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Abstract Mixtures of factor analyzers are becoming more and more popular in the area

of model based clustering of high-dimensional data. In datamodeling, according to the

likelihood approach, it is well known that the loglikelihood function may present spurious

maxima and singularities and this is due to specific patternsof the estimated covariance

structure. To reduce such drawbacks, in this paper we introduce and implement a procedure

for the parameter estimation of mixtures of factor analyzers, which maximizes the likelihood

function in a constrained parameter space, having no singularities and a reduced number of

spurious local maxima. We then analyze and measure its performance, compared to the usual

non-constrained approach, via some simulations and applications to real data sets.

Keywords Factor Analyzers Modeling, Mixture Models, Model-Based Clustering,

Parsimonious gaussian models.

1 Introduction and motivation

Finite mixture distributions have been receiving a growinginterest in statistical mod-

eling. Their central role is mainly due to their double nature: they combine the flexibility

of non-parametric models with the strong and useful mathematical properties of parametric

models. According to this approach, when we know that a sample of observations has been
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Università di Milano-Bicocca

Via Bicocca degliArcimboldi 8 - 20126 Milano (Italy). E-mail: francesca.greselin@unimib.it

Salvatore Ingrassia
Dipartimento di Economia e Impresa
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drawn from different populations, we assume a specific distributional form in each of the un-

derlying populations. The purpose is to decompose the sample into its mixture components

(Peel and McLachlan, 2000), which, for quantitative data, are usually modeled as a mul-

tivariate Gaussian distribution, and to estimate parameters. The assumption of underlying

normality, besides the elegant analytic properties, allows also to employ the EM algorithm

for the ML estimation of the parameters. On the other side, when considering a large number

of observed variables, Gaussian mixture models can providean over-parameterized solution

as, besides the mixing weights, it is required to estimate the mean vector and the covariance

matrix for each component (Peel and McLachlan, 2000). As a consequence, we observe at

the same time an undue load of computationally intensive procedures for the estimation.

This is the reason why a number of strategies have been introduced in the literature

to avoid over-parameterized solutions. Among the various proposal, some authors devel-

oped methodologies for variable selection (see, f.i., Liuet al. (2003) and Hoff (2005) in

the Bayesian framework, Pan and Shen (2007) and Raftery and Dean (2006) in the fre-

quentist one). They further motivate their approach from the observation that the pres-

ence of non-informative variables can be strongly misleading for some clustering methods.

With the same purpose of parsimony, but a completely different approach, Banfield and

Raftery (1993) devised a methodology to identify common patterns among the component-

covariance matrices, which arose a great attention in the literature. Along a slightly different

line of thinking, Ghahramani and Hilton (1997) and McLachlan et al. (2003) proposed to

employ latent variables to perform dimensional reduction in each component, starting from

the consideration that in many phenomena some few unobserved features could be explained

by the many observed ones.

In this paper we address mixtures of factor analyzers by assuming that the data have

been generated by a linear factor model with latent variables modeled as Gaussian mixtures.

Our purpose is to improve the performances of the EM algorithm, by facing some of its

issues and giving practical recipes to overcome them. It is well known that the EM algorithm

generates a sequence of estimates, starting from an initialguess, so that the corresponding

sequence of the log-likelihood values is not decreasing. However, the convergence toward

the MLE is not guaranteed, because the log-likelihood is unbounded and presents local

maxima, so that the final estimate crucially depends on the initial guess. This issue has been

investigated by many authors, starting from the seminal paper of Redner and Walker (1984).

Along the lines of (Ingrassia, 2004), here we will introduceand implement a procedure for

the parameters estimation of mixtures of factor analyzers,which maximizes the likelihood

function in a constrained parameter space having no singularities and a reduced number

of spurious local maxima. We then analyze and compare its performance, compared to the

usual non-constrained approach.

We have organized the rest of the paper as follows. In Section2 we summarize main

ideas about Gaussian Mixtures of Factor Analyzer model; in Section 3 we provide fairly

extensive notes concerning the likelihood function and theAECM algorithm. Some well

known considerations (Hathaway, 1985) related to spuriousmaximizers and singularities
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in the EM algorithm are recalled in Section 4, which motivateour proposal to introduce

constraints on factor analyzers. Further, we give a detailed methodology to implement such

constraints into the EM algorithm. In Section 6 we show and discuss the improved perfor-

mance of our procedure, on the ground of some numerical results based on both simulated

and real data. Section 7 contains concluding notes and provides ideas for future research.

