

Università degli Studi di Milano - Bicocca

FACOLTÀ DI SCIENZE STATISTICHE Corso di Dottorato di Ricerca in Statistica XXIV ciclo

Inference on Causal Risk Differences: Testing Statistical Hypotheses

Discussant:

Enrico Ripamonti

Matricola 034910

Tutor:

Prof. Piero Quatto

Acknowledgements

Thanks to Professor Piero Quatto, who has continuously encouraged me during this work and has given me constructive feedbacks and valuable comments. A special thanks also to Professor Fulvia Mecatti and Professor Giorgio Vittadini, who have supervised my PhD work during these years.

I would also like to state my gratitude to Professor Els Goetghebeur, who invited me for a fruitful visiting period at the University of Gent, Department of Applied Mathematics and Computer Science. She's been of great help for elaborating new ideas.

Thanks also to Professor Claudio Luzzatti for allowing me to participate in an important observational study on the anatomical foundation of acquired reading disorders.

Contents

\mathbf{A}	bstra	$\operatorname{\mathbf{ct}}$	1
In	$\operatorname{trod}_{}^{i}$	uction	3
1	An	Introduction to Causation and Causal Inference	9
	1.1	Overview	9
	1.2	Historical Background	11
	1.3	An Operational Definition of Causality	22
	1.4	Hill's Criteria	30
2	Cau	sal Effects in the Potential Outcomes Framework	37
	2.1	Overview	37
	2.2	Defining Causal Effects	41
	2.3	The Assignment Mechanism	43
	2.4	Assumptions	47
	2.5	Average Causal Effects	50
	2.6	Measuring Causal Effects	53
	2.7	Randomized Experiments	53
	2.8	Testing Statistical Hypotheses	62
	2.9	The Structural Approach to causal inference	74
	2.10	Conclusions	78
3	Obs	ervational Studies	7 9
	3.1	Overview	79
	3.2	Selection on Observables	88
		3.2.1 Regression Methods	88
		3.2.2 Methods based on the Propensity Score	94
		3.2.3 Combining the Regression and the Propensity Score	
		Methods	101
	3.3	Selection on Unobservables	106
		3.3.1 Sensitivity Analysis	106

		3.3.2 Bound Analysis	109
		V	
		3.3.3 Instrumental Variables	111
		3.3.4 Regression Discontinuity Design	113 116
	3.4	The Structural Approach: A Brief Note	110
	$\frac{3.4}{3.5}$	Final Remarks	121
	5.5	rmai nemarks	141
4		act Analysis of 2×2 Binomial Trials	12 3
	4.1	Overview	123
	4.2	Optimal and suboptimal testing of statistical hypotheses: a	
	4.0	brief review	126
	4.3	The analysis of 2×2 tables	156
		4.3.1 Experimental Designs	156
		4.3.2 Test statistics	158
		4.3.3 Defining and Computing the p-value	161
		4.3.4 Comparing the tests	177
	4.4	Unbiased Estimation of Risk Differences in the Potential Out-	101
		comes Framework	181
5	An	Unconditional Approach to the Analysis of the 2×2 Bi	_
	non	nial Trials	187
	5.1	Overview	187
	5.2	The Null Power Function	188
	5.3	The Derivative of $\pi_{\tau}(p)$	191
	5.4	Exact Attained Size of the Test	194
6	Nev	w developments on the Suissa & Shuster's test	199
	6.1	Introduction	199
	6.2	A new R algorithm for the Suissa & Shuster's test	202
	6.3	Results on the Suissa & Shuster's test	208
	6.4	A new R algorithm to compute the Berger & Boos' Modified	
		Z test	209
	6.5	Results on the Berger & Boos' Modified Z test	214
		6.5.1 Comparison of sizes	214
		6.5.2 Power Comparison	220
	6.6	Discussion	226
$\mathbf{C}_{\mathbf{c}}$	onclı	usion and Perspectives	231
Fi	ırthe	er work	233
Ri	ihling	granhy	243

${\tt CONTENTS}$

Appendices	259
A R Codes	259
B Tables	265
C Figures	495

List of Figures

1.1	Example of a spurious relation between the variables x_1 and y_1	24
1.2	Example of an indirect relation between the variables x_1 and y_1	25
1.3	Example of a conditional relation between the variables x_1 and	
	$y_1 \ldots \ldots y_1$	25
1.4	Example of a suppressor relationship	26
1.5	Example of a formative relationship between a latent factor ξ_1	
	and two observable variables x_1 and $x_2 \ldots \ldots \ldots$	29
1.6	Example of a reflective relationship between a latent factor ξ_1	
	and two observable variables x_1 and $x_2 \ldots \ldots \ldots \ldots$	30
2.1	Example of a Standardization and Inverse Probability Weighting	56
2.2	Inverse Probability Weighting: Pseudopopulation had all sub-	
	jects remained untreated	59
2.3	Inverse Probability Weighting: Pseudopopulation had all sub-	
	jects been treated	60
2.4	Inverse Probability Weighting: Overall Pseudopopulation	61
0.4		
3.1	Some examples of the common support problem	82
3.2	Example of a regression method in causal inference. The ef-	
	fect of the treatment is evaluated as an estimated difference	
	in intercepts between the regression function for the treated $(u, (x))$ and for the non-treated units $(u, (x))$	90
	$(\mu_1(x))$ and for the non treated units $(\mu_0(x))$	90
4.1	Example of a critical region for the test τ in Equation 4.4	128
4.2	Example of a critical region for the test τ' in Equation 4.5	129
4.3	Consistency of a statistical test; as n increases, the power func-	
	tion under the alternative hypothesis is higher	130
4.4	Pdfs under the null and alternative hypotheses (on the left),	
	and likelihood ratio given the observed sample (on the right).	136
4.5	v	137
4.6	Critical region determined by the set B''	138

4.7	Examples of an unbiased and of a not admissible test	144
4.8	The general count of a 2×2 table	156
4.9	Fisher's tea tasting example	157
4.10	Treatment of children with cardiac arrest. High dose versus	
	standard dose epinephrine Perondi et al. (2004)	157
4.11	Effect of Genotype on Eyes' Exofoliative Syndrome, Ritland	
	et al. (2007)	158
4.12	Contingency Table to show the inequality: $p_F(a+1;z,m,n) <$	100
	$p_L(a;z,m,n) < p_F(a;z,m,n) \dots \dots \dots \dots \dots \dots \dots$	167
4.13	General diagram of testing statistical hypotheses on the 2×2	
	binomial trial	174
4.14	Exact p-values for the 2×2 table using the Chi-squared statis-	
	tic: $Z^2 = \frac{(\hat{p}_2 - \hat{p}_1)}{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}$. Calculations are from independent bi-	
	$p(1-p)(\frac{1}{n_1} + \frac{1}{n_2})$	
	nomial distributions with common proportion p . Note that the maximum is achieved for values of the parameter that are	
	highly unlikely in light of the observations	175
1 15	Comparison of the validity of three p-values: Fisher-Boschloo's	110
4.15	test, Liebermeister's unconditional test and Lancaster's un-	
	conditional test	179
4.16	Actual significance level, two binomials (one-margin fixed de-	119
4.10	sign), row sums 34, $\alpha = 0.05$, Lydersen et al. (2009), p. 1169.	180
4.17	Power, two binomials (one margin fixed design), equal row	100
4.11	sums, $\pi_1 = 0.03$, $\pi_2 = 0.2$, $\alpha = 0.05$ Lydersen <i>et al.</i> (2009), p.	
	sums, $n_1 = 0.05$, $n_2 = 0.2$, $\alpha = 0.05$ Lydersen <i>et al.</i> (2009), p. 1169	181
	1109	101
5.1	Table 1, from Suissa and Shuster (1985), p. 322	195
5.2	Table 2, from Suissa and Shuster (1985), p. 324	196
5.3	Table 3, from Suissa and Shuster (1985), p. 325	197
6.1	Structure of the R's algorithm used to compute the attained	
	sizes of the Suissa and Shuster (1985)'s test, in case of different	~~-
	sample sizes for $\alpha = 0.05$	207
C.1	Comparison of the p-values for the Z exact test for the un-	
	pooled and pooled statistics in case of equal sample size, α = 0.05	.496
C.2	Comparison of the p-values for the Z exact test for the un-	
O. <u>-</u>	pooled and pooled statistics in case of equal sample size, α = 0.05	.497
C.3	Comparison of the p-values for the Z exact test for the un-	,
J.5	pooled and pooled statistics in case of equal sample size, $\alpha = 0.05$.498
C.4	Comparison of the p-values for the Z exact test for the un-	. 100
···	pooled and pooled statistics for different sample sizes, $\alpha = 0.05$.499

C.5	Comparison of the p-values for the Z exact test for the un-	
C.6	pooled and pooled statistics for different sample sizes, α = 0.025 Comparison of the p-values for the Z exact test for the un-	
C.7	pooled and pooled statistics for different sample sizes, α = 0.01 Comparison of power between the unpooled and the pooled Z	.501
	Exact Tests for different sample sizes, $\alpha = 0.05$	502
C.8	Comparison of power between unpooled and pooled Z Exact Tests for different sample sizes, $\alpha = 0.025$	507
C.9	Comparison of power between unpooled and pooled Z Exact Tests for different sample sizes, $\alpha = 0.01.$	512
C.10	Comparison of p-values for the unpooled Z test calculated with both the classical Lehmann (1959) procedure and the	012
C.11	Berger and Boos (1994) procedure for $\alpha = 0.05$ Comparison of p-values for the unpooled Z test calculated with both the classical Lehmann (1959) procedure and the	517
	Berger and Boos (1994) procedure for $\alpha = 0.025$	522
C.12	Comparison of p-values for the unpooled Z test calculated with both the classical Lehmann (1959) procedure and the	527
C.13	Berger and Boos (1994) procedure for $\alpha = 0.01$ Comparison of p-values for the pooled Z test calculated with both the classical Lehmann (1959) procedure and the Berger	327
C.14	and Boos (1994) procedure for $\alpha = 0.05$	532
O 15	both the classical Lehmann (1959) procedure and the Berger and Boos (1994) procedure for $\alpha = 0.025$	537
C.15	Comparison of p-values for the Poooled Z test calculated with both the classical Lehmann (1959) procedure and the Berger and Poos (1994) procedure for a = 0.01	542
C.16	and Boos (1994) procedure for $\alpha = 0.01$	
C.17	the Berger unpooled test for different sample sizes, $\alpha = 0.05$. Comparison of power between the Suissa unpooled test and	547
C.18	the Berger unpooled test for different sample sizes, $\alpha = 0.025$. Comparison of power between the Suissa unpooled test and	572
C 10	the Berger unpooled test for different sample sizes, $\alpha = 0.01$.	597
C.19	Comparison of power between the Suissa pooled test and the Berger pooled test for different sample sizes, $\alpha = 0.05$	622
C.20	Comparison of power between the Suissa pooled test and the	647
C.21	Berger pooled test for different sample sizes, $\alpha = 0.025$ Comparison of power between the Suissa pooled test and the	647
	Berger pooled test for different sample sizes, α = 0.01	672

List of Tables

2.1	An Example: Memantine Randomized Experiment	49
4.1	Association between Type of stimulus (root or anagram) and accuracy in a letter recognition task (Baldi and Traficante (1992))	124
4.2	Association between tendon defect and symptoms reported by patients (Pfirrmann <i>et al.</i> (2005))	125
4.3	Association between presence of bursal fluid collection and symptoms reported by patients (Pfirrmann $et\ al.\ (2005)$)	125
B.1	P-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.05$	265
B.2	P-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.025$	266
В.3	P-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.01$	267
B.4	Achieved power and p-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.05$	269
B.5	Achieved power and p-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.025$	289
B.6	Achieved power and p-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.01$	309
B.7	P-values calculated for the z-pooled statistic in cases of equal sample sizes, $\alpha = 0.05$	329
B.8	P-values calculated for the z-pooled statistic in cases of equal sample sizes, $\alpha = 0.025$	330
B.9	P-values calculated for the z-pooled statistic in cases of equal	331
B.10	sample sizes, α = 0.01	333

B.11 Achieved power and p-values calculated for the z-pooled statis-	
tic in cases of equal sample sizes, $\alpha = 0.025$	353
B.12 Achieved power and p-values calculated for the z-pooled statis-	
tic in cases of equal sample sizes, $\alpha = 0.025$	373
B.13 P-values calculated for the z-unpooled statistic in cases of dif-	
ferent sample sizes, $\alpha = 0.05$	393
B.14 P-values calculated for the z-unpooled statistic in cases of dif-	
ferent sample sizes, $\alpha = 0.025$	394
B.15 P-values calculated for the z-unpooled statistic in cases of dif-	
ferent sample sizes, $\alpha = 0.01$	395
B.16 Achieved power and p-values calculated for the z-unpooled	
statistic in cases of different sample sizes, α = 0.05	396
B.17 Achieved power and p-values calculated for the z-unpooled	
statistic in cases of different sample sizes, α = 0.025	412
B.18 Achieved power and p-values calculated for the z-unpooled	
statistic in cases of different sample sizes, α = 0.01	428
B.19 P-values calculated for the z-pooled statistic in cases of differ-	
ent sample sizes, α = 0.05	444
B.20 P-values calculated for the z-pooled statistic in cases of differ-	
ent sample sizes, α = 0.025	445
B.21 P-values calculated for the z-pooled statistic in cases of differ-	
ent sample sizes, α = 0.01	446
B.22 Achieved power and p-values calculated for the z-pooled statis-	
tic in cases of different sample sizes, $\alpha = 0.05$	447
B.23 Achieved power and p-values calculated for the z-pooled statis-	
tic in cases of different sample sizes, α = 0.025	463
B.24 Achieved power and p-values calculated for the z-pooled statis-	
tic in cases of different sample sizes, α = 0.01	479

Abstract

The use of unconditional tests for comparing hypotheses on the 2×2 binomial trial is still not widespread in the applications, despite these preserve the significance level and usually are more powerful than conditional exact tests for moderate to small samples. Previously, this was due to the bigger computational demand of this approach with respect to the conditional approach. Today, softwares can easily compute the p-values of both conditional and unconditional tests. In this thesis the Suissa and Shuster (1985)'s unconditional test is reviewed and a new R algorithm aimed to derive exact unconditional p-values is proposed. We use both the classical Lehmann (1959)'s procedure and the Berger and Boos (1994)'s procedure, which calculates the p-values by maximizing the null power function on a confidence interval for the nuisance parameter. Optimal values for the confidence level are derived for different degrees of imbalance of the sample sizes. Furthermore, we propose the use of the unconditional approach for testing statistical hypotheses within the framework of the Rubin Causal Model.

Introduction

Science unavoidably deals with cause, since the main purpose of most scientific works is to disclose causal relations. Physicians aim to discover if our way of life can cause cancer and why; psychologists explore the relation between our gene pool and our patterns of behaviour (e.g. those related to criminality); economists study whether human capital is positively correlated with our chances to succeed. In this highly demanding society of knowledge, the mission of statistics is to develop adequate and robust methodological tools. Standard statistical methods do not allow a researcher to draw inference on the causal nature of an observed relation. If we expect that the association between two variables is not only due to chance, we'll consider and check the correlation between those two variables. Nevertheless, other variables could affect the relation we're interested in. Such variables are classically referred to as counfounders by the epidemiology literature, and the type of relation they create is typically known as spurious.

Nowadays, many statistical tools in order to study these relations in a multivariate framework are currently used by applied researchers. These range from those relatively simple and widespread such as multiple regression (see for instance Angrist and Pischke (2008) for a modern approach), to those highly complex and recently developed like structural equation modeling (e.g. Loehlin (2004)) multilevel mixture models (e.g. Vermunt (2007)) and multilevel latent class models (e.g. Vermunt (2003); Vermunt and Magidson (2005)). For instance, the latent class approach is currently used for analyzing and segmenting markets (e.g. Wedel and Kamakura (2000)). Overall, these methods allow a researcher to evaluate the effect of one or more variables on one ore more outcomes, hence allowing them to make well-grounded assertions on the importance of the relation they're studying. However, multivariate methods, also those highly sophisticated and provided with good estimation tools, do not permit per se to get information on the nature of the relations among variables and do not allow per se to identify confounding. In order to leap over the hedge and consider the causal nature of the relation we're studying, at first we do not need to develop new statistical

tools, but we have to *change our way of looking at world*. Indeed, this is the first step towards *causal inference* and to the *Rubin's causal model*.

Causal inference not only aims to analyze data, but also to disclose the mechanisms that have generated data. Hence, the dynamics of change can be retrospectively examined and prospectively foreseen. It can be rightly asserted that the origin of modern statistics are inextricably related to the problem of causality. Indeed, most of the modern statistical approaches to causal inference (see Holland (1986) for an introduction) originate from the seminal analyses of randomized controlled trials proposed by Fisher (1925) and Neyman (1923). During the 1970s, Donald Rubin developed the framework for the well-known approach to the analysis of causal effects (Rubin, 1973a,b, 1974, 1977, 1978). The "core" of the Rubin's proposal refers to the philosophical theory of *counterfactuals* put forth by contemporary philosophers such as David Lewis (e.g. Lewis (1973)). Basically, this approach suggests to consider causal relations in terms of comparison between potential outcomes. These are pairs of possible outcomes, defined on the same unit, which refer to two possible and alternative "states of the world" (we'll precisely justify and develop this statement in Chapter 2). Note that the Rubin's approach to causality is not certainly the *only* modern approach to causality. For instance, influential statisticians such as Philip Dawid, have recently proposed a different statistical framework to causality (e.g. Dawid (2000)), which essentially refers to the philosophical works of Wesley Salmon (e.g. Salmon (1984)).

Rubin's model of causality is also known as *Program Evaluation Approach*, since its main purpose is to draw inference from the outcomes generated by exposure of a set of units to a program or treatment. Truly, a program can be made of more than a single treatment. Nevertheless, in the present work we'll only consider the case in which units are only exposed to a single treatment. In this case, the members of the population who take part in the program will be denoted as *participants* (or exposed, treated), whereas those who do not take part in the program will be referred to as *non-participants* (or non-exposed, non-treated). Causal inference aims to ascertain whether participation to a certain program does have or does not have a *causal effect* on a certain outcome.

The statistical literature has been so far mostly interested in the problem of estimation in causal inference (see Wooldridge (2007) for a recent review) whereas less attention has been given to the problem of testing statistical hypotheses. As far as estimation is concerned, literature has classically focused on estimation under the fundamental hypothesis of unconfoundedness, which will be discussed in Chapter 2 and 3. More recently also another hypothesis, known as selection on unobservables, has been deeply considered

and methods for estimation under this hypothesis have been proposed. Such a rich literature focusing on estimation contrasts with the small number of works that have considered the problem of testing statistical hypotheses from a causal point of view. Most of these works are due to Rubin and coworkers (see Imbens and Rubin (2011) for a review) and pertain to two basic methodologies to the problem of testing statistical hypotheses in randomized experiments: the classic Fisherean approach and the Neyman's repeated sampling approach.

In the present thesis we'll consider in depth the problem of testing statistical hypotheses in a causal framework. In Chapter 1 we'll introduce causal inference from a philosophical point of view. A historical background shall be given, going back from Plato's and Aristotle's original speculation to the Kantian conception of cause. Subsequently, four among the modern most influential perspectives on causality will be reviewed: the Mechanistic theories (Wesley Salmon and Phil Dowe); the Probabilistic theories (Hans Reichenbach; Patrick Suppes); the Counterfactual theories (David Lewis) and the Agent-oriented theories (Huw Price; Peter Menzies). After this historical background, we'll put forward an operational definition of causality proposed in Bollen (1989) and we'll discuss the famous Hill's criteria for causality, which have been published in 1965 in a very influential paper on the *Proceedings of the Royal Society of Medicine*. An analytical review on causality from a statistical perspective cannot get along without considering these criteria, that have found large agreement among epidemiologists.

In Chapter 2 we'll introduce causal effects within the Potential Outcomes Framework and basic definitions will be given. We'll consider the assignment mechanism and define different types of studies (classical randomized studies, completely randomized studies, observational studies). Afterwards, basic assumptions to draw causal inference will be introduced and discussed. We'll define average causal effects and how to measure them. In particular, we'll introduce the concepts of risk difference, risk ratio and odds ratio. In the following chapters, only risk difference will be considered and methods aimed to test hypotheses for risk difference will be reviewed. We'll apply these concepts in the case of randomized experiments and we'll introduce both the Fisher's and the Neyman's approaches to testing statistical hypotheses. Last, a brief note on the James Heckman's Structural Approach to causal inference will be given.

In Chapter 3 we'll first consider how to estimate causal effects under unconfoundedness. We'll introduce regression methods, methods based on the propensity score, matching methods, methods that combine regression with propensity score weighting, methods that combine matching and regression. We'll briefly discuss how to assess the unconfoundedness assumption, and it will be shown that only indirect methods can be used. Furthermore, we'll consider estimation methods when the fundamental hypothesis of unconfoundedness is not expected to hold (*selection on unobservables*). We shall go over bound methods, sensitivity analysis, the methods based on instrumental variables, regression discontinuity designs and difference-in-differences methods. Last, we'll briefly mention at James Heckman's work on observational studies and on choice modeling.

The first three chapters of the present work have to be considered as a general framework, in the light of which examining the problem of testing statistical hypotheses. As it has been mentioned, we'll narrow our attention on risk difference and on the exact analysis of 2×2 binomial trials. A brief review on optimal and suboptimal testing of statistical hypotheses will be given. Subsequently, the main methods developed to test statistical hypotheses on the 2×2 binomial trial will be reviewed. Differently from the most recent reviews on this issue (e.g. Lydersen et al. (2009)), which mainly classify tests from a design of experiment point of view, we'll also focus on the theoretical properties of testing, with particular emphasis on concepts such as those of admissible test and valid p-value. Moreover, we'll compare the various tests that have been proposed in the literature in terms of degree of conservatorism and power. Last, we'll introduce the issue of unbiased estimation of risk differences in the Potential Outcomes Framework and its connection with the problem of testing statistical hypotheses.

In Chapter 5 we'll present an unconditional approach to testing statistical hypotheses on a 2×2 binomial trial, originally proposed by Suissa and Shuster (1985). This is a test which considers standardized risk differences as a test statistic. We'll shed into light the advantages that can be obtained using an unconditional rather than a conditional (e.g. Fisher's exact test) approach to this problem. Nevertheless, as it shall be clear, the original Suissa and Shuster (1985)'s paper presents with some limitations and shortcomings, also due to the limited computational capacity in the 1980s.

