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Abstract Mixtures of factor analyzers are becoming more and more lpopn the area
of model based clustering of high-dimensional data. In dataleling, according to the
likelihood approach, it is well known that the loglikelinddunction may present spurious
maxima and singularities and this is due to specific pattefrthe estimated covariance
structure. To reduce such drawbacks, in this paper we intednd implement a procedure
for the parameter estimation of mixtures of factor analyzehich maximizes the likelihood
function in a constrained parameter space, having no sngak and a reduced number of
spurious local maxima. We then analyze and measure itsrpeafwe, compared to the usual
non-constrained approach, via some simulations and @piplics to real data sets.

Keywords Factor Analyzers Modeling, Mixture Models, Model-Basedi€téring,
Parsimonious gaussian models.

1 Introduction and motivation

Finite mixture distributions have been receiving a growinigrest in statistical mod-
eling. Their central role is mainly due to their double netuhey combine the flexibility
of non-parametric models with the strong and useful mattieaigroperties of parametric
models. According to this approach, when we know that a samipbbservations has been
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drawn from different populations, we assume a specificitigional form in each of the un-
derlying populations. The purpose is to decompose the saimial its mixture components
(Peel and McLachlan, 2000), which, for quantitative date, wsually modeled as a mul-
tivariate Gaussian distribution, and to estimate pararsefthe assumption of underlying
normality, besides the elegant analytic properties, a@lalgo to employ the EM algorithm
for the ML estimation of the parameters. On the other sidemdonsidering a large number
of observed variables, Gaussian mixture models can pravidever-parameterized solution
as, besides the mixing weights, it is required to estimaterthan vector and the covariance
matrix for each component (Peel and McLachlan, 2000). Asseguence, we observe at
the same time an undue load of computationally intensivequiores for the estimation.

This is the reason why a number of strategies have been udeodin the literature
to avoid over-parameterized solutions. Among the variowpgsal, some authors devel-
oped methodologies for variable selection (see, f.i., dial. (2003) and Hoff (2005) in
the Bayesian framework, Pan and Shen (2007) and Raftery @aeh [2006) in the fre-
guentist one). They further motivate their approach from tbservation that the pres-
ence of non-informative variables can be strongly miskegfior some clustering methods.
With the same purpose of parsimony, but a completely diffeemproach, Banfield and
Raftery (1993) devised a methodology to identify commorguas among the component-
covariance matrices, which arose a great attention intdvature. Along a slightly different
line of thinking, Ghahramani and Hilton (1997) and McLach& al. (2003) proposed to
employ latent variables to perform dimensional reductioeach component, starting from
the consideration that in many phenomena some few unolusiratires could be explained
by the many observed ones.

In this paper we address mixtures of factor analyzers bynaisguthat the data have
been generated by a linear factor model with latent varsatmedeled as Gaussian mixtures.
Our purpose is to improve the performances of the EM algarithy facing some of its
issues and giving practical recipes to overcome them. lelkmown that the EM algorithm
generates a sequence of estimates, starting from an igitéss, so that the corresponding
sequence of the log-likelihood values is not decreasingvéyer, the convergence toward
the MLE is not guaranteed, because the log-likelihood isounded and presents local
maxima, so that the final estimate crucially depends on tlialiguess. This issue has been
investigated by many authors, starting from the seminaépapRedner and Walker (1984).
Along the lines of (Ingrassia, 2004), here we will introdweel implement a procedure for
the parameters estimation of mixtures of factor analyzenich maximizes the likelihood
function in a constrained parameter space having no singetaand a reduced number
of spurious local maxima. We then analyze and compare ifsqpeance, compared to the
usual non-constrained approach.

We have organized the rest of the paper as follows. In Se&tiae summarize main
ideas about Gaussian Mixtures of Factor Analyzer model;ectiSn 3 we provide fairly
extensive notes concerning the likelihood function andABE£M algorithm. Some well
known considerations (Hathaway, 1985) related to spurioagimizers and singularities



in the EM algorithm are recalled in Section 4, which motivate proposal to introduce
constraints on factor analyzers. Further, we give a detailethodology to implement such
constraints into the EM algorithm. In Section 6 we show arstuis the improved perfor-
mance of our procedure, on the ground of some numericaltsdsased on both simulated
and real data. Section 7 contains concluding notes anddas\vileas for future research.

