ON THE BEHAVIOR AT COLLISIONS OF SOLUTIONS TO SCHRODINGER
EQUATIONS WITH MANY-PARTICLE AND CYLINDRICAL POTENTIALS

VERONICA FELLI, ALBERTO FERRERO, AND SUSANNA TERRACINI

ABSTRACT. The asymptotic behavior of solutions to Schrédinger equations with singular ho-
mogeneous potentials is investigated. Through an Almgren type monotonicity formula and
separation of variables, we describe the exact asymptotics near the singularity of solutions to
at most critical semilinear elliptic equations with cylindrical and quantum multi-body singular
potentials. Furthermore, by an iterative Brezis-Kato procedure, pointwise upper estimate are
derived.

1. INTRODUCTION

The purpose of the present paper is to describe the behavior of solutions to a class of Schrédinger
equations with singular homogeneous potentials including cylindrical and quantum multi-body
ones.

The interaction between M particles of coordinates y', ...,y in R¥ is described in classical
mechanics by potentials of the form

M
V' ™) = > Vi —y™)
Jjm=1
j<m

where V; . (y) = 0 as |y| — +o0, see [28]. From the mathematical point of view, a particular inter-
est arises in the case of inverse square potentials Vj ,,(y) = %, since they have the same order

of homogeneity as the laplacian thus making the corresponding Schrédinger operator invariant by
scaling. Schrodinger equations with the resulting M-body potential

M
AjAm
(1) Viy',....,yM) = Z W, A, Am € R,
jm=1
j<m

have been studied by several authors; we mention in particular [27] where many-particle Hardy
inequalities are proved and [12] where the existence of ground state solutions for semilinear
Schrodinger equations with potentials of type (1) is investigated. It is worth pointing out that
hamiltonians with singular potentials having the same homogeneity as the operator arise in rela-
tivistic quantum mechanics, see [31].

There is a natural relation between 2-particle potentials (1) and cylindrical potentials, whose
singular set is some k-codimensional subspace of the configuration space. Indeed, in the special
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case M = 2, after the change of variables in R?*
1
1

1
2 == ! - 2 ) Z2 - = ! + 2 )
(2) ﬁ(y ) \/Q(y v
the potential V (y!,y?) = ﬁ takes the form
A1z
3 —_—.

Elliptic equations with cylindrical inverse square potentials arise in several fields of applications,
e.g. in the search for solitary waves with no vanishing angular momentum of nonlinear evolution
equations of Schrodinger and Klein-Gordon type, see [3]. In the recent literature, many papers have
been devoted to the study of semilinear elliptic equations with cylindrical potentials; we mention
among others [3, 4, 5, 32, 36]. We point out that cylindrical type (and a fortiori many-particle)
potentials give rise to substantially major difficulties with respect to the case of an isolated sin-
gularity, because in the cylindrical/many-particle case separation of variables (radial and angular)
does not actually “eliminate” the singularity, being the angular part of the operator also singular.

We consider both linear and semilinear Schrédinger equations with singular homogeneous po-
tentials belonging to a class including as particular cases both (1) and (3). For every 3 < k < N,
let us define the sets

A = {J C{1,2,...,N} such that #J = k}
and
By := {(Jl, Jg) € Ay x Ag, such that J, N Jy = 0 and J; < JQ}

where #.J stands for the cardinality of J and J; < Jy stands for the “alphabetic ordering” for
multi-indices (see the list of notations at the end of this section).

In the sequel, for every z = (z1,%2,...,2x) € RY and J € Ay, we denote as x; the k-uple
(zi)ies so that |zs* = 3 ,c;2?. In a similar way, for any z € RV \ {0} and J € A we write
0; = I%JI Moreover we denote

(4) Y :={(01,...,0n) €SV :0; =0 for some J € Ay}
U{(b1,...,0n) € SNV-1L. 05, = 0, for some (Jy,J2) € By}

and

(5) S ={z e RN\ {0}:z/|z| € 2} U{0}.

The potentials we are going to consider are of the type

(6) Viz) = Z ‘;MTJP—I— Z |$Jlai71§12|27 for all z € RV \ 2,

JeAg (Jl,JQ)EBk

where ay, a7, € R. We notice that By is empty whenever k& > %; in such a case we consider

potentials V' with only the cylindrical part, i.e. with only the first summation at right hand side
of (6).
Letting, for all § € SN =1\ ¥,

(7) a(9)=Z|;TJ|2+ Py

05 —0;,1]2
JEAL (J1,J2)EBy, 10, = 01,
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we can write the potential V in (6) as

and the associated hamiltonian as

As a natural setting to study the properties of operators L£,, we introduce the functional space
DL2(RYN) defined as the completion of C2°(RY) with respect to the Dirichlet norm

1/2
T (/RN |Vu(x)|2d33> .

The potential V in (6) satisfies a Hardy type inequality. Indeed, it was proved in [33] (see also [5]
and [39]) that the following Hardy’s inequality for cylindrically singular potentials holds:

(552 [ e

for all u € DV2(RY) and J € Ay, being the constant (%)2 optimal. Using a change of variables
of type (2), from (8) it follows the “two-particle Hardy inequality”:

(k-2 [ _p@P o d
Q | do< [ Vu@)la

N |xJ1 - xJ2|2

for all u € DV?(RY) and (Jy,J2) € By, being the constant @ optimal. From (8) and (9) we
deduce that the potential V in (6) satisfies the following “many-particle Hardy inequality”:

(10) ( )/ V(@) |u(@))? do < (ZaJ+ > a}1J2>/ \Vu(z)|? dz
JEA; (J1,J2)EBy, R

for all u € DV3(RY), where af = max{a;,0} and a'}lh = max{ay, j,,0}. We refer to [27] for a
deep analysis of many-particle Hardy inequalities and related best constants.

In order to discuss the positivity properties of the Schrédinger operator £, in DVM2(RY), we
consider the best constant in the Hardy-type inequality (10), i.e

/ 2|~ 2a(a/|z]) v (x) dx
(11) Afa) == sup RY .
uweD1:2(RN)\{0} / |VU(I)|2 dr
RN

By (10), A(a) < = 2 > (D sea, b+ 2 (J1,72)EB o ;). It is easy to verify that the quadratic
form associated to £, is positive definite in D12(RY) if and only if

(12) Aa) < 1.

The relation between the value A(a) and the first eigenvalue of the angular component of the
operator on the unit (N — 1)-dimensional sphere SV ~! is discussed in Lemma 2.3. More precisely,
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Lemma 2.3 ensures that the quadratic form associated to L, is positive definite if and only if

pia) > — <N2_2>27

where 11 (a) is the first eigenvalue of the operator L, := —Agn-1 — a on the sphere S¥~1. The
spectrum of the angular operator L, is discrete and consists in a nondecreasing sequence of eigen-
values
pi(a) < pofa) < -+ < ppla) < -
diverging to 400, see Lemma 2.2.
We study nonlinear equations obtained as perturbations of the operator £, in a bounded domain
Q C R containing the origin. More precisely, we deal with semilinear equations of the type

(13) Louw=h(x)u+ f(z,u), inQ.

We assume that the linear perturbing potential & is negligible with respect to the potential V' near
the collision singular set ¥ defined in (5), in the sense that there exist C, > 0 and € > 0 such that,
for a.e. z € Q\ X,

(H)hevvlt’?(ﬂ\i)andh<x>|+|w<m>~x<ch(z|m|—2+s+ 3 |xJ1_mJ2—2+e).
Je Ay (J1,J2)€EBy

We notice that it is not restrictive to assume ¢ € (0,1) in (H).
As far as the nonlinear perturbation is concerned, we assume that f satisfies

{f cC'OQxR), FeClY{QxR), s+ f(zx,s) € CLR) for a.e. x €,

|f(x,8)s| + | f1(x,8)8%] + | Vo F(x,5) - 2| < Cs(|s|? + [s|?) for ae. 2 € Q and all s € R,

where F(z,s) = fos f(z,t)dt, 2* = % is the critical Sobolev exponent, C'y > 0 is a constant

independent of z €  and s € R, V,F denotes the gradient of F with respect to the z variable,
and fl(x,s) = g—’;(x, s).
We say that a function u € H(Q) is a H!(Q)-weak solution to (13) if, for all w € H} (1),

Q’lL’U_): ZT)u\r)w\xr)ax r,ulT))w\xr)ar
Q. (u,w) /Qh()()()d+/ﬂf(v())()d,

where QO : H'(Q) x H'(Q) — R is defined by

QS (u, w) := / Vu(z) - Vw(x) de — / a(@/|z) u(z)w(z) de.
Q o |z

Schrodinger equations with inverse square homogeneous singular potentials can be regarded
as critical from the mathematical point of view, as they do not belong to the Kato class. A
rich literature deals with such critical equations, both in the case of one isolated pole, see e.g.
[16, 24, 25, 29, 40, 42], and in that of multiple singularities, see [7, 14, 15, 19, 23]. The analysis
of fundamental spectral properties such as essential self-adjointness and positivity carried out in
[19, 21] for Schrodinger operators with isolated inverse square singularities, highlighted how the
asymptotic behavior of solutions to associated elliptic equations near the singularity plays a crucial
role. A precise evaluation of the asymptotics of solutions turned out to be an important tool also
to establish existence of ground states for nonlinear Schrodinger equations with multi-singular
Hardy potentials (see [23]) and of solutions to nonlinear systems of Schrédinger equations with
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Hardy potentials [1]. A first result about the study of the asymptotic behavior of solutions near
isolated singularities is contained in [22], where Holder continuity of solutions to degenerate elliptic
equations with singular weights has been established thus allowing the evaluation of the exact
asymptotic behavior of solutions to Schrédinger equations with Hardy potentials near the pole. An
extension to the case of Schrodinger equations with dipole-type potentials (namely purely angular
multiples of inverse square potentials) has been obtained in [20] by separation of variables and
comparison principles, and later generalized to Schrédinger equations with singular homogeneous
electromagnetic potentials of Aharonov-Bohm type [17] by the Almgren monotonicity formula.
Comparison and maximum principles play a crucial role also in [37], where the existence of the
limit at the singularity of any quotient of two positive solutions to Fuchsian type elliptic equations
is proved. We mention that related asymptotic expansions near singularities were obtained in
[34, 35] for elliptic equations on manifolds with conical singularities by Mellin transform methods
(see also [30]); we refer to [18] for a comparison between such results and asymptotics via Almgren
monotonicity methods. It is also worth citing [9], where some asymptotic formulas are heuristically
obtained for the three-body one-dimensional problem.

Due to the presence of multiple collisions, one should expect that solutions to equations (13)
behave singularly at the origin: our purpose is to describe the rate and the shape of the singularity
of solutions, by relating them to the eigenvalues and the eigenfunctions of the angular operator L,
on the sphere SV 1.

The following theorem provides a classification of the behavior of any solution u to (13) near
the singularity based on the limit as r — 0T of the Almgren’s frequency function (see [2, 26])

r [, ([Vu(@)]® - a(%lf‘)uz(x) — h(z)u?(z) — f(z,u(z))) do
faBT |u(x)|?dS ’

where, for any 7 > 0, B, denotes the ball {z € RY : |z| < r}.

(14) Nun,p(r) =

Theorem 1.1. Let u # 0 be a nontrivial weak H'(Q)-solution to (13) in a bounded open set
Q C RY containing 0, N > k > 3, with a satisfying (7) and (12), h satisfying (H), and f
satisfying (F). Then, letting Ny, r(r) as in (14), there exists ko € N, ko > 1, such that

. N -2 N -2V
(15) Tim N () =~ 2 ¢ (552) + (@,

Furthermore, if v denotes the limit in (15), m > 1 is the multiplicity of the eigenvalue g, (a) and
{2 jo < i < jo+m—1} (jo < ko < jo+m — 1) is an L2(SN~1)-orthonormal basis for the
eigenspace associated to ug,(a), then

Jo+m—1
(16) AT Tu(Ax) — |x|” Z 5z¢z< |) in H'(By) as A — 0"
i=Jjo
where
R h(s0)u(s0 0, u(sf THN-L
(17) pi = /S {R%(Rm /0 (s >U<;>++ Nf(_szu(s ) (sl—v_gm)ds]wxmdswx

for all R > 0 such that Bg = {x € RN : |z| < R} C Q and (Bjy, Bjo+1s - - -+ Bjo+m—1) # (0,0,...,0).
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Due to the homogeneity of the potentials, Schrédinger operators L, are invariant by the Kelvin

transform,
() = |x|<N2>u(|j|2),

which is an isomorphism of D*2(RY). Indeed, if u € H'(Q) weakly solves (13) in a bounded open
set € containing 0, then its Kelvin’s transform 4 weakly solves (13) with h replaced by |x\*4h(ﬁ)

and f(z,-) replaced by |x\’N’2f(ﬁ, |z[N=2.) in the external domain Q@ = {z € RV : z/|z|> € Q}.
Therefore, under suitable decay conditions on h at co and proper subcriticality assumptions on f,
the asymptotic behavior at infinity of solutions to (13) in external domains can be easily deduced
from Theorem 1.1 and the Kelvin transform (see [17, Theorems 1.4 and 1.6]).

A major breakthrough in the description of the singularity of solutions at zero can be done by
evaluating the behavior of eigenfunctions 1);; indeed such eigenfunctions solve an elliptic equation
on SV~ exhibiting itself a potential which is singular on ¥. After a stereographic projection of
SN¥=1 onto RV~1, the equation satisfied by each ); takes a form which is similar to (13) in a lowered
dimension with a potential whose singular set is (N —1—k)—dimensional and to which we can apply
the above theorem to deduce a precise asymptotics in terms of eigenvalues and eigenfunctions of an
operator on SV ~2; the procedure can be iterated (N — k)—times until we come to an equation with
a potential with isolated singularities whose corresponding angular operator is no more singular.
A detailed analysis of the asymptotic behavior of eigenfunctions is performed in section 7.

A pointwise upper estimate on the behavior of solutions can be derived by a Brezis-Kato type
iteration argument, see [8]. More precisely, we can estimate the solutions by terms of the first
eigenvalue and eigenfunction of the angular potential & obtained by summing up only the positive
contributions of a, i.e.

+ +
e @
18 alf) = > o4 >y e
(e ) 10417 105, =0,
k (J1,J2)€EBY
Under the assumption

—24 2
N d
(19) A(d) —_ sup f]R |.’E‘ a(m/|m\)2u (l’) X < ]_7
weD12(RN)\{0} f]RN |Vu(z)|? dx

by Lemma 2.3 the number

2 o= N2 (55 m

is well defined. We denote as 9, € H*(SN-1), ||1&1||L2(§N—1) = 1, the first positive L2—normalized
eigenfuntion of the eigenvalue problem Lqv = pq (@) in SV1.

Theorem 1.2. Let u be a weak H'(2)-solution to (13) in a bounded open set 2 C RN containing
0, N > k > 3, with a satisfying (7) and a as in (18) satisfying (19). If h satisfies (H) and f

satisfies (F), then for any Q' € Q there exists C > 0 such that
lu(z)| < Clx|%y (%) for a.e. z €.
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In particular, if all oy, vz, 7, are positive, then @ = a and the above theorem ensures that all
solutions are pointwise bounded by |z|71(2/|z|) where o = =82 + [(F52)2 + ,ul(a)]l/2. On
the other hand, if all ay, vz, 7, are negative, then 4 = 0 and the above theorem implies that all
solutions are bounded.

The paper is organized as follows. In section 2 we prove some Hardy-type inequalities with
singular potentials of type (6) and discuss the relation between the positivity of the quadratic form
associated to £, and the first eigenvalue of the angular operator on the sphere SN ~!. In section 3 we
derive a Pohozaev-type identity for solutions to (13) through a suitable approximating procedure
which allows getting rid of the singularity of the angular potential. In Section 4 we deduce a Brezis-
Kato estimate to prove an a-priori super-critical summability of solutions to (13) which allows us
to include the critical growth case in the Almgren type monotonicity formula which is obtained in
Section 5 and which is used in section 6 together with a blow-up method to prove Theorem 1.1.
Section 7 is devoted to the study of the asymptotic behavior of the eigenfunctions of the angular
operator. Section 8 contains some Brezis-Kato estimates in weighted Sobolev spaces which allow
proving Theorem 1.2. A final appendix contains a Pohozaev-type identity for semilinear elliptic
equations with an anisotropic inverse-square potential with a bounded angular coefficient.

