e f t s i d e>
< f i e l d template=”Template Newborn Sheet ” d idget=”v i t a l p a r a m e t e r s ”

name=”apgar ” />
</ l e f t s i d e>
<r i g h t s i d e>

<cons tant va lue type=”number ”>4</ cons tant va lue>
</ r i g h t s i d e>

</ cond i t i on>
<cond i t i on type=”&l t ; ”>

< l e f t s i d e>
<opera t i on type=”−”>

< f i r s t o p e r a n d>
< f i e l d template=”Template Newborn Sheet ” d idget=”system data ”

name=”cur r en t da t e t ime ” />
</ f i r s t o p e r a n d>
<second operand>

< f i e l d template=”Template Newborn Sheet ” d idget=”d e l i v e r y d a t a ”
name=”date t ime ” />

</ second operand>
</ operat i on>

</ l e f t s i d e>
<r i g h t s i d e>

<cons tant va lue type=”number ”>5</ cons tant va lue>
</ r i g h t s i d e>

</ cond i t i on>
</when>
<then>

<ac t i on type=”API” name=” C r i t i c a l i t y ”>
< f i e l d template=”Template Newborn Sheet ” d idget=”v i t a l p a r a m e t e r s ”

name=”apgar ” />
</ ac t i on>

</ then>
</ n s 2 : r u l e>

Listing 7.2: The APGAR mechanism translated in the WOAD Intermediate Language

the directory that contains translated rules: if any change is detected (e. g., a new rule

has been added, or an existing one has been modified or deleted), the Rule Watcher

accordingly updates the rule engine working memory. In particular, the Rule Watcher

relies on the Java WatchService class14, which allows to constantly monitor a registered

resource (i. e., in this case, the directory that stores DRL files) without the need to

execute polling operations.

14 The WatchService class is part of the New IO package that has been introduced in Java 7.0. For

further details, see http://docs.oracle.com/javase/7/docs/technotes/guides/io/index.html.

110

http://docs.oracle.com/javase/7/docs/technotes/guides/io/index.html

7.2. The WOAD Mechanism Editor

7.2.3.2. The Definition of APIs’ Affordances

Since WOAD Visual Language does not encompass any construct that allow users to

define the affordance that will be conveyed by the APIs (see Section 6.2.1), this required

to conceive a solution to allow users to unambiguously specify the conventional graphic

features, i. e., the conventional style, of the API-related affordances.

To this aim, the approach that has been chosen is to group all API-related styles

within an unique style sheet. In particular, since in the current implementation the

Layout Engine component is a web browser and WOAD documents relies on the XForms

standard, the choice has been to adopt the Cascading Style Sheet (CSS) standard (which

is widely implemented in standard web browsers).

The deployment of the WOAD-compliant system requires users to interact with some

experienced people (e. g., power users or designers) to translate their conventional API-

related affordances into the related set of CSS styles (e. g., a Criticality API will be

configured to change the color of the text to red). In particular, each API is related with

at least one CSS class, which defines its graphic style. When a WOAD mechanism is

triggered, the Mechanism Interpreter send the API to be conveyed to the Markup Tagger,

which translates the API in the related CSS class and apply it to the related Didget’s

data field. Once the Markup Tagger has applied the class to the Didget’s data field, the

Layout Engine automatically updates the document, showing the API-related affordance

to users.

Nevertheless, this approach has not to be considered a definitive solution. Even if

CSS editors have become a widespread software, most of them are tools that have been

conceived to be used by developers and web designers, who have a good knowledge of

the features of this language. Since the definition of the API-related affordances has to

be mainly performed on behalf of users, this approach does not fully meet EUD tenets

(see Section 2.3). To overcome this limit, further efforts will be made to allow users to be

autonomous in the definition of API-related affordances (see Section 10.1).

111

8
Validating the WOAD Visual Language

Contents

8.1. Organizational Setting . 114

8.2. The Qualitative Interview . 115

8.3. Identifying the Inpatient’s Adverse Events 117

8.3.1. The Inpatient’s Fall Risk . 118

8.4. WOAD Mechanisms and the Inpatient’s Fall Risk 120

Once the WOAD Mechanism Editor has been developed (see Section 6.2 and Section 7.2),

the next step that has been undertaken concerned the validation of the expressiveness of

the WOAD Visual Language. In order to perform this validation, it has been chosen to

undertake a qualitative user study in a real-life scenario, and in particular within the

reference working environment of this thesis, i. e., the healthcare domain (see Section 1.3).

This qualitative user study took place in a Northern Italy teaching hospital, i. e., the

Presidio Ospedaliero di Vimercate1.

First of all, this chapter will briefly describe the organizational setting within which

the qualitative user study took place. Subsequently, the chapter describes the qualitative

interview technique, which has been adopted to perform the described user study. The

subsequent section will go through the description of the results of the interview sessions

that have been performed with clinicians, in order to elicit the rules governing the promo-

tion of awareness about specific case of interact, namely the adverse events concerning

the inpatients’ fall risk. The chapter ends with the description of the activities that

allowed clinicians to define the WOAD mechanisms related to the elicited rules, and the

1 http://www.aodesiovimercate.it/

113

http://www.aodesiovimercate.it/

8. Validating the WOAD Visual Language

discussion that originated the definition of a practice-based solution to the problem of

conflicting rules.

8.1. Organizational Setting

The organization of inpatient care activities within the Presidio Ospedaliero di Vimercate

focuses on the care workflow rather than on the single care tasks. In this light, inpatients

are considered as a fundamental and active part of the care process. Moreover, within

the hospital there was the need of an horizontal integration of the activities performed by

all the stakeholders of the care process. To this aim, the hospital adopted an approach to

care activities that is based on the intensity of care. In this way it is possible to evaluate

inpatients even from a nursing point of view, rather than only from medical point of

view: nursing activities take into account the needs of the inpatient as well as her disease.

To better cope with this care approach, the Management Unit of the hospital chose to

deploy a mobile and paperless EPR solution2, which have been integrated with the legacy

information system. A relevant feature of this EPR is the possibility to be easily adapted

to the needs of the various wards, even if this still requires the intervention of IT staff of

the hospital. Currently, this EPR is used daily by both doctors and nurses who cooperate

in the management of the medical record of an inpatient throughout all her hospital stay,

thanks to the advantages of the implementation of a mobile solution.

In the last decades, the theme of inpatient safety gained a prominent role in the

interests of the healthcare professionals as well as of both hospital management and

public health institutions (see [Kohn et al., 2000; Wachter et al., 2004; Wachter, 2010]).

It is on the basis of this consciousness that the management of the Presidio Ospedaliero

di Vimercate felt the need of an ICT-based systematic approach that allows clinicians

to minimize the risks for the inpatients. In particular, the management focuses on the

possibility that some adverse events can occur to the inpatients during their hospital

stay and on the need to make clinicians constantly aware about the possibility that an

inpatient might be in a risky condition. This focus is also motivated by the introduction

of the EPR as this event could influence the capability of clinicians to recognize and deal

with adverse events.

The user study described in the following took place to identify the clinicians’ needs to

cope with the problem of inpatients’ safety. One of the preliminary activities that have

been undertaken has been the identification of the risk factors. To this aim ethnographic

2 The Electronic Patient Record (EPR) adopted within the Presidio Ospedaliero di Vimercate is based
on the Tabula Clinica (see http://www.tabulaclinica.com/) framework and has been developed by

Dedalus (see http://www.dedalus.eu/).

114

http://www.tabulaclinica.com/
http://www.dedalus.eu/

8.2. The Qualitative Interview

techniques has been adopted. Ethnographic techniques encompass a heterogeneous set

of methods and strategies for collecting and analyzing data, and require researchers to

spend some time within the social context that they wish to study, even interacting

with people who belong to it (see [Pope, 2005]). In particular, the qualitative interview

has been chosen as the tool to perform this qualitative user study. Even if it is a much

more interpersonal method with respect to other techniques of data collection (e. g.,

surveys), thanks to the dialogue that takes place between interviewer and interviewee,

the qualitative interview allowed to better elicit the actual clinicians needs, especially

uncovering the social aspects of the clinicians care activities.

8.2. The Qualitative Interview

The interview is a qualitative research method that is particularly useful to uncover

particular aspects, e. g., a relevant event, related to the personal world of the intervie-

wees (i. e., the users), which otherwise would remain hidden behind the experience of the

interviewees themselves (see [Rubin and Rubin, 2005]).

Qualitative interviews can be grouped in three different categories (see [Denzin and

Lincoln, 2003; Myers and Newman, 2007]):

Structured Interview This kind of interview is often adopted when the interviewer is the

researcher but a third subject. Structured interviews are conceived to be composed

of a pre-defined set of questions, which are presented to the interviewees following

a pre-defined and rigid order, without any possibility of improvisation.

Semi-structured or Unstructured Interview In this case, not all questions have been de-

fined before the beginning of the interview sessions: during the interview, the

interviewer can improvise by changing the order of questions, introducing new ones

and and omitting other ones. Usually these kind of interviews are held directly by

researchers.

Group Interview This kind of interview contemporaneously involves more interviewees,

who can be interviewed by one or more interviewers. Moreover, the type of the

interviews can range from structured interviews to unstructured ones.

Since semi-structured interview provides interviewers with a certain degree of freedom,

usually researchers adopt this kind of interview to undertake their qualitative research

activities. In this way, researchers can be able to continuously adapt the interviews to

the various situations they meet during their interview sessions.

115

8. Validating the WOAD Visual Language

Moreover, in order to better support researchers to undertake effective interview

sessions, Myers and Newman [Myers and Newman, 2007] developed a set of guidelines3

with the aim to avoid that the typical problems4 of qualitative interviews can arise,

influencing the interviews’ results (see Figure 8.1):

1. the researcher must situate both itself and the interviewee with preliminary questions

(i. e., questions about, for instance, name, role, experience, age, nation of origin and

gender);

2. the interviewee must be made to feel comfortable, in order to improve the overall

quality of the interview;

3. since interview sessions involve different kind of interviewee, with different roles,

experiences and responsibilities, it is crucial that the researcher avoid the arise of

the elite bias (see Footnote 4);

4. the researcher must take into account that each interviewee is an active player in

the interview as well as the researcher itself;

5. the researcher must be able to adapt the jargon that she use to make questions

according to the one used by the interviewee to express its answers (the mirroring

technique);

6. the researcher must be able to adapt the interview according to its interpretation

of the interviewee’s attitudes;

7. the interview must be conceived to comply with well-defined ethical standards.

In order to conduct the qualitative study that is described in next sections, it has

been chosen to involve clinicians in some interview sessions based on the technique of

semi-structured interviews.

3 Myers and Newman developed their guidelines on the basis of the dramaturgical model, in which both
interviewers and interviewees are seen as actors of a theatrical performance, i. e., the qualitative interview.
Each actor influences the quality of the interview, helping the interviewer to elicit relevant information.
4 As described in [Myers and Newman, 2007], some of the most relevant problems that can arise during
an interview are (a) the artificiality of the interview, (b) the lack of trust and time, (c) the elite bias, i. e.,
the interviewer may change the importance attributed to the responses according to the role played by the
interviewee, (d) the Hawthorne effects, i. e., the interviewer could interfere with interviewees’ behaviors,

(e) the language ambiguity, (f) the failure of the interview, and (g) the building of knowledge .

116

8.3. Identifying the Inpatient’s Adverse Events

Figure 8.1.: The Myers and Newman guidelines for the qualitative research interview
(from [Myers and Newman, 2007])

8.3. Identifying the Inpatient’s Adverse Events

The interview sessions have been undertook within the hospital from March 2012 to

May 2012 and involved four employees of the hospital, which are characterized by a high

level of experience in their work activities and in the use of the EPR adopted within

the hospital. In particular, the first two interviewees are the director of the unit for

the management of information systems and the head of nursing. Subsequently, they

suggested to interview two senior nurses. In particular, one of the interviewed nurses

is a member of the group for prevention and management of falls within the hospital.

Figure 8.2 shows some of the questions that have been administered to the interviewees.

The four interviewees were highly interested and willing to undergo to the interview,

since they were conscious of the benefits obtainable from the results of this study for

both patients and clinicians. The first outcome of the interviews was that the interviewed

clinicians are generally satisfied of the EPR they use in their daily activities. In particular,

clinicians expressed their favour with respect to the possibility to have access to the whole

inpatient’s clinical history, which can be kept constantly updated and made available

every time it is needed (through the use of mobile devices). Moreover, clinicians expressed

their appreciation for the better management of their care activities, reducing the risk of

misunderstanding with both their colleagues and the doctors.

117

8. Validating the WOAD Visual Language

Focusing on the identification of the possible adverse events that can occur to the

inpatients during their hospital stay, clinicians outlined some relevant scenarios, which

range from the risk of malnutrition, infection or decubitus ulcers up to the occurrence of

catastrophic events. Notwithstanding the wide range of possible adverse events, most

part of the interviewed clinicians focused on the inpatients’ fall risk. This is partially

motivated by the fact that a statistical study conducted within the Presidio Ospedaliero

di Vimercate has shown that falls involve more than the 1% of the inpatients (value to

be considered extremely significant, considering the size of this hospital). Moreover, the

Italian Health Ministry included the fall risk in the set of sentinel events5, which is called

“death or serious damage for the inpatient’s fall”6, showing that this topic is considered

relevant also at the national level.

In this light, since clinicians consider crucial to be able to avoid the occurrence of this

adverse event, the study has been focused on the elicitation of the pre-conditions that

lead to the fall of an inpatient.

8.3.1. The Inpatient’s Fall Risk

The analysis of the answers given by clinicians during the interview sessions has shown that

their EPR does not encompass any kind of tool to help them in preventing the inpatients’

fall. Moreover, from this analysis it has been possible to understand that determining

the possibility of an inpatient’s fall requires clinicians a lot of efforts to consider a wide

range of factors, which are characterized by a heterogeneous nature (e. g., subjective

perceptions of inpatients and objective measurements and observations performed by

clinicians):

Conley scale The Conley is an ordinal scale, which is composed of six factors to which

is assigned a score and indicates the presence of the fall risk, if its overall score

is greater than the threshold value of two points out of ten (see [Conley et al.,

1999]). In particular the factors influencing the Conley score are: (1) other fall

events in the past three months, (2) vertigo or dizziness in the past three months,

(3) incontinence or loss of faeces in the past three months, (4) impairment of the

5 A sentinel event represents a particular type of serious adverse event that is sufficient if occurs even
once to make necessary to conduct an investigation with the aim to make explicit the triggering factors,
in order to implement the appropriate corrective actions.
6 The third report on the Monitoring Protocol of Sentinel Events shows that, in the period between
the years 2005 and 2010, the inpatient’ fall is the second type of sentinel events that hospitals signalled
to the Italian Health Ministry (16.8% of the signalled events). See http://www.salute.gov.it/imgs/

C_17_pubblicazioni_1642_allegato.pdf. Accessed: 2012-10-15. (Archived by WebCite® at http:

//www.webcitation.org/6BQvrQOUb) - in Italian.

118

http://www.salute.gov.it/imgs/C_17_pubblicazioni_1642_allegato.pdf
http://www.salute.gov.it/imgs/C_17_pubblicazioni_1642_allegato.pdf
http://www.webcitation.org/6BQvrQOUb
http://www.webcitation.org/6BQvrQOUb

8.3. Identifying the Inpatient’s Adverse Events

Figure 8.2.: Some questions that have been administered to clinicians during the semi-
structured interviews

walk capabilities, (5) anxiety, and (6) loss of wisdom. Even if clinicians trust this

scale, they consider suitable the evaluation of other risk factors, in the case the

Conley score of the inpatient is less than two.

Vital parameters In some cases, clinicians reported experiences of inpatients’ falls even

if they were not considered in a risky conditions, but they presented significant

deviations in some of their vital parameters with respect to the reference values.

For this reason, clinicians indicated the possibility that vital parameters can have

some influence on the inpatient’s fall risk (Table 8.1 summarizes the set of vital

parameters that clinicians indicate as the crucial ones). In particular, the Braden

scale evaluates the influence of decubitus ulcers on the fall risk (see [Bergstrom et al.,

1987]); on the other hand, the VAS scale provide a similar evaluation with respect

to the subjective perception of pain by the inpatient (see [Hayes and Patterson,

1921; Aitken, 1969]).

