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Abstract

We propose a generalization of the classical notion of the V@R� that
takes into account not only the probability of the losses, but the balance
between such probability and the amount of the loss. This is obtained by
de�ning a new class of law invariant risk measures based on an appropriate
family of acceptance sets. The V@R� and other known law invariant risk
measures turn out to be special cases of our proposal. We further prove
the dual representation of Risk Measures on P(R):
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1 Introduction

We introduce a new class of law invariant risk measures � : P(R)! R[ f+1g
that are directly de�ned on the set P(R) of probability measures on R and are
monotone and quasi-convex on P(R).
As Cherny and Madan (2009) [4] pointed out, for a (translation invariant)

coherent risk measure de�ned on random variables, all the positions can be
spited in two classes: acceptable and not acceptable; in contrast, for an accept-
ability index there is a whole continuum of degrees of acceptability de�ned by
a system fAmgm2R of sets. This formulation has been further investigated by
Drapeau and Kupper (2010) [6] for the quasi convex case.
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We adopt this approach and we build the maps � from a family fAmgm2R
of acceptance sets of distribution functions by de�ning:

�(P ) := � sup fm 2 R j P 2 Amg :
In Section 3 we study the properties of such maps, we provide some spe-

ci�c examples and in particular we propose an interesting generalization of the
classical notion of V@R�.

The key idea of our proposal - the de�nition of the �V@R in Section 4
- arises from the consideration that in order to assess the risk of a �nancial
position it is necessary to consider not only the probability � of the loss, as in
the case of the V@R�, but the dependence between such probability � and the
amount of the loss. In other terms, a risk prudent agent is willing to accept
greater losses only with smaller probabilities. Hence, we replace the constant
� with a (increasing) function � : R![0; 1] de�ned on losses, which we call
Probability/Loss function. The balance between the probability and the amount
of the losses is incorporated in the de�nition of the family of acceptance sets

Am := fQ 2 P(R) j Q(�1; x] � �(x); 8x � mg , m 2 R:
If PX is the distribution function of the random variable X; our new measure
is de�ned by:

�V@R(PX) := � sup fm 2 R j P (X � x) � �(x); 8x � mg :
As a consequence, the acceptance sets Am are not obtained by the translation of
A0 which implies that the map is not any more translation invariant. However,
the similar property

�V@R(PX+�) = �
�V@R(PX)� �;

where ��(x) = �(x+ �), holds true and is discussed in Section 4.
The V@R� and the worst case risk measure are special cases of the �V@R.

In Section 5 we address the dual representation of these maps. We choose
to de�ne the risk measures on the entire set P(R) and not only on its subset of
probabilities having compact support. We endow P(R) with the �(P(R); Cb(R))
topology. The selection of this topology is also justi�ed by the fact (see Proposi-
tion 5) that for monotone maps �(P(R); Cb(R))� lsc is equivalent to continuity
from below.
Except for � = +1, we show that there are no convex, �(P(R); Cb(R))� lsc

translation invariant maps � : P(R) ! R [ f+1g. But there are many quasi-
convex and �(P(R); Cb(R))� lsc maps � : P(R)! R [ f+1g that in addition
are monotone and translation invariant, as for example the V@R�, the entropic
risk measure and the worst case risk measure. This is another good motivation
to adopt quasi convexity versus convexity.
Finally we provide the dual representation of quasi-convex, monotone and

�(P(R); Cb(R)) � lsc maps � : P(R) ! R [ f+1g - de�ned on the entire set
P(R) - and compute the dual representation of the risk measures associated to
families of acceptance sets and consequently of the �V@R.
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2 Law invariant Risk Measures

Let (
;F ;P) be a probability space and L0 =: L0(
;F ;P) be the space of F
measurable random variables that are P almost surely �nite.
Any random variable X 2 L0 induces a probability measure PX on (R,BR) by
PX(B) = P(X�1(B)) for every Borel set B 2 BR. We refer to [1] Chapter 15 for
a detailed study of the convex set P =: P(R) of probability measures on R. Here
we just recall some basic notions: for any X 2 L0 we have PX 2 P so that we
will associate to any random variable a unique element in P. If P(X = x) = 1
for some x 2 R then PX is the Dirach distribution �x that concentrates the
mass in the point x.
A map � : L! R := R [ f�1g [ f1g, de�ned on given subset L � L0; is law
invariant if X;Y 2 L and PX = PY implies �(X) = �(Y ).
Therefore, when considering law invariant risk measures � : L0 ! R it is

natural to shift the problem to the set P by de�ning the new map � : P ! R
as �(PX) = �(X). This map � is well de�ned on the entire P, since there
exists a bi-injective relation between P and the quotient space L0

� , where the
equivalence is given by X �D Y , PX = PY . However, P is only a convex
set and the usual operations on P are not induced by those on L0, namely
(PX + PY )(A) = PX(A) + PY (A) 6= PX+Y (A), A 2 BR. Recall that the �rst
order stochastic dominance on P is given by: Q 4mon P , FP (x) � FQ(x) for
all x 2 R; where FP (x) = P (�1; x] and FQ(x) = Q(�1; x] are the distribution
functions of P;Q 2 P. It will be more convenient to adopt on P(R) the opposite
order relation:

P 4 Q , Q 4mon P , FP (x) � FQ(x) for all x 2 R:

The �nancial intuition is natural: the risky position X has a lower level of
risk with respect to 4 since its distribution FX(x) converges faster to zero as
x ! �1 and slower to one as x ! +1. In this way FX concentrates more
probability on higher values of x. Notice that X � Y P-a.s. implies PX 4 PY
and this motivates the increasing (instead of the usual decreasing) monotonicity
assumption in the following de�nition.