2 The Gaussian Mixture of Factor analyzers

Within the Gaussian Mixture (GM) model-based approach tosite estimation and
clustering, the density of thé-dimensional random variabM of interest is modelled as a
mixture of a number, sa, of multivariate normal densities in some unknown proporsi
m,...T. That is, each data point is taken to be a realization of thdum@ probability
density function,

G
f;6) =5 m@(x:Hg, Zg) @)
g=1

whereqy (x; 4, 2) denotes the-variate normal density function with mearand covariance
matrix >. Here the vectoBgum (d, G) of unknown parameters consists of {{i@— 1) mixing
proportionsrg, theG x d elements of the component meangs and the% Gd(d+1) distinct
elements of the component-covariance matriegs Therefore, theG-component normal
mixture model (1) with unrestricted component-covariamegrices is a highly parametrized
model. We crucially need some method for parsimonious pairération of the matrices
24, because they requir€d?) parameters. Among the various proposals for dimensional-
ity reduction, we are interested here in considering Misunf Gaussian Factor Analyzers
(MGFA), which allows to explain data by explicitly modelirgprrelations between vari-
ables in multivariate observations. We postulate a finiteuné of linear sub-models for the
distribution of the full observation vectdf, given the (unobservable) factdds That is we
can provide a local dimensionality reduction method by assg that the distribution of the
observatior; can be given as

Xi = Hg+AgUig+6&g with probability m(g=1,...,G) fori=1,....,n, (2)

whereAg is ad x g matrix of factor loadings, the factors Usg,...,Ung are.4(0,14) dis-
tributed independently of therors g, which are independently) (0, ¥¢) distributed, and
Yy is ad x d diagonal matrix(g = 1,...,G). We suppose thaj < d, which means tha
unobservable factors are jointly explaining thebservable features of the statistical units.
Under these assumptions, the mixture of factor analyzedeis given by (1), where the
g-th component-covariance matibg has the form

The parameter vectdiemra(d, g, G) now consists of the elements of the component means
Hg, theAq, and thelWq, along with the mixing proportionsy (g=1,...,G— 1), on putting
Mo=1-37" .



Comparing the two approaches and willing now to measuredfreed parsimony when
we use mixtures of factor analyzers, with respect to the metml gaussian mixtures, we
have to choose values gfsuch thatg < %(d —1). This is the only requirement for par-
simony. Further, denoting by0coem(d,G)| and |8coemra(d, g, G)|, the number of the
estimated parameters for the covariance matrices in the @&MVEA models, respectively,
we can express the relative reducti®R(d, g, G) = RR(d, g) given by

_ |Bcovem (d, G)| — [Bcovemra(d, 0, G)|
RR(dvq) - |6COVGM (d,G)|
_ 1d(d+1)G—d(q+1)G
3d(d+1)G
d—29-1
d+1

In Tables 2 we report the relative reduction, in term of lowember of the estimated param-
eters for the covariance matrices in the GMFA models, wisipeet to the GM models. The

Table 1 Relative reductiorRR(d, q) for different values ofi andq (where -’ means: 'no reduction’)

dg | 1 2 3 4 5 6 7
1 R R R R R R R
2 - - - - - - -
3 - - - - - - -
4 | 020 - - - - - -
5 |03 - - - - - -
6 | 043 014 - - - -
7 | 050 025 @ - - - - -
8 | 056 033 011 - - -
9 | 060 040 020 - - -
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relative reduction represents the extent to which the faoiadel offers a simpler interpre-

tation for the behaviour of than the alternative assumption given by the gaussian naixtu
model.

3 The likelihood function and the EM algorithm for GMFA

In this section we summarize the main steps of the EM algorfdr mixtures of Factor
analyzers, see e.g. McLachlan and Peel (2000) for details.



