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Abstract 

The importance of the genetic factor in the aetiology of premature ovarian failure (POF) is 

emphasized by the high percentage of familial cases and X chromosome abnormalities 

account for 10% of chromosomal aberrations. In this study, we report the detailed analysis of 

4 chromosomal abnormalities involving the X chromosome and associated with POF that 

were detected during a screening of 269 affected women. Conventional and molecular 

cytogenetics were valuable tools for locating the breakpoint regions and thus the following 

karyotypes were defined: 46,X,der(X)t(X;19)(q21.1;q13.42)mat, 

46,X,t(X;2)(q21.33;q14.3)dn, 46,X,der(X)t(X;Y)(q26.2;q11.223)mat and 

46,X,t(X;13)(q13.3;q31)dn. A bioinformatic analysis of the breakpoint regions identified 

putative candidate genes for ovarian failure near the breakpoint regions on the X 

chromosome or on autosomes that were involved in the translocation event. HS6ST1, 

HS6ST2 and MATER genes were identified and their functions and a literature review 

revealed an interesting connection to the POF phenotype. Moreover, the 19q13.32 locus is 

associated with the age of onset of the natural menopause. These results support the position 

effect of the breakpoint on flanking genes, and cytogenetic techniques, in combination with 

bioinformatic analysis, may help to improve what is known about this puzzling disorder and 

its diagnostic potential. 
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Background 

Female infertility is an important health and social disorder and one of its causes is premature 

ovarian failure (POF, OMIM 311360) which is becoming an increasingly appealing research 

subject due to its high incidence rate and the absence of an effective treatment [1]. POF is 

defined as an early ovarian dysfunction characterized by amenorrhea and elevated 

gonadotropin serum levels before the age of 40 [2]. The median age of natural menopause is 

around 50, but 9.7% of women experience menopause before 45 (early menopause) and 1.9% 

under 40 years of age [3]. 

The pathogenetic mechanisms leading to POF are complex and heterogeneous; the causes 

may be genetic, autoimmune, infectious or iatrogenic, but a large proportion of POF cases 

still remain idiopathic [4-6]. Chromosomal defects are frequently associated with POF, 

especially aberrations involving the X chromosome that account for 5-10% of cases [1,7,8], 

including numerical and structural abnormalities such as deletions, inversion and X;autosome 

translocations [9,10]. The cytogenetic and molecular investigations of these abnormalities 

allowed the identification of two critical regions on the long arm of the X chromosome, at 

Xq13-q21 and Xq26-27 [11-14]. Candidate genes were identified in the breakpoint regions of 

the X chromosome, but the actual genetic determinants still remain unknown because these 

hypothetical candidates need to be confirmed by further investigations [15]. However, the 

mechanisms that underlie POF’s aetiology might be due to factors other than gene 

interruption. Indeed, the disruption of critical gene-poor regions might influence the 

expression of flanking genes [16], or X chromosome translocations might activate the meiotic 

checkpoint during ovarian follicle maturation due to mispairing [14,17]. 

In this study, we performed a detailed cytogenetic analysis of 4 chromosomal abnormalities 

involving the X chromosome and associated with POF that were detected during a screening 

of 269 affected women [8,18,19]. We identified two de novo balanced translocations and two 

unbalanced, maternally inherited, translocations. Molecular cytogenetic techniques in 

combination with bioinformatic analysis made it possible to define the breakpoint region of 

each cytogenetic abnormality and to search for candidate genes involved in the pathogenesis 

of POF. 

