Dipartimento di Informatica
Universita di L'Aquila
Via Vetoio, I-67100 L'Aquila, Italy

http://www.di.univag.it

Tesi di Dottorato

Model Checking for the Analysis and Control
of Complex and Non-deterministic Systems

Fabio Mercorio

Gennaio 2012

Settore Scientifico Disciplinare INF/01
XXIV Ciclo

Tutore Coordinatore del Dottorato
Prof. Giuseppe Della Penna Prof. Stefania Costantini

© Fabio Mercorio, 2012. All rights reserved

Dipartimento di Informatica
Universita di L'Aquila
Via Vetoio, I-67100 L'Aquila, Italy

http://www.di.univag.it

Ph.D. Thesis

Model Checking for the Analysis and Control
of Complex and Non-deterministic Systems

Fabio Mercorio

January 2012

Advisor PhD Program Supervisor
Prof. Giuseppe Della Penna Prof. Stefania Costantini

© Fabio Mercorio, 2012. All rights reserved

Al mio paf: ora so cosa signific®

To my dad: now | know what it meais

ABSTRACT

In the last two decades, the use of intelligent planning ratlgms, complex controllers,
and automated verification processes is growing apacendpnavyreat impact in many in-
dustrial fields, as robotics, manufacturing processesgantkedded systems, which now
are presentin an increasing number of everyday productagpichnces. Moreover, many
processes take place in an environment having variable apeedictable influences on
the system dynamics, making the problem of dealing withemem-deterministide-
haviours a very significant concern. As a result, a growintgesyy between Control and
Al Planning communities has been established, with the ainetvelop algorithms and
tools able to cope with such systems. In particular, it isgnes$ting to evaluateobust-
ness verify the correctnessand computglansto execute activities. To this ainfigrmal
methodgand in particulamodel checkingare well-suited to deal with these issues.

For several years, both control and planning problems haee bddressed only through
symbolianodel checking, which has been successfully applied to e elaks of systems.
Nevertheless, there are still some open issues in dealithgDigcrete Time Hybrid Sys-
tems (DTHS), whose state description involves both cootiistand discrete variables, as
well as systems with a complex nonlinear dynamics, for wisygmbolic approaches are
hard to apply. To this regard, we focus on the usexlicit model checking, which is
based on the explicit enumeration of the system states aondth control and planning
problems in both deterministic and non-deterministic dosia

Nevertheless, the explicit approach is strongly affectedhle so calledstate explosion
problem. In order to mitigate this problem, a first contribatis the developing of a
disk-based algorithm for the UPMurphi tool: a universaipler for continuous domains
built on top of the Murphi model checker. We exploit the uselisk-based approach to
analyse and control systems having a huge state space gh@awumber of benchmarks
and real world planning and control case studies. Moreaverextend the use model
checking todatabase data qualitproblems, using formal methods for the verification
of data consistencgefined over a set of data items, and evaluating the resulésreal
application of a Public Administration database providgthe C.R.1.S.P. research center.

Finally, we tackle withnon-deterministic systenis which an action may have different
outcomes, unpredictable at planning time, addressing tbielggm to synthesise a plan
able to reach a goal in spite of the non-determinism, steongplan. Many approaches
have been applied in literature, mainly basedsgmbolicmodel checking. As a novel
contribution, we present an algorithm able to synthesismgtplans (if any) withmini-
mum coswith respect to a given cost function (that is minimising tio-deterministic
worst-case execution), analysing its complexity, comess and completeness. Finally,
we describe the implementation of the algorithm into UPMhiigind we test it on two
continuous non-deterministic case studies.

ACKNOWLEDGMENTS

First of all, | want to give thanks to my wife Valentina, whildvingly tolerate me (I know
that’s hard), and to our son Pietro: you are the greatestibatar of this work, thanks to
kept me awake (by night) writing the thesis....I'll neverdet it.

My heartfelt thanks to my parents and my sister, which alveayuraged every decision
| made.

| am so grateful to my advisor, prof. Giuseppe Della Pennaankh for your guidance
during these wonderful years and, mainly, thanks for yotiepae with me.

A special thank is reserved to Daniele for his unfailing sappespecially when |
wouldn’t have wanted to be supported at all.

Warm thanks to all the researchers with whom | had the greatpire to work: Benedetto,
Enrico, Mario, Mirko and Roberto.

Finally, | thank my thesis reviewers, Prof. Jean-Marc Faure Prof. Ganesh Gopalakr-
ishnan for their careful reading and for their valuable cants and suggestions on how
to continue and improve this work.

Fabio

“E si’ come essere suole che
'uomo va cercando argento e
fuori de la 'ntenzione truova

oro.

Dante Alighieri. Convivio,ll,xii

“And as it is wont to chance that
a man goeth in search of silver
and beyond his purpose findeth
gold”

Dante Alighieri. The Con-
vivium, I, xii

TABLE OF CONTENTS

vii

ACKIOWetgments

QA_M' 9
2.1 Hvbrid SyStems e e e e e e 9

[2.1.1 Discrete Time Hybrid Systemso oo oo o 10
|2 2 Finite State Svsteins 2 1

4.2 Symbolic State Representation o oo 30

4.3 _BDDs: Binary Decision Diagrafs 30

Xiv TABLE OF CONTENTS

8.3.4 Planningo 77

8.4 The Activity Planning for a Planetary Lander

TABLE OF CONTENTS XV

9.4 Robust Data Quality Analysiso 100

19.5 An Industrial Application: The Worker Career Adminagive Archive . . 104
9.5.1 DomainDescription 104
9.5.2 Career (simplified) Model 104
9.5.3 Graph Representation oo v, 105
9.5.4 _The CMurphiModel 105
19.5.5 Robust Data Analysis: Experimental Results 108

lI__Explicit Model Checking for the Analysis of Non-

1O—StrongPanning-tor Non=Deterministic Domains

[11.3 Cost-OptimalStrongPlan 124
111.4 An Example of Cost- ODWIem e 127
111.5_The Cost-Optimal Stron m130
111.5.1 The GNDIDATEEXTENSION FOUGiNE o\ oo .. 130
11.5.2_The PANEXTENSIONTOUENG . . .« o o oo voo oot 131
111.5.3 The @STOPTIMAL STRONGPLAN routing 132
[11.6 _Time Complexity of the Algorithm 134

111.7 Correctness and Comoleteness of the AIg_QJ'lthm 136

XVi TABLE OF CONTENTS

[12.2.6 Decision SUppOrt System o o 7 15
A3—Conclusions 159
3.1 FUture WOrks o o o o 160

LIST OFFIGURES

2.1 Thewatertank system, 11
2.2 Files cardomain.pddl and caproblem.pddl 16
3.1 Schematic representation of the Model Checking approdaken

from[10D). e e e 18
3.2 PROMELA code for thé\-Petersormutual-exclusion algorithm 20
3.3 SPIN execution output for the PROMELA model of Figﬁ 32.... 21
3.4 FSS for the discrete time system in Equa@ 31. 24
3.5 Murphi code for the FSS in Figl@A 25
3.6 Murphi error trace for murphi model in FigL@S.S 26

StUAY . . . L e e 75

XVili LIST OF FIGURES

8.14 Examples of durative actions and processes modeliagptoduction

phase of the batch chemicalplant 1 9
8.15 PDDL B3.fill _process with approximated square i_'oot 92
8.16 Examples of failure events of the batch chemicalplant 92
i i i i: 93
95

8.19 Varlatlon of f|II|ng Ievels computed by VAL for tanIEEDDL B1,PDDL B2,
PDDL B3 and solution concentration in tamoDL B3 during the batch
chemical plant production cycle described in Fi A8..... ... 95

9.2 An Abstract representation of the dynamics of a job candfterest

start, cs= cessationcn = conversionandex= extension 106
9.3 Representation of thecheckimplementation using the CMurphi model
checker. 108

9.4 The CMurphi model ot he Worker Career Administrative Archiagpli-

pageﬁ 141

11.5 TheHurried Passenger Problegraph of model in Flgum 4 142
11.6 SUPMurphi strong plan for Thdurried Passenger Problemmodel of
Figureﬁﬂ 142

11.7 SUPMurphi execution for Theurried Passenger Problemodel of Fig-
urelh . .. 143

LIST OF TABLES

8.1 Universal Plan statistics for the generator doain. 64

IS e 68
ing system universal plan i istics.... 68

8.7 A snapshot of the main PDDL+ domain elements for the péapdander

casestudy 82
8.8 PDDL+ events and processes for the planetary landerstadg, with
associated ordinary differential equations 83

8.10 Disk-based Algorithm statistics for the Planetarydimuniversal plan
generation. 84

8.11 Normalised root mean squared error for variabtesand supplyin the
planetary lander dase study, with continuous variable domgiand time

discretisationto @ 86
Mm{ms 88
8.13 Batch chemical plant startup phase universal planrgéae statistics . . 94

) ical plant production pha INi | pdane pati tisti 94
9.1 (a) The Double Check Matrix. (b) The definition of setsuiisg by

ccheckandequalsfunctions 103

9.2 The Double Check Matrix on an administrative database. 110

10.1 A Strong Plan for the domain of Figl@b.l. e e e e 122

CHAPTERL1

INTRODUCTION

In the recent years, the magnitude of Information and Comaation Technology (ICT)
systems has grown apace, making these systems more andongukex with respect to
their functionalities and purposes. Indeed, a great nurabeveryday products are the
result of research in fields as robotics, manufacturinggsses, communication technol-
ogy, and embedded systems, which make a large use of iet@lganning algorithms as
well as complex controllers and automated verification @sses. Moreover, many sys-
tems present a non-deterministic behaviour, mostly duenpvadictable environmental
conditions, making the problem of dealing with such domaiesallenging task.

To this regard, a common effort between Control and Al Plagigiommunities is in exis-
tence towards the developing of algorithms and tools abéan&dyseandcontrol systems
dynamics, focusing on the evaluation of theibustnessverification ofcorrectnessand
automatic synthesis gflansto execute activities.

To cope with this task, one can perforimrmal verificationas well asautomatically
generatecorrect reactive programs directly from the plant spedifoca To this aim,
formal method$and in particulamodel checkingare well-suited to deal with both issues.

1.1 MODEL CHECKING TECHNIQUES

Much time and efforts have been spent to develop techniquesigport the software
and hardware verification. To this regard, formal methoddelyi use mathematics for
modelling and analysing of ICT systems, with the aim to d&hpwith mathematical
rigor, the correctness of a suitably modelled system. Itasthvnoting that, any system
verification which uses a model-based technique is only a&l @& the model of the
system.

Roughly speaking, Model Checking |39, 108 30,/86,93, 183t(fntroduced in[39]) is a
brute-force hardware/software verification techniqué &xplores the system behaviour
(by checking all its possible moves) looking for an incotesisy with respect to the given
semantics (i.e., aarror). If the model checker (which is the software that implemsent

1

2 Chapter 1. Introduction

model checking technique) does not find any error, then theeinaf the system meets
the designers requirements.

In other words, a model checker performs an exhaustive ls@atbe system state-space
looking for an error. If an error exists then the model checkturns theerror pathwhich
leads the system from the initial configuration to the ermg,@rovidinghowthe system
has reached the error.

In the last years, many model checkers have been developec(g., SPIN [24], UP-
PAAL [118], NuSMV [139]). In particular, we can mainly disgjuish between two kinds
of model checking paradigmsymboliqsee, e.g./[8, 30]) anekplicit(see, e.g/[68, 69]).
The main difference between them is in the state space egeg®n: the former uses
a symbolic (usually compressed) representation (basedB®D3, see Section 4.3.1 for
details) which is successfully applied on discrete systavhdst the latter works well on
Discrete Time Hybrid Systems (DTHS), whose state desonptivolves both continuous
and discrete variables, also having a nonlinear dynamiltkoAgh this approach is being
successfully applied to a wide class of systems, there éirecshe open issues in dealing
with systems having a complex nonlinear dynamics. Indeadihis class of systems,
current methodologies based on symbolic model checkingedlsas on dynamic pro-
gramming are hard to apply. To this end, we focus on the usgmicit model checking,
which is based on the explicit enumeration of the systenestad deal with both control
and planning problems.

1.2 EXPLICIT MODEL CHECKING IN DETERMINISTIC
SYSTEMS

The first part of the Thesis is devoted to filanning controlandanalysisof deterministic
systemsria explicit model checking techniques, by focusing on ey which have a
complex (also nonlinear) dynamics.

Typically planningconcerns the problem of generating a sequence of actiorsder

to move the system from a specified initial state to a desiced state. The generation
(synthesis) of a plan is generally performed at run-timesguest. Differently, aniversal
plan [150] (or controller) is computed off-line, by exploring the system dynamics and
synthesising a plafor eachsystem state reachable from the initial ones. It is worth
noting that, in some contexts, the meaning of universal iglaglated to non-determinism
in refer to the uncertainty about the initial states of thstegn, not about its dynamics,
which could be deterministic. Nevertheless, a universaipér can be seen as a controller
which summarises the commands (actions) to send to theiplarder to reach the goal,
avoiding to spend time in the synthesis of real-time sohgidndeed, many systems have
low computational resources or require a small reactive toperform actions. In these
settings, the synthesis ofumiversal plancan represent a well-suited choice. Similarly
to the model checking approach, the synthesis of plans nexjto explorethe system

1.3 Explicit Model Checking in Non-Deterministic Systems 3

dynamics and taevaluatewhen the goal condition is reached. One can exploit these
similarities between planning and model checking appreschsing a model checker
like a planner by considering the goal condition asar condition for the system. As

a result, theerror trace (if any) given by the model checker representplan for the
planning problem.

To this regard, despite the idea to perform planning via rholdecking is not new [36,
82,183,143, 45], we propose to use the explicit model chechpproach which works
well on Discrete Time Hybrid Systems with a very complex dyizs (e.g., nonlinear).
Indeed, in the literature, a growing number of motivatinglagations shows the impor-
tance of dealing with mixed discrete continuous domain®M®|16, 145] as well as to
define languages to describe them [129/ 76, 80]. Hence, nprpaches have been used
to cope with such systems (e.g., Dynamic Programming [2@\Hubes [119] 122],
MINLP [84]), also based on Symbolic Model Checkingl[65] 66].

However, if by one side the explicit approach is promisingenification of hybrid sys-
tems, on the other side it is strongly affected by the so datate explosiomproblem.

In order to mitigate this problem, a first contribution ofgfthesis is the developing of a
disk-based algorithm for the UPMurphi tool: a universakpler for continuous domains
built on top of the Murphi model checker. We exploit the usalsk-based approach,
that makes it able to analyse and control systems having @ $ta¢e space, by using the
disk during the synthesis process. Moreover, this impr@mmllows one tgpausethe
synthesis process by storing the expanded graph of the dgsam disk, andesuming
the verification later, also on other machines. Then, weyaihya disk-based approach to
a number of benchmarks and real world planning and contsd studies.

Furthermore, we also apply model checking to another clagsablems, namely the
database data qualitproblems. Data quality is a general concept and it can be char
acterised by many dimensions (e.gccuracy consistencyaccessibility [13]. In our
context, we focus ononsistencya dimension which can be modelled and verified using
formal methods. In particular, we propose a methodologyctvhises formal methods by
looking for the violation of semantic rules (i.enconsistenciedefined over a set of data
items. Then, as a first application, we evaluate the benefiendy our approach on a
real industrial data quality case study of a Public Admmaisbn database, provided by
the C.R.1.S.P. research center|[43].

1.3 EXPLICIT MODEL CHECKING IN NON-
DETERMINISTIC SYSTEMS

If in a deterministic system a plan reaches a goal in all itscakons, in a non-
deterministic one no guarantees are given about the infiuiat non-determinism has on
plans executions. Roughly speaking, a non-determinigtesn represents a particular
form of uncertainty in which system’s action may have d#fgroutcomes, unpredictable
at planning time. Then, given an action, it is impossibletf@ planner to know a priori

4 Chapter 1. Introduction

which the outcome will be. The concept stfongplan fills this gap by ensuring that a
strong plan always reaches a goal regardless of the systedeterminism. For the sake
of clarity, it is worth noting that strong plan and univergkn in a non-deterministic con-
text are closely realted since both approaches aim to finthetpa goal starting from any
state reachable from the initial ones. Furthermore, systaay have or not probabilities
associated to the actions outcomes. We focus on systemsiah wb probabilities are

given.

Many approaches have been applied to synthesise strorg ptamly based ogsymbolic
model checking [36, 115, 112, 111 /45] also using heuristiggune the state space [78,
125,/106]. As a novel contribution, we present an algorithote 4o synthesise strong
plans withminimum costvith respect to a given cost function. The algorithm looksao
strong plan (if any) minimising the cost of the non-deteristin worst-case execution. We
analyse the algorithm’s complexity, proving its corresthand completeness. Finally, we
describe the implementation of the cost-optimal strongiiag algorithm into UPMurphi
and we test it on two continuous non-deterministic caseesud

1.4 THESISSTRUCTURE

The Thesis is composed by three main Parts, organized as/foll

Part | introduces the theoretical basis, looking at explicit aywhisolic model checking
approaches in Chapter$s 3 and 4 respectively, closely lodkeédMurphi model
checker, since all our implementations are derived fromTihen, Chaptefl5 is
devoted to other methodologies related to planning and habeeking.

Part Il discusses the use of explicit model checking to deal déterministic systems
ChaptelL6 introduces the UPMurphi planner and Chdgter &pteshe improve-
ments of UPMurphi: namely the V-UPMurphi tool, whose apgiion to some
real-world case study is provided in Chagter 8. Finally, itbd9 shows how for-
mal methods, and in particular model checking, can be appiiehe problem of
data quality analysi®n dirty database, providing a first experimental resultgaon
real case scenario.

Part Il is devoted to the analysis of systems having a non-detestiaroehaviour. In
particular, Chaptelr 10 discusses the problem of synthdsstreng plans whilst
Chaptef_1ll proposes a novel algorithm to syntheggenal strong plans for non-
deterministic systems. Finally, Chaplet 12 figures out soase studies on which
we applied the algorithm.

Finally, Chaptef 113 contains concluding remarks and d&sioas about the future direc-
tions.

Part |

Theoretical Basis

In the first part, we introduce the notation and formal moeedsvill use during the The-
sis. In Chaptelr]2 we give an introduction about the formadisrsed to model a system.
Then, we closely look at model checking techniques in Chiaf@e@nd[4, discussing the
explicit and symbolic approaches respectively, with aipaldr attention to the Murphi
model checker, since all our implementations are derivexah fit.

Finally, Chaptelb is devoted to other methodologies rdlaiglanning and model check-

ing.

CHAPTER?Z2

SYSTEM MODELLING

In this section introduce the basis on formalisms used terdes the behaviour of a
system (i.e., anode). In Sectior 2.1 we introduce hybrid automata which are ueed
model mixed-discrete continuous systems. Then in Sect@@sand 2.B we focus on
formalisms that allow one to describe systems having a fmit@ber of states in both
deterministic and non-deterministic cases. Finally, intl®a[2.4 we briefly describe the
language used to model planning domains.

2.1 HYBRID SYSTEMS

A dynamic system describes the evolution of estdieof the system with respect to the
time Hence, in order to better introduce the concept of hydratesys, we can charac-
terise a dynamic system considering (1sitateand (2) theime. More precisely, we can
distinguish between the following systems:

Continuous. When alln variables of the state belong i
Discrete. When alln variables of the state belong to a finite set of valQes{qy, . . ., Ok} -

Hybrid. Letn=ni+ ny be all the variables of the state, then the firstariables belong
to R™ while the remainingn, variables take values Q@ = {qa, ..., 0k}-

We now closely look at the evolution of the state, i.e., how $itate variables change
along the time.

Continuous Time. When the time is a subset &, then the state evolution is described
by an Ordinary Differential Equation.
Discrete Time. When the time is a subset @f then the state evolution is described by a

Finite Difference Equation.

Finally, the characteristic of the dynamics can furthetidgish betweerinear and
nonlinear systems.

10 Chapter 2. System Modelling

2.1.1 DSCRETETIME HYBRID SYSTEMS

Generally speaking, a Hydrid System [161] is a formal model hixed discrete-
continuous systems. More precisely, a hybrid system is d &frdynamical systenn
which the dynamics allows the presence of both continuodgiestrete variables.

In other words, hybrid systems are ensembles of interadisgyeteandcontinuoussys-
tems where the former operates on a discrete state and ipsridiscontinuous state
changes at discrete time points. Differently, the latteerapes on a continuous state
which evolves continuously.

To give an example, a car engine having a fuel injection {paous) regulated by a micro-
processor (discrete) represents a hybrid system. Thidsiexample should be adequate
to guess that, in the real life, many applications are hybystems. More formally, we
give the following definition.

Definition 1. A Discrete Time Hybrid SysteqDTHS) is a tuple#/ = (X,Q, U, W, I, f,
p) where:

« X = xi,[a,hi], with [,] a bounded interval of the realR.
« Q= xK ,[c,di], with [, di] a finite subset of the integeFs

* U= x",[aj,Bi], with [a;, Bi] @ bounded interval of the real®.
* W = x{_,[yi, 1], with [y;, 1] a finite subset of the integers

* | is a subset of X Q.

e f is a function from Xx Qx U xW to X s.t. for each ¢¢ Q, we W, Axu
[f(x,q,u,w)] is a continuous function dfx,u) (whereA is the abstraction oper-
ator).

* pisafunction from X Qx U xW to Q.

The state space of is S= X x Q. A statefor # is a pairs= (X, q) in S, wherex € X and
qeQ.

A run for the DTHS # is a (finite or infinite) sequence of states and actions
(x(0),q(0),u(0),w(0)), ..., (x(t),q(t),u(t),w(t)),...s.t. we have:

* (x(0),q(0)) €1
o X(t+1) = f(x(t),q(t),u(t),w(t)) for each time.

* q(t+1) = p(x(t),q(t),u(t),w(t)) for each time.

2.1 Hybrid Systems 11

If 1= (x(0),q(0),u(0),w(0)), (x(1),q(1),u(1),w(1)), ... is a run of H we denote with
m(t) the t-th state element oft That isTi(t) = (x(t),q(t)). Furthermore we write

¢ (x(t),q(t), u(t),w(t)) for (f(x(t),qt), u(t)), p(x(t),q(t), w(t)))-

To convey to the reader the motivations behind our formalise make the following
observations.

First we observe that< X is the vector of theontinuous components of the staje Q

Is the vector of theliscrete components of the statiec U is the vector of theontinuous
components of the control actigrendw € W is the vector of theliscrete components of
the control actionsl is the set ofnitial states

Moreover, the functiorf assigns a regioi; in the continuous state space &nd a dy-
namics which acts on the regiof when the discrete state ¢g. Roughly speaking, to
every discrete state correspondsiadeof the system.

The following example should help to clarify the matter.

Example (Water Tank) The two tank system, shown in Figurel2.1, consists of twogank
containing water. Both tanks are leaking at a constant Meger is added at a constant
rate to the system through a hose, which at any point in tirdedscated to either one tank
or the other. It is assumed that the hose can switch betweernnks instantaneously.

&I A A

" (5

Figure 2.1: The water tank system

Fori € {1,2}, letx denote the volume of water in Tamlandv; > 0 denote the constant
flow of water out of Tank. Let v, denote the constant flow of water into the system.
The objective is to keep the water volumes abovandry, respectively, assuming that
the initial water volumes satisfy this constraint. A coflgoswitches the inflow to Tank

12 Chapter 2. System Modelling

1 whenevek; < rq1 and to Tank 2 wheneves < rs.

It is straightforward to define a discrete time hybrid systerdescribe this process:

o X = [0,MAXxXq] x [0, MAXXa];

* Q= {0y, 02};
e U=0;
s W=112];

| =Qx {XxeX|xg >riAxX2 >rz};

(X1 +Vin—V1,X2—Vp) if w=
e f(x,q,u,w) = ‘
(X1 —V1,X2+Vin—V2) if w=
1 if w=1
° p(xaq,U7W>:{ g .
g if w=2

2.2 HNITE STATE SYSTEMS

A Finite State System is a dynamic system which represerdabstnact and discrete com-
putational model often used to reproduce (and verify, abéncase of model checking)
the behaviour of a given system.

Definition 2 (Finite State SystemsA Finite State SysterfFSS $ is a 4-tuple (S,I,A,F),
where: S is a finite set odtates| C S is a finite set ofnitial states A is a finite set of
actionsand F: Sx A — S is thetransition function

Definition 3 (Transition Function)Let S be a FSS, § € S and a A, then there exists a
transition function Fs,a) = s iff the state s can reach state\sa action a.

Moreover, we denote withk (s,a) the successor state sthrough actiors, i.e. the state
ss.t.F(sas)=1.

Definition 4 (Trajectory) A trajectoryin the FSSS = (S|,AF) is a sequenceat =
SapS1a1Say. .. an—15 where,Vi =0,....n—1, § € S is a state, ac A is an action and
F(s,a,s+1) = 1. If tis a trajectory, we writat(K) (resp. i(K)) to denote the states
(resp. the action . Finally, we denote with the length ofit, given by the number of
actions.

Definition 5 (Reachable Stateshet § € | be an initial state of the FSS = (S1,A F).
Then, we say that a statéis reachable€rom g iff there exists a trajectorytin § such
that 15(0) = 5 and 15(k) = ' for some k> 0. We denote witiReach(s}he set of states
reachable from s. Analogously, we denote ViRtbach(s) the set of states from which it
is possible to reach the state s, thaRsachl(s) = {s € Ss € Reachs)}.

2.3 Non-Deterministic Finite State Systems 13

By abuse of notation, we denote Reach(Sjhe set of reachable states for the sysiem

In order to perform the verification as well as the analysik téhe system should have
a finite number of states. It is worth noting that, althougis tlestriction that is quite
theoretically relevant, its impact in the practice is lieditsince many systems can be
modelled having a finite number of states.

Note that, if the system is a DTHS, given a suitable disa&ts for sampling time and
variables, we can easily obtain a Finite State Systems frOmHS.

2.3 NON-DETERMINISTICFINITE STATE SYSTEMS

Definition 6 (Non-Deterministic Finite State System Non-Deterministic Finite State
System(NDFSS S is a 4-tuple (SgA4,F), where: S is a finite set oftatess € S is
theinitial state 4 is a finite set ofactionsand F: Sx 4 — 25 is thenon-deterministic
transition functionthat is F(s,a) returns the set of states that can be reached from state
S via action a.

It is worth noting that we are restricting our attention to INE5 having a single initial
statesy only for the sake of simplicity. Indeed, if we give a NDFSSwith a set of initial
stated C S, we may simply turn it into an equivalent NDFSS by adding a dynmitial
state connected to all the states iny a deterministic transition with fixed cost.

The non-deterministic transition function implicitly dedis a set of transitions between
states which, in turn, give raise to a set of trajectoriegasified in the following defini-
tions.

Definition 7 (Non-Deterministic Transition)Let.S = {S s, 4,F } be anNDFSS A non-
deterministic transition is a triple of the form(s,a,F(s,a)) where sc S and ac 4. A
deterministic transitiorfor simply atransition) T is a triple of the form(s,a,s’) where
s,s€S,ac 4anddcF(sa). We say that = (s,a,5) isin(s,a,F(s,a)) if s € F(s,a).
We denote witls; the set of all the transitions if.

Definition 8 (Non-Deterministic Trajectory)A trajectorym from a state s to a staté s
a sequence of transitions, . . ., T, such that:
* Tg has the forn{s,a, s;) for some g and some a,

* Tn has the form(s,,d', ') for some g and some ‘a

* Vi=0,...,n—1,iftj = (5,a,S1) forsome s a;,51, thenti, 1 = (S 1,8 11,5 +2)
for some g2, 1.

We denote withrt the length ofit, given by the number of transitions in the trajectory.

14 Chapter 2. System Modelling

As usual we stipulate thahe empty set of transitions a trajectory from any state to
itself.

Definition 9 (Extrated Transition)Let.S = {S s, 4,F } be anNDFSSand[1 be a set of
non-deterministic transitions. We say that a transitios (s,a,s) is extracted fronT]

if (s,a,F(s,a)) € Mand(s,a,s) isin (s,a F(s,a)). Similarly, we say that a trajectory
= To,...,Tn IS extracted from if, Vi = 0...n,1; = (s,4&,5) € (s,a,F(s,a)) and
(s,a,F(s,a)) € N. Finally, we say that a state s I if there exists a transitiom =
(s,a,9) extracted fronTl.

2.4 PDDL/PDDL+

Generally speaking, given a system modelled in some fosmalaplanning problem
consists of finding a sequence of actions (i.eplan) which guarantees to achieve the
goal starting from a specified initial condition of the systeHence, glanneris a soft-
ware system able to synthesise a plan by taking as input €lddmain description and
(2) a goal description. One of the most common planning dasmn languages is the
PDDL [129]. The Planning Domain Definition Language (PDDLgsweleased in 1998,
and has since then become the standard language for thengaommunity as well
as for the Al International Planning Competitions [2]. THRDL is an action-centered
language having a LISP-like syntax and inspired by the SBRt&Pmulation of planning
problems.

A PDDL definition consists of two parts: ttdomainand theproblem The former con-
tains the domain predicates and actions as well as typesarstants, whilst the latter
describes a particular instance of the problem to solve. réader can find a complete
description of classical planning domains|ait [2].

In the last years, the planning community has developed reapgessive extensions to
the PDDL language. In particular, the PDDL2.1][76] exten8®R to include numeric
expressions and durative actions (i.e., actions havirgtfidepending on their duration).
To give an example, let us to consider a pumihat fills a tankt at a given rate, then
continuous effect is written in the following style:

(increase (volume ?t) (* #t (refuel_rate ?p)))

where#t represents the time over which the effect has been activeveier, PDDL2.1
is limited to a discrete modelling of time (i.e., the only &mpoints that can be identified
in a plan are those associated with the start/end pointsioiacselected by the planner).
Hence, in order to allow the PDDL to represent mixed disecetginuous domains, in
2001 Fox and Long introduced the PDDL+ [77], providing a fatrmapping between
PDDL+ and Hybrid Automata and showing that the PDDL+ is #ifimore expressive
than PDDL2.1. In synthesis, PDDL+ introduces two import@atures with respect to
PDDL2.1:

2.4 PDDL/PDDL+ 15

Process: Itis a construct able to model continuous change in the wwylohodifying nu-
meric values continuously. The continuous change on amsyseiable is activated
by the process whenever its precondition is satisfied.

Event: An exogenous event is used to describe instantaneous chantiee world that
may occur as a consequence of change, not necessarily addinsequence of the
actions of an executive. Differently from a process, an eiemstantaneous and
may affect only discrete variables.

Note that both processes and events have effects on themslgsteaviour in spite of the
actions selected by the planner since they do not form pahteoplan.

An example, as given in [77] should clarify the matter. A dattneeds to cover a speci-
fied distanceal in the least possible time. To change the car velogitye can accelerate

or decelerate so incrementing or decrementing, respégtihe current acceleration by
1m/s?. Moreover, if the velocity is greater than a given thresHglthe wind resistance

will start to slow the vehicle. Thus, the velocity of the vekiis governed by the two

following differential equations, according to whethet k orv > k:

dv ;

= = a if v<k

v 2 (2.1)
G = a—-01(v-k)“ ifv>k

Finally, as a further constraint, the engine explodes ifitlecity is greater than a max-
imum thresholde. The PDDL+ domain and problem are given in Figuré 2.2. Noé& th
actionsacceleratedeceleratdave an instantaneous effect (i.e., they increase/dectieas
actual acceleration) whilst concurrent processesingandwindResistancbave effect

on the variabler. Then,engineExplodes an exogenous event that models the engine
explosion wherv > k.

16 Chapter 2. System Modelling

(define (domain car)

(: requirements :fluents :time :negative-preconditions)
(: predicates (running) (stopped) (engineBlown))

(: functions (d) (v) (a) (k) (E))

(: process moving

cparanmeters ()

:precondition (and (running))

ceffect (and (increase (v) (* #t (a))) (increase (d) (* #t (v)))))

(: action accelerate
: par amet er s()
:precondition (and(running))
;effect (and (running) (increase a 1)))

(: action decelerate
. paramet er s()
:precondition (and(running))
;effect (and (running)(decrease a 1)))

(: process windResistance
cparaneters ()
cprecondition (and (running) (>= (v) k))
.effect (decrease (v) (* #t (* 0.1 (* (- (v) k) (- (v) K))))

(: event engineExplode
s paraneters ()
:precondition (and (running) (>= (a) 1) (>= (v) E))
ceffect (and (not (running)) (engineBlown) (assign (a) 0))))

(define (problem car)
(: domai n car)
(: init (not (engineBlown)) (running) (= d 0) (= a 0) (= v 0)) (= k 100) (= E 20 0)
(: goal and ((>= d 20) not (engineBlown)))
(: metric minimize (total-time)))

Figure 2.2: Files cadomain.pddl and caproblem.pddl

CHAPTERS3

EXPLICIT MODEL CHECKING

Explicit Model Checking is an automated technique thategifl) a finite-state model of
a dynamic system and (2) a formal property, exhaustivelgkhehether this property
holds for each state of that model. Generally speakingpdel checkeis a tool able to
solve a model checking problem.

The main aspect ofxplicit model checking is that each state is represented as the col-
lection of its variable values and each visited state isestamn RAM (namely in the hash
table). This quickly fills up all the available computati@sources, especially the mem-
ory. This problem is often addressed as $hate space explosioie., the number of
states grow exponentially with respect to the time). As far theoretical computational
complexity, model checking is P-SPACE complete.

A schematic representation of the model checking procekspisted in Figure 311. Look-
ing at the figure, we can describe the explicit model checkiragess identifying three
different phases:

System Modelling. A representation of the system is realised by modellingétesari-
ables and dynamics (i.e., the system'’s evolution). Moredtie system properties
which we are interested to verify are formally written. Thisase is carried out
through the model description language of the model cheatikdeand.

System Verification. This phase is theunning phasewvhich depends on the approach
applied (i.e., symbolic or explicit one). The model chegierforms an exhaustive
search in the system state-space looking for an error & &tates € Ssuch thats
violates¢). More precisely, in the explicit approach this phase wak$ollows:

1. obtain the transition graph of the syst&ta transition graph specifies hdsv
may go from a state to another state);

2. compute theeachablestates, starting from a given set of initial statesath-
ability analysi3;

3. if no errors exist, then the propertysatisfiedon the system model. Other-
wise, the model checker returnscaunterexampléi.e., it provideshow the
system has reached the error) which leads the system fromitia¢ configu-
ration to the error one.

17

18 Chapter 3. Explicit Model Checking

System Analysis.In this phase, the results obtained by the model checkemaigssed.
If the system model meets the property then the modeller eafy\the next one
(if any). On the contrary, if the property is violated therearan analyse the coun-
terexample by means of simulation (i.e., a verification sieptep), then the model
as well as to system property is refined and the model chegkmapdure iterated.

requirements

Formalizin% Modeling
property
specification
Model Checking

Figure 3.1: Schematic representation of the Model Chedippgoach (Taken from [10]).

violated +
counterexample

The main obstruction for the verification via explicit modékcking is in the reachability
step. In fact, even if the formal description®has a reasonable size, the number of states
in Sis exponential in the size of the descriptionSf

3.1 MODEL CHECKING ON FINITE STATE SYSTEMS

In order to verifyall the possiblestates for which a system can be in, it should be required
that the system hasfaite number of states. For this reason, a system is often modelled
as a FSS (according to Definitidh 2). Note that, whatever yisées is modelled having

a finite number of states, it may have iafinite number execution paths (i.e., the system
can be in a deadlock state).

For the sake of completeness, we give the definition of Modielaking Problem on FSS.

Definition 10 (Model Checking Problem on FSS)et .S = (S s,A,F) be an FSS. Lep
be a formula expressed in some formalism (i.e., the systenifigation). Then, anodel
checking problenfMCP in the following) is a tripleM = (S5,¢,T) whereg€ S, and T
is the finite temporal horizon.

Then, a solution fofM is areachable trajectory (plan), according to Definitioh41t=
SoapS1a1982 . .. an—15 Where: Vi € 0,...,n—1, 5§ € ReacllS) and s satisfiesp whilst

3.2 The SPIN Model Checker 19

Sh € ReacliS) does not satisfy. If Vs € ReacllS),s satisfiesh then the solution is an
empty trajectory.

In the following we briefly describe the SPIN model checkehnjak actually represents
one of the most used explicit model checker in the contexteierification of commu-
nication protocols and distributed software systems.

However, the tools developed as part of this Thesis are basdgtie CMurphi model
checker, which is in turn based on Stanford’s Murphi. Thasthie last section of this
Chapter, we will closely look at these verifiers and theiuinianguages.

3.2 THE SPIN MoDEL CHECKER

SPIN (Simple Promela INterpreter) is an explicit model deealeveloped by Gerard J.
Holzmann[[94, 156] in 1997 for the verification of communioast protocols, concurrent
processes, witching systems, concurrent algorithmsyagilsignaling protocols etc. It
has since become widely used for the verification of critigatems and protocols, for
which it proved to be very effective, mainly in industriesPIS uses the PROMELA
(PROcess MEta LAnguage) specification language to desorng models, which is
translated into & program successively compiled and executed. A PROMELA risde
afinite-statemodel, that is the state variables are always bounded Vesiéihe bounded-
ness is a guarantee for decidability). Note that, as saidelfimite state models can still
permit infinite executions. Then, the SPIN verification caweks similarly to the Murphi
verification algorithm (i.e., performing an exhaustiversban the state space). For the
sake of brevity, we describe only the main characteristd3ROMELA language, for
which the reader can found a complete description inl[144].

Processescan be modelled explicitly by describing the behaviour othe@rocess.
Thanks to this, SPIN can automatically verify the systenpprtes in all the possi-
ble interleaving processes execution. This feature isubsefverify asynchronous
systems and communication protocols. To this aim, therenarglobal clocks as
well as implied synchronisation between processes pravigePROMELA lan-
guage.

Channels allow one to model message passing between processes (phMuis pos-
sible to represent channels using arrays and applyingyhemetry reductiomo
verify the system). Clearly, since the system to verify isS&SFthe channels should
be bounded queues/buffers either buffered (asynchropjourstinbuffered (by syn-
chronous rendezvous handshake between processes).

Safety and Liveness.As said above, gafetyproperty states that something bad never
happens in the system. Converseiyenessproperty states that something good
should eventually happen. Looking at the verification ohspi@perties, the former

20 Chapter 3. Explicit Model Checking

is violated (and then it can be detected) in finite time whitgt latter requires to
consider (at least some) infinite system execution to bekglteclo this aim, SPIN
can verify formulae expressed through Linear Temporal ¢oghich allows one to
model both safety and liveness properties, which are suffiexpress any kind of
system specification (as proved by Alpern and Schneider [5])

In order to give an example, we show a simple PROMELA modettvimplements the
well-known N-Peterson mutual exclusion algorithm, in whikt processes must share the
same resource without conflict, using only shared memorgdonmunication between
them.

The PROMELA code of 2-Peterson algorithm is shown in Figuiz 3The process
proctype describes the behaviour of the process. The statemsgrt is used by SPIN
to verify the property in each process interleaving executindeed, an assertion state-
ment is always executable and has no effect on the state sy#tem when itis executed.
Generally, it is used to model safety property (i.e., theualéxclusion property in our
example). Figure 313 show the verification output in whicldeadlock or assert violation
have been found.

/+ Peterson s solution to the mutual exclusion problem - 1981 */
bool turn , flag [2];
byte ncrit ; [+ critical section */

active [2] proctype user ()

{

assert (_pid == 0 || _pid == 1);
again :
flag [_pid] = 1; / * processes communication via shared memory */
turn = _pid ;
(flag [T - _pid] ==0| turn == 1 - _pid);
nerit ++;
assert (ncrit == 1); [= critical section */

ncrit ;
flag [_pid] = 0;
got o again

}

active proctype init(){
at omi c(){

run user(l);

run user(2);
}
}

Figure 3.2: PROMELA code for th-Petersormutual-exclusion algorithm

Clearly, as for all the explicit model checkers, also SPIkfiscted by the state explosion
problem. To this regard, SPIN implements many state spahéctien techniques to
compress the state size (e.lgash compactionor the state space size (e.g., looking for
symmetries with th@artial order reduction.

