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Abstract

Most record linkage techniques assume that information of the underly-
ing entities do not change and is provided in different representations and
sometimes with errors. For example, mailing lists may contain multiple
entries representing the same physical address, but each record may be
slightly different, e.g., containing different spellings or missing some in-
formation. As a second example, consider a company that has different
customer databases (e.g., one for each subsidiary). A given customer may
appear in different ways in each database, and there is a fair amount of
guesswork in determining which customers match.

However, in real-world, we often observe value diversity in real-world data
sets for linkage. For example, many data sets contains temporal records

over a long period of time; each record is associated with a time stamp and
describes some aspects of a real-world entity at that particular time (e.g.,
author information in DBLP). In such cases, we often wish to identify
records that describe the same entity over time and so be able to enable in-
teresting longitudinal data analysis. Value diversity also exists group link-

age: linking records that refer to entities in the same group. Applications
for group linkage includes finding businesses in the same chain, finding
conference attendants from the same affiliation, finding players from the
same team, etc. In such cases, although different members in the same
group can share some similar global values, they represent different enti-
ties so can also have distinct local values, requiring a high tolerance for
value diversity. However, most existing record linkage techniques assume
that records describing the same real-world entities are fairly consistent
and often focus on different representations of the same value, such as
”IBM” and ”International Business Machines”. Thus, they can fall short



when values may vary for the same entity. This dissertation studies how

to improve linkage quality of integrated data with tolerance to fairly high

diversity, including temporal linkage, and group linkage.

We solve the problem of temporal record linkage in two ways. First, we
apply time decay to capture the effect of elapsed time on entity value evo-
lution. Second, instead of comparing each pair of records locally, we pro-
pose clustering methods that consider time order of the records and make
global decisions. Experimental results show that our algorithms signif-
icantly outperform traditional linkage methods on various temporal data
sets.

For group linkage, we present a two-stage algorithm: the first stage iden-
tifies cores containing records that are very likely to belong to the same
group; the second stage collects strong evidence from the cores and lever-
ages it for merging more records in the same group, while being tolerant
to differences in other values. Our algorithm is designed to ensure effi-
ciency and scalability. An experiment shows that it finished in 2.4 hours
on a real-world data set containing 6.8 million records, and obtained both
a precision and a recall of above .95.

Finally, we build the CHRONOS system which offers users the useful tool
for finding real-world entities over time and understanding history of en-
tities in the bibliography domain. The core of CHRONOS is a tempo-
ral record-linkage algorithm, which is tolerant to value evolution over
time. Our algorithm can obtain an F-measure of over 0.9 in linking author
records and fix errors made by DBLP. We show how CHRONOS allows
users to explore the history of authors, and how it helps users understand
our linkage results by comparing our results with those of existing sys-
tems, highlighting differences in the results, explaining our decisions to
users, and answering “what-if” questions.
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Chapter 1

Introduction

Record linkage, which takes a set of records as input and discovers which records re-
fer to the same real-world entity. It plays an important role in data integration, data
aggregation, and personal information management, and has been extensively studied
in recent years (see Elmagarmid et al. [2007]; Koudas et al. [2006] fro recent surveys).
We often observe value diversity in real-world data sets for linkage. For example,
many data sets contains temporal records over a long period of time; each record is
associated with a time stamp and describes some aspects of a real-world entity at that
particular time (e.g., author information in DBLP). In such cases, we often wish to
identify records that describe the same entity over time and so be able to enable in-
teresting longitudinal data analysis. Value diversity also exists group linkage: linking
records that refer to entities in the same group. Applications for group linkage in-
cludes finding businesses in the same chain, finding conference attendants from the
same affiliation, finding players from the same team, etc. In such cases, although dif-
ferent members in the same group can share some similar global values, they represent
different entities so can also have distinct local values, requiring a high tolerance for
value diversity. However, most existing record linkage techniques assume that records
describing the same real-world entities are fairly consistent and often focus on dif-
ferent representations of the same value, such as ”IBM” and ”International Business
Machines”. Thus, they can fall short when values may vary for the same entity. This
dissertation studies how to improve linkage quality of integrated data with tolerance to

fairly high diversity, including temporal linkage, and group linkage.
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1.1 Existing Record Linkage Techniques

We begin this chapter by reviewing the state of the art for record linkage techniques.
Typical record linkage solutions are based on independent pairwise comparisons em-
ploying two similarity functions. A similarity function computes attribute-level sim-
ilarities by comparing values in the same attributes of two records (a typical exam-
ple is the edit distance). The second similarity function combines the attribute level
similarity measures to compute an overall similarity of two records. Groundwork of
record linkage problems was done by Fellegi and Sunter Fellegi and Sunter [1969b],
where a rigorous statistical framework is introduced that can estimate probabilities for
a possible assignment decision procedure, given certain attribute similarity functions.
Algorithms investigated in the following texts are considered as relatively more so-
phisticated solutions beyond independent pairwise comparisons.

Fuzzy deduplication: Most domain-independent approaches for record linkage rely
on textual similarity functions (e.g., edit distance or cosine metric), predicting that two
tuples whose textual similarity is greater than a pre-specified similarity threshold are
duplicates. However, using these functions to detect duplicates due to equivalence
errors requires that the threshold be dropped low enough, resulting in a large number
of false positives. For instance, tuple pairs with values ”USSR” and ”United State”
are likely to be declared duplicates if we were to detect ”US” and ”United States”
as duplicates using textual similarity. To solve such problems, fuzzy deduplication

approach proposed by Ananthakrishna et al. rely on hierarchies to detect equivalence
errors in each relation, and to reduce the number of false positives.

Iterative record linkage: Bhattacharya and Getoor propose an iterative record linkage
approach that exploits both attribute similarity and the similarity of linked objects.
They consider cases where the link are among entities of the same type, so that when
two records are detected to refer to the same real-world entity, this may in turn allow
additional inferences and make the deduplication process iterative.

Record linkage in complex information spaces: Instead of focusing on resolving
references of the same classes, the work of Dong et al. studies the problem of re-
solving different references in complex information spaces, where references belong
to multiple related classes. The author use a prime example of Personal Information

2



Management (PIM), where the goal is to provide a coherent view of all the information
on one’s desktop. The proposed algorithm has three principal features: (1) it exploits
the associations between references for similarity comparisons; (2) it propagates infor-
mation between linkage decisions to accumulate positive and negative evidences; (3)
it gradually enrich references by merging attribute values.

Relationship-based graphical approaches: Beyond attribute similarities, the quality
of record linkage can also be improved by exploiting additional contextual informa-

tion. For instance, ”D. White” might be used to refer to an author in the context of a
particular publication. The publication might also refer to different authors, which can
be linked to their affiliated organizations etc., forming chains of relationships among
entities. Such knowledge can be exploited alongside attribute-based similarity result-
ing in improved accuracy of record linkage. Relationship-based graphical approach
( Kalashnikov et al. [2005]) systematically exploits not only features but also rela-
tionships among entities for the purpose of disambiguation. It views the database as
a graph of entities that are linked to each other view relationships. It first utilizes a
feature-based method to identify a set of candidate entities. Graph theoretic techniques
are then used to discover and analyze relationships that exist among candidates.

Web based approach: World Wide Web (WWW) search engines are commonly used
for learning about real-world entities, such as people. In such cases, users search the
name of the target entity in search engines to obtain a set of Web pages that con-
tains that name. However, ambiguity in names typically causes the search results to
contain Web pages of several different entities. For example, if we want to know
about a ”George Bush” other than the former U.S. president, many pages about the
former president are returned in the search results, which may be problematic. Ex-
isting work Yoshida et al. [2010] studies the problem of disambiguation on people’s
names by considering both strong evidence, such as named entities (NEs) (e.g., Bill
Gates), Compound key words (CKWs) (e.g., chief software architect) and URLs, and
reliable weak evidence.

3



1.2 Value Diversity in Record Linkage

Most existing record linkage techniques assume that records describing the same real-
world entities are fairly consistent and are provided in different representations and
sometimes with errors. For example, mailing lists may contain multiple entries rep-
resenting the same physical address, but each record may be slightly different, e.g.,
containing different spellings or missing some information. As a second example, con-
sider a company that has different customer databases (e.g., one for each subsidiary).
A given customer may appear in different ways in each database, and there is a fair
amount of guesswork in determining which customer match Benjelloun et al. [2009].
However, we do observe value diversity in real-world entities. In this dissertation, we
often on two types of value diversity: (1) linking temporal records where we need to
be tolerant to value diversity over time, (2) linking records of the same group where
we need to be tolerant to value diversity within the same group.

1.2.1 Value Diversity in Temporal Dimension

In practice, a data set may contain temporal records over a long period of time; each
record is associated with a time stamp and describes some aspects of a real-world
entity at that particular time. In such cases, we often wish to identify records that
describe the same real-world entity over time and so be able to trace the history of
that entity. For example, DBLP1 lists research papers over many decades; we wish
to identify individual authors such that we can list all publications by each author.
Other examples include medical data that keep patient information over tens of years,
customer-relationship data that contain customer information over years, and so on;
identifying records that refer to the same entity enables interesting longitudinal data
analysis over such data Weikum et al. [2011].

Although linking temporal records is important, to the best of our knowledge, tradi-
tional techniques ignore the temporal information in linkage. Thus, they can fall short
for such data sets for two reasons. First, the same real-world entity can evolve over
time (e.g., a person can change her phone number and address) and so records that de-
scribe the same real-world entity at different times can contain different values; blindly

1http://www.informatik.uni-trier.de/∼ley/db/.
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Table 1.1: Records from DBLP.
ID name affiliation co-authors year
r1 Xin Dong R. Polytechnic Institute Wozny 1991
r2 Xin Dong Univ of Washington Halevy, Tatarinov 2004
r3 Xin Dong Univ of Washington Halevy 2005
r4 Xin Luna Dong Univ of Washington Halevy, Yu 2007
r5 Xin Luna Dong AT&T Labs-Research Das Sarma, Halevy 2009
r6 Xin Luna Dong AT&T Labs-Research Naumann 2010
r7 Dong Xin Univ of Illinois Han, Wah 2004
r8 Dong Xin Univ of Illinois Wah 2007
r9 Dong Xin Microsoft Research Wu, Han 2008
r10 Dong Xin Univ of Illinois Ling, He 2009
r11 Dong Xin Microsoft Research Chaudhuri, Ganti 2009
r12 Dong Xin Microsoft Research Ganti 2010

requiring value consistency of the linked records can thus cause false negatives. Sec-
ond, it is more likely to find highly similar entities over a long time period than at the
same time (e.g., having two persons with highly similar names in the same university
over the past 30 years is more likely than at the same time) and so records that de-
scribe different entities at different times can share common values; blindly matching
records that have similar attribute values can thus cause false positives. We illustrate
the challenges by the following example.

Example 1.2.1 Consider records that describe paper authors in Table 1.1; each record

is derived from a publication record at DBLP (we may skip some co-authors for space

reason). These records describe 3 real-world persons: r1 describes E1: Xin Dong,

who was at R. Polytechnic in 1991; r2 − r6 describe E2: Xin Luna Dong, who moved

from Univ of Washington to AT&T Labs; r7− r12 describe E3: Dong Xin, who moved

from Univ of Illinois to Microsoft Research.

If we require high similarity on both name and affiliation, we may split entities

E2 and E3, as records for each of them can have different values for affiliation. If we

require only high similarity of name, we may merge E1 with E2 as they share the same

name, and may even merge all of the three entities. �

Despite the challenges, temporal information does present additional evidence for
linkage. First, record values typically transition smoothly. In the motivating example,
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person E3 moved to a new affiliation in 2008, but still had similar co-authors from
previous years. Second, record values seldom change erratically. In our example,
r2, r3, r7, r8, r10 are very unlikely to refer to the same person, as a person rarely moves
between two affiliations back and forth over many years. (However, this can happen
around transition time; for example, entity E3 has a paper with the old affiliation infor-
mation after he moved to a new affiliation, as shown by record r10.) Third, in case we
have a fairly complete data set such as DBLP, records that refer to the same real-world
entity often (but not necessarily) observe continuity; for example, one is less confident
that r1 and r2 − r6 refer to the same person given the big time gap between them. Ex-
ploring such evidence would require a global view of the records with the time factor
in mind.

1.2.2 Value Diversity within Groups

Group linkage is slightly different from traditional record linkage. One major motiva-
tion for our work comes from identifying business chains–connected business entities
that share a brand name and provide similar products and services (e.g., Walmart, Mc-

Donald’s). With the advent of the Web and mobile devices, we are observing a boom in
local search; that is, searching local businesses under geographical constraints. Local
search engines include Google Maps, Yahoo! Local, YellowPages, yelp, ezlocal, etc.
The knowledge of business chains can have big economic values to local search en-
gines, as it allows users to search by business chain, allows search engines to render the
returned results by chains, allows data collectors to clean and enrich information within
the same chain, allows the associated review system to connect reviews on branches
of the same chain, and allows sales people to target potential customers. Business
listings are rarely associated with specific chains explicitly, so we need to identify the
chains. Sharing the same name, phone number, or URL domain name can all serve as
evidence of belonging to the same chain. However, only for US businesses there are
tens of thousands of chains and we cannot easily develop any rule set that applies to
all chains.

We are also motivated by applications where we need to find people from the same
organization, such as counting conference attendants from the same affiliation, count-
ing papers by authors from the same institution, and finding players of the same team.
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Table 1.2: Identified US Business chains. For each chain, we show the number of stores,
distinct business names, distinct phone numbers, distinct URL domain names, and distinct
categories.

Name #Store #Name #Phn #URL #Cat
USPS-United States Post Office 12,776

SUBWAY 11,278
State Farm Insurance 8,711

McDonald’s 7,450
Edward Jones 6,781

The organization information is often missing, incomplete, or simply too heteroge-
neous to be recognized as the same (e.g., “International Business Machines Corpora-
tion”, “IBM Corp.”, “IBM”, “IBM Research Labs”, “IBM-Almaden”, etc., all refer
to the same organization). Contact phones, email addresses, and mailing addresses
of people all provide extra evidence for linkage, but they can also vary for different
people even in the same organization.

Group linkage faces challenges not present for traditional record linkage. First,
although different members in the same group can share some similar global values,
they represent different entities so can also have distinct local values. For example,
different branches in the same business chain can provide different local phone num-
bers, different addresses, etc. It is not easy to distinguish such difference from various
representations for the same value and sometimes erroneous values in the data. Sec-
ond, there are often millions of records for group linkage, and a group can contain tens
of thousands of members. Even a simple pairwise record comparison within a group
can already be very expensive, so scalability is a big challenge. We use the example of
identifying business chains throughout the paper for illustration.

Example 1.2.2 We consider a set of 18 million real-world business listings in the US1,

each describing a business by its name, phone number, URL domain name, location,

and category. Our algorithm automatically finds 80,000 business chains and there are

1M listings that belong to some chain. Table 1.2 lists the largest five chains we found.

We observe that (1) each chain contains up to 13K different branch stores, and (2)

different branch listings from the same chain can have a large variety of names, phone

numbers, and URL domain names.
1We omit name of the data source for double-blind reviewing.
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Table 1.3: Real-world business listings. We show only state for location and simplify names
of category. There is a wrong value in italic font.

RID name phone URL (domain) location category
r1 Home Depot, The 808 NJ furniture
r2 Home Depot, The 808 NY furniture
r3 Home Depot, The 808 homedepot MD furniture
r4 Home Depot, The 808 homedepot AK furniture
r5 Home Depot, The 808 homedepot MI furniture
r6 Home Depot, The 101 homedepot IN furniture
r7 Home Depot, The 102 homedepot NY furniture
r8 Home Depot, USA 103 homedepot WV furniture
r9 Home Depot USA 808 SD furniture
r10 Home Depot - Tools 808 FL furniture
r11 Taco Casa tacocasa AL restaurant
r12 Taco Casa 900 tacocasa AL restaurant
r13 Taco Casa 900 tacocasa, AL restaurant

tacocasatexas
r14 Taco Casa 900 AL restaurant
r15 Taco Casa 900 AL restaurant
r16 Taco Casa 701 tacocasatexas TX restaurant
r17 Taco Casa 702 tacocasatexas TX restaurant
r18 Taco Casa 703 tacocasatexas TX restaurant
r19 Taco Casa 704 NY food store
r20 Taco Casa tacodelmar AK restaurant

Table 1.3 shows a set of 20 business listings in this data set. After investigating

their webpages, we find that r1 − r18 belong to three business chains: Ch1 = {r1 −
r10},Ch2 = {r11 − r15}, and Ch3 = {r16 − r18}; r19 and r20 do not belong to any

chain. Note the slightly different names for businesses in chain Ch1; also note that r13
is integrated from different sources and contains two URLs, one (tacocasatexas) being

wrong.

Simple linkage rules do not work well on this data set. For example, if we require

only high similarity on name for chain identification, we may wrongly decide that

r11 − r20 all belong to the same chain as they share a popular restaurant name Taco
Casa. Traditional linkage strategies do not work well either. If we apply Swoosh-style

linkage Benjelloun et al. [2009] and iteratively merge records with high similarity on

name and shared phone or URL, we can wrongly merge Ch2 and Ch3 because of the
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wrong URL from r13. If we require high similarity between listings on name, phone,
URL, category, we may either split r6 − r8 out of chain Ch1 because of their different

local phone numbers, or learn a low weight for phone but split r9 − r10 out of chain

Ch1 since sharing the same phone number, the major evidence, is downweighted. �

1.3 Contributions of the Dissertation

This dissertation makes the following contributions.

Temporal record linkage
Chapter 2 studies linking temporal records, where we need to be tolerant to value

diversity over time, and makes three contributions. First, we apply time decay, which
aims to capture the effect of time elapse on entity value evolution. In particular, we
define disagreement decay, with which value difference over a long time is not nec-
essarily taken as a strong indicator of referring to different real-world entities; we
define agreement decay, with which the same value with a long time gap is not neces-
sarily taken as a strong indicator of referring to the same entity. We describe how we
learn decay from labeled data and how we apply it when computing similarity between
records.

Second, instead of comparing each pair of records locally and then clustering, we
describe three temporal clustering methods that consider records in time order and
accumulate evidence over time to enable global decision making. Among them, early

binding makes eager decisions and merges a record with an already created cluster
once it computes a high similarity; late binding instead keeps all evidence and makes
decisions at the end; and adjusted binding in addition compares a record with clusters
that are created for records with later time stamps.

Finally, we applied our methods on a European patent data set and two subsets of
the DBLP data set. Our experimental results show that applying decay in traditional
methods can already improve linkage results, and applying our clustering methods can
obtain results with high precision and recall.

Group linkage
Chapter 3 studies the problem of group linkage. Group linkage is different from

any existing record linkage problem, where the goal is to link records that refer to the
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same real-world entity. Group linkage, on the other hand, is essentially to link records
that refer to entities in the same group.

The key idea in our solution is to find strong evidence that can glue group mem-
bers together, while being tolerant to differences in values specific for individual group
member. For example, we wish to reward sharing of primary values, such as primary

phone numbers or URL domain names for chain identification, but would not penalize
differences from local values, such as locations, local phone numbers, and even cate-
gories. For this purpose, our algorithm proceeds in two stages. First, we identify cores

containing records that are very likely to belong to the same group. Second, we collect
strong evidence from the resulting cores, such as primary phone numbers and URL
domain names in business chains, based on which we cluster the cores and remaining
records into groups. The use of cores and strong evidence distinguishes our clustering
algorithm from traditional clustering techniques for record linkage. In this process,
it is crucial that core generation makes few false positives even in presence of erro-
neous values, such that we can avoid ripple effect on clustering later. Our algorithm is
designed to ensure efficiency and scalability.

To the best of our knowledge, we are the first one studying the group-linkage prob-
lem. We make three contributions. First, we study core generation in presence of
erroneous data. Our core is robust in the sense that even if we remove a few possibly
erroneous records, we still have strong evidence that the rest of the records must be-
long to the same group. We propose efficient algorithm for core generation. Second,
we reduce the group linkage problem into clustering cores and remaining records. Our
clustering algorithm leverages strong evidence collected from cores and meanwhile is
tolerant to value variety of records in the same group. Finally, we conducted exper-
iments on two real-world data sets in different domains, showing high efficiency and
effectiveness of our algorithms.

1.4 An Application: Facilitating History Discovery by
Linking Temporal Records

Whereas our technical contributions apply to record linkage applications in general, we
have grounded them into a particular system, CHRONOS. To further motivate the tech-
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nical problems we solve in the dissertation, we next describe the goals of CHRONOS

and the challenges we face to achieve these goals. We describe CHRONOS system in
details in Chaper 4.

Many data sets contain temporal records over a long period of time; each record is
associated with a time stamp and describes some aspects of a real-world entity at that
particular time. From such data, users often wish to search for entities in a particular
period, and understand the history of one entity or all entities in the data set. For
example, DBLP1 lists research papers over many decades; DBLP users may wish to
find authors by name and year, find the publication history and affiliation history of
an author, find the number of her co-authors in each year over time, find her research
topics over time, and so on.

A major challenge for enabling such search and exploration is to identify records
that describe the same real-world entity over a long period of time; only with such an
integrated view, we will be able to trace the history of that entity and collect statistics
over time. However, linking temporal records is by no means easy. First, we need to be
able to link together records for the same real-world entity but at different times. This
is hard because entities can evolve over time; for example, a researcher can move from
one affiliation to another, change her research topic, and collaborate with different co-
authors over time. Thus, records that describe the same real-world entity at different
times can contain different values; blindly requiring value consistency of the linked
records may cause false negatives. Second, we need to be able to distinguish records
that share common attribute values but refer to different real-world entities. This is
especially hard for temporal records because it is more likely to find highly similar
entities over a long time period than at the same time; for example, having two persons
with highly similar names in the same university over the past 30 years is more likely
than at the same time. Thus, records that describe different entities at different times
can share common values; blindly matching records that have similar attribute values
can cause false positives.

We build the CHRONOS system2, which offers users a useful tool for finding real-
world entities over time and understanding history of entities in the bibliography do-

1http://www.dblp.org/.
2Chronos is a Greek God for time; he has three heads, a man, a bull, and a lion, showing

the importance of “linkage”.
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main. The core of CHRONOS is a temporal record-linkage algorithm, which is tolerant
to value evolution over time Li et al. [2011]. Our algorithm can obtain an F-measure
of over 0.9 in linking author records and can fix errors made by DBLP. There are two
key ideas for the linkage techniques: first, we apply time decay that captures the effect
of time elapse on entity value evolution; second, we apply temporal clustering that
considers records in time order and accumulates evidence over time to enable decision
making with a global view.

1.5 Outline

The following chapters - Chapter 2 and Chapter 3 describe temporal linkage and group
linkage. They elaborate on the ideas outlined in Section 1.3. Chapter 4 describes how
we incorporate these technical solutions in the CHRONOS system. Finally, Chapter 5
concludes the dissertation and discusses directions for future research.

Parts of this dissertation have been published or under submission in conferences.
In particular, the temporal linkage algorithm (Chapter 2) is described in Li et al. [2011],
the group linkage algorithm is under submission for SIGMOD 2013. Finally, the
CHRONOS system is described in Li et al. [2011] and demonstrated in Li et al. [2012].
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Chapter 2

Linking Temporal Records

Many data sets contain temporal records over a long period of time; each record is
associated with a time stamp and describes some aspects of a real-world entity at that
particular time (e.g., author information in DBLP). In such case, we often wish to
identify records that describe the same entity over time and so be able to enable inter-
esting longitudinal data analysis. However, existing record linkage technique ignore
the temporal information and can fall short for temporal data.

