
Software Clone Detection and Refactoring

Francesca Arcelli Fontana*, Marco Zanoni*, Andrea Ranchetti*
and Davide Ranchetti*

*University of Milano-Bicocca, Viale Sarca, 336, 20126 Milano,
Italy, {arcelli,marco.zanoni}@disco.unimib.it,

{andrea.ranchetti,davide.ranchetti}@gmail.com

January 29, 2013

Abstract

Several studies have been proposed in the literature on software clones,
from different points of view and covering many correlated features and
areas, which are particularly relevant for software maintenance and evolu-
tion. In this paper we describe our experience on clone detection through
three different tools, and our investigation on the impact of clone refac-
toring on different software quality metrics.

1 Introduction
In software programs we can find different kinds of redundancy or replication.
Usually this kind of redundancy in the code is called clone; different definitions
and taxonomies of clones have been proposed in the literature [8, 9]. With the
term “clone” we often mean also “duplicate code”; duplicate code is an example
of bad smell, as defined by Fowler [5]. The contributions of this experience
report regard:

1. the experimentation of three different clone detection tools, PMD, Bauhaus
and CodePro, on five versions of two open source software systems, Ant
and GanttProject. We outline the difference in the detection results pro-
vided by the tools and we outline the evolution of clones in the five versions
of the two systems. We observe if clones increase or decrease during the
evolution of the system also with respect to an increment of the size of
the system.

2. the analysis of the refactoring of code clones on the values of different
software quality metrics. We considered metrics for cohesion, complexity
and coupling. For the refactoring we decided to use the tool IntelliJ IDEA
and for the metrics computation a plugin of IntelliJ IDEA, called Metrics
Reloaded.

Through the first contribution, we aim to identify the principal differences
of the three clone detection tools, possible advantages or drawbacks and outline

1

Table 1: Tools for duplicated code detection
Tool Supported Lang. Algorithm

PMD Java, C, C++, Jsp, Php, Ruby,
Fortran

Karp-Rabin’s string
matches [7]

Bauhaus C, C++, C#, Java, Ada Baxter’s variation on AST [3]
CodePro Java Undocumented. Relies on Java

AST.

some features on the results they provide, outlining the reasons of the differences
in these results. We do not obviously aim to compare the results in terms of
precision and recall, because a standard benchmark for clone detection is not
yet available. As it has been outlined in previous work [1], the comparison of
tools for code smell detection is very difficult and this is due, first of all, to the
definitions of the smells, which are often ambiguous. Moreover, the detection
techniques used by the tools are not always clearly stated, and the same holds for
the thresholds of the metrics involved in the detection. As outlined by Kapser
and Godfrey [6] also for clones, a widely accepted definition of clone is not yet
available.

Through the second contribution, we aim to identify which are the software
quality metrics most involved in the refactoring of code clones. Can we ob-
serve significant improvements in terms of software quality metrics through the
refactoring of this smell? As already stated by Fowler [5] duplicate code smell
represents probably the most critical one and hence the first one to be refac-
tored. In the same time, as already suggested by Kasper [6], there are several
situations where code duplication seems to be a reasonable or even a beneficial
design option. Hence, it is correct and useful to detect clones in the code, but
refactoring is not always desirable, and we could also face some risks in remov-
ing clones. In this paper we aim to investigate if we can gain some hints on
the usefulness of removing clones, by analyzing the impact of clone refactoring
on the value of particular software metrics. A first investigation of this kind,
considering other smells, has been described in previous work [2].

The paper is organized through the following sections. In Section 2 we briefly
introduce the clone detection tools we used. In Section 3 we report the results
on clone detection through the three tools on five versions of two open source
systems, and we outline the differences on the results and the evolution of the
clones in the different versions of the systems. In Section 4 we analyze the
impact of clone refactoring on different quality metrics. Finally, in Section 5 we
conclude and outline some future developments.

2 Tools for Clone Detection
We briefly describe below the clone detection tools we exploited in our analysis.

PMD1 scans Java source code and looks for potential problems like: du-
plicate code, possible bugs, and dead code. PMD allows the user to set the

1http://www.PMD.sourceforge.net

2

metrics thresholds for clone detection and allows to set the number of tokens of
duplicated code; we chose to keep the default configuration (25 tokens).

