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ABSTRACT

In the last two decades, the use of intelligent planning algorithms, complex controllers,
and automated verification processes is growing apace, having a great impact in many in-
dustrial fields, as robotics, manufacturing processes, andembedded systems, which now
are present in an increasing number of everyday products andappliances. Moreover, many
processes take place in an environment having variable and unpredictable influences on
the system dynamics, making the problem of dealing with these non-deterministicbe-
haviours a very significant concern. As a result, a growing synergy between Control and
AI Planning communities has been established, with the aim to develop algorithms and
tools able to cope with such systems. In particular, it is interesting to evaluaterobust-
ness, verify thecorrectnessand computeplansto execute activities. To this aim,formal
methods(and in particularmodel checking) are well-suited to deal with these issues.

For several years, both control and planning problems have been addressed only through
symbolicmodel checking, which has been successfully applied to a wide class of systems.
Nevertheless, there are still some open issues in dealing with Discrete Time Hybrid Sys-
tems (DTHS), whose state description involves both continuous and discrete variables, as
well as systems with a complex nonlinear dynamics, for whichsymbolic approaches are
hard to apply. To this regard, we focus on the use ofexplicit model checking, which is
based on the explicit enumeration of the system states, to deal with control and planning
problems in both deterministic and non-deterministic domains.

Nevertheless, the explicit approach is strongly affected by the so calledstate explosion
problem. In order to mitigate this problem, a first contribution is the developing of a
disk-based algorithm for the UPMurphi tool: a universal planner for continuous domains
built on top of the Murphi model checker. We exploit the use ofdisk-based approach to
analyse and control systems having a huge state space, showing a number of benchmarks
and real world planning and control case studies. Moreover,we extend the use model
checking todatabase data qualityproblems, using formal methods for the verification
of data consistencydefined over a set of data items, and evaluating the results ona real
application of a Public Administration database provided by the C.R.I.S.P. research center.

Finally, we tackle withnon-deterministic systemsin which an action may have different
outcomes, unpredictable at planning time, addressing the problem to synthesise a plan
able to reach a goal in spite of the non-determinism, i.e.,strongplan. Many approaches
have been applied in literature, mainly based onsymbolicmodel checking. As a novel
contribution, we present an algorithm able to synthesise strong plans (if any) withmini-
mum costwith respect to a given cost function (that is minimising thenon-deterministic
worst-case execution), analysing its complexity, correctness and completeness. Finally,
we describe the implementation of the algorithm into UPMurphi and we test it on two
continuous non-deterministic case studies.
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CHAPTER1

INTRODUCTION

In the recent years, the magnitude of Information and Communication Technology (ICT)
systems has grown apace, making these systems more and more complex with respect to
their functionalities and purposes. Indeed, a great numberof everyday products are the
result of research in fields as robotics, manufacturing processes, communication technol-
ogy, and embedded systems, which make a large use of intelligent planning algorithms as
well as complex controllers and automated verification processes. Moreover, many sys-
tems present a non-deterministic behaviour, mostly due to unpredictable environmental
conditions, making the problem of dealing with such domainsa challenging task.

To this regard, a common effort between Control and AI Planning communities is in exis-
tence towards the developing of algorithms and tools able toanalyseandcontrolsystems
dynamics, focusing on the evaluation of theirrobustness, verification ofcorrectnessand
automatic synthesis ofplansto execute activities.

To cope with this task, one can performformal verificationas well asautomatically
generatecorrect reactive programs directly from the plant specification. To this aim,
formal methods(and in particularmodel checking) are well-suited to deal with both issues.

1.1 MODEL CHECKING TECHNIQUES

Much time and efforts have been spent to develop techniques to support the software
and hardware verification. To this regard, formal methods widely use mathematics for
modelling and analysing of ICT systems, with the aim to establish, with mathematical
rigor, the correctness of a suitably modelled system. It is worth noting that, any system
verification which uses a model-based technique is only as good as the model of the
system.

Roughly speaking, Model Checking [39, 108, 30, 86, 93, 10] (first introduced in [39]) is a
brute-force hardware/software verification technique that explores the system behaviour
(by checking all its possible moves) looking for an inconsistency with respect to the given
semantics (i.e., anerror). If the model checker (which is the software that implements a

1



2 Chapter 1. Introduction

model checking technique) does not find any error, then the model of the system meets
the designers requirements.

In other words, a model checker performs an exhaustive search in the system state-space
looking for an error. If an error exists then the model checker returns theerror pathwhich
leads the system from the initial configuration to the error one, providinghowthe system
has reached the error.

In the last years, many model checkers have been developed (see e.g., SPIN [94], UP-
PAAL [118], NuSMV [139]). In particular, we can mainly distinguish between two kinds
of model checking paradigms:symbolic(see, e.g., [8, 30]) andexplicit (see, e.g. [68, 69]).
The main difference between them is in the state space representation: the former uses
a symbolic (usually compressed) representation (based on OBDDs, see Section 4.3.1 for
details) which is successfully applied on discrete systems, whilst the latter works well on
Discrete Time Hybrid Systems (DTHS), whose state description involves both continuous
and discrete variables, also having a nonlinear dynamics. Although this approach is being
successfully applied to a wide class of systems, there are still some open issues in dealing
with systems having a complex nonlinear dynamics. Indeed, for this class of systems,
current methodologies based on symbolic model checking as well as on dynamic pro-
gramming are hard to apply. To this end, we focus on the use ofexplicit model checking,
which is based on the explicit enumeration of the system states, to deal with both control
and planning problems.

1.2 EXPLICIT MODEL CHECKING IN DETERMINISTIC

SYSTEMS

The first part of the Thesis is devoted to theplanning, controlandanalysisof deterministic
systemsvia explicit model checking techniques, by focusing on systems which have a
complex (also nonlinear) dynamics.

Typically planningconcerns the problem of generating a sequence of actions, inorder
to move the system from a specified initial state to a desired goal state. The generation
(synthesis) of a plan is generally performed at run-time on request. Differently, auniversal
plan [150] (or controller) is computed off-line, by exploring the system dynamics and
synthesising a planfor eachsystem state reachable from the initial ones. It is worth
noting that, in some contexts, the meaning of universal planis related to non-determinism
in refer to the uncertainty about the initial states of the system, not about its dynamics,
which could be deterministic. Nevertheless, a universal planner can be seen as a controller
which summarises the commands (actions) to send to the plantin order to reach the goal,
avoiding to spend time in the synthesis of real-time solutions. Indeed, many systems have
low computational resources or require a small reactive time to perform actions. In these
settings, the synthesis of auniversal plancan represent a well-suited choice. Similarly
to the model checking approach, the synthesis of plans requires toexplorethe system
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dynamics and toevaluatewhen the goal condition is reached. One can exploit these
similarities between planning and model checking approaches, using a model checker
like a planner by considering the goal condition as anerror condition for the system. As
a result, theerror trace (if any) given by the model checker represents aplan for the
planning problem.

To this regard, despite the idea to perform planning via model checking is not new [36,
82, 83, 143, 45], we propose to use the explicit model checking approach which works
well on Discrete Time Hybrid Systems with a very complex dynamics (e.g., nonlinear).
Indeed, in the literature, a growing number of motivating applications shows the impor-
tance of dealing with mixed discrete continuous domains [9,90, 16, 145] as well as to
define languages to describe them [129, 76, 80]. Hence, many approaches have been used
to cope with such systems (e.g., Dynamic Programming [20], Flow Tubes [119, 122],
MINLP [84]), also based on Symbolic Model Checking [65, 66].

However, if by one side the explicit approach is promising inverification of hybrid sys-
tems, on the other side it is strongly affected by the so called state explosionproblem.
In order to mitigate this problem, a first contribution of this thesis is the developing of a
disk-based algorithm for the UPMurphi tool: a universal planner for continuous domains
built on top of the Murphi model checker. We exploit the use ofdisk-based approach,
that makes it able to analyse and control systems having a huge state space, by using the
disk during the synthesis process. Moreover, this improvement allows one topausethe
synthesis process by storing the expanded graph of the dynamics on disk, andresuming
the verification later, also on other machines. Then, we apply the disk-based approach to
a number of benchmarks and real world planning and control case studies.
Furthermore, we also apply model checking to another class of problems, namely the
database data qualityproblems. Data quality is a general concept and it can be char-
acterised by many dimensions (e.g.,accuracy, consistency, accessibility) [13]. In our
context, we focus onconsistency, a dimension which can be modelled and verified using
formal methods. In particular, we propose a methodology which uses formal methods by
looking for the violation of semantic rules (i.e.,inconsistencies) defined over a set of data
items. Then, as a first application, we evaluate the benefits given by our approach on a
real industrial data quality case study of a Public Administration database, provided by
the C.R.I.S.P. research center [43].

1.3 EXPLICIT MODEL CHECKING IN NON-
DETERMINISTIC SYSTEMS

If in a deterministic system a plan reaches a goal in all its executions, in a non-
deterministic one no guarantees are given about the influence that non-determinism has on
plans executions. Roughly speaking, a non-deterministic system represents a particular
form of uncertainty in which system’s action may have different outcomes, unpredictable
at planning time. Then, given an action, it is impossible forthe planner to know a priori
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which the outcome will be. The concept ofstrongplan fills this gap by ensuring that a
strong plan always reaches a goal regardless of the system non-determinism. For the sake
of clarity, it is worth noting that strong plan and universalplan in a non-deterministic con-
text are closely realted since both approaches aim to find a path to a goal starting from any
state reachable from the initial ones. Furthermore, systems may have or not probabilities
associated to the actions outcomes. We focus on systems in which no probabilities are
given.

Many approaches have been applied to synthesise strong plans, mainly based onsymbolic
model checking [36, 115, 112, 111, 45] also using heuristicsto prune the state space [78,
125, 106]. As a novel contribution, we present an algorithm able to synthesise strong
plans withminimum costwith respect to a given cost function. The algorithm looks for a
strong plan (if any) minimising the cost of the non-deterministic worst-case execution. We
analyse the algorithm’s complexity, proving its correctness and completeness. Finally, we
describe the implementation of the cost-optimal strong planning algorithm into UPMurphi
and we test it on two continuous non-deterministic case studies.

1.4 THESISSTRUCTURE

The Thesis is composed by three main Parts, organized as follows:

Part I introduces the theoretical basis, looking at explicit and symbolic model checking
approaches in Chapters 3 and 4 respectively, closely look tothe Murphi model
checker, since all our implementations are derived from it.Then, Chapter 5 is
devoted to other methodologies related to planning and model checking.

Part II discusses the use of explicit model checking to deal withdeterministic systems.
Chapter 6 introduces the UPMurphi planner and Chapter 7 presents the improve-
ments of UPMurphi: namely the V-UPMurphi tool, whose application to some
real-world case study is provided in Chapter 8. Finally, Chapter 9 shows how for-
mal methods, and in particular model checking, can be applied to the problem of
data quality analysison dirty database, providing a first experimental results ona
real case scenario.

Part III is devoted to the analysis of systems having a non-deterministic behaviour. In
particular, Chapter 10 discusses the problem of synthesis of strong plans whilst
Chapter 11 proposes a novel algorithm to synthesiseoptimalstrong plans for non-
deterministic systems. Finally, Chapter 12 figures out somecase studies on which
we applied the algorithm.

Finally, Chapter 13 contains concluding remarks and discussions about the future direc-
tions.
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Theoretical Basis
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In the first part, we introduce the notation and formal modelswe will use during the The-
sis. In Chapter 2 we give an introduction about the formalisms used to model a system.
Then, we closely look at model checking techniques in Chapters 3 and 4, discussing the
explicit and symbolic approaches respectively, with a particular attention to the Murphi
model checker, since all our implementations are derived from it.
Finally, Chapter 5 is devoted to other methodologies related to planning and model check-
ing.





CHAPTER2

SYSTEM MODELLING

In this section introduce the basis on formalisms used to describe the behaviour of a
system (i.e., amodel). In Section 2.1 we introduce hybrid automata which are usedto
model mixed-discrete continuous systems. Then in Sections2.2 and 2.3 we focus on
formalisms that allow one to describe systems having a finitenumber of states in both
deterministic and non-deterministic cases. Finally, in Section 2.4 we briefly describe the
language used to model planning domains.

2.1 HYBRID SYSTEMS

A dynamic system describes the evolution of eachstateof the system with respect to the
time. Hence, in order to better introduce the concept of hydrid systems, we can charac-
terise a dynamic system considering (1) itsstateand (2) thetime. More precisely, we can
distinguish between the following systems:

Continuous. When alln variables of the state belong toRn.

Discrete. When allnvariables of the state belong to a finite set of valuesQ= {q1, . . . ,qk}.

Hybrid. Let n= n1+n2 be all the variables of the state, then the firstn1 variables belong
toRn1 while the remainingn2 variables take values inQ= {q1, . . . ,qk}.

We now closely look at the evolution of the state, i.e., how the state variables change
along the time.

Continuous Time. When the time is a subset ofR, then the state evolution is described
by an Ordinary Differential Equation.

Discrete Time. When the time is a subset ofZ, then the state evolution is described by a
Finite Difference Equation.

Finally, the characteristic of the dynamics can further distinguish betweenlinear and
nonlinear systems.

9
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2.1.1 DISCRETETIME HYBRID SYSTEMS

Generally speaking, a Hydrid System [161] is a formal model for mixed discrete-
continuous systems. More precisely, a hybrid system is a kind of dynamical systemin
which the dynamics allows the presence of both continuous and discrete variables.

In other words, hybrid systems are ensembles of interactingdiscreteandcontinuoussys-
tems where the former operates on a discrete state and performs discontinuous state
changes at discrete time points. Differently, the latter operates on a continuous state
which evolves continuously.

To give an example, a car engine having a fuel injection (continuous) regulated by a micro-
processor (discrete) represents a hybrid system. This simple example should be adequate
to guess that, in the real life, many applications are hybridsystems. More formally, we
give the following definition.

Definition 1. A Discrete Time Hybrid System(DTHS) is a tupleH = (X,Q, U, W, I, f ,
p) where:

• X = ×n
i=1[ai,bi ], with [ai,bi] a bounded interval of the realsR.

• Q = ×k
i=1[ci,di ], with [ci,di ] a finite subset of the integersZ.

• U = ×m
i=1[αi,βi], with [αi ,βi] a bounded interval of the realsR.

• W =×r
i=1[γi,µi ], with [γi,µi ] a finite subset of the integersZ.

• I is a subset of X×Q.

• f is a function from X×Q×U ×W to X s.t. for each q∈ Q, w∈W, λxu
[ f (x,q,u,w)] is a continuous function of(x,u) (whereλ is the abstraction oper-
ator).

• p is a function from X×Q×U ×W to Q.

The state space ofH is S= X×Q. A statefor H is a pairs= (x, q) in S, wherex∈ X and
q∈Q.

A run for the DTHS H is a (finite or infinite) sequence of states and actions
(x(0),q(0),u(0),w(0)), . . . ,(x(t),q(t),u(t),w(t)), . . . s.t. we have:

• (x(0),q(0))∈ I

• x(t +1) = f (x(t),q(t),u(t),w(t)) for each timet.

• q(t+1) = p(x(t),q(t),u(t),w(t)) for each timet.
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If π = (x(0),q(0),u(0),w(0)), (x(1),q(1),u(1),w(1)), . . . is a run ofH we denote with
π(t) the t-th state element ofπ. That is π(t) = (x(t),q(t)). Furthermore we write
ϕ(x(t),q(t),u(t),w(t)) for ( f (x(t),q(t),u(t)), p(x(t),q(t),w(t))).

To convey to the reader the motivations behind our formalism, we make the following
observations.

First we observe thatx∈ X is the vector of thecontinuous components of the state, q∈Q
is the vector of thediscrete components of the state, u∈U is the vector of thecontinuous
components of the control actions, andw∈W is the vector of thediscrete components of
the control actions. I is the set ofinitial states.

Moreover, the functionf assigns a regionXi in the continuous state space Xand a dy-
namics which acts on the regionXi when the discrete state isqi . Roughly speaking, to
every discrete state corresponds amodeof the system.

The following example should help to clarify the matter.

Example (Water Tank) The two tank system, shown in Figure 2.1, consists of two tanks
containing water. Both tanks are leaking at a constant rate.Water is added at a constant
rate to the system through a hose, which at any point in time isdedicated to either one tank
or the other. It is assumed that the hose can switch between the tanks instantaneously.

Figure 2.1: The water tank system

For i ∈ {1,2}, let xi denote the volume of water in Tanki andvi > 0 denote the constant
flow of water out of Tanki. Let vin denote the constant flow of water into the system.
The objective is to keep the water volumes abover1 andr2, respectively, assuming that
the initial water volumes satisfy this constraint. A controller switches the inflow to Tank
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1 wheneverx1≤ r1 and to Tank 2 wheneverx2≤ r2.

It is straightforward to define a discrete time hybrid systemto describe this process:

• X = [0,MAXx1]× [0,MAXx2];

• Q= {q1,q2};

• U = /0;

• W = [1,2];

• I = Q×{x∈ X|x1≥ r1∧x2≥ r2};

• f (x,q,u,w) =

{

(x1+vin−v1,x2−v2) if w= 1

(x1−v1,x2+vin−v2) if w= 2

• p(x,q,u,w) =

{

q1 if w= 1

q2 if w= 2

2.2 FINITE STATE SYSTEMS

A Finite State System is a dynamic system which represents anabstract and discrete com-
putational model often used to reproduce (and verify, as in the case of model checking)
the behaviour of a given system.

Definition 2 (Finite State Systems). A Finite State System(FSS) S is a 4-tuple (S,I,A,F),
where: S is a finite set ofstates, I ⊆ S is a finite set ofinitial states, A is a finite set of
actionsand F : S×A→ S is thetransition function.

Definition 3 (Transition Function). LetS be a FSS, s,s′ ∈ S and a∈ A, then there exists a
transition function F(s,a) = s′ iff the state s can reach state s′ via action a.

Moreover, we denote withF(s,a) the successor state ofs through actiona, i.e. the state
s′ s.t.F(s,a,s′) = 1.

Definition 4 (Trajectory). A trajectory in the FSSS = (S, I ,A,F) is a sequenceπ =
s0a0s1a1s2a2 . . .an−1sn where,∀i = 0, . . . ,n−1, si ∈ S is a state, ai ∈ A is an action and
F(si,ai ,si+1) = 1. If π is a trajectory, we writeπs(k) (resp. πa(k)) to denote the state sk

(resp. the action ak). Finally, we denote with|π| the length ofπ, given by the number of
actions.

Definition 5 (Reachable States). Let sI ∈ I be an initial state of the FSSS = (S, I ,A,F).
Then, we say that a state s′ is reachablefrom sI iff there exists a trajectoryπ in S such
that πs(0) = sI andπs(k) = s′ for some k≥ 0. We denote withReach(s)the set of states
reachable from s. Analogously, we denote withReach−1(s) the set of states from which it
is possible to reach the state s, that isReach−1(s) = {s′ ∈ S|s∈ Reach(s′)}.
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By abuse of notation, we denote asReach(S)the set of reachable states for the systemS .

In order to perform the verification as well as the analysis task, the system should have
a finite number of states. It is worth noting that, although this restriction that is quite
theoretically relevant, its impact in the practice is limited since many systems can be
modelled having a finite number of states.

Note that, if the system is a DTHS, given a suitable discretisation for sampling time and
variables, we can easily obtain a Finite State Systems from aDTHS.

2.3 NON-DETERMINISTIC FINITE STATE SYSTEMS

Definition 6 (Non-Deterministic Finite State System). A Non-Deterministic Finite State
System(NDFSS) S is a 4-tuple (S,s0,A ,F), where: S is a finite set ofstates, s0 ∈ S is
the initial state, A is a finite set ofactionsand F : S×A → 2S is thenon-deterministic
transition function, that is F(s,a) returns the set of states that can be reached from state
s via action a.

It is worth noting that we are restricting our attention to NDFSS having a single initial
states0 only for the sake of simplicity. Indeed, if we give a NDFSSS ′ with a set of initial
statesI ⊆ S, we may simply turn it into an equivalent NDFSS by adding a dummy initial
state connected to all the states inI by a deterministic transition with fixed cost.

The non-deterministic transition function implicitly defines a set of transitions between
states which, in turn, give raise to a set of trajectories as specified in the following defini-
tions.

Definition 7 (Non-Deterministic Transition). LetS = {S,s0,A ,F} be anNDFSS. A non-
deterministic transitionτ is a triple of the form(s,a,F(s,a)) where s∈ S and a∈ A . A
deterministic transition(or simply atransition) τ is a triple of the form(s,a,s′) where
s,s′ ∈ S, a∈ A and s′ ∈ F(s,a). We say thatτ = (s,a,s′) is in (s,a,F(s,a)) if s′ ∈ F(s,a).
We denote withSτ the set of all the transitions inS .

Definition 8 (Non-Deterministic Trajectory). A trajectoryπ from a state s to a state s′ is
a sequence of transitionsτ0, . . . ,τn such that:

• τ0 has the form(s,a,s1) for some s1 and some a,

• τn has the form(sn,a′,s′) for some sn and some a′,

• ∀i = 0, . . . ,n−1, if τi = (si,ai ,si+1) for some si,ai ,si+1, thenτi+1= (si+1,ai+1,si+2)
for some si+2,ai+1.

We denote with|π| the length ofπ, given by the number of transitions in the trajectory.
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As usual we stipulate thatthe empty set of transitionsis a trajectory from any state to
itself.

Definition 9 (Extrated Transition). LetS = {S,s0,A ,F} be anNDFSSandΠ be a set of
non-deterministic transitions. We say that a transitionτ = (s,a,s′) is extracted fromΠ
if (s,a,F(s,a)) ∈ Π and (s,a,s′) is in (s,a,F(s,a)). Similarly, we say that a trajectory
π = τ0, . . . ,τn is extracted fromΠ if, ∀i = 0. . .n,τi = (si,ai ,s′i) ∈ (si,ai ,F(si,ai)) and
(si,ai ,F(si,ai)) ∈ Π. Finally, we say that a state s∈ Π if there exists a transitionτ =
(s,a,s′) extracted fromΠ.

2.4 PDDL/PDDL+

Generally speaking, given a system modelled in some formalism, aplanning problem
consists of finding a sequence of actions (i.e. aplan) which guarantees to achieve the
goal starting from a specified initial condition of the system. Hence, aplanner is a soft-
ware system able to synthesise a plan by taking as input (1) the domain description and
(2) a goal description. One of the most common planning description languages is the
PDDL [129]. The Planning Domain Definition Language (PDDL) was released in 1998,
and has since then become the standard language for the planning community as well
as for the AI International Planning Competitions [2]. The PDDL is an action-centered
language having a LISP-like syntax and inspired by the STRIPS formulation of planning
problems.

A PDDL definition consists of two parts: thedomainand theproblem. The former con-
tains the domain predicates and actions as well as types and constants, whilst the latter
describes a particular instance of the problem to solve. Thereader can find a complete
description of classical planning domains at [2].

In the last years, the planning community has developed manyexpressive extensions to
the PDDL language. In particular, the PDDL2.1 [76] extends PDDL to include numeric
expressions and durative actions (i.e., actions having effects depending on their duration).
To give an example, let us to consider a pumpp that fills a tankt at a given rate, then
continuous effect is written in the following style:

(increase (volume ?t) (* #t (refuel_rate ?p)))

where#t represents the time over which the effect has been active. However, PDDL2.1
is limited to a discrete modelling of time (i.e., the only time points that can be identified
in a plan are those associated with the start/end points of actions selected by the planner).
Hence, in order to allow the PDDL to represent mixed discrete-continuous domains, in
2001 Fox and Long introduced the PDDL+ [77], providing a formal mapping between
PDDL+ and Hybrid Automata and showing that the PDDL+ is strictly more expressive
than PDDL2.1. In synthesis, PDDL+ introduces two importantfeatures with respect to
PDDL2.1:
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Process: It is a construct able to model continuous change in the worldby modifying nu-
meric values continuously. The continuous change on a system variable is activated
by the process whenever its precondition is satisfied.

Event: An exogenous event is used to describe instantaneous changes in the world that
may occur as a consequence of change, not necessarily a direct consequence of the
actions of an executive. Differently from a process, an event is instantaneous and
may affect only discrete variables.

Note that both processes and events have effects on the system behaviour in spite of the
actions selected by the planner since they do not form part ofthe plan.

An example, as given in [77] should clarify the matter. A car that needs to cover a speci-
fied distanced in the least possible time. To change the car velocityv, we can accelerate
or decelerate so incrementing or decrementing, respectively, the current acceleration by
1m/s2. Moreover, if the velocity is greater than a given thresholdk, the wind resistance
will start to slow the vehicle. Thus, the velocity of the vehicle is governed by the two
following differential equations, according to whetherv< k or v≥ k:

dv
dt = a if v< k
dv
dt = a−0.1(v−k)2 if v≥ k

(2.1)

Finally, as a further constraint, the engine explodes if thevelocity is greater than a max-
imum thresholdE. The PDDL+ domain and problem are given in Figure 2.2. Note that
actionsaccelerate,deceleratehave an instantaneous effect (i.e., they increase/decrease the
actual acceleration) whilst concurrent processesmovingandwindResistancehave effect
on the variablev. Then,engineExplodeis an exogenous event that models the engine
explosion whenv> k.
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( define ( domain car )
(: requirements : fluents : time : negative-preconditions)
(: predicates ( running ) ( stopped ) ( engineBlown ))
(: functions (d) (v) (a) (k) (E))

(: process moving
: parameters ()
: precondition ( and ( running ))
: effect ( and ( increase (v) (* #t (a)) ) ( increase (d) (* #t (v) ) ) ) )

(: action accelerate
: parameters()
: precondition ( and ( running ) )
: effect ( and ( running ) ( increase a 1) ) )

(: action decelerate
: parameters()
: precondition ( and ( running ))
: effect ( and ( running )( decrease a 1) ) )

(: process windResis tance
: parameters ()
: precondition ( and ( running ) (>= (v) k))
: effect ( decrease (v) (* #t (* 0.1 (* (- (v) k) (- (v) k) )) ) ) )

(: event engineExplode
: parameters ()
: precondition ( and ( running ) (>= (a) 1) (>= (v) E))
: effect ( and ( not ( running )) ( engineBlown ) ( assign (a) 0) )) )

( define ( problem car )
(: domain car )
(: init ( not ( engineBlown )) ( running ) (= d 0) (= a 0) (= v 0) ) (= k 100) (= E 20 0)
(: goal and (( >= d 20) not ( engineBlown )) )
(: metric minimize ( total-t ime )) )

Figure 2.2: Files cardomain.pddl and carproblem.pddl
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EXPLICIT MODEL CHECKING

Explicit Model Checking is an automated technique that, given (1) a finite-state model of
a dynamic system and (2) a formal property, exhaustively checks whether this property
holds for each state of that model. Generally speaking, amodel checkeris a tool able to
solve a model checking problem.

The main aspect ofexplicit model checking is that each state is represented as the col-
lection of its variable values and each visited state is stored in RAM (namely in the hash
table). This quickly fills up all the available computation resources, especially the mem-
ory. This problem is often addressed as thestate space explosion(i.e., the number of
states grow exponentially with respect to the time). As for the theoretical computational
complexity, model checking is P-SPACE complete.

A schematic representation of the model checking process isdepicted in Figure 3.1. Look-
ing at the figure, we can describe the explicit model checkingprocess identifying three
different phases:

System Modelling. A representation of the system is realised by modelling its state vari-
ables and dynamics (i.e., the system’s evolution). Moreover, the system properties
which we are interested to verify are formally written. Thisphase is carried out
through the model description language of the model checkerat hand.

System Verification. This phase is therunning phasewhich depends on the approach
applied (i.e., symbolic or explicit one). The model checkerperforms an exhaustive
search in the system state-space looking for an error (i.e.,a states∈ Ssuch thats
violatesϕ). More precisely, in the explicit approach this phase worksas follows:

1. obtain the transition graph of the systemS (a transition graph specifies howS
may go from a state to another state);

2. compute thereachablestates, starting from a given set of initial states (reach-
ability analysis);

3. if no errors exist, then the property issatisfiedon the system model. Other-
wise, the model checker returns acounterexample(i.e., it provideshow the
system has reached the error) which leads the system from theinitial configu-
ration to the error one.

17
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System Analysis.In this phase, the results obtained by the model checker are analysed.
If the system model meets the property then the modeller can verify the next one
(if any). On the contrary, if the property is violated then one can analyse the coun-
terexample by means of simulation (i.e., a verification stepby step), then the model
as well as to system property is refined and the model checkingprocedure iterated.

Model Checking

Modeling

satisfied
counterexample

requirements

Formalizing

specification
property

Simulation
location
error

system model

system

violated +

Figure 3.1: Schematic representation of the Model Checkingapproach (Taken from [10]).

The main obstruction for the verification via explicit modelchecking is in the reachability
step. In fact, even if the formal description ofShas a reasonable size, the number of states
in S is exponential in the size of the description ofS.

3.1 MODEL CHECKING ON FINITE STATE SYSTEMS

In order to verifyall the possiblestates for which a system can be in, it should be required
that the system has afinite number of states. For this reason, a system is often modelled
as a FSS (according to Definition 2). Note that, whatever the system is modelled having
a finite number of states, it may have aninfinitenumber execution paths (i.e., the system
can be in a deadlock state).

For the sake of completeness, we give the definition of Model Checking Problem on FSS.

Definition 10 (Model Checking Problem on FSS). Let S = (S,s0,A,F) be an FSS. Letϕ
be a formula expressed in some formalism (i.e., the system specification). Then, amodel
checking problem(MCP in the following) is a tripleM = (S ,ϕ,T) where s0 ∈ S, and T
is the finite temporal horizon.

Then, a solution forM is a reachable trajectoryπ (plan), according to Definition 4,π =
s0a0s1a1s2a2 . . .an−1sn where: ∀i ∈ 0, . . . ,n−1, si ∈ Reach(S) and si satisfiesϕ whilst
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sn ∈ Reach(S) does not satisfyϕ. If ∀s∈ Reach(S),s satisfiesϕ then the solution is an
empty trajectory.

In the following we briefly describe the SPIN model checker, which actually represents
one of the most used explicit model checker in the context of the verification of commu-
nication protocols and distributed software systems.

However, the tools developed as part of this Thesis are basedon the CMurphi model
checker, which is in turn based on Stanford’s Murphi. Thus, in the last section of this
Chapter, we will closely look at these verifiers and their input languages.

3.2 THE SPIN MODEL CHECKER

SPIN (Simple Promela INterpreter) is an explicit model checker developed by Gerard J.
Holzmann [94, 156] in 1997 for the verification of communications protocols, concurrent
processes, witching systems, concurrent algorithms, railway signaling protocols etc. It
has since become widely used for the verification of criticalsystems and protocols, for
which it proved to be very effective, mainly in industries. SPIN uses the PROMELA
(PROcess MEta LAnguage) specification language to describeinput models, which is
translated into aC program successively compiled and executed. A PROMELA model is
afinite-statemodel, that is the state variables are always bounded variables (the bounded-
ness is a guarantee for decidability). Note that, as said above, finite state models can still
permit infinite executions. Then, the SPIN verification coreworks similarly to the Murphi
verification algorithm (i.e., performing an exhaustive search in the state space). For the
sake of brevity, we describe only the main characteristics of PROMELA language, for
which the reader can found a complete description in [144].

Processescan be modelled explicitly by describing the behaviour of each process.
Thanks to this, SPIN can automatically verify the system properties in all the possi-
ble interleaving processes execution. This feature is useful to verify asynchronous
systems and communication protocols. To this aim, there areno global clocks as
well as implied synchronisation between processes provided by PROMELA lan-
guage.

Channels allow one to model message passing between processes (in Murphi it is pos-
sible to represent channels using arrays and applying thesymmetry reductionto
verify the system). Clearly, since the system to verify is a FSS, the channels should
be bounded queues/buffers either buffered (asynchronously) or unbuffered (by syn-
chronous rendezvous handshake between processes).

Safety and Liveness.As said above, asafetyproperty states that something bad never
happens in the system. Conversely,livenessproperty states that something good
should eventually happen. Looking at the verification of such properties, the former
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is violated (and then it can be detected) in finite time whilstthe latter requires to
consider (at least some) infinite system execution to be checked. To this aim, SPIN
can verify formulae expressed through Linear Temporal Logic, which allows one to
model both safety and liveness properties, which are sufficeto express any kind of
system specification (as proved by Alpern and Schneider [5]).

In order to give an example, we show a simple PROMELA model which implements the
well-known N-Peterson mutual exclusion algorithm, in which N processes must share the
same resource without conflict, using only shared memory forcommunication between
them.

The PROMELA code of 2-Peterson algorithm is shown in Figure 3.2. The process
proctype describes the behaviour of the process. The statementassert is used by SPIN
to verify the property in each process interleaving execution. Indeed, an assertion state-
ment is always executable and has no effect on the state of thesystem when it is executed.
Generally, it is used to model safety property (i.e., the mutual exclusion property in our
example). Figure 3.3 show the verification output in which nodeadlock or assert violation
have been found.

/ * Pe te r son s solution to the mutual exclusion problem - 1981 * /

bool turn , f lag [2];
byte ncri t ; / * critical section * /
active [2] proctype user ()
{

assert ( _pid == 0 || _pid == 1) ;
again :

f lag [ _pid ] = 1; / * processes communication via shared memory * /
turn = _pid ;
( f lag [1 - _pid ] == 0 || turn == 1 - _pid ) ;
ncri t ++;
assert ( ncri t == 1) ; / * critical section * /
ncri t --;
f lag [ _pid ] = 0;

goto again
}

active proctype init() {
atomic() {

run user (1) ;
run user (2) ;

}
}

Figure 3.2: PROMELA code for theN-Petersonmutual-exclusion algorithm

Clearly, as for all the explicit model checkers, also SPIN isaffected by the state explosion
problem. To this regard, SPIN implements many state space reduction techniques to
compress the state size (e.g.,hash compaction) or the state space size (e.g., looking for
symmetries with thepartial order reduction).
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spin -a n- peterson
gcc -DMEMLIM =1024 -O2 - DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan .c ./ pan -m10000

(Spin Version 6.1.0 -- 4 May 2011)
+ Part ial Order Reduction

Full statespace search for:
never claim - (not selected )
assert ion violat ions +
cycle checks - ( disabled by -DSAFETY )
inval id end states +

State - vector 20 byte , depth reached 24 , errors : 0
40 states , stored
27 states , matched
67 transit ions (= stored + matched )

0 atomic steps
hash confl icts : 0 ( resolved )

2.539 memory usage ( Mbyte )

Figure 3.3: SPIN execution output for the PROMELA model of Figure 3.2

3.3 THE MURPHI VERIFIER

Murphi [58, 59, 60, 137] is a formal verification tool for finite-state systems developed
during the 1990’s in the Stanford University Computer Systems Laboratory. The aim of
the Murphi project was to show that formal verification toolscould have practical value.
Indeed, during the years it has been involved in the verification of many verification task,
to give a few examples:

• Verification a cache coherence protocol in Stanford’s DASHprojects [121].