Let X = (Xg,...,Xn) be a sample of sizae from density (1), and lex; (i = 1,...,n)
denotes the realization of; in (2). For given dataX, parameters in (1) can be estimated
according to the likelihood approach via the EM algorithrhere the likelihood function is
given by:

n G
L&) =14 S @xiHg Zg) T
i 1
i=1 (o=
n G
|‘|{ zl%(xi;ug,/\g#’g) "é} ,
i=1 (o=

where we sek g = Ag/\é +W4(9=1,...,G). Consider the augmented dd{x;, Uig,Z), i =
1,...,n}, wherez; = (Z1,...,zg)’, with zg = 1 if x; comes from theg-th population and
zg = 0 otherwise. Then, the complete-data likelihood functian be written in the form:

n G

Le(6;Y) = |_| |'|l [ (xi|ui; Hg, Ag, Wg) @ (Uig) ] . 4)
1=10=

In particular, due to the factor structure of the model, semnfyland van Dyk (1997), we
have to consider the alternating expectation-conditiomakimization (AECM) algorithm.
Such a procedure is an extension of the EM algorithm that diflesent specifications of
missing data at each stage. The idea is to partifien (67, 65) in such a way that (6;Y)

is easy to maximize fof; given 8, and vice versa. Then, we can iterate between these two
conditional maximizations until convergence. In this clige- {rg, Ugg=1,...,G} where
the missing data are the unobserved group laels(z},...,z,), and the second part of
the parameters vector is given By = {(Ag,¥g), 0=1,.. .,G} where the missing data are
the group label¥ and the unobserved latent factdds= (U;1,...,Ung). In this case, the
application of the AECM algorithm consists of two cyclesgddhere is one E-step and one
CM-step alternatively consideringy and@, in each pair of cycles.

First Cycle. Here 81 = {"é?“g? g=1,...,G} where the missing data are the unobserved
group labelsZ = (z;,...,z,). The complete data likelihood is

n G

Lea(02) = 1] [ [on (6 g ) 761 (5)
i=1g=

The E-step on the first cycle on thie+ 1)-th iteration requires the calculation@§ (61; M) =
0 {Ze(01)|Y} which is the expected complete-data log-likelihood givem datay and

using the current estimat@ for 6. In practice it requires calculatin@e(k) {Zig|Y} and
usual computations show that this step is achieved by rieygjaachzg by its current con-
ditional expectation given the observed dgtehat is we replacegq by z|k+l/ 2 where

(ke) _ (Xl\ﬂg ) g ¥ )
AT TV WEk)n(k

(6)



On the M-step, the maximization of this complete-data ikghihood yields

(k+1)
Ték+l i 1Z|g
n
k+l lelk+l i
ng i
wheren =5 1z| ). According to notation in McLachlan and Peel (2000), we set

gk+1/2) _ (e(lk+1) 9<2k)/)/.

Second Cycle. Here8, ={>4,9=1,...,G} = {(Ag, ¥g), 9= 1,...,G} where the missing
data are the unobserved group lateknd the latent factord. Therefore, the complete data
likelihood is

=]
@

Le2(62) = [qh (Xi|Uigi Ué;k+l)7zg) @ (Uig) rékH)FQ

I
s 1
[{e)

I,

«
o |
iR

[ (xlugi Y, g, W) @y (i) Y], ™
where

1 1 _
1Y (xi|uig; ug‘“),/\g,wg) = W eXp{*E(Xi - HS(H) —Aguig)' Wy Yxi — IJS(H) Aguig)}~

1 1,
@y (uig) = W eXp{_EUigulg}-

Now the complete data log-likelihood is given by
nd G 1N G 1
Ze2(67) = - In2m+ Z NgIn g+ ZZ leigln Wyl
= g_
ER zz. tr{ uE — Aguig) (x — u§Y — Agui )’W‘l}. (8)
ZiZI g g glig) ¥yg

Some algebras lead to the following estimatg @k g, ¥q),9=1,...,G}:

/"\g _ (k+1>y(k)’ O<k)]*1
Wg_dlag{ (k+1) A y(k k+1}

k+l k+l k+l

V<k>:,\ék>’(/\<k>/\<> +qU<>)-

— VNG + Vg (x ~Hg)'vy”"



