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Marginal stability in chemical systems and its relevance in the origin of life
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Concentration fluctuations are always present in solutions; it has been noticed that, in chemical systems,
they can lead to deviations from what is expected from mass-action equations. I recently described the class of
the “marginally stable” chemical systems; namely, a system that have an infinity of stationary states forming a
continuous curve, and I showed that they present such deviations, which appear as a drift along the stationary-state
curve [Phys. Rev. Lett. 105, 058102 (2010)]. Here I describe various marginally stable chemical reaction
networks, including replicating molecules, and I present numerical calculations based on reaction-diffusion
master equations, showing that the thermodynamic fluctuations induce a drift. This drift can be interpreted
in terms of evolution toward a more efficiently replicating system and is analogous to a Darwinian evolution.
The concentration fluctuations observed during the drift are scale invariant. Relevance of this phenomenon to
the origin of life is discussed. I propose that marginal stability is the mathematical property defining chemical
reaction networks potentially involved in the origin of life.
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I. INTRODUCTION

One of the most fascinating problems of current science
concerns the abiogenesis process (i.e., the origin of life
from nonliving matter). This notwithstanding, abiogenesis
is still deeply enigmatic. The definition of life is not easy,
but generally the feature distinguishing entities involved in
abiogenesis is their ability to replicate and undergo Darwinian
evolution [1]. The presence of this feature ensures that the
entity has overcome a given complexity threshold, after which
it can give rise to even increasingly complex offsprings, until
the complexity of the forms of life that we observe today is
reached. In this context, a sharp distinction between living
organisms, prebiotic entities, precursors of life, or even causes
of abiogenesis is not possible, nor actually necessary.

Many different approaches have been tried in order to
formulate a plausible model of abiogenesis, or at least in
order to propose phenomena which could be involved in
it. Part of the research has been devoted to the study of
molecules which can be replicated, including proteins, DNA,
RNA, or even organic polymers which are not currently
present in biologic entities, like pRNA [2] or PNA [3].
Such molecules are called “informational polymers” (i.e.,
polymers that carry information coded into their sequence).
Other research lines focus on the process of replication. In
current living organisms, DNA is replicated by enzymes, the
replicases, which are proteins, but the researchers proposed
other possible replication mechanisms that could have worked
in the early stages of life: self-replication of proteins, DNA, or
RNA through spontaneous base pairing and binding [4–6], or
through the action of intercalators [7].

In the RNA-world hypothesis [8], the informational poly-
mer is RNA, and replication requires two identical RNA
molecules: one acting as a template, and the other as a
replicase. This idea comes from the observation that some
RNA molecules, called ribozymes, have catalytic activity,
including ligation. Directed (artificial) evolution [9] allowed
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the synthesis of ribozymes that can self-replicate: in particular,
ligases that catalyse their own synthesis from suitable sub-
strates [10–12]. A partial success has been obtained in creating
a ribozyme able to replicate arbitrary RNA templates [13]. The
merit of this hypothesis is that only a single kind of polymer is
needed, which acts both as an informational polymer and as a
molecule with catalytic properties. A ribozyme ligase that acts
on itself has been created and used in a completely artificial
model [14], which mimics Darwinian evolution.

Another line of research is the study of the formation,
in plausible conditions, of the monomers of informational
polymers [15] (amino acids [16], adenine [17], pyrimidine
nucleoside bases [18,19], ribose 2,4-biphosphate [20]), and
their polymerization [21].

It has been noticed that life requires not only replication but
also metabolism, and thus a classification into “replication-
first” and “metabolism-first” models can be done [22–24].
Models focused on autocatalytic cycles [25] fall into the second
class. Examples of metabolic networks which can be involved
in abiogenesis are the reverse citric acid cycle [26–28] and the
formose cycle [29,30]; a discussion can be found in Ref. [31]. It
has been proposed that the concentration of different chemical
species can behave as a “compositional genome,” replicated by
proto-metabolic networks [32]; this model has been recently
discussed [33]. Another research line in this field concerns the
theoretical study of interesting families of chemical networks,
like hypercycles [34], and the evaluation of the likelihood
of the spontaneous presence of autocatalytic sets in random
chemical networks [35–37].

Most of the above-described models assume the presence
of a membrane, delimiting a small volume (the prebiotic
entity) from the environment. The compositional genome
cannot even be defined in absence of the membrane. In the
case of RNA world, the need for membranes has a more
subtle reason [38]. An RNA template is replicated by another
RNA molecule, acting as a replicase ribozyme; if the template
itself is a replicase of the same species, self-replication takes
place. If a superior mutant of the replicase is present, it
replicates the other molecules at a higher rate, but it has

031931-11539-3755/2011/84(3)/031931(13) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.058102
http://dx.doi.org/10.1103/PhysRevE.84.031931


DORIANO BROGIOLI PHYSICAL REVIEW E 84, 031931 (2011)

no advantage in being replicated, and thus its concentration
does not increase; in such a system, replication is present,
but Darwinian evolution does not take place. In general, some
physical effect is needed, besides chemistry, in order to obtain
evolution. In Ref. [38], it is proposed that the physical effect
can be the presence of volumes delimited by membranes,
defining entities in competition with each other [39–43].
In other words, a protocell including a more active mutant
replicase will replicate faster, and thus the total number of the
mutant replicases will increase. The difficulty of this model is
that the self-replicating polymers must emerge simultaneously
with the membranes that contain them.

Recently I showed that a simpler physical effect can lead
to evolution in a chemical system; namely, the thermody-
namic fluctuations of concentration of the polymers [44].
Fluctuations are always present in every solution: in the
simplest cases, they arise from the Poissonian distribution
of the number of molecules in a given small volume. Local
differences in molecule concentration play the role of the
volumes delimited by membranes, leading to the increase
of the concentration of the superior mutants. Anyhow, no
individual living entities are present—evolution involves the
whole solution. In this sense, I propose that the first stages
of abiogenesis took place extremely slowly, on macroscopic
length scales, and later evolution led to the development
of membranes, compartmentalization and, finally, individual
microscopic living entities, which were selected due to their
ability to evolve faster. In other, more dramatic words, there
has been no “first living cell,” but a “living ocean,” which later
split into protocells.

