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Diffusive mass transfer by nonequilibrium fluctuations: Fick’s law revisited
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Recent experimental and theoretical works have shown that giant fluctuations are present during diffusion in
liquid systems. We use linearized fluctuating hydrodynamics to calculate the net mass transfer due to these
nonequilibrium fluctuations. Remarkably, the mass flow turns out to coincide with the usual Fick’s one. The
renormalization of the hydrodynamic equations allows us to quantify the gravitational modifications of the
diffusion coefficient induced by the gravitational stabilization of long wavelength fluctuations.
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Recent experiments have shown that giant nonequilibr
concentration fluctuations are a universal feature of diffus
in binary liquid mixtures and macromolecular solutio
@1,2#. The presence of long-range correlations in a diffus
liquid mixture is a surprising result, as diffusion is usua
thought to give rise to a homogeneous mixing at the mole
lar level, other length scales playing no role in the proce
The results of these experiments have been interprete
means of an extension of Landau’s fluctuating hydrodyna
ics @3# to time-dependent diffusion processes@4#.

Linearized hydrodynamics shows that the fluctuations
generated by thermal velocity fluctuations, due to the pr
ence of a macroscopic nonequilibrium concentration gra
ent. The mechanism is analogous to that first predicted@5,6#
and then observed@7–10# for stationary thermal diffusion in
a binary liquid mixture. Velocity fluctuations parallel to th
macroscopic gradient displace parcels of fluid into regio
with different concentration, thus giving rise to concentrati
fluctuations@11#. Since the fluctuations displace mass alo
the concentration gradient, one might wonder if they contr
ute significantly to the macroscopic diffusive mass flow.

We will show that, quite unexpectedly, the net mass tra
fer due to nonequilibrium fluctuations corresponds to
macroscopic Fick’s mass flow. Traditionally, the diffusiv
flow has been interpreted as due to the random hops of
molecules in the fluid. Here we show that Fick’s flow is d
to random hops of parcels of fluid whose dimensions span
the length scales from the molecular up to the macrosco
one. This is a surprising result, as usually thermal fluct
tions are thought of as small perturbations of a macrosco
state, while here we show that the macroscopic flow is
termined by a second-order effect in the fluctuations. T
introduction of new degrees of freedom, the hydrodynam
fluctuations, determines an ultraviolet divergence of the
fusion coefficient, which we regularize by imposing a cuto
at large wave vectors. The regularization procedure invol
the introduction of an arbitrary length scale. By imposi
that the cutoff length scale is of the order of the correlat
length of the mixture, we find that the diffusion coefficie
displays the usual Stokes–Einstein form and is of the sa
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order of magnitude as the phenomenological one. Howe
the introduction of an arbitrary length scale into the theo
can be avoided by a renormalization of the hydrodynam
equations. The renormalization procedure allows us to qu
tify the modifications of the phenomenological diffusion c
efficient due to the gravitational stabilization of long wav
length fluctuations.

We will now derive the net contribution of the nonequ
librium fluctuations to the mass transfer. The sample con
ered is a binary mixture of concentrationc(x,t) under rest.
The mixture is in a macroscopic nonequilibrium conditio
due to the presence of a homogeneous and stationary
centration gradient¹c. A local fluctuation in the current of
mass can be written as the second order product

d j f~x,t !5rdc~x,t !du~x,t !, ~1!

where dc(x,t) is the local concentration fluctuation an
du(x,t) the local velocity fluctuation. Equation~1! shows
that a current fluctuation takes place whenever a concen
tion fluctuation and a velocity fluctuation occur simult
neously at the same place.

The net contribution of the fluctuations to the diffusiv
current is obtained by averaging over the configurations
the system:

j f~x,t !5r^dc~x,t !du~x,t !&. ~2!