• Verification of the link-level protocol and coherence protocol in Sun’s S3.mp mul-
tiprocessor [138].

• Verification of cryptographic protocols (Needham-Schroeder and TMN proto-
cols) [132].

• Verification of SSL 3.0 protocols [133].

• Verification of SCI cache coherence protocol [157].

Moreover, many other tools based on Murphi have been developed, for a list of such tools
see [136].

3.3.1 THE MURPHI DESCRIPTIONLANGUAGE

The Murphi description language [60] has been realised to bemore simple as possible,
supporting also non-deterministic behaviour. The system evolution is described through a
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set of iterated guarded commands, inspired to the UNITY modelling language. Since the
Murphi language allows one to model a finite state system, nowwe briefly focus on how
the elements of a FSS can be modelled in Murphi.

Let S = (S, I ,A,F) be a FSS according to Definition 2 and letϕ an invariant formula to be
verified onS , the model checking problem is modelled in Murphi language as follows:

Const, Type, Var. They describe the system state (i.e.s ∈ S) as a set of typed and
bounded variables.

Startstate. It allows to describe all initial statessi ∈ I of the system from which the
verification will start.

Guarded Rule. Each rule is a guarded command, consisting of anaction(i.e., ana∈ A)
and a condition that allows the system to execute the transition from the current state
s to the next ones′ (i.e., it models a single transitionF(s,a,s′)). Hence, thebody
of each rule describes the behaviour of the action. In other words, the statement
modifies the variables values.

Ruleset. It allows one to make each ruleparametricwith respect to a given variable,
that can have any value in its bounded range. It can be also used to modelnon-
determinismfor the respective action.

Invariant. It uses the first order logic to model the invariant conditionϕ which will be
satisfied in each state. In particular, we can use the booleanlogic to describesafety
formulae (i.e., something bad never happens).

3.3.2 THE MURPHI VERIFICATION ALGORITHM

It is now clear that a Murphi model is composed by astaticalpart (which models states,
invariants and actions) and abehaviouralpart, which is able to describe the system evo-
lution (state transitions). The Murphi “control structure“ performs a single infinite loop
that, starting from any initial state, repeatedly executesthree steps: (1) evaluate all the ac-
tion guards, given the current values of the global variables, (2) choose one of the action
whose guard is true and execute it, updating the variables. Then, (3) verify if the invariant
conditionϕ is satisfied in the new obtained state.

It is worth to highlight the following:

1. The Murphi state-space exploration policy expands the system dynamics (i.e., the
transition graph) through thereachability analysis, namely it visits (1) only the
states reachable from the initial ones and (2) it visits a state only once. In general,
the graph visit algorithm can be anyone, in particular Murphi allows the user to
choose between Breadth First (BF) and Depth First (DF) visits . For example, the
automatic verifier SPIN [156] uses the DF visit as default.
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2. SinceS is a FSS, the algorithm always terminates because it never visits the same
state more than once.

3. The Murphi’s data structure si composed by a Queue (Stack)when it performs a BF
(DF) visit and a Hash Table used to store visited states, crucial to recognise visited
states.

4. During the visit, if an error state which violatesϕ is found, then Murphi returns the
error trace(i.e., a path from the initial state to the error one).

For the sake of completeness, the Algorithm 1 shows the pseudocode of the BF Murphi’s
visit.

Procedure 1BFS(S ,ϕ)

1: let S ← (S, I , A, F);
2: let ϕ be an invariant condition;
3: QS a FIFO queue;
4: HT a hash table;
5: for all s∈ I do
6: if ϕ 2 s then
7: return f alse// initial state does not satisfy the invariant
8: end if
9: Enqueue(QS, s); // stores in the queue, it will be expanded during the search

10: Insert(HT, s); // storesas visited
11: while ( QS 6= /0) do
12: s← Dequeue(QS)
13: for all s′ ∈ {F(s,a) | a∈ A} do
14: if (s′ 2 ϕ) then
15: return f alse;
16: end if
17: if (s′ /∈ HT) then
18: Insert(HT, s′); // store it inHT
19: Enqueue(QS, s′); // and insert it in the queue
20: end if
21: end for
22: end while
23: end for
24: return true; // all s∈ Reach(S) satisfyϕ

3.3.3 A TOY EXAMPLE

A small toy example could be useful to clarify the matter. Consider theDiscrete Time
System(DTS) defined by equation 3.1, wherex(t) is the state value at timet andd(t)
∈ {0,1,2} is the disturbance value at timet.
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x(t +1) =

{

x(t)+d(t) if x(t)≤ 3

x(t)−d(t) otherwise
∀t, x(0) = 0. (3.1)

Figure 3.4 shows the FSS corresponding to the DTS defined by Equation 3.1. The initial
statex(0)=0 is shown with an ingoing arrow. Moreover, nodes are labelled with state
values whilst edges are labelled with action values (which represent disturbances, in our
case).

The Murphi code for the DTS in Equation 3.1 is given in Figure 3.5 where we have
examples of the syntax as well as the language constructs described before.
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Figure 3.4: FSS for the discrete time system in Equation 3.1

We ran Murphi of the model in Figure 3.5 and we obtained the results summarised in
Figure 3.6. Murphi returns anerror trace, i.e. a (loopless) path in the graph in Figure 3.4
from an initial state to a state which violates the invariantproperty. Note that, replacing
the< sign in the invariant of Figure 3.5 with≤ then the invariant property is always
satisfied since all reachable states of the DTS defined by Equation 3.1 have a value less
than or equal to 5 (see Figure 3.4).

Remark 3.3.1. In the BF Algorithm 1 only reachable states are visited and thus stored in
the hash tableT. Hence the set of reachable states depends only on thesystem dynamics.
For example, the set of reachable states for the FSS defined inFigure 3.4 is{0, . . . ,5}.
This set does not depend onstate type (the type of variable x in Figure 3.5) as long as
state type contains{0, . . . ,5}. For example if in Figure 3.5 we changestate type
declaration tostate type : 0..100 the set of reachable states is still{0, . . . ,5}.

3.4 THE CMURPHI VERIFIER

CMurphi [32] is built on top of the Murphi verifier. It provides three new kind of exten-
sions:
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/ * constant declarations * /
const

MAX_STATE_VALUE : 5;
MAX_DISTURB : 2;

/ * type declarations * /
type

/ * integers from 0 to 10 * /
state_type : 0 .. 10;
/ * integers from 0 to 2 * /
dis turbance_type : 0 .. MAX_DISTURB ;

/ * (global) variable declarations * /
var

/ * x is a variable of type state_type * /
x : state_type ;

/ * define next state function * /
function next (x : state_type ; d: d is turbance_type) : state_type ;
begin
if (x <= MAX_STATE_VALUE - MAX_DISTURB ) then
return (x+d);

else
return (x -d);

endif
end;

/ * define initial state * /
startstate " startstate "
begin

x := 0;
end

/ * nondeterministic disturbances trigger system transition s * /
ruleset d : d is turbance_type do

/ * define parametric transition rule * /
/ * here, d varies in disturbance_type, thus there are MAX_DISTURB + 1

variants of rule "time step" * /
rule " t ime step" true ==>
begin

x := next (x , d) ;
end;
end;

/ * define property to be verified * /
invariant "x is not too big "

(x < MAX_STATE_VALUE);

Figure 3.5: Murphi code for the FSS in Figure 3.4



26 Chapter 3. Explicit Model Checking

Startstate startstate f ired .
x :0
-- - - - - - - - -
Rule t ime step , d:1 f ired .
x :1
-- - - - - - - - -
Rule t ime step , d:2 f ired .
x :3
-- - - - - - - - -
Rule t ime step , d:2 f ired .
The last state of the trace ( in ful l ) is :
x :5
-- - - - - - - - -

Figure 3.6: Murphi error trace for murphi model in Figure 3.5

Cache and Disk Verification. Many systems to verify can result in a (very) big state
space (we have just told about state explosion). To this aim,CMurphi is able to use
a cacheor a disk memory during the verification to store states. More precisely,
in the Cache Mode, it uses a cache to store the visited states and can extend the
verification queue to disk (the cachecollision ratecan be monitored to stop the
exploration if the cache becomes ineffective). Similarly,when theDisk Modeis
active, the verifier uses the disk to store the visited statesand the verification queue
instead of a cache memory.

Real Number Support. Murphi built-in types are ranges of integers and enumerative
types. To ease the hybrid systems modelling activity we alsowant to be able
to handlefinite precision real numberswithin Murphi, i.e. numbers of the form
sMd0.d1 · · ·dm−1× 10sEen−1···e0 where: di and ei are decimal digits,d0 6= 0, sM,
sE ∈ {

′+′,′−′}. As usual we callsMd0.d1 · · ·dm−1 the mantissaandsEen−1 · · ·e0

theexponentof the numbersMd0.d1 · · ·dm−1×10sEen−1···e0.

To this aim, CMurphi allows the use of the typereal(m, n) for real numbers with
m digits for the mantissa andn digits for the exponent. Typereal(m, n) is finite,
its cardinality is 2×9×10m−1×2×10n = 36×10m+n−1. This extension has no
impact on Murphi verification algorithms (e.g. as that in Algorithm 1), however
makes it easier to model hybrid systems.

Note that, as from Remark 3.3.1, the huge cardinality of the typereal(m, n) does
not imply,a priori, a huge size of the set of reachable states.

The typereal(m, n) is built on long double C type. For this reason theman-
tissasizemand theexponentsizen in real(m, n) must satisfy the following con-
straints: 1≤m≤ LDBL DIG, 2≤n≤⌊log10LDBL MAX10 EXP⌋+1, whereLDBL DIG
is the maximum number of digits for the mantissa of thelong double C type and
LDBL MAX10 EXP is the maximum value of the exponent of thelong double C
type. These constants are defined in the C headerfloat.h . CMurphi also allows
to import all functions available in the Cmath library (headermath.h ). Such func-
tions can be freely used within the Murphi input language.

C/C++ External Functions. However, this is not enough to model complex behaviors.
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Indeed, the implementation of complex systems requires more advanced language
constructs to be described, such as the one provided by the C/C++ language. More-
over, system simulators written in C/C++ are often available (especially in the more
complex cases) for testing purposes, thus it is worth doing to reuse them in the ver-
ification phase.

To overcome these difficulties, and to reuse simulators, CMurphi allows the use of
externally defined C/C++ functions in the modelling language. In this way, one can
use the C/C++ language constructs to model complex dynamics. Moreover, one can
directly include (with some arrangement) in the Murphi model a simulator for the
system under analysis, since a system simulator is almost always written in C/C++.
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SYMBOLIC MODEL CHECKING

Symbolic Model Checking is characterised by the application of the model checking tech-
nique to a system having states represented in a compressed form (e.g., using BDDs).
Moreover, the symbolic approach often allows one to specifyan invariant property by
using temporal logics (e.g., CTL or LTL), which we shortly introduce in the following.

4.1 CTL AND LTL

Temporal logics are useful to describe properties that holdon an infinite execution path of
the system, i.e., the execution path contains a loop. Two kinds of temporal logics are Com-
putation Tree Logic (CTL) and Linear Temporal Logic (LTL), whose union composes the
CTL* logic. CTL and LTL differ in how they handle branching inthe computation tree.
In CTL temporal operators quantify a formulaover the pathsdeparting from a given state
(through universal (A) and existential (E) quantifiers) . In LTL operators are intended to
describe properties ofall possible computation paths (i.e., all path are universal quanti-
fied). The syntax of CTL and LTL formulae obeys to the following rules:

• any atomic proposition is a CTL (LTL) formula;

• if p andq are CTL (LTL) formulae, thenp · q and¬p are CTL (LTL) formulae,
where· is any boolean connective (e.g.,∧,∨).

• if p andq are CTL formulae, thenEXp,EGp,E[pUq] are CTL formulae.

• if p andq are LTL formulae, thenXp,Gp, [pUq] are LTL formulae.

Intuitively, the meaning of CTL formulaEXp is that there exists(E) a path starting from
an initial state in which in the next(X) statep holds. EGp means that there exists a
path starting from an initial state which globally (G) p holds.E[pUq] there exists a path
starting from an initial state in whichp holds until(U) q holds.
All the other CTL operators (e.g.,AFp, meaning for all paths eventually holdp) can be
derived from the following equivalence rules:

29
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AX p≡ ¬EX¬p For all paths, in the next statep holds

EFp≡ E[⊤Up] There exists a path in which eventuallyp holds

AGp≡ ¬EF¬p p is an invariant

A[pUq]≡ ¬E[¬qU¬p∧¬q∧¬EG¬q] For all path,p until q.

It is worth noting that LTL and CTL have different expressivepowers and then they are in-
comparable (e.g., there is no CTL formula that is equivalentto the LTL formulaAF(Gp)).
For a survey on LTL and CTL differences the reader can refer to[38].

4.2 SYMBOLIC STATE REPRESENTATION

As said in the previous chapter,state explosionrepresents the most ineliminable event that
affects all the model checking techniques. Due to this problem, many approaches exploit
the use of heuristics as well as new data structures to defer (or avoid in lucky cases) the
state explosion.

Symbolic graph algorithms work on an implicit description of the state space, on the
contrary of an explicit one, as we have seen in Chapter 3. To give an example, if an
integer variablex has 90 different values, a symbolic representation ofx may be 0≤ x≤ 89
which compactly describe 90 different states through a single integer region. Intuitively,
thanks to this representation, all the classical set operators as∪,∩,⊆,∈ can be used to
each region of the state space. Hence, modelling the transition function of a system as a
booleanfunction, we can represent the state space through a symbolic representation as a
DAG (directed acyclic graph). This is the idea behind the symbolic representation of the
state space.

4.3 BDDS: BINARY DECISIONDIAGRAMS

A Binary Decision Diagram [29] is a data structure able to represent a boolean function
as a DAG. More precisely, each boolean function can be represented as a binary tree
having two kind of leaf values: true (⊤) and false (⊥). The terminal nodes are either
true or false whilst each non-terminal node (thedecision node) is associated to a variable
of the f formula. Since the graph is binary, each node has exactly twooutgoing edges
which represent the assignment value for the node variable (i.e., true or false respectively).
Intuitively, a path on this graph represents an assignment sequence for the variable of the
formula f , as depicted in Figure 4.1.
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4.3.1 OBDD: THE BDDS VARIABLES ORDERING

When it is possible to define a total order on the decision node(i.e., all the nodes on
the same tree level refer to the same variable) the BDD is called Orderer BDD, OBDD
hereafter. Usually, OBDDs refer also toreduced(ROBDDs) which are obtained by merg-
ing isomorphic subgraphs and eliminating all nodes having two isomorphic children, as
shown in Figure 4.1. More precisely, the canonicity of BDDs follows by (1) imposing a
total order< over the variables set of the decision node (ifn has a non-terminal child then
var(n)< var(m)) and (2) by requiring that the BDD contains no isomorphic subgraphs.

It is clear that the size of a reduced OBDD depends on both the function represented
and on the chosen ordering of the variables. Unfortunately,the problem to find thebest
total ordering on variables is NP-hard, even though exist efficient heuristics to handle this
problem.

Symbolic Graph Representation 2
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Figure 6768 Ordered Binary Tree for >x  y? ! >x  y ?

the root to a terminal vertexB but simply that the sequence of vertex labels along
a path from the root to a terminal vertex is monotonically increasing according
to "7 The semantics of BDGs is deEned by associating boolean expressions with
the vertices7

Boolean Function of a BDG

Given a BDG B over >X$"?B let r be a function that associates each element
of V with a boolean function over X such that r>v? equals label>v? if v is a
terminal vertexB and equals

>#label >v?  r>left >v??? ! >label >v?  r>right>v???

otherwise7 DeEne r>B? G r>vI ? for the root vI 7

Example 67I JBinary decision graphsK A boolean constant is represented by a
BDG that contains a single terminal vertex labeled with that constant7 FigM
ure 676 shows one possible BDG for the expression >x  y? ! >x  y ? with the
ordering x " y " x " y 7 The leftMedges are labeled with NB and the rightMedges
are labeled with O7 The BDG of Figure 676 isB in factB a tree7 Figure 67P shows a
more compact BDG for the same expression with the same ordering of variables7

Exercise 672 fT!g JSatisfying assignmentsK Write an algorithm thatB given a
BDG B over >X$"?B outputs an assignment s to X such that s satisEes r>B?7
Write an algorithm thatB given a BDG B over >X$"?B outputs the number
of distinct assignments s to X such that s satisEes r>B?7 What are the time
complexities of your algorithmsR

Two BDGs B and C are isomorphic if the corresponding labeled graphs are
isomorphic7 Two BDGs B and C are equivalent if the boolean expressions r>B?

Figure 4.1: Binary Decision Diagram forf = (x∧y)∨ (x′∧y′)
Symbolic Graph Representation 23

y 

 

!
 !

x

x y
!

 

!

!

 

 

Figure 789: Ordered Binary Decision Diagram for @x  yA ! @x  y A

and r@CA are equivalent8 If B is a BDG over @X&"AE and v is a vertex of BE then
the subgraph rooted at v is also a BDG over @X&"A8 Two vertices v and w of
the BDG B are isomorphicE if the subgraphs rooted at v and w are isomorphic8
SimilarlyE two vertices v and w are equivalentE if the subgraphs rooted at v and
w are equivalent8

Example 787 JIsomorphic and equivalent BDGsK The binary decision graphs of
Figures 787 and 789 are not isomorphicE but are equivalent8 In Figure 787E the
subgraph rooted at vertex v is a BDG that represents the boolean expression
x  y 8 The subgraphs rooted at vertices v E v!E and v"E are isomorphic8 On
the other handE the vertices v" and v# are not isomorphic to each other8

Remark 78M JIsomorphism and Equivalence of BDGsK Let B and C be two BDGs
over a totally ordered set @X&"A8 Checking whether B and C are isomorphic
can be performed in time linear in the number of vertices in B8 Isomorphic
BDGs are equivalent8 HoweverE isomorphism is not necessary for equivalenceE
as evidenced by the two nonisomorphicE but equivalentE BDGs of Figures 787
and 7898

 !"!" Ordered Binary Decision Diagrams

An ordered binary decision diagram @BDDA is obtained from a BDG by applying
the following two steps:

28 Identify isomorphic subgraphs8

M8 Eliminate internal vertices with identical left and right successors8

Each step reduces the number of vertices while preserving equivalence8 For inR
stanceE consider the BDG of Figure 7878 Since vertices v and v! are isomorphicE
we can delete one of themE say v!E and redirect the rightRedge of the vertex v$ to
v 8 NowE since both edges of the vertex v$ point to v E we can delete the vertex
v$ redirecting the leftRedge of the root v% to v 8 Continuing in this mannerE we
obtain the BDD of Figure 7898 It turns out that the above transformations are
suTcient to obtain a canonical form8

Figure 4.2: Reduced Ordered Binary Decision Diagram forf = (x∧y)∨ (x′∧y′)

4.4 THE NUSMV VERIFIER

In this section we briefly introduce the NuSMV [34] tool, a general purpose symbolic
model checker based on SMV [154]. Recently, NuSMV2 extendedthe previous versions
of NuSMV with the capability to combine BDD model checking and SAT-based Bounded
Model Checking [35]. The NuSMV input language is designed toallow the description
of FSSs. The only data types provided by the language are booleans, bounded integer
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subranges, and symbolic enumerated types, which can be further extended with the defi-
nition of bounded arrays of basic data types. The system description is decomposed into
modules, each of them represent a FSS and can be instantiated many times. Moreover,
the NuSMV input language allows one to describe deterministic and non deterministic
systems, as well as synchronous and asynchronous systems.

Figure 4.3 we provide an example of NuSMV module. It describes a system with one
module (i.e., one FSS), whose state is composed by two variables (requestandstate).
In the initial state the system isreadywhilst the value of variablerequestis undefined.
The system dynamics is defined by functionnextwhich describes how the variablestatus
evolves. Thecase statement is evaluated from top to bottom. When therequest = truethe
system becomes busy, otherwise the system will be non-deterministically readyor busy.
A CTL (and also LTL) formula is specified through the keywordSPEC. In this case, the
system holds that“for all paths, at each time step, whenever a request is made then it will
be always satisfied in the future”. A complete tool description can be found at [139].

MODULE main
VAR

request : boolean ;
state : { ready , busy };

ASSIGN
init( state ) := ready ;
next( state ) := case

state = ready & ( request ) : busy;
1 : { ready ,busy };

esac;
SPEC

AG(( request ) -> AF state = busy)

Figure 4.3: Example of NuSMV domain

4.5 THE HYTECH VERIFIER

HYTECH [88] is a symbolic model checker forlinear hybrid automata, a subclass of
hybrid in which the dynamics of continuous variables are defined by linear differential
inequalities. One of the most important (and unique) feature of HYTECH is theparametric
analysis: it uses symbolic constants with unknown fixed values (i.e.,design parameters)
to determine necessary and sufficient constraints on the parameters under which safety
violations cannot occur (e.g., this feature can be used to determine the minimum and
maximum bound on variables). Moreover, HYTECH is able to verify system properties
expressed by means of LTL logics.
On the negative side, HYTECH can deal only with small automata and no simulation mode
is available during the system analysis. For the sake of simplicity, we give provide a brief
example of a HYTECH model, a complete tutorial can be found at [89].

Generally, a HyTech model consists of two parts. The former contains the textual de-
scription of acollectionof linear hybrid automata, which are automatically composed for
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the analysis. The former contains a sequence of analysis commands. The analysis lan-
guage is a simple while programming language that provides as primitive the data type
state assertion with a variety of operations (i.e.,preandpostfunctions, boolean operator,
existential qualification).

Let us to consider a system composed by a train, a gate and a controller. The train is
initially some distance away from the track intersection with the gate fully raised (e.g.,
at least 2000 feet). As the train approaches (1000 feet), it triggers a sensor signaling its
upcoming entry to the controller. The controller sends a lower command to the gate, after
a delay of up toα seconds. When the gate receives a lower command, it lowers atrate of
9 degrees per second. After the train has exited the intersection and is 100 feet away, it
sends an exit signal to the controller. The controller then commands the gate to be raised.
HYTECH performs symbolic verification based onregions. In this case, we can specify:

• The init region, defined as init := loc[train]=far & x=0
& loc[gate]=up & a=9 .

• The access region, which describes the reachable states frominit , as
access := reach forward from init endreach; .

• The error region to check that the gate is closed when the train is inside the crossing
asErr:= (loc[train]=on) & (˜(loc[gate]=down));

In our example, HYTECH requires 7 steps to verify that the specified safety properties is
hold for the system.





CHAPTER5

RELATED AREAS

In the following we briefly introduce three methodologies, namely theMixed Integer Non-
Linear Programming, theDynamic Programming, and theCell Mapping, which are ap-
plied in many fields to deal with systems having a continuous and nonlinear dynamics.

5.1 MINLP: MIXED INTEGER NONL INEAR

PROGRAMMING

Mixed Integer Nonlinear Programming (MINLP) is a mathematical programming which
involves continuous and discrete variables and it is characterized by nonlinearities in the
objective function and constraints.

MINLP is used in several applications, including the VLSI manufacturing areas, engi-
neering, management science and operations research (a large collection of them can be
found in [84] and [85]) since it combines simultaneously theoptimization of adiscrete
system structure andcontinuousparameters. The general form of a MINLP is

min f (x,y)

s.t. g j(x,y)≤ 0, j ∈ J

x∈ X,y∈Y

where f (x,y) is the objective function,g j(x,y) (for j ∈ J with J the index set of in-
equalities) are constraint functions andx andy are the continuous and discrete variables,
respectively. The sets X and Y are bounding-box-type restrictions on the variables.

MINLP problem combine two different subproblems: the nonlinear programs (NLP) sub-
problem and the mixed integer programs (MIP) one. Indeed, MINLP problems are hard
to solve since they combine all the difficulties of the combinatorial nature of MIP and
the difficulty in solving non-convex (and even convex) NLP. Since subclasses MIP and
NLP are among the class of theoretically difficult problems (NP-complete), it follows that
solving can be a daring challenge.
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There are several methods to solve MINLP problems: the branch and bound method (BB),
Generalized Benders Decomposition (GBD), Outer-Approximation (OA), LP/NLP based
branch and bound, and Extended Cutting Plane Method (ECP).

To this regard, MINLP has been used in a number of industrial case studies, which typi-
cally present a nonlinear dynamics, in both planning and control fields [147, 142, 164, 6].

Although many commercial as well as academic solvers have been implemented (a com-
plete survey can be found in [31]), the application of MINLP to systems having huge
state space may be difficult due to the large number of variables and constraints which
can compose the MINLP formulation.

5.2 DYNAMIC PROGRAMMING

Dynamic programming techniques are very suitable for the generation of (optimal) con-
trollers.

For the sake of brevity, in this section we only briefly recallthe main characteristics
of the approach, we refer the reader to [20] for a complete description of this widely
used technique. Furthermore, in the following we use [114] as a reference point, since
it contains a complete theoretical treatment of the problemand also illustrates a detailed
algorithm for the numerical synthesis of the correspondingcontroller.

Consider a nonlinear plantP
xt+1 = f (xt ,ut) (5.1)

with statext ∈ Rn, control ut ∈ Rm and discrete timet ∈ Z+
0 . It is assumed thatf :

Rn×Rm→Rn is continuous.

The problem of the controllability ofP to theorigin (i.e., the setpoint) is considered in a
given bounded regionG, containing a neighborhood of the origin itself.

The classical dynamic programming approach proceeds as follows. First an optimal cost
functionJ is considered:

J(x) = inf
u

[

∞

∑
t=0

l (F(x,ut),ut)

]

(5.2)

where l(x,u) is a continuous, positive definitecost functionandu stands for a generic
control sequence:u= {u0,u1,u2, . . .}.

J is well defined (i.e. the infimum always exists in the region ofinterest) if and only if the
plantP is controllable. In this case,J satisfies the so-calledBellman Equation:

J(x) = inf
u
[l(x,u)+J(F(x,u))] (5.3)
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and it can be computed by the following iterative method:

J0 = 0

JT+1(x) = infu [l(x,u)+JT (F(x,u))]
(5.4)

whereT ∈ Z+
0 .

Since the convergence of (5.4) poses several problems, in [114] the numerical design of
the controller is based on a set of simplifying assumptions.

Indeed, in [114] the authors assume to have a continuous, positive definiteterminal cost
functionV̄(x) and that there exists a bounded regionΓ̄, which includesG, such that:

∀x 6∈ Γ̄,u∈ Rm. l(x,u)> V̄(x) (5.5)

Other conditions are imposed on bothl(x,u) andV̄(x), that here are omitted for brevity.

With these assumptions, it is possible to define anextended cost function V(x) as follows:

V(x) = inf
u,t ′∈Z+

0

[

t ′−1

∑
t=0

l (F(x,ut),ut)+V̄ (F(x,ut ′))

]

(5.6)

whereu stands for a generic control sequence:u= {u0,u1,u2, . . .}.

Thus,V(x) goes through all possiblefinite time horizonswith terminal costV̄ and takes
the infimum. The role of functionsl(x,u) andV̄(x) in (5.6) can be informally explained
as follows: by the assumption (5.5) above, the final costV̄ can be considered as apenalty
functionwhich punishesa wrong control move; it regulates the convergence of the iter-
ative computation ofV(x), since such iteration either stops with some final cost or the
final cost diminishes further and further, as the minimal cost sequence drives to (a small
neighborhood of) the set point.

The main results in [114] are the following:

Proposition 1. V(x) is continuous and satisfies the following Bellman-like equation:

V(x) = min
{

V̄(x), inf
u
[l (F(x,ut),u)+V (F(x,u))]

}

(5.7)

Now let γ = supξ∈GV(ξ) andΓ′ = {x∈ Rn|V(x)≤ γ}. Γ′ is the region where we expect
that control trajectories (if they exist) evolve.

Proposition 2. If for every x∈ Γ′, V(x) < V̄(x) holds, with the exception of a (small)
neighborhood N(ρ) of the origin, then in G the plantP is controllable in the sense that
it can be driven to the neighborhood N(ρ) of the origin. Moreover the control sequence
can be determined as the minimal cost trajectory, from the equation (5.7).
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From these theoretical results directly derives the following algorithm.

Given the discrete set of pointsz1,z2, . . . ,zn̄ contained inΓ̄D and the discrete set of con-
trol actionsu1,u2, . . . ,um̄ contained inŪD, we have the design algorithm shown in Proce-
dure 2.

Procedure 2Dynamic Programming Algorithm

1: for all i ∈ [1, n̄] do
2: W0(zi)← V̄(zi);
3: for all i ∈ [1, n̄] do
4: WT+1(zi)← min

j∈[1,m̄]
{WT(zi),min[l(zi,u j)+ I(WT ,F(zi,u j))]}

5: t← t+1;
6: end for
7: end for

Note that, although successfully applied, this technique requires the definition of design
functions (likeV̄(x) andl(x,u) in Procedure 2) which have to be found out case by case.
Moreover, systems whose dynamics cannot be easily inverted(the typical situation for
hybrid nonlinear systems) are very difficult to address withthe dynamic programming.

5.3 CELL MAPPING

Cell mapping was proposed by Hsu [98, 100] as a computationaltechnique for analysing
the global behaviour of nonlinear systems.

Cell mapping allows an approximated analysis of a state space by partitioning it into a
finite number of disjoint cells. Thus, each variable ranges on the set of cells, instead of
Rn. More precisely, suppose to have a model of the formx(t +1) = f (x(t)), where the
statex is described byn real-valued variables. Then, we can seex as a point ofRn. In
the cell mapping, then axes of the state space are partitioned into equal intervals, each
denoted by an integerzi.

These axes partitions naturally definen-dimensionalcells. Indeed, a cellz is defined as
a n-tuple of intervalsz= [z1, . . . ,zn]. The union of all cellsz is the cell spaceZ. The
main effect of cell partition is that all elements in a cellzi are approximated with the cell
center pointzc

i . This allows real (or point to point) trajectories in the state space to be
approximated by cell trajectories in the corresponding cell space. Figure 5.1 illustrates
the approximation scheme for a real trajectory:

x1→ x2→ x3

for the discrete time system:
xk+1 = f (xk).
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Figure 5.1: Cell space approximation of a real trajectory

The initial pointx1 in the trajectory which lies in cellz1 is abstracted by the cell center
point zc

1. Then,x′2 = f (zc
1) which lies in cellz2 is abstracted byzc

2. Finally, x′3 = f (zc
2) in

cell z3 is abstracted byzc
3. This procedure yields the cell trajectory:

z1→ z2→ z3

Note that to minimise cell mapping errors, it is important that statesx′2 and x′3 be lo-
cated as close as possible and lie in the same cells as the realtrajectory statesx2 andx3,
respectively.

A cell mapping is formalized as a cell state space function:

C : Z→ Z

Using this function, ak-step trajectory emanating from cellz is written as a cell sequence:

z→C(z)→C(C(z))→ . . .→Ck(z).

A periodic motion with periodK is a sequence ofK distinct cellszm,m= 0, . . . ,K−1,
satisfying the condition

zm =Cm(z) andz=CK(z).

An equilibrium cell ze is a cell that maps to itself, i.e.:

ze=C(ze).

It is a periodic motion with period 1. Ther-step domain of attractionof a periodic motion
is the set of all cells that are withinr-steps of the periodic motion.
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The cell map of a system is constructed using anunravelling algorithmto compute cell
trajectories [100]. Based on these trajectories, one can establish which cells converge
to the setpoint (controllable cells) and which not (uncontrollable cells). Moreover, cell
mapping has been used to generate optimal control table directly as a controller (see, e.g.
[99]), or to fine-tune a fuzzy logic controller (see, e.g. [102]). Furthermore, cell mapping
can be used to evaluate controller performance [141, 140].

For the sake of brevity, we refer the reader to [98] for further details about cell mapping
and applications. Here we only highlight that cell mapping requires aglobal analysis of
the state space, and thus, for complex systems, when a high precision is required, cell
mapping ishard to apply.



Part II

Explicit Model Checking for the
Analysis of Deterministic Systems
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In the second part of the Thesis, we show how the explicit model checking technique can
be used to analysedeterministic systems. In particular, in Chapter 6 we first introduce the
problem of Planning and Universal Planning providing a survey on the state of the art.
Then we present the contributions that this thesis gives to UPMurphi and, in general, to
the planning and control communities.

In Chapter 7 we describe the improvements of UPMurphi: the V-UPMurphi tool which
exploits the disk based technique to perform Universal Planning on systems having a big
reachable state space. In Chapter 8 the application of V-UPMurphi to some real-world
problems is detailed. Finally, in Chapter 9 we show how the explicit model checking
technique can be used to performdata quality analysison dirty database, providing a
methodology and showing first experimental results on a realcase scenario.





CHAPTER6

MODEL CHECKING BASED CONTROL OFDETERMINISTIC

SYSTEMS

6.1 INTRODUCTION

In following we first introduce the problem of Planning and Universal Planning and we
illustrate the state of the art. Then, we formally define the universal planning problem on
FSS (according to the Definition 2), and we describe the algorithm as presented in [49, 56]
that solves this problem by means of a model checking derivedalgorithm.