Bauhaus2 provides support to analyse and recover a system’s software ar-
chitecture; several maintenance tasks are supported as derivation of different
views on the architecture of legacy systems, identification of re-usable com-
ponents and estimation of change impact. The Bauhaus module for finding
duplicated code looks for three type of clones: portions of identical code, their
variation with different variable names and identifiers, and portions of identical
code with added or removed statements.

Google CodePro Analytix3 is a Java testing tool for Eclipse developers
who are concerned about improving software quality. The main features are re-
lated to code analysis, metrics computation, JUnit test generation, dependency
analysis and similar code analysis. For clone detection the tool offers three types
of search: 1) Code that can possibly be refactored, 2) Code that contains possible
renaming errors, 3) Just looks similar. We chose the last option to find as many
duplicated code occurrences as possible.

In Table 1 we outline the supported languages and the algorithms used by the
above tools. We chose these three tools because we had previous experiences in
using them for software architecture reconstruction, code smell detection, dead
code detection, and other program comprehension and assessment tasks. In this
paper we describe our experience with these three tools, outlining the differences
in the provided results. For a comparison and evaluation of code clone detection
techniques and tools, please refer to the work from Roy et al. [10].

Other tools for duplicated code detection are for example CCFinder4, IntelliJ
IDEA5, Checkstyle6, CloneDr7, Cpdetector8, Jplug9 and Code City10.

3 Clone Detection and Evolution
We now describe our analysis on the detection of clones on the GanttProject11
and Ant12 systems. During this analysis we often use the term occurrence; an
occurrence is a portion of code that is duplicated at least one time. A large
debate about the definition of clones can be found in the literature. As we will
observe in this section, each clone detection tool adopts its own definition.

As mentioned in the previous section, two pieces of code do not have to
be identical to be considered clones, but they can have also little differences.
According to the well known classification of clone types [10], we have:

• Type I: Code fragments are identical except for variations in white space,
layout, and comments.

2http://www.bauhaus-stuttgart.de
3https://developers.google.com/java-dev-tools/codepro/doc/
4http://www.ccfinder.net
5http://www.jetbrains.com/idea
6http://checkstyle.sourceforge.net
7http://www.semdesigns.com/Products/Clone/
8http://cpdetector.sourceforge.net/
9http://jplug.sourceforge.net/

10http://www.inf.usi.ch/phd/wettel/codecity.html
11http://www.ganttproject.biz
12http://ant.apache.org/

3

Table 2: Ant versions
Version Released on # classes # methods LOC

1.5.2 2003 950 6761 70205
1.6.1 2004 1267 9779 98882
1.6.5 2005 1341 10510 105117
1.7.1 2008 1592 12496 117474
1.8.2 2010 1742 13424 128253

Table 3: Ant results: PMD
Version occurr. duplicated LOC % duplicated code

1.5.2 876 10930 15.56%
1.6.1 1214 15557 15.73%
1.6.5 1221 16185 15.39%
1.7.1 1244 17277 14.70%
1.8.2 1415 20048 15.63%

• Type II: Code fragments are structurally and syntactically identical except
for variations in identifiers, literals, types, layout and comments.

• Type III: Code fragments are copies with further modifications. State-
ments can be changed, added or removed in addition to variations in
identifiers, literals, types, layout and comments.

• Type IV: Two or more code fragments perform the same computation but
are implemented through different syntactic variants.

Respect to this classification of clone, Bauhaus and CodePro find clones of
Type I, II and III; PMD instead finds clones of Type I and II.

3.1 Clone Detection in Ant
In Table 2 we report a summary of the main features of the five analysed versions
of Ant. Our first analysis of Ant was done with PMD. This tool was very fast in
the code duplication search. PMD considers an occurrence of duplicated code a
portion of code that is duplicated at least one time and that is at least composed
by 25 tokens. One line of code is composed by several tokens, depending on the
programming style; in the analysed system 25 tokens correspond to 4–6 LOC.
We report a summary of the results in Table 3. From these results we can
observe that the number of duplicated lines of code grew for each new version.
The percentage of duplicated code in the system is more or less constant in all
the analysed versions, meaning that duplicated code grows at the same rate of
the size of the system.