De�nition 1 A Risk Measure on P(R) is a map � : P ! R[f+1g such that:

(Mon) � is monotone increasing: P 4 Q implies �(P ) � �(Q);

(QCo) � is quasi-convex: �(�P + (1� �)Q) � �(P ) _ �(Q), � 2 [0; 1]:

Quasiconvexity can be equivalently reformulated in terms of sublevel sets: a
map � is quasi-convex if for every c 2 R the set Ac = fP 2 P j �(P ) � cg is
convex. As recalled in [17] this notion of convexity is di¤erent from the one given
for random variables (as in [8]) because it does not concern diversi�cation of �-
nancial positions. A natural interpretation in terms of compound lotteries is the
following: whenever two probability measures P and Q are acceptable at some
level c and � 2 [0; 1] is a probability, then the compound lottery �P +(1��)Q,
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which randomizes over P and Q, is also acceptable at the same level.
In terms of random variables (namely X;Y which induce PX ; PY ) the random-
ized probability �PX + (1 � �)PY will correspond to some random variable
Z 6= �X + (1� �)Y so that the diversi�cation is realized at the level of distrib-
ution and not at the level of portfolio selection.

As suggested by [17], we de�ne the translation operator Tm on the set P(R)
by: TmP (�1; x] = P (�1; x � m], for every m 2 R. Equivalently, if PX is
the probability distribution of a random variable X we de�ne the translation
operator as TmPX = PX+m, m 2 R. As a consequence we map the distribution
FX(x) into FX(x�m). Notice that TmP 4 P for any m > 0.

De�nition 2 If � : P ! R [ f+1g is a risk measure on P, we say that

(TrI) � is translation invariant if �(TmP ) = �(P )�m for any m 2 R:

Notice that (TrI) corresponds exactly to the notion of cash additivity for
risk measures de�ned on a space of random variables as introduced in [2]. It is
well known (see [5]) that for maps de�ned on random variables, quasiconvexity
and cash additivity imply convexity. However, in the context of distributions
(QCo) and (TrI) do not imply convexity of the map �, as can be shown with
the simple examples of the V@R and the worst case risk measure �w (see the
examples in Section 3.1).
The set P(R) spans the space ca(R) := f� signed measure j V� < +1g

of all signed measures of bounded variations on R. ca(R) (or simply ca) en-
dowed with the norm V� = sup f

Pn
i=1 j�(Ai)j s.t. fA1; :::; Ang partition of Rg

is a norm complete and an AL-space (see [1] paragraph 10.11).
Let Cb(R) (or simply Cb) be the space of bounded continuous function f :

R! R. We endow ca(R) with the weak� topology �(ca; Cb). The dual pairing
h�; �i : Cb � ca ! R is given by hf; �i =

R
fd� and the function � 7!

R
fd�

(� 2 ca) is �(ca; Cb) continuous. Notice that P is a �(ca; Cb)-closed convex
subset of ca (p. 507 in [1]) so that �(P; Cb) is the relativization of �(ca; Cb) to
P and any �(P; Cb)-closed subset of P is also �(ca; Cb)-closed.
Even though (ca; �(ca; Cb)) is not metrizable in general, its subset P is

separable and metrizable (see [1], Th.15.12) and therefore when dealing with
convergence in P we may work with sequences instead of nets.
For every real function F we denote by C(F ) the set of points in which the

function F is continuous.

Theorem 3 ([15] Theorem 2, p.314) ) Suppose that Pn, P 2 P. Then Pn
�(P;Cb)�!

P if and only if FPn(x)! FP (x) for every x 2 C(FP ).

A sequence of probabilities fPng � P is increasing, denoted with Pn ", if
FPn(x) � FPn+1(x) for all x 2 R and all n.

De�nition 4 Suppose that Pn, P 2 P. We say that Pn " P whenever Pn "
and FPn(x) " FP (x) for every x 2 C(FP ). We say that
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(CfB) � is continuous from below if Pn " P implies �(Pn) " �(P ):

Proposition 5 Let � : P ! R be (Mon). Then the following are equivalent:
� is �(P; Cb)-lower semicontinuous
� is continuous from below.

Proof. Let � be �(P; Cb)-lower semicontinuous and suppose that Pn " P .
Then FPn(x) " FP (x) for every x 2 C(FP ) and we deduce from Theorem 3 that

Pn
�(P;Cb)�! P . (Mon) implies �(Pn) " and k := limn �(Pn) � �(P ). The lower

level set Ak = fQ 2 P j �(Q) � kg is �(P; Cb) closed and, since Pn 2 Ak; we
also have P 2 Ak; i.e. �(P ) = k, and � is continuous from below.
Conversely, suppose that � is continuous from below. As P is metrizable we

may work with sequences instead of nets. For k 2 R consider Ak = fP 2 P j
�(P ) � kg and a sequence fPng � Ak such that Pn

�(P;Cb)�! P 2 P. We need to
show that P 2 Ak: Lemma 6 shows that each FQn := (infm�n FPm)^ FP is the
distribution function of a probability measure Qn 2 P. Notice that FQn

� FPn
and Qn ". From Pn

�(P;Cb)�! P and the de�nition of Qn, we deduce that FQn(x) "
FP (x) for every x 2 C(FP ) so that Qn " P . From (Mon) and Qn 4 Pn, we get
�(Qn) � �(Pn): From (CfB) then: �(P ) = limn �(Qn) � lim infn �(Pn) � k.
Thus P 2 Ak:

Lemma 6 For every Pn
�(P;Cp)�! P we have that

FQn := inf
m�n

FPm ^ FP , n 2 N,

is a distribution function associated to a probability measure Qn 2 P.