Results 

Banding cytogenetics 

Banding cytogenetic techniques, such as QFQ (Q-bands by Fluorescence using Quinacrin), 

GTG (Giemsa-Trypsin-Giemsa) and RHG (R-bands by heating using Giemsa) banding, 

showed the presence of abnormal karyotypes in 4 patients and allowed the chromosomal 

aberrations to be approximately defined (Figure 1). Chromosome analysis revealed 

46,X,der(X)t(X;19)(p21;q13) in case 1, 46,X,t(X;2)(q21;q14) in case 2; 

46,X,der(X)t(X;Y)(q25-26;q11.22) in case 3 and 46,X,t(X;13)(q13.3;q31) in case 4. In case 3 

the q arm telomeric region of the derivative chromosome was identified as DA/DAPI 

(Distamicin A/4',6-diamidino-2-phenylindole) positive (data not shown). Cases 1 and 3 

showed maternal inherited chromosomal aberrations. In particular, the mother of case 1 had 

an X;19 balanced translocation and the sister’s karyotype was the same as the proband. Both 

were able to conceive, the mother experienced menopause at 39 years of age and the sister 

had a normal ovarian cycle at the time of diagnosis (Figure 1C). The karyotype of the mother 



of case 3 revealed the same karyotype as her daughter and she experienced menopause at 40 

years of age, a borderline case between POF and early menopause (Figure 1D). 

Figure 1 Conventional cytogenetics. Partial karyotype of cases 1–4 through QFQ, GTG or 

RHG banding. B. RBA banding allowed the identification of the late replicating derivative X 

chromosome in cases 1 and 3 (arrows). C. Family pedigree of case 1. D. Family pedigree of 

case 3 

The X inactivation pattern was analysed by means of RBA (Reverse-bands with acridine 

orange staining) banding for cases 1 and 3 as, in these cases, a derivative chromosome was 

identified (Figure 1B). In case 1 the derivative X chromosome was late replicating, and so 

was inactivated, but der(X) resulted completely inactivated in 73% of metaphases, while 27% 

showed an incomplete and discontinuous inactivation of autosomal material. Case 3 showed a 

complete late replication of the derivative X chromosome in 100% of the metaphases. 

Molecular cytogenetics and breakpoint mapping 

As each chromosomal abnormality is unique, the methodologies used were selected based on 

case-specific requirements. In order to further characterize the chromosomal abnormalities 

several FISH (Fluorescence in situ hybridization) experiments were assessed by means of 

different probes corresponding to specific telomeric sequences and partial or whole 

chromosome libraries (Figure 2). Several FISH experiments using a panel of BAC (bacterial 

artificial chromosome) and PAC (P1 derived artificial chromosome) probes were carried out 

in order to determine the exact localization of each chromosomal breakpoint. All the probes 

used to identify the breakpoints and the results of each hybridization signal are listed in 

Additional file 1: Table S1. In case 1 the FISH analysis using a wcp19 (whole chromosome 

painting) probe revealed a derivative chromosome with chromosome 19 material at the 

telomere of the derivative chromosome q arm (Figure 2A). The breakpoint on chromosome X 

was localized at Xp21.1 between the RP13-172P16 and RP11-87M18 probes (Figure 2B). 

Furthermore, the breakpoint on chromosome 19 was mapped at 19q13.42, between RP11-

174J9 and CTD-2594I19. A dual colour FISH of case 2, using wcpX and wcp2 probes, 

confirmed the banding cytogenetic results and revealed an apparently balanced translocation 

between the long arm of chromosome X and chromosome 2 (Figure 2C). The case 2 

breakpoint on the X chromosome was located at Xp21.33 as the RP11-390F10 probe showed 

the presence of hybridization signals on both the derivative chromosomes (Figure 2D). The 

RP11-150O15 probe defined the breakpoint on chromosome 2 for the same reason. In case 3 

the DXZ1 and DYZ1 probes allowed the identification of a derivative X chromosome with 

the presence of Y heterochromatic regions at the telomere of the q arm (Figure 2E). The 

breakpoint on chromosome X of case 3 was identified by means of a single nucleotide 

polymorphism (SNP) array analysis (Figure 2F). The association of a loss of heterozygosity 

(LOH) and a copy number change score of 0.8-1.7 allowed the identification of the 

breakpoint at Xq26.2, specifically between rs5977559 and rs202735. No other alterations in 

copy number changes were found in the genome-wide analysis. In order to map the 

breakpoint on the Y chromosome, we analysed the amplification of microsatellite 

polymorphic markers included in the Y Chromosome Azoospermia Factor (AZF) Analysis 

System (Promega, Madison, WI, USA) [Additional file 2]. This analysis allowed the 

breakpoint to be mapped specifically at Y11.223, between DY5379 and DYF51S1 markers. 