2 The Gaussian Mixture of Factor analyzers

Within the Gaussian Mixture (GM) model-based approach to density estimation and

clustering, the density of thed-dimensional random variableY of interest is modelled as a

mixture of a number, sayG, of multivariate normal densities in some unknown proportions

π1, . . .πG. That is, each data point is taken to be a realization of the mixture probability

density function,

f (x;θ) =
G

∑
g=1

πgφd(x; µg,Σg) (1)

whereφd(x; µ ,Σ) denotes thed-variate normal density function with meanµ and covariance

matrixΣ . Here the vectorθ GM(d,G) of unknown parameters consists of the(G−1) mixing

proportionsπg, theG×d elements of the component meansµg, and the1
2Gd(d+1) distinct

elements of the component-covariance matricesΣ g. Therefore, theG-component normal

mixture model (1) with unrestricted component-covariancematrices is a highly parametrized

model. We crucially need some method for parsimonious parametrization of the matrices

Σ g, because they requiresO(d2) parameters. Among the various proposals for dimensional-

ity reduction, we are interested here in considering Mixtures of Gaussian Factor Analyzers

(MGFA), which allows to explain data by explicitly modelingcorrelations between vari-

ables in multivariate observations. We postulate a finite mixture of linear sub-models for the

distribution of the full observation vectorY, given the (unobservable) factorsU. That is we

can provide a local dimensionality reduction method by assuming that the distribution of the

observationYi can be given as

Xi = µg +Λ gUig +eig with probability πg(g = 1, . . . ,G) for i = 1, . . . ,n, (2)

whereΛ g is a d× q matrix of factor loadings, the factors U1g, . . . ,Ung areN (0, I q) dis-

tributed independently of theerrors eig, which are independentlyN (0,Ψ g) distributed, and

Ψ g is a d× d diagonal matrix(g = 1, . . . ,G). We suppose thatq < d, which means thatq

unobservable factors are jointly explaining thed observable features of the statistical units.

Under these assumptions, the mixture of factor analyzers model is given by (1), where the

g-th component-covariance matrixΣ g has the form

Σg = Λ gΛ ′g +Ψ g (g = 1, . . . ,G). (3)

The parameter vectorθ GMFA(d,q,G) now consists of the elements of the component means

µg, theΛ g, and theΨ g, along with the mixing proportionsπg (g = 1, . . . ,G−1), on putting

πG = 1−∑G−1
i=1 πg.
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Comparing the two approaches and willing now to measure the gained parsimony when

we use mixtures of factor analyzers, with respect to the moreusual gaussian mixtures, we

have to choose values ofq such thatq < 1
2(d− 1). This is the only requirement for par-

simony. Further, denoting by|θCovGM(d,G)| and |θCovGMFA(d,q,G)|, the number of the

estimated parameters for the covariance matrices in the GM and MFA models, respectively,

we can express the relative reductionRR(d,q,G) = RR(d,q) given by

RR(d,q) =
|θCovGM(d,G)|− |θCovGMFA(d,q,G)|

|θCovGM(d,G)|

=
1
2d(d+1)G−d(q+1)G

1
2d(d +1)G

=
d−2q−1

d+1
.

In Tables 2 we report the relative reduction, in term of lowernumber of the estimated param-

eters for the covariance matrices in the GMFA models, with respect to the GM models. The

Table 1 Relative reductionRR(d,q) for different values ofd andq (where ’-’ means: ’no reduction’)

d|q 1 2 3 4 5 6 7

1 - - - - - - -
2 - - - - - - -
3 - - - - - - -
4 0.20 - - - - - -

5 0.33 - - - - - -
6 0.43 0.14 - - - - -
7 0.50 0.25 - - - - -
8 0.56 0.33 0.11 - - - -
9 0.60 0.40 0.20 - - - -
10 0.64 0.45 0.27 0.09 - - -
11 0.67 0.50 0.33 0.17 - - -

12 0.69 0.54 0.38 0.23 0.08 - -
13 0.71 0.57 0.43 0.29 0.14 - -
14 0.73 0.60 0.47 0.33 0.20 0.07 -
15 0.75 0.63 0.50 0.38 0.25 0.13 -

relative reduction represents the extent to which the factor model offers a simpler interpre-

tation for the behaviour ofx than the alternative assumption given by the gaussian mixture

model.