3.3 The Murphi Verifier 21

spin -a n-peterson
gcc -DMEMLIM=1024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -0 pan pan.c ./pan -m10000

(Spin Version 6.1.0 -- 4 May 2011)

+ Partial Order Reduction

Full statespace search for:

never claim - (not selected)
assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid end states +

State-vector 20 byte, depth reached 24, errors: 0
40 states, stored
27 states, matched
67 transitions (= stored+matched)
0 atom c steps
hash conflicts: 0 (resolved)

2.539 memory usage (Mbyte)

Figure 3.3: SPIN execution output for the PROMELA model afu¥e3.2
3.3 THE MURPHIVERIFIER

Murphi [58,/59,60| 137] is a formal verification tool for fieHstate systems developed
during the 1990's in the Stanford University Computer Systé aboratory. The aim of
the Murphi project was to show that formal verification tootaild have practical value.
Indeed, during the years it has been involved in the veriboaif many verification task,
to give a few examples:

Verification a cache coherence protocol in Stanford’s DAS6jects [121].

Verification of the link-level protocol and coherence il in Sun’s S3.mp mul-
tiprocessor[138].

Verification of cryptographic protocols (Needham-Scluee and TMN proto-
cols) [132].

Verification of SSL 3.0 protocols [133].

Verification of SCI cache coherence protocol [157].

Moreover, many other tools based on Murphi have been degd|dpr a list of such tools
see([136].

3.3.1 THE MURPHI DESCRIPTIONLANGUAGE

The Murphi description language [60] has been realised tmbee simple as possible,
supporting also non-deterministic behaviour. The systestuéion is described through a

22 Chapter 3. Explicit Model Checking

set of iterated guarded commands, inspired to the UNITY mliaddanguage. Since the
Murphi language allows one to model a finite state system,wewveriefly focus on how
the elements of a FSS can be modelled in Murphi.

LetS = (SI,AF)be aFSS according to Definitidh 2 and¢e#n invariant formula to be
verified ons, the model checking problem is modelled in Murphi languagyéodows:

Const, Type, Var. They describe the system state (i.8.€ S) as a set of typed and
bounded variables.

Startstate. It allows to describe all initial states € | of the system from which the
verification will start.

Guarded Rule. Each rule is a guarded command, consisting ohetion(i.e., ana € A)
and a condition that allows the system to execute the trangrom the current state
sto the next one' (i.e., it models a single transitidh(s,a,s)). Hence, thebody
of each rule describes the behaviour of the action. In otledsy the statement
modifies the variables values.

Ruleset. It allows one to make each rulgarametricwith respect to a given variable,
that can have any value in its bounded range. It can be alsbtasmodelnon-
determinisnfor the respective action.

Invariant. It uses the first order logic to model the invariant conditfowhich will be
satisfied in each state. In particular, we can use the botdganto describesafety
formulae (i.e., something bad never happens).

3.3.2 THE MURPHIVERIFICATION ALGORITHM

It is now clear that a Murphi model is composed bstatical part (which models states,
invariants and actions) andoghaviouralpart, which is able to describe the system evo-
lution (state transitions). The Murphi “control structtperforms a single infinite loop
that, starting from any initial state, repeatedly execthese steps: (1) evaluate all the ac-
tion guards, given the current values of the global var&l2) choose one of the action
whose guard is true and execute it, updating the variablesn,T(3) verify if the invariant
condition¢ is satisfied in the new obtained state.

It is worth to highlight the following:

1. The Murphi state-space exploration policy expands tlséegy dynamics (i.e., the
transition graph) through theeachability analysis namely it visits (1) only the
states reachable from the initial ones and (2) it visits testaly once. In general,
the graph visit algorithm can be anyone, in particular Mugdlows the user to
choose between Breadth First (BF) and Depth First (DF)sviskor example, the
automatic verifier SPIN [156] uses the DF visit as default.

3.3 The Murphi Verifier 23

Fo

2. SinceS is a FSS, the algorithm always terminates because it nesis #he same
state more than once.

3. The Murphi’s data structure si composed by a Queue (Stelo&h it performs a BF
(DF) visit and a Hash Table used to store visited statesjalrtecrecognise visited
states.

4. During the visit, if an error state which violat¢ss found, then Murphi returns the
error trace(i.e., a path from the initial state to the error one).

r the sake of completeness, the Algoritiim 1 shows the jpsede of the BF Murphi’s

visit.

Procedure 1BFS(S,9)

1

N
o

11:

N

4.

© © N o a9 » @ N

cletS <« (S1,A F);
. let ¢ be an invariant condition;
Qs a FIFO queue;
. HT a hash table;
. forall sel do
if ¢ ¥ s then
return false// initial state does not satisfy the invariant
end if
EnqueueQs, S); // storesin the queue, it will be expanded during the search
InsertHT, s); // stores as visited
while (Qs # 0) do
s+ DequeueQs)
forall S e{F(s,a)|acA}do
if (§#¢)then
return false
end if
if (S ¢ HT) then
InsertHT, s); // store it inHT
EnqueueQs, §); // and insert it in the queue
end if
end for
end while
. end for
. return true; // all se ReachtS) satisfy¢

3.

3.3 A Toy EXAMPLE

A small toy example could be useful to clarify the matter. €ider theDiscrete Time
System(DTS) defined by equation_3.1, whexé) is the state value at timeand d(t)
€ {0,1,2} is the disturbance value at tinhe

24 Chapter 3. Explicit Model Checking

x(t)+d(t) if x(t) <3

x(t)—dt) otherwise 0 00 (3.1)

x(t-i—l):{

Figure[3.4 shows the FSS corresponding to the DTS defined bgteq3.1. The initial
statex(0)=0 is shown with an ingoing arrow. Moreover, nodes aresllald with state
values whilst edges are labelled with action values (whegresent disturbances, in our
case).

The Murphi code for the DTS in Equatidn 8.1 is given in Figur8 &here we have
examples of the syntax as well as the language construatsloksd before.

Figure 3.4: FSS for the discrete time system in Equdfioh 3.1

We ran Murphi of the model in Figuie_3.5 and we obtained theltesummarised in
Figure[3.6. Murphi returns agrror trace, i.e. a (loopless) path in the graph in Figlre 3.4
from an initial state to a state which violates the invarjarttperty. Note that, replacing
the < sign in the invariant of Figure_3.5 witkl then the invariant property is always
satisfied since all reachable states of the DTS defined bytlegl&1 have a value less
than or equal to 5 (see FigureB.4).

Remark 3.3.1. In the BF Algorithni L only reachable states are visited angststored in
the hash tabld. Hence the set of reachable states depends only osyftem dynamics
For example, the set of reachable states for the FSS definEjime[3.4 is{0,...,5}.
This set does not depend state _type (the type of variable x in Figufe 3.5) as long as
state _type contains{0,...,5}. For example if in Figur@ 3]5 we changtate _type
declaration tostate _type : 0..100 the set of reachable states is s{i0, .. .,5}.

3.4 THE CMURPHIVERIFIER

CMurphi [32] is built on top of the Murphi verifier. It providgethree new kind of exten-
sions:

3.4 The CMurphi Verifier

25

/ * constant declarations */
const

MAX_STATE_VALUE : 5;
MAX_DISTURB : 2;

/ = type declarations */
type
/ * integers from 0 to 10 */
state_type : 0 .. 10;
/ * integers from 0 to 2 */

disturbance_type : 0 .. MAX_DISTURB;

/ = (global) variable declarations */

var
[+ x is a variable of type state_type */
X : state_type;

/ = define next state function */
function next(x: state_type; d: disturbance_type): state_type;
begi n

if (x <= MAX_STATE_VALUE - MAX_DISTURB)t hen
return (x+d);

el se
return (x-d);

endi f

end;

/ = define initial state */

startstate "startstate"

begi n

x = 0

end

/ * nondeterministic disturbances trigger system transition s */
rul eset d : disturbance_type do

| = define parametric transition rule */

[+ here, d varies in disturbance_type, thus there are MAX_DISTURB + 1

variants of rule "time step" */

rul e "time step" true ==>

begi n

X = next(x, d);

end;

end;
/ = define property to be verified */

i nvariant "x is not too big"
(x < MAX_STATE_VALUE);

Figure 3.5: Murphi code for the FSS in Figlirel3.4

26 Chapter 3. Explicit Model Checking

Startstate startstate fired.

x:0

Rule time step, d:1 fired.

x:1

Rule time step, d:2 fired.

X:3

Rule time step, d:2 fired.

The last state of the trace (in full) is:
X:5

Figure 3.6: Murphi error trace for murphi model in Figlrel3.5

Cache and Disk Verification. Many systems to verify can result in a (very) big state
space (we have just told about state explosion). To this@Myrphi is able to use
a cacheor adisk memory during the verification to store states. More prégise
in the Cache Modegit uses a cache to store the visited states and can extend the
verification queue to disk (the cacloellision rate can be monitored to stop the
exploration if the cache becomes ineffective). Similavijien theDisk Modeis
active, the verifier uses the disk to store the visited stmeghe verification queue
instead of a cache memory.

Real Number Support. Murphi built-in types are ranges of integers and enumegativ
types. To ease the hybrid systems modelling activity we alaat to be able
to handlefinite precision real numbergithin Murphi, i.e. numbers of the form
swdo.d1 - - -dm_1 x 10%&-1% where: d; and g are decimal digitsdy # 0, su,

s € {"+')—'}. As usual we calbydp.d; - --dyn_1 the mantissaandszey_1--- €y
theexponenbf the numbesydo.d; - - - dm_1 x 10%&-17"%,

To this aim, CMurphi allows the use of the tymal(m, n) for real numbers with
m digits for the mantissa anadigits for the exponent. Typeal(m, n) s finite,
its cardinality is 2x 9 x 10™ 1 x 2 x 10" = 36 x 10™"~1, This extension has no
impact on Murphi verification algorithms (e.g. as that in édighm[1), however
makes it easier to model hybrid systems.

Note that, as from Remalk 3.8.1, the huge cardinality ofypeteal(m, n) does
not imply,a priori, a huge size of the set of reachable states.

The typereal(m, n) is built onlong double C type. For this reason thean-
tissasizemand theexponensizenin reallm, n) must satisfy the following con
straints: I< m<LDBLDIG, 2<n< |log,,LDBLMAX10_EXP|+1, whereLDBL DIG

is the maximum number of digits for the mantissa of itimg double C type and
LDBL.MAX10_EXPis the maximum value of the exponent of theg double C

type. These constants are defined in the C heffmth . CMurphi also allows
to import all functions available in the @ath library (heademath.h). Such func-
tions can be freely used within the Murphi input language.

C/C++ External Functions. However, this is not enough to model complex behaviors.

3.4 The CMurphi Verifier 27

Indeed, the implementation of complex systems requiregradvanced language
constructs to be described, such as the one provided by @wetdanguage. More-

over, system simulators written in C/C++ are often avaddbkpecially in the more
complex cases) for testing purposes, thus it is worth darrguise them in the ver-
ification phase.

To overcome these difficulties, and to reuse simulators, @kiwallows the use of
externally defined C/C++ functions in the modelling langeialg this way, one can
use the C/C++ language constructs to model complex dynaMiaseover, one can
directly include (with some arrangement) in the Murphi miadsimulator for the
system under analysis, since a system simulator is almeayalwritten in C/C++.

CHAPTER4

SYMBOLIC MODEL CHECKING

Symbolic Model Checking is characterised by the applicatitthe model checking tech-
nique to a system having states represented in a compressedd.g., using BDDSs).
Moreover, the symbolic approach often allows one to spemifyinvariant property by
using temporal logics (e.g., CTL or LTL), which we shortlyrimduce in the following.

4.1 CTLANDLTL

Temporal logics are useful to describe properties that doldn infinite execution path of
the system, i.e., the execution path contains a loop. Twaskifitemporal logics are Com-
putation Tree Logic (CTL) and Linear Temporal Logic (LTL)hase union composes the
CTL* logic. CTL and LTL differ in how they handle branching the computation tree.
In CTL temporal operators quantify a formwaer the pathsleparting from a given state
(through universalA) and existentialtE) quantifiers) . In LTL operators are intended to
describe properties @ll possible computation paths (i.e., all path are universahgju
fied). The syntax of CTL and LTL formulae obeys to the follog/imles:

any atomic propositionis a CTL (LTL) formula;

if pandq are CTL (LTL) formulae, therp-q and—p are CTL (LTL) formulae,
where- is any boolean connective (e.g.,V).

if pandqgare CTL formulae, the&EXp,EGp, E[pU(q] are CTL formulae.

if pandqare LTL formulae, theiXp,Gp, [pUq] are LTL formulae.

Intuitively, the meaning of CTL formul&X p is that there existéE) a path starting from
an initial state in which in the nexiX) statep holds. EGp means that there exists a
path starting from an initial state which globall@) p holds. E[pUq] there exists a path
starting from an initial state in whicp holds until(U) g holds.

All the other CTL operators (e.gAF p, meaning for all paths eventually hofi can be
derived from the following equivalence rules:

29

30 Chapter 4. Symbolic Model Checking

AXp=-EX-p For all paths, in the next stafeholds
EFp=E[TUp| There exists a path in which eventuagiyholds
AGp=—-EF-p pis an invariant

AlpUq] = -E[-qU-pA—-qA—-EG—q] For all path,p until g.

Itis worth noting that LTL and CTL have different expresspmvers and then they are in-
comparable (e.g., there is no CTL formula that is equivatettie LTL formulaAF (Gp)).
For a survey on LTL and CTL differences the reader can refi88p

4.2 SYMBOLIC STATE REPRESENTATION

As said in the previous chaptstate explosionepresents the most ineliminable event that
affects all the model checking techniques. Due to this gnobimany approaches exploit
the use of heuristics as well as new data structures to dafevfid in lucky cases) the
state explosion.

Symbolic graph algorithms work on an implicit descriptiohtbe state space, on the
contrary of an explicit one, as we have seen in Chdgter 3. e gn example, if an
integer variable has 90 different values, a symbolic representatiotméy be 0< x < 89
which compactly describe 90 different states through alsimgeger region. Intuitively,
thanks to this representation, all the classical set opesyatsU, N, C, € can be used to
each region of the state space. Hence, modelling the timmséitnction of a system as a
booleanfunction, we can represent the state space through a syembpliesentation as a
DAG (directed acyclic graph). This is the idea behind the Isghe representation of the
state space.

4.3 BDDs: BINARY DECISIONDIAGRAMS

A Binary Decision Diagram [29] is a data structure able taespnt a boolean function
as a DAG. More precisely, each boolean function can be repted as a binary tree
having two kind of leaf values: trueT() and false ((). The terminal nodes are either
true or false whilst each non-terminal node (tleeision nodgis associated to a variable
of the f formula. Since the graph is binary, each node has exactlyowtgoing edges
which represent the assignment value for the node variablet(ue or false respectively).
Intuitively, a path on this graph represents an assignnezpience for the variable of the
formula f, as depicted in Figuife 4.1.

4.4 The NuSMV Verifier 31

4.3.1 OBDD: THE BDDs VARIABLES ORDERING

When it is possible to define a total order on the decision r(@de all the nodes on
the same tree level refer to the same variable) the BDD isa@é<derer BDD, OBDD
hereafter. Usually, OBDDs refer alsoreducedROBDDs) which are obtained by merg-
ing isomorphic subgraphs and eliminating all nodes hawvaisomorphic children, as
shown in Figuré_4]1. More precisely, the canonicity of BDDBdws by (1) imposing a
total order< over the variables set of the decision nodeifas a non-terminal child then
var(n) < var(m)) and (2) by requiring that the BDD contains no isomorphicggaphs.

It is clear that the size of a reduced OBDD depends on bothuhetibn represented
and on the chosen ordering of the variables. Unfortunatie¢/problem to find théest
total ordering on variables is NP-hard, even though exfatieft heuristics to handle this
problem.

Figure 4.2: Reduced Ordered Binary Decision Diagramffer (xAy) V (X AY)

4.4 THENUSMV VERIFIER

In this section we briefly introduce the NuSMV [34] tool, a gesl purpose symbolic
model checker based on SMV [154]. Recently, NuSMV2 exteridegbrevious versions
of NuSMV with the capability to combine BDD model checkingle®AT-based Bounded
Model Checkingl[35]. The NuSMV input language is designedltow the description

of FSSs. The only data types provided by the language aree&os| bounded integer

32 Chapter 4. Symbolic Model Checking

subranges, and symbolic enumerated types, which can lefuextended with the defi-
nition of bounded arrays of basic data types. The systenrigésa is decomposed into
modules each of them represent a FSS and can be instantiated maeg. tioreover,
the NuUSMV input language allows one to describe deterningstd non deterministic
systems, as well as synchronous and asynchronous systems.

Figure[4.8 we provide an example of NuSMV module. It desaiaesystem with one
module (i.e., one FSS), whose state is composed by two Vesidlequestand state.
In the initial state the system readywhilst the value of variableequestis undefined.
The system dynamics is defined by functimextwhich describes how the varialdéatus
evolves. Thease statementis evaluated from top to bottom. Whenrdueiest = truehe
system becomes busy, otherwise the system will be nonrdetistically readyor busy
A CTL (and also LTL) formula is specified through the keyw@®EC In this case, the
system holds thator all paths, at each time step, whenever a request is mhda it will
be always satisfied in the futureA complete tool description can be found/at [139].

MODULE main
VAR
request : boolean;
state : {ready, busy};
ASSI GN
i nit(state) := ready;
next (state) := case
state = ready & (request): busy;
1 : {ready,busy};
esac;
SPEC
AG((request) -> AF state = busy)

Figure 4.3: Example of NuSMV domain

4.5 THEHYTECHVERIFIER

HYTECH [88] is a symbolic model checker fdinear hybrid automata, a subclass of
hybrid in which the dynamics of continuous variables arergefiby linear differential
inequalities. One of the mostimportant (and unique) feadfiHY TECH is theparametric
analysis it uses symbolic constants with unknown fixed values (design parameters)
to determine necessary and sufficient constraints on treders under which safety
violations cannot occur (e.g., this feature can be used termiéne the minimum and
maximum bound on variables). MoreoveryHeCH is able to verify system properties
expressed by means of LTL logics.

On the negative side, HI'ECH can deal only with small automata and no simulation mode
is available during the system analysis. For the sake oflgitypwe give provide a brief
example of a M TECH model, a complete tutorial can be found/at/[89].

Generally, a HyTech model consists of two parts. The forneertains the textual de-
scription of acollectionof linear hybrid automata, which are automatically compdse

4.5 The HYTECH Verifier 33

the analysis. The former contains a sequence of analysisnemiths. The analysis lan-
guage is a simple while programming language that providgwiaitive the data type
state assertion with a variety of operations (ipee andpostfunctions, boolean operator,
existential qualification).

Let us to consider a system composed by a train, a gate andti@ltem The train is
initially some distance away from the track intersectiotivthe gate fully raised (e.g.,
at least 2000 feet). As the train approaches (1000 feet)gddrs a sensor signaling its
upcoming entry to the controller. The controller sends agloeommand to the gate, after
a delay of up tax seconds. When the gate receives a lower command, it loweaiteadf

9 degrees per second. After the train has exited the intéweeand is 100 feet away, it
sends an exit signal to the controller. The controller themmands the gate to be raised.
HY TECH performs symbolic verification based mygions In this case, we can specify:

 The init region, defined as init := loc[train]=far & x=0
& loc[gate]=up & a=9

» The access region, which describes the reachable states frioih , as
access := reach forward from init endreach;

» The error region to check that the gate is closed when theigaside the crossing
asErr:= (loc[train]=on) & ("(loc[gate]=down));

In our example, N TECH requires 7 steps to verify that the specified safety progers
hold for the system.

CHAPTERDS

RELATED AREAS

In the following we briefly introduce three methodologieanrely theMixed Integer Non-
Linear Programmingthe Dynamic Programmingand theCell Mapping which are ap-
plied in many fields to deal with systems having a continuawsreonlinear dynamics.

5.1 MINLP: MIXED INTEGER NONLINEAR
PROGRAMMING

Mixed Integer Nonlinear Programming (MINLP) is a matheroaltiprogramming which
involves continuous and discrete variables and it is charaed by nonlinearities in the
objective function and constraints.

MINLP is used in several applications, including the VLSImacturing areas, engi-
neering, management science and operations researclgéectalection of them can be
found in [84] and[[85]) since it combines simultaneously tpgimization of adiscrete
system structure antbntinuougparameters. The general form of a MINLP is

min f(x,y)
st. gj(xy)<0,jed
xeX,yeY

where f(x,y) is the objective functiongj(x,y) (for j € J with J the index set of in-
equalities) are constraint functions axdndy are the continuous and discrete variables,
respectively. The sets X and Y are bounding-box-type i&gins on the variables.

MINLP problem combine two different subproblems: the noeér programs (NLP) sub-
problem and the mixed integer programs (MIP) one. IndeedyL\W problems are hard

to solve since they combine all the difficulties of the conalbamial nature of MIP and

the difficulty in solving non-convex (and even convex) NLic® subclasses MIP and
NLP are among the class of theoretically difficult probleiB{complete), it follows that

solving can be a daring challenge.

35

36 Chapter 5. Related Areas

There are several methods to solve MINLP problems: the brand bound method (BB),
Generalized Benders Decomposition (GBD), Outer-Appration (OA), LP/NLP based
branch and bound, and Extended Cutting Plane Method (ECP).

To this regard, MINLP has been used in a number of industaséstudies, which typi-
cally present a nonlinear dynamics, in both planning androbfields [147/ 142, 164, 6].

Although many commercial as well as academic solvers hage leplemented (a com-
plete survey can be found in [31]), the application of MINLdslystems having huge
state space may be difficult due to the large number of vasabhd constraints which
can compose the MINLP formulation.

5.2 DyNAMIC PROGRAMMING

Dynamic programming techniques are very suitable for theegsion of (optimal) con-
trollers.

For the sake of brevity, in this section we only briefly redak main characteristics
of the approach, we refer the reader [to![20] for a completergesn of this widely
used technique. Furthermore, in the following we Use [1544 aeference point, since
it contains a complete theoretical treatment of the proldechalso illustrates a detailed
algorithm for the numerical synthesis of the correspondimagtroller.

Consider a nonlinear plart
Xi+1= f(%,) (5.1)

with statex; € R", control s € R™ and discrete time < Z;. It is assumed thaf :
R"x R™ — R" is continuous.

The problem of the controllability oP to theorigin (i.e., the setpoint) is considered in a
given bounded regio®, containing a neighborhood of the origin itself.

The classical dynamic programming approach proceeds lasviol First an optimal cost
functionJ is considered:

I() = inf Li' (F (%,),) (5.2)

wherel (x,u) is a continuous, positive definiost functionandu stands for a generic
control sequencel = {ug, Uy, Uy, ...}.

Jis well defined (i.e. the infimum always exists in the regioméérest) if and only if the
plant? is controllable. In this casd,satisfies the so-calleBlellman Equation

J(x) = irl}f [1(x,u) +JI(F(x,u))] (5.3)

5.2 Dynamic Programming 37

and it can be computed by the following iterative method:

Jo=0

_ (5.4)
\]T—i—l(x) - InfU [l <X7 U) +JT (F(X7 U))]
whereT € Zg.

Since the convergence &f (5.4) poses several problemis1#j fhe numerical design of
the controller is based on a set of simplifying assumptions.

Indeed, in[[114] the authors assume to have a continuougiveodefiniteterminal cost
functionV (x) and that there exists a bounded regignwvhich includess, such that:

VX &, ueR™ I(x,u) > V(x) (5.5)
Other conditions are imposed on bofl, u) andV (x), that here are omitted for brevity.

With these assumptions, it is possible to definextended cost function(X) as follows:

= inf [%I (X, W), V (F (X, Uy)) (5.6)

Ut'ezs
whereu stands for a generic control sequenge: {up, Uz, Uy, ...}.

Thus,V (x) goes through all possibfite time horizonsvith terminal cosV and takes
the infimum. The role of functioni§x, u) andV (x) in (5.6) can be informally explained
as follows: by the assumption_(5.5) above, the final ¥ostn be considered agpanalty
functionwhich punishesa wrong control move; it regulates the convergence of the ite
ative computation o¥(x), since such iteration either stops with some final cost or the
final cost diminishes further and further, as the minimak s@gjuence drives to (a small
neighborhood of) the set point.

The main results ir [114] are the following:

Proposition 1. V(x) is continuous and satisfies the following Bellman-like eigume

V(X) = min{\7(x),iﬂf [(F (%, W), u)+V (F(x u))]} (5.7)

Now lety = sug.gV(€) andl” = {x € R"|V(x) < y}. " is the region where we expect
that control trajectories (if they exist) evolve.

Proposition 2. If for every xe I, V(x) < V(x) holds, with the exception of a (small)
neighborhood Np) of the origin, then in G the plan® is controllable in the sense that
it can be driven to the neighborhood p) of the origin. Moreover the control sequence
can be determined as the minimal cost trajectory, from theagqgn (5.7).

38 Chapter 5. Related Areas

From these theoretical results directly derives the folhgnalgorithm.

Given the discrete set of points, zo, . . ., zy contained iri:D and the discrete set of con-

trol actionsus, Uy, ..., up contained ifJp, we have the design algorithm shown in Proce-
durel2.

Procedure 2Dynamic Programming Algorithm
 forall i € [1,n] do
Wo(z) -V (2);
» forallie[1,n do
Wr+1(a)<—J.Qlirrlﬂ{v\fr(a),min[l(a,u]')+I(Wr,F(z,Uj>)]}

»

5 t«t4+1;
& end for
7 end for

Note that, although successfully applied, this technigugiires the definition of design
functions (likeV (x) andl (x,u) in Procedur&l2) which have to be found out case by case.
Moreover, systems whose dynamics cannot be easily invé@ttedtypical situation for
hybrid nonlinear systems) are very difficult to address whi#dynamic programming.

5.3 CELL MAPPING

Cell mapping was proposed by Hsu [98, 100] as a computattenhhique for analysing
the global behaviour of nonlinear systems.

Cell mapping allows an approximated analysis of a stateespggartitioning it into a
finite number of disjoint cells. Thus, each variable rangeshe set of cells, instead of
R". More precisely, suppose to have a model of the faftn+ 1) = f(x(t)), where the
statex is described by real-valued variables. Then, we can sess a point ofR". In
the cell mapping, th@ axes of the state space are partitioned into equal intergath
denoted by an integey.

These axes partitions naturally definglimensionakells Indeed, a celk is defined as
an-tuple of intervalsz = [z,...,z,]. The union of all celle is the cell spac&. The
main effect of cell partition is that all elements in a cglare approximated with the cell
center pointz®. This allows real (or point to point) trajectories in thetstapace to be
approximated by cell trajectories in the correspondind) s;ghce. Figuré 511 illustrates
the approximation scheme for a real trajectory:

X1 — X2 — X3

for the discrete time system:
Xer1 = F(X).

5.3 Cell Mapping 39

Continuous
Trajectory |
jectory " -
X3
c
Zz > - .\.’(,
. Z,
~
o~
/Xy
/ Zz 7z 3
,"‘“" =
Cell
Trajectory
|‘I‘ - (.
z)
&
X
7

Figure 5.1: Cell space approximation of a real trajectory

The initial pointx; in the trajectory which lies in celt; is abstracted by the cell center
pointZ. Then,x, = f(Z) which lies in cellz is abstracted bg5. Finally,x; = f(Z) in
cell zz is abstracted byg;. This procedure yields the cell trajectory:

21— 2o — 73

Note that to minimise cell mapping errors, it is importardttStates<, and x5 be lo-
cated as close as possible and lie in the same cells as theajeatory stateg, andxs,
respectively.

A cell mapping is formalized as a cell state space function:
C:Z2—~Z
Using this function, &-step trajectory emanating from celis written as a cell sequence:
z—C(2) = C(C(2) = ... = CX2).

A periodic motion with perioK is a sequence df distinct cellsz,,m=0,...,K—1,
satisfying the condition
Zm =CM(2) andz=CX(2).

An equilibrium cell z is a cell that maps to itself, i.e.:
Ze =C(ze).

Itis a periodic motion with period 1. Thestep domain of attractioof a periodic motion
is the set of all cells that are withimsteps of the periodic motion.

40 Chapter 5. Related Areas

The cell map of a system is constructed usinguaravelling algorithmto compute cell
trajectories([100]. Based on these trajectories, one ctablesh which cells converge
to the setpoint (controllable cells) and which not (uncoltable cells). Moreover, cell
mapping has been used to generate optimal control tabletlgliees a controller (see, e.g.
[99)), or to fine-tune a fuzzy logic controller (see, elg.ZD0 Furthermore, cell mapping
can be used to evaluate controller performancel[141, 140].

For the sake of brevity, we refer the reader td [98] for furttietails about cell mapping
and applications. Here we only highlight that cell mappieguires aglobal analysis of
the state space, and thus, for complex systems, when a hagision is required, cell
mapping ishard to apply

Part |l

Explicit Model Checking for the
Analysis of Deterministic Systems

43

In the second part of the Thesis, we show how the explicit rihdukcking technique can
be used to analysgeterministic systems#n particular, in Chapter 6 we first introduce the
problem of Planning and Universal Planning providing a syren the state of the art.
Then we present the contributions that this thesis givesRMUrphi and, in general, to
the planning and control communities.

In Chaptef¥¥ we describe the improvements of UPMurphi: tHéR&urphi tool which
exploits the disk based technique to perform Universalmfanon systems having a big
reachable state space. In Chapier 8 the application of V-WPM to some real-world
problems is detailed. Finally, in Chapter 9 we show how thglieix model checking
technigque can be used to perfodata quality analysisn dirty database, providing a
methodology and showing first experimental results on acase scenario.

CHAPTERG

MODEL CHECKING BASED CONTROL OFDETERMINISTIC
SYSTEMS

6.1 INTRODUCTION

In following we first introduce the problem of Planning andiiénsal Planning and we
illustrate the state of the art. Then, we formally define thversal planning problem on
FSS (according to the Definitian 2), and we describe the @hguras presented in [49, 56]
that solves this problem by means of a model checking deglgatithm.

Planning and Scheduling. For many years, planning and scheduling research were
completely separated. Typicalhfanningconcerns the problem of generating a sequence
of actions, in order to move from a specified initial state teaired goal state. Differ-
ently, schedulingis interested in allocating known activities to availabéseurces and
time respecting capacity, precedence and other constrajtionally minimising a given
cost function. In pure-scheduling problems often therenamay ways to accomplish the
same task, synthesising a schedule “as long as possiblejiv€can example, the Job
Shop problem is a typical scheduling problem where the go#d allocatejobs to ma-
chines, minimising a cost function (e.g., the workload @& thachines). The scheduler
will try many possible allocations looking for the best one.

Differently, in pure-planning problems the system is dissa through alynamicsthat
should be discovered. ThH#ocks worldexample is a pure-planning problem which de-
scribes the world as composed by blocks and a robot arm. Thecan perform some
actions on blocks and the goal is to create an ordered staukaks.

Generally, a planning problem requires (1) an initial sté2¢ a description of the sys-
tem dynamics, (3) a description of the goal and the resultssquence of actions (i.e.
the plan). A scheduling problem requires (1) a set of activities witbfprences, (2) a
set of available resources and the result is a map betwesfitiastand resources. In
spite of the differences that branch planning and scheglutiecently a mutual interest
between planning and scheduling has emerged since plaalgngthms have been ap-
plied to many real-world problems. To give an example, mdapming domains require
to deal with limited resources. As a consequence, many camti@si have merged in

45

46 Chapter 6. Model Checking based control of DeterministiSystems

a common research (see, e.g., the International Confemnéaitomated Planning and
Scheduling([1]).

Universal Planning. If by one hand planning concerns the run-time generatiotesiyp
to be applied between a single source and a single goal, oothlee hand ainiversal
plancan be seen as a collection of plans (or a set of policies)tallieng the system to
the goal from any feasible state. The conceptoiversal Planningwvas first introduced
by Schoppers [150] as an approach to learn state-actios irulghich a plan represents
a solution path for all possible configurations of a planrmpngplem, instead of a solution
for one single initial state. The solution of the universalnming problem is a Universal
Plan, which summarises the commands (actions) to send taddhein order to reach a
goal from any possible state the plant can be in.

It is worth noting that universal planning is typically pemned off-line and is compu-
tationally much harder than planning. However, once a usaleplan is computed, its
reaction time will be very small when compared to that of piag.

This Chapter is devoted to the automatic generatioopdimal universal plans through
explicit model checking.

The main idea of Schoppers to synthesise a universal plaperform a backward visit of
the dynamics graph (starting from the goal nodes) usingssidal BF search. However,
for many years the problem to find a universal plan for a givemains, even though it
is considered interesting for the large application in margblems, it has been deemed
impracticable[[81] since the search tree can grow expoaigniin the size of the graph.

6.1.1 RELATED WORK

With the introduction of BDD state representation (see iBe®.2 for details) the con-

cept of universal planning has a renaissance in both detesticiand non-deterministic

domains, thus many planners and universal planners basedaal checking (and hence
on the formalism provided by FSS) have been proposed. Torégisrd, planning-as-

model-checking has a strong heritage (see, €.g., [83@eginoving states reachability
can be viewed as finding plans. In particular/in/[37] the atgluse a symbolic approach
based on OBDDs to compact encode the state space.

Dplan [149] is well known state-basdaackwarduniversal planner for deterministic do-
mains. The main characteristics are that (1) it representata explicitly, (2) no initial
states are given and (3) it performs a backward searchrggdrm the goals nodes. The
construction of the universal plan terminates only if thpansion of the current leaf node
results in a yet visited state. However, due to the backweadc, an inverse operator
op ! should be defined for each domain operatpr Thus, Dplan does not work well on
systems whose dynamics is difficult to invert (the typicédiaiion for hybrid nonlinear
systems).

6.1 Introduction 47

The Model Checking Integrated System (MIPS)![62, 63] is & yawerful and complex
framework that makes use of a combination of both expligitsymbolic model checking
based on heuristic search. The MIPS performed very wellfieréint planning compe-
titions, however it is restricted to PDDL2.1 while the exded version MIPS-XXLI[656]
deals with PDDL3. However, MIPS it is not a universal planner

The UPPAAL/TIGA tool [15] is built on top of UPPAAL which alles the use of real
variables only as clocks, thus excluding systems with meali dynamics. Other exam-
ples of model checking based deterministic planners irglathong others, ProPlan [73]
and BDDPIlan[[92].

In [36] authors use a symbolic (OBDD-based) model checkimgr@ach to synthesise
optimal (with respect to the length of the plan) universahglfor non-deterministic plants
(we will detail this work in the Part 1l of this thesis).

However, all these approaches require the explicit dedimiof an inverse function for
each operator used in the domain, and thus their applicaibard when dealing with
systems having a complex and nonlinear dynamics.

Indeed, a growing number of motivating applications shdwesitnportance of dealing
with mixed discrete continuous domains. Some examplesm@mauct processing in a
plant [9], activity management of an autonomous vehicl@]1toltage regulation plan-
ning [1€], solar array operations on the International p&tation [145], oil refinery
operations planning [23], planning for an airport contrg$tem [90], or slag foaming
control [168].

To this regard, several real world planning problems presemplex nonlinear be-
haviours which are difficult to handle by any analytical noeti{see, e.g./ [155]| [22],
[26]) or hybrid reasoning approach. Nonlinearity can afisen the intrinsic dynamics of
the system (e.qg., the regulation of a steering antennajwidsacls to an inverted pendulum
problem), or the saturation of actuators (e.g., valvesdaahot open more than a certain
limit, control surfaces in an aircraft that cannot be deéldainore than a certain angle,
etc.). Indeed, the behaviour of nonlinear systems can besplex to be completely
unpredictable after a small interval of time (see, e¢.g1[L5

To this aim, the planning community has made a great effodeteelop algorithms and
tools able to deal with hybrid planning domains, which canrmelelled via the PDDL+
language, as discussed in Secfion 2.4.

Continuous Linear Domains. In such a context, itis crucial to reason about continuous
change during the planning process [75]. In addition to tbd@ehchecking based planners
cited above, other planners able to deal with hybrid domlaave been proposed. More
recent works include the OPTOP planrier [128] that deals kmigar continuous domains
where concurrent processes do not affect the same variable.

48 Chapter 6. Model Checking based control of DeterministiSystems

The TM-LPSAT system, developed hy [152], combines SAT andtlRers. The former
is used to deal with the discrete component of the domainenthi¢ latter is used to
handle the continuous one. TM-LPSAT can deal with processagelled in PDDL2.1,

even though it is limited to small linear problems.

CoLIN [42] is a powerful tool for planning in domains with linearrdcuous processes.

It extends the forward chaining temporal plannenkKty 3 [41], making it able to reason
with actions with continuous linear effectsOCIN integrates a guided state space search
with linear programming, and supports duration-dependgatts, durative actions with
continuous change and concurrent continuous change.

However, the planners above are not universal plannerstaydcan handle only linear
domains.

Continuous Nonlinear Domains. Looking at planners able to deal with nonlinear dy-
namics, we highlight Kongming [119, 122], thanks to the apiof Flow Tubes, is able
to compactly represent hybrid plans and encode hybrid fl@plygs as a mixed logic lin-
ear/nonlinear program, solvable using an off-the-shdifeso However, Kongming can
only address planning problems with constant action domge.g., consider a pump that
fills a tank, the duration of the "fill” action cannot depenastbe tank’s volume).

More recently,[[134] deals with nonlinear continuous effeeritten in PDDL+, using a
state projection algorithm implemented into a Hierarchiask Network planner. The
approach is very interesting and effective, even thoughnfariation about the opti-
mality of the synthesised solutions is given in the paper, asdthe authors argue, the
scalability of their approach has not yet been evaluated @ romplex case studies.

Thus, planning as well as universal planning with contirsioanlinear change is a chal-
lenging issue.

6.2 THE UNIVERSAL PLANNING PROBLEM

In order to formally define the universal planning problem dontinuous systems with
possibly nonlinear dynamics, we assume that a sgpafstates G- Shas been specified.
Moreover, to have a finite state system, we fikngte temporal horizon Tand we require
each plan to reach the goal in at mdsactions. Note that, in most practical applications,
we always have a maximum time allowed to complete the exatuwti a plan, thus this
restriction, although theoretically quite relevant, hadisrsted practical impact.

For the sake of completeness, in the following we providdadnmal definitions of Plan-
ning Problem on FSS and its solution.

Definition 11 (Planning Problem on FSS)et.$ = (S s,A,F) be an FSS. Then, @lan-
ning problem(PPin the following) is a triple PP= ($,G,T) where g € S, GC S is the

6.3 Planning as Model Checking 49

set of the goal states, and T is the finite temporal horizon.

Then, a solution for PP is aeachable trajectoryt (plan), according to Definitiori 4,
= SoapS1a1982 ... a1y Where,Vi =0,...,n— 1, 5 € ReachlS) is a state, ac Ais an
action, F(s,a,5+1) =1, |1 < T, and g € G C ReacliS).

Now we are in position to state the universal planning pnobier FSSs.

Definition 12 (Universal Planning Problem on FSS)ets = (S |,A F) be an FSS. Then,
a universal planning problerfUPP in the following) is a quadruple? = (5,G,C,T)
where GC S is the set of the goal states; Sx A — R™ is the cost function and T is the
finite temporal horizon.

Intuitively, a solution to an UPP can be seen as a sebbties that is a set of minimal
cost paths in the system transition graph, starting fromraaghable system state and
ending in a goal state.

More formally, we have the following:

Definition 13 (Solution for UPPs)LetS = (S/1,A,F) bean FSS and le? = ($,G,C, T)
be an UPP. Moreover, le@ = | g ¢ Reactis)) NUg.cc Reach!(sg). Then a solution for
PisamapX fromQ to A s.t. Vs Q there exist kK T and a trajectoryrt™ in § s.t.:

T§(0) =s,Vt <k:Tg(t+1) = F(15(t), K(15(1))) and Tt (k) € G. We denote withz(s)
the trajectoryrt” generated byX and s.t.1(0) = s.

Anoptimal solutions a solutionX s.t. for all other solutiong’ the following holds: for
all s € S s.t.&Kx(s) and K'(s) are defined, then CKn(s)) < C(K'r(9)).

In the next section, we describe the algorithm presenteéddhwhich takes as input an
UPP and outputs an optimal solution for it.

6.3 PR.ANNING AS MODEL CHECKING

In Section_8 we gave the main idea of how a model checker wdiks, it looks for a
system state which violate an invariant condition). Sinylaa planner performs a search
into the system by looking for a state which satisfy a goalditbton. Then, both model
checker and planner return a path (i.e.,eqror trace and aplan respectively) from the
initial state to the found state.

It is possible to use a model checker like a planner by fortiegformer to look for an
invariant which models a goal condition. More formally.