Pathologies Clinicians consider some pathologies (e. g., heart and neurological diseases,

disorders of the musculoskeletal apparatus and gastrointestinal) an additional

indicator of the fall risk.

Pharmacotherapy The number and the type of drugs (e. g., sedatives, laxatives and

119

8. Validating the WOAD Visual Language

Vital Parameter Reference Values Threshold

Body temperature 32 – 42 > 38

Braden scale 0 – 20 < 14

DTX-glucose 20 – 800 avg a + 100 OR avg a − 50

Minimum arterial pressure 40 – 165 avg a + 20 OR avg a − 20

VAS scale 0 – 10 >= 4

a Average reference values.

Table 8.1.: The set of inpatients’ vital parameters

cardiovascular drugs) administered to the patient may have repercussions on the

possibility that she can fall. Some of the interviewed clinicians indicate a value

between three and four for the number of drugs administered at the same time in

order to consider the inpatient in a risky situation.

Other factors Clinicians indicate also old age (i. e., a more than eighty years old inpatient),

the use of walking aids or the postoperative conditions as pre-conditions that can

affect the inpatient’s fall risk level.

The interviewed clinicians indicated all these risk factors with reference to more than

sixty-five years old inpatients. However, in the case of over eighty years old inpatients,

clinicians indicated this condition as a high risk factor of fall.

Starting from the elicited risk factors and working closely with clinicians, a set of

pre-conditions that can lead the inpatient to a fall event has been defined. This set of pre-

conditions allowed to define a set of rules, with the aim to promote among clinicians the

awareness that a fall event can disrupt the safety of an inpatient. In particular, according

to the severity of the risk that is expressed by the pre-conditions, clinicians commonly

agreed in defining three fall risk levels, i. e., ‘high’, ‘medium’ and ‘low’. Table 8.2

summarizes these rules, grouping them according to the related risk level. This set of

rules has been used to validate the expressiveness of the WOAD Visual Language (see

Section 6.2.1), as described in the next section.

8.4. WOAD Mechanisms and the Inpatient’s Fall Risk

Since one of the purposes of the described qualitative user study was the validation of

WOAD Visual Language expressiveness, it was necessary to give clinicians the possibility

to focus on the task of creating the set of rules to convey a suitable API, i. e., the

Safety API, to make clinicians constantly aware of a risky condition of an inpatient

120

8.4. WOAD Mechanisms and the Inpatient’s Fall Risk

Rule Name LHS RHS

Conley Result Conley >= 2
Age >= 65

Safety API
(High Risk)

Old Age Age >= 80

Polytherapy Number of Drugs >= 4
Age >= 65

Critical Diseases ∃ Critical Disease a

Age >= 65

Safety API
(Medium Risk)

Critical Drugs ∃ Critical Drug b

Age >= 65

Deambulation Aid ∃ Deambulation Aid

Surgeries ∃ Recent Surgery
Age >= 65

Body Temperature Temperature > 38
Age >= 65

Safety API
(Low Risk)

DTX-glucose DTX >= avg c + 100 OR DTX <= avg c − 50
Age >= 65

Minimal Arterial Blood Pressure Pressure >= avg c + 20 OR Pressure <= avg c − 20
Age >= 65

Scales VAS >= 4
Braden < 14
Age >= 65

a E.g., cardiovascular, cerebral and musculoskeletal diseases. b E.g., sedative and cardiovascular drugs.
c Average reference values.

Table 8.2.: The set of rules to check the inpatients’ fall risk factors

(see Section 1.4.1 for more details about APIs). In the particular case, the Safety API

has been configured to convey its awareness information through an exclamation mark

icon, the color of which ranges from green (low risk), through orange (medium risk) to

blue (high risk).

To this aim, clinicians have been provided with a simple dashboard (see Figure 8.3)

that summarizes all the identified fall risk indicators (that represent the elicited risk

factors). The choice to build a dashboard is motivated by the need of clinicians to be

able to have a complete overview of the inpatient situation at a glance that emerged

from the interview sessions. This dashboard has been built like any other document of

the WOAD framework, i. e., creating a document template using the WOAD Template

Editor (see Section 6.1). To reach this goal, the first activity has been to create a set

of Datoms representing and grouping the various fall risk indicators (e. g., the Conley

score or the set of the vital parameters). Moreover, the related Didgets was populated

with data extracted from the official EPR of the hospital. Moreover, the choice to do

not ask clinicians to create the dashboard was made with the aim to avoid to overload

121

8. Validating the WOAD Visual Language

Figure 8.3.: The inpatient’s fall risk dashboard WOAD document (in Italian)

clinicians with the additional, even though minimal, effort that is needed to learn to use

the WOAD Template Editor.

Once clinicians have been provided with the dashboard, some observation sessions

have been undertaken while they performed the task of creating the WOAD mechanisms

to convey the Safety API near to the dashboard indicators that verify the elicited fall

risk pre-conditions. In order to reach this goal, a preliminary training session has been

administered to clinicians in order to briefly illustrate them the basic concepts concerning

the user interface of the WOAD Mechanism Editor and the composition of the blocks of

the WOAD Visual Language. Subsequently, clinicians were asked to create the WOAD

mechanisms they need using the WOAD Visual Language. The feedbacks obtained during

these observation sessions were for the most part positive, since clinicians did not present

particular problems in building the WOAD mechanisms. This result allowed to assert

that the WOAD Visual Language can be considered sufficiently expressive and intuitive to

support clinicians in the task of defining the WOAD mechanisms they need to support the

provision of suitable awareness information to their colleagues. In particular, according to

the rules summarized in Table 8.2, clinicians autonomously composed some of the related

WOAD mechanisms. Figure 8.4 shows the WOAD mechanisms that clinicians created to

monitor the Conley score of a over sixty-five years old inpatient (see Section 8.3.1), with

122

8.4. WOAD Mechanisms and the Inpatient’s Fall Risk

(a)

(b)

Figure 8.4.: The Conley WOAD mechanism and the Safety API conveyed through the
Fall Risk Dashboard (in Italian)

the aim to convey a Safety API for a high fall risk level (i. e., according to the Safety

API configuration, a blue exclamation mark icon), if the value of the Conley score is

greater than 2 (i. e., Conley score ≥ 2). On the other hand, Figure 8.5 shows the set of

two WOAD mechanisms pertaining the DTX-glucose rule: in this particular case, since

the rule encompasses a disjunctive condition (i. e., OR), clinicians created two distinct

mechanisms to check if the inpatient’s glucose exceeded an upper or a lower threshold

and, if one of these conditions is verified, the related WOAD mechanism will be triggered

to convey a Safety API for a low fall risk level.

The collaborative rule definition raised an interacting discussion about the possibility

that multiple rules can be active at the same time, and on what might be the best strategy

to convey awareness in these cases. Within rule-based systems, this kind of situations can

be solved through the adoption of the conflict resolution techniques7, changing the system

7 Rule-based systems can perform different strategies to solve rules conflicts: (a) executing the first rule
in which all conditions are verified (with the risk of an infinite loop on this rule), (b) executing a random
choice, (c) executing the rule with the highest number of conditions, (d) executing the rule that has been

used more recently, and (e) executing the rule with the highest salience.

123

8. Validating the WOAD Visual Language

Figure 8.5.: The DTX-glucose WOAD mechanism

behavior by managing the activation of the rules. On the other hand, since WOAD

mechanisms have been conceived only to convey suitable APIs without performing any

kind of inference, the default behavior of the WOAD framework is to make evident

this situation showing all the suitable cues associated to each right-hand side in order

to make the different interpretations visible and let the users solve the conflict on the

basis of their experience and competences. This default behavior was discussed with the

clinicians and they preferred to look for a solution more focused on the case at hand.

First of all, clinicians proposed to select only the rule that presents the higher risk level.

However, this solution provides only a first approximation to the resolution of this kind of

situations, since, the validation of this strategy revealed a borderline situation, which can

be summarized with the question “if all the active rules pertain either to the ‘medium’

and to the ‘low’ risk, which is the overall risk level? The overall risk level is ‘medium’ or

higher?”. This borderline situation is more evident if active rules pertain to the same risk

level (i. e., “if all the active rules pertain to the ‘medium risk’ category, the overall risk is

still ‘medium’ or it becomes ‘high’?”). The solution to this type of problem was found in

124

8.4. WOAD Mechanisms and the Inpatient’s Fall Risk

agreement with the clinicians, who proposed to define a new rule that groups in its left

hand side (i. e., the rule’s when-part) all the conditions of the rules that are active at the

same time; moreover, the right hand side of this rule (i. e., the then-part) would convey

to clinicians an awareness information concerning a risk level that is greater than the

highest risk of conflicting rules (e. g., if the active rules pertain either to the ‘medium’ or

to the ‘low’ risk, the new rule would pertain to the ‘high’ risk). In the head of clinicians,

this particular solution had the advantage to consider the cumulative effects of several

risk symptoms with respect to take into account one by one rules that are active at the

same time, thus making clinicians aware about the true fall risk level of the monitored

inpatient.

125

9
Validating the WOAD Mechanism Editor

Contents

9.1. Designing the User Study . 128

9.2. Performing the User Study . 130

9.3. Discussing the Results . 130

In the light of the positive results of the qualitative validation of the WOAD Visual

Language, which have been described in the previous chapter, a second user study has

been performed with the aim to validate the usability and the user-friendliness of the

WOAD Mechanism Editor, in particular focusing on the intuitiveness of the user interface.

To this aim, a quantitative user study1 has been performed within the same hospital where

the user study described in the previous chapter took place, with the aim to understand

if end-users with no particular programming skills could be able to autonomously use the

editor, without any particular training on how to use it.

To this aim, a set of students and post-graduate residents that work within the hospital

have been enrolled in this user study. They were used as “proxy users” [Friedman and

Wyatt, 2006] for the WOAD Mechanism Editor. Proxy users are users that sufficiently

represent the typical users of the system being tested. Enrolling proxy users is useful in

those situations in which it is difficult to involve the actual users directly, in this case

doctors and nurses actually working in a hospital setting full time. In particular, this

quantitative user study required clinicians to autonomously use the WOAD Mechanism

Editor to compose three WOAD mechanisms each one corresponding to a real-life

1 The user study will be discussed in a chapter of the book “Emerging Research and Trends in Interactivity
and the Human-Computer Interface” edited by Katherine Blashki and Pedro Isáıas that will be published

by IGI Global in 2013.

127

9. Validating the WOAD Mechanism Editor

conventional rule, which has been discussed with clinicians during other field studies in

the healthcare domain (e. g., see [Cabitza et al., 2009a; Cabitza and Simone, 2012]).

This chapter will deal with the description of this quantitative user study and will

discuss the obtained results. First of all, the chapter will go through the description of

the activities that were aimed at designing the user study. Subsequently, the chapter

will describe the procedure that has been adopted to execute the test. Finally, the last

section will summarize and discuss the obtained results.

9.1. Designing the User Study

Drawing upon the general structure of empirical studies that has been proposed in [Perry

et al., 2000], the first activity that has been undertaken was the design of the user study,

and the result has been a four-step structure: (i) formulation and refinement of the

hypothesis to be tested; (ii) gathering of participants (i. e., clinicians) who claimed to be

interested in attending the study, random separation of them in two groups and, finally,

execution of the testing sessions; (iii) systematic analysis of the collected data through

the calculation of some statistics; and, finally, (iv) on the basis of the results of statistics

and the related analysis, drawing of some remarks about the possibility to reject or not

the initial hypothesis.

The hypothesis under test was that «the participants that received the training session

(i. e., the U1 group) and those that did not receive such a training (i. e., the U2 group)

would take an equal time, on average, to perform each task» (i. e., H0 : µTU1 = µTU2). In

this light, the aim of the study was to collect sufficient evidence to determine whether

H0 could be either rejected or, conversely, confirmed. The latter case would prove that

untrained users can use the WOAD Mechanism Editor as much skilfully as users that

received a specific and effective training on its usage.

To this aim, the study has been designed to ask users to perform three tasks with an

increasing level of complexity. Nevertheless, tasks were structured to involve no more

than two documents:

Task 1 This task required users to check if the weight of the newborn is included within the

range of reference values (i. e., 2500g ≤ Newborn Weight ≤ 4500g), and otherwise

to convey the awareness information of a critical situation. The task involved only

one document that is called ‘Objective Examination’ and contains the Didget

pertaining to the ‘newborn_summary’ Datom). Since the condition can be expressed

as a disjunctive boolean expression, i. e., newborn_summary.weight < 2500g OR

newborn_summary.weight > 4500g, users were asked to compose two distinct

128

9.1. Designing the User Study

WOAD mechanisms: the former to check if newborn_summary.weight < 2500g

and the latter to check if newborn_summary.weight > 4500g; both mechanisms,

if activated, would have to convey a Criticality API, which has been defined to

show a red border around the weight data field in the newborn_summary Didget.

Task 2 This second task required users to check if the newborn has at least a malformation,

and in this case to convey awareness information to make evident that there is a

medium risk for the safety of the newborn. Even in this case, users were asked to

compose a WOAD mechanism that only involved a single document: the ‘Familiar

Medical History’. The related document template contains a Didget that

pertains to the ‘malformations’ Datom, which represents a check list of the most

common malformations. Moreover, this task required users to use the ‘count’

aggregator. Users were asked to compose a WOAD mechanism that counts the

number of checked malformations in the malformations Didget and, if the resulting

value is greater than zero (i. e., count(malformations.*) > 0), to convey a Safety

API near to the first data field of this Didget. In order to convey the Safety API

for a medium risk, users were asked to specify the ‘medium’ value for the ‘risk level’

parameter of the Safety API.

Task 3 The last task required users to check if a drug that they prescribed to an inpatient

is in the official list of drugs of the hospital pharmacy, and otherwise to convey

the awareness information to make their colleagues aware of the need of reviewing

the name of the prescribed drug. This task involved two distinct documents:

the ‘Prescription Sheet’, which contains the drugs that doctors prescribed

to an inpatient, and the ‘Drug List’, which contains the list of drugs of the

hospital pharmacy. For the sake of simplicity, the ‘Prescription Sheet’ has been

defined to contain four distinct Didget pertaining to the ‘drug’ Datom, while the

‘Prescription Sheet’ is composed of a single Didget pertaining to the ‘drug_list’

Datom, which has been configured as “multiple” (see Section 3.2). The task required

users to compose a WOAD mechanism that uses the ‘in’ aggregator to check that

the name of the first drug is not in the list of drugs, and accordingly to convey a

Revision API near to wrong drug name in the ‘Prescription Sheet’.

Moreover, the choice to ask clinicians to perform three distinct tasks allows to have a

first understanding on the existence of a self-teaching process triggered by the user of the

WOAD Mechanism Editor. In other words, if users can easily acquire skills while using

the editor.

129

9. Validating the WOAD Mechanism Editor

9.2. Performing the User Study

After the initial phase concerning the design of the study, the next phase has been the

enrollment of the participants (i. e., clinicians). Once the number of participants that

have been gathered was considered sufficient to have a significant sample, testing sessions

were started. This stage of the study has been articulated in four further steps. First of

all, a preliminary questionnaire has been administered to participants with the aim to

get some information about them, like their education level, their work experience and

their self-assessed IT skills. Subsequently, all participants underwent a short talk that

provided them with a brief outline of the scope and the aim of the test session.

After completing this initial phase, in which all participants received the same infor-

mation, they have been randomly divided in two evenly-matched groups. Only one of

the two groups of participants received a comprehensive training session (i. e., the U1

group). Conversely, the other group did not receive any training, as it was supposed to

be the “control group” (i. e., the U2 group). The training session consisted in showing to

participants a short movie that illustrates how to use the WOAD Mechanism Editor and

how to solve simple tasks by creating a couple of pertinent WOAD mechanisms. At the

end of this training session, participants were asked to fill in a second questionnaire to

assess the perceived satisfaction with the training that they received in terms of efficacy.

Once all the preliminary phases were completed, it has been possible to start the actual

test session, where participants were asked to perform the three tasks that have been

described in Section 9.1. Each participant was timed while she was performing each one

of three tasks. In order to keep the maximum objectiveness of the measurements, during

the execution of tasks the participants were not influenced in any way.