It has already been noticed that fluctuations can induce
“deviant nonclassical effects” on particular biochemical sys-
tems [45,46]; namely, deviations from mass-action equations.
The above-described evolution in replicating systems is an
example of such a deviant nonclassical effect originating from
fluctuations. The replicating systems I will describe in Sec. III
share the key feature of “marginal stability” (i.e., the presence
of a manifold formed by marginally stable states). In particular,
they present a stationary-state curve (i.e., a one-dimensional
manifold of marginally stable stationary states). In Sec. II,
I will describe the numerical method for the calculation of
the effect of fluctuations. The results show that the chemical
system first follows the mass-action equations and approaches
a state that is stationary with respect to the mass-action
equations. Then, under the effect of fluctuations, the system
moves between the adjacent marginally stable states, violating
the mass-action equations. From the numerical calculations, it
can be noticed that the effect of fluctuations is not a random
walk, but a drift along the stationary-state curve, pointing
toward the increase of the most active replicase: that drift
represents the Darwinian evolution. In Sec. IV I will discuss
quantitatively the validity of the numerical method, and I will
show that the fluctuations are scale invariant.

Summarizing the above concepts, thermodynamic fluctua-
tions can provide a mechanism for evolution, alternative to
the presence of membranes, in marginally stable chemical
systems. I propose to consider marginal stability as the feature
defining chemical reaction networks potentially involved in
abiogenesis. This approach has the advantage that it can

be applied automatically to large sets of reaction networks
and has the potential to discover completely new chemical
models. This allows us to find candidates of chemical networks
connected with abiogenesis, also if they apparently do not
involve replication, as in the case of metabolism-first models.
A similar screening has been applied in the case of recognition
of self-catalytic cycles [35–37]. Another advantage of this
approach is that marginal stability can be assessed without
the need to specify the physical structure associated with the
chemical system.

II. NUMERICAL METHOD

Chemical kinetics is usually studied by means of mass-
action equations. The state is represented by a vector
(c1,c2,c3, . . .), where cS is the concentration of species S.
The kinetics is defined by means of a first-order ordinary
differential equation of the form

ċ1(t) = F1[c1(t),c2(t),c3(t), . . .],

ċ2(t) = F2[c1(t),c2(t),c3(t), . . .], (1)

· · · ,
where the functions FS describe the mass-action law and have
the form

F1[c1,c2,c3, . . .] = k1c
α
1 c

β

2 c
γ

3 + · · · . (2)

In order to describe nonstirred extended systems, diffusion
must be taken into account. In principle, this could be done by
using reaction-diffusion equations of the form

ċ1(�x,t) = F1[c1(�x,t),c2(�x,t), . . .] + D1∇2c1(�x,t),

ċ2(�x,t) = F2[c1(�x,t),c2(�x,t), . . .] + D2∇2c2(�x,t), (3)

· · · ,
where the concentrations cS(�x,t) are functions of both point �x
and time t , and DS is the diffusion coefficient of species S.

This approach neglects concentration fluctuations, which
are always present in any solution. In the simplest case, they
coincide with the Poisson fluctuations of the number of solved
molecules in a given volume of solvent, which changes over
time due to Brownian motions of molecules entering and
exiting the volume. In Landau’s fluctuating hydrodynamics
[47], fluctuations are taken into account by adding a white
noise term to the partial differential equations describing
diffusion and advection. Unfortunately, the same procedure
is much more difficult when chemical reactions are taken into
account and does not work at all in some cases [48]; the present
case falls among them.

I will follow a different approach, based on the reaction-
diffusion master equations (RDME) [49–51], whose solutions
are calculated through the Gillespie algorithm [52]. The
reaction volume is divided into N × N × N cubic cells, with
side l. The dynamic variables nS(i,j,k) represent the number
of molecules of the species S in the cell with integer indices
i,j,k. I define a constant C so that cS(i,j,k) = (C/l3)nS(i,j,k).
The random variables nS(i,j,k) change as the result of a
continuous-time Markov process, defined by the probabilities
of events, which include chemical reactions, modeled as “birth
and death” processes, and diffusion, modeled as a random
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walk. The probability of the occurrence of a given event e in
a time interval dt is defined as Pedt ; the values Pe are called
“transition rates” or “event rates.”

The rates Pe of the chemical reaction events are cal-
culated on the basis of the reaction constants of the
mass-action equations and a combinatorial factor [52]. For
example, the generation of molecule A in a cell with indices
(i,j,k) corresponds to a transition nA(i,j,k) → nA(i,j,k) + 1,
with a transition rate Pe = kgl

3/C, where kg is the mass-
action reaction coefficient of the zeroth-order generation
reaction.

The random walk between cells is included in the model
in order to account for the effect of diffusion. The probability
that a molecule moves from one cell to a neighboring cell,
during a time interval dt , is dtD/l2. The rate of such
an event is thus Pe = D/l2. Periodic conditions are im-
posed, so that nS(i,j,k) = nS(i + N ,j,k) = nS(i,j + N ,k) =
nS(i,j,k + N ).

Table I shows the transition rates Pe for the reactions of
interest. The reactions are represented as directed graphs, as is
usual in the literature about catalytic chemical networks [53,
54]. A circle represents a reaction, incoming arrows represent
reactants, outgoing arrows represent reaction products. Dashed
lines represent catalytic activity (i.e., they are a shortcut for rep-
resenting a couple of incoming and outgoing lines). I use dotted
lines to represent a particular class of catalytic activity; namely,
templating activity, which is the effect of a molecule acting as
a source of information for creating an identical copy (repli-
cation case) or a different molecule which carries the same
information (translation). The reaction constant labels kc are
placed near the circle representing the corresponding reaction.

In the present work, as often in the literature about RDME,
the name “master equations” is used also if the master
equations are not actually solved by analytic methods, nor
explicitly formulated at all. Instead, the solution of the RDME
is obtained numerically by means of the Gillespie algorithm

TABLE I. Transition rates Pe of chemical reaction events and diffusion events. In the first column, reactions are represented by a circle. An
outgoing arrow points to the product and an ingoing arrow comes from the reactant. Dashed lines connect the circle to the catalyzer molecules
and dotted lines represent the particular catalytic effect named “templating action.” The labels kc near the circle representing the reaction show
the reaction constant. The chemical reactions include generation and degradation reactions: replication of a polymer B performed by a replicase
C, by the polymerization of a monomer set A, self-replication of a ribozyme B, and translation of a gene D into a protein B by means of the
translation molecular machinery C. Diffusion events are also considered.