Definition 14 (Planning as Model Checking).et MCP be a Model Checking Problem
M = (5,9, T) according to Definition 10 and let PP be a Planning Problem RS, G, T)

50 Chapter 6. Model Checking based control of DeterministiSystems

as in Definition 11, we construct@anning as model checkimoblem as PM= (S, Y, T)
wherely =s¢ G.

Then, a solution for PM is aeachable trajectoryt (plan) according to Definitio 14,
= SapS1a1982 - . . an—15 Where:Vi € [0,n—1], 5 € ReactiS) and s F (thatis $ ¢ G)
whilst s, € Reacl{S) does not satisfy (that is s, € G). If Vs € ReachfS),sF then the
solution is an empty trajectory (a plan does not exist).

6.4 THE MODEL CHECKING BASED UNIVERSAL
PLANNING ALGORITHM

In this section we describe an explicit model checking basgakithm to perform Univer-
sal Planning on continuous domains, as proposed in [49,&6gn a UPP, the algorithm
solves it in two phases: theuBL.D GRAPH and the WWLANGENERATION.

Procedure 3BUILDGRAPH(UPP? = (§,G,C,T))

v lets«+ (S1,AF)
. forall sel do
EnqueueQs, 9)
Insert(HT,s)
if (s€ G) then
EnqueueQg, S)
HT[s].cost«+ 0
end if
while ((Qs # 0) A (currentBFS level < T)) do
1. S+ DequeueQs)
u forall s e{F(s,a)|(a)€A}do
12: if (S/ ¢ HT) then

© ® N o g A W BN

13 Insert(HT,s)

14: if (S/ € G) then

15: EnqueueQg, S)

16: HT[s].cost« 0

17: else

18: EnqueueQs, S)

19: end if

20: end if

21: PT[s] « PT[s] U {s};
22: end for

22 end while
2. end for

6.4 The Model Checking based Universal Planning Algorithm 5

6.4.1 THE BUILD GRAPH PROCEDURE

In the first phase, the algorithm exploresachability analysisn order to build a represen-
tation of the system dynamics that can be later easily aedlgsiring the universal plan
generation. Indeed, the correspondingiB> GRAPH procedure, whose pseudocode is
given in Algorithm[3, can be seen as an extension of the comungsdth-first visit per-
formed by classical explicit model checking algorithmse(dee BF Algorithni 1L, given in
page 2B).

For the sake of completeness, it is worth noting that, in taeegal theory of universal
planning, the concept of start state is not present/[15@]istsissed in Section 6.1. How-
ever, in the practice, the concept of reachable state is\glieh a start state. In other
words, we need to start-up the universal planning with a staot states, that we call a
start state cloud These states should be distributed in the system state spathat all
the interesting states are reachable from at least one of. tHewever, a start state cloud
can be also suitably prepared to concentrate the plannoagps on the most interesting
state space regions, or to exclude hardly reachable statedtie universal plan. Indeed,
a complete universal plan could generally contain manyly-arged plans, whose com-
putation requires however time and space. Therefore, aroppate formulation of the
start state cloud may help to minimise the universal plareggion effort and maximise
its usefulness. The role of the start state cloud will reswdte clear in Chaptérd 8, when
we apply the UPMurphi to real case studies.

The Procedurel3 uses the hash tatle to store already visited states, while the queues
Qs andQg store the states to be expanded and the reached goal stalbesused in the
next phase), respectively. This information is also usedetect and exploit trajectories
intersections, so avoiding work duplication. Note that tbenputation of the successor
states involves discretised values, i.e., continuous coapts of botlsands' in line 11 of
Algorithm[3 are rounded according to the chosen discrétisafFinally, the predecessor
tablePT contains the immediate predecessors of each visited stais.structure is at
the heart of the second phase of the algorithm, represegtétedJPLANGENERATION
procedure, whose pseudocode is given in Algorithm 4.

6.4.2 THE UPLANGENERATION PROCEDURE

The UPLANGENERATION procedure performs another Breadth First visit, this time o
theinvertedtransition graph, starting from the reached goal stateshi$end, the proce-
dure uses the information Qg, HT andPT prepared by BiLD GRAPH. The output is
the table UPLAN, containing (state,action) pairs that espnt the map described in
Definition[13.

In particular, the check on line 10 of Algorithimh 4, which upetathe action associated to
a state only if either no action has been defined yet or thegtaction leads to a better
result, together with the ordered insertion in the qu@deguarantee that the algorithm

52 Chapter 6. Model Checking based control of DeterministiSystems

Procedure 4UPLANGENERATION
1 UPLAN <0
2 Qs+ Qg // this erases the previous content®f
> While Qs # 0 do

s«+DequeueQs)

prev.cost« HT[s].cost//Qifse G

for all (S PT[g]) // Sis a predecessor af do

local_cost« min C(sa)
(a)eA[F(Sa)=(s)

e U<+« {ac€A|F(5a) =sAC(5a) =localcost

oo localaction« pick an actionin U

. If (UPLAN[S]= 0 VHT[S].cost> prev.cost+-local cost)then
11: UPLANI[S] « local.action

12: HT[S].cost« prev.cost + localcost

13: Enqueuen_OrderQs, 5)

N 9 A~

14: end if
1. end for
1. end while

17 return UPLAN

returns aroptimal solutionaccording to Definition 13.

Note that, since our approach rebuilds the system trangtiaph by a forward analysis
of its dynamics, the system fed to the planning algorithmloaf any complexity, and
in particular its transition function can be also very diffido invert.

6.5 THE UPMURPHIUNIVERSAL PLANNER

For the sake of brevity, in this section we briefly describe thain characteristics of
the UPMurphi planner. A complete description can be founfb@}. The UPMurphi
tool [49,/56] exploits explicit model checking algorithmas(discussed in Chapiéer 3) to
generate optimal controllers.

The UPMurphi tool is built on top of the CMurphi_[32] model ahker. A graphical
representation of the overall structure of UPMurphi, tbgetvith its inputs and outputs,
is given in Figuré 6J1. Each module of UPMurphi has the follmywole:

PDDL+ domain and problem It represent the planning problem encoded in PDDL+ lan-
guage, as described in Sectionl2.4.

UPMurphi definition. Alternatively, UPMurphi can works directly on the FSS of the
domain using the CMurphi language, as described in Sectédn 3

6.5 The UPMurphi Universal Planner 53

Input Primary Output

PDDL+ domain UPMurphi PDDL+ plans
and problem definition

Universal Plan

\ 4 \ 4 UPMurphi tool

PDDL to UPMurphi

UPMurphi model L
compiler compiler ‘

UPMurphi engine

Build ' Uplan
Graph) Generation

Figure 6.1: Overall structure of the UPMurphi tool

PDDL+ to UPMurphi compiler. This module discretises PDDL+ domains and problems
into FSS according to the formal mapping between PDDL+ arfdl $§&nantics, as
we provided in[[56, 49].

UPMurphi engine It is the core of the tool and implements theiBo GRAPH and Up-
LAN GENERATION algorithms on the top of the CMurphi algorithms and datacstru
tures. Thanks to this, the universal planning algorithnsented in Sectioh 6.4
can exploit all the CMurphi built-in state space optimisatiechniques (such as
bit compression [137], symmetry reduction [105], secopdaemory storage and
state space caching [54]) to handle large systems with Hagespaces.

UPMurphi model compiler. This module compiles the UPMurphi model into an exe-
cutable model.

Itis worth noting that UPMurphi inherits from CMurphi two portant features to ease the
modelling activity: the typeeal(m,n) of real numbers (withm digits for the mantissa
andn digits for the exponent), and the use of externally defingd+@/functions in the
modelling language. In this way, for example, one can us€tfia-+ language constructs
and library functions to model complex dynamics.

Moreover, to perform the Universal Plan Algorithm as welt@better integrate the Mur-
phi language with PDDL+ input/output syntax, the Murphiubpanguage (described in
Sectiori3.311) has been extended as follows:

54 Chapter 6. Model Checking based control of DeterministiSystems

PDDL name: The modeller can associate to each state variable a PDDL tlaowegh
the keywordpddiname , which will be used by théJPMurphi model compiler
during thePDDL+ plans generatiorphase. To give an example, the declaration
of the state variablé : 0..1; becomes [pddiname: 'daytime’;] : 0..1;
Moreover,pddiname can be used also to specify the PDDL name nfi@ , which
models PDDL+ actions/durative actions and events.

Rules Type: The PDDL+, in contrast with PDDL2.1, models durative acsi@ccord-
ing to the start-process-stopnodel (introduced in[[77], it divides each dura-
tive action as start/stop actions, a process which affectgirmious variables
and an events which models failure conditions). To this négéhe Murphi
rule construct can be parametrised by specifying one of theviitig attributes
clock,action,event,durative-start,durative-end

Costs and Duration: In order to make UPMurphi able to synthesiggimalsolution (as
described in Sectidn 6.4), the modeller can use the keyweight to specify the
costof the action execution as well as the keywdudation to (optionally) specify
thedurationof the action.

Metrics: The keywordmetric: {minimize | maximize} is used to maximize/mini-
mize the cost of the generated solution.

Finally, for the sake of completeness, in Figuré 6.2 we figuitethe launch options helper
of UPMurphi. A detailed description of the formal mappingween Murphi language
and PDDL+ has been published in [56].

General:
-search:o create an optimal plan for each startstate (defaul t).
-search:u create an universal plan.
-search:uo create an universal optimal plan.
-search:f create a feasible plan for each startstate.

Exploration Strategy: (defaul t: -v)
-cdl check for deadlock.
-l<n> maximum bfs level (def aul t: unlimited).

Output:
-output file write output in file (def aul t: stdout).
-format:pddl output plans in pddl format (defaul t).
-format:pddlv output plans in pddl format with verbose comm ents.
-format:pddlivv output plans in pddl format with very verbos e comments.
-format:text output plans/actions in text format.
-format:verbose output plans/actions in verbose text form at.
-format:raw output actions in binary format.

Figure 6.2: UPMurphi’s helper

CHAPTERY

V-UPMURPHI: THE DISK-BASED ALGORITHM

7.1 CONTRIBUTION

In Chaptef 6 we formalised the Universal Planning probleaRinite State Systems, and
we also described the algorithm which UPMurphi implementsaive it. In this Chapter,
we describe an UPMurphi’s enhancement (i.e., V-UPMurpthjch exploits disk storage
to extend the applicability of the tool to complex systems particular, the disk based
algorithm provides the following main contributions:

1. It allows the use of the disk during the exploration of tggamics. It is worth not-
ing that in Sectiofi 314 we discussed the CMurphi model chreek@ch exploits the
use of the disk during the verification process (i.e.,gbeues stored on disk dur-
ing the verification process). V-UPMurphi goes in the sammeation of CMurphi
by stressing the use of the disk also during thet® GRAPH and UR.AN GENER-
ATION phases. Thanks to this approach we are able to synthesiseagid strong
plans for some real-world problems, as we discuss in Segtion

2. It allows one topausethe synthesis process. Indeed, it is possible to store the
expanded graph to disk and resume the analysis later, alaoather machine.

3. Itimplements an adaptation of thash compactiotechniquel[158] which is com-
patible with the disk-based algorithm.

4. It now uses the CUDD library [44] to apply OBDD compressanthe generated
controller. Indeed, the compression technique proved teelng effective for this
purpose (see [46] for detalils).

7.2 THE DISK ANALYSIS ALGORITHM

Figure_Z.1 shows the new overall structure of V-UPMurphi et theUPMurphi engine
is strictly different with respect to the one presented intBa[6.5 (see Figurie 8.1).

55

56 Chapter 7. V-UPMurphi: The Disk-based Algorithm

Input Secondary Output Primary Output
PDDL+ domain UPMurphi C°m§’“ted system PDDL+ plans
and problem definition ynamics
Goal and error Numerical
states controller table
Reachable states
description
\ 4 \ 4 UPMurphi tool
PDDL to UPMurphi
UPMurphi model <
compiler compiler

UPMurphi engine

Transition Optimal

Model ' ' ' Plan
Analysis 1 Graph Paths Generation

Generation Calculation

Figure 7.1: Overall structure of the V-UPMurphi tool

Given the model of a system to analyse, the V-UPMurphi engppies to it an explicit
algorithm, organised in four phases, as shown in Figure 7.1.

In the first phase, we explaachability analysisn order to build a representation of the
system dynamics that can be later easily analysed and eegbldiring the other phases.
This phase can be seen as an extension of the common breatlthsit performed by
classical explicit model checking algorithms. In the ndxage the tool rebuilds the com-
plete plant transition graph, which is then used to caleuthe optimal control paths.
Finally, the control paths are grouped into distinct plahsgquired. The results can be
exported to disk in various formats (binary, PDDL, CSV, ktc.

All the phases above make use of secondary memory (disk)de &he manipulation
of huge systems without incurring in out of memory errors.avoid an excessive time
overhead, the disk structures used by UPMurphi have beegrdesand implemented
by taking into account their usage patterns, i.e., how awd fnrequently each structure
is accessed during each phase of the planning process. €this the definition of al-
gorithms and data structures that minimise the number &fsiek-and-read operations,
which are the bottleneck of any disk algorithm, since seeitfeisfrom a latency time
that is much higher than the actual read/write time. Foramst, UPMurphi privileges
sequential read/writes, at the cost of duplicating somarmétion and/or requiring more
disk space, which is not a problem since large disks are naysagery common. More-
over, UPMurphi is able to adapt its algorithm to increaseemrdase the disk usage with
respect to the user specified options and the size of thensysteer analysis. Finally,

7.2 The Disk Analysis Algorithm 57

when memory storage is absolutely required, the data stof@AM is compressed. For
example, states stored in the memory hash table are writdf-hit signatures.

Thanks to this framework, the UPMurphi computation can loped after each phase
and restarted later from the same point, without having peaéthe whole process. In-
deed, the data stored in the files above are enough to rebeiltbol state and continue
its work. It is even possible to restart the process from &ipus phase to try different
user settings: for example, one may restart the processtiieroptimal paths calcula-
tion phase (thus reusing the results of the previous twogs)aspecifying a different
transition selection policy. To this regard, the user catdp the-phase<1..5> option

selecting the appropriate phase to resume (fnomadel analysi$o output resultphases).

7.2.1 DsK DATA STRUCTURES

The UPMurphi algorithm uses a set of memory and disk datatstres. In particular,
the only structure that is always stored in memory is the asleH, used to remember
visited states by storing their 40-bit signature and the@ased index. The disk structures
are described in the following.

Disk Queues.Two FIFO queue®) andQ’, used in several parts of the algorithm, are
stored to disk. The head and tail segments of each queuedredccan memory to
minimise disk accesses. To this aim, the Disk Mode of CMu(pkidescribed in
Sectiori 3.4) has been used and adapted to work on V-UPMurphi.

Reachables file RAt stores the complete definition of each reachable systata,sind
it is indexed by the hash tablé. This file is created only if the user requires a
complete symbolic dump of the state in the planner output.

Transitions file T F It compactly stores all the transitions encountered duitiegnodel
analysis. Each entry in this file has the fofmd, (ri,w;,s)i=1..4) Wheresis the
index (as stored itd) of a stated is its out degreer; is the index of the model
rule which determines thieth outgoing transition frons, w; its weight ands the
corresponding target state. Note that states are storedeger indexes, which are
usually much smaller than the state description.

Startstates, Goals and Errors fileslhe startstates file SFgoals file GFand errors
file EF contain, respectively, the indexes of the start states atitteaeached goal
states, and the transitions (described as in the transitileh which lead to an error.

Actions file AF.Theactions file AFstores(s,r) pairs wheres is a state index andis
the action chosen for that state by the plan generationithigar Note that this is
an internal encoding of a controller table.

Plans file PF.The plans file PFcontains strings of the formprosiri . .. s, which rep-
resent a computed plan from the state (with ind®xjo states, through actions
(rules)rg...rp_1.

58 Chapter 7. V-UPMurphi: The Disk-based Algorithm

Graph file TGF.Thegraph file T GFis used to store the transition graph of the system
in the form of adjacency lists. In practice, this file contaam ordered and further
compacted representation of the data in the transitionstdilallow a faster nav-
igation of the system dynamics. In particular, for eachestat index order), the
file contains an adjacency list composed(hyv,) triples, where is a rule index,

w its weight ands’ the reached state. The graph file is indexed by an in-memory
structure that contains the disk position of the beginniingaah list, to allow direct
jumps to the adjacency list of a given state.

The transition graph storag/namically adapts$o the system size. Indeed, if the
number of reachable system states is small enough to allddirythe transition
graph directly in memory, the graph file is not created andreesponding memory
structure is built instead, to allow faster graph navigatio

In the following we give details of the four algorithm phasekich exploit the disk
data structures above.

7.2.2 MODEL ANALYSIS.

Transition Graph

Model Analysis Optimal Paths Calculation

Generation
Memory Hash Queue Graph Queue Graph
Table Cache Index Cache Index

Disk
< RezErzbEs <<Startstates File< < Graph File < < Queue File < Goals File

File < <
< Transitions File < < Graph File << Actions File <

< Queue File

| (

< Errors File

Figure 7.2: Data structures used in the main disk analyg@ighm phases

The model analysis algorithm, i.e., Algorithin 5, exploittandard BFS search to explore
the reachable system states, starting from the given stdeiss Clearly, when the search
reaches an error state or a goal state, it does not expldahefuon that direction.

The first column of Figuré 712 shows the memory and disk datetsires used by this
phase. The disk quegis initially loaded with all the start states, whose asstjineexes
are also written to the start states €. Then the algorithm dequeues a state fiQand
visits all its successors, calculated by tiagt function. The exploration ends when there
are no further states to expand in the exploration queue.

The memory hash tabld is used to avoid revisiting states. Indeed, each time a sate
reached by the search procedure, its signature is looked Hipand, if it is not found

7.2 The Disk Analysis Algorithm

Procedure 5MODEL ANALYSIS

Input: S, the set of Startstates
1 Q0
2 H+ 0

s forall se Sdo

+ | <—generatandex@);

5. storef,signatures));

s enqueudD,s);

7 write_stateindex@SFi);

s end for

» While Q#0do

S+ dequeu€D);

outgoing<«— 0;

forall (r,w,s) € nexts) do

1= if not containsg,signatureg)) then

w | <-generatdandex@);

1. store§signaturet));

16: outgoing<+—outgoingJ(r,w,s);

. if is_goal@) then

N
o

i
=

-
N

18 write_stateindexGF, i);

1. else ifis_error@) then

20: write_transitionEF, s,r,w,s);
21. else

22: enqueu€D,s);

23 end if

24: end if

5. end for

2 Write_stateindex(T F, s);

2z Write_number{ F, |outgoing);
2 forall (r,w,s) etransitionsdo
2 Write_transitionT F,r,w,S);
5. end for

. end while

w
iy

Procedure 6 TRANSITION GRAPH GENERATION

1 While (TF is not completely readdo

2 S<«readstateindex(T F);

s h<«readnumber(F);

+ fori=1ltondo

s (r,w,s) « readtransition{T F);

« addto_adjacencyist(TGF,s,r,w,s);
7 end for
. end while

60 Chapter 7. V-UPMurphi: The Disk-based Algorithm

(i.e., the state ifresh), then the state is given an index and written in the reaesatie
(if required)RF, whereas the corresponding transition is stored in thesitians fileT F.

If the state is a goal, its index is also written in the goats@F, whereas if it is an error
state the complete transition is written to the errorsHife Finally, the state is enqueued
in the disk queu®) to be expanded later by the algorithm.

It should be clear that this procedure is an revised verditimeoBuiLD GRAPH of Proce-
durel3 improved supportingash compactioanddisk storage

It is worth noting thathash compactioffl58] is a state space reduction technique im-
plemented in Murphi to reduce the size of each entry of thé haisle making it more
capacious. It associates to each system state a uniquéwgnstoring in the hash ta-
ble the state signature instead of the expanded state. IRMtphi, when botthash
compactioranddisk storageare enabled, the algorithm uses the disk to store the system
graph and the complete representation of each state emcednivhereas state signatures
are stored in the hash table, to save space and enable haphatmn. However, the
signature is not enough to compute tle@t function of a state since we need to access to
the state variables. Hence, we modified the original Murlsihhcompaction algorithm
to store in the hash table both (1) the state signature ana Rjque disk index which
allows to directly access to the expanded state.

7.2.3 TRANSITION GRAPH GENERATION.

In this phase, the algorithm collects all the transitiommiation generated by the model
analysis and builds the inverted transition graph for thetesy. Indeed, the planning
process requires to navigate the graph from the goals tddhestates.

The Algorithm[6 reads the transitions file and writes each inverted transition to a set
of adjacency lists, which are stored in the disk graphTi@&F or in memory, if enough
RAM is available. To this regard, the amount of RAM requiredstore the graph in
memory is automatically evaluated by taking into accouhtlti¢ state space information
collected in the previous phase, and (2) the size of the datetsres needed to hold the
memory graph.

The second column of Figute 7.2 summarises the memory akdidta structures used
by this phase.

7.2.4 COPTIMAL PATHS CALCULATION.

At this point, the algorithm has all the information needed¢cide the action to take in
each systems state, e.g., calculate the (optimal) cordtbkgdor each state that can reach
a goal. The algorithm can be configured (via the user-spdaiigions) to choose any
feasible action, or the action with minimum/maximum weight

7.2 The Disk Analysis Algorithm 61

Procedure 7COMPUTE OPTIMAL PATHS
: Q0
2 for (i = 0to numberof_statesydo
s chosenedgelik— null;
+ distance[i]«— oo;
s: end for
s While (T GF is not completely readdo
7
8
9

s+ readstateindex(GF);
enqueuel’, s);
- end while

1. While (Q' is not empty)do

1. S+dequeueD);

2 for (r,w,s) eadjacencylist(T GF,s) do

1 if (chosenedgef] = null v

distance§] > distance§] + w) then

. if (chosenedge§) = null) then

15: enqueuel’,s);

16: end if

. chosenedgef] «+ (r,w,s);

1 distance§] < distance§] + w;

19: end if
2. end for
2. end while

. for all (s| chosenedgef] # null) do
s write_action@AF, s,chosenedgef));
22 end for

N
N

N

Procedure 8PLAN GENERATION
1 for (se SF) do

2 plan< 0;

s while (hasaction@AF,s)) do
« (r,w,s) «readaction@F,s);
5. appendto_plan(plan,s,r);
& S+ S
7
8
9

end while
write_plan(PF, plan);
. end for

The process is implemented as shown in Algorithm 7 and usemémory and disk data
structures shown in the last column of Figlrel 7.2. Also is ttase the procedure is an
revised version of the RLAN_GENERATION of Proceduré 4 which now suppottssh
compactioranddisk storage

The disk queud is initialised with the goal states found in the goals @€, then the

62 Chapter 7. V-UPMurphi: The Disk-based Algorithm

algorithm traverses the transition grap®F generated by the previous phase using a suit-
ably modified version of the Dijkstra algorithm. The chosdges and the corresponding
weights are stored in memory and, when the process is compiet whole structure is
written to the actions fil&\F.

7.2.5 HRAN GENERATION.

If the user requires the generation of plans (and not a simqiérol table), this phase
accesses the data startste&®sand actionsAF files and writes in the plan fil@F the
paths starting from the user-specified start states (or &lbthe states, if a universal plan
is required) as illustrated by Algorithinh 8.

Finally, the planner reads the actiohB or plansPF file, depending on the kind of output
requested by the user, and translates it in the appropngpeioformat, writing it to the
output. This phase, as the previous one, works completetifsidata structures.

CHAPTERS

PLANNING AND CONTROL CASE STUDIES

In this section we show a number of planning case studiesiicchwthe disk-based algo-
rithm presented in Chapter 7 has been applied to synthdsiss @nd universal plan.

We first present some experimental results for two benchmankains, i.e., the contin-
uous version of th&eneratordomain as well as th€ooling Systendomain. We use

these well-known case studies to show how the V-UPMurphi ¢aa synthesise plans
and universal plan for domains having concurrency on pgeseand nonlinear dynamics.

Then, we present three significant case studies inspiretidoyetal world specifications
of complex systems, namely tBmgine Control of an Autonomous Planetary Landbe
Planetary Landemand theBatch Chemical PlantComplete details on these case studies,
including the UPMurphi code generated from the PDDL+ domatan be found on the
UPMurphi web site([117], together with more complete expent results. Moreover,
when needed, we use the PDDL+ validator (VAL|[96]vadidatethe generated plans.

A preliminary versions of these results have been publigh§b, 49,/50] 51, 52].

8.1 THE NONLINEAR GENERATORDOMAIN

As a first example, we consider the continuous model of3kaeratordomain [95]. A
generator is powered by a fuel tank with a limited capacitg@fuel units and consumes
one fuel unit per second. During the generator activity (efled by the theconsume
durative action), two fuel tanks of 25 fuel units each can beduto refuel it (through
the refuel durative action). The refuelling activity is modelled aswaative action with
variable duration (i.e., its duration must be decided byglamner) and is described by
the Torricelli’'s law, which makes the system dynamics nogdir. Moreover, the domain
also involves concurrency, since tbensumendrefuelactions take place continuously
and concurrently, and are modelled through continuousgsses. The goal is to make
the generator run for 100 seconds.

The PDDL+ model of Figure 8.1 should help to clarify the matféhe durative action
generatehas a fixed duration of 100 and requires that the generatbtelus is always

63

64 Chapter 8. Planning and Control Case Studies

positive. Its behaviour affects the fuel level of the getmraDifferently, the durative
actionre fuelrequires to specify a generattyy and a fuel tanRt whilst duration depends
to the tank?t volume. Its continuous effect is twofold: on one side it gases the
generator fuel level and the refuel time, on the other sidegteases the tank fuel volume.
It is worth noting that PDDL+ does not support tsggt function, which is required to
compute the initial tank’s volume. Nevertheless, accaydm95] we use a linear function
of time to supply the square root of the initial volume of thak.

State space size 108

Reachable states 29,119 047

Generated plans 126,553
Total synthesis time (seq) 1,43011

Table 8.1: Universal Plan statistics for the generator doma

The PDDL+ domain and problem of the generator (as shown iarEi§.1) as given as
input to V-UPMurphi in order to synthesize a Universal Plamihg one generator amgo
different fuel tanks. Table 8.1 summarizes the results efuthiversal planning process.
The final universal plan contains 1553 plans, which is a small fraction of the near 30
million states that the system can reach, showing that terenany situations in which
the goal cannot be achieved (i.e., a plan cannot be devisttelptanner).

An example of plan is given in Figufe 8.1 while its VAL validat report is shown in
Figure[8.2. Roughly speaking, VAL validates a plan with extpto the domain and
problem file. It executes the plan by verifying if the goalesiched and if the plan obeys
the domain constraints (e.g., the precondition of an adi@atisfied, or the duration of
a durative action is hold). Moreover, VAL is able to generatgraphical representation
of the trend of each continuous variable (on the y-axis) wapect to the time (on the
x-axis). In Figuré 8.2 the trend of tanks volumes is depicW#d can note that during the
first 59 seconds the fuel level decreases linearly sincefnelraction is performed. Then
the generator is refuelled using tank 1 in the time intef¥8/84] and tank 2 in the time
interval [75,87] (thus in the time interval75,84] the generator is refuelled using both
tanks). Finally, the generator uses the remaining fuel topiete the task.

8.2 THE COOLING SYSTEM DOMAIN

In this case study we considered a classical open thermadgrsystem that generates
energy, part of which is lost in friction and hydraulic lossad transformed into heat. The
system shown in Figuifie 8.3 is composed by an external pagrendn pump pours water
continuously at a given rate into two hoses, and an interaxd) pomposed by three water
tanks which leak water at constant rate. The water passasghithe pump and is poured
by the hoses into two of the tanks at a time. We assume thas lvasebe instantaneously

8.2 The Cooling System Domain

65

PDDL+ generator domain

PDDL+ generator problem and plan

(define (domain generator2)

cduration-inequalities)
(: types gen tank)
(: predicates (refueling ?g -
tank)

(generator_ran ?g - gen))
(: functions (tank_fuel_level ?t -

(gen_fuel_level ?g - gen)

(flow_constant ?t - tank)

(refuel_time ?t - tank)
(capacity ?g - gen)
(
(

gen ?t -

tank)

sqrtvolinit ?t - tank)
sqrtvol ?t - tank))

(: durative-action generate

. paraneters (?g - gen)

sduration (= ?duration 100)

.condi tion (over all (> (gen_fuel_level

?79) 0))
ceffect (and (decrease (gen_fuel_level ?
9) (* #t 1))

(at end (generator_ran ?g))))

(: durative-action refuel
. paraneters (?g - gen ?t - tank)
cduration (<= ?duration (* (/ 1 (
flow_constant ?t)) (sqrtvolinit ?t)))
:condition (and (at start (not (
refueling ?g ?t)))
(over all (< (gen_fuel_level ?g) (
capacity ?g))))

ceffect (and (at start (refueling ?g ?t)
)

(at start (assign (refuel_time ?t) 0))
(at start (assign (sqrtvol ?t) (

sqrtvolinit ?t)))

(increase (refuel_time ?t) (* #t 1))
(decrease (sqrtvol ?t) (* #t (
flow_constant ?t)))

(decrease (tank_fuel_level ?t) (* #t (*
(* 2 (flow_constant ?t)) (- (
sqrtvolinit ?t) (* (flow_constant ?t) (
refuel_time ?t))))))

(increase (gen_fuel_level ?g) (* #t (*
(* 2 (flow_constant ?t)) (- (

sqrtvolinit ?t) (* (flow_constant ?t) (
refuel_time ?t))))))

(at end (not (refueling ?g ?t)))
(at end (assign
sqrtvol ?t)))))

)

(sqrtvolinit ?t) (

(: requirenents :fluents :durative-actions

(define (problem

)

run-generator2)
(: domai n generator)
(: obj ects generator
tank2 - tank)
(init

(= (gen_fuel_level

- gen tankl

gener at or)

D
o
—~

capacity generator) 60)
tank_fuel_level tankl) 25)
sqgrtvolinit tankl) 5)

flow_constant tankl) 0.2)
tank_fuel_level tank2) 25)
sqrtvolinit tank2) 5)
(flow_constant tank2) 0.4))

(: goal (generator_ran gener at or))
(: metric minimize (total-time))

A~~~ e~~~ —~
L L L R L R | O T R 1|
—~ e~~~ —~

; plan

000: (generate generator) [100]
059: (refuel generator tankl) [25]
075: (refuel generator tank2) [12]

Figure 8.1: The PDDL+ continuous generator domain

66 Chapter 8. Planning and Control Case Studies

Value
60 |
0 Time
0 T T T '100
(a) Fuel level for generator
Value
25
0 Time
0 ! 700
(b) Fuel level for tank 1
Value
25
0 Time
0 T \100

(c) Fuel level for tank 2

Figure 8.2: VAL's Validation report for a single plan exeicut of the generator domain

repositioned on any tank. Moreover, we also consider thathter temperature raises
when it passes through the pump, since it is heated by the pagipe.

8.2 The Cooling System Domain 67

The goal is to keep the amount of water in each of the threestabkvery, ro andrs
liters, respectively, for 60 seconds. Moreover, we wanttémeperaturel’ of the water
passing through the pump to stay below 65 degrees.

Vtotal

dT
E = Ps(l 7 M)/Cpqp

U1 U3

Tlh-—mmmmmmm e

vz
- TR

2

out t
vg v3

Figure 8.3: A graphical representation of the cooling syst®main

Letv;, withi e W = {1,2,3}, denote the volume of water in Tamkandv?" > 0 denote
the flow of water out of Tank Moreover, let/', with j € H = {1,2}, denote the flow of

water introduced into the system through hpseherevigia = v‘l” +v"2” denotes the water
flow that passes through the pump.

The system is equipped with a controller that switches a tm3anki whenevew; <r;.
The boolean variabléilling; j is true when tankis filled through hosg. Therefore, the
variation of the volume of the water in tanks given by the following equation:

dv [Vn—vuif 3j e H]filling; j = 1
dt WU otherwise

Finally, the water temperature rising can be computed /st

dT

ot = (L= 1/cpap

where the constant values are given in Tablé 8.2.

68 Chapter 8. Planning and Control Case Studies

q | volume flow through the pumpr€/s) 0.0006
Ps | brake powefkWw) 0.095
K | pump efficiency 0.05

Cp | specific heat capacity of the flui@J/kg °C) 4.2
p | fluid density kg/m®) 1,000

Table 8.2: Cooling system constants

In the initial state of the system, the tanks are correctlgdiand the water temperature
respects the given constraint. However, the pump takestonoperate at full capacity,
thus during the plan execution it increases its powefARywer, generating more heat. In
this case, the planner may decide to increase the pump/flawby Arate in order to mit-
igate the temperature rising (since the water flow cools dihe@rpump), thus increasing

also each/§” by % -Drate, Which may violate the constraint on the tank water level. On
the other hand, the planner may leaygs unchanged, risking to violate the maximum

water temperature constraint.

Figure[8.4 shows the PDDL+ model of the cooling system dop@mposed by a du-
rative actionfill that, given a tankt and hose?h, starts the filling action o?t through

?h, which is performed by the procefifi_tank Similarly, the tank leaking is modeled
through proceskeak tank Note that the two processes may affeshcurrentlythe same
tank. The evenbver-rangeis used to invalidate plans in which exists at least one tank
wherey; < r; orv; > ¢;, while eventoverflowinvalidates all plans for which a hose does
not fill any tank. The everpump-dangeis triggered when the temperature of the water
passing through the pump is greater thandhegerlevel

The processystemactivity is used to measure the time elapsed since the beginning of
the firstfill action. Indeed, after a given amount of execution, the epewer-increasing

is triggered, increasing the pump’s power consumpfiohy Apower. The effect of such
event is to allow the execution of the actiorcreaserate, which in turn increases the
pump flowvigiar by Arate, modifying the water flow in the hoses and changing the dynam-
ics of the system from linear to nonlinear.

State space size 1071

Reachable states 33,059,357

Generated plans 17,188 665
Total synthesis time (sed) 1,43011

Table 8.3: Cooling system universal plan generation siegis

We used V-UPMurphi to generate the universal plan that otsithe system activity for
exactly one minute, starting from the initial condition shmin Figure 8.5. The results in
Table[8.3.

In Figure[8.6 we show an example of validation report for a plate plan starting from

8.2 The Cooling System Domain

69

PDDL+ durative action

PDDL+ processes and events

(define (domain cooling_system)
(: types tank hose pump)
(: predicates (fail)

(system_start)

(filling ?t - tank ?h - hose)
(busy ?h - hose)
(warning))

(: functions (v ?t - tank)

(v_out ?t - tank)
(c ?t - tank)

(v_in ?h - hose)

(r ?t - tank)
(system_counter)
(temp ?p - pump)
(p_s) (mu) (c_p) (q)
(rho)

(delta_rate)
(delta_power)
(plan_length)
(danger_level))

c durative-action fill
cparaneters (?t -

tank ?h - hose)

cduration (>= ?duration 0)

.condition (at start (not (busy ?h)))
ceffect (and

(at start (busy ?h))

(at start (syste_start))

(at start (filling ?t ?h))

(at end (not (filling ?t ?h)))

(at end (not (busy ?h)))

)
)

(: action increase_rate
cparaneters (?hl ?h2 -

hose)

:precondi tion (warning)
ceffect (and

(increase (v_in ?h1)

(* 1000 (* (delta_rate) (/(v_in ?h1)(q)
)]

(increase (v_in ?h2)

(* 1000 (* (delta_rate) (/(v_in ?h2)(q)
)

(increase (q)
(delta_rate)))

)

. event over-range
cparaneters (?t - tank)
:precondition (or

(< (v 21) (r 21)
(> (v 2t) (c 21)

ceffect (fail)

. event overflow
:paraneters (?hl ?h2 -
:precondition (and

hose)

(system_start)
(or (not (busy ?hl))
(not (busy ?h2))))

ceffect (fail)

. event pump-danger
cparaneters (?p -
:precondi tion

pump)

(> (temp ?p)
(danger_level))

ceffect (fail)

;. event power-increasing
cparaneters ()
:precondi tion (and

(>= (system_counter) (/ (plan_length

) 2)

(not (warning)))

;effect (and (warning)

(increase (p_s) (delta_power)))

. process fill_tank
;paraneters (?t - tank

?h - hose)

:precondition (and

(filling ?t ?h)
(system_start))

.effect (increase

(v 2t) (* #t (v_in ?h)))

. process leak_tank
cparaneters (?t - tank)

:precondition (and (system_start))
:ef fect (decrease

(v ?t)
(* #t (v_out ?1)))

. process system_activity
cparaneters ()

:precondi tion (system_start)
:effect (increase

(system_counter)
(* #t 1))

Figure 8.4: The PDDL+ cooling system domain

70

Chapter 8. Planning and Control Case Studies

(v
(v
(
(
(
(
(
(
() 0.1
(v_out tank2) 0.3)
(v_out tank3) 0.2)
(v_in hosel) 0.3)
(v_in hose2) 0.3)
(s
(
(
(
(c_
(
(
(
(
(
(
S

liters

ystem_ counter) 0)

q) 0.0006) ; the sum of v_in in m™3
p_s) 0.13) ; kW
mu) 0. 05)
p) 4.2) ; kdlkg °C
rho) 1000) ; Kg/m™3
delta_power) 0.19) ; kW

delta_rate) 0.00005)
temp pumpl) 60)
plan_length) 60)
danger_level) 65)
sy tem_start)

ot (fail))

;in m"3

,.\,-\,\

)
(: goal (and
(not (fail))
(= (system_counter) (plan_length))))
(: metric minimize (total-time)))

PDDL+ problem PDDL+ plan
(define (problem cooling_system_1) 000:(fill tankl hosel) [001]
(: domai n cooling_system) 000:(fill tankl hose2) [003]
(: obj ects tankl tank2 tank3 - tank 001:(fill tank2 hosel) [059]
hosel hose2 - hose pumpl - pump) 003:(fill tank3 hose2) [010]
(i nit 013:(fill tankl hose2) [005]
= (v tankl) 0.2) liters 018:(fill tank3 hose2) [010]
tank2) 0.6) 028:(fill tankl hose2) [005]
tank3) 0.9) 033:(fill tank3 hose2) [010]
c tankl) 1.5) liters 043:(fill tankl hose2) [005]
¢ tank2) 1.5) 048:(increase_rate hosel hose2)
¢ tank3) 1.5) 048:(fill tank3 hose?2) [008]
r tankl) 0 1) liters 056:(fill tankl hose2) [004]
r tank2) 0.2)
r tank3) 0.2)
v_out tankl) liters

Figure 8.5: The PDDL+ cooling system problem and one of thiseéd plans

8.2 The Cooling System Domain 71

Jalue Value
1.3 | 09 |
0 Time 0 Time
g mT '60 67 rT 60
(a) Trend for variable; (b) Trend for variables
. Jalue Talue
15 4 035
0 T — &ijm(t 0 . \&%mc
(c) Trend for variable; (d) Trend for variables!"
Value
64.8825

R

0 Time
a7 m 60

(e) Trend for variabléemperature

Figure 8.6: Validation report for a single plan executionled cooler system domain.

72 Chapter 8. Planning and Control Case Studies

the start state given in Figufe 8.5. In particular, Figurega38.6b[8.6¢c describe the
amount of watew; in each tank, Figure8.60 shows the evolution vzij'l‘ for each hosg,
and Figureé 8.6e the water temperature rise.

8.3 THE ENGINE CONTROL OF ANAUTONOMOUS
PLANETARY LANDER

This section presents a case study where planning is agpli@atomatically control the
engine of an autonomous vehicle during a planetary expioratission.

Autonomous planetary vehicles, commonly known as roveesaareat challenge in the
field of autonomous vehicles, since they have often to takerescon a hazardous ground
with narrow time and energy consumption constraints. Rogperating on distant planets
may receive commands from Earth operators only once peaddyjuring the remaining
time they have to perform a specific mission, which may inelagbving to a specific
place, position some instruments, take measures, etc537, 1

Usually, rover activities are converted on the ground intietailed plan that, once gener-
ated and uploaded to the vehicle, drives it for the rest ohttesion. Therefore, planning

for this kind of autonomous vehicles should be very precrsttake into consideration

many factors/[167].

Many rover activities begin with a movement that places # specified location. Thus,
independently from the nature of the rover’s mission, reagthe activity location is the
first goal to achieve, and it must satisfy two main constgiahergy and time consump-
tion. This is the case of thengine Control of an Autonomous Planetary Landérere we
show how V-UPMurphi can be used to generate optimal planseritral arover’s engine

in order to move it for a specific distance in the least posedibhe, while satisfying a set
of technical constraints and trying to save energy.

