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Diffusive mass transfer by nonequilibrium fluctuations: Fick’s law revisited

Doriano Brogioli
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia (INFM), Universieli Studi di Cagliari Strada Provinciale
Monserrato-Sestu km 0,7, 09042 Monserrato (CA), Italy

Alberto Vailati
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia (INFM), Universieli Studi di Milano,
via Celoria 16, 20133 Milano, Italy
(Received 19 May 2000; published 22 December 2000

Recent experimental and theoretical works have shown that giant fluctuations are present during diffusion in
liquid systems. We use linearized fluctuating hydrodynamics to calculate the net mass transfer due to these
nonequilibrium fluctuations. Remarkably, the mass flow turns out to coincide with the usual Fick's one. The
renormalization of the hydrodynamic equations allows us to quantify the gravitational modifications of the
diffusion coefficient induced by the gravitational stabilization of long wavelength fluctuations.
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Recent experiments have shown that giant nonequilibriunorder of magnitude as the phenomenological one. However,
concentration fluctuations are a universal feature of diffusiorthe introduction of an arbitrary length scale into the theory
in binary liquid mixtures and macromolecular solutionscan be avoided by a renormalization of the hydrodynamic
[1,2]. The presence of long-range correlations in a diffusingequations. The renormalization procedure allows us to quan-
liquid mixture is a surprising result, as diffusion is usually tify the modifications of the phenomenological diffusion co-
thought to give rise to a homogeneous mixing at the molecuefficient due to the gravitational stabilization of long wave-
lar level, other length scales playing no role in the processength fluctuations. - _
The results of these experiments have been interpreted b){) We will now derive the net contribution of the nonequi-
means of an extension of Landau’s fluctuating hydrodynam“ rium fluctluatlons.to the mass transfe.r. The sample consid-
ics [3] to time-dependent diffusion procesges. ered is a binary mixture of concentratiafx,t) under rest.

Linearized hydrodynamics shows that the fluctuations ard Né mixture is in a macroscopic nonequilibrium condition
generated by thermal velocity fluctuations, due to the presdue to the presence of a homogeneous and stationary con
ence of a macroscopic nonequilibrium concentration gradicentration gradienVc. A local fluctuation in the current of
ent. The mechanism is analogous to that first prediffe] =~ Mass can be written as the second order product
and then observel@—10| for stationary thermal diffusion in .

a binary liquid meigure.]Velocity fluct)L/Jations parallel to the A1 (x1)=pac(x,t)du(x.t), (1)

macroscopic gradient displace parcels of fluid into regiongynere sc(x,t) is the local concentration fluctuation and
with different concentration, thus giving rise to concentrat|on5u(x t) the local velocity fluctuation. Equatiofl) shows
fluctuations[11]. Since the fluctuations displace mass alongya¢ 5 current fluctuation takes place whenever a concentra-

the cpnq]?ntratl|on grﬁdlent, one m'th_V#O”,def if theyﬂcont”b'tion fluctuation and a velocity fluctuation occur simulta-
ute significantly to the macroscopic diffusive mass flow. poqq at the same place.

We will show that, quite unexpectedly, the net mass trans-  tha"net contribution of the fluctuations to the diffusive

fer due to_non.eq,uilibrium fluctuatior)s_ corresponds_ to.thecurrent is obtained by averaging over the configurations of
macroscopic Fick's mass flow. Traditionally, the diffusive

the system:
flow has been interpreted as due to the random hops of the y

molecules in the fluid. Here we show that Fick’s flow is due Ji(X,t)=p(Sc(x,t) su(x,1)). 2