3 The likelihood function and the EM algorithm for GMFA

In this section we summarize the main steps of the EM algorithm for mixtures of Factor

analyzers, see e.g. McLachlan and Peel (2000) for details.
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Let X = (x1, . . . ,xn) be a sample of sizen from density (1), and letxi (i = 1, . . . ,n)

denotes the realization ofXi in (2). For given dataX, parameters in (1) can be estimated

according to the likelihood approach via the EM algorithm, where the likelihood function is

given by:

L(θ ;Y) =
n

∏
i=1

{

G

∑
g=1

φd(xi; µg,Σg)πg

}

=
n

∏
i=1

{

G

∑
g=1

φd(xi; µg,Λ g,Ψ g)πg

}

,

where we setΣ g =Λ gΛ ′g+Ψ g (g= 1, . . . ,G). Consider the augmented data{(xi,uig,zi), i =

1, . . . ,n}, wherezi = (zi1, . . . ,zig)
′, with zig = 1 if xi comes from theg-th population and

zig = 0 otherwise. Then, the complete-data likelihood function can be written in the form:

Lc(θ ;Y) =
n

∏
i=1

G

∏
g=1

[

φd
(

xi|ui; µg,Λg,Ψg
)

φq(uig)πg
]zig . (4)

In particular, due to the factor structure of the model, see Meng and van Dyk (1997), we

have to consider the alternating expectation-conditionalmaximization (AECM) algorithm.

Such a procedure is an extension of the EM algorithm that usesdifferent specifications of

missing data at each stage. The idea is to partitionθ = (θ ′1,θ ′2)′ in such a way thatL(θ ;Y)

is easy to maximize forθ1 givenθ2 and vice versa. Then, we can iterate between these two

conditional maximizations until convergence. In this caseθ1 = {πg,µg g = 1, . . . ,G} where

the missing data are the unobserved group labelsZ = (z′1, . . . ,z
′
n), and the second part of

the parameters vector is given byθ2 = {(Λ g,Ψg), g = 1, . . . ,G} where the missing data are

the group labelsZ and the unobserved latent factorsU = (U11, . . . ,UnG). In this case, the

application of the AECM algorithm consists of two cycles, and there is one E-step and one

CM-step alternatively consideringθ1 andθ2 in each pair of cycles.

First Cycle. Hereθ1 = {πg,µg, g = 1, . . . ,G} where the missing data are the unobserved

group labelsZ = (z′1, . . . ,z
′
n). The complete data likelihood is

Lc1(θ1) =
n

∏
i=1

G

∏
g=1

[

φd
(

xi; µg,Σg
)

πg
]zig (5)

The E-step on the first cycle on the(k+1)-th iteration requires the calculation ofQ1(θ1;θ (k))=

Eθ (k){Lc(θ1)|Y} which is the expected complete-data log-likelihood given the dataY and

using the current estimateθ (k) for θ . In practice it requires calculatingEθ (k){Zig|Y} and

usual computations show that this step is achieved by replacing eachzig by its current con-

ditional expectation given the observed dataxi, that is we replacezig by z(k+1/2)
ig , where

z(k+1)
ig =

φd

(

xi|µ
(k)
g ,Λ (k)

g ,Ψ (k)
g

)

π(k)
g

∑G
j=1 φd

(

xi|µ
(k)
j ,Λ (k)

j ,Ψ (k)
j

)

π(k)
j

, (6)
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On the M-step, the maximization of this complete-data log-likelihood yields

π(k+1)
g =

∑n
i=1 z(k+1)

ig

n

µ(k+1)
g =

1
ng

n

∑
i=1

z(k+1)
ig xi

wheren(k+1)
g = ∑n

i=1 z(k+1)
ig . According to notation in McLachlan and Peel (2000), we set

θ (k+1/2) = (θ (k+1)′

1 ,θ (k)′

2 )′.

Second Cycle. Hereθ2 = {Σ g, g = 1, . . . ,G}= {(Λ g,Ψg), g= 1, . . . ,G}where the missing

data are the unobserved group labelsZ and the latent factorsU. Therefore, the complete data

likelihood is

Lc2(θ2) =
n

∏
i=1

G

∏
g=1

[

φd

(

xi|uig; µ(k+1)
g ,Σg

)

φq (uig)π(k+1)
g

]zig

=
n

∏
i=1

G

∏
g=1

[

φd

(

xi|uig; µ(k+1)
g ,Λg,Ψg

)

φq (uig)π(k+1)
g

]zig
, (7)

where

φd

(

xi|uig; µ(k+1)
g ,Λ g,Ψg

)

=
1

|2πΨ g|1/2
exp

{

−
1
2
(xi−µ(k+1)

g −Λ guig)
′Ψ−1

g (xi−µ(k+1)
g −Λ guig)

}

.

φq(uig) =
1

(2π)q/2
exp

{

−
1
2

u′iguig

}

.