Finally, at the end of the test session, participants were asked to fill in a short final

questionnaire with the aim to collect an informal feedback “on the spot”, in terms of the

evaluation of their overall satisfaction in using WOAD Mechanism Editor, the usability

of its user interface and the intuitiveness of the WOAD Visual Language, as well as

comments and suggestions.

9.3. Discussing the Results

At the end of the test session, the collected data has been organized and analyzed in

order to try to validate the hypothesis under test. A total of 34 participants were enrolled

in this study. The enrolled participants were students of both medicine and nursing as

well as post-graduate residents. The enrollment criteria required participants to have

130

9.3. Discussing the Results

Figure 9.1.: The main characteristics of the enrolled clinicians

some experience with computers, but no particular skill in either programming or visual

programming editors. For this reason, four potential subjects, who declared to have

very good programming skills, were discarded from the initial sample of 38 participants.

Participants were between 25 and 32 year old, and only 14 of them (42%) were female (see

Figure 9.1); 21 of them (62%) were already graduated. Most of the participants defined

themselves as intermediate computer users, while 9 of the other defined themselves as

beginners (27%) and only 4 as experts (11%); moreover, 8 of them (24%) declared to

have some experiences in computer programming, but only 2 of them (6%) declared to

have had previous experiences with visual editing environments. Only a small set of 6

participants were workers (19%) with an average job experience of 2.5 years. Since the

participants have been splitted into two groups it was fundamental that these groups

were homogeneous with respect to the characteristics of the participants. To this aim,

a Chi-squared test has been performed and allowed to state that the two groups were

equal with respect to gender, IT skills and occupation.

Of the 34 participants, only three of them dropped out from the not trained group

before completion. This results in a final sample of 31 participants. Moreover, at

the satisfaction questionnaire on the effectiveness of the training session, 12 out of 17

participants found the training session at least effective (“effective” or “very effective”):

notably, only these 12 participants were considered for the execution step so as to consider

only those that thought to have been benefitted from receiving the training and therefore

maximize the differences between the two groups. This skimming was aimed at discarding

participants who could perform as if they did not receive the training just because they

could not exploit the training as an advantage for their performance. Moreover, only

those participants that could accomplish the tasks correctly or, at least, with minor

mistakes have been considered. For this reason, those participants that, irrespective

of the training received, did a bad performance of the tasks have not been considered.

131

9. Validating the WOAD Mechanism Editor

Mean Standard Mean Std.
Groups N (seconds) Deviation Error p-Value a

Task 1
Trained – TU1 12 391.00 173.41 48.10

0.077

Not trained – TU2 14 510.92 157.28 43.62

Task 2
Trained – TU1 12 280.31 128.62 35.67

0.658

Not trained – TU2 14 260.15 99.03 27.47

Task 3
Trained – TU1 12 295.08 87.66 24.31

0.380

Not trained – TU2 14 257.69 122.75 35.05

a Student’s T-test for the equality of means of independent samples.

Table 9.1.: Statistical comparisons between the “trained” group (i. e., the U1 group) and
the “not trained” group (i. e., the U2 group)

Figure 9.2 shows the chart of the mean time of the two groups for each task. Except for

what concerns Task 1, in which the U1 group has a better mean time than the U2 group,

in Task 2 and Task 3, the U2 group has a slightly better mean time than the U1 group.

Moreover, Table 9.1 reports the final results of the test.

In order to understand if the initial hypothesis should be rejected or not, the collected

data have been used to compute some statistics. In particular, collected data has

been used to perform the Student’s T-test for the equality of means of independent

samples. The preliminary activity has been to set the significance level of the test at the

conventional threshold of the probability to discard the initial hypothesis (i. e., H0) if

this is actually true (i. e., alpha = 0.05). The idea was to confirm the initial hypothesis

to be true (as initially assumed) if and only if the probability of observing data at least

as extreme as that observed is below 5%. According to the time measures that have

been collected during the execution of the test, and hence to the so called “mean time to

performance” (in seconds) for each task, it is not possible to reject either H0Task 1 , H0Task 2

or H0Task 3
(see p− V alue > 0.05 for all three tasks in Table 9.1). Therefore, H0 can be

considered true for all three tasks, allowing to claim that the WOAD Mechanism Editor

does not require specific skills to support realistic tasks of computational augmentation

of regular clinical documents.

In regard to the post-test evaluation in the final questionnaire, the results have been

analized focusing on the subjective assessment of the overall value of the user experience,

of the user-friendliness of the graphical user interface, and on the extent the visual

language was found intuitive, i. e., easy to comprehend and apply to the requested

cognitive tasks. These assessments were solicited asking the participants to choose

one possible value in an ordinal scale from 1 to 4, with explicit anchors being “very

low”, and “very high”. Since the middle option has been purposely avoided to limit

132

9.3. Discussing the Results

F
ig

u
re

9
.2

.:
T

h
e

b
ox

p
lo

t
ch

ar
t

of
th

e
m

ea
n

ti
m

es
of

p
er

fo
rm

an
ce

of
th

e
tw

o
gr

ou
p
s

of
p
ar

ti
ci

p
an

ts
:

th
e

“t
ra

in
ed

”
gr

ou
p

(i
.e

.,
U

1
)

an
d

th
e

“n
ot

tr
a
in

ed
”

gr
ou

p
(i

.e
.,
U

2
)

133

9. Validating the WOAD Mechanism Editor

central tendency bias, participants have been provided with the opportunity to select

a “don’t know option”. In Figure 9.3, the corresponding results are shown. Calculated

means, which have been reported for descriptive (i. e., not inference) purposes only, are

respectively: Overall value: 2.78 (SEM2 0.13); GUI user-friendliness: 2.57 (SEM 0.14);

visual language intuitiveness: 2.63 (SEM 0.17). This can be taken as an informal

indication that respondents found the editor usable and the visual language intuitive

enough for their purposes (since the mean was always greater than 2.5). A two sample

Kolmogorov-Smirnov Test3 provided insufficient evidence to reject the assumption that

the median assessments from the two distinct groups were not uniform (Overall value:

Z = 0.53, p − V alue = 0.94; GUI user-friendliness: Z = 1.1, p − V alue = 0.18; visual

language intuitiveness: Z = 1.24, p− V alue = 0.09), that is it is possible to claim that

user satisfaction did not depend on having received the training or not (which was

nevertheless considered effective by whom received it).

Summarizing, the statistical results that have been discussed above gave a preliminary

positive contribution to suffrage the initial hypothesis that the WOAD Mechanism Editor

can be profitably used also without a specific (and effective) training session. In other

words, the WOAD Mechanism Editor does not require specific IT skills to be used by

domain-expert users.

2 Standard Error of the Mean.3 The Kolmogorov-Smirnov Test has been performed with SPSS v. 17.0.

134

9.3. Discussing the Results

Figure 9.3.: The boxplot charts of the final evaluations of the two groups of participants
(i. e., the “trained” group, U1, and the “not trained” group, U2)

135

10
Conclusions

This thesis focused on the need of end-users to be autonomous in tailoring the document-

based systems that they use to perform their collaborative work activities. In particular,

the leitmotif of this work is to allow users of WOAD-compliant systems to perform their

tailoring activities through a visual approach that does not impose them to learn technical

skills specific of IT professionals.

The starting point of this work was that the systems compliant with the earlier

definition of the WOAD framework presented some weaknesses that risked to strongly

limit its applicability (see Chapter 3 and Chapter 4). First of all, WOAD-compliant

systems still required the presence of IT professionals to perform the task of defining

the WOAD mechanisms, i. e., rules, that users need to couple to their digital documents

with the aim to convey suitable Awareness Promoting Information (API), in order to

support and promote collaboration awareness among their colleagues on the basis of their

local conventions. Since users are the only ones who have the full knowledge of these

conventions and their continuous evolution, it is crucial to support them in autonomously

performing the task of composing the WOAD mechanisms that they need. Moreover,

several studies in the healthcare domain (e. g., [Cabitza et al., 2009b; Morrison and

Blackwell, 2009; Chen and Akay, 2011]) showed that the users need to autonomously

customize the documents that they utilize to perform their daily work activities, as their

are accustomed to do with traditional paper-based documents. In particular, paper-based

documents allow users not only to change the appearance of documents, but also to

modify the informative content of documents according to their current needs. On the

other hand, the systems based on digital documents, e. g., traditional EPRs, force users

to switch to rigid user interfaces with structure and informative content that differ from

those of the paper-based counterparts, without any possibility to be adapted. Even if

137

10. Conclusions

the WOAD framework yet copes with this need of flexibility, since WOAD documents

have been conceived to rely on a modular approach, it lacked in supporting users in

autonomously composing their document templates in a simple manner.

The two weaknesses of the WOAD framework described above and the findings of

a field study in the healthcare domain (see [Cabitza et al., 2009a]) suggested to adopt

the tenets of the EUD research field to provide a suitable answer to the users’ need

of autonomy. In this light, a bottom-up approach has been adopted to abstract and

generalize the outcomes of this analysis, allowing the elicitation of a set of requirements

to suitably improve the WOAD framework and to make it EUD-compliant. To this

aim, we proposed to adopt a visual approach to allow users to be autonomous in both

defining and structuring the informative content of their digital documents as well as in

creating their WOAD mechanisms. In order to validate this approach, two prototypical

visual editors have been developed, i. e., the WOAD Template Editor and the WOAD

Mechanism Editor. Moreover, the latter has been conceived to adopt a block-based visual

language. This required to conceive a visual language, i. e., the WOAD Visual Language,

whose set of constructs have been defined on the basis of the findings of another field

study in the healthcare domain (see [Cabitza and Simone, 2012]).

Since the WOAD Template Editor mimics the WYSIWYG approach of traditional

word processors, which it is assumed that users are familiar with, it has not undergone

a deep validation. On the other hand, the visual approach of the WOAD Mechanism

Editor required to be deeply validated, in order to understand if the building block

metaphor was sufficiently user-friendly to make users autonomous in the task of defining

WOAD mechanisms. To this aim, two user studies have been conducted in the healthcare

domain (see Chapter 8 and Chapter 9). The first user study was focused on validating

the expressiveness of the WOAD Visual Language. The involved clinicians did not

present relevant problems in composing the WOAD mechanisms that allow them to be

aware of an inpatient’s risky condition. This made us confident that the WOAD Visual

Language can be considered sufficiently expressive and intuitive to support clinicians in

the definition of the WOAD mechanisms. The second user study was aimed at validating

the usability of the user interface of the WOAD Mechanism Editor: users should be able

to use the WOAD Mechanism Editor without any kind of training on its use. Even in

this case the obtained results have been positive, supporting the claim that the WOAD

Mechanism Editor can be used without requiring users neither to have specific IT skills

nor to undergo specific training.

The work presented in this thesis gives a contribution to achieve the goal of designing

and implementing technologies supportive of cooperative work that can be easily tailored

138

10.1. Future Works

by users to support their local conventions and work practices. Empowering users in

this way allows them to become an active player in the process of customization and

constant adaptation of their collaborative systems, contributing in having timely solutions

to extemporaneous problems and needs. Moreover, this involves users in a process of

appropriation that concerns the use of the system as well as the internalization of

conventions. In this way, the transition from paper-based documents to digital documents

can also have positive effects on the improvement of the effectiveness of the daily users’

work practices.

Despite the improvements this work made to the WOAD framework towards flexibility

and the support for local conventions, the WOAD framework can be further improved

to provide end-users with a document-based collaborative system that fulfil their actual

needs: these future improvements will be discussed in the next section.

10.1. Future Works

Although the two preliminary validation sessions to which the WOAD Mechanism Editor

has undergone gave positive results, the collection of further evidences is needed, in order

to corroborate the idea that the adopted visual approach is an effective way to empower

end-users in being autonomous in editing their WOAD mechanisms. To this aim, longer

and more exhaustive validation sessions are needed. Due to the collaborative nature

and the heterogeneity of care activities, the healthcare domain represents an excellent

candidate to perform these further validation sessions, even though other collaborative

domains could be taken into account.

In the light of providing end-users with a technology supportive of cooperative work

that preserves the flexibility of the paper medium, it is possible to follow three different

directions towards the further improvement of the WOAD framework: (a) supporting

users in collaboratively annotating their documents; (b) improving the support for

collaborative tailoring activities; and (c) supporting a wider set of document types.

Supporting users’ annotations. The role that annotations play in supporting cooperation

is well recognized within the CSCW literature. For instance, [Bringay et al., 2006]

described annotations as a fundamental feature to promote collaboration among

the users of document-based EPRs. The field studies that have been conducted

in the healthcare domain [Cabitza et al., 2009a] further confirmed that clinicians

strongly appreciate the possibility to annotate their digital documents as they are

already accustomed to do with the paper-based counterparts. Thus, the WOAD

framework should be endowed with collaborative annotation capabilities that make

139

10. Conclusions

users able to annotate any part of a document (e. g., texts, data fields and images).

Annotations could be a free text object as well as a label, i. e., what it is commonly

denoted with the term ‘tag’. To be more precise, a tag could be, for instance,

either a system-defined or a user-defined keyword as well as a date (in a standard

format). Moreover, the field studies discussed in [Cabitza et al., 2012] showed

that users appreciate the possibility of annotating existing annotations, that is

making annotations recursive. This leverages a distributed and asynchronous

communication process among users that further improves collaborative practices

and promotes knowledge creation and sharing among users. For instance, doctors

and nurses can use recursive annotations to discuss the trajectory of an inpatient’s

illness or the response of the inpatient to a particular drug, contributing in the

continuous improvement of their understanding of the inpatient’s health problems.

Moreover, the results of other field studies in the healthcare domain [Cabitza et al.,

2005; Cabitza and Simone, 2008] showed that clinicians often define relationships

among documents, contributing in building a web of artifacts (see Section 1.2).

To this aim, annotations could be leveraged to promote this conventional practice.

The idea is to allow users to share annotations among different documents, in order

to support them in defining the relationships that involve these documents. For

instance, clinicians could use this functionality to make explicit that a piece of

information about a treatment is causally related to a specific value of some vital

parameters in order to help their colleagues, at a later time, in reconstructing the

whole trajectory of the inpatient’s illness. This is specifically useful when this

relationship is not part of the usual caring process. Finally, since annotations

could contain conventional information, the WOAD mechanisms should be able to

use these pieces of information in both the when-part and the then-part. In the

first case, users could define WOAD mechanisms to convey APIs whenever specific

conditions involving either the content or the existence of annotations are verified.

On the other hand, using the information contained in the annotations within the

then-part allows WOAD mechanisms to change the affordances of the involved

annotations, according to the conveyed APIs.

Improving the support for collaborative tailoring. The continuous process of development

and refinement of conventions is a collaborative process that involves all the mem-

bers of the group in which this process takes place. Moreover, as argued in [Rode,

2005], the need to consider the collaborative dimension of the tailoring activities

of end-users has been recognized long ago (see [Nardi, 1993]). In this light, since

users perform tailoring activities that are related to their local conventions, the

140

10.1. Future Works

WOAD framework should comply with the fundamental requirement of supporting

users in performing tailoring activities in a collaborative manner. With respect

to the document templates, this requirement has been partially addressed with

the adoption of the Repository application, which is part of the Oryx XForms

Editor. The Repository provides users with a shared space where to store docu-

ment templates; its adoption allowed to endow the WOAD framework with basic

collaborative features, like comments and ratings as well as a simple lock strategy

to avoid concurrent changes on the same document template (see Section 7.1.1).

Nevertheless, the WOAD framework does not support cooperation in the definition

of WOAD mechanisms. This situation could be improved in two ways. First of all,

the WOAD Mechanism Editor could be fully integrated with the Repository, in or-

der to provide users with an unique storage space for both document templates and

the related WOAD mechanisms. On the other hand, the WOAD Mechanism Editor

could be further improved allowing users to collaboratively annotate the WOAD

mechanisms, in order to promote the communication among users who progressively

modify a WOAD mechanism. To complete the set of tools of the WOAD framework

supporting tailorability, we notice that users are not autonomous in defining the

configuration of the affordances conveying APIs (see Section 7.2.3), requiring them

to delegate this task to more ICT experienced people. Thus, users should be

empowered in autonomously and collaboratively defining APIs’ affordances through

a user-friendly editor.