Case 4 karyotype was characterized by a translocation that occurred between chromosome X 

and chromosome 13: this hypothesis was confirmed by a FISH analysis using wcpX and 

13qtel probes (Figure 2G and 2F). An array comparative genomic hybridization (aCGH) 



analysis was performed to check whether the translocation was balanced and to reveal any 

additional alterations. Unfortunately for us, the aCGH data were not informative enough for 

the breakpoint to be determined as the chromosomal alteration was confirmed as a balanced 

translocation between chromosome X and chromosome 13. However, cryptic deletions and 

duplications due to the translocation event were excluded. The aCGH analysis showed 22 

copy number variations (CNVs): 14 losses and 8 gains. The CNVs ranged in size from 12Kb 

to 1270Kb and 16 of them contained known genes [details in Additional file 3: Table S3]. All 

the observed CNVs overlapped with previously described CNVs: some of them are described 

as polymorphic on the Database of Genomic Variants [20], others are included in an Italian 

Database of Human CNVs collected in patients with mental retardation [21] and in none of 

our patients was any mental retardation noticed. The results of each specific chromosomal 

aberration, the breakpoint position and the related karyotype are summarized in Figure 3. 

Figure 2 Molecular cytogenetic analysis. Case 1. A. FISH analysis by means of wcp19 

showing 2 normal chromosomes 19 and one derivative chromosome positive for wcp19 probe 

signal. B. FISH using RP11-87 M18 (Xp21.1) and DXZ1 probes showing hybridization 

signals both on normal and derivative X chromosomes. Case 2. C. Dual colour FISH with 

wcpX (red) and wcp2 (green) probe showing a X;2 translocation. D. FISH using DXZ1 and 

RP11-150O15 probe, which is present on both derivative chromosomes and on the normal 

chromosome 2. Case 3. E. Dual colour FISH by means of DXZ1 (green) and DYZ1 (red) that 

identify the heterochromatic Y region on the derivative X chromosome. F. SNP analysis 

localized the breakpoint region in Xq26.2, identified as a monosomy trait from 

Xq26.2→Xqtel. Case 4. G. wcpX probe shows the presence of a translocation between 

chromosome X and chromosome 13. H. 13qtel probe displays hybridization signals on 

normal chromosome 13 and on derivative X chromosome 

Figure 3 Breakpoint definitions. Ideograms showing each specific chromosomal aberration 

found in cases 1–4 and breakpoint localization 

Bioinformatic analysis 

A bioinformatic analysis was performed in order to identify possible candidate genes for the 

POF phenotype. The investigation was performed 1 Mb upstream and downstream from each 

specific breakpoint, consulting the UCSC Genome Browser [22] and NCBI database [23]. 

Candidate genes were selected depending on their function, tissue expression and related 

scientific literature. In case 1 only an open reading frame (cXorf30) and a pseudogene 

(RPS15AP40) were found in the breakpoint region on chromosome X and no proper genes 

were detected in the flanking regions. On chromosome 19 the breakpoint fell in 19q13.42. 

This region, in or near the BRSK gene (+9.8 Kb), has been mapped as being possibly 

associated with the age at natural menopause [24-26]. Moreover, another interesting gene, 

MATER (Maternal Antigen that Embryos Require), was found in the trisomic region of 

chromosome 19 (19q13.42→19qtel). MATER expression was restricted to the oocyte and its 

activity is essential for early embryonic development [27,28]. In case 2 the breakpoint on X 

chromosome fell near the DIAPH2 gene (−680Kb). On chromosome 2 the HS6ST1 gene was 

considered for this analysis. In case 3, in the breakpoint on chromosome X, no genes were 

found, but the HS6ST2 gene was localized 720Kb downstream. The definition of the Case 4 

breakpoint did not help in the identification of candidate genes, suggesting that different 

mechanisms underlie POF aetiology. 