This chapter studies linking temporal records. We begin by defining the temporal
record linkage problem and giving an overview of our approach. We introduce the
concept of agreement/disagreement decay and propose a statistic model of obtaining
decay weights from sample data in Section 2.2. Section 2.3 describes three temporal
record linkage techniques - Early Binding (Section 2.3.1), Late Binding (Section 2.3.2)
and Adjusted Binding (Section 2.3.3). Among them, given decayed record/object simi-
larities, greedy linkage decisions are made locally in Early Binding. Instead of making
local binary decisions, a more conservative, probabilistic decision-making model is
proposed in Late Binding. And in Adjusted Binding, to better leverage later evidence,
we allow symmetric record/object comparisons from a global point of view. We ex-
perimented the aforementioned decay weight over existing record linkage techniques
and our proposed techniques, on two real-world data sets to show the effectiveness and
efficiency of temporal record linkage in Section 2.4. Finally, Section 2.6 summarizes
this chapter.
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2.1 Problem Definition and Overview of Our Approach

This section formally defines the temporal record linkage problem (Section 2.1) and
provides an overview of our approach (Section 2.2).

2.1.1 Problem definition

Consider a domain D of object entities (not known a-priori) where each entity is de-
scribed by a set of attributes A = {A1, . . . , An} and values of an attribute can change
over time (e.g., affiliation, business addresses). We distinguish single-valued and multi-

valued attributes, where the difference is whether an attribute of an entity can have
single or multiple values at any time. Consider a set R of records, each is associated
with a time stamp and describing an entity in D at that particular time. Given a record
r ∈ R, we denote by r.t the time stamp of r and by r.A the value of attribute A ∈ A

from r (we allow null as a value). Our goal is to decide which records in R refer to
the same entity in D.

Definition 2.1.1 (Temporal record linkage) Let R be a set of records, each in the

form of (x1, . . . , xn, t), where t is the time stamp associated with the record, and xi, i ∈
[1, n], is the value of attribute Ai at time t for the referred entity.

The temporal record linkage problem clusters the records in R such that records

in the same cluster refer to the same entity over time and records in different clusters

refer to different entities. �

Example 2.1.2 Consider the records in Table 1.1, where each record describes an

author by name, affiliation, and co-authors (co-authors is a multi-valued attribute)

and is associated with a time stamp (year). The ideal linkage solution contains 3

clusters: {r1}, {r2, . . . , r6}, {r7, . . . , r12}.

2.1.2 Overview of our solution

Our record-linkage techniques leverage the temporal information in two ways.
First, when computing record similarity, traditional linkage techniques reward high

value similarity and penalize low value similarity. However, as time elapses, values of
a particular entity may evolve; for example, a researcher may change affiliation, email,
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and even name over time (see entities E2 and E3 in Example 1.2.2). Meanwhile,
different entities are more likely to share the same value(s) with a long time gap; for
example, it is more likely that we observe two persons with the same name within 30
years than at the same time. We thus define decay (Section 2.2), with which we can
reduce the penalty for value disagreement and reduce the reward for value agreement
over a long period. Our experimental results show that applying decay in similarity
computation can improve over traditional linkage techniques.

Second, when clustering records according to record similarity, traditional tech-
niques do not consider the time order of the records. However, time order can often
provide important clues. In Example 1.2.2, records r2 − r4 and r5 − r6 may refer to
the same person even though the decayed similarity between r4 and r6 is low, because
the time period of r2 − r4 (year 2004-2007) and that of r5 − r6 (year 2009-2010) do
not overlap; on the other hand, records r2 − r4 and r7, r8, r10 are very likely to refer
to different persons even though the decayed similarity between r2 and r10 is high, be-
cause the records interleave and their occurrence periods highly overlap. We propose
temporal clustering algorithms (Section 2.3) that consider time order of records and
can further improve linkage results.

2.2 Time Decay

This section introduces time decay, an important concept that aims at capturing the
effect of time elapsing on value evolution. Section 3.1 defines decay, Section 3.2 de-
scribes how we learn decay, and Section 3.3 describes how we apply decay in similarity
computation. Experimental results show that by applying decay in traditional linkage
techniques, we can already improve the results.

2.2.1 Definition

As time goes by, the value of an entity may evolve; for example, entity E2 in Exam-
ple 1.2.2 was at UW from 2004 to 2007, and moved to AT&T Labs afterwards. Thus,
different values for a single-valued attribute over a long period of time should not be
considered as a strong indicator of referring to different entities. We define disagree-

ment decay to capture this intuition.
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Figure 2.1: Decay curves for Address

Definition 2.2.1 (Disagreement decay) Let ∆t be a time distance and A ∈ A be a

single-valued attribute. Disagreement decay of A over time ∆t, denoted by d̸=(A,∆t),

is the probability that an entity changes its A-value within time ∆t. �

On the other hand, as time goes by, we are more likely to observe two entities with
the same attribute value; for example, in Example 1.2.2 entity E1 occurred in 1991 and
E2 occurred in 2004-2010, and they share the same name. Thus, the same value over
a long period of time should not be considered as strong indicator of referring to the
same entity. We define agreement decay accordingly.

Definition 2.2.2 (Agreement decay) Let ∆t be a time distance and A ∈ A be an

attribute. The agreement decay of A over time ∆t, denoted by d=(A,∆t), is the prob-

ability that two different entities share the same A-value within time ∆t. �

According to the definitions, decay satisfies two properties. First, decay is in the
range of [0,1]; however, d̸=(A, 0) and d=(A, 0) are not necessarily 0, since even at the
same time their value-match does not necessarily correspond to record-match and vice
versa. Second, decay observes monotonicity; that is, for any ∆t < ∆t′ and any attribute
A, d̸=(A,∆t) ≤ d ̸=(A,∆t′) and d=(A,∆t) ≤ d=(A,∆t′). Whereas our definition of
decay applies to all attributes, for attributes whose values always remain stable (e.g.,
birth-date), the disagreement decay is always 0, and for those whose values change
rapidly (e.g., bank-account-balance), the disagreement decay is always 1.
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Example 2.2.3 Figure 2.1 shows the curves of disagreement decay and agreement

decay on attribute address learned from a European patent data set (described in

detail in Section 2.4).

We observe that (1) the disagreement decay increases from 0 to 1 as time elapses,

showing that two records differing in affiliation over a long time is not a strong indica-

tor of referring to different entities; (2) the agreement decay is close to 0 everywhere,

showing that in this data set, sharing the same address is a strong indicator of re-

ferring to the same entity even over a long time; (3) even when ∆t = 0, neither the

disagreement nor the agreement decay is exactly 0, meaning that even at the same time

an address match does not definitely correspond to record match or mismatch.

2.2.2 Learning decay

Decay can be specified by domain experts or learned from a labeled data set, for
which we know if two records refer to the same entity and if two strings represent
the same value.1 For simplification of computation, we make three assumptions. 1.
Value uniqueness: at each time point an entity has a single value for a single-valued
attribute. 2. Closed-world: for each entity described in the labeled data set, during the
time period when records that describe this entity are present, each of its ever-existing
values is reflected by some record and the change is reflected at the transition point. 3.
Correctness: values in each record reflect the truth in real world. The data sets in prac-
tice often violate the assumptions. In our learning we can resolve value-uniqueness
conflicts with domain experts. Our experimental results show that the learned decay
does lead to good linkage results even when the latter two assumptions are violated,
as various kinds of violations in the real data often cancel out each other in affecting
the learned curves. In addition, we relax the closed-world assumption and propose
probabilistic decay, but our experiments show that it obtains very similar results to
deterministic decay.

Consider attribute A and time period ∆t. We next describe three ways to calculate
decay for A and ∆t according to the labels, namely, deterministic decay, single-count

decay and probabilistic decay.
1In case there is no label for whether two strings represent the same value, we can easily extend our

techniques by considering value similarity.
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2.2.2.1 Disagreement decay

By definition, disagreement decay for ∆t is the probability that an entity changes its
A-value within time ∆t. So we need to find the valid period of each A-value of an
entity.

Consider an entity E and its records in increasing time order, denoted by r1, . . . , rn, n ≥
1. We call a time point t a change point if at time t there exists a record ri, i ∈ [2, n],

whose A-value is different from ri−1. Additionally r1 is always a change point. For
each change point t (associated with a new value), we can compute a life span: if t is
not the final change point of E, we call the life span of the current A-value a full time
span and denote it by [t, tnext), where tnext is the next change point; otherwise, we call
the life span a partial time span and denote it by [t, tend + δ), where tend is the final
time stamp for this value and δ denotes one time unit (in Example 1.2.2, a unit of time
is 1 year). A life span [t, t′) has length t′ − t, indicating that the corresponding value
lasts for time t′− t before any change in case of a full life span, and that the value lasts
at least for time t′ − t in case of a partial life span. L̄f denotes the bag of lengths of
full life spans, and L̄p the bag of partial life spans.

Deterministic decay: To learn d̸=(A,∆t), we consider all full life spans and the partial
life spans with length of at least ∆t (we cannot know for others if the value will change
within ∆t). We compute the decay as

d̸=(A,∆t) =
|{l ∈ L̄f |l ≤ ∆t}|

|L̄f |+ |{l ∈ L̄p|l ≥ ∆t}|
. (2.1)

We give details of the algorithm in Algorithm LEARNDISAGREEDECAY (Algo-
rithm 1). We can prove that the decay it learns satisfies the monotonicity property.

Proposition 2.2.4 Let A be an attribute. For any ∆t < ∆t′, the decay learned by

Algorithm LEARNDISAGREEDECAY satisfies d̸=(A,∆t) ≤ d ̸=(A,∆t′). �

Proof 2.2.5 In LEARNDISAGREEDECAY, as ∆t increases, |{l ∈ L̄f |l ≤ ∆t}| is non-

decreasing while |{l ∈ L̄p|l ≥ ∆t}| is non-increasing; thus, |{l∈L̄f |l≤∆t}|
|L̄f |+|{l∈L̄p|l≥∆t}| is non-

decreasing.
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Algorithm 1 LEARNDISAGREEDECAY(C̄, A)
Input: C̄ Clusters of records in the sample data set, where records in the same cluster

refer to the same entity and records in different clusters refer to different entities.
A Attribute for learning decay.

Output: Disagreement decay d̸=(∆t, A).
L̄f = ϕ; L̄p = ϕ;
for each C ∈ C̄ do

sort records in C in increasing time order to r1, . . . , r|C|;
// Find life spans
start = 1;
while start ≤ |C| do
end = start+ 1;
while rstart.A = rend.A and end ≤ |C| do
end++;

end while
if end > |C| then

insert r|C|.t− rstart.t+ δ into L̄p; // partial life span
else

insert rend.t− rstart.t into L̄f ; // full life span
end if
start = end;

end while
end for
// learn decay
for ∆t = 1, . . . ,maxl∈L̄f∪L̄p

{l} do
d̸=(A,∆t) =

|{l∈L̄f |l≤∆t}|
|L̄f |+|{l∈L̄p|l≥∆t}|

end for

Example 2.2.6 Consider learning disagreement decay for affiliation from the data

in Example 1.2.2. For illustrative purposes, we remove record r10 as its affiliation

information is incorrect. Take E2 as an example. As shown in Fig. 2.2, it has two

change points: 2004 and 2009. So there are two life spans: [2004, 2009) has length 5

and is full, and [2009, 2011) has length 2 and is partial.

After considering other entities, we have L̄f = {4, 5} and L̄p = {1, 2, 3}. Accord-

ingly, d̸=(aff,∆t ∈ [0, 1]) = 0
2+3

= 0, d̸=(aff,∆t = 2) = 0
2+2

= 0, d̸=(aff,∆t = 3) =
0

2+1
= 0, d̸=(aff,∆t = 4) = 1

2
= 0.5, and d ̸=(aff,∆t ≥ 5) = 2

2
= 1.

Single-count decay: We consider an entity at most once and learn the disagreement
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Figure 2.2: Learning d̸=(aff,∆t)

decay d̸=(A,∆t) as the fraction of entities that have changed their A-value within time
∆t. In particular, if an entity E has full life spans, we choose the shortest and insert
its length l to L̄f , indicating that E has changed its A-value in time l; otherwise, we
consider E’s partial life span and insert its length l to L̄p, indicating that E has not
changed its A-value in time l, but we do not know if it will change its A-value after
any longer time. We learn disagreement decay using Eq.(2.1).

Proposition 2.2.7 Let A be an attribute. For any ∆t < ∆t′, the decay learned using

Single-count decay satisfies d ̸=(A,∆t) ≤ d̸=(A,∆t′). �

Proof 2.2.8 In single-count decay, as ∆t increases, |{l ∈ L̄f |l ≤ ∆t}| is non-decreasing

while |{l ∈ L̄p|l ≥ ∆t}| is non-increasing; thus, |{l∈L̄f |l≤∆t}|
|L̄f |+|{l∈L̄p|l≥∆t}| is non-decreasing.

Example 2.2.9 Consider learning disagreement decay for affiliation from the follow-

ing data: entity E1 has two full life spans, [2000, 2005), [2005, 2009), and one partial

life span [2009, 2011); entity E2 has one partial life span [2003, 2010). For E1, we

consider its shortest full life span, which has length 4; for E2, we consider its par-

tial life span, which has length 7. Therefore, we have L̄f = {4}, and L̄p = {7}.

Accordingly, d̸=(aff,∆t ∈ [0, 3]) = 0
1+1

= 0, d̸=(aff,∆t ∈ [4, 7]) = 1
1+1

= .5,

d ̸=(aff,∆t ≥ 8) = 1
1+0

= 1.

For comparison, on the same data set LEARNDISAGREEDECAY learns the follow-

ing disagreement decay: d ̸=(aff,∆t ∈ [0, 3]) = 0, d̸=(aff,∆t = 4) = 1
2+1

= 0.33,

d ̸=(aff,∆t ∈ [5, 7]) = 2
2+1

= .67, d ̸=(aff,∆t ≥ 8) = 2
2+0

= 1. So the decay learned

by LEARNDISAGREEDECAY is smoother.
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Probabilistic decay: We remove the closed-world assumption; that is, each value
change is reflected by a record at the change point. In particular, considering a full
life span [t, tnext) we assume the last time we see the same value is t′, t ≤ t′ ≤ tnext.
We assume the value can change at any time from t′ to tnext with equal probability

1
tnext−t′+1

. Thus, for each t0 ∈ [t′, tnext], we insert length t0 − t into L̄f and annotate it
with probability 1

tnext−t′+1
. If we denote by p(l) the probability for a particular length

l in L̄f , we compute the disagreement decay as

d̸=(A,∆t) =

∑
l∈L̄f ,l≤∆t p(l)∑

l∈L̄f
p(l) + |{l ∈ L̄p|l ≥ ∆t}|

. (2.2)

Proposition 2.2.10 Let A be an attribute. For any ∆t < ∆t′, the decay learned using

Probabilistic decay satisfies d̸=(A,∆t) ≤ d̸=(A,∆t′). �

Proof 2.2.11 In probabilistic decay, as ∆t increases,
∑

l∈L̄f ,l≤∆t p(l) is non-decreasing

while |{l ∈ L̄p|l ≥ ∆t}| is non-increasing; thus,
∑

l∈L̄f ,l≤∆t p(l)∑
l∈L̄f

p(l)+|{l∈L̄p|l≥∆t}| is non-decreasing.

Example 2.2.12 Consider learning disagreement decay for affiliation from the data

set in Example 1.2.2. Again, we remove record r10 for illustrative purpose. Take E2 as

an example. Its first affiliation has full life span [2004, 2009), and its last time stamp

is 2007. We consider the change can occur in any year from 2007 to 2009, each with

probability 1
2009−2007+1

= 1
3
. So we insert length 3, 4, 5 into L̄f , each with probability

1
3
. Similarly, we insert length 3, 4 for entity E3, each with probability 0.5.

Eventually, we have L̄f = {3(1
3
), 4(1

3
), 5(0.33), 3(0.5), 4(0.5)}, and L̄p = {1, 2, 3}.

Accordingly, d ̸=(aff,∆t ∈ [0, 1]) = 0
2+3

= 0, d̸=(aff,∆t = 2) = 0
2+2

= 0, d̸=(aff,∆t =

3) = 0.5+0.33
2+1

= 0.28, d̸=(aff,∆t = 4) = 0.33+0.33+0.5+0.5
2

= 0.84, and d̸=(aff,∆t ≥
5) = 0.33+0.33+0.33+0.5+0.5

2
= 1.

Recall that for the same data set LEARNDISAGREEDECAY learns the following

decay: d ̸=(aff,∆t ∈ [0, 3]) = 0, d̸=(aff,∆t = 4) = 0.5, and d̸=(aff,∆t ≥ 5) = 1.

Thus, the curve learned by LEARNDISAGREEDECAY is less smooth.

Experimental results (Section 2.4) show that these three methods learn similar (but
more or less smooth) decay curves, and their results lead to similar linkage results.
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Figure 2.3: Learning d=(name,∆t)

2.2.2.2 Agreement decay

By definition, agreement decay for ∆t is the probability that two different entities share
the same value within time period ∆t. Consider a value v of attribute A. Assume entity
E1 has value v with life span [t1, t2) and E2 has value v with life span [t3, t4). Without
losing generality, we assume t1 ≤ t3. Then, for any ∆t ≥ max{0, t3− t2+ δ}, E1 and
E2 share the same value v within a period of ∆t. We call max{0, t3 − t2 + δ} the span

distance for v between E1 and E2.1

For any pair of entities, we find the shared values and compute the corresponding
span distance for each of them. If two entities never share any value, we use ∞ as the
span distance between them. We denote by L̄ the bag of span distances and compute
the agreement decay as

d=(A,∆t) =
|{l ∈ L̄|l ≤ ∆t}|

|L̄|
. (2.3)

Algorithm LEARNAGREEDECAY (Algorithm 2) describes the details and we next
show monotonicity of its results.

Proposition 2.2.13 Let A be an attribute. For any ∆t < ∆t′, the decay learned by

Algorithm LEARNAGREEDECAY satisfies d=(A,∆t) ≤ d=(A,∆t′). �

Proof 2.2.14 In LEARNAGREEDECAY, as ∆t increases, |{l ∈ L̄|l ≤ ∆t}| is non-

decreasing; thus, |{l∈L̄|l≤∆t}|
|L̄| is non-decreasing.

1We can easily extend to the case where v has multiple life spans for the same entity.
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Algorithm 2 LEARNAGREEDECAY(C̄, A)
Input: C̄ Clusters of records in the sample data set.

A An attribute for decay learning.
Output: Agreement decay d=(∆t, A).

//Find life spans
for each C ∈ C̄ do

sort records in C in increasing time order to r1, . . . , r|C|;
start = 1;
while start ≤ |C| do
end = start+ 1;
while rstart.A = rend.A and end ≤ |C| do
end++;

end while
if end > |C| then
rstart.tnext = r|C|−1.t+ δ; // partial life span

else
rstart.tnext = rend.t; // full life span

end if
start = end;

end while
end for
//learn agreement decay
L̄ = ϕ
for each C,C ′ ∈ C̄ do
same = false;
for each r ∈ C s.t. r.tnext ̸= null do

for each r′ ∈ C ′ s.t. r.tnext ̸= null do
if r.A = r′.A then
same = true;
if r.t ≤ r′.t then

insert max{0, r′.t− r.tnext + 1} into L̄;
else

insert max{0, r.t− r′.tnext + 1} into L̄;
end if

end if
end for

end for
if !same then

insert ∞ into L̄;
end if

end for
for ∆t = 1, . . . ,maxl∈L̄{l} do
d=(A,∆t) = |{l∈L̄|l≤∆t}|

|L̄|
end for
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Example 2.2.15 Consider learning agreement decay for name from data in Exam-

ple 1.2.2. As shown in Fig. 2.3, entities E1 and E2 share value Xin Dong, for which

the life span for E1 is [1991, 1992) and that for E2 is [2004, 2009). Thus, the span dis-

tance between E1 and E2 is 2004−1992+1 = 13. No other pair of entities shares the

same value; thus, L̄ = {13,∞,∞}. Accordingly, d=(name,∆t ∈ [0, 12]) = 0
3
= 0,

and d=(name,∆t ≥ 13) = 1
3
= 0.33.

Similarly, we can apply single-count decay or probabilistic decay to learn agree-
ment decay. We omit the details here for brevity.

2.2.3 Applying decay

Here we describe how we apply decay in record-similarity computation. We first focus
on single-valued attributes and then extend our method for multi-valued attributes.

2.2.3.1 Single-valued attributes

When computing similarity between two records with a big time gap, we often wish to
reduce the penalty if they have different values and reduce the reward if they share the
same value. Thus, we assign weights to the attributes according to the decay; the lower
the weight, the less important an attribute is in the record-similarity computation, so
there is a lower penalty for value disagreement or lower reward for value agreement.
This weight is decided both by the time gap and by the similarity between the values (to
decide whether to apply agreement or disagreement decay). We denote by wA(s,∆t)

the weight of attribute A with value similarity s and time difference ∆t. Given records
r and r′, we compute their similarity as

sim(r, r′) =

∑
A∈AwA(s(r.A, r

′.A), |r.t− r′.t|) · s(r.A, r′.A)∑
A∈AwA(s(r.A, r′.A), |r.t− r′.t|)

. (2.4)

Next we describe how we set wA(s,∆t). With probability s, the two values are
the same and we shall use the complement of the agreement decay; with probability
1 − s, they are different and we shall use the complement of the disagreement decay.
Thus, we set wA(s,∆t) = 1− s · d=(A,∆t)− (1− s) · d̸=(A,∆t). In practice, we use
thresholds θh and θl to indicate high similarity and low similarity respectively, and set
wA(s,∆t) = 1− d=(A,∆t) if s > θh and wA(s,∆t) = 1− d̸=(A,∆t) if s < θl. Our
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experiments show robustness of our techniques with respect to different settings of the
thresholds.

Example 2.2.16 Consider records r2 and r5 in Example 1.2.2 and we focus on single-

valued attributes name and affiliation. Assume the name similarity between r2 and r5

is 0.9 and the affiliation similarity is 0. Suppose d=(name,∆t = 5) = 0.05, d ̸=(aff,∆t =

5) = 0.9, and θh = 0.8. Then, the weight for name is 1 − 0.05 = 0.95 and that for

affiliation is 1 − 0.9 = 0.1. So the similarity is sim(r1, r2) = 0.95∗0.9+0.1∗0
0.95+0.1

= 0.81.

Note that if we do not apply decay and assign the same weight to each attribute, the

similarity would become 0.5∗0.9+0.5∗0
0.5+0.5

= 0.45.

Thus, by applying decay, we are able to merge r2−r6, despite the affiliation change

of the entity. Note however that we will also incorrectly merge all records together

because each record has a high decayed similarity to r1.

2.2.3.2 Multi-valued attributes

In this subsection we consider multi-valued attributes such as co-authors. We start by
describing record-similarity computation with such attributes, and then describe how
we learn and apply decay for such attributes.

Multi-valued attributes differ from single-valued attributes in that the same en-
tity can have multiple values for such attributes, even at the same time; therefore, (1)
having different values for such attributes does not indicate record mismatch; and (2)
sharing the same value for such attributes is additional evidence for record match.

Consider a multi-valued attribute A. Consider records r and r′; r.A and r′.A each
is a set of values. Then, the similarity between r.A and r′.A, denoted by s(r.A, r′.A),
is computed by a variant of Jaccard distance between the two sets.

s(r.A, r′.A) =

∑
v∈r.A,v′∈r′.A,s(v,v′)>θh

s(v, v′)

min{|r.A|, |r′.A|}
. (2.5)

If the relationship between the entities and the A-values is one-to-many, we add
the attribute similarity (with a certain weight) to the record similarity between r and
r′. In particular, let sim′(r, r′) be the similarity between r and r′ when we consider all

attributes and wA be the weight for attribute A, then,
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sim′(r, r′)

=min{1, sim(r, r′) +
∑

multi−valued A

wA · s(r.A, r′.A)}. (2.6)

On the other hand, if the relationship between the entities and the A-values are
many-to-many, we apply Eq.(2.6) only when sim(r, r′) > θs, where θs is a threshold
for high similarity on values of single-valued attributes.