Now the complete data log-likelihood is given by

Lc2(θ2) =−
nd
2

ln2π +
G

∑
g=1

ng lnπg +
1
2

n

∑
i=1

G

∑
g=1

zig ln |Ψ−1
g |

−
1
2

n

∑
i=1

G

∑
g=1

zigtr
{

(xi−µ(k+1)
g −Λ guig)(xi−µ(k+1)

g −Λ guig)
′Ψ−1

g

}

. (8)

Some algebras lead to the following estimate of{(Λ g, Ψg), g = 1, . . . ,G}:

Λ̂ g = S(k+1)
g γ(k)

′

g [Θ (k)
g ]−1

Ψ̂ g = diag
{

S(k+1)
g − Λ̂ gγ(k)g S(k+1)

g

}

.

where we set

S(k+1)
g = (1/n(k+1)

g )
n

∑
i=1

z(k+1)
ig (xi−µ(k+1)

g )(xi−µ (k+1)
g )′

γ(k)g = Λ (k)′
g (Λ (k)

g Λ (k)′
g +Ψ (k)

g )−1

Θ (k)
ig = I q− γ(k)g Λ (k)

g + γ(k)g (xi−µg)(xi−µg)
′γ(k)

′

g .
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Hence the maximum likelihood estimatesΛ̂ g andΨ̂ g for Λ andΨ can be obtained by alter-

natively computing the update estimatesΛ+
g andΨ+

g , by

Λ+
g = S(k+1)

g γ(k)
′

g [Θ (k)
g ]−1 and Ψ+

g = diag
{

S(k+1)
g −Λ+

g γ(k)g S(k+1)
g

}

, (9)

and, from the latter, computing the update estimatesγ+g andΘ+
g by

γ+g = Λ
′

g(Λ gΛ
′

g +Ψ g)
−1 and Θ+

g = I q− γgΛ g + γgS(k+1)
g γ

′

g, (10)

iterating these two steps until convergence onΛ̂ g andΨ̂ g, so givingΛ (k+1)
g andΨ (k+1)

g .

In summary, the procedure can be described as follows. For a given initial random clus-

tering z(0), on the(k +1)− th iteration, the algorithm carries out the following steps, for

g = 1, . . . ,G:

1. Computez(k+1)
ig and consequently obtainπ(k+1)

g andµ(k+1)
g and alson(k+1)

g andS(k+1)
g ;

2. Set a starting value forΛ g andΨ g from S(k+1)
g ;

3. Repeat the following steps, until convergence onΛ̂ g andΨ̂ g:

(a) Computeγ+g andΘ+
g from (10);

(b) Setγg← γ+g andΘg←Θ+
g ;

(c) ComputeΛ+
g ← S(k+1)

g γ ′g(Θ
−1
g ) andΨ+

g ← diag
{

S(k+1)
g −Λ+

g γgS(k+1)
g

}

;

(d) SetΛ g←Λ+
g andΨ g←Ψ+

g ;

To completely describe the algorithm, here we give more details on how to specify the

starting values forΛ g andΨ g from S(k+1)
g , as it is needed in Step 2.

Starting from the eigen-decomposition ofS(k+1)
g , sayS(k+1)

g = AgBgA′g, computed on

the base ofz(k+1)
ig , the main idea is thatΛ g has to synthesize the ”more important” relations

between thed observed features. Then, looking at the equalityΣ g = Γ gΓ ′g +Ψ g, the initial

values ofΛ g were set as

λi j =
√

d jai j (11)

whereb j is the jth largest eigenvalue ofS(k+1)
g andai j is theith element of the corresponding

eigenvectoraj (the jth column inAg), for i ∈ {1,2, . . . , p} and j ∈ {1,2, . . . ,q}. Finally the

Ψ g matrices can be initialized by the positionΨ g = diag{S(k+1)
g −Λ gΛ ′g}.

4 Likelihood maximization in constrained parametric spaces

Properties of maximum likelihood estimation for normal mixture models have been

deeply investigated. It is well known thatL (θ) is unbounded onΘ and may present many

local maxima. Day (1969) was perhaps the first noting that anysmall number of sample

points, grouped sufficiently close together, can give raiseto spurious maximizers, corre-

sponding to parameters points with greatly differing component standard deviation. To over-

come this issue and to preventL (θ) from singularities, Hathaway (1985) proposed a con-

strained maximum likelihood formulation for mixture of univariate normal distributions,
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suggesting a natural extension to the multivariate case. Let c ∈ (0,1], then the following

constraints

min
1≤h6= j≤k

λ (Σ hΣ−1
j )≥ c (12)