Notation. We list below some notation used throughout the paper.

- For all r > 0, B, denotes the ball {z € RY : |z| < r} in RY with center at 0 and radius 7.

- For all » >0, B, = {x € RV : |z| < 7} denotes the closure of B,.

- dS denotes the volume element on the spheres dB,., r > 0.

-It = {ji1,-. - dik) and Jo = {jo,1,...,J2.x} are two multi-indices of k elements, by
J1 < Jo we mean that there exists n € {1,...,k} such that j;; = jo,; forany 1 <i<n—1
and jl,n < j2,n~

- Forallt € R, t7 = ¢, := max{t,0} (respectively {~ = ¢_ := max{—t,0}) denotes the
positive (respectively negative) part of ¢.

- 8 = inf,epr2@y) (o) ||VU||%2||U||ZE* denotes the best constant in the classical Sobolev’s
embedding.

2. HARDY TYPE INEQUALITIES

The following Hardy’s inequality on the unit sphere holds.

Lemma 2.1. Let a as in (7). For every ) € H(SV~1) there holds

(432[, aonworas

(Tair X )] /SN1|vsm¢<9>|2ds+<N;2)2/SN1|w<e>|2ds].

JeA (Jl,Jz)EBk
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PROOF. Let v € HY(SV=1) and ¢ € C2°(0, +00). Rewriting inequality (10) for u(z) = ¢(r)y(6),
r=|x|, 0 = fs7» We obtain that

(32 ([T ewa) ([ awworas)
( doel+ X Al Jg) (/;0o TN1|¢>’(T)I2dr> (/SN |w(9)|2ds>

JEA, (J1,J2)EBy,
“+oo N 1
T ( Sai+ Y o J>(/ () d )(/ |vsm¢<0)2d5>,
JEA (J1,J2)EBs 0 sN=t

and hence, by optimality of the classical Hardy constant,

(k;z)Q(/SN a(9>lw(9)|2ds)

f*°° N*W( >|2dr
(g X | ) o B

JEA (J1,J2)€EBY

+ [ Voo as]
(Ta+ ¥ ah)[(N;Q) [, wordss [ 19ouopas].

JeAy (J1,J2)EB
The proof is thereby complete. O

Let us consider the following class of angular potentials

f0)]
21 ferLE (SN I\ |
( ) { ! ( \ ) EJEA}C ‘HJI + Z(Jl,JQ)EBk IGJI - 9J2|_2

From Lemma 2.1 we have that, for every f € F, the supremum

sup Jon 1 F(0) ¥%(0) dS(0)
peH (SN -1)\{0} fSN 1 ‘VSN Nﬁ )‘st( (N22) fSN—l ¢2(9) dS(e)

is finite. On the other hand, arguing as in the proof of [42, Lemma 1.1], we can easily verify that

/ 2|2 f (/) w? () d
(23) A = sup LR
weDt 2 RN\ (0} / Vu(z)? da
RN

€ LOO(SNl)}.

(22) A(f) =

Furthermore, it is easy to verify that
A(f) =0
and
A(f) =0 ifand only if f<0a.e. inSV7L

For every f € F satisfying A(f) < 1, we can perform a complete spectral analysis of the angular
Schrédinger operator —Agy-1 — f on the sphere.
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Lemma 2.2. Let f € F satisfying A(f) < 1. Then the spectrum of the operator
Lf = —ASN—I - f

consists in a diverging sequence pu1(f) < pe(f) < - < up(f) < -+ of real eigenvalues
with finite multiplicity the first of which admits the variational characterization

2

v [ Vsv—19(0)]7 — £(0) [ (0)]?] dS(0

o = dea (Ve w@F ~ @O ds)
YEH(SN-1)\{0} Jsw—1 [(0)|2 dS(6)

Moreover py(f) is simple and its associated eigenfunctions do not change sign in

PROOF. By Lemma 2.1 and assumption A(f) < 1, the operator T : L%(SN~1) — L2(SN-1)
defined as

n SN—l

SV-L.

Th=wu ifand only if — Agyv-1u— fu-+ (%)ZU =h
is well-defined, symmetric, and compact. The conclusion follows from classical spectral theory. In
particular, we point out that the simplicity of the first eigenvalue follows from the fact that, since
k > 1, the singular set ¥ does not disconnect the sphere. O

For all f € F, let us consider the quadratic form associated to the Schrédinger operator Ly, i.e.
2
Qf(u) == / Vu(e)Pdo— [ L@@
]RN

RN |z
The problem of positivity of Q¢ is solved in the following lemma.
Lemma 2.3. Let f € F. The following conditions are equivalent:

Qr(u)

inf _— >0
u€DL: Z(RN N0} [ [Vu(z)]? da

i) Qy is positive definite, i.e.
i) A <1

i) pa(f) > —(%)2 where pi(f) is defined in (24).
PROOF. The equivalence between i) and ii) follows from the definition of A(f), see (23). On the
other hand, arguing as in [42, Proposition 1.3 and Lemma 1.1] (see also [17, Lemmas 1.1 and 2.1])
one can obtain equivalence between i) and iii). O

Henceforward, we shall assume that (12) holds, so that the quadratic form associated to the
operator L, is positive definite.

Example 2.4. Let us consider cylindrical potentials, i.e. the particular case in which

(25) J= {(O;: i j ; {JL:;'I."Z”]%};; ks for some a € R

and

(26) oy, =0 for any (J1, J2) € By,

so that a(f) = /|9j|2 Then, from the optimality of the constant (k_2)2 in (8), it follows that
A(a) +(%)2 and (12) reads as o < (552 ) Moreover there holds

(27) ul(a):fw,wwfk) (k22) -
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In order to verify (27), let us set

k—2 k—2Y
2 = _ + _
(28) 7 2 ( 2 ) “

and consider the function u(z) = |z;|7"" = (25 22)" = H}

(R™). Then u solves the equation

(29) —Au(z) — u(z) =0 in{zeRY :z;#0}

[ 72
The function v may be rewritten as u(x) = |$\7/¢(ﬁ) once we define 1(0) = 057" for any
6 € SN=1\ ¥. Since u solves (29), we obtain
—A (Y 4+ N = 2)r7 725(0) — 7 2 Agn-196(0) = 7 "2a(0)¢(0), for any r >0 and # € SN\ ¥
This yields

—Agv-19p(0) — a(0)p(0) =7 (v + N = 2)¢(6), in SV
This shows that 1 is a positive eigenfunction of the operator L, and hence by Lemma 2.2 the

corresponding eigenvalue must coincide with pq(a), ie. v'(v + N —2) = pi(a). (27) follows
by (28).

Example 2.5. Let us also consider two-body potentials, i.e. the case in which N > 2k,
ay;=0 for any J € Ay
and
ahb__{a,?hh:Ji:{3%¢wkpmdb:abz{k+Lk+z“W2m,
0, if (Jy,J2) # (J1,J2),

(k—2)?

so that a(f) = «/|07, — 07,|>. The optimality of the constant ==

in inequality (9) implies that

Afa) = a+ﬁ and condition (12) reads as a < % Moreover we have
(k—2)(N—k) a E—2Y «
= BT E TR Y (N— A
(30) i (a) : v -y (52) -8
In order to prove (30) we put
k-2 E=2Y «
1 n_ et
(31) v =22 (57 -3

and we define u(x) = |27, — 7, """ € HL (RY). Then u solves the equation

«

(32) —Au(x) |2u(x) =0 in{zeRV:z; #a2j}

|7, — 7,

Proceeding as in Example 2.4, by (31) and (32) we conclude that (0) = (07 — 0j2\'VN is an
eigenfunction of y;(a) and that pq(a) is given by (30).

We extend to singular potentials of the form (6) the Hardy type inequality with boundary terms
proved by Wang and Zhu in [43].



SCHRODINGER EQUATIONS WITH MANY-PARTICLE AND CYLINDRICAL POTENTIALS 11

Lemma 2.6. Let a be as in (7) and assume that (12) holds. Then

e (w<x>2—“Lﬁ)w(wnz)dxﬂ; [, s
> (s (32, M

PROOF. By scaling, it is enough to prove the inequality for r = 1. Let u € C*°(B;) N H'(By)
with 0 & supp u. Passing to polar coordinates, we have that

a(yz7) N -2
2l @))? ) de + —2 w(x)|?
@) [ (v uer) e+ 22 [ e as

:/SM (/1TN_1|6Tu(r,9)2dr) 45(9)+¥/SN71 |u(1,0)[> dS(6)

0

" /01 = (/SN [IVsn—u(r, 0)* = a(®)|u(r, 0)[] dsw)) dr.

r2

r

for allr >0 and u € H*(B,).

For all § € SV=1, let pg € C°°(0,1) be defined by @y(r) = u(r,0), and gy € C(B;) be the
radially symmetric function given by @g(z) = wg(|z|). We notice that 0 & supp @g. The Hardy
inequality with boundary term proved in [43] yields

(35) /SN_l (Aer_1|8Tu(r7 02 dr + N; 2 |u(179)2> ds(0)

- [ ([ rdora s X2 ) s

1 ~ N -2 ~
—— [ ([ vaeras 22 [ (Gwpas) ase)
WN—-1 JgN-1 By 9B,

2o () L (], e aso
_ (N2‘2)2 /SM (/01 TZZ;W(T, e)%u) d5(6) = <N2_2>2 /B '“f;f dz.

where wy_; denotes the volume of the unit sphere SV~ ie. wy_1 = fSN—l dS(0). On the other
hand, from the definition of u4(a) it follows that, for every r € (0, 1),

(36) /S  [IVev-su(r0) — a()lur,6)P) dS(6) > (o) / lu(r, 0)[2dS(6).

SN—1

(552 omiw)] [, e

From (34), (35), and (36), we deduce that

/31 <|VU($)|2 - a|(xg|;2|) |U(a:)|2) dx + N2— 2 /831|u(x)|2 ds >

for all w € C>°(By) N HY(B;) with 0 ¢ suppu, which, by density, yields the stated inequality for
all H'(B,)-functions for r = 1. g
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Corollary 2.7. For allr > 0 and u € H*(B,), there holds

N -2 k—2V [ |u(z)?
37 Vu(z 2d:c+7/ w(z)|?dS > <>/ dx
(37) /B,.' (@) o, ) ) ), e
for any J € Ay and
N-2 (k —2)° Ju(a) 2
38 Vuxde—I—i/ w(z)|?dS > / dz
(38) /T| () o, ) [

for any (J1,J2) € By.

PROOF. Let r > 0 and u € H'(B,). Choosing a as in the Example 2.4 with o < (%)2, from
Lemma 2.6, it follows that

/BT (|Vu(x)|2 - |a|u(x)|2> ot 2 /6& u(z)[2dS > 0

xg|? 2r

hence

2 _
a/ fu()] dx < / |Vu(z)|? dz + M/ lu(x)|? dS.
B B, 2r Jom,

. sl

Letting o« — (%)2, (37) follows. To prove (38), we may choose a as in Example 2.5 and proceed
as in the proof of (37). O

Corollary 2.8. Let a be as in (7) and assume that (12) holds. Then, for allr >0, u € H'(B,),
J € Ay and (Jy,J2) € By, there holds

2 a(ﬁ) 2 N -2 9
(39) /Br|vu(x)| dx—/BT @) o+ Afe) 5 /aBT ju(z)[2dS

> (1- Aa)) / V() ? dr,

B
(40) /B |Vu(x)|2dx—/B a(xug)u(x)|2dx+N2;2/aB fu()|? dS
—92\? u(z)|?
>a-a@) (57) [ 10
and
(41) | vu@pas- [ a(xl]g)u(x)Fdx—I—NQ;Q/aB u(a)[2ds

—2)2 u\xr 2

2 IS |J?J1 —.13J2|2

with A(a) as in (23).
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PROOF. By scaling, it is enough to prove the inequalities for » = 1. Let u € C*°(By) N H'(By)
with 0 ¢ supp u. Passing in polar coordinates we obtain

, alf) ) N -2 )
@ [ (1o uwr) daw 5 [ ras

= [ ([ et opar)aso a2 [ wopaso

+/01 TN;l (/SN_1 [ Vv—ru(r,0)[2 — a(8) u(r, 8) 2] d5(0)> o

,
By (22) and (12) we have

/SA_1 [[Vav-ru(r,0)|* = a(0)|u(r,0)[*] dS(0)

N -2

Vanru(r,0)[> dS(6) — Ala) ()2 /SM lu(r, 0)]2 dS(6)

> (1-4G) | .

SN—1
which inserted into (42) gives

a(f37) N -2
szf Kl U.Tz X a sz > — a U.sz
[ (9@ - T ar e A 72 [ as > 0 -aw) [ 9uPa

B,

[ ([ e tmaao S (452 Mea].

Now, inequality (39) follows immediately from (35).
From (39) and (37) we obtain

/131 (|Vu(z)|2 _ al(m%) |u(1‘)|2> dr + ]\[22/331 lu(2)[2 S

> (1- Ada)) (/B Vu()|? do + ¥ u(w)|2d5) > (1= Aa)) (kf)z/B W@,

9B, L lzsl?

for all J € Ay, and for all w € C°°(By) N H'(B;) with 0 ¢ supp u.
On the other hand by (39) and (38) we obtain

Vao? - ) ar+ Y22 [ jupas
/Bl< || 0B,

> 0-a@) ([ wu@par+ 22 [ juas)
> (1- A() - 2) /B | |xJIIU<_x>x|JZ|2 dz

for all (Jy,J2) € By and for all u € C*°(By) N H'(By) with 0 ¢ supp u.
By density the stated inequalities follow for any u € H'(By). O

+ A(a)

From (33) and (39), we can derive a Hardy-Sobolev type inequality which takes into account
the boundary terms; to this aim, the following lemma is needed.
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Lemma 2.9. Let Sy > 0 be the best constant of the Sobolev embedding H'(B;) C LQ*(Bl), ie.
< Vu(z)|? + |u(x)|?) dz
(13) See bt Jo (Vo) + )P o
ve .
(Ul )

Then, for every r > 0 and u € H'(B,), there holds

(a1) [ (1t + 28 o 5 (| |u(x>|2*d:c)2/2*-

r r

PrOOF. Inequality (44) follows simply by scaling from the definition of Sy. O
The following boundary Hardy-Sobolev inequality holds true.

Corollary 2.10. Let a be as in (7) and assume that (12) holds. Then, for all r > 0 and u €
HY(B,), there holds

(45) /B|Vu(m)|2dx—/3 a;ﬁ;)u(m)ﬁdm”ﬁ(“)%f/% lu(z)[2 dS

> iN min {1 — Aa), py(a) + (NQ_Z)Q} </B u(x)|2*dx>2/2*,

PROOF. Inequality (45) follows simply by summing up (33) and (39) and using Lemma 2.9. O

r

where Sy is defined in (43).

3. A POHOZAEV-TYPE IDENTITY

In order to approximate L, := —Ag~v-1 — a with operators with bounded coefficients, for all
A € R, we define

as QJy J, .
10,12 + X\ T a—— fA>0
Z |9J|2+>‘+ Z 107, — 05,17 + X !
(46) ak(@) = JeA (J1,J2)€EBy
a(f) if A <0

in such a way that ay € L>®(SV~1) for any A > 0. We notice that a) € F for any A € R.