Discussions 

POF is a puzzling disorder as its aetiology is very heterogeneous and most cases are still 

idiopathic. However, the incidence of familial cases among POF patients is estimated to 

exceed 30% [29,30], suggesting a genetic basis for some cases of idiopathic POF. In 

particular, the association between POF and X chromosome abnormalities has been 

extensively described [4]. Chromosomal anomalies occur in 8.8-33% of women with POF 

[31] and 10-15% of cases are X chromosome abnormalities, such as numerical and structural 

aberrations (deletions, inversions and X;autosome translocations) [1,7,8]. This study 

characterizes the chromosomal abnormalities identified in four patients affected by POF and 

included in a cohort of 269 patients [8,18,19]. Specifically, we identified 4 chromosomal 

abnormalities involving the X chromosome with 4 different breakpoint localizations: two de 

novo balanced translocations 46,X,t(X;2)(q21.33;q14.3) in case 2 and 

46,X,t(X;13)(q13.3;q31) in case 4 and two maternal inherited unbalanced translocations, 

46,X,der(X)t(X;19)(q21.1;q13.42) in case 1 and 46,X,der(X)t(X;Y)(q26.2)(q11.223) in case 

3. This genetic heterogeneity highlights both the importance of the X chromosome in POF 

aetiology and the complexity of the POF disorder. However, it is not possible to exclude the 

involvement of autosomal genes in the onset of ovarian insufficiency as some genes located 

on autosomes have been associated with the POF phenotype, for example INHA, FSHR and 

FOXL2 [32-34]. Theoretically, fertility impairment in patients with chromosomal 

abnormalities might be explained in various ways. First of all, chromosomal anomalies might 

disrupt a gene that is important for gonadal function [14]; alternatively the breakpoint may 

fall in gene-poor regions and, in this case, the translocation might induce a long-range 

position effect in the expression of genes flanking the breakpoint, suggesting an epigenetic 

control [16,35]. Moreover, structural rearrangements involving the X chromosome may 

disrupt the normal pairing at meiosis, leading to meiotic arrest [17]. However, the pattern of 

chromosomal aberrations is still not clearly comprehensible: chromosomal alterations with 

breakpoints spanning on chromosome X have also been identified in females with normal 

ovarian function [16,36]. 

In case 1 the bioinformatic analysis of genes in the breakpoint region on chromosome X did 

not identify any candidate gene. However, haploinsufficiency for the ZFX gene (X-linked 

zinc finger protein at Xp21.2) may be an important factor as it has been identified as a 

candidate gene for ovarian failure [36,37]. The gene content analysis on chromosome 19 

raised some interesting points for discussion. Firstly, the breakpoint fell in 19q13.42 and this 

locus has been mapped as being associated with the age of natural menopause by two 

independent research groups through genome-wide association studies using SNP analysis 

[24,26]. In case 1 the breakpoint fell near the BRSK1 gene that might influence the secretion 

of gonadotropin releasing hormone (GnRH) affecting the menstrual cycle since it is highly 

expressed in the human brain and is associated with vescicle transport and release at the 

axonal terminals [24]. Additionally, case 1 might experience partial trisomy for the additional 

material of chromosome 19 (19q13.42 →19qter) on the derivative X chromosome due to 

incomplete inactivation of the derivative chromosome [38,39]. Also the MATER gene 