In Chapter 6 we'll re-consider the Suissa & Shuster's test, developing a new R algorithm aimed to derive the p-values of the test using the classic maximization procedure described in Lehmann (1959). One of the limitations of the Suissa and Shuster (1985)'s paper is that the p-values are only tabulated in the case of balanced sample sizes. We'll describe a new algorithm that can derive the p-values in a more direct way than the Fortran original algorithm, for both the balanced and the imbalanced case. We'll comment the results we've obtained by means of this algorithm, in the unpooled and the pooled cases, comparing both the degree of conservatorism and the p-values of the tests. Furthermore, we'll introduce the fundamental paper by Berger and Boos (1994) in which an alternative maximization procedure with re-

spect to the original Lehmann (1959)'s procedure is put forward. By means of this new procedure, p-values are derived by maximizing the null power function not on the entire nuisance parameter space, but on a confidence set for the nuisance parameter. We'll highlight on the advantages of this approach and we'll show that the p-values thus obtained are valid. However, at the actual "state of the art", it is not clear how to optimally compute this confidence set. In particular, the two following questions can be posed: i) Which is the best method in order to construct the confidence set? ii) Which are the optimal values for the confidence level to be set? In this thesis, we'll not discuss the first question (which will be left for further research), and we'll only calculate asymptotic confidence sets (which are also adopted by Berger and Boos (1994)). We'll examine the second question, and we'll discuss which confidence levels have to be considered as optimal for deriving the p-values of the Suissa & Shuster's test. Monte Carlo simulations will be used in order to calculate the confidence intervals using different confidence levels. Last, we'll critically discuss our results, comparing both the degree of conservatorism and the power achieved using different versions of the Berger & Boos' modification for the Suissa & Shuster's test.

Clearly, the Conclusions that will be drawn from the present work will not certainly be conclusive. Further research will be sketched out with respect both to the theoretical properties of these tests and to further simulation work that will be performed. Furthermore, we'll propose to use the unconditional approach for testing statistical hypotheses on the 2×2 binomial trial also in the Potential Outcomes Framework. In particular, also in this case we'll focus on risk differences.

Actually, the present thesis has started from a concrete problem: that of testing statistical hypotheses on 2×2 binomial trials in the context of voxel-based lesion-symptom mapping (VLSM). We'll mention at this problem in the Conclusion and we shall point out some tracks for further studies applied to the neuroscience field.

Chapter 1

An Introduction to Causation and Causal Inference

1.1 Overview

One of the contemporary statisticians' main concerns is related to the causal interpretation of the results of experimental trials and observational studies. The issue of causality can be considered as a philosophical keystone in the history of human thinking, dating back to the pre-socratic wisdom, to Plato's and Aristotle's seminal speculations, and carried on also in contemporary philosophy. Fundamentally, we could assert that drawing causal inference is the essence of applied sciences. Since the history of mankind, human beings have always tried to draw inferences from the observation of nature: How long does corn take to grow? Why does the sun rise at different times? Is there any relationship between the phases of the moon and tides? Even if nowadays the previous questions have been answered, many others—such as the causes of cancer, the origin of the species, the destiny of stars and the anatomical foundation of human language—remain unresolved. The basic problem for applied researchers is that a general definition of causality does not exist which is routinely accepted. Modern philosophers, such as Bertrand Russell, have also proposed to definitely abandon the idea of causality. Moreover, as we shall see, hypotheses which are not directly testable are usually needed for causal inference in fields such as epidemiology or psychometrics. This might appear as an unconquerable obstacle to draw causal inference from our data. In this chapter, after briefly discussing the issue of the nature of causality from a historical perspective, we will examine which practical problems have to be faced in the search for causality from an applied point of view. The "philosophy" underlying this chapter is the following:

One admits that causal thinking belongs completely on the theoretical level and that causal laws can never be demonstrated empirically. But this does not mean that it is not helpful to *think* causally and to develop causal models that have implications that are indirectly testable. In working with these models it will be necessary to make use of a whole series of untestable simplifying assumptions, so that even when a given model yields correct empirical predictions, this does not mean that its correctness can be demonstrated. [Blalock (1964), p. 6]

The first and basic question is: Why do we really need causal inference? Consider the following examples:

- 1. Is tobacco smoking a cause of lung cancer?
- 2. To what extent is Alzheimer's disease caused by environmental or genetic factors?
- 3. Is passive smoking a cause of cardiovascular diseases?
- 4. Does long-term use of hormone replacement therapy (HRT) cause breast cancer?
- 5. Can obesity be prevented by physical activity?

All the previous questions have long been debated in epidemiology and represent relevant topics in health policies and health services programming. These are some important reasons for which we need causal inference, i.e. not only for theoretical or philosophical purposes, but also for answering practical questions. The main problem we have to face, in the attempt to answer the previous questions, is that the observation of a correlation between two variables does not indicate *per se* the presence of an underlying causal relation. For instance, many people believe that the presence of immigrants is one of the causes of crime in urban areas. However, less people know that if the relation between these two variables were balanced with respect to other variables, such as years of school attended or occupational status, the relationship would probably disappear. So, the first lesson to be learned in the analysis of causality is that the relation among variables should always be checked in a multi-variate and not a bi-variate framework.

In the present chapter, a philosophical background on cause and causation will be briefly given (§1.2). The main reference for this section will be the book of Menno Hulswit on cause and causation from a Peircean perspective (Hulswit (2002)). Nevertheless, it would take too long to analyze the contributes of all the philosophers that have argued about concepts such as those of cause and causation. In the present work the attention will be especially focused on the diatribe between rationalist thinkers and empiricist thinkers. A brief overview about modern theories on cause and causation,

as summed up by Williamson (2005), will also be given. In paragraph 1.3 the philosophical speculation will be put aside, and some practical problems with respect to the analysis of the relation among variables shall be faced; the main reference for this paragraph will be the seminal book of Kenneth Bollen on structural equation modeling (Bollen, 1989). Last, in paragraph 1.4, a different perspective on the same problems faced in paragraph 1.3 will be discussed: this is the Austin Bradford Hill's proposal of nine criteria to establish causality from an epidemiologic point of view (the main reference for this section will be Rothman et al. (2008)). These criteria are presented here also as a preamble to the second chapter on the Rubin Causal Model. Even if these criteria have rightly been criticized by many authors, they continue to be a useful framework for formalizing the main questions a researcher must make when dealing with the problem of identifying causal relations.

1.2 Historical Background

A first clear definition of cause can be found in Plato's [424 B.C. - 348 B.C.] Timaeus: "everything that becomes or changes must do so owing to some cause; for nothing can come to be without a cause" (Timaeus 28a). After this seminal outlining, a good starting point for analyzing the development of the concept of cause from a historical perspective is given by the Aristotle's [384 B.C. - 322 B.C.] speculation (consider in particular his Posterior Analytics, Physics and Metaphysics). The Greek philosopher built a metaphysical system in which the concept of cause was developed as an answer to the basic question: What is this?. A cause, i.e. something without which the things would not be (aitia), can be thought according to four different meanings: i) material cause, indicating the material nature of an entity; ii) formal cause, indicating the idea or abstract concept underlying a thing; iii) efficient cause, expressing the effect of antecedent events; iv) final cause, indicating the reason or the purpose of a thing.

Thus, given a marble statue, the question "What is this?" could correctly be answered in one of the following ways: "This is marble", "This is what was made by Phydias", "This is something to be put in the temple of Apollo" and "This is Apollo". These answers are the answers to four different questions, respectively: "What is this made of?", "Who is this made by?", "What is this made for?" and "What is it that makes this what it is and not something else?". The answers have come to be known as, again respectively, the material cause, the efficient cause, the final cause and the formal cause. Though a complete answer to the original question would encompass those four different answers, and therefore the four different causes, Aristotle argued that the most important and decisive cause was the formal cause (Physics II, 194b23-195a3). Only the efficient causes as "things responsible" in the sense that an efficient cause is a thing that by its activity brings about an effect in another thing. Thus, the efficient cause was defined by reference to some substance performing a change: it is the "primary source of the change" (Metaphysics V.4, 1014b18-20). [Hulswit (2002), p. 17]

In Aristotle's view, causes are something that can be completely known from human beings, and causes are necessarily the antecedents of their effects. Whether Aristotle really proposed the concept of cause in terms of necessity it is still an open issue, but this linkage between the two concepts became the bone of contention among later philosophers. For instance, the concept of necessity was routinely accepted by the Stoic theorists:

Thus, one of the main innovations of the Stoics was that the idea of cause is linked both to an exceptionless regularity and to necessity. The Stoics strictly held the view that each event has a cause. They rejected the idea that there could be any uncaused events, because that would undermine their basic belief in the coherence of the universe (e.g. Cicero, *De Fato*, 43). They held, moreover, that each particular event *necessitates* its effect. According to Alexander, for example, it is *necessary* that the same effect will recur in the same circumstances, and it is not *possible* that it be otherwise. [Hulswit (2002), p. 18]

In the Middle Ages, Aristotle's view of necessity was tried to be reconciled with the Christian belief of Creation. In fact, Aristotle's proposal of efficient cause was revised, distinguishing a causa prima from a causa secunda:

The first type of efficient cause is the originative source of being. The second type of efficient cause is to be found only in created things, and refers to the origin of beginning of motion or change. The First Cause works in all secondary causes, which may be considered as instrumental causes subservient to the first. This conception of the primary efficient cause involves a radical switch in respect of the Aristotelian notion of efficient causality. Whereas in Aristotle, efficient causation was the origin of a change or a motion by means of the transmission of form, in medieval philosophy, primary efficient causality concerns the creation of both matter and form. [Hulswit (2002), p. 19]

The most influential among the Middle Ages' philosophers was Thomas Aquinas [1225-1274], who further differentiated an *internal* from an *external* final cause.

Whereas all natural things have internal final causes themselves, created by God, the ultimate external goal is God himself. For, while the primary goal of created things is self-realization, this striving towards self-realization coincides with the striving toward the ultimate goal, which is God. In the formation of the world, but also in all created causality, final causality comes first and works in and through the efficient causes. The efficient causes are subordinate to the final causes inasmuch as they are *means* to ends. [Hulswit (2002), p. 20]

The Aristotelian conception of necessity was maintained and, at the same time, a distinction between *tight* causes and *loose* causes was proposed. The effect of a tight cause necessarily follows from the cause itself, whereas the effect of a loose cause requires other conditions to be fulfilled.

Some decades later, also William of Ockham [1288-1348] revised Aristotle's view of causation, proposing that cause is not a necessity by itself, since God can always intervene in the human history, changing the flow of events. It is important to note that both Thomas Aquinas and William of Ockham did not reject the metaphysical conception of cause put forth by Aristotle, but tried to bring together those original ideas with their Christian beliefs.

Such Christian Middle-Ages theologists' speculations were abandoned in the seventeenth century by modern philosophers who, instead of combining metaphysics with theology, tried to reconcile metaphysics with the new natural sciences.

In the seventeenth century a movement of thought arose that has come to be known as modern science. This evolution involved a radical change in the development of the concept of cause. Explanations by formal causation and final causation were rejected; the only valid explanations were explanations by efficient causation. Moreover, the concept of efficient causation itself had radically changed. More specifically, in the seventeenth century the idea took root that (a) all causation refers exclusively to locomotion, (b) that causation entails determinism, and (c) that efficient causes were just the inactive nodes in the chain of events, rather than the active origination of a change. These changes have had a lasting influence on the evolution of our concept of cause, and indeed our entire Western outlook. [Hulswit (2002), p. 21]

The debate among modern thinkers regarded the idea and the nature of determinism. From one side, rationalist philosophers such as René Descartes [1596-1650], Thomas Hobbes [1588-1679], Baruch Spinoza [1632-1677] and Gottfried Wilhem Leibniz [1646-1716] held that the relationship between cause and effect is of a logical type. On the other side, David Hume [1711-1776] held an empiricist approach to causation, claiming that causal necessity is not logical but partly due to our observation of the constant conjunction of certain objects, and partly due to the feeling of their necessary connection. Note that, as remarkably observed by Hulswit, Hume's radical empiricism was not supported by other empiricist philosophers:

Hume's view was far from being shared by all empiricist philosophers. Indeed, by suggesting that his fellow empiricists held the belief that necessity is synonymous with power, he seriously misrepresented their views. For, both Locke and Newton explicitly denied that the idea of causation or power involved the idea of necessary connection according to law. According to Newton, these two notions are even mutually exclusive because complete uniformity or necessary connection would entail a denial of causal efficacy. For Locke, as for Newton, causality is related to the Aristotelian belief that causes are substantial powers that are put to work. Therefore, Hume's famous criticism only concerns the rationalist scientific conception of cause, which, from an historical perspective, is merely a derivative sense of "cause". [Hulswit (2002), p. 37]

Let's briefly consider this debate more in detail. Rationalist authors proposed –in similar ways– the concept for which all things are causally determined, and determinism is entailed in the idea of God's omnipotence and omniscience. René Descartes was the most important among rationalist thinkers. First of all, Aristotle's original idea of efficient cause was substituted in Descartes' view by the idea of types, i.e. not particular but general deterministic laws. Second, these laws would ultimately belong to God's action. In this way, far from mistrusting the principle of causation, Descartes abandoned the Aristotelian-Scholastic doctrine, supporting instead a concept of cause delineated by the principles of mechanics.

The rejection of the fourfold causality of Aristotle and the Scholastics by Descartes (and Galilei and Bacon) had a profound influence on subsequent thinkers. Whereas he endorsed matter, and in this particular sense may be said to have subscribed to material causality, he rejected the idea of substantial forms or formal causality. And though he did not deny the existence of final causes —which he identified in God's intentions—he denied the usefulness of such a search. In order to explain nature, we need only examine the efficient causes of things. Thus, in effect, there was only one type of cause for Descartes: the efficient cause. [Hulswit (2002), p. 20]

Furthermore, the father of rationalism distinguished between *general* and *particular* causes:

Descartes attributed to God the status of a general cause, which insures the constancy of quantity of motion in the universe. Interestingly, the particular causes are not the motions of the individual parts of matter, but the general principles or laws of nature. In the beginning, God created matter and motion, and he conserves exactly the same quantity of motion for all time. God is the efficient cause of any change of motion in otherwise inert matter. And He does so according to the laws of nature, which became secondary causes. Thus, Descartes attributed some efficient causality to the laws of motion, which determine all particular effects. By doing so they provide causal, mechanical explanations. The only "active initiator of change" that remained was the cause of all causes: God. [Hulswit (2002), p. 20]

Also *Thomas Hobbes* revised Aristotle's original speculation about cause, rejecting the concepts of both formal and final causes while maintaining the distinction between efficient and material cause. The original conception of *necessity* was revised as well, and God was postulated as the causal origin of finite things. In such a view:

The material and efficient causes are both part of the *entire cause*. Necessity or necessary connection is not associated with the efficient cause as such, but with the entire cause, which entails both the agent and the patient. Entire causes are complex conditions (of both agent and patients) that are necessary and sufficient for the occurrence of the effect. [Hulswit (2002), p. 24]

A very similar definition of cause as necessary and sufficient condition for the appearance of something was given also by *Galileo Galilei* [1564-1642]. A metaphysical conception of cause, similar to that of Descartes, but one that also took into consideration the Galilei's and Hobbes' perspectives was proposed by *Baruch Spinoza*, who put forth the concepts of *free* and *necessary* causes.

Whereas free causes act from the necessity of their own nature (and therefore the initiators of a change) necessary causes are necessitated by other causes (and are therefore just inactive nodes in a chain). [...] God is the only *free cause*, by which is meant that, though He simply had to create what He did, He was not forced to do this by some external cause. He alone exists and acts from the necessity of his own nature. [Hulswit (2002), p. 24]

Note that Spinoza, agreeing with Descartes, strongly supported the idea for which causes are related to effects by logical necessity. A cause is the logical antecedent of any effect, and at the same time an effect is a logical subsequence of any cause.

An account of causation similar and integrated with both the views of Galilei and Spinoza was given by the philosopher *Gottfried Wilhem Leibniz* (1646-1716). He suggested the concept of *monad*, as constituent of all material bodies. This notion significantly differs from Descartes' proposal of *substance* as the ultimate constituent of things:

The material bodies have monads as their constituents. The characteristic features of matter –extension, solidity, inertia, etcetera– are derived from the relations between the constituent monads. Thus matter is just a derivative entity, constituted of the relations between the primary existents. [Hulswit (2002), p. 25]

As a consequence, a new and different theory of causality was developed by Leibniz, who, from one side rejected the idea for which the monads would have causal relations to each other, and from the other side supported the view for which monads are inserted into a causal chain. The starting point of this chain is postulated to be God himself, who —as a good clockmaker who constructs a number of clocks that keep perfect time— would have preestablished the harmony of the universe at the beginning of things:

Thus, all individual created substances are different expressions of the same "universal cause". However, though God caused their existence, their successive states are (normally) produced by their own natures. Every state of every monad is completely determined by its nature or substantial form, which is an internal, active causal principle. [...] Leibniz's doctrines of final causality and of spontaneity of simple substances fully agree with his brand of determinism: each monad behaves in accordance with its original purpose, that is to say, with its nature or substantial form, which it received through God's creation. Leibniz's determinism—which is based on his principle of sufficient reason—entails that the necessity involved in the relation between cause and effect is as strong as logical necessity. A complete knowledge of the causes would yield the premises from which by reasoning alone the effects could be concluded. [Hulswit (2002), pp. 26-27]

In this way, causal determinism is conceived by Leibniz in a rationalist framework. Nevertheless, the analogy between cause and change to locomotion proposed by other rationalist philosophers –such as Descartes, Hobbes and Spinoza– was rejected by Leibniz.

Modern metaphysical approaches to the concept of causality were criticized by the English philosopher *John Locke* [1632-1704], who abandoned the rationalist approach of Descartes, proposing instead the concept of *cause as power*. This notion may bring to mind the seminal Aristotelian formulation of efficient cause, since power is conceived as an abstract agent and as the source of change.

Thus, a cause is a particular substance putting its power to work. Apparently, Locke conceived causes and effects as particulars. In his entire discussion of power there is no reference to either uniformity or necessary connection. "Power" and "necessary connection" are kept separate in Locke's thought, for although we do perceive powerful or changing objects and thus have the idea of power and cause, we do not perceive any necessary connections between ideas. By linking causation to power, but not to necessity, Locke clearly upheld what is nowadays called a singularist approach to causation. This view conflicts with the modern received view of causation (ever since Hume), according to which causation involves uniformity or necessary connection according to law. [Hulswit (2002), p. 27]

In analogy, according to *Isaac Newton* [1643-1727], causes are to be conceived as forces, the action of which makes the things move and behave differently than they would have done without them. This idea was formalized by Newton in three laws of motion, that are still the fundamental laws of classical physics and were implicitly stated in causal terms. Moreover:

Newton may be said to radically reject the principle of universal causation, and to defend a fundamental distinction between causation and law-like behavior. For, there are two classes of events in Newton's universe: (a) those that happen according to law, and (b) those that are the effects of causes. Causation and law-like behavior (or necessary connection according to law) are mutually exclusive notions. [Hulswit (2002), p. 27]

In the eighteenth century, the rationalist approach originally proposed by Descartes was also challenged by a new theory of causation, centered on the concept of "constant conjunction", put forward by the empiricist philosopher David Hume.

In this, only the content of experience can be known. Hume proposed an epistemological atomism in which the experienced world is a series of instantaneous, atomistic time slices, logically independent one another. Thus, even the experience of an object persisting in time is a construction of the mind, based on a series of time slices. This construction does not warrant the inference that the object will persist into the future. In fact, no inference about the future can be regarded as justified under radical empiricism. [...] Hume defined causation, therefore, as a construction of human mind, and how the characteristics of that construction arise. He said nothing about causation outside of experience, although he seemed to accept that there is such a thing and used causal terms in his own arguments. [White (1990), p. 4]

Hume's account of causality might be defined as both empiricist (from an epistemologic point of view) and constructivist (from a psychological perspective). Three basic factors are asserted to identify a causal relation: (i) contiguity in space and time of cause and effect; (ii) priority in time of cause to effect; (iii) connection (either explicitly identifiable or not) between cause and effect. Such a synthesis between empiricism and constructivism clearly distinguishes Hume's thinking from previous rational speculation. In the Scottish philosopher's view, no logical necessity has to be postulated, as remarkably noted by Hulswit:

The problem is that given the concept of causal necessity, there seems to be no way of rationally justifying it. To Hume such justification could be given only if causal necessity could be shown to be as stringent as logical necessity. But this is impossible. Hence, the necessity that we read into causal relationship is illusory; the illusion is born from our expectations, which are due to habit. [...] The idea of necessity cannot be derived from our experience of individual cases of causation. For, in a single instance of causation, we can never discover any necessary connection or power. Instead, the idea of necessity arises from our experience of a great similar instances. The constant conjunction produces an association of ideas – so if we see a flame, by sheer habit an idea of heat will come to mind. Thus, there are two roots of our idea of necessity: constant conjunction of the objects, and the feeling of a necessary connection in the mind. The habitual transition from impression to idea feels like a necessitation, as if the mind were compelled to go from one to another. The necessary connection is not discovered in the world but is projected onto the world by our minds. [Hulswit (2002), p. 30]

In the nineteenth century, based upon Hume's concept of "constant conjunction", the philosopher *John Stuart Mill* (1806-1873) put forth some operational rules to ascertain the presence of causality (Mill (1967)):

- 1. The Method of Agreement: "If two or more instances of the phenomenon under investigation have only one circumstance in common, the circumstance in which alone all the instances agree, is the cause (or effect) of the given phenomenon". (p. 255)
- 2. The Method of Difference: "If an instance in which the phenomenon under investigation occurs, and an instance in which it does not occur, have every circumstance in common save one, that occurring only in the former, the circumstance in which alone the two instances differ, is the effect, or cause, or a necessity part of the cause of the phenomenon". (p. 256)
- 3. The Joint Method of Agreement and Difference: "If two or more instances in which the phenomenon occurs have only one circumstance in common, while two or more instances in which it does not occur have nothing in common save the absence of that circumstance; the circumstance in which alone the two sets of instances differ, is the effect, or cause, or a necessary part of the cause, of the phenomenon". (p. 259)

However, Mill's concept of cause fundamentally differs from that of Hume, as Mill reintroduced the idea of necessity: an event A can be said to be the cause of B (the effect) if the two are unconditionally conjoined.

The concept of "constant conjunction" was criticized by *Immanuel Kant* (1724-1804), who proposed a distinction between regularities that are merely accidental and regularities that are nomic or necessary.

Making this distinction would show constant conjunction to be inadequate as a statement of the causal relation and would restore necessity to the proper description of causation. If I look at a wall, there is an order in my perceptions of the wall that corresponds to the movements of my eyes. However, I could choose to move my eyes in any way, thus producing any order of perceptions of the wall. By contrast, when I observe a boat moving downstream, the order of perceptions of positions of the boat is fixed. This exemplifies "following according to a rule", and when this occurs some causal relation is involved. So for Kant a causal relation is a relation of necessary succession in time. [...] Where Kant disagreed with Hume was in arguing that necessity is not just a construction of the mind, but is ascertained by looking at which orders of representations of events are objectively determined. [White (1990), p. 5]

The main feature of Kant's philosophy can be identified in the attempt to reconcile empiric-based scientific knowledge with the principles of rationalism put forth by Descartes and other modern philosophers.