Since we are interested in the asymptotics of solutions at 0, we focus our attention on a ball
B,, which is sufficiently small to ensure positivity of the quadratic forms associated to equation
(13) and to some proper approximations of (13) in B,,. Let u be a solution of (13), with the
perturbation potential h satisfying (H) and the nonlinear term f satisfying (F'). If condition (12)
holds, there exists o > 0 such that

(47) B,, CQ and A(a) + Cpr <-’;’) <I£2>2 <1 . (Nk k>)

+CpS! [(WN—l/N)%T(z) + Hu||i*2?(23m) <1,

with a as (7), A(a) as in (22) and (N, *) = 0 whenever N < 2k.
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Lemma 3.1. Let @ C RN, N > 3, be a bounded open set such that 0 € Q, and let a satisfy (7)
and (12). Suppose that h satisfies (H), f satisfies (F), u is a H*(Q)-weak solution to (13) in €,
and o > 0 is as in (47). Then there exists X\ > 0 such that, for every A € (0,)), the Dirichlet
boundary value problem

ax(3) .
—Av(x) — v(x) = hy(x)v(x) + flz,v(x)), n By,
(48) (z) e () = ha(z)v(z) + f(z,v(z)) 0
U|6BT0 :u’é)BT()’ on 637’07
with

h(z), if A <0,
admits a weak solution uy € H'(B,,) such that

uy —u in H'(B,,) as\— 0T.

I () = {min{l/)\,max{—l/)\,h(gc)}}7 if A> 0,

PROOF. Let © be the unique H(B,,)-weak solution to the problem

b a(ﬁ) o(x) = h(x)d, in B,

(49) ||

v:u‘aBro, on 0B,,.

The existence and uniqueness of such a v can be proven by introducing the continuous bilinear
form Q : HY(B,,) x H}(B,,) = R
a(fz7)
Q(wy,ws) := Vwi(x) - Vwy(z) — e + h(z) Jwi(x)ws(z)| de,
B

0

and the continuous functional ¥ € H=1(B,,)

(¥, 0) 1 5, ) :7/3 Vu(x)Vw(;p)der/ ()

v B, |7?

u(:z:)w(:c)der/ h(z)u(x)w(z)dz .

H=1(By,) B,

0

By (H), (8), (9), and (11), we have

(50)  Q(w,w) :/B <|Vw(x)|2 _ afx'”;)w?(x) _ h(m)w2(x)> da

w2<x>—0h(2|m|-2+s+ > |xJ1—xJz|-2+E)w2<w>)dx

a()
> | (|Vw<x>|2 |
B |IZ" JEAg (J1,J2)EB

> {1 ~ Aa) — Cyrf (Z) <k32>2 <1+ (Nk_k)” /Bmww(x)ﬁdx

for all w € H}(B,,). By (50), (12) and (47) it follows that the bilinear form Q is coercive. The
Lax-Milgram lemma yields existence and uniqueness of a solution v € H}(B,,) of the variational
problem

_ 1
Qv,w) = H*l(BrO)<\Il’w>H3(Bro) for any w € Hy(By,).
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Then the function ¢ := v + u is the unique solution of (49).
Let us now define the map ® : R x H}(B,,) = H (B,,) as

B\, w) = —Aw — a]iz) w— hy(2)w — f(2,5 +w) + <a|(x"“"2) + i) — aA|:(c|2‘|) - M@) .

By (7), (8), (9), (H) and (F), the function ® is continuous and its first variation with respect to
the w variable
@, : R x Hy(By,) = L(Hy(By,), H ' (By,))
is also continuous. We claim that
®(0,u—0)=0in H "(B,,) and ®,(0,u—70)€ L(H}(B,,),H "(By,)) is an isomorphism.

The first claim is an immediate consequence of the definition of u and ¥. Let us prove the second
one. By (F), (11), and Hélder and Sobolev inequalities, for every w € H}(B,,) we obtain

<<I> (0,u — D)w, w>

H=1(Br,) Hg(Bry)

:/B |Vw(:1:)|2dx7/3 afgg‘g /B h(z dxf/B (@, u(@))w? (z) do

0 0

>/B |Vw(m)|2dx—/Bu a&g /B h(z dx

—cf/B (14 [u@)]? ~?)w? () da

0

> (1—A(a))/ V(o)) da

70

() () [ e

70
o5 [(wN_l/N)mg+||u|@;:(23m)]/B V() ? der
70

The above estimate, together with (47), shows that the quadratic form w — (®],(0,u — ?)w, w)
is positive definite over H}(B,,). Then the Lax-Milgram lemma applied to the continuous and

coercive bilinear form (wy,w2) — g-1(z, )<<I>’ (0,u — T))wl,w2> ) ensures that the operator
ro w Hg(Brg)

@’ (0,u — ) € L(H}(B,,), H 1(B,,)) is an isomorphism and hence our second claim is proved.
We are now in position to apply the Implicit Function Theorem to the map @, thus showing
the existence of A > 0, p > 0, and of a continuous function

g:(=\A) = B(u—1,p)
with B(u — 9,p) = {w € H}(Br,) : |lw—u + 0lluy(B,,) < P} such that ®(A,g(A)) = 0 for all
€ (=M A) and, if (\,w) € (=X, \) x B(u — 9, p) and <I>()\ w) = 0, then w = g(A). The function
= g(X\) + 0 solves (48) for any A € (0,A). Moreover, by the continuity of g over the interval
( ,A) and the fact that g(0) = u — 9, uy —u = g(A) —u+0 — 0 in H}(B,,) as A — 0F. This
proves that uy — u in H'(B,,) as A — 07. O
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Remark 3.2. We notice that, if f € L'(Q) for some Q C RY bounded open set such that 0 € €,
then, for every r > 0 such that B, C €,

/ If(I)dI/OT(/aBSfIdS>ds<+oo,

T

and hence the function s — faBs |f|dS belongs to L'(0,r) and is the weak derivative of the
W0, r)-function s — [, |f(x)|dz. In particular, for every u € H'(Q) and every J € Ay,
(J1,J2) € By, the L'(0,r)-function

2 2
s |Vu(x)[*dS, respectively s — L(a;) ds, s &)2 ds.
o8 o8, |zl oB, [T5 — x|

is the weak derivative of the W1(0,r)-function

2 2
s — / |Vu(a:)|2 dzr, respectively s+ / L(xz) dr, s~ / &)2 dx.
B, B, |TJl B, |75 — 25

Solutions to (13) satisfy the following Pohozaev-type identity.

Theorem 3.3. Let @ C RN, N > 3, be a bounded open set such that 0 € 2. Let a satisfy (7),
(12), and u be a H*(2)-weak solution to (13) in Q with h satisfying (H) and f satisfying (F).
Then

(51) - N;Q/B [|Vu($)|2 - a|(x||m2)u2(;,;)] d$+;»/c’38r [|Vu(x)2 - GI;TQ)UQ(I)} us
ou’ ! Z N 2 r 2
= T/a& £ as — Q/BT(Vh(x) -x)u”(x) do — 2/BT h(z) v’ (x) dz + 3 o h(z)u?(x) dS

+ T/BBT F, u(z)) dS — /B Vo F (e u(e)) - 2+ NF(u(x))] da
and

(52) /B T <Vu(x)2 _ afgi')u?(x)) do
:/8 u% dS+/ h(x)u?(x) d:v+/BT flz,u(x))u(z) de,

B, ov

r

for a.e. v € (0,rq), where ro > 0 satisfies (47) and v = v(x) is the unit outer normal vector

iz

v(z) = GE
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PROOF. Let ay as in (46), 7o as in (47), and uy, hy as in Lemma 3.1. Since ay and h) are
bounded for every A > 0 the following Pohozaev identity

7u U\ 2701)‘(‘:;7')7‘[/2 X XL z U\ 2_ a/\(ﬁ)UQ T
@)~ 25 [ e - SRR des f [P - S| s

:7‘/
OB,

+T/aBT F(z,ux(z))dx —/B [V F(x,u\(x)) -2+ NF(z,uy\(z))] dx

r

6U)\

14

ds + /B ha(@)ur (@) (z - Vur(2))) do

holds for all » € (0,7g), see Proposition A.1. Furthermore, testing (48) with u,, integrating by
parts, and using the regularity of u) outside the origin, we obtain that

o0 [ T (vwz)ﬁ - *l('l')um) da

:/a u)\% dS+/B,. hA(a:)ui(x)dm—&—/Br flz, un(z))ur(z) dz

B, 81/

for all r € (0,79).
From the convergence of uy to u in H*(B,,) as A — 0T proved in Lemma 3.1, inequalities
(37-38), and the Dominated Convergence Theorem, it follows that

ax(iz) 5 alg) 5 aali) ax(rz) —algy)
FE uj — FE u® = FE (u,\+u)(uA7u)+Tu -0
in LY(B,,) as A — 0T, i.e.
| (), alE)
(55) )\lg(r)l+ Bry EE ux(z) — EE u (x)‘dm
— lim / ('2') 2(2) - (';)u%) ds|ds = 0.
a0t Joo Los, | l2] ||

From (55) we deduce that

a,\(% a(%)
/ |2)u?\(z)dxﬁ/ |2‘ u?(z)dx as A — 07 for all r € (0,7).
B, | B, |zl

and, along a sequence \,, — 07,

xT x
o (1) al(zp)

(56) 5 Uy, dS — o u~dS asn— +oo forae. 7€ (0,7).

oB, |7 oB, |7
On the other hand, from

To
lim |V (ux — u)(x)]*dr = lim [/ |V (ux — u)|*dS|ds = 0,
A=0t Jp, A=0% Jo OB

we deduce that, along a sequence converging monotonically to zero still denoted by A,

(57) / |Vuy, |2dS —>/ |Vu|?dS asn — +oo for a.e. 7€ (0,70)
OB, 0B,
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2 2

and
0 0
T 2L 4S asn— +oo forae. e (0,70).

58 / ds — /
( ) 9B, aV 9B, 81/

Let us fix A > 0 and r € (0,7(). Since

/Or [/SBS hA($)|UA($)|2dS:|dS_/ 'h/\($)|U,\(:r)\2d:v<+oo,

s

there exists a sequence {0k tren C (0,7) such that limyg_, 4o d = 0 and

(59) 6k/ ha(z)|un(x)]*dS — 0 as k — 4oo0.
dBs,

Recalling that uy € C’llo’g(Br0 \ {0}) for some 7 € (0, 1), integration by parts yields

/ ha(z)ua(z) (x - Vux(x))de = 1 / (Vha(z) - 2)uld (x) dx
B,\Bs, B,\Bs,

2
N 0
- ha ()l (z) dz + — / ha(z)u(z) dS — & ha(z)u2 (z) dS.
2 JB\Bs, 2 Jos, 2 JoB,,
Letting k — +o0, by (59) and (H), we obtain
1
/ ha(z)ux(z) (x - Vur(z)) de = —5/ (Vha(z) - 2)ui (x) d
B, B
N 2 r 2
- — ha(z)uy(z) de + = hx(z)uy(x)dS.
2 /B, 2 Jop,

Arguing as above, using (H) we can prove that

/\ligh i (Vha(z) - 2)ui (z) do = / (Vh(z) - z)u?(z)dx for all r € (0,7q),

r T

lim hy(z)u (z) doz = / h(x)u?(x) dx for all r € (0,79),

A—0t B, B,
and, along a sequence \,, — 07,
(60) lim by, ()3, (z)dS = h(z)u®(z)dS for a.e. r € (0,7).
n=+o0 Jop, 9B,

It remains to study the convergence of the terms in (53) and (54) related to the nonlinearity f. By
(F), convergence of uy to u in H*(B,,), and the Dominated Convergence Theorem, we have that

)\lirgJr [VoF(z,uy(x)) -2+ NF(z,u\(x))] de = / [VoF(z,u(z)) =+ NF(z,u(z))]dz,
-0t /B, B

im, | Sl ur(@)ua(e) e = /| S u(@)u(a) de,

A—0t
for all 7 € (0,7g), and along a sequence A\, — 07,

(61) T/(’;BT F(z,uy, (z))de — r/{gBr F(z,u(z))dz asn— 4oo

for a.e. r € (0,79).
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Therefore, we can pass to the limit in (53) and in (54) along a sequence A\, — 07 such that
(56), (57), (58), (60), and (61) hold true, thus obtaining (51) and (52). O

4. A BREZIS-KATO TYPE ESTIMATE

Throughout this section, we let ¢ RY, N > 3, be a bounded open set such that 0 € €, a
satisfy (7), (12), h satisfy (H), and V € L\ _(Q) satisfy the form-bounded condition

loc

14 2(z)d
ap V@) dr
veEH(2)\{0} HU”Hl(Q)

< +00,

see [33]. The above condition (which is in particular satisfied by L¥/? and LY/?>° functions,
potentials of the form (6), etc.) in particular implies that for every u € H*(Q), Vu € H~1(2). We
assume that u € H'(Q) is a weak solution to

al)
|[?
In the spirit of [40, Theorem 2.3], we prove the following Brezis-Kato type result.
Proposition 4.1. If V, € LN/2(Q), letting
{ %min{ﬁ—l?}, if  Ala) >0,
Qlim = 2
25 if  Aa)=0,

then for every 1 < q < qim there exists r4 > 0 depending on q, N, k,a,h such that B, C Q and
u € LY(B,,).

(62) —Au(z) u(z) = h(x)u(z) + V(x)u(z), in Q.

PROOF. Forany 2 <7 < Q%qlim define C(7) := %_2 and let £, > 0 be large enough so that
¥ ¥ SC(r) - A
(63) ( / VE (@) dm) < M

Vi (@)=,
Let r > 0 be such that B, C Q. For any w € H}(B,), by Hélder and Sobolev inequalities and
(63), we have

o) [VewkePes [ vew@Pas [ Vi@e)Pe
¢ B {Vi(z)<L-} By {Vi(z)24-}

<t [ oo ( /v&wmf(éymwwaﬁ

Vi (z) >4y
—A
<zT/ |w(x)\2dx+M/ V(o) da.
B, 2 B,

Let n € C°(B,) be such that n = 1 in B, )5 and define v(z) := n(x)u(z) € H{(B,). Then v is a
H!(Q)-weak solution of the equation

(65) —Av(z) — ¢ v(z) = h(z)v(z) + V(z)v(z) + g(x), in Q,
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where g(z) = —u(z)An(x) — 2Vu(z) - Vn(z

) € L%(B,). For any n € N, n > 1, let us define the
function v™ := min{|v|,n}. Testing (65) with (v")

=2y € H}(B,) we obtain

(66) /B (0" ()™ Vo(x) 2 di + (7 — 2) /B (0™(2))"30(@) V(@) PX ooy < ()

/ a('””‘)w"(x))f %0 () da

||
:/Brh( 2) (0" () dx+/ Vi JT22(g )daj—l—/BTg(x)(v"(x))T_ o(z) dz .
Since
V() E )2 = )20l 4 T2 g Dy

then by (66), (11), (H), and (64) with w = (v™)Z ~'v we obtain

(67) / V(v o(2))|? de

<{M@wc:)&mww<N;'f>> ECuy SU—
+4, /Br(v"(x))T_2(U(x))2 dm+/BT ()| (v™ (2))" 2 |v(x)| da .