Event e Description Mass-Action Term Transition Pe

A
gk

Generation kg nA(i,j,k) → nA(i,j,k) + 1 kgl
3/C

A
dk

Degradation kdA nA(i,j,k) → nA(i,j,k) − 1 kdnA(i,j,k)

A B

C

rk

Replication krABC nA(i,j,k) → nA(i,j,k) − 1 krC2

l6
nA(i,j,k)

nB (i,j,k) → nB (i,j,k) + 1 nB (i,j,k) nc(i,j,k)

A B
rk

Self- krAB2 nA(i,j,k) → nA(i,j,k) − 1 krC2

l6
nA(i,j,k)

Replication nB (i,j,k) → nB (i,j,k) + 1 nB (i,j,k)
[nB (i,j,k) − 1]

A B

C

D

tk

Translation ktACD nA(i,j,k) → nA(i,j,k) − 1 kt C2

l6
nA(i,j,k)

nB (i,j,k) → nB (i,j,k) + 1 nC(i,j,k) nD(i,j,k)

Diffusion nA(i,j,k) → nA(i,j,k) − 1
Along x Axis DA

∂2

∂x2 A nA(i ± 1,j,k) → nA(i ± 1,j,k) + 1 D

l2
nA(i,j,k)

nA(i,j,k) → nA(i,j,k) − 1,

Diffusion nA(i,j,k) → nA(i,j,k) − 1
Along y axis DA

∂2

∂y2 A nA(i,j ± 1,k) → nA(i,j ± 1,k) + 1 D

l2
nA(i,j,k)

Diffusion nA(i,j,k) → nA(i,j,k) − 1
Along z Axis DA

∂2

∂z2 A nA(i,j,k ± 1) → nA(i,j,k ± 1) + 1 D

l2
nA(i,j,k)
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[52], which is based on a Monte Carlo approach. Actually, the
method can be seen as a simulation of the chemical system,
which is able to give also the kinetics.

The cell size l is not a physical parameter of the system, but
only a parameter of the mathematical model (the continuous-
time Markov process) and must be chosen so that the model
closely mirrors the physical system. For l → +∞, the solution
of the RDME approaches the solution of the mass-action
equations. For finite, decreasing values of l, the behavior
changes, due to the development of concentration fluctuations.
Generally there is a value lmax, such that, for l � lmax, the
results are independent of l itself. It is well known that,
unfortunately, the results do not converge in the limit of
small cell size l → 0: in this sense, the RDME are not the
discretization of a continuous model. In the blessed case,
there is a range of cell size lmin � l � lmax for which the
results are independent of l itself; in that range, the model
can be considered representative of the so-called mesoscopic
behaviour of the system. In this context, “mesoscopic” refers
to the fact that the model gives results concerning small length
scales, but it relies only on the “macroscopic” parameters such
as the reaction constants kj and the diffusion constants DS ; the
only needed knowledge of the “microscopic” behavior is the
number of molecules per unit volume per unit concentration,
explicitly accounted for by the constant C; no hypothesis on
the microscopic interactions between the molecules is needed.

Up to now, general conditions for the existence of the range
lmin � l � lmax have not been found. For a given reaction
network, with some choice of values of reaction and diffusion
constants, it is possible that the results are dependent of l in
every range. I argue that, in this case, the fluctuations still have
an effect, and the results are qualitatively significant, but the
system cannot be fully described in terms of the macroscopic
parameters; that is, the knowledge of the microscopic behavior
of the reacting molecules is necessary in order to accurately
simulate the system.

The choice of the cell size l must be discussed separately
for every system. Now I will give an account of the discussion
about the choice of l done in the literature.

Bernstein [51] cites just one condition under which the
RDME results are representative of the physical system: “the
diffusion time across each element for every species should be
much less than the typical reaction time.” This condition can
be expressed as

Rc,S � Rd,S, (4)

where Rc,S and Rd,S are the molecular rates of the chemical
reactions c and of diffusion events of the molecules of species
S. The molecular rate Re,S of an event e for a species S is
defined as

Re,S = 〈Pe(i,j,k)〉
〈nS(i,j,k)〉 , (5)

so that Re,Sdt is the probability that a molecule of the species
S undergoes an event e in a time interval dt .

For example, considering a trimolecular reaction E + F +
G → H , if the molecules are randomly distributed in the cells,
the molecular reaction rate of the species E is

Rc,E ≈ kccF cG, (6)

where cF and cG are the concentrations of the two molecular
species, and kc is the reaction constant. The molecular rate of
diffusion along all directions is

Rd,S = 6D/l2. (7)

In this example, Eq. (4) imposes an upper bound on the value
of l:

l �
√

6D

kccF cG

. (8)

A similar calculation will be performed in Sec. IV for the
trimolecular reactions of replication and translation.

Accurate comparisons between microscopic models and
RDME have been performed [49,55] for the case of an-
nihilation reactions. For the validity of RDME, Baras and
Mansour [49] list a set of three conditions:

(i) The system is in local thermal equilibrium.
(ii) The cell size is longer than the mean-free path.

(iii) The cell size is smaller than the correlation length.
Condition (iii) means that the space must be discretized in

steps fine enough to well represent the correlation function. In
turn, the correlation length is related to the reactive mean-free
path, defined as the average distance traveled by a diffusing
molecule before it undergoes a reactive event. Thus, condition
(iii) can be expressed as

l �
√

6D

Rc,S

, (9)

which exactly corresponds to the condition expressed by
Eq. (4).

The condition (i) is guaranteed if each cell contains a large
number of molecules, of the order of a few hundred [49].
This can be expressed as l 
 λ, where the length λ is defined
as the side of a cubic volume that contains one molecule
at each time, on average. If values l < λ are used in the
calculations, the results concerning length scales shorter than
λ must be considered not reliable. Average concentrations and
information on length scales longer than λ can still be valid; in
particular, if the binning of adjacent cells gives results similar
to the ones obtained with a longer l. The value lmin is defined
so that discrepancies occur for l < lmin.

In Sec. IV I will provide a discussion of the range of
validity of RDME in the studied cases. I will show that, in
the case discussed in this work, there is a range of cell size
l for which the cross spectra of the concentrations do not
depend on l. Moreover, I will show that the fluctuations are
scale invariant, the correlation function is a power law, and
thus a correlation length cannot be defined. This situation is
typical of the so-called self-organized critical systems [56]:
the mesoscopic behavior of the system can be described as
scale invariant.