Kant, much impressed by the obvious success and constant advance of scientific knowledge, Newtonian physics in particular, could not accept Hume's conclusion that neither causation nor induction can be rationally justified, and that, consequently, we cannot rationally justify scientific knowledge. His basic epistemological strategy was to ground the principle of causality in the structure of reason. Given the epistemologically disastrous consequences of Hume's critique, Kant attempted to justify causality by declaring it in an a priori conception. [Hulswit (2002), p. 31]

This a priori conception is formalized by postulating a set of twelve categories (among which there is also a principle of causality) that are supposed to shape the human mind.

The principle of causality is an $a\ priori$ conception, grounded in the structure of reason. It involves that (a) every event has a cause; (b) the cause of every event is a prior event; (c) the effect follows from the cause necessarily, and (d) in accordance with an absolutely universal rule; (e) this is known to us not from experience but a priori. [Hulswit (2002), p. 31]

Today, the debate between regularity and necessity theories of causation is still not conclusive. Contemporary perspectives on causation can be summed up by four main approaches:

- 1. Mechanistic theories (Wesley Salmon; Phil Dowe);
- 2. Probabilistic theories (Hans Reichenbach; Patrick Suppes);
- 3. Counterfactual theories (David Lewis);
- 4. Agent-oriented theories (*Huw Price*; *Peter Menzies*);

The aim of the *mechanistic account* of causality is to understand the physical processes linking cause and effect. As asserted by Williamson (2005):

The mechanistic account is clearly a physical interpretation of causality, since it identifies causal relationships with physical processes. Such a notion of cause relates single cases, since only they are linked by physical processes, although causal regularities or laws may be induced from single-case causal connections. Causal mechanisms are understood objectively: if two agents disagree as to causal connection, then at least one is wrong. [Williamson (2005), p. 111]

This approach is well applicable to explanations in fields of sciences such as physics, whereas it does not seem appropriate in the fields of social sciences such as economics.

One could maintain that the economists' concept of causality is the same as that of physics and is reducible to physical processes but one would be forced to accept that the epistemology of such a concept is totally unrelated to metaphysics. This is undesirable: if the grounds of knowledge of a causal connection have little to do with the nature of the causal connection as it is analyzed then one can argue that it cannot be the causal connection that we have knowledge of, but something else. On the other hand one could keep the physical account and accept that the economists' causality differs from the physicists' causality. But this position faces the further questions of what economists' causality is, and why we think that cause is a single concept when in fact it is not. These problems clearly motivate a more unified account of causality. [Williamson (2005), p. 111-112]

In this mechanistic framework, Salmon (1984) proposed the concepts of causal processes, causal propagation and causal production. From this philosopher's point of view, the basic units to be considered for causal inference are not events but processes. Causal propagation is the dynamic influence that one event can have on another, whereas causal production is given by the interaction between two causal processes.

What is crucial in identifying causal processes is the ability to carry a mark. Consider a pulse of light traveling from a spotlight to the wall of a planetarium. This is a causal process because it can carry a mark: For example, if you interpose a red filter between the spotlight and the wall, the light will be read all the way from the filter to the wall. Now imagine that the spotlight is rotated so that the light moves around the wall. The motion of the light around the wall is not a causal process because it cannot carry a mark: If you put a red filter on the wall, the light will be red when it hits the filter, but will cease to be red as soon as it moves away from the filter. The mark will not be transmitted. [...] Salmon (1984) explained the persistence of a physical object by arguing that if a process can transmit a mark then it can transmit its own structure. [White (1990), p. 10]

Hume's original concept of "constant conjunction" was revised –from a regularist point of view– also by *Patrick Suppes* who proposed a *probabilistic framework* for causality.

Suppes argued that constant conjunction is too restrictive in that it does not capture the probabilistic nature of many statements about causation in everyday life. Suppes defined events as subsets of fixed probability space, instantaneous, and with their time of occurrence included in the formal characterization of the probability space. He then proposed that "one event is the cause of another if the appearance of the first event is followed with a high probability by the appearance of the second, and there is no third event that we can use to factor out the probability relationship between the first and the second events" (p. 10). This is still a regularity theory, but constant conjunction has been replaced by probable conjunction. [White (1990), p. 6]

The aim of the probabilistic approaches to causality are more ambitious than those of the mechanistic approach. Williamson has tried to explain causal connections among variables in different fields of knowledge (ranging from natural sciences to social sciences):

There is no firm consensus among proponents of probabilistic causality as to what probabilistic relationships among variables constitute causal relationships, but typically they appeal to the intuitions behind the Principle of Common Cause: if two variables are probabilistically dependent then one causes the other or they are effects of common causes which screen off the dependence. Indeed, Hans Reichenbach applied the Principle of Common Cause to an analysis of causality, as a step on the way to a probabilistic analysis of the direction of time. Similarly Patrick Suppes argued that causal relations induce probabilistic dependences and that screening off can be used to differentiate between variables that are common effects and variables that are cause and effect. [Williamson (2005), p. 112]

Such approaches have long been criticized, as the probabilistic conditions that have been proposed as principles of causality appear not to be general. Even if these conditions may hold in many problems, noteworthy counterexamples have been put forward, showing that the probabilistic analysis of causality is not conclusive.

The concept of *counterfactual conditional*, which is now very popular among statisticians, derives from modern theories in the regularist perspective.

Regularity theorists are therefore not necessarily radical empiricists. The problem for regularity theorists is to distinguish between universal and nomological generalizations without resorting to some kind of necessity. The difference between these can be illustrated by the use of counterfactual conditionals, which are statements about what would happen if something were the case that in fact is not the case. For example, for the universal generalization "All of my friends know French", a counterfactual conditional could be "If Confucious were a friend of mine, then he would speak French." For a purported nomological generalization "All planets move in ellipses", a counterfactual conditional could be "If the moon were a planet, it would move in an ellipse". [...] There are other types of regularity theory. Although many philosophers have attempted to distinguish between causes and conditions, some have analyzed the causal relation in terms of conditionals. [White (1990), p. 5]

This approach was originally proposed by the philosopher David Lewis, who suggested that evidence for a causal inference is given if the two following conditions hold: i) if a cause C occurs, then the effect E has either to occur or its probability to occur would be significantly increased; ii) if cause C were not to occur, then the effect E either would not occur or its probability to occur would be significantly lowered. In Lewis' view, the theory of causation is expressed in terms of subjunctive conditionals that state the semantics of two possible alternative worlds. Note that it does not matter whether the conditions expressed by such alternative worlds might be verified in reality, as the subjective conditionals express only hypothetical states of the world.

Lewis' counterfactual theory was developed to account for causal relationships between single-case events (which can be thought of a single-case variables which take the values "occurs" or "does not occur"), and the causal relation is intended to be mind-independent and objective. Many of the difficulties with this view stem from Lewis' reliance on possible worlds. Possible worlds are not just indispensable façon de parler for Lewis, they are assumed to exist in just the way our world exists. But we have no physical contact with these other worlds, which makes it hard to see how their goings-on can be object of our causal claims and hard to see how we discover causal relationships. Moreover it is doubtful whether there is an objective way to determine which worlds are closest to our own if we follow Lewis' suggestion of measuring closeness by similarity – two worlds are similar in some respects and different in others and choice of weighting of these respects is a subjective matter. Causal relations, on the other hand, do not seem to be subjective. [Williamson (2005), p. 116]

One of the most influential conditional theories of causation was developed by the Australian philosopher *John Leslie Mackie*, who put forward the concept of *causal field*.

This is a defined region within which an effect sometimes occurs and sometimes does not. Defining a causal field is a way of directing or limiting causal analysis: Once a causal field is defined, then causal analysis consists in a search for some difference between times on which the effect occurred and times on which did not. For example, in asking "What caused this man's skin cancer?" one may be setting up a causal field that consists of the man's past history, and seek to answer the question by looking for a difference between the time when the skin cancer developed and the times when it did not. This has the important consequence that what one identifies as the cause may depend on how one

defines the causal field. In the preceding example, one may decide that the man's cancer was caused by exposure to radiation. However, suppose one had asked "why did this man developed skin cancer, when other men who were exposed to radiation did not?" Now a different causal field has been defined and exposure to radiation cannot be identified as the cause because it does not differentiate the afflicted man from others in the causal field who were not afflicted. [White (1990), p. 6]

Furthermore, Mackie proposed the so-called *INUS* (Insufficient but Necessary; Unnecessary but Sufficient) condition for the definition of a cause. Let's further consider the example of skin cancer. A researcher suggests that sunlamp treatments and not sunbathing are a risk factor for skin cancer. In Mackie's INUS framework, the scenario in which sunlamp treatments are a cause of skin cancer might be described as an Unnecessary but Sufficient condition. Unnecessary, as skin cancers may notoriously occur also in people who do not take sunlamp treatments; Sufficient, as sunlamp treatment has been clearly reported as a risk factor for skin cancer by the medical literature. In the same scenario, the sunlamp is also an Insufficient but Necessary part of the causal statement. Insufficient, as no deterministic relationship exists between sunlamp treatments and skin cancer; Necessary, as sunlamp treatments and sunbathing are supposed to differ with respect to the effect of ultra-violet rays on skin cells.

A critique to the regularity theories of causation has come from the work of *Mario Bunge*. In this author's opinion, Hume's original claim of constant conjunction cannot definitively account for the concept of causality, since absence of coincidence cannot preclude the occurrence of an effect.

The problem, then, was to find a formula that distinguishes between such invariable coincidences and causal connections and that excludes the former. To achieve this, Bunge (1963) regarded it as necessary to bring in some notion of "the active and productive nature that causal agents are usually supposed to possess" (p. 42). So the statement of the causal principle that Bunge regarded as adequate is "If C happens, then (and only then) E is always produced by it" (p. 47). Bunge did not regard causation and production as identical, but maintained that causation is a special case of production. He also argued that contiguity is not an essential part of causation. [White (1990), p. 6]

Last, a proposal on cause and causality commonly known as agent-oriented theory has been put forth by Huw Price and Peter Menzies. These authors tried to analyze the concept of causation from a subjective point of view, suggesting a prospect in which causes are considered in terms of the goals that active agents may achieve. In this view, a cause C has not only to be logically, but also semantically and pragmatically related to an effect E, as C is a cause of E if and only if it permits the agent to make decisions and realize his objectives.

Here the strategy of bringing about C is deemed effective if a rational decision theory would prescribe it as a way of bringing about E. Menzies and Price argue that the strategy would be prescribed if and only if it raises the "agent probability" of the occurrence of E. Menzies and Price do not agree as to the interpretation of these probabilities: Menzies maintains

that they are chances, while Price seems to have a Bayesian conception. Consequently it is not entirely clear whether they view causality as a physical or mental notion. [Williamson (2005), p. 116-117]

1.3 An Operational Definition of Causality

As it may appear from the previous paragraph, the concept of causality cannot be easily defined and, least of all, applied. Instead of approaching this problem from a philosophical point of view, in the following paragraphs we will try to move towards an *operational* criterion of cause.

Consider now the fourth question posed at the beginning of this chapter: Is HRT a cause of breast cancer? How can we check for the presence of such a causal relationship? For instance, let's consider two groups of women, matched by age and other risk factors, one given and the other not given HRT. After one year and subsequently after yearly follow-ups, we can examine whether the women in the two groups have or do not have breast cancer. In other words, the use of HRT is manipulated by the researcher in order to evaluate the causal effect on developing / not developing breast cancer. If a significant difference is found in the two groups, HRT can be seriously proposed as a cause (and a risk factor) of breast cancer. Following this view, we may think that human manipulation is a reasonable way to infer the presence of a causal relationships between two variables. This is true in some ways, but is not exhaustive. Variables such as gender, beliefs, political ideals...that by definition cannot be directly manipulated, can have causal effects as well. As proposed in Bollen (1989), an alternative starting point for the notion of causality might be the following:

...if two variables x_1 and y_1 are considered and each change in y_1 is accompanied by a change in x_1 -net of the influence of other variables— and each change of x_1 precedes a change in y_1 , then x_1 can be assumed as a cause of y_1 .

The previous definition of causality is characterized by the presence of three components: isolation, association and the direction of influence.

Isolation, association and direction of influence are three requirements for a cause. Human manipulation, such as occurs in an experiment, can be a tremendous aid toward creating isolation and establishing the direction of influence, but manipulation is neither necessary nor sufficient condition of causality. [Bollen (1989), p. 41]

A first major problem is that isolation does not currently hold in applied problems. Think, for instance, of a study which compares political beliefs on opinions about nuclear power. The relationship between these two variables cannot be isolated, since other variables such as sex, religious faith, years of school attended, can play a relevant role.

Various experimental, quasi-experimental, and observational research designs attempt to approximate isolation through some form of control or randomization process. Regardless of the technique, the assumption of isolation remains a weak link in inferring cause and effect. [Bollen (1989), p. 41]

Let's consider again the question about HRT posed above: we were interested in ascertaining whether HRT (x_1) can be a cause of breast cancer (y_1) . Building a statistical model might be a useful way to look at our problem.

One way of dealing with the problem is to make use of theoretical models of reality. In developing these models the scientist temporarily forgets about the real world. Instead, he may think in terms of discrete "somethings", or systems, made up of other kinds of somethings (subsystems, elements) which have fixed properties and which act, or can be made to act, in predictable ways. [Blalock (1964), p. 7]

Imagine first that we are living in a world where determinants of breast cancer are totally unknown. This state of knowledge might be described by the following equation:

$$y_1 = \zeta_1 \tag{1.1}$$

where ζ_1 is a disturbance and not observable variable. ζ_1 provides for a latent factor, which by hypothesis is totally unknown but that can be thought to be related with y_1 in a deterministic way, i.e. every time ζ_1 holds, y_1 follows. This statement exemplifies David Hume's assumption of a "constant conjunction", for which every time a cause occurs, an effect should follow. Let's imagine ourselves in a better world, where scientists are not totally unaware of the determinants of breast cancer, but clear ideas with respect to risk factors—as x_1 — can be put forth. Such information might be expressed by a more complex model:

$$y_1 = \gamma_{11} x_1 + \zeta_1 \tag{1.2}$$

This equation illustrates a probabilistic model of the relationship between the variables x_1 and y_1 . In Equation 1.1, ζ_1 stands for a totally unknown random variable, with respect to which only an observable value is supposed to be known. For instance, if a value of $\zeta_i \geq 5$ were observed in a hypothetical experimental trial, then breast cancer would be found in patient y_i . In equation 1.2, the value of x_1 —weighted for an unknown but estimable coefficient γ_{11} — is supposed to be known. As in 1.1, ζ_1 is an unknown random variable, though distributional assumptions can be put forward (for instance, ζ_1 is normally distribute and $\mathbb{E}(\zeta_1) = 0$, as in linear regression models). The relationship expressed in Equation 1.2 is only true on average, and not in the sense of a deterministic function. Keeping such a model in mind, we might ask: Does isolation between x_1 and y_1 hold?

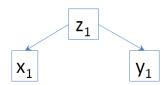


Figure 1.1: Example of a spurious relation between the variables x_1 and y_1

For isolation to hold, no variable besides x_1 can be a cause of y_1 . If the direction of influence from x_1 to y_1 is correct, the only way to change y_1 is by changing x_1 . This follows since y_1 could be changed without going through x_1 , then equation 1.2 cannot be valid and y_1 is not isolated. The association is straightforward to assess, since for each unit of shift in x_1 , an exact y_1 shift in y_1 must occur. [Bollen (1989), p. 42]

In Equation 1.2, for isolation to hold, the regressor variable x_1 must be isolated from the unknown variable ζ_1 , but so far as ζ_1 is unknown, we cannot check for this property. We can only assume that isolation holds, and this is a key-difference between a real state of the world and our knowledge of it, as expressed by a statistical model and its assumptions. Thus, our original condition of isolation for causality can be converted to a milder condition of pseudo-isolation:

To establish x_1 as a cause of y_1 , x_1 must be isolated from ζ_1 . Since ζ_1 is an unobserved disturbance term, we cannot control it in any direct sense. Rather, we make assumptions about its behaviour to create a pseudo-isolation condition. The most common assumption is that ζ_1 is uncorrelated with x_1 . This is a standard assumption in regression analysis, and it enables us to assess the influence of x_1 on y_1 "isolated" from ζ_1 . But the isolation is not perfect since for any observation, the y_1 to x_1 relation is disrupted by the disturbance. This is true whether the data come from an experiment where x_1 is a treatment applied with randomization to a subset of the observations or if the data are nonexperimental sources. [Bollen (1989), p. 43]

If we consider now a state of the world in which information with respect to q variables affecting the appearance of breast cancer might be obtained, the model expressed in Equation 1.2 would change to:

$$y_1 = \gamma_{11}x_1 + \gamma_{12}x_2 + \dots + \gamma_{1q}x_q + \zeta_1$$

and the condition of pseudo-isolation would be given by $Cov(\mathbf{x}, \zeta_1) = \mathbf{0}$.

Violations to the condition of pseudo-isolation can be given by the presence of: i) a spurious relation (see Figure 1.1); ii) an indirect relation (see Figure 1.2); iii) a conditional relation (see Figure 1.3); iv) a reciprocal relation; v) the expression of a wrong functional form for the relation between two variables. In the first three cases, a variable z_1 , that is a part of the unknown variable ζ_1 , leads to a correlation between x_1 and ζ_1 .

A spurious relation holds when the presence of covariation between two variables $(x_1 \text{ and } y_1)$ is not due to an underlying causal relation, but to the presence of a third variable (z_1) acting on both x_1 and y_1 .

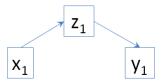


Figure 1.2: Example of an indirect relation between the variables x_1 and y_1

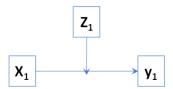


Figure 1.3: Example of a conditional relation between the variables x_1 and y_1

The possibility of such spurious relations is the reason that the phrase "correlation is not causation" is appropriate. As an example, suppose that y_2 is the quality of a person's vision and y_1 is the proportion of gray scalp hairs. The variables correlate not because gray hair causes poor vision but because both are causally depended on age (x_1) . On the other hand, we cannot automatically assume that all associations are spurious. This too should be demonstrated. For example, representatives of the tobacco industry sometimes argue that the correlation between smoking and cancer is spurious. One suggestion is that some people have a genetic predisposition to smoke and to get lung cancer. If such a factor is found, a stronger case for spuriousness could be made, but without it most remain skeptical of such a claim. [Bollen (1989), p. 50]

An *indirect relation* is characterized by the action of an intervening variable z_1 mediating the connection between two variables x_1 and y_1 , supposed as causally related.

Intervening variables are one type of omitted variables that can lead to violations of the pseudo-isolation condition. Left-out common causes of the explanatory and dependent variables often pose a more serious threat. [Bollen (1989), p. 48]

For instance, x_1 might be the ethnicity, y_1 the performance on an intelligence test, and z_1 the years of school attended. The relation between ethnicity and intelligence is not pure, but strongly mediated by the number of years of school attended. In this way, if subgroups of blacks and whites—balanced according to educational levels— are considered, the relation with intelligence disappears. Differing from the case of a spurious relation, the presence of an indirect relation does not indicate *per se* the absence of a causal relation, but the occurrence of a mediating mechanism activated by an intervening variable.

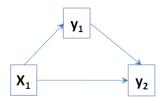


Figure 1.4: Example of a suppressor relationship

An interesting case linked to the presence of indirect effects is the detection of a suppression relation among variables. This is the case in which there is the presence of both a direct and an indirect effect of opposite signs but with similar magnitudes. Consider the following example: a researcher is interested in evaluating the relationship between the presence of strong soccer technical abilities (x_1) and the number of goals scored (y_2) by a group of soccer players. The presence of high scores on a technical-ability scale predicts a high number of goals scored. The following full-model is put forward:

$$y_2 = \gamma_{11}x_1 + \zeta_1$$

However, contrary to this prediction, only a mild value of the coefficient $\gamma_{11} = .202$ is found. In a second phase, a third variable (weight of the soccer players in kilograms, y_1) is introduced in the analysis. The model that is put forth is expressed by the following equations and represented in Figure 1.4:

$$y_1 = \gamma_{11}x_1 + \zeta_1 y_2 = \beta_{21}y_1 + \gamma_{21}x_1 + \zeta_2$$
(1.3)

In this model, the coefficient γ_{21} is estimated at .648, indicating a strong relationship between technical abilities and the number of goals scored, whereas the coefficients γ_{11} and β_{21} are respectively estimated as -.404 and -.712, indicating the presence of negative relationships from one side between technical abilities and weight, and from the other side between weight and number of goals scored. This example indicates that omitting an intervening variable such as y_1 from the model can lead to underestimating the real impact of the contribution of the variable x_1 on the values of y_2 .

Many researchers suggest that a bivariate association between a cause and an effect is a necessary condition to establish causality. The occurrence of suppressor relations casts doubt on this claim: no bivariate association can occur although a causal relation links two variables. The old saying that correlation does not prove causation should be complemented by the saying that a lack of correlation does not disprove causation. It is only when we isolate the cause from all other influences that correlation is a necessary condition of causation. Thus, without isolation or without at least pseudo-isolation, correlation is neither a necessary nor a sufficient condition for causality. Left-out intervening variables or

left-out common causes are two ways in which the pseudo-isolation conditions can be violated. A third is when the omitted variable has an ambiguous relation to the explanatory variables. [Bollen (1989), p. 52]

A conditional relation is illustrated by the presence of a variable z_1 acting on the strength of the link connecting two other variables $(x_1 \text{ and } y_1)$. For instance, strength of sound (expressed in decibels) perceived by a listener (y_1) from the voice of a speaker (x_1) during a conference, is a phenomenon conditioned by the microphone adjustment (z_1) . In the case of a conditional relation, the occurrence of a link between two variables x_1 and y_1 is not suppressed but regulated by the presence of a third variable z_1 .

A reciprocal relation would occur in the case an independent variable (x_1) were found to be affected by a dependent variable (y_1) . For instance, a researcher is interested in studying the influence of a psychological trait such as anxiety on the development of cardio-vascular diseases. The psychological literature strongly supports this hypothesis, but the researcher also aims to investigate whether a reciprocal relation holds or not. If this were the case, the presence and the severity of cardio-vascular diseases would be supposed to increase the levels of anxiety.

In this and other cases where the endogenous variables affect an "exogenous" one, the assumption that the disturbance is uncorrelated with x_1 is no longer defensible. The solution is to turn the former "exogenous" variable into an endogenous one so that it has separate equation. We have estimators besides OLS to deal with such nonrecursive systems, provided it is an identified model for which the disturbances are uncorrelated with the true exogenous variables. [Bollen (1989), p. 55]

Furthermore, a common situation in which the condition of pseudo-isolation is violated is given by the expression of a wrong functional form for the relation between two variables. For instance, it may happen that the presence of a linear relation between x_1 and y_1 is supposed to hold, though, in fact, a quadratic or polynomial relation would be more plausible. In some cases, a transformation of the variables from one measurement scale to another might be useful to specify the functional form more clearly.