Supporting different kinds of documents. Usually, the term ‘document’ denotes a textual

content. Nevertheless, the role of document can be also assumed by other ‘ob-

jects’ (e. g., audio and video contents). In the healthcare domain, for instance, a

radiographic image is considered as a document. Moreover, to perform their care

activities clinicians also adopt charts, which summarize data in a graphic manner,

and process maps, i. e., the Clinical Pathways (e. g., see [Bleser et al., 2006]), which

support them in performing care activities by following a commonly agreed set

of steps. Within the WOAD framework, documents are forms that users fill in

with data during their work activities. In this light, the WOAD framework should

be improved enlarging the range of the supported types of documents in order to

include images, charts and process maps: users should be able to add annotations

to these kinds of documents and to use the related information within their WOAD

mechanisms. Moreover, the WOAD framework should allow users to autonomously

create their own process maps. To this aim, it can be useful to take into account

the possibility of customizing an existing plug-in for the Oryx XForms Editor in

141

10. Conclusions

Figure 10.1.: ADhOC, the future WOAD-compliant prototypical environment with the
support for annotations and multimedia documents

order to allow end-users to edit process maps that they need in a visual manner.

These further improvements will lead the WOAD framework towards providing end-

users with an even more effective, flexible and comprehensive support for their document-

based cooperative work. The idea of integrating the envisioned new features within the

WOAD framework concurs in tracing the guidelines towards ADhOC, i. e., the acronym

for Active Document with Human inside, which is a new WOAD-compliant prototypical

environment (see Figure 10.1) that is currently under development and that this thesis

contributed to construct.

142

Appendices

143

A
The MIT OpenBlocks Grammars

This appendix presents the two DTD grammars through which the MIT OpenBlocks

library validates its configuration file, which encompasses the configuration of whole set

of language constructs and their configuration as well as the configuration of the visual

editing environment, and the serialized code fragments respectively.

A.1. The grammar of the OpenBlocks Language Definition

The most important construct that is defined in this grammar is BlockGenus that allows

to specify the configuration of a visual language block, including the unique name, the

color and the label, as well as the set of connectors. The BlockConnector construct

allows to specify the features of a block connector (e. g., type and label).

Another important construct is BlockDrawer that is responsible to group a set of

visual language blocks and to populate the palette of blocks.

The following is the complete code for this grammar:

<?xml version=”1 .0 ” encoding=”ISO−8859−1”?>

2

< !−−
Document : l a n g d e f . dtd

D e s c r i p t i o n :

This d e f i n e s the language and i n i t i a l workspace se tup .

7 −−>

< !ELEMENT BlockLangDef (BlockConnectorShapes , BlockGenuses , BlockFami l i e s ? ,

BlockDrawerSets ? , Pages ? , TrashCan ? , MiniMap?)>

12 < !−−This d e f i n e s a mapping between b l o c k connector shape type to number−−>
< !ELEMENT BlockConnectorShapes (BlockConnectorShape ∗)>

145

A. The MIT OpenBlocks Grammars

< !ELEMENT BlockConnectorShape EMPTY>

< !ATTLIST BlockConnectorShape shape−type CDATA #REQUIRED>

< !ATTLIST BlockConnectorShape shape−number CDATA #REQUIRED>

17

< !ELEMENT BlockGenuses (BlockGenus ∗)>

< !−−This d e f i n e s a s i n g l e b l o c k genus−−>
< !ELEMENT BlockGenus (d e s c r i p t i o n ? , BlockConnectors ? , Stubs ? , Images ? ,

LangSpecPropert ies ?)>

< !ATTLIST BlockGenus name CDATA #REQUIRED>

22 < !ATTLIST BlockGenus i n i t l a b e l CDATA #REQUIRED>

< !−− the kind o f a genus can a f f e c t the render ing o f a b l o c k . r e l e v a n t k inds a r e :

− command: performs an operat ion and may take in more than one input

− d a t a : re turns p r i m i t i v e v a l u e s such as number , s t r i n g , boolean

− f u n c t i o n : t a k e s in an input and performs an operat ion to produce an ouput

27 −−>
< !ATTLIST BlockGenus kind CDATA #REQUIRED>

< !ATTLIST BlockGenus c o l o r CDATA #REQUIRED>

< !ATTLIST BlockGenus ed i t ab l e−l a b e l (yes | no) ”no ”>

< !ATTLIST BlockGenus l abe l−unique (yes | no) ”no ”>

32 < !ATTLIST BlockGenus i s−l abe l−value (yes | no) ”no ”>

< !ATTLIST BlockGenus l abe l−p r e f i x CDATA #IMPLIED>

< !ATTLIST BlockGenus l abe l−s u f f i x CDATA #IMPLIED>

< !ATTLIST BlockGenus page−l abe l−enabled (yes | no) ”no ”>

< !−−i s−s t a r t e r and is−terminator only app ly to b l o c k s o f k i n d : command −−>
37 < !ATTLIST BlockGenus i s−s t a r t e r (yes | no) ”no ”>

< !ATTLIST BlockGenus i s−te rminator (yes | no) ”no ”>

< !−−This d e f i n e s a b l o c k d e s c r i p t i o n and the d e s c r i p t i o n o f i t s b l o c k arguments−−>
42 < !ELEMENT arg EMPTY>

< !ATTLIST arg n CDATA #REQUIRED name CDATA #IMPLIED>

< !ELEMENT d e s c r i p t i o n (text , arg−d e s c r i p t i o n ∗)>

< !ELEMENT t ext (#PCDATA| note | em | i | br | arg) ∗>
47 < !ELEMENT arg−d e s c r i p t i o n (#PCDATA)>

< !ATTLIST arg−d e s c r i p t i o n n CDATA #REQUIRED name CDATA #REQUIRED>

< !ELEMENT note (#PCDATA| arg | i) ∗>
< !ELEMENT em (#PCDATA)>

< !ELEMENT i (#PCDATA)>

52 < !ELEMENT br (#PCDATA)>

< !−−BlockConnectors are where b l o c k s g e t connected−−>
< !ELEMENT BlockConnectors (BlockConnector ∗)>

< !ELEMENT BlockConnector (DefaultArg ?)>

57 < !ATTLIST BlockConnector l a b e l CDATA #IMPLIED>

< !ATTLIST BlockConnector l abe l−e d i t a b l e (yes | no) ”no ”>

< !−− Order matters with s o c k e t connectors and at most one p lug i s a l l owed (no

m u l t i p l e re turn ty p e s) −−>
< !ATTLIST BlockConnector connector−kind (plug | socket) #REQUIRED>

< !−− f o r connector−type use the shape−type v a l u e s s p e c i f i e d in b l o c k connectors−−>
62 < !ATTLIST BlockConnector connector−type CDATA #REQUIRED>

146

A.1. The grammar of the OpenBlocks Language Definition

< !ATTLIST BlockConnector po s i t i on−type (s i n g l e | mirror | bottom) ” s i n g l e ”>

< !ATTLIST BlockConnector i s−expandable (yes | no) ”no ”>

< !ELEMENT DefaultArg EMPTY>

67 < !ATTLIST DefaultArg genus−name CDATA #REQUIRED>

< !ATTLIST DefaultArg l a b e l CDATA #IMPLIED>

< !ELEMENT Stubs (Stub ∗)>

< !−−This d e f i n e s a s tub o f a b lock , so t h a t the b l o c k can e x i s t as a s i n g l e

e n t i t y and have mini−r e f e r e n c e s to i t−−>
72 < !ELEMENT Stub (LangSpecPropert ies)>

< !ATTLIST Stub scope CDATA #IMPLIED>

< !ATTLIST Stub stub−genus (g e t t e r | s e t t e r | c a l l e r | agent | i n c) #REQUIRED>

< !−− Defines the images t h a t are drawn on the b l o c k i t s e l f .

77 Note: For now , only one image i s enab led and wrap−t e x t and image−e d i t a b l e

have no e f f e c t .

Note: make sure Fi l eLoca t ion s p e c i f i e d i s r e l a t i v e to workspace d i r e c t o r y −−>
< !ELEMENT Images (Image)>

< !ELEMENT Image (F i l eLoca t i on)>

< !ATTLIST Image wrap−t ext (yes | no) ”no ”>

82 < !ATTLIST Image image−e d i t a b l e (yes | no) ”no ”>

< !ATTLIST Image block−l o c a t i o n

(c ente r | ea s t | west | north | south | southeas t | southwest | nor theas t | northwest)

”cent e r ”>

< !ATTLIST Image width CDATA #IMPLIED>

< !ATTLIST Image he ight CDATA #IMPLIED>

< !ELEMENT Fi l eLoca t i on (#PCDATA)>

87

< !ELEMENT LangSpecPropert ies (LangSpecProperty ∗)>

< !ELEMENT LangSpecProperty (#PCDATA)>

< !ATTLIST LangSpecProperty key CDATA #REQUIRED>

92 < !ATTLIST LangSpecProperty value CDATA #REQUIRED>

< !−−This d e f i n e s a BlockGenus Family−−>
< !ELEMENT BlockFami l i e s (BlockFamily ∗)>

< !ELEMENT BlockFamily (FamilyMember∗)>

97 < !ELEMENT FamilyMember (#PCDATA)>

< !−− Defines BlockDrawerSets and t h e i r Block Drawer content−−>
< !ELEMENT BlockDrawerSets (BlockDrawerSet ∗)>

< !ELEMENT BlockDrawerSet (BlockDrawer ∗)>

102 < !ATTLIST BlockDrawerSet type (bar | s tack) ”bar ”>

< !ATTLIST BlockDrawerSet name CDATA #REQUIRED>

< !ATTLIST BlockDrawerSet l o c a t i o n

(ea s t | west | north | south | nor theas t | southeas t | southwest | northwest) ”west ”>

< !−− window−per−drawer s p e c i f i e s i f each drawer shou ld be i t s own d r a g g a b l e

window . otherwise , a l l the drawers

are contained wi th in one d r a g g a b l e window and only one drawer can be

opened at once .

147

A. The MIT OpenBlocks Grammars

107 Whether or not the window i s d r a g g a b l e depends i f drawer−d r a g g a b l e i s s e t

to ”yes . ” −−>
< !ATTLIST BlockDrawerSet window−per−drawer (yes | no) ”yes ”>

< !ATTLIST BlockDrawerSet drawer−draggable (yes | no) ”yes ”>

< !−− the width o f a l l the drawers wi th in t h i s s e t −−>
< !ATTLIST BlockDrawerSet width CDATA #IMPLIED>

112

< !−−This d e f i n e s BlockDrawers and t h e i r content−−>
< !ELEMENT BlockDrawer ((BlockGenusMember | Separator | NextLine) ∗)>

< !ATTLIST BlockDrawer name CDATA #REQUIRED>

< !ATTLIST BlockDrawer type (default | f a c t o r y | page | custom) ”d e f a u l t ”>

117 < !ATTLIST BlockDrawer i s−open (yes | no) ”no ”>

< !ATTLIST BlockDrawer button−c o l o r CDATA #REQUIRED>

< !ELEMENT BlockGenusMember (#PCDATA)>

< !ELEMENT Separator EMPTY>

< !ELEMENT NextLine EMPTY>

122

< !−− Defines Pages d i v i d i n g the Block Canvas and the o p t i o n a l PageDrawers

a s s o c i a t e d with them

Each Page can have only one PageDrawer .

For now , every page must have a drawer or no pages can have drawers .

The b l o c k canvas need not contain any pages . You may choose to have

127 a b lank canvas i n s t e a d o f a canvas o f pages .

−−>
< !ELEMENT Pages (Page ∗)>

< !−−
drawer−with−page auto genera te s a new drawer f o r each new page crea ted

by a user

132 and c r e a t e s an empty drawer f o r each page t h a t does not s p e c i f y a page drawer

−−>
< !ATTLIST Pages drawer−with−page (yes | no) ”no ”>

< !ELEMENT Page (PageDrawer ?)>

< !ATTLIST Page page−name CDATA #REQUIRED>

137 < !ATTLIST Page page−width CDATA #REQUIRED>

< !ATTLIST Page page−drawer CDATA #IMPLIED>

< !ATTLIST Page page−c o l o r CDATA #IMPLIED>

< !ATTLIST Page page−shape CDATA #IMPLIED>

142 < !ELEMENT PageDrawer (BlockGenusMember ∗)>

< !−− I f s p e c i f i e d a t r a s h can w i l l appear on the workspace .

For both o f i t s c h i l d elements , a l o c a t i o n f o r the images shou ld be

s p e c i f i e d r e l a t i v e to the working d i r e c t o r y .

The open t r a s h image appears when a user drags a b l o c k over the trashcan .

The c l o s e d t r a s h image i s the default

147 image during s teady s t a t e .

−−>
< !ELEMENT TrashCan (OpenTrashImage , ClosedTrashImage)>

< !ELEMENT OpenTrashImage (#PCDATA)>

< !ELEMENT ClosedTrashImage (#PCDATA)>

152

148

A.2. The grammar of the OpenBlocks Serialization Format

< !−− By default , a minimap w i l l a lways appear in the upper r i g h t corner

o f the b l o c k canvas , u n l e s s enab led i s s e t to ”no . ”

−−>
< !ELEMENT MiniMap EMPTY>

157 < !ATTLIST MiniMap enabled (yes | no) ”yes ”>

< !−− By default , t y p e b l o c k i n g w i l l be enabled , such t h a t when the user t y p es onto

the canvas

b l o c k s w i l l f l y out t h a t match the entered t e x t .

−−>
162 < !ELEMENT Typeblocking EMPTY>

< !ATTLIST Typeblocking enabled (yes | no) ”yes ”>

A.2. The grammar of the OpenBlocks Serialization Format

This grammar specifies how to serialize the configuration of the OpenBlocks canvas area,

in order to store the visually defined code fragments. In particular, it defines how to

store blocks, their connection among each other and their topological arrangement.

The following is the complete code for this grammar:

< !−− D e f i n i t i o n o f save XML format f o r Codeblocks −−>
2

<?xml version=”1 .0 ” encoding=”UTF−16”?>

< !−− Root element −−>
< !ELEMENT CodeBlocks (Pages ? , BlockDrawerSets ?)>

7

< !ELEMENT Pages (Page+)>

< !−− NOTE: E x c l u s i v e sav ing (where only changed informat ion or informat ion t h a t

d i f f e r s from the language d e f i n i t i o n f i l e i s saved) i s not

enab led f o r pages YET −−>
12 < !ATTLIST Pages i s−blank−page (yes | no) ”no ”>

< !ELEMENT Page (PageBlocks ?)>

< !ATTLIST Page page−name CDATA #REQUIRED>

< !ATTLIST Page page−width CDATA #REQUIRED>

< !ATTLIST Page page−c o l o r CDATA #REQUIRED>

17 < !ATTLIST Page page−drawer CDATA #IMPLIED>

< !ELEMENT PageBlocks (Blocks ∗ , BlockStub ∗)>

< !−− I f the Block i s a BlockStub , then s p e c i f y the f o l l o w i n g −−>
22 < !ELEMENT BlockStub (StubParentName , StubParentGenus , Block)>

< !ELEMENT StubParentName (#PCDATA)>

< !ELEMENT StubParentGenus (#PCDATA)>

< !ELEMENT Block (Label ? , PageLabel ? , Locat ion ? , BoxSize ? , Col lapsed ? , Comment? ,

BeforeBlockId ? , AfterBlockId ? , CompilerErrorMsg ? , Plug ? , Sockets ∗ ,

BlockStubInfo ? , LangSpecPropert ies ?)>

149

A. The MIT OpenBlocks Grammars

27 < !ATTLIST Block id CDATA #REQUIRED>

< !ATTLIST Block genus−name CDATA #REQUIRED>

< !ATTLIST Block has−f o cu s (yes | no) ”no ”>

< !ELEMENT Label (#CDATA)>

32 < !ELEMENT PageLabel (#CDATA)>

< !ELEMENT CompilerErrorMsg (#CDATA)>

< !−− x , y l o c a t i o n wi th in the b lock ‘ s page−−>
< !ELEMENT Locat ion (X, Y)>

37 < !ELEMENT X (#CDATA)>

< !ELEMENT Y (#CDATA)>

< !−− width , h e i g h t box s i z e −−>
< !ELEMENT BoxSize (Width , Height)>

42 < !ELEMENT Width (#CDATA)>

< !ELEMENT Height (#CDATA)>

< !−− e x i s t e n c e o f t h i s element i m p l i e s the b l o c k i s c o l l a p s e d −−>
< !ELEMENT Col lapsed>