Proof. For each n; FQn is increasing and limx!�1 FQn(x) = 0: More-
over for real valued maps right continuity and upper semicontinuity are equiva-
lent. Since the inf-operator preserves upper semicontinuity we can conclude
that FQn

is right continuous for every n. Now we have to show that for
each n, limx!+1 FQn

(x) = 1. By contradiction suppose that, for some n,
limx!+1 FQn

(x) = � < 1. We can choose a sequence fxkgk � R with xk 2
C(FP ), xk " +1. In particular FQn(xk) � � for all k and FP (xk) > � de�ni-
tively, say for all k � k0. We can observe that since xk 2 C(FP ) we have, for
all k � k0, infm�n FPm(xk) < limm!+1 FPm(xk) = FP (xk). This means that
the in�mum is attained for some index m(k) 2 N, i.e. infm�n FPm(xk) =
FPm(k)

(xk), for all k � k0. Since Pm(k)(�1; xk] = FPm(k)
(xk) � � then

Pm(k)(xk;+1) � 1 � � for k � k0. We have two possibilities. Either the
set fm(k)gk is bounded or limkm(k) = +1. In the �rst case, we know that the
number of m(k)�s is �nite. Among these m(k)�s we can �nd at least one m and
a subsequence fxhgh of fxkgk such that xh " +1 and Pm(xh;+1) � 1� � for
every h. We then conclude that

lim
h!+1

Pm(xh;+1) � 1� �
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and this is a contradiction. If limkm(k) = +1; �x k � k0 such that P (xk;+1) <
1� � and observe that for every k > k

Pm(k)(xk;+1) � Pm(k)(xk;+1) � 1� �:

Take a subsequence fm(h)gh of fm(k)gk such that m(h) " +1. Then:

lim
h!1

inf Pm(h)(xk;+1) � 1� � > P (xk;+1);

which contradicts the weak convergence Pn
�(P;Cb)�! P .

Example 7 (The certainty equivalent) It is very simple to build risk mea-
sures on P(R): Take any continuous, bounded from below and strictly decreasing
function f : R! R. Then the map �f : P ! R [ f+1g de�ned by:

�f (P ) := �f�1
�Z

fdP

�
is a Risk Measure on P(R). It is also easy to check that �f is (CFB) and
therefore �(P; Cb)�l.s.c. Notice that Proposition 22 will then imply that �f
can not be convex. By selecting the function f(x) = e�x we obtain �f (P ) =
ln
�R
exp (�x)dFP (x))

�
, which is in addition (TrI). Its associated risk measure

� : L0 ! R[f+1g de�ned on random variables, �(X) = �f (PX) = ln
�
Ee�X

�
;

is the Entropic Risk Measure. In Section 5 we will see more examples based on
this construction.

3 A remarkable class of risk measures on P(R)
Given a family fFmgm2R of functions Fm : R! [0; 1], we consider the associated
sets of probability measures

Am := fQ 2 P j FQ � Fmg (1)

and the associated map � : P ! R de�ned by

�(P ) := � sup fm 2 R j P 2 Amg : (2)

We assume hereafter that for each P 2 P there exists m such that P =2 Am so
that � : P ! R [ f+1g:

De�nition 8 A monotone decreasing family of sets fAmgm2R contained in P
is left continuous in m if

Am =:
\
">0

Am�"

In particular it is left continuous if it is left continuous in m for every m 2 R.
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Lemma 9 Let fFmgm2R be a family of functions Fm : R ! [0; 1] and Am be
the set de�ned in (1). Then:

1. If, for every x 2 R, F�(x) is decreasing (w.r.t. m) then the family fAmg
is monotone decreasing: Am � An for any level m � n;

2. For any m, Am is convex and satis�es: Q � P 2 Am ) Q 2 Am

3. If, for every m 2 R, Fm(x) is right continuous w.r.t. x then Am is
�(P; Cb)�closed,

4. Suppose that, for every x 2 R, Fm(x) is decreasing w.r.t. m. If Fm(x) is
left continuous w.r.t. m, then the family fAmg is left continuous.

5. Suppose that, for every x 2 R, Fm(x) is decreasing w.r.t. m and that,
for every m 2 R, Fm(x) is right continuous and increasing w.r.t. x and
limx!+1 Fm(x) = 1. If the family fAmg is left continuous in m then
Fm(x) is left continuous in m.

Proof. 1. If Q 2 Am and m � n then FQ � Fm � Fn, i.e. Q 2 An.

2. Let Q;P 2 Am and � 2 [0; 1]. Consider the convex combination �Q +
(1� �)P and notice that

F�Q+(1��)P � FQ _ FP � Fm;

as FP � Fm and FQ � Fm. Then �Q+ (1� �)P 2 Am.

3. Let Qn 2 Am and Q 2 P satisfy Qn
�(P;Cb)! Q. By Theorem 3 we know

that FQn(x)! FQ(x) for every x 2 C(FQ). For each n; FQn � Fm and therefore
FQ(x) � Fm(x) for every x 2 C(FQ). By contradiction, suppose that Q =2 Am.
Then there exists �x =2 C(FQ) such that FQ(�x) > Fm(�x). By right continuity of
FQ for every " > 0 we can �nd a right neighborhood [�x; �x+ �(")) such that

jFQ(x)� FQ(�x)j < " 8x 2 [�x; �x+ �("))

and we may require that �(") # 0 if " # 0:Notice that for each " > 0 we can
always choose an x" 2 (�x; �x + �(")) such that x" 2 C(FQ). For such an x" we
deduce that

Fm(�x) < FQ(�x) < FQ(x") + " � Fm(x") + ":
This leads to a contradiction since if " # 0 we have that x" # �x and thus by right
continuity of Fm

Fm(�x) < FQ(�x) � Fm(�x):
4. By assumption we know that Fm�"(x) # Fm(x) as " # 0, for all x 2 R. By
item 1, we know that Am �

T
">0

Am�". By contradiction we suppose that

\
">0

Am�" % Am;
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so that there will exist Q 2 P such that FQ � Fm�" for every " > 0 but FQ(x) >
Fm(x) for some x 2 R. Set � = FQ(x) � Fm(x) so that FQ(x) > Fm(x) +

�
2 .

Since Fm�" # Fm we may �nd " > 0 such that Fm�"(x) � Fm(x) < �
2 . Thus

FQ(x) � Fm�"(x) < Fm(x) + �
2 and this is a contradiction.