Now consider decay on such multi-valued attributes. First, we do not learn dis-
agreement decay on multi-valued attributes but we learn agreement decay in the same
way as for single-valued attributes. Second, we apply agreement decay when we com-
pute the similarity between values of a multi-valued attribute, so if the time gap be-
tween two similar values is large, we discount the similarity. In particular, we revise
Eq.(2.5) as follows.

s(r.A, r′.A)

=

∑
v∈r.A,v′∈r′.A,s(v,v′)>θh

(1− d=(A, |r.t− r′.t|))s(v, v′)
min{|r.A|, |r′.A|}

. (2.7)

Example 2.2.17 Consider records r2 and r5 and multi-valued attribute co-authors
(many-to-many relationship) in Example 1.2.2. Let θh = 0.8 and wco = 0.3. Record

r2 and r5 share one co-author with string similarity 1. Suppose d=(co,∆t = 5) =

0.05. Then, s(r2.co, r5.co) = (1−0.05)∗1
min{2,2} = 0.475. Recall from Example 2.2.16 that

sim(r2, r5) = 0.81 > θh; therefore, the overall similarity is sim′(r2, r5) = min{1, 0.81+
0.475 ∗ 0.3} = 0.95.

2.3 Temporal Clustering

As shown in Example 2.2.16, even when we apply decay in similarity computation,
traditional clustering methods do not necessarily lead to good results as they ignore
the time order of the records. This section proposes three clustering methods, all pro-
cessing the records in increasing time order. Early binding (Section 4.1) makes eager
decisions and merges a record with an already created cluster once it computes a high
similarity between them. Late binding (Section 4.2) compares a record with each al-
ready created cluster and keeps the probability, and makes clustering decision at the
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end. Adjusted binding (Section 4.3) is applied after early binding or late binding,
and improves over them by comparing a record also with clusters created later and
adjusting the clustering results. Our experimental results show that adjusted binding
significantly outperforms traditional clustering methods on temporal data.

2.3.1 Early binding

Algorithm: Early binding considers the records in time order; for each record it ea-
gerly creates its own cluster or merges it with an already created cluster. In particular,
consider record r and already created clusters C1, . . . , Cn. EARLY proceeds in three
steps.

1. Compute the similarity between r and each Ci, i ∈ [1, n].

2. Choose the cluster C with the highest similarity. Merge r with C if sim(r, C) >

θ, where θ is a threshold indicating high similarity; create a new cluster Cn+1 for
r otherwise.

3. Update signature for the cluster with r accordingly.

Cluster signature: When we merge record r with cluster C, we need to update the
signature of C accordingly (step 3). As we consider r as the latest record of C, we
take r’s values as the latest values of C. For the purpose of similarity computation,
which we describe shortly, for each latest value v we wish to keep 1) its various rep-
resentations, denoted by R̄(v), and 2) its earliest and latest time stamps in the current
period of occurrence, denoted by te(v) and tl(v) respectively. The latest occurrence
of v is clearly r.t. We maintain the earliest time stamp and various representations
recursively as follows. Let v′ be the previous value of C, and let smax be the highest
similarity between v and the values in R̄(v′). (1) If smax > θh, we consider the two
values as the same and set te(v) = te(v

′) and R̄(v) = R̄(v′) ∪ {v}. (2) If smax < θl,
we consider the two values as different and set te(v) = r.t and R̄(v) = {v}. (3) Oth-
erwise, we consider that with probability smax the two values are the same, so we set
te(v) = sim(v, v′)te(v

′) + (1− sim(v, v′))r.t and R̄(v) = R̄(v′) ∪ {v}.

Similarity computation: When we compare r with a cluster C (step 1), for each
attribute A, we compare r’s A-value r.A with the A-value in C’s signature, denoted by
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Algorithm 3 EARLY(R)
Input: R records in increasing time order
Output: C̄ clustering of records in R

for each record r ∈ R do
for each C ∈ C̄ do

compute record-cluster similarity sim(r, C);
end for
if maxC∈C̄ sim(r, C) ≥ θ then
C = ArgmaxC∈C̄sim(r, C);
insert r into C;
update signature of C;

else
insert cluster {r} into C̄;

end if
end for
return C̄;

C.A. We make two changes in this process: first, we compare r.A with each value in
R̄(C.A) and take the maximum similarity; second, when we compute the weight for
A, we use te(C.A) for disagreement decay as C.A starts from time te(C.A), and use
tl(C.A) for agreement decay as tl(C.A) is the last time we see C.A.

We describe Algorithm EARLY in Algorithm 3. EARLY runs in time O(|R|2); the
quadratic time is in the number of records in each block after preprocessing.

Example 2.3.1 Consider applying early binding to records in Table 1.1. Table 2.1

shows the signature of affiliation for each cluster after we process each record. The

change in each step is in bold.

We start with creating C1 for r1. Then we merge r2 with C1 because of the high

record similarity (same name and high disagreement decay on affiliation with time

difference 2004-1991=13). The new signature of C1 contains address UW from 2004

to 2004. We then create a new cluster C2 for r7, as r7 differs significantly from C1.

Next, we merge r3 and r4 with C1 and merge r8 and r9 with C2. The signature of C1

then contains address UW from 2004 to 2007, and the signature of C2 contains address

MSR from 2008 to 2008.

Now consider r10. It has a low similarity to C2 (r10 and r9 has a short time distance

but different affiliations), but a high similarity to C1 (fairly similar name and high
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Table 2.1: Example 2.3.1: cluster signature in early binding
C1 C2 C3

r1 R.Poly, 1991-1991 - -
r2 UW, 2004-2004 - -
r7 UW, 2004-2004 UI, 2004-2004 -
r3 UW, 2004-2005 UI, 2004-2004 -
r8 UW, 2004-2005 UI, 2004-2007 -
r4 UW, 2004-2007 UI, 2004-2007 -
r9 UW, 2004-2007 MSR, 2008-2008 -
r10 UI, 2009-2009 MSR, 2008-2008 -
r11 UI, 2009-2009 MSR, 2008-2009 -
r5 UI, 2009-2009 MSR, 2008-2009 AT&T, 2009-2009
r12 UI, 2009-2009 MSR, 2008-2010 AT&T, 2009-2009
r6 UI, 2009-2009 MSR, 2008-2010 AT&T, 2009-2010

disagreement decay on affiliation with time difference 2009-2004=5). We thus wrongly

merge r10 with C1. This eager decision further prevents merging r5 and r6 with C1 and

we create C3 for them separately.

2.3.2 Late binding

Instead of making eager decisions and comparing a record with a cluster based on
such eager decisions, late binding keeps all evidence, considers them in record-cluster
comparison, and makes a global decision at the end.

Late binding is facilitated by a bi-partite graph (NR, NC , E), where each node in
NR represents a record, each node in NC represents a cluster, and each edge (nr, nC) ∈
E is marked with the probability that record r belongs to cluster C (see Fig. 2.4 for
an example). Late binding clusters the records in two stages: first, evidence collection

creates the bi-partite graph and computes the weight for each edge; then, decision

making removes edges such that each record belongs to a single cluster.

2.3.2.1 Evidence collection

Late binding behaves similarly to early binding at the evidence collection stage, except
that it keeps all possibilities rather than making eager decisions. For each record r and
already created clusters C1, . . . , Cn, it proceeds in three steps.

1. Compute the similarity between r and each Ci, i ∈ [1, n].
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2. Create a new cluster Cn+1 and assign similarity as follows. (1) If for each i ∈
[1, n], sim(r, Ci) ≤ θ, we consider that r is unlikely to belong to any Ci and set
sim(r, Cn+1) = θ. (2) If there exists i ∈ [1, n], such that not only sim(r, Ci) >

θ, but also sim′(r, Ci) > θ, where sim′(r, Ci) is computed by ignoring decay,
we consider that r is very likely to belong to Ci and set sim(r, Cn+1) = 0. (3)
Otherwise, we set sim(r, Cn+1) = maxi∈[1,n] sim(r, Ci).

3. Normalize the similarities such that they sum up to 1 and use the results as prob-
abilities of r belonging to each cluster. Update the signature of each cluster
accordingly.

In the final step, we normalize the similarities such that the higher the similarity,
the higher the result probability. Note that in contrast to early binding, late binding is
conservative when the record similarity without decay is low (Step 2(3)); this may lead
to splitting records that have different values but refer to the same entity, and we show
later how adjusted binding can benefit from the conservativeness.

Edge deletion: In practice, we may set low similarities to 0 to improve performance;
we next describe several edge-deletion strategies. Our experimental results (Section 2.4)
show that they obtain similar results, while they all improve over not deleting edges in
both efficiency and accuracy of the results.

• Thresholding removes all edges whose associated similarity scores are less or
equal to a threshold θ.

• Top-K keeps the top-k edges whose associated similarity scores are above thresh-
old θ.

• Gap orders the edges in descending order of the associated similarity scores to
e1, e2, . . . , en, and selects the edges in decreasing order until reaching an edge ei
where (1) the scores for ei and ei+1 have a gap larger than a given threshold θgap,
or (2) the score for ei+1 is less than threshold θ.

Cluster signature: For each cluster, the signature consists of all records that may
belong to the cluster along with the probabilities. For each value of every record, we
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Figure 2.4: Example 2.3.2: A part of the bi-partite graph

maintain the earliest time stamp, the latest time stamp, and similar values, as we do in
early binding.

Similarity computation: When we compare r with a cluster C, we need to consider
the probability that a record in C’s signature belongs to C. Let r1, . . . , rm be the
records of C in increasing time order, and let P (ri), i ∈ [1,m], be the probability that
ri belongs to C. Then, with probability P (rm), record rm is the latest record of C and
we should compare r with it; with probability (1−P (rm))P (rm−1), record rm−1 is the
latest record of C and we should compare r with it; and so on. Note that the cluster
is valid only when r1, for which we create the cluster, belongs to the cluster, so we
use P (r1) = 1 in the computation (the original P (r1) is used in the decision-making
stage). Formally, the similarity is computed as

sim(r, C) =
m∑
i=1

sim(r, ri)P (ri)Π
m
j=i+1(1− P (ri)). (2.8)

Example 2.3.2 Consider applying late binding to the records in Table 1.1 and let θ =

0.8. Fig. 2.4 shows a part of the bi-partite graph. At the beginning, we create an edge

between r1 and C1 with weight 1. We then compare r2 with C1: the similarity with

decay (0.89 > θ) is high but that without decay (0.5 < θ) is low. We thus create a new

cluster C2 and set sim(r2, C2) = 0.89. After normalization, each edge from r2 has a

weight of 0.5.

Now consider r7. For C1, with probability 0.5 we shall compare r7 with r2 (suppose

sim(r7, r2) = 0.4) and with probability 1-0.5=0.5 we shall compare r7 with r1 (sup-

pose sim(r7, r1) = 0.8). Thus, sim(r7, C1) = 0.8 ∗ 0.5+ 0.4 ∗ 0.5 = 0.6 < θ. For C2,

we shall compare r7 only with r2 and the similarity is 0.4 < θ. Because of the low sim-
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ilarities, we create a new cluster C3 and set sim(r7, C3) = 0.8. After normalization,

the probabilities from r7 to C1, C2 and C3 are 0.33, 0.22 and 0.45 respectively.

2.3.2.2 Decision making

The second stage makes clustering decisions according to the evidence we have col-
lected. We consider only valid clusterings, where each non-empty cluster contains
the record for which we create the cluster. Let C̄ be a clustering and we denote by
C̄(r) the cluster to which r belongs in C̄. We can compute the probability of C̄ as
Πr∈RP (r ∈ C̄(r)), where P (r ∈ C̄(r)) denotes the probability that r belongs to C̄(r).
We wish to choose the valid clustering with the highest probability. Enumerating all
clusterings and computing the probability for each of them can take exponential time.
We next propose an algorithm that takes only polynomial time and is guaranteed to
find the optimal solution.

1. Select the edge (nr, nC) with the highest weight.

2. Remove other edges connected to nr.

3. If nr is the first selected edge to nC but C is created for record r′ ̸= r, select
the edge (nr′ , nC) and remove all other edges connected to nr′ (so the result
clustering is valid).

4. Go to Step 1 until all edges are either selected or removed.

We describe algorithm LATE in Algorithm 4 and next state the optimality of the
decision-making stage.

Proposition 2.3.3 LATE algorithm runs in time O(|R|2) and chooses the clustering

with the highest probability from all possible valid clusterings. �

Proof 2.3.4 Our evidence collection step guarantees that if Cr is created for record

r, then the edge (Nr, NCr) has the highest weight among edges from Nr. Thus, the

decision making step chooses the edge with the highest weight for each record and

obtains the optimal solution.
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Algorithm 4 LATE(R)
Input: R records in increasing time order
Output: C̄ clustering of records in R

Initialize a bi-partite graph (NR, NC , E) where NR = NC = E = ∅;
//Evidence collection
for each record r ∈ R do

insert node nr into NR;
for each nC ∈ NC do

compute decayed record-cluster similarity sim(r, C);
end for
if maxnC∈NC

sim(r, C) ≤ θ then
insert node nCr into NC ;
insert edge (nr, nCr) with weight θ into E;

else
newCluster = true;
for each nC ∈ NC , where sim(r, C) > θ do

compute no decayed similarity sim′(r, C);
if sim′(r, C) > θ then
newCluster = false; break;

end if
end for
if newCluster then

insert node nCr into NC ;
insert edge (nr, nCr) with weight maxnC∈NC ,sim′(r,C)>θ(sim(r, C)) into E;

end if
end if
delete edges with low weights;
normalize weights for all edges from nr;

end for
// Decision making
while |E| > |NR| do

select edge (nr, nC) with maximal edge weight;
remove edges (nr, nC′) for all C ′ ̸= C;
if cluster C is created for record r′ ̸= r then

select edge (nr′ , nC);
remove edges (nr′ , nC′) for all C ′ ̸= C;

end if
end while
return C̄;
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Table 2.2: Example 2.3.5: weights on the bipartite graph
r1 r2 r7 r3 r8 r4 r9 r10 r11 r5 r12 r6

C1 1 0.5 0.33 0.37 0.27 0.38 0.16 0.13 0.18 0.24 0.12 0.22
C2 0 0.5 0.22 0.4 0.25 0.4 0.16 0.12 0.17 0.27 0.1 0.24
C3 0 0 0.45 0.23 0.48 0.22 0.24 0.26 0.2 0.17 0.23 0.18
C4 0 0 0 0 0 0 0.44 0.19 0.29 0.16 0.33 0.18
C5 0 0 0 0 0 0 0 0.3 0.16 0.16 0.22 0.18

Example 2.3.5 Continuing from Example 2.3.2. After evidence collection, we created

5 clusters and the weight of each record-cluster pair is shown in Table 2.2. Weights of

selected edges are in bold.

We first select edge (nr1 , nC1) with weight 1. We then choose (nr2 , nC2) with weight

0.5 (there is a tie between C1 and C2; even if we choose C1 at the beginning, we will

change back to C2 when we select edge (nr3 , nC2)), and (nr8 , nC3) with weight 0.48. As

C3 is created for record r7, we also select edge (nr7 , nC3) and remove other edges from

r7. We choose edges for the rest of the records similarly and the final result contains 5

clusters: {r1}, {r2, . . . , r6}, {r7, r8}, {r9, r11, r12}, {r10}.

Note that despite the error made for r10, we are still able to correctly merge r5 and

r6 with C2 because we make the decision at the end. Note however that we did not

merge r9, r11 and r12 with C3, because of the conservativeness of late binding.

2.3.3 Adjusted binding

Neither early binding nor late binding compares a record with a cluster created later.
However, evidence from later records may fix early errors; in Example 1.2.2, after
observing r11 and r12, we are more confident that r7 − r12 refer to the same entity but
record r10 has out-of-date affiliation information. Adjusted binding allows comparison
between a record and clusters that are created later.

Adjusted binding can start with the results from either early or late binding and iter-
atively adjust the clustering (deterministic adjusting), or start with the bi-partite graph
created from evidence collection of late binding, and iteratively adjust the probabilities
(probabilistic adjusting). We next describe the two algorithms.

34



2.3.3.1 Deterministic algorithm

Deterministic adjusting proceeds in EM-style.

1. Initialization: Set the initial assignment as the result of early or late binding.

2. Estimation (E-step): Compute the similarity of each record-cluster pair and nor-
malize the similarities as in late binding.

3. Maximization (M-step): Choose the clustering with the maximum probability, as
in late binding.

4. Termination: Repeat E-step and M-step until the results converge or oscillate.

Similarity computation The E-step compares a record r with a cluster C, whose
signature may contain records that occur later than r. Our similarity computation takes
advantage of this complete view of value evolution as follows.

First, we consider consistency of the records, including consistency in evolution
of the values, in occurrence frequency, and so on. We next describe how we compute
value consistency and occurrence frequency.

Consider the value consistency between r and C = {r1, . . . , rm} (if r ∈ C, we
remove r from C), denoted by cons(r, C) ∈ [0, 1]. Assume the records of C are in
time order and rk.t < r.t < rk+1.t.1 Inserting r into C can affect the consistency
of C in two ways: 1) r may be inconsistent with rk, so the similarity between r and
the sub-cluster C1 = {r1, . . . , rk} is low; 2) rk+1 may be inconsistent with r, so the
similarity between rk+1 and the sub-cluster C2 = {r1, . . . , rk, r} is low. We take the
minimum as cons(r, C):

cons(r, C) = min(sim(r, C1), sim(rk+1, C2)). (2.9)

Occurrence consistency considers a cluster C. The occurrence frequency of C,
denoted by freq(C), is computed by

freq(C) =
Clate − Cearly

|C|
. (2.10)

1We can extend our techniques to the case when r has the same time stamp as some record in C.
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Figure 2.5: Continuity between record r and cluster C

Let C ′ be the cluster after inserting record r into C. The occurrence consistency

between r and C, denoted by consf (r, C) is computed by

consf (r, C) = 1− |freq(C)− freq(C ′)|
max{freq(C), freq(C ′)}

. (2.11)

Second, we consider continuity of r and C’s other records in time, denoted by
cont(r, C) ∈ [0, 1]. Consider the five cases in Fig. 2.5 and assume the same consistency
between r and C. Record r is farther away in time from C’s records in cases 1 and 5
than in cases 2-4, so it is less likely to belong to C in cases 1 and 5. Let C.early denote
the earliest time stamp of records in C and C.late denote the latest one. We compute
the continuity as follows.

cont(r, C)= e−λy; (2.12)

y=
|r.t− C.early|+ α

C.late− C.early + α
. (2.13)

Here, λ > 0 is a parameter that controls the level of continuity we require; α > 0 is
a small number such that when the denominator (resp. numerator) is 0, the numerator
(resp., denominator) can still affect the result1. Under this definition, the higher the
time difference between r and the earliest record in C compared with the length of C,
the lower the continuity. In Fig. 2.5, cont(r, C) is close to 0 in cases 1, 5, close to 1 in

1In practice, we set α to one time unit, and set λ = − ln cons where cons is the minimum consis-
tency we require for merging a record with a cluster. When we merge two clusters C1 and C2 where
C1.late = C2.early, with such λ the latest record r1 of C1 has continuity cons with C1 and continuity
1 with C2, so can be merged with C2 if cons(r1, C2) > cons.
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cases 2, 3, and close to e−λ in case 4. Note that we favor time points close to C.early

more than those close to C.late; thus, when we merge two clusters that are close in
time, we will gradually move the latest record of the early cluster into the late cluster,
as it has a higher continuity with the late cluster.

Finally, the similarity of r and C considers both consistency and continuity, and is
computed by

sim(r, C) = cons(r, C) · cont(r, C). (2.14)

Recall that late binding is conservative for records whose similarity without decay
is low and may split them. Adjusted binding re-examines them and merges them only
when they have both high consistency and high continuity, and thus avoids aggressive
merging of records with big time gap.

We describe the detailed algorithm, ADJUST, in Algorithm 5. Our experiments
show that ADJUST does not necessarily converge, but the quality measures of the re-
sults at the oscillating rounds are very similar.

Example 2.3.6 Consider r10 and C4 = {r9, r11, r12} in the results of Example 2.3.5.

For value consistency, inserting r10 into C4 results in {r9, . . . , r12}. Assume sim(r10, {r9}) =
sim(r11, {r9,
r10}) = .6. Then, cons(r10, C4) = .6. For continuity, if we set λ = 2 and α = 1, we

obtain l(r10, C4) = e−2· 1+1
2+1 = 0.26. Thus, the similarity is .26 ∗ .6 = .16. On the other

hand, the similarity between r10 and C5 is 1 · e−2· 1
1 = .14. We thus merge r10 with C4.

Similarly, we then merge r8 with C4 and in turn r7 with C4, leading to the correct

result. Note that we do not merge r1 with C2, because of the long time gap and thus a

low continuity.

2.3.3.2 Probabilistic adjusting

Probabilistic adjusted binding proceeds in three steps.

• The algorithm starts with the bi-partite graph created from evidence collection
in late binding.

• It iteratively adjusts the weight of each edge and keeps all edges, until the
weights converge or oscillate. In each iteration, it (1) re-computes the simi-
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Algorithm 5 ADJUST(R, C̄)
Input: R records in increasing time order.

C̄ pre-clustering of records in R.
Output: C̄ new clustering of records in R.

repeat
//E-step
for each record r ∈ R do

for each cluster C ∈ C̄ do
compute sim(r, C) = cons(r, C) ∗ cont(r, C);

end for
end for
//M-step
Choose the possible world with the highest probability as in Ln.28-35 of LATE;

until C̄ is not changed
return C̄;

larity between each record and each cluster, (2) normalizes the weights of edges
from the same record node, and (3) re-computes the signature of each cluster.

• It selects the possible world with the highest probability as in late binding.

In the second step, when we compute the similarity between a record and a cluster,
we compute consistency cons(r, C) and continuity cont(r, C) similarly as in determin-
istic adjusted binding, except that we also need to consider the probability of a record
belonging to a cluster. For value consistency, we consider probability in the same way
as in late binding. For continuity, we compute the probabilistic earliest and latest time
stamps of a cluster as follows. Suppose cluster C is connected to m records r1, . . . , rm
where r1.t ≤ r2.t ≤ · · · ≤ rm.t, each with probability pi, i ∈ [1,m]. We compute
Cearly and Clate as follows.

Cearly =
m∑
i=1

ri.t · (piΠi−1
k=1(1− pk)); (2.15)

Clate =
m∑
i=1

ri.t · (piΠm
k=i+1(1− pk)). (2.16)
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Our experiments (Section 2.4) shows that probabilistic adjusting takes much longer
than deterministic adjusting, but does not have an obvious performance gain.

2.4 Experimental Evaluation

This section describes the results of experiments on two real data sets. We show that
(1) our technique significantly improves on traditional methods on various data sets;
(2) the two key components of our strategy, namely, decay and temporal clustering,
are both important for obtaining good results; (3) our technique is robust with respect
to various data sets and reasonable parameter settings; (4) our techniques are efficient
and scalable.

2.4.1 Experiment settings

Data and golden standard: We experimented on two real-world data sets: a bench-
mark of European patent data set1 and the DBLP data set. From the patent data we
extracted Inventor records with attributes name and address; the time stamp of each
record is the patent filing date. The benchmark involves 359 inventors from French
patents, where different inventors rarely share similar names; we thus increased the
hardness by deriving a data set with only first name and last name initial for each
inventor. We call the original data set the full set and the derived one the partial set.

From the DBLP data we considered two subsets: the XD data set contains 72
records for authors named Xin Dong, Luna Dong, Xin Luna Dong, or Dong Xin, for
which we manually identified 8 authors; the WW data set contains 738 records for au-
thors named Wei Wang, for 302 of which DBLP has manually identified 18 authors
(the rest is left in a potpourri). For each subset we extracted Author records with at-
tributes name, affiliation, and co-author (we extracted affiliation information from
the papers) on 2/1/2011; the time stamp of each record is the paper publication year.
Table 3.4 shows statistics of the data sets.