Let us consider the last term in the right hand side of (67). Since g € L?*(B,), then by Hélder
inequality

[N

/Brg(x)l(v"(:r))Tzv(x)ldw < llgllz2 (@) </Br(v”(z))274lv($)lzdﬂf)

= [l9llL2(e) </ (’tfn(UIT))Q(1)(2)(11"(31:))2“*2)|v(az:)|2dx)2

4( 1) 3
< lgllzz(o) /l dx
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and, since 4(TT D < 2% for any 7 < 2* Qlim, by Holder inequality, Sobolev embedding, and Young
inequality, we obtain

(68) /B l9(@)] (0" ()™ o(x)] da

1 2(r—1) 2(r7—1)

wWN—1\2 7T N_2NG-1 n . . 2% 7
< ||g||L2(Q)( N > T2 PEES </B ‘(’U (I’))z 1U(IL‘)|2 dz)

1_2(r—1) T—1

wn-1\? T N_(N-2)=D 7o s NI E
S = el § OO 1v<m>>|2dx)

2
*

1 T—1[/wNn_1 2<T N2 —N+42 o™ z—
< ol + T2 (1) s (@)F " o(a)) | da.

Inserting (68) into (67) we obtain

g () ()
_T;1<w7v—1)2(:”_2* N2 g }/BJV((U”(J;))E%(J;))FCI;U

< ol + 6 [ @) 0(@)? da

and by Sobolev embedding we also have

R R I y)
_T;1<wljvv_1)z<fl>—z% i K

S~
1, . o
< Hlolay + - | 07 @) () dr
Since T < %qlim then C(7) — A(a) is positive and ( 1) — N +2 is also positive. Hence we may fix

2

k
[ @@ E T ) ar)

r small enough in such a way that the left hand side of (69) becomes positive. Since v € L™(B,),
letting n — +o00, the right hand side of (69) remains bounded and hence by Fatou Lemma we infer

that v € L%T(BT). Since = 1 in B, /3 we may conclude that u € L%T(B,«/g). This completes
the proof of the lemma. O

5. THE ALMGREN TYPE FREQUENCY FUNCTION

Let u be a weak H'(£)-solution to equation (13) in a bounded domain 2 C RY containing the
origin with a satisfying (7) and (12), h satisfying (H) and f satisfying (F).
By (F) and Sobolev embedding, we infer that the function

fzu(x)) u(ﬁ)) ;
V(z):={ _u@ ?f u(x) # 0,
0, if u(z) =0
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belongs to L/ 2(Q)) and hence we may apply Proposition 4.1 to the function u. Therefore, through-
out this section, we may fix
(70) 2" < q < qiim
and r, as in Proposition 4.1 in such a way that u € L(B,,).
By Remark 3.2, the function

(71) Hir) = erfl /BB uf2 S

r

belongs to L (0, R) for every R > 0 such that Bg C Q. It is also easy to verify that

loc
(72) H(r)= /SAP1 lu(r0)|?dS(f) for a.e. 7 € (0, R).

Further regularity of H is established in the following lemma.

Lemma 5.1. Let Q ¢ RY, N > 3, be a bounded open set such that 0 € Q and let u be a
weak H'(2)-solution to equation (13) in Q with a satisfying (7) and (12), h satisfying (H), and
f satisfying (F). If H is the function defined in (71) and R > 0 is such that Br C €, then
HeWh'(0,R) and

loc

(73) H'(r) = 2 /a u%dS

B TN_l B, ov
in a distributional sense and for a.e. v € (0, R).

PROOF. Since u, g—jf € L%*(Bg), by Remark 3.2, we have that
2 ou 1
r— m /aBrual/dS S LIOC(O7R)'

If 0 < s < r < R, by Fubini’s Theorem we obtain

/: tNi_l (/aB " % dS) it = / (/SN 2u(t0)%(t9) dS(a)> dt
_ /S B ( / ' 2u(t¢9)%(t0) dt> ds ().

From classical Brezis-Kato [8] estimates, standard bootstrap, and elliptic regularity theory, it
follows that u € C’llo’Z(Q \ ¥) for some 7 € (0,1). Hence, for every § € SV=1\ ¥, and consequently

for a.e. # € SN, %(t@) = Lu(tf) for every t € (s,r). Therefore, in view of (72), we deduce that

/;1 (/%tug:jd5> dt = /SN?I (/:;tu(tQ)Pdt) 45(0)
= /S  (ulr0)” = [u(s0)) dS(0) = H(r) — H(s)

thus proving that H € Wl’l(O, R) and that its weak derivative is given by (73). O

loc

Now we show that, if u £ 0, H(r) does not vanish for every r € (0,rg).
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Lemma 5.2. Let Q C RN, N > 3, be a bounded open set such that 0 € Q, a satisfy (7) and (12),
and u Z 0 be a weak H*(Q)-solution to (13) in Q, with h verifying (H) and f as in (F). Then
H(r) >0 for any r € (0,7¢), where H = H(r) is defined by (71) and ro > 0 satisfies (47).

PROOF. Suppose by contradiction that there exists R € (0,79) such that H(R) = 0. Then v =0
a.e. on OBg and thus v € H}(Br). Multiplying both sides of (13) by u and integrating by parts
over Br we obtain

()
2 — |$|’U,ZE213: xuxQz T, ulT))ulr xX.
[ vuaar - [ S @R = [ @@l [ e

Proceeding as in (50) and using (F), Holder and Sobolev inequalities, we obtain

_ () , 2
o=/ (Ivu)? = TEE )~ o) - fouta))ute) ) d

b)) (5] s
Oy [(wnoa/N) ¥R 4 a2, | /|w )2 da,

which, together with (47), implies v = 0 in Bg. Since u = 0 in a neighborhood of the origin, we
may apply, away from the singular set ¥ (which has zero measure), classical unique continuation
principles for second order elliptic equations with locally bounded coefficients (see e.g. [44]) to
conclude that v = 0 a.e. in §2, a contradiction. O

We also consider the function D : (0,7r9) — R defined as

1 a(far)
(14) D)= 5 /B (Vu<x>|2 o (W@ = @) (@) - f, u<x>>u<x>)dx,
where rg is defined in (47). The regularity of the function D is established in the following lemma.

Lemma 5.3. Let Q C RN, N > 3, be a bounded open set such that 0 € Q. Let a satisfy (7) and
(12), and u be a weak H'(2)-solution to (15’) with h satisfying (H) and f satisfying (F). Then
the function D defined in (74) belongs to W' (0,70) and

(75 D'(r) =TN21[7°/83T Ou dS—;/BT(Vh(x)-x)u(x)Fdx—/Br h(x

v
+rt N / (N = 2)f (@, u(@)ulw) = 2N F(z, u()) = 2Vo F (@, u(2)) - 2) da

el de|

+ r2_N/ (2F (z,u(x)) — f(z,u(z))u(z)) dS
dB,
in a distributional sense and for a.e. r € (0,79).

ProOF. For any r € (0,7¢) let

@) 1= [ (IFur- “fxfg) @) = h(o) (o) = Fo.u(o)u) )
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From Remark 3.2, we deduce that I € Wh1(0,ry) and

1w [ (vuer - T @ - r@@ - s ) as

for a.e. r € (0,79) and in the distributional sense. Therefore D € W1 (0,7) and, plugging (51),
(76), and (77) into

D'(r) = r'"N[—(N = 2)I(r) +rI'(r)],
we obtain (75) for a.e. r € (0,79) and in the distributional sense. O
By virtue of Lemma 5.2, if u is a weak H'(2)-solution to (13), u # 0, the Almgren type frequency
function
D(r
(78) N) =N (r) = 709
is well defined in (0,79). Collecting Lemmas 5.1 and 5.3, we compute the derivative of A/.

Lemma 5.4. Let Q C RN, N >3, be a bounded open set such that 0 € Q, a satisfy (7) and (12),
and u Z 0 be a weak H*(Q)-solution to (13), with h satisfying (H) and f satisfying (F). Then the
function N defined in (78) belongs to Wli’cl(O,ro) and

(79) N'(r) = vi(r) + va(r)
in a distributional sense and for a.e. r € (0,19), where
or (S, 1252 45) - (S, 20S) — (fy, w2 |
2
(Jop, lulds)

(80) n(r) =

(81)  w(r) = — fB,,(Qh(x) + Vh(x) :ﬂ)|u(x)|2 dx rfaBr (2F($,u(x)) — f(:C,U(:E))u(:c)) ds
i Jop, lul?dS Jop, lul?dS

I5, (N =2)f(z,u(z))u(z) — 2N F(z,u(x)) — 2V F(z,u(x)) - ) dv
Jop, ul?dS '

PROOF. From Lemmas 5.1, 5.2, and 5.3, it follows that A" € WI})S (0,79). From (52), (74), and
(73) we infer

+

(82) D(r) = %TH’(’I“)
for a.e. r € (0,79). From (82) we have that
D'(r)H(r) = D(r)H'(r) _ D'(r)H(r) — 3r(H'(r))®
(H(r))? (H(r))?
and the proof of the lemma easily follows from (73) and (75). O

N'(r) =

We now prove that N'(r) admits a finite limit as 7 — 07. To this aim, the following estimate plays
a crucial role.



26 VERONICA FELLI, ALBERTO FERRERO, AND SUSANNA TERRACINI

Lemma 5.5. Under the same assumptions as in Lemma 5.4, there exist ¥ € (0, min{rg,r,}) and
a positive constant C = C(N,k,a,h, f,u) > 0 depending on N, k, a, h, f, u but independent of r
such that

s [ (Ivu@pe- a(x'];') ) = (o) )~ Fo.ulo)u(e) ) do

N -2
> — / |u(x)|2d5
2r 8B,
2

+C<J§/ s 2 /B e *(/BT'“@'%Y)

(J1,J2)

and
(84) N(r)>—-———
for every r € (0,7).

PROOF. By (40), (41), and (45), we have that

2 a(ﬁ) 2 2
[ ()l = SER @) = ) (o) — e ato)ut) )

N e
v ML

*%ﬁafg?»+ﬂ““‘)C”J%O?§§”+1x
() e s [ o)

1o min {1 A), (@) + (%))
+ |35 M0+ () +1

2 2/2*
WN_1\N . *
— Cf (( N ) 7"2 + ||u||iz* (QBT)> :| </B |u(x)‘2 dl’)

for every r € (0,79). Since A(a) < 1, from the above estimate it follows that we can choose
7 € (0,79) sufficiently small such that estimate (83) holds for r € (0,7) for some positive constant
C =C(N,k,a,h, f,u) > 0. Estimate (83), together with (71) and (74), yields (84). O

Lemma 5.6. Under the same assumptions as in Lemma 5.4, let 7 be as in Lemma 5.5 and vz as
in (81). Then there exist a positive constant Cy > 0 depending on N, q,Cy,Cy, C, 7, ||ul|Le(p,) and



SCHRODINGER EQUATIONS WITH MANY-PARTICLE AND CYLINDRICAL POTENTIALS 27

a function g € L*(0,7), g = 0 a.e. in (0,7), such that

2(¢—2%)
q

lva(r)| < Oy [N(r) + ];f} (7’71*5 + + g(r))

for a.e. 7 € (0,7) and

)

r HUHLz*l N(q—2*
() (g )(a7 2
ds < ——————— 2
/0 g(s)ds < T | "

for all r € (0,7) and for some a satisfying & < o < 1.

ProOOF. From (H) and (83) we deduce that

/B (2h(x) + Vh(z) - o) u()? dz| <

Z/ |$I|2d+ Z /|5E11—$12|2>

JEAL (J1,J2)€EBK

I 2C'hr (

<20,C° tpetN-2 [D(r)+ X2H(r)],
and, therefore, for any r € (0,7), we have that
[, (2h(x) + Vh(z) - 2)|u(@)|? dz

——1
<2C,C
f(‘)BT |ul?2dS

(85)

2

By (F), Holder’s inequality, and (83), for some constant const = const (N, Cy) > 0 depending on
N, Cy, and for all € (0,7), there holds

/B (N — 2)f (2, ulw)u() — 2N F(z, ulz)) — 2V, F(z, u(x)) - z) dz

— 20,0 e [N(r) + N=2 2] .

< const / (lu(@)]? + [u(2)[*") da

r

N 2/2*
<const ( (o2 ulfig, ) ([ futo) o
N (Br) B,

2(g—2%)
. WN—1 2 WN-1 Ngq 2(r1 2*) 2% _9
< const ((N) r +( N ) r ”uHLq(Bi)
1

x C rN2[D(r) + Y2H(r)]

S

and hence
I5, (N =2)f(z,u(z))u(z) — 2NF (2, u(z)) — 2V, F(z,u(z)) - z) dz
Jop, lul*dS
2(¢—2%)

——1 WN—-1\N _22* WN—-1 Ngq 2% _9
< const C ((N)Tq-i-(N) [[u ||L<1B)>

(g—2%)
T N () 4 M2

(86)
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Let us fix 23 < a < 1. Then, by Holder’s inequality and (83),

I

S (W)q_f*(a;)rmq_mw;)
N
B
——1/WN-1\N _ 2* (a—2) N _9
=C (T) T 1+ﬂ||u||L"(B,,—.)z |:N(7’)+2:| (/G\B |u2ds>

for all r € (0,7), where 8 = w(a — £) > 0. From (F), (87), and (84), there exists some

const = const (NN, ¢, C¢) > 0 depending on N, ¢, C¢ such that, for all r € (0,7),

TfaBT (2F (z,u(z)) — f(z,u(z))u(z)) dz M
Jop, lul*dS Jop, lul?dS

N t \E e 2 N —2 rP ul?" dS
< constr [./\f(r) + ] 4 (wN 1>N ||u||iq((B;)2*) [N(T) + deT [u

2 C N 2 ] (fBT lu(z) |2 da:)
By a direct calculation, we have that

o B 1[0 ] )] ) ]

in the distributional sense and for a.e. r € (0,7). Since

e’
lim rﬁ</ |u(z) 2*d:c> =0
r—0t B,
d -«
[l PC) 2"
T dr(r (/BT lu(z)| dx) )
is integrable over (0, 7). Being

poLe ( / |u(x)2*dx)l_a — o(r1+5)

T

2*(a—2)=-1 N_ N -2
|u||Lq(aBi)2 c N2 {D(r)+2H(r)]

(88)

< constr (1 +

we deduce that the function

as 7 — 0T, we have that also the function

11—«
T 7"_1+’8</ u(x)|2dx>
B,

is integrable over (0,7). Therefore, by (89), we deduce that
P u|?'dS
(90) o) = Ao IS g
(J, lua)[>de)
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and
' 7
(91) 0< / g(s)ds < K@ s
0 11—«
for all r € (0, 7). Collecting (85), (86), (88), (90), and (91), we obtain the stated estimate. O

Lemma 5.7. Under the same assumptions as in Lemma 5.4, let 7 be as in Lemma 5.5 and N as
in (78). Then there exist a positive constant Cy > 0 depending on N, q, Cy, Cy, C, 7, ||ul|La(B;),
N(7), e such that

(92) N(r) < Cy
for all r € (0,7).
PrROOF. By Lemma 5.4, Schwarz’s inequality, and Lemma 5.6, we obtain

2(¢—2%)

(93) <N+ Z)l(r) > (r) > —Cy [N(r) + ];]] (r‘”s N +g(r))

for a.e. r € (0,7). After integration over (r,7) it follows that

N(@) < —g + </\/’(f) + g) exp (cl (7; + ﬁrg + /;g(s) ds>>

for any r € (0, 7), thus proving estimate (92). O

Lemma 5.8. Under the same assumptions as in Lemma 5.4, the limit

~v:= lim N(r)

r—0t

exists and is finite.

PROOF. By Lemmas 5.6 and 5.7, the function v defined in (81) belongs to L'(0,7). Hence, by
Lemma 5.4 and Schwarz’s inequality, N is the sum of a nonnegative function and of a L!-function
on (0,7). Therefore

N (r) = N(7) 7/ N'(s)ds
admits a limit as » — 07 which is necessarily finite in view of (84) and (92). O

A first consequence of the above analysis on the Almgren’s frequency function is the following
estimate of H(r).

Lemma 5.9. Under the same assumptions as in Lemma 5.4, let v := lim,_o+ N(r) be as in
Lemma 5.8 and 7 as in Lemma 5.5. Then there exists a constant K1 > 0 such that
(94) H(r) < Kir*Y  for all r € (0,7).

On the other hand for any o > 0 there exists a constant Ko(o) > 0 depending on o such that
(95) H(r) > Ko(o)r>*™7  for all v € (0,7).
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PROOF. By Lemma 5.8, N7 € L*(0,7) and, by Lemma 5.7, N is bounded, then from (93) and
(91) it follows that

(96) N(r)—~= / N'(s)ds > —Csr®
0
for some constant C3 > 0 and all r € (0,7), where
N(qg—2* 2 2(q — 2%
(97) (5:min{5,(q)(a—*),(q)}
q 2 q

with o as in Lemma 5.6.
Therefore by (82) and (96) we deduce that, for r € (0, 7),

H/(T) 2./\/(7”) 2y 71+5
= > — —
H(T) r = r 2037’ ’

which, after integration over the interval (r,7), yields (94).
Let us prove (95). Since v = lim,_o+ N (r), for any o > 0 there exists r, > 0 such that
N(r) <~+0/2 for any r € (0,7,) and hence
H'(r) 2N(r) 2y+4o0o

= for all o)
Hir) < or all € (0,7,)

Integrating over the interval (r,7,) and by continuity of H outside 0, we obtain (95) for some
constant K»(o) depending on o. O

6. THE BLOW-UP ARGUMENT

Throughout this section we let u be a weak H!()-solution to equation (13) in a bounded
domain 2 C R¥ containing the origin with a satisfying (7), (12), h satisfying (H), and f satisfying
(F). Let H and D be the functions defined in (71) and (74) and 7 be as in Lemma 5.5.

