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1. Introduction

Several empirical and theoretical contributions (e.g. Grossman and Helpman,
1991; Rivera-Batiz and Romer, 1991; Aghion and Howitt, 1992; Eaton and
Kortum, 1999; Howitt, 2000; Keller, 2004) have shown that the impact of
international R&D spillovers on Total Factor Productivity (TFP) is non-negligible.
In particular, most studies have focused on the specific channels through which
foreign knowledge is transferred across countries and revealed that international
trade is an important vehicle of transmission (e.g. Coe and Helpman, 1995;
Coe et al., 1997, 2009; Keller, 1998, 2002; Guellec and Van Pottelsberghe de la
Potterie, 2004; Lumenga-Neso et al., 2005; Krammer, 2010; Franco et al., 2011;
Fracasso and Vittucci Marzetti, 2012). Fewer studies have instead looked at the
local conditions which make foreign knowledge appropriable and domestically
implementable.

In fact, since the seminal work by Cohen and Levinthal (1989), there has
been a widely-held consensus that international spillovers depend on the ability
of the recipient country to identify, assimilate and exploit foreign knowledge.
This ability has been called, following Cohen and Levinthal, absorptive capacity.1

As argued by Keller (1996), absorptive capacity most likely depends on the
country’s stock of human capital for the labor skills determine the extent to
which foreign knowledge is assimilated by the receiving country. Accordingly,
one would expect international knowledge spillovers to have a greater impact
on local productivity (or its growth) in those countries where human capital is
more abundant.

In a similar vein, the literature on catching-up and knowledge transmission
has tackled the issue of whether the relative backwardness of a country, i.e. its
distance from the technological leader, can affect the impact of foreign knowledge
flows on its growth performance. Countries closer to the technological frontier
could either benefit little from the accumulation of knowledge in relatively less
developed foreign countries, or rather make the best out of foreign improvements.
On the one hand, developed countries could have little external knowledge to
absorb because they are already at the frontier (Gerschenkron, 1962). On the
other hand, relative backwardness could make it more difficult for the laggard
countries to borrow the technology developed elsewhere (Matthews, 1969).2

This issue has not been fully settled at the empirical level, as indicated by the
contrasting conclusions of Crespo-Cuaresma et al. (2004), on the one hand, and
Kneller (2005) and Falvey et al. (2007), on the other.

In this paper, we empirically investigate how absorptive capacity and relative

1The intuition dates back to Abramovitz (1986), who argued that “social capability” affects
the different strength of the catching-up processes across countries and over time.

2The latter case recalls to mind the very concept of absorptive capacity: if laggard countries
are hampered in making the best foreign knowledge flows by their technological backwardness,
the latter could be interpreted as a measure of absorptive capacity. It should be noted, however,
that while Abramovitz (1986) and subsequent authors link absorptive capacity to absolute
levels of human capital, backwardness is a purely relative concept.
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backwardness impact on the international knowledge diffusion to shed some
light on the above mentioned predictions of the theory, to clarify the contrasting
findings in previous works, and to provide a better approach to address the
complex nonlinear relationship between international R&D and domestic TFP.

We are not the first to tackle these issues. As to the role of absorptive capacity,
Kwark and Shyn (2006) analyzed its relationship with R&D spillovers by adding
an interaction term between the human capital and the foreign knowledge stocks
to a regression à la Coe and Helpman (1995). They estimated the specification in
first difference using five-year changes on a sample encompassing both developed
and developing countries, as in Coe et al. (1997), and found that human capital
is important for the absorption of foreign knowledge, thereby corroborating the
hypothesis that absorptive capacity matters in the international transmission of
knowledge.3

In fact, among the various empirical findings that Kwark and Shyn (2006)
reported, some clash against well established empirical results. For instance,
when the interaction between human capital and foreign knowledge is added to
the specification, the positive and significant elasticity of TFP with respect to
the average years of schooling (i.e., a widely used measure of human capital)
disappears. This is most likely due to the fact that a linear specification does
not allow the TFP elasticity to foreign knowledge to reflect properly all possible
nonlinear (country- and time-specific) effects. Nonlinearities, and in particular
threshold effects, are very likely to exist. For instance, there might be a minimum
level of human capital that is necessary for any country to assimilate foreign
knowledge. Similarly, the marginal importance of absorptive capacity may not
be constant and may start diminishing once a certain level of development is
reached.4 These examples call for a specification more flexible than a linear form
with interaction terms; what is needed is a specification that allows the TFP
elasticity to foreign knowledge to reflect more complex nonlinear effects.

In addressing how absorptive capacity affects the way international knowl-
edge spillovers impact on medium-term output growth, Crespo-Cuaresma et al.
(2004) and Falvey et al. (2007) acknowledged the possible presence of nonlinear
effects. They adopted a Threshold Regression (TR) model, where the knowledge
absorption parameters can change across two regimes: one associated with the
average years of secondary schooling above a critical value, the other one with the
values below it. Albeit informative, these studies do not allow to conclude much
about the precise impact of absorptive capacity on how international spillovers

3In a similar vein, Kneller (2005) investigated the impact of absorptive capacity on in-
ternational R&D spillovers at the sectoral level in a sample of 12 developed economies over
1972–1992. In his empirical specification, the highest level of productivity in the sample is
adopted as a measure of foreign knowledge, following Benhabib and Spiegel (1994), and three
proxies of absorptive capacity are linearly interacted with it. This is in contrast with the
literature on R&D spillovers à la Coe and Helpman (1995), which we follow, where spillovers
depend on foreign R&D stocks. Similar considerations hold for Madsen et al. (2010), where
foreign knowledge is not considered at all.

4Focusing on different manufacturing sectors, Girma (2005), for instance, found evidence
that the impact of FDI on TFP is affected by absorptive capacity in a nonlinear fashion.
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affect productivity. First, the dependent variable in these studies is the growth
rate of GDP per capita, rather than TFP. Second, TR models are restrictive in
so far as they allow the parameters to change only across a limited number of
regimes and in a dichotomous fashion.5

As said, also the relationship between relative backwardness and growth
remains theoretically unclear, particularly because it is very likely to be charac-
terized by nonlinearities as well. This point has been recognized in some previous
empirical works. In fact, as shown by the contrasting results in Benhabib and
Spiegel (1994), Falvey et al. (2007), and Mancusi (2008), the role played by
relative backwardness in the international transmission of knowledge still remains
an open empirical issue.