Planning and Scheduling. For many years, planning and scheduling research were
completely separated. Typicallyplanningconcerns the problem of generating a sequence
of actions, in order to move from a specified initial state to adesired goal state. Differ-
ently, schedulingis interested in allocating known activities to available resources and
time respecting capacity, precedence and other constraints, optionally minimising a given
cost function. In pure-scheduling problems often there aremany ways to accomplish the
same task, synthesising a schedule “as long as possible“. Togive an example, the Job
Shop problem is a typical scheduling problem where the goal is toallocate jobs to ma-
chines, minimising a cost function (e.g., the workload of the machines). The scheduler
will try many possible allocations looking for the best one.
Differently, in pure-planning problems the system is described through adynamicsthat
should be discovered. Theblocks worldexample is a pure-planning problem which de-
scribes the world as composed by blocks and a robot arm. The arm can perform some
actions on blocks and the goal is to create an ordered stack ofblocks.

Generally, a planning problem requires (1) an initial state, (2) a description of the sys-
tem dynamics, (3) a description of the goal and the result is asequence of actions (i.e.
the plan). A scheduling problem requires (1) a set of activities with preferences, (2) a
set of available resources and the result is a map between activities and resources. In
spite of the differences that branch planning and scheduling, recently a mutual interest
between planning and scheduling has emerged since planningalgorithms have been ap-
plied to many real-world problems. To give an example, many planning domains require
to deal with limited resources. As a consequence, many communities have merged in
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a common research (see, e.g., the International Conferenceon Automated Planning and
Scheduling [1]).

Universal Planning. If by one hand planning concerns the run-time generation of plans
to be applied between a single source and a single goal, on theother hand auniversal
plan can be seen as a collection of plans (or a set of policies) ableto bring the system to
the goal from any feasible state. The concept ofUniversal Planningwas first introduced
by Schoppers [150] as an approach to learn state-action rules in which a plan represents
a solution path for all possible configurations of a planningproblem, instead of a solution
for one single initial state. The solution of the universal planning problem is a Universal
Plan, which summarises the commands (actions) to send to theplant in order to reach a
goal from any possible state the plant can be in.

It is worth noting that universal planning is typically performed off-line and is compu-
tationally much harder than planning. However, once a universal plan is computed, its
reaction time will be very small when compared to that of planning.

This Chapter is devoted to the automatic generation ofoptimal universal plans through
explicit model checking.

The main idea of Schoppers to synthesise a universal plan is to perform a backward visit of
the dynamics graph (starting from the goal nodes) using a classical BF search. However,
for many years the problem to find a universal plan for a given domains, even though it
is considered interesting for the large application in manyproblems, it has been deemed
impracticable [81] since the search tree can grow exponentially in the size of the graph.

6.1.1 RELATED WORK

With the introduction of BDD state representation (see Section 4.2 for details) the con-
cept of universal planning has a renaissance in both deterministic and non-deterministic
domains, thus many planners and universal planners based onmodel checking (and hence
on the formalism provided by FSS) have been proposed. To thisregard, planning-as-
model-checking has a strong heritage (see, e.g., [83]), since proving states reachability
can be viewed as finding plans. In particular, in [37] the authors use a symbolic approach
based on OBDDs to compact encode the state space.

Dplan [149] is well known state-based,backwarduniversal planner for deterministic do-
mains. The main characteristics are that (1) it represents astate explicitly, (2) no initial
states are given and (3) it performs a backward search starting from the goals nodes. The
construction of the universal plan terminates only if the expansion of the current leaf node
results in a yet visited state. However, due to the backward search, an inverse operator
op−1 should be defined for each domain operatorop. Thus, Dplan does not work well on
systems whose dynamics is difficult to invert (the typical situation for hybrid nonlinear
systems).
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The Model Checking Integrated System (MIPS) [62, 63] is a very powerful and complex
framework that makes use of a combination of both explicit and symbolic model checking
based on heuristic search. The MIPS performed very well in different planning compe-
titions, however it is restricted to PDDL2.1 while the extended version MIPS-XXL [66]
deals with PDDL3. However, MIPS it is not a universal planner.

The UPPAAL/TIGA tool [15] is built on top of UPPAAL which allows the use of real
variables only as clocks, thus excluding systems with nonlinear dynamics. Other exam-
ples of model checking based deterministic planners include, among others, ProPlan [73]
and BDDPlan [92].

In [36] authors use a symbolic (OBDD-based) model checking approach to synthesise
optimal (with respect to the length of the plan) universal plans for non-deterministic plants
(we will detail this work in the Part II of this thesis).

However, all these approaches require the explicit definition of an inverse function for
each operator used in the domain, and thus their applicationis hard when dealing with
systems having a complex and nonlinear dynamics.

Indeed, a growing number of motivating applications shows the importance of dealing
with mixed discrete continuous domains. Some examples are:product processing in a
plant [9], activity management of an autonomous vehicle [119], voltage regulation plan-
ning [16], solar array operations on the International Space Station [145], oil refinery
operations planning [23], planning for an airport control system [90], or slag foaming
control [168].

To this regard, several real world planning problems present complex nonlinear be-
haviours which are difficult to handle by any analytical method (see, e.g., [155], [22],
[26]) or hybrid reasoning approach. Nonlinearity can arisefrom the intrinsic dynamics of
the system (e.g., the regulation of a steering antenna, which leads to an inverted pendulum
problem), or the saturation of actuators (e.g., valves thatcannot open more than a certain
limit, control surfaces in an aircraft that cannot be deflected more than a certain angle,
etc.). Indeed, the behaviour of nonlinear systems can be so complex to be completely
unpredictable after a small interval of time (see, e.g.,[151]).

To this aim, the planning community has made a great effort todevelop algorithms and
tools able to deal with hybrid planning domains, which can bemodelled via the PDDL+
language, as discussed in Section 2.4.

Continuous Linear Domains. In such a context, it is crucial to reason about continuous
change during the planning process [75]. In addition to the model checking based planners
cited above, other planners able to deal with hybrid domainshave been proposed. More
recent works include the OPTOP planner [128] that deals withlinear continuous domains
where concurrent processes do not affect the same variable.
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The TM-LPSAT system, developed by [152], combines SAT and LPsolvers. The former
is used to deal with the discrete component of the domain while the latter is used to
handle the continuous one. TM-LPSAT can deal with processesmodelled in PDDL2.1,
even though it is limited to small linear problems.

COLIN [42] is a powerful tool for planning in domains with linear continuous processes.
It extends the forward chaining temporal planner CRIKEY3 [41], making it able to reason
with actions with continuous linear effects. COLIN integrates a guided state space search
with linear programming, and supports duration-dependenteffects, durative actions with
continuous change and concurrent continuous change.

However, the planners above are not universal planners and they can handle only linear
domains.

Continuous Nonlinear Domains. Looking at planners able to deal with nonlinear dy-
namics, we highlight Kongming [119, 122], thanks to the concept of Flow Tubes, is able
to compactly represent hybrid plans and encode hybrid flow graphs as a mixed logic lin-
ear/nonlinear program, solvable using an off-the-shelf solver. However, Kongming can
only address planning problems with constant action duration (e.g., consider a pump that
fills a tank, the duration of the ”fill” action cannot depends on the tank’s volume).

More recently, [134] deals with nonlinear continuous effects written in PDDL+, using a
state projection algorithm implemented into a Hierarchical Task Network planner. The
approach is very interesting and effective, even though no information about the opti-
mality of the synthesised solutions is given in the paper and, as the authors argue, the
scalability of their approach has not yet been evaluated on more complex case studies.

Thus, planning as well as universal planning with continuous nonlinear change is a chal-
lenging issue.

6.2 THE UNIVERSAL PLANNING PROBLEM

In order to formally define the universal planning problem for continuous systems with
possibly nonlinear dynamics, we assume that a set ofgoal states G⊆Shas been specified.
Moreover, to have a finite state system, we fix afinite temporal horizon Tand we require
each plan to reach the goal in at mostT actions. Note that, in most practical applications,
we always have a maximum time allowed to complete the execution of a plan, thus this
restriction, although theoretically quite relevant, has alimited practical impact.

For the sake of completeness, in the following we provide theformal definitions of Plan-
ning Problem on FSS and its solution.

Definition 11 (Planning Problem on FSS). LetS = (S,s0,A,F) be an FSS. Then, aplan-
ning problem(PPin the following) is a triple PP= (S ,G,T) where s0 ∈ S, G⊆ S is the
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set of the goal states, and T is the finite temporal horizon.

Then, a solution for PP is areachable trajectoryπ (plan), according to Definition 4,
π = s0a0s1a1s2a2 . . .an−1sn where,∀i = 0, . . . ,n−1, si ∈ Reach(S) is a state, ai ∈ A is an
action, F(si,ai ,si+1) = 1, |π| ≤ T, and sn ∈G⊆ Reach(S).

Now we are in position to state the universal planning problem for FSSs.

Definition 12 (Universal Planning Problem on FSS). LetS = (S, I ,A,F) be an FSS. Then,
a universal planning problem(UPP in the following) is a quadrupleP = (S ,G,C,T)
where G⊆ S is the set of the goal states, C: S×A→R+ is the cost function and T is the
finite temporal horizon.

Intuitively, a solution to an UPP can be seen as a set ofpolicies, that is a set of minimal
cost paths in the system transition graph, starting from anyreachable system state and
ending in a goal state.

More formally, we have the following:

Definition 13 (Solution for UPPs). LetS = (S, I ,A,F) be an FSS and letP = (S ,G,C,T)
be an UPP. Moreover, letΩ =

⋃
sI∈I Reach(sI)∩

⋃
sG∈GReach−1(sG). Then a solution for

P is a mapK from Ω to A s.t. ∀s∈ Ω there exist k≤ T and a trajectoryπ∗ in S s.t.:
π∗s(0) = s,∀t < k : π∗s(t+1) = F(π∗s(t),K (π∗s(t))) andπ∗s(k) ∈G. We denote withKπ(s)
the trajectoryπ∗ generated byK and s.t.π∗s(0) = s.

Anoptimal solutionis a solutionK s.t. for all other solutionsK ′ the following holds: for
all s∈ S s.t.Kπ(s) andK ′π(s) are defined, then C(Kπ(s))≤C(K ′π(s)).

In the next section, we describe the algorithm presented in [49] which takes as input an
UPP and outputs an optimal solution for it.

6.3 PLANNING AS MODEL CHECKING

In Section 3 we gave the main idea of how a model checker works,(i.e., it looks for a
system state which violate an invariant condition). Similarly, a planner performs a search
into the system by looking for a state which satisfy a goal condition. Then, both model
checker and planner return a path (i.e., anerror traceand aplan respectively) from the
initial state to the found state.

It is possible to use a model checker like a planner by forcingthe former to look for an
invariant which models a goal condition. More formally.

Definition 14 (Planning as Model Checking). Let MCP be a Model Checking Problem
M = (S ,ϕ,T) according to Definition 10 and let PP be a Planning Problem P= (S ,G,T)
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as in Definition 11, we construct aplanning as model checkingproblem as PM= (S ,ψ,T)
whereψ = s /∈G.

Then, a solution for PM is areachable trajectoryπ (plan), according to Definition 4,
π= s0a0s1a1s2a2 . . .an−1sn where:∀i ∈ [0,n−1], si ∈Reach(S) and si �ψ( that is si /∈G)
whilst sn ∈ Reach(S) does not satisfyψ (that is sn ∈G). If ∀s∈ Reach(S),s� ψ then the
solution is an empty trajectory (a plan does not exist).

6.4 THE MODEL CHECKING BASED UNIVERSAL

PLANNING ALGORITHM

In this section we describe an explicit model checking basedalgorithm to perform Univer-
sal Planning on continuous domains, as proposed in [49, 56].Given a UPP, the algorithm
solves it in two phases: the BUILD GRAPH and the UPLANGENERATION.

Procedure 3BUILD GRAPH(UPPP = (S ,G,C,T))

1: let S ← (S, I , A, F)
2: for all s∈ I do
3: Enqueue(QS, s)
4: Insert(HT,s)
5: if (s∈G) then
6: Enqueue(QG, s)
7: HT[s].cost← 0
8: end if
9: while (( QS 6= /0) ∧ (currentBFS level≤ T)) do

10: s← Dequeue(QS)
11: for all s′ ∈ {F(s,a) | (a) ∈ A} do
12: if (s′ /∈ HT) then
13: Insert(HT,s′)
14: if (s′ ∈G) then
15: Enqueue(QG, s′)
16: HT[s′].cost← 0
17: else
18: Enqueue(QS, s′)
19: end if
20: end if
21: PT[s′] ← PT[s′] ∪ {s};
22: end for
23: end while
24: end for
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6.4.1 THE BUILD GRAPH PROCEDURE

In the first phase, the algorithm exploitsreachability analysisin order to build a represen-
tation of the system dynamics that can be later easily analysed during the universal plan
generation. Indeed, the corresponding BUILD GRAPH procedure, whose pseudocode is
given in Algorithm 3, can be seen as an extension of the commonbreadth-first visit per-
formed by classical explicit model checking algorithms (see the BF Algorithm 1, given in
page 23).

For the sake of completeness, it is worth noting that, in the general theory of universal
planning, the concept of start state is not present [150], asdiscussed in Section 6.1. How-
ever, in the practice, the concept of reachable state implies such a start state. In other
words, we need to start-up the universal planning with a set of start states, that we call a
start state cloud. These states should be distributed in the system state space so that all
the interesting states are reachable from at least one of them. However, a start state cloud
can be also suitably prepared to concentrate the planning process on the most interesting
state space regions, or to exclude hardly reachable states from the universal plan. Indeed,
a complete universal plan could generally contain many rarely-used plans, whose com-
putation requires however time and space. Therefore, an appropriate formulation of the
start state cloud may help to minimise the universal plan generation effort and maximise
its usefulness. The role of the start state cloud will resultmore clear in Chapter 8, when
we apply the UPMurphi to real case studies.

The Procedure 3 uses the hash tableHT to store already visited states, while the queues
QS andQG store the states to be expanded and the reached goal states (to be used in the
next phase), respectively. This information is also used todetect and exploit trajectories
intersections, so avoiding work duplication. Note that thecomputation of the successor
states involves discretised values, i.e., continuous components of bothsands′ in line 11 of
Algorithm 3 are rounded according to the chosen discretisation. Finally, the predecessor
tablePT contains the immediate predecessors of each visited state.This structure is at
the heart of the second phase of the algorithm, represented by the UPLANGENERATION

procedure, whose pseudocode is given in Algorithm 4.

6.4.2 THE UPLANGENERATION PROCEDURE

The UPLANGENERATION procedure performs another Breadth First visit, this time on
theinvertedtransition graph, starting from the reached goal states. Tothis end, the proce-
dure uses the information inQG, HT andPT prepared by BUILD GRAPH. The output is
the table UPLAN, containing (state,action) pairs that represent the mapK described in
Definition 13.

In particular, the check on line 10 of Algorithm 4, which updates the action associated to
a state only if either no action has been defined yet or the current action leads to a better
result, together with the ordered insertion in the queueQS, guarantee that the algorithm
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Procedure 4UPLANGENERATION

1: UPLAN← /0
2: QS←QG // this erases the previous content ofQ
3: while QS 6= /0 do
4: s←Dequeue(QS)
5: prev cost← HT[s].cost // 0 ifs∈G
6: for all (~s∈ PT[s]) // ~s is a predecessor ofs do
7: local cost← min

(a)∈A | F(~s,a)=(s)
C(~s,a)

8: U←{a∈ A | F(~s,a) = s∧C(~s,a) = local cost}
9: local action← pick an action in U

10: if (UPLAN[~s]= /0 ∨HT[~s].cost> prev cost+local cost)then
11: UPLAN[~s] ← local action
12: HT[~s].cost← prev cost + localcost
13: Enqueuein Order(QS,~s)
14: end if
15: end for
16: end while
17: return UPLAN

returns anoptimal solutionaccording to Definition 13.

Note that, since our approach rebuilds the system transition graph by a forward analysis
of its dynamics, the system fed to the planning algorithm canbe of any complexity, and
in particular its transition function can be also very difficult to invert.

6.5 THE UPMURPHI UNIVERSAL PLANNER

For the sake of brevity, in this section we briefly describe the main characteristics of
the UPMurphi planner. A complete description can be found at[56]. The UPMurphi
tool [49, 56] exploits explicit model checking algorithms (as discussed in Chapter 3) to
generate optimal controllers.

The UPMurphi tool is built on top of the CMurphi [32] model checker. A graphical
representation of the overall structure of UPMurphi, together with its inputs and outputs,
is given in Figure 6.1. Each module of UPMurphi has the following role:

PDDL+ domain and problem. It represent the planning problem encoded in PDDL+ lan-
guage, as described in Section 2.4.

UPMurphi definition. Alternatively, UPMurphi can works directly on the FSS of the
domain using the CMurphi language, as described in Section 3.4.
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Figure 6.1: Overall structure of the UPMurphi tool

PDDL+ to UPMurphi compiler. This module discretises PDDL+ domains and problems
into FSS according to the formal mapping between PDDL+ and FSS semantics, as
we provided in [56, 49].

UPMurphi engine. It is the core of the tool and implements the BUILD GRAPH and UP-
LAN GENERATION algorithms on the top of the CMurphi algorithms and data struc-
tures. Thanks to this, the universal planning algorithm presented in Section 6.4
can exploit all the CMurphi built-in state space optimisation techniques (such as
bit compression [137], symmetry reduction [105], secondary memory storage and
state space caching [54]) to handle large systems with huge state spaces.

UPMurphi model compiler.This module compiles the UPMurphi model into an exe-
cutable model.

It is worth noting that UPMurphi inherits from CMurphi two important features to ease the
modelling activity: the typereal(m,n) of real numbers (withm digits for the mantissa
andn digits for the exponent), and the use of externally defined C/C++ functions in the
modelling language. In this way, for example, one can use theC/C++ language constructs
and library functions to model complex dynamics.

Moreover, to perform the Universal Plan Algorithm as well asto better integrate the Mur-
phi language with PDDL+ input/output syntax, the Murphi input language (described in
Section 3.3.1) has been extended as follows:
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PDDL name: The modeller can associate to each state variable a PDDL namethrough
the keywordpddlname , which will be used by theUPMurphi model compiler
during thePDDL+ plans generationphase. To give an example, the declaration
of the state variabled : 0..1; becomesd [pddlname: ’daytime’;] : 0..1; .
Moreover,pddlname can be used also to specify the PDDL name of arule , which
models PDDL+ actions/durative actions and events.

Rules Type: The PDDL+, in contrast with PDDL2.1, models durative actions accord-
ing to the start-process-stopmodel (introduced in [77], it divides each dura-
tive action as start/stop actions, a process which affects continuous variables
and an events which models failure conditions). To this regard, the Murphi
rule construct can be parametrised by specifying one of the following attributes
clock,action,event,durative-start,durative-end .

Costs and Duration: In order to make UPMurphi able to synthesiseoptimalsolution (as
described in Section 6.4), the modeller can use the keywordweight to specify the
costof the action execution as well as the keywordduration to (optionally) specify
thedurationof the action.

Metrics: The keywordmetric: {minimize | maximize} is used to maximize/mini-
mize the cost of the generated solution.

Finally, for the sake of completeness, in Figure 6.2 we figureout the launch options helper
of UPMurphi. A detailed description of the formal mapping between Murphi language
and PDDL+ has been published in [56].

General :
- search :o create an optimal plan for each startstate ( default) .
- search :u create an universal plan .
-search :uo create an universal optimal plan .
-search : f create a feasible plan for each startstate .

Explorat ion Strategy : ( default: -v)
-cdl check for deadlock .
-l<n> maximum bfs level ( default: unl imited ) .

Output :
-output f i le write output in f i le ( default: stdout ) .
- format :pddl output plans in pddl format ( default) .
- format : pddlv output plans in pddl format with verbose comm ents .
- format : pddlvv output plans in pddl format with very verbos e comments .
- format : text output plans / act ions in text format .
- format : verbose output plans / act ions in verbose text form at .
- format : raw output actions in binary format .

Figure 6.2: UPMurphi’s helper



CHAPTER7

V-UPMURPHI: THE DISK-BASED ALGORITHM

7.1 CONTRIBUTION

In Chapter 6 we formalised the Universal Planning problem via Finite State Systems, and
we also described the algorithm which UPMurphi implements to solve it. In this Chapter,
we describe an UPMurphi’s enhancement (i.e., V-UPMurphi),which exploits disk storage
to extend the applicability of the tool to complex systems. In particular, the disk based
algorithm provides the following main contributions:

1. It allows the use of the disk during the exploration of the dynamics. It is worth not-
ing that in Section 3.4 we discussed the CMurphi model checker, which exploits the
use of the disk during the verification process (i.e., thequeueis stored on disk dur-
ing the verification process). V-UPMurphi goes in the same direction of CMurphi
by stressing the use of the disk also during the BUILD GRAPH and UPLAN GENER-
ATION phases. Thanks to this approach we are able to synthesise plans and strong
plans for some real-world problems, as we discuss in Section8.

2. It allows one topausethe synthesis process. Indeed, it is possible to store the
expanded graph to disk and resume the analysis later, also onanother machine.

3. It implements an adaptation of thehash compactiontechnique [158] which is com-
patible with the disk-based algorithm.

4. It now uses the CUDD library [44] to apply OBDD compressionon the generated
controller. Indeed, the compression technique proved to bevery effective for this
purpose (see [46] for details).

7.2 THE DISK ANALYSIS ALGORITHM

Figure 7.1 shows the new overall structure of V-UPMurphi in which theUPMurphi engine
is strictly different with respect to the one presented in Section 6.5 (see Figure 6.1).
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Figure 7.1: Overall structure of the V-UPMurphi tool

Given the model of a system to analyse, the V-UPMurphi engineapplies to it an explicit
algorithm, organised in four phases, as shown in Figure 7.1.

In the first phase, we exploitreachability analysisin order to build a representation of the
system dynamics that can be later easily analysed and exploited during the other phases.
This phase can be seen as an extension of the common breadth-first visit performed by
classical explicit model checking algorithms. In the next phase the tool rebuilds the com-
plete plant transition graph, which is then used to calculate the optimal control paths.
Finally, the control paths are grouped into distinct plans,if required. The results can be
exported to disk in various formats (binary, PDDL, CSV, etc.).

All the phases above make use of secondary memory (disk) to allow the manipulation
of huge systems without incurring in out of memory errors. Toavoid an excessive time
overhead, the disk structures used by UPMurphi have been designed and implemented
by taking into account their usage patterns, i.e., how and how frequently each structure
is accessed during each phase of the planning process. This led to the definition of al-
gorithms and data structures that minimise the number of disk seek-and-read operations,
which are the bottleneck of any disk algorithm, since seeks suffer from a latency time
that is much higher than the actual read/write time. For instance, UPMurphi privileges
sequential read/writes, at the cost of duplicating some information and/or requiring more
disk space, which is not a problem since large disks are nowadays very common. More-
over, UPMurphi is able to adapt its algorithm to increase or decrease the disk usage with
respect to the user specified options and the size of the system under analysis. Finally,
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when memory storage is absolutely required, the data storedin RAM is compressed. For
example, states stored in the memory hash table are written as 40-bit signatures.

Thanks to this framework, the UPMurphi computation can be stopped after each phase
and restarted later from the same point, without having to repeat the whole process. In-
deed, the data stored in the files above are enough to rebuild the tool state and continue
its work. It is even possible to restart the process from a previous phase to try different
user settings: for example, one may restart the process fromthe optimal paths calcula-
tion phase (thus reusing the results of the previous two phases), specifying a different
transition selection policy. To this regard, the user can specify the-phase<1..5> option
selecting the appropriate phase to resume (frommodel analysisto output resultsphases).

7.2.1 DISK DATA STRUCTURES.

The UPMurphi algorithm uses a set of memory and disk data structures. In particular,
the only structure that is always stored in memory is the hashtableH, used to remember
visited states by storing their 40-bit signature and the associated index. The disk structures
are described in the following.

Disk Queues.Two FIFO queuesQ andQ′, used in several parts of the algorithm, are
stored to disk. The head and tail segments of each queue are cached in memory to
minimise disk accesses. To this aim, the Disk Mode of CMurphi(as described in
Section 3.4) has been used and adapted to work on V-UPMurphi.

Reachables file RF.It stores the complete definition of each reachable system state, and
it is indexed by the hash tableH. This file is created only if the user requires a
complete symbolic dump of the state in the planner output.

Transitions file TF.It compactly stores all the transitions encountered duringthe model
analysis. Each entry in this file has the form(s,d,(r i,wi ,s′i)i=1...d) wheres is the
index (as stored inH) of a state,d is its out degree,r i is the index of the model
rule which determines thei-th outgoing transition froms, wi its weight ands′i the
corresponding target state. Note that states are stored as integer indexes, which are
usually much smaller than the state description.

Startstates, Goals and Errors files.The startstates file SF, goals file GFand errors
file EF contain, respectively, the indexes of the start states and of the reached goal
states, and the transitions (described as in the transitions file) which lead to an error.

Actions file AF.Theactions file AFstores(s, r) pairs wheres is a state index andr is
the action chosen for that state by the plan generation algorithm. Note that this is
an internal encoding of a controller table.

Plans file PF.Theplans file PFcontains strings of the forms0r0s1r1 . . .sn, which rep-
resent a computed plan from the state (with index)s0 to statesn through actions
(rules)r0 . . . rn−1.
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Graph file TGF.Thegraph file TGFis used to store the transition graph of the system
in the form of adjacency lists. In practice, this file contains an ordered and further
compacted representation of the data in the transitions file, to allow a faster nav-
igation of the system dynamics. In particular, for each state (in index order), the
file contains an adjacency list composed by(r,w,s′) triples, wherer is a rule index,
w its weight ands′ the reached state. The graph file is indexed by an in-memory
structure that contains the disk position of the beginning of each list, to allow direct
jumps to the adjacency list of a given state.

The transition graph storagedynamically adaptsto the system size. Indeed, if the
number of reachable system states is small enough to allow building the transition
graph directly in memory, the graph file is not created and a corresponding memory
structure is built instead, to allow faster graph navigation.

In the following we give details of the four algorithm phases, which exploit the disk
data structures above.

7.2.2 MODEL ANALYSIS.
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Figure 7.2: Data structures used in the main disk analysis algorithm phases

The model analysis algorithm, i.e., Algorithm 5, exploits astandard BFS search to explore
the reachable system states, starting from the given start states. Clearly, when the search
reaches an error state or a goal state, it does not explore further on that direction.

The first column of Figure 7.2 shows the memory and disk data structures used by this
phase. The disk queueQ is initially loaded with all the start states, whose assigned indexes
are also written to the start states fileSF. Then the algorithm dequeues a state fromQ and
visits all its successors, calculated by thenext function. The exploration ends when there
are no further states to expand in the exploration queue.

The memory hash tableH is used to avoid revisiting states. Indeed, each time a stateis
reached by the search procedure, its signature is looked up in H and, if it is not found
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Procedure 5MODEL ANALYSIS

Input: S, the set of Startstates
1: Q← /0;
2: H← /0;
3: for all s∈ Sdo
4: i←generateindex(s);
5: store(H,signature(s));
6: enqueue(Q,s);
7: write stateindex(SF, i);
8: end for
9: while Q 6= /0 do

10: s← dequeue(Q);
11: outgoing← /0;
12: for all (r,w,s′) ∈ next(s) do
13: if not contains(S,signature(s′)) then
14: i←generateindex(s′);
15: store(S,signature(s′));
16: outgoing←outgoing∪(r,w,s′);
17: if is goal(s′) then
18: write stateindex(GF, i);
19: else if is error(s′) then
20: write transition(EF,s, r,w,s′);
21: else
22: enqueue(Q,s′);
23: end if
24: end if
25: end for
26: write stateindex(TF,s);
27: write number(TF, |outgoing|);
28: for all (r,w,s′) ∈transitionsdo
29: write transition(TF, r,w,s′);
30: end for
31: end while

Procedure 6TRANSITION GRAPH GENERATION

1: while (TF is not completely read) do
2: s←readstateindex(TF);
3: n←readnumber(TF);
4: for i = 1 to n do
5: (r,w,s′)← readtransition(TF);
6: add to adjacencylist(TGF,s′, r,w,s);
7: end for
8: end while
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(i.e., the state isfresh), then the state is given an index and written in the reachables file
(if required)RF, whereas the corresponding transition is stored in the transitions fileTF.
If the state is a goal, its index is also written in the goals file GF, whereas if it is an error
state the complete transition is written to the errors fileEF. Finally, the state is enqueued
in the disk queueQ to be expanded later by the algorithm.

It should be clear that this procedure is an revised version of the BUILD GRAPH of Proce-
dure 3 improved supportinghash compactionanddisk storage.

It is worth noting thathash compaction[158] is a state space reduction technique im-
plemented in Murphi to reduce the size of each entry of the hash table making it more
capacious. It associates to each system state a unique signature, storing in the hash ta-
ble the state signature instead of the expanded state. In V-UPMurphi, when bothhash
compactionanddisk storageare enabled, the algorithm uses the disk to store the system
graph and the complete representation of each state encountered, whereas state signatures
are stored in the hash table, to save space and enable hash compaction. However, the
signature is not enough to compute thenext function of a state since we need to access to
the state variables. Hence, we modified the original Murphi hash compaction algorithm
to store in the hash table both (1) the state signature and (2)a unique disk index which
allows to directly access to the expanded state.

7.2.3 TRANSITION GRAPH GENERATION.

In this phase, the algorithm collects all the transition information generated by the model
analysis and builds the inverted transition graph for the system. Indeed, the planning
process requires to navigate the graph from the goals to the start states.

The Algorithm 6 reads the transitions fileTF and writes each inverted transition to a set
of adjacency lists, which are stored in the disk graph fileTGF or in memory, if enough
RAM is available. To this regard, the amount of RAM required to store the graph in
memory is automatically evaluated by taking into account (1) the state space information
collected in the previous phase, and (2) the size of the data structures needed to hold the
memory graph.
The second column of Figure 7.2 summarises the memory and disk data structures used
by this phase.

7.2.4 OPTIMAL PATHS CALCULATION .

At this point, the algorithm has all the information needed to decide the action to take in
each systems state, e.g., calculate the (optimal) control paths for each state that can reach
a goal. The algorithm can be configured (via the user-specified options) to choose any
feasible action, or the action with minimum/maximum weight.
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Procedure 7COMPUTE OPTIMAL PATHS

1: Q′← /0;
2: for (i = 0 to numberof states)do
3: chosenedge[i]← null;
4: distance[i]← ∞;
5: end for
6: while (TGF is not completely read) do
7: s← readstateindex(GF);
8: enqueue(Q′,s);
9: end while

10: while (Q′ is not empty)do
11: s←dequeue(Q);
12: for (r,w,s′) ∈adjacencylist(TGF,s) do
13: if (chosenedge[s′] = null ∨

distance[s′] > distance[s] + w) then
14: if (chosenedge(s′) = null) then
15: enqueue(Q′,s′);
16: end if
17: chosenedge[s′] ← (r,w,s);
18: distance[s′] ← distance[s] + w;
19: end if
20: end for
21: end while
22: for all (s | chosenedge[s] 6= null) do
23: write action(AF,s,chosenedge[s]);
24: end for

Procedure 8PLAN GENERATION

1: for (s∈ SF) do
2: plan← /0;
3: while (hasaction(AF,s)) do
4: (r,w,s′)←readaction(AF,s);
5: appendto plan(plan,s, r);
6: s← s′;
7: end while
8: write plan(PF, plan);
9: end for

The process is implemented as shown in Algorithm 7 and uses the memory and disk data
structures shown in the last column of Figure 7.2. Also in this case the procedure is an
revised version of the UPLAN GENERATION of Procedure 4 which now supportshash
compactionanddisk storage.

The disk queueQ′ is initialised with the goal states found in the goals fileGF, then the



62 Chapter 7. V-UPMurphi: The Disk-based Algorithm

algorithm traverses the transition graphTGF generated by the previous phase using a suit-
ably modified version of the Dijkstra algorithm. The chosen edges and the corresponding
weights are stored in memory and, when the process is complete, the whole structure is
written to the actions fileAF.

7.2.5 PLAN GENERATION.

If the user requires the generation of plans (and not a simplecontrol table), this phase
accesses the data startstatesSF and actionsAF files and writes in the plan filePF the
paths starting from the user-specified start states (or fromall the states, if a universal plan
is required) as illustrated by Algorithm 8.

Finally, the planner reads the actionsAF or plansPF file, depending on the kind of output
requested by the user, and translates it in the appropriate output format, writing it to the
output. This phase, as the previous one, works completely ondisk data structures.



CHAPTER8

PLANNING AND CONTROL CASE STUDIES

In this section we show a number of planning case studies for which the disk-based algo-
rithm presented in Chapter 7 has been applied to synthesise plans and universal plan.

We first present some experimental results for two benchmarkdomains, i.e., the contin-
uous version of theGeneratordomain as well as theCooling Systemdomain. We use
these well-known case studies to show how the V-UPMurphi tool can synthesise plans
and universal plan for domains having concurrency on processes and nonlinear dynamics.

Then, we present three significant case studies inspired by the real world specifications
of complex systems, namely theEngine Control of an Autonomous Planetary Lander, the
Planetary Landerand theBatch Chemical Plant. Complete details on these case studies,
including the UPMurphi code generated from the PDDL+ domains, can be found on the
UPMurphi web site [117], together with more complete experiment results. Moreover,
when needed, we use the PDDL+ validator (VAL [96]) tovalidatethe generated plans.

A preliminary versions of these results have been publishedin [56, 49, 50, 51, 52].

8.1 THE NONLINEAR GENERATORDOMAIN

As a first example, we consider the continuous model of theGeneratordomain [95]. A
generator is powered by a fuel tank with a limited capacity of60 fuel units and consumes
one fuel unit per second. During the generator activity (modelled by the theconsume
durative action), two fuel tanks of 25 fuel units each can be used to refuel it (through
the refueldurative action). The refuelling activity is modelled as a durative action with
variable duration (i.e., its duration must be decided by theplanner) and is described by
the Torricelli’s law, which makes the system dynamics nonlinear. Moreover, the domain
also involves concurrency, since theconsumeandrefuelactions take place continuously
and concurrently, and are modelled through continuous processes. The goal is to make
the generator run for 100 seconds.