(Maternal Antigen that Embryos Require) was mapped at 19q13.43 and it is a maternal 

oocyte protein essential for early embryonic development in mice and an autoantigen 

associated with autoimmune oophoritis, a mouse model of autoimmune POF [27]. The 

MATER was identified as a causative gene in a POF patient with a psudic(1;19)(q10;q13.42) 

by Northup and coworkers [40]. Moreover, the Mater gene in mice is specifically transcribed 

in oocytes [28] and human and mouse MATER genes are conserved and share several 

structural similarities. Although the exact mechanism of action of the MATER gene product 



is still unknown, knockout mice show female infertility [27] and so a change in gene dosage 

(in this case trisomy) might influence fertility [40]. Considering that we have described the 

second patient as having a chromosomal aberration that involves a putative role for MATER, 

this gene may be a real candidate in POF aetiology and further investigations may be helpful. 

Two isoforms of HS6ST gene were identified in 2 chromosomal breakpoints in our patients: 

HS6ST1 gene at 2q21 (−216Kb) in case 2 and HS6ST2 gene at Xq26.2 (+720Kb) in case 3. 

HS6ST1 and HS6ST2 are members of the heparan sulfate sulfotransferase gene family that 

catalyse the transfer of sulfate to heparan sulfate. Heparan sulfate proteoglicans are 

ubiquitously expressed on the cell surface and interact with various ligands influencing cell 

growth, differentiation, adhesion and migration [41]. In 2000 Davison and Conway identified 

HS6ST as a possible candidate gene for POF aetiology by analyzing the breakpoint on the X 

chromosome in a family with POF [42]. HS6ST2 in particular is expressed preferentially in 

the ovary [43] and it might influence oocyte development by inhibiting a proper interaction 

with follicular growth factors [42]. Moreover, HS6ST1 gene mutations have recently been 

associated with idiopathic hypogonadotrophic hypogonadism [44], thereby increasing the 

evidence for a possible role of these two isoforms in gonadal fertility. Taking into account 

that HS6ST2 was identified as a putative gene responsible for POF phenotype in a family by 

Davison and co-workers [42], and that we identified the possible involvement of both 

isoforms in two more cases, the suggestion that this gene family may play a role in POF 

aetiology is reasonable and should indeed be further investigated. 

Additionally, in case 2 the breakpoint fell in Xq21.33, near the DIAPH2 gene (−680Kb), a 

well-known gene in POF aetiology [45]. The breakpoint was quite distant, but it was not 

possible to exclude the disruption of some regulatory element in cis, or a long-range effect, 

that would influence gene expression [16]. 

The case 3 karyotype revealed the breakpoint as being located at Xq13.3 in the POF2 critical 

region [14,16], but no candidate genes were identified. However, the mechanism underlying 

the POF phenotype could be due to a direct effect of the chromosomal rearrangement itself 

without the involvement of specific genes, suggesting a sort of epigenetic control of gene-

poor critical regions in patients with X chromosome aberrations [35,46]. 

The X chromosome inactivation (XCI) pattern is another important feature in unbalanced 

translocations involving X chromosome. In case 3 RBA banding revealed the complete and 

preferential inactivation of der(X), whereas in case 1 73% of metaphases showed a complete 

inactivation of derivative X chromosome, but 27% of metaphases evidenced an incomplete 

and discontinuous inactivation of autosomal material, leading to a mosaic for a partial 

trisomy of chromosome 19 [39]. Furthermore, 15% of genes on the X chromosome escape X 

inactivation [47] and so the translocation might have caused an improper inactivation of 

derivative X chromosome and haploinsufficiency of genes involved in ovarian function 

[19,38]. In case 3 the presence of Y heterochromatic regions may affect the inactivation of 

der(X) [1,48]. Considering the breakpoint localizations, the XIST (X inactivation-specific 

transcript) region (Xq13.2) is located on the specific derivative X chromosome of each case. 

Cases 2 and 4 are balanced translocations and the patients showed no phenotypic abnormality 

except for ovarian disfunction. Thus, we may assume that XCI in these two cases was 

skewed, with the derivative X chromosome typically remaining active and the normal X 

chromosome being inactivated [49]. Indeed, atypical XCI would result in monosomy of 

autosomal genes, probably leading to a more severe phenotype [50,51]. 