In the presented case study, the rover dynamics and bemawioluding some common

technical constraints, have been modelled through geeqtadtions, that may apply to a
wide range of vehicles. Plans have been optimized to mimiigergy and time require-
ments, and the given minimal battery charge is always prederTherefore, the results
are quite realistic.

The rover can be naturally modelled as a hybrid system, veitfersl nonlinear charac-
teristics. Thus, we have a dynamics very hard to computestwimakes planning quite
difficult.

8.3 The Engine Control of an Autonomous Planetary Lander 73

8.3.1 FROVER SPECIFICATION

The rover model used in our case study is based on the Marsratiph rover described
in [120].

In general, an exploration rover moves on the planet suttaobserve different phenom-
ena and/or try some experiments. The rover can rechargeatitsries through a solar
panel, but recharge cannot take place continuously, anenéey from the panels is not
enough to directly power the rover. Therefore, it must miaarthe energy consumption
in order to have always enough battery charge for the nexitgct

Moreover, the rover has limited communication and companatesources, so it must be
programmed with a detailed plan of activity and then leftragiag, without any chance
to recover from an error or recompute its mission. If someghwrong or unexpected hap-
pens, the best that the rover can do is to stop, reset andawditef next Earth connection
to get new instructions.

The plan we want to generate does not address the aotutalof the rover, butontrols
the vehicle engine and instrumenwligring the route itself. Routing is a different problem,
SO just we assume that a (possibly straight) route of lexdgtla, has been separately
planned and will be used to control the steering of the rovezels.

When moving, the rover is subject to friction and drift duethie - often unpredictable
- ground characteristics. Thus, evalyax meters, it has to stop fdg seconds to look
at its actual position and conditions, before starting mg@aimove. These frequent stops
may also be useful to ensure a proper cooling of the rover lstee® instruments, if
moving in a hot environment. For sake of generality, in tHiof@ng we shall call these
stops “cooling tasks”. However, we assume that the routatotur be less or equal tgyax
seconds, since the overall rover mission should not exceeasmnable limit.

The rover has a base energy consumpgipdoule/second, used to power its CPU.

The energy (expressed in Joule/second) required to movwevee with speed/ and ac-
celerationv'can be evaluated by applying the general functioof Equatior 8.1, where
mis the vehicle mass anth is its frontal area (seé [162] for details).

f(v,\'/):<%-p-v2-Cd-fa+m-g-(Crr+\—;>>-v (8.1)

In the equation, constangs g indicate the planet air density and its gravitational canst
respectively, wheredsd andCrr are the drag and rolling coefficients of the rover.

Finally, the cooling tasks require a constant energg.Qfoule/second.

The rover dynamics (i.e., the covered distad¢cehe speed and the acceleratiow) is
given by Equation 8]2.

74 Chapter 8. Planning and Control Case Studies

& = at)-ug ©2)

wherea(t) is the acceleration given by the rover motor at tira@dp is the kinetic friction
coefficient for the rover wheels.

We assume that, in each communication session, the Eatttoteends to the rover a plan
to drive it to the next place, and the commands needed totsacorresponding activity.
Such plan consists of a sequence of actions, to be perforideskaond intervals, chosen
from the setA = {acceleratedeceleratecontinue(moving at constant speed), perform a
coolingtask}.

The plan must obey the following constraints:

the rover must not exceed the speed;pi;

the rover must stop evedpaxto perform a cooling task;

the rover must stop afteatsing (to start the activity) with a residual battery charge
not lower tharcmin;

the rover route must not require more thagx seconds.

In particular, we must ensure that, after moving to the gieeation, the rover has still
enough battery charge available for its activity.

Finally, the plan must drive the vehicle to its goal as soop@ssible, since saving time
allows the rover to complete more activities before itstédaminates.

8.3.2 ROVER MODELLING

The dynamics and constraints given above have been firstlladds a hybrid automaton,
shown in Figuré 8]7. The state of the automatosis(x,q) € S, whereq € {stopped
running braking cooling engine blownno energy andx = (d,a,v, T, T¢).

The rover is initially in astoppedstate, where the only energy consumption is givegdy
When started, the rover enters thumning state and moves as described by Equdtioh 8.2
while its energy consumption is increased by the value giyelaquatio 8.11.. The vehicle
can accelerate and decelerate with stepssifry/ 2. After dpmaxmeters, the vehicle starts
braking and, once stopped, it begins tbeoling phase, with the corresponding energy
consumption. After 6 seconds of cooling: (n the automaton), the vehicle restarts and
continues in theunningstate.

8.3 The Engine Control of an Autonomous Planetary Lander 75

start engineExplode
d:=0 a:=0 V > Vyax
v:i=0 c'=c RUNNING
T:=0 Twm=0 . .
d=v a=0
v=ag
¢ =-(f(v,2)*g5
T=1 Tc=0
engineExplode
decelerate V > Vyax
a=a-15
m:zx?/jtance energyEnd
accelerate MAX C < Cmin
a=a+15
BREAKING NO ENERGY
d=v a=-15 .
v= ; -ug d=0 a 0
N arrest &= (f(v,a)+gs) energyEnd ¥=0 ¢ 0
v=0 T=1 Tc=0 € < Crmin T=0 Tc=0
Tec:=0
energyEnd
c=0

Figure 8.7: Hybrid automaton for the Control of Autonomolesietary Lander case study

The automaton also shows two possible failure conditidritiei rover moves faster than
the max allowed speedhay its engine blows upghgine blowrstate): in this case, the
entire mission could fail. On the other hand, if the consusregtgy exceeds the linGn,
the rover stopsno energystate), using the residual energy to wait for Earth instomst

We fixed the model constants to the values given in Table 804t of which are obtained
from rover specifications like [159] and [87]. Note that wewame that the rover operates
on the Mars surface.

Finally, according to Definitiohl8, we evaluate the cost & ¢fenerated plan through the
functionC(s, &) defined as in Equatidn 8.3.

tmax—| +Ca(a) if g = stopped

%) (@) if g = cooling

0 it g € no Efnergy (8.3)
engine blown

(gstf(vi W) +Ca(a) otherwise

tmax—1

wheres € Sa € A. Here,C; = 0 since all the actions are instantaneous and do not require

76 Chapter 8. Planning and Control Case Studies

Table 8.4: Constant values for the rover model

p | Airdensity 0.1Kg/m?
g Gravitational acceleration | 3.8 m/s
m | Vehicle mass 7173Kg
vl Kinetic friction coefficient 0.8
Cmax | Initial battery charge 18,000C
Cmin | Min final battery charge 17,000C
Vmax | Max speed 10cm/s
amax | Max acceleration 5 cm/s2

Os CPU energy requirements | 25J/s

tc Cooling duration 6s

dmax | Distance between coolings | 1.30m

gc | Cooling energy requirements10J/s

dfinar | Final distance 2m

tmax | Max plan duration 60s

energy.

This definition ofC allows one to perform optimization on both energy and tinee, a
required, still giving more importance to the energy congranindeed, usually the mis-
sion could be accomplished even if it requires some seconds than the planned limits,
whereas running out of battery charge could lead to dangdedures.

The resulting model has been translated to a FSS, encodee @Nlurphi description

language, with the same state variables and transitioniumef the hybrid automaton in
Figure[8.7. In this phase, the continuous state variables been suitably discretised: in
particular, we applied an approximation of 0.1 to all theiatales, thus the total number
of different states of the FSS is22 10'S,

8.3.3 UPMJRPHI MODEL

The UPMurphi rover model, we applied an approximation oft@.all the variables, and
introduced the/safemax< Vmax constant as the actual maximum speed. This gives us a
chance to set a further safety threshold on the speed, teqrew engine blow due to
approximation errors. On the other hand, the journey timkeb&imeasured in seconds,
since it is a reasonable update interval for the rover engfiateis. It is worth noting that,
with the given discretisation, the total number of differstates of the FSS is2- 1013,

8.3 The Engine Control of an Autonomous Planetary Lander 77

Figurel8.8 shows the resulting UPMurphi code, where for sdilsgmplicity we omit the
declaration of constants and state variables.

The start state of the modstoppeddescribes the corresponding initial state of the hybrid
automaton, i.e., fixes the initial conditions of the rovehenm, thestart rule initiates the
rover movement by setting the running variable to true.

The other five model rules, name#hccelerate decelerate running braking and cool-
ing, model the main transitions and states of the automatonariicplar,accelerateand
decelerataupdate the acceleration variable as described by the pamdsg automaton
transitions. These rules have a null duration and weigleraing to the hybrid automa-
ton semantics, since they represent instantaneous updates

On the other hand, theinning braking and cooling rules have duration 1, since they
model the changes in the rover state (i.e., speed, distawdesdtery charge) during a time
step of one second. Such updates are actually performecebyrthing statusupdate
braking statusupdateandcooling statusupdateprocedures, respectively, which concen-
trate the update logic found in the entire automaton, itee, uUpdates specified on the
maxDistancearrest and restart transitions and the ones contained in the running and
cooling states. The status update procedures, in turn, g@nspme values through exter-
nal C functions (e.guypdatec_cooling) that are used to evaluate the complex expressions.
Moreover, the external functiorstmovingand costcooling are used to dynamically
calculate the weight of each rule, as defined by the costifamehown by Equation 8.3.
The invariantsengineExplodeand energyEndmodel the homonymous transitions that
lead, in the automaton, to error statesg@ineBlowrandnoenergy respectively). These
states are not modelled here, since the planner autontatiedécts as errors all the states
that violate an invariant. Finally, the goal construct isdito declare the success condition
of the model, i.e., when the rover completes successfudlpiirney.

8.3.4 PR.ANNING

To build the optimal plan, the FSS was given in input to V-URPhI, which generated
939,477 reachable states in 2,257 seconds, with a peak meeatuirement of 500 MB.

Note that the reachability analysis performed by the tdoladd us to consistently prune
the system state space, as reported in Table 8.6. The ngsplan is described in Ta-
ble[8.5.

The table reports, for each second (which is the plan sagpihme, as discussed earlier)
the model rule (with respect to the code in Figure 8.8) chassevt UPMurphi. Thus, the
rover starts its journey whe8tartis selected, moves whdrRunningis selected, brakes
whenBrakingis selected, increases or decreases its speed Adeaterateor Decelerate
are selected, respectively, and perforn@amlingwhen the homonymous rule is chosen.
Note that we may have more than one rule executed in a simg&ediep, since some of
them (namelysStart AccelerateandDeceleratg¢ have duration zero.

78

Chapter 8. Planning and Control Case Studies

Model rules

Support procedures

startstate " stopped "

BEG N
a := 0.0; d := 0.0;
v := 0.0; ¢ := c_max;
T_c = 0.0;
cooling := false;
braking := fal se;
running := fal se;
END;
rule " start "
duration: 0;
weight: 0;

(running & !cooling & !braking) ==>
BEG N

running :=. true;
END;

rule " accelerate "
duration: 0;
weight: 0;
(running & !cooling & !braking) ==>
BEG N
a = a+ 15
END;

rule " decelerate "
duration: 0;
weight: 0;
(running & !cooling & !braking) ==>
BEG N
a = a - 1.5;
END,;

rule " running "
duration: 1;
weight: cost_moving();
(running & !cooling & !braking) ==>
BEG N
running_status_update();
END;

rul e " braking "
duration: 1;
weight: cost_moving();
(running & !cooling & braking) ==>
BEG N
braking_status_update();
END;

rule " cooling "
duration: 1;
weight: cost_cooling();
(running & cooling & !braking) ==>
BEG N
cooling_status_update();
END;

invariant " engineExplode "
(!(running & v > v_safemax));

invariant " energyEnd " ({(c < c_min));

goal " success " (v = 0 & d = d_final);

procedure running_status_update();
BEG N
d := update_d(d,v,a);
v := update_v (v,a);
¢ := update_c(rho,v,m,g,a,h,f);
-- maxDistance
IF (d = d_max) & (T.C = 0)) THEN

braking := true;
running := fal se;
ENDI F;
END;
procedure braking_status_update();
BEG N
a = a - 1.5;
d := update_d (d,v,a);
v := update_v (v,a);
¢ := update_c (rho,v,m,g,a,h,f);
-- arrest
IF (v=0 & a=0) THEN
braking:= fal se;
cooling:= true;
T c = 0;
ENDI F;
END;
procedure cooling_status_update();
BEG N
T_c = T_c +1,
-- cooling
IF (T_c <= 6) THEN
¢ := update_c_cooling(c,g,v,m);
ELSE
-- restart
cooling := fal se;
running = true;
ENDI F;
END;

Figure 8.8: UPMurphi code for the Autonomous Planetary telhtcase study.

8.3 The Engine Control of an Autonomous Planetary Lander

79

Table 8.5: Optimal plan.

T(seQ Rule T(seQ Rule T(seq Rule
Start
0 Accelerate 15 Running 30 Cooling
Running
Accelerate) .
1 i 16 Running 31 Cooling
Running
2 Running 17 Running 32 Cooling
Decelerate) .
3] 18 Running 33 Cooling
Running
Decelerate
4] 19 Running 34 Cooling
Running
Decelerate
5] 20 Running 35 Cooling
Running
Accelerate
6 Running 21 Running 36 i
Running
. Accelerate .
7 Running 22) 37 Running
Running
Accelerate) Decelerate
8) 23 Running 38]
Running Running
. . Decelerate
9 Running 24 Running 39]
Running
Decelerate
10 Running 25 Braking 40]
Running
) _ Decelerate
11 Running 26 Braking 41]
Running
) _ Decelerate
12 Running 27 Braking 42]
Running
13 Running 28 Braking
14 Running 29 Cooling

80 Chapter 8. Planning and Control Case Studies

Table 8.6: Optimal plan statistics

Course length 43s

Energy consumption 77.3C
Residual battery charge 17,9227 C

Time in Stoppedstate 1ls
Time in Runningstate 32s
Time in Braking state 4s
Time in Cooling state 6s

It is worth noting that the plan optimization allowed us tees822.7 C with respect to the
required minimal battery charge, and 17 seconds with réspgbe maximum allowed
plan duration.

Finally, the generated plan has been further validated foylsiting its execution on the
rover model. The graphs in Figure B.9 show the evolution afesamportant rover state
variables during the simulation, which ends correctlyraftg,a = 2 m. In particular, we
can compare the battery discharge graph with the rover sprestelcceleration during the
entire course. Note that, in the highlighted cooling phase,battery discharge rate is
higher even if the vehicle is stopped, due to the instrumactigation.

Another interesting plan analysis is given in Figure 8.18eve we plot the rover engine
energy requirements, i.e., the valuefdh Equatiori.8.11, and the value of the cost function
C(mduring the plan evolution. The graph clearly shows that,eagiired, the plan cost
is very tightly related to the energy consumption, sincelitbttery charge is a critical
resource, whereas the time has a considerably lower imfceXample, look at the
small increment of the cost when the required energy is eothsbetweerm = 8 and

T =22).

8.4 THE ACTIVITY PLANNING FOR A PLANETARY
LANDER

In Sectior 8.B we treated the problem of control the enging@nchutonomous planetary
lander. In this Section we address the activity planninglenm for a planetary lander.
Indeed, when the rover has reached its final position it neeperform some observation
tasks minimising power consumption, recharging the biaeturing the sunlight. More-
over, the rover has to complete its task as soon as possiiite,environmental conditions
may quickly change, and in general a shorter task duraticansiéhat the rover will be
able to perform more activities during the mission time.sTlikithe case ofhe Plantery
Landerdomain, inspired by the Beagle2 Mars Lander! [21] and prop@sea PDDL+
model in [75].

8.4 The Activity Planning for a Planetary Lander

81

Legend

Speed [cm/s]
Acceleration [cm/s7]

State of Battery [C]

18000 s

17990
17980
17970
17960
17950
17940
17930

State of battery [Coulomb]

cooling

17920 oo by by by b s oy by b b e

10

Speed [cm/s]

cooling

|
o
Acceleration [cm/sz]

10

15

20 25
time [s]

30

35

40

Figure 8.9: Optimal plan evolution: battery charge, speetiacceleration.

80|||| —

{0 -
60 -

| egend

50
40

f
Ciml

30
20
10

0||||||||\||||||||||||||\|||:

cooling

20

15

Joule/s

cooling

10

15

20

time [s]

30

40

Figure 8.10: Optimal plan evolution: engine energy requeats and cost function.

82 Chapter 8. Planning and Control Case Studies

The planetary lander domain and problem which we presennapgred by the specifi-
cations of the “Beagle 2” Mars probe [21], designed to oeaat the Mars surface with
tight resource constraints. In particular, we use the PD@bmain presented by [75],
based on a simplified model of a solar-powered landerPtaaetary Lander Table[8.7
shows an overview of the main domain elements with theirguditions.

Name Type Precondition
nightfall Event (daytime>= dusktime & day
daybreak Event (daytime>=0) & —day
charging Process (supply>=demand & day

discharging Process (supply< demand
generating Process (day)
night-operation Process (—day)
fullprepare &
prepareObsl1 | Durative action vt € ActionDuration
prepareObs2 (battery>=safelevel
readyForObg &
Observel Durative action vt € ActionDuration

(battery>=safelevel
readyForObg &
Observe2 Durative action Vvt € ActionDuration
(battery>= safeleve)

Table 8.7: A snapshot of the main PDDL+ domain elements #@pthnetary lander case
study

Basically, the lander must perform two observation actiaraled Observeland Ob-
serve2 However, before making each observation, it must perfdrendorresponding
preparation task, callegrepareObslandprepareObs2respectively. Alternatively, the
probe may choose to perform a cumulative preparation tadbdit observations by exe-
cuting the single long actiofullPrepare The shorter actions have higher power require-
ments than the single preparation action.

The power needed to perform these operations comes fronrélhe golar panels. The
energy generated by the panels (throughgéeeratingorocess) is influenced by the po-
sition of the sun, i.e., it is zero at night, rises until migdand then returns to zero at
dusk. Power coming from the solar panels is also used to elmbsttery (theharging
process), which is then discharged to give power to the lafide dischargingprocess)
when the panels do not produce enough energy (e.g., at nigbtgover, the probe must
always ensure a minimum battery level to keep its instrusyaarm.

The state of charge of the battery is therefore an importanable to monitor. Unfor-
tunately, it follows a complex curve, since the chargeftiisge process is nonlinear, and
has several discontinuities, caused by the initiation andination of the actions. Indeed,
Table[8.8 shows the set of ordinary differential equatidrad &re used to recalculate the
values of the state variable®c (state of charge) andupply(solar panel generation).
The symbols used in the equations have the following mearsng sog h = supply

d = demandr = chargerate, sc= solar_constandD = daytime The equations clearly

8.4 The Activity Planning for a Planetary Lander 83

show the nonlinear dynamics of the system.

Name ODE
charging | YU — [h(t) —d(t)] -r- (100—s(t))
discharging 9 — _[d(t) —h(t)]
[

generating gt

Table 8.8: PDDL+ events and processes for the planetargtasase study, with associ-
ated ordinary differential equations

Obviously, the problem here is to find the best correct secgiehactions to achieve the
probe goal in the shortest time possible, starting from aagonable initial configuration.
For sake of brevity, here we do not show the PDDL+ problem dopwehich can be read
in [75].

8.4.1 DOMAIN SPECIFICATION

The start state cloud for the universal planning algorithaes welected by taking into
account a set of reasonable configurations of the stateblesisocanddaytime Note

that it is realistic to considesnly these parameters, since they define the environmental
conditions to which the lander will be subject at the begigrof its mission. All the other
domain parameters were fixed to the values inferred by lap&iri21].

In particular, we suppose that the rover landing hour maydievdsen O and 8, that cor-
responds to the central daylight hours in Martian time (theer is supposed to land in
this range of hours, since they offer the best possibleistaconditions). On the other
hand, since the battery is not used before landing, and litgliseharge rate is mini-
mal, we can safely suppose that the initial battery statehafge will be between 90%
and 100% with steps of 1%. Therefore, the start state clolidowidefined as the set
{(s,d)|s€ [90% 10094 A d € [0,8]}.

8.4.2 INIVERSAL PLANNING

Given the domain variables and their ranges as well as treedigtretisation, we can eas-
ily calculate the space size of the system is about &f 4@tes. Thanks to the reachability
analysis, V-UPMurphi generated an optimal solution foruhe/ersal planning problem,
starting from the given start state cloud, and visiting oalgmall fraction of the state
space (i.e., 31 million of reachable states) in less than ihdites on a 2.2GHz CPU with
2 GB of RAM. The synthesis statistics are in Tabl€ 8.9.

Note that the first goal was found after 174 steps, but thehggid was performed up to
the fixed horizon of 200 steps, which is a reasonable uppeandtar the lander activity
completion (it represents about two Martian days).

84 Chapter 8. Planning and Control Case Studies

State space size 1074
Search depth limit 200 BFS levels
First goal reached after 174 BFS levels
Reachable states 31,965 220
Start states to goal 100%
States to goal (generated plans) 5,309,514
Forward analysis time 1,969.3 seconds
Plan generation time 29651 seconds
Total synthesis time 2,26581 seconds
Peak memory requirements (hash table) 1800MB

Table 8.9: Planetary lander universal plan generatiorssts.

The generated solution contains more than 5 million plang,taus it is able to bring to

the goal more than 16% of the reachable states. Due to theigtwesearch performed
by the tool, we can safely assert that, in the remaining 84%e$tates, the lander could
not complete its tasks and should therefore quit its missratelay its initiation.

It is worth noting that, in this case, the use of the disk atpar (as described in Chaptér 7)
has been used to synthesise the universal plan. To thisdietainle 8. 111 shows the V-
UPMurphi statistics about the disk usage.

Reachables File 1.7GB
Transitions File| 552MB
The Graph File| 323MB
The Action File | 51MB

Table 8.10: Disk-based Algorithm statistics for the Plangtander universal plan gener-
ation.

In Figure[8.11 we provide an extracted plan for planetargéswhilst Figur€ 8.12 shows
the VAL's plan validation report describing the evolutidivariablessog supply daytime
anddemandwith respect to the time. In the reported example the lantdetssits mis-
sion in the middle of the martian day with an almost full bgtteharge. In this case the
planner preferred to performs the two preparation obsemnatasks instead of tHell-
Preparetask. The plan starts performimgepareObskndprepareObs2vhich require a
low energy demand (Figufte_8.12d). During this phase, thddaoan generates energy
and recharge the battery (Figufes 8l12aland 8.12b) whilsiaglthe martian night, all
the energy is used to perform task and to heat instrumentn, The plan devotes all the
second mission day to perform the last observation taskgusie daylight to generate
energy.

However, to further estimate the precision of the plans, sremared the variable values
computed by VAL during the validation process with the cep@nding values output by
the UPMurphi plan synthesis process, computing the nosedloot mean squared error

8.4 The Activity Planning for a Planetary Lander 85
0.1: (PrepObs2) [1.5]
1.7 (PrepObsl) [1]
2.8 (Obs2) [7.5]
10.4: (Obsl) [7]
Figure 8.11: A plan for the planetary lander
Value [Value
99.9101 115.425
0 Time 0 Time
0 - S 17.4 U B) o o 7.4
(a) Trend for variablesoc (b) Trend for variablesupply
/alue 5 falue
9
0 Time
0 174
5 / PR . A

(c) Trend for variablelaytime

(d) Trend for variableslemand

Figure 8.12: Validation report for a single plan executiéthe planetary lander domain.

86 Chapter 8. Planning and Control Case Studies

(NRMSE), as shown in Table 811. The NRMSE is at most 2% irhaligenerated plans
for the nonlinear variablsog at most 0.6% for nonlinear variabdepplyand always zero

for the linear variablelaytime(not shown in the table). Nevertheless, the average NRMSE
is small: 0.179% fosocand 0.742% fosupply respectively.

A repository of the generated PDDL+ problems and plans waifdation reports can be
found at [48].

Min Max Avg
soc | 0% | 0.625,392 %] 0.179,329 %
supply | 0% | 2.060,061 %| 0.742,575 %

Table 8.11: Normalised root mean squared error for varssddeandsupplyin the plan-
etary lander case study, with continuous variable roundmdjtime discretisation to.D

8.5 THE BATCH CHEMICAL PLANT

The last case study is tHgatch Chemical Plantfirst presented by Kowalewski [113].
The goal is to produce saline solution at a given concentratif part of the product is
not used, the plant can recycle it to restart another pramlucycle.

This case study has been tackled in the VHS (Verification obridly Systems)
project [166] to (1) make a plan for the synthesis of salineiten and (2) toverify
that the control routines for the single steps work coryedti particular, our main con-
tributions are in (1) formalisation, through PDDL+ langeayf the domain dynamics and
(2) in the synthesis of the optimal universal plan for theteyysthat, starting from a set
of initial plant’s configurations, produces saline solatrecycling the unused part for the
next production phase minimising the production time.

The plant (shown in Figure 8.113) is composed of 7 tanks cdedethrough a complex
pipeline, whose flow is regulated by 26 valves and two pumpsparticular, tank 5 is
provided with a heater, whereas tank 6 is connected to a osedeFinally, tanks 6 and
7 are surrounded by a cooling circuit. A set of sensors peinibrmation to the plant
controller about the filling level of tanks 1,2,3 and 5, theqmpressure and the condenser
status.

In the plant initial state, all the valves are closed, andpilvaps, heaters and coolers are
switched off. Tank 1 contains saline solution at a high catregioncyigh, whereas tank
2 contains water.

If tank 1 does not contain enough solution, the plant enterstartup phasewater from
tank 2 is moved to tank 3, where a suitable amount of salt is@ddanually to reach the
required concentration, and finally pumped to tank 1. Naaetdnk 2 can be refilled with
water at any time by opening the appropriate input valve.

8.5 The Batch Chemical Plant

87

xe " () (3 S| gve xw
, Goy) |
Xv1 [; % ’ X V7 X Vs
V8 Vo
D>< ><
B3
le— salt HO
(LS (on)
301/
Vil
><
¢ B4
(F1S\
\80L/
05 «
\401) % cooling
water
X vi2
B5 qBG
— cooling—»\{f?H
| 503/ water ¢ X via
V15
V16 ;\ B7 I H,0
coolin N (T1S)
water T <
V10
V18
V26 V22 V19 Xv2s Y vs
(PIS\ (PIS)
b P1 %V” %VZO P2
@ V{><}23 {\;2]_ V24 3

Figure 8.13: Overall structure of the batch chemical plant

88 Chapter 8. Planning and Control Case Studies

When tanks 1 and 2 are appropriately filled, the plant cabtsteproduction phaseTank
3 is partially filled with the solution from tank 1, which isah diluted using the water
from tank 2 up to the requested concentration.

The resulting saline solution can be taken from the outplvievaf tank 3. If the product
is not completely used, the plant recycles it in the next potion cycle. To this aim, the
solution in tank 3 is moved to tank 4 and then to tank 5. Here stilution is boiled by
the heater until it reaches the concentratpgs, and then moved to tank 7. The steam
produced by this process is piped to the condenser thatditls 6 with the resulting
water. Finally, tanks 6 and 7 are cooled and their contetpamped to tanks 2 and 1,
respectively.

During the startup and production cycles the plant must coayesafety constraints

1. pumps can be switched on only if all the valves in their |piygeare open,

2. the heater cannot be switched on if tank 5 is empty, or tineleaser is switched
off, or if the valves involved in the heating/condensatioogess are closed,

3. only two cooling circuits (including the one used by the@enser) can be switched
on at the same time,

4. tanks cannot be filled and emptied at the same time,

5. the content of each tank must not exceed the correspomdipacity limitations
[113], which are lower than the tank volume.

Ay cross section of tank

Ck saline concentration in tarkk

Cp,j heat capacity of solution in tank
Ahyaps | vaporisation enthalpy of solutian

hy filling level of tankk

Kk volume flow from tankk to tankl

Pheat | heating power

Peoolk | cooling power for tank

Pj density of solution in tank

Tk temperature of solution in tark

Vi volume flow through valve

VpK| volume flow through pump from tarikto tankl

a | section of pipe between tanksandl

Hi length of pipe between tanksandl

k) resistance of pipe between tarikkand|

Table 8.12: Batch chemical plant constants

8.5 The Batch Chemical Plant 89

8.5.1 DoOMAIN SPECIFICATION

The plant dynamics is described by [57] through a set of diffgal equations. In par-
ticular, given the constants and variables shown in Tadl@,&he following equations
describe the variation of the filling level for tanks dirgctionnected by a pipe with an
open valve (and possibly a pump switched on) during thewgigrhase:

ddflz _ v (8.4)
ddflz = —Vo=—Ko3XX € [1;%2max (8.5)
Az d drf’ = Vo =Kz3%X€ [1;X2may (8.6)
A d drf’ = V1 (8.7)
A ddrll = Vi1 (8.8)
(8.9)

whereas the following equations describe the same vamidtiptanks involved in the
production phase:

dh .
A dtl = —Vg=—Ki3XX€ [1;X1,may (8.10)
d .
Az drf’ = Vg =Ky3X;X € [1;X1 max (8.11)
A e _ Vo = Ko 3X; ;
2gr = Ve=Koaxxe [1; %2 max] (8.12)
d .
drl3 = Vo =Ky3X;X € [1;X2max (8.13)
d .
drf’ = —Vi1=—Kzax X € [1;X3max (8.14)
dhy .
Acgr = Vi=Kaaxixe [1;X3 max] (8.15)
dh4 -) .
A4— = —Vio=—KssXX € [1;Xs,max (8.16)
dh5 .
Ay = Viz=KasxX € [Lixama (8.17)
d .
;;5 = —Vi2=—Ks7XX € [1;X5max (8.18)
d .
dr: = Vi2=Ks7XX € [1;X5 max] (8.19)
(8.20)

/2922 H
here Ky = %klk" andx = ’/Hkl +1.

The variation of the filling level in tanks 5 and 6 is expresgifdrently, due to the effects
of evaporation and condensation, respectively:

90 Chapter 8. Planning and Control Case Studies

dhg Myap
A— = —— 8.21
>dt —Psol ()

dhe Mpap
Ag el —pw (8.22)

Equations are also given to calculate the variation of cotmagon and temperature in the
tanks. The following equations compute the solution cotregion in tanks 3 and 5:

dhs dc

As(Ca—— +h3—2) = V 2

3(C3 gt T he dt) 9C2 (8.23)
dhg des,

AS(CSE + hsa) = —MyapCs (8.24)

similarly, the temperature of tanks 5,6,7 is computed byf@Hewing equations:

CosoPsolshs T = Py (8.25)
TeCpsaiPsoiAs o> = Pui— MhaplCpsaTs + Aliap 8.26)
CoioProArtn T = —Peog (8.27)
Cp,wprGhG% = —Peool (8.28)

8.5.2 S/STEM MODELLING

The most challenging and interesting aspect of the cherpieait specification is the
production phase, so in the following we will focus only oe tinodelling of this phase.

This continuous, time-dependant domain is mainly modelkdg processes, events and
(flexible) durative actions. Indeed, Figufes 8.[14, B.16[&dd show representative ex-
amples of such constructs extracted from the model (whdkgdurce is available online
in [47]), which contains a total of 59 predicates, 55 funeti¢14 of which represent real
values), 19 events, 10 durative actions and 11 processese lilguressx |, Bx_c, Bx_t
indicate the filling level, solution concentration and tergiure for tankk, respectively,
whereasy, py andwy indicate valve, pump and heatgrrespectively. Finally, the value of
a constank taken from the problem specification is indicated with

In the following we describe the main elements of the PDDL+deidor the chemical
plant production phase, highlighting their most interggtieatures. It is worth noting

8.5 The Batch Chemical Plant 91

that the model has been written to adhere as much as possible tormal specification
given by [57]. However, to further check its correctness extacted from the universal
plan generated by UPMurphi the single production policyregponding to the initial
conditions described by [113] and we verified that it was igahto the one (manually)
devised by[[113].

; filling durative action (for tank 3)

(: durative-action B3_fill

cparaneters ()

sduration (>= ?duration 0)

;condition (and

(at start (not (V8))) (at start (= (B3_l) 0))
(at start (>= (B1_l) 0)) (at start (not (V3)))
(at start (not (V10))) (at start (not (V11)))
(at start (not (B3_filled))) (at end (V8))
(over all (>=(B1_l) 0)))

ceffect (and

(at start (B3_filling)) (at start (v8))

(at end (not (V8))) (at end (B3_filled))

(at end (not (B3_filling)))))
; filling process (for tank 3)

(: process B3_fill_process
cparaneters ()
:precondition (B3_filling)
ceffect (and

(decrease (B1_l) (* #t (* (C
(increase (B3_l) (* #t (* (C_5_

Figure 8.14: Examples of durative actions and processeeltmgglthe production phase
of the batch chemical plant

Production Activities. The production activities, such as moving the solution fram
tank to another, cool it down, etc., some of which can pog&iblexecuted in parallel, are
modelled using durative actions. However, the duratiorhesé activities is not known
a priori, thus the planner should determine the time point at whiehtéimk capacity
(or required concentration, or temperature) is reachedachieve this, we useéuration
inequalitiesin the durative actions. On the other hand, continuous ahangolution
level, concentration and temperature in tanks are modtitedgh PDDL+ processes that
update the corresponding model variables following thefions described by [57]. This
modelling schema guarantees an immediate detectiontiggering of failure events) of
safety violations.

As an example, when tank 1 is nonempty, tank 3 is empty and sithes conditions
hold, the durative actio®PDDL B3fill shown in Figure[8.14 moves the solution from
tank 1 to tank 3. The continuous update to the solution levéhese tanks due to the
durative action is performed by the proced3DL B3_fill _process, which is enabled by
the durative action by setting to true the predida®L B3_filling. The execution of this
process may in turn trigger some events [76], ee@DL B3_l _failure (shown in Figure
[8.16) that would invalidate the plan. At the end of the dweatiction (as chosen by the
planner),PDDL B3_filling is set to false, and the filling process ends.

92 Chapter 8. Planning and Control Case Studies

(: process B3_fill_process
cparaneters ()

:precondi tion (B3_filling)
ceffect (and

(decrease (B1_l)

(* #t (* (C_5_2)(+ (* -0.000415797 (* (BL_l) (B1.l))) (+ (* (B)
0.0424115) 1.00597)))))
(increase 3_1)

(B3_
(* #t (* (C_5_2)(+ (* -0.000415797 (* (B1.l) (B1l))) (+ (* (B 1.0)
0.0424115) 1.00597))))))

Figure 8.15:PDDL B3_fill _process with approximated square root

It is worth noting that the effects &#DDL B3_fill _process involve the calculation of a
square root, which is currently not supported by PDDL+. €fane, we have also created
and tested aapproximatednodel (available in[47]), where the square root is subittu
by the second degree polynomial on the variddld that best fits such function within
the bounds deducible from the model dynamics. The correipgrapproximated®DDL
B3_fill _process is shown in Figure 8]115.

; pipeline flow failure (during B3 filling process)
(: event B3_flow_failure
s paraneters ()
cprecondition (and (or (V11) (V10)) (or (V8) (V9)))
ceffect (not (correct_operation)))
; heater failure (on tank 5)
(: event H5_failure
cparanmeters ()
:precondition (or
(and (H5) (or (V12) (V15) (V16)))
(and (H5) (not (V13)))
(and (H5) (not (>= (B5_I) (B5_l_safe)))))
.effect (not (correct_operation)))
; tank filling limit failure (on tank 3)
(: event B3_|_failure
cparaneters ()
cprecondition (or (< (B3_l) 0) (> (B3_l) (B3_I_max)))
.effect (not (correct_operation)))
; pump (2) failure
(: event P2_failure
cparaneters ()
:precondition
(and (V25))
(and (V25) (V5) (V6))
(and (V25) (V5) (V4) (V2) (V1) (V3)))))
ceffect (not (correct_operation)))

and (P2) (not (or
V28)

—_——~—

Figure 8.16: Examples of failure events of the batch chelpieat

Production Events. The violation of one of the safety constraints should trigge
instantaneous change that invalidates the plan. Therefooh failures have been mod-
elled through PDDL+ events, whose effect is to falsify theamant predicat®DDL cor-
rectoperation.

It is worth noting that, in the chemical plant model, diserahd continuous change are

8.5 The Batch Chemical Plant 93

combined in the activation conditions of several event$, [Siaking their checking more
complex, but still very important since they may invaliddte plan[74]. As an example,
eventPDDL H5_failure in Figure 8.16 shows the PDDL+ model of an exogenmese
Such event is activated when the heater is switchedPoD(H5 is true) and one of the
valves 12, 15 or 16 is operDDL or V12 V15 V16), or valve 13 is close®DDL not V3),
or the level of tank 5 is lower than the security levebQL not (>= B5_l B5_| _safe)).

Finally, the two events shown in Figure 8.17 are used to érighe end of the plan.
In particular, evenPDDL productionend is triggered when tank 1 contains a sufficient
amount of solution with the required concentration, aneftsct is to set th&DDL pro-
ductioncomplete predicate to true. This, in turn, triggersascadingeventPDDL pro-
ductionsuccess that, if the plant has operated correctly (i.ehowitviolating any safety
constraint) and all the valves and pumps have been coridoigd, sets theDDL success
predicate to true to indicate that the goal has been reached.

(: event production_end

cparaneters ()

:precondition (and

(B1_filled) (>= (B1_l) (B1_Il_target_min))

(< (B1_l) (B1_I_target_max))

(= (Bl_c) (B1l_c_target)) (not (production_ended)))

ceffect (and (production_complete)

(production_ended)))
(: event production_success
s paraneters ()
:precondition (and (not (success))

(production_complete) (correct_operation)

(not (or (V1) (V2) (V3) (Vv4) (V5) (V6) (V7) (V8) (V9) (V10) (V1i1) (V12) (V13) (
V14) (V15) (V16) (V17) (V18) (V19) (V20) (V21) (V22) (V23) (V 24) (V25) (V26) (
V27) (V28) (V29) (P1) (P2))))
ceffect (success))

Figure 8.17: Cascading events triggering the goal of thetbettemical plant

Production Problem. The PDDL+ definition of the problem for the batch chemical
plant production phase is quite straightforward. The donminitialised by setting the
function and predicate values to the ones obtained aftestdreup phase (see [57]), and
the goal is to set theDDL success predicate to true, minimising #2DL total-time.

8.5.3 PDDL+ MoDEL

We want to use UPMurphi to automatically perform univerdahping on the startup and
production phases, in order to generagetof policiedor the system.

To this aim, we fist discretise the PDDL+ model, as suggestg@8, by rounding up the
continuous variables up to the first decimal, and the timédpssof 10 seconds. Then, to
generate thetart state cloudsised to initialise our universal planning engine, we prdcee
as follows.

94 Chapter 8. Planning and Control Case Studies

The startup phase is triggered before a new production dytdek PDDL Bl is empty
or does not contain enough saline solution at concentratigin(possibly recycled from
the previous production phase). In this case, the startapgmust fillPDDL B1 up to
PDDL B1l.l _max. Thus, thestart state cloudor this phase considers all the values for
PDDL B1 | in the rangg0,PDDL B1 | max with PDDL B1 | max = 8 liters (as specified
in [113]) and steps of Q liters, i.e., 81 different start states.

On the other hand, the production phase, thanks to the gtpdstconditions, always
starts working on a plant wheeDDL B1 andPDDL B2 are completely filled. Here,
the only parameter used to define the start state cloud isnioirat of solution to be
produced, that i®DDL B3| target. We vary this value in the ran@k5, ..., 3.7] liters
with steps of 0L, obtaining 23 different start states.

8.5.4 WNIVERSAL PLANNING

Figure[8.18 shows the generation statistics for the stafiase universal plan. The plant
state space is 16, however, starting from the given start state cloud, thema found
that only about 3 million of such states were actually reatdaand only for 22% of them
is was possible to calculate a (optimal) policy to reach tha.g

State space size 10%°
Start state cloud size 81
Reachable states 3,092112

States to goal (generated plans)679 193

Synthesis time 530 sec

Peak of memory required 61 MB

Table 8.13: Batch chemical plant startup phase universal géneration statistics

On the other hand, the whole universal plan for the more cexyploduction phase took
about 6000 seconds to be generated, as shown in 8ddednin this case there
were about 30 million of reachable states (which are stilkg@y less than the state space
size), and for 24% of them UPMurphi was able to generate amapplan to the goal.