47

< !−− Comment widget a s s o c i a t e d with a Block −−>
< !ELEMENT Comment (Text , Location , Col lapsed ?)>

< !ELEMENT Text (#PCDATA)>

52 < !−− Only the Block ID o f the b l o c k connected at t h e s e connectors are

s p e c i f i e d . −−>
< !ELEMENT BeforeBlockId (#CDATA)>

< !ELEMENT AfterBlockId (#CDATA)>

57 < !ELEMENT Plug (BlockConnector)>

< !ELEMENT Sockets (BlockConnector ∗)>

< !−− NOTE: E x c l u s i v e sav ing i s not enab led f o r Block Connectors YET −−>
< !ELEMENT BlockConnector (EMPTY)>

62 < !ATTLIST BlockConnector l a b e l CDATA #IMPLIED>

< !ATTLIST BlockConnector connector−kind (plug | socket) ”socke t ”>

< !ATTLIST BlockConnector i n i t−type CDATA #IMPLIED>

< !ATTLIST BlockConnector connector−type CDATA #IMPLIED>

< !ATTLIST BlockConnector con−block−id CDATA #IMPLIED>

67 < !ATTLIST BlockConnector po s i t i on−type (s i n g l e | mirror | bottom) #IMPLIED>

< !ATTLIST BlockConnector i s−expandable (yes | no) #IMPLIED>

< !ELEMENT LangSpecPropert ies (LangSpecProperty ∗)>

< !ELEMENT LangSpecProperty (#PCDATA)>

72 < !ATTLIST LangSpecProperty key CDATA #REQUIRED>

< !ATTLIST LangSpecProperty value CDATA #REQUIRED>

< !−− To dynamica l ly add drawers and b l o c k s wi th in them to the workspace

I f a drawer s e t or drawer a l ready e x i s t s with the name s p e c i f i e d f o r

77 t h e s e widge t s wi th in the lang de f f i l e , then the loader w i l l

150

A.2. The grammar of the OpenBlocks Serialization Format

s imply i n s e r t the new drawers or b l o c k s i n t o the t h e s e a l ready

loaded widge t s . −−>

< !−− Defines BlockDrawerSets and t h e i r Block Drawer content−−>
< !ELEMENT BlockDrawerSets (BlockDrawerSet ∗)>

82 < !ELEMENT BlockDrawerSet (BlockDrawer ∗)>

< !ATTLIST BlockDrawerSet type (bar | s tack) ”bar ”>

< !ATTLIST BlockDrawerSet name CDATA #REQUIRED>

< !ATTLIST BlockDrawerSet l o c a t i o n

(ea s t | west | north | south | nor theas t | southeas t | southwest | northwest) ”west ”>

< !−− window−per−drawer s p e c i f i e s i f each drawer shou ld be i t s own d r a g g a b l e

window . otherwise , a l l the drawers

87 are contained wi th in one d r a g g a b l e window and only one drawer can be

opened at once .

Whether or not the window i s d r a g g a b l e depends i f drawer−d r a g g a b l e i s s e t

to ”yes . ” −−>
< !ATTLIST BlockDrawerSet window−per−drawer (yes | no) ”yes ”>

< !ATTLIST BlockDrawerSet drawer−draggable (yes | no) ”yes ”>

92 < !−−This d e f i n e s BlockDrawers and t h e i r content−−>
< !ELEMENT BlockDrawer ((BlockGenusMember | Separator | NextLine) ∗)>

< !ATTLIST BlockDrawer name CDATA #REQUIRED>

< !ATTLIST BlockDrawer type (default | f a c t o r y | page | custom) ”d e f a u l t ”>

< !ATTLIST BlockDrawer i s−open (yes | no) ”no ”>

97 < !ATTLIST BlockDrawer button−c o l o r CDATA #REQUIRED>

< !ELEMENT BlockGenusMember (#PCDATA)>

< !ELEMENT Separator EMPTY>

< !ELEMENT NextLine EMPTY>

151

B
The WOAD Intermediate Language XML Schema

This appendix presents the definition of the grammar of the WOAD Intermediate Lan-

guage. The grammar of the WOAD Intermediate Language has been defined using the

XML Schema Definition (XSD) syntax. Figure B.1 gives a graphic representation of the

constructs of the WOAD Intermediate Language.

The following is the complete code for this grammar:

<?xml version=”1 .0 ” encoding=”UTF−8”?>

<schema targetNamespace=”ht tp : //www. maclab . d i s c o . unimib . i t /WOADMechanism”

xmlns=”ht t p : //www. w3 . org /2001/XMLSchema”

xmlns:woad=”ht tp : //www. maclab . d i s c o . unimib . i t /WOADMechanism”

5 xmlns :x j c=”ht tp : // java . sun . com/xml/ns/ jaxb / x j c ”

xmlns : jaxb=”ht tp : // java . sun . com/xml/ns/ jaxb ”

j a x b : v e r s i o n=”2 .0 ”

j a x b : e x t e n s i o n B i n d i n g P r e f i x e s=”x jc ”>

<annotat ion>

10 <appin fo>

<j a x b : g l o b a l B i n d i n g s>

<x j c : s i m p l e />

</ j a xb : g l o b a l B i n d i n g s>

</ appin fo>

15 </ annotat ion>

<element name=”r u l e ” type=”woad:ru le ”/>

<complexType name=”r u l e ”>

<sequence>

20 <element maxOccurs=”1 ” minOccurs=”1 ” name=”when”

type=”woad:when ”/>

<element maxOccurs=”1 ” minOccurs=”1 ” name=”then ”

type=”woad:then ”/>

</ sequence>

</complexType>

<complexType name=”when”>

25 <sequence>

153

B. The WOAD Intermediate Language XML Schema

<element maxOccurs=”unbounded ” minOccurs=”1 ”

name=”cond i t i on ” type=”woad:condi t ion ” />

</ sequence>

</complexType>

30 <complexType name=”operat i on ”>

<sequence>

<element maxOccurs=”1 ” minOccurs=”1 ” name=” f i r s t o p e r a n d ”

type=”woad:condit ion component ”/>

<element maxOccurs=”1 ” minOccurs=”0 ”

name=”second operand ”

type=”woad:condit ion component ”/>

</ sequence>

35 <a t t r i b u t e name=”type ” type=”woad:operat ion type ”/>

</complexType>

<simpleType name=”opera t i on type ”>

< r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=”+”/>

40 <enumeration value=”−”/>

<enumeration value=”∗ ”/>

<enumeration value=”/ ”/>

<enumeration value=”%”/>

</ r e s t r i c t i o n>

45 </ simpleType>

<complexType name=”cons tant va lue ”>

<s impleContent>

<extens i on base=” s t r i n g ”>

<a t t r i b u t e default=” s t r i n g ” name=”type ”

50 type=”woad:data type ” />

</ extens i on>

</ simpleContent>

</complexType>

<simpleType name=”data type ”>

55 < r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=” s t r i n g ”/>

<enumeration value=”number ”/>

<enumeration value=”boolean ”/>

</ r e s t r i c t i o n>

60 </ simpleType>

<complexType name=”cond i t i on ”>

<sequence>

<element name=” l e f t s i d e ” type=”woad:condit ion component ”

maxOccurs=”1 ” minOccurs=”1 ”/>

<element name=” r i g h t s i d e ”

type=”woad:condit ion component ” maxOccurs=”1 ”

minOccurs=”0 ”/>

65 </ sequence>

<a t t r i b u t e name=”type ” type=”woad :cond i t ion type ”/>

</complexType>

<simpleType name=”cond i t i on type ”>

< r e s t r i c t i o n base=” s t r i n g ”>

70 <enumeration value=”==”/>

154

<enumeration value=”!= ”/>

<enumeration value=”> ; ”/>

<enumeration value=”> ;= ”/>

<enumeration value=”&l t ; ”/>

75 <enumeration value=”&l t ;= ”/>

<enumeration value=” l i k e ”/>

<enumeration value=”not ”/>

</ r e s t r i c t i o n>

</ simpleType>

80 <complexType name=” f i e l d ”>

<annotat ion>

<documentation>This element r e p r e s e n t s a d idget data f i e l d in a

s p e c i f i c template . I f the @template a t t r i b u t e i s omitted or

i t s va lue i s ∗ , then the element i s r e f e r e n c i n g a d idget data

f i e l d in any template o f the web o f documents .</ documentation>

</ annotat ion>

<a t t r i b u t e name=”template ” type=” s t r i n g ” default=”∗ ”></ a t t r i b u t e>

85 <a t t r i b u t e name=”didget ” type=” s t r i n g ” use=”requ i r ed ”></ a t t r i b u t e>

<a t t r i b u t e name=”name” type=” s t r i n g ” use=”requ i r ed ”></ a t t r i b u t e>

<a t t r i b u t e name=”type ” type=”woad:data type ”

use=”requ i r ed ”></ a t t r i b u t e>

</complexType>

<complexType name=”condit ion component ”>

90 <cho i c e>

<element name=”cons tant va lue ” type=”woad:constant va lue ”

/>

<element name=” f i e l d ” type=”w o a d : f i e l d ” />

<element name=”operat ion ” type=”woad:operat ion ” />

<element name=”aggregator ” type=”woad:aggregator ” />

95 <element name=”c o n d i t i o n s ” type=” w o a d : c o n d i t i o n s l i s t ” />

</ cho i c e>

</complexType>

<complexType name=”then ”>

<sequence>

100 <element name=”ac t i on ” type=”woad:act ion ”

maxOccurs=”unbounded ” minOccurs=”1 ”></ element>

</ sequence>

</complexType>

<simpleType name=”ac t i on type ”>

< r e s t r i c t i o n base=” s t r i n g ”>

105 <enumeration value=”API”></ enumeration>

<enumeration value=”KEI”></ enumeration>

</ r e s t r i c t i o n>

</ simpleType>

110 <complexType name=”ac t i on ”>

<sequence>

<element name=”param ” type=”woad:action param ”

maxOccurs=”unbounded ”>

</ element>

115 <element name=” f i e l d ” type=”w o a d : f i e l d ”></ element>

155

B. The WOAD Intermediate Language XML Schema

</ sequence>

<a t t r i b u t e name=”type ” type=”woad:act ion type ”></ a t t r i b u t e>

<a t t r i b u t e name=”name” type=”woad:action name ”></ a t t r i b u t e>

</complexType>

120

<simpleType name=”action name ”>

< r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=”Apropr ia teness ”></ enumeration>

<enumeration value=” C r i t i c a l i t y ”></ enumeration>

125 <enumeration value=”Revi s ion ”></ enumeration>

<enumeration value=”Schedule ”></ enumeration>

</ r e s t r i c t i o n>

</ simpleType>

130 <simpleType name=”aggregato r type ”>

< r e s t r i c t i o n base=” s t r i n g ”>

<enumeration value=”avg ”/>

<enumeration value=”count ”/>

<enumeration value=”in ”/>

135 </ r e s t r i c t i o n>

</ simpleType>

<complexType name=”aggregator ”>

<a t t r i b u t e name=”type ” type=”woad:aggregator type ”></ a t t r i b u t e>

140 <a t t r i b u t e name=” f i e l d s e t i d ” type=” s t r i n g ”></ a t t r i b u t e>

<a t t r i b u t e name=”v a l u e i d ” type=” s t r i n g ”></ a t t r i b u t e>

</complexType>

<simpleType name=” f i e l d s e t ”>

145 < r e s t r i c t i o n base=” s t r i n g ”></ r e s t r i c t i o n>

</ simpleType>

<complexType name=” c o n d i t i o n s l i s t ”>

<sequence>

150 <element name=”cond i t i on ” type=”woad:condit ion ”

maxOccurs=”unbounded ” minOccurs=”1 ”></ element>

</ sequence>

</complexType>

<complexType name=”action param ”>

155 <sequence>

<element name=”value ”

type=”woad:constant va lue ”></ element>

</ sequence>

<a t t r i b u t e name=”id ” type=”ID”>

<annotat ion>

160 <documentation>The unique parameter name

(key)</ documentation>

</ annotat ion>

</ a t t r i b u t e>

</complexType>

156

</schema>

157

B. The WOAD Intermediate Language XML Schema

Figure B.1.: The graphic representation of the WOAD Intermediate Language XML
Schema

158

Bibliography

Agostini, A., De Michelis, G., and Grasso, M. A. (1997). Rethinking CSCW systems:

the architecture of MILANO. In ECSCW’97: Proceedings of the fifth conference on

European Conference on Computer-Supported Cooperative Work, pages 33—48, Norwell,

MA, USA. Kluwer Academic Publishers.

Aitken, R. (1969). Measurement of feelings using visual analogue scales. Proceedings of

the royal society of medicine, 62(10):989.

Anderson, R. J. (1994). Representations and requirements: the value of ethnography in

system design. Hum.-Comput. Interact., 9(3):151–182.

Antoniou, G., Billington, D., Governatori, G., and Maher, M. J. (2001). Representation

results for defeasible logic. ACM Trans. Comput. Logic, 2(2):255–287.

Ardito, C., Buono, P., Costabile, M. F., Lanzilotti, R., and Piccinno, A. (2012). End

users as co-designers of their own tools and products. Journal of Visual Languages

& Computing, 23(2):78 – 90. Special issue dedicated to Prof. Piero Mussio.

Ardito, C., Lanzilotti, R., Mussio, P., Parasiliti Provenza, L., and Piccinno, A. (2009).

Redefining the roles of users and designers in interactive system lifecycle. In Proceedings

of CHItaly 2009, June 17-19, Rome, Italy.

Ash, J. S., Berg, M., and Coiera, E. (2004). Some unintended consequences of information

technology in health care: The nature of patient care information system-related errors.

Journal of the American Medical Informatics Association, 11(2):104–112.

Atkinson, P. A. (1995). Medical Talk and Medical Work. Sage Publications Ltd.

159

Bibliography

Bannon, L. J. and Schmidt, K. (1991). CSCW: four characters in search of a context.

Studies in computer supported cooperative work: theory, practice and design, pages

3—16.

Banătre, J., Fradet, P., and Le Métayer, D. (2001). Gamma and the chemical reaction

model: Fifteen years after. In Calude, C., PAun, G., Rozenberg, G., and Salomaa, A.,

editors, Multiset Processing, volume 2235 of Lecture Notes in Computer Science, pages

17–44. Springer Berlin / Heidelberg. 10.1007/3-540-45523-X 2.

Bardram, J. and Hansen, T. (2010). Context-Based workplace awareness. Computer

Supported Cooperative Work (CSCW), 19(2):105–138.

Bardram, J. E. and Bossen, C. (2005). A web of coordinative artifacts: collaborative

work at a hospital ward. In GROUP’05: Proceedings of the 2005 international ACM

SIGGROUP conference on Supporting group work, page 168–176, New York, NY, USA.

ACM Press.

Basili, V. R., Briand, L. C., and Melo, W. L. (1996). How reuse influences productivity

in object-oriented systems. Commun. ACM, 39(10).

Bassiliades, N., Kontopoulos, E., and Antoniou, G. (2005). A visual environment for

developing defeasible rule bases for the semantic web. In Adi, A., Stoutenburg, S., and

Tabet, S., editors, Rules and Rule Markup Languages for the Semantic Web, volume

3791 of Lecture Notes in Computer Science, page 172–186. Springer Berlin / Heidelberg.

Benford, S. and Fahlén, L. (1993). A spatial model of interaction in large virtual

environments. In CSCW’93: Proceedings of the 3rd European Conference on Computer

Supported Cooperative Work, pages 109—124, Dordrecht. Kluwer Academic Publishers.

Bentley, R. and Dourish, P. (1995). Medium versus mechanism: supporting collaboration

through customization. In ECSCW’95: Proceedings of the Fourth European Conference

on Computer-Supported Cooperative Work,, pages 133–148, Stockholm, Sweden. Kluwer

Academic Press.

Bergstrom, N. et al. (1987). The braden scale for predicting pressure sore risk. Nurs Res,

36(4):205–10.

Berry, M. and Goulde, M. (1994). A new view of documents. integrated information

management in the ’90s. Workgroup Computing Report, 17(8).