5. Assume thatAm�" # Am. De�ne F (x) := lim"#0 Fm�"(x) = inf">0 Fm�"(x)
for all x 2 R: Then F : R ! [0; 1] is increasing, right continuous (since the inf
preserves this property). Notice that for every " > 0 we have Fm�" � F � Fm
and then Am�" � fQ 2 P j FQ � Fg � Am and limx!+1 F (x) = 1.
Necessarily we conclude fQ 2 P j FQ � Fg = Am. By contradiction we
suppose that F (x) > Fm(x) for some x 2 R. De�ne FQ : R ! [0; 1] by:
FQ(x) = F (x)1[x;+1)(x). The above properties of F guarantees that FQ is a
distribution function of a corresponding probability measure Q 2 P, and since
FQ � F , we deduce Q 2 Am, but FQ(x) > Fm(x) and this is a contradiction.

Lemma 10 Let fFmgm2R be a family of functions Fm : R ! [0; 1] and � be
the associated map de�ned in (2). Then:

1. The map � is (Mon) on P.

2. If, for every x 2 R, F�(x) is decreasing (w.r.t. m) then � is (QCo) on P.

3. If, for every x 2 R, F�(x) is left continuous and decreasing (w.r.t. m) and
if, for every m 2 R, Fm(�) is right continuous (w.r.t. x) then

Am := fQ 2 P j �(Q) � mg = A�m, 8m; (3)

and � is �(P; Cb)�lower-semicontinuous.

Proof. 1. From Q � P we have FQ � FP and

fm 2 R j FP � Fmg � fm 2 R j FQ � Fmg ;

which implies �(Q) � �(P ).
2. We show that Q1; Q2 2 P, �(Q1) � n and �(Q2) � n imply that

�(�Q1 + (1� �)Q2) � n, that is

sup
�
m 2 R j F�Q1+(1��)Q2

� Fm
	
� �n:

By de�nition of the supremum, 8" > 0 9mi s.t. FQi � Fmi and mi > ��(Qi)�
" � �n � ". Then FQi � Fmi � F�n�", as fFmg is a decreasing family.
Therefore �FQ1

+ (1� �)FQ2
� F�n�" and ��(�Q1 + (1� �)Q2�) � �n� ".

As this holds for any " > 0, we conclude that � is quasi-convex.
3. The fact that A�m � Am follows directly from the de�nition of �; as if

Q 2 A�m

�(Q) := � sup fn 2 R j Q 2 Ang = inf
�
n 2 R j Q 2 A�n

	
� m:
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We have to show that Am � A�m. Let Q 2 Am. Since �(Q) � m, for all " > 0
there exists m0 such that m+" > �m0 and FQ � Fm0 : Since F�(x) is decreasing
(w.r.t. m) we have that FQ � F�m�", therefore Q 2 A�m�" for any " > 0. By
the left continuity in m of F�(x); we know thatfAmg is left continuous (Lemma
9, item 4) and so: Q 2

T
�>0

A�m�" = A�m.

From the assumption that Fm(�) is right continuous (w.r.t. x) and Lemma 9
item 3, we already know that Am is �(P; Cb)�closed, for any m 2 R, and there-
fore the lower level setsAm = A�m are �(P; Cb)�closed and � is �(P; Cb)�lower-
semicontinuous.

De�nition 11 A family fFmgm2R of functions Fm : R! [0; 1] is feasible if

� For any P 2 P there exists m such that P =2 Am

� For every m 2 R, Fm(�) is right continuous (w.r.t. x)

� For every x 2 R, F�(x) is decreasing and left continuous (w.r.t. m).

From Lemmas 9 and 10 we immediately deduce:

Proposition 12 Let fFmgm2R be a feasible family. Then the associated family
fAmgm2R is monotone decreasing and left continuous and each set Am is convex
and �(P; Cb)�closed. The associated map � : P ! R [ f+1g is well de�ned,
(Mon), (Qco) and �(P; Cb)�l.s.c.

Remark 13 Let fFmgm2R be a feasible family. If there exists an m such that
limx!+1 Fm(x) < 1 then limx!+1 Fm(x) < 1 for every m � m and then
Am = ; for every m � m. Obviously if an acceptability set is empty then
it does not contribute to the computation of the risk measure de�ned in (2).
For this reason we will always consider w.l.o.g. a class fFmgm2R such that
limx!+1 Fm(x) = 1 for every m.

3.1 Examples

As explained in the introduction, we de�ne a family of risk measures employing
a Probability/Loss function �. Fix the right continuous function � : R! [0; 1]
and de�ne the family fFmgm2R of functions Fm : R! [0; 1] by

Fm(x) := �(x)1(�1;m)(x) + 1[m;+1)(x): (4)

It is easy to check that if supx2R �(x) < 1 then the family fFmgm2R is feasible
and therefore, by Proposition 12, the associated map � : P ! R[f+1g is well
de�ned, (Mon), (Qco) and �(P; Cb)�l.s.c.

Example 14 When supx2R �(x) = 1, � may take the value �1. The extreme
case is when, in the de�nition of the family (4), the function � is equal to the
constant one, �(x) = 1; and so: Am = P for all m and � = �1:
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Example 15 Worst case risk measure: �(x) = 0.
Take in the de�nition of the family (4) the function � to be equal to the

constant zero: �(x) = 0: Then:

Fm(x) : = 1[m;+1)(x)

Am : = fQ 2 P j FQ � Fmg = fQ 2 P j Q 4 �mg
�w(P ) : = � sup fm j P 2 Amg = � sup fm j P 4 �mg = � inf

x2R
(FP (x))

so that, if X 2 L0 has distribution function PX ,

�w(PX) = � sup fm 2 R j PX 4 �mg = �ess inf(X) := �w(X)

coincide with the worst case risk measure �w. As the family fFmg is feasible,
�w : P(R) ! R [ f+1g is (Mon), (Qco) and �(P; Cb)�l.s.c. In addition, it
also satis�es (TrI).
Even though �w : L