State space size 10%°
Start state cloud Size 23
Reachable states 29,968 861

States to goal (generated plar|s)7, 154,464

Synthesis time 6,319.8 sec

Peak of memory required 630 MB

Table 8.14: Batch chemical plant production phase uniV@taa generation statistics

8.5 The Batch Chemical Plant 95

0.0: (B3_fill) [250]

260.0: (B3_dilution) [130]
400.0: (B4_fill) [290]
700.0: (B5_fill) [180]
890.0: (B5_evaporate) [750]
1650.0: (B7_fill) [130]
1790.0: (B7_cool) [270]
1800.0: (B6_cool) [160]
1970: (B2_fill) [120]

2070: (B1_fill) [80]

—— o~ —

Figure 8.18: A planned production policy for the batch cheahplant

Legend
Level of tank B1 [liters]
Level of tank B2 [liters]
Level of tank B3 [liters]
Concentration of tank B3 [g/l] ——

Liters

o P N W A~ 00O N 0 ©
T
1

0 500 1000 1500 2000

55

1 L L L L 1 L L L L 1 L L L L 1
500 1000 1500 2000
[seconds]

[9/1]

w A
wah oo
o)

Figure 8.19: Variation of filling levels computed by VAL foanksPDDL B1,PDDL B2,
PDDL B3 and solution concentration in tamoDL B3 during the batch chemical plant
production cycle described in Figure 8.18

96 Chapter 8. Planning and Control Case Studies

The validation of the generated plans confirmed that théalrdiscretisation was fine
enough to obtain correct results.

As an example, Figure_8.18 shows one of the generated piodugblicies, where
PDDL B3 leveltarget= 3 liters. Figure 8.19 graphically shows the variationPafDL
B1.l, PDDL B2.l, PDDL B3_l andPDDL B3_c, respectively, as calculated by VAL during
the validation of this plan. In particular, in the figure tées A-F are used to indicate the
time spans where the plant is performing particular tasks, A,B,C correspond to the
activation ofPDDL B3_fill, PDDL B3_dilution andPDDL B4 fill, respectively, D indicates
the recycle phase, and E,F the activatioDDL B2_fill and PDDL B1_fill, respectively.

We see that the filling level of the first two tanks initiallyateases due to the execution of
the PDDL B3_fill (span A) andPDDL B3_dilution (span B) processes, respectively, while
PDDL B3 gets filled. On the other hand, the concentraB@DL B3_c remains stable on
Cmax during PDDL B3_fill, and rapidly decreases during the diluticrDDL B3_dilution)

up to Crarget. Finally, part of the product is manually drained fra?@DL B3, and the
remaining solution is moved to other tanks (iRDDL B3| reaches zero, span C), where
itis recycled (span D) and finally pumped backPtoDL B1 (span E) an@DDL B2 (span
F).

CHAPTER9

DATABASE DATA QUALITY ANALYSIS VIA MODEL
CHECKING

9.1 MOTIVATION AND CONTRIBUTION

In the previous sections we discussed the problem of plgramid control for continuous
systems via model checking techniques. We showed how é&xplaciel checking can be
used to solve both planning and control problems for systaodelled on FSS.

In this section we extend the use of model checking to a clagsablems far from
planning and control: theata qualityproblem. Informally speaking, data quality is a
general concept and it can be described by many dimensignsecuracy consistency
accessibilitya complete survey on data quality dimensions is in [13]).

We focus on consistency, which is a dimension of data desgrthe violation of semantic
rules defined over a set of data items, where items can bestaplelational databases.
Here we are interested in the evaluatiortohsistencyy using model checking in search
of inconsistencies on data sources, typically represemeathtabase structure.

To this regard, we intend (1) to map a data quality problem B8& and (2) to use model
checking to verify if the system holds them. Indeed, our idghat formal methods, and
model checking in particular, can be helpful in some spedéita quality scenarios to
automate data consistency verification, to make more rdbasiverall data quality pro-
cess, and to improve domain understanding, since formaladstcan facilitate knowl-
edge sharing between technicians and domain experts. trihwoting that evaluating
cleansed data accuracy against real data is often eitheasibfe or very expensive (e.g.
lack of alternative data sources, cost for collecting tlz¢ data), then consistency based
methods may contribute reducing the accuracy evaluationef

To this regard, in this section we provide the following adnitions:

e The definition of a methodology, namely thRobust Data Quality Analy-
sis(RDQA), which uses formal methods to formalise consistentss.

* The automatic verification of consistency rules on big sets through model
checking techniques (namely, the CMurphi model checkemiginstance).

97

98 Chapter 9. Database Data Quality Analysis via Model Chedhkg

* The RDQA has been successfully exploited on a real indistata quality case
study of a Public Administration database provided by tHe.ICS.P. research cen-
ter [43].

A preliminary version of this work has been published in [L31

9.2 INTRODUCTION AND RELATED WORK

Our society is actually dependent from digital data, whichvrplays a crucial role in
the Information and Communication Technology. One neeg oohsider that business
and governmental applications, web applications as we#lations between citizens and
public administration is now based on electronic data. ldercs clear that thguality of
digital data and the effects on every kind of analysis andrmftion obtained from such
data are crucial. To give an example, the causes of the @lgaltSpace shuttle explosion
are imputed to ten different categories of data quality |mwis (see [72] for details). On
the other hands, several studies (€.g. [160] 146, 13]) répatr enterprise databases and
Public Administration archives suffer from poor data quyaliherefore before decisions
makers may successfully exploit those data, their qualg/to be accurately before the
decision making processes.

Despite a lot of research effort has been spent and manyites®and tools for improv-
ing data quality are available, their application to refd-problems is still a challenging
issue[123]. When alternative and trusted data sourcesoa/ailable, the only solution
is to implement cleansing activities relying on businedssubut it is a very complex,
resource consuming, and error prone task.

Developing cleansing procedures requires strong domaln@mn knowledge. Diverse
actor types are required (e.g. ICT and Business) who shalliaborate, but knowledge
sharing is hindered by their different cultural backgrosiadd interpretation frameworks.
Fort this reason, several cleansing tools have been intemtliinto the market, focusing
on user friendly interfaces to make them usable by a broacacel

From the research perspective, data quality has been addresdifferent contexts, in-
cluding statistics, management and computer science.[148]

Our work focuses on improving database instance-levelistamy. In such a context,
research has mostly focusedlmumsiness ruleserror correction(known as botliata edits
anddata imputationin statistics[[148]) record linkage(known asobject identification
record matchingandmerge-purge problemandprofiling [71]. A description of several
data cleansing tools can be found [n_[123,/11,13] 135].

Even the adoption of cleansing techniques basestaiistical algorithmsr onmachine
learningrequires a huge human intervention for assessment agsivirrors that involve

9.3 Finite State Events Database 99

relationships between one or more fields are often very ditfto uncover with existing
methods. These types of errors require deeper inspectoaraalysis/[123].

Similar considerations can be applieddata profilingtools. Data profiling is a blurred
expression that can refer to a set of activities includinta dmse and data warehouse
reverse engineering, data quality assessment, and daés isentification.

According to [70] the principal barrier to more generic smus to information quality
is the difficulty of defining what is meant by high or poor qtyin real domains, in a
sufficiently precise form that it can be assessed in an dfticreanner. This part of the
thesis contributes to address the just described issue.

Many cleansing tools and database systems expteijrity analysigincludingrelational
integrity) to identify errors. While data integrity analysis can uveoa number of possi-
ble errors in a data set, it does not address complex efr@3].[Some research activities
(e.g. [71]) focus on expanding integrity constraints paya$ to deal with a broader set
of errors. In this streamline the approach we adopt corteggto manage a broader set of
consistency errors with respect to the integrity constsaimols and techniques currently
available.

The application ofautomata theoryor inference purposes was deeply investigated in
[165,[110] for the database domain. The approach presanj8fideals with the problem

of checking (and repairing) several integrity constraypes. Unfortunately most of the
approaches adopted can lead to hard computational problems

Only in the last decade formal verification techniques wegliad to databases, e.g.
model checkingvas used in the context ofatabase verificatioffd0] to formally prove
the termination of triggers. Model checking has been usgekttorm data retrieval and,
more recently, the same authors extend their techniqueatondéh CTL in order to solve
gueries on semistructured datal[61].

In the end, to the best of our knowledge no contribution eréiture has exploited formal
methods for analysing the quality of (real-life) databasetents. Indeed formal meth-
ods contribute to manage a broader set of consistency evittrsespect to the integrity
constraints tools and techniques currently available.

9.3 HNITE STATE EVENTS DATABASE

Several database contents can be modelled as sequencesnts @nd related param-
eters), where the possible event types being a finite set.e¥ample, the registry of
(university) students’ scores, civil registries, thenatient contribution registry, several
public administration archives, and financial transactemords may be classified in such
category. The event sequences that populate such databhagede modelled by FSS
(according to Definitio]2), which in turn open several pb#iies with respect ta@on-
sistency checland data qualityimprovement. FSS can be used to model the domain

100 Chapter 9. Database Data Quality Analysis via Model Chéang

business rules so that the latter can be automatically eldemgainst database contents by
making use of formal methods, e.g. Model Checking. FurtloeenSS representations
can be easily understood by domain experts and by ICT acteodved in Data Quality
improvement activities.

Our approach is based on the idea that Model Checking tonlbeaised to evaluate the
consistency of databases both before and after the appticatdata cleansing activities.
By comparing the consistency check results of the two damlrastances (before and
after the cleansing process), it is possible to obtain uisesight about the implemen-
tation of the cleansing procedures. This evaluation hetggaving the data cleansing
development processes since feedbacks can be achieveel conistency of the results.

Developing a cleansing procedure for a large domain may lexyacomplex task which

may require to state several business rules, furthermeie riaintenance could be an
onerous task, since the introduction of new rules may idaddi some of the existing
ones. The possibility to model a correct behaviour using feBi®alisms and to check
the results of data cleansing can effectively reduce tloetedf designing and maintaining
cleansing procedures. Then, we define “Finite State Evetdade# (FSED) and “Finite

State Event Database” (FSEDB) as follows.

Definition 15 (Finite State Event Datasel)ete = ey, . .., €, be afinite sequence of events,
we define &inite State Event Datas@®FSED) as a dataset S whose content is as a se-
qguence of events=S {&} that can be modelled by a Finite State System.

Definition 16 (Finite State Event Databasd)et S be a FSED, we define Rinite State
Event Databas@~SEDB) as a database DB whose content is@@!‘zls where k> 1.

We introduced the set of sequences in the FSEDB definitiaresimany database contents
can be easily modelled by splitting their content is sevenbkets (each being a sequence
of events) and then modelling each sequence with a single ljorited set of) FSS. Al-
though the whole content could be modelled by a single FS&tirsp into subsets can
reduce the complexity of the FSS(s) used to model the segaeiany Public Admin-
istration archives can be classified as Finite State Evetaldaaes, and the possibility to
use FSS formalisms to improve cleansing activities is exélg valuable.

9.4 ROBUSTDATA QUALITY ANALYSIS

In the following, we describe ouRobust Data Quality Analys(RDQA). Roughly speak-
ing, assumelr to be a function able to clean a source (and dirty) datasetinieansed
one according to some defined cleansing rulesb(miness rulgds To this regard, we
can take on loan the definition given in [12] where consisgeeéers to‘the violation of

semantic rules defined over a set of data items. With referemthe relational theory, in-
tegrity constraints are a type of such semantic rules. Instlagistical field, data edits are

9.4 Robust Data Quality Analysis 101

typical semantic rules that allow for consistency checlsi’' this settings, several ques-
tions arisewhat is the degree of consistency achieved through clr? ®@anmprove the
consistency of the cleansed dataset? Can we be sure thaidfinietr does not introduce
any error in the cleansed dataset?”

The setDBg represents a dirty database whildc is the cleansed instance DBs com-
puted by functiorclr working iteratively on each subsgtC DBswhereC; = clr(S) and
Ci € DBc. Since many consistency properties are defined or scopedrtions of the
original database, the cleansing activity is not carriedasuthe whole dataséBg but
on several subseg of the original one.

Theclr function applied td&§ may produce: &; that isunchangeadvith respect td5 (in
caseS had a good quality); or it may producechanged ¢€(in case some quality ac-
tions have been triggered). Since the semantics otltlamged/unchangeare domain
dependent, aaqualsfunction which looks for equality betweesh andC; is required.

Moreover, since the functionlr might not effectively cleanse the data, an evaluation
of its behaviour is carried out using a further functimheckwhich is based on formal
methods.ccheckis used to verify the consistency of bdghandC;. Several outcomes of
the cleansing routines can be identified in this way e.g.rtg 8i may have been cleansed
into a consistent;, or a dirty§ may have been turned into a not consist@nbr a clean

S may have been modified into a not consist@nt

Nevertheless, evendcheckis based on formal methods, no enough guarantees are given
about the correctness otheck(i.e., we cannot usecheckas an oracle). Instead, the
compared results given by functionsheckequals andclr allow one to obtain useful
insights about the consistency of thle function and at the same time it is helpful to
evaluate thecheckandequalsfunctions. This procedure will be further detailed in the
following paragraph by means of examples. For the sake atylave formally describe

the RDQA process defining the following functions:

Function 1 (clr). Let S be a dataset according to Definitfod 15, then 8k C is a total
function where C represents the cleaned instance of S.

Function 2 (rep). Let X be a dataset according to Definitibn| 15, then réep— e is a
total function which returns a representative elemeatX¢.

Function 3 (cchech. Let K be a dataset according to Definitibn] 15, then cche€k—
{0,1} where cched) returnsl if exists a sequencec K such that contains an error,
0 otherwise.

Clearly, functionccheckcan be realised by using any formal method. In such context,
we use Model Checking techniques. In this case, we use the@Wvimodel checker, as
described in Sectidn 9.5.4.

Function 4 (equaly. Let S and C be datasets according to Definifioh 15 we defindequa
Sx C — {0, 1} which returng0 if no differences between S and C are fouhdtherwise.

102 Chapter 9. Database Data Quality Analysis via Model Chéang

The RDQA procedure is applied iteratively refining at eaadpghe functionslr and
ccheckuntil a desired consistency level is reached. In Eigl 9.% ghown a graphical
representation of a RDQA iteration whilst Tab.9.1b ousilee semantics of thies
Fd~,andD*~ sets, which are used in Tab. 9.1a and Figl 9.1. Each iteratimputes the
Double Check MatriXDCM), e.g. Tab[9.1a, where the just introduced informatoe
summarised in order to analyse the reached consistendy Feesake of completeness,
a pseudo-code of the RDQA approach is given in Procedlir€sadd 11. The function
computeDCM is implemented as MySQL stored procedures whilst functioeckis
realised using the CMurphi model checker.

To give some example of the information provided by the DCMFmjure[9.1h, row 1
gives the number of items for which no error was founddsheckapplied both or§
andC;, and no differences between the original instance and genskd one was found
by equals In this case botltcheckandclr agreed that the original data was clean and
no intervention was needed. Differently, row 4 shows the lpeinof items for which no
error was found bgcheckS) whilst theequal$S,C;) states that a cleansing intervention
took place, producing a wrong results recognised as dirtgdeckCi) = 1. The case
identified by row 4 is very important since it discloses budbez in in the cleansing
procedure, or in thelr, or in theccheckunction (or a combination thereof). Row 8 shows
another interesting case, where it is reported the numbgermfs that where originally
dirty (checKS) = 1), an intervention took placequalgS,C;) = 1) that was not effective
sinceccheckC;) = 1. The other cases will be extensively commented in Sectidio® a
real example.

Is worth to note that, thanks to the comparisons outlinesi[X&M can be used ashaig
hunterto start an improvement process which lead to better uratetghe domain rules,
and to refine the implementation of the cleansing activitiBlse RDQA approach does
not guarantee the correctness of the data cleansing prom&stheless it helps making
the process more robust with respect to data consistency.

Procedure 9RDQA

S=get sourcedataset();
DT =0;D" =0;

F& =0;F5 =0
F&=0,F; =0

forall § C Sdo
Ci=clr(S);
computeequalgS§,C;);
computecchecKS);
computecchecKGC;);

1. end for

u: computeDCM(); // As shown in Table 9.1a

12 display DCM();

9.4 Robust Data Quality Analysis 103

Table 9.1: (a) The Double Check Matrix. (b) The definition efssresulting byccheck
andequalsfunctions

(@)

Conditions Result
ccheckS) | equalgS,Ci) | ccheckG) Cardinality
0 0 0 IFs ND™NFS |
0 0 1 IFg ND™NF]|
0 1 0 IFg NDTNFS |
0 1 1 IFg NDTNFRS
1 0 0 IFe ND™NFS|
1 0 1 IFs ND™NFS|
1 1 0 IFS NDYNFS|
1 1 1 IFd ND*NFS]|
(b)
Fs = U(rep(S)|ccheckS) = 1)
F& =U(rep(S)|ccheckS) = 0)
F& = U(rep(Ci)|ccheckCi) = 0)
FC = U(rep(Ci)|ccheckGi) = 1)
= U(rep(S)|equalgS, G) = 0)
= U(rep(S)|equalgS, G) = 1)

Procedure 10COMPUTE_EQUALS
Input: §,G

v if (equalgS,Ci) = 1) then

> Dt =D"Urep(S);

s else

x D™ =D"Urep(S);

5. end if

Procedure 11COMPUTE_CCHECK
Input: X // It can beS§ or G

i if (ccheckX;) = 1) then

2 R =Fy Urep(X);

s else

« By =FoUrep(X),

5. end if

104 Chapter 9. Database Data Quality Analysis via Model Chéang

9.5 AN INDUSTRIAL APPLICATION: THE WORKER
CAREERADMINISTRATIVE ARCHIVE

The RDQA approach has been tested on a real case scenarioC.RHeS.P. research
center [43] exploits the content of a Public Administratatatabase to study the labour
market dynamics at territorial level [124]. A lot of erroracainconsistencies (missing
information, incorrect data, etc.) have been detectedaml#ttabase, therefore a cleansing
process is executed, and the RDQA approach has been useprav@such process.

9.5.1 DoMAIN DESCRIPTION

According to the Italian law, every time an employer hireglismisses an employee, or a
contract of employment is modified (e.g. from part-time tth-fume, or from fixed-term
contract to unlimited-term) a communication (Mandatorym@ounication hereafter) is
sent to a registry (job registry hereafter) by the employEne registry is managed at
provincial leve] so every Italian province has its own job registry recagdime working
history of its inhabitants. An Italian province is an adrsinmative division which encom-
pass a set of cities and towns geographically close. In ttesaio, the database of a
province is used by the C.R.1.S.P. to extract longitudimaadipon which further analysis
are carried out.

Every mandatory notification (event hereafter) containeisd data, among which the
most important for the purpose of our work are: evieh(a numeric id identifying the
communication), employeie (an id identifying the employee), evedata (the commu-
nication date), eventype (whether it is the start, the cessation, the extensidheocon-
version of a working contract), fulime_flag (a flag stating whether the event is related
to a full-time or a part-time contract), employer (an identifier of the employer), con-
tracttype (e.g. fixed-term contract, unlimited-term contragbpfenticeship, etc.).

9.5.2 (AREER(SIMPLIFIED) MODEL

For the sake of simplicity, we have modelled a set of evenishmmaps onto the manda-
tory communications data. The events are:

Start: the worker has signed a contract and has started workingifermgloyer. Further
information describing the event are: the date, the emplayethe employeiid,
the contracttype, the fulltime_flag.

Cessation: the worker has stopped working and the contract is termihdterther infor-
mation describing the event are: the date, the emplayee employeid.

9.5 An Industrial Application: The Worker Career Administr ative Archive 105

Extension: a fixed-term contract has been extended to a new date. Fimfbemation
describing the event are: the current date, the emplayethe employeiid, the
new termination date.

Conversion: a contract type has changed, e.g. from fixed-term to unldviéem con-
tract. Further information describing the event are: thie ddne employeéd, the
employerid, the new contractype.

Some business rules can be inferred by the Italian Labounddaieh states for examples
that an employee can have only a full-time contract actitleeasame time, or alternatively
no more than two part-time contracts. According to the laedareer of a person showing
two start events of a full-time contract without a cessaiiobetween is to be considered
invalid. Such errors may happen when Mandatory Notificatiare not recorded or are
recorded twice. In our context a job career is a temporal exacgi of events describing
the evolution of a worker’s state, starting from the begngnof her/his working history.
It is worth noting that a person can have two contracts at dineestime only if they are
part-time and they have been signed with two different oggdions.

9.5.3 ((RAPH REPRESENTATION

Figure[9.2 shows a simplified representation of the evahuica job career where nodes
represent the state of a worker at a given time (i.e., the mummbactive part-time/full-
time contracts) whilst edges model how an event can modifgta.s

To give an example, a valid career can evolve signing twandispart-time contracts,
then proceeds closing one of them and then converts the daistipe into a full-time
contracts (i.e.unempemp, emp,emp,emp). For sake of clarity, Figure 9.2 focuses
only on nodes/edges describing a correct evolution of aecére., the white nodes) whilst
all other nodes/edges are omitted (e.g., careers havimgenadated to unsubscribed con-
tracts). Nevertheless, Figure 9.2 contains two filled nddes emp, emp) which are
helpful to describe some invalid careers. To this regar@raer can get wrong subscrib-
ing three or more part-time contracts (i.enempemp, emp,empg) or activating both
part-time and full-time contracts (i.eipempemp, emp, emg).

9.5.4 THE CMURPHI MODEL

In this section we closely look at the realisation of toleckfunction according to the
definition of Functior . B. It is clear that our scenario représ a FSEDB (as in Def-
inition [16), thus it can be modelled as a finite state systgmplying model checking
technique toverify each FSED (i.e., each worker’s career). To this aim, we ts€Mur-
phi model checker (introduces in Sectionl3.4) to realisecgguture able to analyse the

106 Chapter 9. Database Data Quality Analysis via Model Chéang

DB clr DBc

ccheck equals ccheck

Ny o\
LARAR

Figure 9.1: A schematic view of the Robust Data Quality Asayteration.

Figure 9.2: An Abstract representation of the dynamics afagareer wheret = start,
Cs= cessationcn = conversionandex= extension

9.5 An Industrial Application: The Worker Career Administr ative Archive 107

system domain and verify its correctness with respect teengemantics (i.e., the Italian
low).

Figure[9.8 shows the overall structure of tbeheckimplementation, which works as
follows:

CMurphi Model is shown in Figuré 9l4. In the first part declarative statesémhich
are used to model the employment state of a worker), deidasabf constants,
datatypes, and external C/C++ functions are declared.

The dynamics of the system is composed by a startstate (whaxels theun-
employedstate of a worker), and by a transition rulext_event to compute the
evolution of a career reading events directly from the gpomding dataset. The
ruleset keyword is used make parametric the system dynamics (ne.range
min_worker..max_worker represents a start state cloud to adapt the number of
worker to verify in a single validation process).

Thanks to this, CMurphi automatically generates all pdesshartstates within the
given range, starting a verification for each state reaetabin the initial ones and
returning one (or more) error trace (i.e., invalid careéos)each worker, making
the model more scalable in case of huge databases.

Finally, the last part of Figurie 9.4 models properties whialst be satisfied along

a career, defined by using a C++ external funcBafe_transition , by veri-
fying that eachinvariant clause is always satisfied along any career evolution
and returning the error trace (i.e., set of careers vigjath least an invariant
clause). Note that the output can be easily used for the RD@&hadology,

as described in Sectidn_9.4. In refer to example of Figuré ®he trajectory

(< unempst>< emp,st> <emp,cn>< empg >) violates both th@art-time
andFull-time invariants of Figuré 914.

CMurphi Engine is the verification algorithm of CMurphi, as presented intted3.4.
It is worth noting that we modified it to obtain (1) exactly oaeor trace (if any)
for each career and (2) to allows CMurphi to store the erameron database (i.e.,
CMurphi directly writes databas&s, F5 ,Fd, FL).

DBMS is used to allows the interaction betwe€Murphi Engineand the database. To
this regard, in order to speed up the queries on databasegfietnal functions
play an important role to retrieve data from database antbte & on a C++ buffer,
easily accessible to CMurphi via external functions. TheMBis a MySQL 5.4
server whilst the connection interface between MySQL and & realised using
thecppconn connector provided by the Boost librafy [163].

Finally, an example of CMurphi validation on a set of carasmgiven in Figuré 9.5 (we
modified CMurphi to return errors both on file and on database)particular, worker
number 73 starts and closes a part-time contract with coypn@8680 and a full-time
contract with company 9165. Then, it reopen a part-timere@htvith the same company,

108 Chapter 9. Database Data Quality Analysis via Model Chéang

8E8E
CMurphi Mode @ a

Figure 9.3: Representation of tleeheckimplementation using the CMurphi model
checker.

CMurphi Engine———DBMS

which is closed later as a full-time contract. In this cageariantvalid cessation evers
violated.

9.5.5 FRoBUSTDATA ANALYSIS: EXPERIMENTAL RESULTS

In this section we show some experimental results perfororedan administrative
databasd®Bs having 1248 752 events (i.e.|DBg|) and 213566 careers (i.e., all dis-
tinct subsetsS wherei € [1,...,213566). Note that the results are referred to the first
iteration of the RDQA process described in Secfiod 9.4 ireotd highlight how the
RDQA process was useful to identify inconsistencies in dagh cleansing operations.

The application of the functiodlr (defined according to Functidh 1) @Bs generated a
new dataseDB¢ with |DBc| = 1,089 895. Then, the functioncheckhas been realised
according to DefinitionI3, using the CMurphi model checkedetailed in Section 915.
The summarised DCM shown in Talple9.2 was crucial in ordeefioe theclr function.
The RDQA was performed on a 32 bit28hz CPU in about 20 minutes using 100 MB
of RAM. Results are shortly commented in the following list:

Case 1. represents careeadready clearthat have been lefintouchedwhich are about
45% of the total.

Case 2: refers to careers considered (tbgheck valid before but not after cleansing, al-
though they have not been toucheddby. As expected this subset is empty.

Case 3: describes valid careers that have b&aproperly changedy clr. Note that,
despite such kind of careers remain clean after the intéoueaf clr, the behaviour
of clr has been investigated to prevent that the changes intrddhyazr could turn
into errors in the future.

9.5 An Industrial Application: The Worker Career Administr ative Archive 109

Case 4: represents careers originally valid tltht has made invalid. These careers have
proven to be very useful to identify and correct bugs indllemplementation.

Case 5: refers to careers considered (bgheck not valid before but valid after cleans-
ing, although they have not been touchedchy Though the number of careers is
negligible, this result was useful to identify and repairg In ccheck

Case 6: describes invalid careers, thelt was able neither to detect nor to correct, and
consequently they were left untouched.

Case 7: describes the number of (originally) invalid careers whicheckrecognises as
properly cleansedby clr at the end.

Case 8: represents careers originally invalid which have been properly cleansed
since, despite an intervention ofr, the functionccheckidentifies them still as
invalid.

The DCM shows that the original database had a very low qualitiata (only 45% of
the original careers were not affected by consistency gstleerefore justifying the need
for data cleansing. Furthermore, considering the singl®B#Dtries, cases 3, 4, 6, and
8 provided useful information for improving thetr, while case 5 provided information
for improving theccheck In summary thecheckwas used to check ther and theclr
was used to check treeheckhere comes the nang®uble check Since botlccheckand
clr implementations cannot be guarantee as error free, thei@ assurance that all the
possible errors could be found through the DCM, nevertlsaldsas helped to improve
the cleansing routines in the just introduced industriainegle.

As a natural extension of this work, we are exploiting formmathods to carry out sen-
sitivity analysis on dirty data, i.e. to identify to what ert the dirty data, as well as the
cleansing routines, may affect the value of statisticaldatbrs that are computed upon
the cleansed data.

110 Chapter 9. Database Data Quality Analysis via Model Chéang

Table 9.2: The Double Check Matrix on an administrative basa

Conditions Result

Case| cchecKS) | equal$S,Ci) | ccheckCi) | Cardinality
0 0 0 96,353

2 0 0 1 0
3 0 1 0 32,789
4 0 1 1 1,399
5 1 0 0 3
6 1 0 1 40
7 1 1 0 74,904
8 1 1 1 8,078

9.5 An Industrial Application: The Worker Career Administr ative Archive 111

type

workerld: 0..maxPld;

eventld: 0..maxEld;

dataType: 0..maxDld;

EventType: Enun{st,ex,cn,cs} ;
const

max_worker: MAX;

min_worker: 0;

var
worker: workerld;

no_errors: bool ean; catchs SQL exceptions
index: workerld;

max_PT: bool ean; -- default = false
max_FT: bool ean; -- default = false
double_FT_PT: bool ean; -- default = false

event_iterator: workerld;

-- retrieve data from database for each worker in window

ext ernfun startstate_call(): bool ean "external.h" ;
-- stores data from database for each worker in window
ext ernfun set_path(i:workerld ; p:workerld): bool ean;

-- returns ID of worker "p"

externfun get_worker(p:workerld): workerld ;

-- returns the pointer to the first data record of worker "p"

externfun get_first_index(p:workerld): workerld;

-- returns true if exists an event for worker "p" to analyse, f alse otherwise
ext ernfun exists_an_event(p:workerld): bool ean;

-- returns true if exists a pair<first,second> of events for worker "p" which
invalidates the career

ext ernfun safe_transition(p:workerld ; type:EventType): bool ean;

rul eset p:min_worker..max_worker do
startstate "start"
BEG N
no_errors := startstate_call();
worker := get_worker(p);
event_iterator := get_index(worker);
no_errors := set_path(event_iterator,p);
END;

END;

rul e "next_event"
exists_an_event(worker)==>
BEG N

event_iterator := event_iterator + 1;
END;

i nvariant "Valid Start Event"
safe_transition(event_iterator,"st");

i nvari ant "Valid Extension Event"
safe_transition(event_iterator,"ex");

i nvari ant "Valid Conversion Event"
safe_transition(event_iterator,"cn");

i nvari ant "Valid Cessation Event"
safe_transition(event_iterator,"cs");

i nvari ant "Part-time"

max_PT = fal se;

i nvari ant "Full-time"

max_FT = fal se;

i nvariant "Part-time and Full-time"
double_FT_PT = fal se;

Figure 9.4: The CMurphi model ofhe Worker Career Administrative Archiegplica-
tion.

112 Chapter 9. Database Data Quality Analysis via Model Chéang

--Invalid Career No 00005----------------
--Startstate (0000072)----------------

Worker Eventlterator Date Type ContractType Company Code

73 282 37061 1 F 23680
73 283 38149 4 F 23680
73 274 38471 1 P 9165
73 275 38471 4 P 9165
73 276 38474 1 P 9165

(-->) 73 277 38482 4 F 9165

Frekkpkkdkkekkxkkkxk - (Valid Cessation Event) failed
73 278 38506 1 F 9165
73 279 38509 4 F 9165
73 280 38570 1 F 9165
73 281 38572 4 F 9165
73 284 38589 1 F 40617
73 285 39591 4 F 40617
73 286 39592 1 F 40617

Figure 9.5: Example of invalid career given by CMurphi.

Part |l

Explicit Model Checking for the
Analysis of Non-deterministic Systems

115

The last part of the Thesis is devoted to the analysis of Byst&aving a non-deterministic
behaviour. In Chaptér 10 we discuss the problem of syntingsssrongplans, and we
provide a survey on the state of the art in this field. Then, aj@erl 1l we propose a
novel algorithm to synthesisgptimalstrong plans for non-deterministic systems. Finally,
in Chaptef 1R some case studies on which we applied the @dgoare presented.

CHAPTER10

STRONGPLANNING FOR NON-DETERMINISTIC DOMAINS

10.1 INTRODUCTION AND RELATED WORK

In recent years, a mutual interest between control theathyplanning communities has

emerged, showing that planning and control are closelye@lareas. The use of sophis-
ticated controllers as well as intelligent planning styé#e has become very common in
robotics, manufacturing processes, critical systemsiarggneral, in hardware/software
embedded systems (see, elg.] [33]).

In particular, efforts made to deal with planning in nonegetinistic domains could be
very helpful to solve control problems for real-world agpices. Indeed, many processes
take place in an environment that may have variable and digtadle influences on the
action outcomes, which need to be taken into account to desigprrect and efficient
control system.

Informally speaking, non-deterministic domains modeldipalar form of uncertainty on
system'’s action. More precisely, actions may have diffeoeticome that is unpredictable
at planning time. Indeed, given an action, it is impossibleiie planner to know a priori
which the outcome will be. In such context the conceptlah, which is well defined for
deterministic planning, become ambiguous for non-deteistic system (e.g., the plan
reaches the goalways? The plan reaches the gsaimetime®). In order to clarify this
concept, the community distinguishes three possibiliagsntroduced in [36]:

Weak Plan: Itis a plan that may achieve the goal, but no guarantees ae@ gbout its
success. More precisely, at least one of the many non-digtistio plan executions
reaches the goal.

Strong Plan: It is a plan that is guaranteed to achieve the goal regaraiésson-
determinism. In other words, any plan execution alwaysdeaa goal state.

Strong Cyclic Plan: Itis a plan that achieves the goal under thienessassumption. At
execution time the plan applies an action infinitely oftetiluhe “lucky” outcome
happens (i.e., the action’s outcome that leads the systeards the goal). If it
does not happen then the execution is callefair.

117

118 Chapter 10. Strong Planning for Non-Deterministic Domans

Intuitively, weak solutions represeaptimisticplans, i.e. we hope that the plan execution
will reach the goal. On the contrary, strong solutions repn¢ awarranty about the
success of the plan, in any execution. Finally, strong cysdiutions, which are based on
a trial-and-error strategy, represent an intermediatgrative between strong and weak
ones.

Moreover, another important aspect about planning, ana éfeo for planning in non-
deterministic domains, focuses on system’s variables, (eag we observe all variables’
valuesbeforethe system execution? Some values are available only atma?®). More
precisely, we distinguish between two kinds of planningtegts:

Full-observability. All variables’ values are available before the run-time.e @ener-
ated plans are executed by a reactive controller that iNetgtsenses the world,
determines the current state, and then it selects and eseantappropriate action
(see, e.g.,[1109)).

In this setting, as typically in the case of dynamic systetins,size of the graph
defining the dynamics of the system is exponensgate explosionin the size of
the input. As a result, classical algorithms for explicidgins cannot be used, and
instead suitable symbolic (e.gd., [30]) or explicit (e.®4]) algorithms are used to
counteract state explosion. This is also the typical diunafior model checking
problems.

Partial-observability. It works on a setting where only a subset of variables arergbse
able and the remaining ones are available at run-time (sge,[£7,/18/ 103]). A
case limit of this context is the conformant planning! [24yw&fe no observation is
available, even at run-time.

In this section we focus on the synthesistbng solutionsn full-observability context.

In the Part Il of the Thesis we discussed the problem of usalgolans, whilst in this
part we address the problem of strong planning. For the sb&katy, we have to note
that strong plan and universal plan, in a non-determingiittext are closely related, as
both approaches aim to find a path to a goal from any state abbclrom the initial
ones. Finally, it is worth noting that systems may have orpnobabilities associated to
the actions outcomes. In our context, we focus on systemsichamno probabilities are
given.

Planning based on MDPs has been proved very effective (spe[27,[25] 170]), and,
more recently, a variety of techniques have been proposadit@ continuous MDPs
(see, e.qg.,[[130, 127, 126]). However, MDP-based appr@adkal with probabilistic
distributions taking into account the stochastic outcoofesctions. Therefore, whether
a solution provided by MDP planning algorithms is strong etegs on probability and
cost distribution. There is also a link between strong pilagand CTL model checking.
Indeed, it has been observed [107, 1111] that the problemrofhgtand strong cyclic
solution for a planning problem can be also addressed ubm@TL model checking.

10.1 Introduction and Related Work 119

More precisely, applying the same idea of planning via mathelcking we described
before, the search of a strong cyclic gpalan be casted as the problem to satisfy the CTL
formulaAGEF—¢. Similarly, the synthesis of a strong solution can be soketisfying
the formulaAF—¢ [45,[143] (see Sectidn 4.1 for the semantics of CTL formulae)

In the last years, the (strong) planning in non-determmsdmains has had a growing
interest in the planning community and then many technifL®s;,[112| 111] and heuris-
tics [78,[125] have been proposed.

A key contribution in this field comes from [36], where thelzars present an algorithm
to find strong plans implemented in MBP, a planner based orbelfimimodel checking.

MBP produces a universal plan [150] which provides optinwdilisons with respect to

the plan length (i.e., the worst execution among the passibh-deterministic plan exe-
cutions is of minimum length). Moreover, the use of Order@uaBy Decision Diagrams
(OBDDs) together with symbolic model checking techniquésias a compact encoding
of the state space and very efficient set theoretical opesti

More recently, in[[112 111] Kissmann and Edelkamp improi8lP by developing
Gamer a BDDs based planner able to synthesise strong and strariig splutions
for non-deterministic domains. In particular, Gamer wodss follows: (1) it trans-
forms the non-deterministic planning problem into a twaygrs turn-taking using a non-
deterministic version of the PDDL language (i.e., NPDDL])190 give the main idea,
the first player chooses an action (i.e., it sets the valuevafiable) and the second player
(i.e., the behaviour) chooses one of the possibile outcaméhe action. Clearly, the
translation process guarantees that the second playechatise all the possible non-
deterministic behaviour for the selected action. Then, mirmal state encoding for the
domain is computed resulting in a minimised state encoddg \vhich provides a very
compact BDD. After the translation it (2) applies a modifieatsron of the algorithm by
Cimatti et Al [36] which is able to deal with the two playershaeiour. Despite a little
overhead to enlarge the state definition in supporting ofgy turn, the main benefit
given by the translation process is to lead to a small BDD, thed to a better perfor-
mance, with respect to MBP. This approach, which is very gorg, needs to be further
tested on many other non-deterministic domains.

However, both MBP and Gamer are backward-search planneesilmm a symbolic ap-
proach and then they requires to compute the inverse funofithe system dynamics,
which may be difficult to invert typically for nonlinear doma. Indeed, explicit algo-
rithms (that explore forward the dynamics graph) allow todia hybrid and/or nonlinear
continuous domains, which are actually very common in tlaetce. On the other hand,
explicit algorithms can generate a huge transition graplthvinay anticipate the state
explosion.

In [115] the NDP algorithm exploits the use of some classptahners (e.g., FF [91]
and SGPIlan [101] are used in instance) to deal with non-aétéstic domains, looking
for strong cyclic solution in full observable domains. Giva planning problenf and
a classical planndR, the algorithm generatedeterministicsubproblem of (e.g., if an
actiona has two distinct outcomes then it replaces actomith two new actions, a,

120 Chapter 10. Strong Planning for Non-Deterministic Domans

having the two outcomes respectively). Then, it ¢&dlbn each sequence of classical
subproblem. Finally, it collects and combines Bisresults for each sequence providing
the final solution, if any. To compact encode domain literélsises theconjunctive
abstractioninstead of BDDs. The former has a compression efficiency pesgerful
than BDDs, nonetheless it can be used by any classical plarineh deal with STRIPS
domain, avoiding any modification to the planner.

Moreover, also heuristics have been exploited in comtbnatvith BDDs in order to
improve the performance of such planners in real-world domaTo give an example,
UMOP [107] uses both BDDs and heuristicsgoide the search for strong and strong
solutions. An improvement of UMOP has been presented rigger{iL06] where authors
introduce NADL (a new description language for non-deteistic domains). Moreover,
the new UMOP planner provides an algorithm (based on thaqarsvone) which looks
for optimisticplans by relaxing domain optimality constraints when norggrand strong
cyclic solutions exist. IN[125] a LAO* search (based on AMIR graph) with heuristics
based on pattern databases|[67] have been used to syntbiesisg and strong cyclic
solutions.

In the following we provide a description MBP which, among tbeveral approaches
dealing with non-determinism, represents a milestone

10.2 THE MBP STRONGPLANNING PROCEDURE

Since our work about non-deterministic planning is ingpiog the work of Cimatti et al,
in this section we briefly describe ts&rong planning proceduras developed in [36]. As
said previously, the algorithm of Cimatti et al. works osyanbolicrepresentation of the
state space, which we have shortly introduced in Chaptero4avdid the introduction
of new formalisms, we adapt theSONGPLAN procedure to works on the definitions of
NDFSS as given in Sectiohs 2.2 dnd|2.3.

Then, generally speaking, given a NDFSS according to Difiril, and a se® of goals,

a strong solution is a collection of policies (orsgate actiontable) that maps a state
s€ ReachiS) to an actiora € 4 if shas a strong plan (i.e., falways reaches a goal state
in spite of the uncertainty of acticay.

Proceduré 12 shows ther@ONGPLAN algorithm implemented in MBP planner. The
procedure is a breadth first search which goes backward fomts gtates towards initial
ones. At each step the solution of the previous €dégSolution(i.e., the state action
table) is updated and the algorithm stops when (1) eithesdhéion can not be further
updated or an initial state is reached (condition of line3).