on the eigenvaluesλ of ΣhΣ−1
j leads to properly defined, scale-equivariant, consistent ML-

estimators for the mixture-of-normal case, see Hennig (2004). It is easy to show that a suf-

ficient condition for (12) is

a≤ λig ≤ b, i = 1, . . . ,d; g = 1, . . . ,G (13)

whereλig denotes theith eigenvalue ofΣg i.e. λig = λi(Σ g), and fora,b ∈ R
+ such that

a/b ≥ c, see Ingrassia (2004). Differently from (12), condition (13) can be easily imple-

mented in any optimization algorithm. Let us consider the constrained parameter spaceΘ c

of Θ :

Θ c ={(π1, . . . ,πG,µ1, . . . ,µG,Σ1, . . . ,ΣG) ∈ R
k[1+d+(d2+d)/2] :

πg ≥ 0, π1+ · · ·+πG = 1, a≤ λig ≤ b, g = 1, . . . ,G i = 1, . . . ,d}. (14)

Due to the structure of the covariance matrixΣg given in (3), the bound (13) yields

λmin(Λ gΛ ′g +Ψ g)≥ a and λmax(ΛgΛ ′g +Ψ g)≤ b, g = 1, . . . ,G (15)

whereλmin(·) andλmax(·) denote the smallest and the largest eigenvalue of(·) respectively.

SinceΛ gΛ ′g andΨ g are symmetric and positive definite, then it results:

λmin(Λ gΛ ′g +Ψ g)≥ λmin(Ψ g) (16)

λmax(Λ gΛ ′g +Ψ g)≤ λmax(Λ gΛ ′g)+λmax(Ψ g), (17)

for g = 1, . . . ,G, see Lütkepohl (1996). SinceΨg is a diagonal matrix, then

λmin(Ψg) = min
i

ψ ig, (18)

λmax(Ψg) = max
i

ψ ig, (19)

whereψ ig denotes thei-th entry along the diagonal of the matrixΨg.

Concerning the squared × d matrix Λ gΛ ′g (g = 1, . . . ,G), we can get its eigenvalue

decomposition, i.e. we can findΛ g andΓ g such that

Λ gΛ ′g = Γ g∆ gΓ ′g (20)

whereΓ g is the orthonormal matrix whose rows are the eigenvectors ofΛ gΛ ′g and∆ g =

diag(δ1g, . . . ,δdg) is the diagonal matrix of the eigenvalues ofΛ gΛ ′g, sorted in non increasing

order, i.e.δ1g ≥ δ2g ≥ . . .≥ δdg.

Now, on thed×q rectangular matrixΛ g we can apply the singular value decomposition,

so givingΛ g = UgDgV′g, whereUg is ad×d unitary matrix (i.e., such thatU′gUg = I d) and

Dg is ad×q rectangular diagonal matrix withq nonnegative real numbers on the diagonal,
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known assingular values, andVg is aq×q unitary matrix. Thed columns ofU and theq

columns ofV are called the left singular vectors and right singular values ofΛ g, respectively.

Now we have that

Λ gΛ ′g = (UgDgV′g)(VgD′gU′g) = UgDgI qD′gU′g = UgDgD′gU′g (21)

and equating (20) and (21) we getΓ g = Ug and∆ g = DgD′g, that is

diag(δ1g, . . . ,δqg) = diag(d2
1g, . . . ,d

2
qg) . (22)

with d1g ≥ d2g ≥ ·· · ≥ dqg ≥ 0. Thus it results

λmax(Λ gΛ ′g) = d2
1g. (23)

Results (18), (19) and (23) express some relationships between the eigenvalues ofΣ g

and the singular values ofΛ g and the diagonal elements ofΨg. In particular, the bounds on

the eigenvalues ofΛ gΛ ′g +Ψ g in (15) are satisfied when

min
i

ψ ig ≥ a (24)

d2
1g +max

i
ψ ig ≤ b. (25)

5 Constraints on the covariance matrix for factor analyzers

The reformulation of the update of the covariance matricesΣg (for g = 1, . . . ,G) pre-

sented above, suggests how to modify the EM algorithm in sucha way that the eigenvalues

of the covariances are confined into suitable ranges. To thisaim we have to implement the

constraints (24) and (25).

As for the bound on the smallest eigenvalue ofΣ g, based on (16), on the(k + 1)th

iteration, after the procedure described at the end of Section 3, we carry out the following

conditional assignment

– if ψ (k+1)
ig < a then setψ (k+1)

ig ← a,

so that condition (24) is satisfied, for a given real valuea > 0.