At thermodynamic equilibrium fluctuations in the veloci
and concentration are not correlated. Therefore, the proba
ity of a current fluctuation is small and with random sig
and the net flowj f averages to zero. Under nonequilibriu
conditions, however, velocity fluctuations are correlated
concentration fluctuations@4–6#. The presence of a macro
scopic concentration gradient determines the existence
velocity-induced concentration fluctuations: a velocity flu
tuation determines a small vortex inside the fluid and t
brings parcels of fluid with a certain concentration into laye
of fluid with a different concentration. On the contrary, th
gravity force determines the opposite mechanism: whene
a concentration fluctuation is produced, the buoyancy fo
©2000 The American Physical Society05-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 012105
tends to displace the fluctuation. Therefore, terms in the
erage of Eq.~2! are correlated and this determines a non
nishing mass flowj f .

We will shortly derive an explicit expression forj f by
determining the cross-correlation properties of concentra
and velocity fluctuations in the presence of a macrosco
concentration gradient. This task can be accomplished
using Landau’s linearized hydrodynamics@3#. Basically, one
writes down the relevant hydrodynamic equations for a
nary mixture. The equations are then linearized for sm
fluctuations of the hydrodynamic variables around their m
roscopic values and random source terms are added to t

The equations thus obtained for a binary mixture wher
uniform concentration gradient is present are@4#

dc~q,v!~ iv1D0q2!52du~q,v!•“c1 iq•F~q,v!,
~3!

du~q,v!~ iv1nq2!5bdc~q,v!@g2q~q•g/q2!#

1~ i /r!q∧S~q,v!,

whereD0 is the bare diffusion coefficient,n the kinematic
viscosity, g the gravitational acceleration,b5r21(]r/]c),
andc(q,v) is the space-time Fourier transform for the co
centration fluctuations defined by

dc~q,v!5
1

~2p!4 E eiq•x1 ivtdc~x,t !dxdt, ~4!

and an analogous expression holds for the velocity fluc
tions.

In Eq. ~3! F(q,v) and S(q,v) represent random sourc
currents for concentration fluctuations and velocity fluctu
tions, respectively. As customary, their correlation proper
are assumed to retain their equilibrium values@12#, as a local
equilibrium assumption is known to adequately repres
them @13#:
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^Fi~q,v!F j~q8,v8!&

5d i j d~q1q8!d~v1v8!
KBT

8p4

D0

r S ]c

]m D
p,T

, ~5!

^Si~q,v!Sj~q8,v8!&5d i j d~q1q8!d~v1v8!
KBT

8p4 nr,

~6!

^Fi~q,v!Sj~q8,v8!&50. ~7!

In Ref. @4# the linearized equations~3! were used to de-
rive the static and dynamic structure factor of the fluctu
tions. In the present work we will use them to derive t
mass flow.

Let us briefly comment on Eq.~3!. The left terms specify
that concentration and velocity fluctuations decay with li
times 1/D0q2 and 1/nq2, respectively. The right terms ar
source terms for the fluctuations. Beyond the random c
rents F(q,v) and S(q,v), they contain the cross couplin
between velocity and concentration fluctuations. The cro
coupling term in the concentration equations shows tha
velocity fluctuationdu couples with the macroscopic con
centration gradient“c, thus giving rise to a concentratio
fluctuation. The cross-coupling term in the velocity equati
represents the acceleration acting on a concentration fluc
tion due to the buoyancy force. We have assumed that
fluid is incompressible; therefore the acceleration acting
the fluctuation is the component of gravity perpendicular
the wave vectorq.

The explicitation ofdc anddu in Eq. ~3! yields

dc~q,v!5
i ~ iv1nq2!q•F~q,v!2~ i /r!q∧S~q,v!•“c

~ iv1D0q2!~ iv1nq2!1b@g2q(q•g/q2)] •“c
~8!

and
du~q,v!5
iq•F~q,v!b@g2q~q•g/q2!#1~ i /r!~ iv1D0q2!q∧S~q,v!

~ iv1D0q2!~ iv1nq2!1b@g2q(q•g/q2)] •“c

1
~ i /r!@b/ iv1nq2#$q∧S~q,v!“c•@g2q~q•g/q2!#2q∧S~q,v!•“c@g2q~q•g/q2!#%

~ iv1D0q2!~ iv1nq2!1b@g2q~q•g/q2!#•“c
. ~9!
elf
We are now in the position to evaluate the mass flowj f .
In the reciprocal space Eq.~2! becomes

j f5rE ^dc~q,v!du~q8,v8!&dqdq8dvdv8, ~10!

where an exponential factor exp@i(q1q8)•x1 i (v1v8)t#
has been omitted imposingx50 andt50, as we are consid
ering a homogeneous and stationary system.