In this work, we investigate the effects of both absorptive capacity and
relative backwardness on international knowledge diffusion. In so doing, we
achieve several goals: we address the limitations of the empirical specification
adopted by Kwark and Shyn (2006); we revisit the analysis of Crespo-Cuaresma
et al. (2004) and Falvey et al. (2007) in an estimation framework that follows
more closely the seminal work of Coe and Helpman (1995) on international
R&D spillovers (rather than those in the GDP convergence literature); finally,
we adopt a flexible estimation strategy so as to capture complex, economically-
meaningful, nonlinear effects. More precisely, we study how absorptive capacity
and relative backwardness affect the impact of international R&D spillovers on
TFP by means of a general nonlinear regression method applied to Coe and
Helpman’s (1995) specification with human capital (as in Engelbrecht (1997) and
Coe et al. (2009)). The Panel Smooth Transition Regression (PSTR) approach
we adopt allows relaxing the hypotheses of homogeneity and time-stability of
the parameters in a convenient and flexible way: the parameter of interest (i.e,
the elasticity of TFP to foreign knowledge) is let free to change smoothly across
various identified regimes, and the transition across them is related to meaningful
observable variables—in this study, variables proxying absorptive capacity and
relative backwardness—which vary across countries and over time.

This nonlinear technique, albeit only recently extended by González et al.
(2005) to panel data models, has been already employed in other economic
fields with interesting results (see, for instance, Fok et al., 2005; Fouquau
et al., 2008; Béreau et al., 2010; Delatte and Fouquau, 2011; Alcidi et al.,
2011, for time series applications). However, in order to account better for
the econometric issues arising from the identification problem in testing the
hypothesis of linearity, we adopt state-of-the-art econometric techniques to
perform reliable inference (e.g. González and Teräsvirta, 2006; Hurn and Becker,
2009). Furthermore, to make inference more robust and to account for unspecified
forms of heteroskedasticity and serial and simultaneous correlation in the data,

5In addition, as they looked at five-year non-overlapping average values, these studies
focused on long-term effects, while in this paper we exploit yearly data to unveil short-term
effects. Another difference of this work with Crespo-Cuaresma et al. (2004) is that the latter
does not include human capital among the regressors. This is at odds with what usually done
after Engelbrecht (1997).
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we combine Bravo and Godfrey’s (2011) double bootstrap method with the panel
moving blocks bootstrap recently proposed by Gonçalves (2011). To the best of
our knowledge, this approach has never been used before in applied works and
represents a further contribution of the paper.

To anticipate our results, we find that absorptive capacity and relative
backwardness are, respectively, positively and negatively related with the impact
of the trade-weight measure of foreign knowledge on domestic TFP. Given our
sample of OECD countries, this entails that trade-related international R&D
spillovers are influenced by the conditions of the recipient countries even if the
latter are developed economies. We also find that the elasticity of TFP to
foreign knowledge varies considerably across countries and over time. Finally,
our findings suggest that failing to account for nonlinearities, as done in much
of the previous literature, leads to the overestimation of the direct impact of
domestic R&D and human capital on TFP.

The paper proceeds as follows. In Section 2, we illustrate the PSTR model
and discuss the methodological issues regarding the tests of (no remaining non)
linearity (2.2.1 and 2.2.3), the model estimation (2.2.2), and the bootstrap
methods used to robustify inference (2.3). We present and discuss our findings
in Section 3. In Section 4 we conclude.

2. Empirical methodology

2.1. Specification

In their seminal paper, Coe and Helpman (1995) adopted a specification that
is now the workhorse of the empirical studies in the literature on international
R&D spillovers:

lnFit = αi + βd lnSdit + βf lnSfit + εit (1)

where i is the country index, t is the time index, lnFit is the log of domestic
TFP, Sdit the domestically produced R&D stock, and Sfit an import-weighted

sum of the R&D stock produced abroad (i.e., Sfit =
∑
j 6=i

Mijt∑
j 6=iMijt

Sdjt, where

Mijt is the import of country i from country j at time t). Engelbrecht (1997)
showed that human capital affects domestic productivity and should accordingly
be included in the model. Equation (1) is thus modified as follows:6

lnFit = αi + βd lnSdit + βh lnHit + βf lnSfit + εit (2)

where Hit is human capital, proxied by the average years of schooling in country
i at time t.

Such specification clearly imposes that the elasticities, that is the β coefficients,
are constant across countries and over time. As said in the previous section, this

6Lichtenberg and van Pottelsberghe de la Potterie (1998) observed that, to weight foreign
R&D stocks, one should not use import, but export, shares (i.e. the ratio of bilateral imports
over the GDP of the exporting country). As shown by Coe et al. (2009), this modification
does neither invalidate nor does it weaken what found with the specification of equation (1).
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might be unwarranted as the recipient country’s conditions may play a role in the
knowledge diffusion process and nonlinear effects may be important. The simple
inclusion of interacting terms between absorptive capacity and foreign R&D
stock (as done for instance in Kwark and Shyn, 2006) might not address properly
the possible nonlinearities in the relationship. Indeed, the inclusion of quadratic
and interaction terms might be well suited to model U-shaped relations, but fail
to account properly for more complex nonlinear effects. The TR model proposed
by Hansen (1999b) represents a better solution, as it allows the parameters
to change according to specific economic conditions: the regression coefficients
take a discrete number of different values (so called “regimes”); the switch of a
cross-sectional unit from one regime to another is not probabilistic, but driven by
the fact that a chosen “transition variable” is above or below a given identified
critical value (the “threshold”). Though more flexible than the linear estimation,
this approach has limitations too: in particular, it imposes abrupt transitions
across regimes (i.e. sudden jumps in the coefficients when the transition variable
crosses the identified thresholds), so that the groups of observations can be
clearly distinguished as belonging to either one regime or another. This excludes
any gradual variation of the parameters as well as any smooth transition of the
cross-sectional units from one regime to another.

To address these limitations, we adopt the PSTR model developed by
González et al. (2005) and Fok et al. (2005) following the work of Granger
and Teräsvirta (1993) on Smooth Transition Autoregressive (STAR) models.
This approach allows the parameters of interest to change smoothly between the
values associated with two (or more) extreme regimes. As in the TR model, the
change of the coefficients is driven by a transition variable, but in the PSTR
model the transition can be smooth. Both the threshold level (here called “loca-
tion parameter”) and the smoothness of the transition can be estimated from
the data. Since the transition variable is time-varying and unit specific, the
regression coefficients for each of the cross-sectional units in the panel change
gradually over time. Thus, the coefficients are not forced to assume at each
point in time and for each unit the values associated with either of the extreme
regimes, but they are let free to vary within them. The adoption of a bounded
and continuous (typically, a logistic) function of the transition variable to guide
the fluctuations of the coefficients across the extreme regimes guarantees their
gradual variation (in contrast with the dichotomous switches superimposed in
the TR model).7

In this paper, we focus on how absorptive capacity and relative backwardness
can affect the elasticity of TFP to foreign R&D spillovers and we aim at account-
ing for those possible nonlinear effects not fully explored in the existing literature
on international R&D spillovers. More precisely, we estimate a PSTR model
to deal with the potential heterogeneity and time-instability of the coefficients
and the nonlinear impact of absorptive capacity and relative backwardness on

7Differently from random coefficient models (Hsiao and Pesaran, 2004), PSTR makes the
transition across regimes depend on an observable variable.
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them. Accordingly, absorptive capacity (measured as the lagged value of the
country’s human capital) and relative backwardness (measured as the gap in
GDP per capita in PPP with respect to the leading country) are the variables
that drive—in line with the theoretical arguments summarized in Section 1—the
transition across regimes.