Concerning the upper bound on the largest eigenvalue ofΣ , we first recall thatΨg is the

covariance matrix of the errorseig of the G linear submodels in (2), i.e. we have assumed

that theeig are independentlyN (0,Ψg) distributed, withΨ g = diag{ψ1g, . . . ,ψdg}. Thus

we can assume that the largest eigenvalue ofΨ g, that is maxi ψ ig is small compared to

the eigenvaluesd2
1g, . . . ,d

2
qg of Λ gΛ ′g. Hence, in order to satisfy the condition (25), on the

(k + 1)th iteration, after the procedure described at the end of Section 3, for a given real

valueb > 0, we proceed as follows:

1. DecomposeΛ g according to the singular value decomposition asΛ g = UgDgV′g;

2. Compute the squared singular values(d2
1, . . . ,d

2
q) of Λ ;
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3. Create a copyD∗g of Dg;

4. Fori = 1 to d, if d2
ig > b−maxi ψ (k+1)

ig , then setdi←
√

b−maxi ψ (k+1)
ig into D∗g at the

corresponding place, otherwise go to step 5;

5. ComputeΛ ∗g = UgD∗gV′g;

6. Stop.

It is important to remark that the resulting EM algorithm is monotone, once the initial guess,

sayΣ 0
g satisfies the constraints. Further, as shown in the case of gaussian mixtures in Ingras-

sia and Rocci (2007), the maximization of the complete loglikelihood is guaranteed. Form

the other side, it is apparent that he above recipes require some a priori information on the

covariance structure of the mixture, throughout the boundsa andb. A weaker constraint

could be imposed directly on the ratioa/b in

6 Numerical studies

The aim of this section is to show the improvement we attain byusing the constrained

EM algorithm, in terms of its ability to provide the ”right” solution, when compared to the

unconstrained approach. This analysis will be carried out by firstly considering two synthetic

samples and then some real data-sets.

6.1 Simulations

We have considered three mixtures ofG components ofd-variate normal distributions, for

different values of the parameters vectorθ . To generate a synthetic dataset, theΛ g and

Ψ g matrices have to be chosen forg = 1, . . . ,G, so that multivariate normal variates with

covariances given byΣ g =Λ gΛ ′g +Ψ g can be easily generated.

The point of local maximum corresponding to the consistent estimator θ ∗ (i.e. the

”right” solution), has been chosen to be the limit of the EM algorithm usingθ as initial

estimate, i.e. considering the crispzig which assign each observation to the mixture compo-

nent from which it has been generated, fori = 1, . . . ,N andg = 1, . . . ,G.

We run a hundred times the unconstrained EM algorithm, followed by the constrained

EM algorithm, both were fed with the same starting values. Wegenerated a set of 100

different random initial clusterings to initialize the algorithm at each run. To this aim, we

draw each time a set of random starting values for thezig from the multinomial distribution,

with the same given values of the parameters(α0,α1, . . . ,αG) andG we employed before,

when generating the synthetic sample. In this way, when the algorithms evaluate the first

cycle of the EM, the randomly generated ˆzig were taken as the starting group membership

labels. The initial values for the elements ofΛ g andΨ g were obtained as described at the end

of Section 3 from the eigen-decomposition ofSg, and the algorithms run until convergence

or reached the maximum number of iterations (failure).
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We decided to employ the convergence criterion based on the Aitken acceleration proce-

dure (Aitken, 1926), to estimate the asymptotic maximum of the log-likelihood at each itera-

tion of the EM algorithm. Based on this estimate, a decision can be made regarding whether

or not the algorithm has reached convergence; that is, whether or not the log-likelihood is

sufficiently close to its estimated asymptotic value. The Aitken acceleration at iterationk is

given by

a(k) =
l(k+1)− l(k)

l(k)− l(k−1)
,

wherel(k+1), l(k), andl(k−1) are the log-likelihood values from iterationsk+1, k, andk−1,

respectively. Then, the asymptotic estimate of the log-likelihood at iterationk+1 is given

by

l(k+1)
∞ = l(k)+

1

1−a(k)

(

l(k+1)− l(k)
)

,

see Böhninget al. (1994). In our analyses, the algorithms stopped whenl(k+1)
∞ − l(k) < ε ,

with ε = 0.01.

Computer programs were written in the R language; the different experiments and the

obtained results are described below.

Mixture 1: G = 3, d = 6, q = 2, N = 150.