III. EXAMPLES OF MARGINALLY STABLE
CHEMICAL SYSTEMS

A. Ribozyme self-replication

Figure 1 shows a toy model where a hypothetic replicase
R copies a template T by polymerizing the monomers B.
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FIG. 1. Chemical reaction network representing a model of a
replication reaction. A ribozyme R (a replicase) catalyzes the
formation of a copy of a template molecule T , by catalyzing
the polymerization of the substrates B. The dashed lines represent the
catalysis and the dotted lines represent the particular kind of catalytic
action in which the molecule acts as a template. The hypothetic
ribozyme R copies any generic RNA template T , including other
molecules R.

Moreover, the replicase R also copies other replicase
molecules R by polymerizing the monomers B. More pre-
cisely, the ribozyme R can act both as a replicase and as a tem-
plate, but the same molecule cannot play both the roles simul-
taneously. The production of a new molecule R thus requires
two molecules R: one as a replicase, and one as a template. This
is the case of a ribozyme that can copy any RNA template. The
replication reaction is catalyzed by the replicase R, but the tem-
plate T itself acts as a catalyst by performing a “templating” ac-
tion (i.e., by templating its own polymerization). The ribozyme
replicase is the basic element of the RNA-world hypothesis;
such a ribozyme is not present in current living organisms, but
a partial success has been obtained in artificially creating a
ribozyme able to replicate arbitrary RNA templates [13].

A source of monomers B is included in the model along
with a catabolic reaction which removes both the monomers
B and the polymers R and T . Due to the catabolic term,
the chemical reaction network is manifestly open, since it
exchanges molecules with the environment. In general, the
nonequilibrium can be represented by an energy flow; for
example, in the form of nucleoside triphosphates [10–13]. The
catabolic term is needed to avoid the “death” of the reaction
network due to the accumulation of polymers.

The reaction constants of the two replication reactions
performed by R are assumed to be equal to kr . This is the
case if the two polymers have the same length, since the
polymerization takes place at a constant speed in terms of
the number of bases added to the polymer per unit time. Since
the polymers R and T have the same length, I also assume
that they undergo the catabolic reaction with the same reaction
constant kd .

The mass-action equations corresponding to the reaction
network in Fig. 1 are

Ṫ = krT RB − kdT ,

Ṙ = krR
2B − kdR, (10)

Ḃ = −kr (T + R) RB − kdB + kg,

where Ẋ represents the temporal derivative of the variable
X and kj are the reaction constants. Moreover, I assume

 0
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FIG. 2. Kinetics of the chemical reaction network sketched in
Fig. 1. The concentrations of the replicase R and of the template T are
shown. The results are calculated through the mass-action equations
(11). The reaction constant is kr = 9/(τχ 2); the values of kd and
kg are irrelevant under the used adimensionalization. Three sets of
initial values are shown; they differ for the value of the concentrations
R and T (points a, b, and c). The concentrations reach a different
stationary value, depending on the initial concentrations aS , bS , and
cS , respectively.

k′
d = kd . A unit of B does not represent a single molecule

of the monomer, but the whole set of monomers needed to
produce a polymer T or R.

A suitable adimensionalization is performed by using
τ = 1/kd as the unit of time, χ = kg/kd as the unit of
concentration, and λ = 3

√
C/χ as the unit of length. In these

units, the only relevant parameters of the system are kr , the
values of the diffusion coefficients DR , DT , DB , and l. With
this choice, the average number of molecules contained in a
cell with size λ is 1.

Figure 2 shows the kinetics calculated through the mass-
action equations (11). Three sets of initial values are shown;
they differ for the values of the concentrations T and R (points
a, b, and c). The concentrations reach a different stationary
value, depending on the initial concentrations aS , bS , and
cS , respectively. This shows that there are many different
stationary states.

The stationary states can be found by looking for the
concentrations T̃ , R̃, B̃ for which Ṫ = Ṙ = Ḃ = 0 in Eq. (11).
The condition for the existence of different stationary states is
kr > 4/(τχ2). Under this condition, the stationary states form
a curve, which can be expressed as

T̃ (s) = χ

(
1 − 1

τχ2kr

1

s
− s

)
,

R̃(s) = χ
1

τχ2kr

1

s
, (11)

B̃(s) = χs,
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FIG. 3. Kinetics of the chemical reaction network sketched in
Fig. 1. The graph shows the trajectories projected in the T -R plane.
The dashed lines represent the trajectories calculated by means the
mass-action equations (11), starting from different initial states.
Each trajectory converges to different stationary states. The solid
line represents the curve of the stationary states of the mass-action
equations expressed by Eq. (11). The trajectories represented by the
arrows are calculated by means of the reaction-diffusion master
equations. The parameters are kr = 9/(τχ 2), DT = DR = 4λ2/τ ,
DB = 20λ2/τ , l = 2λ, and N = 20. The values of kd , kg , and C
are irrelevant under the adimensionalization used.

where s is the curvilinear abscissa. By linearizing the equations
around the stationary states, it can be shown that the stationary
states are marginally stable for the values of the parameter s:

s < 1
2 . (12)

This part of the curve represents the marginally stable states.
Figure 3 shows a projection on the R-T plane of the

stationary-state curve. The kinetics obtained by integrating
the mass-action equations is also shown as dashed lines.
Starting from initial states a, b, c, a′, b′, and c′, different
stationary states aS , bS , and cS are reached. The presence of
many different stationary states is the kinetic counterpart of
“inheritance:” the newly produced molecules R and T are of
the same species as their ancestors, and the two populations
can coexist in different proportions. This conservation is
mathematically expressed by the fact that the ratio ϕ = R/T

is a constant with respect to the kinetics of the mass-action
equations . The conservation of ϕ is a consequence of the
linear dependence of the first two equations of Eqs. which, in
turn, is the expression of the replication law.

In mechanics, an example of marginally stable system is
a marble on a horizontal track. The marble can remain at
any point of the track, since any point is a marginally stable
equilibrium state. On the other hand, a disturbance will result
in a displacement of the marble along the track. The marble
will not return to the original position, but it will reach a
different stationary point since there is no restoring force.

By analogy, the presence of the stationary-state curve of
Fig. 3 allows the chemical system to move smoothly under
the effect of spontaneous concentration fluctuations, passing
from a stationary state to one of the surrounding, without being
called back. This is not possible in a system that presents a
single stable stationary state, because the system eventually
comes back to the stationary attractive state, after having been
displaced.

The trajectories obtained with RDME are reported in Fig. 3
as arrows. At first the system follows the trajectory of the
mass-action equations (11) (dashed lines) and approaches the
stationary-state curve, but then motion along the stationary-
state curve is observed. Quite surprisingly, this motion is not
a random walk, but a drift pointing toward the increase of the
replicase R.