We modify equation (2) so as to have a PSTR model and thus adopt the
following specification:

lnFit = αi + βd lnSdit + βh lnHit + βfit lnSfit + εit (3)

where

βfit = βf0 +

r∑
j=1

βfj g(q
(j)
it ; γj , cj) (4)

and

g(q
(j)
it ; γj , cj) =

1

1 + e−γj(q
(j)
it −cj)

. (5)

Equation (4) shows that the time- and country-varying elasticity of TFP
to foreign R&D stock is a weighted average of the coefficients associated with
the r + 1 regimes, with weights given by the equations (5). These weights

are logistic functions of a transition variable q
(j)
it —that is, the variable that

guides the transition across regimes (e.g. the proxies of absorptive capacity and
relative backwardness)—, where cj is a location parameter (i.e., the critical level
separating two contiguous regimes) and the parameter γj (> 0) determines the
smoothness of the transition across the regimes.

When γj → ∞, for all j, the r transition functions g(.) become indicator
functions and the model reduces to a simple panel TR model. On the contrary,
when γj → 0, the r functions g(.) become constant and the model collapses to a
simple panel linear regression model with fixed effects. The procedure provides
for the estimation of all the parameters of interest in the model, including any
γj and cj , so that no a priori identification of the number and values of the
(extreme) regimes, or the shape of the transitions between them, is required.

2.2. Estimation procedure and methodological issues

2.2.1. Testing for linearity

The first step in the procedure—thoroughly discussed in González et al.
(2005)—is to test the linearity of equation (2) against a PSTR model with two
regimes (equation (3) with r = 1) and a given candidate transition variable

(q
(1)
it ), that is:

lnFit = αi + βd lnSdit + βh lnHit + βf0 lnSfit + βf1 g(q
(1)
it ; γ1, c1) lnSfit + εit (6)

Notably, if more candidate transition variables q
(1)
it exist, the procedure is

repeated for each of them: the variable that leads to the strongest rejection of
the null is selected as the transition variable for the estimation of equation (6).
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Testing the null hypothesis of linearity is a non-standard problem because
under the null there are unidentified nuisance parameters.8 The identification
problem can be solved in two ways. The first approach, proposed by Luukkonen
et al. (1988), tests the null γ1 = 0 with a m-order Taylor expansion of the
nonlinear model around this point. An auxiliary regression is run:

lnFit = αi + βd lnSdit + βh lnHit + δ0 lnSfit +

m∑
p=1

δp q
p
it lnSfit + νit (7)

where νit is the sum of the residuals of (6) and the remainder of the series
expansion. The null hypothesis (δ1 = . . . = δm = 0) can be tested by using a
(heteroskedasticity-robust) LM-test statistic. Under the null, the test statistic
follows asymptotically a χ2 distribution with m degrees of freedom. In small
samples, the authors suggest to use the F-version of the LM test (LMF ) by
dividing the latter by the number of restrictions.9 Usually, a third-order Taylor
approximation—m = 3 in equation (7)—is chosen.

The second approach, applied by Hansen (1999a,b, 2000) in the context of

TR models, tests the null βf1 = 0 and circumvents the identification problem by
computing the supremum LR test statistic (SupLM). Andrews and Ploberger
(1994), instead, suggested to use alternative statistics, i.e. AveLM, ExpLM
or wLM, that are weighted averages of (heteroskedasticity-robust) LM-test
statistics computed for several combinations of γ1 and c1 spanning the parameter
space.10 Given that these statistics have (asymptotically) pivotal but non-
standard distributions, which depend also on the moments of the distribution of
the nonlinear parameters and whose critical values cannot therefore be tabulated,
to obtain the critical values one has to bootstrap the tests.

Hansen’s testing approach was recently extended to STR models by González
and Teräsvirta (2006), Hurn and Becker (2009) and Becker and Osborn (2010).

8Linearity follows imposing either βf1 = 0 or γ1 = 0. When the null is βf1 = 0, c1 and γ1
are unidentified nuisance parameters. When the null is γ1 = 0, the unidentified nuisances are

c1 and βf1 .
9The F-version in our case is approximately F-distributed with m and (TN −N −m− 3)

degrees of freedom, where T is the time length of the panel and N the number of cross-sectional
units.

10AveLM, ExpLM and wLM are, respectively, the average test statistic, the exponential
average test statistic and the weighted average test statistic. They are defined as follows:

AveLM =

∫
γ1

∫
c1

LM(γ1, c1) dW (γ1, c1)

ExpLM = ln

(∫
γ1

∫
c1

exp

(
1

2
LM(γ1, c1)

)
dW (γ1, c1)

)
wLM =

∫
γ1

∫
c1

ω(γ1, c1) LM(γ1, c1) dW (γ1, c1)

where W (γ1, c1) is the weight function that allocates weights on the pairs (γ1, c1), while
ω(γ1, c1) is the weight function on LM, with weights proportional to the magnitude of the
values of the LM statistic, for the test not to be too heavily influenced by redundant values of
γ1 and c1, that may have a negative effect on its power.
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In particular, González and Teräsvirta (2006) studied the finite sample properties
of Andrews (1993) and Andrews and Ploberger’s (1994) test statistics (SupLM,
AveLM, ExpLM or wLM) and compared them with the Taylor expansion-based
linearity test of Luukkonen et al. (1988) for STR models. They showed that
AveLM, ExpLM or wLM are always more powerful than the SupLM and the
Taylor expansion-based tests.

Hurn and Becker (2009) and Becker and Osborn (2010), instead, dealt with the
problem of heteroskedasticity and the distortions the latter causes to the size of
the test in small samples. Indeed, dealing with heteroskedasticity in nonlinearity
tests can be problematic. On the one hand, neglecting heteroskedasticity may
lead to reject the null of linearity when it is not the case; on the other hand,
robustification can remove most of the test power as shown by Lundbergh
and Teräsvirta (1998). To cope with this, Hurn and Becker (2009) computed
heteroskedasticity-robust test statistics and calculate the critical values of the
tests using fixed-design wild bootstrap (Gonçalves and Kilian, 2004). They
showed via simulation that this leads to a significant reduction in the distortions
of the test. Accordingly, we follow their approach and use heteroskedasticity-
robust test statistics.11

2.2.2. Estimation of the PSTR specification

If the null of linearity is rejected, a two-regime PSTR model (equation (3)
with r = 1) is estimated. The estimation is carried out minimizing a concentrated
Sum of Squared Residuals (SSR) via Nonlinear Least Squares (NLS). The SSR
is concentrated with respect to the fixed effects αi and the linear coefficients β’s
applying a standard fixed effects estimator for panel data conditional on a given
combination of the nonlinear parameters (c1 and γ1). The panel fixed effects
estimates are recomputed at each iteration in the nonlinear optimization.12

Notably, to select the starting values of the nonlinear coefficients, we do
not use a grid search over a limited number of values, as usually done in the
literature, because this approach may easily lead to local minima in the estimation.
Instead, following the suggestions of González et al. (2005) and González and
Teräsvirta (2006), we implement and apply the Simulated Annealing (SA)
algorithm proposed by Corana et al. (1987) (see also Goffe et al., 1994, for an
application to M-estimation problems).13

11The alternative heteroskedasticity-robust bootstrap procedure, discussed in Hansen (1999a)
for TR models, is able to preserve the observed heteroskedasticity, but it does not exactly
reproduce the heteroskedastic pattern of the observed data.