The sample was generated with weightsα = (0.3,0.4,0.3)′ according to the following pa-

rameters:

µ1 = (0,0,0,0,0,0)′

µ2 = (5,5,5,5,5,5)′

µ3 = (10,10,10,10,10,10)′

Ψ1 = diag(0.1,0.1,0.1,0.1,0.1,0.1)

Ψ2 = diag(0.4,0.4,0.4,0.4,0.4,0.4)

Ψ3 = diag(0.2,0.2,0.2,0.2,0.2,0.2)

Λ1 =





















0.50 1.00

1.00 0.45

0.05 −0.50

−0.60 0.50

0.50 0.10

1.00 −0.15





















Λ2 =





















0.10 0.20

0.20 0.50

1.00 −1.00

−0.20 0.50

1.00 0.70

1.20 −0.30





















Λ3 =





















0.10 0.20

0.20 0.00

1.00 0.00

−0.20 0.00

1.00 0.00

0.00 −1.30





















.



12

The covariance matricesΣ g = Λ gΛ ′g +Ψ g (g = 1,2,3) have respectively the following

eigenvalues:

λ (Σ1) = (3.17,1.63,0.10,0.10,0.10,0.10)′

λ (Σ2) = (4.18,2.27,0.40,0.40,0.40,0.40)′

λ (Σ3) = (2.29,1.93,0.20,0.20,0.20,0.20)′ ,

in particular the largest eigenvalue is equal to 4.18.

First we run the uncontrained algorithm: the right solutionhas been attained in 30%

of cases. Afterwards, to compare how the choice of the valuesa andb could influence the

performance of the constrained EM, we run the constrained algorithm for different values

of the upper boundb on the largest eigenvalue, , while maintaininga = 0.0001, see Table 3.

In Figure 1 we plot the classified data on the factor spaces given byΛ̂1,Λ̂2 andΛ̂3. under

Table 2 Mixture 1: Percentage of convergence to the right maximum ofthe constrained EM algorithms for
some pairs(a,b).

b

6 10 15 20 25

100% 100% 98% 97% 87%

the right classification, while in Figure 2 we give the classification obtained according to a

spurious maximum of the likelihood function.

Mixture 2: G = 4, d = 7, q = 2, N = 100.

The sample was generated with weightsα = (0.2,0.3,0.35,0.15)′ according to the follow-

ing parameters:

µ1 = (0,0,0,0,0,0,0)′

µ2 = (5,5,5,5,5,5,5)′

µ3 = (10,10,10,10,10,10,10,)′

µ4 = (15,15,15,15,15,15,15)′

Ψ 1 = diag(0.2,0.2,0.2,0.2,0.2,0.2,0.2)

Ψ 2 = diag(0.25,0.25,0.25,0.25,0.25,0.25,0.25)

Ψ 3 = diag(0.15,0.15,0.15,0.15,0.15,0.15,0.15)

Ψ 4 = diag(0.1,0.1,0.1,0.1,0.1,0.1,0.1)
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Fig. 1 Mixture 1: plot of the classified data on the factor spaces, under the ”right” solution given by the
algorithm

Λ1 =



























0.30 0.60

0.60 0.27

0.03 −0.30

−0.36 0.30

0.30 0.06

0.60 −0.09

−0.63 1.50



























Λ2 =



























0.08 0.16

0.16 0.40

0.80 −0.80

−0.16 0.40

0.80 0.56

0.96 −0.24

1.60 −0.24



























Λ 3 =



























0.07 0.14

0.14 0.00

0.70 0.00

−0.14 0.00

0.70 0.00

0.00 −0.91

0.70 −0.70



























Λ4 =



























0.04 0.08

0.08 0.00

0.40 0.00

−0.08 0.00

0.40 0.00

0.00 −0.52

−0.40 0.80



























.
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Fig. 2 Mixture 1: plot of the classified data on the factor spaces, giving an example of the wrong classifica-
tion, which is obtained when the algorithm converges to a spurious maximum of the loglikelihood

The covariance matricesΣ g = Λ gΛ ′g +Ψ g (g = 1,2,3) have respectively the following

eigenvalues:

λ (Σ1) = (4.10,1.14,0.33,0.21,0.15,0.09,0.04)′

λ (Σ2) = (7.62,1.18,0.34,0.20,0.18,0.12,0.05)′

λ (Σ3) = (3.36,1.36,0.24,0.17,0.14,0.10,0.09)′

λ (Σ4) = (2.08,0.48,0.11,0.09,0.07,0.06,0.02)′ ,

in particular the largest eigenvalue is equal to 7.62.