The PDDL+ model of Figure 8.1 should help to clarify the matter. The durative action
generatehas a fixed duration of 100 and requires that the generator fuel level is always
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positive. Its behaviour affects the fuel level of the generator. Differently, the durative
actionre f uelrequires to specify a generator?g and a fuel tank?t whilst duration depends
to the tank?t volume. Its continuous effect is twofold: on one side it increases the
generator fuel level and the refuel time, on the other side itdecreases the tank fuel volume.
It is worth noting that PDDL+ does not support thesqrt function, which is required to
compute the initial tank’s volume. Nevertheless, according to [95] we use a linear function
of time to supply the square root of the initial volume of the tank.

State space size 1018

Reachable states 29,119,047

Generated plans 126,553

Total synthesis time (sec) 1,430.11

Table 8.1: Universal Plan statistics for the generator domain.

The PDDL+ domain and problem of the generator (as shown in Figure 8.1) as given as
input to V-UPMurphi in order to synthesize a Universal Plan having one generator andtwo
different fuel tanks. Table 8.1 summarizes the results of the universal planning process.
The final universal plan contains 126,553 plans, which is a small fraction of the near 30
million states that the system can reach, showing that thereare many situations in which
the goal cannot be achieved (i.e., a plan cannot be devised bythe planner).

An example of plan is given in Figure 8.1 while its VAL validation report is shown in
Figure 8.2. Roughly speaking, VAL validates a plan with respect to the domain and
problem file. It executes the plan by verifying if the goal is reached and if the plan obeys
the domain constraints (e.g., the precondition of an actionis satisfied, or the duration of
a durative action is hold). Moreover, VAL is able to generatea graphical representation
of the trend of each continuous variable (on the y-axis) withrespect to the time (on the
x-axis). In Figure 8.2 the trend of tanks volumes is depicted. We can note that during the
first 59 seconds the fuel level decreases linearly since no refuel action is performed. Then
the generator is refuelled using tank 1 in the time interval[59,84] and tank 2 in the time
interval [75,87] (thus in the time interval[75,84] the generator is refuelled using both
tanks). Finally, the generator uses the remaining fuel to complete the task.

8.2 THE COOLING SYSTEM DOMAIN

In this case study we considered a classical open thermodynamic system that generates
energy, part of which is lost in friction and hydraulic losses and transformed into heat. The
system shown in Figure 8.3 is composed by an external part, where a pump pours water
continuously at a given rate into two hoses, and an internal part, composed by three water
tanks which leak water at constant rate. The water passes through the pump and is poured
by the hoses into two of the tanks at a time. We assume that hoses can be instantaneously
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PDDL+ generator domain PDDL+ generator problem and plan

( define ( domain generator2 )
(: requirements : fluents : durative-actions

: duration-inequalities)
(: types gen tank)
(: predicates ( refuel ing ?g - gen ?t -
tank)

( generator_ran ?g - gen ))
(: functions ( tank_fuel_ level ?t - tank )

( gen_fuel_ level ?g - gen )
( f low_constant ?t - tank )
( refuel_t ime ?t - tank )
( capacity ?g - gen )
( sqrtvol ini t ? t - tank )
( sqrtvol ?t - tank))

(: durative-action generate
: parameters (?g - gen )
: duration (= ? duration 100)
: condition (over all (> ( gen_fuel_ level
?g) 0) )

: effect ( and ( decrease ( gen_fuel_ level ?
g) (* #t 1))

( at end ( generator_ran ?g)) ) )

(: durative-action refuel
: parameters (?g - gen ?t - tank )
: duration (<= ? duration (* (/ 1 (
f low_constant ?t) ) ( sqrtvol ini t ? t ) ))

: condition ( and ( at start ( not (
refuel ing ?g ?t ) ) )

( over all (< ( gen_fuel_ level ?g) (
capacity ?g)) ))

: effect ( and ( at start ( refuel ing ?g ?t)
)
( at start ( assign ( refuel_t ime ?t) 0) )

( at start ( assign ( sqrtvol ?t ) (
sqrtvol ini t ? t )) )

( increase ( refuel_t ime ?t) (* #t 1) )

( decrease ( sqrtvol ?t ) (* #t (
f low_constant ?t ) ) )

( decrease ( tank_fuel_ level ?t ) (* #t (*
(* 2 ( f low_constant ?t ) ) (- (

sqrtvol ini t ? t ) (* ( f low_constant ?t ) (
refuel_t ime ?t)) ) ) ) )

( increase ( gen_fuel_ level ?g) (* #t (*
(* 2 ( f low_constant ?t) ) (- (
sqrtvol ini t ? t ) (* ( f low_constant ?t ) (
refuel_t ime ?t)) ) ) ) )

( at end ( not ( refuel ing ?g ?t) ))

( at end ( assign ( sqrtvol ini t ? t) (
sqrtvol ?t ) ) ) ))

)

( define ( problem run-generator2)
(: domain generator)
(: objects generator - gen tank1
tank2 - tank )

(: init
(= ( gen_fuel_ level generator)
60)

(= ( capacity generator) 60)
(= ( tank_fuel_ level tank1) 25)
(= ( sqrtvol ini t tank1 ) 5)
(= ( f low_constant tank1) 0.2)
(= ( tank_fuel_ level tank2) 25)
(= ( sqrtvol ini t tank2 ) 5)
(= ( f low_constant tank2) 0.4))

(: goal ( generator_ran generator) )
(: metric minimize ( total-t ime ))

)

; plan

000: ( generate generator) [100]
059: ( refuel generator tank1) [25]
075: ( refuel generator tank2) [12]

Figure 8.1: The PDDL+ continuous generator domain
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Figure 8.2: VAL’s Validation report for a single plan execution of the generator domain

repositioned on any tank. Moreover, we also consider that the water temperature raises
when it passes through the pump, since it is heated by the pumpengine.
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The goal is to keep the amount of water in each of the three tanks abover1, r2 and r3

liters, respectively, for 60 seconds. Moreover, we want thetemperatureT of the water
passing through the pump to stay below 65 degrees.

Figure 8.3: A graphical representation of the cooling system domain

Let vi , with i ∈W = {1,2,3}, denote the volume of water in Tanki andvout
i > 0 denote

the flow of water out of Tanki. Moreover, letvin
j , with j ∈ H = {1,2}, denote the flow of

water introduced into the system through hosej, wherevtotal = vin
1 +vin

2 denotes the water
flow that passes through the pump.

The system is equipped with a controller that switches a hoseto Tanki whenevervi ≤ r i .
The boolean variablef illing i, j is true when tanki is filled through hosej. Therefore, the
variation of the volume of the water in tanki is given by the following equation:

dvi

dt
=

{

vin
j −vout

i if ∃ j ∈ H| f illing i, j = 1

vout
i otherwise

Finally, the water temperature rising can be computed as follows:

dT
dt

= Ps(1−µ)/cpqρ

where the constant values are given in Table 8.2.
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q volume flow through the pump (m3/s) 0.0006

Ps brake power(kW) 0.095

µ pump efficiency 0.05

cp specific heat capacity of the fluid(kJ/kg °C) 4.2

ρ fluid density (kg/m3) 1,000

Table 8.2: Cooling system constants

In the initial state of the system, the tanks are correctly filled and the water temperature
respects the given constraint. However, the pump takes timeto operate at full capacity,
thus during the plan execution it increases its power by∆power, generating more heat. In
this case, the planner may decide to increase the pump flowvtotal by ∆rate in order to mit-
igate the temperature rising (since the water flow cools downthe pump), thus increasing

also eachvin
i by vin

i
vtotal
·∆rate, which may violate the constraint on the tank water level. On

the other hand, the planner may leavevtotal unchanged, risking to violate the maximum
water temperature constraint.

Figure 8.4 shows the PDDL+ model of the cooling system domain, composed by a du-
rative actionfill that, given a tank?t and hose?h, starts the filling action of?t through
?h, which is performed by the processfill tank. Similarly, the tank leaking is modeled
through processleak tank. Note that the two processes may affectconcurrentlythe same
tank. The eventover-rangeis used to invalidate plans in which exists at least one tank
wherevi < r i or vi > ci , while eventoverflowinvalidates all plans for which a hose does
not fill any tank. The eventpump-dangeris triggered when the temperature of the water
passing through the pump is greater than thedangerlevel.

The processsystemactivity is used to measure the time elapsed since the beginning of
the firstfill action. Indeed, after a given amount of execution, the eventpower-increasing
is triggered, increasing the pump’s power consumptionps by ∆power. The effect of such
event is to allow the execution of the actionincreaserate, which in turn increases the
pump flowvtotal by ∆rate, modifying the water flow in the hoses and changing the dynam-
ics of the system from linear to nonlinear.

State space size 1021

Reachable states 33,059,357

Generated plans 17,188,665

Total synthesis time (sec) 1,430.11

Table 8.3: Cooling system universal plan generation statistics.

We used V-UPMurphi to generate the universal plan that controls the system activity for
exactly one minute, starting from the initial condition shown in Figure 8.5. The results in
Table 8.3.

In Figure 8.6 we show an example of validation report for a complete plan starting from
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PDDL+ durative action PDDL+ processes and events

( define ( domain cool ing_system)
(: types tank hose pump)
(: predicates ( fai l )

( system_star t)
( f i l l ing ?t - tank ?h - hose)
( busy ?h - hose)
( warning ))

(: functions (v ?t - tank )
( v_out ?t - tank )
(c ?t - tank)
( v_in ?h - hose)
( r ?t - tank)
( system_counter)
( temp ?p - pump)
(p_s ) (mu) ( c_p ) (q)
( rho )
( delta_rate )
( delta_power )
( plan_length )
( danger_ level) )

(: durative-action fill
: parameters (? t - tank ?h - hose)
: duration (>= ? duration 0)
: condition ( at start ( not ( busy ?h)) )
: effect ( and

( at start (busy ?h))
( at start ( syste_start ) )
( at start ( f i l l ing ?t ?h))
( at end ( not ( f i l l ing ?t ?h)) )
( at end ( not ( busy ?h)) )

)
)
(: action increase_rate

: parameters (? h1 ?h2 - hose)
: precondition ( warning )
: effect ( and

( increase ( v_in ?h1)
(* 1000 (* ( delta_rate ) (/( v_in ?h1)(q)
) )) )

( increase ( v_in ?h2)
(* 1000 (* ( delta_rate ) (/( v_in ?h2)(q)
) )) )

( increase (q)
( delta_rate )) )

)

(: event over-range
: parameters (? t - tank)
: precondition ( or

(< (v ?t ) ( r ?t ) )
(> (v ?t ) (c ?t ) ) )

: effect ( fai l )
)
(: event overf low

: parameters (?h1 ?h2 - hose)
: precondition ( and

( system_start)
( or ( not ( busy ?h1))
( not (busy ?h2)) ) )

: effect ( fai l )
)
(: event pump-danger

: parameters (?p - pump)
: precondition

(> ( temp ?p)
( danger_ level) )

: effect ( fai l )
)
(: event power- increasing

: parameters ()
: precondition ( and

(>= ( system_counter) (/ ( plan_length
) 2))

( not ( warning )) )
: effect ( and ( warning )

( increase (p_s ) ( delta_power )) )
)
(: process f i l l_tank

: parameters (? t - tank
?h - hose)

: precondition ( and
( f i l l ing ?t ?h)
( system_start) )

: effect ( increase
(v ?t ) (* #t ( v_in ?h)) )

)
(: process leak_tank

: parameters (? t - tank)
: precondition ( and ( system_start) )
: effect ( decrease (v ?t )

(* #t ( v_out ?t ) ) )
)
(: process system_act iv i ty

: parameters ()
: precondition ( system_start)
: effect ( increase ( system_counter)

(* #t 1))
)

Figure 8.4: The PDDL+ cooling system domain
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PDDL+ problem PDDL+ plan

( define ( problem cool ing_system_1)
(: domain cool ing_system)
(: objects tank1 tank2 tank3 - tank

hose1 hose2 - hose pump1 - pump)
(: init

(= (v tank1) 0.2) ;liters
(= (v tank2) 0.6)
(= (v tank3) 0.9)
(= (c tank1) 1.5) ;liters
(= (c tank2) 1.5)
(= (c tank3) 1.5)
(= (r tank1) 0.1) ;liters
(= (r tank2) 0.2)
(= (r tank3) 0.2)
(= ( v_out tank1) 0.1) ;liters
(= ( v_out tank2) 0.3)
(= ( v_out tank3) 0.2)
(= (v_in hose1) 0.3) ;liters
(= (v_in hose2) 0.3)
(= ( system_counter) 0)
(= (q) 0.0006) ; the sum of v_in in mˆ3
(= (p_s ) 0.13) ; kW
(= (mu) 0.05)
(= (c_p ) 4.2 ) ; kJ/kg ◦C
(= ( rho ) 1000 ) ; Kg/mˆ3
(= ( delta_power ) 0.19) ; kW
(= ( delta_rate ) 0.00005) ; in mˆ3
(= ( temp pump1) 60)
(= ( plan_length ) 60)
(= ( danger_ level) 65)
( system_star t)
( not ( fai l ) )

)
(: goal ( and

( not ( fai l ) )
(= ( system_counter) ( plan_length )) ) )

(: metric minimize ( total-t ime )) )

000:( fill tank1 hose1) [001]
000:( fill tank1 hose2) [003]
001:( fill tank2 hose1) [059]
003:( fill tank3 hose2) [010]
013:( fill tank1 hose2) [005]
018:( fill tank3 hose2) [010]
028:( fill tank1 hose2) [005]
033:( fill tank3 hose2) [010]
043:( fill tank1 hose2 ) [005]
048:( increase_rate hose1 hose2 )
048:( fill tank3 hose2 ) [008]
056:( fill tank1 hose2 ) [004]

Figure 8.5: The PDDL+ cooling system problem and one of the devised plans
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Figure 8.6: Validation report for a single plan execution ofthe cooler system domain.
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the start state given in Figure 8.5. In particular, Figures 8.6a, 8.6b, 8.6c describe the
amount of watervi in each tanki, Figure 8.6d shows the evolution ofvin

j for each hosej,
and Figure 8.6e the water temperature rise.

8.3 THE ENGINE CONTROL OF AN AUTONOMOUS

PLANETARY LANDER

This section presents a case study where planning is appliedto automatically control the
engine of an autonomous vehicle during a planetary exploration mission.

Autonomous planetary vehicles, commonly known as rovers, are a great challenge in the
field of autonomous vehicles, since they have often to take actions on a hazardous ground
with narrow time and energy consumption constraints. Rovers operating on distant planets
may receive commands from Earth operators only once per day,and during the remaining
time they have to perform a specific mission, which may include moving to a specific
place, position some instruments, take measures, etc [87, 159].

Usually, rover activities are converted on the ground into adetailed plan that, once gener-
ated and uploaded to the vehicle, drives it for the rest of themission. Therefore, planning
for this kind of autonomous vehicles should be very precise and take into consideration
many factors [167].

Many rover activities begin with a movement that places it ina specified location. Thus,
independently from the nature of the rover’s mission, reaching the activity location is the
first goal to achieve, and it must satisfy two main constraints: energy and time consump-
tion. This is the case of theEngine Control of an Autonomous Planetary Landerwhere we
show how V-UPMurphi can be used to generate optimal plans to control arover’s engine,
in order to move it for a specific distance in the least possible time, while satisfying a set
of technical constraints and trying to save energy.

In the presented case study, the rover dynamics and behaviour, including some common
technical constraints, have been modelled through generalequations, that may apply to a
wide range of vehicles. Plans have been optimized to minimise energy and time require-
ments, and the given minimal battery charge is always preserved. Therefore, the results
are quite realistic.

The rover can be naturally modelled as a hybrid system, with several nonlinear charac-
teristics. Thus, we have a dynamics very hard to compute, which makes planning quite
difficult.
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8.3.1 ROVER SPECIFICATION

The rover model used in our case study is based on the Mars exploration rover described
in [120].

In general, an exploration rover moves on the planet surfaceto observe different phenom-
ena and/or try some experiments. The rover can recharge its batteries through a solar
panel, but recharge cannot take place continuously, and theenergy from the panels is not
enough to directly power the rover. Therefore, it must minimize the energy consumption
in order to have always enough battery charge for the next activity.

Moreover, the rover has limited communication and computation resources, so it must be
programmed with a detailed plan of activity and then left operating, without any chance
to recover from an error or recompute its mission. If something wrong or unexpected hap-
pens, the best that the rover can do is to stop, reset and wait for the next Earth connection
to get new instructions.

The plan we want to generate does not address the actualrouteof the rover, butcontrols
the vehicle engine and instrumentsduring the route itself. Routing is a different problem,
so just we assume that a (possibly straight) route of lengthdf inal has been separately
planned and will be used to control the steering of the rover wheels.

When moving, the rover is subject to friction and drift due tothe - often unpredictable
- ground characteristics. Thus, everydmax meters, it has to stop fortc seconds to look
at its actual position and conditions, before starting again to move. These frequent stops
may also be useful to ensure a proper cooling of the rover wheels and instruments, if
moving in a hot environment. For sake of generality, in the following we shall call these
stops “cooling tasks”. However, we assume that the route duration be less or equal totmax

seconds, since the overall rover mission should not exceed areasonable limit.

The rover has a base energy consumptiongs Joule/second, used to power its CPU.

The energy (expressed in Joule/second) required to move therover with speedv and ac-
celeration ˙v can be evaluated by applying the general functionf of Equation 8.1, where
m is the vehicle mass andf a is its frontal area (see [162] for details).

f (v, v̇) =

(

1
2
·ρ ·v2 ·Cd· f a+m·g·

(

Crr +
v̇
g

))

·v (8.1)

In the equation, constantsρ, g indicate the planet air density and its gravitational constant,
respectively, whereasCd andCrr are the drag and rolling coefficients of the rover.

Finally, the cooling tasks require a constant energy ofgc Joule/second.

The rover dynamics (i.e., the covered distanced, the speedv and the acceleration ˙v) is
given by Equation 8.2.
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∂v
∂t = a(t)−µ·g
∂d
∂t = v(t)

(8.2)

wherea(t) is the acceleration given by the rover motor at timet andµ is the kinetic friction
coefficient for the rover wheels.

We assume that, in each communication session, the Earth control sends to the rover a plan
to drive it to the next place, and the commands needed to startthe corresponding activity.
Such plan consists of a sequence of actions, to be performed at 1 second intervals, chosen
from the setA= {accelerate, decelerate, continue(moving at constant speed), perform a
coolingtask}.

The plan must obey the following constraints:

• the rover must not exceed the speed ofvmax;

• the rover must stop everydmax to perform a cooling task;

• the rover must stop afterdf inal (to start the activity) with a residual battery charge
not lower thancmin;

• the rover route must not require more thantmax seconds.

In particular, we must ensure that, after moving to the givenlocation, the rover has still
enough battery charge available for its activity.

Finally, the plan must drive the vehicle to its goal as soon aspossible, since saving time
allows the rover to complete more activities before its lifeterminates.

8.3.2 ROVER MODELLING

The dynamics and constraints given above have been first modelled as a hybrid automaton,
shown in Figure 8.7. The state of the automaton iss= (x,q) ∈ S, whereq∈ {stopped,
running, braking, cooling, engine blown, no energy} andx= (d,a,v,T,Tc).

The rover is initially in astoppedstate, where the only energy consumption is given bygs.
When started, the rover enters therunningstate and moves as described by Equation 8.2
while its energy consumption is increased by the value givenby Equation 8.1. The vehicle
can accelerate and decelerate with steps of 1.5cm/s2. After dmaxmeters, the vehicle starts
braking and, once stopped, it begins thecooling phase, with the corresponding energy
consumption. After 6 seconds of cooling (Tc in the automaton), the vehicle restarts and
continues in therunningstate.
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RUNNINGSTOPPED ENGINE

BLOWN

BREAKING NO ENERGY

start

d’:=0    a’:=0

v’:=0    c’:=c

T’:=0    T’M:= 0

engineExplode

V > VMAX

energyEnd

c < cmin

decelerate

a’ := a – 1.5

accelerate

a’ := a + 1.5

maxDistance

d = dMAX

energyEnd

c < cmin

engineExplode

V > VMAX

d = 0    a = 0

v = 0    c = -gs
T = 0    TC = 0

d = v    a = 0

v = a-µg  

c = -(f(v,a)+gs)

T = 1    TC = 0

d = 0    a = 0

v = 0    c = 0

T = 0    TC = 0

d = 0    a = 0

v = 0    c = 0

T = 0    TC = 0

COOLING

d = 0  a = 0

v = 0  c =-(gc+gs)

T = 1  TC = 1 arrest

v = 0

T’C := 0

restart

TC = 6

energyEnd

c = 0    

d = v    a = -1.5

v = a-µg  

c = -(f(v,a)+gs)

T = 1    TC = 0

Figure 8.7: Hybrid automaton for the Control of Autonomous Planetary Lander case study

The automaton also shows two possible failure conditions: if the rover moves faster than
the max allowed speedvmax, its engine blows up (engine blownstate): in this case, the
entire mission could fail. On the other hand, if the consumedenergy exceeds the limitcmin,
the rover stops (no energystate), using the residual energy to wait for Earth instructions.

We fixed the model constants to the values given in Table 8.4, most of which are obtained
from rover specifications like [159] and [87]. Note that we assume that the rover operates
on the Mars surface.

Finally, according to Definition 8, we evaluate the cost of the generated plan through the
functionC(si,ai) defined as in Equation 8.3.


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
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







gs
2

tmax−i +Ca(ai) if qi = stopped

(gs+gc)
2

tmax−i +Ca(ai) if qi = cooling

0 if qi ∈

{

no energy,

engine blown

}

(gs+ f (vi ,v̇i))
2

tmax−i +Ca(ai) otherwise

(8.3)

wheres∈ S,a∈ A. Here,Ca = 0 since all the actions are instantaneous and do not require
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Table 8.4: Constant values for the rover model

ρ Air density 0.1 Kg/m3

g Gravitational acceleration 3.8 m/s2

m Vehicle mass 71.73 Kg

µ Kinetic friction coefficient 0.8

cmax Initial battery charge 18,000C

cmin Min final battery charge 17,000C

vmax Max speed 10 cm/s

amax Max acceleration 5 cm/s2

gs CPU energy requirements 25 J/s

tc Cooling duration 6 s

dmax Distance between coolings 1.30 m

gc Cooling energy requirements10 J/s

df inal Final distance 2 m

tmax Max plan duration 60 s

energy.

This definition ofC allows one to perform optimization on both energy and time, as
required, still giving more importance to the energy component. Indeed, usually the mis-
sion could be accomplished even if it requires some seconds more than the planned limits,
whereas running out of battery charge could lead to dangerous failures.

The resulting model has been translated to a FSS, encoded in the CMurphi description
language, with the same state variables and transition function of the hybrid automaton in
Figure 8.7. In this phase, the continuous state variables have been suitably discretised: in
particular, we applied an approximation of 0.1 to all the variables, thus the total number
of different states of the FSS is 2.2 ·1013.

8.3.3 UPMURPHI MODEL

The UPMurphi rover model, we applied an approximation of 0.1to all the variables, and
introduced thevsa f emax≤ vmax constant as the actual maximum speed. This gives us a
chance to set a further safety threshold on the speed, to prevent an engine blow due to
approximation errors. On the other hand, the journey time will be measured in seconds,
since it is a reasonable update interval for the rover enginestatus. It is worth noting that,
with the given discretisation, the total number of different states of the FSS is 2.2 ·1013.
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Figure 8.8 shows the resulting UPMurphi code, where for sakeof simplicity we omit the
declaration of constants and state variables.

The start state of the model,stopped, describes the corresponding initial state of the hybrid
automaton, i.e., fixes the initial conditions of the rover. Then, thestart rule initiates the
rover movement by setting the running variable to true.

The other five model rules, namelyaccelerate, decelerate, running, braking andcool-
ing, model the main transitions and states of the automaton. In particular,accelerateand
decelerateupdate the acceleration variable as described by the corresponding automaton
transitions. These rules have a null duration and weight, according to the hybrid automa-
ton semantics, since they represent instantaneous updates.

On the other hand, therunning, braking andcooling rules have duration 1, since they
model the changes in the rover state (i.e., speed, distance and battery charge) during a time
step of one second. Such updates are actually performed by the running statusupdate,
braking statusupdateandcooling statusupdateprocedures, respectively, which concen-
trate the update logic found in the entire automaton, i.e., the updates specified on the
maxDistance, arrest and restart transitions and the ones contained in the running and
cooling states. The status update procedures, in turn, compute some values through exter-
nal C functions (e.g.,updatec cooling) that are used to evaluate the complex expressions.
Moreover, the external functionscostmovingandcostcooling are used to dynamically
calculate the weight of each rule, as defined by the cost function shown by Equation 8.3.
The invariantsengineExplodeand energyEndmodel the homonymous transitions that
lead, in the automaton, to error states (engineBlownandnoenergy, respectively). These
states are not modelled here, since the planner automatically detects as errors all the states
that violate an invariant. Finally, the goal construct is used to declare the success condition
of the model, i.e., when the rover completes successfully its journey.

8.3.4 PLANNING

To build the optimal plan, the FSS was given in input to V-UPMurphi, which generated
939,477 reachable states in 2,257 seconds, with a peak memory requirement of 500 MB.
Note that the reachability analysis performed by the tool allowed us to consistently prune
the system state space, as reported in Table 8.6. The resulting plan is described in Ta-
ble 8.5.

The table reports, for each second (which is the plan sampling time, as discussed earlier)
the model rule (with respect to the code in Figure 8.8) chosenby V-UPMurphi. Thus, the
rover starts its journey whenStart is selected, moves whenRunningis selected, brakes
whenBrakingis selected, increases or decreases its speed whenAccelerateor Decelerate
are selected, respectively, and performs aCoolingwhen the homonymous rule is chosen.
Note that we may have more than one rule executed in a single time step, since some of
them (namely,Start, AccelerateandDecelerate) have duration zero.
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Model rules Support procedures

startstate " stopped "
BEGIN

a := 0.0; d := 0.0;
v := 0.0; c := c_max ;
T_c := 0.0;
cool ing := false;
braking := false;
running := false;

END;

rule " start "
durat ion : 0;
weight : 0;
(! running & ! cool ing & ! braking ) ==>
BEGIN

running :=. true;
END;

rule " accelerate "
duration : 0;
weight : 0;
( running & ! cool ing & ! braking ) ==>
BEGIN

a := a + 1.5;
END;

rule " decelerate "
duration : 0;
weight : 0;
( running & ! cool ing & ! braking ) ==>
BEGIN

a := a - 1.5;
END;

rule " running "
duration : 1;
weight : cost_moving () ;
( running & ! cool ing & ! braking ) ==>
BEGIN

running_status_update() ;
END;

rule " braking "
duration : 1;
weight : cost_moving () ;
(! running & ! cool ing & braking ) ==>
BEGIN

brak ing_status_update() ;
END;

rule " cool ing "
duration : 1;
weight : cost_cool ing() ;
(! running & cooling & ! braking ) ==>
BEGIN

cool ing_status_update() ;
END;

invariant " engineExplode "
(!( running & v > v_safemax )) ;

invariant " energyEnd " (!( c < c_min ));

goal " success " (v = 0 & d = d_final );

procedure running_status_update() ;
BEGIN

d := update_d (d,v ,a) ;
v := update_v (v ,a) ;
c := update_c (rho ,v ,m,g ,a ,h , f) ;
-- maxDistance
IF ((d = d_max ) & (T_C = 0) ) THEN

braking := true;
running := false;

ENDIF;
END;

procedure brak ing_status_update() ;
BEGIN

a := a - 1.5;
d := update_d (d ,v ,a) ;
v := update_v (v ,a) ;
c := update_c (rho ,v ,m,g ,a ,h ,f ) ;
-- arrest
IF (v=0 & a =0) THEN

braking := false;
cool ing := true;
T_c := 0;

ENDIF;
END;

procedure cool ing_status_update() ;
BEGIN

T_c := T_c +1;
-- cooling
IF ( T_c <= 6) THEN

c := update_c_cool ing(c ,g ,v ,m);
ELSE
-- restart

cool ing := false;
running := true;

ENDIF;
END;

Figure 8.8: UPMurphi code for the Autonomous Planetary Vehicle case study.



8.3 The Engine Control of an Autonomous Planetary Lander 79

Table 8.5: Optimal plan.

T(sec) Rule T(sec) Rule T(sec) Rule

0

Start

15 Running 30 CoolingAccelerate

Running

1
Accelerate

16 Running 31 Cooling
Running

2 Running 17 Running 32 Cooling

3
Decelerate

18 Running 33 Cooling
Running

4
Decelerate

19 Running 34 Cooling
Running

5
Decelerate

20 Running 35 Cooling
Running

6 Running 21 Running 36
Accelerate

Running

7 Running 22
Accelerate

37 Running
Running

8
Accelerate

23 Running 38
Decelerate

Running Running

9 Running 24 Running 39
Decelerate

Running

10 Running 25 Braking 40
Decelerate

Running

11 Running 26 Braking 41
Decelerate

Running

12 Running 27 Braking 42
Decelerate

Running

13 Running 28 Braking

14 Running 29 Cooling
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Table 8.6: Optimal plan statistics

Course length 43 s

Energy consumption 77.3 C

Residual battery charge17,922.7 C

Time inStoppedstate 1 s

Time in Runningstate 32 s

Time inBrakingstate 4 s

Time inCoolingstate 6 s

It is worth noting that the plan optimization allowed us to save 922.7 C with respect to the
required minimal battery charge, and 17 seconds with respect to the maximum allowed
plan duration.

Finally, the generated plan has been further validated by simulating its execution on the
rover model. The graphs in Figure 8.9 show the evolution of some important rover state
variables during the simulation, which ends correctly after df inal = 2 m. In particular, we
can compare the battery discharge graph with the rover speedand acceleration during the
entire course. Note that, in the highlighted cooling phase,the battery discharge rate is
higher even if the vehicle is stopped, due to the instrumentsactivation.

Another interesting plan analysis is given in Figure 8.10, where we plot the rover engine
energy requirements, i.e., the value off in Equation 8.1, and the value of the cost function
C(π)during the plan evolution. The graph clearly shows that, as required, the plan cost
is very tightly related to the energy consumption, since thebattery charge is a critical
resource, whereas the time has a considerably lower impact (for example, look at the
small increment of the cost when the required energy is constant, betweenT = 8 and
T = 22).

8.4 THE ACTIVITY PLANNING FOR A PLANETARY

LANDER

In Section 8.3 we treated the problem of control the engine ofan autonomous planetary
lander. In this Section we address the activity planning problem for a planetary lander.
Indeed, when the rover has reached its final position it needsto perform some observation
tasks minimising power consumption, recharging the batteries during the sunlight. More-
over, the rover has to complete its task as soon as possible, since environmental conditions
may quickly change, and in general a shorter task duration means that the rover will be
able to perform more activities during the mission time. This is the case ofThe Plantery
Lander domain, inspired by the Beagle2 Mars Lander [21] and proposed as a PDDL+
model in [75].
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Figure 8.9: Optimal plan evolution: battery charge, speed and acceleration.

Figure 8.10: Optimal plan evolution: engine energy requirements and cost function.
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The planetary lander domain and problem which we present areinspired by the specifi-
cations of the “Beagle 2” Mars probe [21], designed to operate on the Mars surface with
tight resource constraints. In particular, we use the PDDL+domain presented by [75],
based on a simplified model of a solar-powered lander, thePlanetary Lander. Table 8.7
shows an overview of the main domain elements with their preconditions.

Name Type Precondition

nightfall Event (daytime>= dusktime) & day

daybreak Event (daytime>= 0) & ¬day

charging Process (supply>= demand) & day

discharging Process (supply< demand)

generating Process (day)

night-operation Process (¬day)

fullprepare &

prepareObs1 Durative action ∀t ∈ ActionDuration

prepareObs2 (battery>= sa f elevel)

readyForObs1 &

Observe1 Durative action ∀t ∈ ActionDuration

(battery>= sa f elevel)

readyForObs2 &

Observe2 Durative action ∀t ∈ ActionDuration

(battery>= sa f elevel)

Table 8.7: A snapshot of the main PDDL+ domain elements for the planetary lander case
study

Basically, the lander must perform two observation actions, calledObserve1and Ob-
serve2. However, before making each observation, it must perform the corresponding
preparation task, calledprepareObs1andprepareObs2, respectively. Alternatively, the
probe may choose to perform a cumulative preparation task for both observations by exe-
cuting the single long actionfullPrepare. The shorter actions have higher power require-
ments than the single preparation action.

The power needed to perform these operations comes from the probe solar panels. The
energy generated by the panels (through thegeneratingprocess) is influenced by the po-
sition of the sun, i.e., it is zero at night, rises until midday and then returns to zero at
dusk. Power coming from the solar panels is also used to charge a battery (thecharging
process), which is then discharged to give power to the lander (thedischargingprocess)
when the panels do not produce enough energy (e.g., at night). Moreover, the probe must
always ensure a minimum battery level to keep its instruments warm.

The state of charge of the battery is therefore an important variable to monitor. Unfor-
tunately, it follows a complex curve, since the charge/discharge process is nonlinear, and
has several discontinuities, caused by the initiation and termination of the actions. Indeed,
Table 8.8 shows the set of ordinary differential equations that are used to recalculate the
values of the state variablessoc (state of charge) andsupply(solar panel generation).
The symbols used in the equations have the following meaning: s= soc, h = supply,
d = demand, r = chargerate, sc= solar constandD = daytime. The equations clearly
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show the nonlinear dynamics of the system.