12As noted by González et al. (2005), with normally distributed errors this estimation
procedure is equivalent to the maximization of a concentrated log-likelihood.

13Simulated Annealing—so named as it resembles the process undergone by the atoms in
a heated metal when it cools slowly—denotes a large class of probabilistic algorithms used
to locate global minima/maxima of functions in large search spaces, when the problem is
unmanageable using combinatorial or analytical methods. SA improves more standard iterative
optimization algorithms by introducing the “Metropolis criterion”: some steps are taken in
the “wrong direction” with a certain probability, as they serve to better explore the possible
solution space. The probability for this to happen decreases when one makes many iterations
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2.2.3. Testing for no remaining nonlinearity

After the estimation of a two-regime PSTR model, it is necessary to test the
hypothesis that it adequately captures the nonlinearities in the panel. We follow
González et al. (2005) and perform a test of (no remaining) nonlinearity on the
following specification:

lnFit = αi + βd lnSdit + βh lnHit + βf0 lnSfit + βf1 g(q
(1)
it ; γ̂1, ĉ1) lnSfit

+ βf2 g(q
(2)
it ; γ2, c2) lnSfit + εit

(8)

where q
(1)
it is the transition variable driving the fluctuation of the parameters

between the two previously estimated extreme regimes, and γ̂1 and ĉ1 are the

previously estimated values of the nonlinear parameters. q
(2)
it is instead an addi-

tional (candidate) transition variable, potentially associated with nonlinearities

that are not captured by the two-regime PSTR model with q
(1)
it as transition

variable.14 The rejection of the null at this stage implies that the variation of the
parameters of the model is not fully captured by a two-regime PSTR model. This
suggests that the parameters should be let change across time and individuals
in a more complex way. More precisely, in the case of a three-regime model

with two transition variables (q
(1)
it and q

(2)
it ), the individual and time-varying

parameters become weighted averages of the three βf parameters characterizing
the three extreme regimes.

Proceeding as before, this test of (no remaining) nonlinearity is performed
testing either γ2 = 0 with the LMF test statistic on the Taylor-based expansion
around this point, or testing βf2 = 0 by computing AveLM, ExpLM or wLM
test statistics. Also in this case, we pursue both testing methods. When the
null hypothesis of no remaining nonlinearity is rejected for more than one of

the alternative candidate transition variables (the q
(2)
it ’s), these tests are used to

select among them the most appropriate transition variable for the additional
nonlinear regime. As before, the candidate transition variable associated with
the lowest p-value/highest value of the test statistic is chosen for the estimation
of the three-regime model.

observing no significant improvements in the solution (this is regulated by the decrease in
the “temperature”, again by analogy with the annealing of a metal). Corana et al.’s (1987)
algorithm is just one of the many proposed in the literature. See, for instance, Otten and van
Ginneken (1989).

14The transition q
(2)
it may be also equal to q

(1)
it . If this is the case, there are two critical

values (c1 and c2) of q
(1)
it associated with the three (extreme) regimes. To gain some intuition,

consider an example in which the level of development of a country is allegedly associated
with some nonlinear effects of debt on growth. Let us assume that: i) there are three regimes

(r = 2); ii) the only transition variable is the country’s per capita income (q
(1)
it = q

(2)
it ); iii)

transitions across regimes are rather sharp (i.e. γ1 and γ2 are quite high), so that the PSTR
can be conveniently approximated by a TR model. Then the three-regime model could imply
that the effect of debt on growth changes across time and individual countries depending on
whether the country has a low, middle or high income per capita. The location parameters c1
and c2 would then be the thresholds distinguishing the three (income-related) regimes.
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Following a sequential procedure, as in González et al. (2005), we generalize
the test to a generic number of regimes to determine the number of transitions
in the model. After the estimation of a model with r + 1 regimes, we perform a
nonlinearity test on:

lnFit = αi + βd lnSdit + βh lnHit + βf0 lnSfit +

r∑
j=1

βfj g(q
(j)
it ; γ̂j , ĉj) lnSfit

+ βfr+1 g(q
(r+1)
it ; γr+1, cr+1) lnSfit + εit

(9)

where the null is γr+1 = 0 or βfr+1 = 0. If it is rejected, we estimate a (r + 2)-
regime PSTR model with the transition variable for the (r+ 2)-th regime leading
to the strongest rejection of the null. We continue adding regimes until the first
acceptance of the null of no remaining nonlinearity.15

In estimating models with more than two regimes, we first search via the SA
the starting values of the nonlinear parameters for the additional regime keeping
constant those of the previously estimated regimes. Then, we let the gradient-
based algorithm freely search the entire parameter space for the combination of
the nonlinear coefficients that minimizes the concentrated SSR. By doing so, we
can also check whether the addition of a further regime affects the estimates of
the nonlinear parameters of the other (previously estimated) regimes. Moreover,
since it is not desirable for a regime to be estimated with only few observations,
we check that the estimated location parameters are within the 5–95th percentiles
of the sample values of the transition variables and that they are not too close
each other, so that each regime can be estimated using at least 5% of all the
observations.16

2.3. Robust inference

In order to achieve asymptotic refinements and account for the presence of
unspecified forms of heteroskedasticity, and serial and simultaneous correlation in
the data, we build on the recent contributions of Gonçalves (2011) and Bravo and
Godfrey (2011) to estimate the statistical significance of the linear coefficients
β’s conditional on the nonlinear parameters γj and cj (j = 1, . . . , r) in a way
that, to our knowledge, has never been used. More precisely, to perform the t

15To avoid excessively large models, González et al. (2005) suggested to adjust the initial
significance level α of the test, multiplying it by a factor τ (0 < τ < 1) after every regime
addition.