The integrand in Eq.~10! can be decomposed as the su
of terms containing correlations of the random currentsF
andS. In the evaluation of the integral of Eq.~10! the con-
tribution of the second term of Eq.~9! vanishes. Due to~7!
the only nonvanishing terms are those originated from s
correlations:

^dc~q,v!du~q8,v8!&5^dc~q,v!du~q8,v8!&F

1^dc~q,v!du~q8,v8!&S ,

~11!

where
5-2
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^dc~q,v!du~q8,v8!&F

5d~q1q8!d~v1v8!
KBTD0

8p4r S ]c

]m D
p,T

b

3
q2~ iv1nq2!@g2q~g•q/q2!#

u~ iv1D0q2!~ iv1nq2!1b@g2q~q•g/q2!#

~12!

and

^dc~q,v!du~q8,v8!&S

52d~q1q8!d~v1v8!
KBTn

8p4r

3
q2~ iv1D0q2!@“c2~“c•q/q2!#

u~ iv1D0q2!~ iv1nq2!1b@g2q~q•g/q2!#•“cu2

~13!

The denominator of Eqs.~12! and~13! is an even function of
v; therefore, in the evaluation of the integral in Eq.~10! we
can neglect odd functions ofv in the numerator.

By combining Eqs.~10!–~13! and by assuming thatẑ
5g/g5“c/u¹cu, the currentj f due to nonequilibrium fluc-
tuations is finally determined:

j f52rD fF“c2bgS ]c

]m D
p,T

G , ~14!

where

D f5
KBTnD0

8p4r

3E q4@ ẑ2q~ ẑ•q/q2!#• ẑ

u~ iv1D0q2!~ iv1nq2!1bg¹c@ ẑ2q~ ẑ•q/q2!#• ẑu2

3dqdv. ~15!

Remarkably, the flowj f displays the customary dependen
of Fick’s flow on the driving force“c and on the barodif-
fusion flow.

Equation~15! can be rewritten by factorizing its denom
nator as (v21v1

2 )(v21v2
2 ) and by approximating the two

roots asv1
2 5D0

2q4$11@q/qRO(g)#4@ ẑ2q( ẑ•q/q2)#• ẑ%2 and
v2

2 5n2q4. Basically, this approximation holds true forn
@D, a condition fulfilled by most binary liquid mixtures
further details are discussed in Ref.@4#:

D f5
KBT

~2p!3rn E q2@ ẑ2q~ ẑ•q/q2!• ẑ

q41qRO~g!4@ ẑ2q~ ẑ•q/q2!#• ẑ
dq,

~16!

where
01210
qRO~g!5A4 gb¹c

nD0
~17!

is a roll-off wave vector due to the gravity force@6#. As
thoroughly discussed in Ref.@4#, qRO is defined as the wave
vector marking the transition from the diffusive relaxation
fluctuations at large wave vectors to the gravitational sta
lization of fluctuations at smaller ones. At the roll-off wav
vector the diffusional and gravitational fluctuation relaxati
times coincide.

By introducing polar coordinates Eq.~16! becomes

D f
Q5

KBT

~2p!3rn E0

Q

dqE
0

p

duE
0

2p

dw
q4 sin3~u!

q41qRO~g!4 sin2 ~u!
.

~18!

The integral onq is divergent. Therefore, we have reg
larized it by introducing a brute-force cutoff at the arbitra
wave vectorQ. The evaluation of the integrals inw and q
yields

D f
Q5

KBT

~2p!2rn E0

p

duQF12
&p

4

qRO

Q
Asinu

1OS qROAsinu

Q D 4Gsin3 u. ~19!

By assuming thatqRO(g)/Q!1, Eq. ~19! becomes

D f
Q~g!5

4

3

KBT

~2p!2rn
Q2&I

p

4

KBT

~2p!2rn
qRO~g!