Hence the maximum likelihood estimatég and¥g for A and¥ can be obtained by alter-
natively computing the update estimateg and¥, by

k 1 (K)g— : k (k
AF =SS yWePT and Wi = duag{sg g yosE } . )
and, from the latter, computing the update estima@]eandeg+ by
Ve =AgAAg+Wo)t  and O =lq—yAg+YeSE Ty (10)

iterating these two steps until convergence’ty‘and Wg, o) glvmgA<k+1 and(.U<k+1

In summary, the procedure can be described as follows. Foea @itial random clus-
tering z(¥), on the(k+ 1) —th iteration, the algorithm carries out the following steps, f
g=1...,G

k+1)

1. Computai(g and consequently obtavrék+l andu< ) and alsm (1) anng

2. Set a starting value fakg and¥g from Sgk+l ;
3. Repeat the following steps, until convergence\grand¥:
(a) Computeyg and©y from (10);
(b) Setyy «+ y§ andOg + Oy
(c) Computery « Sy, 5(0g1) andwy « dlag{Sgk+1 Vgsgk+1 }
(d) SetAg Ay andWq W*,

To completely describe the algorithm, here we give moreildata how to specify the
starting values for\y and%y from Sgk”), as itis needed in Step 2.

Starting from the eigen-decomposition ﬁff*l saysgk+l = AyBgAj, computed on
the base ot, 4D the main idea is thad ¢ has to synthesize the "more important” relations

between thel observed features. Then, looking at the equaligy= I g ; + ¥y, the initial

values ofAy were set as
Aij = /djaj 11)

whereb; is the jth largest eigenvalue dﬁkﬂ) anda;j is theith element of the corresponding
eigenvectom’; (the jth column inAg), fori e {1,2,...,p} andj € {1,2,...,q}. Finally the
Wy matrices can be initialized by the positigfy = diag{Sgk”) SALAIE

4 Likelihood maximization in constrained parametric space

Properties of maximum likelihood estimation for normal tobe models have been
deeply investigated. It is well known th&f'(6) is unbounded o® and may present many
local maxima. Day (1969) was perhaps the first noting thatsamgll number of sample
points, grouped sufficiently close together, can give rédsspurious maximizers, corre-
sponding to parameters points with greatly differing congot standard deviation. To over-
come this issue and to preveft(0) from singularities, Hathaway (1985) proposed a con-
strained maximum likelihood formulation for mixture of mariate normal distributions,



suggesting a natural extension to the multivariate casecke(0,1], then the following
constraints

min A(Zpsh > 12
1§h;£j§k ( h i )_C ( )

on the eigenvalues of Zth’l leads to properly defined, scale-equivariant, consistdrt M
estimators for the mixture-of-normal case, see Hennig420d0is easy to show that a suf-
ficient condition for (12) is

aAig<h, i=1,....d; g=1...,G (13)

whereAig denotes théth eigenvalue oty i.e. Aig = Aj(Zg), and fora,b € R such that
a/b > ¢, see Ingrassia (2004). Differently from (12), conditior8Tan be easily imple-
mented in any optimization algorithm. Let us consider thest@ined parameter spaég
of ©:

Oc :{(T[la < TGy Hys -+ 5 Hes DX PR ZG) € Rk[l+d+(d2+d)/2} :
G>0,m+--+mc=1a<Ag<b, g=1,....,Gi=1...,d}. (14)
Due to the structure of the covariance matfixgiven in (3), the bound (13) yields

Amin(AgAg+Wg) >a  and  Amax(AgAg+Wg) <b, g=1,....G (15

whereAnmin(-) andAmax(-) denote the smallest and the largest eigenvalue) sespectively.
SinceA g/ 4 and¥q are symmetric and positive definite, then it results:

Amin(AgA g+ Wo) > Amin(Wo) (16)
Amax(A g g+ Wg) < Amax(Ag/g) + Amax(Wg), 17
forg=1,...,G, see Litkepohl (1996). Sin¢ky is a diagonal matrix, then
Amin(Wg) = miin Wigs (18)
Amax(Wg) = miaxwig, (29)
wherey;, denotes thé-th entry along the diagonal of the matti,.

Concerning the squar@ x d matrix /\Q,A’g (g=1,...,G), we can get its eigenvalue
decomposition, i.e. we can fintly and/” 4 such that

wherer g is the orthonormal matrix whose rows are the eigenvectord @gf; andAg =
diag(dug, . . ., dug) is the diagonal matrix of the eigenvalues'of/\,, sorted in non increasing
order, i.e.d1g > &g > ... > &qg.