16As pointed out by an anonymous referee, this restriction on the values that the location(s)
can take has the side-effect of preventing, especially in the case of very smooth transitions,
the detection of location(s) in the tails of the distribution of the transition variables. Given
the need of a sufficiently large number of observations in each regime for the estimation of its
parameters, in the literature the 5–95th percentiles of the transition variable are typically used
to determine the boundaries of the location parameters. The size of our panel would allow for
percentiles slightly lower (higher) than the 5th (95th) as each 5%-tail contains 40 observations.
That being said, we follow the standard approach for the starting values and we shall discuss
the implications of relaxing these limiting values in the estimation.
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tests, we combine Bravo and Godfrey’s (2011) double bootstrap method—that
uses (first- and second-level) Moving Blocks Bootstrap (MBB) (Liu and Singh,
1992) and quasi-estimators (Hu and Zidek, 1995)—with the Panel MBB (PMBB)
recently put forward by Gonçalves (2011) in the context of large n, large T
balanced panels with weak time series dependence (of the mixing type) and
(weak or strong) cross-sectional dependence.

In particular, to calculate the p-value of the t statistic for any coefficient β,
we first compute the panel fixed-effects estimator β̂. Using the actual data, we
then generate B first-level bootstrap samples by applying Gonçalves’s (2011)
PMBB, that is applying the standard MBB to all the individual observations
at each point in time. On each bootstrap sample, we compute the bootstrap
fixed-effects estimator β̂∗b , the quasi-estimator β̃∗b and the discrepancy (β̂∗b − β̂).17

For each first-level bootstrap sample, we generate D second-level bootstrap
samples by applying PMBB to the first-level sample and compute D quasi fixed-

effects estimates β̃∗∗bd
18 and their sample variance C̃∗∗b =

∑D
d=1(β̃∗∗bd −

¯̃
β∗∗b )2/D,

where
¯̃
β∗∗b =

∑D
d=1 β̃

∗∗
bd /D. Then, we compute the B bootstrap t statistics

t∗ = (β̂∗b − β̂)/
√
C∗∗b . To calculate the bootstrap p-value, we compute the

fraction of these statistics greater than t = β̂/
√
C∗, with C∗ being the variance

of the first-level bootstrap quasi-estimator β̃∗b .19

For the nonlinear parameters, we instead use the robust quasi-ML sandwich
estimator.20 Contrary to TR models, in STR models the estimates of the
location parameters cj are asymptotically normally distributed and conventional
hypothesis testing is possible.21

17 The quasi-estimator is computed as follows:

β̃∗b = β̂ + (Ẋ′Ẋ)−1Ẋ∗
′
b (ẏ∗b − Ẋ∗b β̂)

where X is the NT × (r + 3) matrix of regressors (lnSdit, lnHit, lnSfit, g(q
(1)
it ; γ̂1, ĉ1) lnSfit,

. . ., g(q
(r)
it ; γ̂r, ĉr) lnSfit), y is the NT × 1 vector lnFit, X∗b and y∗b are the series resulting

from the first-level bootstrap, and the dot denotes the standard within-transformation needed
to remove individual means.

18The second-level bootstrap quasi-estimator β̃∗∗bd is computed as follows:

β̃∗∗bd = β̂∗b + (Ẋ∗
′
b Ẋ∗b )−1Ẋ∗∗

′
bd (ẏ∗∗bd − Ẋ∗∗bd β̂

∗
b )

where X∗∗bd and y∗∗bd are the series as they result in each second-level MBB replication made
on each first-level bootstrap sample and the dot denotes the within transformation.

19This procedure is different from the one discussed by Gonçalves (2011), who used the
sandwich form of the covariance matrix and a kernel variance estimator to studentize the test
statistic, and a multivariate analogue of the estimator of the MBB variance proposed by Götze
and Künsch (1996) to studentize the bootstrap test statistics. It is also different from the
naive bootstrap discussed by Gonçalves and Vogelsang (2011), which uses the same sandwich
covariance matrix estimator to studentize both the original statistic and the bootstrap ones.

20An alternative procedure could have been to compute bootstrap t statistics also in this
case as Gonçalves and White (2004) proved the first-order asymptotic validity of the bootstrap
distribution of MBB analogs of Wald and LM statistics for hypotheses testing in quasi-ML
estimates. We nevertheless decided not to adopt it here, as it is not yet entirely clear if and
when this method leads to asymptotic refinements.

21We must warn the reader that, for the parameters inducing non-linearity the standard
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In Section 3, we apply these techniques to estimate the possible nonlinear
effects of absorptive capacity and relative backwardness on the elasticity of
countries’ TFP to foreign knowledge.22

3. Data and results

To preserve the comparability of this investigation with the seminal work
of Coe and Helpman (1995) and with most of the subsequent literature on
international R&D spillovers, we focus on the sample of 24 OECD countries over
the period 1971–2004 analyzed by Coe et al. (2009).23 Accordingly, domestic
and (trade-weighted) foreign R&D stocks, human capital (average years of
schooling), and TFP indexes come from Coe et al. (2009). In accordance with the
discussion in Section 1, we take absorptive capacity and relative backwardness as
possible factors affecting in a nonlinear fashion the impact of foreign knowledge
on the countries’ TFP: therefore, their proxies are our candidate transition
variables. We use each country’s lagged human capital (Hi,t−1) as a measure
of its absorptive capacity, while to proxy its relative backwardness we use the
lagged percentage difference of each country’s and the highest GDP per capita
in constant Purchasing Power Parity (PPP) in each period (gapi,t−1) .24

Following the procedure outlined in Section 2.2.1, we start by testing the
null of linearity against the PSTR model of equation (3) with two regimes
(r = 1) and each of the two candidate transition variables Ht−1 and gapt−1. The
test statistics, along with the associated p-values, are reported in Table 1. In
particular, we report the asymptotic p-value of the heteroskedasticity-robust
Taylor expansion-based LMF test statistic (LST-LMF ) and the bootstrap p-
values of the heteroskedasticity-robust ExpLM and wLM (with critical values
calculated via fixed-design wild bootstrap).25

approach to make inference may encounter problems because of the identification issues
discussed before, as testing the null βj = 0 or γj = 0 is equivalent to a linearity test. Indeed,

when βfj = 0 (γj = 0), cj and γj (βfj ) are not identified, hypothesis testing for βfj and γj could
be therefore not straightforward. The general problem of inference with weak identification
has been very recently addressed by Andrews and Cheng (2011). An example of the problems
one might encounter will be briefly discussed in the next section.

22All the computations were made using gretl 1.9.5. Code available at request.
23The panel is balanced. The countries are: Australia, Austria, Belgium-Luxembourg,

Canada, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Japan,
South Korea, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK,
US.