Last, Bollen (1989) suggests other situations in which pseudo-isolation might be violated:

For instance, the usual assumptions of a disturbance being uncorrelated with the explanatory variables may be violated if a lagged endogenous variable appears as an explanatory variable and the disturbances of that equation are autocorrelated. [...] A non-random subsample of the relevant population is another way to violate pseudo-isolation. Special procedures that take these problems into account are available, but if these difficulties are ignored, faulty causal inferences are likely. In sum, many factors threaten the pseudo-isolation conditions necessary to establish a causal link between two variables. Omitted variables can inflate or deflate relations. Measurement errors, nonrandom sample selection, correlated disturbances, and other less obvious problems also can undermine pseudo-isolation. Though some research designs can lessen these potential problems, it is not possible to have certainty that two variables are totally isolated from other influences. Thus we should recognize the tentativeness of any claims for a causal relation while striving to eliminate as many threats to pseudo-isolation as possible. [Bollen (1989), p. 55]

Let's now consider the second condition that was put forth to establish causal relationships: the presence of an association between variables. Suppose that either violations to the condition of pseudo-isolation are not detected or pseudo-isolation holds. As we have seen, a necessary and sufficient condition for a causal relation between two variables x_1 and y_1 to hold is the presence of an association between them, without the influence of other variables. Nevertheless, as is commonly known, the presence of an association among variables does not imply per se the presence of a causal relation. Such a relation might be generated by chance (sample error always affects inference), by the presence of a selection bias (i.e. two sub-populations are not strictly comparable and are unbalanced with respect to one or more covariates) or observable bias (i.e. non-comparable information is used for contrasting two groups). Last, as we have seen, the relation among variables may be affected by the presence of one or more confounding variables.

As was asserted before, the problem of studying the relationship among variables is generally approached by constructing statistical models and estimating parameters that express the strength of the relationships. In fact, these estimates depend on the sampling error and it follows that only probabilistic warranties can be empirically obtained.

More problematic is when the standard errors or test statistics that are the basis of the tests of statistical significance are incorrect. One such case is if the disturbances, ζ_1 , from the preceding y_1 equation are heteroscedastic or autocorrelated. Then OLS still provides a consistent estimator of γ_{11} , but the usual standard errors and test statistics for the coefficient estimator are not dependable. Thus we could make faulty inferences about the association of x_1 to y_1 because we have the wrong standard error for $\hat{\gamma}_{11}$ Alternative estimators for regression equations that take into account heteroscedasticity or autocorrelation and provide suitable standard errors and test statistics are well-known. However, tests or corrections for heteroscedasticity or autocorrelated disturbances have received insufficient attention for models with latent variables. So for these models faulty inferences about association are possible. [Bollen (1989), p. 58]

A second problem that ought to be considered in measuring association is that of *multicollinearity*, for which a linear dependence exists between an explanatory variable and the other explanatory variables in an equation. The problem to be faced with multicollinearity is that it normally determines higher standard errors on parameter estimation. This happens because multicollinearity makes it more difficult to detect the unique contribution of each independent variable on the dependent variable.

Third, as is commonly known, the detection of an association requires that it is replicated by other researchers to be scientifically accepted. This should not be considered as an absolute rule because: i) the conditions that have to be met for the association to appear might be reproduced with difficulty; ii) spurious as well causal relations may be replicated.

Consider now the last condition that was hypothesized: the evaluation of the *direction of causation*. As we have seen in the historical review, Hume's

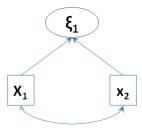


Figure 1.5: Example of a formative relationship between a latent factor ξ_1 and two observable variables x_1 and x_2

influential concept of "constant conjunction" required a cause C to be an antecedent of the effect E. This may be considered as a natural and intuitive condition, though in some experimental designs it cannot be very easy to temporally discriminate a cause from an effect. From one side, in a field such as physics, it might be the case that the contact between two molecules or two atomic particles A and B cannot be detected at a temporal resolution precisely enough to establish if either A has moved toward B or B has moved toward A. From the other side, the effect of some variables on other variables may be too long to be clearly identified. Consider, for instance, the effect of the natural environment on the appearance of biological mutations or, at an individual level, the effect of a mother's life-style during pregnancy on adult-age diseases.

The analysis of temporal priority among variables is particularly interesting when analyzing models containing both latent and observable variables. Consider, for instance, a latent variable ξ_1 and two observable variables x_1 and x_2 . In some situations, it is not trivial to determine the direction of the relation connecting the latent factor with the observable variables (see Bollen (2002)). This relation may be conceived as either "formative" (see Figure 1.5) or "reflective" (see Figure 1.6). An example of a formative relation can be given considering a latent factor ξ_1 such as the socio-economic status of a person. In fact, this variable is determined considering indicators such as the income, the number of houses owned etc. An example of a reflective relation may be that of self-esteem as a latent factor affecting teenagers' performance on school tests. In other cases, it is really not easy to determine the direction of the relation:

It is theoretically possible that simultaneous reciprocal causation may exist between an indicator and a latent variable. This could occur where each may be reasonably thought of as a cause of the other and when the observation period exceeds the causal lag. For example, the latent variable of "financial health" of a company measured by stock prices may have such a relation. Greater financial health can cause higher stock prices and higher stock prices can increase financial health. Or, consider academic grade expectations as a

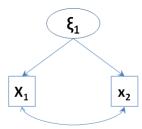


Figure 1.6: Example of a reflective relationship between a latent factor ξ_1 and two observable variables x_1 and x_2

latent variable and measured grade as the indicator. High grade expectations may influence measured grades and grades can influence expectations. I know no empirical work that has tested possibilities like these, but it is clear that the estimation of such models could be difficult. [Bollen (1989), p. 66]

In some cases, experimental design can radically help a researcher to shed light on the direction of causality. For instance, in a randomized clinical trial a binary treatment x_1 is randomly assigned to participants and a response variable y_1 is observed. If such a response variable systematically changes following variations of the treatment variable x_1 —net of the influence of other variables— clear evidence on the direction of the causal relation is found. The major problem is that in many situations, especially in social and psychological sciences, a randomized design cannot be used for both economic and ethical reasons. However, as well underlined by Rothman and Greenland (2005):

The nonexperimental nature of a science does not preclude impressive scientific discoveries: the myriad examples include plate tectonics, the evolution of species, planets orbiting other stars, and the effect of cigarette smoking on human health. Even when they are possible, experiments (including randomized trials) do not provide anything approaching proof, and in fact can be controversial, contradictory, or irreproducible. The cold-fusion debacle demonstrates well that neither physical nor experimental science is immune to such problems. [Rothman and Greenland (2005), p. 147]

1.4 Hill's Criteria

In the second paragraph of this chapter, the controversy between rationalists and empiricists about the nature of causality is briefly reviewed. In fact, Kant's attempt to reconcile this controversy has been strongly criticized by modern and contemporary philosophers. It would take too long to consider this controversy more in detail, since it is far from being solved yet. In the next chapter, a statistical model of causality, developed by many authors such as *Donald Rubin* will be summed up. This model, as we shall see, has to be studied in the framework of the counterfactual theories of causality, as originally proposed by Lewis. These theories ought to be thought as contemporary regularist theories, in the sense that they aim to establish a causal framework for empirical research, that typically make use of inductive methodologies. This approach has been strictly criticized by philosophers such as *Karl Popper*, who developed a deductive-falsificationist framework of causality. Nevertheless, as remarkably noted by Rothman and Greenland (2005) from an epidemiological perspective:

Despite philosophical criticism of inductive inference, inductively oriented causal criteria have commonly been used to make such inferences. If a set of sufficient causal criteria could be used to distinguish causal from noncausal relations in epidemiologic studies, the job of the scientist would be eased considerably. With such criteria, all the concerns about the logic or lack thereof in causal inference could be forgotten: it would only be necessary to consult the checklist of criteria to see if a relation were causal. We know from philosophy that a set of sufficient criteria does not exist. Nevertheless, lists of causal criteria have become popular, possibly because they seem to provide a road map through complicated territory. [Rothman and Greenland (2005), p. 147-148]

As we have seen, philosophers such as *John Stuart Mill* tried to develop causal criteria for empirical research, based on the Humean conception of "constant conjunction". From a statistical perspective, these criteria have been differently developed by both social researchers (e.g. sociologists, econometricians, psychometricians) and epidemiologists. The discussion about the possible relations among variables—that was summed up in the previous paragraph—has been developed by social researchers such as *Hubert Blalock*, *Kenneth Bollen* and other authors, especially in the field of *structural equation modeling*.

From an epidemiologic perspective, a set of criteria for causal inference were proposed in an influential paper by Austin Bradford Hill in 1965. The criteria are: i) strength; ii) consistency; iii) specificity; iv) temporality; v) biological gradient; vi) plausibility; vii) coherence; viii) experimental evidence; ix) analogy. In the following these topics will be briefly reviewed, as they pose a useful framework for causal inference, also from a counterfactual point of view. Think of an association between two variables; the basic question Hill tried to answer is: What aspects of the association should we especially consider before deciding that the most likely interpretation of it is causation?

First, Hill proposed to consider the *strength* of an association: normally, strong associations are supposed to be causally interpreted more likely than weak associations. This is because if a third factor existed, one which would better explain the relation between the two variables, the effect of that factor is supposed to be even stronger than the observed association. It is difficult that a well-trained researcher would have forgotten to consider such a factor in his analysis. Thus, if a strong association is observed —without the influence of other variables—we can reasonably think that the underlying relation

is a causal type. Examples cited by Hill are those of the associations between scrotal cancer and chimney sweepers, lung cancer and heavy cigarette smokers. However, as underlined by Rothman and Greenland (2005):

To some extent this is a reasonable argument but, as Hill himself acknowledged, the fact that an association is weak does not rule out a causal connection. A commonly cited counterexample is the relation between cigarette smoking and cardiovascular disease: one explanation for this relation being weak is that cardiovascular disease is common, making any ratio measure of the effect comparatively small compared with ratio measures for diseases that are less common. Nevertheless, cigarette smoking is not seriously doubt as a cause of cardiovascular disease. Another example would be passive smoking and lung cancer, a weak association that few consider to be noncausal. Counterexamples of strong but noncausal associations are also not hard to find; any study with strong confounding illustrates the phenomenon. For example, consider the strong but noncausal relation between Down syndrome and birth rank, which is confounded by the relation between Down syndrome and maternal age. Of course, once the confounding factor is identified, the association is diminished by adjustment for the factor. These examples remind us that a strong association is neither necessary not sufficient for causality, nor is weakness necessary or sufficient for absence of causality. [Rothman and Greenland (2005), p. 147-148]

Second, the *consistency* of the observation is put forth as a useful criterion for causal inference. Hill's concept of consistency can be thought in the sense of repetition, i.e. the fact that an association is observed by different persons, in different places, circumstances and time. This can be considered as a *strong requirement* in every science, and it would be demanded by most philosophers of science as well. More precisely, consistency in epidemiology regards the possibility of observing an association in different populations under different circumstances. Indeed, meta-analytic studies aim to rule out the hypothesis that an association is due to some factor that varies across studies.

Lack of consistency, however, does not rule out a causal association, because some effects are produced by their causes only under some circumstances. [...] These conditions will not always be met. Thus, transfusions can cause HIV infection but they do not always do so: the virus must also be present. Tampon use can cause toxic shock syndrome, but only rarely when certain other, perhaps unknown, conditions are met. Consistency is apparent only after all the relevant details of a causal mechanism are understood, which is to say very seldom. Furthermore, even studies of exactly the same phenomena can be expected to yield different results because they differ in their methods and random errors. [Rothman and Greenland (2005), p. 148]

Third, Hill proposes to consider the *specificity* of an association. This argument refers to the fact that a cause has to be linked to single and not multiple effects. However, as observed by Hill himself, it is not so fundamental that this criterion is met. For instance, smoking is a risk factor for many diseases, and not only for lung cancer. However, lack of specificity does not anyway rule out or diminish the importance of the causal relation between smoking and lung cancer.

Fourth, a criterion of *temporality* should be considered for causal inference. This criterion refers to the fact that, as stated by Hume's concept of "constant conjunction", a cause *must* precede an effect. There is a long debate in the philosophy of science with respect to the need of temporality as

a necessary condition to identify causality. Some authors have criticized this concept, and causal theories on *synchronized causality* have also been put forward. As we have seen in the previous paragraph, it may be very difficult to identify the temporal lag separating a cause by its effect, and this is a serious problem for applied sciences such as epidemiology, as noted by Hill himself:

Which is the cart and which is the horse? This is a question which might be particularly relevant with diseases of slow development. Does a particular diet lead to disease or do the early stage of the disease lead to those peculiar dietetic habits? Does particular occupation or occupational environment promote infection by the tubercle bacillus or are the men and women who select that kind of work more liable to contract tuberculosis whatever the environment – or, indeed, have they already contracted it? This temporal problem might not arise often but it certainly needs to be remembered, particularly with selective factors at work in industry. [Hill (1965), p. 297-298]

Hill's fifth criterion is the so-called biological gradient or dose response curve. This refers to the presence of a unidirectional dose-response curve. This is often the case in many applications; think for instance at the relation between smoking and cancer exposure: normally the death rate from lung cancer rises linearly with the number of cigarettes smoked daily. Other examples could be given by the relation between alcohol consumption and mortality, or by the relation between a dust environment in industry and respiratory diseases. In Hill's opinion, observing a clear-cut dose-response curve (for instance, exponential or linear) helps the researcher to establish the causal nature of a relationship. However, this criterion may be shaky, as observed by Rothman and Greenland (2005):

Associations that do show a monotonic trend in disease frequency with increasing level of exposure are not necessary causal: confounding can result in a monotonic relation between a noncausal risk factor and disease if the confounding factor itself demonstrates a biological gradient in its relation with disease. The noncausal relation between birth rank and Down syndrome shows a biological gradient that merely reflects the progressive relation between maternal age and Down syndrome occurrence. These examples imply that the existence of a monotonic association is neither necessary nor sufficient for a causal relation. A nonmonotonic relation only refutes those causal hypotheses specific enough to predict a monotonic dose-response curve. [Rothman and Greenland (2005), p. 149]

The sixth criterion is that of *plausibility* of an association. Hill's concept of plausibility refers to the *biological* plausibility of a particular hypothesis, and it certainly depends on the biological knowledge of the day. In other words, the concept of plausibility in applied sciences is synonymous with theory-driven causal inference. In this way, from a statistical perspective, a Bayesian approach to causality ought to be thought as a gold-standard to draw plausible inferences according to Hill's criterion. As observed by Rothman and Greenland (2005):

The Bayesian approach to inference attempts to deal with this problem by requiring that one quantify, on a probability (0 to 1) scale, the certainty that one has in prior beliefs, as

well as in new hypotheses. This quantification displays the dogmatism or openmindedness of the analyst in a public fashion, with certainty values near 1 or 0 betraying a strong commitment of the analyst for or against a hypothesis. It can also provides a means of testing those quantified beliefs against new evidence. Nevertheless, the Bayesian approach cannot transform plausibility into an objective causal criterion. [Rothman and Greenland (2005), p. 149]

Seventh, a criterion of *coherence* with the generally known facts of the natural history and biology of the disease is proposed. As the criteria of the biological gradient and of plausibility, also the criterion of coherence may appear as a typical criterion of epidemiology. Nevertheless, it would not be difficult to generalize such a concept to other sciences, included social and economic sciences. As the previous concepts, it is also not easy to make this criterion usable and functional:

Hill emphasized that the absence of coherent information, as distinguished, apparently, from the presence of conflicting information, should not be taken as evidence against an association being considered causal. On the other hand, presence of conflicting information may indeed refute a hypothesis, but one must always remember that the conflicting information may be mistaken or misinterpreted. [Rothman and Greenland (2005), p. 149]

The eighth criterion is that of experimental evidence. With this, Hill meant that sometimes it is possible that an association between an environmental exposure and a consequent disease is observed by chance. Subsequently, preventive programs may be developed by policy makers or health authorities, so that such an association is no longer observed. The results of this preventive strategy are to be considered as an implicit confirmation that the association which had been observed was of a causal nature. However, from a logical point of view, experimental evidence is far from being considered as a criterion for causality, but rather as a test of causal hypotheses.

The last criterion is that of analogy, for which the presence of a causal relation between the variables C and D may be hypothesized by analogy with the observation of another causal link between two other variables A and B. After a causal association between two variables A and B is observed, one may think that the more other possible associations can be put forward, the more such a causal relation between A and B has to be considered strong and relevant. This could be an interesting concept and, in some sense, also an appealing and challenging proposal. The problem is that, as observed by Rothman and Greenland (2005), this proposal cannot be accepted as a criterion for the evaluation of causality, as absence of such analogies only reflects lack of imagination or experience, not falsity of the hypothesis.

In conclusion, even if not conclusive, Hill's criteria are still today a good starting point for dealing with the problems of causal inference, also in social sciences. Though most of these criteria have been criticized, the questions that have been raised by Hill's paper are still relevant and noteworthy. In

1.4. HILL'S CRITERIA

the next chapter, these general and philosophical problems on the nature of causality will not be further discussed, but will remain as a background for all the thesis. The so-called Rubin Causal Model will be introduced and briefly compared with James Heckman's Structural Approach to causality. These approaches (the former of statistical origin and the latter developed in the econometric perspective) can be considered as part of David Lewis' counterfactual approach to causality. In the third chapter, Rubin's proposal to the analysis of causality in observational studies will be reviewed.

Chapter 2

Causal Effects in the Potential Outcomes Framework

2.1 Overview

When we unofficially think about causal inference, we usually evaluate the effect of a certain action when is taken with the only hypothetical effect of not taking the same action. For instance, imagine Karl is an unemployed plumber, who is proposed to attend a course in order to improve his expertise. Karl mentally compares his possibilities to find a new job either attending or not attending the course; if these possibilities significantly change, he would assume a causal effect of attending the course. Imagine now you are the goalkeeper of the leading football team in the league. You're playing a very important match: if you don't lose, you'll win the championship. There are five minutes to go before the end of the game and the score is 2-2. The opposing striker is dribbling with the ball and is entering your area: what are you going to do? You rapidly think about two options: either you stay in your goal and wait for the shot or you decide not to wait anymore. In the latter case, you would quickly run to the ball, going down to the ground and sliding with your arms stretched out for the ball – also risking that the referee awards a penalty kick. You compare the effect of your actions, both waiting and not waiting in your goal and then you make your decision.

These examples show that, as human beings, we have an innate sense of causal concepts.

Nevertheless, statistical theory has been relatively silent on questions of causality. Many textbooks avoid any mention of the term other than in settings of randomized experiments. Some mention it mainly to stress that correlation or association is not the same as causation, and some even caution their readers to avoid causal language in statistics. Nevertheless, for many users of statistical methods, causal statements are precisely the goal of their analysis. [Imbens and Rubin (2011), Ch. 1 pp. 1-2]

Suppose now you are a researcher, investigating the effects of alcohol consumption on school drop-out in a population of teenagers. Obviously, you cannot extract a sample from the population and randomize participants in alcohol/non alcohol abusers. In this case, you can do nothing but observe a group of teenagers, measure the variables of interest and try to draw inference from your data. However, alcohol consumption is not the only predictor of school dropout; for instance other key-variables might be sex, the socio-economic status and parents' degree. A causal link between abuse and dropout cannot be deduced without controlling for these variables, that may act as confounders. In the present context, a confounder can be defined in terms of a variable Z which interferes with the relationship between two other variables X and Y, and it is correlated with both of them. A confounder can obfuscates the relationship of interest by spuriously creating another one. In epidemiology, confounding is classically defined both as a lack of comparability and in terms of bias. Lack of comparability means that, if we consider two groups of subjects, exposed and unexposed to a certain treatment, had the exposed actually been unexposed, their outcome would have been different from that in the actual unexposed group. Moreover, confounding reflects to bias in the estimation of the effect of exposure on disease, due to inherent differences in risk between exposed and unexposed groups. Necessary conditions to be a confounder in epidemiology are: i) to be a risk factor; ii) to be correlated, positively or negatively, with exposure in the study population; iii) not be an intermediate step in the causal pathway between the exposure and the disease; iv) not to be affected by the exposure.

As we shall see, causal inference is not an easy matter in observational studies, due to the presence of confounding. Note further that, besides epidemiology, a fundamental field of application of theories on causal inference comes from the study of the effect of policies, as remarkably underlined by Angrist and Pischke (2008) in this example:

A causal relationship is useful for making predictions about the consequences of changing circumstances or policies; it tells us what would happen in alternative (or "counterfactual") worlds. For example, as part of a research agenda investigating human productive capacity—what labor economists call human capital—we have both investigated the causal effect of schooling on wages is the increment to wages an individual would receive if he or she got more schooling. A range of studies suggest the causal effect of a college degree is about 40 percent higher wages on average, quite a playoff. The causal effect of schooling on wages is useful for predicting the earning consequences of, say, changing the costs of attending college, or strengthening compulsory attendance laws. This relation is also of theoretical interest since it can be derived from an economic model. [Angrist and Pischke (2008), p. 4]

In the following paragraphs we'll develop a theory aimed to formalize basic intuitions concerning cause and effect. We'll refer to this theory both as *Program Evaluation Approach* and as *Rubin Causal Model* (since this

approach has been developed by Donald Rubin since the 1970s). First of all, some mathematical notation and definitions will be introduced:

• A *unit* is the person, place or thing upon which a treatment will operate, at a particular time. Recall that:

A unit can be a physical object, a firm, an individual person, or a collection of objects or persons, such as a classroom or a market, at a particular point in time. The same object or person at different times is, for our purposes, a different unit. From this perspective, a causal statement presumes that, although a unit was subject to, or exposed to, a particular action or treatment, at the same point in time an alternative action or treatment could have been taken. For instance, when deciding to take an aspirin to relieve your headache, you could also have chosen not to take the aspirin, or you could have chosen to take an alternative medicine. In this framework, articulating with precision the nature of the action could require a certain amount of imagination. For example, if we define race solely in terms of skin color, the action might be a pill that alters skin color. Such a pill may not currently exist (but then, neither did surgical procedures for heart transplants two hundred years ago), but we can still contemplate such an action. [Imbens and Rubin (2011), Ch. 1, p.2]

- A treatment is an intervention, the effects of which the researcher wishes to assess relative to no intervention. A dichotomous treatment will be stated by the variable A (1: treated, 0: untreated);
- A target population is a well-defined set of units to whom the treatment is directed to;
- A dichotomous outcome indicates an observable characteristic of the units of the population and will be stated by the variable Y (1/0, e.g. death/alive);
- The assignment mechanism is the process by means of which treatment is either assigned or not to participants (the basic condition for which at least one unit has to receive treatment and at least one unit has to be assigned to the control group is said replication);
- The potential outcomes or counterfactual outcomes can be defined as the values of a unit's measurement of interest after either application of treatment or no application of treatment. In the present chapter we will identify the potential outcomes as Y(1) (the outcome had all the subjects been treated) and as Y(0) (the outcome had all the subjects remained untreated). Both Y(1) and Y(0) are potentially observable, but only one of them is actually observed for each subject. Hence, we will indicate the factual outcome of the treated units with Y(1)|A=1, and with Y(0)|A=0 the factual outcome for the controls. Moreover, we will identify the counterfactual outcome of the treated units had they remained untreated with Y(0)|A=1 and with Y(1)|A=0 we will

state the counterfactual outcome of the untreated units had they been treated:

• Following the definition of potential outcomes, a *causal effect* can be identified as the comparison between the potential outcomes under treatment and no treatment for each unit.