Now, on thed x g rectangular matrix\y we can apply the singular value decomposition,
S0 giving/\ g = UgDgV, whereUg is ad x d unitary matrix (i.e., such thadgUq = 14) and
Dy is ad x g rectangular diagonal matrix witthnonnegative real numbers on the diagonal,



known assingular values, andVg is aq x g unitary matrix. Thed columns ofU and theq
columns otV are called the left singular vectors and right singular ealof/ 4, respectively.
Now we have that

and equating (20) and (21) we geg§ = Ug andAg = DgDy, that is
diag(dyg, - .., 0qg) = diag(dfg,...,dgg). (22)
with dig > dog > - -+ > dqg > 0. Thus it results
)\max(/\ g/\é) = d%g- (23)

Results (18), (19) and (23) express some relationshipseegtwhe eigenvalues afg
and the singular values dfy and the diagonal elements @f,. In particular, the bounds on
the eigenvalues ofig/\y+ Wy in (15) are satisfied when

mingy > a (24)

dfy + maxyig < b. (25)

5 Constraints on the covariance matrix for factor analyzers

The reformulation of the update of the covariance matriEggfor g=1,...,G) pre-
sented above, suggests how to modify the EM algorithm in sughy that the eigenvalues
of the covariances are confined into suitable ranges. Tathisve have to implement the
constraints (24) and (25).

As for the bound on the smallest eigenvaluegf based on (16), on th&k + 1)th
iteration, after the procedure described at the end of @e@&i we carry out the following
conditional assignment

(k+1) (k+1)

—if gy~ <athensetf;" ~ < a,

so that condition (24) is satisfied, for a given real vadue 0.

Concerning the upper bound on the largest eigenvalug wie first recall that/y is the
covariance matrix of the erroesg of the G linear submodels in (2), i.e. we have assumed
that theey are independently/” (0, %) distributed, with¥y = diag{ (g, ..., Yag}. Thus
we can assume that the largest eigenvalué/gf that is maxy;, is small compared to
the ei(;;envalueﬁlfg,...,dég of /\g/\{g. Hence, in order to satisfy the condition (25), on the
(k+ 1)th iteration, after the procedure described at the end ofi®e8, for a given real
valueb > 0, we proceed as follows:

1. Decomposé\ 4 according to the singular value decompositiomgs= UgDgV;
2. Compute the squared singular valgé$, .. ., d3) of A;
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3. Create a copp of Dg;
C i 12 (k+1) _ (k+1) .
4. Fori=1tod, if dig > b—max ¢jj; ', then set «— y/b—max ;" ~ into Dy at the

corresponding place, otherwise go to step 5;
5. Computer ) = UgDEVQ;
6. Stop.

It is important to remark that the resulting EM algorithm ismatone, once the initial guess,
sayzg satisfies the constraints. Further, as shown in the caseis§gan mixtures in Ingras-
sia and Rocci (2007), the maximization of the complete lagihood is guaranteed. Form
the other side, it is apparent that he above recipes regoine & priori information on the

covariance structure of the mixture, throughout the boumdsdb. A weaker constraint

could be imposed directly on the raghb in

6 Numerical studies

The aim of this section is to show the improvement we attaimdipg the constrained
EM algorithm, in terms of its ability to provide the "rightofution, when compared to the
unconstrained approach. This analysis will be carried pfitstly considering two synthetic
samples and then some real data-sets.

6.1 Simulations

We have considered three mixtures@tomponents oél-variate normal distributions, for
different values of the parameters vecthr To generate a synthetic dataset, g and
Wy matrices have to be chosen fgr=1,...,G, so that multivariate normal variates with
covariances given bfg = Ag/\y + Wg can be easily generated.

The point of local maximum corresponding to the consistestinetor 6* (i.e. the
"right” solution), has been chosen to be the limit of the EMaalthm usingé as initial
estimate, i.e. considering the crigg which assign each observation to the mixture compo-
nent from which it has been generated,ifer1,...,Nandg=1,...,G.