24Data on countries’ GDP per capita in constant PPP come from the OECD.
25To calculate ExpLM and wLM, we first compute a heteroskedasticity-robust LM test

statistic for each of 1000 pairs (γ1, c1): LM(γ
(j)
1 , c

(j)
1 ). Each pair is built as follows: γ1 is

drawn from a uniform distribution 0-100; c1 is drawn uniformly at random from the set of
observed values of the transition variables within the 5-95th percentile in the sample. Then we
apply the following formulas:

ExpLM = ln

1000∑
j=1

exp
(

0.5LM(γ
(j)
1 , c

(j)
1 )
)

1000


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Table 1: Tests of linearity

Transition variable p-value
Ht−1 LST-LMF 3.77022 0.0105

ExpLM 22.7020 0.0000
wLM 0.03310 0.0000

gapt−1 LST-LMF 25.6022 0.0000
ExpLM 16.0325 0.0000
wLM 0.02139 0.0000

All the test statistics strongly reject the null, thus corroborating the working
hypothesis of a nonlinear impact of human capital (i.e., absorptive capacity) and
technological gap (i.e. relative backwardness) on the TFP elasticity to foreign
knowledge.

As to the choice of the transition variable to be included in the PSTR
estimation, the various test statistics lead to different conclusions: the strongest
rejection of the null is obtained for Ht−1 (gapt−1) using wLM and ExpLM
(LST-LMF ). As wLM and ExpLM are usually more reliable than LST-LMF , we

estimate equation (3) setting r = 1 and q
(1)
it = Hi,t−1.

For the estimation of the nonlinear parameters associated with the two
regimes (see Section 2.2.2), we find the starting values by means of the SA.26

The results of the NLS are reported in the second column of Table 2.27 This
is not the conclusion of the procedure which, as illustrated in the previous
Section, ends when the null of no remaining nonlinearity cannot be rejected.
Accordingly, we proceed now with the tests of no remaining nonlinearity and
with the estimation of any necessary further regimes (thereby concluding the
whole estimation procedure and identifying our preferred specification) before
discussing point estimates and inference.28

wLM =
1

1000

1000∑
j=1

ωjLM(γ
(j)
1 , c

(j)
1 )

where ωj = LM(γ
(j)
1 , c

(j)
1 )/

∑1000
j=1 LM(γ

(j)
1 , c

(j)
1 ). We decided not to use AveLM since its

power could be negatively affected by the presence of possible redundant values of γ1 and
c1. To calculate bootstrap p-values via fixed-design wild bootstrap, we compute ExpLM and
wLM for 999 bootstrap replications, where, in each replication, we randomize the sign of the
residuals of the estimated linear model. The bootstrap p-value is equal to the fraction of
bootstrap test statistics greater than the original one.

26In implementing Corana et al.’s (1987) algorithm, we set the initial temperature at 100, far
above the average difference in SSR. The temperature reduction factor is 0.85. The algorithm
adjusts the step-size vector every 20 parameter changes and this loop is repeated 50 times
before each temperature reduction. In all the cases, the procedure converges after on average
6 million function evaluations.

27As a robustness check, the third column of the Table also reports the results of the
alternative estimate of a two-regime PSTR model with gapt−1 as transition variable.

28For the sake of brevity, we will not discuss the individual results of all the intermediate
steps, such as the two-regime models in Table 2 or each of the alternative tests of remaining
no linearity in Table 3. These are to be considered auxiliary parts of the procedure leading to
our specification. One only exception will be made for the four-regime specification which we
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Table 2: Estimates of nonlinear parameters (24 countries 1972-2004: 792 obs.)

Regimes (r + 1) 1 2 2 3 4
Transition variables Ht−1 gapt−1 Ht−1, gapt−1 Ht−1, gapt−1, gapt−1
γ1 3.3552 4.4459 4.1366

(0.7493) (3.8759) (4.8629)

c1 8.3815 8.3307 8.3270
(0.0976) (0.1512) (0.1755)

γ2 0.1028 0.1164 0.1218
(0.0100) (0.0140) (0.0122)

c2 -59.440 -58.809 -58.777
(1.1701) (1.2736) (1.2327)

γ3 27.941
(3.7788)

c3 -1.5029
(0.0188)

SSR 5.43068 4.94314 3.14351 2.97204 2.78815
log-L 849.269 886.518 1065.77 1088.14 1113.28

Robust standard errors in brackets (QML estimator).

Table 3: Tests of no remaining nonlinearity

Hypothesis
Transition variables

p-value
Estimated regimes Additional

H0: r = 1; H1: r = 2 Ht−1 Ht−1 LST-LMF 4.3843 0.0045
ExpLM 7.4068 0.0000
wLM 0.0112 0.0000

gapt−1 LST-LMF 24.739 0.0000
ExpLM 21.315 0.0000
wLM 0.0190 0.0000

H0: r = 2; H1: r = 3 Ht−1, gapt−1 Ht−1 LST-LMF 0.2815 0.8388
ExpLM 1.7287 0.0601
wLM 0.0048 0.0350

gapt−1 LST-LMF 4.1860 0.0059
ExpLM 4.5622 0.0030
wLM 0.0061 0.0170

H0: r = 3; H1: r = 4 Ht−1, gapt−1, gapt−1 Ht−1 LST-LMF 0.6573 0.5785
ExpLM 1.1691 0.2092
wLM 0.0034 0.1732

gapt−1 LST-LMF 0.7128 0.5445
ExpLM 2.1588 0.0301
wLM 0.0037 0.1201
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On the basis of the tests of no remaining nonlinearity (Table 3), we end up
estimating a PSTR model with four regimes (r = 3): the linear one, one regime
associated with human capital (the first transition variable we discussed above)
and two regimes associated with the technological gap. In all the estimates
of the nonlinear parameters, reported in the various columns of Table 2, the
location parameter associated with human capital (c1 = 8.33) is rather close to
the sample mean (8.54).29 The estimated smoothness parameter γ1 is roughly
equal to 4, indicating that the transition is moderately smooth.30

On the contrary, the location parameters of the regimes associated with the
technological gap are much closer to the minimum admissible values for the
locations. In particular, the location parameter of the third regime (c2 = −58.8)
is near (though higher than) the lower bound of the 5th percentile, that is −59.2.

Although the above mentioned tests suggest that a four-regime (r = 3)
specification fits the data well, it should be noted that the location parameter of
the last regime (c3 = −1.5) is above the 95th percentile, i.e. −2.31 Moreover,
this last regime has an associated smoothness parameter which is quite high
(γ3 = 27.9), suggesting that the transition is rather sharp. This entails that only
few observations—namely, those of just three countries (Norway, Switzerland
and US) in few years—end up in this additional regime. On these grounds we
conclude that the estimates of the fourth regime should not be considered as
fully reliable and, therefore, be neglected.

In fact, the contrasting indications from the nonlinearity tests (calling for
a fourth regime) and the evidence above (supporting a three regimes model)
suggest to look at the impact of excluding (or including) the fourth additional
nonlinear component in the regression in greater detail. In this respect, the
omission of the fourth regime does not affect much the estimates on the nonlinear
parameters of the other regimes: as can be seen in Table 2, the estimated values
of c1, γ1, c2, and γ2 are almost unchanged both in the three- and four-regime
specification. Nor are seriously affected the estimates of the implied linear
coefficients β’s, reported in Table 4. This table shows the conditional fixed
effects estimates in the PSTR model of equation (3) with, respectively, three
and four regimes—second and third column—, along with those associated with
the linear model of equation (2)—first column—, which is used as a traditional
benchmark to gauge the other results.

will report (and in part discuss) before rejecting it on the basis of a series of considerations
spelled out in the text.