Name ODE

charging ds(t)
dt = [h(t)−d(t)] · r · (100− s(t))

discharging ds(t)
dt =−[d(t)−h(t)]

generating dh(t)
dt = [sc·D(t)]·

·[(D(t) · ((4 ·D(t))−90))]+450

Table 8.8: PDDL+ events and processes for the planetary lander case study, with associ-
ated ordinary differential equations

Obviously, the problem here is to find the best correct sequence of actions to achieve the
probe goal in the shortest time possible, starting from any reasonable initial configuration.
For sake of brevity, here we do not show the PDDL+ problem domain, which can be read
in [75].

8.4.1 DOMAIN SPECIFICATION

The start state cloud for the universal planning algorithm was selected by taking into
account a set of reasonable configurations of the state variablessocanddaytime. Note
that it is realistic to consideronly these parameters, since they define the environmental
conditions to which the lander will be subject at the beginning of its mission. All the other
domain parameters were fixed to the values inferred by looking at [21].

In particular, we suppose that the rover landing hour may be between 0 and 8, that cor-
responds to the central daylight hours in Martian time (the rover is supposed to land in
this range of hours, since they offer the best possible starting conditions). On the other
hand, since the battery is not used before landing, and its self-discharge rate is mini-
mal, we can safely suppose that the initial battery state of charge will be between 90%
and 100% with steps of 1%. Therefore, the start state cloud will be defined as the set
{(s,d)|s∈ [90%,100%]∧d∈ [0,8]}.

8.4.2 UNIVERSAL PLANNING

Given the domain variables and their ranges as well as the time discretisation, we can eas-
ily calculate the space size of the system is about of 1024 states. Thanks to the reachability
analysis, V-UPMurphi generated an optimal solution for theuniversal planning problem,
starting from the given start state cloud, and visiting onlya small fraction of the state
space (i.e., 31 million of reachable states) in less than 40 minutes on a 2.2GHz CPU with
2 GB of RAM. The synthesis statistics are in Table 8.9.

Note that the first goal was found after 174 steps, but the synthesis was performed up to
the fixed horizon of 200 steps, which is a reasonable upper bound for the lander activity
completion (it represents about two Martian days).
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State space size 1024

Search depth limit 200 BFS levels

First goal reached after 174 BFS levels

Reachable states 31,965,220

Start states to goal 100%

States to goal (generated plans) 5,309,514

Forward analysis time 1,969.3 seconds

Plan generation time 296.51 seconds

Total synthesis time 2,265.81 seconds

Peak memory requirements (hash table) 1800MB

Table 8.9: Planetary lander universal plan generation statistics.

The generated solution contains more than 5 million plans, and thus it is able to bring to
the goal more than 16% of the reachable states. Due to the exhaustive search performed
by the tool, we can safely assert that, in the remaining 84% ofthe states, the lander could
not complete its tasks and should therefore quit its missionor delay its initiation.

It is worth noting that, in this case, the use of the disk algorithm (as described in Chapter 7)
has been used to synthesise the universal plan. To this regard, Table 8.11 shows the V-
UPMurphi statistics about the disk usage.

Reachables File 1.7GB

Transitions File 552MB

The Graph File 323MB

The Action File 51MB

Table 8.10: Disk-based Algorithm statistics for the Planetary lander universal plan gener-
ation.

In Figure 8.11 we provide an extracted plan for planetary lander, whilst Figure 8.12 shows
the VAL’s plan validation report describing the evolution of variablessoc, supply, daytime,
anddemandwith respect to the time. In the reported example the lander starts its mis-
sion in the middle of the martian day with an almost full battery charge. In this case the
planner preferred to performs the two preparation observations tasks instead of thefull-
Preparetask. The plan starts performingprepareObs1andprepareObs2which require a
low energy demand (Figure 8.12d). During this phase, the lander can generates energy
and recharge the battery (Figures 8.12a and 8.12b) whilst, during the martian night, all
the energy is used to perform task and to heat instruments. Then, the plan devotes all the
second mission day to perform the last observation task, using the daylight to generate
energy.

However, to further estimate the precision of the plans, we compared the variable values
computed by VAL during the validation process with the corresponding values output by
the UPMurphi plan synthesis process, computing the normalised root mean squared error
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0.1: (PrepObs2) [1.5]
1.7: (PrepObs1) [1]
2.8: (Obs2) [7.5]
10.4: (Obs1) [7]

Figure 8.11: A plan for the planetary lander
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(NRMSE), as shown in Table 8.11. The NRMSE is at most 2% in all the generated plans
for the nonlinear variablesoc, at most 0.6% for nonlinear variablesupplyand always zero
for the linear variabledaytime(not shown in the table). Nevertheless, the average NRMSE
is small: 0.179% forsocand 0.742% forsupply, respectively.

A repository of the generated PDDL+ problems and plans with validation reports can be
found at [48].

Min Max Avg

soc 0 % 0.625,392 % 0.179,329 %

supply 0 % 2.060,061 % 0.742,575 %

Table 8.11: Normalised root mean squared error for variables socandsupplyin the plan-
etary lander case study, with continuous variable roundingand time discretisation to 0.1

8.5 THE BATCH CHEMICAL PLANT

The last case study is theBatch Chemical Plant, first presented by Kowalewski [113].
The goal is to produce saline solution at a given concentration. If part of the product is
not used, the plant can recycle it to restart another production cycle.

This case study has been tackled in the VHS (Verification of Hybrid Systems)
project [166] to (1) make a plan for the synthesis of saline solution and (2) toverify
that the control routines for the single steps work correctly. In particular, our main con-
tributions are in (1) formalisation, through PDDL+ language of the domain dynamics and
(2) in the synthesis of the optimal universal plan for the system that, starting from a set
of initial plant’s configurations, produces saline solution recycling the unused part for the
next production phase minimising the production time.

The plant (shown in Figure 8.13) is composed of 7 tanks connected through a complex
pipeline, whose flow is regulated by 26 valves and two pumps. In particular, tank 5 is
provided with a heater, whereas tank 6 is connected to a condenser. Finally, tanks 6 and
7 are surrounded by a cooling circuit. A set of sensors provide information to the plant
controller about the filling level of tanks 1,2,3 and 5, the pump pressure and the condenser
status.

In the plant initial state, all the valves are closed, and thepumps, heaters and coolers are
switched off. Tank 1 contains saline solution at a high concentrationchigh, whereas tank
2 contains water.

If tank 1 does not contain enough solution, the plant enters thestartup phase: water from
tank 2 is moved to tank 3, where a suitable amount of salt is added manually to reach the
required concentration, and finally pumped to tank 1. Note that tank 2 can be refilled with
water at any time by opening the appropriate input valve.
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When tanks 1 and 2 are appropriately filled, the plant can start theproduction phase. Tank
3 is partially filled with the solution from tank 1, which is then diluted using the water
from tank 2 up to the requested concentration.

The resulting saline solution can be taken from the output valve of tank 3. If the product
is not completely used, the plant recycles it in the next production cycle. To this aim, the
solution in tank 3 is moved to tank 4 and then to tank 5. Here, the solution is boiled by
the heater until it reaches the concentrationchigh, and then moved to tank 7. The steam
produced by this process is piped to the condenser that fills tank 6 with the resulting
water. Finally, tanks 6 and 7 are cooled and their contents are pumped to tanks 2 and 1,
respectively.

During the startup and production cycles the plant must obeysomesafety constraints:

1. pumps can be switched on only if all the valves in their pipeline are open,

2. the heater cannot be switched on if tank 5 is empty, or the condenser is switched
off, or if the valves involved in the heating/condensation process are closed,

3. only two cooling circuits (including the one used by the condenser) can be switched
on at the same time,

4. tanks cannot be filled and emptied at the same time,

5. the content of each tank must not exceed the correspondingcapacity limitations
[113], which are lower than the tank volume.

Ak cross section of tankk

ck saline concentration in tankk

cp, j heat capacity of solution in tankj

∆hvap,s vaporisation enthalpy of solutions

hk filling level of tankk

Kk,l volume flow from tankk to tankl

Pheat heating power

Pcool,k cooling power for tankk

ρ j density of solution in tankj

Tk temperature of solution in tankk

V̇i volume flow through valvei

V̇pk,l volume flow through pump from tankk to tankl

ak,l section of pipe between tanksk andl

Hk,l length of pipe between tanksk andl

ζk,l resistance of pipe between tanksk andl

Table 8.12: Batch chemical plant constants
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8.5.1 DOMAIN SPECIFICATION

The plant dynamics is described by [57] through a set of differential equations. In par-
ticular, given the constants and variables shown in Table 8.12, the following equations
describe the variation of the filling level for tanks directly connected by a pipe with an
open valve (and possibly a pump switched on) during the startup phase:

A2
dh2

dt
= V̇7 (8.4)

A2
dh2

dt
= −V̇9 =−K2,3x;x∈ [1;x2,max] (8.5)

A3
dh3

dt
= V̇9 = K2,3x;x∈ [1;x2,max] (8.6)

A3
dh3

dt
= −V̇p3,1 (8.7)

A1
dh1

dt
= V̇p3,1 (8.8)

(8.9)

whereas the following equations describe the same variation for tanks involved in the
production phase:

A1
dh1

dt
= −V̇8 =−K1,3x;x∈ [1;x1,max] (8.10)

A3
dh3

dt
= V̇8 = K1,3x;x∈ [1;x1,max] (8.11)

A2
dh2

dt
= −V̇9 = K2,3x;x∈ [1;x2,max] (8.12)

A3
dh3

dt
= V̇9 = K2,3x;x∈ [1;x2,max] (8.13)

A3
dh3

dt
= −V̇11 =−K3,4x;x∈ [1;x3,max] (8.14)

A4
dh4

dt
= V̇11 = K3,4x;x∈ [1;x3,max] (8.15)

A4
dh4

dt
= −V̇12 =−K4,5x;x∈ [1;x4,max] (8.16)

A5
dh5

dt
= V̇12 = K4,5x;x∈ [1;x4,max] (8.17)

A5
dh5

dt
= −V̇12 =−K5,7x;x∈ [1;x5,max] (8.18)

A7
dh7

dt
= V̇12 = K5,7x;x∈ [1;x5,max] (8.19)

(8.20)

here,Kk,l =

√

2ga2
k,l Hk,l

1+ζk,l
andx=

√

hk
Hk,l

+1.

The variation of the filling level in tanks 5 and 6 is expresseddifferently, due to the effects
of evaporation and condensation, respectively:



90 Chapter 8. Planning and Control Case Studies

A5
dh5

dt
=

ṁvap

−ρsol
(8.21)

A6
dh6

dt
=

ṁvap

ρw
(8.22)

Equations are also given to calculate the variation of concentration and temperature in the
tanks. The following equations compute the solution concentration in tanks 3 and 5:

A3(c3
dh3

dt
+h3

dc3

dt
) = V̇9c2 (8.23)

A5(c5
dh5

dt
+h5

dc5

dt
) = −ṁvapc5 (8.24)

similarly, the temperature of tanks 5,6,7 is computed by thefollowing equations:

cp,solρsolA5h5
dhT5

dt
= Pel (8.25)

T5cp,solρsolA5
dhT5

dt
= Pel− ṁvap(cp,solT5+∆hvap) (8.26)

cp,loρloA7h7
dT7

dt
= −Pcool (8.27)

cp,wρwA6h6
dT6

dt
= −Pcool (8.28)

8.5.2 SYSTEM MODELLING

The most challenging and interesting aspect of the chemicalplant specification is the
production phase, so in the following we will focus only on the modelling of this phase.

This continuous, time-dependant domain is mainly modelledusing processes, events and
(flexible) durative actions. Indeed, Figures 8.14, 8.16 and8.17 show representative ex-
amples of such constructs extracted from the model (whose full source is available online
in [47]), which contains a total of 59 predicates, 55 functions (14 of which represent real
values), 19 events, 10 durative actions and 11 processes. Inthe figures,Bx_l , Bx_c , Bx_t

indicate the filling level, solution concentration and temperature for tankx, respectively,
whereasVy, Py andHy indicate valve, pump and heatery, respectively. Finally, the value of
a constantk taken from the problem specification is indicated withC_k.

In the following we describe the main elements of the PDDL+ model for the chemical
plant production phase, highlighting their most interesting features. It is worth noting
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that the model has been written to adhere as much as possible to the formal specification
given by [57]. However, to further check its correctness, weextracted from the universal
plan generated by UPMurphi the single production policy corresponding to the initial
conditions described by [113] and we verified that it was identical to the one (manually)
devised by [113].

; filling durative action (for tank 3)
(: durative-action B3_fi l l
: parameters ()
: duration (>= ? duration 0)
: condition ( and

( at start ( not (V8)) ) ( at start (= (B3_l ) 0) )
( at start (>= (B1_l ) 0)) ( at start ( not (V3)) )
( at start ( not ( V10 )) ) ( at start ( not (V11 )) )
( at start ( not ( B3_fi l led )) ) ( at end (V8))
(over all ( >=( B1_l ) 0)) )

: effect ( and
( at start ( B3_fi l l ing )) ( at start (V8))
( at end ( not (V8)) ) ( at end ( B3_fi l led ))
( at end ( not ( B3_fi l l ing )) ) ) )

; filling process (for tank 3)
(: process B3_f i l l_process
: parameters ()
: precondition ( B3_fi l l ing )
: effect ( and

( decrease ( B1_l ) (* #t (* ( C_5_2) ( sqrt (+ (/ ( B1_l ) ( C_h_1_3 )) 1 )) )) )
( increase ( B3_l ) (* #t (* ( C_5_2) ( sqrt (+ (/ ( B1_l ) ( C_h_1_3 )) 1 )) )) ) ) )

Figure 8.14: Examples of durative actions and processes modelling the production phase
of the batch chemical plant

Production Activities. The production activities, such as moving the solution froma
tank to another, cool it down, etc., some of which can possibly be executed in parallel, are
modelled using durative actions. However, the duration of these activities is not known
a priori, thus the planner should determine the time point at which the tank capacity
(or required concentration, or temperature) is reached. Toachieve this, we useduration
inequalitiesin the durative actions. On the other hand, continuous change to solution
level, concentration and temperature in tanks are modelledthrough PDDL+ processes that
update the corresponding model variables following the functions described by [57]. This
modelling schema guarantees an immediate detection (i.e.,triggering of failure events) of
safety violations.

As an example, when tank 1 is nonempty, tank 3 is empty and someother conditions
hold, the durative actionPDDL B3 fill shown in Figure 8.14 moves the solution from
tank 1 to tank 3. The continuous update to the solution level in these tanks due to the
durative action is performed by the processPDDL B3 fill process, which is enabled by
the durative action by setting to true the predicatePDDL B3 filling. The execution of this
process may in turn trigger some events [76], e.g.,PDDL B3 l failure (shown in Figure
8.16) that would invalidate the plan. At the end of the durative action (as chosen by the
planner),PDDL B3 filling is set to false, and the filling process ends.
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(: process B3_f i l l_process
: parameters ()
: precondition ( B3_fi l l ing )
: effect ( and

( decrease ( B1_l )
(* #t (* ( C_5_2)( + (* -0.000415797 (* (B1_l ) (B1_l ) ) ) (+ (* ( B 1_l )
0.0424115 ) 1.00597 )) ) ) )

( increase ( B3_l )
(* #t (* ( C_5_2)( + (* -0.000415797 (* (B1_l ) (B1_l ) ) ) (+ (* ( B 1_l )
0.0424115 ) 1.00597 )) ) ) ))

)

Figure 8.15:PDDL B3 fill process with approximated square root

It is worth noting that the effects ofPDDL B3 fill process involve the calculation of a
square root, which is currently not supported by PDDL+. Therefore, we have also created
and tested anapproximatedmodel (available in [47]), where the square root is substituted
by the second degree polynomial on the variableB1 l that best fits such function within
the bounds deducible from the model dynamics. The corresponding approximatedPDDL
B3 fill process is shown in Figure 8.15.

; pipeline flow failure (during B3 filling process)
(: event B3_f low_fa i lure
: parameters ()
: precondition ( and ( or (V11 ) (V10 )) ( or (V8) (V9)) )
: effect ( not ( correct_operat ion)) )
; heater failure (on tank 5)
(: event H5_fai lure
: parameters ()
: precondition ( or

( and (H5) ( or (V12 ) (V15 ) (V16 )) )
( and (H5) ( not (V13 )) )
( and (H5) ( not (>= ( B5_l ) ( B5_l_safe )) ) ) )

: effect ( not ( correct_operat ion)) )
; tank filling limit failure (on tank 3)
(: event B3_l_fa i lure
: parameters ()
: precondition ( or (< ( B3_l ) 0) (> ( B3_l ) ( B3_l_max )) )
: effect ( not ( correct_operat ion)) )
; pump (2) failure
(: event P2_fai lure
: parameters ()
: precondition ( and (P2) ( not ( or

( and (V25 ) (V28 ))
( and (V25 ) (V5) (V6))
( and (V25 ) (V5) (V4) (V2) (V1) (V3)) ) ) )

: effect ( not ( correct_operat ion)) )

Figure 8.16: Examples of failure events of the batch chemical plant

Production Events. The violation of one of the safety constraints should trigger an
instantaneous change that invalidates the plan. Therefore, such failures have been mod-
elled through PDDL+ events, whose effect is to falsify the invariant predicatePDDL cor-
rect operation.

It is worth noting that, in the chemical plant model, discrete and continuous change are
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combined in the activation conditions of several events [97], making their checking more
complex, but still very important since they may invalidatethe plan [74]. As an example,
eventPDDL H5 failure in Figure 8.16 shows the PDDL+ model of an exogenous event.
Such event is activated when the heater is switched on (PDDL H5 is true) and one of the
valves 12, 15 or 16 is open (PDDL or V12 V15 V16), or valve 13 is closed (PDDL not V3),
or the level of tank 5 is lower than the security level (PDDL not (>= B5 l B5 l safe)).

Finally, the two events shown in Figure 8.17 are used to trigger the end of the plan.
In particular, eventPDDL productionend is triggered when tank 1 contains a sufficient
amount of solution with the required concentration, and itseffect is to set thePDDL pro-
ductioncomplete predicate to true. This, in turn, triggers acascadingeventPDDL pro-
ductionsuccess that, if the plant has operated correctly (i.e., without violating any safety
constraint) and all the valves and pumps have been correctlyclosed, sets thePDDL success
predicate to true to indicate that the goal has been reached.

(: event product ion_end
: parameters ()
: precondition ( and

( B1_fi l led ) (>= ( B1_l ) ( B1_l_target_min))
(< ( B1_l ) ( B1_l_target_max))
(= ( B1_c) ( B1_c_target ) ) ( not ( product ion_ended)) )

: effect ( and ( product ion_complete)
( product ion_ended)) )

(: event product ion_success
: parameters ()
: precondition ( and ( not ( success ))

( product ion_complete) ( correct_operation)
( not ( or (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) (V9) (V10 ) (V11 ) (V12 ) (V13 ) (
V14 ) (V15 ) (V16 ) (V17 ) (V18 ) (V19 ) (V20 ) ( V21 ) ( V22 ) ( V23 ) (V 24 ) (V25 ) (V26 ) (
V27 ) (V28 ) (V29 ) (P1) (P2)) ) )

: effect ( success ))

Figure 8.17: Cascading events triggering the goal of the batch chemical plant

Production Problem. The PDDL+ definition of the problem for the batch chemical
plant production phase is quite straightforward. The domain is initialised by setting the
function and predicate values to the ones obtained after thestartup phase (see [57]), and
the goal is to set thePDDL success predicate to true, minimising thePDDL total-time.

8.5.3 PDDL+ MODEL

We want to use UPMurphi to automatically perform universal planning on the startup and
production phases, in order to generate aset of policiesfor the system.

To this aim, we fist discretise the PDDL+ model, as suggested by [28], by rounding up the
continuous variables up to the first decimal, and the time in steps of 10 seconds. Then, to
generate thestart state cloudsused to initialise our universal planning engine, we proceed
as follows.
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The startup phase is triggered before a new production cycleif tank PDDL B1 is empty
or does not contain enough saline solution at concentrationchigh (possibly recycled from
the previous production phase). In this case, the startup phase must fillPDDL B1 up to
PDDL B1 l max. Thus, thestart state cloudfor this phase considers all the values for
PDDL B1 l in the range[0,PDDL B1 l max] with PDDL B1 l max = 8 liters (as specified
in [113]) and steps of 0.1 liters, i.e., 81 different start states.

On the other hand, the production phase, thanks to the startup postconditions, always
starts working on a plant wherePDDL B1 andPDDL B2 are completely filled. Here,
the only parameter used to define the start state cloud is the amount of solution to be
produced, that isPDDL B3 l target. We vary this value in the range[1.5, . . . ,3.7] liters
with steps of 0.1, obtaining 23 different start states.

8.5.4 UNIVERSAL PLANNING

Figure 8.13 shows the generation statistics for the startupphase universal plan. The plant
state space is 1017, however, starting from the given start state cloud, the planner found
that only about 3 million of such states were actually reachable, and only for 22% of them
is was possible to calculate a (optimal) policy to reach the goal.

State space size 1029

Start state cloud size 81

Reachable states 3,092,112

States to goal (generated plans)679,193

Synthesis time 530 sec

Peak of memory required 61 MB

Table 8.13: Batch chemical plant startup phase universal plan generation statistics

On the other hand, the whole universal plan for the more complex production phase took
about 6000 seconds to be generated, as shown in Table 8.14. Indeed, in this case there
were about 30 million of reachable states (which are still sensibly less than the state space
size), and for 24% of them UPMurphi was able to generate an optimal plan to the goal.

State space size 1029

Start state cloud Size 23

Reachable states 29,968,861

States to goal (generated plans)7,154,464

Synthesis time 6,319.8 sec

Peak of memory required 630 MB

Table 8.14: Batch chemical plant production phase universal plan generation statistics
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0.0: (B3_fill) [250]
260.0: (B3_dilution) [130]
400.0: (B4_fill) [290]
700.0: (B5_fill) [180]
890.0: (B5_evaporate) [750]
1650.0: (B7_fill) [130]
1790.0: (B7_cool) [270]
1800.0: (B6_cool) [160]
1970: (B2_fill) [120]
2070: (B1_fill) [80]

Figure 8.18: A planned production policy for the batch chemical plant
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The validation of the generated plans confirmed that the initial discretisation was fine
enough to obtain correct results.

As an example, Figure 8.18 shows one of the generated production policies, where
PDDL B3 level target= 3 liters. Figure 8.19 graphically shows the variation ofPDDL
B1 l, PDDL B2 l, PDDL B3 l andPDDL B3 c, respectively, as calculated by VAL during
the validation of this plan. In particular, in the figure, letters A-F are used to indicate the
time spans where the plant is performing particular tasks, i.e., A,B,C correspond to the
activation ofPDDL B3 fill, PDDL B3 dilution andPDDL B4 fill, respectively, D indicates
the recycle phase, and E,F the activation ofPDDL B2 fill and PDDL B1 fill, respectively.

We see that the filling level of the first two tanks initially decreases due to the execution of
thePDDL B3 fill (span A) andPDDL B3 dilution (span B) processes, respectively, while
PDDL B3 gets filled. On the other hand, the concentrationPDDL B3 c remains stable on
cmax duringPDDL B3 fill, and rapidly decreases during the dilution (PDDL B3 dilution)
up to ctarget. Finally, part of the product is manually drained fromPDDL B3, and the
remaining solution is moved to other tanks (i.e.,PDDL B3 l reaches zero, span C), where
it is recycled (span D) and finally pumped back toPDDL B1 (span E) andPDDL B2 (span
F).



CHAPTER9

DATABASE DATA QUALITY ANALYSIS VIA MODEL

CHECKING

9.1 MOTIVATION AND CONTRIBUTION

In the previous sections we discussed the problem of planning and control for continuous
systems via model checking techniques. We showed how explicit model checking can be
used to solve both planning and control problems for systemsmodelled on FSS.
In this section we extend the use of model checking to a class of problems far from
planning and control: thedata qualityproblem. Informally speaking, data quality is a
general concept and it can be described by many dimensions, e.g.,accuracy, consistency,
accessibility(a complete survey on data quality dimensions is in [13]).
We focus on consistency, which is a dimension of data describing the violation of semantic
rules defined over a set of data items, where items can be tuples of relational databases.
Here we are interested in the evaluation ofconsistencyby using model checking in search
of inconsistencies on data sources, typically representedon database structure.

To this regard, we intend (1) to map a data quality problem on aFSS and (2) to use model
checking to verify if the system holds them. Indeed, our ideais that formal methods, and
model checking in particular, can be helpful in some specificdata quality scenarios to
automate data consistency verification, to make more robustthe overall data quality pro-
cess, and to improve domain understanding, since formal methods can facilitate knowl-
edge sharing between technicians and domain experts. It is worth noting that evaluating
cleansed data accuracy against real data is often either unfeasible or very expensive (e.g.
lack of alternative data sources, cost for collecting the real data), then consistency based
methods may contribute reducing the accuracy evaluation efforts.

To this regard, in this section we provide the following contributions:

• The definition of a methodology, namely theRobust Data Quality Analy-
sis(RDQA), which uses formal methods to formalise consistencyrules.

• The automatic verification of consistency rules on big datasets through model
checking techniques (namely, the CMurphi model checker in this instance).

97



98 Chapter 9. Database Data Quality Analysis via Model Checking

• The RDQA has been successfully exploited on a real industrial data quality case
study of a Public Administration database provided by the C.R.I.S.P. research cen-
ter [43].

A preliminary version of this work has been published in [131].

9.2 INTRODUCTION AND RELATED WORK

Our society is actually dependent from digital data, which now plays a crucial role in
the Information and Communication Technology. One need only consider that business
and governmental applications, web applications as well asrelations between citizens and
public administration is now based on electronic data. Hence, it is clear that thequalityof
digital data and the effects on every kind of analysis and information obtained from such
data are crucial. To give an example, the causes of the Challenger Space shuttle explosion
are imputed to ten different categories of data quality problems (see [72] for details). On
the other hands, several studies (e.g. [160, 146, 13]) report that enterprise databases and
Public Administration archives suffer from poor data quality, therefore before decisions
makers may successfully exploit those data, their quality has to be accurately before the
decision making processes.

Despite a lot of research effort has been spent and many techniques and tools for improv-
ing data quality are available, their application to real-life problems is still a challenging
issue [123]. When alternative and trusted data sources are not available, the only solution
is to implement cleansing activities relying on business rules, but it is a very complex,
resource consuming, and error prone task.

Developing cleansing procedures requires strong domain and ICT knowledge. Diverse
actor types are required (e.g. ICT and Business) who should collaborate, but knowledge
sharing is hindered by their different cultural backgrounds and interpretation frameworks.
Fort this reason, several cleansing tools have been introduced into the market, focusing
on user friendly interfaces to make them usable by a broad audience.

From the research perspective, data quality has been addressed in different contexts, in-
cluding statistics, management and computer science [148].

Our work focuses on improving database instance-level consistency. In such a context,
research has mostly focused onbusiness rules, error correction(known as bothdata edits
anddata imputationin statistics [148]),record linkage(known asobject identification,
record matching, andmerge-purge problem), andprofiling [71]. A description of several
data cleansing tools can be found in [123, 11, 13, 135].

Even the adoption of cleansing techniques based onstatistical algorithmsor onmachine
learningrequires a huge human intervention for assessment activities. Errors that involve
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relationships between one or more fields are often very difficult to uncover with existing
methods. These types of errors require deeper inspection and analysis [123].

Similar considerations can be applied todata profilingtools. Data profiling is a blurred
expression that can refer to a set of activities including data base and data warehouse
reverse engineering, data quality assessment, and data issues identification.

According to [70] the principal barrier to more generic solutions to information quality
is the difficulty of defining what is meant by high or poor quality in real domains, in a
sufficiently precise form that it can be assessed in an efficient manner. This part of the
thesis contributes to address the just described issue.

Many cleansing tools and database systems exploitintegrity analysis(includingrelational
integrity) to identify errors. While data integrity analysis can uncover a number of possi-
ble errors in a data set, it does not address complex errors [123]. Some research activities
(e.g. [71]) focus on expanding integrity constraints paradigms to deal with a broader set
of errors. In this streamline the approach we adopt contributes to manage a broader set of
consistency errors with respect to the integrity constraints tools and techniques currently
available.

The application ofautomata theoryfor inference purposes was deeply investigated in
[165, 110] for the database domain. The approach presented in [3] deals with the problem
of checking (and repairing) several integrity constraint types. Unfortunately most of the
approaches adopted can lead to hard computational problems.

Only in the last decade formal verification techniques were applied to databases, e.g.
model checkingwas used in the context ofdatabase verification[40] to formally prove
the termination of triggers. Model checking has been used toperform data retrieval and,
more recently, the same authors extend their technique to deal with CTL in order to solve
queries on semistructured data [61].

In the end, to the best of our knowledge no contribution in literature has exploited formal
methods for analysing the quality of (real-life) database contents. Indeed formal meth-
ods contribute to manage a broader set of consistency errorswith respect to the integrity
constraints tools and techniques currently available.

9.3 FINITE STATE EVENTS DATABASE

Several database contents can be modelled as sequences of events (and related param-
eters), where the possible event types being a finite set. Forexample, the registry of
(university) students’ scores, civil registries, the retirement contribution registry, several
public administration archives, and financial transactionrecords may be classified in such
category. The event sequences that populate such databasesmight be modelled by FSS
(according to Definition 2), which in turn open several possibilities with respect tocon-
sistency checkand data quality improvement. FSS can be used to model the domain
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business rules so that the latter can be automatically checked against database contents by
making use of formal methods, e.g. Model Checking. Furthermore FSS representations
can be easily understood by domain experts and by ICT actors involved in Data Quality
improvement activities.

Our approach is based on the idea that Model Checking tools can be used to evaluate the
consistency of databases both before and after the application of data cleansing activities.
By comparing the consistency check results of the two database instances (before and
after the cleansing process), it is possible to obtain useful insight about the implemen-
tation of the cleansing procedures. This evaluation helps improving the data cleansing
development processes since feedbacks can be achieved on the consistency of the results.

Developing a cleansing procedure for a large domain may be a very complex task which
may require to state several business rules, furthermore their maintenance could be an
onerous task, since the introduction of new rules may invalidate some of the existing
ones. The possibility to model a correct behaviour using FSSformalisms and to check
the results of data cleansing can effectively reduce the effort of designing and maintaining
cleansing procedures. Then, we define “Finite State Event Dataset” (FSED) and “Finite
State Event Database” (FSEDB) as follows.

Definition 15 (Finite State Event Dataset). Letε= e1, . . . ,en be a finite sequence of events,
we define aFinite State Event Dataset(FSED) as a dataset S whose content is as a se-
quence of events S= {ε} that can be modelled by a Finite State System.

Definition 16 (Finite State Event Database). Let Si be a FSED, we define aFinite State
Event Database(FSEDB) as a database DB whose content is DB=

⋃k
i=1Si where k≥ 1.

We introduced the set of sequences in the FSEDB definition since many database contents
can be easily modelled by splitting their content is severalsubsets (each being a sequence
of events) and then modelling each sequence with a single (ora limited set of) FSS. Al-
though the whole content could be modelled by a single FSS, splitting into subsets can
reduce the complexity of the FSS(s) used to model the sequences. Many Public Admin-
istration archives can be classified as Finite State Event Databases, and the possibility to
use FSS formalisms to improve cleansing activities is extremely valuable.

9.4 ROBUSTDATA QUALITY ANALYSIS

In the following, we describe ourRobust Data Quality Analysis(RDQA). Roughly speak-
ing, assumeclr to be a function able to clean a source (and dirty) dataset into a cleansed
one according to some defined cleansing rules (orbusiness rules). To this regard, we
can take on loan the definition given in [12] where consistency refers to“the violation of
semantic rules defined over a set of data items. With reference to the relational theory, in-
tegrity constraints are a type of such semantic rules. In thestatistical field, data edits are



9.4 Robust Data Quality Analysis 101

typical semantic rules that allow for consistency checks”. In this settings, several ques-
tions arise:“what is the degree of consistency achieved through clr? Canwe improve the
consistency of the cleansed dataset? Can we be sure that function clr does not introduce
any error in the cleansed dataset?”.

The setDBS represents a dirty database whilstDBC is the cleansed instance ofDBS com-
puted by functionclr working iteratively on each subsetSi ⊆ DBS whereCi = clr(Si) and
Ci ⊆ DBC. Since many consistency properties are defined or scoped on portions of the
original database, the cleansing activity is not carried out on the whole datasetDBS but
on several subsetsSi of the original one.

Theclr function applied toSi may produce: aCi that isunchangedwith respect toSi (in
caseSi had a good quality); or it may produce achanged Ci (in case some quality ac-
tions have been triggered). Since the semantics of thechanged/unchangedare domain
dependent, anequalsfunction which looks for equality betweenSi andCi is required.

Moreover, since the functionclr might not effectively cleanse the data, an evaluation
of its behaviour is carried out using a further functionccheckwhich is based on formal
methods.ccheckis used to verify the consistency of bothSi andCi . Several outcomes of
the cleansing routines can be identified in this way e.g., a dirty Si may have been cleansed
into a consistentCi , or a dirtySi may have been turned into a not consistentCi, or a clean
Si may have been modified into a not consistentCi .

Nevertheless, even ifccheckis based on formal methods, no enough guarantees are given
about the correctness ofccheck(i.e., we cannot useccheckas an oracle). Instead, the
compared results given by functionsccheck,equals, andclr allow one to obtain useful
insights about the consistency of theclr function and at the same time it is helpful to
evaluate theccheckandequalsfunctions. This procedure will be further detailed in the
following paragraph by means of examples. For the sake of clarity, we formally describe
the RDQA process defining the following functions:

Function 1 (clr). Let S be a dataset according to Definition 15, then clr: S→C is a total
function where C represents the cleaned instance of S.

Function 2 (rep). Let X be a dataset according to Definition 15, then rep: X→ e is a
total function which returns a representative element e∈ X.

Function 3 (ccheck). Let K be a dataset according to Definition 15, then ccheck: K→
{0,1} where ccheck(K) returns1 if exists a sequenceε ∈ K such thatε contains an error,
0 otherwise.

Clearly, functionccheckcan be realised by using any formal method. In such context,
we use Model Checking techniques. In this case, we use the CMurphi model checker, as
described in Section 9.5.4.