Implementation: We learned decay from both patent data sets. The decay we learned
for the address attribute is shown in Fig. 2.1 (Section 2.2); for name, both agreement

1http://www.esf-ape-inv.eu/
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Table 2.3: Statistics of the experimental data sets
#Records #Entities Years

Patent (full or partial) 1871 359 1978-2003
DBLP-XD 72 8 1991-2010
DBLP-WW 738 18+potpourri 1992-2011

Figure 2.6: Results on the patent data set

and disagreement decay are close to 0 on both data sets. We observed similar linkage
results when we learned the decays from half of the data and applied them to the other
half. We also applied the decay learned from the partial data set on linking DBLP
records.

We pre-partitioned the records by the initial of the last name, and implemented the
following methods on each partition.

• Baseline methods include PARTITION, CENTER, and MERGE Hassanzadeh et al.
[2009a]. They all compute pairwise record similarity but apply different cluster-
ing strategies. We give the details as follows.

– PARTITION starts with single-record clusters and merges two clusters if
they contain similar records (i.e., applying the transitive rule).

– CENTER scans the records, merging a record r with a cluster if it is similar
to the center of the cluster; otherwise, creates a new cluster with r as its
center.

– MERGE starts from the result of CENTER and merges two clusters if a
record from one cluster is similar to the center of the other cluster.

Since CENTER and MERGE are order sensitive, we run each of them 5 times and
report the best results.
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Figure 2.7: Different components on patent partial data

Figure 2.8: Different decays on patent partial data

Decayed baseline methods include DECAYEDPARTITION, DECAYEDCENTER,
and DECAYEDMERGE, each modifying the corresponding baseline method by
applying decays in record-similarity computation.

• Temporal clustering methods include NODECAYADJUST, applying ADJUST with-
out using decay.

• Full methods include EARLY, LATE, and ADJUST, each applying both decay
and the corresponding clustering algorithm.

Similarity computation: We compute similarity between a pair of attribute values as
follows.

• name: We used Levenshtein metric except that if the Levenshtein similarity is
above 0.5 and the Soundex similarity is 1, we set similarity to 1.

• address: We used TF/IDF metric, where token similarity is measured by Jaro-
Winker distance with threshold 0.9. If the TF/IDF similarity is above 0.5 and the
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Figure 2.9: Comparing different decay learning methods

Figure 2.10: Different clustering methods on patent partial data

Soundex similarity is 1, we set similarity to 1.

• co-author: We use a variant of Jaccard metric (see Eq.(2.7)), where name simi-
larity is measured by Levenshtein distance and θh = 0.8. We apply this similarity
only when the record similarity w.r.t single-valued attributes is above θs = 0.5.

By default, when we compute the record similarity without applying decay, we use
weight 0.5 for both name and address (or affiliation). Whether or not we apply decay,
we use weight 0.3 for co-author. We apply threshold 0.8 for deciding if a similarity is
high in various contexts. In addition, we set θh = 0.8, θl = 0.6, λ = 0.5, α = 1 in our
methods. We vary these parameters to demonstrate robustness.

We implemented the algorithms in Java, using a WindowsXP machine with 2.66
GHz Intel CPU and 1 GB of RAM.

Measure: We compare pairwise linking decisions with the golden standard and mea-
sure the quality of the results by precision (P), recall (R), and F-measure (F). We
denote the set of false positive pairs by FP , the set of false negative pairs by FN , and
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Figure 2.11: Comparing different edge deletion strategies

the set of true positive pairs by TP . Then, P = |TP |
|TP |+|FP | , R = |TP |

|TP |+|FN | , F = 2PR
P+R

.

2.4.2 Results on patent data

Fig. 3.6 compares ADJUST with the baseline methods. ADJUST obtains slightly lower
precision (but still above .9) but much higher recall (above .8) on both data sets; it
improves the F-measure over baseline methods by 15%-27% on the full data set, and
by 11%-22% on the partial data set. The full data set is simpler as very few inventors
share similar full names; as a result, ADJUST obtains higher precision and recall on
this data set. The slightly lower recall on the partial data set is because early false
matching can prevent correct later matching. We next give a detailed comparison of
the partial data set, which is harder. Of the baseline methods, PARTITION obtains the
best results on the patent data set and we next show results only on it. Results for the
other two baseline methods follow the same pattern.

Figure 3.7 shows the contribution of applying decay and applying temporal cluster-
ing. We observe that DECAYEDPARTITION and NODECAYADJUST both improve over
PARTITION, and ADJUST obtains the best result. Applying decay on baseline methods
greatly increases the recall, but it is at the price of a big drop in precision. Temporal
clustering, on the other hand, considers the time information in clustering and in con-
tinuity computation, so it significantly increases the recall without much reduction in
precision.
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Figure 2.12: Different adjusted binding methods on patent partial data

2.4.2.1 Applying decay

Disagreement vs agreement decay: Figure 2.8 compares the results of applying no
decay, applying only agreement decay, applying only disagreement decay, and apply-
ing both decays. We observe that while applying disagreement significantly improve
the results, applying agreement decay does not change the results much, since the
agreement decays of both attributes are close to 0.

Decay learning methods: We learned the decay in three ways: DETERMINISTIC,
SINGLECOUNT, and PROBABILISTIC, as described in Section 2.2. We observe that
(1) these three methods learn similar curves, and (2) as shown in Fig. 2.9, applying the
three different curves lead to very similar results for ADJUST, while DETERMINISTIC

obtains slightly higher F-measure than the other two.

2.4.2.2 Temporal clustering

Different clustering methods: Figure 2.10 compares early, late, and adjusted bind-
ing. We observe that all bindings improve the recall over PARTITION, and reduce the
precision only slightly. Between EARLY and LATE, EARLY has a lower precision as it
makes local decisions, while LATE has a lower recall as it is conservative in merging
records with similar names but different addresses (high decayed similarity but low
non-decayed similarity). ADJUST significantly improves the recall over both meth-
ods by comparing early records with clusters formed later, without sacrificing much
precision.

Edge deletion strategies: We tried various edge-deletion strategies for late binding:
NODELETE keeps all edges; THRESHOLDING keeps edges with similarity over 0.8;
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Figure 2.13: Different thresholds on patent partial data

TOPK keeps only the top-k edges with similarity over 0.8; GAP keeps the top edges
with weights above 0.8 and gap within 0.1 . Fig. 2.11 shows that (1) NODELETE

keeps all edges, which often have low weights after normalization, and can thus split
many clusters and obtain a very low recall; and (2) different edge-deletion strategies
lead to very similar F-measures and improve both efficiency and result quality over
NODELETE.

Cluster adjusting strategies: We implemented three versions of adjusted binding:
LATEADJUST applies deterministic binding on the results of late binding; EARLYAD-
JUST applies deterministic binding on the results of early binding; and PROBADJUST

applies probabilistic binding on the bi-partite graph created in late binding. Fig. 2.12
shows their results. First, we observe that PROBADJUST obtains similar results to
LATEADJUST while the running time is 50% longer (not shown in the figure); show-
ing that it does not have obvious advantage. Second, we observe that EARLYADJUST

and LATEADJUST obtain similar results on the patent data set; however, as shown in
Fig. 2.17(c), LATEADJUST improves over EARLYADJUST by 26% on another data set,
the DBLP WW data set.

2.4.2.3 Robustness

We ran two experiments to test robustness against parameter settings. We first changed
thresholds θh and θl for string similarity and observed very similar results (varying
within 0.4%) when θh ∈ [0.7, 0.9] and θl ∈ [0.5, 0.7] (see Fig. 2.13).

Second, we applied different attribute weights (wname ∈ [0.4, 1], waddr. = 1−wname)
to compute no-decayed similarity. Fig. 2.14 shows that (1) ADJUST is robust against
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Figure 2.14: Comparison of applying different attribute weights

Figure 2.15: Scalability of ADJUST

attribute weights; and (2) ADJUST always outperforms PARTITION in F-measure.

2.4.2.4 Scalability

To test scalability of our techniques, we randomly divided the partial patent data set
into 10 subsets with similar sizes without splitting entities. We started with one subset
and gradually added more, and reported the execution time in Fig. 2.15. We observe
that (1) ADJUST terminated in 10.3 minutes on all 1871 records and is reasonably fast
given that this is an off-line process; and (2) the execution time grows nearly linearly
in the size of the data (though can be quadratic in the size of a partition after pre-
processing), showing scalability of our techniques.
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Figure 2.16: Results of XD data set

Figure 2.17: Results of WW data set

2.4.3 Results on DBLP data

2.4.3.1 XD data set

The golden standard contains 8 clusters: the Xin cluster has 36 records in years 2003-
2010, including name Dong Xin and 2 affiliations (UIUC, MSR); the Dong cluster
has 29 records in years 2003-2010, including 3 names (Xin Dong, Luna Dong, Xin

Luna Dong) and 3 affiliations (UW, Google, AT&T); the rest each have 1 or 2 records,
including 1 name Xin Dong and 1 affiliation.

ADJUST results in 9 clusters and makes only one mistake: it splits the Xin records
in 2009 with affiliation UIUC from the rest of Xin records. This is because Xin moved
to MSR in 2008, so ADJUST considers the two affiliations as conflicting. We highlight
that (1) ADJUST fixes an error in DBLP: it (correctly) separates the records with affil-
iation UNL from the Dong cluster; and (2) ADJUST is able to distinguish the various
people, even though their names are exactly the same or very similar (the similarity
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between Xin Dong and Dong Xin is set to 0.8).
Figure 2.16(a) shows the results of various methods on this data set. ADJUST im-

proves over baseline methods by 37%-43%. Other observations are similar to those on
the Patent data set (see Fig. 2.16(b)-(c)), except that applying decay to some baseline
methods (PARTITION and CENTER) can considerably reduce the precision and result
in a low F-measure, as this data set is small and extremely difficult.

2.4.3.2 WW data set

We first report results on the 302 records for which DBLP has identified 18 clusters, of
which (1) 3 involve 2 affiliations, 2 involve 3 affiliations, and 1 involves 4 affiliations,
so in total 10 affiliation transitions; (2) two authors share the same affiliation Fudan;
(3) the largest cluster contains 92 records, the smallest contains 1 record, and 6 clusters
contain more than 10 records.

ADJUST obtains both high precision (0.98) and high recall (0.97). We highlight
that (1) ADJUST is able to distinguish the different authors in most cases; (2) of the
10 transitions, ADJUST identifies 5 of them. ADJUST makes four types of mistakes:
(1) it merges the two Fudan clusters, as one of them contains a single record with the
year in the middle of the time period of the other cluster; (2) it merges the big Fudan

cluster with another record, whose affiliation appears different from the rest in its own
cluster, and time stamp is one year before the earliest record in the big Fudan cluster,
and so makes a strong case for the adjusting step; (3) it does not identify one of the
transitions for the same reason as in the XD data set; and (4) it does not identify the
other 4 transitions because there are very few records for one of the affiliations and so
not enough evidence for merging. Finally, Fig. 2.17 shows that ADJUST is significantly
better than all other methods.

In the complete DBLP WW data set, 124 other WW records are merged with these
18 clusters and we manually verified the correctness. Among them, 63 are correctly
merged, fixing errors from DBLP; 26 are wrongly merged but can be correctly sep-
arated if we have department information for affiliation; and 35 are wrongly merged
mainly because of the high similarity of affiliations (e.g., many records with “technol-

ogy” in affiliation are wrongly merged because the IDF of “technology” is not so low
on this small data set). If we count these additional records, we are still able to obtain
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a precision of 0.94 and a recall of 0.94.

2.5 Related Work

There are two bodies of work similar to ours: linkage techniques, and works regarding
temporal information.

Record linkage: Record linkage has been extensively studied in recent years Elma-
garmid et al. [2007]; Koudas et al. [2006]. To the best of our knowledge, existing
techniques do not consider evolution of entities over time and treat the data as snap-
shot data. Our techniques differ from them in two aspects: the way we compute record
similarity and the way we cluster records.

For record-similarity computation, existing works can be divided into three cate-
gories: classification-based approaches Fellegi and Sunter [1969a], classify a pair of
records as match, unmatch and maybe; distance-based approaches Dey [2008], apply
distance metrics to compute similarity of each attribute, and take the weighted sum
as the record similarity; rule-based approaches Hernandez and Stolfo [1998], apply
domain knowledge to match records. Our work falls in the distance-based category;
however, we apply decay such that the weights we use for combining attribute simi-
larities are functions of the time difference between the records, so we are tolerant of
value evolution over time.

Many record linkage techniques, especially classification-based approaches, re-
quire learning parameters or classification models from learning data Domingos [2004];
Fellegi and Sunter [1969a]; Winkler [2002]. Their learning techniques all assume that
record values do not change over time and value differences are due to different rep-
resentations of the same value (e.g., “Google” and “Google, Inc.”). We also learn
parameters from learning data, but we are different in that we take into account possi-
ble value change over time; the decay curves we learn can be considered as consisting
of parameters learned for different time gaps.

Relational entity resolution techniques take entity relationships (e.g., co-author, co-
citation) into account when computing record similarity Ananthakrishna et al. [2002];
Chen et al. [2005]; On et al. [2007]. Our techniques also consider such multi-valued
attributes, but we apply agreement decay and give less reward to similar values of such
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attributes in case of a big time gap.
For record clustering, there exists a wealth of literature on clustering algorithms

for record linkage Hassanzadeh et al. [2009a]. Among them, unconstrained and unsu-
pervised algorithms that result in disjoint clusters are closest to ours. These algorithms
may apply the transitive rule and efficiently perform clustering by a single scan of
record pairs (e.g., Partition algorithm Hernandez and Stolfo [1998]), may iteratively
specify seeds of clusters and assign vertexes to the seeds (e.g., Ricochet algorithm Wi-
jaya and Bressan [2009]), and may perform clustering by solving an optimization prob-
lem (e.g., Cut clustering Flake et al. [2004]). These methods typically consider the
records in decreasing order of record similarity while we consider the records in time
order and collect evidence globally. Thus, our techniques do not necessarily merge
records with high value similarity if the resulting entity shows erratic changes in a
time period, and do not necessarily split records with low value similarity if value
evolution over time is likely.

The techniques closest to ours can be found in Yakout et al. [2010] and Burdick
et al. [2011]. In Yakout et al. [2010] the authors study behavior based linkage where
it leverages the periodical behavior patterns of each entity in linking pairs of records
and learns such patterns from transaction logs. Their behavior pattern is different from
the decay in our techniques in that decay learns the probability of value changes over
time for all entities. In addition, we do not require a fixed and repeated value change
pattern of particular entities, and we apply decay in a global fashion (rather than just
between pairs of records) such that we can handle value evolution over time. Burdick
et al. Burdick et al. [2011] applies domain-dependent rules to leverage temporal infor-
mation in linking records, while we are the first to present a theoretical model that can
be applied generally.

Temporal data: A suite of temporal data models Ozsoyoglu and Snodgrass [1995],
temporal knowledge discovery paradigms Roddick and Spiliopoulou [2002] and data
currency models Fan et al. [2011] have been proposed in the past; however, we are
not aware of any work focusing on linking temporal records. The notion of decay has
recently been proposed in the context of data warehouses and streaming data Cohen
and Strauss [2003]; Cormode et al. [2009]. They use decay to reduce the effect of
older tuples on data analysis. Of them, backward decay Cohen and Strauss [2003]
measures time difference backward from the latest time and forward decay Cormode
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et al. [2009] measures time difference forward from a fixed landmark. Their decay
function is either binary or a fixed (exponential or polynomial) function. We differ
in that 1) we consider time difference between two records rather than from a fixed
point, and 2) we learn the decay curves purely from the data rather than using a fixed
function.

2.6 Summary

This article studied linking records with temporal information. We apply decay in
record-similarity computation and consider the time order of records in clustering;
thus, our linkage technique is tolerant of entity evolution over time and can glean
evidence globally for decision making. Future work includes combining temporal in-
formation with other dimensions of information such as spatial information to achieve
better results, considering erroneous data especially erroneous time stamps, and com-
bining our work with recent work on inferring temporal ordering of records Fan et al.
[2011] for linkage.
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Chapter 3

Linking Records in the Same Group

In this chapter, we study the problem of group linkage: linking records that refer to
entities in the same group. Applications for group linkage include finding businesses in
the same chain, finding conference attendants from the same affiliation, finding players
from the same team, etc. Group linkage faces challenges not present for traditional
record linkage. First, although different members in the group can share some similar
global values, they represent different entities so can also have distinct local values,
requiring a high tolerance for value diversity. Second, there are often millions of
records for group linkage, and a group can contain tens of thousands of members,
requiring a high scalability.

This chapter begins by formally defining the problem of group linkage and in-
troducing the outline of our solution in Section 3.1. Then, we describe a two-stage
algorithm in the following sections: the first stage identifies cores containing records
that are very likely to belong to the same group (Section 3.2); the second stage col-
lects strong evidence from the cores and leverages it for merging more records in the
same group, while being tolerant to differences in other values (Section 3.3). Sec-
tion 3.4 presents experimental results and Section 3.5 discusses related work. Finally
Section 3.6 summarizes this chapter.
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3.1 Problem Definition and Overview of Our Approach

This section formally defines the group linkage problem and provides an overview of
our solution.

3.1.1 Problem definition

Let R be a set of records that describe real-world entities by a set of attributes A.
For each record r ∈ R, we denote by r.A its value on attribute A ∈ A. Because
of duplicates and heterogeneity of the data, a real-world entity may be represented
by a few records in R, with different representations of the same attribute value and
sometimes even erroneous values.

We consider the group linkage problem; that is, finding records that represent real-
world entities belonging to the same group. As an example application, we wish to
find business chains–a set of business entities with the same or highly similar names at
different locations, either under shared corporate ownership (i.e., sharing a brand and
central management, such as Walmart and Home Depot), or under franchising agree-
ments (i.e., operating with the right or license granted by a company for marketing its
products in a specific territory, such as Subway and McDonald’s).1 We focus on non-
overlapping groups, which often hold in applications, and leave overlapping groups for
future work.

Definition 3.1.1 (Group linkage) Given a set R of records, group linkage identifies

a set of clusters CH of records in R, such that (1) records that represent real-world

entities in the same group belong to one and only one cluster in CH, and (2) records

that represent real-world entities not in any group do not belong to any cluster in CH.

�

We assume we have already applied record-linkage techniques (e.g., Guo et al.
[2010]) to merge different records that represent the same entity. Our experiments
show that minor mistakes for record linkage typically do not significantly affect the
results of group linkage, and records that describe the same entity but fail to be merged
are often put into the same group. We leave a better combination of record linkage and
group linkage for future work.

1http://en.wikipedia.org/wiki/Chain store.
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Example 3.1.2 Consider records in Example 1.2.2, where each record describes a

business store (at a distinct location) by attributes name, phone, URL, location, and

category.

The ideal solution to the group linkage problem contains 3 clusters: Ch1 = {r1 −
r10}, Ch2 = {r11 − r15}, and Ch3 = {r16 − r18}. Among them, Ch2 and Ch3 represent

two different chains with the same name. Listings r19 and r20 do not belong to any

chain, so not to any cluster in the solution either. �

3.1.2 Overview of our solution

Group linkage is slightly different from traditional record linkage because it essentially
looks for records that represent entities in the same group, rather than records that rep-
resent exactly the same entity. Different members in the same group often share a
certain amount of commonality (e.g., common name, primary phone and URL domain
of chain stores), but meanwhile can also have a lot of differences (e.g., different ad-
dresses, local phone numbers of chain stores); thus, we need to allow much higher
variety in some attribute values to avoid false negatives. On the other hand, as we have
shown in Section 1.2.2, simply lowering our requirement on similarity of records or
similarity of a few attributes in clustering can lead to a lot of false positives, which we
also wish to avoid.

The key idea of our solution is to distinguish between strong evidence and weak

evidence. For example, different branches in the same business chain often share the
same URL domain name and those in North America often share the same 1-800 phone
number. Thus, a URL domain or phone number shared among many business listings
with highly similar names can serve as strong evidence for chain identification. In
contrast, a phone number alone shared by only a couple of business entities is much
weaker evidence, since one might be an erroneous or out-of-date value.

To facilitate leveraging strong evidence, our solution contains two stages. The first
stage collects records that are highly likely to belong to the same group; for example,
a set of business listings with the same name and phone number are very likely to be
in the same chain. We call the results cores of the groups; from them we can collect
strong evidence such as name, primary phone number, and primary URL domain of
chains. The key of this stage is to be robust against erroneous values and make as few
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false positives as possible, so we can avoid identifying strong evidence wrongly and
causing ripple effect later; however, being too strict and missing the cores of many
groups can miss important strong evidence.

The second stage clusters cores and remaining records into groups according to the
discovered strong evidence. It decides whether several cores belong to the same group,
and whether a record that does not belong to any core actually belongs to some group.
It also employs weak evidence, but treats it differently from strong evidence. The key
of this stage is to leverage the strong evidence and meanwhile be tolerant to diversity
of values in the same group, so we can remove false negatives made in the first stage.

We next illustrate our approach for business-chain identification.

Example 3.1.3 Continue with the motivating example. In the first stage we generate

three cores: Cr1 = {r1−r7},Cr2 = {r14, r15},Cr3 = {r16−r18}. Records r1−r7 are

in the same core because they have the same name, five of them (r1−r5) share the same

phone number 808 and five of them (r3 − r7) share the same URL homedepot. Similar

for the other two cores. Note that r13 does not belong to any core, because one of its

URLs is the same as that of r11−r12, and one is the same as that of r16−r18, but except

name, there is no other common information between these two groups of records. To

avoid mistakes, we defer the decision on r13. Indeed, recall that tacocasatexas is a

wrong value for r13. For a similar reason, we defer the decision on r12.

In the second stage, we generate groups - business chains. We merge r8 − r10 with

core Cr1, because they have similar names and share either the primary phone number

or the primary URL. We also merge r11 − r13 with core Cr2, because (1) r12 − r13

share the primary phone 900 with Cr2, and (2) r11 shares the primary URL tacocasa
with r12 − r15. We do not merge Cr2 and Cr3 though, because they share neither the

primary phone nor the primary URL. We do not merge r19 or r20 to any chain, because

there is again not much strong evidence. We thus obtain the ideal result. �

To facilitate this two-stage solution, we find attributes that provide evidence for
group identification and classify them into three categories. Since there are typically
only a few such attributes, the classification can be performed by domain experts (for
wrongly classified attributes, we may learn low weights to partially fix the problem).

• Common-value attribute: We call an attribute A a common-value attribute if
all entities in the same group have the same or highly similar A-values. Such
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attributes include business-name for chain identification and organization for
organization linkage.

• Dominant-value attribute: We call an attribute A a dominant-value attribute if
entities in the same group often share one or a few primary A-values (but there
can also exist other less-common values), and these values are seldom used by
entities outside the group. Such attributes include phone and URL-domain for
chain identification, and office-address, phone-prefix, and email-server for
organization linkage.

• Multi-value attribute: We call the rest of the attributes mutli-value attributes as
there is often a many-to-many relationship between groups and values of these
attributes. Such attributes include category for chain identification.

In the rest of the chapter, we describe core identification in Section 3.2 and group
linkage in Section 3.3. Our algorithm requires common-value and dominant-value
attributes, which often exist for groups in practice.

3.2 Core Identification

The first stage of our solution creates cores consisting of records that are very likely
to belong to the same business chain. The key in core identification is to be robust to
possible erroneous values. This section starts with presenting the criteria we wish the
cores to meet (Section 3.2.1), then describes how we efficiently construct similarity
graphs to facilitate core finding (Section 3.2.2), and finally gives the algorithm for core
identification (Section 3.2.3).

3.2.1 Criteria for a core

At the first stage we wish to make only decisions that are highly likely to be correct;
thus, we require that each core contains only highly similar records, and different cores
are fairly different and easily distinguishable from each other. In addition, we wish
that our results are robust even in presence of a few erroneous values in the data. In
the motivating example, r1 − r7 form a good core, because 808 and homedepot are
very popular values among these records. In contrast, r13 − r18 does not form a good
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core, because records r14 − r15 and r16 − r18 do not share any phone number or URL
domain; the only “connector” between them is r13, so they can be wrongly merged
if r13 contains erroneous values. Also, considering r13 − r15 and r16 − r18 as two
different cores is risky, because (1) it is not very clear whether r13 is in the same chain
as r14 − r15 or as r16 − r18, and (2) these two cores share one URL domain name so
are not fully distinguishable.