0 ! R [ f1g is convex, as a map de�ned on random
variables, the corresponding �w : P ! R[f1g, as a map de�ned on distribution
functions, is not convex, but it is quasi-convex and concave. Indeed, let P 2 P
and, since FP � 0; we set:

��w(P ) = inf(FP ) := sup fx 2 R : FP (x) = 0g :

If F1, F2 are two distribution functions corresponding to P1, P2 2 P then for
all � 2 (0; 1) we have:

inf(�F1 + (1� �)F2) = min(inf(F1); inf(F2)) � � inf(F1) + (1� �) inf(F2)

and therefore, for all � 2 [0; 1]

min(inf(F1); inf(F2)) � inf(�F1 + (1� �)F2) � � inf(F1) + (1� �) inf(F2):

Example 16 Value at Risk V@R�: �(x) := � 2 (0; 1):
Take in the de�nition of the family (4) the function � to be equal to the

constant �; �(x) = � 2 (0; 1): Then

Fm(x) : = �1(�1;m)(x) + 1[m;+1)(x)

Am : = fQ 2 P j FQ � Fmg
�V@R�

(P ) : = � sup fm 2 R j P 2 Amg

If the random variable X 2 L0 has distribution function PX and q+X(�) =
sup fx 2 R j P(X � x) � �g is the right continuous inverse of PX then

�V@R�
(PX) = � sup fm j PX 2 Amg

= � sup fm j P(X � x) � � 8x < mg
= � sup fm j P(X � m) � �g
= �q+X(�) := V@R�(X)

10



coincide with the Value At Risk of level � 2 (0; 1). As the family fFmg is
feasible, �V@R�

: P ! R [ f+1g is (Mon), (Qco), �(P; Cb)-l.s.c. In addition,
it also satis�es (TrI).
As well known, V@R� : L0 ! R[f1g is not quasi-convex, as a map de�ned

on random variables, even though the corresponding �V@R�
: P ! R[ f1g, as

a map de�ned on distribution functions, is quasi-convex (see [6] for a discussion
on this issue).

Example 17 Fix the family f�mgm2R of functions �m : R ! [0; 1] such that
for every m 2 R, �m(�) is right continuous (w.r.t. x) and for every x 2 R,
��(x) is decreasing and left continuous (w.r.t. m). De�ne the family fFmgm2R
of functions Fm : R! [0; 1] by

Fm(x) := �m(x)1(�1;m)(x) + 1[m;+1)(x): (5)

It is easy to check that if supx2R �m0
(x) < 1, for some m0 2 R, then the family

fFmgm2R is feasible and therefore the associated map � : P ! R [ f+1g is
well de�ned, (Mon), (Qco), �(P; Cb)-l.s.c.

4 On the �V@R�
We now propose a generalization of the V@R� which appears useful for possible
application whenever an agent is facing some ambiguity on the parameter �,
namely � is given by some uncertain value in a con�dence interval [�m; �M ],
with 0 � �m � �M � 1. The V@R� corresponds to case �

m = �M and one
typical value is �M = 0; 05.
We will distinguish two possible classes of agents:

Risk prudent Agents Fix the increasing right continuous function � : R!
[0; 1], choose as in (4)

Fm(x) = �(x)1(�1;m)(x) + 1[m;+1)(x)

and set �m := inf � � 0, �M := sup� � 1. As the function � is increasing, we
are assigning to a lower loss a lower probability. In particular given two possible
choices �1;�2 for two di¤erent agents, the condition �1 � �2 means that the
agent 1 is more risk prudent than agent 2.
Set, as in (1), Am = fQ 2 P j FQ � Fmg and de�ne as in (2)

�V@R(P ) := � sup fm 2 R j P 2 Amg :

Thus, in case of a random variable X

�V@R(PX) := � sup fm 2 R j P(X � x) � �(x); 8x � mg :

In particular it can be rewritten as

�V@R(PX) = � inf fx 2 R j P(X � x) > �(x)g :

11



If both FX and � are continuous �V@R corresponds to the smallest intersection
between the two curves.
In this section, we assume that

�M < 1:

Besides its obvious �nancial motivation, this request implies that the corre-
sponding family Fm is feasible and so �V@R(P ) > �1 for all P 2 P.
The feasibility of the family fFmg implies that the �V@R : P ! R[f1g is

well de�ned, (Mon), (QCo) and (CfB) (or equivalently �(P; Cb)-lsc) map.

Example 18 One possible simple choice of the function � is represented by
the step function:

�(x) = �m1(�1;�x)(x) + �
M1[�x;+1)(x)

The idea is that with a probability of �M we are accepting to loose at most �x.
In this case we observe that:

�V@R(P ) =

�
V@R�M (P ) if V@R�m(P ) � ��x
V@R�m(P ) if V@R�m(P ) > ��x:

Even though the �V@R is continuous from below (proposition 12 and 5), it may
not be continuous from above, as this example shows. For instance take �x = 0
and PXn

induced by a sequence of uniformly distributed random variables Xn �
U
�
��m � 1

n ; 1� �
m � 1

n

�
. We have PXn

# PU [��m;1��m] but �V@R(PXn
) =

� 1
n for every n and �V@R(PU [��m;1��m]) = �

M � �m.

Remark 19 (i) If �m = 0 the domain of �V@R(P ) is not the entire convex
set P. We have two possible cases

� supp(�) = [x�;+1): in this case �V@R(P ) = � inf supp(FP ) for every
P 2 P such that supp(FP ) � supp(�).

� supp(�) = (�1;+1): in this case

�V@R(P ) = +1 for all P such that lim
x!�1

FP (x)

�(x)
> 1

�V@R(P ) < +1 for all P such that lim
x!�1

FP (x)

�(x)
< 1

In the case limx!�1
FP (x)
�(x) = 1 both the previous behaviors might occur.

(ii) In case that �m > 0 then �V@R(P ) < +1 for all P 2 P, so that �V@R
is �nite valued.