160

Bibliography

Beyer, H. and Holtzblatt, K. (1998). Contextual design: defining customer-centered

systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Bier, E. and Goodisman, A. (1990). Documents as user interfaces. In EP90: proceedings

of the International Conference on Electronic Publishing, Document Manipulation &

Typography, Gaithersburg, Maryland, September 1990, page 249.

Bier, E. A. (1992). EmbeddedButtons: supporting buttons in documents. ACM Trans.

Inf. Syst., 10(4):381–407.

Bier, E. A. and Pier, K. (1991). Documents as user interfaces. In Proceedings of

the SIGCHI conference on Human factors in computing systems: Reaching through

technology, CHI ’91, page 443–444, New York, NY, USA. ACM.

Bleser, D., Depreitere, Waele, D., Vanhaecht, Vlayen, and Sermeus (2006). Defining

pathways. Journal Of Nursing Management, 14:553–563.

Boehm, B. W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., and Steece, B.

(2000). Software Cost Estimation with Cocomo II. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition.

Boyer, J. M. (2008). Interactive office documents: a new face for web 2.0 applications. In

Proceeding of the eighth ACM symposium on Document engineering, DocEng ’08, page

8–17, New York, NY, USA. ACM.

Braa, K. and Sandahl, T. (1998). Information and process integration in enterprises.

rethinking documents. Kluwer Academic Publishers.

Braa, K. and Sandahl, T. (2000). Introducing digital documents in work practices -

challenges and perspectives. Group Decision and Negotiation, 9(3):189–203. Publisher

Kluwer Academic Netherlands.

Bringay, S., Barry, C., and Charlet, J. (2006). Annotations: A functionality to support

cooperation, coordination and awareness in the electronic medical record. In COOP’06:

Proceedings of the 7th International Conference on the Design of Cooperative Systems,

France, Provence.

Bultman, A., Kuipers, J., and van Harmelen, F. (2000). Maintenance of KBS’s by domain

experts. In Logananthara, R., Palm, G., and Ali, M., editors, Intelligent Problem

Solving. Methodologies and Approaches, volume 1821 of Lecture Notes in Computer

Science, pages 37–101. Springer Berlin / Heidelberg. 10.1007/3-540-45049-1 17.

161

Bibliography

Bødker, K., Kensing, F., and Simonsen, J. (2004). Participatory IT Design. Designing

for Business and Workplace Realities. MIT Press.

Cabitza, F., Corna, S., Gesso, I., and Simone, C. (2011a). WOAD, a platform to

deploy flexible EPRs in full control of End-Users. In Blandford, A., De Pietro, G.,

Gallo, L., Gimblett, A., Oladimeji, P., and Thimbleby, H., editors, EICS4Med 2011:

Proceedings of the 1st International Workshop on Engineering Interactive Computing

Systems for Medicine and Health Care, co-located with the ACM SIGCHI Symposium

on Engineering Interactive Computing Systems (EICS 2011) Pisa, Italy, June 13, 2011,

volume 727, pages 7—12. CEUR-WS.org.

Cabitza, F. and Gesso, I. (2011). Web of active documents: an architecture for flexible

electronic patient records. In Fred, A., Filipe, J., and Gamboa, H., editors, Biomed-

ical Engineering Systems and Technologies. Third International Joint Conference,

BIOSTEC 2010, Valencia, Spain, January 2010. Revised Selected Papers, volume 127

of Communications in Computer and Information Science, pages 44—56. Springer.

Cabitza, F., Gesso, I., and Corna, S. (2011b). Tailorable flexibility: Making End-Users

autonomous in the design of active interfaces. In Blashki, K., editor, MCCSIS 2011:

IADIS Multi Conference on Computer Science and Information Systems, Rome, Italy,

July 20–26, 2011. IADIS.

Cabitza, F. and Loregian, M. (2008). Much undo about nothing? Investigating why

email retraction is less popular than apologizing. In NordiCHI ’08: Proceedings of the

5th Nordic conference on Human-computer interaction, page 431–434, New York, NY,

USA. ACM.

Cabitza, F., Sarini, M., Simone, C., and Telaro, M. (2005). “When once is not enough”:

The role of redundancy in a hospital ward setting. In Pendergast, M., Schmidt, K., Mark,

G., and Ackerman, M., editors, GROUP’05: Proceedings of the 2005 International ACM

SIGGROUP Conference on Supporting Group Work, GROUP 2005, pages 158—167,

Sanibel Island, Florida, U.S.A. ACM Press.

Cabitza, F. and Simone, C. (2008). Supporting practices of positive redundancy for

seamless care. In CBMS’08: Proceedings of the 21th IEEE International Symposium on

Computer-Based Medical Systems, June 17-19 2008, Jyväskylä, Finland, pages 470–475.

IEEE Computer Society.

Cabitza, F. and Simone, C. (2009a). Active artifacts as bridges between context and

community knowledge sources. In C&T2009: Proceedings of the 4th International

162

Bibliography

Conference on Communities and Technologies. June 2009. Penn State University, PA,

USA., pages 115—124. ACM Press.

Cabitza, F. and Simone, C. (2009b). LWOAD: a specification language to enable the End-

User develoment of coordinative functionalities. In Pipek, V., Rosson, M. B., de Ruyter,

B. E. R., and Wulf, V., editors, IS-EUD’09: Proceedings of the 2nd International

Symposium on End-User Development, 2009, Siegen, Germany, March 2-4, 2009.,

volume 5435 of Lecture Notes in Computer Science, page 146–165. Springer.

Cabitza, F. and Simone, C. (2010). WOAD: a framework to enable the End-User

development of coordination oriented functionalities. Journal of Organizational and

End User Computing (JOEUC), 22(2).

Cabitza, F. and Simone, C. (2012). Affording mechanisms: an integrated view of

coordination and knowledge management. Computer Supported Cooperative Work

(CSCW), 21(2):227—260.

Cabitza, F., Simone, C., and Locatelli, M. P. (2012). Supporting artifact-mediated

discourses through a recursive annotation tool. In GROUP’12: Proceedings of the 17th

ACM international conference on Supporting group work, pages 253–262, New York,

NY, USA. ACM.

Cabitza, F., Simone, C., and Sarini, M. (2009a). Leveraging coordinative conventions to

promote collaboration awareness. Computer Supported Cooperative Work (CSCW),

18(4):301—330.

Cabitza, F., Simone, C., and Zorzato, G. (2009b). ProDoc: an electronic patient record

to foster Process-Oriented practices. In ECSCW’09: Proceedings of the European

Conference on Computer Supported Cooperative Work. Vienna, Austria, September

9-11, 2009., pages 119–138. Springer.

Cabitza, F. and Zorzato, G. (2010). Developing a flexible electronic patient record as

a web of active documents. In Healthinf2010: Proceedings of the Third International

Conference on Health Informatics, 20-23 January 2010, Valencia, Spain, pages 46—53.

Cardone, R., Soroker, D., and Tiwari, A. (2005). Using XForms to simplify web program-

ming. In WWW ’05: Proceedings of the 14th international conference on World Wide

Web, page 215–224, New York, NY, USA. ACM.

163

Bibliography

Carroll, J. M., Kellogg, W. A., and Rosson, M. B. (1991). The task-artifact cycle. In

Carroll, J. M., editor, Designing Interaction: Psychology at the Human-Computer

Interface, pages 74—102. Cambridge University Press, New York, NY, USA.

Carstensen, P. H. and Schmidt, K. (1999). Computer supported cooperative work: New

challenges to systems design. Technical report, vol. 43, CTI Working Paper. Published

in Kenji Itoh (ed.). Handbook of Human Factors/Ergonomics, Asakura Publishing,

Tokyo 2003, pp. 619-636.

Chamberlin, D., Hasselmeier, H., and Paris, D. (1988). Defining document styles for

WYSIWYG processing. Document Manipulation and Typography, EP88, pages 121—

137.

Chande, S. and Koivisto, A. (2006). Mobile form-editor: a push based group communi-

cation tool. In Proceedings of the 3rd international conference on Mobile technology,

applications & systems, Mobility ’06, New York, NY, USA. ACM.

Chang, S. (1987). Visual languages: A tutorial and survey. In Gorny, P. and Tauber,

M., editors, Visualization in Programming, volume 282 of Lecture Notes in Computer

Science, pages 1–23. Springer Berlin / Heidelberg. 10.1007/3-540-18507-0 1.

Chen, H., Ma, W., and Liou, D. (2002). Design and implementation of a real-time clinical

alerting system for intensive care unit. In Proceedings of the AMIA Symposium, page

131.

Chen, W. and Akay, M. (2011). Developing EMRs in developing countries. Information

Technology in Biomedicine, IEEE Transactions on, 15(1):62—65.

Chen, Y. and Wang, F. (2001). An editing system for working processes. In Com-

puter Software and Applications Conference, 2001. COMPSAC 2001. 25th Annual

International, page 332–338.

Clemensen, J., Larsen, S., Kyng, M., and Kirkevold, M. (2007). Participatory design in

health sciences: Using cooperative experimental methods in developing health services

and computer technology. Qualitative Health Research, 17:122–130.

Conley, D., Schultz, A., and Selvin, R. (1999). The challenge of predicting patients at

risk for falling: development of the conley scale. Medsurg nursing: official journal of

the Academy of Medical-Surgical Nurses, 8(6):348.

164

Bibliography

Conradi, B., Serényi, B., Kranz, M., and Hussmann, H. (2010). SourceBinder: community-

based visual and physical prototyping. In Pipek, V., Rohde, M., Budweg, S., Draxler,

S., Lohmann, S., Rashid, A., and Stevens, G., editors, ODS 2010: Proceedings of

the 2nd International Workshop on Open Design Spaces, volume 7 of International

Reports on Socio-Informatics, page 23–35, Stiftsgasse 25, 53111, Bonn, Germany. IISI -

International Institute for Socio-Informatics.

Costabile, M. F., Dittrich, Y., Fischer, G., and Piccinno, A., editors (2011). End-User

Development: Third International Symposium, IS-EUD 2011, Torre Canne, Italy,

June 7-10, 2011, Proceedings, volume 6654 of Lecture Notes in Computer Science.

Springer-Verlag New York Inc.

Costabile, M. F., Fogli, D., Lanzilotti, R., Mussio, P., Parasiliti Provenza, L., and

Piccinno, A. (2008a). Advancing end user development through metadesign. In End

User Computing Challenges and Technologies: Emerging Tools and Applications, pages

143–167. IGI Global.

Costabile, M. F., Fogli, D., Letondal, C., Mussio, P., and Piccinno, A. (2003a). Domain-

Expert users and their needs of software development. In UAHCI Conference, volume 4,

pages 232—236, Crete.

Costabile, M. F., Lanzilotti, R., and Piccinno, A. (2003b). Analysis of EUD survey

questionnaire. Technical report.

Costabile, M. F., Mussio, P., Parasiliti Provenza, L., and Piccinno, A. (2008b). End users

as unwitting software developers. In WEUSE ’08: Proceedings of the 4th international

workshop on End-user software engineering, page 6–10, New York, NY, USA. ACM.

Danado, J. and Paternò, F. (2012). Puzzle: A Visual-Based environment for end

user development in Touch-Based mobile phones. In Winckler, M., Forbrig, P., and

Bernhaupt, R., editors, Human-Centered Software Engineering, volume 7623 of Lecture

Notes in Computer Science, pages 199—216.

Davidowitz, P. (1996). Externalizing Business-Object behavior: A point-and click rule

editor. The Smalltalk Report, 6(1):4–10.

De Michelis, G. (2003). The ”Swiss pattada”. interactions, 10(3):44–53.

De Paula, R. A. (2004). The construction of usefulness: how users and context create

meaning with a social networking system. PhD thesis, University of Colorado at

Boulder, Boulder, CO, USA.

165

Bibliography

Decker, G., Overdick, H., and Weske, M. (2008a). Oryx–An open modeling platform for

the BPM community. In Dumas, M., Reichert, M., and Shan, M., editors, Business

Process Management, volume 5240 of Lecture Notes in Computer Science, page 382–385.

Springer Berlin/Heidelberg.

Decker, G., Overdick, H., and Weske, M. (2008b). Oryx–Sharing conceptual models

on the web. In Li, Q., Spaccapietra, S., Yu, E., and Olivé, A., editors, Conceptual

Modeling - ER 2008, volume 5231 of Lecture Notes in Computer Science, page 536–537.

Springer Berlin/Heidelberg.

Denzin, N. K. and Lincoln, Y. S. (2003). The interview: from structured questions to

negotiated text. In Collecting and interpreting Qualitative materials. Sage, Thousand

Oaks.

Dick, R. S., Steen, E. B., and Detmer, D. E., editors (1997). The Computer-Based Patient

Record: An Essential Technology for Health Care, Revised Edition. National Academy

Press.

Dolin, R. H., Alschuler, L., Boyer, S., Beebe, C., Behlen, F. M., Biron, P. V., and Shabo,

A. (2006). HL7 clinical document architecture, release 2. Journal of the American

Medical Informatics Association, 13:30–39.

Dourish, P. (2003). The appropriation of interactive technologies: Some lessons from

placeless documents. Comput. Supported Coop. Work, 12:465–490.

Dourish, P. and Bellotti, V. (1992). Awareness and coordination in shared workspaces. In

CSCW’92: Proceedings of the 1992 ACM conference on Computer-supported cooperative

work, CSCW ’92, page 107–114, New York, NY, USA. ACM Press.

Dourish, P., Edwards, W. K., Howell, J., LaMarca, A., Lamping, J., Petersen, K.,

Salisbury, M., Terry, D., and Thornton, J. (2000a). A programming model for active

documents. In UIST2000: Proceedings of the ACM Symposium on User Interface

Software and Technology, San Diego, USA.

Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M.,

Terry, D. B., and Thornton, J. (2000b). Extending document management systems

with User-Specific active properties. ACM Transactions on Information Systems,

18(2):140–170.

English, P. M., Jacobson, E. S., Morris, R. A., Mundy, K. B., Pelletier, S. D., Polucci,

T. A., and Scarbro, H. D. (1990). An extensible, Object-Oriented system for active

166

Bibliography

documents. In EP90: proceedings of the International Conference on Electronic

Publishing, Document Manipulation & Typography, Gaithersburg, Maryland, September

1990, pages 263—276.

English, P. M. and Tenneti, R. (1994). Interleaf active documents. Electronic publishing,

7(2):75–87.

Fischer, G. (2003). Meta—Design: beyond User-Centered and participatory design.

Human-computer interaction: theory and practice, 1:88.

Fischer, G. (2009). End-User development and meta-design: Foundations for cultures of

participation. In End-User Development, page 3–14.

Fischer, G. and Giaccardi, E. (2006). Meta-design: A framework for the future of End-

User development. In Lieberman, H., editor, End User Development – Empowering

people to flexibly employ advanced information and communication technology, pages

427–457. Kluwer Academic Publishers, Dordrecht, The Netherlands, NL.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., and Mehandjiev, N. (2004). Meta-

design: a manifesto for end-user development. Commun. ACM, 47(9):33–37.

Fischer, G. and Scharff, E. (2000). Meta-design: design for designers. In DIS ’00:

Proceedings of the 3rd conference on Designing interactive systems, pages 396–405,

New York, NY, USA. ACM.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern / many object pattern

match problem. Artificial Intelligence, 19(1):17–37.

Friedman, C. P. and Wyatt, J. (2006). Evaluation Methods in Biomedical Informatics.

Health Informatics. Springer, 2nd edition.

Giaccardi, E. (2005). Metadesign as an emergent design culture. Leonardo, 38(4):342–349.

Gibson, J. (1977). The theory of affordances. Perceiving, Acting, and Knowing. Lawrence

Erlbaum Associates, Hillsdale, NJ.

Greenbaum, J. and Kyng, M. (1991). Design at work: Cooperative Design of Computer

Systems. Lawrence Erlbaum Associated, Hillsdale.

Greenhalgh, T. and Swinglehurst, D. (2011). Studying technology use as social practice:

the untapped potential of ethnography. BMC Medicine, 9(1):45.

167

Bibliography

Grudin, J. (1994). Computer-supported cooperative work: history and focus. Computer,

27(5):19–26.

Harker, S., Eason, K., and Dobson, J. (1993). The change and evolution of requirements

as a challenge to the practice of software engineering. In Requirements Engineering,

1993., Proceedings of IEEE International Symposium on, pages 266 –272.