We capture this intuition with connectivity of a similarity graph. We define the
similarity graph of a set R of business listings as an undirected graph, where each node
represents a listing in R, and an edge indicates high similarity between the connected
two listings (we describe in which cases we consider two listings as highly similar
later). Figure 3.1 shows the similarity graph for the motivating example.

Each core would correspond to a connected sub-graph of the similarity graph. We
wish such a sub-graph to be robust such that even if we remove a few nodes the sub-
graph is still connected; in other words, even if there are some erroneous records,
without them we still have enough evidence showing that the rest of the records must
belong to the same chain. The formal definition goes as follows.

Definition 3.2.1 (k-robustness) A graph G is k-robust if after removing arbitrary k

nodes and edges to these nodes, G is still connected. A clique or a single node is

k-robust for any k. �

In Figure 3.1, the subgraph with nodes r1 − r7 is 2-robust, but that with r13 − r18

is not 1-robust as removing r13 can disconnect it.
According to the definition, we can partition the similarity graph into a set of k-

robust subgraphs. As we do not wish to split any core unnecessarily, we require the
maximal k-robust partitioning; that is, merging any two subgraphs should not obtain a
graph that is also k-robust.

Definition 3.2.2 (Maximal k-robust partitioning) Let G be a similarity graph. A

partitioning of G is a maximal k-robust partitioning if it satisfies the following proper-

ties.

1. Each node belongs to one and only one subgraph.

2. Each subgraph is k-robust.
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Figure 3.1: Similarity graph for records in Table 1.3.

3. The result of merging any two subgraphs is not k-robust. �

Note that a data set can have more than one maximal k-robust partitioning. Con-
sider r11−r18 in Figure 3.1. There are three maximal 1-robust partitionings: {{r11}, {r12, r14−
r15}, {r13, r16−r18}}; {{r11−r12}, {r14−r15}, {r13, r16−r18}}; and {{r11−r15}, {r16−
r18}}. If we treat each partitioning as a possible world, records that belong to the same
partition in all possible worlds have high probability to belong to the same chain and
so form a core. Accordingly, we define a core as follows.

Definition 3.2.3 (Core) Let R be a set of business listings and G be the similarity

graph of R. The records that belong to the same subgraph in every maximal k-robust

partitioning of G form a core of R. A core contains at least 2 records. �

Example 3.2.4 Consider Figure 3.1 and assume k = 1. There are two connected sub-

graphs. For records r1 − r7, the subgraph is 1-robust, so they form a core. For records

r11 − r18, there are three maximal 1-robust partitionings for their subgraph, as we

have shown. Two subsets of records belong to the same subgraph in each partitioning:

{r14 − r15} and {r16 − r18}; they form 2 cores. �

3.2.2 Constructing similarity graphs

Generating the cores requires analysis on the similarity graph. Real-world data can
often contain millions of records; it is unscalable to compare every pair of records
and create edges accordingly. We next describe how we construct and represent the
similarity graph in a scalable way.
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Table 3.1: (a) Inverted index for the similarity graph in Figure 3.1. (b) Simplified
inverted index for (a).

Record V-Cliques
r1 C1

r2 C1

r3 C1, C2

r4 C1, C2

r5 C1, C2

r6 C2

r7 C2

r11 C3

r12 C3, C4

r13 C3, C4, C5

r14 C4

r15 C4

r16 C5

r17 C5

r18 C5

(a)

Record V-Cliques Represent
r1/2 C1 r1 − r2
r3 C1, C2 r3
r4 C1, C2 r4
r5 C1, C2 r5
r6/7 C2 r6 − r7
r11 C3 r11
r12 C3, C4 r12
r13 C3, C4, C5 r13

r14/15 C4 r14 − r15
r16/17/18 C5 r16 − r18

(b)

We add an edge between two records if they have the same value for each common-
value attribute and share at least one value on a dominant-value attribute.1 All records
that share values on the common-value attributes and share the same value on a dominant-
value attribute form a clique, which we call a v-clique. We can thus represent the graph
with a set of v-cliques, denoted by C; for example, the graph in Figure 3.1 can be rep-
resented by 5 v-cliques. In addition, we maintain an inverted index, where each entry
corresponds to a record r and contains the v-cliques that r belongs to (see Table 3.1(a)
as an example). We denote the index by L̄ and the v-cliques that record r belongs to
by L̄(r). Whereas the size of the similarity graph is quadratic in the number of the
nodes, the size of the inverted index is only linear in that number. The inverted index
also makes it easy to find adjacent v-cliques, v-cliques that share nodes, as they appear
in the same entry.

Graph construction is then reduced to v-clique finding, which can be done by scan-

1In practice, for common-value attributes we require only highly similar values. We can
also adapt our method for other edge-adding strategies; we compare different strategies in
experiments (Section 2.4).
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ning values of dominant-value attributes. In this process, we wish to prune a v-clique
if it is a sub-clique of another one. Pruning by checking every pair of v-cliques can be
very expensive since the number of v-cliques is also huge. Instead, we do it together
with v-clique finding. Specifically, our algorithm GRAPHCONSTRUCTION takes R as
input and outputs C and L̄. We start with C = L̄ = ∅. For each value v of a dominant-
value attribute, we denote the set of records with v by R̄v and do the following.

1. Initialize the v-cliques for v as Cv = ∅. Add a single-record cluster for each
record r ∈ R̄v to a working set T̄ . Mark each cluster as “unchanged”.

2. For each r ∈ R̄v, scan L̄ and consider each v-clique C ∈ L̄(r) that has not been
considered yet. For all records in C ∩ R̄v, merge their clusters. Mark the merged
cluster as “changed” if the result is not a proper sub-clique of C. If C ⊆ R̄v,
remove C from C. This step removes the v-cliques that must be sub-cliques of
those we will form next.

3. For each cluster C ∈ T̄ , if there exists C ′ ∈ Cv such that C and C ′ share the
same value for each common-value attribute, remove C and C ′ from T̄ and Cv

respectively, add C ∪ C ′ to T̄ and mark it as “changed”; otherwise, move C to
Cv. This step merges clusters that share values on common-value attributes. At
the end, Cv contains the v-cliques with value v.

4. Add each v-clique with mark “changed” in Cv to C and update L̄ accordingly.
The marking prunes size-1 v-cliques and the sub-cliques of those already in C.

Proposition 3.2.5 Let R be a set of business listings. Denote by n(r) the number

of values on dominant-value attributes from r ∈ R. Let n =
∑

r∈R n(r) and m =

maxr∈R n(r). Let s be the maximum v-clique size. Algorithm GRAPHCONSTRUCTION

(1) runs in time O(ns(m+s)), (2) requires space O(n), and (3) its result is independent

of the order in which we consider the records. �

This proposition (all proofs in Appendix .1) shows that GRAPHCONSTRUCTION

reduces both time and space complexity. We observed from experiments that we can
save space by 2 orders of magnitude.
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Example 3.2.6 Consider graph construction for records in Table 1.3. Figure3.1 shows

the similarity graph and Table 3.1(a) shows the inverted list. We focus on records

r1 − r8 for illustration.

First, r1 − r5 share the same name and phone number 808, so we add v-clique

C1 = {r1 − r5} to C. Now consider URL homedepot where R̄v = {r3 − r8}. Step 1

generates 6 clusters, each marked “unchanged”, and T̄ = {{r3}, . . . , {r8}}. Step 2

looks up L̄ for each record in R̄v. Among them, r3 − r5 belong to v-clique C1, so it

merges their clusters and marks the result {r3 − r5} “unchanged” ({r3 − r5} ⊂ C1);

then, T̄ = {{r3 − r5}, {r6}, {r7}, {r8}}. Step 3 compares these clusters and merges

the first three as they share the same name, marking the result as “changed”. At the

end, Cv = {{r3 − r7}, {r8}}. Finally, Step 4 adds {r3 − r7} to C and discards {r8}
since it is marked “unchanged”. �

Given the sheer number of records in R, the inverted index can still be huge. The
following proposition shows that records in the same v-clique but not any other v-
clique must belong to the same core. As we show later, such records cannot affect
robustness judgment, so we do not need to distinguish them.

Proposition 3.2.7 Let G be a similarity graph. Let r and r′ be two nodes in G that

belong to the same v-clique C and not any other v-clique. Then, r and r′ must belong

to the same partition in any maximal k-robust partitioning. �

Thus, we simplify the inverted index such that for each v-clique we keep only
a representative for nodes belonging only to this v-clique. Table 3.1(b) shows the
simplified index for Table 3.1(a).

Case study: On a data set with 6.8M records (described in Section 2.4), our graph-
construction algorithm finished in 2.2 hours. The original similarity graph contains
6.8M nodes and 569M edges. The inverted index contains 0.8M entries, each associ-
ated with at most 6 v-cliques; in total there are 94K v-cliques. The simplified inverted
index further reduces the size of the index to 0.15M entries, where an entry can repre-
sent up to 11K records. Therefore, the simplified inverted index reduces the size of the
similarity graph by 3 orders of magnitude.
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Figure 3.2: Two example graphs.

3.2.3 Identifying cores

We solve the core-identification problem by reducing it to a Max-flow/Min-cut Prob-
lem. However, computing the max flow for a given graph G and a source-destination
pair takes time O(|G|2.5), where |G| denotes the number of nodes in G; even the sim-
plified inverted index can still contain hundreds of thousands of entries, so it can be
very expensive. We thus first merge certain v-cliques according to a sufficient (but not
necessary) condition for k-robustness and consider them as a whole in core identifica-
tion; we then split the graph into subgraphs according to a necessary (but not sufficient)
condition for k-robustness. We apply reduction only on the resulting subgraphs, which
are substantially smaller as we show at the end of this section. Section 3.2.3.1 describes
screening before reduction, Section 3.2.3.2 describes the reduction, and Section 3.2.3.3
gives the full algorithm, which iteratively applies screening and the reduction. Note
that the notations in this section are with respect to v-cliques, thus can be slightly
different from those in Graph Theory.

3.2.3.1 Screening

A graph can be considered as a union of v-cliques, so essentially we need to decide if
a union of v-cliques is k-robust. First, we give the following sufficient condition for
k-robustness (proof in Appendix 5).

Theorem 3.2.8 ((K + 1)-connected condition) Let G be a graph consisting of a union

Q of v-cliques. If for every pair of v-cliques C,C ′ ∈ Q, there is a path of v-cliques

between C and C ′ and every pair of adjacent v-cliques on the path share at least k+1

nodes, graph G is k-robust. �
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We call a single v-clique or a union of v-cliques that satisfy the (k + 1)-connected
condition a (k+1)-connected v-union. A (k+1)-connected v-union must be k-robust
but not vice versa. In Figure 3.1, subgraph {r1−r7} is a 3-connected v-union, because
the only two v-cliques, C1 and C2, share 3 nodes. Indeed, it is 2-robust. On the other
hand, graph G1 in Figure 3.2 is 2-robust but not 3-connected (there are 4 v-cliques,
where each pair of adjacent v-cliques share only 1 or 2 nodes). Accordingly, we can
consider a v-union as a whole in core identification.

Next, we present a necessary condition for k-robustness (proof in Appendix 5).

Theorem 3.2.9 ((K + 1)-overlap condition) Graph G is k-robust only if for every

(k + 1)-connected v-union Q ∈ G, Q shares at least k + 1 common nodes with the

subgraph consisting of the rest of the v-unions. �

We call a graph G that satisfies the (k + 1)-overlap condition a (k + 1)-overlap

graph. A k-robust graph must be a (k + 1)-overlap graph but not vice versa. In
Figure 3.1, subgraph {r11 − r18} is not a 2-overlap graph, because there are two 2-
connected v-unions, {r11 − r15} and {r13, r16 − r18}, but they share only one node;
indeed, the subgraph is not 1-robust. On the other hand, graph G2 in Figure 3.2 sat-
isfies the 3-overlap condition, as it contains four 3-connected v-unions (actually four
v-cliques), Q1−Q4, and each v-union shares 3 nodes in total with the others; however,
it is not 2-robust (removing r3 and r4 disconnects it). Accordingly, for (k+1)-overlap
graphs we still need to check k-robustness by reduction to a Max-flow Problem.

Now the problem is to find (k + 1)-overlap subgraphs. Let G be a graph where a
(k + 1)-connected v-union overlaps with the rest of the v-unions on no more than k

nodes. We split G by removing these overlapping nodes. For subgraph {r11 − r18}
in Figure 3.1, we remove r13 and result with two subgraphs {r11 − r12, r14 − r15} and
{r6− r8} (recall from Example 3.2.4 that r13 cannot belong to any core). Note that the
result subgraphs may not be (k + 1)-overlap graphs (e.g., {r1 − r2, r4 − r5} contains
two v-unions that share only one node), so we need to further screen them.

We now describe our screening algorithm, SCREEN, (details in Algorithm 6), which
takes a graph G, represented by C and L̄, as input, finds (k + 1)-connected v-unions
in G and meanwhile decides if G is a (k + 1)-overlap graph. If not, it splits G into
subgraphs for further examination.
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1. If G contains a single node, output it as a core if the node represents multiple
records that belong only to one v-clique.

2. For each v-clique C ∈ C, initialize a v-union. We denote the set of v-unions by
Q̄, the v-union that C belongs to by Q(C), and the overlap of v-cliques C and
C ′ by B̄(C,C ′).

3. For each v-clique C ∈ C, we merge v-unions as follows.

(a) For each record r ∈ C that has not been considered, for every pair of v-
cliques C1 and C2 in r’s index entry, if they belong to different v-unions, add r

to overlap B̄(C1, C2).

(b) For each v-union Q where there exist C1 ∈ Q and C2 ∈ Q(C) such that
|B̄(C1, C2)| ≥ k + 1, merge Q and Q(C).

At the end, Q̄ contains all (k + 1)-connected v-unions.

4. For each v-union Q ∈ Q̄, find its border nodes as B̄(Q) = ∪C∈Q,C′ ̸∈QB̄(C,C ′).
If |B̄(Q)| ≤ k, split the subgraph it belongs to, denoted by G(Q), into two
subgraphs Q \ B̄(Q) and G(Q) \Q.

5. Return the remaining subgraphs.

Proposition 3.2.10 Denote by |L̄| the number of entries in input L̄. Let m be the

maximum number of values from dominant-value attributes of a record, and a be the

maximum number of adjacent v-unions that a v-union has. Algorithm SCREEN takes

time O((m2 + a) · |L̄|) and the result is independent of the order in which we examine

the v-cliques. �

Note that m and a are typically very small, so SCREEN is basically linear in the
size of the inverted index. Finally, we have results similar to Proposition .1.3 for v-
unions, so we can further simplify the graph by keeping for each v-union a single
representative for all nodes that only belong to it. Each result k-overlap subgraph is
typically very small.

Example 3.2.11 Consider Table 3.1(b) as input and k = 1. Step 2 creates five v-

unions Q1 −Q5 for the five v-cliques in the input.
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Algorithm 6 SCREEN(G, C̄, L̄, k)
Input: G: Simplified similarity graph.

C̄: Set of cores.
L̄: Inverted list of the similarity graph.
k: Robustness requirement.

Output: Ḡ Set of subgraphs in G.
1: if G contains a single node r then
2: if r represent multiple records then
3: add r to C̄.
4: end if
5: return Ḡ = ϕ.
6: else
7: initialize v-union Q(C) for each v-clique C and add Q(C) to Q̄.
8: // find v-union
9: for each v-clique C ∈ G do

10: for each record r ∈ C that is not proceeded do
11: for each v-clique pair C1, C2 ∈ L̄(r) do
12: if C1, C2 are in different v-unions then
13: add r to overlap B̄(Q(C1), Q(C2)).
14: end if
15: end for
16: end for
17: for each v-union Q where B̄(Q,Q(C)) ≥ k do
18: merge Q and Q(C) as Qm.
19: for each v-union Q′ ̸= Q,Q′ ̸= Q(C) do
20: set B̄(Q′, Qm) = B̄(Q′, Q) ∪ B̄(Q′, Q(C))
21: end for
22: end for
23: end for
24: // screening
25: for each v-union Q ∈ Q̄ do
26: compute B̄(Q) = ∪Q′∈Q̄B̄(Q,Q′).
27: if |B̄(Q)| < k then
28: add subgraphs Q \ B̄(Q) and G(Q) \Q into Ḡ
29: end if
30: end for
31: end if
32: return Ḡ;
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Step 3 starts with v-clique C1. It has 4 nodes (in the simplified inverted index),

among which 3 are shared with C2. Thus, B̄(C1, C2) = {r3−r5} and |B̄(C1, C2)| ≥ 2,

so we merge Q1 and Q2 into Q1/2. Examining C2 reveals no other shared node.

Step 3 then considers v-clique C3. It has three nodes, among which r12 − r13

are shared with C4 and r13 is shared with C5. Thus, B̄(C3, C4) = {r12 − r13} and

B̄(C3, C5) = {r13}. We merge Q3 and Q4 into Q3/4. Examining C4 and C5 re-

veals no other shared node. We thus result with three 2-connected v-unions: Q̄ =

{Q1/2, Q3/4, Q5}.

Step 4 then considers each v-union. For Q1/2, B̄(Q1/2) = ∅ and we thus split

subgraph Q1/2 out and merge all of its nodes to one r1/.../7. For Q3/4, B̄(Q3/4) = {r13}
so |B̄(Q3/4)| < 2. We split Q3/4 out and obtain {r11 − r12, r14/15} (r13 is excluded).

Similar for Q5 and we obtain {r16/17/18}. Therefore, we return three subgraphs. �

3.2.3.2 Reduction

Intuitively, a graph G(V,E) is k-robust if and only if between any two nodes a, b ∈ V ,
there are more than k paths that do not share any node except a and b. We denote the
number of non-overlapping paths between nodes a and b by κ(a, b). We can reduce the
problem of computing κ(a, b) into a Max-flow Problem.

For each input G(V,E) and nodes a, b, we construct the (directed) flow network

G′(V ′, E ′) as follows.

1. Node a is the source and b is the sink (there is no particular order between a and
b).

2. For each v ∈ V, v ̸= a, v ̸= b, add two nodes v′, v′′ to V ′, and two directed edges
(v′, v′′), (v′′, v′) to E ′. If v′ represents n nodes, the edge (v′, v′′) has weight n,
and the edge (v′′, v′) has weight ∞.

3. For each edge (a, v) ∈ E, add edge (a, v′) to E ′; for each edge (u, b) ∈ E, add
edge (u′′, b) to E ′; for each other edge (u, v) ∈ E, add two edges (u′′, v′) and
(v′′, u′) to E ′. Each edge has capacity ∞.

Lemma 3.2.12 The max flow from source a to sink b in G′(V ′, E ′) is equivalent to

κ(a, b) in G(V,E). �
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Figure 3.3: Flow network for G2 in Figure 3.2.

Example 3.2.13 Consider nodes r1 and r6 of graph G2 in Figure 3.2. Figure 3.3 shows

the corresponding flow network, where the dash line (across edges (r′3, r
′′
3), (r

′
4, r

′′
4)) in

the figure cuts the flow from r1 to r6 with a minimum cost of 2. The max flow/min cut

has value 2. Indeed, κ(r1, r6) = 2. �

Recall that in a (k+1)-connected v-union, between each pair of nodes there are at
least k + 1 paths. Thus, if κ(a, b) = k + 1, a and b belong to different v-unions, while
a and a′ belong to the same v-union, we must have κ(a′, b) ≥ k + 1. We thus have the
following sufficient and necessary condition for k-robustness (proof in Appendix .3).

Theorem 3.2.14 (Max-flow condition) Let G(V,E) be an input similarity graph. Graph

G is k-robust if and only if for every pair of adjacent (k + 1)-connected v-unions Q

and Q′, there exist two nodes a ∈ Q \ Q′ and b ∈ Q′ \ Q such that the max flow from

a to b in the corresponding flow network is at least k + 1. �

If a graph G is not k-robust, we shall split it into subgraphs for further core finding.
In the corresponding flow network, each edge in the minimum cut must be between a
pair of nodes derived from the same node in G (other edges have capacity ∞). These
nodes cannot belong to any core and we use them as separator nodes, denoted by S̄.
Suppose the separator separates G into X̄ and Ȳ (there can be more subgraphs). We
then split G into X̄ ∪ S̄ and Ȳ ∪ S̄.

Note that we need to include S̄ in both sub-graphs to maintain the integrity of each
v-union. To understand why, consider G2 in Figure 3.2 where S̄ = {r3, r4}. According
to the definition, there is no 2-robust core. If we split G2 into {r1 − r2} and {r5 − r6}
(without including S̄), both subgraphs are 2-robust and we would return them as cores.
The problem happens because v-cliques Q1 − Q4 “disappear” after we remove the
separators r3 and r4. Thus, we should split G2 into {r1− r4} and {r3− r6} instead and
that would further trigger splitting on both subgraphs. Eventually we wish to exclude
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Algorithm 7 SPLIT(G, C̄, k)
Input: G: Simplified similarity graph.

C̄: Set of cores.
k: Robustness requirement.

Output: Ḡ Set of subgraphs in G.
1: for each adjacent (k + 1)-connected v-unions Q,Q′ do
2: find a pair of nodes a ∈ Q \Q′, b ∈ Q′ \Q.
3: construct flow-network G′ and compute κ(a, b) by Ford & Fulkerson Algorithm.
4: if κ(a, b) ≤ k then
5: get separator S̄ from G′ and remove S̄ from G to obtain disconnected sub-

graphs; mark S̄ as “separator” and add it to each subgraph in G.
6: return the set Ḡ of subgraphs.
7: end if
8: end for
9: if Ḡ = ϕ then

10: add G to C̄.
11: end if
12: return Ḡ;

the separator nodes from any core, so we mark them as “separators” and exclude them
from the returned cores.

Algorithm SPLIT (details in Algorithm 7) takes a (k + 1)-overlap subgraph G as
input and decides if G is k-robust. If not, it splits G into subgraphs on which we will
then re-apply screening.

1. For each pair of adjacent (k + 1)-connected v-unions Q,Q′ ∈ G, find a ∈ Q \
Q′, b ∈ Q′ \Q. Construct flow network G′(V ′, E ′) and apply Ford & Fulkerson
Algorithm Ford and Fulkerson [1962] to compute the max flow.

2. Once we find nodes a, b where κ(a, b) ≤ k, use the min cut of the corresponding
flow network as separator S̄. Remove S̄ and obtain several subgraphs. Add S̄

back to each subgraph and mark S̄ as “separator”. Return the subgraphs.

3. Otherwise, G passes k-robustness test and output it as a core.

Example 3.2.15 Continue with Example 3.2.13 and k = 2. There are four 3-connected

v-unions. When we check Q1 and Q3, we find S̄ = {r3, r4}. We then split G2 into two

subgraphs {r1 − r4} and {r3 − r6}, while marking r3 and r4 as “separators”.
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Now consider graph G1 in Figure 3.2 and k = 2. There are four 3-connected v-

unions (actually four v-cliques) and six pairs of adjacent v-unions. For Q1 and Q2, we

check nodes r2 and r4 and find κ(r2, r4) = 3. Similarly we check for every other pair

of adjacent v-unions and decide that the graph is 2-robust. �

Proposition 3.2.16 Let p be the total number of pairs of adjacent v-unions, and g be

the number of nodes in the input graph. Algorithm SPLIT runs in time O(pg2.5). �

Recall that if we solve the Max-Flow Problem directly for each pair of sources in
the original graph, the complexity is O(|L̄|4.5), which would be dramatically higher.

3.2.3.3 Full algorithm

We are now ready to present the full algorithm, CORE (Algorithm 8). Initially, it ini-
tializes the working queue Q with only input G (Line 1). Each time it pops a subgraph
G′ from Q and invokes SCREEN (Lines 3-4). If the output of SCREEN is still G′ (so G′

is a (k + 1)-overlap subgraph) (Line 5), it removes any node with mark “separator” in
G′ and puts the new subgraph into the working queue (Line 7), or invokes SPLIT on G′

if there is no separator (Line 9). Subgraphs output by SCREEN and SPLIT are added to
the queue for further examination (Lines 10, 13) and identified cores are added to C̄,
the core set. It terminates when Q = ∅.