This drift has a straightforward explanation: in volumes
with higher concentrations of R, more polymers will be
replicated but, in turn, a bigger fraction of them will be R.
The analogy of this effect with Darwinian evolution will be
discussed in more detail in the following subsection. It is
worth noting that the directionality of the drift implies that the
stationary states cannot be thermodynamic equilibrium states.

B. Ribozyme self-replication: case of two replicases

Selection, in the context of Darwinian evolution, generally
refers to the presence of an evolutive advantage for one of
the two mutants of the same entity, which show different
efficiencies. In the model presented in the previous section,
the two entities are RNA molecules, but one is a ribozyme
replicase, while the other is completely inactive. In this
subsection, I will consider two replicases R1 and R2 with
different activities. The chemical reaction network is shown in
Fig. 4. Both the replicases R1 and R2 are able to copy other
molecules by polymerizing the monomers B. I assume that
the replicase R2 is a superior mutant; it can be generated by a
mutation during the replication.

As it can be noticed in Fig. 4, the various replication
reactions are four. In each reaction, one molecule acts
as a replicase, and another molecule acts as a template.
Both the replicase and the template can be R1 or R2, leading
to the four different reactions. The reaction constant depends
on the efficiency of the replicase, but not on the features of the
template, which is a consequence of the fact that the replication

R R1 2

B

k

k

k′

k

g

d

d d

k

k k

kr1 r2

r1r2

FIG. 4. Chemical reaction network including two ribozymes R1

and R2, acting as replicases, able to copy each other and themselves.
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takes place progressively by addition of single monomers. The
reaction constants of the two replications in which R1 acts as
a replicase and R1 or R2 as a template are equal (kr1), and the
reaction constants of the two replications in which R2 acts as
a replicase, and R1 or R2 as a template, are equal (kr2).

The mass-action equations are

Ṙ1 = kr1R
2
1B + kr2R1R2B − kdR1,

Ṙ2 = kr1R2R1B + kr2R
2
2B − kdR2, (13)

Ḃ = −(kr1R1 + kr2R2)(R1 + R2)B − kdB + kg.

The replicase R2 is more active than R1 thus, kr2 > kr1.
Moreover, I assume k′

d = kd .
A suitable adimensionalization is performed by using

τ = 1/kd as the unit of time, χ = kg/kd as the unit of
concentration, and λ = 3

√
C/χ as the unit of length. In these

units, the only relevant parameters of the system are kr1, kr2,
and the values of the diffusion coefficients DR1, DR2, DB ,
and l.

A straightforward calculation shows that there is a
stationary-state curve that can be expressed as

R̃1(s) = χ
1/s + τχ2kr2(s − 1)

τχ2(kr1 − kr2)
,

R̃2(s) = χ
1/s + τχ2kr1(s − 1)

τχ2(kr2 − kr1)
, (14)

B̃(s) = χs,

where s is the curvilinear abscissa. The stationary-state curve
is present if kr2 > 4/(τχ2). Also in this case, the stationary
states are marginally stable for

s < 1
2 . (15)

Figure 5 shows a projection on the plane R1-R2 of the
stationary-state curve (solid line) of the trajectories calculated
by means of the mass-action equations (dashed lines) and by
means of the RDME (arrows). The trajectories start from the
states a, b, c, a′, b′, c′. Following the mass-action equations, the
trajectories (dashed lines) approach the marginally stable states
aS , bS , cS , respectively. The RDME trajectories (arrows) at
first follow the mass-action equations but, when the stationary
state is approached, a drift along the stationary-state curve can
be observed, directed toward the increase of the most active
replicase R2.

The observed drift represents a phase of evolution: the
concentration of the more efficient mutant replicase R2

increases over R1 and becomes dominant. After this, a third,
more active replicase R3 can arise due to random mutations,
and its concentration will increase, and so on, in analogy with
Darwinian evolution.

C. Model of replication with DNA and enzymes

Currently, no ribozyme able to replicate RNA templates
is found in living organisms. Replicases actually exist, but
they are peptides, which replicate DNA molecules (not other
enzymes). The DNA replication mechanism of current living
organisms is sketched very roughly in Fig. 6. The species R

and T represent DNA molecules, genes, or sets of genes. The
genes are replicated by an enzyme R′, which polymerizes the
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FIG. 5. Kinetics of the chemical reaction network described
in Fig. 4 with two replicases: R1 and the more active R2. The
solid line represents the stationary-state curve of the mass-action
equations, expressed by Eqs. (15). The dashed lines represent the
trajectories calculated my means of the mass-action equations (14).
The trajectories shown by the arrows are calculated by means
of the reaction-diffusion master equations. The parameters are
kr1 = 4/(τχ 2), kr2 = 9/(τχ 2), DR1 = DR2 = 4λ2/τ , DB = 20λ2/τ ,
l = 2λ, and N = 20. The values of kd , kg , and C are irrelevant under
the adimensionalization used.

nucleotides B. The information for building the enzyme R′ is
contained in the gene R, which is said to “code” for it. The
operation of building an enzyme (e.g., R′) by polymerizing
the amino acid A, following the instructions contained in
a gene (e.g., R), is called “translation.” This operation is
performed by an extremely complex molecular machinery
T ′, which involves not only enzymes, but also RNA, through
the intermediate step called “transcription.” The translation is
performed by the ribosome, which is an extremely complex
multimolecular cellular structure. Modelling this machinery is
out of the scope of the present work. Although it is extremely

R T

B

A

R′ T′

FIG. 6. Sketch of the replication mechanism of current biological
entities, including DNA and enzymes. The gene sets R and T are
replicated by the enzyme R′ and are translated into the active species
R′ and T ′ by the translation machinery T ′.
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FIG. 7. Reaction network representing the competition between
two sets of genes G and N , coding respectively for the active species
G′ and inactive species N ′. Each unit of B and A represent the set of
monomers needed to build the corresponding polymer.

complex, the recipe for building it is contained in a set of DNA
molecules: the set of genes T .

The genes R and T only have the role of carrying
information while the active species are R′ and T ′. In this
extremely simplified view, only T ′ generates entities identical
to itself, but it performs this task by reading the recipe from a
different species (i.e., T ).