Harrison, W. (2004). From the editor: The dangers of End-User programming. Software,

IEEE, 21(4):5—7.

Hayes, M. and Patterson, D. (1921). Experimental development of the graphic rating

method. Psychol Bull, 18:98–99.

Heath, C. and Luff, P. (1992). Collaboration and control. crisis management and

multimedia technology in london underground control rooms. Computer Supported

Cooperative Work, The Journal of Collaborative Computing, 1(2):69–94.

Hertzum, M. (1999). Six roles of documents in professionals’ work. In ECSCW’99:

Proceedings of the Sixth European conference on Computer supported cooperative work,

page 41–60, Norwell, MA, USA. Kluwer Academic Publishers.

Hovorka, D. S. and Germonprez, M. (2009). Tinkering, tailoring, and bricolage: Implica-

tions for theories of design. In AMCIS 2009 Proceedings.

Hughes, J., King, V., Rodden, T., and Andersen, H. (1994). Moving out from the control

room: ethnography in system design. In CSCW ’94: Proceedings of the 1994 ACM

conference on Computer supported cooperative work, page 429–439, New York, NY,

USA. ACM Press.

Hughes, J. A., Randall, D., and Shapiro, D. (1992). Faltering from ethnography to design.

In Proceedings of the 1992 ACM conference on Computer-supported cooperative work,

CSCW ’92, page 115–122, New York, NY, USA. ACM.

Huynh, D. F., Karger, D. R., and Miller, R. C. (2007). Exhibit: lightweight structured

data publishing. In Proceedings of the 16th international conference on World Wide

Web, WWW ’07, page 737–746, New York, NY, USA. ACM.

Ingalls, D., Wallace, S., Chow, Y., Ludolph, F., and Doyle, K. (1988). Fabrik: a visual

programming environment. In OOPSLA ’88: Conference proceedings on Object-oriented

programming systems, languages and applications, page 176–190, New York, NY, USA.

ACM.

168

Bibliography

Jacques, L. (2011). Electronic health records and respect for patient privacy: A prescrip-

tion for compatibility. Vand. J. Ent. & Tech. L., 13:441–441.

Karger, D. R., Ostler, S., and Lee, R. (2009). The web page as a WYSIWYG end-user

customizable database-backed information management application. In Proceedings of

the 22nd annual ACM symposium on User interface software and technology, UIST

’09, page 257–260, New York, NY, USA. ACM.

Kensing, F. and Blomberg, J. (1998). Participatory design: Issues and concerns. Journal

of Computer Supported Cooperative Work, 7(3–4):167–185.

Klann, M., Paternò, F., and Wulf, V. (2006). Future perspectives in End-User development.

In End User Development, volume 9, page 475–486. Kluwer Academic Publishers.

Kohn, L. T., Corrigan, J. M., and Donaldson, M. S., editors (2000). To Err Is Human:

Building a Safer Health System. Institute of Medicine (IOM).

Krebs, D., Conrad, A., and Wang, J. (2012). Combining visual block programming

and graph manipulation for clinical alert rule building. In Proceedings of the 2012

ACM annual conference extended abstracts on Human Factors in Computing Systems

Extended Abstracts, CHI EA ’12, pages 2453–2458, New York, NY, USA. ACM.

Krueger, C. W. (1992). Software reuse. ACM Comput. Surv., 24(2).

Kuziemsky, C. E. and Varpio, L. (2011). A model of awareness to enhance our under-

standing of interprofessional collaborative care delivery and health information system

design to support it. International journal of medical informatics, 80(8):e150–e160.

Köppen, E. and Neumann, G. (1998). A practical approach towards active hyperlinked

documents. Computer Networks and ISDN Systems, 30(1-7).

Lampson, B. (1978). Bravo manual. Alto User’s Handbook, page 31–62.

Lauwers, C. J. and Lantz, K. A. (1990). Collaboration awareness in support of collabora-

tion transparency: Requirements for the next generation of shared window systems. In

CHI’90: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing

Systems, pages 303–311, Seattle, Washington, USA. ACM Press.

Lenz, M., Schmid, H., and Wolf, P. (1987). Software reuse through building blocks.

Software, IEEE, 4(4):34 –42.

Lewis, D. K. (1969). Convention: A Philosophical Study. Harward University Press.

169

Bibliography

Lewkowicz, M. and Zacklad, M. (2000). Using Problem-Solving models to design efficient

cooperative Knowledge-Management systems based on formalization and traceability

of argumentation. In Dieng, R. and Corby, O., editors, Knowledge Engineering and

Knowledge Management Methods, Models, and Tools, volume 1937 of Lecture Notes in

Computer Science, pages 59—67. Springer Berlin / Heidelberg. 10.1007/3-540-39967-

4 21.

Li, F., Tian, C., Zhang, H., and Kelley, W. (2010). Rule-based optimization approach for

airline load planning system. Procedia Computer Science, 1(1):1455–1463.

Lieberman, H., Patern\’o, F., Klann, M., and Wulf, V. (2006a). End-User development:

An emerging paradigm. In End User Development, volume 9, pages 1–8. Kluwer

Academic Publishers.

Lieberman, H., Patern\’o, F., and Wulf, V., editors (2006b). End User Development,

volume 9 of Human-Computer Interaction Series. Springer Netherlands.

Lincke, J., Krahn, R., Ingalls, D., and Hirschfeld, R. (2009). Lively fabrik - a web-based

end-user programming environment. C5 ’09: Proceedings of the 2009 Seventh Interna-

tional Conference on Creating, Connecting and Collaborating through Computing, page

11–19.

Locatelli, M. P., Ardesia, V., and Cabitza, F. (2010). Supporting learning by doing

in archaeology with active process maps. In eLearning 2010, Proceedings of the

IADIS International Conference on e-Learning, Freiburg, Germany. 26 - 29 July 2010.,

volume 1, pages 218–225.

Lortal, G., Lewkowicz, M., and Todirascu, A. (2005). AnT&CoW, a tool supporting col-

lective interpretation of documents through annotation and indexation. In Proceedings

of DIENG, MATTA, IJCAI - KMOM Workshop, Edinburgh.

Malone, T. W. (1983). How do people organize their desks?: Implications for the design

of office information systems. ACM Transactions on Information Systems, 1(1):99–112.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E. (2010). The scratch

programming language and environment. Trans. Comput. Educ., 10(4):16:1–16:15.

Mamlin, B., Biondich, P., Wolfe, B., Fraser, H., Jazayeri, D., Allen, C., Miranda, J., and

Tierney, W. (2006). Cooking up an open source EMR for developing countries: Open-

MRS - a recipe for successful collaboration. In AMIA Annual Symposium Proceedings,

volume 2006, page 529.

170

Bibliography

Mark, G. (2002). Conventions and commitments in distributed CSCW groups. Computer

Supported Cooperative Work (CSCW), 11(3):349–387. 10.1023/A:1021289427473.

Mark, G., Fuchs, L., and Sohlenkamp, M. (1997). Supporting groupware conventions

through contextual awareness. In Prinz, W., Rodden, T., Hughes, J., and Schmidt,

K., editors, ECSCW’97: Proceedings of The Fifth European Conference on Computer

Supported Cooperative, page 253–268, Lancaster, UK. Kluwer Academic Publisher.

Morrison, C. and Blackwell, A. (2009). Observing End-User customisation of electronic

patient records. In Pipek, V., Rosson, M., de Ruyter, B., and Wulf, V., editors,

End-User Development, volume 5435 of Lecture Notes in Computer Science, pages

275–284. Springer Berlin / Heidelberg. 10.1007/978-3-642-00427-8 16.

Morrison, C., Fitzpatrick, G., and Blackwell, A. (2011). Multi-disciplinary collaboration

during ward rounds: Embodied aspects of electronic medical record usage. International

journal of medical informatics, 80(8):e96–e111.

Myers, M. D. and Newman, M. (2007). The qualitative interview in IS research: Examining

the craft. Information and Organization, 17(1):2–26.

Mørch, A. I. and Mehandjiev, N. D. (2000). Tailoring as collaboration: The mediating

role of multiple representations and application units. Computer Supported Cooperative

Work (CSCW), 9(1):75–100. 10.1023/A:1008713826637.

Mørch, A. I., Stevens, G., Won, M., Klann, M., Dittrich, Y., and Wulf, V. (2004).

Component-based technologies for end-user development. Commun. ACM, 47(9):59—

62.

Müller, R. and Rahm, E. (1999). Rule-based dynamic modification of workflows in a

medical domain. In Proceedings of BTW99.

Nam, C. and Bae, J. H. J. (2002). A framework for processing active documents. In

KORUS-2002: Proceedings of The 6th Russian-Korean International Symposium on

Science and Technology, 2002., page 122–125.

Nam, C., Jang, G., and Bae, J. J. (2003). An XML-based active document for intelligent

web applications. Expert Systems with Applications, 25(2):165–176.

Nardi, B. A. (1993). A small matter of programming: perspectives on end user computing.

MIT Press, Cambridge, MA, USA.

Norman, D. A. (1988). The Design of Everyday Things. Doubleday, New York, USA.

171

Bibliography

Norman, D. A. and Draper, S. W. (1986). User Centered System Design; New Perspectives

on Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA.

Nute, D. (1994). Defeasible logic. In Nonmonotonic reasoning and uncertain reasoning,

volume 3 of Handbook of logic in artificial intelligence and logic programming, pages

353—395. Oxford University Press, Inc.

Pau, L. F. and Olason, H. (1991). Visual logic programming. Journal of Visual Languages

& Computing, 2(1):3 – 15.

Perry, D. E., Porter, A. A., and Votta, L. G. (2000). Empirical studies of software

engineering: a roadmap. In Proceedings of the Conference on The Future of Software

Engineering, ICSE ’00, page 345–355, New York, NY, USA. ACM.

Pipek, V. (2005). From tailoring to appropriation support: Negotiating groupware

usage. PhD thesis, Faculty of Science, Department of Information Processing Science,

University of Oulu, Finland.

Pipek, V. and Kahler, H. (2006). Supporting collaborative tailoring. In Lieberman, H., Pa-

ternò, F., and Wulf, V., editors, End User Development, volume 9 of Human–Computer

Interaction Series. Springer Netherlands.

Pipek, V., Rosson, M. B., and De Ruyter, B., editors (2009a). End-User Development:

2nd International Symposium, IS-EUD 2009, Siegen, Germany, March 2-4, 2009,

Proceedings, volume 5435. Springer-Verlag New York Inc.

Pipek, V., Rosson, M. B., Stevens, G., and Wulf, V. (2009b). Supporting the appropriation

of ICT: End-User development in civil societies. In Carroll, J. M., editor, Learning in

Communities, Human–Computer Interaction Series, page 25–27. Springer London.

Pipek, V. and Wulf, V. (2009). Infrastructuring: Toward an integrated perspective on the

design and use of information technology. Journal of the Association for Information

Systems, 10(5):1.

Pope, C. (2005). Conducting ethnography in medical settings. Medical Education,

39(12):1180–1187.

Prinz, W. (1999). NESSIE: an awareness environment for cooperative settings. In

ECSCW’99: Proceedings of the Sixth European conference on Computer supported

cooperative work, page 391–410, Norwell, MA, USA. Kluwer Academic Publishers.

172

Bibliography

Puckette, M. (1996). Pure data: another integrated computer music environment.

Proceedings of the Second Intercollege Computer Music Concerts, page 37–41.

Ray, P., Parameswaran, N., Chan, V., and Yu, W. (2008). Awareness modelling in

collaborative mobile e-health. Journal of Telemedicine and Telecare, 14(7):381–385.

Redström, J. (2008). RE:Definitions of use. Design Studies, 29(4):410 – 423.

Reenskaug, T., Wold, P., Lehne, O., et al. (1996). Working with objects: the OOram

software engineering method. Manning.

Reffat, R. and Gero, J. (2000). Situatedness: A new dimension for learning systems in

design. A. Brown, M. Knight and P., Berridge (eds), Architectural Computing: from

Turing to, page 252–261.

Reiser, S. J. (1984). Transformation and tradition in the sciences: Essays in honor of i.

bernard cohen. page 303–316. Cambridge University Press, New York, USA.

Repenning, A., Ahmadi, N., Repenning, N., Ioannidou, A., Webb, D., and Marshall,

K. (2011). Collective programming: Making End-User programming (More) social.

In Costabile, M., Dittrich, Y., Fischer, G., and Piccinno, A., editors, End-User

Development, volume 6654 of Lecture Notes in Computer Science, pages 325–330.

Springer Berlin / Heidelberg. 10.1007/978-3-642-21530-8 34.

Rodden, T. (1996). Populating the application: A model of awareness for cooperative

applications. In CSCW’96: ACM Conference on Computer Supported Cooperative

Work, pages 87—96, Boston, Mass. (USA). ACM Press.

Rode, J. (2005). Web application development by nonprogrammers: user-centered design

of an end-user web development tool. PhD, Virginia Polytechnic Institute and State

University.

Rogers, Y. (1993). Coordinating computer-mediated work. Computer Supported Cooper-

ative Work (CSCW), 1(4):295–315. 10.1007/BF00754332.

Roque, R. V. (2007). OpenBlocks: an extendable framework for graphical block program-

ming systems. Master thesis, Massachusetts Institute of Technology. Dept. of Electrical

Engineering and Computer Science.

Rubin, I. and Rubin, H. (2005). Qualitative Interviewing: The Art of Hearing Data. Sage

Publications, Incorporated, 2nd edition.

173

Bibliography

Sanders, E. (2002). From user-centered to participatory design approaches. Design and

the social sciences: Making connections, page 1–8.

Sanders, E. and Dandavate, U. (1999). Design for experiencing: New tools. In Proceedings

of the First International Conference on Design and Emotion, Overbeeke, CJ, Hekkert,

P.(Eds.), Delft University of Technology, Delft, The Netherlands, page 87–91.

Sanders, E. B. (2001). Virtuosos of the experience domain. In Proceedings of the 2001

IDSA Education Conference.

Sandor, O., Bogdan, C., and Bowers, J. (1997). Aether: An awareness engine for CSCW.

In Proceedings of the Fifth European Conference on Computer Supported Cooperative

Work, page 221–236.

Scaffidi, C., Shaw, M., and Myers, B. (2005). Estimating the numbers of end users

and end user programmers. In Proceedings of the 2005 IEEE Symposium on Visual

Languages and Human-Centric Computing, VLHCC ’05, page 207–214, Washington,

DC, USA. IEEE Computer Society.

Schmidt, K. (1991). Riding a tiger, or computer supported cooperative work. In

ECSCW’91: Proceedings of the Second European Conference on Computer-Supported

Cooperative Work, pages 1–16, Amsterdam, NL. Kluwer.

Schmidt, K. and Bannon, L. (1992). Taking CSCW seriously: Supporting articulation

work. Computer Supported Cooperative Work (CSCW), 1(1-2):7–40.

Schmidt, K. and Simone, C. (1996). Coordination mechanisms: Towards a conceptual

foundation for CSCW systems design. Computer Supported Cooperative Work, The

Journal of Collaborative Computing, 5(2-3):155–200.

Schuler, D. and Namioka, A. (1993). Participatory design: principles and practices. CRC.

Sellen, A. J. and Harper, R. H. R. (2003). The Myth of the Paperless Office. MIT Press,

Cambridge MA.

Seto, E., Leonard, K. J., Cafazzo, J. A., Barnsley, J., Masino, C., and Ross, H. J.

(2012). Developing healthcare rule-based expert systems: Case study of a heart failure

telemonitoring system. International Journal of Medical Informatics, 81(8):556 – 565.

Shapiro, D. (1994). The limits of ethnography: combining social sciences for CSCW.

In Proceedings of the 1994 ACM conference on Computer supported cooperative work,

CSCW ’94, page 417–428, New York, NY, USA. ACM.

174

Bibliography

Sharma, V., Simpson, R., LoPresti, E., Mostowy, C., Olson, J., Puhlman, J., Hayashi,

S., Cooper, R., Konarski, E., and Kerley, B. (2008). Participatory design in the

development of the wheelchair convoy system. Journal of NeuroEngineering and

Rehabilitation, 5(1):1.