12



We can prove a further structural property which is the counterpart of (TrI)
for the �V@R. Let � 2 R any cash amount

�V@R(PX+�) = � sup fm j P(X + � � x) � �(x); 8x � mg
= � sup fm j P(X � x� �) � �(x); 8x � mg
= � sup fm j P(X � y) � �(y + �); 8y � m� �g
= � sup fm+ � j P(X � y) � �(y + �); 8y � mg
= ��V@R(PX)� �

where ��(x) = �(x + �). We may conclude that if we add a sure positive
(resp. negative) amount � to a risky position X then the risk decreases (resp.
increases) of the value ��, constrained to a lower (resp. higher) level of risk
prudence described by �� � � (resp. �� � �). For an arbitrary P 2 P this
property can be written as

�V@R(T�P ) = �
�V@R(P )� �; 8� 2 R;

where T�P (�1; x] = P (�1; x� �].

Risk Seeking Agents Fix the decreasing right continuous function � : R!
[0; 1], with inf � < 1. Similarly as above, we de�ne

Fm(x) = �(x)1(�1;m)(x) + 1[m;+1)(x)

and the (Mon), (QCo) and (CfB) map

�V@R(P ) := � sup fm 2 R j FP � Fmg = � sup fm 2 R j P(X � m) � �(m)g :

In this case, for eventual huge losses we are allowing the highest level of proba-
bility. As in the previous example let � 2 R and notice that

�V@R(PX+�) = �
�V@R(PX)� �:

where ��(x) = �(x + �). The property is exactly the same as in the former
example but here the interpretation is slightly di¤erent. If we add a sure positive
(resp. negative) amount � to a risky position X then the risk decreases (resp.
increases) of the value ��, constrained to a lower (resp. higher) level of risk
seeking since �� � � (resp. �� � �).

Remark 20 For a decreasing �; there is a simpler formulation - which will be
used in Section 5.3 - of the �V@R that is obtained replacing in Fm the function
� with the line �(m) for all x < m. Let

~Fm(x) = �(m)1(�1;m)(x) + 1[m;+1)(x):

This family is of the type (5) and is feasible, provided the function � is contin-
uous. For a decreasing �; it is evident that

�V@R(P ) = �eV@R(P ) := � supnm 2 R j FP � ~Fm

o
;

as the function � lies above the line �(m) for all x � m.
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5 Quasi-convex Duality

In literature we also �nd several results about the dual representation of law in-
variant risk measures. Kusuoka [13] contributed to the coherent case, while Frit-
telli and Rosazza [10] extended this result to the convex case. Jouini, Schacher-
mayer and Touzi (2006) [12], in the convex case, and Svindland (2010) [14] in
the quasi-convex case, showed that every law invariant risk measure is already
weakly lower semicontinuous. Recently, Cerreia-Vioglio, Maccheroni, Marinacci
and Montrucchio (2010) [5] provided a robust dual representation for law invari-
ant quasi-convex risk measures, which has been extended to the dynamic case
in [9].
In Sections 5.1 and 5.2 we will treat the general case of maps de�ned on P,

while in Section 5.3 we specialize these results to show the dual representation
of maps associated to feasible families.

5.1 Reasons of the failure of the convex duality for Trans-
lation Invariant maps on P

It is well known that the classical convex duality provided by the Fenchel-Moreau
theorem guarantees the representation of convex and lower semicontinuous func-
tions and therefore is very useful for the dual representation of convex risk mea-
sures (see [11]). For any map � : P ! R[f1g let �� be the convex conjugate:

��(f) := sup
Q2P

�Z
fdQ� �(Q)

�
, f 2 Cb:

Applying the fact that P is a �(ca; Cb) closed convex subset of ca one can easily
check that the following version of Fenchel-Moreau Theorem holds true for maps
de�ned on P.

Proposition 21 (Fenchel-Moreau) Suppose that � : P ! R is �(P; Cb)�
lsc and convex. If Dom(�) 6= ? then Dom(��) 6= ? and

�(Q) = sup
f2Cb

�Z
fdQ� ��(f)

�
:

One trivial example of a proper �(P; Cb)�lsc and convex map on P is given
by Q !

R
fdQ, for some f 2 Cb. But this map does not satisfy the (TrI)

property. Indeed, we show that in the setting of risk measures de�ned on P,
weakly lower semicontinuity and convexity are incompatible with translation
invariance.

Proposition 22 For any map � : P ! R, if there exists a sequence fQngn � P
such that limn �(Qn) = �1 then Dom(��) = ?. Thus the only �(P; Cb)�lsc,
convex and (TrI) map � : P ! R is � = +1:
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Proof. For any f 2 Cb(R)

��(f) = sup
Q2P

�Z
fdQ� �(Q)

�
�
Z
fd(Qn)��(Qn) � inf

x2R
f(x)��(Qn) " 1:

Observe that a translation invariant map satis�es limn �(TnQ) = limn f�(Q)� ng =
�1, for any Q 2 Dom(�). The thesis follows from Proposition 21 and what
just proved, replacing Qn with TnQ.

5.2 Quasi-convex duality

As described in the Examples in Section 3, the �V@R�
and �w are proper,

�(ca; Cb)�lcs, quasi-convex (Mon) and (TrI) maps � : P ! R[f1g. Therefore,
the negative result outlined in Proposition 22 for the convex case can not be
true in the quasi-convex setting.
We recall that one of the main contribution to quasi-convex duality comes

from the dual representation by Volle [16].
Here we replicate this result and provide the dual representation of a �(P; Cb)

lsc quasi-convex maps de�ned on the entire set P. The main di¤erence is that
our map � is de�ned on a convex subset of ca and not a vector space. But since
P is �(ca; Cb)-closed, the �rst part of the proof will match very closely the one
given by Volle. In order to achieve the dual representation of �(P; Cb) lsc risk
measures � : P ! R[f1g we will impose the monotonicity assumption of �
and deduce that in the dual representation the supremum can be restricted to
the set

C�b = ff 2 Cb j f is decreasingg :

This is natural as the �rst order stochastic dominance implies (see Th. 2.70 [8])
that

C�b =

�
f 2 Cb j Q;P 2 P and Q � P )

Z
fdQ �

Z
fdP

�
: (6)

Notice that di¤erently from [6] the following proposition does not require the
extension of the risk map to the entire space ca(R).