Bauhaus results are different from those of PMD. From version 1.5.2 to 1.7.1,
both duplicated LOC and percentage of duplicated code grew a lot. In version
1.8.2, instead, both values decreased. This result suggests that some refactoring
effort was spent between versions 1.7.1 and 1.8.2. To understand why the results
of PMD and Bauhaus are so different we point to the discussion about the

4

Table 4: Ant results: Bauhaus
Version occurr. duplicated LOC % duplicated code

1.5.2 135 7352 10.47%
1.6.1 214 14548 14.71%
1.6.5 294 20952 19.93%
1.7.1 479 28748 24.47%
1.8.2 296 24087 18.78%

Table 5: Ant results: CodePro Analytix
Version occurr. occurr./LOC

1.5.2 516 0.73%
1.6.1 669 0.67%
1.6.5 708 0.67%
1.7.1 717 0.62%
1.8.2 805 0.61%

relationships between the number of occurrences and their size, reported in
Subsection 3.1.

The analysis performed with CodePro was done with the most exhaustive
search method available. Unfortunately, CodePro does not provide the num-
ber of duplicated lines of code. To compare the results of CodePro with those
of PMD and Bauhaus, we consider the number of occurrences and the occur-
rences/LOC ratio, where LOC is the number of lines of code of the entire system.
The purpose of the ratio is to balance the duplicated code size with the size of
the system. We can see that even if the occurrences increased in every version,
the occurences/LOC ratio decreased constantly, suggesting that in every new
version the developers introduced less duplicated code than in the previous one.

Considerations on the results PMD and CodePro agree on the fact that
the number of occurrences increased in each new version, and in particular in
versions 1.6.1 and 2.0.9. Bauhaus instead shows that the occurrences decreased
significantly in the last version. Bauhaus found less occurrences than the other
two tools. The reason of this result is that Bauhaus finds larger occurrences,
because it exploits less restrictive rules.

In Figure 2 we can see a comparison of the three tools based on the oc-
curences/LOC parameter. Figure 1 and Figure 2 are similar: In both of them
PMD scores the highest values and Bauhaus the lowest, and even the shape
of the lines is similar in both figures. The difference is that in Figure 1 oc-
currences increase slightly in each new version (except for the latest version in
which there is a decrease of Bauhaus), while in Figure 2 the parameter has a
decreasing trend (with Bauhaus as an exception also this time).

3.2 Clone Detection in GanttProject
In Table 6 we report a summary of the main features of the five versions of
GanttProject we analyzed. These versions cover five years of development,

5

0

200

400

600

800

1000

1200

1400

1600

1.5.2 1.6.1 1.6.5 1.7.1 1.8.2

O
cc

u
rr

e
n

ce
s

Version

PMD Bauhaus CodePro Analytix

Figure 1: Occurrences in Ant

Table 6: GanttProject overview
Version released in # classes # methods LOC

1.10.2 2004 396 1924 21219
1.11.1 2005 549 2724 26337
2.0.0 2006 962 4931 44399
2.0.6 2008 1062 5450 47767
2.0.9 2009 1076 5530 48595

during which the system grew over two times.
Looking at the results of PMD in Table 7 we can observe that, with the

development of version 1.11.1, both the percentage and the size of duplicated
line of code decreased significantly. In version 2.0.0 the lines of code of the
project and also the duplicated lines of code increased a lot. From version
2.0.0 to 2.0.9 instead, duplicated lines of code stabilized around five thousand
LOC and the percentage of duplicated code continued to decrease to almost
10%. Considering the results for Bauhaus in Table 8, we can say that even
if duplicated LOC are quite different from those of PMD, the trend of the
percentage of duplicated code is very similar.

Looking at Table 7 we can see that the trend of occurrences/LOC for PMD is
similar to the one of the percentage of duplicated code for Bauhaus and CodePro
shown in Table 8 and Table 9. The three tools agree in saying that the version
containing more duplicated code is 1.10.2.