Lemma 6.1. For A € (0,7), let

u(Ax)
H(\)

(98) w(z) =

Then there exists T € (0,7) depending on N, k, a, h, f, €, and ||ul[pa(p,) such that the set
{w*}reo,7) is bounded in H'(By).

PRrROOF. From (72) it follows that faBl |w*|2dS = 1. Moreover, by scaling and (92),

()
A 2. | wN2) 12 de — \2 M) 2 de
o) [ vwera - [ TR wr -2 [ aon @

B

- \/;\AW 5 f(/\l‘, \/mw)\($))w>‘(x) dr = N()\) <0
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for every A € (0,7). By (39) applied to w* we have that

(100) /B |Vw’\(x)|2dx—/B a|(x%2)| Na)[? dz + Aa o2 dS

>(1-A@) [ V@) do.

B,

Moreover by Corollary 2.7 we have

(101)

z2 / B ()]? da

<o (

dac—f— / da:)
Z / "rJ|2 B1 “rjl _'rJz‘z

JEA (J1,J2)EB

car (D) (T[] fverorars 252 v

From (F), Holder’s inequality, Lemma 2.9, and Lemma 2.6,

)\2
%H()\) Bl z,\/H w x)dx
<Cf>\2/B |w’\(x)|2dx+0f/\2(H(/\))%’1/ lw (2)[2 da

B,

, » NN Y2
<ot s wor o ), wor )
Bl Bl
- A () |2
cos () ([ e e) ) ([ (veer+ 290 w)
B By ||
c wy_1\F *— WN_1 z(qj\?*) 2(a—2") w(x)[?
<J<( SN2 ul|2, 2 () AT )(/ (|Vwk(a:>l2+|(2)|) dar)
Sy B, |£U|
Cf((N_2)2+4)( wN— 2 22wy 2 2(‘12)></ SWIRNP >
< —= Do) NS+ |u|5, Ool) N N Vw*(x)|* dx
(DD () o+l (25) [ vt
20y ( wn_1\F )2 2 o2 funogy 2 2<2>>
4= 1 N)\ 4l . N—1 aN ) 7 )
ot (e P ) (257)
From (99-102), we deduce that
_(N N —k 2 \?
-a@-o () 1+ () ()

Cf((N — 2)2 + 4) ( w 2 5 9% _9 w 2(g—2%) 2(q2*>>:| / N )
— - N-1 N)\ + lu ah N—-1 aN Ao vw 2 dr
Sn(N —2)2 ( N ) I HL (B,,.)( N ) B | (2)]

<oy ron () (i (Y1) Tar
A2

2Cs ( WN_1\ 272 (w 2(a—2") 2(42*))
4= —1\N U N—1 aN ) 3
2 ()R T (25)

(102)
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for every A € (0,7), which implies that {w} (0,7 is bounded in H'(By) if 7 is chosen sufficiently
small. 0

In the next lemma we prove a doubling type result.

Lemma 6.2. There exists Cy > 0 such that

1
(103) 6H()\) < H(RX) < C4H(N)  for any X € (0,7/2) and R € [1,2],
4
(104) / |V (z)|2de < 2N_ZC4/ |V (2)|?dx  for any A € (0,7/2) and R € [1,2],
Br Bi
and
(105) / |w (x)2dz < 2NC4/ |wP(z)|2dx  for any X € (0,7/2) and R € [1,2],
BR Bl

where w is defined in (98).
PROOF. By (84), (92), and (82), it follows that
/
Let R € (1,2]. For any A < 7/R, integration over (A, RA) and the fact that R < 2 yield
227N H(\) < H(RX) <4°H()) for any A € (0,7/R).
Since the above chain of inequalities trivially holds also for R = 1, the proof of (103) is complete

with C; = max{4“2,2V=2} By scaling and (103), we obtain that, for any A € (0,7/2) and
Re[1,2],

for any r € (0,7).

2—N

A 2 *>\ 'LL.’,EQI
/BRIVw (@) = S /Bmw (2)2d

:RNfZH(R)\)/ |V (2)]2de < RN7204/ |V (x)|?dz,
HQA) Jp, B

thus providing (104). In a similar way, (105) follows from (103) by scaling. O

Lemma 6.3. For every A € (0,7), let w* as in (98). Then there exist M > 0 and Ao > 0 such
that for any X € (0, \o) there exists Ry € [1,2] such that

/ Y RdS <M [ Vot (@)de.
BBR)\ BR)\

Proor. We recall that, by Lemma 6.1, the set {w)‘}Ae(O,f) is bounded in H'(B;). Moreover by
Lemma 6.2, we have that the set {w*},c(,7/2) is bounded in H'(B;) and hence

(106) limsup/ |V (z)]2dz < +oc.
A—0t Bz
Let us denote, for every X € (0,7/2),

fA(r):/ |Vw>‘(x)|2d:r.

T
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The function f) is absolutely continuous in [0,2] and its distributional derivative is given by
fi(r) :/ |Vw*|?dS  for a.e. 7 € (0,2).
dB,
Suppose by contradiction that for any M > 0 there exists a sequence )\,, — 07 such that
(107) / |V |2dS > M/ |Vw» (z)]2dz for all r € [1,2],
dB, B,

which may be rewritten as
(108) I, (1) > Mfx, (r) forae. re[l,2] and for any n € N.
Integrating (108) over [1,2] we obtain
fa, (2) > eMf (1) for any n € N.
Letting n — 400 we obtain

limsup fy, (1) < e M -limsup fy, (2).

n—-+o0o n—-+o0o
This implies

liminf £3(1) < e - limsup £1(2) for any M > 0.
A—0F A—0+

Using (106) and letting M — 400 we infer

liminf/ |Vw?(2)|?de = liminf f5(1) = 0.
B A—0t

A—0+

Therefore, there exists a sequence Xn — 0 such that

(109) lim VW (z)[2dz = 0

n—-+o0o B,

and, up to a subsequence still denoted by Xm we may suppose that w’» — w in H'(B;) for some
w € H'(By). Notice that, for any X € (0,7), [, |w*|?dS =1 and hence by compactness of the
trace map from H'(Bi) into L*(0By), it follows that [, |w|*dS = 1. Moreover, by weak lower
semicontinuity and (109), we also have

n—-+4oo

/ IVw(z)|%dz < lim [V (z)[2dz = 0
Bl Bl
from which it follows that w = const in By. On the other hand, for every A € (0,7),

a(‘%l)w)‘x— 2 x'w)‘x )\2
@) = RO )

(110)  —Aw(z) — fOz, /HMNw*(z)) in Bi /.
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For every ¢ € Hi(B1), by (F) and Holder’s inequality,

/\2

(111) N

1O, VHNw (2))¢(z) d

<Cp¥ [ @l de+ N [ ua) P @)]o()| do
2(a=2") 2(g—2%)

<Ol mpllolm sy + Cr(F5t) ™ A7 [wllies 5, 18]l 2- ()l

2% -2
LQ(B)\)

=o(1) asA—0"
and, by (H) and Corollary 2.7,

(112) A2

/ h(Az) w(z)é(z) da
B,

e (o (57 D (2 (e 22 oo

=o(1) asA—0T.

From (111), (112), and weak convergence w*» — w in H'(B;), we can pass to the limit in (110)
along the sequence ), and obtain that w is a H'(B;)-weak solution to the equation

s - T u =0 i B
—Aw(z) — w(z) =0 in Bj.
22 1
Since w is constant in By, this implies w = 0 in By which contradicts [, |w|*dS = 1. O

Lemma 6.4. Let w® and Ry be as in the statement of Lemma 6.3. Then there exists M > 0 such
that

/ |VurBr2dS < M for any 0 < A < min {)\07 g}
B

ProOOF. We have
AR )2 )\2R3—N
Vuwrir2ds :(é/ Vu(ARxz)[2dS(z) = 7*/ Vu(Az)|*dS(z
/BBll | HORY) a31| (AR\2)[7dS(x) HOVRY) aBRJ (Az)[*dS(z)
RINH(N) A2 ) RINH(N) \io
= OBy HOY /(gBRA |Vu(Az)|*dS(x) = I{()‘Rk)/aBRA |Vw?|7dS

and, by (103-104), Lemma 6.3, Lemma 6.1, and the fact that 1 < Ry < 2, we finally obtain

/ |V i 2ds < Oy M |V (z)|2de < 2V 2CEM |V (2))2de < M < 400
831 BR)\ Bl

for any 0 < A < min {)\0, g}, thus completing the proof. O
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Lemma 6.5. Let u be a weak H'(Q)-solution to (13), u # 0, in a bounded open set Q C RV,
N > 3, with a satisfying (7) and (12), h satisfying (H), and f satisfying (F). Let v be as in
Lemma 5.8. Then

(i) there exists kg € N such that v = —¥=2 4 %(%)2 + piy (@)
(i) for every sequence A, — 0, there exist a subsequence {\n, }ren and an eigenfunction ¢ of
the operator —Agn-1 — a(f) associated to the eigenvalue pix,(a) such that ||| p2@gnv-1) =1

and
u(Ap, ) N
. )

strongly in H*(By).

PrROOF. Let A, — 0% and consider the sequence w*»f» as in (98) and R, as in Lemma 6.3. By
Lemmas 6.1 and 6.2, we have that the set {w*f Fae(0,7/4) is bounded in H'(Bs). Then there exists
a subsequence w ™+ ™ such that w™ =™ — w in H(B,) for some function w € H'(B,). Due
to compactness of the trace map from H!(B;) into L?(0Bj), we obtain that faBl |lw|?dS = 1. In
particular w Z 0. Furthermore, weak convergence and (111-112) allow passing to the weak limit
in the equation

al(fr)
(113)  — Aw e () — |:C‘|2| wme A () = /\kaRf\nk h(An, R, ©) w kT ()
A2 R
R T (AMRM 2\ H O Ry, ) w P (x))
H(A R, )

which holds in a weak sense in Bf/(Ankank) D By thus yielding

al(yz7)

|z[?

(114) —Aw(z) — w(z) =0 in Bs.

From Lemma 6.4 and density in H L(By) of C>(B;)-functions whose support is compactly included
in By \ ¥ with ¥ defined in (5), it follows that, for all ¢ € H*(By),

(115) /B (VwA"k Bani (2) - V() — a|(sc|m2)wk"k By (x)(b(:v)) dx

An, R Qi Fan
=AikRin / B B, 2w e @)oo+ [ P gas
B1 8B, ov
I T / (Mo B, 2 [H O R ) 08 P (1)) ) e

)\nkR)\ By

We notice that from (84) it follows that v > —&~=2. Then, by (F) and (94),

2| f(Az, VHO) wh () A2 213 e
0 ) < Or = (VAW + HO) T @)
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for all A € (0,7). Hence, if s = z45 > N/2 with ¢ as in (70), from (98) and Proposition 4.1, we
obtain that

2 f(Az, VHN) wr(2))

H(\) w*(z)

2* -2 * 1/5
< const <1+)\2(H(A)) 2 ( / Jw™ ()] 2 _2)5daz> )
B>

— const (1 I (/B |u(x)|qu)1/s> —o()

as A — 0%. Therefore from classical Brezis-Kato [8] estimates (see also Theorem 8.6 part i)),
classical bootstrap and elliptic regularity theory, there holds

L#(B2)

W e 5w in CLT(By \ ),

loc
for any 7 € (0, 1), which in particular yields
a A"k R>\n a
waiyk — 5% in CT(0B;\'$) and a.e. in dB;.
From (116) and Lemma 6.4, it follows that

(116)

8w)\nkR>\nk Sw ) )
(117) T 5 Weakly inL (831)
Passing to limit in (115) and using (117) and (111-112), we obtain that
a(fz7)
(118) / <Vw(1:) V() — —4 w(x)¢(x)) da = / 9w gs.
B Ed oB, OV

Subtracting (118) from (115), choosing ¢ = w’ ™™ — w, and arguing as in (111-112) and
Corollary 2.8, we obtain that

(119) w B 5w in HY(By).

For every k € N and r € (0,1), let us define

Dy(r)
1 2 ap)
=~ /B “vwknwmk (x)’ - |l[|2‘ s e (@) = A2 R By R, @) [ e ()2
A2, R}
- 2 f (A R 2 [H O B, s o () Y o (x)] da
H(An R,
and

248s.

1
Hlr) = oy [ e

s

We also define

(120) Do) =5 [

[Vw(:r)Z - amz |w(x)2] dz for all r € (0,1)
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and

1
FN-1

(121) Hoy(r) = / w2dS for all r € (0,1).
OB

T

Using a change of variables, one sees that

Di(r) DO R, 1)
Hy(r)  H(A Ry, 1) N Ry, r) forallr e (0,1)

From (101), (102), and (119), it follows that, for any fixed r € (0, 1),
(123) Dy(r) = Du(r).

On the other hand, by compactness of the trace embedding H'(B,) < L?(0B,), we also have, for
any fixed r € (0,1),

(124) Hp(r) = Huy(r).

(122) Ni(r) :

From Lemma 2.6 and classical unique continuation principle for second order elliptic equations
with locally bounded coefficients (see e.g. [44]) applied away from the singular set 3, it follows
that Dy, (r) > —%=2H,(r) for all r € (0,1). Therefore, if for some r € (0,1), H,(r) = 0 then
D, (r) > 0; passing to the limit in (122) and using (123)-(124) this should give a contradiction
with Lemma 5.8. Hence H,,(r) > 0 for all € (0,1). Thus the function

o Dy (r)
Ny (r) = o)
is well defined for r € (0,1). This, together with (122), (123), (124), and Lemma 5.8, shows that
(125) Nu(r) = lim N (A, Ry, ) =7
k— o0 k

for all € (0,1). Therefore Ny, is constant in (0,1) and hence A/, (r) = 0 for any r € (0,1). Hence,
by (114) and Lemma 5.4 with h =0, f = 0, we obtain

2 2
(/ dS) . </ |w|2d5) - (/ wawdS> =0 forae. 7€ (0,1).
9B, 9B, oB, Ov

This shows that w and ‘3—75 have the same direction as vectors in L?(9B,) and hence there exists
n = n(r) such that

ow

ov

(126) a—w(rﬁ) =n(r)w(r,0) for a.e. rec (0,1),0c SV

ov
Testing the above identity with w(r,6), we have that necessarily n(r) = % implying that

n € Li .(0,1). Moreover, since w € CL _(Bs \ i), identity (126) also holds, for all # € S¥=1\ ¥, in
the sense of absolutely continuous functions with respect to r and, after integration, we obtain

(127) w(r,0) = /11 w(1,0) = (r)p(9) forall € (0,1), 0S¥\ 3,
where o(r) = eli 1)4s and ¥ (#) = w(1, ). Since
a( s 2 _
—Aw — (|I|)w:787w7N 18710 1LaU/7

| |2 or? r Or + r2
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then (127) yields

(- = 2200 w6 + 2 Lavi) o

Taking r fixed we deduce that 1 is an eigenfunction of the operator L,. If ug,(a) is the corre-
sponding eigenvalue then ¢(r) solves the equation

_QUN(T) _ N - 1()0(,,4) + Hkq (Cl)

r r2

p(r) =0
and hence ¢(r) is of the form

+ —
@(r) = c1r”ro + carro

for some c1,cy € R, where

N -2 N -2V ~ N -2 N -2V
0’2}):—2—}—\/(2) + pigo(a) and o = — 5 —\/( 5 >+Mko(a)~

Since the function lx—lj‘(|x|g’:ow(ﬁ)) ¢ L%*(By) for any J € Ay, and hence |z|” koz/;(i) ¢ H' (B,),
then c¢; =0 and ¢(r) = clra’:rO. Since ¢(1) = 1, we obtain that ¢; = 1 and then

(128) w(r,0) = r”%w(a), for all 7 € (0,1) and # € S¥71\ ¥

Consider now the sequence w*»+. Up to a further subsequence still denoted by w*~+, we may

suppose that w*»» — w for some @ € H'(B;) and that Ry, — R for some R € [1,2].
Strong convergence of wne i H'(B;) implies that, up to a subsequence, both w e Bany,
and [V fn | are dominated by a L2(Bj)-function uniformly with respect to k. Moreover by

(103), up to a subsequence we may assume that the limit

. H()‘NkR/\nk)
l:= lim ————
k—4o00 H()\nk)

exists and is finite. Then, by the Dominated Convergence Theorem, we have

lim w (z)v(z)de = lim RY . / wnn (Rx,, 2)v(Ry, z)de
Bl/R)\_,

k—+oco B k—+oo
R)\
. ng L tAn >\,,
= lim RY A R,,) xBl/R (z) w* o (2)o(Ry, ) d
k—+oco Tk Ay, ng

*7N X)axr = X)axr = w:z:ivxx
R\ﬁ/leBl/R( w(z)v(Rz)d R\//I/R v(Rz)dz = V1 (z/R)v(z)d

B1

for any v € C°(RY) with suppv C B;. By a density argument, it follows that the previous
convergence also holds for all v € L?(B;). This proves that w* — v/lw(-/R) in L?(B;) (actually
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weakly in H'(B;)) and in particular @ = v w(-/R). Moreover

im [ Vet (@)2de = lim RY / Vute (Ry, ) de
k—=+oo Jp, k—+oo e Bi/r, §
nE
H(An, Rn,,)

o . N—-2 Nk np An, R ny. 2
= T e [T O
:*N‘%/ Xgl/ﬁ(x)\Vw(x)Fdx:EN_2I/ |Vw(x)|2d:c:/ WVIV(w(z/R))? dx.