The correctness of algorithm CORE is guaranteed by the following Lemmas (all
proofs in Appendix .4).

Lemma 3.2.17 For each pair of adjacent nodes r, r′ in graph G, there exists a maxi-

mal k-robust partitioning such that r, r′ are in the same subgraph. �

Lemma 3.2.18 The set of nodes in a separator S̄ of graph G does not belong to any

core in G, where |S̄| ≤ k. �

Proposition 3.2.19 Let G be the input graph and q be the number of (k+1)-connected

v-unions in G. Define a, p, g,m, and |L̄| as in Proposition .2.5 and .3.5. Algorithm

CORE finds correct cores of G in time O(q((m2 + a)|L̄| + pg2.5)) and is order inde-

pendent. �
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Algorithm 8 CORE(G, L̄, k)
Input: G: Simplified similarity graph.

L̄: Inverted list of the similarity graph.
k: Robustness requirement.

Output: C̄ Set of cores in G.
1: Let Q = {G}, C̄ = ∅;
2: while Q ̸= ϕ do
3: Pop G′ from Q;
4: Let P̄ = SCREEN(G′, L̄, k, C̄);
5: if P̄ = {G′} then
6: if G′ contains “separator” nodes then
7: Remove separators from G′ and add the result to Q if it is not empty;
8: else
9: Let S̄ = SPLIT(G′, k, C̄);

10: add graphs in S̄ to Q;
11: end if
12: else
13: add graphs in P̄ to Q;
14: end if
15: end while
16: return C̄;

Example 3.2.20 First, consider graph G2 in Figure 3.2 and k = 2. Table 3.2 shows

the step-by-step core identification process. It passes screening and is the input for

SPLIT. SPLIT then splits it into G1
2 and G2

2, where r3 and r4 are marked as “separa-

tors”. SCREEN further splits each of them into {r3} and {r4}, both discarded as each

represents a single node (and is a separator). So CORE does not output any core.

Next, consider the motivating example, with the input shown in Table 3.1(b) and

k = 1. Originally, Q= {G}. After invoking SCREEN on G, we obtain three subgraphs

G1, G2, and G3. SCREEN outputs G1 and G3 as cores since each contains a single

node that represents multiple records. It further splits G2 into two single-node graphs

G4 and G5, and outputs the latter as a core. Note that if we remove the 1-robustness

requirement, we would merge r11 − r18 to the same core and get false positives. �

Case study: On the data set with 6.8M records, our core-identification algorithm fin-
ished in 1.4 minutes. SCREEN is invoked 102K times in total; except the original graph,
the size of the input is at most 10.5K and on average 2.2. SPLIT is invoked only 384
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Table 3.2: Step-by-step core identification in Example 3.2.20.

Input Method Output
G2 SCREEN G2

G2 SPLIT G1
2 = {r1 − r4}, G2

2 = {r3 − r6}
G1

2 SCREEN G3
2 = {r3}, G4

2 = {r4}
G2

2 SCREEN G3
2 = {r3}, G4

2 = {r4}
G3

2 SCREEN -
G4

2 SCREEN -
G SCREEN G1 = {r1/.../7}, G2 = {r11, r12, r14/15},

G3 = {r16/17/18}
G1 SCREEN Core {r1 − r7}
G2 SCREEN G4 = {r11}, G5 = {r14/15}
G3 SCREEN Core {r16 − r18}
G4 SCREEN -
G5 SCREEN Core {r14 − r15}

times; the size of the input is at most 175 and on average 10. Recall that the simplified
inverted index contains .15M entries, so SCREEN reduces the size of the input to SPLIT

by three orders of magnitude.

3.3 Group Linkage

The second stage clusters the cores and the remaining records, which we call satellites,
into chains. To avoid merging records based only on weak evidence, we require that
a cluster cannot contain more than one satellite but no core. The key in clustering
is two fold: first, we wish to leverage the strong evidence that we collect from the
cores generated in the first stage; second, we need to be tolerant to variety of values
within the same chain. This section first describes the objective function for clustering
(Section 3.3.1) and then proposes a greedy algorithm for clustering (Section 3.3.2).

3.3.1 Objective function

Ideally, we wish that each cluster is cohesive (each element, being a core or a satellite,
is close to other elements in the same cluster) and different clusters are distinct (each
element is fairly different from those in other clusters). Since we expect that busi-
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nesses in the same chain may have fairly different attribute values, we adopt Silhouette

Validation Index (SV-index) Guo et al. [2010] as the objective function as it is more
tolerant to diversity within a cluster. Given a clustering C of elements E, the SV-index
of C is defined as follows.

S(C) =Avge∈ES(e); (3.1)

S(e) =
a(e)− b(e) + α

max{a(e), b(e)}+ β
. (3.2)

Here, a(e) ∈ [0, 1] denotes the similarity between element e and its own cluster, b(e) ∈
[0, 1] denotes the maximum similarity between e and another cluster, β > α > 0 are
small numbers to keep S(e) finite and non-zero (we discuss in Section 2.4 how we
set the parameters in this section). A nice property of S(e) is that it falls in [−1, 1],
where a value close to 1 indicates that e is in an appropriate cluster, a value close
to −1 indicates that e is mis-classified, and a value close to 0 while a(e) is not too
small indicates that e is equally similar to two clusters that should possibly be merged.
Accordingly, we wish to obtain a clustering with the maximum SV-index. We next
describe how we maintain set signatures and compare an element with a cluster.

Set signature: When we maintain the signature for a core or a cluster, we keep all
values of an attribute and assign a high weight to a popular value. Specifically, let R̄
be a set of records. Consider value v and let R̄(v) ⊆ R̄ denote the records in R̄ that
contain v. The weight of v is computed by w(v) = |R̄(v)|

|R̄| .

Example 3.3.1 Consider phone for core Cr1 = {r1 − r7} in Table 1.3. There are 7

business listings in Cr1, 5 providing 808 (r1 − r5), one providing 101 (r6), and one

providing 102 (r7). Thus, the weight of 808 is 5
7
= .71 and the weight for 101 and 102

is 1
7
= .14, showing that 808 is the primary phone for Cr1. �

Note that when we compare an element e with its own cluster Ch, we generate the
signature of Ch using its elements excluding e.

Similarity computation: We consider that an element e is similar to a chain Ch if
they have highly similar values on common-value attributes (e.g., name), share at
least one primary value (we explain “primary” later) on dominant-value attributes (e.g.,
phone, domain-name); in addition, our confidence is higher if they also share values
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on multi-value attributes (e.g., category). Note that although we assume different
branches in a business chain should have different values on distinct-value attributes,
for some coarse-granularity values, such as state or region of the location, we still often
observe sharing of values (e.g., a business chain in one state, or in a few neighboring
states). We can treat such attributes (e.g., state) as a multi-value attribute. Formally,
we compute the similarity sim(e, Ch) as follows.

sim(e, Ch) =min{1, sims(e, Ch) + τwmsimmulti(e, Ch)}; (3.3)

sims(e, Ch) =
wcsimcom(e, Ch) + wosimdom(e, Ch)

wc + wo
; (3.4)

τ =

{
0 ifsims(e, Ch) < θth,

1 otherwise.
(3.5)

Here, simcom, simdom, and simmulti denote the similarity for common-, dominant-,
and multi- attributes respectively. We take the weighted sum of simcom and simdom

as strong indicator of e belonging to Ch (measured by sims(e, Ch)), and only reward
weak indicator simmulti if sims(e, Ch) is above a pre-defined threshold θth. Weights
0 < wc, wo, wm < 1 indicate how much we reward value similarity or penalize value
difference; we learn the weights from sampled data.

Common-Value attribute: Similarity simcom is computed as the average of similarities
on each common-value attribute A. For each A, e and Ch may each contain a set of
values. We penalize values with low similarity and apply cosine similarity (in practice,
we take into consideration various representations of the same value):

simcom(e.A,Ch.A) =

∑
v∈e.A∩ch.Aw(v)2√∑

v∈e.Aw(v)2
√∑

v′∈ch.Aw(v′)2
. (3.6)

Dominant-value attribute: Similarity simdom rewards similarity on primary values
(values with high weights) but meanwhile is tolerant to other different values. If the
primary value of an element is the same as that of a cluster on a dominant-value at-
tribute, we consider them having probability p to be in the same chain. Then, if they
share n such values, the probability becomes 1 − (1 − p)n. Since we use weight to
measure whether the value is primary and allow slight difference on values, with a
value v from e and v′ from Ch, we consider the probability that e and Ch belong to the
same chain as p ·we(v) ·wCh(v

′) · s(v, v′), where we(v) measures the weight of v in e,
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wCh(v
′) measures the weight of v′ in Ch, and s(v, v′) measures the similarity between

v and v′. Therefore, we compute simdom(r.A,Ch.A) as follows.

simdom(e.A,Ch.A) = 1−
∏

v∈e.A,v′∈ch.A
(1− p · we(v) · wCh(v

′) · s(v, v′)). (3.7)

Multi-Value attribute: We allow diversity in such attributes and use a variant of Jaccard
distance for similarity computation. Formally, simmulti(e, Ch) is computed as the sum
of the similarities for each multi-value attribute A. For each A, without losing gener-
ality, assume |e.A| ≤ |Ch.A| and we treat two values as the same if their similarity is
deemed high (above a threshold); we have

simmulti(e.A,Ch.A)

=

∑
v∈e.Amaxv′∈Ch.A,s(v,v′)>θ s(v, v

′)max{we(v), wCh(v
′)}∑

v∈e.Amaxv′∈Ch.A,s(v,v′)>θ max{we(v), wCh(v′)}
. (3.8)

Example 3.3.2 Consider element e = r13 and cluster Ch2 = {r14 − r15} in Exam-

ple 1.2.2. Assume wc = wo = .5, wm = .05, θth = .8, p = .8. Since e and Ch2 share

exactly the same value on name, category and state, we have simname(e,Ch2) =

simstate(e,Ch2) = simcat(e,Ch2) = 1. For dominant-value attributes, both e and

Ch2 provide 900 with weight 1, and they do not share URL, so simdom(e,Ch2) =

1 − (1 − .8 · 1 · 1 · 1) = .8. Thus, we have sims(e,Ch2) = .5·1+.5·.8
.5+.5

= .9 > θth,

simw(e,Ch2) = .05 · (1 + 1) = .1, so sim(e,Ch2) = min{1, .87 + .1} = .97. �

Attribute weights: We apply attribute weights in order to reward attribute value con-
sistency and penalize value difference. Accordingly, for attribute A, we define two
types of weights: agreement weight wagr and disagreement weight wdis. Disagreement
weight is defined as the probability of two records belonging to different chains given
that they disagree on A-values. Agreement weight is defined as the probability of two
records belonging to the same chain given that they agree on A-values. We distinguish
between ambiguous and unambiguous A-values, i.e., values shared by multiple chains
(e.g., name) are considered ambiguous and not strong indicator of two records belong-
ing to the same chain, thus have a lower weight; on the other hand, values owned by
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a single chain are considered unambiguous and are associated with a high weight. We
learn both agreement and disagreement weights from labeled data.

As aforementioned, we consider both agreement and disagreement weights for
common-value and dominant-value attributes. For multi-value attributes, we only ap-
ply agreement weights to reward weak evidence, and down-weight the weights to make
sure the overall similarity is within [0, 1]. How we apply agreement and disagreement
weights to compute overall similarity can be found in previous work Li et al. [2011].

3.3.2 Clustering algorithm

In most cases, clustering is intractable Gonzalez [1982]; Sima and Schaeffer. [2006].
We next propose a greedy algorithm that approximates the optimal clustering. Our
algorithm starts with an initial clustering and then iteratively examines if we can im-
prove the current clustering (increase SV-index) by adjusting subsets of the clusters.
According to the definition of SV-index, in both initialization and adjusting, we always
assign an element to the cluster with which it has the highest similarity.

Initialization: Initially, we (1) assign each core to its own cluster and (2) assign a
satellite r to the cluster with the highest similarity if the similarity is above threshold
θini and create a new cluster for r otherwise. We update the signature of each core
along the way. Note that initialization is sensitive in the order we consider the records.
Although designing an algorithm independent of the ordering is possible, such an al-
gorithm is more expensive and our experiments show that the iterative adjusting can
smooth out the difference.

Example 3.3.3 Continue with the motivating example in Table 1.3 and assume θth =

.8. First, consider records r1 − r10, where Cr1 = {r1 − r7} is a core. We first create a

cluster Ch1 for Cr1. We then merge records r8 − r10 to Ch1 one by one, as they share

similar names, and either primary phone number or primary URL.

Now consider records r11 − r20; recall that there are 2 cores and 5 satellites after

core identification. Figure 3.4 shows the initialization result Ca. Initially we create two

clusters Ch2,Ch3 for cores Cr2,Cr3. Records r11, r19 − r20 do not share any primary

value on dominant-value attributes with Ch2 or Ch3, so have a low similarity with

them; we create a new cluster for each of them. Records r12 and r13 share the primary

phone with Cr2 so have a high similarity; we link them to Ch2. �
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Figure 3.4: Clustering of r11 − r20 in Table 1.3.

Cluster adjusting: Although we always assign an element e to the cluster with the
highest similarity so S(e) > 0, the result clustering may still be improved by merging
some clusters or moving a subset of elements from one cluster to another. Recall that
when S(e) is close to 0 and a(e) is not too small, it indicates that a pair of clusters
might be similar and is a candidate for merging. Thus, in cluster adjusting, we find
such candidate pairs, iteratively adjust them by merging them or moving a subset of
elements between them, and choose the new clustering if it increases the SV-index.

We first describe how we find candidate pairs. Consider element e and assume it is
closest to clusters Ch and Ch′. If S(e) ≤ θs, where θs is a threshold for considering
merging, we call it a border element of Ch and Ch′ and consider (Ch,Ch′) as a
candidate pair. We rank the candidates according to (1) how many border elements they
have and (2) for each border element e, how close S(e) is to 0. Accordingly, we define
the benefit of merging Ch and Ch′ as b(Ch,Ch′) =

∑
e is a border of Ch and Ch′(1 −

S(e)), and rank the candidate pairs in decreasing order of the benefit.
We next describe how we re-cluster elements in a candidate pair (Ch,Ch′). We

adjust by merging the two clusters, or moving the border elements between the clusters,
or moving out the border elements and merging them. Figure 3.5 shows the four re-
clustering plans for a candidate pair. Among them, we consider those that are valid
(i.e., a cluster cannot contain more than one satellite but no core) and choose the one
with the highest SV-index. When we compute SV-index, we consider only elements in
Ch,Ch′ and those that are second-to-closest to Ch or Ch′ (their a(e) or b(e) can be
changed) such that we can reduce the computation cost. After the adjusting, we need
to re-compute S(e) for these elements and update the candidate-pair list accordingly.

Example 3.3.4 Consider adjusting cluster Ca in Figure 3.4. Table 3.3(a) shows sim-

ilarity of each element-cluster pair and SV-index of each element. Thus, the SV-index
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Table 3.3: Element-cluster similarity and SV-index for clusterings in Figure 3.4. Sim-
ilarity between an element and its own cluster is in bold and the second-to-highest
similarity is in italic. Score S(e) for a border element is in italic.

Ch2 Ch3 Ch4 Ch5 Ch6 S(e)
Cr2 .9 .5 .5 .5 .5 .44
Cr3 .6 1 .5 .5 .5 .4
r11 .7 .5 1 .5 .5 .3
r12 .99 .5 .95 .5 .5 .05
r13 1 .9 .95 .5 .5 .05
r19 .5 .5 .5 1 .5 .5
r20 .5 .5 .5 .5 1 .5

(a) Cluster Ca.
Ch2 Ch3 Ch5 Ch6 S(r)

r11 .79 .5 .5 .5 .37
r12 .96 .5 .5 .5 .48
r13 .97 .9 .5 .5 .07
Cr2 .87 .5 .5 .5 .43
Cr3 .58 1 .5 .5 .42
r19 .5 .5 1 .5 .5
r20 .5 .5 .5 1 .5

(b) Cluster Cb.

is .32.

Suppose θs = .3. Then, r11 − r13 are border elements of Ch2 and Ch4, where

b(Ch2,Ch4) = .7 + .95 + .95 = 2.6 (there is a single candidate so we do not need

to compare the benefit). For the candidate, we have two re-clustering plans, {{r11 −
r13,Cr2}}, {{r11 − r13}, {Cr2}}, while the latter is invalid. For the former (Cb in

Figure 3.4), we need to update S(e) for every element and the new SV-index is .4

(Table 3.3(b)), higher than the original one. �

The full clustering algorithm CLUSTER (details in Algorithm 9) goes as follows.

1. Initialize a clustering C and a list Que of candidate pairs ranked in decreasing
order of merging benefit. (Lines 1-2).

2. For each candidate pair (Ch,Ch′) in Que do the following.

(a) Examine each valid adjusting plan and compute SV-index for it, and choose
the one with the highest SV-index. (Line 4).
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Figure 3.5: Reclustering plans for Ch1 and Ch2.

(b) Change the clustering if the new plan has a higher SV-index than the original
clustering. Recompute S(e) for each relevant element e and move e to a new
cluster if appropriate. Update Que accordingly. (Lines 6-16).

3. Repeat Step 2 until Que = ∅.

Proposition 3.3.5 Let l be the number of distinct candidate pairs ever in Que and |E|
be the number of input elements. Algorithm CLUSTER takes time O(l · |E|2). �

Note that we first block records according to name similarity and take each block
as an input, so typically |E| is quite small. Also, in practice we need to consider only
a few candidate pairs for adjusting in each input, so l is also small.

Example 3.3.6 Continue with Example 3.3.4 and consider adjusting Cb. Now there is

one candidate pair (Ch2,Ch3), with border r13. We consider clusterings Cc and Cd.

Since S(Cc) = .37 < .40 and S(Cd) = .32 < .40, we keep Cb and return it as the

result. We do not merge records Ch2 = {r11 − r15} with Ch3 = {r16 − r18}, because

they share neither phone nor the primary URL. CLUSTER returns the correct chains.�

3.4 Experimental Evaluation

This section describes experimental results on a real-world business-listing data set.
Experimental results show high accuracy and scalability of our techniques.
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Algorithm 9 CLUSTER(E, θs)
Input: E: A set of cores and satellites for clustering.

θs: Pre-defined threshold for considering merging.
Output: C: A clustering of elements in E.

1: Initialize C according to E;
2: Compute S(C) and generate a list Que of candidate pairs;
3: for each candidate pair (Ch,Ch′) ∈ Que do
4: compute SV-index for its valid re-clustering plans and choose the clustering

Cmax with the highest SV-index;
5: if S(C) < S(Cmax) then
6: let C = Cmax, change = true;
7: while change do
8: change = false;
9: for each relevant element e do

10: recompute S(e);
11: When appropriate, move e to a new cluster and set change = true;
12: if S(e) < θs in the previous or current C then
13: update the merging benefit of the related candidate pair and add it to

Que or remove it from Que when appropriate;
14: end if
15: end for
16: end while
17: end if
18: end for
19: return C;

3.4.1 Experiment settings

Data and golden standard: We experimented on a set of business listings in the US
obtained from YellowPages.com. There are 6.8 million business listings, each with at-
tributes name, phone, URL, location and category. We experimented on the whole
data set to study scalability of our techniques.

To evaluate accuracy of our techniques, we considered four subsets. First, we con-
sidered a Random data set with 2062 records, where 1559 belong to 30 randomly se-
lected business chains, and 503 do not belong to any chain; among the 503 records, 86
are highly similar in name to records in the business chains and the rest are randomly
selected. We also considered three hard cases. (1) AI data set contains 2446 records
for the same business chain Allstate Insurance. These records have the same name, but
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Table 3.4: Statistics of the business-listing subsets.
#Records #Chains Chain sizes #Single-business records

Random 2062 30 [2, 308] 503
AI 2446 1 2446 0
UB 322 7 [2, 275] 5

FBIns 1149 14 [33, 269] 0

1499 provide URL “allstate.com”, 854 provide another URL “allstateagencies.com”,
while 130 provide both, and 227 records do not provide any value for phone or URL.
(2) UB data set contains 322 records with exactly the same name Union Bank and
highly similar category values; 317 of them belong to 9 different chains while 5 do not
belong to any chain. (3) FBIns data set contains 1149 records with similar names and
highly similar category values; they belong to 14 different chains. Among the records,
708 provide the same wrong name Texas Farm Bureau Insurance and meanwhile pro-
vide a wrong URL farmbureauinsurance-mi.com. For each data set, we manually veri-
fied all the chains by checking store locations provided by the business-chain websites
and used it as the golden standard. Table 3.4 shows statistics of the four subsets.

Measure: We considered each business chain as a cluster and compared pairwise link-
ing decisions with the golden standard. We measured the quality of the results by
precision (P ), recall (R), and F-measure (F ). If we denote the set of true-positive
pairs by TP , the set of false-positive pairs by FP , and the set of false-negative pairs
by FN , then, P = |TP |

|TP |+|FP | , R = |TP |
|TP |+|FN | , F = 2PR

P+R
.

Implementation: We implemented the technique we proposed in this paper, and call
it CORECLUSTER. In core generation, we considered two records to be similar if (1)
their name similarity is above .95; and (2) they share at least one phone or URL do-
main name. We required 1-robustness for cores. In clustering, (1) for blocking, we put
records whose name similarity is above .8 in the same block; (2) for similarity com-
putation, we computed string similarity by Jaro-Winkler distance Cohen et al. [2003],
we set α = .01, β = .02, θth = .6, p = .8, we learned other weights from 1000 records
randomly selected from Random data and we used the learnt weights on all data sets;
(3) for clustering, we set θins = .8 for initialization and θs = .2 for adjusting. We
discuss later how these choices may affect our results.

For comparison, we also implemented the following baselines:

• SAMENAME links records with highly similar names (similarity above .95);

• CONNECTEDGRAPH generates the similarity graph as CORECLUSTER but con-
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Figure 3.6: Overall results on each data set.

siders each connected subgraph as a chain;

• RECORDLINKAGE computes record similarity by Eq.(3) with the same weights
as in CORECLUSTER and then applies one baseline clustering technique PAR-
TITION Hassanzadeh et al. [2009a], which links all records that are transitively
similar. (We experimented on two other clustering methods and obtained similar
results.)

We implemented the algorithms in Java. We used a Linux machine with Intel Xeon
X5550 processor (2.66GHz, cache 8MB, 6.4GT/s QPI). We used MySQL to store the
business listings.

3.4.2 Evaluating effectiveness

We first evaluate effectiveness of our algorithms. Figure 3.6 compares CORECLUSTER

with the three baseline methods on the data sets. We have the following observations
on data sets Random, AI, and UB. (1) CORECLUSTER obtains the highest F-measure
(above .9) on each data set. It has the highest precision on each subset as it applies
core identification and leverages the strong evidence collected from resulting cores. It
also has a very high recall (above .95) on each subset because the clustering phase is
tolerant to diversity of values within chains. (2) SAMENAME can have false positives
when listings of highly similar names belong to different chains and can also have false
negatives when some listings in a chain have fairly different names from other listings.
It only performs well in AI, where it happens that all listings have the same name
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Figure 3.7: Contribution of different components.

and belong to the same chain. (3) CONNECTEDGRAPH requires in addition sharing at
least one phone or URL domain. As a result, it has a lower recall than SAMENAME;
it has less false positives than SAMENAME, but because it has less true positives, its
precision can appear to be lower too. (4) RECORDLINKAGE requires high weighted
similarity between the records, which is a weaker requirement for merging records
than CONNECTEDGRAPH. On various data sets it has very similar numbers of false
positives to but much more true positives than CONNECTEDGRAPH; as a result, it has
a higher recall and also a higher precision.