There are two important aspects of this definition of a causal effect. First, the definition of a causal effect depends on the potential outcomes, but it does not depend on which outcome is actually observed. Specifically, whether you take an aspirin (and are therefore unable to observe the state of your headache with no aspirin), or do not take an aspirin (and are thus unable to observe the outcome with an aspirin) does not affect the definition of the causal effect. Second, the causal effect is the comparison of the outcomes at the same moment in time, whereas the time of the application of the treatment must precede that of the outcome. In particular, the causal effect is not defined in terms of comparisons of outcomes at different times, as in a before-and-after comparison of your headache before and after deciding to take or not take the aspirin. "The fundamental problem in facing interference for causal effects" (Rubin (1978)) is therefore the problem that, at most, only one of the potential outcomes can be revealed. [Imbens and Rubin (2011), Ch. 1, p.5]

Note that, as underlined by Hernán and Robins (2010), there is a slight semantic difference between the terms *potential* outcomes and *counterfactual* outcomes:

Some authors prefer the terms "potential outcomes" to emphasize that, depending on the treatment that is received, either of these two outcomes can be potentially observed. Other authors prefer the term "counterfactual outcomes" to emphasize that these outcomes represent situations that may not actually occur (that is, counter to the fact situations). [Hernán and Robins (2010), p.4]

The fundamental objective of causal inference is to establish whether a certain treatment has / does not have an effect on each unit receiving this treatment (e.g. a pharmacological trail or an educational program). Since each unit can be either exposed or not exposed to the treatment, but cannot be both exposed and not exposed to the same treatment, it is not possible to draw causal inference at an *individual* level. This principle has been labeled by Holland (1986) as the "fundamental problem" of causal inference. This problem can be handled either considering different participants exposed to different levels of treatment or comparing the same units at different times.

For estimation of causal effects, we will need to make different comparisons than the comparisons made for their definitions. For estimation and inference, we need to compare observed outcomes, that is, observed realizations of potential outcomes, and because there is only one realized potential outcome per unit, we will need to consider multiple units. For example, a before-and-after comparison of the same physical object involves distinct units in our set up, and also the comparison of two different physical units at the same time involves distinct units. Such comparisons are critical for estimating causal effects, but they do not define effects in our approach. [...] There is sometimes a tendency to view the same physical object at different times as the same unit. We view this as a fundamental mistake. "You at different times" are not the same unit in our approach to causality. Time matters for many reasons. For example, you may become more or less sensitive to aspirin, evenings may differ from mornings, or the initial intensity of your headache may affect

the result. It is often reasonable to assume that time makes little difference for inanimate objects —we may feel confident, based on past experience, that turning on a faucet will cause water to flow from that tap— but this assumption is typically less reasonable for human subjects, and it is never correct to confuses assumptions (e.g. about similarities between different units), with definitions (e.g., of a unit). [Imbens and Rubin (2011), Ch.1, pp. 6-7]

2.2 Defining Causal Effects

Consider now: a drug trial or a training program, N participants indexed by i = 1, ..., N who can enroll this program, a dichotomous variable A indicating whether an individual is exposed or not exposed to the program, a K-dimensional vector of pre-treatment covariates (\mathbf{X}) and two potential outcomes ($Y_i(0)$ and $Y_i(1)$). Remember that:

The first, $Y_i(0)$, denotes the outcome that would be realized by individual i if he or she did not participate in the program. Similarly, $Y_i(1)$ denotes the outcome that would be realized by individual i if he or she did participate in the program. Individual i can either participate or not participate in the program, but not both, and thus only one of these potential outcomes can be realized. Prior to assignment being determined, both are potentially observable, hence the label potential outcomes. If individual i participates in the program $Y_i(1)$ will be realized and $Y_i(0)$ will ex post be a counterfactual outcome. If, on the other hand individual i does not participate in the program, $Y_i(0)$ will be realized and $Y_i(1)$ will be the ex post counterfactual. [Imbens and Wooldridge (2009), p. 4]

The Program Evaluation Approach only considers ex-post potential outcomes, whereas ex-ante potential outcomes are a hallmark of the Structural Approach to causal inference (see § 2.9). The potential outcomes are linked to the assignment mechanism by the following equation:

$$Y_i = Y_i(A_i) = Y_i(0)(1 - A_i) + Y_i(1)A_i$$
(2.1)

The selection mechanism A can be totally independent of subjective choices (i.e. in randomized studies) or it can provide for individual preferences (i.e. in observational studies) but in the Program Evaluation Approach preferences are not formalized by an explicit decision rule (see §2.9 for a different theoretical framework). Remember also that only one of the two potential outcomes is actually observed:

The potential outcomes are tied to the specific manipulation that would have made one of them the realized outcome. The more precise the specification of the manipulation, the more well defined potential outcomes are. This distinction between the pair of potential outcomes $(Y_i(0), Y_i(1))$ and the realized outcome Y_i is the hallmark of modern statistical and econometric analyses of treatment effects. [Imbens and Wooldridge (2009), p. 5]

Before analyzing in detail the Rubin Causal Model, it is noteworthy to highlight the main reasons motivating a causal approach to inference. First, many questions starting research projects in different fields of knowledge (e.g. economics, psychology, medicine) are *per se* causal and need causal inference.

Second, a "frequentist" approach, aimed to estimate the likelihood of past and future events is not completely satisfactory for causal analysis, since this approach is only meaningful as long as the experimental conditions are invariant. Third, causal inference aims to identify mechanisms generating data, so that dynamics of events under changing conditions can be inferred. Fourth, the dynamics of change cannot be identified by probability laws, as these do not dictate how one property of a distribution ought to change when another property is modified (Imbens and Rubin, 2011).

The Rubin Causal Model is one of the main approaches to causal inference, which has the following advantages. First, this framework allows a researcher to define a causal effect before specifying an assignment mechanism, without explicitly stating any distributional assumption. This is a fundamental improvement with respect to a causal interpretation of the parameters of a regression function:

The most common definition of the causal effect at the unit level is as the difference $Y_i(1) - Y_i(0)$, but we may wish to look at the ratios or other functions. Such definitions do not require us to take a stand on whether the effect is constant or varies across the population. Further, defining individual-specific treatment effects using potential outcomes does not require us to assume endogeneity or exogeneity of the assignment mechanism. By contrast, the causal effects are more difficult to define in terms of the realized outcomes. Often, researchers write down a regression function $Y_i = \alpha + \tau \dot{A}_i + \epsilon_i$. This regression function is then interpreted as a structural equation, with τ as the causal effect. Left unclear is whether the causal effect is constant or not, and what the properties of the unobserved component, ϵ_i are. The potential outcome approach separates these issues, and allows a researcher to first define the causal effect of interest without considering the probabilistic properties of the outcome or assignment. [Imbens and Wooldridge (2009), p. 5]

Second, the Program Evaluation Approach compels a researcher to consider and compare different scenarios. This is a basic feature of the Lewis' perspective on causality. By comparing different scenarios we are induced to consider the consequences of an action, both when it is taken and when it is not taken. By the way, this principle has been outstandingly represented by the Peter Howitt's movie *Sliding doors*, in which the plot splits into two parallel universes, according to the two paths Helen's (the leading actress) life can take depending on whether she catches a London Underground train or not. This is what should be made for evaluating causal relations from the Rubin's perspective. Third, in this approach the definition of the counterfactuals is separated from the assignment mechanism and no model is directly specified for the realized outcome. Fourth, this framework formulates the probabilistic assumptions in terms of conditional independence assumptions of *potentially observable* variables rather than in terms of *unobserved* components. This is another basic difference with the (structural) regression models:

In this approach, many of the critical assumptions will be formulated as (conditional) independence assumptions involving the potential outcomes. Assessing their validity requires the researcher to consider the dependence structure if all potential outcomes were

observed. By contrast, models in terms of realized outcomes often formulate the critical assumption in terms of errors in regression functions. To be specific, consider again the regression function $Y_i = \alpha + \tau \dot{A}_i + \epsilon_i$. Typically (conditional independence) assumptions are made on the relationship between ϵ_i and A_i . Such assumptions implicitly bundle a number of assumptions, including functional-form assumptions and substantive exogeneity assumptions. This bundling makes the plausibility of these assumptions more difficult to assess. [Imbens and Wooldridge (2009), p. 7]

Fifth, this framework clarifies where the uncertainty in the estimators comes from. Even if the entire population were observed, causal effects would remain uncertain, since only one of the potential outcomes can be observed for each unit.

2.3 The Assignment Mechanism

The assignment mechanism determines which potential outcome is observed for each unit. Formally, the assignment mechanism is a probabilistic or a deterministic rule for selecting some units to remain untreated and other units to receive treatment. Furthermore, the assignment mechanism defines the type of a study (e.g. completely randomized study, observational study...) as well as the acts of nature that lead to the observed data (Imbens and Rubin (2008)). In a population P of N units, each unit is characterized by a K-dimensional vector of characteristics, denoted by X_i for each unit i, with \mathbf{X} denoting the $N \times K$ matrix of observed covariates. The potential outcomes $(\mathbf{Y}(1), \mathbf{Y}(0))$ and the assignment $\mathbf{A}, A_i \in \{0, 1\}$ jointly determine the values of the observed and missing outcomes:

$$Y_i^{obs} \equiv Y_i(A_i) = A_i \cdot Y_i(a_i = 1) + (1 - A_i) \cdot Y_i(a_i = 0)$$

$$Y_i^{mis} \equiv Y_i(1 - A_i) = (1 - A_i) \cdot Y_i(a_i = 1) + A_i \cdot Y_i(a_i = 0)$$

Formally, the assignment mechanism can be defined as a row-exchangeable function taking values on $\{0,1\}^N$ to values in [0,1] defined as:

$$Pr(\mathbf{A}|\mathbf{X},\mathbf{Y}(0),\mathbf{Y}(1))$$

and satisfying:

$$\sum_{\mathbf{A}} Pr(\mathbf{A}|\mathbf{X},\mathbf{Y}(0),\mathbf{Y}(1)) = 1 \qquad \text{for all} \quad \mathbf{X},\mathbf{Y}(0),\mathbf{Y}(1)$$

As Imbens and Rubin (2011) observe ¹:

¹**W** is the assignment mechanism

This probability $Pr(\mathbf{W}|\mathbf{X},\mathbf{Y}(0),\mathbf{Y}(1))$ is not the probability of a unit of receiving the treatment. Instead it reflects a measure across the full population of N units, for instance the probability that a given assignment vector \mathbf{W} – first two units treated, third a control, fourth treated, etc. – will occur. The definition requires that the probabilities across the full set of 2^N possible assignment vectors \mathbf{W} sum to one. Note also that some assignment vectors may have zero probability. For example, if we were to design a study to evaluate a new drug, it is likely that we would want to rule out the possibility that all subjects received the control treatment, thereby assigning zero probability to the vector of assignments \mathbf{W} with $W_i = 0$ for all \mathbf{i} , or perhaps even assigning zero probability to all vectors of assignments other than those with $\sum_{i=1}^N W_i = \frac{N}{2}$, for even N.

The assignment probability for unit i is:

$$p_i(\mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) = \sum_{\mathbf{A}|A_i=1} Pr(\mathbf{A}|\mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1))$$

The N functions $p_i(\cdot)$ can be written in terms of a common function $Pr(\cdot)$ that depends on the covariates and the potential outcomes for unit i:

$$p_i(\mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) = Pr(A_i = 1 | X_i, Y_i(0), Y_i(1))$$
 for all $i = 1, 2, ..., N$

The following definitions are essential (see Imbens and Rubin (2011), Ch. 3, pp. 8-):

Definition 1. An assignment mechanism $Pr(\mathbf{A}|\mathbf{X},\mathbf{Y}(0),\mathbf{Y}(1))$ is said to be individualistic if, for some function $q(\cdot)$,

$$p_i(\mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) = q(X_i, Y_i(0), Y_i(1))$$

and

$$Pr(\mathbf{A}|\mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) = c \cdot \prod_{i=1}^{N} q(X_i, Y_i(0), Y_i(1))^{A_i} \cdot (1 - q(X_i, Y_i(0), Y_i(1)))^{1 - A_i}$$

for $(\mathbf{A}, \mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) \in \mathbb{A}$ for some set \mathbb{A} , and zero elsewhere (c is the constant that ensures that the probabilities sum up to unit).

Definition 2. If the assignment mechanism is individualistic, the propensity score e(x) at x is the average unit probability for units with $X_i = x$:

$$e(x) = \frac{1}{N_x} \sum_{i:X_i=x} q(X_i, Y_i(0), Y_i(1))$$

where $N_x = \#\{i = 1, ..., N | X_i = x\}$ is the number of units with $X_i = x$. For values of x with $N_x = 0$, the propensity score is defined to be zero.

Definition 3. An assignment mechanism $Pr(\mathbf{A}|\mathbf{X},\mathbf{Y}(0),\mathbf{Y}(1))$ is said to be probabilistic if, for all i and all \mathbf{X} , $\mathbf{Y}(0)$ and $\mathbf{Y}(1)$, is strictly included between zero and one:

$$0 < Pr(A_i = 1 | \mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) < 1$$

Definition 4. An assignment mechanism is said to be ignorable if it does not depend on the missing outcomes:

$$Pr(A_i = 1|X_i, Y_i(0), Y_i(1)) = Pr(A_i = 1|X_i, Y_i^{obs})$$

Definition 5. An assignment mechanism is said to be unconfounded if it does not depend on the potential outcomes:

$$Pr(A_i = 1|X_i, Y_i(0), Y_i(1)) = Pr(A_i = 1|X_i)$$

Under individualistic assignment and unconfoundedness, the assignment mechanism can be written as:

$$Pr(\mathbf{A}|\mathbf{X},\mathbf{Y}(0),\mathbf{Y}(1)) = c \cdot \prod_{i=1}^{N} q(X_i)^{A_i} \cdot (1 - q(X_i))^{1-A_i}$$

Under unconfoundedness (a condition that can also be labeled as selection on observables or conditional independence), the propensity score is not just the average assignment probability for units with covariate value $X_i = x$, but it can also be interpreted as the unit-level assignment probability for those units: $Pr_i(A_i = 1|X_i)$. The unconfoundedness assumption may be labeled in different ways in the literature, for instance as selection on observables, exogeneity and conditional independence.

Definition 6. An assignment mechanism is called strongly ignorable if it is probabilistic and unconfounded.

Note that an uncounfounded assignment is a particular case of an ignorable assignment, so that an unconfounded assignment is always ignorable while an ignorable assignment may be confounded. At the same time, a strongly ignorable assignment is a particular case of an unconfounded assignment. If the assignment mechanism is strongly ignorable, it can be represented as a regular assignment mechanism, which is proportional to the product of propensity scores:

$$Pr(\mathbf{A}|X,Y(1),Y(0)) \propto \prod_{i} Pr(A_i = 1|X_i)$$

We can now introduce other fundamental definitions that link the assignment mechanism to the type of a study: **Definition 7.** A randomized study is an experiment such that the assignment mechanism is probabilistic and a known function of its argument.

Definition 8. A classical randomized study is a randomized experiment with an assignment mechanism that is individualistic and unconfounded.

Definition 9. A completely randomized experiment is a classical randomized experiment in which the number of treated units, N_t is fixed a priori. In such a design N_t units are randomly selected to receive the active treatment from a population of N units, with the remaining $N_c = N - N_t$ assigned to the control group. In this case, each unit has unit assignment probability $q = N_t/N$ and assignment mechanism equals:

$$Pr(\mathbf{A}|\mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) = \begin{cases} 1/\binom{N}{N_t} & \text{if } \sum_{i=1}^{N} A_i = N_t \\ 0 & \text{otherwise} \end{cases}$$

Definition 10. An observational study is a non-randomized experiment such that the assignment mechanism is not a known function of its arguments.

A special case of an observational study is given by a regular assignment mechanism:

Definition 11. An assignment mechanism is said to be regular if it is probabilistic, individualistic and unconfounded.

Note that a randomized study may be confounded (e.g. sequential randomized experiment) and, in general, observational studies have possibly confounded, nonignorable assignment mechanisms. Hence, it would be more pertinent to refer to this mechanism as *selection* mechanism and not assignment mechanism. Imbens and Rubin (2008) observe:

The assignment mechanism describes why some study units will be (or were) exposed to the active treatment and why other study units will be (or were) exposed to the control treatment, and the reasons are formalized by the mathematical statement of the assignment mechanism. When the study is a true experiment, the assignment mechanism may involve the consideration of background (i.e., pre-treatment) variables for the purpose of creating strata of similar units to be randomized into treatment and control, thereby improving the balance of treatment and control groups with respect to these background variables (i.e., covariates). A true experiment automatically cannot use any outcome (post-treatment) variables to influence design because they are not yet observed. If the observed data were not generated by a true experiment, but rather by nonrandomized observational data, there still should be an explicit design phase. That is, in an observational study, the same guidelines as in an experiment should be followed [Imbens and Rubin (2008)].

In observational studies (discussed in the next chapter), a fundamental step to draw causal inference consists in identifying subset of units in order to approximate the structure of a true randomized experiment as closely as possible. Following Imbens and Rubin (2008):

An observational study should be designed as if its data arose from a "broken" randomized experiment, where the unknown propensity scores must be reconstructed on the basis of the covariates X prior to ever observing any potential outcomes. In such settings, it is often quite advantageous to use estimated propensity scores [...]. When estimated propensity scores for some units are so low that they have essentially no chance of being treated, then those units should be discarded from further consideration when estimating the treatment effect in the treated [...]. The result of the design phase should be treatment and control groups with very similar distributions of observed Xs, either because of matching or subclassification. If a data set does not permit similar X distributions to be constructed in treatment and control groups, it cannot be used to support causal inferences without extraneous assumptions justifying extrapolations [Imbens and Rubin (2008)].

Imbens and Wooldridge (2009) add:

Nevertheless, experimental evaluations remain relatively rare in economics. More common is the case where economists analyze data from observational studies. Observational data generally create challenges in estimating causal effects, but in one important special case, variously referred to as unconfoundedness, exogeneity, ignorability, or selection on observables, questions regarding identification and estimation of the policy effects are fairly well understood. All these labels refer to some form of the assumption that adjusting treatment and control groups for differences in observed covariates, or pretreatment variables, remove all biases in comparisons between treated and control units. This case is of great practical relevance, with many studies relying on some form of this assumption. [Imbens and Wooldridge (2009), (p.2)].

Note that there exists a third class of assignment mechanisms, in which some dependence of the assignment mechanism from the potential outcomes is supposed to hold. There is not a unique method to deal with this problem, but many techniques has been suggested, such as the use of instrumental variables, the regression discontinuity design and the difference-in-differences methods (see Chapter 3).

Let's now sum up two important issues discussed in this section. First, since a causal effect defined at an individual level cannot be definitely estimated, we turned our attention to a group level. Second, the mechanisms of assignment of individuals to treatments have been formalized, and these definitions have been linked to the type of a study (a classical randomized study, a completely randomized experiment and an observational study). Two other points now deserve to be underlined, and will be analyzed in the next section:

First, there exists the possibility that units interfere with one another, such that one unit's potential outcome, when exposed to a specific treatment level, may also depend on the treatment received by another unit. Second, because in multi-unit settings, we must have available more than one copy of each treatment, we may face circumstances in which a unit receiving the same nominal level of one treatment could in fact receive different versions of that treatment. These are serious complications, serious in the sense that unless we restrict them, by assumption, and through careful study design and measurement to make these assumptions more realistic, there are only limited causal inferences that can be drawn. [Imbens and Rubin (2011), Ch.2, p.11]

2.4 Assumptions

Even if not explicitly mentioned, there are two implicit assumptions underlying all the previous definitions: i) no interference between units (Cox (1958));

ii) consistency (Robins et al. (2000)). The first assumption is part of the more general stable-unit-treatment-value assumption (SUTVA, Rubin (1980), Rubin (1986)) for which ia there should be only one form of the treatment and one form of control for each unit and ib a subject's counterfactual outcome under treatment A = a should be independent from other subjects' treatment value. As stated in Morgan and Winship (2007), this assumption is also alluded to as no-macro-effect or partial equilibrium assumption in the econometric literature (Heckman (2000), Heckman (2005)). This hypothesis is commonly satisfied in most randomized experiments, but is not easily met in observational studies (e.g. educational or social programs).

Note, however, that these assumptions, and other restrictions discussed later, are not directly informed by observations on similar treatments – fundamentally they are assumptions. That is, they rely on previous knowledge of the subject matter for their justification. Causal inference is impossible without such assumptions, and thus it is critical to be explicit about their content and their justifications. [Imbens and Rubin (2011), p. 9]

The first point (ia) of the SUTVA assumption has been remarkably commented by Imbens and Rubin (2011):

The requirement is that the label of the aspirin tablet, or the nature of the administration of the treatment, does not contain any information regarding the potential outcome for any unit. This assumption does not require that all forms of each level of the treatment are identical across units, but only that unit i exposed to treatment level w specifies a well-defined potential outcome, $Y_i(w)$, for all i and $w \in \{0,1\}$. Strategies to make SUTVA more plausible include re-defining the treatment to comprise a larger set of treatments, or coarsening the outcome to make SUTVA more plausible. For an example of the latter, SUTVA may be more plausible if the outcome is defined as dead or alive rather than for a finer measurement of health status. [Imbens and Rubin (2011), Ch. 1, p. 11]

Let's now give a simple example in which the assumption (ib) does not hold. Imagine you are a neurologist, and you aim to verify the effect of *memantine* (a novel drug in the class of the Alzheimer's disease medications) on memory loss.

You select a sample of 100 units, who satisfy the inclusion criteria for a randomized pilot study. Consider now three subjects, u_1, u_2, u_3 , whose potential outcomes under treatment/no treatment are reported in Table 2.1. The outcome variable is the score at the Mini-Mental State Examination (MMSE), a brief 30-point questionnaire that is used to screen for cognitive impairment. Consider, for instance, the 2^{nd} and the 5^{th} line for the subject u_1 : note that counterfactuals under treatment are not independent from other subjects' assignments (when at least another subject is assigned to treatment Y(1) increases and Y(0) decreases), so that the underlying causal effects are a function of the treatment assignment pattern and SUTVA does not hold.