We run a hundred times the unconstrained EM algorithm, Vi@ by the constrained
EM algorithm, both were fed with the same starting values. g&laerated a set of 100
different random initial clusterings to initialize the alithm at each run. To this aim, we
draw each time a set of random starting values fozghrom the multinomial distribution,
with the same given values of the parameterg, a1, ..., ac) andG we employed before,
when generating the synthetic sample. In this way, when ldngrithms evaluate the first
cycle of the EM, the randomly generatgg Were taken as the starting group membership
labels. The initial values for the elements/of and¥y were obtained as described at the end
of Section 3 from the eigen-decomposition&yf and the algorithms run until convergence
or reached the maximum number of iterations (failure).
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We decided to employ the convergence criterion based onitkerPacceleration proce-
dure (Aitken, 1926), to estimate the asymptotic maximunhefibg-likelihood at each itera-
tion of the EM algorithm. Based on this estimate, a decisamlze made regarding whether
or not the algorithm has reached convergence; that is, whethnot the log-likelihood is
sufficiently close to its estimated asymptotic value. Thtkén acceleration at iteratidais
given by

[(k+1) (k)

=W ey

wherel &1 | &) andlk-1 are the log-likelihood values from iteratioks- 1, k, andk — 1,
respectively. Then, the asymptotic estimate of the loghliood at iteratiork+ 1 is given

by

1
(k+1) _ (k) (k+1) _ (k)
D =10 (100 10

see Bohninget al. (1994). In our analyses, the algorithms stopped whEH) — 10 < £,
with € = 0.01.

Computer programs were written in the R language; the diffeexperiments and the
obtained results are described below.

Mixturel: G=3,d=6,q=2, N =150
The sample was generated with weighits= (0.3,0.4,0.3)" according to the following pa-
rameters:

{15 = (10,10,10,10,10,10)’

¥, = diag(0.1,0.1,0.1,0.1,0.1,0.1)
W, = diag(0.4,0.4,0.4,0.4,0.4,0.4)
W5 = diag(0.2,0.2,0.2,0.2,0.2,0.2)

0.50 100 0.10 020 0.10 Q20

1.00 045 0.20 050 0.20 000

0.05 —-0.50 1.00 —-1.00 1.00 Q00
A= Np = N3 =

—0.60 050 —-0.20 050 —0.20 Q00

0.50 Q10 1.00 Q70 1.00 Q00

1.00 —-0.15 1.20 —-0.30 0.00 —1.30
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The covariance matricesy = /\g/\é +Wg (g = 1,2,3) have respectively the following
eigenvalues:

A(Z1) = (3.17,1.63,0.10,0.10,0.10,0.10)’
A(Z5) = (4.18,2.27,0.40,0.40,0.40,0.40)’
A(Z3) = (2.29,1.93,0.20,0.20,0.20,0.20)',

in particular the largest eigenvalue is equal to 4.18.

First we run the uncontrained algorithm: the right solutfeas been attained in 30%
of cases. Afterwards, to compare how the choice of the vauweslb could influence the
performance of the constrained EM, we run the constraingari#hm for different values
of the upper bound on the largest eigenvalue, , while maintainang: 0.0001, see Table 3.
In Figure 1 we plot the classified data on the factor spacesngdy A1, A, andAs. under

Table 2 Mixture 1: Percentage of convergence to the right maximutiefconstrained EM algorithms for
some pairga,b).

b
6 10 15 20 25
100% 100% 98% 97% 87%

the right classification, while in Figure 2 we give the cléisation obtained according to a
spurious maximum of the likelihood function.

Mixture2: G=4,d=7,9=2,N =100
The sample was generated with weights- (0.2,0.3,0.35,0.15)" according to the follow-
ing parameters:

{5 = (10,10,10,10,10,10,10,)’
{1, = (15 15,15,15,15, 15, 15)

W, = diag(0.2,0.2,0.2,0.2,0.2,0.2,0.2)
W, = diag(0.25,0.25,0.25,0.25,0.25,0.25,0.25)
W5 = diag(0.15,0.15,0.15,0.15,0.15,0.15,0.15)
W, = diag(0.1,0.1,0.1,0.1,0.1,0.1,0.1)
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factor 1 [2]
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Fig. 1 Mixture 1: plot of the classified data on the factor spacesleurthe "right” solution given by the
algorithm