In this section I will consider a chemical reaction network
inspired by the above-described mechanism. I will consider
the species G, representing the genes R and T as a whole, and
G′, representing the active species R′ and T ′, both of which
are able to replicate G and generate other G′ by translating
G. Moreover, I will consider the competition between the
set of genes G, which codes for the efficient active species
G′, and another set of genes N , which codes for an inactive
species N ′. The reaction network is shown in Fig. 7. The
polymers G, N , G′, and N ′ are generated by polymerization
of the monomer sets B and A (a naı̈ve representation of
nucleotides or amino acids). Each unit of B and A contains the
set of monomers needed to create the corresponding polymer.
As a further simplification, the model does not consider
the energy supply that, in living organisms, is provided
by ATP.

The mass-action equations are

Ġ = krG
′GB − kdnG,

Ṅ = krG
′NB − kdnN,

Ḃ = −krG
′B(G + N ) − kdnB + kgn,

Ġ′ = ktG
′GA − kdpG′, (16)

Ṅ ′ = ktG
′NA − kdpN ′,

Ȧ = −ktG
′A(G + N ) − kdpA + kgp.

As in the previous sections, I assume that the replication speed
is the same for the two sets of genes G and N . The same
applies to the translation; namely, the speed of the translation
of G into G′ is equal to the speed of the translation of N into
N ′. Moreover, I assume k′

dn = kdn and k′
dp = kdp.

The system is adimensionalized by taking τ = 1/kdn as
the unit of time, χ = kgn/kdn as the unit of concentration

for G, N , and B, χ ′ = kgp/kdn as the unit of concentration
for G′, N ′, and A, and λ = 3

√
C/χ as the unit of length. In

these units, the only relevant parameters of the system are kr ,
kt , kdp, and the values of the diffusion coefficients DG, DN ,
DG′ , DN ′ , DB , and DA for the various molecules. A cell with
size λ contains on average one molecule of the species G, N ,
or B.

The stationary-state curve can be parametrized as follows:

G̃(s) = kdp

sktχ ′ ,

Ñ (s) = [s(skrτχ ′χ + 1)kt + kr ]kdp − skrk
2
dpτ − skrktχ

′χ

s2krktkdpχ ′τ − s2k2
t χ

′ − skrktχ ′ ,

B̃(s) = sktχ

skt + kr − skrkdpτ
,

G̃′(s) = skt + kr − skrkdpτ

skrktχτ
, (17)

Ñ ′(s) = skrk
2
dpτ + skrktχ

′χ − [(s2krτχ ′χ + s)kt + kr ]kdp

skrktkdpχ ′τ
,

Ã(s) = χ ′s,

Figure 8 shows a projection on the G-N plane of
the trajectories. As in the above-described models, the
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FIG. 8. Kinetics of the reaction network sketched in Fig. 7,
representing the competition between two informational polymers
replicated by an enzyme. The coordinates represent the concentration
of the sets of genes G and N , which code respectively for active and
inactive species G′ and N ′. The dashed lines represent the trajectories
calculated by means of the mass-action equations . The solid line
represents the curve of the stationary states of the mass-action
equations (17), expressed by Eqs. (18). The trajectory shown by
the arrows is calculated by means of the reaction-diffusion master
equations. The parameters are kr = 15/(τχχ ′), kt = 15/(τχχ ′),
kdp = 1/τ , DR = DN = DB = DR′ = DN ′ = DA = 4λ2/τ , l = 2λ,
and N = 20 The values of kdn, kgn, kgp , and C are irrelevant under
the adimensionalization used.
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stationary-state curve is represented by a solid line, and the
trajectories calculated by means of the mass-action equations
are represented by dashed lines. Also in this case, the
trajectories are straight lines crossing the origin; this is a
consequence of the conservation of the ratio G/N . Moreover,
also in the present case, the trajectories obtained with the
RDME (arrows) starting from the states a, b, c, a′, b′, and
c′ at first follow the mass-action equation results (dashed
lines) and approach the marginally stable states aS , bS , and cS ;
then a drift along the stationary-state curve can be observed,
directed toward the increase of the set of genes G coding for
the active species G′. Also in this case, the drift represents
a step of evolution toward a more efficient self-replicating
system.

IV. DISCUSSION OF VALIDITY OF NUMERICAL
METHOD.

In order to quantitatively evaluate the speed at which
the growth of the most active molecules takes place, the
dependence of the numerical model on the linear dimension
of the cell, l, must be discussed. The range of l for which the
RDME are valid will be discussed in this section. I will start
discussing the reaction network sketched in Fig. 7.

The graph of Fig. 9 shows the dependence of the drift speed
dG/dt on l, for various values of diffusion coefficients. Two
regimes can be easily observed.

At short l, a power-law dG/dt = A1(D)l−α decrease of the
speed is observed. The numeric factor A1(D) of the power law
decreases when the diffusion coefficient D increases. The best
fitting value for the exponent is α = 1.3.

At longer l, all the curves roughly collapse into a single,
steeper curve, compatible with a power law dG/dt = A2l

−3.
The collapse can be easily explained observing that, in the
limit of large cells, diffusion plays no role, so that A2 does not
depend on D. The drift is a second-order effect of the number
fluctuations [see Eq. (23) and the following comments] and
thus is proportional to the average number of molecules in a
cell, which is in turn proportional to the volume l3. Based on
this argument, I will assume that the exponent is exactly −3
(although the data do not allow an accurate evaluation) and
that A2 does not depend on D.

For l shorter than a given value, dependent on D,
the solution of the RDME suddenly changes. The trajec-
tories in the concentration space are no longer attracted
by the stationary-state curve—on the contrary, they fall
to the origin. The shaded area of Fig. 9 represents the
region for which the drift along the stationary-state curve is
not found.

Now I will compare the results of Fig. 9 with the range of
validity of the RDME, lmin � l � lmax, described in Sec. II.
One of the conditions for the validity of the RDME is
Eq. (4), which must hold for replication and translation
events. Numerical calculations show that, for the conditions
used for the graph in Fig. 9, the molecular rates of replica-
tion and translation are approximately equal: Rr,S ≈ Rt,S .
For diffusion, Rd,S = 6D/l2, which is a power law with
exponent 2. For replication, Rr,G is a constant: Rr,G =
krcG′cB . The condition Rr,G � Rd,G thus defines an upper
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FIG. 9. Dependence of the drift speed dG/dt on the cell size l.
Results refer to the reaction network of Fig. 7. The concentration of
the set of genes G which codes for the active species G′ increases
with time. The values of the parameters are kr = 15/(τχχ ′), kt =
15/(τχχ ′), and kdp = 1/τ , while the values of kdn, kgn, kgp , and C are
irrelevant under the adimensionalization used. The value of N ranges
from 15 to 35, decreasing for increasing l, in order to perform the
calculations in a reasonable time. The average number of molecules
per cell, 〈n〉, is also shown. The starting values of the concentrations
are chosen on the stationary-state curve, with the condition G = N .
The various data sets refer to different diffusion coefficients D, which
are equal for all the molecules.

bound:

lmax ∝ D1/2. (18)

In Fig. 9, the border of the shaded area can be considered
the lower bound lmin. For l � lmin, the results are no longer
valid; the numerical calculations show that the trajectories of
the RDME equations fall to the origin.