Proposition 23 (i) Any �(P; Cb)�lsc and quasi-convex functional � : P !
R [ f1g can be represented as

�(P ) = sup
f2Cb

R

�Z
fdP; f

�
(7)

where R : R� Cb ! R is de�ned by

R(t; f) := inf
Q2P

�
�(Q) j

Z
fdQ � t

�
: (8)

(ii) If in addition � is monotone then (7) holds with Cb replaced by C
�
b :
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Proof. We will use the fact that �(P; Cb) is the relativization of �(ca; Cb)
to the set P. In particular the lower level sets will be �(ca; Cb)-closed.
(i) By de�nition, for any f 2 Cb(R), R

�R
fdP; f

�
� �(P ) and therefore

sup
f2Cb

R

�Z
fdP; f

�
� �(P ); P 2 P:

Fix any P 2 P and take " 2 R such that " > 0. Then P does not belong to the
�(ca; Cb)-closed convex set

C" := fQ 2 P : �(Q) � �(P )� "g

(if �(P ) = +1, replace the set C" with fQ 2 P : �(Q) �Mg ; for any M).
By the Hahn Banach theorem there exists a continuous linear functional that
strongly separates P and C", i.e. there exists � 2 R and f" 2 Cb such thatZ

f"dP > � >

Z
f"dQ for all Q 2 C". (9)

Hence:�
Q 2 P :

Z
f"dP �

Z
f"dQ

�
� (C")C = fQ 2 P : �(Q) > �(P )� "g (10)

and

�(P ) � sup
f2Cb

R

�Z
fdP; f

�
� R

�Z
f"dP; f"

�
= inf

�
�(Q) j Q 2 P such that

Z
f"dP �

Z
f"dQ

�
� inf f�(Q) j Q 2 P satisfying �(Q) > �(P )� "g � �(P )� ":(11)

(ii) We furthermore assume that � is monotone. As shown in (i), for every
" > 0 we �nd f" such that (9) holds true. We claim that there exists g" 2 C�b
satisfying: Z

g"dP > � >

Z
g"dQ for all Q 2 C": (12)

and then the above argument (in equations (9)-(11)) implies the thesis.
We de�ne the decreasing function

g"(x) =: sup
y�x

f"(y) 2 C�b :

First case: suppose that g"(x) = supx2R f"(x) =: s. In this case there exists
a sequence of fxngn2N � R such that xn ! +1 and f"(xn) ! s, as n ! 1.
De�ne

gn(x) = s1(�1;xn] + f"(x)1(xn;+1)
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and notice that s � gn � f" and gn " s. For any Q 2 C" we consider Qn
de�ned by FQn(x) = FQ(x)1[xn;+1). Since Qn 4 Q, monotonicity of � implies
Qn 2 C". Notice thatZ

gndQ�
Z
f"dQn = (s� f"(xn))Q(�1; xn]

n!+1�! 0; as n!1: (13)

From equation (9) we have

s �
Z
f"dP > � >

Z
f"dQn for all n 2 N: (14)

Letting � = s�� > 0 we obtain s >
R
f"dQn+

�
2 . From (13), there exists n 2 N

such that 0 �
R
gndQ�

R
f"dQn <

�
4 for every n � n: Therefore 8n � n

s >

Z
f"dQn +

�

2
>

Z
gndQ�

�

4
+
�

2
=

Z
gndQ+

�

4

and this leads to a contradiction since gn " s. So the �rst case is excluded.
Second case: suppose that g"(x) < s for any x > x. As the function g" 2 C�b

is decreasing, there will exists at most a countable sequence of intervals fAngn�0
on which g" is constant. Set A0 = (�1; b0); An = [an; bn) � R for n � 1.
W.l.o.g. we suppose that An \ Am = ; for all n 6= m (else, we paste together
the sets) and an < an+1 for every n � 1. We stress that f"(x) = g"(x) on
D =:

T
n�0A

C
n . For every Q 2 C" we de�ne the probability Q by its distribution

function as
FQ(x) = FQ(x)1D +

X
n�1

FQ(an)1[an;bn):

As before, Q 4 Q and monotonicity of � implies Q 2 C". MoreoverZ
g"dQ =

Z
D

f"dQ+ f"(b0)Q(A0) +
X
n�1

f"(an)Q(An) =

Z
f"dQ:

From g" � f" and equation (9) we deduceZ
g"dP �

Z
f"dP > � >

Z
f"dQ =

Z
g"dQ for all Q 2 C":

We reformulate the Proposition 23 and provide two dual representations of
�(P(R); Cb)-lsc Risk Measure � : P(R) ! R [ f1g : The �rst one is given in
terms of the dual function R used by [5]. The second one is obtained from
Proposition 23 considering the left continuous version of R and rewriting it (see
Lemma 25) in the formulation proposed by [6]. If R : R� Cb(R) ! R, the left
continuous version of R(�; f) is de�ned by:

R�(t; f) := sup fR(s; f) j s < tg : (15)
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Proposition 24 Any �(P(R); Cb)-lsc Risk Measure � : P(R) ! R [ f1g can
be represented as

�(P ) = sup
f2C�

b

R

�Z
fdP; f

�
= sup

f2C�
b

R�
�Z

fdP; f

�
: (16)

The function R�(t; f) can be written as

R�(t; f) = inf fm 2 R j 
(m; f) � tg ; (17)

where 
 : R� Cb(R)! R is given by:


(m; f) := sup
Q2P

�Z
fdQ j �(Q) � m

�
, m 2 R: (18)

Proof. Notice that R(�; f) is increasing and R (t; f) � R� (t; f) : If f 2 C�b
then Q � P )

R
fdQ �

R
fdP . Therefore,

R�
�Z

fdP; f

�
:= sup

s<
R
fdP

R(s; f) � lim
Pn"P

R(

Z
fdPn; f):

From Proposition 23 (ii) we obtain:

�(P ) = sup
f2C�

b

R

�Z
fdP; f

�
� sup

f2C�
b

R�
�Z

fdP; f

�
� sup

f2C�
b

lim
Pn"P

R(

Z
fdPn; f)

= lim
Pn"P

sup
f2C�

b

R(

Z
fdPn; f) = lim

Pn"P
�(Pn) = �(P ):

by (CfB). This proves (16). The second statement follows from the Lemma 25.