6

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

1.5.2 1.6.1 1.6.5 1.7.1 1.8.2

O
cc

u
re

n
ce

s/
LO

C

Version

PMD Bauhaus CodePro Analytix

Figure 2: Ant occurrences/LOC comparison

Table 7: GanttProject results: PMD
Version occurr. duplicated LOC % duplicated code

1.10.2 347 3159 14.88%
1.11.1 316 2495 9.47%
2.0.0 499 5156 11.61%
2.0.6 677 5102 10.68%
2.0.9 692 5073 10.43%

Considerations on the results In Figures 3 and 4 we show some of the
results that we consider most significant.

Looking at Figure 3 we can see that, excluding the second version, occur-
rences of duplicated code always increased. PMD and CodePro got similar
results: found occurrences were between 200 and 800. Bauhaus instead, as
already observed, always finds fewer occurrences. Observing instead the dupli-
cated lines of code, it emerges that PMD and Bauhaus results are very similar.
The first tool finds more occurrences, but smaller, the second one fewer occur-
rences, but bigger. The result is that the duplicated lines of code found by the
two tools are very similar.

All the tools show that version 1.11.1 had a significant reduction of dupli-
cated code. The next version instead brings back the percentage to high levels.
The last two considered versions reduce it slightly. In Figure 4 we can see a
comparison among all the considered tools. As in the Ant analysis, we used the
occurrences/LOC parameter. In this case the three tools trends are identical;
after a significant reduction, the occurrences of duplicated code respect to the

7

Table 8: GanttProject results: Bauhaus
Version occurr. duplicated LOC % duplicated code

1.10.2 54 1808 8.52%
1.11.1 37 1455 5.52%
2.0.0 54 3568 8.03%
2.0.6 55 3497 7.32%
2.0.9 53 3311 6.81%

Table 9: GanttProject results: CodePro
Version occurr. occurr./LOC

1.10.2 232 1.09%
1.11.1 242 0.91%
2.0.0 360 0.81%
2.0.6 379 0.79%
2.0.9 395 0.81%

project size increased a little and then stabilized. This is a confirmation of the
validity of the tools and of this comparison. Every tool agree on the fact that
version 2.0.0 is the less affected by duplicated code.

3.3 Considerations on the tools
The main differences lie in the number of occurrences found by the tools and the
size of these occurrences. These differences are due to the different algorithms
used to detect duplicated code. In fact we notices that Bauhaus allows little dif-
ferences in the clones, resulting in larger detected occurrences. On the contrary,
PMD find a lot of small occurrences, that are identical clones, ignoring slightly
different clones. Considering these results and the experience we had with these
three tools we found Bauhaus to be very useful, because it provides ordered
and easy enumerable results, and allows users to choose among many search
option. PMD provides clear and ordered results, but it allows only to set the
number of tokens and to find only identical duplicated code; CodePro instead,
as Bauhaus, has more search options, but provides results which are difficult
to count and analyze. Through Bauhaus we are able to find fewer occurrences
of large size respect to a lot of occurrences of small size. We think that this
aspect is important because, as we observe in Section 4, we found more useful
to refactor less large duplicated code blocks than many small ones.

4 Impact of refactoring on system quality
In this section we analyse the impact of clone refactoring on system quality
through the evaluation of different metrics values. The considered systems are
Ant 1.8.2 and GanttProject 2.0.9.

The metrics we evaluated are reported in Table 10. They are calculated

8

0

100

200

300

400

500

600

700

800

1.10.2 1.11.1 2.0.0 2.0.6 2.0.9

O
cc

u
rr

e
n

ce
s

Version

PMD Bauhaus Google code pro

Figure 3: Occurrences in GanttProject

at package or class level. We used the Metrics Reloaded13 plugin for IntelliJ
IDEA14 to compute the metrics values. We chose the same IDE for refactoring,
as it provides many features for code analysis.

We applied some of the widely adopted refactoring techniques for duplicated
code proposed by Fowler [5]:

• Extract Class: create a new class and move the relevant fields and methods
from the old class into the new class. When there are two classes with
a very similar or identical subclass extracting these classes in one class
avoids duplicated code.