Think now you are a social *policy maker* and you are asked to increase the financial support to a program of private imprisonment in your county. Your office is planning a research project aimed to compare the percentage

Assignment				Outcome				
u_1	u_2	u_3	$Y_1(1)$	$Y_1(0)$	$Y_2(1)$	$Y_2(0)$	$Y_3(1)$	$Y_3(0)$
0	0	0	25	20	30	18	21	16
1	0	0	25	20	30	18	21	16
0	0	0	25	20	30	18	21	16
0	0	1	25	20	30	18	21	16
1	1	0	30	13	24	16	27	29
0	1	1	30	13	24	16	27	29
1	0	1	30	13	24	16	27	29
1	1	1	30	13	24	16	27	29

Table 2.1: An Example. Assignment mechanism and potential outcomes for three units u_1 , u_2 , u_3 in a Memantine Randomized Experiment. Outcomes indicate the score on the Mini-Mental State Examination (0-30, cutoff=18).

of suicides in public/private prisons. Does SUTVA hold in a similar context? Consider that private prisons detain far less inmates than public prisons and it is widely known that overcrowding is a risk factor for prison suicide. For SUTVA to hold, the number of suicides in private prisons cannot be a function of the number of inmates. Nevertheless, it may be the case that also in a non-natural assignment pattern, such that the populations of public/private prisons were balanced, the potential outcomes referred to suicides would be different. Interference between units causes no well-defined counterfactual outcomes $Y_i(a)$, since an individual outcome depends on other individuals' treatment values (a typical example in medicine is given by studies dealing with contagious diseases). There are also examples form economics and social sciences:

There exist settings, however, in which the non-interference part of SUTVA can be quite suspect. In large scale job training programs, for example, the outcomes for one individual may well be affected by the number of people trained when the number is sufficiently large to create increased competition for certain jobs. In an extreme example, the effect on your future earnings of going to a graduate program in statistics would surely be different if everybody your age also went to the same program. [Imbens and Rubin (2011), Ch. 1, pp. 9-10]

In mathematical terms, SUTVA holds whether:

$$y_i(1) = y_i(1)|\mathbf{A}$$
 $y_i(0) = y_i(0)|\mathbf{A}$ for all i

and

$$(Y_i(0), Y_i(1), A = a_i) \coprod (Y_j(0), Y_j(1), A = a_j)$$
 for all i \neq j

Morgan and Winship (2007) noticeably remark:

Sometimes it is argued that SUTVA is so restrictive that we need an alternative conception of causality for the social sciences. We agree that SUTVA is very sobering. However, our position is that SUTVA reveals the limitations of observational data and perils of immodest causal modeling rather than the limitations of the counterfactual model itself. Rather than considering SUTVA as only restrictive, researchers should always reflect on the plausibility of SUTVA in each application and use such reflection to motivate a clear discussion of the meaning and scope of a causal effect estimate [Morgan and Winship (2007), p.38]

Note that there are also cases in which SUTVA per se does not hold and alternative assumption might be put forth as more appropriated, and should be kept into account to model the assignment mechanism:

For example, in some early AIDS drug trial settings, many patients took some of their assigned drug and shared the remainder with other patients in hopes of avoiding placebos. Given this knowledge, it is clearly no longer appropriate to assert the no-interference element of SUTVA – that treatments assigned to one unit do not affect the outcomes for others. We can, however, use this specific information to model instead how treatments are received across patients in the study, making alternative –and in this case more appropriate—assumptions that allows some inference. [Imbens and Rubin (2011), Ch.3, p.12]

Another implicit assumption is that the treatment must be dichotomous, and this assumption is included in SUTVA; in case of multiple versions of treatment, the contrast of interest needs to be specified (Hernán and Robins (2010)). Last, a fundamental assumption is given by consistency, that can be defined as the condition according to which, for each subject, the potential outcome under exposure is precisely the observed outcome, i.e. the exposure is defined unambiguously. Cole and Frangakis (2009) remark:

Consistency is guaranteed by design in experiments, because application of the exposure to any individual is under the control of the investigator. Consistency is plausible in observational studies of medical treatments, because one can imagine how to manipulate hypothetically an individual's treatment status. However, consistency is problematic in observational studies with exposures for which manipulation is difficult to conceive [Cole and Frangakis (2009), p.3].

Consistency can be formally stated by the formula:

if
$$A_i = a$$
 then $Y_i(a) = Y_i$

Note that, in applications, consistency is usually assumed and not discussed or verified by most authors.

2.5 Average Causal Effects

The fundamental problem of causal inference is that, at an individual level, a causal effect is defined comparing two counterfactual outcomes Y(1) and Y(0), but *only one* of these potential outcomes is factually observed. It follows that, normally, causal effects cannot be identified at an individual level

for a problem of *missing values*. Consequently, we can turn our attention to average causal effects in the population. There are different measures that can be considered. First, the so called average treatment effect (ATE), that can be obtained by comparing the outcomes of two different group of participants, treated and not treated:

$$ATE = \mathbb{E}[(Y(1)|A=1) - (Y(0)|A=0)]$$
(2.2)

Second, the average treatment effect on treated (ATT), that compares the outcome of the treated if treated (factual) and whether they had not been treated (counterfactual):

$$ATT = \mathbb{E}[(Y(1)|A=1) - (Y(0)|A=1)] \tag{2.3}$$

In the counterfactual approach to causal inference ATT is considered as a more appropriate measure for a causal effect, since it compares the potential outcomes of the same subjects. ATE does not coincide with ATT, for the presence of the so-called *selection bias*, that is defined as the outcomes difference that would be observed between treated and untreated units if the treatment was not implemented. Indeed, ATE can be rewritten as:

$$ATE = \mathbb{E}[(Y(1)|A=1) - (Y(0)|A=0)]$$

$$= \mathbb{E}[(Y(1)|A=1)] - E[(Y(0)|A=1)] +$$

$$+ \mathbb{E}[(Y(0)|A=1)] - E[(Y(0)|A=0)]$$
selection bias
$$(2.4)$$

ATE is given by the sum of ATT and the selection bias, that captures preexisting differences between the two groups that cannot be attributed to the program. As we can see, the selection bias comprises a term which is observable, and a term which is not observable (counterfactual) and it cannot be definitely measured. This is the reason for which ATE cannot commonly be given a causal interpretation.

Consider now that, in many applied problems, researchers can gain information on unit-specific background attributes of subjects (pre-treatment covariates):

The final and most important role for covariates in our context, however, concerns their effect on assignment mechanism. Young unemployed individuals may be more interested in training programs aimed at acquiring new skills, or high risk groups may be more likely to take flu shots. As a result, those taking the active treatment may differ in the distribution of their background characteristics from those taking the control treatment. At the same time, these characteristics may be associated with the potential outcomes. As a result, assumptions about the assignment mechanism and its possible freedom from dependence on potential outcomes are often more plausible within subpopulations that are homogeneous with respect to some covariates, i.e., conditionally given the covariates, than unconditionally. [Imbens and Rubin (2011), Ch.3, p. 15].

If we now consider the vector of covariates \mathbf{X} , we can define two other measure effects that have been proposed in the literature, that are the *conditional average treatment effect* (CATE):

$$CATE = \mathbb{E}[(Y(1)|A=1, X=x) - (Y(0)|A=0, X=x)]$$
(2.5)

and the conditional average treatment effect on treated (CATT):

$$CATT = \mathbb{E}[(Y(1)|A=1, X=x) - (Y(0)|A=1, X=x)]$$
(2.6)

Alternatively, also quantile treatment effects can be used:

$$\tau_q = F_{Y(1)}^{-1}(q) - F_{Y(0)}^{-1}(q) \tag{2.7}$$

where 2.7 indicates the difference between the quantiles of the two potential outcomes distributions. The quantile of the unit level effect is defined as:

$$\tilde{\tau}_q = F_{Y(1)-Y(0)}^{-1}(q)$$

In general the quantile of the difference, $\tilde{\tau}_q$ differs from the difference in quantiles, τ_q , unless there is perfect rank correlation between the potential outcomes $Y_i(0)$ and $Y_i(1)$ (the leading case of this is the constant additive treatment effect). The quantiles of the treatment effect, $\tilde{\tau}_q$, have received much less attention than the quantile treatment effect, τ_q . The main reason is that the $\tilde{\tau}_q$ are generally not identified without assumptions on the rank correlation between the potential outcomes, even with data from randomized experiment. Note that this issue does not arise if we look at average effects because the mean of the difference is equal to the difference of the means: $\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]$. [Imbens and Wooldridge (2009), p.13]

The conditional difference between quantiles can be defined as well:

$$\tau_q(x) = F_{Y(1)|X}^{-1}(q|x) - F_{Y(0)|X}^{-1}(q|x)$$

Some authors have also proposed to consider the difference between *medians*, although the median, in general, is not a linear operator:

$$Med[Y(1) - Y(0)] \neq Med[Y(1)] - Med[Y(0)]$$

Also the variance parameter, as is commonly known, is not linear:

$$Var[Y(1) - Y(0)] = Var[Y(1)] + Var[Y(0)] - 2Cov[Y(1), Y(0)]$$

Last, causal effects can be defined within subpopulations of interest according to the realized outcome:

One may be interested in the average effect of a job training program on earnings, averaged only over those individuals who would have been employed (with positive earnings) irrespective of the level of the treatment:

$$\tau_{pos} = \frac{1}{N_{pos}} \sum_{i:Y_i(0)>0,Y_i(1)>0} (Y_i(1) - Y_i(0))$$

where $N_{pos} = \sum_{i=1} N \mathbbm{1}_{Y_i(0)>0,Y_i(1)>0}$. Because the conditioning variable (being employed irrespective to the treatment level) is a function of potential outcomes, the conditioning is (partly) on potential outcomes. [Imbens and Rubin (2011), p.17].

2.6 Measuring Causal Effects

In the previous section, only measures based on risk differences have been introduced. Nevertheless, also other measures –alternative to risk differences—are used in applied research projects. Imagine, for instance, a researcher is testing a new drug for asthma which can cause skin macules as side effects. Let P be a population of 1 million individuals in which 50 persons would develop the outcome if treated and 5 persons would develop the outcome even if untreated. Three different effect measures can be defined:

Risk Difference
$$Pr[Y(1) = 1] - Pr[Y(0) = 1]$$

Risk Ratio $\frac{Pr[Y(1) = 1]}{Pr[Y(0) = 1]}$
Odds Ratio $\frac{Pr[Y(1) = 1]}{Pr[Y(1) = 0]}$
 $\frac{Pr[Y(0) = 1]}{Pr[Y(0) = 0]}$

In the example above, risk difference is .000045, risk ratio is 10 and odds ratio would be 10.0526. The basic difference between risk difference and the ratios is that the former keeps into account the magnitude of an effect with respect to the dimension of the population that has been examined. As noted in Hernán and Robins (2010):

The causal risk ratio (multiplicative scale) is used to compute how many times treatment, relative to no treatment, increases the disease risk. The causal risk difference (additive scale) is used to compute the absolute number of cases of the disease attributable to the treatment. The use of either the multiplicative or additive scale will depend on the goal of the inference. [Hernán and Robins (2010), p.7]

2.7 Randomized Experiments

In the present chapter, the Rubin Causal Model has been introduced and the language of counterfactuals has been summed up. It has been mentioned that, normally, causal inference cannot be obtained at an individual level. Hence, we turned our attention to aggregate measures based on the evaluation of risk differences, such as ATE, ATT, CATE and CATT. Subsequently, other effect measures such as risk ratio and odds ratio have been introduced. In the present paragraph, we analyze randomized experiments, that have to be considered as a sort of gold standard from the Program Evaluation perspective. This is because randomization guarantees that missing values occurred by chance and, consequently, effect measures can be estimated despite the missing data. Classically, randomized experiments are used in chemistry, medicine, engineering, though they have also been conceived in the social contexts, as exemplified by the famous Perry preschool project:

A case in point is the Perry preschool project, a 1962 randomized experiment designed to assess the effects of an early intervention program involving 123 black preschoolers in Ypsilanti, Michigan. The Perry treatment group was randomly assigned to an intensive intervention that included preschool education and home visits. It's hard to exaggerate the impact of the small but well-designed Perry experiment, which generated follow-up data through 1993 on the participants at age 27. [...] Most important, the Perry school project provided the intellectual basis for the massive Head Start preschool program, begun in 1964, which ultimately served (and continues to serve) millions of American children. [Angrist and Pischke (2008), p. 12]

Let's now briefly consider the following example: imagine you want to test the effect of a new anti-cholesterol drug; you select a sample from a target population and you randomly assign participants to receive either the new drug or a placebo. Afterwards, you compare the outcomes in the two groups of participants in order to establish whether the mean values of cholesterol significantly differ between the two groups. Suppose that our experiment is an ideal randomized experiment, for which: i) there is no any loss of participants at the follow-ups; ii) there is full compliance of patients and full observance to the assigned treatment over the duration of the study; iii) the assignment is double-blind. If such conditions are met, an important property, known as exchangeability or exogenity, holds. For, the expected improvement in the cholesterol values in the group of treated would have been the same as the expected improvement in the group of controls had subjects in the control group received the treatment given to those in the active treatment group. If we consider a dichotomized outcome (Y = 1: improved / Y = 0: not improved), the following equations hold under exchangeability:

$$Pr[Y(1) = 1|A = 1] = Pr[Y(1) = 1|A = 0]$$

$$Pr[Y(0) = 1|A = 1] = Pr[Y(0) = 1|A = 0]$$

$$Pr[Y(1) = 0|A = 1] = Pr[Y(1) = 0|A = 0]$$

$$Pr[Y(0) = 0|A = 1] = Pr[Y(0) = 0|A = 0]$$

In other words, it can be asserted that, if the condition of exchangeability holds, the counterfactual outcomes and the treatment subjects actually received are independent:

$$(Y(1), Y(0)) \mathsf{I} \mathsf{I} A$$
 for all $a \in A$

This is a stronger condition than the condition of unconfoundedness that was previously put forth, as exchangeability holds unconditionally from the values of the covariates. In fact, unconfoundedness can also be referred to as conditional exchangeability, especially in an epidemiology context.

Under exchangeability (either unconditional or conditional) the selection bias is null, so that ATE and ATT are the same and associational measures can be given a causal interpretation. Note that exchangeability relates to the potential outcomes and not to the factual outcomes and it does not imply independence of the factual outcomes from the treatment assignment. For instance, in a randomized experiment in which exchangeability holds and the treatment plays a causal role, the actual outcomes are dependent from the assignment of the treatment. An experiment in which exchangeability holds can also be defined as a marginally randomized experiment, because an unconditional (marginal) probabilistic rule is used in order to assign participants either to treatment or to control. These are experiments in which the randomization probabilities depend on the values of one or more covariates and conditional exchangeability is expected to hold. Let's turn back to the previous example and imagine to find that 73% treated versus 51% controls suffer from high blood pressure. Obviously, you are not allowed to interpret the results of this experiment without considering blood pressure as a covariate, i.e. you have to consider your study as a conditional randomized experiment.

The same effect measures that were put forth for the case of marginally randomized experiments can also be used in a conditionally randomized experiment. The basic difference is that in the latter case, these measures can be given a causal interpretation only within each stratum. Two main methodologies have been put forth in order to compute average causal effects from strata to the entire population: i) standardization; ii) inverse probability weighting.

The standardization method asserts that the risk in a population, stratified with respect to a certain variable X (that we assume as dichotomic), can be calculated as a weighted average of the stratum specific risks, provided conditional exchangeability holds. This condition can be developed in the following way:

$$(Y(0), Y(1)) \coprod A|X = 0 \Leftrightarrow$$

$$\begin{cases} Pr[Y(1) = 1|X = 0, A = 1] = Pr[Y(1) = 1|X = 0, A = 0] = \\ = Pr[((Y(1) = 1|A = 1) + (Y(1) = 1|A = 0)|X = 0] \\ Pr[Y(0) = 1|X = 0, A = 0] = Pr[Y(0) = 1|X = 0, A = 1] \\ = Pr[(Y(0) = 1|A = 0) + (Y(0) = 1|A = 1))|X = 0] \end{cases}$$

and:

$$(Y(0), Y(1)) \coprod A|X = 1 \leftrightarrow$$

$$\begin{cases} Pr[Y(1) = 1|X = 1, A = 1] = Pr[Y(1) = 1|X = 1, A = 0] \\ = Pr[(Y(1) = 1|A = 1) + (Y(1) = 1)|A = 0)|X = 1] \\ Pr[Y(0) = 1|X = 1, A = 0] = Pr[Y(0) = 1|X = 1, A = 1] \\ = Pr[((Y(0) = 1|A = 0) + (Y(1) = 1|A = 1))|X = 1] \end{cases}$$

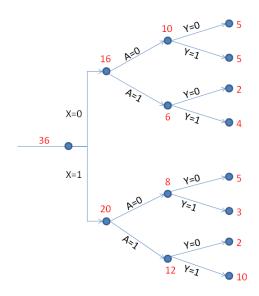


Figure 2.1: Example of a Standardization and Inverse Probability Weighting

Standardization is given by the following equations:

$$\begin{split} Pr[Y=1|A=1] &= Pr[Y=1|X=0,A=1] \cdot Pr[X=0] + \\ &+ Pr[Y=1|X=1,A=1] \cdot Pr[X=1] \\ &= \sum_{X=x} Pr[Y=1|X=x,A=1] \cdot Pr[X=x] \\ Pr[Y=1|A=0] &= Pr[Y=1|X=0,A=0] \cdot Pr[X=0] + \\ &+ Pr[Y=1|X=1,A=0] \cdot Pr[X=1] \\ &= \sum_{X=x} Pr[Y=1|X=x,A=0] \cdot Pr[X=x] \end{split}$$

In the previous example the focus was on the effect of an anti-cholesterol drug (Y = 1: effective; Y = 0: not effective) and the sample was stratified according to the values of a covariate X (X = 1: high blood pressure; X = 0: not high blood pressure). Imagine now that in your 36-units sample, 20 units have high values of pressure and 10 units have low values of pressure and that 18 units are treated whereas 18 are untreated (see Figure 2.1). Our objective is to estimate the *causal risk difference*, defined as:

$$Pr[Y(1) = 1] - Pr[Y(0) = 1]$$

where Y(1) indicates the counterfactual outcome of all the subjects had they been treated and Y(0) indicates the counterfactual outcome of all the

subjects had not they been treated. For X = 1 we have:

$$Pr[Y = 1|X = 1, A = 1] = \frac{10}{12} = 0.833$$

$$Pr[Y = 1|X = 1, A = 0] = \frac{3}{8} = 0.375$$

and, by the unconfoundedness hypothesis,

$$Pr[Y(1) = 1|X = 1, A = 1] = Pr[Y(1) = 1|X = 1, A = 0]$$

For X = 0 we have:

$$Pr[Y = 1|X = 0, A = 1] = \frac{4}{6} = 0.667$$

$$Pr[Y = 1|X = 0, A = 0] = \frac{5}{10} = 0.5$$

and, by the unconfoundedness hypothesis:

$$Pr[Y(1) = 1|X = 0, A = 1] = Pr[Y(1) = 1|X = 0, A = 0]$$

Standardization is given by:

$$Pr[Y(1) = 1] = Pr[Y = 1 | X = 1, A = 1] \cdot Pr[X = 1] +$$

$$+ Pr[Y = 1 | X = 0, A = 1] \cdot Pr[X = 0]$$

$$= \frac{10}{12} \times \frac{20}{36} + \frac{4}{6} \times \frac{16}{36} = 0.463 + 0.296 = 0.759$$

and:

$$Pr[Y(0) = 1] = Pr[Y = 1 | X = 1, A = 0] \cdot Pr[X = 1]$$
$$+ Pr[Y = 1 | X = 0, A = 0] \cdot Pr[X = 0]$$
$$= \frac{3}{8} \times \frac{20}{36} + \frac{5}{10} \times \frac{16}{36} = 0.208 + 0.222 = 0.43$$

Hence, the risk difference can be calculated as:

$$Pr[Y(1) = 1] - Pr[Y(0) = 1] = 0.759 - 0.43 = 0.329$$

Let's now analyze the second method that we mentioned, i.e. *inverse* probability weighting. In this context, we have to consider two theoretical pseudo-populations, the first defined in the case had all the participants remained untreated (Figure 2.2) and the second defined in the case had all the participants been treated (Figure 2.3). The expected outcomes are calculated

according to the proportion of outcomes in the observed sub-populations. For the subpopulation for which X = 0, we have:

$$Pr[Y = 0|A = 0] = \frac{5}{10} = 0.5$$

$$Pr[Y = 1|A = 0] = \frac{5}{10} = 0.5$$

$$Pr[Y = 0|A = 1] = \frac{2}{6} = 0.333$$

$$Pr[Y = 1|A = 1] = \frac{4}{6} = 0.667$$

For the subpopulation for which X = 1, we have:

$$Pr[Y = 0|A = 0] = \frac{5}{8} = 0.625$$

$$Pr[Y = 1|A = 0] = \frac{3}{8} = 0.375$$

$$Pr[Y = 0|A = 1] = \frac{2}{12} = 0.167$$

$$Pr[Y = 1|A = 1] = \frac{10}{12} = 0.833$$

We can now consider a *total* pseudopopulation (see Figure 2.4), that combines the two pseudopopulation and in which the expected outcomes are weighted for a function W = f(A|X) = pr(A|X) calculated in the observed sample:

$$pr(A = 0|X = 0) = \frac{10}{16} = 0.625$$
$$pr(A = 1|X = 0) = \frac{6}{16} = 0.375$$
$$pr(A = 0|X = 1) = \frac{8}{20} = 0.4$$
$$pr(A = 1|X = 1) = \frac{12}{20} = 0.6$$

In practice, the pseudopopulation is created by weighting each individual in the population by the inverse of the conditional probability of receiving the treatment level he/she actually received. We can now consider our overall pseudopopolation and calculate the risk difference:

$$Pr[Y(1) = 1] - Pr[Y(0) = 0]$$

$$Pr[Y(1) = 1] = \frac{10.56 + 16.66}{36} = 0.757$$

$$Pr[Y(0) = 1] = \frac{8 + 7.5}{36} = 0.430$$

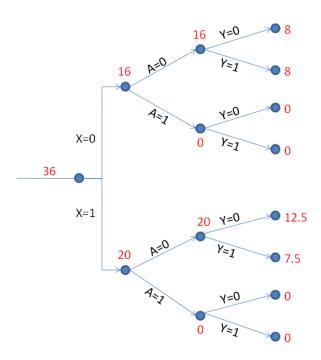


Figure 2.2: Inverse Probability Weighting: Pseudopopulation had all subjects remained untreated $\,$

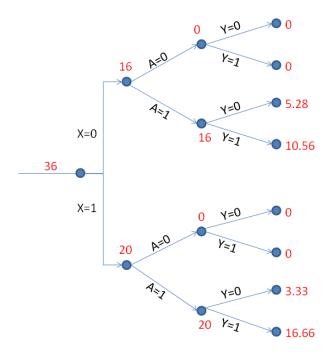


Figure 2.3: Inverse Probability Weighting: Pseudopopulation had all subjects been treated $\,$

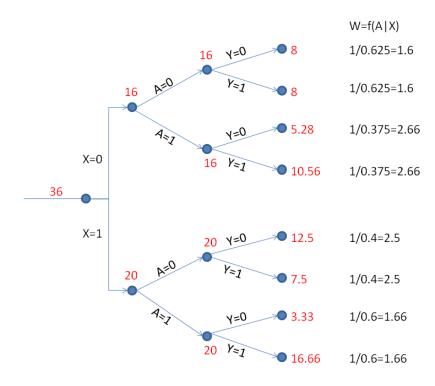


Figure 2.4: Inverse Probability Weighting: Overall Pseudopopulation

It follows that $Pr[Y(1) = 1] - Pr[Y(0) = 1] = 0.327 \cong 0.329$. If we now apply the standardization method in the overall pseudopopulation, it can be shown that the two methods are mathematically equivalent:

$$Pr[Y(1) = 1] = \frac{10.56}{16} \cdot \frac{16}{36} + \frac{16.66}{20} \cdot \frac{20}{36} = 0.293 + 0.46300.756$$
$$Pr[Y(0) = 1] = \frac{8}{16} \cdot \frac{16}{36} + \frac{7.5}{20} \cdot \frac{20}{36} = 0.222 + 0.208 = 0.430$$

It follows that $Pr[Y(1) = 1] - Pr[Y(0) = 1] = 0.756 - 0.430 = 0.326 \approx 0.329$

2.8 Testing Statistical Hypotheses

Testing statistical hypotheses in the Program Evaluation context has not been yet extensively studied. Most of the literature focus on verifying the hypothesis of a null average treatment effect in the population. Many estimators for average treatment effects (whose exact distribution is generally not known) are asymptotically normally distributed and the region of acceptance can be determined by inverting standard confidence intervals. Also hypotheses on the entire outcome distributions have been considered (e.g. Abadie (2002)) by means of Kolmogorov-Smirnov type testing procedures.