Function 4 (equals). Let S and C be datasets according to Definition 15 we define equals :
S×C→{0,1} which returns0 if no differences between S and C are found,1 otherwise.
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The RDQA procedure is applied iteratively refining at each step the functionsclr and
ccheckuntil a desired consistency level is reached. In Fig. 9.1 it is shown a graphical
representation of a RDQA iteration whilst Tab. 9.1b outlines the semantics of theF+−

S ,
F+−

C , andD+− sets, which are used in Tab. 9.1a and Fig. 9.1. Each iterationcomputes the
Double Check Matrix(DCM), e.g. Tab. 9.1a, where the just introduced information are
summarised in order to analyse the reached consistency level. For sake of completeness,
a pseudo-code of the RDQA approach is given in Procedures 9,10 and 11. The function
computeDCM is implemented as MySQL stored procedures whilst functionccheckis
realised using the CMurphi model checker.

To give some example of the information provided by the DCM ofFigure 9.1a, row 1
gives the number of items for which no error was found byccheckapplied both onSi

andCi , and no differences between the original instance and the cleansed one was found
by equals. In this case bothccheckandclr agreed that the original data was clean and
no intervention was needed. Differently, row 4 shows the number of items for which no
error was found byccheck(Si) whilst theequals(Si,Ci) states that a cleansing intervention
took place, producing a wrong results recognised as dirty byccheck(Ci) = 1. The case
identified by row 4 is very important since it discloses bugs either in in the cleansing
procedure, or in theclr, or in theccheckfunction (or a combination thereof). Row 8 shows
another interesting case, where it is reported the number ofitems that where originally
dirty (check(Si) = 1), an intervention took place (equals(Si,Ci) = 1) that was not effective
sinceccheck(Ci) = 1. The other cases will be extensively commented in Section 9.5 on a
real example.

Is worth to note that, thanks to the comparisons outlined, the DCM can be used as abug
hunterto start an improvement process which lead to better understand the domain rules,
and to refine the implementation of the cleansing activities. The RDQA approach does
not guarantee the correctness of the data cleansing process, nevertheless it helps making
the process more robust with respect to data consistency.

Procedure 9RDQA

1: S=get sourcedataset();
2: D+ = /0;D− = /0;
3: F+

S = /0;F−S = /0;
4: F+

C = /0;F−C = /0;
5: for all Si ⊆ Sdo
6: Ci = clr(Si);
7: computeequals(Si,Ci);
8: computeccheck(Si);
9: computeccheck(Ci);

10: end for
11: computeDCM(); // As shown in Table 9.1a
12: displayDCM();
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Table 9.1: (a) The Double Check Matrix. (b) The definition of sets resulting byccheck
andequalsfunctions

(a)

Conditions Result

ccheck(Si) equals(Si,Ci) ccheck(Ci) Cardinality

0 0 0 |F−S ∩D−∩F−C |

0 0 1 |F−S ∩D−∩F+
C |

0 1 0 |F−S ∩D+∩F−C |

0 1 1 |F−S ∩D+∩F+
C |

1 0 0 |F+
S ∩D−∩F−C |

1 0 1 |F+
S ∩D−∩F+

C |

1 1 0 |F+
S ∩D+∩F−C |

1 1 1 |F+
S ∩D+∩F+

C |

(b)

F−S =
⋃
(rep(Si)|ccheck(Si) = 1)

F+
S =

⋃
(rep(Si)|ccheck(Si) = 0)

F+
C =

⋃
(rep(Ci)|ccheck(Ci) = 0)

F−C =
⋃
(rep(Ci)|ccheck(Ci) = 1)

D− =
⋃
(rep(Si)|equals(Si,Ci) = 0)

D+ =
⋃
(rep(Si)|equals(Si,Ci) = 1)

Procedure 10COMPUTE EQUALS

Input: Si ,Ci

1: if (equals(Si,Ci) = 1) then
2: D+ = D+∪ rep(Si);
3: else
4: D− = D−∪ rep(Si);
5: end if

Procedure 11COMPUTE CCHECK

Input: Xi // It can beSi or Ci

1: if (ccheck(Xi) = 1) then
2: F+

X = F+
X ∪ rep(Xi);

3: else
4: F−X = F−X ∪ rep(Xi);
5: end if
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9.5 AN INDUSTRIAL APPLICATION: THE WORKER

CAREER ADMINISTRATIVE ARCHIVE

The RDQA approach has been tested on a real case scenario. TheC.R.I.S.P. research
center [43] exploits the content of a Public Administrationdatabase to study the labour
market dynamics at territorial level [124]. A lot of errors and inconsistencies (missing
information, incorrect data, etc.) have been detected in the database, therefore a cleansing
process is executed, and the RDQA approach has been used to improve such process.

9.5.1 DOMAIN DESCRIPTION

According to the Italian law, every time an employer hires ordismisses an employee, or a
contract of employment is modified (e.g. from part-time to full-time, or from fixed-term
contract to unlimited-term) a communication (Mandatory Communication hereafter) is
sent to a registry (job registry hereafter) by the employer.The registry is managed at
provincial level, so every Italian province has its own job registry recording the working
history of its inhabitants. An Italian province is an administrative division which encom-
pass a set of cities and towns geographically close. In this scenario, the database of a
province is used by the C.R.I.S.P. to extract longitudinal data upon which further analysis
are carried out.

Every mandatory notification (event hereafter) contains several data, among which the
most important for the purpose of our work are: eventid (a numeric id identifying the
communication), employeeid (an id identifying the employee), eventdata (the commu-
nication date), eventtype (whether it is the start, the cessation, the extension or the con-
version of a working contract), fulltime flag (a flag stating whether the event is related
to a full-time or a part-time contract), employerid (an identifier of the employer), con-
tract type (e.g. fixed-term contract, unlimited-term contract, Apprenticeship, etc.).

9.5.2 CAREER (SIMPLIFIED) MODEL

For the sake of simplicity, we have modelled a set of events which maps onto the manda-
tory communications data. The events are:

Start: the worker has signed a contract and has started working for an employer. Further
information describing the event are: the date, the employee id, the employerid,
the contracttype, the full time flag.

Cessation: the worker has stopped working and the contract is terminated. Further infor-
mation describing the event are: the date, the employeeid, the employerid.
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Extension: a fixed-term contract has been extended to a new date. Furtherinformation
describing the event are: the current date, the employeeid, the employerid, the
new termination date.

Conversion: a contract type has changed, e.g. from fixed-term to unlimited-term con-
tract. Further information describing the event are: the date, the employeeid, the
employerid, the new contracttype.

Some business rules can be inferred by the Italian Labour Lawwhich states for examples
that an employee can have only a full-time contract active atthe same time, or alternatively
no more than two part-time contracts. According to the law, the career of a person showing
two start events of a full-time contract without a cessationin between is to be considered
invalid. Such errors may happen when Mandatory Notifications are not recorded or are
recorded twice. In our context a job career is a temporal sequence of events describing
the evolution of a worker’s state, starting from the beginning of her/his working history.
It is worth noting that a person can have two contracts at the same time only if they are
part-time and they have been signed with two different organisations.

9.5.3 GRAPH REPRESENTATION

Figure 9.2 shows a simplified representation of the evolution of a job career where nodes
represent the state of a worker at a given time (i.e., the number of active part-time/full-
time contracts) whilst edges model how an event can modify a state.

To give an example, a valid career can evolve signing two distinct part-time contracts,
then proceeds closing one of them and then converts the last part-time into a full-time
contracts (i.e.,unemp,emp1, emp2,emp1,emp4). For sake of clarity, Figure 9.2 focuses
only on nodes/edges describing a correct evolution of a career (i.e., the white nodes) whilst
all other nodes/edges are omitted (e.g., careers having events related to unsubscribed con-
tracts). Nevertheless, Figure 9.2 contains two filled nodes(i.e. emp5,emp6) which are
helpful to describe some invalid careers. To this regard, a career can get wrong subscrib-
ing three or more part-time contracts (i.e.,unemp,emp1, emp2,emp6) or activating both
part-time and full-time contracts (i.e.,unemp,emp1, emp2, emp5).

9.5.4 THE CMURPHI MODEL

In this section we closely look at the realisation of theccheckfunction according to the
definition of Function 3. It is clear that our scenario represents a FSEDB (as in Def-
inition 16), thus it can be modelled as a finite state system, applying model checking
technique toverifyeach FSED (i.e., each worker’s career). To this aim, we use the CMur-
phi model checker (introduces in Section 3.4) to realise a procedure able to analyse the
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Figure 9.1: A schematic view of the Robust Data Quality Analysis iteration.
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Figure 9.2: An Abstract representation of the dynamics of a job career wherest= start,
cs= cessation, cn= conversion, andex= extension.
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system domain and verify its correctness with respect to a given semantics (i.e., the Italian
low).

Figure 9.3 shows the overall structure of theccheckimplementation, which works as
follows:

CMurphi Model is shown in Figure 9.4. In the first part declarative statements (which
are used to model the employment state of a worker), declarations of constants,
datatypes, and external C/C++ functions are declared.

The dynamics of the system is composed by a startstate (whichmodels theun-
employedstate of a worker), and by a transition rulenext_event to compute the
evolution of a career reading events directly from the corresponding dataset. The
ruleset keyword is used make parametric the system dynamics (i.e., the range
min_worker..max_worker represents a start state cloud to adapt the number of
worker to verify in a single validation process).

Thanks to this, CMurphi automatically generates all possible startstates within the
given range, starting a verification for each state reachable from the initial ones and
returning one (or more) error trace (i.e., invalid careers)for each worker, making
the model more scalable in case of huge databases.

Finally, the last part of Figure 9.4 models properties whichmust be satisfied along
a career, defined by using a C++ external functionsafe_transition , by veri-
fying that each invariant clause is always satisfied along any career evolution
and returning the error trace (i.e., set of careers violating at least an invariant
clause). Note that the output can be easily used for the RDQA methodology,
as described in Section 9.4. In refer to example of Figure 9.2, the trajectory
(< unemp,st>< emp1,st>< emp2,cn>< emp5 >) violates both thePart-time
andFull-time invariants of Figure 9.4.

CMurphi Engine is the verification algorithm of CMurphi, as presented in Section 3.4.
It is worth noting that we modified it to obtain (1) exactly oneerror trace (if any)
for each career and (2) to allows CMurphi to store the error trace on database (i.e.,
CMurphi directly writes databasesF+

S ,F−S ,F+
C ,F−C ).

DBMS is used to allows the interaction betweenCMurphi Engineand the database. To
this regard, in order to speed up the queries on database, C++external functions
play an important role to retrieve data from database and to store it on a C++ buffer,
easily accessible to CMurphi via external functions. The DBMS is a MySQL 5.4
server whilst the connection interface between MySQL and C++ are realised using
thecppconn connector provided by the Boost library [163].

Finally, an example of CMurphi validation on a set of careersis given in Figure 9.5 (we
modified CMurphi to return errors both on file and on database). In particular, worker
number 73 starts and closes a part-time contract with company 23680 and a full-time
contract with company 9165. Then, it reopen a part-time contract with the same company,
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CMurphi Model

CMurphi Engine DBMS

DBS

DBC

F+
S F−S F+

C F−C

Figure 9.3: Representation of theccheck implementation using the CMurphi model
checker.

which is closed later as a full-time contract. In this case, invariantvalid cessation eventis
violated.

9.5.5 ROBUST DATA ANALYSIS: EXPERIMENTAL RESULTS

In this section we show some experimental results performedon an administrative
databaseDBS having 1,248,752 events (i.e.|DBS| ) and 213,566 careers (i.e., all dis-
tinct subsetsSi wherei ∈ [1, . . . ,213566]). Note that the results are referred to the first
iteration of the RDQA process described in Section 9.4 in order to highlight how the
RDQA process was useful to identify inconsistencies in realdata cleansing operations.

The application of the functionclr (defined according to Function 1) onDBS generated a
new datasetDBC with |DBC| = 1,089,895. Then, the functionccheckhas been realised
according to Definition 3, using the CMurphi model checker asdetailed in Section 9.5.
The summarised DCM shown in Table 9.2 was crucial in order to refine theclr function.
The RDQA was performed on a 32 bits 2.2Ghz CPU in about 20 minutes using 100 MB
of RAM. Results are shortly commented in the following list:

Case 1: represents careersalready cleanthat have been leftuntouched, which are about
45% of the total.

Case 2: refers to careers considered (byccheck) valid before but not after cleansing, al-
though they have not been touched byclr. As expected this subset is empty.

Case 3: describes valid careers that have beenimproperly changedby clr. Note that,
despite such kind of careers remain clean after the intervention of clr, the behaviour
of clr has been investigated to prevent that the changes introduced byclr could turn
into errors in the future.
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Case 4: represents careers originally valid thatclr has made invalid. These careers have
proven to be very useful to identify and correct bugs in theclr implementation.

Case 5: refers to careers considered (byccheck) not valid before but valid after cleans-
ing, although they have not been touched byclr. Though the number of careers is
negligible, this result was useful to identify and repair a bug inccheck.

Case 6: describes invalid careers, thatclr was able neither to detect nor to correct, and
consequently they were left untouched.

Case 7: describes the number of (originally) invalid careers whichccheckrecognises as
properly cleansedby clr at the end.

Case 8: represents careers originally invalid which have beennot properly cleansed
since, despite an intervention ofclr, the functionccheckidentifies them still as
invalid.

The DCM shows that the original database had a very low quality of data (only 45% of
the original careers were not affected by consistency issues), therefore justifying the need
for data cleansing. Furthermore, considering the single DCM entries, cases 3, 4, 6, and
8 provided useful information for improving theclr, while case 5 provided information
for improving theccheck. In summary theccheckwas used to check theclr and theclr
was used to check theccheck(here comes the namedouble check). Since bothccheckand
clr implementations cannot be guarantee as error free, there isno assurance that all the
possible errors could be found through the DCM, nevertheless it has helped to improve
the cleansing routines in the just introduced industrial example.

As a natural extension of this work, we are exploiting formalmethods to carry out sen-
sitivity analysis on dirty data, i.e. to identify to what extent the dirty data, as well as the
cleansing routines, may affect the value of statistical indicators that are computed upon
the cleansed data.
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Table 9.2: The Double Check Matrix on an administrative database

Conditions Result

Case ccheck(Si) equals(Si,Ci) ccheck(Ci) Cardinality

1 0 0 0 96,353

2 0 0 1 0

3 0 1 0 32,789

4 0 1 1 1,399

5 1 0 0 3

6 1 0 1 40

7 1 1 0 74,904

8 1 1 1 8,078
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type
workerId : 0.. maxPId ;
eventId : 0.. maxEId ;
dataType : 0.. maxDId ;
EventType : Enum{st,ex,cn,cs} ;

const
max_worker : MAX ;
min_worker : 0;

var
worker : workerId ;
no_errors : boolean; catchs SQL exceptions
index : workerId ;
max_PT : boolean; -- default = false
max_FT : boolean; -- default = false
double_FT_PT: boolean; -- default = false
event_ i terator: workerId ;

-- retrieve data from database for each worker in window
externfun star ts tate_cal l() : boolean " external .h" ;
-- stores data from database for each worker in window
externfun set_path ( i : workerId ; p: workerId ) : boolean;
-- returns ID of worker "p"
externfun get_worker (p: workerId ) : workerId ;
-- returns the pointer to the first data record of worker "p"
externfun get_f i rs t_ index(p: workerId ) : workerId ;
-- returns true if exists an event for worker "p" to analyse, f alse otherwise
externfun exis ts_an_event(p: workerId ) : boolean;
-- returns true if exists a pair<first,second> of events for worker "p" which
invalidates the career
externfun safe_transi t ion(p: workerId ; type: EventType ) : boolean;

ruleset p: min_worker .. max_worker do
startstate " start "
BEGIN

no_errors := star ts tate_cal l() ;
worker := get_worker (p) ;
event_ i terator := get_index ( worker ) ;
no_errors := set_path ( event_iterator ,p);

END;
END;

rule " next_event "
ex is ts_an_event( worker )==>
BEGIN

event_ i terator := event_ i terator + 1;
END;

invariant " Val id Start Event "
safe_transi t ion( event_iterator , "st ") ;
invariant " Val id Extension Event "
safe_transi t ion( event_iterator , "ex ") ;
invariant " Val id Conversion Event "
safe_transi t ion( event_iterator , "cn") ;
invariant " Val id Cessation Event "
safe_transi t ion( event_iterator , "cs ") ;
invariant "Part - t ime"
max_PT = false;
invariant "Full - t ime"
max_FT = false;
invariant "Part - t ime and Full - t ime"
double_FT_PT = false;

Figure 9.4: The CMurphi model ofThe Worker Career Administrative Archiveapplica-
tion.
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-- Inval id Career No 00005- - - - - - - - - - - - - - - -
--Startstate (0000072) - - - - - - - - - - - - - - - -

Worker Event I terator Date Type ContractType Company Code

73 282 37061 1 F 23680
73 283 38149 4 F 23680
73 274 38471 1 P 9165
73 275 38471 4 P 9165
73 276 38474 1 P 9165

( - ->) 73 277 38482 4 F 9165
******************** ( Val id Cessation Event ) fai led

73 278 38506 1 F 9165
73 279 38509 4 F 9165
73 280 38570 1 F 9165
73 281 38572 4 F 9165
73 284 38589 1 F 40617
73 285 39591 4 F 40617
73 286 39592 1 F 40617

-- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -- - - -- -

Figure 9.5: Example of invalid career given by CMurphi.
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The last part of the Thesis is devoted to the analysis of systems having a non-deterministic
behaviour. In Chapter 10 we discuss the problem of synthesising strongplans, and we
provide a survey on the state of the art in this field. Then, in Chapter 11 we propose a
novel algorithm to synthesiseoptimalstrong plans for non-deterministic systems. Finally,
in Chapter 12 some case studies on which we applied the algorithm are presented.





CHAPTER10

STRONG PLANNING FOR NON-DETERMINISTIC DOMAINS

10.1 INTRODUCTION AND RELATED WORK

In recent years, a mutual interest between control theory and AI planning communities has
emerged, showing that planning and control are closely related areas. The use of sophis-
ticated controllers as well as intelligent planning strategies has become very common in
robotics, manufacturing processes, critical systems and,in general, in hardware/software
embedded systems (see, e.g., [33]).

In particular, efforts made to deal with planning in non-deterministic domains could be
very helpful to solve control problems for real-world appliances. Indeed, many processes
take place in an environment that may have variable and unpredictable influences on the
action outcomes, which need to be taken into account to design a correct and efficient
control system.

Informally speaking, non-deterministic domains model a particular form of uncertainty on
system’s action. More precisely, actions may have different outcome that is unpredictable
at planning time. Indeed, given an action, it is impossible for the planner to know a priori
which the outcome will be. In such context the concept ofplan, which is well defined for
deterministic planning, become ambiguous for non-deterministic system (e.g., the plan
reaches the goalalways? The plan reaches the goalsometimes?). In order to clarify this
concept, the community distinguishes three possibilities, as introduced in [36]:

Weak Plan: It is a plan that may achieve the goal, but no guarantees are given about its
success. More precisely, at least one of the many non-deterministic plan executions
reaches the goal.

Strong Plan: It is a plan that is guaranteed to achieve the goal regardlessof non-
determinism. In other words, any plan execution always leads to a goal state.

Strong Cyclic Plan: It is a plan that achieves the goal under thefairnessassumption. At
execution time the plan applies an action infinitely often until the “lucky“ outcome
happens (i.e., the action’s outcome that leads the system towards the goal). If it
does not happen then the execution is calledunfair.

117
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Intuitively, weak solutions representoptimisticplans, i.e. we hope that the plan execution
will reach the goal. On the contrary, strong solutions represent awarranty about the
success of the plan, in any execution. Finally, strong cyclic solutions, which are based on
a trial-and-error strategy, represent an intermediate alternative between strong and weak
ones.

Moreover, another important aspect about planning, and then also for planning in non-
deterministic domains, focuses on system’s variables (e.g., can we observe all variables’
valuesbeforethe system execution? Some values are available only at run-time?). More
precisely, we distinguish between two kinds of planning contexts:

Full-observability. All variables’ values are available before the run-time. The gener-
ated plans are executed by a reactive controller that iteratively senses the world,
determines the current state, and then it selects and executes an appropriate action
(see, e.g., [109]).

In this setting, as typically in the case of dynamic systems,the size of the graph
defining the dynamics of the system is exponential (state explosion) in the size of
the input. As a result, classical algorithms for explicit graphs cannot be used, and
instead suitable symbolic (e.g., [30]) or explicit (e.g., [54]) algorithms are used to
counteract state explosion. This is also the typical situation for model checking
problems.

Partial-observability. It works on a setting where only a subset of variables are observ-
able and the remaining ones are available at run-time (see, e.g., [17, 18, 103]). A
case limit of this context is the conformant planning [24, 4]were no observation is
available, even at run-time.

In this section we focus on the synthesis ofstrong solutionsin full-observability context.

In the Part II of the Thesis we discussed the problem of universal plans, whilst in this
part we address the problem of strong planning. For the sake of clarity, we have to note
that strong plan and universal plan, in a non-deterministiccontext are closely related, as
both approaches aim to find a path to a goal from any state reachable from the initial
ones. Finally, it is worth noting that systems may have or notprobabilities associated to
the actions outcomes. In our context, we focus on systems in which no probabilities are
given.

Planning based on MDPs has been proved very effective (see, e.g., [27, 25, 170]), and,
more recently, a variety of techniques have been proposed tosolve continuous MDPs
(see, e.g., [130, 127, 126]). However, MDP-based approaches deal with probabilistic
distributions taking into account the stochastic outcomesof actions. Therefore, whether
a solution provided by MDP planning algorithms is strong depends on probability and
cost distribution. There is also a link between strong planning and CTL model checking.
Indeed, it has been observed [107, 111] that the problem of strong and strong cyclic
solution for a planning problem can be also addressed using the CTL model checking.
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More precisely, applying the same idea of planning via modelchecking we described
before, the search of a strong cyclic goalϕ can be casted as the problem to satisfy the CTL
formulaAGEF¬ϕ. Similarly, the synthesis of a strong solution can be solvedsatisfying
the formulaAF¬ϕ [45, 143] (see Section 4.1 for the semantics of CTL formulae).

In the last years, the (strong) planning in non-deterministic domains has had a growing
interest in the planning community and then many techniques[115, 112, 111] and heuris-
tics [78, 125] have been proposed.

A key contribution in this field comes from [36], where the authors present an algorithm
to find strong plans implemented in MBP, a planner based on symbolic model checking.
MBP produces a universal plan [150] which provides optimal solutions with respect to
the plan length (i.e., the worst execution among the possible non-deterministic plan exe-
cutions is of minimum length). Moreover, the use of Ordered Binary Decision Diagrams
(OBDDs) together with symbolic model checking techniques allows a compact encoding
of the state space and very efficient set theoretical operations.

More recently, in [112, 111] Kissmann and Edelkamp improvedMBP by developing
Gamer, a BDDs based planner able to synthesise strong and strong cyclic solutions
for non-deterministic domains. In particular, Gamer worksas follows: (1) it trans-
forms the non-deterministic planning problem into a two-players turn-taking using a non-
deterministic version of the PDDL language (i.e., NPDDL [19]). To give the main idea,
the first player chooses an action (i.e., it sets the value of avariable) and the second player
(i.e., the behaviour) chooses one of the possibile outcome for the action. Clearly, the
translation process guarantees that the second player willchoose all the possible non-
deterministic behaviour for the selected action. Then, a minimal state encoding for the
domain is computed resulting in a minimised state encoding [64] which provides a very
compact BDD. After the translation it (2) applies a modified version of the algorithm by
Cimatti et Al [36] which is able to deal with the two players behaviour. Despite a little
overhead to enlarge the state definition in supporting of players’ turn, the main benefit
given by the translation process is to lead to a small BDD, andthen to a better perfor-
mance, with respect to MBP. This approach, which is very promising, needs to be further
tested on many other non-deterministic domains.
However, both MBP and Gamer are backward-search planners based on a symbolic ap-
proach and then they requires to compute the inverse function of the system dynamics,
which may be difficult to invert typically for nonlinear domains. Indeed, explicit algo-
rithms (that explore forward the dynamics graph) allow to handle hybrid and/or nonlinear
continuous domains, which are actually very common in the practice. On the other hand,
explicit algorithms can generate a huge transition graph which may anticipate the state
explosion.

In [115] the NDP algorithm exploits the use of some classicalplanners (e.g., FF [91]
and SGPlan [101] are used in instance) to deal with non-deterministic domains, looking
for strong cyclic solution in full observable domains. Given a planning problemP and
a classical plannerR, the algorithm generate adeterministicsubproblem ofP (e.g., if an
actiona has two distinct outcomes then it replaces actiona with two new actionsa1,a2
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having the two outcomes respectively). Then, it callR on each sequence of classical
subproblem. Finally, it collects and combines theR′s results for each sequence providing
the final solution, if any. To compact encode domain literals, it uses theconjunctive
abstractioninstead of BDDs. The former has a compression efficiency lesspowerful
than BDDs, nonetheless it can be used by any classical planner which deal with STRIPS
domain, avoiding any modification to the planner.

Moreover, also heuristics have been exploited in combination with BDDs in order to
improve the performance of such planners in real-world domains. To give an example,
UMOP [107] uses both BDDs and heuristics toguide the search for strong and strong
solutions. An improvement of UMOP has been presented recently in [106] where authors
introduce NADL (a new description language for non-deterministic domains). Moreover,
the new UMOP planner provides an algorithm (based on the previous one) which looks
for optimisticplans by relaxing domain optimality constraints when no strong and strong
cyclic solutions exist. In [125] a LAO* search (based on AND/OR graph) with heuristics
based on pattern databases [67] have been used to synthesisestrong and strong cyclic
solutions.

In the following we provide a description MBP which, among the several approaches
dealing with non-determinism, represents a milestone

10.2 THE MBP STRONG PLANNING PROCEDURE

Since our work about non-deterministic planning is inspired by the work of Cimatti et al,
in this section we briefly describe thestrong planning procedureas developed in [36]. As
said previously, the algorithm of Cimatti et al. works on asymbolicrepresentation of the
state space, which we have shortly introduced in Chapter 4. To avoid the introduction
of new formalisms, we adapt the STRONGPLAN procedure to works on the definitions of
NDFSS as given in Sections 2.2 and 2.3.

Then, generally speaking, given a NDFSS according to Definition 6, and a setG of goals,
a strong solution is a collection of policies (or astate actiontable) that maps a state
s∈ Reach(S) to an actiona∈A if shas a strong plan (i.e., ifsalways reaches a goal state
in spite of the uncertainty of actiona).

Procedure 12 shows the STRONGPLAN algorithm implemented in MBP planner. The
procedure is a breadth first search which goes backward from goals states towards initial
ones. At each step the solution of the previous stepOldSolution(i.e., the state action
table) is updated and the algorithm stops when (1) either thesolution can not be further
updated or an initial state is reached (condition of line3).
During the iteration the algorithm needs to compute the inverse function of the dynamics
graph due to the backward search. This work is accomplished by the function STRONG-
PREIMAGE. More precisely, it is defined on the system state space as follows :

STRONGPREIMAGE(S) = {(s,a) such that/0 6= F(s,a)⊆ S}
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Intuitively, the STRONGPREIMAGE(S) computes the set of state-action(s,a) pairs which
guarantees that all the reachable states fromsvia actiona belong toS, in spite of the non-
determinism (i.e.,F(s,a) is a set of feasible states for the system). However, during the
backward visit it is possible to consider a pair(s,a) for with a solution is already known
for s. It is not a negligible aspect since it may affect the minimality of the final solution,
that is, the strong plan may contain more different actions to apply in the same state. To
this aim, the function PRUNEDSTATE scans the preimage table by removing all the pairs
(s,a) which start from the same states.

Finally, if a final solution exists then the algorithm returns it, otherwise the algorithm
returnsf ail .

Procedure 12STRONGPLAN

1: OldSolution← /0 // Solution of the previous step
2: Solution← /0 // Solution of the actual step
3: while (OldSolution6= Solution∧ I * (G∪Solution)) do
4: PreImage←STRONGPREIMAGE(G∪Solution) // Compute the inverse function of the dy-

namics
5: NewSolution←PRUNEDSTATES(PreImage,G∪Solution)
6: OldSolution←OldSolution∪NewSolution
7: end while
8: if I ⊆ (G∪Solution) then
9: returnSolution;

10: else
11: return f ail ;
12: end if

10.3 WORKING EXAMPLE

The following example (as presented in [37]) should help to clarify the concept of strong
plan. In their article, Cimatti et al. use theAR language to describe the domain, however,
to avoid the introduction of new formalisms, we use a graphical representation of the
domain as in Figure 10.1.

A pack can be moved from aLondon Heatrowcity airport to one ofGatwick or Lu-
ton airports via railway, truck or airplane. The state is composed by 4 different vari-
ables:posranges in{train-station, truck-station, air-station, Victoria-station, city-center,
Gatwick, Luton}. Variablesf uel and f og are boolean whilst the variablelight ranges in
{green, red}. Moreover, when a state variable value is omitted then it could have any
value in its range. The possible actions aredrive-train, wait-at-light, drive-truck, make-
fuel, fly andair-truck-transit. Note that, as depicted in Figure 10.1, actionsdrive-truck
and drive-train may be non-deterministic (e.g., actiondrive-train executed in position
train-stationmay lead to two different outcomes: at Victoria’s station with red or green
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traffic light). The STRONGPLAN procedure performed on this domain produces a solution
as shown in Table 10.1.

Roughly speaking, the solution is astate-actiontable that summarises all the states able to
reach the goal, in spite of non-determinism. For each of suchstates it suggests thestrong
action to apply to reach the goal. Note that, since no weightson actions are given (i.e., all
transitions impliedly have a weight equals to 1) a backward BF visit, which is performed
by the STRONGPLAN , always returns an optimal solution with respect to the distance to
the goal.
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Figure 10.1: Informal description of the working example domain.

Table 10.1: A Strong Plan for the domain of Figure 10.1.

State Action Distance to Goal

pos=Victoria-Station∧ ligth =green drive-train 1

pos=City-Center∧ f uel=true drive-truck 1

pos=Air-Station∧ f og=false fly 1

pos=Victoria-Station∧ ligth =red wait-at-light 2

pos=City-Center∧ f uel=false make-fuel 2

pos=Train-Station drive-train 3

pos=Truck-Station∧ f uel=true drive-truck 3

pos=Truck-Station∧ f uel=false make-fuel 4

pos=Air-Station∧ f og=false air-truck-transit 4



CHAPTER11

STRONG PLANNING THROUGH EXPLICIT MODEL

CHECKING

11.1 INTRODUCTION AND CONTRIBUTION

In Chapter 10 we introduced the Strong Planning problem in non-deterministic domains,
focusing on the state of the art in this field. Moreover, we briefly described the approach of
MBP and Gamer planners, which represent a milestone in the context of strong planning.

In this chapter we propose an algorithm (whose a preliminaryversion has been published
in [53]) to solve thecost-optimalstrong planning problem in non-deterministic FSSs (ac-
cording to definitions given in Section 2.3). Roughly speaking, we are interested in find-
ing strong solutions having aminimumcost with respect to a given cost function. Our
algorithm is strictly based on [37] (which we described in Section 10.2), however, there
are the following main contributions:

1. we consider acost functionand present a novel technique to look forcost-optimal
strong plans while preserving a good complexity bound.

2. we use anexplicit approachrather than a symbolic one, so extending the class of
problems on which strong planning can be applied to hybrid and/or nonlinear con-
tinuous domains, which are actually very common in the practice. Indeed, since
representing addition and comparison with OBDDs requires opposite variable or-
derings and since this kind of problems involve both such operations, OBDDs in
our context tend to have size exponential in the input size. On the other hand, us-
ing an explicit approach allows us to expand “on demand” the transition relation,
generating and representing only the reachable states.

Finally, in Sections 11.6 and 11.7 we formally prove the correctness, the completeness and
the complexity of the proposed algorithm. Furthermore, in the next Chapter we present
some experimental results showing the effectiveness of theproposed approach on two
meaningful case studies. In order to do this, we define the concept of cost-optimal strong
plan and the corresponding planning problem.

123
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For the sake of clarity, it is worth noting that the algorithmin [37] could be adapted to
support costs and devise cost-optimal solutions only by ”unary encoding” the weights,
i.e., by replacing a transition of weightk with k contiguous deterministic transitions. In
this case, however, its complexity, in the worst case, wouldbe exponentially higher than
the one of the algorithm presented in the following.

11.2 RELATED WORK

The cost-optimal strong planning problem could also be castas a strategy synthesis prob-
lem for a multistage game with two players moving simultaneously (see, e.g., [79]),
where the first player is the controller, the second is the disturbance (causing the non-
deterministic behaviours), and the game rules are given by the plant dynamics. In this
setting, our control strategy could be seen as aminmaxstrategy for the controller player.
That is, in each game state, the controller chooses the action that minimises the maximum
cost (to reach the goal) that the disturbance, with its (simultaneous) choice, may inflict
to it. Such a game theoretic casting, however, would be of little help from a computa-
tional point of view, since in our setting the normal form of the game would be intractable
even for small systems. Indeed, if the game has|S| states and, in each state, the con-
troller and the disturbance have at most|A | and|D| actions available, respectively, then
the game would be represented by a graph with|S| nodes, each having|A ||D| outgoing
edges. Thus, even considering simple plants, we would have very large graphs (see the
Chapter 12 on case studies).

The situation is exactly analogous to that for model checking based analysis of Markov
chains (e.g, see [116], [55]). Of course, in principle, stationary distributions for Markov
chains can be computed using classical numerical techniques (e.g., see [14]) for Markov
chains analysis. However, for dynamic systems, our settinghere, the number of states
(easily beyond 1010) of the Markov chains to be analysed rules out matrix based methods.

Finally, casting our problem as a Mixed Integer Linear Programming (MILP) problem
would be possible but, again, it would generate a MILP of sizeexponential in the in-
put. Thus, to the best of our knowledge, this is the first approach to cost-optimal strong
planning and no better solutions for this problem have been devised so far, even in other
computer science fields.