• Extract Method: there two or more code fragment in different classes that
can be grouped together.

• Replace Method: allows to find code repetitions similar to the selected
method and replace them with calls to the method.

To evaluate the impact of refactoring on the quality metrics of the analysed
system we organized our work in the following steps:

• we evaluated the 8 metrics on the analyzed systems before any refactoring;

• we chose which classes and methods to refactor by observing the results
provided by the three described tools for clone detection;

13http://plugins.intellij.net/plugin/?id=93
14http://www.jetbrains.com/idea

9

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

16,00%

1.10.2 1.11.1 2.0.0 2.0.6 2.0.9

O
cc

u
rr

e
n

ce
s/

LO
C

Version

PMD Bauhaus Google code pro

Figure 4: GanttProject occurr./LOC comparison

• we computed again all the metrics values after applying the refactoring;

• we evaluated the impact of refactoring by comparing the values of the
metrics before and after the refactoring.

4.1 Ant Refactoring
The metric values shown in Table 11 refer to the optional package of Ant 1.8.2.
The package is composed of 340 classes. The values for the metrics at class level,
instead are shown in Table 12. A minus sign (−) means a negative impact on
the metric value, and a plus sign (+) a positive impact; an equal sign (=) means
that the value did not change. For example, if the complexity decreases, this
represents a positive impact, and hence we have a plus sign (+) for CC or WMC
metrics.

We can observe that refactoring operations reduced the lines of code. In
fact, as we can see in Table 11 the LOC value decreased by 0.38%. The num-
ber of methods instead decreases only if the refactoring operations delete more
methods than the created ones: the Extract Method refactor technique creates a
method, while the Replace Method technique deletes a method. In this case the
NOM value decreased by 0.65%. This result is justified by the fact that, in most
cases, the refactoring consisted in extracting classes and methods to be used by
multiple clients; this is also the reason why also the CF value decreased. The
CC metric value decreased by 0.65%; in fact, the decomposition of functions,
realized by the refactoring technique Replace Method, is a well known method
for reducing the Cyclomatic Complexity. Refactoring duplicated code improves
also the stability of the project and the value of abstractness: the DMS value

10

Table 10: Metrics
Metric Description Level

LOC Line Of Code Package
NOM Number Of Methods Package
CC Cyclomatic Complexity Package
CF Coupling Factor Package
DMS Distance from the main sequence Package
WMC Weighted method complexity Class
LCOM Lack of cohesion in methods Class
RFC Response for a Class Class

Table 11: Impact of refactoring at package level
Version LOC NOM CC CF DMS

Ant 1.8.2
+0.38% +0.65% +0.65% +0.14% +25%

GanttProject 2.0.9
+0.25% = +0.18% = −3,84%

decreased by 25%. The results in Table 12 show that the metric values of the
refactored classes improved considerably. Through the Extract Method and the
Replace Method refactorings, the WMC value decreased significantly. RFC de-
creased with WMC, because it is well known that a correlation exists between
the two metrics. LCOM value decreased because, with respect to the initial
state of the system, the application of the Replace Method refactoring resulted
in fewer methods accessing the same attributes of the refactored class. Extract
Method and Extract Class techniques influenced positively LCOM: it is well
known that these techniques improve cohesion between methods and classes [4].

4.2 GanttProject refactoring
The metric values shown in Table 11 refer to the ganttproject package of
GanttProject 2.0.9. The considered package is composed of 983 classes. The
metric values at class level are shown in Table 12.

The values of the metrics at the package level have not undergone many
changes. The reason is that the occurrences of duplicated code in GanttProject
are, in many cases, not refactorable. Some instances of duplicate code, as getter
and setter methods, cannot be refactored. These observations are supported
by the fact that the average size of occurrences of Ant is higher than that of
GanttProject. In fact, Bauhaus reports that the average size of occurrences in
the version 1.8.2 of Ant is 81.4 lines, and in the version 2.0.9 of GanttProject is
62.5 lines.

The number of methods remained unchanged because we used the same
number of times Extract Method as Replace Method and Extract Class. In fact,
Extract Class and Replace Method eliminate methods, while Extract Method
adds them.