B By & By

This shows that w** — @ = vIw(-/R) strongly in H'(B;). Furthermore, by (128) and the fact
that [,, [@[°dS = [, lw|*dS =1, we deduce that W = w.
It remains to prove part (i). By (128) and [iy_, [¢/(0)[*dS = 1 we have that

/BT <|Vw($)|2 - a|(x'£2) Iw(x)l2> dx = (o7 /O GN-1H2005, 1) g
+ (/O’“ 5N—1+2(030—1)d5> (/S (IVgn-196(0)[? a(9)|¢(0)|2)ds>

N—1

_ (01:0)2 +Mko(“)rN+2(ak+071)

_ + N+2(cr;r071)
N+ 2(02‘0 -1)

=0

and

/ lw(z)2dS = erl/ lw(rf)2ds = TN—1+20,C+0/ 1W(0)2dS = JN-1t20f
OB, sN-1 GN-1
Therefore, by (120), (121), and (125), it follows

Do) Tl (Ve(@)?2 — 2 jw(2)?) de
= =0, .

Ho(r) Jo, lw[dS ko

This completes the proof of the lemma. 0

v =Ny(r) =

Let us now describe the behavior of H(r) as r — 0F.

Lemma 6.6. Under the same assumptions as in Lemma 5.4 and letting v := lim,_,o+ N(r) € R
as in Lemma 5.8, the limit

lim =Y H(r)

r—0+
exists and it is finite.

PRrROOF. In view of (94) it is sufficient to prove that the limit exists. By (71), (82), and Lemma 5.8
we have

d H(r)

dr r2v

= 2y T H(r) + T H (r) = 2027 Y(D(r) — yH(r)) = 2r 2 H (1) /07“ N'(s)ds.

Let 11 and v5 be as in (80) and (81). After integration over (r,7),

(129) Hrgf) - I;{g:) = /: 2572 H(s) (/0 Vl(t)dt) ds—&-/r 2572 H(s) (/O Vz(t)dt> ds.
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By Schwarz’s inequality we have that v4(¢) > 0 and hence

lim 25727 H(s) (/ Vl(t)dt) ds
r—0t r 0

exists. On the other hand, by (94), Lemma 5.6, and (92), we deduce that

S N 2 q 2*
s H(s) (/ Vg(t)dt>‘ <K Oy (02 + —)s—l/ (t—“s I B g(t)) dt
0 2 0

R 2" (1—a)

N S q 2(¢g—2%) ||UHL2* Q) N(g—=2%) . 2
<Gy (O 4 o )s (D4 LT S e
1Ch 02+2 s 5+2(q—2*)5 t—
for all s € (0,7), which proves that s™*Y"'H(s) ([ v2(t)dt) € L'(0,7). We may conclude that
both terms in the right hand side of (129) admit a limit as r — 0 thus completing the proof of
the lemma. 0

The next step of our asymptotic analysis relies on the proof that lim,_,o+ r~2YH(r) is indeed
strictly positive. In the sequel we denote by 1; a L?-normalized eigenfunction of the operator
L, = —Agn-1 — a associated to the i-th eigenvalue p;(a), i.e.

{L%w) = pi(a) %’(9) in V1,
Jow—1 [¥i(0)[? dS(0) =
Moreover, we choose the ;’s in such a way that the set {1;};en forms an orthonormal basis of
L2(SN-1).

Let u be a nontrivial weak H'(Q)-solution to (13). From Lemma 6.5, we deduce that, under
assumptions (7), (12), and (H-F), there exist jo,m € N, jo,m > 1 such that m is the multiplicity
of the eigenvalue p;,(a) = pjo+1(a) = -+ = pjo+m—1(a) and

(130)

N-2 N -2V

(131) v= lim N(r)=—"——+ — | +uila), i=jo,...,Jjo+m—1.
r—0t+ 2 2

Let & be the eigenspace of the operator L, associated to the eigenvalue p;,(a), so that the set

{%:i}i=jo,....jo+m—1 is an orthonormal basis of &.

Lemma 6.7. Let Q C RV, N > 3, be a bounded open set such that 0 € Q, a such that (7) and
(12) hold, and h, f as in (H-F). If u is a weak H'(Q)-solution to (13), then

/& (ﬁfﬁ)_'a s et )m )| da

sup < 400,
i=jo,...jo+m—1, JEA, AN=240+y
(Jl,JQ)GBk, )\G(O,F)

where T is as in Lemma 6.1 and 6 > 0 is defined in (97).

PrRoOOF. From Lemma 6.1 and Corollary 2.7, it follows that, for some positive constant Cf
independent of A\, J, (J1, J2), and i,

[ (a2 4 o, = w2 @) ()] do <
B
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for all i = jo,...,jo +m —1, J € Ay, (J1,J2) € Bg, and A € (0,7), where w?* is defined in (98).
Moreover, arguing as in (111), by (97), we have as A\ — 0

)\2
EN Jo,

where Cg > 0 is a positive constant. The conclusion follows from (94) and a change of variable. [

2(¢—2%)

FOz uQa)| [ (&) | de < CeA™ 7 = O(N)

Lemma 6.8. Let Q C RN, N > 3, be a bounded open set such that 0 € Q, a satisfy (7) and (12),
and u # 0 be a weak H'(Q)-solution to (13), with h, f satisfying (H-F). Let v := lim,_,o+ N (r)
be as in Lemma 5.8 and jo,m € N as in (131), i.e. m is the multiplicity of the eigenvalue

tio (@) = wjo+1(a) = -+ = jo+m—1(a) and (181) holds for all i = jo,...,jo +m — 1. Then the
function ¢; defined as
(132) ©i(A) ::/ u(A0)Y;(0)dS(8), with ¥; as in (130),

SN—l

satisfies, as A — 07,

R
(133) @i(\) = X' [ R¢i(R) + 2-N-v s~NFI=7Y, (5)ds
<pl SO’L 2 _ N _ 2,}/ )\ 3

—N+42—-2~ R
— ’;Rﬁ/ S’Y_ITZ‘(S) ds) + O()\’y-i_&)
— V=27 Jo

for every i € {jo,...,j50 + m — 1} and R > 0 such that Br C Q, where § is defined in (97) and
(131) 00 = [ (eyate) + 1wt ) do
B ||

PROOF. Let R > 0 be such that Br C Q. For any \ € (0, R), we expand 0 > u(\) € L2(SV~1)
in Fourier series with respect to the orthonormal basis {1;} of L%(SV~1) defined in (130), i.e.

(135) u(A0) = Z pi(NYi(0) in LX),

with ¢; is defined in (132). On the other hand, fBR(‘erzJFE +zg, — 2,72 (2) de < +oo for
all J € Ay, and (Jy,J2) € By, by Corollary 2.7, hence [ox 1 (051721 10, —04,]72)u?(A0)dS(0)
is finite for all J € Ay, (J1,J2) € B, and a.e. A € (0, R), which, together with Lemma 2.1, implies
that 6 — h(A0)u(Nd) € H~1(SN1) for a.e. A € (0, R). Moreover, by (F), it is also easy to verify
that 6 — f(A0,u(\0)) € H-1(SNV~1) for a.e. A € (0, R). Therefore, we may write

(136) RAO)u(X0) + (X0, u(\6)) Zg ¢i(0) in H-Y(SN7Y) for a.e. A € (0,R)
where
(137) Cl(/\) = H—l(SN—1)<h()‘ ) ( ) + f(/\ u ¢1>H1 (SN-1)

- /SM (POAB)u(A6) + (A0, u(x 9)))1/11-(9) ds(o).
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We notice that, in view of Remark 3.2, (; € Llloc(O, R) and

(138) AVZLG(N) = THA)  aee. in (0, R),
where T; is defined in (134). Since u solves (13), by (130) we obtain that, for any ¢ € N, ¢; solves
N-—1 .
- () — T@;(A) + M}\(Qa) ©i(A) = ¢;(\) in the sense of distributions in (0, R),

which can be also written as

/
- ()\N_HQ‘” (A7 <pi()\))/) = AN=1+9:¢,(\)  in the sense of distributions in (0, R),

= (5

Integrating by parts the right hand side and taking into account (138), we obtain that there exists
¢; € R such that

where

R

(A 0i(N) = —ANFLZT () — A2 (Ci i A SGi_lTi(S)dS)

in the sense of distributions in (0, R), thus implying that ¢; € Wlicl (0, R). A further integration
yields

R

(139)  @i(\) = A" (R““wi(R) +f

R R
+ o A7 / g~ NF1-20 (ci + / t"ilTi(t)dt> ds
A s

R —N+2—20; —N+42—0;
ici R : O;CiN i

=)\ R %w.(R 7N+1fairr' d 0;C; 06
< @i )+/A s i(8)ds + = S

S_NH_‘”Ti(s)ds)

g\ R N g N\~ N+2-0; R
_ T[Ny (g — T [ et () a
+2—N—20i/>\ ®) 2—N—20i/,\ ®)

+ m (ci + /ARt"ilTi(t) dt>.
Let jo,m € N be as in (131), i.e. m is the multiplicity of the eigenvalue
tjo (@) = pjo1(a) =+ = pjo4+m—-1(a)
and
(140) v= lim N(r)=0;, i=Jjo,.--,Jo+m—1,

r—0+
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see Lemma 6.5. The Parseval identity yields

(141) H()\) = / lu(X6)|>dS(0) = Z lpi( N2, forall0 <\ <R.
CAR i=1

From Lemma 6.7, it follows that

(142) Ti(\) = ONN=2F0F9)  for every i € {jo,...,jo+m —1} as A — 07,

From (142), it follows that

(143) s s VT (s) € LY(0,R) for every i € {jo,...,jo +m — 1}

which yields

Q—N—O'i

(144) A z(R i)+ 5o

R —N+2-20;
;R i
7N+lfo'ifr_ d 0iCi
/)\ y 1(8) s+ 2—N—20’i

= O(\7) = oA~V H27)
for all i € {jo,...,Jjo+m —1} as A = 07. From (142), it also follows that
t e t7IY, () € LY(0, R)  for every i € {jo,...,jo +m —1}.
From € L?(Bg), we deduce that

R
/ rN =302 (r) dr < +oo.
0
Then, since foR pN=3(r=NFT2790)2 4 = 00, from (139) and (144) it follows that
R
ci +/ t7i I (t) dt = 0
0
and hence
2— N — ag;

R N1 O"R_N+2_2”i R .
. — )\%i —0i,,. - —oi. _ 2t oi—ly.
oi(0) = A (R oi(R) + 27N72Ui/A s (s)ds = G /0 ¢ l(t)dt)

0-.)\—N+2—0i A L
- oI (4) dt.
N—2+20’i /0 ( )

On the other hand, from (142) it follows that
A
AN F2= / t7 I () dt = O\ ) as A — 0T
0
for all ¢ € {4jo,...,Jo +m — 1}, thus completing the proof. O

Lemma 6.9. Let Q C RN, N >3, be a bounded open set such that 0 € Q, a satisfy (7) and (12),
and u % 0 be a weak H'(Q)-solution to (13), with h, f satisfying (H-F). Then

lim »~?H(r) > 0.

r—0+
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PROOF. Let R > 0 be such that Bg C Q and jo,m € N as in (131). We argue by contradiction
and assume that limy_,o+ A™27H()\) = 0. Then, letting ; as in (132), (141) implies that

(145) lim A7 7p;(A) =0 forallie {jo,...,50 +m —1}.
A—=0F

From Lemma 6.8, (143), and (145), we deduce that

R—N+2—2’y R 2_N — R
R_’Yﬁpz(R) — ’;—]\fi—w/o 87_1Ti(3) ds = _ﬁ/o 8—N+1—’YTi(s)dS

for all ¢ € {jo,...,Jo +m — 1}. Hence (133) can be rewritten as

2—-N-—~ A —N+1— +6 +
(146) 0iA)=—————XN" [ s "Y;(s)ds+ON°) as A —0

2—N -2y 0
for all ¢ € {jo,...,jo+m —1}. From (146), (140), and (142), we infer the estimate

©i(A) =0\ as A — 0, forevery i € {jo,...,jo +m — 1},
namely, setting u*(0) = u(\),
(U/\,'KZJ»L')LQ(SN—I) =0\t as A — 0%, foreveryie {jo,...,jo+m—1},
and hence
(U,)\,'IZJ)L2(SN—1) = O(/\7+6) as A — 0+7

for every 9 € &, being &, the eigenspace of the operator L, associated to the eigenvalue p;,(a).

Let w*(0) = (H()\))~Y2u(\0). From (95), there exists C'(§) > 0 such that \/H(\) > C(5))ﬂ+%
for A small, and therefore

(147) (W, ¥) p2@gv-1y = O(X/?) = 0(1), as A — 0T

for every ¢ € &. From Lemma 6.5, for every sequence A, — 0%, there exist a subsequence
{An, }jen and an eigenfunction ¢ € & such that

(148) /SN?I [DO)2dS =1 and w — ¢ in LSV,

From (147) and (148), we infer that

0= lim (w™, )p2@n-1) = H‘ZH%%SN*U =1,

Jj—+oo
thus reaching a contradiction. O
Combining Lemma 6.5 with Lemma 6.9, we can now prove Theorem 1.1.