11.3 COST-OPTIMAL STRONG PLAN

In order to discuss the problem to find cost-optimal trajectories, we extend our setting
with a cost function.

Definition 17 (Cost Function). Let S = {S,s0,A ,F} be an NDFSS. A cost function
(also calledweight function) for S is a functionW : Sτ → R+ that assigns a cost to
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each transition inS . Using the cost function for transitions, we define the cost of the
non-deterministic transition(s,a,F(s,a)), denoted byW (s,a), as follows: W (s,a) =
maxs′∈F(s,a)W ((s,a,s′)).

It is worth noting that, for the sake of generality, the definition of the cost function above
allows the transition cost to depend on both the corresponding action and the source state.
However, usually the transition costs are bound to the corresponding action only.

Now letS be a givenNDFSSaccording to Definition 6. In order to define the cost-optimal
strong planning problem for such a kind of system, we assume that a non-empty set of
goal states G⊂ S has been specified. Then, a Cost-Optimal Strong Planning Problem
(COSPP) can be defined as follows.

Definition 18. (Cost-Optimal Strong Planning Problem) LetS = {S,s0,A ,F} be a
NDFSS. Then a Cost-Optimal Strong Planning Problem (COSPP)is a triple P =
(S ,W ,G) where G is the set of the goal states andW : Sτ → R+ is the cost function
associated toS .

In this setting, we aim to find astrong planfrom the initial states0 to G, that is a sequence
of actions that, starting froms0, leads the system to the goal states, regardless of the non-
deterministic outcome of each action. Before formally describe such a solution, we need
to define the structure of a deterministic plan.

Definition 19. (Deterministic Plan) LetP = {{S,s0,A ,F},W ,G} be aCOSPPand s∈S.
A deterministic planp from s to a goal g∈G is a trajectoryπ such that:

• either s∈G and|π|= 0;

• or π = τ0,τ1, . . . ,τn, with τ0 = (s,a,s1) and π′ = τ1, . . . ,τn is a deterministic plan
from s1 to g.

In other word, we define a deterministic plan as a sequence of extracted transitions,
according to Definition 9. Intuitively, a cost-optimal strong solutions is a set of non-
deterministic transitions as stated in Definition 7. More precisely, we are interested in
finding a cost-optimal solutions defined as follows.

Definition 20. (Strong Plan) LetP = {{S,s0,A ,F},W ,G} be aCOSPP. Let s be a state
in S. Astrong planfrom s to G is a set P of non-deterministic transitions such that either
s∈G and P= /0 or s /∈G and P satisfies the following conditions:

1. there exists a natural number n0 such that every trajectoryπ that can be extracted
from P has length|π| ≤ n0;

2. every trajectoryπ starting from s which can be extracted from P, can be extended
to a deterministic planπ′ from s to a goal sg ∈G such thatπ′ is extracted from P;
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3. for every state s′ such that s′ /∈G and s′ is in P there exists a trajectoryπ, extracted
from P, starting from s and ending in s′;

4. for every state s′ such that s′ /∈ G and s′ is in P, there exists exactly one non-
deterministic transition in P of the form(s′,a,F(s′,a)), for some a∈ A . We denote
with P(s′) such non-deterministic transition.

We have the following characterisation of plans.

Proposition 3. LetP = {S ,W ,G} be aCOSPP. P is a strong plan from s to G iff P is a
set of non-deterministic transitions such that either s∈ G and P= /0 or s /∈ G and there
exists a unique non-deterministic transition in P of the form τ = (s,a,F(s,a)), for some
a∈ A , such that:

• either F(s,a)⊆G;

• or P\{(s,a,F(s,a))} is the union of strong plans Pi from every state si in F(s,a) to
G.

Proof. Assume first thatP is a strong plan froms to G. If P is not empty, then there
exists a unique non-deterministic transitionτ = (s,a,F(s,a)) ∈ P, for somea. Let si be
an element ofF(s,a). We definePi as the set of non-deterministic transitions inP such
thatPi contains some transitions of a deterministic plan fromsi .

Now observe that any sequence starting fromsi can be completed inP to a deterministic
plan without using the nodes. Indeed, no deterministic plan extracted fromP can return
to the nodes, since otherwise there would be a cycle, contradicting the requirement that
every deterministic sequence inP is bounded. It follows thatPi is a subset ofP\{τ} and
is a strong plan fromsi .

Moreover, lets′ be any node inP\ {τ}. Then there exists a trajectoryπ from s to s′. By
the uniqueness ofτ, the first transition ofπ is in τ and therefore has the form(s,a,si) for
somesi , it follows thats′ is in Pi, and thatP\{τ} =

⋃
si∈F(s,a)Pi .

The other direction is easy and left to the reader.

By Proposition 3 we can define the cost of a plan as follows:

Definition 21. (Strong Plan Cost) The cost of a strong plan P from s to G, denoted by
W (P), is defined by recursion as follows:

• if P is empty thenW (P) = 0;

• if P is composed only of the non-deterministic transition(s,a,F(s,a)), for some a,
thenW (P) =W (s,a);
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• if P is composed of the non-deterministic transition(s,a,F(s,a)), for
some a, and of plans Pi from every node si in F(s,a) then W (P) =
maxsi∈F(s,a) (W ((s,a,si))+W (Pi)).

It is easy to see that the cost of a planP is the maximum cost of a deterministic plan
extracted fromP.

Definition 22. (Minimum Strong Plan Cost) LetP = {S ,W ,G} be aCOSPP, with S =
{S,s0,A ,F}. Then acost-optimal strong solutionof the COSPPP = {S ,W ,G} is a
strong plan P from s0 to G such that the cost of P is minimal among the strong plans from
s0 to G.

11.4 AN EXAMPLE OF COST-OPTIMAL STRONG

PLANNING PROBLEM

As an example of COSPP, let us consider thehurried passengerproblem. A passenger
wants to arrive to San Francisco airport (SFO) departing from one of the Rome airports
(CIA or FCO) and according to the flight scheduling shown in Table 11.1. Moreover,
there is a bus on every hour that allows the passenger to go from home to one of the Rome
airports above in one hour.

Table 11.1: Flight scheduling.

From To Flight # Depart Arrive

Rome-FCO Paris-CDG A 08.00 09.00

Rome-FCO Berlin-BER E 08.00 10.00

Rome-CIA Amsterdam-AMS D 05.00 08.00

Paris-CDG San Francisco-SFOB 10.00 12.00 (GMT-7)

Paris-CDG San Francisco-SFOC 19.00 21.00 (GMT-7)

Berlin-BER San Francisco-SFOF 11.00 14.00 (GMT-7)

Berlin-BER Amsterdam-AMS I 12.00 13.00

Berlin-BER San Francisco-SFOG 12.00 15.00 (GMT-7)

Amsterdam-AMS San Francisco-SFOH 15.00 20.00 (GMT-7)

The goal is to arrive to San Francisco as soon as possible, and, however, no later than 21.00
local time. We require the passenger to arrive at the airportat least one hour before a flight
departure. Moreover, we assume that each flight may arrive atdestination later than the
expected arrival time. The objective is to generate a strongplan (if any) that guarantees
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Table 11.2: COSPP for thehurried passengerproblem.

S
home =s0, AMS = s1, AMSd = s2, CDG =s3, CDGd = s4, CIA = s5,

FCO =s6, BER =s7, BERd = s8. SFOa = s9, SFOm = s10, SFOn = s11.

A A, B, C, D, E, F, G, H, I, P, Q

F

F(s0,Q) = {s6}, F(s0,P) = {s5}

F(s1,H) = {s9}, F(s2,H) = {s9}

F(s3,B) = {s9,s10} , F(s4,C) = {s9,s11}

F(s5,D) = {s1,s2}

F(s6,A) = {s3,s4}, F(s6,E) = {s7,s8}

F(s7,F) = {s9}, F(s8,G) = {s9}, F(s8, I) = {s1,s2}

W

W (s0,Q,s6) = 1,W (s0,P,s5) = 1;

W (s1,H,s9) = 12,W (s1,H,s9) = 13;

W (s2,H,s9) = 11,W (s2,H,s9) = 12;

W (s3,B,s10) = 10,W (s3,B,s9) = 11;

W (s4,C,s9) = 18,W (s4,C,s11) = 19;

W (s5,D,s1) = 9,W (s5,D,s2) = 10 ;

W (s6,A,s3) = 2,W (s6,A,s4) = 3,

W (s6,E,s7) = 3,W (s6,E,s8) = 4;

W (s7,F,s9) = 11,W (s7,F,s9) = 12;

W (s8,G,s9) = 11,W (s8,G,s9) = 12,

W (s8, I ,s2) = 3,W (s8, I ,s1) = 2;

G s9,s10

P
P(s0) = Q(17);P(s5) = D(22);P(s6) = E(16);P(s7) = F(12);

P(s8) = G(12);P(s2) = H(12);P(s1) = H(13), P(s3) = B(11)
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the passenger to reach the San Francisco airport before 21.00 local time regardless of
possible flight delays.

The corresponding COSPP (according to Definitions 6,17 and 18) is reported in Ta-
ble 11.2. Here the actions correspond to the flights and the non-determinism is given by
the possible delay which, for the sake of simplicity, we assume to be limited to one hour
for each flight. The cost of each transition(d, f ,a) is W (d, f ,a) = (t(d)+ t( f )+ t(a))
wheret(d) is the time spent at airportd waiting for the flight departure,t( f ) is the dura-
tion of the flight andt(a) is the time spent at airporta waiting for the next flight (which
could be zero). Moreover, the special actionsP andQ represent the bus journey from
home (states0) to Rome-CIA and Rome-FCO, respectively: for the sake of simplicity, we
do not consider delays on these actions, so the corresponding transitions are deterministic
and have cost 1 (i.e., the bus journey takes a hour).
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Figure 11.1: Graphical description of the COSPP for thehurried passengerproblem.

A graphical description of the problem is given in Figure 11.1 where tagged nodes rep-
resent the arrival time at the corresponding airport, whilethe edges are labelled with the
flight code.

The cost-optimal solution consists in flying from Rome-FCO to Berlin-BER and then to
San Francisco-SFO. The total cost of the solution (considering all the possible delays)
is 17. Note that another strong solution would be flying from Rome-CIA to Amsterdam-
AMS and then to San Francisco-SFO, but its cost is 23. Finally, flying from Rome-FCO to
Paris-CDG is not a strong solution since in case of delay of flight A it would be impossible
to reach San Francisco on time.
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11.5 THE COST-OPTIMAL STRONG PLAN ALGORITHM

In this section we describe a procedure that looks for a cost-optimal strong solution to a
given COSPP. The main algorithm (Procedure 16) consists of two subroutines described
in the following. All the procedures make use of some auxiliary functions and sets :Cost,
Cand, ExtGoals, OldExtGoalsand∆ .

The cost vector(Cost) is used to maintain the set of states for which we have synthesised
a strong plan, sorted by their cost. By abuse of notation, in the following we refer to
cost(s) as thecost functionwhich returns the minimum cost of a strong plan from
s to the goals calculated so far. The algorithm updates this function every time a
better strong plan is found fors. Initially all the goal states have a cost equal to
zero, while the cost of the other states is set to∞.

The set ofcandidates(Cand) contains the pairs (s,a) corresponding to all the statess
which, at any step, are recognised to have a plan starting with actiona, possibly
of nonminimum cost. The elements in the setCandcan be partially ordered with
respect to the cost functionCost. Initially the setCand is empty.

The set ofextended goals(ExtGoals) contains all the statess which, at any step, are
recognised to have a planP of minimum cost. Initially the setExtGoalscontains all
the goal states inG. On the other hand, the set ofold extended goals( OldExtGoals)
contains, at any step, the extended goals collected up to theprevious step: that is,
the expressionExtGoals\OldExtGoalsrepresents the states that have been just
added to the extended goals.

The set∆(s,a) is initialised, for each state-action pair, with the statesreachable froms
via actiona, i.e.,F(s,a), which are consumed during the algorithm iterations.

In the following, we assume that all procedures take as inputthe COSPPP =
((S,s0,A ,F),W ,G) as well as the auxiliary sets and functions. The output is a strong
planSP.

Note that, in the algorithms, some arithmetic operations (i.e., min, max and sum) may
involve infinity. In this case, we assume the usual semantics, e.g., max(x,∞) = ∞ or
x+∞ = ∞.

11.5.1 THE CANDIDATE EXTENSION ROUTINE

The CANDIDATE EXTENSION routine (Procedure 13) extends the setCandof candidates.
The functionPre(s) returns all the transitions leading tos and is applied to the extended
goals found in the previous iteration of the main algorithm.At any step, the set∆(s,a)
contains only the states reachable froms via actiona which have not been moved to the
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extended goals yet. Thus, once∆(s,a) is empty,s is guaranteed to have a strong plan
through actiona, since all the transitions in(s,a,F(s,a)) lead to an extended goal. The
pair(s,a) is then added to the set of candidates if it improves the cost currently associated
to s.

Procedure 13CANDIDATE EXTENSION

1: for all s′ ∈ (ExtGoals\OldExtGoals) do
2: Pre(s′)←{(s,a) ∈ S×A |s′ ∈ F(s,a)};
3: for all (s,a) ∈ Pre(s′) do
4: ∆(s,a)← ∆(s,a)\{s′};
5: if ∆(s,a) = /0 then
6: c′ = maxs̄∈F(s,a)(W (s,a, s̄)+Cost(s̄));
7: if c′ <Cost(s) then
8: Cand←Cand∪ (s,a);
9: Cost(s) = c′;

10: end if
11: end if
12: end for
13: end for

11.5.2 THE PLAN EXTENSION ROUTINE

The effect of the PLAN EXTENSION routine (Procedure 14) is twofold. First, it selects
the states in the candidates set of minimum cost and moves them to the set of extended
goals. Indeed, the current solution for such states cannot be improved, since there are no
actions which provide a strong solution with a lower cost (see Proposition 5). Second, it
inserts the new extended goals together with the associatedaction (i.e., the corresponding
non-deterministic transition) in the strong planSP.

Procedure 14PLAN EXTENSION

1: α←min(s,a)∈CandCost(s); // It uses the MINCOSTCAND routine
2: for all (s,a) ∈Cand|Cost(s) = α do
3: ExtGoals← ExtGoals∪{s};
4: Cand←Cand\{(s,a)};
5: SP← SP∪ (s,a);
6: end for

Note that the extraction of the candidates with the lowest cost (first two lines of Proce-
dure 14) can be accomplished with a small complexity if we suppose to have a structure
costvectorwhere each elementcostvector[c] holds a list of references to the states with
costc. Insertion in this structure is constant time, whereas updates can be also accom-
plished in constant time by re-inserting the state with updated cost without removing the
previous instance (i.e., creating a duplicate with different cost). Indeed, the states with
minimum cost can be extracted from this structure as shown bythe MINCOSTCAND rou-
tine (Procedure 15).
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Procedure 15M INCOSTCAND

Input: lastc, the cost of the last states returned
1: c← lastc
2: loop
3: c← c+1
4: AllCandc← costvector[c]
5: if AllCandc 6= /0 then
6: Candc← /0
7: for all s∈ AllCandc do
8: if s 6∈ ExtGoalsthen
9: Candc←Candc∪{s}

10: end if
11: end for
12: if Candc 6= /0 then
13: lastc← c
14: return Candc

15: end if
16: end if
17: end loop

The procedure takes as input the cost of the last states returned, and scans thecostvector
starting from the element corresponding to the next (higher) costc (for the sake of sim-
plicity, in the pseudocode we suppose it to belastc+1, but in general it depends on the
approximation of the cost function). Ifcostvector[c] contains some states that are not
yet in the extended goals, the procedure returns them, otherwise it increasesc and loops.
Thus, even if updates may create duplicates of the same statein different elements of
costvector, since the algorithm always extractsfirst the minimum cost instance of a state,
and inserts it inExtGoals, all its further instances (with higher cost) incostvectorwill be
simply ignored. However, from here on, we assume to use a Fibonacci’s heap to maintain
thecostvector[c].

11.5.3 THE COSTOPTIMAL STRONGPLAN ROUTINE

Finally, the COSTOPTIMAL STRONGPLAN routine (Procedure 16) initialises the cost
value of each state and the sets∆, Cand, ExtGoalsandOldExtGoals, then iterates ap-
plying the subroutines described above. In particular, theprocedure loops until either the
initial states0 is included in the extended goals (that is a strong solution has been found)
or a fix point is reached, since there are no new extended goals(in this case there is no
strong solution fors0). Note that, as a collateral effect, the algorithm also findsall the
strong plans for the states inShaving minimal cost less or equal to the cost ofs0. Thus, if
s0 does not reach the goal (i.e., its cost is∞), or if we explicitly remove the guard that stops
the algorithm in this case, the COSTOPTIMAL STRONGPLAN would actually calculate a
cost-optimal stronguniversalplan.
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Procedure 16COSTOPTIMAL STRONGPLAN

Input: a COSPPP = ((S,s0,A ,F),W ,G)
Output: a cost-optimal strong planSP

1: for all (s,a,s′) ∈ Sτ do
2: if s∈G then
3: Cost(s) = 0;
4: else
5: Cost(s) = ∞;
6: ∆(s,a) = F(s,a);
7: end if
8: end for
9: Cand← /0;

10: SP← /0;
11: OldExtGoals← /0;
12: ExtGoals←G;
13: while (ExtGoals6= OldExtGoals) do
14: if s0 ∈ ExtGoalsthen
15: return SP;
16: end if
17: CANDIDATE EXTENSION();
18: OldExtGoals← ExtGoals;
19: PLAN EXTENSION();
20: end while
21: return Fail;
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11.6 TIME COMPLEXITY OF THE ALGORITHM

In this section we first define a COSPP worst case instance an then we describe the algo-
rithm behaviour on it.

Definition 23 (COSPP Worst Case Instance). LetP = {{S,s0,A ,F},W ,G} be aCOSPP
and let h: F→N+ be a bijective function that associates to each transitionτ∈F a unique
natural number.

1. ∀si ,sj ∈S with i 6= j,∀al ∈A exists a transition of the formτi, j ,l = (si,al ,sj). There-
fore,∀s∈ S,a∈ A we have|F(s,a)|= (|S|−1)×|A |. Hence, the total number of
transitions|F| in the system isθ(|S|2 · |A |).

2. ∀τ ∈ F,W (τ) = 10−h(τ).

3. G is theminimalgoal set, i.e. G= {sn}.

Note that the instance in Definition 23 is a worst case instance for our algorithm since:

• constraint (1) guarantees that each action (regardless ofits non-determinism)
reachesdirectly any state (i.e., the graph iscompletewith respect to the non-
determinism of each action). As a consequence each single state will have a strong
plan;

• the usefulness of constraint (2) is twofold: it ensures that if the system has|A |= r
distinct possible actions to reach a statesj from si , then exists an ordered sequence
of transitions(si,a1,sj), . . . ,(si,ar ,sj) whereW (si,a1,sj) > .. . > W (si ,ar ,sj).
The aim is to maximises the number of cost update that the algorithm performs dur-
ing its execution. Furthermore, it guarantees that the costof each trajectory from a
state to a goal is unique in the whole system, and then the costof each strong plan
will be unique.

Proposition 4 (Algorithm Complexity). Let |reach(S)|= n be the number of states in the
system, let|A |= r be the number of action in the system and let m= (n2 · r) be an upper
bound to the maximum number of transitions in the system (i.e., one transition to reach
each node for each action) the time complexity of the Algorithm is O(m+n(r + logn))

Proof. To prove the proposition we refer to the COSPP worst case instance according to
Definition 23. During the proof, we assume to implement thecostvectorstructure using
the Fibonacci’s heap.

At the first step the setExtGoalsis initialised withG states (i.e,|ExtGoals| = 1). During
the algorithm execution the setsExtGoalsand OldExtGoalswill be always different
between them. Indeed, at each stepexactly onesingle state will be inserted intoExtGoals.
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On the contrary the algorithm has reached its fixed point and then it stops performing less
thann steps. Hence, in the worst case the algorithm requires at most n steps to find a
strong solution.

It it clear that the algorithm complexity strongly depends on the complexities of CANDI -
DATEEXTENSION and PLAN EXTENSION routines.

Looking at CANDIDATE EXTENSION routine of Procedure 13, it analyses one single state
belonging toExtGoals(as said previously) at each step (line 1). Since we assume to
have in memory the expanded dynamics of the graph, it is not required to compute the
Pre function of line 2, so this step is performed in constant time. Otherwise, we may
apply an explicit state space exploration algorithm to build it in O(|Sτ|). Looking at line
3, a single states∈ Pre(s′) can have at mostn · r outgoing transitions. In other words,
|Pre(s′)| = O(n · r). Note that if it has fewer transitions then it must exist at least one
states unable to reachs′, and this violates the hypothesis of Definition 23. However,
the conditional statement starting at line 5 is performed only once for each call of the
procedure. Roughly speaking, The CANDIDATE EXTENSION procedure removes one state
from a set∆(s,a) in each iteration. Indeed, the set∆(s,a) requires at mostn iterations of
line 3 to become empty and then theCost(s) of line 6 is computed at most one for each
action (i.e, at mostr times for each call of the CANDIDATE EXTENSION). Moreover, the
time needed to update theCost(s) of line 9 (which requiresinsert and/ordecrease key
operations) can be accomplished in constant time through Fibonacci’s heap. Note that the
operationdelete key(which has a logarithmic complexity) is unneeded since the cost of a
state (i.e. its key) is always nonincreasing.

Then, the cost of the CANDIDATE EXTENSION in the worst case isO(n · (n · r + r)) =
O(n2 · r +n · r). Since the maximum number of transitionsF of the system in the worst
case ism= O(n2 · r) the complexity of the routine isO(m+n · r). In the other words, the
routine scans linearly the system graph and the complexity depends on how many time it
needs to update thecostvectorof a single state.

Looking at Procedure 14, the PLAN EXTENSION computes theα through aDelete Minop-
eration in the cost vector, which requiresO(logn) time using a Fibonacci’s heap. Clearly,
this operation requires to be performed at each iteration, i.e. at mostn times in the worst
case since all states will have a strong plan. Hence, the complexity of this procedure is
O(n · logn).

The overall complexity of COSTOPTIMAL STRONGPLAN is thereforeO(m+n(r+ logn)).

Is worth to note that, in many real instances, the number of transitions for each state is
enormously less thann · r which represents the maximum non-determinism degree of the
system.
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11.7 CORRECTNESS ANDCOMPLETENESS OF THE

ALGORITHM

The algorithm given in Procedure 16 essentially iterates the two procedures CANDIDA -
TEEXTENSION and PLAN EXTENSION until the desired state has a plan or the fix point
is reached. Let us indicate withExtGoalsk andCandk the contents of theExtGoalsand
Candsets, respectively, at thek-th step of the algorithm. Moreover, let us callGoalsk the
unionG∪ExtGoalsk.

Proposition 5 (Correctness). Let uk be the maximum cost of a state in Goalsk, that is
uk = maxs∈Goalsk Cost(s). Then, in any step k≥ 1 of theCOSTOPTIMAL STRONGPLAN

algorithm, all the states with a plan of minimum cost no greater than uk are in Goalsk.
That is∀s∈ S, Cost(s)≤ uk⇒ s∈Goalsk

Proof. At the first iteration of the algorithm (k= 1), Goalsk = ExtGoalsk = G contains,
by definition, all the states with a plan having cost zero (i.e., the goals).

Now, let us assume by induction that the property holds at step k. We shall prove that it
still holds at stepk+1, i.e., the new elements inserted inGoalsk+1 do not falsify it.

To this aim, letαk+1 be the minimum cost of a candidate inCandk+1, that isαk+1 =
mins∈Candk+1 Cost(s). We can simply prove thatuk < αk+1. Indeed, assume thatuk ≥
αk+1: then there exists a states∈Candk+1 s.t.Cost(s)≤ uk. However, a state inCandk+1
cannot be inGoalsk (since the algorithm moves to theExtGoalsonly states that are al-
ready inCand), and this contradicts the induction hypothesis.

Note that the fact above implies that, at the end of stepk+1, i.e., after the execution of
PLAN EXTENSION, we have thatuk+1 = αk+1, since the algorithm moves inGoalsk+1 all
the candidates with costαk+1, which is greater than the previous maximum costuk.

Now assume that the property to be proved is falsified at stepk+1. This implies that there
exist one or more statesss.t.Cost(s)≤ uk+1 buts 6∈Goalsk+1. Let us choose among these
states the one with minimum cost. Since we know thatuk+1 = αk+1, we can also write
thatCost(s)≤ αk+1.

By induction hypothesis, since a state which is not inGoalsk+1 could not also be in
Goalsk, we have thatuk <Cost(s). Let us consider a cost-optimal strong plan fors. Such
plan must contain at least one states′ 6∈Goalsk. Indeed, if all the states of such plan were
in Goalsk, thens should be inGoalsk+1. Let us choose among these states the one with
minimum cost.

We have two cases:

• if s′= s, then we have that, for some suitable actiona, F(s,a)⊆Goalsk. This would
imply thats∈Candk+1 and, sinceCost(s)≤ αk+1, we would have thatCost(s) =
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αk+1 (recall thatαk+1 is the minimum cost of a candidate inCandk+1). But in this
case the algorithm would moves in Goalsk+1, contradicting the hypothesis;

• if s 6= s′, thenCost(s′) < Cost(s) (by definition of cost of a plan). Again, since
Cost(s)≤ αk+1, we have thatCost(s′)< αk+1, sos′ 6∈Candk+1. Thus we also have
thats′ 6∈Goalsk+1, and this contradicts the hypothesis sinceswould not be the state
with minimum cost s.t.Cost(s)≤ αk+1 ands 6∈Goalsk+1.

Thus, if a state enters in the extended goals (and is therefore included in the strong optimal
plan), then its cost, i.e., the cost of the corresponding strong plan, cannot be improved.
This shows the algorithm correctness.

The algorithm completeness can be easily derived from Proposition 5, too. To this aim,
we can use the following proposition.

Proposition 6(Completeness). Let s∈S. If s has a cost-optimal strong plan P, whose cost
is not greater than Cost(s0), then there exists k> 0 s.t. s∈ ExtGoalsk and(s,a,F(s,a))
is added to SP.

Proof. The proof follows from Proposition 5. Indeed, we have that the minimum cost
of a candidateαk′ is strictly increasing in each step of the algorithm (otherwise, uk′ <
αk′+1 would not hold). Thus, the process will eventually end with one of the following
conditions:

• the initial states0 is in ExtGoalsk (if a strong plan exists for such state): in this
case, at stepk all the states whose cost is not greater thanCost(s0), includings, are
guaranteed to be inExtGoalsk, too.

• there are no more candidate states that can be reached from the (extended) goals:
in this case, since by hypothesiss has a strong plan, thus it can reach the goal, it
would be included in the last setExtGoalsk.

Finally, the algorithm termination is guaranteed by the arguments used in Proposition 6.
Indeed, since the minimum cost of a candidate is strictly increasing, the algorithm will
eventually build the cost-optimal strong plans for the states with highest cost: at this point,
no new candidates will be available, and the process will terminate.
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11.8 SUPMURPHI: THE STRONG ALGORITHM

IMPLEMENTATION INTO V-UPMURPHI

In this section we describe how to model non-deterministic domains and how to synthe-
sise the Strong Plan (if any) applying the Cost-Optimal Strong Planning Algorithm (see
Procedure 16).

SUPMurphi tool

Input

PDDL to 

UPMurphi 

compiler

UPMurphi 

model 

compiler

UPMurphi 

definition

PDDL+ domain 

and problem

UPMurphi engine

Model 
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Transition 

Graph 

Generation Optimal Paths 

Calculation

Plan 

Generation

Primary Output

PDDL+ plans

Universal Plan

Secondary Output

Computed system 

dynamics

Reachable states 

description

Goal and error 

states

Cost-Optimal Strong Plan Generation

Strong Universal 

Plan

Figure 11.2: Overall structure of the SUPMurphi tool

Figure 11.2 shows the new SUPMurphi overall structure in which:

1. The UPMurphi core provides the ability to manage PDDL+ domains and to explore
the dynamics of the domain, as described in Section 6.5.

2. The disk-based algorithm (described in Chapter 7) allowsone to exploit the use
of the disk during all phases (i.e., the strong algorithm canwork directly on disk
data structures described in Section 7.2.1). As discussed in Chapter 11, the strong
algorithm requires that thePre(s) function is given, in order to access to aprede-
cessorof a node in linear time (with respect to the number of outgoing edges of a
given node). To this aim, theTransition Graph Generationphase has been adapted
to store the graph dynamics in both directions (i.e., directed and inverted form),
creating twoTransition Graphfiles.

Clearly SUPMurphi still maintains the capability to adapt these files to the sys-
tem size, choosingautomaticallyamong three different modalities:Memory Mode
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when the size of the two graphs fits into the RAM,Mixed Mode if only one graph
can be stored into RAM and the other one on the disk, andDisk Mode if both
graphs are stored on disk.

3. Implements the the Cost-Optimal Strong Planning Algorithm detailed above. Fig-
ure 11.3 is a snapshot of the new options helper in which-search:us enables the
synthesis of strong plans after the transition graph generation. Then, if a strong plan
exists options-validate:q and-validate:qall verifies the generated solution,
starting from each startstate and each strong state respectively.

Figure 11.3: A snapshot of the SUPMurphi helper

To clarify how a non-deterministic domain can be modelled, we use theHurried Passen-
ger Problemas introduced in Section 11.4. The SUPMurphi model is given in Figure 11.4.
The keywordruleset is used to model non-determinism of an action whilst the keyword
weight models the cost of the transitions, which can be a parametricfunction.
In our example, the state is composed by the location of the passenger and the local clock
time. Thestartstate construct models the initial position and clock time of the passen-
ger (i.e., the 6amat home). Then, each flight of Table 11.1 is modelled by an action that
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requires to stay in the airport at least one hour before the departure time. The cost of a
flight is given by functionw() which sums the time spent in the airport waiting for the
flight, the duration of the flight and the delay of the flight (which could be zero).

Figure 11.7 shows a complete SUPMurphi log execution in which the V-UPMurphi phases
are performed (i.e., theModel Analysis, and theTransition Graph Generation). Then, the
phaseCost-Optimal Strong Planphase starts and synthesises the strong plan in 5 steps.
The solution is verified (i.e., the tool verifies if each strong plan always reaches a goal).
Finally, Figure 11.6 shows the solution stored in thehurried.strong file. For the sake
of completeness, the graph of reachable states generated byUPMurphi is reported in
Figure 11.5.

It is worth noting that the solution is slightly different from the one given in Figure 11.2,
that is the tourCiampino-Amsterdam-San Franciscois impracticable due to the late arrival
time inCIA airport.
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const
HOME: 0; FCO : 1; CIA : 2; CDG : 3;
BER : 4; AMS : 5; SFO : 6; GMT7: 7;

type
day_type : 0..24;
delay_t : 0..1;
locat ion_type: 0..6;
start_type : 6..6;

var
t ime [ pddlname : t ime ;]: day_type ;
location [ pddlname : location ;]:
locat ion_type;

-- the weight is given by time to wait in
airport + flight time + delay

function w( delay : delay_t ; departure :
day_type ; length : day_type ) : day_type ;
begin
return (( departure - t ime)+( length +delay ))
;

end;

ruleset t : start_type do
startstate "At Home"
time := t ;
location := HOME;
end;
end;

rule "Q" ( location =HOME & time <8) ==>
weight : 1;
begin

location := FCO ;
time := time + 1;

end;

rule "P" ( location =HOME & time <5) ==>
weight : 1;
begin

location := CIA ;
t ime := time + 1;

end;

ruleset delay : delay_t do
rule " Fl ightA " ( location =FCO & time <8) ==>
weight : w(delay ,8 ,1) ;
begin

location := CDG ;
time := time +(8 - t ime)+(1+ delay ) ;

end; end;

ruleset delay : delay_t do
rule " Fl ightB " ( location =CDG & time <10)
==>

weight : w(delay ,10 ,9) ;
begin

location := SFO ;
t ime := time +(10 - t ime) +(9+ delay ) -GMT7;

end; end;

ruleset delay : delay_t do
rule " Fl ightC " ( location = CDG & time <19)
==>
weight : w( delay ,19 ,9) ;
begin

location := SFO ;
t ime := time +(19 - t ime)+(9+ delay ) -GMT7;

end; end;
ruleset delay : delay_t do
rule " Fl ightD " ( location = CIA & time <5) ==>
weight : w( delay ,5 ,3) ;
begin

location := AMS ;
t ime := time +(5 - t ime)+(3+ delay ) ;

end; end;

ruleset delay : delay_t do
rule " Fl ighE " ( location = FCO & time <8) ==>
weight : w( delay ,8 ,2) ;
begin

location := BER ;
t ime := time +(8 - t ime)+(2+ delay ) ;

end; end;

ruleset delay : delay_t do
rule " Fl ightF " ( location = BER & time <11)
==>
weight : w( delay ,11 ,10) ;
begin

location := SFO ;
t ime := time +(11 - t ime) +(10+ delay ) -GMT7;

end; end;

ruleset delay : delay_t do
rule " Fl ightG " ( location = BER & time <12)
==>
weight : w( delay ,12 ,10) ;
begin

location := SFO ;
t ime := time +(12 - t ime) +(10+ delay ) -GMT7;

end; end;

ruleset delay : delay_t do
rule " Fl ightH " ( location = AMS & time <15)
==>
weight : w( delay ,15 ,10) ;
begin

location := SFO ;
t ime := time +(15 - t ime) +(10+ delay ) -GMT7;

end; end;

ruleset delay : delay_t do
rule " Fl ightI " ( location = BER & time <12)
==>
weight : w( delay ,12 ,1) ;
begin

location := AMS ;
t ime := time +(12 - t ime)+(1+ delay ) ;

end; end;

goal "On Time"
( location =SFO & time <= 21) ;

metr ic : minimize ;

Figure 11.4: TheHurried Passenger Problemmodel as described in Section 11.4,
page 127.
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-- Source : Action ( cost ) ->Target
State 0: Q(1) ->1
State 1: Fl ightA (3) ->5 FlightA (2) ->4 FlightE (4) ->3 Fligh tE (3) ->2
State 2: Fl ightF (12) ->8 FlightF (11) ->10 FlightG (13) ->9 F lightG (12) ->8

FlightI (4) ->7 FlightI (3) ->6
State 3: Fl ightG (12) ->14 FlightG (11) ->13 FlightI (3) ->12 FlightI (2) ->11
State 4: Fl ightB (11) ->18 FlightB (10) ->17 FlightC (20) ->1 6 FlightC (19) ->15
State 5: Fl ightC (19) ->20 FlightC (18) ->19
State 6: Fl ightH (13) ->22 FlightH (12) ->21
State 7: Fl ightH (12) ->24 FlightH (11) ->23
State 11: Fl ightH (13) ->22 FlightH (12) ->21
State 12: Fl ightH (12) ->24 FlightH (11) ->23

Figure 11.5: TheHurried Passenger Problemgraph of model in Figure 11.4

-- Strong Plan Filename : hurr ied . strong ( text mode)
-- ( source [ type ] ,act ion name ,Max Cost to goal ) --> ( reache d states l ist )
-- [ I ] = startstate [G] = goalstate [ IG ] = both start and goal state

(0[ I ] ,Q ,17) - ->(1)
(1 ,Fl ightE ,16) - ->(3 , 2)
(2 ,Fl ightF ,12) - ->(8[G] , 10[ G])
(3 ,Fl ightG ,12) - - >(14[G] , 13[ G])
(4 ,Fl ightB ,11) - - >(18[G] , 17[ G])
(6 ,Fl ightH ,13) - - >(22[G] , 21[ G])
(7 ,Fl ightH ,12) - - >(24[G] , 23[ G])
(11 , Fl ightH ,13) - - >(22[G] , 21[ G])
(12 , Fl ightH ,12) - - >(24[G] , 23[ G])

Figure 11.6: SUPMurphi strong plan for TheHurried Passenger Problemmodel of Fig-
ure 11.4
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Launch : hurr ied -search :us -val idate : qal l

=== Analyzing model ... ===============================
Model explorat ion complete ( in 0.10 seconds ) .