11

Table 12: Impact of refactoring at class level
Version LCOM WMC RFC

Ant 1.8.2 +32.3% +8.41% +1.78%
GanttProject 2.0.9 +6.32% +1.34% +14.06%

In Table 12 we see that the value of RFC changed a lot. The reason is
that the consequence of reducing the code complexity by deleting classes and
methods is that the number of external calls has been reduced. Furthermore,
the new methods do not introduce complexity because they are composed by
existing code. The values of the class metrics changed more than the package
ones, because many of the refactored classes are small; so they have a small
impact on the package. GanttProject is composed by many small classes, some
of which are highly coupled and contain duplicated code.

Considerations on the results Looking at the data collected so far, we
can make some observations. The results suggest that there is a correlation
between the size of an occurrence of duplicated code and the chances that this
occurrence can be refactored. Looking at the Bauhaus results in Table 4 and
Table 8 we can see that in Ant 1.8.2 the average size of an occurrence is 81.4
lines, instead in GanttProject 2.0.9 the average size of an occurrence is 62.5
lines. A direct consequence of these results is that refactoring in Ant was much
more significant and this is evident by observing the results in Table 11 and
Table 12. It is also clear that not every single occurrence can be refactored; in
fact, many of them are too complex or simply not refactorable. For example,
many instances of duplicated code are portion of cycles or conditionals that
whose extraction is not convenient. Another example of hard-to-refactor clone
is when two classes in two different packages have a similar method; in this case
the Extract Class technique may cause more problems than it solves. A good
way to reduce the number of false positives during clones search is to increase
the number of tokens. We already observed that metrics at class level changed
more that the ones at package level. The metrics confirm the intuitive conjecture
that refactoring is useful to improve the quality of a specific class, in particular
if this class is complex and highly coupled with other classes, but working a lot
on simpler classes does not improve project quality significantly.

We used the most known and verified refactoring techniques, but it is possible
we did not removed every occurrence that could be corrected; in any case, we
refactored most of the found occurrences.

4.3 Not refactorable clones
As we said before, not all clones found by the tools are refactorable. When
a clone is of type I and II it is simple to remove; in most cases using extract
method is the right solution. When instead two clones are similar, but with
some different statements, maybe these two pieces of code perform different
tasks; in this case, if it is possible, we can extract the common part and create
a new method.

12

An example of refactoring (Extract Method) that is not possible is when
two clones, assumed identical by the tool, belong to two different classes and
packages and use class parameters. In the code fragment reported below we see
an identical clone found in classes CustomColumnsPanel and GanttTreeTable,
which are in different packages.

. undoableEdit ("PopUpNewColumn" ,
new Runnable () {public void run () {

CustomColumn customColumn
= new CustomColumn () ;

GanttDialogCustomColumn d
= new GanttDialogCustomColumn (

myUIfacade , customColumn) ;
d . s e tV i s i b l e (true) ;
i f (d . isOk ()) {

In cases like this, refactoring brings more disadvantages than advantages,
so it is convenient not to modify the code. Extracting classes that have to be
shared among packages increases dependencies between packages and do not
decrease significantly LOC in the case in which there are only few duplicated
lines.

Here we present an other example of clones. This first piece of code is from
ProjectSettingsPanel.java:

JButton bWeb=new TestGanttRol loverButton (
new ImageIcon (ge tC la s s () . getResource (
"/ i c on s /web_16 . g i f "))) ;

bWeb. setToolTipText (GanttProject . getToolTip (
language . getText ("openWebLink"))) ;

bWeb. addAct ionListener (new Act ionL i s t ene r () {
public void act ionPerformed (ActionEvent e) {

This second piece of code is similar, but with some differences; it is from
GanttTaskPropertiesBean.java:

JButton bdate = new TestGanttRol loverButton (
new ImageIcon (ge tC la s s () . getResource (
"/ i c on s / clock_16 . g i f "))) ;

bdate . setToolTipText (GanttProject . getToolTip (
language . getText ("putDate"))) ;

bdate . addAct ionLis tener (new Act ionL i s t ene r () {
public void act ionPerformed (ActionEvent evt) {

It is not convenient to refactor these couple of clones because they use private
class parameters and only few characteristics are similar. So creating a new
service method to execute only these few simple line of codes is not worth the
effort and can introduce new problems.