During the iteration the algorithm needs to compute therseéunction of the dynamics
graph due to the backward search. This work is accomplisie¢ldebfunction SRONG-
PREIMAGE. More precisely, it is defined on the system state space lasviol

STRONGPREIMAGE(S) = {(s,a) such thal # F(s,a) C S}

10.3 Working Example 121

Intuitively, the SSIRONGPREIMAGE(S) computes the set of state-acti@na) pairs which
guarantees that all the reachable states @ actiona belong toS, in spite of the non-
determinism (i.e.F(s,a) is a set of feasible states for the system). However, duhiag t
backward visit it is possible to consider a pésra) for with a solution is already known
for s. It is not a negligible aspect since it may affect the minityadf the final solution,
that is, the strong plan may contain more different actionsgply in the same state. To
this aim, the function RUNEDSTATE scans the preimage table by removing all the pairs
(s,a) which start from the same state

Finally, if a final solution exists then the algorithm retsirit, otherwise the algorithm
returnsfail .

Procedure 12STRONGPLAN

. OldSolution+ 0// Solution of the previous step

. Solution« 0 // Solution of the actual step

. while (OldSolutions SolutionA | ¢ (GU Solution) do
Prelmage«— STRONGPREIMAGE (G U Solution) // Compute the inverse function of the dy-
namics
NewSolution—PRUNEDSTATES(PrelmageG U Solution
OldSolution+ OldSolutionJ NewSolution

. end while

. if I C (GUSolution then

returnSolution

10: else

1. return fail;

12 end if

A 0w N B

© © N o2 9

10.3 WORKING EXAMPLE

The following example (as presented|in[37]) should helpl&oity the concept of strong
plan. In their article, Cimatti et al. use tt#ER_language to describe the domain, however,
to avoid the introduction of new formalisms, we use a graghiepresentation of the
domain as in Figure 10.1.

A pack can be moved from Bondon Heatrowcity airport to one ofGatwick or Lu-
ton airports via railway, truck or airplane. The state is congubby 4 different vari-
ables:posranges in{train-station truck-station air-station, Victoria-station city-center
Gatwick Luton }. Variablesfuel and fog are boolean whilst the variablght ranges in
{greenred}. Moreover, when a state variable value is omitted then ilccbave any
value in its range. The possible actions drave-train, wait-at-light, drive-truck make-
fuel, fly andair-truck-transit Note that, as depicted in Figure 100.1, actiainive-truck
and drive-train may be non-deterministic (e.g., actidnive-train executed in position
train-stationmay lead to two different outcomes: at Victoria’s statiorthwed or green

122

Chapter 10. Strong Planning for Non-Deterministic Domans

traffic light). The SRONGPLAN procedure performed on this domain produces a solution

as shown in Table10.1.

Roughly speaking, the solution istate-actiortable that summarises all the states able to
reach the goal, in spite of non-determinism. For each of stafles it suggests tistrong
action to apply to reach the goal. Note that, since no weightsctions are given (i.e., all
transitions impliedly have a weight equals to 1) a backwdrd/Bit, which is performed

by the SRONGPLAN, always returns an optimal solution with respect to theadisé to

the goal.

Init
train-station

truck-station truck-station
not fuel make-fuel /el

air-station
Jog

i) "
city-center

] city-center O

air-station,not fog

Victoria-station

red

—
- d ,,i\,g_truck
fuel

make-fuel

not fuel

W

Sy

: o,
I /
Victoria-station

/Lut(m

Goql

_ Gatwick "

O

Figure 10.1: Informal description of the working examplerdon.

Table 10.1: A Strong Plan for the domain of Figlire 10.1.

State Action Distance to Goal
pos=Victoria-StationA ligth =green drive-train 1
pos=City-CenterA fuel =true drive-truck 1
pos=Air-StationA fog=false fly 1
pos=Victoria-StationA ligth =red wait-at-light 2
pos=City-CenterA fuel =false make-fuel 2
pos=Train-Station drive-train 3
pos=Truck-StationA fuel =true drive-truck 3
pos=Truck-Station\ fuel =false make-fuel 4
pos=Air-StationA fog=false air-truck-transit 4

CHAPTER11

STRONG PLANNING THROUGH EXPLICIT MODEL
CHECKING

11.1 INTRODUCTION AND CONTRIBUTION

In Chaptet 1D we introduced the Strong Planning problem maheterministic domains,
focusing on the state of the art in this field. Moreover, wettyidescribed the approach of
MBP and Gamer planners, which represent a milestone in thgexioof strong planning.

In this chapter we propose an algorithm (whose a prelimimargion has been published
in [53]) to solve thecost-optimalktrong planning problem in non-deterministic FSSs (ac-
cording to definitions given in Sectign 2.3). Roughly spagkiwe are interested in find-
ing strong solutions having minimumcost with respect to a given cost function. Our
algorithm is strictly based on [37] (which we described irct821[10.2), however, there
are the following main contributions:

1. we consider @ost functionand present a novel technique to look émst-optimal
strong plans while preserving a good complexity bound.

2. we use arexplicit approachrather than a symbolic one, so extending the class of
problems on which strong planning can be applied to hybrdi@monlinear con-
tinuous domains, which are actually very common in the practindeed, since
representing addition and comparison with OBDDs requipgsosite variable or-
derings and since this kind of problems involve both suchratmens, OBDDs in
our context tend to have size exponential in the input sizeth@ other hand, us-
ing an explicit approach allows us to expand “on demand” thedition relation,
generating and representing only the reachable states.

Finally, in Sections 1116 and 11.7 we formally prove the ecimess, the completeness and
the complexity of the proposed algorithm. Furthermore him mext Chapter we present
some experimental results showing the effectiveness optbposed approach on two
meaningful case studies. In order to do this, we define theegurof cost-optimal strong
plan and the corresponding planning problem.

123

124 Chapter 11. Strong Planning through Explicit Model Che&ing

For the sake of clarity, it is worth noting that the algoritim[37] could be adapted to
support costs and devise cost-optimal solutions only byafyrencoding” the weights,
i.e., by replacing a transition of weigktwith k contiguous deterministic transitions. In
this case, however, its complexity, in the worst case, wbeléxponentially higher than
the one of the algorithm presented in the following.

11.2 RELATED WORK

The cost-optimal strong planning problem could also be asst strategy synthesis prob-
lem for a multistage game with two players moving simultarsiy (see, e.g.[[79]),
where the first player is the controller, the second is theuthance (causing the non-
deterministic behaviours), and the game rules are givernéylant dynamics. In this
setting, our control strategy could be seen asimmaxstrategy for the controller player.
That s, in each game state, the controller chooses thenabb minimises the maximum
cost (to reach the goal) that the disturbance, with its (Kemeous) choice, may inflict
to it. Such a game theoretic casting, however, would be té litelp from a computa-
tional point of view, since in our setting the normal form leétgame would be intractable
even for small systems. Indeed, if the game [&states and, in each state, the con-
troller and the disturbance have at mpgt and|D| actions available, respectively, then
the game would be represented by a graph J8tmodes, each havingi||D| outgoing
edges. Thus, even considering simple plants, we would hemelarge graphs (see the
Chaptef 1R on case studies).

The situation is exactly analogous to that for model chagkiased analysis of Markov
chains (e.g, see [116], [65]). Of course, in principle,istary distributions for Markov
chains can be computed using classical numerical techsi@ug., see [14]) for Markov
chains analysis. However, for dynamic systems, our selierg, the number of states
(easily beyond 1¥) of the Markov chains to be analysed rules out matrix basetious.

Finally, casting our problem as a Mixed Integer Linear Pangming (MILP) problem
would be possible but, again, it would generate a MILP of sixponential in the in-
put. Thus, to the best of our knowledge, this is the first apgindo cost-optimal strong
planning and no better solutions for this problem have be&smsdd so far, even in other
computer science fields.

11.3 GCOSTOPTIMAL STRONG PLAN

In order to discuss the problem to find cost-optimal trajeesy we extend our setting
with a cost function.

Definition 17 (Cost Function) Let § = {S 5, 4,F} be anNDFSS A cost function
(also calledweight functior) for § is a function® : S; — R, that assigns a cost to

11.3 Cost-Optimal Strong Plan 125

each transition inS. Using the cost function for transitions, we define the céghe
non-deterministic transitiorngs,a, F(s,a)), denoted byi/(s,a), as follows: W(s,a) =
MaXyer (sa) W((s,a,5)).

It is worth noting that, for the sake of generality, the deiom of the cost function above
allows the transition cost to depend on both the correspgralttion and the source state.
However, usually the transition costs are bound to the spmeding action only.

Now let S be a giverNDFSSaccording to Definitionl6. In order to define the cost-optimal
strong planning problem for such a kind of system, we assiaiea non-empty set of
goal states GC S has been specified. Then, a Cost-Optimal Strong Planninigldtno
(COSPP) can be defined as follows.

Definition 18. (Cost-Optimal Strong Planning Problem) Let= {S s,4,F} be a
NDFSS Then aCost-Optimal Strong Planning Problem (COSHP)a triple P =

(S, W,G) where G is the set of the goal states ad: $; — R is the cost function
associated t.

In this setting, we aim to find strong planfrom the initial statesp to G, that is a sequence

of actions that, starting frors, leads the system to the goal states, regardless of the non-
deterministic outcome of each action. Before formally diéscsuch a solution, we need

to define the structure of a deterministic plan.

Definition 19. (Deterministic Plan) Le?? = {{S s, 4,F }, W,G} be aCOSPPand sc¢ S.
A deterministic plarp from s to a goal g= G is a trajectoryr such that:

* either se G and|m| = 0;

e Of T=Tp,T1,...,Tn, WithTo = (S,8,51) and W = 14,...,T IS a deterministic plan
from g to g.

In other word, we define a deterministic plan as a sequencetodated transitions,
according to Definitioi 9. Intuitively, a cost-optimal stig solutions is a set of non-
deterministic transitions as stated in Definitidn 7. Moreqisely, we are interested in
finding a cost-optimal solutions defined as follows.

Definition 20. (Strong Plan) LetP = {{S s, 4,F }, W,G} be aCOSPPLet s be a state
in S. Astrong plarfrom s to G is a set P of non-deterministic transitions suctt gither
se G and P=0or s¢ G and P satisfies the following conditions:

1. there exists a natural numbeg Buch that every trajectoryt that can be extracted
from P has lengthrt < np;

2. every trajectoryrt starting from s which can be extracted from P, can be extended
to a deterministic plant from s to a goal g € G such thatt is extracted from P;

126 Chapter 11. Strong Planning through Explicit Model Che&ing

3. for every state’such that §¢ G and $is in P there exists a trajectony, extracted
from P, starting from s and ending iy s

4. for every state’ssuch that §¢ G and $is in P, there exists exactly one non-
deterministic transition in P of the forifs,a,F (s, a)), for some ac 4. We denote
with P(s') such non-deterministic transition.

We have the following characterisation of plans.

Proposition 3. Let? = {$, W,G} be aCOSPPP is a strong plan fromsto G iff P is a
set of non-deterministic transitions such that either & and P= 0 or s¢ G and there
exists a unique non-deterministic transition in P of thenfar= (s,a,F(s,a)), for some
ae 4, such that:

* either F(s,a) C G;

» or P\ {(s,a,F(s,a))} is the union of strong plans Rom every state;sn F(s,a) to
G.

Proof. Assume first thaP is a strong plan frons to G. If P is not empty, then there
exists a unique non-deterministic transitioe- (s,a,F(s,a)) € P, for somea. Lets be
an element of-(s,a). We defineR, as the set of non-deterministic transitiongArsuch
thatP, contains some transitions of a deterministic plan fipm

Now observe that any sequence starting fipmran be completed iR to a deterministic
plan without using the node Indeed, no deterministic plan extracted fréhean return
to the nodes, since otherwise there would be a cycle, contradicting dggiirement that
every deterministic sequencefns bounded. It follows thal® is a subset oP\ {1} and
is a strong plan frons;.

Moreover, lets' be any node iP\ {1}. Then there exists a trajectoryfrom sto s'. By
the uniqueness df, the first transition oftis in T and therefore has the for(s,a,s) for
somes, it follows thats' is in B, and thaP\ {1} = Uscr(sa) P-

The other direction is easy and left to the reader. O

By Propositiori B we can define the cost of a plan as follows:
Definition 21. (Strong Plan Cost) The cost of a strong plan P from s to G, cehby
W (P), is defined by recursion as follows:

« if P is empty theri/(P) =0;

« if P is composed only of the non-deterministic transitiera, F (s,a)), for some a,
then W (P) = W(s, a);

11.4 An Example of Cost-Optimal Strong Planning Problem 127

o if P is composed of the non-deterministic transitiqs,a F(s,a)), for
some a, and of plans;Pfrom every node jsin F(s,a) then W(P) =
maX;cr(sa) (W((sa5))+W(R)).

It is easy to see that the cost of a plans the maximum cost of a deterministic plan
extracted fronP.

Definition 22. (Minimum Strong Plan Cost) Le® = {$, W,G} be aCOSPR with § =
{S%,4,F}. Then acost-optimal strong solutionf the COSPP? = {S, W,G} is a
strong plan P fromgto G such that the cost of P is minimal among the strong plams fr
sto G.

11.4 AN EXAMPLE OF COST-OPTIMAL STRONG
PLANNING PROBLEM

As an example of COSPP, let us consider llneried passengeproblem. A passenger
wants to arrive to San Francisco airport (SFO) departinghfome of the Rome airports
(CIA or FCO) and according to the flight scheduling shown ibl@&l1.1. Moreover,
there is a bus on every hour that allows the passenger to goifome to one of the Rome
airports above in one hour.

Table 11.1: Flight scheduling.

From To Flight # | Depart| Arrive
Rome-FCO Paris-CDG A 08.00 | 09.00
Rome-FCO Berlin-BER E 08.00 | 10.00
Rome-CIA Amsterdam-AMS | D 05.00 | 08.00
Paris-CDG San Francisco-SFOB 10.00 | 12.00 (GMT-7)
Paris-CDG San Francisco-SFOC 19.00 | 21.00 (GMT-7)
Berlin-BER San Francisco-SFQF 11.00 | 14.00 (GMT-7)
Berlin-BER Amsterdam-AMS | | 12.00 | 13.00
Berlin-BER San Francisco-SFO G 12.00 | 15.00 (GMT-7)
Amsterdam-AMS| San Francisco-SFOH 15.00 | 20.00 (GMT-7)

The goal is to arrive to San Francisco as soon as possiblghawever, no later than 21.00
local time. We require the passenger to arrive at the aigideiast one hour before a flight
departure. Moreover, we assume that each flight may arridesttnation later than the
expected arrival time. The objective is to generate a stpag (if any) that guarantees

128

Chapter 11. Strong Planning through Explicit Model Che&ing

Table 11.2: COSPP for thHeurried passengeproblem.

home =53, AMS =51, AMSy =5, CDG =53, CDGy =4, CIA = 5,
FCO =s5, BER =57, BERy = s3. SFQ, = &9, SFQp = S10, SFQ, = 511.

AB CDEFGHILPQ

F(s0,Q) = {s6}, F(%0,P) = {ss}
F(s1,H) = {so}, F(2,H) = {so}

(Ss, {89,510} , F(54,C) = {0,511}
(

(

(

T

B) =
$5,D) = {s1,%}

S6,A) = {S3, %4}, F(s6,E) = {s7, 8}

577) {so}, F(s8,G) = {0}, F(ss,l) = {s1, %}

W(%0,Q,%) =1, W(s,P,s5) =1,

‘W(sl,H S) =12 W(s1,H,s) = 13;
W(s2,H,) =11, W(sz, H, 50) = 12;
W(ss,B,s10) = 10, W(s3,B,59) = 11;
W(s4,C,S9) = 18, W (s4,C,s11) = 19;
W(s5,D,9) =9, W(s5,D,5) =10;
w
w
w
w
w

~—

(s6,A,83) = 2, W(se,A,s4) = 3,
(s6, E,s7) =3, W(s6,E, 58) = 4;
(s7,F,s9) =11, W(s7,F,s9) = 12;
(s8,G,%) =11, W(ss,G,) = 12,
(se:1,%2) =3, W(sg |, 1) =2

o O — —

So, S10

P(s0) = Q(17); P(ss) = D(22); P(ss) = E(16);P(s7) = F(12);
(s8) = G(12); P(sp) = H(12); P(s1) = H(13), P(s3) = B(11)

11.4 An Example of Cost-Optimal Strong Planning Problem 129

the passenger to reach the San Francisco airport befor® Rical time regardless of
possible flight delays.

The corresponding COSPP (according to Definitibiis 16,17 [&@)dislreported in Ta-
ble[11.2. Here the actions correspond to the flights and thedeterminism is given by
the possible delay which, for the sake of simplicity, we asstio be limited to one hour
for each flight. The cost of each transitioah, f,a) is W/(d, f,a) = (t(d) +t(f) +t(a))
wheret(d) is the time spent at airpod waiting for the flight departure{ f) is the dura-
tion of the flight and (a) is the time spent at airpoa waiting for the next flight (which
could be zero). Moreover, the special actidghand Q represent the bus journey from
home (statep) to Rome-CIA and Rome-FCO, respectively: for the sake opfizity, we
do not consider delays on these actions, so the corresgptrdimsitions are deterministic
and have cost 1 (i.e., the bus journey takes a hour).

Figure 11.1: Graphical description of the COSPP foritheied passengeproblem.

A graphical description of the problem is given in FighreTlivhere tagged nodes rep-
resent the arrival time at the corresponding airport, wihikeedges are labelled with the
flight code.

The cost-optimal solution consists in flying from Rome-FQ@®erlin-BER and then to
San Francisco-SFO. The total cost of the solution (consideaall the possible delays)
is 17. Note that another strong solution would be flying froomfe-CIA to Amsterdam-
AMS and then to San Francisco-SFO, but its cost is 23. Finféling from Rome-FCO to
Paris-CDG is not a strong solution since in case of delaygtifIA it would be impossible
to reach San Francisco on time.

130 Chapter 11. Strong Planning through Explicit Model Che&ing

11.5 THE COSTOPTIMAL STRONGPLAN ALGORITHM

In this section we describe a procedure that looks for a @psinal strong solution to a
given COSPP. The main algorithm (Procedurk 16) consistw@Etibroutines described
in the following. All the procedures make use of some aumilfanctions and setsCost,
Cand ExtGoals OldExtGoalsandA .

The cost vector(Cost) is used to maintain the set of states for which we have syistes
a strong plan, sorted by their cost. By abuse of notatiorerfdllowing we refer to
cosft(s) as thecost functionwhich returns the minimum cost of a strong plan from
sto the goals calculated so far. The algorithm updates tmstion every time a
better strong plan is found fa Initially all the goal states have a cost equal to
zero, while the cost of the other states is sebto

The set ofcandidateCand) contains the pairssfa) corresponding to all the statss
which, at any step, are recognised to have a plan startingaeitiona, possibly
of nonminimum cost. The elements in the §€xndcan be partially ordered with
respect to the cost functidost Initially the setCandis empty.

The set ofextended goal¢éExtGoalg contains all the states which, at any step, are
recognised to have a pl&hof minimum costlnitially the setExtGoalscontains all
the goal states i®. On the other hand, the setafl extended goalsOIdExtGoal$
contains, at any step, the extended goals collected up toréwous step: that is,
the expressioExtGoals\ OldExtGoalsrepresents the states that have been just
added to the extended goals.

The setA(s,a) is initialised, for each state-action pair, with the statschable frons
via actiona, i.e.,F(s,a), which are consumed during the algorithm iterations.

In the following, we assume that all procedures take as irtpat COSPP? =
((S0,4,F), W,G) as well as the auxiliary sets and functions. The output igangt
planSP.

Note that, in the algorithms, some arithmetic operatiores,(min, max and sum) may
involve infinity. In this case, we assume the usual semanéics, maxx,c) = o or
X+ 00 = o0,

11.5.1 THE CANDIDATE EXTENSION ROUTINE

The CANDIDATE EXTENSION routine (Procedurie 13) extends the@andof candidates.
The functionPre(s) returns all the transitions leading $@nd is applied to the extended
goals found in the previous iteration of the main algorithisi.any step, the sei(s, a)
contains only the states reachable frema actiona which have not been moved to the

11.5 The Cost-Optimal Strong Plan Algorithm 131

extended goals yet. Thus, onfés a) is empty,s is guaranteed to have a strong plan
through actiorg, since all the transitions ifs,a,F(s,a)) lead to an extended goal. The
pair (s,a) is then added to the set of candidates if it improves the aostotly associated
tos.

Procedure 13CANDIDATE EXTENSION
1 for all s € (ExtGoals\ OldExtGoalg do
Pre(s) <+ {(s,a) e Sx 4|s € F(s,a)};
for all (s,a) € Pre(s’) do
A(s,a) < A(s,a) \{s'};
if A(s,a) = 0then
¢ = ma)%_eF(s,a)(W(sy a,5) +Cost(s));
if ¢ < Cost(s) then

Cand+« Candu (s,a);
Cost(s) =¢;

10: end if

11: end if

122 end for

13 end for

11.5.2 THE PLANEXTENSION ROUTINE

The effect of the PANEXTENSION routine (Procedure_14) is twofold. First, it selects
the states in the candidates set of minimum cost and movastthéhe set of extended
goals. Indeed, the current solution for such states careohproved, since there are no
actions which provide a strong solution with a lower cose(Beoposition5). Second, it
inserts the new extended goals together with the asso@atexh (i.e., the corresponding
non-deterministic transition) in the strong pl&R.

Procedure 14PLAN EXTENSION

1 O <= MiN(q)ccandCOSY(s); // It uses the MNCOSTCAND routine
2. for all (s,a) € CandCost(s) = a do

s ExtGoals«— ExtGoalsJ{s};

+ Cand« Cand\{(s,a)};
5
6

SP+ SPU (s,a);
. end for

Note that the extraction of the candidates with the lowest ¢frst two lines of Proce-
dure[14) can be accomplished with a small complexity if wepsige to have a structure
costvectomwhere each elemewbstvectofc| holds a list of references to the states with
costc. Insertion in this structure is constant time, whereas tgelean be also accom-
plished in constant time by re-inserting the state with epd@ost without removing the
previous instance (i.e., creating a duplicate with différeost). Indeed, the states with
minimum cost can be extracted from this structure as shovthdINCOSTCAND rou-
tine (Procedurg15).

132 Chapter 11. Strong Planning through Explicit Model Che&ing

Procedure 15MINCOSTCAND
Input: lastg the cost of the last states returned
1 €<+ lastc
2 loop
3z C+cCc+1
. AllCand. + costvectoft]
5. if AllCand. # 0 then
& Cand <+ 0
7 forall se AllCand. do
8
9

if s¢ ExtGoalsthen

Cand. «+ Cand.U{s}
10; end if
11: end for
1. if Cand # 0then
13: lastc«+ ¢
14 return Cand
15: end if
1. end if
172 end loop

The procedure takes as input the cost of the last statesieetuand scans thestvector
starting from the element corresponding to the next (higbestc (for the sake of sim-
plicity, in the pseudocode we suppose it tolastc+ 1, but in general it depends on the
approximation of the cost function). Hostvectojc| contains some states that are not
yet in the extended goals, the procedure returns them voigeeit increases and loops.
Thus, even if updates may create duplicates of the sameistdifferent elements of
costvectorsince the algorithm always extraétst the minimum cost instance of a state,
and inserts it irExtGoals all its further instances (with higher cost)anstvectomwill be
simply ignored. However, from here on, we assume to use aniti’'s heap to maintain
the costvectofc|.

11.5.3 THE COSTOPTIMAL STRONGPLAN ROUTINE

Finally, the @STOPTIMAL STRONGPLAN routine (Proceduré_16) initialises the cost
value of each state and the s&tsCand, ExtGoalsand OldExtGoals then iterates ap-
plying the subroutines described above. In particularptiogedure loops until either the
initial statesy is included in the extended goals (that is a strong solutamieen found)
or a fix point is reached, since there are no new extended @oalsis case there is no
strong solution forspg). Note that, as a collateral effect, the algorithm also fialiishe
strong plans for the states 8having minimal cost less or equal to the coss®fThus, if

So does not reach the goal (i.e., its cosbis or if we explicitly remove the guard that stops
the algorithm in this case, thedSTOPTIMAL STRONGPLAN would actually calculate a
cost-optimal strongniversalplan.

11.5 The Cost-Optimal Strong Plan Algorithm

133

Pr

ocedure 16COSTOPTIMAL STRONGPLAN

Input: a COSPPP = ((S,%,4,F), W,G)
Output: a cost-optimal strong plaBP

1

-
o

[N
[N

-
N

[N
w

=
S

N
a

i
o

N
N

i
0

i
©

n
<

N
[y

© © N 9 g K @ N

. forall (s,a,8) € S do

if se Gthen
Cost(s) = 0;

else
Cosf(s) = oo;
A(s,a) =F(sa);

end if

. end for

. Cand<« 0;

. SP—0;

. OldExtGoals— 0

. ExtGoals— G;

. while (ExtGoals# OIdExtGoal$ do
if s9 € ExtGoalsthen

return SP,

end if
CANDIDATE EXTENSION();
OldExtGoals— ExtGoals
PLAN EXTENSION();

end while

. return Fail;

134 Chapter 11. Strong Planning through Explicit Model Che&ing

11.6 TiME COMPLEXITY OF THE ALGORITHM

In this section we first define a COSPP worst case instancesanith describe the algo-
rithm behaviour on it.

Definition 23 (COSPP Worst Case Instancépt ? = {{S s, 4,F }, W,G} be aCOSPP
and let h: F — N be a bijective function that associates to each transitierF a unique
natural number.

1. Vs, sj € Swith i j,Va € 4 exists atransition of the form ;| = (s, &,Sj). There-
fore,Vse€ Sac 4 we haveF(s,a)| = (|§ — 1) x |4|. Hence, the total number of
transitions|F | in the system i§(|S?- | 4]).

2. VT eF,W(1)=10N0,

3. Gistheminimalgoal set, i.e. G= {sy}.
Note that the instance in Definitign]23 is a worst case ingdoicour algorithm since:

e constraint (1) guarantees that each action (regardlesss aion-determinism)
reachesdirectly any state (i.e., the graph mompletewith respect to the non-
determinism of each action). As a consequence each siragéevsill have a strong
plan;

* the usefulness of constraint (2) is twofold: it ensures ifhthe system hagq| =r
distinct possible actions to reach a stgtérom s, then exists an ordered sequence
of transitions(s,ay, sj),...,(s,ar,sj) where W(s,ay,sj) > ... > W(s,a,sj).
The aim is to maximises the number of cost update that theitiigoperforms dur-
ing its execution. Furthermore, it guarantees that the @osach trajectory from a
state to a goal is unique in the whole system, and then theoestch strong plan
will be unique.

Proposition 4 (Algorithm Complexity) Let|reach'S)| = n be the number of states in the
system, let4| = r be the number of action in the system and letrn?-r) be an upper
bound to the maximum number of transitions in the system ¢ine transition to reach
each node for each action) the time complexity of the Algoriis Qm-+n(r +logn))

Proof. To prove the proposition we refer to the COSPP worst casannstaccording to
Definition[23. During the proof, we assume to implement¢bstvectorstructure using
the Fibonacci’s heap.

At the first step the séExtGoalsis initialised withG states (i.eExtGoals$ = 1). During
the algorithm execution the seEsxtGoalsand OIdExtGoalswill be always different
between them. Indeed, at each st&pctly onesingle state will be inserted intextGoals

11.6 Time Complexity of the Algorithm 135

On the contrary the algorithm has reached its fixed point hed it stops performing less
thann steps. Hence, in the worst case the algorithm requires at msteps to find a
strong solution.

It it clear that the algorithm complexity strongly dependstioe complexities of @NDI -
DATEEXTENSION and R AN EXTENSION routines.

Looking at CANDIDATE EXTENSION routine of Procedurie 13, it analyses one single state
belonging toExtGoals(as said previously) at each step (line 1). Since we assume to
have in memory the expanded dynamics of the graph, it is rmptired to compute the
Pre function of line 2, so this step is performed in constant tiniherwise, we may
apply an explicit state space exploration algorithm toditiin O(|S;|). Looking at line

3, a single stats € Pre(s') can have at most - r outgoing transitions. In other words,
|Pre(s)| = O(n-r). Note that if it has fewer transitions then it must exist atskeone
states unable to reacls, and this violates the hypothesis of Definition 23. However,
the conditional statement starting at line 5 is performely omce for each call of the
procedure. Roughly speaking, TheKIDATE EXTENSION procedure removes one state
from a setA(s,a) in each iteration. Indeed, the g&fs, a) requires at mogt iterations of

line 3 to become empty and then t@est(s) of line 6 is computed at most one for each
action (i.e, at most times for each call of the ANDIDATE EXTENSION). Moreover, the
time needed to update tl@ost(s) of line 9 (which requiresnsert and/ordecrease key
operations) can be accomplished in constant time througbri&icci’'s heap. Note that the
operationdelete keywhich has a logarithmic complexity) is unneeded since tst of a
state (i.e. its key) is always nonincreasing.

Then, the cost of the ANDIDATEEXTENSION in the worst case i©(n-(n-r+r)) =
O(n?-r+n-r). Since the maximum number of transitioRsf the system in the worst
case ign= O(n?-r) the complexity of the routine ©®(m+-n-r). In the other words, the
routine scans linearly the system graph and the complegipedds on how many time it
needs to update thtmstvectoiof a single state.

Looking at Procedurle 14, the RN EXTENSION computes the through aDelete Minop-
eration in the cost vector, which requir@§logn) time using a Fibonacci’s heap. Clearly,
this operation requires to be performed at each iteratienat mosh times in the worst
case since all states will have a strong plan. Hence, the leaitypof this procedure is
O(n-logn).

The overall complexity of ©STOPTIMAL STRONGPLAN is thereforeO(m+-n(r +-logn)).
U

Is worth to note that, in many real instances, the numberaofsitions for each state is
enormously less tham- r which represents the maximum non-determinism degree of the
system.

136 Chapter 11. Strong Planning through Explicit Model Che&ing

11.7 GCORRECTNESS ANDCOMPLETENESS OF THE
ALGORITHM

The algorithm given in Procedure]16 essentially iteratesttfo procedures ANDIDA -
TEEXTENSION and RANEXTENSION until the desired state has a plan or the fix point
is reached. Let us indicate withxtGoalg andCand, the contents of th&xtGoalsand
Candsets, respectively, at theth step of the algorithm. Moreover, let us c@lbals the
unionGU ExtGoalsg.

Proposition 5 (Correctness)Let u, be the maximum cost of a state in Gqalthat is
Uk = MaXcGoalg COSH(S). Then, in any step k 1 of the COSTOPTIMAL STRONGPLAN
algorithm, all the states with a plan of minimum cost no geedhan y are in Goalg.
ThatisVs e S, Costs) < ux = s€ Goalxk

Proof. At the first iteration of the algorithmk(= 1), Goalg = ExtGoalg = G contains,
by definition, all the states with a plan having cost zera,(thee goals).

Now, let us assume by induction that the property holds atlst&Ve shall prove that it
still holds at stefk+ 1, i.e., the new elements insertedGals 1 do not falsify it.

To this aim, letax 1 be the minimum cost of a candidate @and,. 1, that isay,1 =
MiNsccand,,, COst(s). We can simply prove thalx < dy;. Indeed, assume thaj >
Ok+1: then there exists a statec Cand,, 1 S.t. Cost(s) < ux. However, a state i@and ;1
cannot be inGoals (since the algorithm moves to thlextGoalsonly states that are al-
ready inCand), and this contradicts the induction hypothesis.

Note that the fact above implies that, at the end of &tefd, i.e., after the execution of
PLAN EXTENSION, we have thaty, 1 = a1, Since the algorithm moves Boals 1 all
the candidates with cosig 1, which is greater than the previous maximum agst

Now assume that the property to be proved is falsified atkstep. This implies that there
exist one or more states.t. Cost(s) < ux,1 buts¢ Goals, 1. Let us choose among these
states the one with minimum cost. Since we know that = a1, we can also write
thatCost(s) < 1.

By induction hypothesis, since a state which is noGaoals. 1 could not also be in
Goalg, we have thaty < Cost(s). Let us consider a cost-optimal strong plangoSuch
plan must contain at least one stdt¢ Goals. Indeed, if all the states of such plan were
in Goalg, thens should be inGoals 1. Let us choose among these states the one with
minimum cost.

We have two cases:

« if S =s, then we have that, for some suitable actioR (s, a) C Goals. This would
imply thats € Cand,;1 and, sinceCost(s) < a1, we would have thaCost(s) =

11.7 Correctness and Completeness of the Algorithm 137

Ok 1 (recall thatoy ., 1 is the minimum cost of a candidate@and,, 1). But in this
case the algorithm would mowan Goals. 1, contradicting the hypothesis;

« if s#£ ¢, thenCost(s) < Cosft(s) (by definition of cost of a plan). Again, since
Cost(s) < a1, we have tha€ost(s') < k.1, oS ¢ Candk, 1. Thus we also have
thats' ¢ Goals. 1, and this contradicts the hypothesis sis@gould not be the state
with minimum cost s.tCost(s) < a1 ands ¢ Goals 1.

Thus, if a state enters in the extended goals (and is thergfoluded in the strong optimal
plan), then its cost, i.e., the cost of the correspondingnstiplan, cannot be improved.
This shows the algorithm correctness.

The algorithm completeness can be easily derived from Ritpo[3, too. To this aim,
we can use the following proposition.

Proposition 6 (Completeness) et s€ S. If s has a cost-optimal strong plan P, whose cost
is not greater than Cosgtp), then there exists k 0 s.t. s€ ExtGoalg and (s,a,F(s,a))
is added to SP.

Proof. The proof follows from Proposition]5. Indeed, we have tha&t thinimum cost
of a candidateny is strictly increasing in each step of the algorithm (otheeyuy <
Ok .1 would not hold). Thus, the process will eventually end witte ®f the following
conditions:

« the initial statesy is in ExtGoalg (if a strong plan exists for such state): in this
case, at step all the states whose cost is not greater tGasts), includings, are
guaranteed to be iBxtGoalg, too.

« there are no more candidate states that can be reachedHeofextended) goals:
in this case, since by hypothesidias a strong plan, thus it can reach the goal, it
would be included in the last sExtGoalg.

Finally, the algorithm termination is guaranteed by theuargnts used in Propositidnh 6.
Indeed, since the minimum cost of a candidate is strictlygasing, the algorithm will
eventually build the cost-optimal strong plans for theestatith highest cost: at this point,
no new candidates will be available, and the process withiteate.

138 Chapter 11. Strong Planning through Explicit Model Che&ing

11.8 SUPMIRPHI: THE STRONG ALGORITHM
IMPLEMENTATION INTO V-UPMURPHI

In this section we describe how to model non-deterministimdins and how to synthe-
sise the Strong Plan (if any) applying the Cost-Optimal Iggr®lanning Algorithm (see
Proceduré_16).

Input Secondary Output Primary Output
PDDL+ domain UPMurphi C°m§’“ted system PDDL+ plans
and problem definition ynamics
Goal and error Universal Plan
states
Reachable states Strong Universal
description Plan
\ 4 \ 4 SUPMurphi tool
PDDL to UPMurphi
UPMurphi model <
compiler compiler ‘

UPMurphi engine

Cost-Optimal Strong Plan Generation
Transition
cq Graph ¢
Generation Optimal Paths | ___> Plan

Calculation Generation

Model
Analysis

Figure 11.2: Overall structure of the SUPMurphi tool

Figure[11.2 shows the new SUPMurphi overall structure incwhi

1. The UPMurphi core provides the ability to manage PDDL+ dormand to explore
the dynamics of the domain, as described in Se¢fign 6.5.

2. The disk-based algorithm (described in Chapter 7) allone to exploit the use
of the disk during all phases (i.e., the strong algorithm wank directly on disk
data structures described in Section 1.2.1). As discuss€thaptef I, the strong
algorithm requires that thBre(s)function is given, in order to access tqeede-
cessorof a node in linear time (with respect to the number of outgadges of a
given node). To this aim, théransition Graph Generatiophase has been adapted
to store the graph dynamics in both directions (i.e., deeand inverted form),
creating twolransition Grapffiles.

Clearly SUPMurphi still maintains the capability to adabpege files to the sys-
tem size, choosingutomaticallyamong three different modalitieslemory Mode

11.8 SUPMurphi: The Strong Algorithm Implementation into V-UPMurphi 139

when the size of the two graphs fits into the RAMixed Mode if only one graph
can be stored into RAM and the other one on the disk, sk Mode if both
graphs are stored on disk.

3. Implements the the Cost-Optimal Strong Planning Algonidetailed above. Fig-
ure[11.8 is a snapshot of the new options helper in wsetrch:us enables the
synthesis of strong plans after the transition graph géieerarhen, if a strong plan
exists optionsvalidate:q and-validate:qall verifies the generated solution,
starting from each startstate and each strong state resggct

Universal Planner for Discrete Time Hybrid Systems

Copyright {(C) 20087 - 2018
G. Della Penna, B. Intrigila, D. Magazzeni, F. Mercorio

Call with the -c flag or read the license file for terms
and conditions of use.
Send bugs and comments te giuseppe.dellapenna@univag.it

print license.
do not delete working disk files {useful with -phase).
start with phase n (default: &) - yerimental.
create an optimal plan for each startstate.
create an universal plan.
create an universal optimal plan (default).
; create a feasible plan for each startstate.
tUs create a universal strong plan.
trategy: (default: -w)
ck for deadlock.
um bfs level (default: unlimited).
ults - 3, -loopl&oa)
amount of memory fTor closed hash table in Mb.
same, but in Kb.
allow loops to be executed at most n times.

make exploration verbose.
-pi=n= report progress every n events.
-pn print no progress reports.

-gutput file write output in file (default: stdout).
-format:pddl output plans in pddl format (default).
-format:pddly output p ; in. pddl format wit 058 comments.
-format:pddivv output pl in pddl format with very verbose commeni
-format:text output plans ions in text format.
-format:verbose outpu 3 tions in verbose text format.
-format:raw output 3 binary format.
-format:csv output csv Tormat.

Walidation of Strong Plans (with -search:us):
-validate:q Validate each startstate of the Strong Plan.
-validate:qall Validate each state of the Strong Plan.

Figure 11.3: A snapshot of the SUPMurphi helper

To clarify how a non-deterministic domain can be modelled,use theHurried Passen-
ger Problemas introduced in Sectidn 11.4. The SUPMurphi model is ginefigure 11.4.
The keyworduleset is used to model non-determinism of an action whilst the lagw
weight models the cost of the transitions, which can be a paranfetration.

In our example, the state is composed by the location of teegrger and the local clock
time. Thestartstate ~ construct models the initial position and clock time of tlasgen-
ger (i.e., the @mathomg. Then, each flight of Table 11.1 is modelled by an action that

140 Chapter 11. Strong Planning through Explicit Model Che&ing

requires to stay in the airport at least one hour before tipartiere time. The cost of a
flight is given by functiorw() which sums the time spent in the airport waiting for the
flight, the duration of the flight and the delay of the flight falincould be zero).

Figurd 11.7 shows a complete SUPMurphi log execution in fvthie V-UPMurphi phases

are performed (i.e., thlodel Analysisand theTransition Graph Generatign Then, the
phaseCost-Optimal Strong Plaphase starts and synthesises the strong plan in 5 steps.
The solution is verified (i.e., the tool verifies if each sgqguan always reaches a goal).
Finally, Figure[11.6 shows the solution stored in bueied.strong file. For the sake

of completeness, the graph of reachable states generatedPllurphi is reported in

Figure[11.b.

It is worth noting that the solution is slightly differentim the one given in Figufe 11.2,
that is the touCiampineAmsterdarrSan Franciscas impracticable due to the late arrival
time in CIA airport.