Simone, C. and Bandini, S. (2002). Integrating awareness in cooperative applications

through the Reaction-Diffusion metaphor. Computer Supported Cooperative Work, The

Journal of Collaborative Computing, 11((3-4)):495–530.

Sommerville, I., Bentley, R., Rodden, T., and Sawyer, P. (1994). Cooperative systems

design. The Computer Journal, 37(5):357–366.

Spinrad, R. (1988). Dynamic documents. Harvard University Information Technology

Quarterly, 7(1):15–18.

Star, S. L. (1988). The structure of Ill-Structured Solutions:Heterogeneous Problem-

Solving, boundary objects and distributed artificial intelligence. In Proceedings of

the 8th AAAI Workshop on Distributed Artificial Intelligence, University of Southern

California.

Stevens, G., Pipek, V., and Wulf, V. (2009). Appropriation infrastructure: Supporting

the design of usages. In Pipek, V., Rosson, M. B., Ruyter, B., and Wulf, V., editors,

End-User Development, volume 5435, pages 50–69. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Stolee, K. T. and Fristoe, T. (2011). Expressing computer science concepts through kodu

game lab. In Proceedings of the 42nd ACM technical symposium on Computer science

education, SIGCSE ’11, page 99–104, New York, NY, USA. ACM.

Strauss, A., Fagerhaugh, S., Suczek, B., and Wiener, C. (1985). The Social Organization

of Medical Work. University of Chicago Press., New York, NY, USA.

Sun, Y., Nguyen, A., Sitbon, L., and Geva, S. (2010). Rule-based approach for identifying

assertions in clinical free-text data. In F Scholer F, T. A., Turpin, A., and Trotman, A.,

editors, Australasian Document Computing Symposium (15th), page 93–96, Melbourne,

VIC. School of Computer Science and IT, RMIT University.

Supekar, K., Marwadi, A., Lee, Y., and Medhi, D. (2002). Fuzzy Rule-Based framework

for medical record validation. In Yin, H., Allinson, N., Freeman, R., Keane, J., and

Hubbard, S., editors, Intelligent Data Engineering and Automated Learning — IDEAL

175

Bibliography

2002, volume 2412 of Lecture Notes in Computer Science, pages 1–27. Springer Berlin

/ Heidelberg. 10.1007/3-540-45675-9 67.

Telier, A. (2011). Design Things. Design Thinking, Design Theory. The MIT Press.

Teoh, S. Y., Wickramsinghe, N., and Pan, S. L. (2012). A bricolage perspective on

healthcare information systems design: an improvisation model. SIGMIS Database,

43(3):47—61.

Terry, D. B. and Baker, D. G. (1990). Active tioga documents: an exploration of two

paradigms. Electron. Publ. Origin. Dissem. Des., 3:105–122.

Timmermans, S. and Berg, M. (2003). The practice of medical technology. Sociology of

health and illness, 25(3):97–114.

Towner, G. (1988). Auto-updating as a technical documentation tool. In Proceedings of

the ACM conference on Document processing systems, DOCPROCS ’88, page 31–36,

New York, NY, USA. ACM.

Vredenburg, K., Mao, J., Smith, P. W., and Carey, T. (2002). A survey of user-centered

design practice. In Proceedings of the SIGCHI conference on Human factors in

computing systems: Changing our world, changing ourselves, CHI ’02, page 471–478,

New York, NY, USA. ACM.

Wachter, R. (2010). Patient safety at ten: unmistakable progress, troubling gaps. Health

Affairs, 29(1):165–173.

Wachter, R. et al. (2004). The end of the beginning: patient safety five years after “To

err is human.”. Health Affairs, 23(1):1–12.

Waterman, D. A., Paul, J., and Peterson, M. (1986). Expert systems for legal decision

making. Expert Systems, 3(4):212—226.

Wenger, E. (1998). Communities of practice: Learning as a social system. The System

Thinker, 9(5).

Wenger, E. (2006). Communities of practice: A brief introduction.

Werle, P. and Jansson, C. G. (2001). Active documents supporting teamwork in a

ubiquitous computing environment. In In Proceedings of the PCC Workshop.

176

Wolber, D., Su, Y., and Chiang, Y. T. (2002). Designing dynamic web pages and

persistence in the WYSIWYG interface. In Proceedings of the 7th international

conference on Intelligent user interfaces, IUI ’02, page 228–229, New York, NY, USA.

ACM.

Won, M., Stiemerling, O., and Wulf, V. (2006). Component-Based approaches to tailorable

systems. In Lieberman, H., Patern\’o, F., and Wulf, V., editors, End User Development,

volume 9 of Human-Computer Interaction Series, page 115–141. Springer Netherlands.

Wong, W., Moore, A., Cooper, G., and Wagner, M. (2002). Rule-based anomaly pattern

detection for detecting disease outbreaks. In Eighteenth national conference on Artificial

intelligence, page 217–223, Menlo Park, CA, USA. American Association for Artificial

Intelligence.

Wulf, V., Pipek, V., and Won, M. (2008). Component-based tailorability: Enabling

highly flexible software applications. International Journal of Human-Computer Studies,

66(1):1–22.

Yamazaki, S. and Satomura, Y. (2000). Standard method for describing an electronic

patient record template: application of XML to share domain knowledge. Methods of

information in medicine, 39(1):50–55.

Yamazaki, S., Takabayashi, K., Hirose, Y., Satomura, Y., Kamiyama, T., and Matsuo, H.

(2000). Visual editor for template design of electronic patient record. In Proceedings of

the AMIA Symposium, page 1160.

Zellweger, P. T. (1988). Active paths through multimedia documents. In Proceedings of

the International Conference on Electronic Publishing on Document manipulation and

typography, page 19–34, New York, NY, USA. Cambridge University Press.

Zellweger, P. T. (1989). Scripted documents: a hypermedia path mechanism. In

Proceedings of the second annual ACM conference on Hypertext, HYPERTEXT ’89,

page 1–14, New York, NY, USA. ACM.

177

Acronyms

AJAX Asynchronous JavaScript and XML

API Awareness Promoting Information

BPMN Business Process Model and Notation

CMS Content Management Systems

CSCW Computer Supported Collaborative Work

CSS Cascading Style Sheet

Datom Documental atom

Didget Documental widget

DTD Document Type Definition

EPR Electronic Patient Record

EUD End-User Development

GUI Graphical User Interface

HTML HyperText Markup Language

IDE Integrated Development Environment

JNI Java Native Interface

179

ACRONYMS

JSON JavaScript Object Notation

LISP List Processor

MIT Massachusetts Institute of Technology

MVC Model-View-Controller

ODF Open Document Format, Standard ISO/IEC 26300:2006

PDF Portable Document Format

ProDoc Process-oriented Documentation

SVG Scalable Vector Graphics

UML Unified Modeling Language

URI Uniform Resource Identifier

WOAD Web of Active Documents

W3C World Wide Web Consortium

WYSIWYG What You See Is What You Get

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XSD XML Schema Definition

XSL Extensible Stylesheet Language

180

List of Figures

1.1. The news agency scenario, before the transition to digital documents (from

[Braa and Sandahl, 2000]) . 7

1.2. A simple example of how clinicians can conventionally highlight a critical

situation on paper-based documents (the patient’s blood pressure example) 13

1.3. An example of“graphical clue” to proactively convey awareness information

over a digital document, in a way that mimics what employees usually do

with paper-based documents (see the patient’s blood pressure example in

Figure 1.2 for a comparison) . 15

1.4. The concept of Awareness Promoting Information (API) (extracted from

[Cabitza and Simone, 2009a]) . 16

2.1. The participatory design cycle . 23

2.2. The task-artifact cycle . 25

2.3. Design and Use time (from [Fischer and Scharff, 2000]) 26

2.4. The different approaches to system customization (from [Ardito et al., 2009]) 28

2.5. The wide range of systems’ end-users (from [Costabile et al., 2008b]) . . . 29

3.1. The ProDoc Data Panel (from [Cabitza et al., 2009b]) 39

3.2. The ProDoc process map (from [Cabitza et al., 2009b]) 40

3.3. The ProDoc events’ timeline (from [Cabitza et al., 2009b]) 41

3.4. Two examples of the LWOAD mechanisms, compared with the same

specifications in natural language (from [Cabitza and Simone, 2009b]) . . 44

3.5. The first WOAD Mechanism Editor (from [Cabitza et al., 2011a]) 45

181

List of Figures

3.6. The mechanism’s if-part form (from [Cabitza et al., 2011b]). 45

3.7. The dialog box through which users can specify the Criticality API pa-

rameter values (from [Cabitza et al., 2011b]) 46

3.8. The UML Composite Structure diagram of the original WOAD reference

architecture (from [Cabitza and Zorzato, 2010]) 48

3.9. The UML Sequence diagram of the original WOAD reference architecture

(from [Cabitza and Zorzato, 2010]) . 48

4.1. The relationships among WOAD concepts 53

4.2. The UML Composite Structure diagram of the renewed WOAD reference

architecture (from [Cabitza et al., 2011a]) 56

4.3. The UML Sequence diagram of the renewed WOAD reference architecture

(from [Cabitza et al., 2011a]) . 57

5.1. Adobe form design solutions . 65

5.2. The SAP NetWeaver Visual Composer Layout Board user interface 65

5.3. The FormDesigner of AgentFlow System (from [Chen and Wang, 2001]) . 67

5.4. WebSheets Development of a BookStore (from [Wolber et al., 2002]) . . . 68

5.5. The Mobile Form-Editor wizard (from [Chande and Koivisto, 2006]) . . . 69

5.6. The Dido UI (from Karger et al. [2009]) 71

5.7. SAP NetWeaver BRM Rules Composer 73

5.8. JBoss Drools Guvnor visual rule editor . 74

5.9. Bosch Visual Rule Modeler . 75

5.10. The Oryx Knowledge Base Editor . 76

5.11. The Real-Time Clinical Alerting System rules visual editor (from [Chen

et al., 2002]) . 77

5.12. The MARBLS visual rule editor (from [Krebs et al., 2012]) 78

5.13. The DDREd Rule Editor (from [Bassiliades et al., 2005]) 79

5.14. The Airline Load Planning System rules visual editor (from [Li et al., 2010]) 80

5.15. A Minibloq “code” snippet, with the related C sketch 82

5.16. A Scratch “code” snippet . 82

5.17. A SourceBinder visual language example 83

5.18. A weather monitor built with Lively Fabrik 83

6.1. An overview of the WOAD Template Editor user interface 86

6.2. The Properties panel of the WOAD Template Editor (showing the image

component’s properties) . 87

182

List of Figures

6.3. The WOAD Template Editor’s palette, after the creation of some new

Didgets . 88

6.4. The Patient Data Sheet document template 89

6.5. A detailed view of the Didget’s contextual menu 89

6.6. Setting the number of repetitions for a “multiple” Didget 90

6.7. An overview of the WOAD Mechanism Editor user interface 94

6.8. A detailed view of the WOAD Mechanism Editor palette 95

6.9. The blocks to access Didgets’s data fields and the document template

preview window . 96

6.10. Building the mechanism to check premature newborns’ APGAR score . . . 96

7.1. The Oryx Repository user interface . 101

7.2. The Oryx XForms Editor user interface 102

7.3. An example of the OpenBlocks visual language 106

7.4. The OpenBlocks Sample user interface . 107

7.5. The translation process from OpenBlocks serialization format to DRL . . 109

8.1. The Myers and Newman guidelines for the qualitative research interview

(from [Myers and Newman, 2007]) . 117

8.2. Some questions that have been administered to clinicians during the semi-

structured interviews . 119

8.3. The inpatient’s fall risk dashboard WOAD document (in Italian) 122

8.4. The Conley WOAD mechanism and the Safety API conveyed through the

Fall Risk Dashboard (in Italian) . 123

8.5. The DTX-glucose WOAD mechanism . 124

9.1. The main characteristics of the enrolled clinicians 131

9.2. The boxplot chart of the mean times of performance of the two groups of

participants: the “trained” group (i. e., U1) and the “not trained” group

(i. e., U2) . 133

9.3. The boxplot charts of the final evaluations of the two groups of participants

(i. e., the “trained” group, U1, and the “not trained” group, U2) 135

10.1. ADhOC, the future WOAD-compliant prototypical environment with the

support for annotations and multimedia documents 142

B.1. The graphic representation of the WOAD Intermediate Language XML

Schema . 158

183

List of Tables

1.1. A taxonomy of API and their conventional meanings (extracted from

Cabitza and Simone [2012]) . 17

2.1. Traditional design versus meta-design (extracted from [Fischer and Giac-

cardi, 2006]) . 31

2.2. Meta-design core concepts and the related implications (from [Fischer and

Scharff, 2000]) . 32

4.1. The redefined levels of the Didget’s data sharing capability (from [Cabitza

et al., 2011a]) . 52

5.1. Summary of the analyzed documents visual editing solutions 72

5.2. Summary of the analyzed rules visual editing solutions 81

5.3. Summary of the analyzed visual languages 84

6.1. The constructs of the WOAD Visual Language 93

7.1. Summary of existing XForms visual editors 100

8.1. The set of inpatients’ vital parameters . 120

8.2. The set of rules to check the inpatients’ fall risk factors 121

9.1. Statistical comparisons between the “trained” group (i. e., the U1 group)

and the “not trained” group (i. e., the U2 group) 132

185

List of Tables

186

	Acknowledgements
	Contents
	Introduction
	Thesis Outline

	1 Background
	1.1 A First, Simple Example: The News Agency
	1.2 Cooperative Work and Conventions
	1.3 A More Complex Scenario: The Healthcare Domain
	1.4 Promoting Employees' Awareness
	1.4.1 Awareness Promoting Information

	2 End-User Development
	2.1 Models of Work to Improve the Design of Collaborative Systems
	2.2 Involving Users in Design Activities: Participatory Design
	2.3 When Software Engineering is not Enough: End-User Development
	2.3.1 End-User Development
	2.3.2 End-User Development to Leverage System Appropriation

	2.4 Meta-design for Practice-oriented Customizable Environments

	3 The WOAD Framework
	3.1 Active Documents
	3.2 WOAD Documents in Detail
	3.3 A First WOAD Proof of Concept: ProDoc
	3.4 LWOAD
	3.5 The First WOAD Mechanism Editor
	3.6 The WOAD Reference Architecture

	4 Open Problems and Proposed Solutions
	4.1 Customizing Documents as Easily as Using a Word Processor
	4.2 WOAD Mechanisms for Non-Programmer End-Users
	4.3 A Platform-independent MVC Model for Digital Documents: XForms
	4.4 The Renewed WOAD Architecture

	5 Related Works
	5.1 The Tailorability of the Electronic Patient Records
	5.2 A Review of State of the Art of Visual Editors
	5.2.1 Document Editors
	5.2.2 Rule Editors
	5.2.3 Visual Languages

	6 The WOAD Visual Editors
	6.1 The WOAD Template Editor
	6.2 The WOAD Mechanism Editor
	6.2.1 The WOAD Visual Language
	6.2.2 The WOAD Mechanism Editor User Interface

	7 The Implementation of the WOAD Visual Editors
	7.1 The WOAD Template Editor
	7.1.1 Oryx: An Extendable Editing Environment
	7.1.2 Implementing the WOAD Template Editor Prototype

	7.2 The WOAD Mechanism Editor
	7.2.1 The OpenBlocks Language
	7.2.2 The OpenBlocks Visual Editor User Interface
	7.2.3 Implementing the WOAD Mechanism Editor prototype
	7.2.3.1 The WOAD Intermediate Language
	7.2.3.2 The Definition of APIs' Affordances

	8 Validating the WOAD Visual Language
	8.1 Organizational Setting
	8.2 The Qualitative Interview
	8.3 Identifying the Inpatient's Adverse Events
	8.3.1 The Inpatient's Fall Risk

	8.4 WOAD Mechanisms and the Inpatient's Fall Risk

	9 Validating the WOAD Mechanism Editor
	9.1 Designing the User Study
	9.2 Performing the User Study
	9.3 Discussing the Results

	10 Conclusions
	10.1 Future Works

	Appendices
	Appendix A The MIT OpenBlocks Grammars
	A.1 The grammar of the OpenBlocks Language Definition
	A.2 The grammar of the OpenBlocks Serialization Format

	Appendix B The WOAD Intermediate Language XML Schema
	Bibliography
	Acronyms
	List of Figures
	List of Tables