Concluding this section we can say that to reduce these false positive is better
to look for larger occurrences, e.g., increasing the number of tokens in PMD and
Bauhaus. CodePro instead, does not allow to set the size of occurrences.

13

4.3.1 Threats to validity

Related to the threats to validity for the tools of clone detection, we choose tools
we know and used several times and as we observed a comparison is diffcult as
the validation of their results. We check for the existence of the clones we
detected and on which we applied the refactoring steps. The number of tools
considered is not high, but the three tools use quite different algorithms and
search criteria, so we think that a preliminary comparison, in particular when
they get similar results, is significant. Related to the refactoring validity we use
the most known and verified techniques, as extract method, replace method and
extract class.

Related to the consideration on results, we performed our analysis individu-
ally and later we compare and discuss them in order to consider only the most
consolidated results.

5 Conclusions and Future Developments
In this paper we described our experience on clone detection through three
different tools and analyzing five version of two opens source systems.

The tools exploit different detection techniques and hence provide different
results, and comparing these results is not an easy task because of the different
sizes of the reported occurrences and the different clone types. For example,
there is a general tendency to keep the percentage of duplicated code stable
among releases of the same project, but this is not confirmed by all the tools
(Bauhaus outcomes are less stable than the others).

We also manually removed, by refactoring, the duplicated code occurrences
in every case that we found possible and reasonable, without directly introducing
bad design practices. The analysis of a set of quality metrics before and after the
refactoring gave confirmation on the fact that removing duplicated code leads
to an improvement in most cases, and that it should be focused on the more
complex and larger classes. In particular, we observed an improvement on the
stability of the system (25% of DMS for Ant), an improvement in the cohesion
(32% of LCOM for Ant), a decrement in coupling (14% RFC for GanttProject),
a decrement in complexity (8% WMC for Ant) and obviously a reduction in
the LOC. Moreover, we observed that the metrics at class level improve more
than those at package level, hence refactoring is useful to improve the quality
of specific classes.

In future work, we would like to investigate if the refactoring of clones can
lead to the removal or introduction of new code smells. Hence the plan is
to detect several other smells on the system we have analysed in this paper
and check their presence before and after the refactoring of the clones. We
are interested also in analyzing the impact on software quality by considering
different refactoring choices.

References
[1] F. Arcelli Fontana, P. Braione, and M. Zanoni. Automatic detection of bad

smells in code: An experimental assessment. Journal of Object Technology,
11(2):5:1–38, aug 2012.

14

[2] F. Arcelli Fontana and S. Spinelli. Impact of refactoring on quality code
evaluation. In Proceedings of the 4th Workshop on Refactoring Tools (WRT
’11), pages 37–40, New York, NY, USA, 2011. ACM.

[3] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection
using abstract syntax trees. In Proceedings of the International Confer-
ence on Software Maintenance, pages 368–377. IEEE Computer Society,
November 1998.

[4] B. Du Bois, S. Demeyer, and J. Verelst. Refactoring - improving cou-
pling and cohesion of existing code. In Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE 2004), pages 144–151. IEEE
Computer Society, November 2004.

[5] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co. Inc., Boston, MA, USA, 1999. http:
//www.refactoring.com/.

[6] C. Kapser and M. W. Godfrey. "cloning considered harmful" considered
harmful. In Proceedings of the 13th Working Conference on Reverse Engi-
neering (WCRE ’06), pages 19–28, October 2006.

[7] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249–260, March
1987.

[8] R. Koschke. Survey of research on software clones. In Duplication, Re-
dundancy, and Similarity in Software, number 06301 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2007.

[9] C. K. Roy and J. R. Cordy. A survey on software clone detection re-
search. Technical Report 2007-541, School of Computing, Queen’s Univer-
sity, Kingston, Ontario, Canada, September 2007.

[10] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Science
of Computer Programming, 74(7):470–495, 2009. Special Issue on Program
Comprehension (ICPC 2008).

15