Lemma 25 Let � be any map � : P(R) ! R [ f1g and R : R � Cb(R) ! R
be de�ned in (8). The left continuous version of R(�; f) can be written as:

R�(t; f) := sup fR(s; f) j s < tg = inf fm 2 R j 
(m; f) � tg ; (19)

where 
 : R� Cb(R)! R is given in (18).

Proof. Let the RHS of equation (19) be denoted by

S(t; f) := inf fm 2 R j 
(m; f) � tg ; (t; f) 2 R� Cb(R);

and note that S(�; f) is the left inverse of the increasing function 
(�; f) and
therefore S(�; f) is left continuous.
Step I. To prove that R�(t; f) � S(t; f) it is su¢ cient to show that for all s < t
we have:

R(s; f) � S(s; f); (20)
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Indeed, if (20) is true

R�(t; f) = sup
s<t

R(s; f) � sup
s<t

S(s; f) = S(t; f);

as both R� and S are left continuous in the �rst argument.
Writing explicitly the inequality (20)

inf
Q2P

�
�(Q) j

Z
fdQ � s

�
� inf fm 2 R j 
(m; f) � sg

and letting Q 2 P satisfying
R
fdQ � s, we see that it is su¢ cient to show the

existence of m 2 R such that 
(m; f) � s and m � �(Q). If �(Q) = �1 then

(m; f) � s for any m and therefore S(s; f) = R(s; f) = �1.
Suppose now that 1 > �(Q) > �1 and de�ne m := �(Q): As

R
fdQ � s

we have:


(m; f) := sup
Q2P

�Z
fdQ j �(Q) � m

�
� s

Then m 2 R satis�es the required conditions.
Step II : To obtain R�(t; f) := sups<tR(s; f) � S(t; f) it is su¢ cient to

prove that, for all s < t; R(s; f) � S(t; f), that is

inf
Q2P

�
�(Q) j

Z
fdQ � s

�
� inf fm 2 R j 
(m; f) � tg : (21)

Fix any s < t and consider any m 2 R such that 
(m; f) � t. By the
de�nition of 
, for all " > 0 there exists Q" 2 P such that �(Q") � m andR
fdQ" > t � ": Take " such that 0 < " < t � s. Then

R
fdQ" � s and

�(Q") � m and (21) follows.

5.3 Computation of the dual function

The following proposition is useful to compute the dual function R�(t; f) for
the examples considered in this paper.

Proposition 26 Let fFmgm2R be a feasible family and suppose in addition that,
for every m, Fm(x) is increasing in x and limx!+1 Fm(x) = 1. The associated
map � : P ! R [ f+1g de�ned in (2) is well de�ned, (Mon), (Qco) and
�(P; Cb)�l.s.c. and the representation (16) holds true with R� given in (17)
and


(m; f) =

Z
fdF�m + F�m(�1)f(�1): (22)

Proof. From equations (1) and (3) we obtain:

A�m = fQ 2 P(R) j FQ � F�mg = fQ 2 P j �(Q) � mg

so that


(m; f) := sup
Q2P

�Z
fdQ j �(Q) � m

�
= sup

Q2P

�Z
fdQ j FQ � F�m

�
:
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Fixm 2 R, f 2 C�b and de�ne the distribution function FQn(x) = F�m(x)1[�n;+1)

for every n 2 N. Obviously FQn � F�m, Qn " and, taking into account (6),R
fdQn is increasing. For any " > 0, let Q" 2 P satisfy FQ" � F�m andR
fdQ" > 
(m; f) � ". Then: FQ"

n
(x) := FQ"(x)1[�n;+1) " FQ" , FQ"

n
� FQn

and Z
fdQn �

Z
fdQ"n "

Z
fdQ" > 
(m; f)� ":

We deduce that
R
fdQn " 
(m; f) and, sinceZ
fdQn =

Z +1

�n
fdF�m + F�m(�n)f(�n);

we obtain (22).

In the following examples m 2 R, f 2 C�b and f l is the left inverse of f .

Example 27 Computation of the dual function R� for the V@R and the worst
case measure. The family fFmgm2R is given by (see the Examples 15 and 16)
Fm = �1(�1;m) + 1[m;+1), for � 2 [0; 1). Hence we get from (22)


(m; f) = (1� �)f(�m) + �f(�1):

If � > 0; from (17) and (16)

R� (t; f) = �f l
�
t� �f(�1)

1� �

�
;

�V@R�
(P ) = � inf

f2C�
b

f l
�R

fdP � �f(�1)
1� �

�
If � = 0; 
(m; f) = f(�m) and from (17), (16)

R� (t; f) = �f l(t);

�w(P ) = � inf
f2C�

b

f l
�Z

fdP

�
Example 28 Computation of 
(m; f) for the �V@R.
As Fm = �(x)1(�1;m)(x) + 1[m;+1)(x); we compute from (22):


(m; f) =

Z �m

�1
fd� + (1� �(�m))f(�m) + �(�1)f(�1):

If � is decreasing we may use Remark 20 to derive a simpler formula for 
.
Indeed, �V@R(P ) = �eV@R(P ) where 8m 2 ReFm(x) = �(m)1(�1;m)(x) + 1[m;+1)(x)

and so

(m; f) = �(�m)f(�1) + (1� �(�m))f(�m);

which is increasing in m:
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