Cases 1 and 3 are both maternal inherited translocations but the respective mothers 

experienced menopause at a later age than the daughters. The difference in the age of onset 

could have several causes. Different X inactivation patterns may influence the age of 

menopause onset [13,19,52], but also the effect of the genetic background, such as 

predisposing polymorphisms in the affected individuals, plays a crucial role. In these cases, 

identical aberrations might cause no apparent symptoms in mothers but severe clinical 

presentations in the offspring [53-55]. In addition, environmental factors influence the 

phenotype and, consequently, also the age of menopause onset [56]. 

aCGH was performed on case 4 and the data analysis revealed no major chromosomal 

alterations. All the observed CNVs overlapped with described polymorphic CNVs. The 

comparison with the literature data [49,57-59] showed 2 CNVs significantly associated with 

the POF phenotype that overlapped with 2 CNVs found in the case 4 molecular karyotype: 

Xq13.3 [58] and 14q32.33 [59]. However, in our patient these overlapping CNVs were 

smaller and did not include genes. Moreover, 3 other CNVs described by Aboura and co-

workers overlapped with the case 4 CNVs, but these variants were described as not 

statistically significant compared to CNVs in control populations: 1p36.13, 8p23.1 and 

15q11.2 [59]. Although a partial overlapping was found, further studies are required to asses 

whether there really is an association between these CNVs and the POF phenotype. 

Conclusions 

This study confirms the importance of the X chromosome in POF aetiology, but also 

highlights the complexity of this disorder since different cytogenetic abnormalities lead to the 

same phenotype. The identification of genes probably involved in ovarian development in the 

regions flanking the breakpoints supports the hypothesis that the position effect is one of the 

main mechanisms contributing to the POF phenotype. Detailed cytogenetic definitions of new 

cases of POF will be instrumental in acquiring further knowledge and in identifying all the 

genetic determinants involved in the POF aetiology. The link between cytogenetic 

investigation and bioinformatic analysis may be useful for identifying those putative genes 

most likely to be involved in ovarian insufficiency. 

Methods 

Clinical population 

The cohort investigated in this study has been described previously [8]. Inclusion criteria 

were the cessation of menses for a period of 6 months or longer before or at the age of 40 and 

FSH (follicle-stimulating hormone) levels ≥ of 40 IU/l, detected on two different occasions. 

All of the patients underwent a complete clinical assessment in order to exclude any of the 

known POF related conditions (i.e. ovarian surgery, autoimmune diseases, Turnerian 

phenotype). All patients gave their informed consent prior to their inclusion in the study. In 

this study, we decided to investigate the role of the X chromosome in POF aetiology and, 

specifically, we characterized the localization of the breakpoint regions in four cases of 

translocation involving the X chromosome. The age of POF onset was 36 years in case 1, 20 

years in case 2, 27 years in case 3 and 22 years in case 4. 



Cell lines 

Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines were provided by the 

Galliera Genetic Bank, Galliera Hospital (Genoa, Italy). Lymphoblastoid cell lines were 

grown in RPMI 1640 (Euroclone S.p.A., Milan, Italy) supplemented with 10% foetal bovine 

serum (PBI International, Milan, Italy) and L-glutamine 2 mM (Euroclone S.p.A., Milan, 

Italy). Metaphase chromosomes were prepared as previously described [18]. 

Banding cytogenetics 

Metaphase-chromosome spreads were obtained from phytohaemagglutinin-stimulated 

peripheral blood lymphocytes. QFQ, GTG, RHG, RBA banding and DA/DAPI staining were 

performed using standard protocols. At least 20 metaphases were analysed for each sample 

and a further 50 cells were assessed to exclude sex chromosome mosaicism. The karyotype 

was expressed following the guidelines of the International System for Chromosome 

Nomenclature 2009 (ISCN 2009) [60]. 