Furthermore, some authors have analyzed the problem of testing hypotheses on the heterogeneity of the effects (e.g. Hotz *et al.* (2008)) for which there may be subgroups of individuals with a significant effect of treatment though the overall treatment effect is not significant.

The problem of testing statistical hypotheses in randomized experiments has been treated since the seminal work of Fisher (1925) on the design of experiments, with focus on calculating p-values for hypotheses regarding the effect of a certain treatment. Consider the following system of hypotheses:

$$H_0: Y_i(0) = Y_i(1)$$
 $\forall i = 1...N$ $H_a: \exists i \text{ such that } Y_i(0) \neq Y_i(1)$

Fisher's approach to testing statistical hypotheses allows a researcher to verify whether a treatment has any effect, and not an average or median effect, as it has been clearly explained by Imbens and Wooldridge (2009). According to Fisher, it is not essential that the treatment assignment probabilities are equal for all units, but that these probabilities are known. In this case, under the null hypothesis H_0 , the values of all the potential outcomes are supposed to be known. Consequently, the distribution of any test statistic, a function of the realized values $(Y_i, A_i)_{i=1}^N$ generated by randomization, can be computed, as it does not depend from unknown nuisance parameters.

Consider, for instance, the average outcome difference between treated and not treated units as a test statistic:

$$T(A,Y) = \bar{Y}_1 - \bar{Y}_0$$

where

$$\bar{Y}_a = \sum_{i:A:=a} \frac{Y_i}{N_a}$$
 for $a = 0, 1$

In a completely randomized study, for which N = n, $N_1 = n_1$, $N_0 = N - N_1 = n - n_1$, we have:

$$Pr(A_i = 1|\mathbf{X}, \mathbf{Y}_0, \mathbf{Y}_1) = \frac{N_1}{N}$$

the number of possible assignments is given by:

$$\binom{N}{N_1} = \frac{N!}{N_1!(N-N_1!)}$$

and:

$$Pr(\mathbf{A}|\mathbf{X}, \mathbf{Y}_0, \mathbf{Y}_1) = 1/\binom{N}{N_1}$$

The so-called randomization distribution for the test statistic can be exactly calculated by considering all the possible values of the assignment vector A. Thus, exact p-values are given by the probability of a value of the statistic of being at least as large, in absolute value, as that of the observed statistic T(A, Y). (Imbens and Rubin (2011)).

Definition 12. A statistic T is a known, real-valued function $T(\mathbf{A}, \mathbf{Y}^{obs}, \mathbf{X})$ of: the vector of assignments, \mathbf{A} , the vector of the observed outcomes, \mathbf{Y}^{obs} (itself a function of \mathbf{A} and the potential outcomes $\mathbf{Y}(0)$ and $\mathbf{Y}(1)$), and the matrix of pretreatment variables, \mathbf{X}).

The test statistic is stochastic solely through the stochastic nature of the assignment vector. We refer to the distribution of the statistic determined by the randomization as the randomization distribution of the test statistic. Using this distribution, we can compare the actually observed value of test statistic, T^{obs} , against its distribution under the null hypothesis. An observed value that is "very unlikely", given the null hypothesis and the distribution of the test statistic, will be taken as evidence against the null hypothesis in what is, essentially, a stochastic version of the mathematician's "proof by contradiction". How unusual the observed value is under the null hypothesis will be measured by the probability that a value as extreme or more extreme would be observed – the significance level or p-value. [Imbens and Rubin (2011), Ch. 5, p. 3]

Under the null hypothesis of no treatment effect, the observed average treatment effect $\hat{\tau}_{ATE}$ is an *unbiased* estimator of the average treatment effect in the population. Alternatively, in the case of a constant multiplicative effect of the treatment the average outcomes difference can be compared on a logarithmic scale:

$$T_{log} = \frac{1}{N_t} \sum_{i:A_i=1} ln(Y_i^{obs}) - \frac{1}{N_c} \sum_{i:A_i=0} ln(Y_i^{obs})$$

Note that:

Such a transformation could also be sensible if the raw data have a quite skewed distribution, which is typically the case for nonnegative variables such as earnings or wealth, or levels of a pathogen, and treatment effects are more likely to be multiplicative than additive. In that case, the test based on taking the average difference, after transforming to logarithms would likely be more powerful than the test based on the simple average difference. [Imbens and Rubin (2011), Ch. 5, p. 10]

Other test statistics that are less affected by the presence of outliers are the difference between medians and the rank statistic:

$$\hat{\tau}_{Med} = Med(Y_1^{obs}) - Med(Y_0^{obs})$$

$$\hat{\tau}_{rank} = \bar{R}_1 - \bar{R}_0 = \frac{\sum_{i:A_i=1} R_i}{N_1} - \frac{\sum_{i:A_i=0} R_i}{N_0}$$

where, if there are no ties in outcomes within the population:

$$R_i(Y_1^{obs}, ..., Y_N^{obs}) = \sum_{i=1}^{N} \mathbb{1}(Y_j^{obs} \le Y_i^{obs})$$

and, if there are ties in outcomes within the population:

$$R_i(Y_1^{obs}, ..., Y_N^{obs}) = \sum_{j=1}^N \mathbb{1}(Y_j^{obs} \le Y_i^{obs}) + \frac{1}{2}(1 + \sum_{j=1}^N \mathbb{1}(Y_j^{obs} = Y_i^{obs}))$$

Last, the conventional standardized difference between means (the distribution of which can be exactly calculated) can be used:

$$T = \frac{Y_1^{obs} - Y_0^{obs}}{\sqrt{s_0^2/N_0 + s_1^2/N_1}}$$

where

$$s_A^2 = \sum_{i:A_i=a} (Y_i^{obs} - \bar{Y}_a^{obs})^2 / (N_a - 1)$$

It can be easily shown that exact distribution functions for each of the previous test statistics can be calculated by means of the randomization distributions. Alternatively, when the total sample size is large enough, asymptotic results can be applied. As observed by Imbens and Rubin (2011):

An important characteristic of this approach is that it is truly nonparametric, in the sense that it does not rely on a model specified in terms of a set of unknown parameters. In particular, we do not model the distribution of the outcomes; the vectors of potential outcomes $\mathbf{Y}(0)$ and $\mathbf{Y}(1)$ are regarded as fixed quantities. The only reason that the observed outcome, \mathbf{Y}^{obs} , and thus the test statistic, T^{obs} , are random is that a stochastic assignment mechanism determines which of the two potential outcomes are observed for each unit. Given the randomization used, this assignment mechanism is by definition known. In addition, given the null hypothesis, all potential outcomes are known. Thus we do not need modeling assumptions to calculate the randomization distribution of any test statistic; instead the assignment mechanism completely determines the randomization distribution of the test statistic. The validity of any resulting p-value is therefore not dependent on assumptions concerning the distribution of the potential outcomes. This freedom of reliance on modeling assumptions does not mean, of course, that the values of the potential outcomes do not affect the properties of the test. These values will certainly affect the expectation of the p-value when the null hypothesis is false (the statistical power of the test). They will not, however, affect the validity of the test, which depends solely on randomization. [Imbens and Rubin (2011), Ch. 5, pp. 4-5]

In addition, Fisher's approach to testing statistical hypotheses can keep into account different null hypotheses; for instance, the hypothesis of a *constant* additive treatment effect (see Imbens and Rubin (2011) for a discussion):

$$Y_i(1) = Y_i(0) + c$$

The main alternative to the Fisher's perspective is given by the Neyman (1923)'s repeated sampling approach. This work has been long put aside by the statistical community, but has been recently rediscovered by Dorota Dabrowska and Terry Speed in a new translation on the journal *Statistical Science* in 1990 and has been remarkably commented in Rubin (1990).

During the same period in which Fisher was developing this method, Jersey Neyman was instead focusing on methods for the estimation of, and inference for, average treatment effects, also using the distribution induced by randomization and repeated sampling from a population. In particular, he was interested in the long-run operating characteristics of statistical procedures under repeating sampling and randomizations. Thus, he attempted to find point estimators that were unbiased, and also interval estimators that had the specified nominal coverage in large samples. As noted before, focusing on average effects is different from the focus of Fisher; the average effect across a population may be equal to zero even when some or even all unit-level treatment effects differ from zero. [Imbens and Rubin (2011), Ch. 6, p. 1]

Indeed, Neyman aimed to construct a measure in order to compare the two average outcomes, had all the subjects been treated $\bar{Y}(1)$ or had all the subjects remained untreated $\bar{Y}(0)$. He considered the so-called superpopulation (the potential outcomes, generally not known), the randomization distribution (the assignment vector \mathbf{A}) and the distribution of the test statistics under the randomization distribution, with all potential outcomes regarded as fixed (Imbens and Rubin (2011)). Differing from Fisher, Neyman consid-

ered the following system of hypotheses:

$$H_0^{Neyman}: \frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0)) = 0$$

$$H_1^{Neyman}: \frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0)) \neq 0$$

Note that H_0^{Neyman} is a weaker hypothesis than the Fisher's null hypothesis, since the average treatment effect can be zero though for some units the treatment has a positive effect, provided for other units it has a negative effect. Moreover, H_0^{Neyman} is not a sharp null hypothesis, as it does not specify values for all potential outcomes under the null hypothesis. Consequently, differing from the Fisherian approach, the exact randomization distribution of the statistics of interest cannot be calculated. Hence, Neyman focused on deriving good estimators of some aspects of this distribution, for instance the first- and the second- order moments. Consider a completely randomized experiment in which we get information on N units, $N_1 = \sum_{i=1}^{N} A_i$ units are assigned to the treatment and $N_0 = \sum_{i=1}^{N} (1 - A_i)$ units are assigned to control. For each unit there exist two potential outcomes, $Y_i(0)$ and $Y_i(1)$ and a further random variable is given by the treatment assignment, which is supposed to have a known distribution. The randomization distribution defines which potential outcome is observed for each unit. As it was underlined, Neyman aimed to estimate the population average treatment effect:

$$\tau = \frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0)) = \bar{Y}(1) - \bar{Y}(0)$$

In a completely randomized experiment an *estimator* for the average treatment effect is given by the difference in average outcomes for those assigned to treatment versus those assigned to control:

$$\hat{\tau} = \frac{1}{N_1} \sum_{i:A_i=1} Y_i^{obs} - \frac{1}{N_0} \sum_{i:A_i=0} Y_i^{obs} = \bar{Y}_1^{obs} - \bar{Y}_0^{obs}$$

Theorem 1. The estimator $\hat{\tau}$ is unbiased for τ .

Proof. The observations can be written as:

$$Y_i^{obs} = Y_i(1)|A_i = 1$$

$$Y_i^{obs} = Y_i(0)|A_i = 0$$

and the estimator:

$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{A_i \cdot Y_i(1)}{N_1/N} - \frac{(1 - A_i) \cdot Y_i(0)}{N_0/N} \right)$$

The potential outcomes are conceived as fixed and the only random component of the statistic is the treatment assignment A_i . Since the experiment is completely randomized $(N \text{ units}, N_1 \text{ of which are randomly assigned to the treatment}), <math>Pr_A(A_i = 1) = \mathbb{E}_A[A_i] = N_1/N$. It follows that $\hat{\tau}$ is unbiased for the average treatment effect τ :

$$\mathbb{E}_{A}[\hat{\tau}] = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\mathbb{E}_{A}[A_{i}] \cdot Y_{i}(1)}{N_{1}/N} - \frac{\mathbb{E}_{A}[1 - A_{i}] \cdot Y_{i}(0)}{N_{0}/N} \right)$$
$$= \frac{1}{N} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0)) = \bar{Y}(1) - \bar{Y}(0) = \tau$$

Let's now turn our attention to the derivation of a confidence interval for τ . This construction involves three steps: i) deriving the sampling variance of the estimator for the average treatment effect; ii) developing estimators for such a sampling variance; iii) applying asymptotic results for the calculation of the confidence interval. The first step is not trivial, as in a completely randomized experiment the assignment to treatment of unit i is not independent of assignment to treatment of unit j. Consider a simple case with one treated unit and one control unit; the average treatment effect is given by:

$$\tau = \frac{1}{2} [(Y_1(1) - Y_1(0)) + (Y_2(1) - Y_2(0))]$$

and $A_1 = 1 - A_2$. The estimator for the ATE is

$$\hat{\tau} = A_1 \cdot (Y_1(1) - Y_2(0)) + (1 - A_1) \cdot (Y_2(1) - Y_1(0))$$

Let's now introduce a variable D such that:

$$D = 2 \cdot A_1 - 1$$
 $A_1 = \frac{D+1}{2}$ $D \in \{-1, 1\}$ and $D^2 = 1$

It follows:

$$\mathbb{E}[A_1] = \frac{1}{2} \qquad \mathbb{E}[D] = 0$$

$$\mathbb{V}_A[D] = \mathbb{E}_A[D^2] = 1$$

We can now write:

$$\hat{\tau} = \frac{D+1}{2} \cdot (Y_1(1) - Y_2(0)) + \frac{1-D}{2} \cdot (Y_2(1) - Y_1(0))$$

which can be rearranged as:

$$\hat{\tau} = \frac{1}{2} [(Y_1(1) - Y_1(0)) + (Y_2(1) - Y_1(0))] +$$

$$+ \frac{D}{2} [(Y_1(1) + Y_1(0)) - (Y_2(1) + Y_2(0))]$$

$$= \tau + \frac{D}{2} [(Y_1(1) + Y_1(0)) - (Y_2(1) + Y_2(0))]$$
(2.8)

Since $\mathbb{E}[D] = 0$, $\hat{\tau}$ is unbiased for τ (which it was already established by Theorem 1). Moreover, 2.8 also makes the calculation of the variance of $\hat{\tau}$ straightforward:

$$\mathbb{V}_{A}[\hat{\tau}] = \mathbb{V}_{A}[\tau + \frac{D}{2} \cdot [(Y_{1}(1) + Y_{1}(0)) - (Y_{2}(1) + Y_{2}(0))]]
= \frac{1}{4} \cdot \mathbb{V}_{A}[D] \cdot [(Y_{1}(1) + Y_{1}(0)) - (Y_{2}(1) + Y_{2}(0))]^{2}
= \frac{1}{4} \cdot [(Y_{1}(1) + Y_{1}(0)) - (Y_{2}(1) + Y_{2}(0))]^{2}$$
(2.9)

 $\mathbb{V}[\hat{\tau}]$ thus depends on all the potential outcomes, including products of potential outcomes for the same unit that are never jointly observed.

We now examine the general case with N units, N_1 of which are randomly assigned to the treatment. In order to calculate the sampling variance of $\bar{Y}_1^{obs} - \bar{Y}_0^{obs}$, we need the expectations of the second and the cross moments of the treatment indicators A_i , for i=1,...,N. Because $A_i \in \{0,1\}$ is binary, $A_i^2 = A_i$, and thus:

$$\mathbb{E}_A[A_i^2] = \mathbb{E}_A[A_i] = \frac{N_1}{N}$$

$$\mathbb{V}_A[A_i] = \frac{N_1}{N} \cdot \left(1 - \frac{N_1}{N}\right)$$

Recall now that in a completely randomized experiment where the number of treated units is fixed at N_1 , the two events: unit i being treated and unit j being treated, are *not* independent. Therefore:

$$\mathbb{E}_A[A_i \cdot A_j] \neq \mathbb{E}_A[A_i] \cdot \mathbb{E}_A[A_j] = (N_1/N)^2$$

$$\mathbb{E}_A\big[A_i\cdot A_j\big] = Pr_A\big[A_i=1\big]\cdot Pr_A\big[A_j=1\big|A_i=1\big] = \frac{N_1}{N}\cdot \frac{N_1-1}{N-1} \qquad \text{ for } i\neq j$$

Theorem 2.

$$\mathbb{V}(\hat{\tau}) = \mathbb{V}_A [\bar{Y}_1^{obs} - \bar{Y}_0^{obs}] = \frac{S_0^2}{N_0} + \frac{S_1^2}{N_1} - \frac{S_{01}^2}{N}$$

where S_0^2 and S_1^2 are the variances of $Y_i(0)$ and $Y_i(1)$ in the population, defined as:

$$S_0^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(0) - \bar{Y}(0))^2$$

$$S_1^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(1) - \bar{Y}(1))^2$$

and S_{01}^2 is the population variance of the unit-level treatment effects, defined as:

$$S_{01}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - Y_i(0) - (\bar{Y}(1) - \bar{Y}(0)))^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - Y_i(0) - \tau)^2$$

Proof. The objective is to calculate the sampling variance of the estimator $\hat{\tau} = \bar{Y}_1^{obs} - \bar{Y}_0^{obs}$. N units are given, N_1 receiving treatment and N_0 not receiving treatment. The average treatment effect in the population is:

$$\bar{Y}(1) - \bar{Y}(0) = \frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0)) = \tau$$

The standard estimator of τ is:

$$\hat{\tau} = \bar{Y}_{1}^{obs} - \bar{Y}_{0}^{obs} = \frac{1}{N_{1}} \sum_{i=1}^{N} A_{i} \cdot Y_{i}^{obs} - \frac{1}{N_{0}} \sum_{i=1}^{N} (1 - A_{i}) \cdot Y_{i}^{obs}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{N}{N_{1}} \cdot A_{i} \cdot Y_{i}(1) - \frac{N}{N_{0}} \cdot (1 - A_{i}) \cdot Y_{i}(0) \right)$$
(2.10)

For the variance calculation, it is useful to define a centered treatment indicator D_i , defined as:

$$D_{i} = A_{i} - \frac{N_{1}}{N} = \begin{cases} \frac{N_{0}}{N} & \text{if } A_{i} = 1\\ -\frac{N_{1}}{N} & \text{if } A_{i} = 0 \end{cases}$$

$$\mathbb{E}[D_{i}] = \mathbb{E}[A_{i} - \frac{N_{1}}{N}] = \mathbb{E}[A_{i}] - \frac{N_{1}}{N} = \frac{N_{1}}{N} - \frac{N_{1}}{N} = 0$$

$$\mathbb{V}[D_{i}] = \mathbb{E}[D_{i}^{2}] = \mathbb{E}[A_{i}^{2} + \frac{N_{1}^{2}}{N^{2}} - 2\frac{N_{1}}{N}A_{i}]$$

$$= \frac{N_{1} \cdot N_{0}}{N^{2}}$$

We consider now the cross moment:

$$\mathbb{E}_{A}[D_{i} \cdot D_{j}] = \mathbb{E}_{A}\left[\left(A_{i} - \frac{N_{1}}{N}\right) \cdot \left(A_{j} - \frac{N_{1}}{N}\right)\right] = \mathbb{E}_{A}\left[A_{i}A_{j} - \frac{N_{1}}{N}A_{i} - \frac{N_{1}}{N}A_{j} + \frac{N_{1}^{2}}{N^{2}}\right]$$

For $i \neq j$,

$$\mathbb{E}_A[D_i \cdot D_j] = \frac{-N_1 \cdot N_0}{N^2(N-1)}$$

For i = j,

$$\mathbb{E}_A[D_i \cdot D_j] = \frac{N_1 \cdot N_0}{N^2}$$

By substituting D_i in 2.10, the estimate of the average treatment effect is:

$$\hat{\tau} = \bar{Y}_{1}^{obs} - \bar{Y}_{0}^{obs} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{N}{N_{1}} \cdot \left(D_{i} + \frac{N_{1}}{N} \right) \cdot Y_{i}(1) - \frac{N}{N_{0}} \cdot \left(\frac{N_{0}}{N} - D_{i} \right) \cdot Y_{i}(0) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0)) + \frac{1}{N} \sum_{i=1}^{N} D_{i} \cdot \left(\frac{N}{N_{1}} \cdot Y_{i}(1) + \frac{N}{N_{0}} \cdot Y_{i}(0) \right)$$

$$= \tau + \frac{1}{N} \sum_{i=1}^{N} D_{i} \cdot \left(\frac{N}{N_{1}} \cdot Y_{i}(1) + \frac{N}{N_{0}} \cdot Y_{i}(0) \right)$$

$$(2.11)$$

Since $\mathbb{E}_A[D_i] = 0$ and all the potential outcomes are fixed, the estimator $\bar{Y}_1^{obs} - \bar{Y}_0^{obs}$ is unbiased for the average treatment effect, $\tau = \bar{Y}(1) - \bar{Y}(0)$. Furthermore, since the only random element in Equation 2.11 is D_i , the variance of $\hat{\tau} = \bar{Y}_1^{obs} - \bar{Y}_0^{obs}$, is equal to the variance of the second term in Equation 2.11. Using now Y_i^+ as shorthand for $\left(\frac{N}{N_1} \cdot Y_i(1) + \frac{N}{N_0} \cdot Y_i(0)\right)$, the variance is equal to:

$$V_{A}[\bar{Y}_{1}^{obs} - \bar{Y}_{0}^{obs}] = \frac{1}{N^{2}} \cdot \mathbb{E}_{A}[(\sum_{i=1}^{N} D_{i} \cdot Y_{i}^{+})^{2}]$$
(2.12)