First we run the uncontrained algorithm: the right solutionhas been never attained on the

hundred run. Afterwards, to compare how the choice of the valuesa andb could influence

the performance of the constrained EM, we run the constrained algorithm for different values

of the upper boundb on the largest eigenvalue, while maintaininga = 0.0001, see Table??.

In Figure 3 we plot the classified data on the factor spaces given byΛ̂ 1,Λ̂2,Λ̂3 and Λ̂4.

under the right classification, while in Figure 4 we give the classification obtained according

to a spurious maximum of the likelihood function.

eigenval



15

Table 3 Mixture 2: Percentage of convergence to the right maximum ofthe constrained EM algorithms for

some pairs(a,b).

b

6 10 15 20 25

71% 62% 48% 29% 29%
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Fig. 3 Mixture 2: plot of the classified data on the factor spaces, under the ”right” solution given by the

algorithm

7 Concluding remarks

In this paper we have considered mixtures of factor analyzers, with the purpose of con-

siderably reducing the number of parameters to be estimatedwith respect to the mixtures

of gaussian models. Latent variables can indeed be employedto perform dimensional re-

duction in each component, starting from the considerationthat in many phenomena some

few unobserved features could be explained by the many observed ones. For both family of

models, the gaussian mixtures and the mixtures of factor analyzers, however, the loglike-

lihood function may present spurious maxima and singularities and this is due to specific

patterns of the estimated covariance structure. It is known, from the literature, that a con-
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Fig. 4 Mixture 2: plot of the classified data on the factor spaces, giving an example of the wrong classifica-
tion, which is obtained when the algorithm converges to a spurious maximum of the loglikelihood

strained formulation of the EM algorithm have shown to be able to considerably reduce such

drawbacks for gaussian mixtures. Motivated by these considerations, in this paper we intro-

duced a constrained approach for gaussian mixtures of factor analyzers. In particular, we

implemented a methodology to maximize the likelihood function in a constrained parameter

space, having no singularities and a reduced number of spurious local maxima. The perfor-

mance of the newly introduced estimation approach has been shown and compared to the

usual non-constrained one. The results shows that the problematic convergence of the EM,

even more critical when dealing with mixture of gaussian factor analyzers, can be greatly

improved. This improvement has been observed both via some numerical simulations on

synthetic samples and via applications to real data sets.

Appendix: formulas for evaluating the inverse and the determinant of the
matrix Σ = ΛΛ ′+Ψ

The following notes are given to show that the formulas in Mardia’s and in McLachlan’s

books (see Mardiaet al. (2003) and McLachlan and Peel (2000)), for the inverse and the
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determinant ofΣ are equivalent. We employed these formulas when writing thecode for the

EM algorithm, because the latter allows to avoid inverting any non-diagonalp× p matrix

and the former offers a computational shortcut.

Let us begin with the formula of the inverse ofΣ =ΛΛ ′+Ψ .

Starting from Mardia’s formula (Section A.2.4 Inverse, page 458, formula A.2.4f ):

(A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA

and settingA =Ψ , B = Λ , C = I e D = Λ ′ then we obtain formula (8.11) in (McLachlan

and Peel, 2000)

(Ψ +Λ IΛ ′)−1 =Ψ−1−Ψ−1Λ(I−1+Λ ′Ψ−1Λ)−1Λ ′Ψ .

The formula is also called the ”Woodbury identity”. The AECMalgorithm requires the in-

version of thep× p covariance matricesΣ 1, . . . ,ΣG at each iteration; this becomes increas-

ingly computationally expensive as the number of variablesp gets larger. One of the main

computational advantages of using the Woodbury identity, is that it can be used to avoid the

inversion of any non-diagonalp× p matrices.

Now, focusing on the determinant ofΣ = ΛΛ ′+Ψ , starting from Mardiaet al. (2003)

(Section A.2.3 Determinants and cofactors, page 457, formula A.2.3k), we have

det(A+BC) = det(A−1)det(Id +A−1BC)

= det(A−1)det(Iq +CA−1B).

Now, taking into account the first and the third term in the chain of equalities and setting

A =Ψ , B = Λ ,C = Λ ′, we get

det(ΛΛ ′+Ψ ) = det(Ψ)det(I−Λ ′Ψ−1Λ ).

This result seems quite different from McLachlan’s formula, which involves a ratio between

determinants instead of a product. Indeed, it is easy to showthat

I−Λ ′Ψ−1Λ

is the inverse of

I−Λ ′(ΛΛ ′+Ψ )−1Λ .

Now, using the relation

det(A−1) = 1/det(A)

we obtain the desired equality between Mardia’s and McLachlan’s formulas.
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