29Human capital ranges from 2.51 (Portugal in 1971) to 12.29 (USA in 2003) and its 5-95th
percentiles are, respectively, 4.98 and 11.53.

30Although the standard errors of γ1 might look quite high, they are actually not so when
compared with the results usually obtained in STR models. As well known, it is very difficult to
obtain a precise estimate of γ in these models (see, for instance, the discussion in Franses and
van Dijk, 2003, Section 3.2.2). Moreover, one should not judge the significance of this coefficient
by looking at the associated t-statistic, because of the identification problem discussed in
Section 2.2.1.

31The variable gap ranges from −89.9 (South Korea in 1971) to 0 with a mean about −32.6
and a standard deviation equal to 16.0.
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Table 4: Estimates of linear parameters (24 countries 1972-2004: 792 obs.)

Regimes (r + 1) 1 3 4
Transition variables Ht−1, gapt−1 Ht−1, gapt−1, gapt−1
βd 0.0450 0.0278 0.0294

(0.0259) (0.0140) (0.0129)

[0.0051] [0.0040] [0.0010]

βh 0.6555 0.3408 0.2922
(0.1249) (0.1034) (0.0992)

[0.0000] [0.0560] [0.0901]

βf0 0.1491 0.0939 0.1052
(0.0558) (0.0391) (0.0391)

[0.0000] [0.0000] [0.0000]

βf1 0.0070 0.0063
(0.0038) (0.0032)

[0.0000] [0.0010]

βf2 0.0692 0.0705
(0.0109) (0.0103)

[0.0000] [0.0000]

βf3 0.0090
(0.0011)

[0.1041]

Unreported country dummies. Asymptotic HACC standard errors in round brackets.
Bootstrap p-values of t statistics calculated via PMBB double-bootstrap in square brackets:
999 first-level replications; 1000 second-level replications; block size 3.

An additional piece of evidence in favor of discarding the fourth regimes is
the fact that, once robust inference is done, the coefficient βf3 is not statistically
significant. Table 4 reports in square brackets the bootstrap p-value of the
t statistics computed via the double bootstrap discussed in Section 2.3 (with
1000 second-level bootstrap replications for each of 999 first-level bootstrap
replications using PMBB resampling with block size equal to 3) and the p-value

of the test for βf3 = 0 is 0.1041. This result, in fact, is not very strong because of

the identification problems (discussed in Section 2.2.1) in testing the null βf3 = 0
in the presence of nuisance parameters. The bootstrap procedure used to compute
the p-values of the test for βf3 = 0 is indeed robust to serial and simultaneous
correlation in the data, but it is not free from nuisance parameter issues. The
tests of no remaining nonlinearity in Table 3, on the contrary, address the
nuisance parameter problem, but are not robustified to serial and simultaneous
correlation. As we cannot get rid of both nuisance and autocorrelation problems
at the same time and given the contrasting indications coming from the two tests,
we cannot rely exclusively on them for the choice of our preferred specification.
Hence, despite the failure to reject some residual nonlinearity associated with
gapt−1 for the three-regime specification (with Ht−1 and gapt−1 as transition
variables), the long series of considerations put forward in the paragraph above
led us to choose the model with three regimes as the preferred specification.
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It is worth stressing that this choice is in line with what done in the (P)STR
literature. As shown in Franses and van Dijk (2003), outliers may affect the tests
of no remaining nonlinearity without leading to the discovery of any sensible
additional regime: the tests are thus to be interpreted with a grain of salt and
with reference to the overall fit of the nonlinear specifications they would lead
to estimate. Moreover, it is inappropriate to use the PSTR model to single out
very few observations in a regime (as it would be the case were we including
a fourth regime in our estimation). Accordingly, in the discussion of the main
results below, we will focus on the main differences between the benchmark
linear model and the three-regime PSTR model.

3.1. Discussion of the results for the preferred specification

The estimates of the three-regime PSTR model—fourth column in Table 2 for
the nonlinear part and third column in Table 4 for the linear part—support the
idea that the human capital of a country, by determining its absorptive capacity,
positively affects the exploitation of foreign knowledge. The TFP elasticity to
the trade-weighted foreign R&D stock is positively related with human capital:
βf1 is positive and significant, although the overall impact of absorptive capacity
on the TFP elasticity is not huge (the maximum relative difference accounted by
human capital in the parameter βf is approximately 7.5%). These results are in
line with Crespo-Cuaresma et al. (2004), who found some evidence of a positive
impact of human capital on the effects of foreign knowledge on growth. Their
estimated effects were however not statistically significant and, thus, weaker than
ours. Also Kwark and Shyn (2006) found a positive and significant impact of the
interaction between human capital and foreign R&D stock on TFP; however, as
mentioned in Section 1, in their specification the positive and significant impact
of the human capital and of the trade-weighted foreign R&D stock on TFP
disappears. Notably, we do not encounter any of these problems here.32

The effects of the regime switching due to Ht−1 are depicted in Figure 1
which plots the values of β̂f0 + β̂f1 g(H̄i; γ̂1, ĉ1) + β̂f2 g( ¯gap; γ̂2, ĉ2) for each country,
where ¯gap is the sample mean of gap and H̄i is the average human capital by
country in each of two sub-periods: 1971-1987 and 1988-2003.

A much greater difference in the elasticity of TFP to foreign knowledge
across countries and periods is related with the countries’ relative backwardness.
According to our estimates, the TFP elasticity to foreign knowledge in laggard
countries (e.g. South Korea, Portugal and Greece) is significantly lower than
the same elasticity in leading countries (e.g. Norway, Switzerland and US).
For instance, the TFP elasticity to foreign knowledge for South Korea in the
1970s would have been on average 70% higher if South Korea had filled the
technological gap with the leading country before.33 The effects for the different

32Our findings are also qualitatively in line with those in Kneller (2005), which however
measured foreign knowledge in a different way and adopted just a linear interacting term.

33These results apply to, but are not due to, the inclusion of the country in the panel.
Indeed, they do hold even if South Korea, which exhibits a low human capital and the largest
technological gap, is excluded from the sample.
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(a) Average human capital 1971-1987 (b) Average human capital 1988-2003

Figure 1: Effect of the regime switching associated with human capital on TFP elasticity to
import-weighted foreign R&D stock

(a) Average gap 1971-1987 (b) Average gap 1988-2003

Figure 2: Effect of the regime switching associated with relative backwardness on TFP elasticity
to import-weighted foreign R&D stock

countries of the regime switches associated with gap are summarized in Figure 2,
which plots the values of β̂f0 + β̂f1 g(H̄; γ̂1, ĉ1) + β̂f2 g( ¯gapi; γ̂2, ĉ2) for each country,
with H̄ being the sample mean of human capital and ¯gapi the mean gap by
country during 1971-1987 and 1988-2003.