0.30 060
0.60 027
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Fig. 2 Mixture 1: plot of the classified data on the factor spacesngian example of the wrong classifica-
tion, which is obtained when the algorithm converges to aisps maximum of the loglikelihood

The covariance matriceEy = /\g/\/g + %y (9 = 1,2,3) have respectively the following
eigenvalues:

A(Z1) = (4.10,1.14,0.33,0.21,0.15,0.09,0.04)’
A(Z,) = (7.62,1.18,0.34,0.20,0.18,0.12,0.05)'
A(Z3) = (3.36,1.36,0.24,0.17,0.14,0.10,0.09)'
A(Z4) = (2.08,0.48,0.11,0.09,0.07,0.06,0.02)’,

in particular the largest eigenvalue is equal to 7.62.

First we run the uncontrained algorithm: the right solutiais been never attained on the
hundred run. Afterwards, to compare how the choice of theesd andb could influence
the performance of the constrained EM, we run the consulatgorithm for different values
of the upper bound on the largest eigenvalue, while maintainieg 0.0001, see Table?.

In Figure 3 we plot the classified data on the factor spaceangbyA1,A2,A3 andAa.
under the right classification, while in Figure 4 we give tlessification obtained according
to a spurious maximum of the likelihood function.

eigenval
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Table 3 Mixture 2: Percentage of convergence to the right maximunhefconstrained EM algorithms for
some pairga,b).

b
6 10 15 20 25
71% 62% 48% 29% 29%
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Fig. 3 Mixture 2: plot of the classified data on the factor spacesleurthe "right” solution given by the
algorithm

7 Concluding remarks

In this paper we have considered mixtures of factor anadyzeith the purpose of con-
siderably reducing the number of parameters to be estimvithdrespect to the mixtures
of gaussian models. Latent variables can indeed be employpdrform dimensional re-
duction in each component, starting from the considerétianhin many phenomena some
few unobserved features could be explained by the many wsenes. For both family of
models, the gaussian mixtures and the mixtures of factdyzem, however, the loglike-
lihood function may present spurious maxima and singugariand this is due to specific
patterns of the estimated covariance structure. It is kndwm the literature, that a con-



16

factor 1 [2]
factor 2 [2]
0
|

T T T T T T
0 20 40 60 80 100 120 -120 -80 -60 -40 -20 O

factor 1 [1] factor 2 [1]

0
I

factor 3 [2]
-10 -5
factor 4 [2]

-20
I

-60 -40 -20 0
factor 3 [1] factor 4 [1]

Fig. 4 Mixture 2: plot of the classified data on the factor spacesngian example of the wrong classifica-
tion, which is obtained when the algorithm converges to aisps maximum of the loglikelihood

strained formulation of the EM algorithm have shown to beedblconsiderably reduce such
drawbacks for gaussian mixtures. Motivated by these cenains, in this paper we intro-
duced a constrained approach for gaussian mixtures ofrfaciyzers. In particular, we

implemented a methodology to maximize the likelihood fiscin a constrained parameter
space, having no singularities and a reduced number ofamuldcal maxima. The perfor-

mance of the newly introduced estimation approach has bemmnsand compared to the
usual non-constrained one. The results shows that thegmnaltic convergence of the EM,
even more critical when dealing with mixture of gaussiarida@nalyzers, can be greatly
improved. This improvement has been observed both via sameerical simulations on

synthetic samples and via applications to real data sets.

Appendix: formulas for evaluating the inverse and the deteminant of the
matrix & =AA"+W

The following notes are given to show that the formulas inditels and in McLachlan’s
books (see Mardiat al. (2003) and McLachlan and Peel (2000)), for the inverse aad th
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determinant of are equivalent. We employed these formulas when writingtiake for the
EM algorithm, because the latter allows to avoid inverting aon-diagonalp x p matrix
and the former offers a computational shortcut.