Proof of Theorem 1.1. Identity (15) follows immediately from Lemma 6.5. As in the statement
of the theorem, let m be the multiplicity of the eigenvalue py, (a) found in Lemma 6.5, jo € N\ {0},
such that jo < ko < jo +m — 1, pj,(a) = pjo41(a) = -+ = pjopm—1(a), and v = lim, o+ N (r).
In order to prove (16), let {\,}nen C (0,00) be a sequence such that A\, — 07 as n — +o0.
Then by Lemmas 6.5, 6.6, and 6.9, there exist a subsequence \,; and fj,,. .., Bj,+m—1 € R such
that
Jot+m—1 -
(149) AT u(An, @) = |27 Bt <

i=Jjo

|) in H'(By) asj — +oo
x
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and (Bj,, Bjo+1s---» Bjo+m—1) # (0,0,...,0), which implies
Jo+m—1
(150) AT u(An,0) = > Bii(0) in LA(SNTY) as j - +oo.
i=Jjo
We now prove that the f;’s depend neither on the sequence {\,}nen nor on its subsequence
{An, }jen. Let us fix R > 0 such that Br C Q. Defining ¢; as in (132), from (150) it follows that,
for any i = jg,...,50 + m—1,

Jot+m—1
(151) /\;jgoi(Anj):/SNl (Az )wl( Z ﬂz/ Ye(0)1i(0) dS(0) = B

as j — +o00. On the other hand, from Lemma 6.8, it follows that, for any i = jo,...,j0 + m — 1,

B B 2_N v R N _ ,_YR N+2—2~ R B
Ry Yo i S Fl=7. B =1y,
A 7pi(N) = R 7pi(R) + 2—N—27/0 s r';(s)ds N2 /0 sTTIY(s) ds

as A — 07, with Y; as in (134), and therefore from (151) we deduce that

B 2 _N — v R B B 7R7N+272'y R B
z:R vy iR e N+1 ’y'ri d _7/ ¥ 1Ti d
b= BB+ 5= [ s (ds = Fi—g [ Muls) s
for any ¢ = jo,...,jo + m — 1. Integration by parts and (138) allow rewriting the above formula
as in (17). In particular the 3;’s depend neither on the sequence {\,},en nor on its subsequence
{An, }ren, thus implying that the convergence in (149) actually holds as A — 0 and proving the
theorem. O

7. ASYMPTOTIC BEHAVIOR OF EIGENFUNCTIONS

We describe the asymptotic behavior of eigenfunctions of the operator L, = —Ag~v-1 — a near
the singular set of the function a. Actually, for simplicity we study the asymptotic behavior of
eigenfunctions near the south pole as an application of Theorem 1.1 after a stereographic projection
of S¥~1 onto RV~! with respect to the “north pole”.

Throughout this section we assume that 3 < k < N — 1 and that a satisfies (7) and (12). Note
that if £k = N then a is constant and hence the eigenfunctions of L, are smooth.

By Lemma 2.2 the spectrum of L, consists of a diverging sequence of eigenvalues pi(a) <
po(a) < ... < pp(a) < ... each of them having finite multiplicity.

Let pi(a) be an eigenvalue of L, and let 1 € H*(SV~!) be a corresponding eigenfunction, i.e.

(152) ~Agn-19(0) = a(O)¥(9) = pi(@)(6) SV
Let 1 : S¥=1\ {ex} — R¥~! be the standard stereographic projection with respect to the “north

pole”. Here by ey, we denote the vector (0,0,...,0,1) € RV,
Let ¢ : RN~ — R be the function given by

_ 4
(ly2 + 1)

If € SN=1\ {en} and x, 2 € TySV ! (by TySY ! we mean the tangent space to S’ 1 at 6), then
(@, 2)ysv-1 = G(IL(0)) (dIL(6)]x], dIL(0)[2] ) —

(153) for all y € RV,
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where the vector space TH(Q)RN ~1 is identified with RV 1. In the following lemma the equation
satisfied by the projection of ¢ is deduced.

Lemma 7.1. Let 3 < k < N — 1, a satisfy (7) and (12), and let II and ¢ be respectively the
stereographic projection with respect to the north pole and the function defined in (153). Let p;(a)
be an eigenvalue of the operator L, and let v € H*(SN~1) be a corresponding eigenfunction. Then
the function

(154) Y(y) = (d(y))

belongs to DV2(RN 1) and weakly solves

(155) —AY(y)
where b and h are defined by

ag Q. -
(156) b(w) = Z o + Z 72|2» for any w e SN72\ %y,

JEALNET (J1,J2)EBk, N¢J1UJo W —wr
where
Y1 ={(wi,...,wn-1) €SV 2wy =0 for some J € Ay '}
U{(wi,...,wn-1) €SN 2wy, =wy, for some (J1,J2) € BN '},
AN ={TC{1,2,...,N =1} : #J =k},
BY = A{(J1, J2) €AY T X AT N Ty = 0,1 < Jo},
and
. (N = 3)(N —1) day
(157) o) = o00) ) +
4 JeAg\,eJ Ay + (jyl? = 1)
dog, g,
o o :
amesverns 9 = ynl? + (Y2 =1 = 2ym,)
4aJ1J2
+ .
2 Ayr —yn P+ (Y2 —1—2yn,)?

(Jl,Jz)EBk,NEJQ\Jl

for a.e. y € RN7L where for any (J1,J2) € By, n, = max.Jy, my = max.Jy, and for any
J={ny,...,np} € Ag, n1 <ng < --- < ny, we denote J' = J\{ni} € Ap_1.

PrOOF. The conformal laplacian on SN~ is given by
(N =3)(N-1)
1 )
while, since RN~ has zero scalar curvature, the conformal laplacian in RY~! coincides with the
usual Laplace operator. Then for any function n € C2(SV~1\ {enx}) we have

(N=3)(N-1)
4

—Agnv-1 +

(158) —Agv-11(6) + n0) = —¢~ T A("T - (noll™h)

11(9)
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for every § € S¥=1\ {en}. For the definition of the conformal Laplacian and for a proof of (158)
see [13, §3] or [6, (1.2.27)].
We claim that the function 1 defined in (154) belongs to D12(RY~1) and weakly solves

” (N =3)(N -1)

(159) a0 - st)al )50 = (T @) o) R

i.e.

/ Vi(y) - Vo(y) dy*/ o(y)a(II (y)) P (y)v(y) dy
RN—l RN—l
1

N —3)(N — ~
(B2 k@) [ stfemay for v e D@
RN-1
Indeed by (158), integration by parts, and the change of variables y := II(f) € RN~!, for any
v1,v2 € CP(RN71) we have

(szflwl(9)-VSN71w2(9)+Ww1(e)wz(a)) ds(6)

N—1

160) [ Vo) Vestw)dy = [

N-3

with w;(0) = ¢(I1(8))~ "7 v,(I1(#)), j = 1,2. Moreover

(161) [, meeomd = [ w@ue)dse)
and
(162) o et @)ooy = [ @) 0)us(6)ds0)

with w1, ws as above. By density, (160-162) actually hold for any vy, v, € D¥2(RN~1) and hence
the claim follows.

We now write the function a(II7'(y)) in a more explicit way. We recall that the function
I-!:RY¥-1 - SN~ i5 given by

- 2 ly[* -1
I '(y) = + e
) SRR
where we identified RV ! with the subspace of RY of all z = (z1,...,zy5) € RY such that zy = 0.

Therefore for any 6§ € S¥=1\ {en}, if y = (y1,...,yn_1) = II(#), we have

2 2 2 .
0 ly[2+1 Y = (‘y‘2+1 Yy, [y2+1 ynk) , if N ¢ J’
J p—
2 ly|*—1 .
(W?Nw) if Nel.

Hence, for every J € Ay,
WIM% if N ¢ J,

2 2_1)2 .
ol =2 it N e,

16, =



48 VERONICA FELLI, ALBERTO FERRERO, AND SUSANNA TERRACINI

and, for every (Jy,J2) € By, with J; = {ny,...,nx} and Jy = {mq,...,my},

e s — vl if N ¢ J1UJs,
(163) 0, — 0,2 = { Dzt HIEB T e g,
Sl S AV
By (163) we obtain
(164) G )= 3 mH+ 3 R
JEAL,N¢J (J1,J2)EBL,N¢ J1UJ> b 2
day dag, g,
+ JGEVEJ Ay 2 + (ly)2 —1)2 + (JhJZ)ngk;NGJl\JZ Mys =yl + (Y2 =1 = 2ym,)?
4oy, g,
" (J1,J2)€l§§k;N€J2\J1 Ays =yl + (Y2 =1 =2y, )%
The conclusion follows from (163) and (164). O

According with (11) we introduce the number

/ lyl~2b(y/lyl) v* (y) dy
(165) A(b) == sup RN .

veD12 (RN 1)\ {0} / Vo) dy
RN-1

Lemma 7.2. Let 3 < k < N — 1, a satisfy (7) and (12), and let b be the corresponding function
defined in (156). Then A(b) < 1 with A(b) as in (165).

PROOF. Let v € O (RN~1) and let w(f) = ¢(I1(0))~ "= v(II(A)). Then by (160-162) and (22)

we have
[ wewpa - SIS0 sty - [ otar w)loPdy
— [ Vs w@Pdse) - [ a@)uw(@)Pdse)
SN—-1 SN—-1
N —2\?
[ Wovrw@Pase) - @ (552) [ wio)kase

—a-a@) ([ wsmpay - EEEEED T sea)

v (Y2) [ swwra

> (1-AG) |
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and, in turn,

(166) M) [ 1Vol)Pdy + Ala)

(M52) - e ”] RRGIEORT

> [ e wewPa = [ U ray+ [ RGPy

lyl?

where R(y) = ¢(y)a(Il71(y)) — % is bounded in a sufficiently small neighborhood of 0 by

(164). On the other hand if we define, for any § > 0, B; C RV~ to be the open ball of radius §
centered at the origin and

Jav-s [ (M) (¥52)° = B0 o(y) — Ry) | o(w) Py
0) = u
Uon 0= e Jor+ [Velu) Py |

suppvCBs

then C'(§) — 0 as § — 0. Therefore, by (166), (167), and (12), we deduce that there exists §; > 0
such that for any 6 € (0 01)

) b1y
1/\ ( 2 u\ 2
y)|*dy lv(y)|*dy

sup Ja-s ‘”'2 = sup Jarr 2' < Afa) +C(8) < 1.

vecz@y-1\(0} Jpn-1 [VO(y)|Pdy veC™ (RN "1\ {0} Janv—1 [Vo(y)[2dy

supp vC Bs

The conclusion follows by density. O
By Lemmas 7.2 and 2.2, we deduce that the spectrum of the operator Ly := —Agnv-2 — b on

SN2 consists of real eigenvalues with finite multiplicity p;(b) < pa(b) < ... < up(b) <
Let h be the function defined in (157) and, according with (14), for any nontrivial D1:2(RN~1)-
solution v of the equation

b(%)
7A"U(y) - |y|2 ’U(y) = h(y)y(y)v
we define the corresponding Almgren’s frequency function by
r f5, (Vo) — 02 (y) — h(y)v*(y)) dy |
faB [v(y)|?dS

We are ready to prove the following asymptotic description of eigenfunctions.

(168) N, 7o(r) =

Proposition 7.3. Let 3 < k < N —1, let a satisfy (7), (12), and let b and h be respectively defined
in (156) and (157). Let p;(a) be an eigenvalue of the operator L, and let p € H(SN—=1)\ {0} be
an associated eigenfunction. Let 1Z € DV2(RNY) be the corresponding function defined in (154).
Then there exists %0 eN, Z:o > 1, such that

(169) lim A o(r) = 7? + \/(]\73) + iz, ().

r—0t 2

Furthermore, if 5 denotes the limit in (169), m > 1 is the multiplicity of the eigenvalue “Eo(b)
and {n; : by < j<lo+m—1} (b < ko< lo+m—1)is an L2(SN=2)-orthonormal basis for the
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etgenspace associated to /‘Eo(b>7 then

270+m71~
AT ATIE)) AT IO S @MEEZ?) in HL(SY1\ {en}) as A — O,
j=lo

where

= 5 B h(swyp(sw) [~  sTHN=2
5j = /SN—Z |:R ’Y'l/)(Rw) +A m <51 A W)ds} 77]'(0.)) dS(OJ),
for all R € (0, R) for some R > 0, and (EZO,EZUH, . .,Ezo%_l) #(0,0,...,0).

PROOF.  Since 1 is a solution of (152), then, by Lemma 7.1, ¥ solves (155). By Lemma 7.2,
A(b) < 1i.e. the function b satisfies the positivity condition required in Theorem 1.1. Moreover by
(157), the function he C1(Bs) for some 6§ > 0 small enough. Hence we may apply Theorem 1.1
to the function {j)v to conclude. O

8. POINTWISE ESTIMATES
Let 6 as in (20) and ¢y € HY(SN=1), ||¢y | L2sv -1y = 1, be the first positive eigenfuntion of the
eigenvalue problem Lq1 = p1(@)y in SV—1. The following lemma holds true.
Lemma 8.1. If a satisfies (18) and (19) , then
w(a) <0, <0, and Si}\pi 1 > 0.

PRrROOF. The fact that p1(a) < 0 follows easily by taking a constant function in the Rayleigh
quotient minimized by pi(a) (see (24)). Moreover, there exists ¢ > 0 such that, letting

s 1= ( UJ{(r,.. . 0x) e SN2 10,] < 5}) u( U {(61,....0n) €SV 110, —0,,] < 5}>
JeA (Jl,Jz)GBk
ay>0 OLJ1J2>O

there holds a(6) + pi1(a) > 0 in ¥5. By classical elliptic regularity theory and maximum principles
applied to the equation satisfied by 1; in S¥=1\ ¥5/2, we have that minSN—l\Eé/Z 1 > 0 and
mings; zﬁl > (0. Moreover, testing

—Agn-1(1hy — mings, P1) = (p1(a) +a(9))dr >0, in T,

’(/Jl — minam ’(/Jl 2 0 on 825,
with —(1&1 — mingy; 1&1)_ we obtain that 1&1 > mingy, 1/31 in Y. ]

Let us introduce the weight function

(170) p(z) = |z|°y <|$|) for all € RN \ 3.
T

From Lemma 8.1, under assumptions (18) and (19), there holds

(171) d = d(diam Q, N, &) := sup p>~2" € (0, +-00).

o\S
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We notice that p € HJ, .(R") and introduce the weighted space D}*(RY) as the completion of
C>°(RY) with respect to the norm

1/2
2
(172) ol = ([, Ve ae)
RN
and, similarly, D}*(Q) as the completion of C£°(Q) with respect to (172).
Lemma 8.2. C°(RN \ ¥) is dense in DV2(RN).

PROOF. By density of C°(RY) in DV2(RY), it is enough to prove, for every J € A; and
(J1,J2) € By, the density of C°(RN \ {z; = 0}) and of C°(RN \ {z;, = z,}) in C®(RY) with
respect to the norm [|-[|p1.2ny. Let ¢ € C°°(0,00) such that ¢(t) = 0 for all ¢ € (0,1) and ¢(t) = 1
for all t € (2,00). If J € Ay, and u € C(RY), let u,(x) = ¢(n|zs|)u(z) € CRN \ {z; = 0}).

Since
X

Vuy,(z) — Vu(z) = Vu(z) ((i)(n\xﬂ) — 1) +nu(z)¢' (n|z ;) Fk

lim IVu(2)]*(¢(n|zs]) — 1)2 de =0
RN

n——+oo

by the Dominated Convergence Theorem, and

n? /RN u2(x)(¢'(n\xJ|))2dx:nH/RN u2(y1,...,y#,...,yN)(¢'(|yJ|))2dy:O(nH)

as n — 400, we conclude that u,, — u in D2(RY), thus proving the density of C>° (RN \ {x; = 0})
in C>°(RY) and hence in DV2(RY). The density of C°(RY \ {x;, = x,}) can be proven in a
similar way. O

Lemma 8.3. If a satisfy (18) and (19), then
(i) C(RN\ %) is dense in DL2(RV);
(ii) v € DY2A(RN) if and only if pv € D2(RN);
(ili) for all v € DY2(RY)
(173) [ @i = [ (9o T ) e

PROOF. We first prove that (173) holds for all v € C°(RY \ ¥). Indeed, by direct computation
p solves

a(%)
2f?

Let v € C°(RN \ ) and put u = pv so that u € C(RN) c DH2(RN). Then, testing (174) with
pv? we obtain

(175) V() V (p(x)o? () dir — /

RN RN |I|2

(174) —Ap(z) — p(x) =0 in RV \ &.

2er) % (2)v*(x) dx = 0.