By comparing the range lmin � l � lmax with the values of
l shown in Fig. 9, it can be noticed that it corresponds to the
range where dG/dt = A1(D)l−α .

The roll-off between the power laws with exponent −3 and
−α can be identified with lmax. This identification allows for
calculation of the scaling law for A1(D):

A1 (D) ∝ D(α−3)/2. (19)

This dependence has been used to draw the lines with exponent
−α in Fig. 9.

The scaling law dG/dt ∝ D(α−3)/2 is explicitly shown in
Fig. 10. The abscissa of the graph, DP , represents the diffusion
coefficient of the polymers G, N , G′, and N ′ Two data sets are
shown, with two different values of the diffusion coefficient
DM of the monomers B and A. It can be noticed that the drift
speed does not depend on DM . This means that the kinetics of
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FIG. 10. Dependence of the drift speed dG/dt on the diffusion
coefficient. Results refer to the reaction network of Fig. 7. Parameters
are as in Fig. 9. The abscissa DP represents the diffusion coefficient
of the polymers; namely, DP = DG = DN = DG′ = DN ′ . The two
data sets refer to different diffusion coefficients DM of the monomers;
namely, DM = DB = DA. A power-law dependence can be observed
with an exponent compatible with (α − 3)/2. Changing the diffusion
coefficient of the monomers does not affect the results.

the monomers is dominated by the chemical reactions inside
cells, and not by diffusion.

If a mesoscopic regime is present, the results should be
independent of l in the range lmin � l � lmax. For example,
in Landau fluctuating hydrodynamics [47] this independence
actually takes place in the mesoscopic regime. The naı̈ve argu-
ment is the following: In the mesoscopic regime, concentration
fluctuations are present. Their size can be roughly quantified
by the correlation length ξ of the concentration. For l � ξ , the
fluid inside each cell can be considered completely uniform,
reducing even more the cell size should not change the results.
The present case shows a different behavior; in particular, a
plateau is not present in the graph of Fig. 9. This leads to the
suggestion that no characteristic length scale is present; this
means that the concentration fluctuations are scale invariant.
A similar argument for deducing the scale invariance is typical
of self-organized criticality theory (see, e.g., [56]).

In order to investigate this point, I evaluated the spatial cross
spectra SS,S ′ (�q) between the concentrations of the species S

and S ′, defined as follows:

SS,S ′ (�q) = 〈�[cS(�q)c∗
S ′ (�q)]〉, (20)

where cS(�q) are the Fourier transforms of the concentrations:

cS (�q) = C√
(lN )3

∑
i,j,k

nS (i,j,k) ei �ql[i,j,k]. (21)

Figure 11 shows the spatial cross spectrum of the concen-
trations of G and G′, as a function of the spatial wavelength q.
It can be noticed that the cross spectrum follows a power law
with exponent −β ≈ −1.7. This confirms the scale invariance

S
G

,G
’(q

) 
(u

ni
ts

 o
f χ

)

q (units of 1/λ/ )

q−β l=λ
l=2λ

 10

 100

 1000

 10  100

FIG. 11. Spatial cross spectrum SG,G′ (k) of the concentrations of
G and G′ [see Eq. (20) for the definition]. Results refer to the reaction
network of Fig. 7. Parameters are as in Fig. 9. A correction for the
periodic boundary conditions has been applied. The two data sets
refer to l = λ (N = 32) and l = 2λ (N = 16). A power-law decay
can be observed with an exponent compatible with −β = −1.7.

of the concentration in the accessible range of spatial scales.
Moreover, the cross spectrum does not change when l is
changed, which confirms that the model is actually describing
mesoscopic properties of the physical systems and not only
artifacts due to the chosen value of l.

It is possible to relate the power law exponent −α of the
drift speed dG/dt to the power law exponent −β of the cross-
spectrum of the concentrations of G and G′. In the following, I
will evaluate d(G/N)/dt , which is proportional to dG/dt . The
calculations are easier because G/N is a constant of motion
of the mass-action equations [while the derivative d(G/N)/dt

is calculated with respect to the RDME]. By using the values
of the transition rates shown in Table I, the drift speed can be
evaluated:

d

dt

G

N
= d

dt

〈nG〉
〈nN 〉 = krC2

l6

1

〈nN 〉2
(〈nG′nGnB〉〈nN 〉

− 〈nG′nNnB〉〈nG〉). (22)

Now I rewrite this expression in terms of the average
number of molecules n̄S = 〈nS〉 and of the displacements
δnS = nS − n̄S :

d

dt

G

N
= krC2

l6

1

n̄2
[〈δnG′δnG〉n̄B n̄N

+〈δnGδnB〉n̄G′ n̄N − 〈δnG′δnN 〉n̄B n̄G

−〈δnNδnB〉n̄G′ n̄G + 〈δnG′δnGδnB〉n̄N

−〈δnG′δnNδnB〉n̄G]. (23)

For l 
 λ, n̄S 
 1, and δnS � n̄S the third-order terms in
δnS can be neglected compared with the second-order terms.
Numerical calculations show that this approximation holds for
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FIG. 12. Dependence of the drift speed dR/dt on cell size l.
Results refer to the reaction network of Fig. 1. The concentration
of the replicase R increases with time. The value of the replication
reaction constant is kr = 9/(τχ 2), while the values of kd , kg , and C are
irrelevant under the adimensionalization used. The value of N ranges
from 15 to 35, decreasing for increasing l in order to perform the
calculations in a reasonable time. The average number of molecules
per cell, 〈n〉, is also shown. The starting values of the concentrations
are chosen on the stationary-state curve with the condition R = 2T .
The various data sets refer to different diffusion coefficients. The
diffusion coefficient of the polymers is DP = DR = DT , while the
diffusion coefficient of the monomer is DM = DB = 5DP .

all the values of l shown in the graph of Fig. 9. Moreover, the
largest term is 〈δnG′δnG〉:

d

dt

G

N
= krC2

l6

B

N
〈δnG′δnG〉. (24)

This quantity can be evaluated from the integral of the
cross-spectrum shown in Fig. 11:

〈δnG′δnG〉C2

l6
∝

∫
SG,G′(�q)d3q. (25)

The effect of the discretization with steps l is that the
integral must be limited to values |�q| < π/l. Assuming that
the cross spectrum follows a power law with exponent −β,

dG

dt
∝ lβ−3, (26)

which leads to the relation β − 3 = −α between the exponent
−β of the correlation function and the exponent −α of the
drift speed. This equality is confirmed by the graph of Fig. 11:
the slope of the curve is compatible with the exponent −β =
α − 3 ≈ −1.7.