Let us begin with the formula of the inverse Bf= AA" + W.
Starting from Mardia’s formula (Section A.2.4 Inverse, pald8, formula A.2.4f):

(A+BCD) ' =A1—-A'B(C'+DA'B)'DA

and settingA =¥, B=A,C =1 e D = A’ then we obtain formula (8.11) in (McLachlan
and Peel, 2000)

(WH+AIAN) L= I L A=A I,

The formula is also called the "Woodbury identity”. The AEGNgorithm requires the in-
version of thep x p covariance matricesy, ..., 2¢ at each iteration; this becomes increas-
ingly computationally expensive as the number of varialpleets larger. One of the main
computational advantages of using the Woodbury idengtihat it can be used to avoid the
inversion of any non-diagongl x p matrices.

Now, focusing on the determinant af= AA’ + W, starting from Mardizet al. (2003)
(Section A.2.3 Determinants and cofactors, page 457, flari2.3k), we have

detA+BC) = detA~1)detly+A'BC)
— det(A 1) de(lq+CA1B).

Now, taking into account the first and the third term in theicta equalities and setting
A=Y B=A,C=A', we get

det AN’ + W) = det W) det| —A'WIA).

This result seems quite different from McLachlan’s formwlaich involves a ratio between
determinants instead of a product. Indeed, it is easy to shatv

| —A'@=IA
is the inverse of
| —A (AN +@)1A,
Now, using the relation
det A1) = 1/detA)

we obtain the desired equality between Mardia’s and Mclathlformulas.



18

References

Aitken, A. (1926). On Bernoulli’'s numerical solution of &lgraic equations. IRroceedings
of the Royal Society of Edinburgh, volume 46, pages 289-305.

Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaumsand non-Gaussian cluster-
ing. Biometrics, 49(3), 803-821.

Bodhning, D., Dietz, E., Schaub, R., Schlattmann, P., amdiéay, B. (1994). The distribu-
tion of the likelihood ratio for mixtures of densities fromet one-parameter exponential
family. Annals of the Institute of Satistical Mathematics, 46(2), 373—-388.

Ghahramani, Z. and Hilton, G. (1997). The EM algorithm foxtare of factor analyzers.
Techical Report CRG-TR-96-1.

Hathaway, R. (1985). A constrained formulation of maximlikelihood estimation for
normal mixture distributionsThe Annals of Satistics, 13(2), 795-800.

Hoff, P. (2005). Subset clustering of binary sequenced) wait application to genomic
abnormality dataBiometrics, 61, 1027-1036.

Ingrassia, S. (2004). A likelihood-based constrainedrétym for multivariate normal mix-
ture models Satistical Methods & Applications, 13, 151-166.

Ingrassia, S. and Rocci, R. (2007). Constrained monotonalgonithms for finite mixture
of multivariate gaussian€omputational Satistics & Data Analysis, 51, 5339-5351.

Liu, J., Zhang, J., Palumbo, M., and Lawrence, C. (2003).eBen clustering with variable
and transformation selection (with discussioBayesian Satistics, 7, 249-275.

Lutkepohl, H. (1996)Handbook of matrices. John Wiley & Sons, Chichester.

Mardia, K., Kent, J., and Bibby, J. (2003)lultivariate analysis. Academic Press, London,
UK.

McLachlan, G., Peel, D., and Bean, R. (2003). Modelling kighensional data by mixtures
of factor analyzersComputational Satistics and Data Analysis, 41, 379-388.

McLachlan, G. J. and Peel, D. (2000finite Mixture Models. John Wiley & Sons, New
York.

Meng, X. and van Dyk, D. (1997). The EM algorithm — an old felkrg sung to a fast new
tune. Journal of the Royal Statistical Society: Series B (Satistical Methodology), 59(3),
511-567.

Pan, W. and Shen, X. (2007). Penalized model-based clugterth application to variable
selection).Journal of machine learning research, 8, 1145-1164.

Peel, D. and McLachlan, G. (2000). Robust mixture modellisgng thet distribution.
Statistics and Computing, 10(4), 339—-348.

Raftery, A. and Dean, N. (2006). Variable selection for mdmesed clusteringJournal of
the American Statistical Association, 101(473), 168-178.

Redner, R. A. and Walker, H. F. (1984). Mixture densitiesximaim likelihood and the em
algorithm. SAM Review, 26(2), pp. 195-239.



	greselin - Ingrassia1.pdf
	20121222424512 (2)