29 rules f ired
1 start states
25 reachable states
13 goals found

=== Building model dynamics ... =======================
* Transit ion Graph mode: Memory Image
* Maximum size of graph : 606060 transit ions .

Model dynamics rebui lding complete ( in 0.10 seconds ) .
25 states
29 transit ions
out degree : min 0 max 2 avg 1.16

=== Looking for Strong Plans ... =======================
Strong Plan Algori thm is going to run on a Graph having :

25 States
1 Start States
13 Goal States
29 Transit ions
11 Nondetermin ist ic Actions
20 Nondetermin ism Degree

[0:0:0.10] Step: 0, Candidates : 0, ExtGoals : 13 ,
OldExtGoals : 0, StrongPlan Size : 0

[0:0:0.10] Step: 1, Candidates : 6, ExtGoals : 14 ,
OldExtGoals : 13 , StrongPlan Size : 1

[0:0:0.10] Step: 2, Candidates : 2, ExtGoals : 18 ,
OldExtGoals : 14 , StrongPlan Size : 5

[0:0:0.10] Step: 3, Candidates : 1, ExtGoals : 20 ,
OldExtGoals : 18 , StrongPlan Size : 7

[0:0:0.10] Step: 4, Candidates : 0, ExtGoals : 21 ,
OldExtGoals : 20 , StrongPlan Size : 8

[0:0:0.10] Step: 5, Candidates : 0, ExtGoals : 22 ,
OldExtGoals : 21 , StrongPlan Size : 9

=================================================== ===
Enjoy : Strong Plan found

Strong Plan algori thm complete ( in 0.10 seconds ).
6 steps done
1 start states
13 Goal states
Strong Plan size: 9
Strong Plan maxmimum cost : 17
Strong Plan Filename : hurr ied . strong ( text mode)

=== Validation of Strong Plans ... ====================== =
Strong Plan Validation complete ( in 0.10 seconds ) .
Processed : 9,
Strong Startstates : 1,
Not Strong Startstates : 0,
Strong States : 8,
Not Strong States : 0

Figure 11.7: SUPMurphi execution for TheHurried Passenger Problemmodel of Fig-
ure 11.4





CHAPTER12

STRONG PLANNING CASE STUDIES

In this chapter we show two case studies for which the Cost-Optimal Strong Plan Algo-
rithm of Chapter 11.5 has been applied.

The former (namely, theinverted pendulum on a cart) is aimed to show a real-world
problem in which a cost-optimal strong plan exists. We provide the SUPMurphi model
and some experimental results about the robustness of the strong solution (i.e., how the
non-determinism affects the existence of the strong plan).

On the contrary, the second case study is inspired by the fieldof construction industry and
it represents an industrial experience in which we used SUPMurphi in two respects: (1)
we analysed the system dynamics of a proprietary system, and(2) we tried to synthesise
a strong solution for it. Unfortunately, no strong plan could be devised in this case, since
the problem does not allow a strong solution, as proved by themodel checking based
analysis.

12.1 THE INVERTED PENDULUM ON A CART

Figure 12.1: Inverted pendulum on a cart.
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The inverted pendulum on a cart(depicted in Figure 12.1) is a hybrid system in which
an optimal universal plan has to balance the pole in the vertical position by applying an
appropriate horizontal force to the cart.

Note that this apparently simple case study is instead an important issue in the controller
design for many real-world systems. Indeed, many control problems, e.g., engineering
(i.e., the regulation of a steering antenna [104]) or robotics [169] can be reduced to an
inverted pendulum problem. Indeed, previous works dealingwith this system are based
on neural network [7], as well as cell mapping [141, 153] to minimise thetimespent to
reach the equilibrium [153].

12.1.1 SYSTEM MODELLING

The system is described as presented by Papa et. al. in [141].The pendulum state is
described by two real variables:

• x1 is the pendulum angle (w.r.t. the vertical axis) withx1 ∈ [−1.5,1.5] rad with
steps of 0.001rad;

• x2 is the angular velocity withx2 ∈ [−8,8] rad/sec with steps of 0.01rad/sed.

The continuous dynamics is described by a system of differential equations:







ẋ1 = x2

ẋ2 =
gesin(x1)−[

cos(x1)
mp+mc

][mplx2
2sin(x1)+u]

4l/3−[mp/(mp+mc)]l cos2(x1)

wherege is the gravitational constant,mp = 0.1Kg is the mass of the pole,mc = 0.9Kg is
the mass of the cart,l =0.5m is the half-length of the pole andu∈ [−50,−46, . . . ,46,50]N
is the force applied to the cart.

The actions that can be applied in each state of the system correspond to the force applied
to the cart, i.e.,A = [−50,−46, . . . ,46,50]. In this setting, thecost of a transitionis given
by the absolute value of the applied force, i.e., for anys,s′, W (s,a,s′) = |a|. Therefore, a
plan of minimum cost minimises theworst-caseenergy consumption. The time is sampled
with a precision of 0.01 seconds.

The non-determinismof the system is given by possible disturbances on the actuator
that may result in a small variation of the force actually applied. Hence, due these dis-
turbances,x2 can non-deterministically assume, with uniform probability distribution, a
value that differs from the expected one by a smallλ∈ [−Λ,Λ] with steps of 0.01 rad/sec.
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To this aim we exploited the strong algorithm described in Section 11.5 to find a strong
solution (if any). In such context, a strong universal plan is a controller composed by a
tuple< s,a,c>. More precisely:

1. thes,a pair describes the actual position of the pendulum (i.e., the values ofx1 and
x2) and it suggests to apply the non-deterministic actiona.

2. thec is the maximum Newton force that might be required (in the worst-case) to
bring the pendulum froms to the equilibrium state via actiona.

3. the actiona is guaranteed to be the best choice between all the possible actions
available which lead to a goal state (or to another controlled state).

const
MAX_THETA : 1500; --in 0.001 rad
MIN_THETA : -1500; --in 0.001
MAX_THETA_DOT : 800; --in 0.01 rad/sec
MIN_THETA_DOT : -800; --in 0.01 rad/sec
MIN_U : -50;
MAX_U : 50;

TOLL_THETA : 15;
TOLL_THETA_DOT : 7;
L : 0.5; --Half-length
M : 0.1; --Mass
MAX_START_STEPS : 50 ;

type
real_type : real(4 , 99) ;
theta_type : MIN_THETA .. MAX_THETA ;
theta_dot_type : MIN_THETA_DOT.. MAX_THETA_DOT;
start_steps : 0.. MAX_START_STEPS -1;
dist_type : -K..K; -- model the non-determinism

var
theta : theta_type ;
theta_dot : theta_dot_type;
fai lure : boolean;

externfun next_theta ( theta : theta_type ; theta_dot : theta_dot_typ e) : theta_type
" CGMURPHI_IP_contro l ler_ l ibrary.h" ;

externfun next_theta_dot ( theta : theta_type ; theta_dot : theta_dot _type; dist_L :
real_type ; dist_M : real_type ; u: u_type ; dist : dist_type ) : theta_dot_type;

function Equil ibr ium ( theta : theta_type ; theta_dot : theta_dot_ty pe) : boolean;
begin
return ( theta <= 0.0 + TOLL_THETA & theta >= 0.0 - TOLL_THETA &

theta_dot <= 0.0 + TOLL_THETA_DOT & theta_dot >= 0.0 - TOLL_T HETA_DOT);
end;

function InRange ( theta : ext_theta_type; theta_dot : ext_theta_do t_type) : boolean
;
begin
return ( theta <= MAX_THETA & theta >= MIN_THETA &

theta_dot <= MAX_THETA_DOT & theta_dot >= MIN_THETA_DOT );
end;

Figure 12.2: Theinverted pendulum on a cartmodel (first part)
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ruleset tmp_theta : start_steps do
ruleset tmp_theta_dot : start_steps do
startstate " source_state"

theta := MIN_THETA + tmp_theta *30 ;
theta_dot := MIN_THETA_DOT + tmp_theta_dot*16;

fai lure := false;
end;
end;

end;

ruleset dist : dist_type do
rule " Apply Force 0 N" (!( Equi l ibr ium ( theta , theta_dot ) )) ==>
weight : MAX_U - 0*4;
var tmp_theta : ext_theta_type;

tmp_theta_dot: ext_theta_dot_type;
tmp_u : int_type ;

begin
tmp_u := MIN_U + 0*4 ;
tmp_theta := next_theta ( theta , theta_dot ) ;
tmp_theta_dot := next_theta_dot( theta , theta_dot , L , M, t mp_u ,dist ) ;

if ( InRange ( tmp_theta , tmp_theta_dot) ) then
theta := tmp_theta ;
theta_dot := tmp_theta_dot;

else fai lure := true;
endif;

end;
end;
. . . .
. . . .
ruleset dist : dist_type do
rule " Apply Force 25 N" (!( Equi l ibr ium ( theta , theta_dot )) ) ==>
weight : MIN_U + 25*4;
var tmp_theta : ext_theta_type;

tmp_theta_dot: ext_theta_dot_type;
tmp_u : int_type ;

begin
tmp_u := MIN_U + 25*4 ;
tmp_theta := next_theta ( theta , theta_dot ) ;
tmp_theta_dot := next_theta_dot( theta , theta_dot , L , M, t mp_u ,dist ) ;

if ( InRange ( tmp_theta , tmp_theta_dot) ) then
theta := tmp_theta ;
theta_dot := tmp_theta_dot;

else fai lure := true;
endif;

end;
end;

Figure 12.3: Theinverted pendulum on a cartmodel (second part)
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12.1.2 STRONG UNIVERSAL PLAN

We generated a start states cloud of 2500 defined as the set
{(x1,x2)|x1 ∈ [−1.5, . . . ,−0.03]∧x2 ∈ [−8,−0.16]} with steps of 0.03rad on x1

and 0.16rad/sec on x2. Roughly speaking, the set of start states represent all the
positions (and angular velocity) in which the pendulum can be in a range of about 90
degrees.

Then, we considered different instances of the problem, taking into account disturbances
of increasing size, i.e., withΛ ∈ {0.01,0.02,0.03,0.04}. For each instance, we applied
the strong algorithm on the sample set of initial states, which produced the results sum-
marised in Table 12.1. Here, for each problem instance, we report some statistics about
the corresponding graphG, i.e., total number of states (|S|), the number of reachable states
and edges (ReachandReachτ, respectively), the number of actions (|A |) and the average
and maximum out degree (avg(δ(s)) and max(δ(s)), respectively) of the states.

To perform the synthesis of strong plans, we exploited the use of the disk both during
theModel Analysis(as implemented in V-UPMurphi) and theCost Optimal Strong Plan
phase, which required to use disk for the third and the fourthinstances.

Then, we summarise the corresponding cost-optimal strong plan SP, as devised by the
algorithm, giving its size (i.e., the number of plans that can be extracted fromSP), the
maximum and minimum cost (max(C (s0) and min(C (s0)) of a strong plan starting from
an initial state (i.e., the minimum and maximum amount of energy required to reach a
goal from a startstate in the worst-case). It is worth notingthat the maximum amount of
energy required could be high (more than 3,000N for the first instance). Nevertheless,
this value refers to a plan which requires to apply 135 actions to reach a goal.

Therefore we may note that, as expected, the greater the sizeof disturbances, the bigger
the number of transitions, the smaller the number of states for which a strong plan is
found, that are about 53% for the first instance and 38% for thethird one, whilst for the
fourth instance, no strong plan exists.

The synthesis time (which includes all the phases) never required more than one hour,
using a Linux machine equipped with an Intel x86 CPU at 2.66Ghz, with 3Gb of RAM
for the hash table.

Finally, for the sake of completeness, we have to note that the results shown in Table 12.1
differ from the ones presented in [53] (with respect to instances and synthesis time). This
is mainly due to the implementation of the SUPMurphi tool, which uses the V-UPMurphi
algorithm and data structures to efficiently implement the Strong Planning Algorithm.
Thanks to SUPMurphi, we were able to test the algorithm on (more) big instances of
inverted pendulum.
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Table 12.1: Experimental results for the inverted pendulumon a cart problem.

Instance 1 2 3 4

Λ 0.01 0.02 0.03 0.04

|S| 5 ·107

Reach 1,513,454 1,526,446 1,537,842 1,547,493

Graph Reachτ 98,728,221 172,743,090 233,520,157 301,773,021

|A | 26 26 26 26

max(δ(s)) 78 130 182 234

avg(δ(s)) 65.23 108.59 151.5 195.1

Disk

.transitions 800Mb 1.33Gb 1.87Gb 2.4Gb

.graph (directed) memory mode memory mode memory mode 2.4Gb

.graph (inverse) memory mode memory mode 1.86Gb 2.4Gb

SP

size 799,966 802,419 588,460 —

max(C (s0)) 3,220N 3,178N 2,628N —

min(C (s0)) 38N 40N 46N —

max plan length 131 128 95 —

min plan length 3 4 4 —

Iterations 1,640 1,696 1,330 1

time (min) 17 25 52 37
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12.2 THE BUILDING L IFTING SYSTEM

In this section we describe an industrial experience where SUPMurphi was applied, in
the field of construction industry, to analyse and automatise a proprietarybuilding lifting
systemshowing that a strong plan, in some real world problems, may not exist. Neverthe-
less, formal methods can provide a valuable help in reducinghuman effort. In particular,
we worked for a company specialised in the strengthening of deep foundations, consol-
idation, lifting and seismic isolation of buildings as wellas in the construction of new
basements under existing buildings. To this aim, the company developed proprietary hy-
draulic cylinders which can lift a building up to two meters above the ground. When the
structure is raised, the foundations are strengthened witha seismic platform and a shock
absorbing system.

12.2.1 THE L IFTING PROCESS

(a) (b) (c)

(d) (e) (f)

Figure 12.4: Illustration of a completelifting processon a building.

Before starting the lifting process, construction engineers build a reinforced concrete
structure that covers the base of the building (Figure 12.4a). Then, following a static
analysis of the building, cylinders are suitably positioned on this structure up to two me-
ters below the terrain level (Figure 12.4b) and connected toa constant-flow hydraulic
pump through a pipeline. Displacement and pressure sensors(with a precision of1

10mm
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and 1
10bar, respectively) are placed on each cylinder to track the lifting process, which is

governed by an operator through a graphical control interface and takes place as follows:

1. The operator defines alifting sequence, i.e., a sequence of cylinders to activate.

2. The system executes the defined sequence by sending a hydraulic impulse to each
cylinder through a junction box.

3. Each impulse produces a displacement of the activated cylinder (Figures 12.4c and
12.4d), and it may cause a partial displacement of other cylinders in the neighbour-
hood of the activated one.

4. If the displacement of all the cylinders is within a safe threshold, the sequence
continues with the next cylinder, otherwise a manual intervention of the operator is
required to return the system in a safe state.

5. The process continues iteratively with new lifting sequences until the building
reaches the desired height (Figure 12.4e).

At the end of this process, the shock absorbing systems are placed below the struc-
ture (Figure 12.4f).

Note that the lifting process is very slow, i.e., about 1cm/h (where the target elevation is
on average between 1 and 2 meters). Indeed, the execution of asingle lifting sequence can
raise the building up to 1mmand, since the sequence is manually defined by the operator,
there is a high probability to makeselection errors(i.e., activations of the wrong cylinder),
which may lead to the violation of safety or structural constraints, or tohydraulic blocks
(i.e., the pressure of a cylinder exceeds the safe limit). Inthese cases, the operator must
often perform manual adjustments, wait for the system to return in an acceptable state,
and then decide an alternative activation sequence, further delaying the lifting process.
Therefore, to speed up the process, we exploited the disk-based UPMurphi described
in Section 7.2 to analyse it and then try to introduce more automatisation where it was
possible.

12.2.2 SYSTEM MODELLING

We started our analysis by tracking a complete lifting process in a construction site, and
then evaluating the logs produced during other successful lifting processes, which report
the activation sequences used and the corresponding cylinders behaviour during the entire
process. These observations allowed us to extract some important domain properties and
constraints, which were then used in the next phase in order to model a realistic and
accurate model. First of all, we formalised the concept of activation sequence as follows.
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Definition 24 (Lifting Process and Activation Sequence). Let H be the set of cylinders. A
lifting processP is defined as a sequence of activation sequences P=

(

SH
1, . . . ,SH

n
)

with
n≥ 1. Anactivation sequenceis a sequence SH = (h1, . . . ,hm) with hi ∈ H and m≤ |H|.

In our experiments the number of cylinders (|H|) was fixed to seven. The actual num-
ber of cylinders used in each lifting process may vary w.r.t.the building area, however
seven represents a reasonable average number. Moreover, wenoted that the entire sys-
tem is reset after each activation sequence (e.g., the cylinders pressure is stabilised, and
their current displacement becomes the new “zero height”),in a way that makes each
sequence independent from the others. Thus, our study focused on the analysis and the
automatisation ofsingle activation sequences, rather than on the entire lifting process.

Each cylinderh has an associateddisplacement, (i.e., its current height), indicated by
dsp(h)∈ [0,0.1, . . . ,1.2]mm. Each element in an activation sequence indicates the activa-
tion of the corresponding cylinder, which modifies its displacement and may also affect
its neighbours, defined as follows.

Definition 25 (Cylinder Neighbours). Let dH(h,h′) be the Euclidean distance between
cylinders h,h′ ∈ H, and d(h,h′) the corresponding normalised distance obtained as

d(h,h′) = dH(h,h′)
max̄h,h̄′∈H(dH(h̄,h̄′))

. Then h,h′ ∈ H are neighboursif dH(h,h′) < δ. We denote

with ngh(h) the set of all neighbors of h.

The value ofδ depends on the placement of the cylinders and from mechanic and elastic
characteristics of the building basement, and it is estimated by the construction engineers.
Intuitively, two cylinders are neighbours if they are “close enough” to make the selection
of the first also affect the displacement of the second.

Thus, the activation of a cylinderh modifies its displacement and possibly induces a
displacement variation (induced displacement) to all the neighbour cylindersh′ ∈ ngh(h).
However, neither the displacement nor the induced displacements can be expressed by a
deterministic formula. Rather, they can assumenon-deterministicallyany value from a
set of possible results (which were empirically identified during our preliminary study),
with uniform probability.

Definition 26 (Displacement and Induced Displacement). Let h be a cylinder and h′ ∈
ngh(h) a neighbour cylinder for h, with dsp(h) = dh and dsp(h′) = dh′ . After the acti-
vation of h, the new displacements dsp(h) = d′h and dsp(h′) = d′h′, respectively, always
satisfy the following constraints:|dh−d′h| ∈ [0.8, . . . ,1.2], d′h′ = dh′ + idsp(h,h′), where
idsp(h,h′) = x· 1

d(h,h′) , x∈ [0.0, . . . ,0.6] is called theinduced displacement.

Finally, the domain analysis evidenced some constraints, which are critical for the correct
execution of the lifting process.

C1 : At any point of the lifting process, the following must hold: ∀h,h′ ∈ H, |dsp(h)−
dsp(h′)| ≤ 1mm.
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C2 : Let SH = (h1, . . . ,hm) be an activation sequence, then∀i ∈ 1. . .m−1, hi 6= hi+1.

C3 : Let SH = (h1, . . . ,hm) be an activation sequence. Any cylinderh which, at a given
stepi ∈ 1. . .m, reaches its final displacement, i.e., 1.0≤ dsp(h)≤ 1.2, must not be
further activated.

ConstraintC1 is a safety constraintensuring that the building does not collapse. Con-
straintC2 forbids consecutive selections of the same cylinder (whichmay apply too much
pressure to a single part of the building) and the constraintC3 guarantees that, when a
cylinder reaches its goal displacement (i.e., about 1mm) it will not be further activated.
Any cylinder activation whose effect violates at least one of the constraints above causes
a selection error.

It is worth noting that we were not able to model thepressure evolutionof cylinders.
Indeed we observed that, during the lifting process, the pressure behaviour is subject to
unpredictable environmental conditions (e.g., temperature, presence of concrete structures
near the cylinder). On the other hand, we also empirically observed that hydraulic blocks
are tightly linked to selection errors, thus avoiding selection errors we can reasonably
prevent also hydraulic blocks.

12.2.3 SYSTEM ANALYSIS

After modelling the activation sequences as described in the previous section, we first used
the MODELANALYSIS procedure (see Procedure 5, page 59) to analyse their dynamics in
order to build the corresponding transition graph.

Table 12.2: SUPMurphi Statistics

Graph Universal Plan

State Space Size 3.2·1016 Size (plain/OBDD) 71/3.4 MB

State Size (compressed/not)12/20 bytes Memory peak 1,245 MB

Reachable States 120,350,719 Plans 49,326,019

Transitions 184,445,662 Time (sec) 1,136.51

Transition File Size 2,692 MB

Graph File Size 2,631 MB

The analysis started from a single initial configuration where all cylinders displacements
are zero. We specified as goal any state where all the cylinderdisplacements are between
1 and 1.2mm, and all the states corresponding to selection errors as error states. In this
way, SUPMurphi was able to record all the success and failurestates, as well as the control
paths that lead to them. All the experiments were done on a 32 bits 2.2Ghz CPU equipped
with 3 GB of RAM. The results are summarised in theGraphsection of Table 12.2.
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Given the domain variables and their ranges (induced by Definition 26), we can easily
calculate the state space size of the system, which is about of 1016 states. Thanks to the
reachability analysis, SUPMurphi was able to build a relatively smaller transition graph,
with more than 120 million nodes and 180 million edges.

12.2.4 STRONG UNIVERSAL PLAN

In our initial attempt, we tried to achieve a complete automatisation of the lifting process.
To this aim, we are interested in the synthesis of astronguniversal plan, i.e., a plan able
to reach the right height never occurring in a selection error.

Hence, we used our strong algorithm to synthesise a cost optimal strong plan, as described
in Section 11.1. However, ourBuilding Lifting Systemdoes not admit a strong solution.
In other word, for each activation sequence always exists a cylinder activation that may
lead to a selection error. This outcome was partly expected,since the non-determinism of
the system responses make selection errors unavoidable.

It is worth noting that, in such kind of domain, only a strong solution would be acceptable.
Indeed weak or strong cyclic plans (if any) did not have an acceptable reliability level to
automate the lifting process.

12.2.5 SAFEST UNIVERSAL PLAN

Therefore, we tried another possible solution, i.e., we used V-UPMurphi looking for the
safestactivation sequences, which have less probability to encounter a selection error
during their execution. In other words, we focused on the synthesis of a universal plan
thatreducesthe selection error probability.

In order to determine the probability distribution of the selection error, we started again
from the system dynamics. In addition, we used V-UPMurphi’sCOMPUTEOPTIMAL -
PATH algorithm (see Procedure 7, page 61) to generate a (possiblynon strong) universal
plan from the system transition graph created in the previous phase. The results are sum-
marised in theUniversal Plansection of Table 12.2. The tool synthesised about 50 million
plans (i.e., possible activation sequences) in about 20 minutes, requiring a memory peak
of 1.2GB. The entire universal plan size was about 70MB, which decreased up to 7.4MB
thanks to the OBDD compression algorithm implemented into V-UPMurphi.

Then, we applied a post processing algorithm to look at the states and transitions used
by the universal plan. More precisely, in each state we counted the transitions that could
lead to error states (previously recorded by V-UPMurphi), and used this information to
recursively calculate the error probability of each state as in the following definition:

Definition 27. Let s be a state,{a1, . . . ,an} all the possible actions that can be performed
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in s and F(s,ai) the state reached by each of them, respectively. Theerror probabilityof
s, written as ep(s) is recursively defined as

ep(s) =















1 if s is an error state
∑ai

ep(F(s,ai))

n if n > 0

0 otherwise

a2 a3 a4 a5

a1

s0

ep = 1/4

s1

ep = 1/4

s2

ep = 0

s3

ep = 0

s4

ep = 0

s5

ep = 1

Figure 12.5: A fragment of transition graph with error probabilities

To give an example, Figure 12.5 contains a fragment of transition graph where the lower
part of each node contains the corresponding error probability. In particular, the error
probability ofs5 is 1, whilst it is zero for all the other states reachable froms1. Thus, the
error probability ofs1 is 1/4 and the same is fors0, sinces1 is its only child.

Having assigned an error probability to all the states, thenthe final safest universal plan
will contain, for to each state, the plan that has the lower error probability.

To evaluate the accuracy of this universal plan we used a Monte Carlo based algorithm,
performing a set of simulations exploiting the dynamics computed by V-UPMurphi during
the first phase. The simulator works iteratively as follows:given the current state of the
system, it looks in the universal plan for the action to take,applies it, chooses one of the
possible (non-deterministic) outcomes of the action and makes the corresponding state
the current one. The choice is made with uniform probability, since it was not possible to
extract a more precise probability distribution from the domain data.

The simulation stops when the system reaches the goal or an error state. By running
a large number of simulations and counting the success and failure results, we get an
estimation of the universal plan accuracy, which shows thatit is able to complete the
lifting process only in 35% of the cases, whilst in the remaining 65% it must stop for an
error.
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12.2.6 DECISION SUPPORTSYSTEM

The build lifting system represents a real-case study whichdemonstrates that a strong
plan (i.e., in this contexts a complete automatisation of the building lifting process) may
not exist in the practice. Moreover, it is important to remark that, due to the high reli-
ability requirements of the system, also weak or strong cyclic solutions (if any) did not
have acceptable. Human surveillance and manual intervention will be always required
to successfully complete it. However, all the artifacts produced during our study could
be profitably exploited to create adecision support systemwhich may lower the human
efforts needed during the lifting process.

To this aim, we finally created a software tool which is designed to work “side by side”
with the human operator. In particular, we extended the safest universal plan, making its
applicationinteractive. Indeed, in each step of the activation sequence, the tool isable
to suggest to the user the best possible move to take, i.e., the cylinder activation which
minimises the error probability. However, only if this probability is small enough, the
action is performed automatically, otherwise the system asks for the operator approval.
In either case, if the outcome is an error state or a state witha high error probability, the
system triggers an alarm and notices the operator to manually perform a roll back action
to return the system in an acceptable state before trying to activate another cylinder.

With this solution, we maintain the 35% of fully automatisedsuccessful lifting processes,
whereas we can adjust the auto-activation probability threshold above to obtain a satis-
factory compromise between the process safety and the need of operator choices which,
however, are always “guided” by the suggested action.

In other words, thanks to the decision support system, the user is alerted before making
any critical action (i.e., with a high error probability) which may put the system in an error
state. Thus, the contribution of this artefact to the lifting process is mainly that it provides
useful information in order to avoid system hangs and the consequent restore procedures,
which usually require big efforts.

This last artefact, after being initially tested using a simulation scheme similar to the one
described in the previous section, is now ready to be experimented on-field.

In the future, our idea is to put the decision support system side-by-side with the human
operator during a lifting process, connecting it only to thedisplacement sensors: in this
way, while the lifting is being carried on manually by the operator, we could look at the
software and compare its decisions to the human ones.
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CONCLUSIONS

In this Thesis, we addressed the problem of dealing with systems having both discrete and
continuous (possibly nonlinear) dynamics, and which may present a non-deterministic
behaviour. We focused on the analysis and control of their dynamics, discussing how the
problems of planning, universal planning, and strong planning have been handled in the
literature.

To this regard, we showed that the model checking technique can be suitable to perform
planning and universal planning for continuous systems, byanalysing the dynamics of a
Finite State System obtained from a Discrete Time Hybrid System, and generating opti-
mal plans and controllers for it. As a contribution, we applied the explicit model checking
technique, that by one side works well on systems having a continuous dynamics hard to
invert, on the other side it is affected by the well-known state explosion problem. To
mitigate this problem, we extended the UPMurphi tool by supporting the disk-based ver-
ification, which allows one to cope with systems having a large state space. Then, we
tested this approach on a number of continuous case studies,many of which inspired by
real world problems.

Moreover, we showed that the explicit model checking can be successfully applied to
a different class of problems, that is the analysis and verification of data quality (i.e.,
consistency in our case) on sets of dirty dataset which can bemodelled through FSS. To
this aim, we defined a technique based on formal methods whichincreased the consistency
of the data quality process. We modelled a real case scenarioof a Public Administration
Database, and we applied a modified version of CMurphi to testif such methodology
improved the overall data quality process.

Finally, in the last part of this thesis, we discussed the problem to synthesise plans able
to reach a goal in systems having a non-deterministic dynamics. We gave a survey on
how this problem has been handled in the literature, an we provided a novel algorithm
which synthesises cost-optimal strong plans, minimising the cost of the non-deterministic
worst-case execution. We proved the correctness and completeness of the algorithm and
we applied it on two real world problems.

All algorithms we presented in this thesis have been implemented in the following tools,
all built on top of Murphi model checker:
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V-UPMurphi: It is a computational engine to enhance the ability of UPMurphi (The Uni-
versal Planner Murphi) to synthesise plans and universal plans for (possibly non-
linear) Discrete Time Hybrid Systems defined with a PDDL+ model. V-UPMurphi
exploits the use of the disk during the exploration of the dynamics, as described
in Chapter 7. It implements on disk the state space reductiontechniques inherited
from Murphi (as bit-compression, hash-compaction) and allows one to pause and
resume the system analysis process, using the disk to both explore and store the
graph of the system dynamics.

SUPMurphi: The Strong Universal Planner Murphi is built on-top of V-UPMurphi. In
particular, it implements the cost-optimal strong planning algorithm, as described
in Chapter 11. It uses the Murphi description language to model non-deterministic
behaviour of systems’ actions and, thanks to the use of disk-based algorithm, is able
to perform strong planning. Then, it allows one to validate the final strong plan (if
any) on the system graph.

13.1 FUTURE WORKS

Our future research activity is moving on two contexts.

In the context ofplanningandcontrol problems, we are actually working to extend the
application of the approach presented in this Thesis to dealwith a wider class of systems,
as well as to apply it on other real-world planning and control problems.
To this regard, we intend to exploit heuristics search during the system analysis as well as
to enrich SUPMurphi with other state space reduction techniques.

In the context ofdata quality, currently we are further investigating the benefits that model
checking can provide by applying both sensitivity analysison dataset indicators and per-
forming data cleansing through model checking.
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[119] LÉAUTÉ, T., AND WILLIAMS , B. C. Coordinating agile systems through the
model-based execution of temporal plans. InTwentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of Artificial In-
telligence Conference (AAAI/IAAI)(Pittsburgh, Pennsylvania, USA, 2005), M. M.
Veloso and S. Kambhampati, Eds., AAAI Press / The MIT Press, pp. 114–120.
(Cited on pages 3, 47 and 48.)

[120] LEE, D. Design and verification of the Mars exploration rover primary payload.
In Proceedings of Workshop on Spacecraft and Launch Vehicle Dynamic Environ-
ments(2003). (Cited on page 73.)

[121] LENOSKI, D., LAUDON, J., GHARACHORLOO, K., WEBER, W.-D., GUPTA, A.,
HENNESSY, J., HOROWITZ, M., AND LAM , M. S. The stanford dash multipro-
cessor.Computer 25(March 1992), 63–79. (Cited on page 21.)

[122] LI , H. X., AND WILLIAMS , B. C. Generative planning for hybrid systems based
on flow tubes. InEighteenth International Conference on Automated Planning and
Scheduling (ICAPS)(Sydney, Australia, 2008), J. Rintanen, B. Nebel, J. C. Beck,
and E. A. Hansen, Eds., AAAI Press, pp. 206–213. (Cited on pages 3 and 48.)

[123] MALETIC, J., AND MARCUS, A. Data cleansing: beyond Integrity Analysis. In
Proceedings of the Conference on Information Quality(2000), pp. 200–209. (Cited
on pages 98 and 99.)

[124] MARTINI , M., AND MEZZANZANICA , M. The Federal Observatory of the Labour
Market in Lombardy: Models and Methods for the Costruction of a Statistical In-
formation System for Data Analysis. InInformation Systems for Regional Labour
Market Monitoring - State of the Art and Prospectives, C. Larsen, M. Mevius,
J. Kipper, and A. Schmid, Eds. Rainer Hampp Verlag, 2009. (Cited on page 104.)
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