These findings indicate that the elasticity of TFP to foreign knowledge is non
marginally affected by the internal conditions of the recipient country and that,
even in a sample of developed economies, leading countries have an advantage
over the others. This is supportive of the intuition of Matthews’s (1969). Despite
the non-negligible differences in the relationships estimated in this and in other
works, our results seem qualitatively in line with those in Falvey et al. (2007)
whereas they contrast with Crespo-Cuaresma et al. (2004).34

34In fact, although we find as Falvey et al. (2007) that the marginal increase in the TFP
elasticity to foreign knowledge deriving from further reductions in the technological gap is
decreasing, we cannot find evidence of the hump-shaped relationship implied by the three-
regime specification estimated by Falvey et al. (2007). It is also worth noticing, in passing,
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Having illustrated and commented on the estimates associated with each
individual transition variable, we move now to a more general discussion of the
results. To gauge the overall statistical fit of the PSTR models, in line with the
literature we focus on the Sums of Square Residuals (SSR) and the log-likelihood
values reported in Table 2. The former passes from 5.43 in the linear estimation
to 2.97 in our preferred specification and the log-likelihood moves from 848.27 to
1065.77.35 These findings, together with the strong statistical significance of the
individual coefficients even after a proper robustification of the tests, support the
adoption of a PSTR model where absorptive capacity and relative backwardness
drive two regime changes.

Although not the main object of the investigation, we now briefly comment
on how the parameters of domestic R&D stock and human capital (respectively,
βd and βh) are affected by moving from the linear to the nonlinear specification.
As to the domestic R&D stock, the observed decline in βd is in line with Kneller
(2005) and compatible with the standard errors of the estimated coefficients. This
implies that failing to reckon the nonlinearities investigated in this work leads to
an overestimation of the impact of the domestic R&D stock. The discussion of the
coefficient for human capital is slightly more complicated because the variable
enters in the specification both as regressor and (once lagged) as transition
variable. It follows that its overall impact on TFP is not directly comparable
in the baseline and in the nonlinear estimations. In the linear specification the
estimate of the (constant) TFP elasticity to human capital is β̂h = 0.6555 and

in the nonlinear specification β̂h = 0.3408. The latter is smaller than the former,
but β̂h in the nonlinear specification should be interpreted as the lower bound of
the total impact of human capital: in other words, β̂h = 0.3408 is the elasticity
for the countries having H greater than 10 or smaller than 7 (i.e., values that
are far away from the location parameter c1 = 8.33). For any observation of H

taking values between 7 and 10, the elasticity is significantly higher than β̂h.
When evaluated at the sample means, the point estimate of the long-run TFP
elasticity to human capital implied by our specification happens to be very high
(higher than 1).36

Finally, we summarize in Figure 3 the total effect on βfit of the inclusion of
three regimes for the different countries over time. This figure allows to grasp
the extent of variation of the elasticity of TFP to foreign knowledge both over

that our specification builds on those adopted to study international R&D spillovers and differs
from medium-term growth convergence models. Accordingly, one should be careful not to
interpret our results as implying lack of convergence, as they refer to short-term dynamics.

35In line with the more moderate impact of relative backwardness found above, the fit of
the model improves more because of the inclusion of gapt−1 than that of Ht−1.

36The long-run TFP elasticity to human capital of country i is given by:

∂ lnFi

∂ lnHi
= βh + βf1 γ1

e−γ1(Hi−c1)(
1 + e−γ1(Hi−c1)

)2Hi lnSfi

This formula has been evaluated using our point estimates of the parameters and at the sample
mean of H and lnSf .
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Figure 3: TFP elasticity to import-weighted foreign R&D stock by country

time and across countries. As to the cross-section dimension, it is worth noticing
that: i) the elasticity of Portugal, South Korea, and, in part, Ireland is lower
than the value of βf estimated with a linear panel; ii) the linear estimates seem
to fit Greece, Israel, Italy, Spain and, in the last periods, New Zealand; iii) in
all the other cases, the linear estimates fall short of the value obtained taking
nonlinear effects into account.

4. Conclusions

In this paper, we investigate whether domestic factors affect the impact that
foreign knowledge has on the TFP of the recipient countries. Although economic
intuition and theoretical modeling suggest that both absorptive capacity and
relative backwardness of the countries exposed to foreign knowledge can affect
TFP and growth, the literature has not yet reached conclusive empirical results.

Applying the PSTR model to the workhorse empirical specification in this
strand of the literature (Coe and Helpman, 1995; Coe et al., 2009), we test on a
sample of OECD countries over the period 1971-2004 whether absorptive capacity
and relative backwardness have nonlinear effects on the TFP elasticity to foreign
R&D stock. This nonlinear approach relaxes the assumptions of parameter
homogeneity across countries and parameter constancy over time, and allows to
relate the nonlinear effects to observable proxies of both absorptive capacity and
relative backwardness (measured, respectively, as the level of human capital and
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the gap with respect to the leading country in terms of GDP per capita in PPP
terms).

Despite its flexibility, PSTR modeling requires the adoption of non trivial
econometric techniques to test properly the hypothesis of linearity in the presence
of nuisance parameters. Accordingly, we run a battery of tests used in the
literature (González and Teräsvirta, 2006) and take heteroskedasticity into
account by means of a fixed-design wild bootstrap procedure (Hurn and Becker,
2009).

The results of our nonlinear estimations suggest that absorptive capacity
is significantly associated with higher R&D spillovers. The indirect impact of
human capital on TFP via the increase in the absorption of foreign knowledge
can be quite significant. In addition, and in contrast with previous results in
the literature, we find that relative backwardness has a negative and significant
impact on the transmission of foreign knowledge. Laggard countries seem to
derive lower benefits from foreign R&D stocks than more advanced countries do.

The adoption of a technique encompassing nonlinear effects allows differenti-
ating the TFP elasticity to foreign knowledge across countries and over time. A
good number of countries in the sample exhibit an elasticity higher than that
estimated by means of a linear (homogeneous parameter) panel model, whereas
South Korea, Portugal and (in part) Ireland score worse than all the other
countries. Interestingly, but not surprisingly, Greece, Italy and Spain occupy an
intermediate position.

All these results are strongly statistically significant even though we adopt a
series of up-to-date econometric measures to make inference robust to unspecified
forms of heteroskedasticity, and serial and simultaneous correlation in the data.
In particular, we combine the Bravo and Godfrey’s (2011) double bootstrap
method with the panel moving block bootstrap of Gonçalves (2011). This is, to
our knowledge, the first time such method is used in an applied empirical work.
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