Moreover

(176) VoV (pv?) = v*|Vp|? + 2pvVpVu
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and
(177) (Vu|? = v?|Vp|? + 20pV pVv + p?|Vu|?.
By (175)-(177) we then have

(178)  Qalpv) = /]RN \Vu(z)|*de — /]RN a|(xT2|)u2(x) dx
_ 2 2 2 d(gm‘) 2 2
= [ P@ITe@Pds+ [ @it - [ TR

= / p?(2)|Vo(z)2dz, for all v € C°(RN \ %).
RN

To prove (i), by density of C°(RY) in D}?(RY), it is enough to prove the density of C2°(RY \ )
in C°(RY) with respect to the norm || - ”D};Z(RN)' Let v € C°(RY). It is easy to verify that
u = pv € DH2(RY), hence, by Lemma 8.2, there exists a sequence {uy, }, C C2°(RN \ ) such that
Uy — u in DV2(RY). Letting v, = 2, we have that v, € C>(RN\ %) and, by (178),

/RN 0% (2)|Vop () — Vo, (2)]2de = Qa(un — U

Therefore, since u,, is a Cauchy sequence in D?(RY) and, by (19) and Lemma 2.3, (Q4(u))'/? is
an equivalent norm in D*2(R™), we conclude that v, is a Cauchy sequence in D;’Q(RN ) and hence
converges to some v € D;’Q(RN). Since v,, — v a.e. in RY, we deduce that o = v and then v, — v
in D}?(RN). The proof of (i) is thereby complete.

that v, — v in Dé’Q(RN). Letting u, = vop € C®(RN \ X), by (178) we have that

(179) /RN 0% (2)| Vo (z)2dr = /RN |V, (z)2dx — /RN a(m)ui(x) dz

and |lv, — vaQD;’Q(RN) = Qa(un — ). Therefore, since v, is a Cauchy sequence in D}*(RY) and

|2

(Qa(u))'/? is an equivalent norm in DM2(RY), we infer that u, is a Cauchy sequence in DV?(RN)
and hence converges to some u in DV2(RY). Since u,, = pv, — pv a.e. in RY, we deduce that
pv = u € DV2(RYN). Moreover, we can pass to the limit in (179), thus obtaining (173) and proving
(iii). In a similar way, one can prove that if u € DY2(R") then 2 € D}2(RY), thus completing
the proof of (ii). O

Thanks to Lemma 2.3, (19), and the standard Sobolev inequality, the number

~ 1 Qa =
S(a) = 1an (u) 2/2*
uEPAEOMO) ([ fu(@)|? dx)

is strictly positive and provides the best constant in the following weighted Sobolev inequality.

Lemma 8.4. Let N > k > 3 and let a satisfy (18) and (19). Then

(180) /RN P (@)|Vo(@)]* dz > S(a) (/RN P (@) o(@)” dw) ”
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for all v € D}*(RY).
ProoF. It follows from Lemma 8.3 and the change u = pv. (]

We also define the weighted Sobolev space H(f2) as the completion of V,,(Q2) with respect to
the norm

Iligoy = Ao s+ oo dx)1/2

where V,(£2) denotes the space of all functions v € C*°(2) N H() such that

TeQ 0@ £01 CcQ\5.

For any ¢ > 1, we also denote as Li(p?", ) the weighted L9-space endowed with the norm

- 1/q
el o 2= ( /Q ) <x>|u<x>|qu) .

Lemma 8.5. Let N > k >3, Q C RY be a bounded open set such that 0 € Q, a satisfy (18) and
(19), and h satisfy (H). Let V € LL (Q2\X) such that

loc

Jo ¥ @)V (@)|v*(z) do

(181)
veHL(Q)\{0} HUH%{;(Q)

< 400,

and v € H}(Q) N LY(p*,Q), q > 2, be a weak solution to

(182) —div(p*(2)Vo(z)) = (p*(2)h(z) + p* (2)V (z))v(2).
If
(183) Vi e L*(p*,Q)  for some s > N/2,

then for any ¥ € Q such that 0 € ', v € Lﬁ(pQ*,Q’) and

)

20 d A(q —2)d 4, )3

(184) ol 23 <S(d)_q”””“(”2*’”’(C(q) (dist(€2, 99))2 " (dist(2,09))7 | Clg)

=2 (027 )

where C(q) := min {1, ;ﬁ}, d is as in (171), and

N
max{16,q + 4} s/N 7N
(185) £q ZZTHaX-{ (AS(&) H‘(%Hiﬁépz*ﬁz) :

4oy ()" )+ () }
5 max{16, 41) = ;.
O (max{16,q + 4)
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PROOF. Let w € D}*(€2). Then by Lemma 8.4 we have

as0) [ F @Vl

<t, [ F@le@Pde+ [ # 2 v@i@leP i

Vi (2)<q Vi (@) 24q

pﬁmmm%w(éfwmmWMf( | #eview)

Vi (@)2,

<t [P @it g ([ p@vu@fe)( [ # ovEeae)

Vi (%) 244

N
.QN
S~

Next, Holder inequality and the definition of ¢, yield

2s—N
2s

(187) /pﬁw&wm<(4fmmwmf(t/fwm)

Vi () 244

< ( /Q P2 (@) (@) dm)%( / (VZY))SPQ*@) dx>N

Vi (@) 24,

. ex [ [S@) S@)
vt TS (mm{ 16 q+df)

Vi (z) 24,

2

< Vi




SCHRODINGER EQUATIONS WITH MANY-PARTICLE AND CYLINDRICAL POTENTIALS 55

1/(2-¢)

On the other hand, letting J, = (Chd(],j) (1 + (N]:k))) E;l/(275), from (EH), (8), (9), (23),

(173), and (171), for every w € D}*(Q) we can estimate

(189) / P2 (@) () | (2)|? da

2 2
<0h[5g( 3 / reE) 5 / Plaw(a) dm)
JEAL |z g]|<dq |1’J| |z, —T1,]|<dq |$J1 _$J2|

(J Jg)GBk
—24
+4, Ed(

S [ e 2<>dx+(hz R (o) o)

JEA

<o) (1+ (7) (6; (;% ) [ eIV P

+6, 2+Ed/ )
E/ | dx + = mln{ }/p )| Vw(z)2dz.
2 Q

Summing up (188) and (189), we obtain

(190) /Q (P (@)Vi (@) + [1(2)|0?(2)) leo() |2 de

26/ dac—l—mln{; J2r4}/ﬂp2(x)Vw(x)2dac

for all w € D}*(Q). As in [17, 20] we define v™ := min{n, |v[} € H}(Q) and we introduce a cut-off
function n € C°(Q) satisfying
2

=1inQ S o Ao
g o and Vol dist(Q’, 09)

Testing (182) with 7?(v™)? v € D}?(Q) we obtain

(4=2) [ @@ @) X eanii<n @IVl @) do

+ [ @) @) Vel de
= ¥ @V(@)+ @) @lola) P @) do

=2 [ ()0 @) 2@ Ve(e) - V() da

Q
< [ @Vl@) + (@) hla) o @) (o) 0" ()2 o
Q
2 2/ . n q—2 2 1 2 2 n q—2 2
+2 [ @) On@ P @)@ e+ 5 [ @) @) Vo) P de
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and hence

190)  (1=2) [ P @) Ve @E dt 5 [ Pt @) Vo) P de

</(pQ*(w)V+(w)+pQ(w)lh(w)I)nQ(w)lv(w)IQ(v”(w))q_Qdév
Q

+2/pQ(w)\Vn(w)IQ(v”(l‘))q_QIv(:v)IQdw-
Q
By direct computation we also have

o (o) < 02002

+20%(v")1 72|Vl + 2[Vn 2 (") 12 o] +

GO
q—2

= (")l

and hence by (191) we obtain
2 a=2 2
(192) ¢(o) [ F@ |V (@) Fw)| do
Q

< [ (¥ @Vi@) + @) (@) P @fo() P ()" da
Q

q—2

+2(Cg) +1) / P (@) (0" ()72 |o() V() P da + C(g) / P (@) (0" ()7 V() ? e

Applying estimate (190) to the function w = n(v”)%v, by (192) we have

C;q)/QPQ(-T) ‘V ((Un)‘%zm;) ‘2 do < 20, /9,02*(x)n2(:v)(v"(x))q_2\v($)|2 da

+2(0(@) +1) [ @)@ @) ol PV do + Cla) 15 [ @) @) V() da.
Q Q

and this with Lemma 8.4 and (171) implies

2" n(,0N 2" 452 2% 2% = 4ty 2" 2 n q—2 2
([# @ @F = e@P @) < gt [ # @i @) ds

MO [ )@y o) PIVao) do+ U2 2 ()0 ) 9o d
The proof of the lemma then follows letting n — +oo. O

Theorem 8.6. Let N >k >3, Q C I@N be a bounded open set such that 0 € Q, a satisfy (18) and
(19), h as in (H), and V € L{ (Q\ X) verify (181).

loc

i) If V, € L*(p*,Q) for some s > N/2, then for any Q' € Q there exists a positive constant
Coo = Coo (]\/v7 k‘, &, h, ||V+ ||Ls(p2* Q)9 diSt(Q/, 89), dlam(Q))
depending only on N, k,a, h, ||V | L2 q), dist(Q,0) and diam(Q2), such that for every
solution u € H' () of

(193) —Au(z) —
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there holds p~tu € L> () and
o™ ull L () < Cosllul 2+ (o)
i) If V. € LN/2(p*",Q), then for any Q' € Q and for any s > 1 there exists a positive constant
Cs = Cs(N, k,a,h,V, s, dist(,00Q), diam(Q))

depending only on N, k,a, h,V, s,dist(€, 982), diam(§2), such that every solutionu € H'(Q)
to (193) satisfies p~'u € L*(p*", Q) and

o™ ul Loz, < Osllull 2+ -
PROOF. Let u € H'(Q) be a weak solution of (193), Q' € 2, and R > 0 such that
Q' € Q'+ B(0,2R) € Q.

We claim that the function v(z) := p~'(x)u(z) belongs to H, (¥ + B(0,2R)). Indeed, arguing
as in Lemma 8.2, we can prove that V,(Q2) is dense in H'(f2), hence there exists a sequence
{tn}nen C V,(Q) such that u, — u in H(Q). If n € C(Q) is a cut-off function such that n = 1
in Q' + B(0,2R), from (173) it follows that

/ IV (7)1t () — 11 (1)) Pz — / DI 22 (@) — ()2 d
Q Q |$|
- /Q @)V ()9 (@) (ttn () — 4 () .

This shows that {p~'u,} is a Cauchy sequence in H} (€' + B(0,2R)) which then converges to
v(z) = p~ ! (x)u(x). In particular v € H) (Y + B(0,2R)).
By direct computation one also sees that v is a weak solution of (182). By Lemma 8.5, proceeding

exactly as in the proofs of [17, Theorem 9.3] and [20, Theorem 1.2], we arrive to the conclusion.
U

Remark 8.7. The statement of Theorem 9.4 in our previous paper [17] should be corrected as in
the statement of Theorem 1.2. The missing point in Theorem 9.4. as it was stated in [17] relies
in the fact that the constant Cs, such that 2|~ ul| oo () < éooHuHLz*(Q) depends on u, more
precisely on the distribution function of f(x,u)/u.

In a similar way, the statements of Theorems 9.3 and 10.4 should be corrected as in Theorem
8.6 above, i.e. the constant Cy (respectively Cj o) appearing in the statement (ii) of Theorem 9.3
(respectively 10.4) depends on (R(V)), (more precisely on its distribution function) and not only
on its LN/2(p?", Q)-norm (respectively L*(pP,Q)-norm) as incorrectly stated in [17].

Anyway, the proofs of Theorems 9.3 and 9.4 contained in [17] are correct and lead to analogous
conclusion as those stated in Theorems 1.2 and 8.6 of the present paper. Moreover all the proofs
and statements in the rest of the paper [17] are not affected by these corrections.

Proof of Theorem 1.2. Let us define
_o* flxu(z o aj .
P2 @) (LD = 3 sy s = Ses, Tty ), i u(@) £0,

Viz) := . o o .
P (x)( — 2 seA T 2 (1, 02)EBy W), if u(z) =0,
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where a; = max{—ay;,0} and o ; = max{-ay,5,,0}. By (F) and the Sobolev embedding
HY(Q) € L*" (), we have that V*t € LN/2(p*",Q) and u weakly solves

a(%) .
—Au(z) — ‘Z"TZ‘ u(z) = (h(x) + p* 2(2)V(2))u(z) in Q.
From part ii) of Theorem 8.6, it follows that p~tu € L*(p* , Q') for any Q' € Q and for any s > 1.
By (F) we deduce that V' € L*(p?", Q) for all s > 22 and in particular for some s > N/2. The
proof of the theorem follows now by part i) of Theorem 8.6. g

APPENDIX

To prove Theorem 3.3 we used, for the approximating problems, a Pohozaev-type identity (see
(53)), whose proof is quite classical (see e.g. [38, 41]) and requires just few adaptations due to the
presence of a singularity. For the sake of completeness we give below a proof.

Proposition A.1. Let Q C RN, N > 3, be a bounded open set such that 0 € . Letb € LOO(SNfl)
h e L>*(Q), and let f satisfy (F). Denote by v = v(x) the unit outer normal vector v(x) = - 4
w is a HY(Q)-weak solution to Lyu = h(x)u + f(x,u) in Q and ro > is such that B,, C Q, then
for a.e. v € (0,79)

_ bz . b=,
(194) 7%/}3 [|Vu(:c)|2 fT;)UZ(x)} dx+§/83 {|Vu(z)|2 |(a|j|2|)u2(:z:) ds

/ ou
=r
9B,

+r F(z,u(x))dS — / [V F(x,u(z)) -z 4+ NF(x,u(z))] dz .
OB, B,

dS—|—/ h(z)u(z) (z - Vu(z))) dz

PROOF. By classical Brezis-Kato [8] estimates, bootstrap, and elliptic regularity theory, (F) and
the boundedness of the coefficients b, h imply that v € HZ_(Q\ {0}) N C’llo?(Q \ {0}) for any
€ (0,1). Therefore by (F) and Hardy inequality, we have

/OT VaB <|vu(a:)|2 n ﬁ(ﬁ;) .

= w(x)|? u*(z) %mQ
‘L('V(” + o+ @

and hence there exists a decreasing sequence {4, } C (0,r) such that lim, 1 6, = 0 and

U2 xr
(195) 5"/33 <|Vu(ac)|2+ |x(|2)+

ou
v ()

+ |F(x,u(m))|> dS] ds

+ |F(a:,u(x))|> dxr < 400

ou
5(96)

2
+|F(x,u(x))|> dS — 0 asn— +oo.
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Multiplying equation Lyu = h(z) u+ f(z,u) by - Vu(z) and integrating over B, \ Bs, , it follows
that

B
(196) /B Ly, V) Vo V() e - /B o o
- /BBT 8Bs,,

2
Oul” 4s + / h(z)u(z)(z - Vu(z)) dz
Br\Bén
+/BT\BM f(z,u(x))(z - Vu(x)) de.

Standard integration by parts shows that

2

Oul” 45 s,

ov

ov

(197) /B . Vu(z) - V(z - Vu(x))de

N -2 on
B,\Bs, 9B, (o2

Passing in radial coordinates r = |z|, § = 7o7 and observing that Oru(r,0) = Vu(rd) - 6, we obtain

/BT\BJH b(xli)u(m)(m -Vu(z))de = /SN—I b(0) (/6: sN_Qu(SG)asu(SG) ds) ds(0)
= /SN—1 b(0) (TN2u2(r9) — 6N "2u2(6,0)
— (N —-2) /6 ' sN73u2(s6) ds — /5 ' sN72u(56)04u(s0) ds> ds()

:r/ b(‘%l)uQ(x)dS—é
8 n

B, |7? oB;, |z

o) e
—(N-2) /BT\B(;" e u”(z) dw—/BT\Bsn e w(z) (z - Vu(z)) d ,

which yields

e
(198) /BT\BJH B u(z) (z - Vu(z)) dx

N -2 b(gay b(gag n b(gay
:_7/ (Z)uQ(x)dm—&—T/ (2)u2(x)d5—5/ (‘é)UQ(ZE)dS.
2 Jpass, lzl 2 Jop, || 2 Joms, |7l

By (F) and the fact that u € CL*(Q\ {0}) we obtain

loc

(199) 7“/ F(z,u(x))dS — 4, F(z,u(z))dS = div(F(z, u(z))z) dv
9B, dBs,, B\Bs,,

— [ W.Fa) o+ NF@u@)] dot [ fau@)(Vule) o) ds
BT\BSn BT\B(Sn
Letting n — +o00, (194) follows by (195-199). O
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