to random hops of parcels of fluid whose dimensions span all

the length scales from the molecular up to the macroscopic At thermodynamic equilibrium fluctuations in the velocity
one. This is a surprising result, as usually thermal fluctuaand concentration are not correlated. Therefore, the probabil-
tions are thought of as small perturbations of a macroscopiity of a current fluctuation is small and with random sign,
state, while here we show that the macroscopic flow is deand the net flowj; averages to zero. Under nonequilibrium
termined by a second-order effect in the fluctuations. Theconditions, however, velocity fluctuations are correlated to
introduction of new degrees of freedom, the hydrodynamicconcentration fluctuationgt—6]. The presence of a macro-
fluctuations, determines an ultraviolet divergence of the difscopic concentration gradient determines the existence of
fusion coefficient, which we regularize by imposing a cutoff velocity-induced concentration fluctuations: a velocity fluc-
at large wave vectors. The regularization procedure involvetuation determines a small vortex inside the fluid and this
the introduction of an arbitrary length scale. By imposingbrings parcels of fluid with a certain concentration into layers
that the cutoff length scale is of the order of the correlationof fluid with a different concentration. On the contrary, the
length of the mixture, we find that the diffusion coefficient gravity force determines the opposite mechanism: whenever
displays the usual Stokes—Einstein form and is of the sama concentration fluctuation is produced, the buoyancy force
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tends to displace the fluctuation. Therefore, terms in the av- <Fi(q,w)Fj(Q',w')>
erage of Eq(2) are correlated and this determines a nonva- KT D ac
nishing mass flow; . -~ , el Do

We will shortly derive an explicit expression fg¢ by =0j0ara)dlote )Wj(ﬁ) L ®
determining the cross-correlation properties of concentration .
and velocity fluctuations in the presence of a macroscopic KgT
concentration gradient. This task can be accomplished by (Si(4,@)S;(q",@"))=6;8(q+q")d(w+w’) gz vp,
using Landau’s linearized hydrodynam{&. Basically, one (6)
writes down the relevant hydrodynamic equations for a bi-
nary mixture. The equations are then linearized for small (Fi(9,0)S;(q",@"))=0. (7)
fluctuations of the hydrodynamic variables around their mac- ) . )
roscopic values and random source terms are added to them. " Ref. [4] the linearized equations) were used to de-

The equations thus obtained for a binary mixture where &1V€ the static and dynamic structure factor of the fluctua-
uniform concentration gradient is present fdg tions. In the present work we will use them to derive the

mass flow.
5c(g,w)(iw+Dog?) =—6u(q,w)-Vec+ig-F(q,o), Let us briefly comment on E@3). The left terms specify
(3)  that concentration and velocity fluctuations decay with life-
su(q,w)(iw+vg?)=pBsc(q,w)[g—a(q-g/q?)] times 1Dyg? and 14q?, respectively. The right terms are
_ source terms for the fluctuations. Beyond the random cur-
+(i/p)q0s(q, @), rentsF(q,w) and S(g,w), they contain the cross coupling

between velocity and concentration fluctuations. The cross-
coupling term in the concentration equations shows that a
velocity fluctuationéu couples with the macroscopic con-
centration gradien¥c, thus giving rise to a concentration
fluctuation. The cross-coupling term in the velocity equation
S represents the acceleration acting on a concentration fluctua-
f gldxHlot 5o(x,t)dxdt, (4)  tion due to the buoyancy force. We have assumed that the
fluid is incompressible; therefore the acceleration acting on

where D, is the bare diffusion coefficient; the kinematic
viscosity, g the gravitational acceleratiolg=p~1(dp/dc),
andc(q,w) is the space-time Fourier transform for the con-
centration fluctuations defined by

5C(q1w): (271_)4

and an analogous expression holds for the velocity fluctuall® fluctuation is the component of gravity perpendicular to

the wave vectoq.

tions. S _ .
In Eq. (3) F(q,®) and S(q,®) represent random source The explicitation oféc and Su in Eq. (3) yields
currents for concentration fluctuations and velocity fluctua- i(io+vg?)q-F(q,w)—(i/p)q0S(q,w)- Ve

tions, respectively. As customary, their correlation propertieséc(q,w) =
are assumed to retain their equilibrium val(i£g], as a local

equilibrium assumption is known to adequately represent
them[13]: and

(io+Dog®)(io+vq?)+Blg—a(q-g/q?)] -V(g)