On the FBIns data set, because a large number of listings (708) have both a wrong
name and a wrong URL, each method wrongly puts all records in the same chain.
We manually perturbed the data as follows: (1) among the 708 listings with wrong
URLs, 408 provide a single (wrong) URL and we fixed it; (2) for all records we set
name to “Farm Bureau Insurance”, so removed hints from business names. Even
after perturbing, this data set remains the hardest data set and Figure 3.6(d) shows the
results. We observe that all baseline methods have very low F-measure (below .3)
while CORECLUSTER still obtains a F-measure as high as .98. We used the perturbed
FBIns data set hereafter instead of the original one for other experiments.

Contribution of different components: We compared CORECLUSTER with (1) CORE,
which applies Algorithm COREIDENTIFICATION but does not apply clustering, and
(2) CLUSTER, which considers each individual record as a core and applies Algorithm
CLUSTER. Figure 3.7 shows the results on each data set. First, we observe that CORE

improves over the baseline method RECORDLINKAGE on precision but has a lower re-
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Figure 3.8: Effect of robustness requirement on Random data.

call, because it sets a high requirement for merging records into chains. Note however
that its goal is indeed to obtain a high precision such that the strong evidence col-
lected from the cores are trustworthy for the clustering phase. Second, CLUSTER often
performs better than RECORDLINKAGE. On some data sets (Random, UB) it can ob-
tain an even higher precision than CORE, because CORE can make mistakes when too
many records have erroneous values, but CLUSTER may avoid some of these mistakes
by considering also similarity on state and category. However, applying clustering
on the results of CLUSTER would not change the results, but applying clustering on
the results of CORE can obtain a much higher F-measure, especially a higher recall
(98% higher than CLUSTER on Random). This is because the result of CLUSTER lacks
the strong evidence collected from high-quality cores so the final results would be less
tolerant to diversity of values, showing the importance of core identification. Finally,
we observe that CORECLUSTER obtains the best results in most of the data sets. The
only exception is UB, where its F-measure is 2% lower than that of CLUSTER; this
data set contains less diverse values for the same chain so CLUSTER has a high recall.
We note also that although CORECLUSTER has more false positives than CORE, it can
have a higher precision as it has much more true positives.

We next evaluate various choices in the two stages. Unless specified otherwise, we
observed similar patterns on each data set and report the results on Random; in some
cases we report the results on perturbed FBIns since results on other data sets are not
very distinguishable.

3.4.2.1 Core identification

Robustness requirement: We first show how the robustness requirement can affect
the results. Figure 3.8 shows the results when we vary k. We have three observations.
(1) When k = 0, we essentially take every connected subgraph as a core, so the gen-
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Figure 3.9: Effect of graph generation on Random data.

erated cores can have a much lower precision; those false positives cause both a low
precision and a low recall for the resulting chains because we may collect some wrong
strong evidence while miss some other such evidence. (2) When we vary k from 1 to
4, the number of false positives decreases while that of false negatives increases for the
cores, and the F-measure of the chains increases but only very slightly. (3) When we
continue increasing k, the results of cores and clusters remain stable. This is because
setting k=4 already splits the graph into subgraphs, each containing a single v-clique,
so further increasing k would not change the cores. This shows that considering k-
robustness is important, but k does not need to be too high.

Graph generation: We compared three edge-adding strategies for similarity graphs:
SIM takes weighted similarity on name, phone, URL, category and requires a simi-
larity of over .8; TWOSEMI requires sharing name and at least two values on dominant-
value attributes; ONESEMI requires sharing name and one value on dominant-value
attributes. Recall that by default we applied ONESEMI. Figure 3.9 compares these
three strategies. We observe that (1) SIM requires similar values on each attribute ex-
cept location and so has a high precision, with a big sacrifice on recall for the cores; as
a result, the F-measure of the chains is very low (.59); (2) TWOSEMI has the highest
requirements and so even lower recall than SIM for the cores, and in turn it has the
lowest F-measure for the chains (.52). This shows that only requiring high precision
for cores with big sacrifice on recall can also lead to low F-measure for the chains.

We also varied the similarity requirement for names and observed very similar
results (varying by .04%) when we varied the threshold from .8 to .95.

Core identification: We compared two core-generation strategies: COREIDENTIFI-
CATION iteratively invokes SCREEN and SPLIT,
ONLYSCREEN only iteratively invokes SCREEN. Recall that by default we apply COR-
EIDENTIFICATION. We observe the same results on all data sets, showing that the in-
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Figure 3.10: Value weights on perturbed
FBIns data.

Figure 3.11: Dominant-value attributes on
Random.

Figure 3.12: Distinct values on Random
data.

Figure 3.13: Attribute weights on Random
data.

puts to SPLIT all pass the k-robustness test. This shows that although SCREEN in itself
cannot guarantee soundness of the resulting cores (k-robustness), it already does well
in obtaining k-robust cores. The cases in which SPLIT can make a difference appear
to be rare in practice.

3.4.2.2 Clustering

Value weight: We first show importance of setting popularity weights in set signa-
ture. Figure 3.10 compares the results with and without setting popularity weights on
perturbed FBIns data. We observe that setting the popularity weight helps distinguish
primary values from unpopular values, thus can significantly improve the precision and
so improve F-measure. We also observe an improvement of 1% on Random and 5%
on UB for F-measure.

Attribute weight: We next considered our weight learning strategy. We first compared
SEPARATEDDOMINANT, which learns separated weights for different dominant-value
attributes, and UNITEDDOMINANT, which considers all such attributes as a whole
and learns one single weight for them. By default we applied UNITEDDOMINANT.
Figure 3.11 shows that the latter improves over the former by 95.4% on recall and
obtains slightly higher precision, because it penalizes only if neither phone nor URL
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Figure 3.14: Attribute contribution on per-
turbed FBIns.

Figure 3.15: Clustering strategies on Ran-
dom data.

is shared and so is more tolerant to different values for dominant-value attributes.
Next, we compared SINGLEWEIGHT, which learns a single weight for each at-

tribute, and DOUBLEWEIGHT, which learns different weights for distinct values and
non-distinct values for each attribute. By default we applied DOUBLEWEIGHT. Fig-
ure 3.12 shows that DOUBLEWEIGHT significantly improves the recall (by 94%) since
it rewards sharing of distinct values, and so can link some satellite records with null
values on dominant-value attributes to the chains they should belong to.

We also compared three weight-setting strategies: (1) 3EQUAL considers common-
value attributes, dominant-value attributes, and multi-value attributes, and sets the
same weight for each of them; (2) 2EQUAL sets equal weight of .5 for common-value
attributes and dominant-value attributes, and weight of .1 for each multi-value attribute;
(3) LEARNED applies weights learned from labeled data. Recall that by default we ap-
plied LEARNED. Figure 3.13 compares their results. We observe that (1) 2EQUAL ob-
tains higher F-measure than 3EQUAL, since it distinguishes between strong and weak
indicators for record similarity; (2) LEARNED significantly outperforms the other two
strategies, showing effectiveness of weight learning.

Attribute contributions: We then consider the contribution of each attribute for
chain classification. Figure 3.14 shows the results when we consider only a subset of
the attributes on the perturbed FBIns data. We have four observations. (1) Considering
only name but not any other attribute obtains a high recall but a very low precision,
since all listings on this data set have the same name. (2) Considering dominant-value
attributes in addition to name can improve the precision significantly and improve the
F-measure by 104%. (3) Considering category in addition does not further improve
the results while considering state in addition even drops the precision significantly,
since three chains in this data set contain the same wrong value on state. (4) Con-
sidering both category and state improves the recall by 46% and obtains the highest
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Figure 3.16: Scalability of our algorithm.

F-measure.

Clustering strategy: We compared four clustering algorithms:
GREEDYINITIAL performs only initialization as we described in Section 3.3; EX-
HAUSTIVEINITIAL also performs only initialization, but by iteratively conducting match-
ing and merging until no record can be merged to any core; CLUSTERWGREEDY ap-
plies cluster adjusting on the results of GREEDYINITIAL, and CLUSTERWEXHAUS-
TIVE applies cluster adjusting on the results of EXHAUSTIVEINITIAL. Recall that by
default we apply CLUSTERWGREEDY. Figure 3.15 compares their results. We ob-
serve that (1) applying cluster adjusting can improve the F-measure a lot (by 8.6%),
and (2) exhaustive initialization does not significantly improve over greedy initializa-
tion, if at all. This shows effectiveness of the current algorithm CLUSTER.

Robustness w.r.t. parameters: We also ran experiments to test robustness against
parameter setting. We observed very similar results when we ranged p from .8 to 1, θth
from .5 to .7, θini from .6 to .9, and θs from .1 to .4.

3.4.3 Evaluating efficiency

Our algorithm finished in 2.4 hours on the whole data set, which contains 6.8 million
listings. It spent 2.2 hours for graph construction, 1.4 minutes for core generation, and
15 minutes for clustering. This is reasonable given that it is an offline process.

We next focus on graph construction since it costs the longest time. We randomly
divided the whole data set into 3 subsets of the same size. We started with one subset
and gradually added more. Figure 3.16 shows that the execution time grows linearly
in the size of the data.

87



3.4.4 Summary and recommendations

We summarize our observations as follows.

1. Identifying cores and leveraging evidence learned from the cores is crucial in
business-chain identification.

2. There are often erroneous values in real data and it is important to be robust
against them; applying ONESEMI and requiring k ∈ [1, 5] already performs well
on most data sets that have reasonable number of errors.

3. Learning different weights for different attributes, distinguishing the weights for
distinct and non-distinct values, and setting weights of values according to their
popularity are critical for obtaining good clustering results.

4. Our algorithm is robust on reasonable parameters setting.

5. Our algorithm is efficient and scalable.

3.5 Related Work

Record linkage has been extensively studied in the past (surveyed in Elmagarmid
et al. [2007]; Koudas et al. [2006]). Traditional linkage techniques aim at linking
records that refer to the same real-world entity, so implicitly assume value consistency
between records that should be linked. Group linkage is different in that it aims at
linking records that refer to entities in the same group. The variety of individual entities
requires better use of strong evidence and tolerance on different values even within the
same group. These two features differ our work from any previous linkage technique.

For record clustering in linkage, existing work may apply transitive rule Hernan-
dez and Stolfo [1998], or do match-and-merge Benjelloun et al. [2009], or reduce it
to an optimization problem Flake et al. [2004]. Our work is different in that our core-
identification algorithm aims at being robust to a few erroneous records; and our clus-
tering algorithm emphasizes leveraging the strong evidence collected from the cores.

For record-similarity computation, existing work can be rule based
Hernandez and Stolfo [1998], classification based Fellegi and Sunter [1969b], or dis-
tance based Dey [2008]. There has also been work on weight (or parameter) learning
from labeled data Fellegi and Sunter [1969b]; Winkler [2002]. Our work is different
in that (1) we weight the values according to their popularity within a group such that
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similarity on primary values (strong evidence) is rewarded more, (2) we are tolerant
to difference on individual values from different entities in the same group, and (3)
we distinguish weights for distinct values and non-distinct values such that similarity
on distinct values is rewarded more. Note that some previous works are also tolerant
to different values but leverage evidence that may not be available in our contexts:
Guo et al. [2010] is tolerant to possibly false values by considering agreement between
different data providers, Fan et al. [2009] is tolerant to dynamic semantics of differ-
ent relations, and Li et al. [2011] is tolerant to out-of-date values by considering time
stamps; we are tolerant to diversity within the same group.

Two-stage clustering has been proposed in the IR and machine learning commu-
nity Bansal et al. [2007]; Larsen and Aone [1999]; Liu et al. [2002]; Wijaya and Bres-
san [2009]; Yoshida et al. [2010]; however, they identify cores in different ways. Tech-
niques in Larsen and Aone [1999]; Wijaya and Bressan [2009] consider a core as a
single record, either randomly selected or selected according to the weighted degrees
of nodes in the graph. Techniques in Yoshida et al. [2010] generate cores using agglom-
erative clustering. These two methods are not robust to erroneous values. Techniques
in Bansal et al. [2007] identify cores as bi-connected components, where removing any
node would not disconnect the graph. Although this corresponds to the 1-robustness re-
quirement in our solution (defined in Section 3.2), they generate overlapping clusters; it
is not obvious how to derive non-overlapping clusters in applications such as business-
chain identification and how to extend their techniques to guarantee k-robustness. Fi-
nally, techniques in Larsen and Aone [1999]; Liu et al. [2002] require knowledge of
the number of clusters for one of the stages, so do not directly apply in our context.
We compare with these methods whenever applicable in experiments (Section 2.4),
showing that our algorithm is robust in presence of erroneous values and consistently
generate high-accuracy results on sets of records with different features.

We also distinguish our work from the so-called group linkage in Huang [2010];
On et al. [2007], which has different goals from our work. On et al. On et al. [2007]
decided similarity between groups of records. Huang Huang [2010] essentially solved
the record-linkage problem (each entity is a group of records) by analysis of social
network. Our goal is to find records that belong to the same group.
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3.6 Summary

In this chapter we studied how to link records to identify groups. We proposed a two-
stage algorithm that is shown empirically scalable and accurate over two real-world
data sets. Future work includes studying the best way to combine record linkage and
group linkage, extending our work for finding overlapping groups, and applying the
two-stage framework in other contexts where tolerance to value diversity is critical.
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Chapter 4

An Application: Chronos: Facilitating
History Discovery by Linking
Temporal Records

Many data sets contain temporal records over a long period of time; each record is
associated with a time stamp and describes some aspects of a real-world entity at that
particular time. From such data, users often wish to search for entities in a particular
period, and understand the history of one entity or all entities in the data set. For
example, DBLP1 lists research papers over many decades; DBLP users may wish to
find authors by name and year, find the publication history and affiliation history of
an author, find the number of her co-authors in each year over time, find her research
topics over time, and so on.

A major challenge for enabling such search and exploration is to identify records
that describe the same real-world entity over a long period of time; only with such an
integrated view, we will be able to trace the history of that entity and collect statistics
over time. However, linking temporal records is by no means easy. First, we need to be
able to link together records for the same real-world entity but at different times. This
is hard because entities can evolve over time; for example, a researcher can move from
one affiliation to another, change her research topic, and collaborate with different co-
authors over time. Thus, records that describe the same real-world entity at different

1http://www.dblp.org/.
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times can contain different values; blindly requiring value consistency of the linked
records may cause false negatives. Second, we need to be able to distinguish records
that share common attribute values but refer to different real-world entities. This is
especially hard for temporal records because it is more likely to find highly similar
entities over a long time period than at the same time; for example, having two persons
with highly similar names in the same university over the past 30 years is more likely
than at the same time. Thus, records that describe different entities at different times
can share common values; blindly matching records that have similar attribute values
can cause false positives.

We describe the CHRONOS system1, which offers users a useful tool for finding
real-world entities over time and understanding history of entities in the bibliography
domain. The core of CHRONOS is a temporal record-linkage algorithm, which is toler-
ant to value evolution over time Li et al. [2011]. Our algorithm can obtain an F-measure
of over 0.9 in linking author records and can fix errors made by DBLP. There are two
key ideas for the linkage techniques: first, we apply time decay that captures the effect
of time elapse on entity value evolution; second, we apply temporal clustering that
considers records in time order and accumulates evidence over time to enable decision
making with a global view.

This chapter presents the novel features of CHRONOS and focuses on the following
two aspects. First, we show how CHRONOS allows users to explore the history, includ-
ing searching authors in a particular time period or in a particular affiliation, tracing the
history of publications, co-authors, and affiliations of a particular author, and under-
standing the statistics of authors, publications, etc., over time. Second, we further show
how CHRONOS helps users understand our linkage results (linking citation records for
the same real-world author) by comparing our results with those of existing systems,
such as the manual linkage results from DBLP, highlighting differences in the results,
explaining to users our decisions, and answering “what-if” questions such as “What
would the results look like if we had not applied time decay?” and “What if we had
removed these three records?”

In the rest of the chapter, we first describe the features of the CHRONOS system in
Section 4.1, and then describe the system architecture and underlying temporal linkage

1Chronos is a Greek God for time; he has three heads, a man, a bull, and a lion, showing
the importance of “linkage”.
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Figure 4.1: Research history of author “Xin Dong”.

algorithm in Section 4.2. We discuss related work in Section 4.3, and conclude in
Section 4.4.

4.1 System Features

We start by describing the features of CHRONOS through user scenarios. CHRONOS

includes all papers collected by DBLP till June 1st, 2012. For each paper, we ex-
tract a record for each author of that paper, with information for name, paper title,
co-authors, conference, and year. In addition, we enrich each author record with
information on email and affiliation for the associated time stamp whenever possi-
ble and collect such information from digital libraries such as ACM1, IEEE2, Scopus3,
journal websites, the PDFs of the papers, and so on.

First, CHRONOS allows users to search for authors over time and find the history
of particular authors.

Example 4.1.1 Consider a user who would like to find an author named “Xin Dong”.

She searches “Xin Dong” and CHRONOS returns 6 “Xin Dong” entities and 1 “Dong

Xin” entity, each one showing the publication period and current affiliation. The user

can select one of them, or refine the query by searching “Xin Dong 2011” (the au-

thors named “Xin Dong” and published in 2011) or searching “Xin Dong AT&T” (the

1http://dl.acm.org/
2http://ieeexplore.ieee.org/
3http://www.scopus.com/
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authors named “Xin Dong” and was at AT&T at some time”).

Suppose the user has selected one “Xin Dong” entity. She can click the “History”

button to trace the history of various aspects of this author, such as her affiliations, co-

authors, research topics, and so on. Figure 4.1 shows a screenshot for this. It shows

that this author stayed at “University of Washington” in 2003-2007, at “Google, Inc”

in 2006-2007, and at “AT&T Labs” from 2008 till now. Note that this history is purely

derived from the author’s publications, so may not be precise (e.g., the author may

have joined AT&T Labs in 2007 but started publishing with that affiliation only since

2008). The topic is generated for every five years as the tag cloud1 of publication titles

and available abstracts.

The user can also click the “Statistics” button to see statistics about the author,

including graphs of the number of publications by that author over years, the number

of co-authors over years, and so on. The user can even see statistics of all authors over

years, such as the number of authors and the number of publications. �

Second, in case the user is interested in the author-linkage results, CHRONOS com-
pares its own temporal-linkage results with (1) the manual linkage results by DBLP,
and (2) the linkage results by BASIC, a traditional record-linkage technique that com-
pares each pair of author records and applies transitivity in clustering the records into
author entities Hassanzadeh et al. [2009b].

Example 4.1.2 Suppose the user is interested in comparing the listed papers by CHRONOS

and by DBLP, she can click the “Comparison” button. CHRONOS will show side-by-

side the list of papers according to the linkage results by CHRONOS, by DBLP, and by

BASIC (see Figure 4.2). CHRONOS also highlights differences between the lists: for

each list from DBLP and BASIC, it highlights the publications not included in its own

list; for its own list, it highlights the publications not included in the list from DBLP
or from BASIC (using different colors).

If the user would like to understand the different decisions, she can click on one

highlighted publication and CHRONOS would explain the reason. For example, if she

wonders why publication #22 from DBLP is excluded from the list by CHRONOS, she

can click on #22 and CHRONOS would explain “The author ‘Xin Dong’ of that paper

is from ‘University of Nebraska-Lincoln’, it is unlikely that she moved from ‘AT&T
1http://www.tagcrowd.com/.
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Figure 4.2: Comparison on publications by “Xin Dong”. Only a subset of papers are
shown to fit the differences in one screen.

Labs’ to ‘University of Nebraska-Lincoln’ in 2010 and moved back to ‘AT&T Labs’ in

2011”. As another example, if she wonders why publication #15 (excluded by BASIC)

is included in the list by CHRONOS, she can click on publication #15 and CHRONOS

would explain “The author ‘Xin Dong’ of that paper is from ‘University of Washing-

ton’; later she moved to ‘AT&T Labs’ in 2008”.

If the user is curious and would like to understand more, such as why it is consid-

ered unlikely for the author to “move from ‘AT&T Labs’ to ‘University of Nebraska-

Lincoln’ in 2010 and move back to ‘AT&T Labs’ in 2011” but likely for the author to

“move from ‘University of Washington’ to ‘AT&T Labs’ in 2008”, she can ask for more

details. For the previous explanation for publication #22, if the user clicks the “De-

tails” button, the explanation will be extended as “The author was at ‘AT&T Labs’ in

2008-2010; the probability that she moved to another affiliation in 2010 is .26 and the

probability that she moved again in 2011 is .13”. Similarly, extended explanation for

publication #15 can be “The author was at ‘University of Washington’ in 2003-2007;

the probability that she moved to another affiliation in 2008 is .55”. �

Third, for advanced users, CHRONOS answers “what-if” questions and help users
compare different results when revising some of the data or applying different linkage
methods. Specifically, CHRONOS allows the user to (1) select a subset of records by
searching or by selecting on record basis, (2) change the time stamp of some of the
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Figure 4.3: Architecture of the CHRONOS system.

selected records, (3) choose to consider decay or not consider decay, and choose to
apply different clustering methods, and then compare the results.

Example 4.1.3 Consider an advanced user who would like to understand the linkage

results further. In particular, she wonders what if the two publications with Google
Inc. affiliation were published in 1986-1987 instead of 2006-2007. She could choose

all publications by the selected “Xin Dong” entity, and then change the time stamp of

the two publications. CHRONOS then applies linkage at runtime, shows the publication

list from the new results and from the original results side-by-side, and highlights the

differences. The difference might be that the two publications are considered to belong

to another “Xin Dong” because of the big time gap between the two revised records

and the rest of the records. �

4.2 System Architecture

We next describe the architecture of the system and also the key techniques for linking
temporal records.

4.2.1 Architecture

Figure 4.3 depicts the architecture of CHRONOS. At the back end CHRONOS contains
three components in charge of data collection and cleaning: Author extraction, Tem-
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poral linkage and Indexing. At the front end CHRONOS contains two components in
charge of interaction with users, search, and decision explanation: History explorer,
and Linkage explanation. We next describe each component in more detail.

Author extraction: This component takes the DBLP data as input. For each paper,
it extracts records about authors, including author name, paper title, conference, co-
author, publication year, and so on. It then follows the links provided by DBLP to
external sources (e.g., ACM, IEEE, Scopus, journal websites, and PDF paper files) and
enriches the records by extracting information on affiliation and email of the author
at the time of publication. It stores the results in the Data repository, which hosts a
database using MySQL1.

Temporal linkage: This component identifies author records that refer to the same
real-world person. We describe this component in more detail shortly. Note that link-
age on the full data set can take hours, but this is performed offline and the results are
also stored in Data repository, ready for online search.

Indexing: This component builds an Inverted index for each identified real-world
author. To facilitate search by name, affiliation, and time period, each author is indexed
by her names and affiliations over time, and also the years of her publications. We used
Lucene2 for indexing.

History explorer: This component is the interface through which the user interacts
with the system. It offers (1) author search by name, time period, and affiliation, (2)
history tracing for each author, and (3) statistics view of the data. Upon receiving an
author query, it finds relevant authors through the Inverted index, and then retrieves
details about the author from the Data repository.

Linkage explanation: This component explains linkage decisions and is in charge of
three tasks. First, it shows the comparison of results from CHRONOS, from DBLP,
and from BASIC. For each selected author, it chooses the cluster from DBLP or BA-
SIC with the largest number of publications in the author publication list generated
by CHRONOS. Second, it explains the decision of a particular paper included in or
excluded from the list of papers for a particular author. Explanations are generated
mainly according to the decay, as we define shortly. Third, it performs online tem-

1http://www.mysql.com.
2http://lucene.apache.org.
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poral linkage and answers “what-if” questions. Note that since online linkage will be
performed only on a small subset of records, it is quite efficient and takes only a few
seconds.

4.2.2 Temporal Linkage

The core of the system is the Temporal linkage component, which links author records
that refer to the same real-world entity. It contains three sub-components: Decay
computation, Similarity computation, and Temporal clustering. We next briefly
describe the techniques applied in each sub-component, and refer the interested readers
to Li et al. [2011] for details.