1QO~qRO~g!/Q!4, ~20!

where

I 5E
0

p

du sin7/2u'1.248 599. ~21!

In the absence of gravityqRO50, and Eq.~20! becomes

D f
Q5

2

3

KBT

prnL
, ~22!

whereL52p/Q can be roughly assumed to be of the ord
of correlation length of the fluid. It should be noticed that t
diffusion coefficientD f of Eq. ~22! does not depend on th
bare mass diffusion coefficientD0 which appeared in the
linearized fluctuating hydrodynamic equations~3! and ~5!.

Quite remarkably, Eq.~22! exhibits the usual Stokes–
Einstein dependence on temperature, viscosity, and cor
tion length, the proportionality factor being of the right ord
of magnitude. This result, combined with Eq.~14!, strongly
suggests that the mass transfer due to fluctuations and F
mass flow can be identified. This is a striking result, as
shows for the first time that the diffusive mass transfer
entirely determined by nonequilibrium fluctuations occurri
at length scales ranging from the microscopic up to the m
roscopic one.
5-3
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Although it is physically reasonable to assume that wa
vectors larger than a typical molecular one have no mean
the imposition of a cutoff involves the introduction of a
arbitrary length scale, which in turn requires to introduce
microscopic model for the molecular interactions. This n
cessity can be eliminated by a renormalization of the line
ized hydrodynamic equations. The normalization proced
we will discuss in the following closely mirrors the reno
malization of mass of quantum field theory@14# and of clas-
sical electrodynamics@15#. The overall diffusive mass flow
is the superposition of the contribution due to fluctuationsj f
and the bare Fickean mass flow:

j ~g!5 j f
Q~g!1 j0

Q~g!

52r~D f
Q~g!1D0

Q!F“c2bgS ]c

]m D
p,T

G . ~23!

The renormalization condition is

j ~g50!52rD“c, ~24!

whereD is the phenomenological diffusion coefficient in th
absence of gravity. By combining Eq.~23! and Eq.~24!, the
renormalization condition can be rewritten as

D0
Q5D2D f

Q~g50!, ~25!

and, by inserting Eqs.~20! and~25! into Eq. ~23!, the renor-
malized mass current is

jR~g!52rDR~g!F“c2bgS ]c

]m D
p,T

G , ~26!

whereDR is the renormalized diffusion coefficient

DR~g!5D2&
p

4
I

KBT

~2p!2rn
qRO~g!. ~27!
. E

s,

01210
e
g,

a
-
r-
re

In Eq. ~27! the Q dependence has been eliminated
letting Q→`, becauseDR does not diverge. The micro
scopic details have been reabsorbed intoD, the only experi-
mental parameter needed by the theory in order to obtain
value of the diffusion coefficient in the presence of gravit

Equation ~27! shows that the diffusion coefficient i
smaller due to the presence of gravity, the additional te
having the Stokes–Einstein form, the only length scale
volved being 2p/qRO . This modification of the diffusion
coefficient is due to the fact that, in the presence of grav
fluctuations with wave vector smaller thanqRO are stabilized
and therefore do not contribute to the mass transfer. Th
fore qRO acts as an infrared cutoff for the fluctuations. As t
length scales stabilized by gravity are large, the relative c
rection introduced by gravity is very small, being of the o
der of qROj, where we have assumed a Stokes–Einstein
pendence of the phenomenological diffusion coefficientD on
the correlation lengthj of the fluid. For an ordinary liquid
mixtureqRO can be as high as 103 cm21 andj is of the order
of 1027 cm. Therefore, the gravitational correction is es
mated to be roughly one part in 104. In the case of critical
fluids and macromolecular solutions, the correlation len
can grow very large, thus suggesting that the gravitatio
correction to the diffusion coefficient can get large. Ho
ever, in order for our hydrodynamic description to be val
the correlation length has to be significantly smaller th
1/qRO . Therefore, the largest correction to the diffusion c
efficient reliably predicted by this description can be rough
estimated to be of the order of 10%. Such a variation in
diffusion coefficient should be observable by performing m
crogravity experiments on critical fluids.
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