_ig-F(q.0)Blg—a(a-g/q*) ]+ (i/p)(iw+Dog?)q0S(q, )
(iw+Dog®)(iw+vq®)+Blg—q(q-g/q”)] - Ve
N (i/p)[Bliw+vg*{q0S(q,®)Ve-[g—a(g-¢/q*)]—q0S(g, ) - Ve[g—q(q-g/g®) 1}
(iw+Dog?)(iw+rg®) + Blg—a(d-g/g*)]- Vc

ou(q,w)

. 9

We are now in the position to evaluate the mass flow andS. In the evaluation of the integral of E¢LO) the con-
In the reciprocal space EQ) becomes tribution of the second term of E@9) vanishes. Due t¢7)
the only nonvanishing terms are those originated from self
correlations:

ji=p [ (90(0,0) 500" &) dadg dade’, (10
(dc(q,w)ou(q’,w"))=(sc(g,w)ou(q",0"))r
where an exponential factor gxfm+q’) -x+i(w+w’)t] .
has been omitted imposing=0 andt=0, as we are consid- +(oc(q,w)ou(q’,®"))s,
ering a homogeneous and stationary system. (11
The integrand in Eq(10) can be decomposed as the sum

of terms containing correlations of the random currefits where
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<5C(q1w)5u(q, 1w,)>F

=4+ d(eto’) 5

TD Jc

KgT Do i
(5 )
Mot

" 9*(iw+vq?)[g—a(g-a/q?)]
|(io+Dog?) (iw+vg?) + Blg—a(q-g/q?)]
(12

and

(6c(q,w)ou(q’,w"))s

KBTV
8mp

—6(g+q")d(wt+w’)

q*(iw+Dog?)[Ve—(Vec-a/g?)]
[(iw+Doa?)(iw+vg?)+Blg—a(q-g/q?)]- Vc|?
(13

The denominator of Eq$12) and(13) is an even function of
w; therefore, in the evaluation of the integral in Ef0) we
can neglect odd functions @ in the numerator.

By combining Egs.(10)—(13) and by assuming thai
=g/g=Vc/|Vc|, the current; due to nonequilibrium fluc-
tuations is finally determined:

' D Vc—8 (ac) (14)
Js=—pD¢g VC= Y| — )
au o.T
where
_KBTVDO
Df_ 87T4p
J q'(z—q(z-a/g?)]-2
|(iw+Dog?)(iw+vg®) +BgVe[2—q(z-a/g?)]- 2|2
X dqdw. (15

Remarkably, the flow; displays the customary dependence

of Fick’s flow on the driving forceVc and on the barodif-
fusion flow.

Equation(15) can be rewritten by factorizing its denomi-
nator as (°+ w2 )(w?+ w>) and by approximating the two
roots asw? =D3q*{1+[a/dro(9) 12— % ¥9)]-2}? and
w? =1?q*. Basically, this approximation holds true for
>D, a condition fulfilled by most binary liquid mixtures;
further details are discussed in Rpt):

J

KT
(2m)°pv

9’[2—q(z-q/9?)-2
q*+dro(9)[2—a(z-a/9?)]- 2

Df =
(16)

where
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4 /gBvce
Jro(9) = Do

is a roll-off wave vector due to the gravity ford®é]. As
thoroughly discussed in Rd#4], qro is defined as the wave
vector marking the transition from the diffusive relaxation of
fluctuations at large wave vectors to the gravitational stabi-
lization of fluctuations at smaller ones. At the roll-off wave
vector the diffusional and gravitational fluctuation relaxation
times coincide.