11.8 SUPMurphi: The Strong Algorithm Implementation into V-UPMurphi 141
const rul eset delay : delay_t do
HOME: 0; FCO : 1; CIA : 2; CDG : 3; rul e "FlightC" (location=CDG & time<19)
BER : 4; AMS : 5; SFO : 6; GMT7: 7; ==>
type weight: w(delay,19,9);
day_type : 0..24; begi n
delay_t : 0..1; location:=SFO;
location_type: 0..6; time:=time+(19-time)+(9+delay)-GMT7;
start_type: 6..6; end; end;
var rul eset delay : delay_t do
time[pddiname: time;]: day_type; rul e "FlightD" (location=CIA & time<5)==>
location[pddiname: location;]: weight: w(delay,5,3);
location_type; begi n
-- the weight is given by time to wait in location:=AMS;
airport + flight time + delay time:=time+(5-time)+(3+delay);
function w(delay: delay_t ; departure: end; end;
day_type; length: day_type) : day_type;
begi n rul eset delay : delay_t do
return ((departure-time)+(length+delay)) rul e "FlighE" (location=FCO & time<8)==>
; weight: w(delay,8,2);
end; begi n
location:=BER;
rul eset t: start_type do time:=time+(8-time)+(2+delay);
startstate "At Home" end; end;
time := t;
location := HOME; rul eset delay : delay_t do
end; rul e "FlightF" (location=BER & time<11)
end; ==>
weight: w(delay,11,10);
rule "Q" (location=HOME & time<8)==> begi n
weight: 1; location:=SFO;
begi n time:=time+(11-time)+(10+delay)-GMT7;
location:=FCO; end; end;
time:= time + 1,
end; rul eset delay : delay_t do
rul e "FlightG" (location=BER & time<12)
rul e "P" (location=HOME & time<5)==> ==>
weight: 1; weight: w(delay,12,10);
begi n begi n
location:=CIA; location:=SFO;
time:= time + 1; time:=time+(12-time)+(10+delay)-GMT7;
end; end; end;
rul eset delay : delay_t do rul eset delay : delay_t do
rul e "FlightA" (location=FCO & time<8)==> rul e "FlightH" (location=AMS & time<15)
weight: w(delay,8,1); ==>
begi n weight: w(delay,15,10);
location:=CDG; begi n
time:=time+(8-time)+(1+delay); location:=SFO;
end; end; time:=time+(15-time)+(10+delay)-GMT7;
end; end;
rul eset delay : delay_t do
rul e "FlightB" (location=CDG & time<10) rul eset delay : delay_t do
==> rul e "Flightl" (location=BER & time<12)
==>
weight: w(delay,10,9); weight: w(delay,12,1);
begi n begi n
location:=SFO; location:=AMS;
time:=time+(10-time)+(9+delay)-GMT7; time:=time+(12-time)+(1+delay);
end; end; end; end;
goal "On Time"
(location=SFO & time <= 21);
metric: minimize;
Figure 11.4: TheHurried Passenger Problermodel as described in Sectign _11.4,

pagd 1277.

142

Chapter 11. Strong Planning through Explicit Model Che&ing

- Source: Action(cost)->Target

State 0: Q(1)->1

State 1: FlightA(3)->5 FlightA(2)->4 FlightE(4)->3 Fligh tE(3)->2
State 2: FlightF(12)->8 FlightF(11)->10 FlightG(13)->9 F lightG(12)->8

State 3: FlightG(12)->14 FlightG(11)->13 Flightl(3)->12 Flightl(2)->11
State 4: FlightB(11)->18 FlightB (1

State 5: FlightC(19)->20 FlightC(1
State 6: FlightH(13)->22 FlightH(1
State 7: FlightH(12)->24 FlightH (1
State 11: FlightH(13)->22 FlightH(
State 12: FlightH(12)->24 FlightH(11)->23

Flightl (4)->7 Flight!(3)->6

)->17 FlightC(20)->1 6 FlightC(19)->15
)->19
)->21
)->23

0
8
2
1
12)->21

Figure 11.5: Theédurried Passenger Problegraph of model in Figure 11.4

- Strong Plan Filename: hurried.strong(text mode)

- (source[type],action name,Max Cost to goal) --> (reache d states list)
-- [I] = startstate [G] = goalstate [IG] = both start and goal state
(0[11,Q.,17)-->(1)
(1,FlightE,16)-->
(2,FlightF,12)-->(8[G], 10[G])
(3,FlightG,12)-->(14[G], 13[G])
(4,FlightB,11)-->(18[G], 17[G])
(6,FlightH,13)-->(22[G], 21[G])
(7,FlightH,12)-->(24[G], 23[G])
(11,FlightH,13)-->(22[G], 21[G])
(12,FlightH,12)-->(24[G], 23[G])

—

3, 2)

Figure 11.6: SUPMurphi strong plan for Thiirried Passenger Problemmodel of Fig-
ure[11.4

11.8 SUPMurphi: The Strong Algorithm Implementation into V-UPMurphi 143

Launch: hurried -search:us -validate:qall

=== Analyzing model..., ===============================
Model exploration complete (in 0.10 seconds).

29 rules fired

1 start states

25 reachable states

13 goals found

=== Bui|ding model dynamics._ ——=—==—==-===—=—============
* Transition Graph mode: Memory Image

* Maximum size of graph: 606060 transitions.

Model dynamics rebuilding complete (in 0.10 seconds).
25 states

29 transitions

out degree: min 0 max 2 avg 1.16

=== Looking for Strong Plans... =======================
Strong Plan Algorithm is going to run on a Graph having:

25 States

1 Start States

13 Goal States

29 Transitions

11 Nondeterministic Actions

20 Nondeterminism Degree

[0:0:0.10] Step: 0, Candidates: 0, ExtGoals: 13,
OldExtGoals: 0, StrongPlan Size: 0

[0:0:0.10] Step:
OldExtGoals:
[0:0:0.10] Step:
OldExtGoals:
[0:0:0.10] Step:
OldExtGoals:
[0:0:0.10] Step:
OldExtGoals:
[0:0:0.10] Step:
OldExtGoals:

1, Candidates:
13, StrongPlan
2, Candidates:
14, StrongPlan
3, Candidates:
18, StrongPlan
4, Candidates:
20, StrongPlan
5, Candidates:
21, StrongPlan

Enjoy: Strong Plan found
Strong Plan algorithm complete (in 0.10 seconds).

6 steps done
1 start states

13 Goal states

Strong Plan size: 9
Strong Plan maxmimum cost: 17
Strong Plan Filename: hurried.strong(text mode)

=== Validation of Strong Plans...

6, ExtGoals:

Size: 1

2, ExtGoals:

Size: 5

1, ExtGoals:

Size: 7

0, ExtGoals:

Size: 8

0, ExtGoals:

Size: 9

Strong Plan Validation complete (in 0.10 seconds).

Processed: 9,

Strong Startstates: 1,
Not Strong Startstates: 0,

Strong States:

8,

Not Strong States: 0

Figure 11.7: SUPMurphi execution for Thturried Passenger Problemmodel of Fig-
ure[11.4

CHAPTER12

STRONGPLANNING CASE STUDIES

In this chapter we show two case studies for which the Cositrih Strong Plan Algo-
rithm of Chaptef 115 has been applied.

The former (namely, thénverted pendulum on a cgris aimed to show a real-world
problem in which a cost-optimal strong plan exists. We mtevihe SUPMurphi model
and some experimental results about the robustness ofrtreggstolution (i.e., how the
non-determinism affects the existence of the strong plan).

On the contrary, the second case study is inspired by thedieldnstruction industry and
it represents an industrial experience in which we used SWPM in two respects: (1)
we analysed the system dynamics of a proprietary system(2amne tried to synthesise
a strong solution for it. Unfortunately, no strong plan @bbk devised in this case, since
the problem does not allow a strong solution, as proved byntbdel checking based
analysis.

12.1 THEINVERTED PENDULUM ON A CART

E

Figure 12.1: Inverted pendulum on a cart.

145

146 Chapter 12. Strong Planning Case Studies

Theinverted pendulum on a caftlepicted in Figuré 1211) is a hybrid system in which
an optimal universal plan has to balance the pole in theoantiosition by applying an
appropriate horizontal force to the cart.

Note that this apparently simple case study is instead aoritaupt issue in the controller
design for many real-world systems. Indeed, many controblems, e.g., engineering
(i.e., the regulation of a steering antenna [104]) or ratsofll69] can be reduced to an
inverted pendulum problem. Indeed, previous works dealiitg this system are based
on neural network [7], as well as cell mapping [141,1153] tomimise thetime spent to
reach the equilibrium [153].

12.1.1 &STEM MODELLING

The system is described as presented by Papa et. &l._in [T4#.pendulum state is
described by two real variables:

* Xp is the pendulum angle (w.r.t. the vertical axis) wikhe [—1.5,1.5] rad with
steps of M0Irad;

* Xy is the angular velocity witk, € [—8, 8] rad/sec with steps of.0lrad/sed

The continuous dynamics is described by a system of diffedegguations:

X1 = X2
_ gesin(xl)f[;%ixr%][mplxgsin(x1)+u}
X2 = a3 [mp/ (mp+mo)]l coR (1)

wherege is the gravitational constant), = 0.1Kg is the mass of the poley. = 0.9Kg is
the mass of the cart= 0.5mis the half-length of the pole ands [-50, —486,...,46,50/N
is the force applied to the cart.

The actions that can be applied in each state of the systamespond to the force applied
to the cart, i.e.4 = [-50,—46,...,46,50]. In this setting, theost of a transitions given

by the absolute value of the applied force, i.e., for as, W(s,a,s) = |a|. Therefore, a
plan of minimum cost minimises thveorst-casenergy consumption. The time is sampled
with a precision of M1 seconds.

The non-determinisnof the system is given by possible disturbances on the awtuat
that may result in a small variation of the force actually leggh Hence, due these dis-
turbancesx, can non-deterministically assume, with uniform probapitiistribution, a
value that differs from the expected one by a smhadl[—A, A] with steps of 001 rad/sec.

12.1 The Inverted Pendulum on a Cart

To this aim we exploited the strong algorithm described inti®a[I1.5 to find a strong
solution (if any). In such context, a strong universal plaicontroller composed by a

tuple< s,a,c >. More precisely:

1. thes,a pair describes the actual position of the pendulum (i.e.yHiues ofk; and

X2) and it suggests to apply the non-deterministic acéion

2. thec is the maximum Newton force that might be required (in thest«oase) to

bring the pendulum frors to the equilibrium state via acticm

3. the actiona is guaranteed to be the best choice between all the possitims

available which lead to a goal state (or to another conticitate).

const

MAX_THETA : 1500; --in 0.001 rad
MIN_THETA: -1500; --in 0.001
MAX_THETA_DOT : 800; --in 0.01 rad/sec
MIN_THETA_DOT :-800; --in 0.01 rad/sec
MIN_U : -50;

MAX_U : 50;

TOLL_THETA : 15;
TOLL_THETA_DOT : 7,

L : 0.5 --Half-length

M : 0.1; --Mass
MAX_START_STEPS : 50 ;

type

real_type : real (4, 99);

theta_type : MIN_THETA..MAX_THETA;
theta_dot_type : MIN_THETA_DOT..MAX_THETA_DOT;
start_steps : 0..MAX_START_STEPS-1,;

dist_type : -K..K; -- model the non-determinism

var
theta: theta_type;
theta_dot: theta_dot_type;
failure: bool ean;

"CGMURPHI_IP_controller_library.h";

real_type; dist_M : real_type; u:u_type ; dist:dist_type)
begi n

end;

begi n
return (theta <= MAX_THETA & theta >= MIN_THETA &

end;

function Equilibrium(theta : theta_type; theta_dot : theta_dot_ty

ext ernfun next_theta (theta : theta_type; theta_dot : theta_dot_typ

ext ernfun next_theta_dot (theta : theta_type; theta_dot : theta_dot

return (theta <= 0.0 + TOLL_THETA & theta >= 0.0 - TOLL_THETA &
theta_dot <= 0.0 + TOLL_THETA_DOT & theta_dot >= 0.0 -

TOLL_T

function InRange(theta : ext_theta_type; theta_dot : ext_theta_do

theta_dot <= MAX_THETA_DOT & theta_dot >= MIN_THETA_DOT);

e) :

theta_type

_type; dist_L :
. theta_dot_type;

pe) :

bool ean;

HETA_DOT);

t_type) :

bool ean

Figure 12.2: Thenverted pendulum on a canhodel (first part)

148

Chapter 12. Strong Planning Case Studies

rul eset tmp_theta :

. start_steps
rul eset tmp_theta_dot : start_steps

do

do
startstate "source_state"
theta := MIN_THETA + tmp_theta*30 ;
theta_dot := MIN_THETA_DOT + tmp_theta_dot*16;
failure := fal se;
end;
end;
end;
rul eset dist : dist_type do
rul e "Apply Force 0 N" (!(Equilibrium(theta, theta_dot))) ==>
weight: MAX_U - 0%4;

var tmp_theta: ext_theta_type;
tmp_theta_dot: ext_theta_dot_type;

tmp_u : int_type;

begi n

tmp_u = MIN_U + 0*4 ;
tmp_theta :=

next_theta(theta, theta_dot) ;
tmp_theta_dot := next_theta_dot(theta, theta_dot, L, M, t

mp_u,dist) ;
i f (InRange(tmp_theta,tmp_theta_dot)) t hen
theta := tmp_theta;
theta_dot := tmp_theta_dot;
el se failure:= true;
endi f;

end;

end;

rul eset dist : dist_type do

rul e "Apply Force 25 N" (!(Equilibrium(theta, theta_dot))) ==>
weight: MIN_U + 25%*4;
var tmp_theta: ext_theta_type;

tmp_theta_dot: ext_theta_dot_type;
tmp_u :

. int_type;

begi n

tmp_u := MIN_U + 25*4 ;
tmp_theta :=

next_theta(theta, theta_dot) ;
tmp_theta_dot := next_theta_dot(theta, theta_dot, L, M, t

mp_u,dist) ;

i f (InRange(tmp_theta,tmp_theta_dot)) t hen

theta := tmp_theta;

theta_dot := tmp_theta_dot;
el se failure:= true;
endi f;

end;

end;

Figure 12.3: Thenverted pendulum on a camhodel (second part)

12.1 The Inverted Pendulum on a Cart 149

12.1.2 S RONGUNIVERSAL PLAN

We generated a start states cloud of 2500 defined as the set
{(X1,%2)|x1 € [-1.5,...,—0.03 Ax2 € [-8,-0.16]} with steps of 03rad on Xx;

and 016rad/secon x;. Roughly speaking, the set of start states represent all the
positions (and angular velocity) in which the pendulum canirba range of about 90
degrees.

Then, we considered different instances of the problenmgakto account disturbances
of increasing size, i.e., with € {0.01,0.02,0.03,0.04}. For each instance, we applied
the strong algorithm on the sample set of initial statesctviproduced the results sum-
marised in Table_1211. Here, for each problem instance, parresome statistics about
the corresponding gragb, i.e., total number of statety), the number of reachable states
and edgesReachandReach, respectively), the number of actiorisi() and the average
and maximum out degreayg(d(s)) and maxd(s)), respectively) of the states.

To perform the synthesis of strong plans, we exploited treeaighe disk both during
the Model Analysigas implemented in V-UPMurphi) and ti@ost Optimal Strong Plan
phase, which required to use disk for the third and the foudtances.

Then, we summarise the corresponding cost-optimal stréang$P, as devised by the
algorithm, giving its size (i.e., the number of plans that & extracted fron$P), the
maximum and minimum cost (méx(sp) and mir(C(sp)) of a strong plan starting from
an initial state (i.e., the minimum and maximum amount ofrgpeequired to reach a
goal from a startstate in the worst-case). It is worth notivag the maximum amount of
energy required could be high (more thaf®@0N for the first instance). Nevertheless,
this value refers to a plan which requires to apply 135 astiorreach a goal.

Therefore we may note that, as expected, the greater thefsizsturbances, the bigger
the number of transitions, the smaller the number of staiesvhich a strong plan is
found, that are about 53% for the first instance and 38% fotttind one, whilst for the
fourth instance, no strong plan exists.

The synthesis time (which includes all the phases) neverired) more than one hour,
using a Linux machine equipped with an Intel x86 CPU &62hz, with &b of RAM
for the hash table.

Finally, for the sake of completeness, we have to note tleatabults shown in Table 12.1
differ from the ones presented in [53] (with respect to ins&s and synthesis time). This
is mainly due to the implementation of the SUPMurphi tooljathuses the V-UPMurphi
algorithm and data structures to efficiently implement ther® Planning Algorithm.
Thanks to SUPMurphi, we were able to test the algorithm onrénbig instances of
inverted pendulum.

150 Chapter 12. Strong Planning Case Studies
Table 12.1: Experimental results for the inverted pendutuma cart problem.
Instance 1 2 3 4
N 0.01 0.02 0.03 0.04
K 5-10
Reach 1,513 454 1,526,446 1,537,842 1,547,493
Graph Reach 98,728 221 172743090 | 233520157 | 301,773 021
|| 26 26 26 26
max(d(s)) 78 130 182 234
avgd(s)) 65.23 10859 1515 1951
transitions 800Mb 1.33Gb 1.87Gb 2.4Gb
Disk .graph (directed) memory mode memory mode memory mode 2.4Gb
.graph (inverse) | memory mode memory mode 1.86Gb 2.4Gb
size 799,966 802419 588 460 —
max(C()) 3,220N 3,178N 2,628\ —
SP min(C(%)) 38N 40N 46N —
max plan length| 131 128 95 —
min plan length | 3 4 4 —
Iterations 1,640 1,696 1,330 1
time (min) 17 25 52 37

12.2 The Building Lifting System 151

12.2 THE BUILDING LIFTING SYSTEM

In this section we describe an industrial experience whé&reNsurphi was applied, in
the field of construction industry, to analyse and autoreaiproprietaryuilding lifting
systenshowing that a strong plan, in some real world problems, nodgxist. Neverthe-
less, formal methods can provide a valuable help in redusimgan effort. In particular,
we worked for a company specialised in the strengtheningeepdoundations, consol-
idation, lifting and seismic isolation of buildings as wal in the construction of new
basements under existing buildings. To this aim, the compameloped proprietary hy-
draulic cylinders which can lift a building up to two metetsoae the ground. When the
structure is raised, the foundations are strengthenedanstfismic platform and a shock
absorbing system.

12.2.1 THE LIFTING PROCESS

O\

(@) (b) (c)

-

(d) () (f)

Figure 12.4: lllustration of a completéting processon a building.

Before starting the lifting process, construction engiadauild a reinforced concrete
structure that covers the base of the building (Fidure)2.&den, following a static
analysis of the building, cylinders are suitably positidoa this structure up to two me-
ters below the terrain level (Figufe_1214b) and connected tmnstant-flow hydraulic
pump through a pipeline. Displacement and pressure sefwibnsa precision ofl—lomm

152 Chapter 12. Strong Planning Case Studies

and %)bar, respectively) are placed on each cylinder to track theagifprocess, which is
governed by an operator through a graphical control interéand takes place as follows:

1. The operator defineslifting sequencei.e., a sequence of cylinders to activate.

2. The system executes the defined sequence by sending ailiydrgpulse to each
cylinder through a junction box.

3. Each impulse produces a displacement of the activatéudeyl(Figures 12.4c and
[M2.4d), and it may cause a partial displacement of othendglis in the neighbour-
hood of the activated one.

4. If the displacement of all the cylinders is within a safeeshold, the sequence
continues with the next cylinder, otherwise a manual irgation of the operator is
required to return the system in a safe state.

5. The process continues iteratively with new lifting sewees until the building
reaches the desired height (Figlre 1P.4e).

At the end of this process, the shock absorbing systems aoeglbelow the struc-
ture (Figure_12.4f).

Note that the lifting process is very slow, i.e., aboutnd/h (where the target elevation is
on average between 1 and 2 meters). Indeed, the executi@iafla lifting sequence can
raise the building up to fnmand, since the sequence is manually defined by the operator,
there is a high probability to malezlection errorgi.e., activations of the wrong cylinder),
which may lead to the violation of safety or structural coaisits, or tohydraulic blocks
(i.e., the pressure of a cylinder exceeds the safe limitjhése cases, the operator must
often perform manual adjustments, wait for the system tornein an acceptable state,
and then decide an alternative activation sequence, fudilaying the lifting process.
Therefore, to speed up the process, we exploited the dis&eebblPMurphi described
in Section_Z.2 to analyse it and then try to introduce moreraatisation where it was
possible.

12.2.2 &STEM MODELLING

We started our analysis by tracking a complete lifting pssa@a a construction site, and
then evaluating the logs produced during other succes#fnglprocesses, which report
the activation sequences used and the corresponding eydibéhaviour during the entire
process. These observations allowed us to extract sometampdomain properties and
constraints, which were then used in the next phase in ooderadel a realistic and

accurate model. First of all, we formalised the concept @aton sequence as follows.

12.2 The Building Lifting System 153

Definition 24 (Lifting Process and Activation Sequencépt H be the set of cylinders. A
lifting processP is defined as a sequence of activation sequeneeﬁ&}"' ..., n) with
n> 1. Anactivation sequends a sequenceS= (hy, ..., hy) with hh € H and m< |H].

In our experiments the number of cylinderbi|) was fixed to seven. The actual num-
ber of cylinders used in each lifting process may vary wthe building area, however

seven represents a reasonable average number. Moreovegt&tthat the entire sys-

tem is reset after each activation sequence (e.g., thedeyBrpressure is stabilised, and
their current displacement becomes the new “zero height’g way that makes each

sequence independent from the others. Thus, our studyddaus the analysis and the
automatisation o$ingle activation sequencasither than on the entire lifting process.

Each cylinderh has an associatedisplacement(i.e., its current height), indicated by
dsph) € [0,0.1,...,1.2lmm Each element in an activation sequence indicates theaactiv
tion of the corresponding cylinder, which modifies its desgment and may also affect
its neighboursdefined as follows.

Definition 25 (Cylinder Neighbours)Let d4(h,H) be the Euclidean distance between
cylinders hi € H, and dh,h) the corresponding normalised distance obtained as

d(h,h) = maﬁ;z:%h;)mh,)). Then hi € H are neighboursf dy(h,h’) < 8. We denote

with ngh(h) the set of all neighbors of h.

The value o® depends on the placement of the cylinders and from mechadielastic
characteristics of the building basement, and it is estahhy the construction engineers.
Intuitively, two cylinders are neighbours if they are “atosnough” to make the selection
of the first also affect the displacement of the second.

Thus, the activation of a cylinddr modifies its displacement and possibly induces a
displacement variationir{duced displacemeto all the neighbour cylindeds € ngh(h).
However, neither the displacement nor the induced displaoés can be expressed by a
deterministic formula. Rather, they can assuma-deterministicallyany value from a
set of possible results (which were empirically identifiedidg our preliminary study),
with uniform probability.

Definition 26 (Displacement and Induced Displacemertet h be a cylinder and’he
ngh(h) a neighbour cylinder for h, with dgp) = d, and dsgh’) = dy. After the acti-
vation of h, the new displacements disp= d;, and dsgh’) = d,, respectively, always
satisfy the following constraintgd, —df| € [0.8,...,1.2], d, = dy +idsp(h,h’), where

idsp(h,h) = x- Wlh’)’ x € [0.0,...,0.6] is called theinduced displacement

Finally, the domain analysis evidenced some constraitigware critical for the correct
execution of the lifting process.

C1 : At any point of the lifting process, the following must holdh,h' € H, |dsph) —
dsph’)| < 1mm.

154 Chapter 12. Strong Planning Case Studies

C2 : LetS = (hs,...,hm) be an activation sequence, thére 1...m— 1, h; # hi;1.

C3 : Let S = (hy,...,hm) be an activation sequence. Any cylindewhich, at a given
stepi € 1...m, reaches its final displacement, i.eQ ¥ dsp’h) < 1.2, must not be
further activated.

ConstraintC1 is asafety constrainensuring that the building does not collapse. Con-
straintC2 forbids consecutive selections of the same cylinder (whiely apply too much
pressure to a single part of the building) and the const@hguarantees that, when a
cylinder reaches its goal displacement (i.e., abomird it will not be further activated.
Any cylinder activation whose effect violates at least ohthe constraints above causes
a selection error.

It is worth noting that we were not able to model theessure evolutiomf cylinders.
Indeed we observed that, during the lifting process, theque behaviour is subject to
unpredictable environmental conditions (e.g., tempeeafresence of concrete structures
near the cylinder). On the other hand, we also empiricalgeobed that hydraulic blocks
are tightly linked to selection errors, thus avoiding seteterrors we can reasonably
prevent also hydraulic blocks.

12.2.3 SSTEM ANALYSIS

After modelling the activation sequences as describedeiptévious section, we first used
the MODELANALYSIS procedure (see Procedlie 5, padge 59) to analyse their dgmami
order to build the corresponding transition graph.

Table 12.2: SUPMurphi Statistics

Graph Universal Plan
State Space Size 3.2-106 Size (plain/lOBDD)| 71/3.4 MB
State Size (compressed/nat)12/20 bytes || Memory peak 1,245 MB
Reachable States 120,350,719 || Plans 49 326,019
Transitions 184,445 662 || Time (sec) 1,13651
Transition File Size 2,692 MB
Graph File Size 2,631 MB

The analysis started from a single initial configuration vehall cylinders displacements
are zero. We specified as goal any state where all the cylthgplacements are between
1 and 12mm and all the states corresponding to selection errors as gates. In this
way, SUPMurphi was able to record all the success and fashates, as well as the control
paths that lead to them. All the experiments were done on &82.2Ghz CPU equipped
with 3 GB of RAM. The results are summarised in tAeEphsection of Tablé 12]2.

12.2 The Building Lifting System 155

Given the domain variables and their ranges (induced by Diefiri26), we can easily
calculate the state space size of the system, which is ahdt®states. Thanks to the
reachability analysis, SUPMurphi was able to build a re&dyi smaller transition graph,
with more than 120 million nodes and 180 million edges.

12.2.4 S RONGUNIVERSAL PLAN

In our initial attempt, we tried to achieve a complete autbsadion of the lifting process.
To this aim, we are interested in the synthesis sfranguniversal plan, i.e., a plan able
to reach the right height never occurring in a selectionrerro

Hence, we used our strong algorithm to synthesise a coshalgirong plan, as described
in Sectior_11.Il. However, owuilding Lifting Systendoes not admit a strong solution.
In other word, for each activation sequence always existgdiader activation that may
lead to a selection error. This outcome was partly expestade the non-determinism of
the system responses make selection errors unavoidable.

Itis worth noting that, in such kind of domain, only a strowggion would be acceptable.
Indeed weak or strong cyclic plans (if any) did not have areptable reliability level to
automate the lifting process.

12.2.5 SAFESTUNIVERSAL PLAN

Therefore, we tried another possible solution, i.e., welas&PMurphi looking for the
safestactivation sequences, which have less probability to emeswa selection error
during their execution. In other words, we focused on thdlsgis of a universal plan
thatreduceghe selection error probability.

In order to determine the probability distribution of théestion error, we started again
from the system dynamics. In addition, we used V-UPMurp@i&vPUTEOPTIMAL -
PATH algorithm (see Procedulré 7, page 61) to generate a (possihlgtrong) universal
plan from the system transition graph created in the prevhase. The results are sum-
marised in th&Jniversal Plarsection of Table 12]2. The tool synthesised about 50 million
plans (i.e., possible activation sequences) in about 2@itesn requiring a memory peak
of 1.2GB. The entire universal plan size was about 70MB, vhlecreased up to 7.4MB
thanks to the OBDD compression algorithm implemented irtdRMurphi.

Then, we applied a post processing algorithm to look at tagestand transitions used
by the universal plan. More precisely, in each state we @altite transitions that could
lead to error states (previously recorded by V-UPMurphid ased this information to

recursively calculate the error probability of each stateahe following definition:

Definition 27. Let s be a stat€|ay, ..., an} all the possible actions that can be performed

156 Chapter 12. Strong Planning Case Studies

in s and Hs, &) the state reached by each of them, respectively.€efia probabilityof
s, written as efs) is recursively defined as

1 if sis an error state
' F i .
ep(s) = w ifn>0
0 otherwise
So
a]
ep=1/4

N T

S4
ep =10

Figure 12.5: A fragment of transition graph with error prbtities

To give an example, Figute 12.5 contains a fragment of tiansgraph where the lower
part of each node contains the corresponding error pratyabih particular, the error
probability ofss is 1, whilst it is zero for all the other states reachable fsamrhus, the
error probability ofs; is 1/4 and the same is fa, sinces; is its only child.

Having assigned an error probability to all the states, therfinal safest universal plan
will contain, for to each state, the plan that has the lowmrgrrobability.

To evaluate the accuracy of this universal plan we used a &1Gatlo based algorithm,
performing a set of simulations exploiting the dynamics paied by V-UPMurphi during
the first phase. The simulator works iteratively as follogsen the current state of the
system, it looks in the universal plan for the action to tagplies it, chooses one of the
possible (non-deterministic) outcomes of the action ande®dhe corresponding state
the current one. The choice is made with uniform probab#ityce it was not possible to
extract a more precise probability distribution from therdon data.

The simulation stops when the system reaches the goal orranstate. By running
a large number of simulations and counting the success aludefaesults, we get an
estimation of the universal plan accuracy, which shows ithiat able to complete the
lifting process only in 35% of the cases, whilst in the remm@aat5% it must stop for an
error.

12.2 The Building Lifting System 157

12.2.6 DECISION SUPPORTSYSTEM

The build lifting system represents a real-case study whmmonstrates that a strong
plan (i.e., in this contexts a complete automatisation eftanilding lifting process) may
not exist in the practice. Moreover, it is important to rekndrat, due to the high reli-
ability requirements of the system, also weak or strongicymlutions (if any) did not
have acceptable. Human surveillance and manual inteoremtill be always required
to successfully complete it. However, all the artifactsduoed during our study could
be profitably exploited to createdecision support systemhich may lower the human
efforts needed during the lifting process.

To this aim, we finally created a software tool which is desujto work “side by side”

with the human operator. In particular, we extended thessaif@versal plan, making its
applicationinteractive Indeed, in each step of the activation sequence, the tailes

to suggest to the user the best possible move to take, ieecyttnder activation which

minimises the error probability. However, only if this paddlity is small enough, the
action is performed automatically, otherwise the systeks &sr the operator approval.
In either case, if the outcome is an error state or a stateanliigh error probability, the
system triggers an alarm and notices the operator to mgmuetform a roll back action
to return the system in an acceptable state before tryingtivaée another cylinder.

With this solution, we maintain the 35% of fully automatiseatcessful lifting processes,
whereas we can adjust the auto-activation probabilitystinol above to obtain a satis-
factory compromise between the process safety and the riegxe@ator choices which,
however, are always “guided” by the suggested action.

In other words, thanks to the decision support system, teeigsalerted before making
any critical action (i.e., with a high error probability) wh may put the system in an error
state. Thus, the contribution of this artefact to the Idtprocess is mainly that it provides
useful information in order to avoid system hangs and theequent restore procedures,
which usually require big efforts.

This last artefact, after being initially tested using ad@ion scheme similar to the one
described in the previous section, is now ready to be exmetied on-field.

In the future, our idea is to put the decision support systielelsy-side with the human
operator during a lifting process, connecting it only to theplacement sensors: in this
way, while the lifting is being carried on manually by the cgter, we could look at the
software and compare its decisions to the human ones.

CHAPTER13

CONCLUSIONS

In this Thesis, we addressed the problem of dealing witresyshaving both discrete and
continuous (possibly nonlinear) dynamics, and which mags@nt a non-deterministic
behaviour. We focused on the analysis and control of theiadyics, discussing how the
problems of planning, universal planning, and strong plagihave been handled in the
literature.

To this regard, we showed that the model checking technignée suitable to perform
planning and universal planning for continuous systemsrajlysing the dynamics of a
Finite State System obtained from a Discrete Time Hybrid&ys and generating opti-
mal plans and controllers for it. As a contribution, we apglihe explicit model checking
technique, that by one side works well on systems having ireaus dynamics hard to
invert, on the other side it is affected by the well-knowntestexplosion problem. To
mitigate this problem, we extended the UPMurphi tool by suppg the disk-based ver-
ification, which allows one to cope with systems having adastate space. Then, we
tested this approach on a number of continuous case studdes, of which inspired by
real world problems.

Moreover, we showed that the explicit model checking canumessfully applied to
a different class of problems, that is the analysis and eatibn of data quality (i.e.,
consistency in our case) on sets of dirty dataset which candskelled through FSS. To
this aim, we defined a technique based on formal methods witobased the consistency
of the data quality process. We modelled a real case scemiai®ublic Administration
Database, and we applied a modified version of CMurphi toitesich methodology
improved the overall data quality process.

Finally, in the last part of this thesis, we discussed thélam to synthesise plans able
to reach a goal in systems having a non-deterministic dycemiVe gave a survey on
how this problem has been handled in the literature, an weiged a novel algorithm
which synthesises cost-optimal strong plans, minimidiegdost of the non-deterministic
worst-case execution. We proved the correctness and ctanpkes of the algorithm and
we applied it on two real world problems.

All algorithms we presented in this thesis have been impreatein the following tools,
all built on top of Murphi model checker:

159

V-UPMurphi: Itis a computational engine to enhance the ability of UPNu(phe Uni-
versal Planner Murphi) to synthesise plans and universaispfor (possibly non-
linear) Discrete Time Hybrid Systems defined with a PDDL+ mlo®¥-UPMurphi
exploits the use of the disk during the exploration of theaiyits, as described
in Chaptei 7. It implements on disk the state space redutgicmiques inherited
from Murphi (as bit-compression, hash-compaction) anovadlone to pause and
resume the system analysis process, using the disk to bptbrexand store the
graph of the system dynamics.

SUPMurphi: The Strong Universal Planner Murphi is built on-top of V-UBihi. In
particular, it implements the cost-optimal strong plagnailgorithm, as described
in Chaptef1ll. It uses the Murphi description language toehondn-deterministic
behaviour of systems’ actions and, thanks to the use oflaasled algorithm, is able
to perform strong planning. Then, it allows one to valid&ie final strong plan (if
any) on the system graph.

13.1 RUTUREWORKS

Our future research activity is moving on two contexts.

In the context ofplanningand control problems, we are actually working to extend the
application of the approach presented in this Thesis towlitlala wider class of systems,
as well as to apply it on other real-world planning and cdrgroblems.

To this regard, we intend to exploit heuristics search dutine system analysis as well as
to enrich SUPMurphi with other state space reduction tepes.

In the context otlata quality currently we are further investigating the benefits thatieto
checking can provide by applying both sensitivity analysisiataset indicators and per-
forming data cleansing through model checking.

REFERENCES

[1] International Conference on Automated Planning ande8ahng (ICAPS),
url = http://www.informatik.uni-trier.de/ ~ley/db/conf/aips/index.
html . (Cited on page_46.)

[2] IPC Web Pagehttp://ipc.icaps-conference.org ,2002. (Cited on pagle 14.)

[3] AFRATI, F. N.,AND KOLAITIS, P. G. Repair checking in inconsistent Databases:
Algorithms and Complexity. IfProceedings of the 12th International Conference
on Database Theor{2009), ICDT '09, ACM, pp. 31-41. (Cited on page] 99.)

[4] ALBORE, A., PALACIOS, H., AND GEFFNER H. Compiling uncertainty away in
non-deterministic conformant planning. BECAI (2010), pp. 465-470. (Cited on
page[11B.)

[5] ALPERN, B., AND SCHNEIDER, F. B. Defining livenessinformation Processing
Letters 214 (1985), 181-185. (Cited on pagel 20.)

[6] AMINIFAR, F., FOTUHI-FIRUZABAD, M., KHODAEI, A., AND FARIED, S. Opti-
mal placement of unified power flow controllers (UPFCs) usimiged-integer non-
linear programming (MINLP) method. IIRower Energy Society General Meeting,
2009. PES '09. IEEHjuly 2009), pp. 1 —7. (Cited on pade 136.)

[7] ANDERSON C. W. Learning to control an inverted pendulum using neoedt
works. IEE Control System Magazin® (1989), 31-37. (Cited on page 146.)

[8] ASARIN, E., MALER, O., AND PNUELI, A. Symbolic controller synthesis for
discrete and timed systems.Hiybrid Systemg1994), pp. 1-20. (Cited on pagé 2.)

[9] AYLETT, R., SOUTTER, J. K., FETLEY, G. J.,AND CHUNG, P. W. H. Al plan-
ning in a chemical plant domain. FProc. ECAI 19981998), pp. 622—-626. (Cited
on paged I3 and 47.)

[10] BAIER, C., AND KATOEN, J.-P. Principles of Model Checking (Representation
and Mind Series)The MIT Press, 2008. (Cited on pages xv, 1 18.)

[11] BARATEIRO, J., AND GALHARDAS, H. A Survey of Data Quality Tools.
Datenbank-Spektrum 32005), 15-21. (Cited on pade 198.)

[12] BATINI, C., CAPPIELLO, C., FRANCALANCI, C., AND MAURINO, A. Method-
ologies for Data Quality Assessment and ImprovemeX@M Comput. Surv. 41
(July 2009), 16:1-16:52. (Cited on pafe 100.)

http://www.informatik.uni-trier.de/~ley/db/conf/aips/index.html
http://www.informatik.uni-trier.de/~ley/db/conf/aips/index.html
http://ipc.icaps-conference.org

162

REFERENCES

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BATINI, C., AND SCANNAPIECO, M. Data Quality: Concepts, Methodologies
and TechniguesData-Centric Systems and Applications. Springer, 20@ted
on paged 13,97 and 98.)

BEHRENDS E. Introduction to Markov Chains Vieweg, 2000. (Cited on
page[124.)

BEHRMANN, G., COUGNARD, A., DAvID, A., FLEURY, E., LARSEN, K. G.,
AND LIME, D. UPPAAL-TIGA: Time for playing games! Il9th Interna-
tional Conference on Computer Aided Verification (CABgrlin, Germany, July
3-7,2007), W. Damm and H. Hermanns, Eds., vol. 459Deafture Notes in Com-
puter SciencegSpringer, pp. 121-125. (Cited on page 47.)

BELL, K. R. W., COLES, A. J., @LES, A. |, FOx, M., AND LONG, D. The
role of Al planning as a decision support tool in power suli@taranagemental
Communications 221 (2009), 37-57. (Cited on pagé$s 3 47.)

BERTOLI, P., QMATTI, A., ROVERI, M., AND TRAVERSO, P. Planning in non-
deterministic domains under partial observability via &giic model checking. In
Proc. 17th IJCAI(2001), Morgan Kaufmann, pp. 473-478. (Cited on pagel 118.)

BERTOLI, P., QMATTI, A., ROVERI, M., AND TRAVERSO, P. Strong plan-
ning under partial observabilitArtificial Intelligence 17QApril 2006), 337-384.
(Cited on pagd_118.)

BERTOLI, P., QMATTI, R., LAGO, U. D., AND PISTORE, M. Extending PDDL
to nondeterminism, limited sensing and iterative condaioInIn Proc. ICAPSO03,
Workshop on PDDI(2003), pp. 15-24. (Cited on page 119.)

BERTSEKAS D. P. Dynamic Programming and Optimal Controhthena Scien-
tific, 2005. (Cited on pages] 3 ahd|36.)

BLAKE, O., BRIDGES, J., (HESTER E., Q.LEMMET, J., HALL, S., HAN-
NINGTON, M., HURST, S., DHNSON, G., LEWIS, S., MALIN, M., MORISON,

l., NORTHEY, D., PULLAN, D., RENNIE, G., RCHTER, L., ROTHERY, D.,
SHAUGHNESSY, B., SmMs, M., SMITH, A., TOWNEND, M., AND WAUGH, L.
Beagle2 Mars: Mission Repoyt2004. Lander Operations Control Centre, Na-
tional Space Centre, University of Leicester. (Cited ongsd§0[8P and 83.)

BLONDEL, V. D., AND TSITSIKLIS, J. N. A survey of computational complexity
results in systems and controRutomatica 369 (2000), 1249-1274. (Cited on
pagel[47.)

BobDDyY, M. S., AND JOHNSON, D. P. A new method for the global solution of
large systems of continuous constraints. Global Optimization and Constraint
Satisfaction, First International Workshop Global Cormsirt Optimization and
Constraint Satisfaction (COCO$2002), vol. 2861 otf_ecture Notes in Computer
ScienceSpringer, pp. 142-156. (Cited on palge 47.)

REFERENCES 163

[24] BONET, B., AND GEFFNER H. Planning with incomplete information as heuristic
search in belief space. Proc. 6th ICAPS2000), S. Chien, S. Kambhampati, and
C. Knoblock, Eds., AAAI Press, pp. 52—61. (Cited on page])118.

[25] BONET, B., AND GEFFNER H. mGPT: A probabilistic planner based on heuristic
search.Journal of Artificial Intelligence Research Z2005), 933—-944. (Cited on
page[11B.)

[26] BORRELLI, F. Constrained optimal control for hybrid systemsClonstrained Op-
timal Control of Linear and Hybrid Systemgl. 290 ofLecture Notes in Control
and Information ScienceSpringer, 2003, pp. 143-171. (Cited on pagé 47.)