Decay computation: One key idea of our temporal linkage algorithm is to apply time
decay, which aims to capture the effect of time elapse on entity value evolution. Specif-
ically, we define disagreement decay as the probability that an entity changes its value
of a particular attribute within a particular period of time. Symmetrically, we define
agreement decay as the probability that two entities share a common value of a par-
ticular attribute within a particular period of time. For example, a disagreement decay
of .6 for affiliation and 5 years means that the probability that an author changes her
affiliation within 5 years is .6; an agreement of .1 for affiliation and 5 years means
that the probability that two different authors share the same affiliation within 5 years
is only .1. With the use of decay, we do not penalize variety of values over a long
time too much, and meanwhile do not reward similarity of values over a long time too
much. We learn decay for each attribute from a set of labeled data, for which we know
if two records refer to the same entity and if two strings represent the same value.

Similarity computation: We compare a record with a cluster of records considering
the following two aspects. First, we consider value consistency. We compare the
record with the cluster on each attribute, and then take a linear combination of the
similarities. In this computation we apply decay, so we are more tolerant to value
variety over time. For example, the record of “Xin Dong” from “AT&T” in 2008
has high value consistency with the cluster of “Xin Dong” records from “University
of Washington” in 2003-2007, despite the affiliation difference. Second, we consider
continuity. We compare the time stamp of the record with the time period of the cluster.
The higher the continuity, the more likely that the record belongs to the cluster. Our
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previous example also observes a high continuity, but another record of “Xin Dong”
from “RPI” in 1991 has a low continuity with that cluster. The final similarity combines
value consistency and continuity.

Temporal clustering: Another key idea of our temporal linkage algorithm is record
clustering with a global view of the data. We consider author records in time order
and accumulate evidence over time to enable global decision making. Our clustering
algorithm proceeds iteratively. In each round, it computes the probability that a record
belongs to each cluster according to the record-cluster similarity, and chooses the clus-
tering with the highest probability. It then refines the results iteratively until the results
converge.

4.3 Related Work

There have been several applications for exploring temporal information. BIBNET-
MINER Sun et al. [2008] is the closest to CHRONOS: it collects data from DBLP and
allows users to explore the history of authors on a time line. However, it takes the
linkage results from DBLP directly while we focus on enriching and improving DBLP
data by applying temporal linkage. INZEIT Setty et al. [2010] collects data from New
York Times Annotated Corpus and focuses on determining insightful time points as
milestones for user queries. PRIMA Moon et al. [2009] considers historical data with
evolving schemas. None of the systems emphasizes linkage of temporal records.

There have been other systems related to bibliography data.
DBLIFE DeRose et al. [2007] is able to track entities over time, but it applies hand-
crafted information extraction rules and the entity resolution methods rely heavily on
domain knowledge. WINACS Weninger et al. [2011] extracts data from Web-based
information network to perform entity resolution and disambiguation. Again, none of
them applies temporal linkage techniques.

Finally, there have been a few demonstrations on record linkage. LINKDB Ioannou
et al. [2011] demonstrates the performance and visualization of probabilistic record
linkage techniques. SEMEX Cai et al. [2005] performs reference reconciliation on
personal data. We differ in that we consider linkage of temporal records.
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4.4 Summary

This chapter aims to exhibit the strength of temporal information in information search
and exploration. CHRONOS allows users to search for authors by their name, affiliation,
and time period; it also allows users to trace the history and statistics of various aspects
of an author, a conference, all publications, and so on. The core of the system is a
temporal linkage algorithm that is tolerant to value variety over time when identifying
records that refer to the same real-world entity. CHRONOS helps users understand
its linkage results by comparison with results of other methods, explanation of the
differences, and answering “what-if” questions.
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Chapter 5

Conclusions

Due to heterogeneous schemas, possible errors in data sets and faulty update processes,
traditional record linkage techniques may fall short for many cases. Tolerance to value
diversity in the data thus needs to be considered to improve the results for linkage. In
this dissertation we have described two problems where value diversity are taken into
consideration: temporal linkage, where we need to be tolerant to value diversity over
time, and group linkage, where we need to be tolerant to different local values within
groups.

This dissertation makes the following contributions for temporal linkage.

• We apply time decay, which aims to capture the effect of time elapse on entity
value evolution. In particular, we define disagreement decay, with which value
difference over a long time is not necessarily taken as a strong indicator of refer-
ring to different real-world entities; we define agreement decay, with which the
same value with a long time gap is not necessarily taken as a strong indicator of
referring to the same entity. We describe how we learn decay from labeled data
and how we apply it when computing similarity between records.

• We describe three temporal clustering methods that consider records in time
order and accumulate evidence over time to enable global decision making.
Among them, early binding makes eager decisions and merges a record with
an already created cluster once it computes a high similarity; late binding in-
stead keeps all evidence and makes decisions at the end; and adjusted binding in
addition compares a record with clusters that are created for records with later
time stamps.
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• We applied our methods on a European patent data set and two subsets of the
DBLP data set. Our experimental results show that applying decay in traditional
methods can already improve linkage results, and applying our clustering meth-
ods can obtain results with high precision and recall.

We make the following contributions for group linkage:

• We study core generation in presence of erroneous data. Our core is robust in
the sense that even if we remove a few possibly erroneous records, we still have
strong evidence that the rest of the records must belong to the same group. We
propose efficient algorithm for core generation.

• We then reduce the group linkage problem into clustering cores and remaining
records. Our clustering algorithm leverages strong evidence collected from cores
and meanwhile is tolerant to value variety of records in the same group.

• We conducted experiments on two real-world data sets in different domains,
showing high efficiency and effectiveness of our algorithms.

There are still continuing challenges in linking records with value diversity, in-
cluding combining information of multiple dimensions for linkage, such as combining
temporal information with spatial information to achieve better results, and to enhance
record linkage with information in more complicated frameworks, such as information
from crowdsourcing.
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Proofs from Chapter 3

.1 Proofs in Section 3.2.2

Proposition .1.1 Let R be a set of business listings. Denote by n(r) the number of

values on dominant-value attributes from r ∈ R. Let n =
∑

r∈R n(r) and m =

maxr∈R n(r). Let s be the maximum v-clique size. Algorithm GRAPHCONSTRUCTION

(1) runs in time O(ns(m+s)), (2) requires space O(n), and (3) its result is independent

of the order in which we consider the records. �

Proof .1.2 We first prove that GRAPHCONSTRUCTION runs in time O(ns(m + s)).

Step 2 of the algorithm takes in time O(nsm), where it takes in time O(ns) to scan

all records for a dominant-value attribute, and a record can be scanned maximally m

times. Step 3 takes in time O(ns2). Thus, the algorithm runs in time O(ns(m+ s)).

We next prove that GRAPHCONSTRUCTION requires space O(n). For each value

v of a dominate-value attribute, the algorithm keeps three data sets: L̄ that takes in

space O(n), Cv and T̄ that require space in total no greater than O(|R|). Since

O(n) ≥ O(|R|), the algorithm requires space O(n).

We now prove that the result of GRAPHCONSTRUCTION is order independent.

Given L̄ and R̄v, Step 2 scan L̄ and apply transitive rule to merge clusters of records

in C ∩ R̄v, for each v-clique C ∈ L̄. The process is independent from the order in
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which we consider the records in R̄v. The order independence of the result in Step 3 is

proven in Benjelloun et al. [2009]. Therefore, the final result is independent from the

order in which we consider the records.

Proposition .1.3 Let G be a similarity graph. Let r and r′ be two nodes in G that

belong to the same v-clique C and not any other v-clique. Then, r and r′ must belong

to the same partition in any maximal k-robust partitioning. �

Proof .1.4 We prove that there does not exist such a maximal k-robust partitioning

where r and r′ are in different partitions. Suppose r and r′ belong to subgraphs P

and P ′ respectively in a maximal k-robust partitioning, where r, r′ are connected to

n, n′ nodes in P, P ′ respectively. P and P ′ are connected by at least m nodes , m =

min{n+ 1, n′ + 1}. We next prove that P ∪ P ′ is k-robust.

If P, P ′ are both v-cliques, P ∪ P ′ ⊆ C is also a v-clique and k-robust.

We next consider the case where one of the partitions is not a v-clique. Suppose P

is not a v-clique, each node in P is connected to more than k nodes in P , where k < n.

If P ′ is a v-clique, each node in P ′ ⊆ C is connected to at least n+1 nodes in P , thus

P ∪ P ′ is k-robust. If P ′ is not a v-clique, we have k < min{n, n′} < m, thus P ∪ P ′

is also k-robust.

Since the fact that P ∪ P ′ is k-robust violates Condition 3 in Definition 3.2.2, it

proves that r, r′ must belong to the same partition in any maximal k-robust partition-

ing.
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.2 Proofs in Section 3.2.3

Theorem .2.1 ((K + 1)-connected condition) Let G be a graph consisting of a union

Q of v-cliques. If for every pair of v-cliques C,C ′ ∈ Q, there is a path of v-cliques

between C and C ′ and every pair of adjacent v-cliques on the path share at least k+1

nodes, graph G is k-robust. �

Proof .2.2 Given Menger’s Theorem Bruhn et al. [2005], graph G is k-robust if for

any pair of nodes r, r′ in G, there exists at least k + 1 independent paths that do

not share any nodes other than r, r′ in G. We now prove that for any pair of nodes

r, r′ in graph G that satisfies (k + 1)-connected condition, there exists at least k + 1

independent paths between r, r′. We consider two cases, 1) r, r′ are adjacent such that

there exists a v-clique in G that contains r, r′; 2) r, r′ are not adjacent such that there

exists no v-clique in G that contains r, r′.

We first consider Case 1 where there exists a v-clique C containing r, r′. Since each

v-clique in G has more than k + 1 nodes, there exist at least k 2-length paths and one

1-length path between r, r′ ∈ C. It proves that there exists at least k + 1 independent

paths between r and r′.

We next consider Case 2 where there exists no v-clique containing r, r′ in G. Sup-

pose r ∈ C, r′ ∈ C ′, where C,C ′ are different v-cliques in G. Since there exists a path

of v-cliques between C and C ′ where every pair of adjacent v-cliques in the path share

at least k + 1 nodes, there exists at least k + 1 independent paths between r and r′.

Given the above two cases, we have that there exist at least k+1 independent paths

between every pair of nodes in G, therefore G is k-robust.

Theorem .2.3 ((K + 1)-overlap condition) Graph G is k-robust only if for every (k+
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1)-connected v-union Q ∈ G, Q shares at least k+1 common nodes with the subgraph

consisting of the rest of the v-unions. �

Proof .2.4 We prove that if graph G contains a (k + 1)-connected v-union Q that

shares at most k common nodes with the rest of the graph, G is not k-robust. Since

Q shares at most k common nodes with the subgraph consisting of the rest of the v-

unions, removing the common nodes will disconnect Q from G, it proves that G is not

k-robust. Thus, (k + 1)-overlap condition holds.

Proposition .2.5 Denote by |L̄| the number of entries in input L̄. Let m be the maxi-

mum number of values from dominant-value attributes of a record, and a be the max-

imum number of adjacent v-unions that a v-union has. Algorithm SCREEN takes time

O((m2 + a) · |L̄|) and the result is independent of the order in which we examine the

v-cliques. �

Proof .2.6 We first prove the time complexity of SCREEN. It takes in time O(m2|L̄|) to

scan all entries in L̄ and find common nodes between each pair of adjacent v-cliques

(Step 3(a)). It takes in time O(a|C|) to merge v-unions, where |C| is the number of

v-cliques in G (Step 3(b)). Since |C|< |L̄|, the algorithm runs in time O(m2+a) · |L̄|.

We next prove that the result of Screen is independent of the order in which we

examine the v-cliques, that is, 1) finding all maximal (k + 1)-connected v-unions in G

is order independent; 2) removing all nodes in B̄(Q) from G where |barB(Q)| ≤ k is

order independent.

Consider order independency of finding all v-unions in G. To find all v-unions in G

is conceptually equivalent to find all connected components in an abstract graph GA,

where each node in GA is a v-clique in G and two nodes in GA are connected if the two

corresponding v-cliques share more than k nodes. SCREEN checks whether each node
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in G is a common node between two v-cliques (Step 3(a)), and if two cliques share

more than k nodes, merges their v-unions (Step 3(b)), which is equivalent to connect

two nodes in GA. Once all nodes in G is scanned, all edges in GA are added, and

the order in which we examine nodes in G is independent from the structure of GA

and the connected components in GA. Therefore, finding all v-unions in G is order

independent.

Consider order independency of removing nodes in G. Suppose Q1, Q2, ..., Qm,m >

0 are all v-unions in G with |B̄(Qi)| ≤ k, i ∈ [1,m]. Since G is finite, Qi is finite and

unique; thus, removing all nodes in B̄(Q)) from G where |B̄(Q)| ≤ k is order inde-

pendent.

.3 Proofs in Section 3.2.3.2

Lemma .3.1 The max flow from source a to sink b in G′(V ′, E ′) is equivalent to κ(a, b)

in G(V,E). �

Proof .3.2 According to Menger’s Theorem Bruhn et al. [2005], the minimum number

of nodes whose removal disconnects a and b, that is κ(a, b), is equal to the maxi-

mum number of independent paths between a and b. The authors in Even and Tarjan

[1975] proves that the maximum number of independent paths between a and b in an

undirected graph G(V,E) is equivalent to the maximal value of flow from a to b or

the minimal capacity of an a − b cut, the set of nodes such that any path from a to b

contains a member of the cut, in G′(V ′, E ′).

Theorem .3.3 (Max-flow condition) Let G(V,E) be an input similarity graph. Graph

G is k-robust if and only if for every pair of adjacent (k + 1)-connected v-unions Q
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and Q′, there exist two nodes a ∈ Q \ Q′ and b ∈ Q′ \ Q such that the max flow from

a to b in the corresponding flow network is at least k + 1. �

Proof .3.4 According to Menger’s Theorem Bruhn et al. [2005], κ(a, b) in G is equiv-

alent to the max-flow from a to b in the corresponding flow network. We need to prove

that graph G is k-robust if and only if for each pair of adjacent (k + 1)-connected

v-unions Q and Q′, there exists two nodes a ∈ Q \ Q′ and b ∈ Q′ \ Q such that

κ(a, b) ≥ k + 1.

We first prove that if G is k-robust, for each pair of adjacent (k + 1)-connected

v-unions Q and Q′, there exists two nodes a ∈ Q \ Q′ and b ∈ Q′ \ Q such that

κ(a, b) ≥ k + 1. Since G is k-robust, for each pair of nodes a and b in G, we have

κ(a, b) ≥ k + 1.

We next prove that if G is not k-robust, there exists a pair of adjacent (k + 1)-

connected v-unions Q and Q′ such that for each pair of nodes a ∈ Q\Q′ and b ∈ Q′\Q,

we have κ(a, b) < k + 1. Since G is not k-robust, there exists a separator S̄, a set of

nodes in G with size no greater than k whose removal disconnects G into two sub-

graphs X̄ and Ȳ . Suppose Q and Q′ are two v-unions in G such that Q ⊆ X̄,Q′ ⊆ Ȳ

and Q∩Q′ ̸= ∅. For each pair of nodes a ∈ Q\Q′ and b ∈ Q′\Q, we have a ∈ X̄ and

b ∈ Ȳ , and removing the set of nodes in S̄ disconnects a and b; thus κ(a, b) < k + 1.

The above two cases proves that graph G is k-robust if and only if for every pair of

adjacent (k + 1)-connected v-unions Q and Q′, there exist two nodes a ∈ Q \ Q′ and

b ∈ Q′ \Q such that κ(a, b) ≥ k+1, i.e. the max flow from a to b in the corresponding

flow network is at least k + 1.

Proposition .3.5 Let p be the total number of pairs of adjacent v-unions, and g be the

number of nodes in the input graph. Algorithm SPLIT runs in time O(pg2.5). �
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Proof .3.6 Authors in Even and Tarjan [1975] proves that it takes in time O(g2.5) to

compute κ(a, b) for a pair of nodes a and b in G. In the worst case SPLIT needs to

compute κ(a, b) for p pairs of adjacent v-unions. Thus, SPLIT runs in time O(pg2.5).

.4 Proofs in Section 3.2.3.3

Lemma .4.1 For each pair of adjacent nodes r, r′ in graph G, there exists a maximal

k-robust partitioning such that r, r′ are in the same subgraph. �

Proof .4.2 For each pair of adjacent nodes r, r′ in G, we prove the existence of such a

maximal k-robust partitioning by constructing it.

By definition, adjacent node r, r′ form a v-clique C. Therefore, there exists a max-

imal v-clique C ′ in G that contains r, r′, i.e., C ⊆ C ′. V-clique C ′ can be obtained

by keep adding nodes in G to C so that each newly-added node is adjacent to each

node in current clique until no nodes in G can be added to C ′. By definition, any v-

clique is k-robust, therefore there exists a maximal k-robust sub-graph G′ in G such

that C ′ ⊆ G′. Graph G′ can be obtained by keep adding nodes in G to C ′ so that

each newly-added node is adjacent to at least k+1 nodes in current graph G′ until no

nodes in G can be added to G′. We remove G′ from G and take G′ as a subgraph in

the desired partitioning.

We repeat the above process to a randomly-selected pair of adjacent nodes in the

remaining graph G \ G′ until it is empty. The desired partitioning satisfies Condition

1 and 2 of Definition 3.2.2 because the above process makes sure each subgraph is

exclusive and k-robust; it satisfies Condition 3 of Definition 3.2.2 because the above

process makes sure each subgraph is maximal, which means merging arbitrary number

of subgraphs in the partitioning would violate Condition 2.
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In summary, the desired partitioning is a maximal k-robust partitioning. It proves

that for each pair of adjacent nodes r and r′ in graph G, there exists a maximal k-

robust partitioning such that r and r′ are in the same subgraph.

Lemma .4.3 The set of nodes in a separator S̄ of graph G does not belong to any core

in G, where |S̄| ≤ k. �

Proof .4.4 (Lemma .4.3) Suppose the set S̄ of nodes separate G into m disconnected

sets X̄i, i ∈ [1,m],m > 0. To prove that each node r ∈ S̄ does not belong to any

core in G, we prove that for a node r′ ∈ G, r′ ̸= r, there exists a maximal k-robust

partitioning such that r and r′ are separated. Node r′ falls into the following cases: 1)

r′ ∈ X̄i, i ∈ [1,m] ; 2) r′ ∈ S̄.

Consider Case 1) where r′ ∈ X̄i, i ∈ [1,m]. We construct a maximal k-robust

partitioning of G where r and r′ are in different subgraphs. We start with a maximal

k-robust subgraph G′ in G that contains r and r′′ where r′′ is adjacent to r and in

X̄j, j ̸= i, j ∈ [1,m], and find other maximal k-robust subgraphs as in Lemma .4.1.

Since S̄ separates X̄i and X̄j , maximal k-robust subgraph G′ that contains r and

r′′ does not contain any node in X̄i. It proves that there exists a maximal k-robust

partitioning of G where r and r′ are not in the same subgraph.

Consider Case 2) where r′ ∈ S̄. We construct a maximal k-robust partitioning

of G such that r and r′ are in different subgraphs. We create two maximal k-robust

subgraphs G′ and G′′, where G′ contains r and an adjacent node ri ∈ X̄i, i ∈ [1,m],

G′′ contains r′ and an adjacent node rj ∈ X̄j, j ̸= i, j ∈ [1,m]. We create other

subgraphs as in Lemma .4.1. Since each path between ri ∈ X̄i and rj ∈ X̄j contains

at least one node in S̄ and |S̄| ≤ k, graph G′ ∪ G′′ is not k-robust. Therefore, the

created partitioning is a maximal k-robust partitioning. It proves that there exists a
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maximal k-robust partitioning of G where r and r′ are not in the same subgraph.

Given the above two cases, we have that any node in separator S̄ of G does not

belong to any core in G, where |S̄| ≤ k.

Proposition .4.5 Let G be the input graph and q be the number of (k+1)-connected v-

unions in G. Define a, p, g,m, and |L̄| as in Proposition .2.5 and .3.5. Algorithm CORE

finds correct cores of G in time O(q((m2+ a)|L̄|+ pg2.5)) and is order independent.�

Proof .4.6 We first prove that CORE correctly finds cores in G, that is 1) nodes not

returned by CORE do not belong to any core; 2) each subgraph returned by CORE

forms a core.

We prove that nodes not returned by CORE do not belong to any core in G. Nodes

not returned by CORE belong to separators of subgraphs in G. Suppose S̄ is a sepa-

rator of graph Gn ∈ Q found in either SCREEN or SPLIT phase, where Gn ⊆ G,n ≥

0, G0 = G, and S̄ separates Gn into m sub-graphs X̄ i
n, i ∈ [1,m],m > 1. Graph

Gi
n ∈ Q is a subgraph of Gn such that any node r ∈ X̄j

n, j ∈ [1,m], j ̸= i does not

belong to Gi
n. Nodes removed in Gi

n by CORE belong to separator S̄ in Gn. Given

Lema .4.3, such nodes do not belong to any core in Gn and thus does not belong to any

core in G.

We next prove that each subgraph returned by CORE forms a core in G. We prove

two cases: 1) subgraph G′ in G forms a core if there exists a separator S̄ that discon-

nects G′ from G, where |S̄| ≤ k and G′ ∪ S̄ and G′ are both k-robust; 2) if a subgraph

is a core in Gi
n, it is a core in graph Gn.

We consider Case 1) that subgraph G′ in G forms a core if there exists a separator

S̄ that disconnects G′ from G, where |S̄| ≤ k and G′∪S̄ and G′ are both k-robust. For a

pair of nodes r1, r2 in G′, we prove that there exists no maximal k-robust partitioning
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where r1 and r2 are in different subgraphs. Suppose such a partitioning exists, and

G1, G2 are subgraphs containing r1, r2 respectively. Since G1, G2 ⊆ G′ ∪ S̄, we have

that G1∪G2 is k-robust, it violates the fact that the result of merging any two subgraphs

in a maximal k-robust partitioning is not k-robust. Therefore, there exists no maximal

k-robust partitioning where r1 and r2 are in different subgraphs. It proves that G′ is a

core in G.

We next consider Case 2) that if a subgraph G′ is a core in Gi
n, it is a core in graph

Gn. We prove that a pair of nodes r1, r2 ∈ G′ belong to the same subgraph of all

maximal k-robust partitioning in Gn. Suppose there exists such a partitioning of Gn

where r1 ∈ G1, r2 ∈ G2. Since Gi
n ⊆ X̄ i

n ∪ S̄, we have G1, G2 ⊆ Gi
n, otherwise

G1, G2 are not k-robust. Since r1, r2 belong to the same core in Gi
n, we have G1 = G2.

It proves that if G′ is a core in Gi
n, it is a core in Gn.

The above two cases prove that each subgraph returned by CORE forms a core in

G. In summary, nodes not returned by CORE do not belong to any core, and each

subgraph returned by CORE forms a core in G. Thus, CORE correctly finds all cores

in G. It further proves that the result of CORE is independent from the order in which

we find and remove separators of graphs in Q.

We now analyze the time complexity of CORE. For each (k+1)-connected v-unions

in G, it takes in time O(m2 + a)|L̄| to proceed SCREEN phase and in time O(pg2.5) to

proceed SPLIT phase. In total there are q v-unions in G, thus the algorithm takes in

time O(q((m2 + a)|L̄|+ pg2.5)).
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.5 Proof in Section 3.3

Proposition .5.1 Let l be the number of distinct candidate pairs ever in Que and |E|

be the number of input elements. Algorithm CLUSTER takes time O(l · |E|2). �

Proof .5.2 It takes time O(|E|2) to initialize clustering C and list Que. It takes |E|2

to check each distinct candidate pair in Que, where it takes O(|E|) to examine all

valid clustering plans and select the one with highest SV-index (Step 2(a)), and it takes

O(|E|2) to recompute SV-index for all relevant elements and update Que (Step 2(b)).

In total there are l distinct candidate pairs ever in Que, thus CLUSTER takes time

O(l · |E|2).
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