By introducing polar coordinates E(L6) becomes

(17

27 q*sin’(6)
w)ﬁpv dqj deJ e T Gro(0) ST (0)°
(18

D=

The integral ong is divergent. Therefore, we have regu-
larized it by introducing a brute-force cutoff at the arbitrary
wave vectorQ. The evaluation of the integrals im and q
yields

KgT T Or -
Q__ "B _ 27 ARO S
R gy 0017 o
o\ 4
(qRonme) sire 6. (19
By assuming thatiro(9)/Q<1, Eq.(19) becomes
D2(g)= 4 vl 2 Ke
(9)= WQ 2 2m% 2m25, dro(9)
+QO(dro(9)/Q)* (20
where
I=jwdasin7’20~l.248 599. (21)
0

In the absence of gravit§ro=0, and Eq.(20) becomes

(22)

where A =27/Q can be roughly assumed to be of the order
of correlation length of the fluid. It should be noticed that the
diffusion coefficientD; of Eq. (22) does not depend on the
bare mass diffusion coefficied®, which appeared in the
linearized fluctuating hydrodynamic equatiai® and (5).

Quite remarkably, Eq(22) exhibits the usual Stokes—
Einstein dependence on temperature, viscosity, and correla-
tion length, the proportionality factor being of the right order
of magnitude. This result, combined with Ed4), strongly
suggests that the mass transfer due to fluctuations and Fick's
mass flow can be identified. This is a striking result, as it
shows for the first time that the diffusive mass transfer is
entirely determined by nonequilibrium fluctuations occurring
at length scales ranging from the microscopic up to the mac-
roscopic one.
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Although it is physically reasonable to assume that wave In Eq. (27) the Q dependence has been eliminated by
vectors larger than a typical molecular one have no meanindetting Q—«, becauseDg does not diverge. The micro-
the imposition of a cutoff involves the introduction of an scopic details have been reabsorbed iidhe only experi-
arbitrary length scale, which in turn requires to introduce amental parameter needed by the theory in order to obtain the
microscopic model for the molecular interactions. This ne-alue of the diffusion coefficient in the presence of gravity.
cessity can be eliminated by a renormalization of the linear- Equation (27) shows that the diffusion coefficient is
ized hydrodynamic equations. The normalization procedurgmaller due to the presence of gravity, the additional term
we will discuss in the following closely mirrors the renor- having the Stokes—Einstein form, the only length scale in-
malization of mass of quantum field thedid4] and of clas- |1 eq being 2r/qgg. This modification of the diffusion
sical electrodynamicgls]. The overall diffusive mass flow coefficient is due to the fact that, in the presence of gravity,

s the superpos_ition of the contripution due to fluctuatipns fluctuations with wave vector smaller thgpg are stabilized
and the bare Fickean mass flow: )
and therefore do not contribute to the mass transfer. There-
i(9) =j?(g) +j8(g) fore grp acts as an infrared cutoff for the fluctuations. As the
length scales stabilized by gravity are large, the relative cor-
(23) rection introduced by gravity is very small, being of the or-
der ofqroé, where we have assumed a Stokes—Einstein de-
pendence of the phenomenological diffusion coefficl2mn
the correlation lengtlt of the fluid. For an ordinary liquid
j(y=0)=—pDVc, (24)  mixturegge can be as high as 38m~* andé¢ is of the order
of 10 “cm. Therefore, the gravitational correction is esti-
whereD is the phenomenologi(_:al diffusion coefficient in the mated to be roughly one part in 40in the case of critical
absence of gravity. By combining E(®23) and Eq.(24), the  fyids and macromolecular solutions, the correlation length
renormalization condition can be rewritten as can grow very large, thus suggesting that the gravitational
DS=D-DR(g=0), (25)  correction to the diffusion coefficient can get large. How-
ever, in order for our hydrodynamic description to be valid,
and, by inserting Eqg20) and(25) into Eq.(23), the renor-  the correlation length has to be significantly smaller than

= —p(DP(g)+DY)

Jc
V°‘ﬂ9(ﬂ)

p,T

The renormalization condition is

malized mass current is 1/gro- Therefore, the largest correction to the diffusion co-
P efficient reliably predicted by this description can be roughly

ir(g)=—pDgr(g)| Vc—Bg _) } (26)  estimated to be of the order of 10%. Such a variation in the

J o, T diffusion coefficient should be observable by performing mi-

] ) o . crogravity experiments on critical fluids.
whereDp, is the renormalized diffusion coefficient _ o _ )
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