The case of the reaction network sketched in Fig. 1 (the
replicase that can self-replicate) is more complex. Figure 12
shows the dependence of the drift speed dR/dt on the cell size
l. For l � 2λ, the graph can be described as before; namely,
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FIG. 13. Dependence of the drift speed dR/dt on the diffusion
coefficient. Results refer to the reaction network of Fig. 1. Parameters
are as in Fig. 12 and l = 3λ. The abscissa DM represents the
diffusion coefficient of the monomers; namely; DM = DB . The two
data sets refer to two different diffusion coefficients DP of the
polymers; namely, DP = DR = DT . The drift becomes negative for
the unrealistic condition DM < DP .

as two power laws with exponents −3 and −α. For shorter
l, a plateau is observed. For the lower values of the diffusion
coefficient, the power law l−α cannot be observed at all.

Another difference from the previous case of Fig. 7 is that,
in this case, the drift speed depends also on the diffusion
coefficient DM of the monomers, as shown in Fig. 13. It
can be noticed that the drift speed decreases as the diffusion
coefficient of the monomers DM decreases and becomes
negative approximately when DM < DP . In real cases, DM >

DP ; anyhow, the calculations show that, when this condition
is not met, the drift even inverts the direction.

The observed behavior is explained by the following
calculations: As in the previous case, the temporal derivative
of the ratio R/T is expressed in terms of transition rates:

d

dt

R

T
= d

dt

〈nR〉
〈nT 〉 = krC2

l6

1

〈nT 〉2
[〈nR(nR − 1)nB〉〈nT 〉

− 〈nRnT nB〉〈nR〉], (27)

and the equations are expressed in terms of the average number
of molecules n̄S = 〈nS〉 and of the of the displacements δnS =
nS − n̄S :

d

dt

R

T
= krC2

l6

1

n̄2
T

[〈
δn2

R

〉
n̄B n̄T

+〈δnRδnB〉n̄Rn̄T − 〈δnRδnT 〉n̄B n̄R

−〈δnT δnB〉n̄2
R + 〈

δn2
RδnB

〉
n̄T

−〈δnRδnT δnB〉n̄R − 〈δnRδnB〉n̄T − n̄Rn̄Bn̄T

]
. (28)

The second-order terms in δnS are much larger than
the third-order terms in the limit l 
 λ. The numerical
calculations show that the second-order terms in δnS are
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dominant for l � 2λ, while the plateau at l � 2λ is due to
the effect of third-order terms. Anyhow, in the region of the
plateau the average number of molecules 〈nS〉 is not enough to
guarantee the validity of the RDME [49]. For l 
 2λ, the
numerical calculations show that the largest terms are the
following:

d

dt

G

N
= krC2

l6

1

T 2

[(〈
δn2

R

〉 − 〈δnR〉)BT + 〈δnRδnB〉RT
]
.

(29)

The term 〈δn2
R〉 − 〈δnR〉 vanishes for the Poissonian distri-

bution and represents the enhancement of the variance of the
concentration due to the development of long-range correla-
tions. Also in this case, the power spectrum of the fluctuations
is a power law with exponent −α = −1.3. The term 〈δnRδnB〉
is negative (i.e., it reduces the drift speed). In the limit of
infinite diffusion coefficient DM , the number of monomers
B in a cell is random, and is not correlated with other
concentrations: 〈δnRδnB〉 vanishes as the diffusion of the
monomers increases. This explains the increase of the drift
speed observed when the diffusion coefficient DB is increased.

V. CONCLUSIONS

I showed that the chemical reaction networks presented in
Sect. III are marginally stable. The marginal stability comes
from replication and, in particular, from inheritance; that is,
from the fact that the generated molecule (the offspring)
inherits from the replicated molecule (the parent) the property
of belonging to a given chemical species.

Marginal stability allows drift along the stationary-state
curve under the effect of concentration fluctuations. This
phenomenon can be classified as a deviant nonclassical effect
[45,46]. The drift can be interpreted as the evolution toward a
more efficiently replicating system.

One of the open problems in abiogenesis is the identification
of the mechanism through which a molecular species, which

is more efficient in replicating other molecules, increases its
concentration. The effect of concentration fluctuations in the
described marginally stable systems is a possible solution
which is more simple than the already-proposed solutions [38].

On the other hand, the chemical reaction networks proposed
in various models of abiogenesis require marginal stability, if
this has not been noted before. For example, the RNA-world
hypothesis actually relies on a reaction network similar to the
one sketched in Fig. 4, which is marginally stable. For the
case of the “compositional genome” [32], it has been noticed
that the presence of a single stationary state of the mass-action
equations prevents evolution [33], which means that marginal
stability is a necessary condition for evolution in this model.

Summarizing, I propose that the marginal stability is the
necessary mathematical property needed by chemical reaction
networks in order to undergo evolution. Such a formal property
can be used in order to find candidates of chemical reaction
networks potentially involved in abiogenesis; in particular, in
the case of metabolism-first models.

I showed that the fluctuations generating the drift along the
stationary-state curve are self-similar and scale invariant and
that their properties are a genuine mesoscopic phenomenon,
which does not depend on the value of the parameter l of
the mathematical method. Unfortunately the speed of the drift
depends on the parameter l, acting as a high-frequency cutoff,
which means that the actual speed depends on the microscopic
molecular interactions and not only on the macroscopic
parameters such as the reaction constants and the diffusion
coefficients. Anyhow, the speed of the drift is of the order of
some percent of the replication speed. Whenever a marginally
stable chemical network will be setup in vitro, the drift will be
easily observable.
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