[27] BOUTILIER, C., DEAN, T., AND HANKS, S. Decision-theoretic planning: Struc-
tural assumptions and computational leverageurnal of Artificial Intelligence
Research 111999), 1-94. (Cited on pade_118.)

[28] BRINKSMA, E.,AND MADER, A. Verification and optimization of a PLC control
schedule. IrProc. SPIN 200@2000), pp. 73—-92. (Cited on page]l 93.)

[29] BRYANT, R. Graph-based algorithms for boolean function manipadat [EEE
Trans. on Computers C-38 (Aug 1986), 677—691. (Cited on page] 30.)

[30] BURCH, J. R., GQARKE, E. M., MCMILLAN, K. L., DiLL, D. L., AND HWANG,
L. J. Symbolic model checking: #states and beyonthf. Comput. 982 (1992),
142-170. (Cited on pagés [1, 2 dnd1118.)

[31] BUSSIECK, M. R., AND VIGERSKE, S. MINLP solver softwarehttp://www.
matheon.de , 2010. (Cited on pagE_B6.)

[32] CACHED MURPHI WEB PAGE. http://www.dsi.uniromal.it/ ~tronci/
cached.murphi.html , 2006. (Cited on pagels 24 and 52.)

[33] CHESI, G., AND HUNG, Y. Global path-planning for constrained and optimal
visual servoing. IEEE Trans. on Robotics 2% (2007), 1050-1060. (Cited on
page[117.)

[34] CIMATTI, A., CLARKE, E., GUNCHIGLIA, F.,AND ROVERI, M. Nusmv: a new
symbolic model checkellnternational Journal on Software Tools for Technology
Transfer 2(2000), 2000. (Cited on pade131.)

[35] CIMATTI, A., CLARKE, E. M., GUNCHIGLIA, E., GUNCHIGLIA, F., RSTORE,
M., ROVERI, M., SEBASTIANI, R., AND TACCHELLA, A. NuSMV 2: An open-
source tool for symbolic model checking. GAV (2002), pp. 359-364. (Cited on
page[31.)

[36] CIMATTI, A., PISTORE, M., ROVERI, M., AND TRAVERSO, P. Weak, strong,
and strong cyclic planning via symbolic model checkingrtificial Intelligence
147, 1-2 (2003), 35 — 84. (Cited on pages[B, 4,[47]117] 119 and 120.

http://www.matheon.de
http://www.matheon.de
http://www.dsi.uniroma1.it/~tronci/cached.murphi.html
http://www.dsi.uniroma1.it/~tronci/cached.murphi.html

164 REFERENCES

[37] CIMATTI, A., ROVERI, M., AND TRAVERSO, P. Strong planning in non-
deterministic domains via model checking. APS (1998), pp. 36—43. (Cited
on paged 46, 121, 1P3 and 124.)

[38] CLARKE, E., AND DRAGHICESCU, |. Expressibility results for linear-time and
branching-time logics. Ihinear Time, Branching Time and Partial Order in Logics
and Models for Concurrengy. de Bakker, W. de Roever, and G. Rozenberg, Eds.,
vol. 354 ofLecture Notes in Computer Scien&pringer Berlin / Heidelberg, 1989,
pp. 428-437. (Cited on pade 130.)

[39] CLARKE, E. M., AND EMERSON, E. A. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logicLagic of Programg1981),
pp. 52-71. (Cited on pagd 1.)

[40] CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. Model Checking The
MIT Press, 1999. (Cited on pade99.)

[41] COLES, A. I., FOX, M., LONG, D., AND SMITH, A. J. Planning with problems
requiring temporal coordination. Ifiwenty-Second AAAI Conference on Artifi-
cial Intelligence(Vancouver, British Columbia, Canada, July 22-26 2007) AAA
Press., pp. 415-420. (Cited on pdge 48.)

[42] COLES, A. J., QOLES, A. |., FOX, M., AND LONG, D. Temporal planning in
domains with linear processes. 2ist International Joint Conference on Atrtifi-
cial Intelligence (IJCAIYPasadena, California, USA, July 2009), C. Boutilier, Ed.,
pp. 1671-1676. (Cited on pagel48.)

[43] CRISP Research Center web pagéttp://www.crisp-org.it . (Cited on
pages[3,98 arld 104.)

[44] CUDD Web Page:http://visi.colorado.edu/ ~fabio/ , 2009. (Cited on
page[55.)

[45] DANIELE, M., TRAVERSO, P., AND VARDI, M. Y. Strong cyclic planning re-
visited. In Proceedings of the 5th European Conference on Planning:eiec
Advances in Al PlanningLondon, UK, UK, 2000), ECP '99, Springer-Verlag,
pp. 35-48. (Cited on pagés [3, 4 and1119.)

[46] DELLA PENNA, G., INTRIGILA, B., LAURI, N., AND MAGAZZENI, D. Fast and
compact encoding of numerical controllers using obdds$nflormatics in Control,
Automation and Robotics: Selected Papers from ICINCO ZQ089), Springer,
pp. 75-87. (Cited on page 155.)

[47] DELLA PENNA, G., INTRIGILA, B., MAGAZZENI, D., AND MERCORIQ, F.
Batch chemical plant PDDL+ modehitp://www.di.univaq.it/gdellape/
lamoka/go/?page=chemical , 2009. (Cited on pages 190 and 92.)

http://www.crisp-org.it
http://vlsi.colorado.edu/~fabio/
http://www.di.univaq.it/gdellape/lamoka/go/?page=chemical
http://www.di.univaq.it/gdellape/lamoka/go/?page=chemical

REFERENCES 165

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

DELLA PENNA, G., INTRIGILA, B., MAGAZZzENI, D., AND MERCORIQ, F.
Repository of planetary lander PDDL+ problems/plans aniiiaton reports.,
2009. (Cited on page_86.)

DELLA PENNA, G., INTRIGILA, B., MAGAZZENI, D., AND MERCORIOQ, F. UP-
Murphi: a tool for universal planning on PDDL+ problems. Pnoceedings of
The 19th International Conference on Automated Plannirgg@cheduling (ICAPS
2009) (2009), AAAI Press, pp. 106-113. (Cited on pages [45,[49[2058
and63.)

DELLA PENNA, G., INTRIGILA, B., MAGAZZENI, D., AND MERCORIO, F. A
PDDL+ benchmark problem: The batch chemical planBioceedings of The 20th
International Conference on Automated Planning and Schegl{ICAPS 2010)
(Toronto, Canada, 2010), AAAI Press, pp. 222—-225. (Citegage[68.)

DELLA PENNA, G., INTRIGILA, B., MAGAZZENI, D., AND MERCORIQ, F. Plan-
ning for autonomous planetary vehicles. Pnmoceedings of the The Sixth Inter-
national Conference on Autonomic and Autonomous Syst€arscun, Mexico,
2010), pp. 131-136. (Cited on pagel 63.)

DELLA PENNA, G., INTRIGILA, B., MAGAZZENI, D., AND MERCORIQ, F.
Resource-optimal planning for an autonomous planetarycieeh International
Journal of Artificial Intelligence & Applications (1JAIA),B (2010), 15-29. (Cited
on page[683.)

DELLA PENNA, G., INTRIGILA, B., MAGAzZZENI, D., MERCORIQ, F., AND
TRONCI, E. Cost-optimal strong planning in non-deterministic @ams. inPro-
ceedings of The 8th International Conference on InfornsaticControl, Automa-
tion and Robotics (to appear|Cited on page§ 123 and 149.)

DELLA PENNA, G., INTRIGILA, B., MELATTI, |., TRONCI, E.,AND VENTURINI
ZiLLl, M. Exploiting transition locality in automatic verificain of finite state
concurrent systemsSTTT 64 (2004), 320-341. (Cited on pages| 53 118.)

DELLA PENNA, G., INTRIGILA, B., MELATTI, |., TRONCI, E., AND ZILLI,
M. V. Finite horizon analysis of markov chains with the murpérifier. STTT
8, 4-5 (2006), 397-409. (Cited on page 124.)

DELLA PENNA, G., MAGAZZENI, D., AND MERCORIQ F. A universal planning
system for hybrid domainsApplied Intelligencg2011), 1-28. 10.1007/s10489-
011-0306-z. (Cited on pagés]45) b0} 52,53, 54land 63.)

DEPARADE, A. A switched continuous model of VHS case study 1. Draftven
sity of Dortmund, http://www-verimag.imag.fr/VHS/yearl/cs11c.ps , feb
1999. (Cited on pagels H9,191 dnd 93.)

DiLL, D. L. The muphiverification system. IICAV (1996), pp. 390-393. (Cited
on page[211.)

http://www-verimag.imag.fr/VHS/year1/cs11c.ps

166 REFERENCES

[59] DiLL, D. L. A retrospective on murphR5 Years of Model Checking - LNCS 5000
(2008), 77-88. (Cited on pade 121.)

[60] DiLL, D. L., DREXLER, A. J., Hu, A. J., AND YANG, C. H. Protocol verifi-
cation as a hardware design aid. Rroceedings of the 1991 IEEE International
Conference on Computer Design on VLSI in Computer & Proece$$692), IEEE
Computer Society, pp. 522-525. (Cited on pagé 21.)

[61] DOVIER, A., AND QUINTARELLI, E. Applying Model-checking to solve Queries
on semistructured Dat&€omputer Languages, Systems & Structure232009),
143 —172. (Cited on page 199.)

[62] EDELKAMP, S. Mixed propositional and numeric planning in the modeaking
integrated planning system. KIPS Workshop on Planning for Temporal Domains
(Toulous, France, April 24 2002), M. Fox and A. M. Coddingt&uls., pp. 47-55.
(Cited on pagd_47.)

[63] EDELKAMP, S. Taming numbers and durations in the model checking riated
planning systemJournal of Artificial Intelligence Research Z0003), 195-238.
(Cited on pagd_47.)

[64] EDELKAMP, S., AND HELMERT, M. Exhibiting knowledge in planning prob-
lems to minimize state encoding length. BCP (1999), pp. 135-147. (Cited on
page[11P.)

[65] EDELKAMP, S.,AND HELMERT, M. MIPS: The model-checking integrated plan-
ning systemAl Magazine 223 (2001), 67-72. (Cited on page 3.)

[66] EDELKAMP, S., ABBAR, S.,AND NAZIH, M. Large-scale optimal PDDL3 plan-
ning with MIPS-XXL. In 5th International Planning Competition Booklet. Inter-
national Conference on Automated Planning and Sched\liing English Lake
District, Cumbria, UK, 2006), pp. 28-31. (Cited on pagés &[4n.)

[67] EDELKAMP, S.,AND KISSMANN, P. Partial symbolic pattern databases for opti-
mal sequential planning. Kl (2008), pp. 193-200. (Cited on page 1120.)

[68] EDELKAMP, S., LAFUENTE, A. L., AND LEUE, S. Directed explicit model check-
ing with hsf-spin. INSPIN '01: Proceedings of the 8th international SPIN work-
shop on Model checking of softwgidew York, NY, USA, 2001), Springer-Verlag
New York, Inc., pp. 57-79. (Cited on page 2.)

[69] EDELKAMP, S., LEUE, S., AND LLUCH-LAFUENTE, A. Directed explicit-state
model checking in the validation of communication protecadht. J. Softw. Tools
Technol. Transf. 52 (2004), 247-267. (Cited on pagé 2.)

[70] EMBURY, S. M., MISSIER P., S\MPAIO, S., GREENwWOOD, R. M., AND
PREECE A. D. Incorporating Domain-Specific Information Qualityp@straints
into Database Queried. Data and Information Quality (September 2009), 11:1—
11:31. (Cited on pagé_99.)

REFERENCES 167

[71] FAN, W., GEERTS F., AND JA, X. A Revival of Integrity Constraints for Data
Cleaning.Proc. VLDB Endow. JAugust 2008), 1522-1523. (Cited on pades 98
and99.)

[72] FISHER, C. W.,AND KINGMA, B. R. Criticality of data quality as exemplified in
two disastersinf. Manage. 39December 2001), 109-116. (Cited on page 98.)

[73] FOURMAN, M. Propositional planning. Ififth International Conference on Ar-
tificial Intelligence Planning and Scheduling - WorkshopMadel Theoretic Ap-
proaches to Planning (AIPSBreckenridge, CO, USA, 2000), pp. 10-17. (Cited
on page[4]7.)

[74] Fox, M., HOWEY, R., AND LONG, D. Validating plans in the context of pro-
cesses and exogenous eventsThe Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative ApplicatainArtificial Intelligence
Conference (AAAI/IAAIPIttsburgh, Pennsylvania, USA, 2005), AAAI Press/ The
MIT Press, pp. 1151-1156. (Cited on pdg€e 93.)

[75] FOX, M., AND LONG, D. PDDL+: An extension to PDDL2.1 for modelling
planning domains with continuous time-dependent eff@@shnical Report, Dept.
of Computer Science, University of Durhg®001). (Cited on pages 47,180,182
and83.)

[76] Fox, M., AND LONG, D. PDDL2.1: An extension to PDDL for expressing tem-
poral planning domainsl. Artif. Intell. Res. 2@2003), 61-124. (Cited on pages 3,
14 and9lLL.)

[77] Fox, M., AND LONG, D. Modelling mixed discrete-continuous domains for plan-
ning. Journal of Artificial Intelligence Research 22006), 235-297. (Cited on
pages 14, 15 arid b4.)

[78] Fu, J., NG, V., BASTANI, F. B., AND YEN, l.-L. Simple and fast strong
cyclic planning for fully-observable nondeterministi@aphing problems. InJ-
CAI (2011), pp. 1949-1954. (Cited on padés 4[and 119.)

[79] FUDENBERG, D., AND TIROLE, J. Game theoryMIT Press, aug 1991. (Cited on
page[124.)

[80] GEREVINI, A., AND LONG, D. Plan constraints and preferences in PDDI&ch-
nical Report, RT 2005-08-47, Dept. of Electronics for Auation, University of
Brescia, Italy(2006). (Cited on pag€] 3.)

[81] GINSBERG, M. L. Ginsberg replies of chapman and schoppers - univptaahing
research: A good or bad ideaAl Magazine 104 (1989), 61-62. (Cited on
page[46.)

[82] GIUNCHIGLIA, F., AND TRAVERSO, P. Planning as model checking. HCP
(1999), pp. 1-20. (Cited on page 3.)

168

REFERENCES

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

GIUNCHIGLIA, F., AND TRAVERSO, P. Planning as model checking. 5th Eu-
ropean Conference on Planning: Recent Advances in Al Pienhiondon, UK,
2000), Springer-Verlag, pp. 1-20. (Cited on pagés Jand 46.)

GROSSMANN, |. E., AND SAHINIDIS, N. V. Special issue on mixed integer pro-
gramming and its applications to engineering: Pafptimization and Engineer-
ing 3, 4 (2002). (Cited on pagds 3 and 35.)

GROSSMANN, |. E., AND SAHINIDIS, N. V. Special issue on mixed integer pro-
gramming and its applications to engineering: ParOjtimization and Engineer-
ing 4, 1 (2002). (Cited on page_B5.)

GRUMBERG, O., AND VEITH, H., Eds. 25 Years of Model Checking - History,
Achievements, Perspectivi008), vol. 5000 olecture Notes in Computer Sci-
ence Springer. (Cited on pagel 1.)

HAYATI, S., VOLPE, R., BACKES, P., BALARAM, J., WELCH, R., IVLEV, R.,
THARP, G., FETERS S., (1M, T., PETRAS, R., AND LAUBACH, S. The Rocky

7 rover: A Mars sciencecraft prototype.imProceedings IEEE International Con-
ference on Robotics and Automati@®97), pp. 2458-2464. (Cited on paged 72
and75.)

HENZINGER, T., Ho, P.-H.,AND WONG-ToI, H. Hytech: A model checker for
hybrid systemsSoftware Tools for Technology Transferll(dec 1997), 110-122.
(Cited on pagd_32.)

HENZINGER, T. A., Ho, P.-H., AND WONG-TOI, H. A user guide to hytech.
In TACAS(1995), E. Brinksma, R. Cleaveland, K. G. Larsen, T. Maryaand

B. Steffen, Eds., vol. 1019 afecture Notes in Computer Scien&pringer, pp. 41—
71. (Cited on pagé_32.)

HERRERQ J., BERLANGA, A., MOLINA, J.,AND CASAR, J. Methods for opera-
tions planning in airport decision support systeipplied Intelligence 222005),
183-206. (Cited on pagds 3 dnd 47.)

HOFFMANN, J., AND NEBEL, B. The ff planning system: Fast plan generation
through heuristic searchJournal of Artificial Intelligence Research 12001),
253-302. (Cited on page _119.)

HOLLDOBLER, S., AND STOR, H. Solving the entailment problem in the flu-
ent calculus using binary decision diagramsFifth International Conference on
Artificial Intelligence Planning Systems (AlIP@reckenridge, CO, USA, 2000),
S. Chien, S. Kambhampati, and C. A. Knoblock, Eds., AAAI prgsp. 32—-39.
(Cited on pagd_47.)

HoLzMANN, G. J. Design and Validation of Computer ProtocoBrentice Hall,
New Jersey, 1991. (Cited on page 1.)

REFERENCES 169

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

HoLzMANN, G. J. The SPIN model checkdEEE Trans. on Software Engineer-
ing 23 5 (May 1997), 279-295. (Cited on pages 2 19)

HOWEY, R., AND LONG, D. Validating plans with continuous effects. limProc.
of the 22nd Workshop of the UK Planning and Scheduling Spkterest Group
(2003). (Cited on pagels b3 aind 64.)

HowEY, R., LONG, D., AND FOx, M. VAL: Automatic plan validation, continu-
ous effects and mixed initiative planning using PDDCTAI 00(2004), 294-301.
(Cited on pagd_83.)

HoOwEY, R., LONG, D., AND FOX, M. Validating plans with exogenous events.
In 23rd Workshop of the UK Planning and Scheduling Speciatdstesroup(Uni-
versity College Cork, Ireland, 2004), pp. 78-87. (Cited age[93.)

Hsu, C. Cell-to-Cell Mapping Springer-Verlag, 1987. (Cited on pagés] 38
and40.)

Hsu, C. S. A discrete method of optimal control based upon thiestate space
concept. Journal of Optimization Theory and Applications gB85), 547-569.
10.1007/BF00939159. (Cited on pagel 40.)

Hsu, C. S.,AND GUTTALU, R. S. An unravelling algorithm for global analysis
of dynamical systems - An application of cell-to-cell mapgs. ASME Transac-
tions Series E Journal of Applied Mechanics @ec. 1980), 940-948. (Cited on
pages[38 and 40.)

Hsu, C. W., WAH, B. W., HUANG, R., AND CHEN, Y. X. New Features in
SGPlan for Handling Soft Constraints and Goal Preferent®DDL3.0. InProc.
Fifth International Planning Competitio@une 2006), International Conf. on Au-
tomated Planning and Scheduling. (Cited on pagel 119.)

Hu, H., TAal, H., AND SHENOI, S. Incorporating cell map information in fuzzy
controller design. IfProceedings of the 3rd IEEE Conf. on Fuzzy Syst@r84).
(Cited on pagéd_40.)

HUANG, W., WEN, Z., JANG, Y., AND Wu, L. Observation reduction for strong
plans. InProc. 20th IJCAI(2007), Morgan Kaufmann, pp. 1930-1935. (Cited on
page[11B.)

ILCEV, S. D. Antenna systems for mobile satellite applications Microwave
Telecommunication Technology, 2009. CriMiCo 2009. 19térimational Crimean
Conferencg2009), pp. 393 —398. (Cited on pafe 1146.)

I, C. N., AND DiLL, D. L. Better verification through symmetry. @HDL
'93: Proceedings of the 11th IFIP WG10.2 International Genehce sponsored by
IFIP WG10.2 and in cooperation with IEEE COMPSOC on Comptiardware
Description Languages and their Applicatiofi®93), North-Holland, pp. 97-111.
(Cited on pagd_33.)

170 REFERENCES

[106] JENSEN, R. M., AND VELOSO, M. M. Obdd-based universal planning for syn-
chronized agents in non-deterministic domaidsurnal of Artificial Intelligence
Research (JAIR) 1@000), 189-226. (Cited on pagés 4 and|120.)

[107] JENSEN, R. M., VELOSO, M. M., AND BRYANT, R. E. Guided symbolic univer-
sal planning. IHCAPS(2003), pp. 123-132. (Cited on pages 1118[and 120.)

[108] JR., E. M. C., QRUMBERG, O., AND PELED, D. A. Model Checking The MIT
Press, 1999. (Cited on pagé 1.)

[109] KABANZA, F., BARBEAU, M., AND ST-DENIS, R. Planning control rules for
reactive agentsArtificial Intelligence 951997), 67—-113. (Cited on padge_118.)

[110] KHOUSSAINOV, B., AND NERODE, A. Automata Theory and Its Applications
Birkhauser Boston, 2001. (Cited on palge 99.)

[111] KISSMANN, P.,AND EDELKAMP, S. Solving fully-observable non-deterministic
planning problems via translation into a general gameKII2009: Advances in
Artificial Intelligence B. Mertsching, M. Hund, and Z. Aziz, Eds., vol. 5803 of
Lecture Notes in Computer Scien&pringer Berlin / Heidelberg, 2009, pp. 1-8.
(Cited on pages$14, 118 ahd 119.)

[112] KISSMANN, P., AND EDELKAMP, S. Gamer, a general game playing ageki.
25,1 (2011), 49-52. (Cited on pagé$s 4 and|119.)

[113] KowaLEWSKI, S. Description of VHS case study 1: "Experimental Batch
Plant”. http://astwww.chemietechnik.uni-dortmund.de/ ~vhs/csldescr.
zip , July 1998. (Cited on pagds 186,88] 91 94))

[114] KREISSELMEIER G., AND BIRKHOLZER, T. Numerical nonlinear regulator de-
sign. IEEE Transactions on Automatic Control,3B(Jan. 1994), 33-46. (Cited on
pages[36 and 37.)

[115] KUTER, U., NAU, D. S., REISNER, E., AND GOLDMAN, R. P. Using classical
planners to solve nondeterministic planning problemdCKPS(2008), pp. 190—
197. (Cited on pagek] 4 ahd 119.)

[116] KWIATKOWSKA, M. Z., NORMAN, G.,AND PARKER, D. Probabilistic symbolic
model checking with prism: a hybrid approa@iTT 62 (2004), 128-142. (Cited
on page[124.)

[117] LUAQUILA MODEL CHECKING GROUP. UPMurphi Web Pagéhttp://www.di.
univag.it/gdellape/lamoka/upmurphi , 2010. (Cited on pagé_63.)

[118] LARSEN, K. G., PETTERSSON P.,AND Y1, W. UPPAAL in a nutshellSTTT 1
1-2 (1997), 134-152. (Cited on pagé 2.)

http://astwww.chemietechnik.uni-dortmund.de/~vhs/cs1descr.zip
http://astwww.chemietechnik.uni-dortmund.de/~vhs/cs1descr.zip
http://www.di.univaq.it/gdellape/lamoka/upmurphi
http://www.di.univaq.it/gdellape/lamoka/upmurphi

REFERENCES 171

[119] LEAUTE, T., AND WILLIAMS, B. C. Coordinating agile systems through the
model-based execution of temporal plans. Timentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative l&pgions of Artificial In-
telligence Conference (AAAI/IAAIRittsburgh, Pennsylvania, USA, 2005), M. M.
Veloso and S. Kambhampati, Eds., AAAI Press / The MIT Preps,144-120.
(Cited on page$ |8, 47 ahd]48.)

[120] LEE, D. Design and verification of the Mars exploration rovenmary payload.
In Proceedings of Workshop on Spacecraft and Launch Vehiakamic Environ-
ments(2003). (Cited on pagé _¥3.)

[121] LENOSKI, D., LAUDON, J., GHARACHORLOO, K., WEBER, W.-D., GUPTA, A.,
HENNESSY J., HOROWITZ, M., AND LAM, M. S. The stanford dash multipro-
cessorComputer 2§March 1992), 63—79. (Cited on pagel 21.)

[122] LI, H. X., AND WiLLIAMS, B. C. Generative planning for hybrid systems based
on flow tubes. IrEighteenth International Conference on Automated Plagaind
Scheduling (ICAPS)Sydney, Australia, 2008), J. Rintanen, B. Nebel, J. C. Beck
and E. A. Hansen, Eds., AAAI Press, pp. 206-213. (Cited oep&djand 48.)

[123] MALETIC, J.,AND MARCUS, A. Data cleansing: beyond Integrity Analysis. In
Proceedings of the Conference on Information Qu&200), pp. 200-209. (Cited
on paged 98 arid 99.)

[124] MARTINI, M., AND MEZZANZANICA, M. The Federal Observatory of the Labour
Market in Lombardy: Models and Methods for the Costructiba &tatistical In-
formation System for Data Analysis. Information Systems for Regional Labour
Market Monitoring - State of the Art and Prospectiy€s Larsen, M. Mevius,
J. Kipper, and A. Schmid, Eds. Rainer Hampp Verlag, 200%efCon pagd _104.)

[125] MATTMULLER, R., ORTLIEB, M., HELMERT, M., AND BERCHER P. Pat-
tern database heuristics for fully observable nondetasticrplanning. INICAPS
(2010), pp. 105-112. (Cited on pageld _4.,1119[and 120.)

[126] MAUsSAM, M., BERTOLI, P.,AND WELD, D. S. A hybridized planner for stochas-
tic domains. InProc. 20th 1JCAI(2007), Morgan Kaufmann, pp. 1972-1978.
(Cited on pagd_118.)

[127] MAusAaM, M., AND WELD, D. S. Planning with durative actions in stochastic
domains. Journal of Artificial Intelligence Research Jlanuary 2008), 33-82.
(Cited on pagd_118.)

[128] McDERMOTT, D. Reasoning about autonomous processes in an estimgted+e
sion planner. InThirteenth International Conference on Automated Plagrand
Scheduling (ICAPS)Trento, Italy, 2003), E. Giunchiglia, N. Muscettola, and®
Nau, Eds., AAAI Press, pp. 143-152. (Cited on pagé 47.)

172 REFERENCES

[129] MCDERMOTT & THE AIPS1998 RANNING COMPETITION COMMITTEE., D.
PDDL: the planning domain definition language. Tech. reyajlable at: .:www.
cs.yale.edu/homes/dvm ,1998. (Cited on pages| 3 and 14.)

[130] MEULEAU, N., BENAZERA, E., BRAFMAN, R. I., HANSEN, E. A., AND
MAUSAM, M. A heuristic search approach to planning with continu@s®urces
in stochastic domainsJournal of Artificial Intelligence Research (JAIR) 8%an-
uary 2009), 27-59. (Cited on page_118.)

[131] MEZZANZANICA, M., BOSELLI, R., CESARINI, M., AND MERCORIQ, F. Data
quality through model checking techniques. DA (2011), J. Gama, E. Bradley,
and J. Hollmén, Eds., vol. 7014 akcture Notes in Computer Scien&pringer,
pp. 270-281. (Cited on pade]98.)

[132] MITCHELL, J. C., MTCHELL, M., AND STERN, U. Automated analysis of cryp-
tographic protocols using murphi. BP '97: Proceedings of the 1997 IEEE Sym-
posium on Security and PrivagyVashington, DC, USA, 1997), IEEE Computer
Society, p. 141. (Cited on page]21.)

[133] MITCHELL, J. C., $IMATIKOV, V., AND STERN, U. Finite-state analysis of
SSL 3.0. InSeventh USENIX Security SymposildS8ENIX, San Antonio, 1998,
pp. 201-216. (Cited on pade]21.)

[134] MOLINEAUX, M., KLENK, M., AND AHA, D. W. Planning in dynamic envi-
ronments: Extending HTNs with nonlinear continuous effedn Twenty-Fourth
AAAI Conference on Atrtificial Intelligence (AAABtlanta, Georgia, USA, 2010),
M. Fox and D. Poole, Eds., AAAI Press, pp. 1115-1120. (Citegage[4B.)

[135] MULLER, H., AND FREYTAG, J.-C. Problems, Methods and Challenges in Com-
prehensive Data Cleansing. Technical Report HUB-IB-164mHoldt-Universitat
zu Berlin, Institut fir Informatik, 2003. (Cited on pagelp8

[136] MURPHI ToOLS. http://lwww.cs.utah.edu/formal_verification/
software/murphi/ . (Cited on pagé_21.)

[137] MURPHI WEB PAGE. hitp://sprout.stanford.edu/dill/murphi.html ,
2004. (Cited on pages 21 and 53.)

[138] NowATzYK, A., AYBAY, G., BROWNE, M. C., KELLY, E. J., ARKIN, M.,
RADKE, B., AND VISHIN, S. The s3.mp scalable shared memory multiproces-
sor. InICPP (1)(1995), pp. 1-10. (Cited on page]21.)

[139] NuSMV Web Page:http://nusmv.irst.itc.it/ , 2004. (Cited on page§] 2
and32.)

[140] PapPA, M., TAI, H., AND SHENOI, S. Cell mapping for controller design and
evaluation.IEEE Control Systems 12 (1997), 52-65. (Cited on pade140.)

www.cs.yale.edu/homes/dvm
www.cs.yale.edu/homes/dvm
http://www.cs.utah.edu/formal_verification/software/murphi/
http://www.cs.utah.edu/formal_verification/software/murphi/
http://sprout.stanford.edu/dill/murphi.html
http://nusmv.irst.itc.it/

REFERENCES 173

[141] PaPA, M., WOOD, J., AND SHENOI, S. Evaluating controller robustness using
cell mapping. Fuzzy Sets and Systems ,121(2001), 3—12. (Cited on pagés]40
and146.)

[142] PINTO, J., DLY, M., AND MORO, L. Planning and scheduling models for refinery
operations. Computers & Chemical Engineering 28-10 (2000), 2259 — 2276.
(Cited on pagéd_36.)

[143] PSTORE, M., AND VARDI, M. Y. The planning spectrum - one, two, three, infin-
ity. In Proceedings of the 18th Annual IEEE Symposium on Logic ingDioen Sci-
ence(Washington, DC, USA, 2003), LICS '03, IEEE Computer Sogipp. 234—.
(Cited on page$13 and 1119.)

[144] PROMELA Web Page: http://spinroot.com/spin/Man/promela.html
(Cited on pagd_19.)

[145] REDDY, S. VY., IATAURO, M. J., KURKLU, E., BoycEk, M. E., RRANK, J. D.,
AND JONSSON A. K. Planning and monitoring solar array operations on the
ISS. InEighteenth International Conference on Automated Plagaind Schedul-
ing (ICAPS), Scheduling and Planning Applications Works{8PARK)Sydney,
Australia, 2008). (Cited on pagés 3 dnd 47.)

[146] REDMAN, T. C. The impact of poor data quality on the typical entesgrCom-
mun. ACM 41(February 1998), 79-82. (Cited on pag€e 98.)

[147] SAHINIDIS, N., AND GROSSMANN, I. MINLP model for cyclic multiproduct
scheduling on continuous parallel lineSomputers & Chemical Engineering 15
2 (1991), 85 — 103. (Cited on page]36.)

[148] SCANNAPIECO, M., MISSIER, P., AND BATINI, C. Data Quality at a Glance.
Datenbank-Spektrum 32005), 6-14. (Cited on pade 198.)

[149] ScHMmID, U. Inductive Synthesis of Functional Programs, UniversalrRiag,
Folding of Finite Programs, and Schema Abstraction by Agalal Reasoning
vol. 2654 of Lecture Notes in Computer ScienceSpringer, 2003. (Cited on
page[46.)

[150] ScHoPPERS M. Universal plans of reactive robots in unpredictableiemments.
In Proc. IJCAI 1987(1987). (Cited on pages] 2,146,151 and1119.)

[151] ScCHUSTER H. G. Deterministic Chaos: An Introduction Weinheim Physik,
1988. (Cited on page_#47.)

[152] SHIN, J.-A., AND Davis, E. Processes and continuous change in a SAT-based
planner.Artificial Intelligence 1661-2 (2005), 194-253. (Cited on pagel 48.)

[153] SMITH, S.,AND COMER, D. An algorithm for automated fuzzy logic controller
tuning. InFuzzy Systems, 1992., IEEE International Conferencérar 1992),
pp. 615 -622. (Cited on pade_146.)

http://spinroot.com/spin/Man/promela.html

174 REFERENCES

[154] SMV Web Page:http://www-2.cs.cmu.edu/ ~modelcheck/smv.html , 2004.
(Cited on pagd_31.)

[155] SONTAG, E. D. Interconnected automata and linear systems: A thieaf&rame-
work in discrete-time. Ifdybrid System§1995), pp. 436-448. (Cited on pagel 47.)

[156] SPIN Web Pagehttp://spinroot.com , 2004. (Cited on pagels 119 and 22.)

[157] STERN, U., AND DiLL, D. L. Automatic verification of the SCI cache coherence
protocol. InCorrect Hardware Design and Verification Methods: IFIP W@&.0
Advanced Research Working Conference Proceedit@85). (Cited on page _21.)

[158] STERN, U., AND DiLL, D. L. Improved probabilistic verification by hash com-
paction. INCHARME '95: Proceedings of the IFIP WG 10.5 Advanced Researc
Working Conference on Correct Hardware Design and VeriiocaMethodgLon-
don, UK, 1995), Springer-Verlag, pp. 206—224. (Cited ongzd85% and 60.)

[159] STONE, H. W. Mars Pathfinder microrover: A low-cost, low-power speratft.
In Proceedings of the 1996 AIAA Forum on Advanced DevelopnierSpace
Roboticg(1996). (Cited on pages 172 aind 75.)

[160] STRONG, D. M., LEE, Y. W., AND WANG, R. Y. Data quality in contextCom-
mun. ACM 4QMay 1997), 103-110. (Cited on page] 98.)

[161] T. HENZINGER. The theory of hybrid automata. Froceedings of the 11th Annual
Symposium on Logic in Computer Sciet®96), IEEE Computer Society Press,
pp. 278-292. (Cited on pade]10.)

[162] TATE, E.,AND BoOYD, S. Finding ultimate limits of performance for hybrid elec-
tric vehicles. InProceedings of Society of Automotive Engineers 2000 Future
Transportation Technology Conferen@®00). (Cited on pagé_¥3.)

[163] THE C++ STANDARDS COMMITTEE LIBRARY WORKING GROUP. BOOST li-
brary, http://www.boost.org , 2011. (Cited on page_1D7.)

[164] VAN DEN HEEVER, S. A.,AND GROSSMANN, |. E. A strategy for the integration
of production planning and reactive scheduling in the o#tion of a hydrogen
supply network.Computers & Chemical Engineering 2¥2 (2003), 1813 — 1839.
(Cited on pagd_36.)

[165] VARDI, M. Y. Automata Theory for Database TheoreticiansTheoretical Stud-
ies in Computer Sciencdcademic Press Professional, Inc., 1992, pp. 153-180.
(Cited on pagd_99.)

[166] VERIMAG. ESPRIT-LTR project 26270 (verification of hybrid systenigp://
www-verimag.imag.fr’'VHS/ , 2000. (Cited on page_86.)

[167] WASHINGTON, R., GOLDEN, K., BRESINA, J., SMTH, D. E., ANDERSON
C., AND SMITH, T. Autonomous rovers for Mars exploration. Rroc. IEEE
Aerospace Conf1999). (Cited on pagé _72.)

http://www-2.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com
http://www.boost.org
http://www-verimag.imag.fr/VHS/
http://www-verimag.imag.fr/VHS/

REFERENCES 175

[168] WILSON, E., KARR, C., AND BENNETT, J. An adaptive, intelligent control sys-
tem for slag foamingApplied Intelligence 2(2004), 165-177. (Cited on pagel 47.)

[169] Yokol, K., KANEHIRO, F., KANEKO, K., FUJIWARA, K., KAJITA, S., AND
HIRUKAWA , H. Experimental study of biped locomotion of humanoid rotwq-
1s. InExperimental Robotics VIIvol. 5 of Springer Tracts in Advanced Robotics
Springer, 2003, pp. 75-84. (Cited on pdge]146.)

[170] YOON, S. W., FERN, A., AND GIVAN, R. Inductive policy selection for first-order
MDPs. InUAI (2002), pp. 568-576. (Cited on page 1118.)

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Model Checking Techniques
	1.2 Explicit Model Checking in Deterministic Systems
	1.3 Explicit Model Checking in Non-Deterministic Systems
	1.4 Thesis Structure

	I Theoretical Basis
	2 System Modelling
	2.1 Hybrid Systems
	2.1.1 Discrete Time Hybrid Systems

	2.2 Finite State Systems
	2.3 Non-Deterministic Finite State Systems
	2.4 PDDL/PDDL+

	3 Explicit Model Checking
	3.1 Model Checking on Finite State Systems
	3.2 The SPIN Model Checker
	3.3 The Murphi Verifier
	3.3.1 The Murphi Description Language
	3.3.2 The Murphi Verification Algorithm
	3.3.3 A Toy Example

	3.4 The CMurphi Verifier

	4 Symbolic Model Checking
	4.1 CTL and LTL
	4.2 Symbolic State Representation
	4.3 BDDs: Binary Decision Diagrams
	4.3.1 OBDD: The BDDs Variables Ordering

	4.4 The NuSMV Verifier
	4.5 The HyTech Verifier

	5 Related Areas
	5.1 MINLP: Mixed Integer NonLinear Programming
	5.2 Dynamic Programming
	5.3 Cell Mapping

	II Explicit Model Checking for the Analysis of Deterministic Systems
	6 Model Checking based control of Deterministic Systems
	6.1 Introduction
	6.1.1 Related Work

	6.2 The Universal Planning Problem
	6.3 Planning as Model Checking
	6.4 The Model Checking based Universal Planning Algorithm
	6.4.1 The BuildGraph Procedure
	6.4.2 The UplanGeneration Procedure

	6.5 The UPMurphi Universal Planner

	7 V-UPMurphi: The Disk-based Algorithm
	7.1 Contribution
	7.2 The Disk Analysis Algorithm
	7.2.1 Disk Data Structures.
	7.2.2 Model Analysis.
	7.2.3 Transition Graph Generation.
	7.2.4 Optimal Paths Calculation.
	7.2.5 Plan Generation.

	8 Planning and Control Case Studies
	8.1 The Nonlinear Generator Domain
	8.2 The Cooling System Domain
	8.3 The Engine Control of an Autonomous Planetary Lander
	8.3.1 Rover Specification
	8.3.2 Rover Modelling
	8.3.3 UPMurphi Model
	8.3.4 Planning

	8.4 The Activity Planning for a Planetary Lander
	8.4.1 Domain Specification
	8.4.2 Universal Planning

	8.5 The Batch Chemical Plant
	8.5.1 Domain Specification
	8.5.2 System Modelling
	8.5.3 PDDL+ Model
	8.5.4 Universal Planning

	9 Database Data Quality Analysis via Model Checking
	9.1 Motivation and Contribution
	9.2 Introduction and Related Work
	9.3 Finite State Events Database
	9.4 Robust Data Quality Analysis
	9.5 An Industrial Application: The Worker Career Administrative Archive
	9.5.1 Domain Description
	9.5.2 Career (simplified) Model
	9.5.3 Graph Representation
	9.5.4 The CMurphi Model
	9.5.5 Robust Data Analysis: Experimental Results

	III Explicit Model Checking for the Analysis of Non-deterministic Systems
	10 Strong Planning for Non-Deterministic Domains
	10.1 Introduction and Related Work
	10.2 The MBP Strong Planning Procedure
	10.3 Working Example

	11 Strong Planning through Explicit Model Checking
	11.1 Introduction and Contribution
	11.2 Related Work
	11.3 Cost-Optimal Strong Plan
	11.4 An Example of Cost-Optimal Strong Planning Problem
	11.5 The Cost-Optimal Strong Plan Algorithm
	11.5.1 The CandidateExtension routine
	11.5.2 The PlanExtension routine
	11.5.3 The CostOptimalStrongPlan routine

	11.6 Time Complexity of the Algorithm
	11.7 Correctness and Completeness of the Algorithm
	11.8 SUPMurphi: The Strong Algorithm Implementation into V-UPMurphi

	12 Strong Planning Case Studies
	12.1 The Inverted Pendulum on a Cart
	12.1.1 System Modelling
	12.1.2 Strong Universal Plan

	12.2 The Building Lifting System
	12.2.1 The Lifting Process
	12.2.2 System Modelling
	12.2.3 System Analysis
	12.2.4 Strong Universal Plan
	12.2.5 Safest Universal Plan
	12.2.6 Decision Support System

	13 Conclusions
	13.1 Future Works

	References