FISH analysis 

Fluorescence in situ hybridization was carried out using various commercial probes: wcpX, 

13qtel (Vysis, Abbott Molecular, Abbott Park, Illinois, U.S.A.), wcp2, wcp19, DXZ1 and 

DYZ1 (ONCOR, Gaithersburg, MD, USA). Every experiment was performed according to 

the manufacturer's instructions. To define the breakpoint regions, probes were selected by 

consulting the UCSC Genome Browser [22] and NCBI [23]. Bacterial artificial chromosome 

(BAC) and P1 derived artificial chromosome (PAC) probes were provided by the Wellcome 

Trust Sanger Institute, UK, and from Prof. M. Rocchi, University of Bari, Italy and are 

summarized in Additional file 1: Table S1. FISH was performed as described previously [18]. 

Briefly, probes were labelled by nick translation using digoxigenin(DIG)-11-dUTP (Roche 

Diagnostics, Indianapolis, IN, USA). Probes were hybridized to metaphase chromosomes 

overnight and then washed. Detection of digoxigenin probes was obtained by means of 1 

μg/ml anti-DIG Rodaminate antibodies (Roche Diagnostics, Indianapolis, IN, USA). 

Chromosomes were counterstained with DAPI (4',6-diamidino-2-phenylindole). A mean 

number of 10 metaphases were analysed for each FISH experiment, searching for the 

presence/absence of probe signals on normal and derivative chromosomes. All the images 

were taken through a Leica DM 5000B microscope (Leica Microsystems, Wetzlar, Germany) 

equipped with a Charge Coupled Device (CCD) camera and analysed by means of 

Chromowin software (Tesi Imaging Srl, Venezia, Italy). The breakpoint localization was 

determined by FISH analysis and the searching for putative candidate genes in or near the 

breakpoint region was performed using the most recent human reference sequence (NCBI 

Build 37.2). 

DNA extraction 

Genomic DNA was extracted from patients’ blood or from lymphoblastoid cell-line cultures 

using the Wizard Genomic DNA purification Kit from Promega according to manufacturer’s 

protocol and DNA concentration was determined by means of a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 



Microsatellite analysis 

The Y Chromosome AZF Analysis System (Promega, Madison, WI, USA) was used for an 

initial definition of the breakpoint region. Additional microsatellites located on the Y 

chromosome were used in order to better localize the breakpoint site [Additional file 2]. 

Microsatellite markers selected for this study showed more than 70% of heterozygosity and 

they were selected by consulting the UCSC Genome Browser [22]. 

Array CGH 

A CNV analysis was performed using the Agilent Human Genome CGH Microarray 244A 

kit (Agilent Technologies, Palo Alto, CA, USA) following the manufacturer’s instructions. 

Hybridization signals were analysed by means of Feature Extraction software (v10.5) and 

DNA Analytics software (v5.0, Agilent Technologies, Palo Alto, CA, USA). Aberration 

Detection Method 2 (ADM2) algorithm (threshold 5.0) was used to identify DNA copy 

number aberrations. We applied a filtering option of a minimum of 3 aberrant consecutive 

probes [61] and a minimum absolute average log 2 ratio of 0.30. UCSC human genome 

assembly hg18 was used as a reference and CNVs were identified with a database integrated 

into the Agilent Genomic Workbench analytic software. Log 2 ratios lower than −0.30 were 

classified as losses, those greater than 0.3 as gains. 

SNP analysis 

The SNP mapping assay was performed by Genopolis (University of Milan-Bicocca, Milan, 

Italy) using an Affymetrix 10 K SNP mapping array (Affymetrix, Santa Clara, CA, USA) and 

following the protocol recommended by the manufacturer. The array was scanned and the 

signal intensity was measured using GCOS (Gene Chip Operating System). Data were 

analysed using CNAG (Copy Number Analyser for GeneChip) software version 1.0, 

evaluating DNA copy number and LOH. 
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