Expanding Equation 2.12, we obtain:

$$\mathbb{V}_{A}[\bar{Y}_{1}^{obs} - \bar{Y}_{0}^{obs}] = \mathbb{E}_{A}\left[\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} D_{i} \cdot D_{j} \cdot Y_{i}^{+} \cdot Y_{j}^{+}\right]
= \frac{1}{N^{2}} \sum_{i=1}^{N} (Y_{i}^{+})^{2} \cdot \mathbb{E}_{A}[D_{i}^{2}] + \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{i\neq j} \mathbb{E}_{A}[D_{i} \cdot D_{j}] \cdot Y_{i}^{+} \cdot Y_{j}^{+}
= \frac{N_{1} \cdot N_{0}}{N^{4}} \cdot \sum_{i=1}^{N} (Y_{i}^{+})^{2} - \frac{N_{1} \cdot N_{0}}{N^{4} \cdot (N-1)} \cdot \sum_{i=1}^{N} \sum_{i\neq j} Y_{i}^{+} \cdot Y_{j}^{+}
= \frac{N_{0} \cdot N_{1}[(N-1) \sum_{i=1}^{N} (Y_{i}^{+})^{2} - \sum_{i=1}^{N} \sum_{i\neq j} Y_{i}^{+} Y_{j}^{+}]}{N^{4}(N-1)}$$

$$= \frac{N_0 \cdot N_1 [(N-1) \sum_{i=1}^N (Y_i^+)^2 + \sum_{i=1}^N (Y_i^+)^2 - \sum_{i=1}^N (Y_i^+)^2 - \sum_{i=1}^N \sum_{i \neq j} Y_i Y_j]}{N^4 (N-1)}$$

$$= \frac{N_0 \cdot N_1 [N \sum_{i=1}^N (Y_i^+)^2 - \sum_{i=1}^N \sum_{j=1}^N Y_i Y_j]}{N^4 (N-1)}$$

$$= \frac{N_0 \cdot N_1}{N^3 (N-1)} \cdot [\sum_{i=1}^N (Y_i^+)^2 - \sum_{i=1}^N Y_i \bar{Y}]$$

$$= \frac{N_0 \cdot N_1}{N^3 (N-1)} \cdot \sum_{i=1}^N (Y_i^+ - \bar{Y}^+)^2$$

$$= \frac{N_0 \cdot N_1}{N^3 (N-1)} \cdot \sum_{i=1}^N (\frac{N}{N_1} Y_i (1) + \frac{N}{N_0} Y_i (0) - (\frac{N}{N_1} \bar{Y} (1) + \frac{N}{N_0} \bar{Y} (0)))^2$$

$$= \frac{N_0 \cdot N_1}{N^3 (N-1)} \cdot \sum_{i=1}^N (\frac{N}{N_1} Y_i (1) - \frac{N}{N_1} \bar{Y} (1))^2 +$$

$$+ \frac{N_0 \cdot N_1}{N^3 (N-1)} \cdot \sum_{i=1}^N (\frac{N}{N_0} \cdot Y_i (0) - \frac{N}{N_0} \bar{Y}_0)^2$$

$$+ 2 \frac{N_0 \cdot N_1}{N^3 (N-1)} \cdot \sum_{i=1}^N (\frac{N}{N_1} \cdot Y_i (1) - \frac{N}{N_1} \cdot \bar{Y} (1)) \cdot (\frac{N}{N_0} \cdot Y_i (0) - \frac{N}{N_0} \cdot \bar{Y} (0))$$

$$= \frac{N_0}{N \cdot N_1 \cdot (N-1)} \sum_{i=1}^N (Y_i (1) - \bar{Y} (1))^2 + \frac{N_1}{N \cdot N_0 \cdot (N-1)} \cdot \sum_{i=1}^N (Y_i (0) - \bar{Y} (0))^2 +$$

$$+ \frac{2}{N \cdot (N-1)} \sum_{i=1}^N (Y_i (1) - \bar{Y} (1)) \cdot (Y_i (0) - \bar{Y} (0))$$

$$(2.13)$$

Recall now that the definition of S_{01}^2 implies that:

$$S_{01}^{2} = \frac{1}{N-1} \cdot \sum_{i=1}^{N} (Y_{i}(1) - \bar{Y}(1) - (Y_{i}(0) - \bar{Y}(0))^{2})$$

$$= \frac{1}{N-1} \cdot \sum_{i=1}^{N} (Y_{i}(1) - \bar{Y}_{1})^{2} + \frac{1}{N-1} \cdot \sum_{i=1}^{N} (Y_{i}(0) - \bar{Y}(0))^{2} - \frac{2}{N-1} \cdot \sum_{i=1}^{N} (Y_{i}(1) - \bar{Y}(1)) \cdot (Y_{i}(0) - \bar{Y}(0))$$

$$= S_{1}^{2} + S_{0}^{2} - \frac{2}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - \bar{Y}(1)) \cdot (Y_{i}(0) - \bar{Y}_{0})$$

Hence, the expression in 2.13 is equal to:

$$\begin{split} \mathbb{V}_{A}\big[\bar{Y}_{1}^{obs} - \bar{Y}_{0}^{obs}\big] &= \frac{N_{0}}{N \cdot N_{1}} \cdot S_{1}^{2} + \frac{N_{1}}{N \cdot N_{0}} \cdot S_{0}^{2} + \frac{1}{N} \big(S_{1}^{2} + S_{0}^{2} - S_{01}^{2}\big) \\ &= \frac{N_{0}S_{1}^{2} + N_{1}S_{1}^{2}}{NN_{1}} + \frac{N_{1}S_{0}^{2} + N_{0}S_{0}^{2}}{NN_{0}} - \frac{S_{01}^{2}}{N} \\ &= \frac{S_{1}^{2}}{N_{1}} + \frac{S_{0}^{2}}{N_{0}} - \frac{S_{01}^{2}}{N} \end{split}$$

Note that both S_0^2 and S_1^2 are population-level variances, hence for a sample of size N_1 drawn from the group of the treated, the sampling variance is given by:

$$S_1^2/N_1 = \sum_i (Y_i(1) - \bar{Y}(1))^2/(N_1(N-1))$$

and similarly for a sample of size N_0 drawn from the control group, the sampling variance is given by:

$$S_0^2/N_0 = \sum_i (Y_i(0) - \bar{Y}(0))^2/(N_0(N-1))$$

The third term, S_{01}^2/N , is the population variance of the unit-level treatment effects, $Y_i(1) - Y_i(0)$, and is equal to zero if the treatment effect is constant in the population. If now we define:

$$S_{0} = \frac{1}{\sqrt{N-1}} \sum_{i=1}^{N} (Y_{i}(0) - \bar{Y}(0))$$

$$S_{1} = \frac{1}{\sqrt{N-1}} \sum_{i=1}^{N} (Y_{i}(1) - \bar{Y}(1))$$

$$S_{01}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - (\bar{Y}(1) - \bar{Y}(0)))^{2}$$

$$= \frac{1}{N-1} [\sum_{i=1}^{N} (Y_{i}(1) - \bar{Y}(1))^{2} + \sum_{i=1}^{N} (Y_{i}(0) - \bar{Y}(0))^{2} - 2\sum_{i=1}^{N} (Y_{i}(1) - \bar{Y}(1))(Y_{i}(0) - \bar{Y}(0))]$$

$$\rho_{01} = \frac{1}{(N-1) \cdot S_{0} \cdot S_{1}} \sum_{i=1}^{N} (Y_{i}(1) - \bar{Y}(1))(Y_{i}(0) - \bar{Y}(0))$$

we have:

$$S_{01}^2 = S_0^2 + S_1^2 - 2\rho_{01} \cdot S_0 \cdot S_1$$

and it follows that:

$$\mathbb{V}_{A}(\bar{Y}_{1}^{obs} - \bar{Y}_{0}^{obs}) = \frac{N_{1}}{N \cdot N_{0}} S_{0}^{2} + \frac{N_{0}}{N \cdot N_{1}} S_{1}^{2} + \frac{2}{N} \cdot \rho_{01} \cdot S_{0} \cdot S_{1}$$

Different proposals have been suggested for the estimation of this variance (see Imbens and Rubin (2011)); among them we mention the so-called Neyman's variance estimator, in which the treatment effects are supposed to be constant and additive $(Y_i(1) - Y_i(0)) = c$ for all i, so that the third component of the sampling variance vanishes. Such an estimator is given by:

$$\hat{\mathbb{V}}_{Neyman} = \frac{s_0^2}{N_0} + \frac{s_1^2}{N_1}$$

where:

$$s_0^2 = \frac{1}{N_0 - 1} \sum_{i: A_i = 0} (Y_i(0) - \bar{Y}_0^{obs})^2$$

$$s_1^2 = \frac{1}{N_1 - 1} \sum_{i:A_i = 1} (Y_i(1) - \bar{Y}_1^{obs})^2$$

As noted by Imbens and Rubin (2011):

This estimator for the sampling variance is widely used, even when the assumption of an additive treatment effect may be inaccurate. There are two main reasons for the popularity of this estimator for the sampling variance. First, by implicitly setting the third element of the estimated sampling variance equal to zero, the expected value of $\hat{\mathbb{V}}_{Neyman}$ is at least as large as the true sampling variance of $\bar{Y}_1^{obs} - \bar{Y}_1^{obs}$, irrespective of the heterogeneity in the treatment effect. Hence, in large samples, confidence intervals generated using this estimator of the sampling variance will have coverage at least as large, but not necessarily equal to, this nominal coverage. [...] The second reason for using this estimator for the sampling variance of $\bar{Y}_1^{obs} - \bar{Y}_0^{obs}$ is that it is always unbiased for the sampling variance of τ as an estimator of the average treatment effect. [Imbens and Rubin (2011), Ch.6, p. 12]

Also the following estimators have been proposed (for a comparative approach see Imbens and Rubin (2011)):

$$\begin{split} \hat{\mathbb{V}}_{\rho_{10}} &= s_0^2 \cdot \frac{N_1}{N \cdot N_0} + s_1^2 \cdot \frac{N_0}{N \cdot N_1} + \rho_{10} \cdot s_0 \cdot s_1 \cdot \frac{2}{N} \\ \hat{\mathbb{V}}_{\rho_{10=1}} &= s_0^2 \cdot \frac{N_1}{N \cdot N_0} + s_1^2 \cdot \frac{N_0}{N \cdot N_1} + s_0 \cdot s_1 \cdot \frac{2}{N} \\ &= \frac{s_0^2}{N_0} + \frac{s_1^2}{N_1} - \frac{(s_1 - s_0)^2}{N} \end{split}$$

Since V_{Neyman} can be approximated by a chi-squared distribution and the distribution of the estimator $\hat{\tau}$ can be approximated by a normal distribution, the ratio $\frac{\hat{\tau}}{\sqrt{\hat{V}_{Neyman}}}$ has a t-distribution. Hence, it can be calculated a confidence interval $[C_L(\mathbf{Y}^{obs}, \mathbf{A}), C_U(\mathbf{Y}^{obs}, \mathbf{A})]$ at a level $(1 - \alpha)$, such that:

$$Pr_A(C_L(\mathbf{Y}^{obs}, \mathbf{A}) \le \tau \le C_U(\mathbf{Y}^{obs}, \mathbf{A})) \ge 1 - \alpha$$

Consequently, the hypotheses:

$$H_0^{Neyman}: \frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0)) = 0$$

$$H_1^{Neyman}: \frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0)) \neq 0$$

can be compared by means of the test statistic with t- distribution:

$$t = \frac{\bar{Y}_1^{obs} - \bar{Y}_0^{obs}}{\sqrt{\hat{\mathbb{V}}_{Neyman}}}$$

2.9 The Structural Approach to causal inference

As it was mentioned in the second paragraph, both the statistical and the econometric literature have been extensively concerned with causal inference. From a historical perspective, renowned statisticians such as Fisher (1925) and Neyman (1923) dealt with the problem of causality in randomized experiments. While Fisher's contribute was given a wide credit in the statisticians' community, Neyman's approach stand in the background. As it was mentioned, in 1990 a portion of Neyman (1923)'s paper was retranslated in the journal Statistical Science and remarkably commented by Donald Rubin. This was extremely useful in order to re-consider Neyman's approach to the analysis of randomized experiments. With respect to observational studies, a comprehensive framework for causality was put forth by Rubin in a series of very influential papers (Rubin (1973a, 1974, 1977), see Chapter 3) and is now commonly referred to as the Rubin Causal Model or the Program Evaluation Approach. Another important approach to causation in statistics is given by the so-called Granger-Sims model of causality, developed in the context of time series analysis. According to these authors, causality can be conceived as a sort of prediction property, for which a time series A can cause another time series B if, conditional on the past values of B, and possibly conditional on other variables, past values of A predict future values of B. As we have seen, Rubin –according to the Lewis' perspective on causality–put forward a different theoretical framework based on the concept of potential outcomes. In this author's opinion, inference can be causally interpreted only comparing the potential and not the observed outcomes. In this perspective, randomized experiments are conceived as a sort of gold standard to draw causal inference. Nevertheless, this approach has been criticized by econometricians such as James Heckman who, in a recent influential paper commented:

Rubin and Holland argue that causal effects are defined only if an experiment can be performed. This conflation of the separate tasks of defining causality and identifying causal parameters from data is a signature feature of the program evaluation approach. It is a consequence of the absence of clearly formulated economic models. The probability limits of estimators, and not the parameters of well-defined economic models, are often used to define causal effects or policy effects. [...] The "causal models" advocated in the program evaluation literature are motivated by the experiment as an ideal. They do not clearly specify the theoretical mechanisms determining the set of possible counterfactual outcomes, how hypothetical counterfactuals are realized or how hypothetical interventions are implemented except to compare "randomized" with "nonrandomized" interventions. They focus on outcomes, leaving the model for selecting outcomes and preferences of agents over expected outcomes unspecified. [Heckman (2010), p. 358-360]

The core of Heckman's criticism to the Rubin Causal Model is that it does not keep into account the individual choices that participants can make on participating / not participating to a program, based on their prior information. A second argument is that the Rubin's approach does not consider any parametrical model as strictly necessary in order to define either the assumptions or the parameters of interest. On this point, Heckman (2010) remarkably notes:

Any estimator makes assumptions (often implicit) about the behavior of the agents being analyzed. For example, the ability of a randomized controlled trial to identify parameters of interest depends on assumptions about the agent subject to randomization. The structural approach is explicit about this assumptions. The program evaluation approach is often not. Some economists confuse the absence of explicit statements of assumptions with the absence of assumptions. The models in the program evaluation literature do not specify the sources of randomness generating variability among agents, i.e., they do not distinguish what is in the agent's information set from what is in the observing economist's information set, although the distinction is fundamental in justifying the properties of any estimator for solving selection and evaluation problems. They do not allow for interpersonal interactions inside and outside of markets in determining outcomes that are the heart of game theory, general equilibrium theory, and models of social interaction and contagion. [Heckman (2010), p. 360- 361]

In the previous paragraphs, our attention has been exclusively focused on the Program Evaluation Approach. In the following I'll give a brief overview on the Structural Approach for causal inference. This has been developed by econometricians such as James Heckman, Joshua D. Angrist and Edward J. Vytlacil and historically derives from the literature on the evaluation of labor market programs (e.g. Ashenfelter (1978), Ashenfelter and Card (1985), Heckman and Robb Jr (1985), LaLonde (1986)). These authors directed their attention on issues such as endogeneity and self-selection, that normally are not treated in the Program Evaluation Approach. The Structural Approach focuses on understanding the relation among social variables, primarily in order to forecast the effects of new policies. Heckman and Vytlacil (2007) put forth three reasons for policy evaluation:

1. P-1. Evaluating the impact of historical interventions on outcomes including their impact in term of welfare:

P-1 is the problem of *internal validity*. It is the problem of identifying a given treatment parameter or a set of parameters in a given environment. Focusing exclusively on objective outcomes, this is the problem addressed in the epidemiological and statistical literature on causal inference. A drug trial for a particular patient population is a prototypical problem in the literature. The econometric approach emphasizes valuation of the objective outcome of the trial (e.g. health status) as well as subjective evaluation of outcomes (patient's welfare), and the latter may be *ex post* or *ex ante*. Most policy evaluation is designed with an eye toward the future and towards informing decisions about new policies and application of old policies to new environments. [Heckman and Vytlacil (2007), p. 4791]

2. P-2. Forecasting the impacts (constructing counterfactual states) of interventions implemented in one environment in other environments, including their impacts in terms of welfare.

Included in these interventions are policies described by generic characteristics (e.g., tax or benefit rates, etc.) that are applied to different groups of people or in different time periods from those studied in implementations of the policies on which data are available. This is the problem of external validity: taking a treatment parameter or a set of parameters estimated in one environment to another environment. The environment includes the characteristics of individuals and of the treatments. [Heckman and Vytlacil (2007), p. 4791]

3. Forecasting the impacts of interventions (constructing counterfactual states associated with interventions) never historically experienced to various environments, including their impact in terms of welfare.

The Structural Approach is centered on estimating models for the potential outcomes Y(0) and Y(1) and of costs C under different economic environments. From this perspective—differing from the Program Evaluation Approach—researchers try to model the counterfactual distribution, keeping into account both preferences and choices of participants and objective outcomes. Indeed, econometricians have developed a three-steps approach to causal inference: i) defining a set of counterfactuals; ii) developing an hypothetical model of such counterfactuals; iii) identifying a model (parameter estimation) from sample surveys. Consider, for instance, the following specification of a structural model:

$$Y(1) = \mu_1(X) + U(1)$$

$$Y(0) = \mu_0(X) + U(0)$$

$$C = \mu_C(Z) + U(C)$$

where (X, Z) are observed variables whereas U(0), U(1) and U(C) are unobserved variables. Theoretical issues (either made implicit or explicit) lead to the specification of X and Z. Y(0) and Y(1) are the two potential outcomes that, as we said, are random variables with joint distribution $F_{Y(0),Y(1)}(y(0),y(1))$. As observed by Heckman (2010):

The central question recognized in this literature is that analysts observe either Y(0) or Y(1), but not both, for any person. In the program evaluation literature, this is called the **evaluation problem**. In addition to this problem, there is the **selection problem**. The values of Y(0) or Y(1) that are observed are not necessarily a random sample of the potential Y(0) or Y(1) distributions. [Heckman (2010), p. 361]

As it was remarked, this approach derives from the analysis of economic and social problems, in which the subjective evaluation is as important as the objective outcome. To keep subjective evaluation into account, a decision rule D expressed by an indicator function is introduced, such that an agent selects into sector 1 if Y(1) > Y(0):

$$D = \mathbb{1}(Y(1) > Y(0))$$

or, adding the cost C:

$$D = \mathbb{1}(Y(1) - Y(0) - C > 0) \tag{2.14}$$

Hence, participation to a program is not externally determined but is chosen by agents according to individual expected outcomes. From one side this leads to selection bias, but, from the other side, it also provides information on subjective evaluations. Equation 2.14 expresses a set of counterfactual outcomes and costs (Y(0), Y(1), C) with distribution $F_{Y(0),Y(1),C}(y(0), y(1), c)$ and a mechanism for selecting which element of Y(0), Y(1) is observed for each person. The observed outcome for unit i can be expressed by the equation:

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$
(2.15)

For, the structural approach to causal inference keeps into account the choices made by participants:

Agents make their choices under imperfect information. Let $\mathscr I$ denote the agent's information. In advance of participation, the agent may be uncertain about all components of (Y(0),Y(1),C). The expected benefit is $I_D=E(Y(1)-Y(0)-C|\mathscr I)$. Then $D=\mathbb I(I_D>0)$. Moreover, the decision maker selecting "treatment" may be different than the person who experiences the outcomes (Y(0),Y(1)). Thus parents may make school decisions for their children: doctors may make treatment decisions for their patients. More generally, decisions to participate may entail joint approval of all parties. The ex post objective outcomes are (Y(0),Y(1)). Associated with each outcome there is also an evaluation $(V_i(1),(0))$ by the agent. The ex ante outcomes are $E(Y(0)|\mathscr I)$ and $E(Y(1)|\mathscr I)$. The ex ante subjective evaluation is I_D . The ex post subjective evaluation is Y(1)-Y(0)-C. Agents may regret their choices because realizations may differ from anticipations. The ex ante versus ex post distinction is essential for understanding behavior. In environments of uncertainty, agent choices are made in terms of ex ante calculations. Yet the treatment effect literature largely reports ex post returns. [Heckman (2010), p. 363-364]

We will not further deal with the problems of causality from an econometric perspective; we underline only that one of the main features of this approach is that it tries to put forward theoretical hypotheses on the distribution of the potential outcomes. As it will be shown in the next chapter, this is not the case for the Rubin Causal Model, as stated by Heckman:

The discussion of Holland (1986) illustrates this point and the central role of randomized controlled trial to the Holland-Rubin analysis. After explicating the "Rubin model", Holland makes a very revealing claim: there can be no causal effect of gender on earnings because analysts cannot randomly assign gender. This statement confuses the act of defining a causal effect (a purely mental act performed within a model) with empirical difficulties in estimating it. [Heckman (2010), p. 363-364]

2.10 Conclusions

In this chapter, after commenting two examples on the informal representation of causal concepts, two formal approaches to causal inference have been discussed: the Structural Approach (developed by authors such as James Heckman) and the Program Evaluation approach (developed by authors such as Donald Rubin). The former approach has not been discussed in depth; the main goal in this context was only to show the usefulness of Heckman's framework to keep into account subjective factors (such as individual choices) in the analysis of causality. Our attention has been focused on the latter approach; let's briefly sum up the main steps we've done. First, some fundamental concepts have been introduced, such as unit, treatment, target population, dichotomous outcome, assignment mechanism and potential outcomes. Second, some important issues on the assignment mechanism have been highlighted, such as the definitions of individualistic, probabilistic, ignorable, strongly ignorable and unconfounded assignment mechanisms. Third, the assignment mechanism defines the type of a study: a randomized study, a classical randomized study, a completely randomized study and an observational study. Fourth, we have focused on the main assumptions for causal inference: SUTVA and consistency. Fifth, we have defined different measures for the average causal effects: ATE, ATT, CATE, CATT and we introduced the selection bias and the fundamental Equation 2.4. Sixth, alternative measures for causal inference have been put forth: risk differences, risk ratio and odds ratio, each of which can be given a different interpretation. Seventh, the attention has been focused on randomized experiments, and on the hypotheses of exchangeability and conditional exchangeability. Eighth, two methodologies for drawing causal inference when conditional exchangeability holds have been explained: standardization and inverse probability weighting. An example showed that these two methodologies are equivalent from a mathematical point of view. Ninth, a brief investigation on testing statistical hypotheses has been put forward and the alternative approaches of Fisher and Neyman have been presented. In the next chapter, we will shift our attention from randomized studies to observational studies, and different methodologies for drawing causal inference when either conditional exchangeability is supposed / not supposed to hold will be presented.

Chapter 3

Observational Studies

3.1 Overview

In this chapter we shift our attention from randomized experiments to observational studies. In the Program Evaluation Approach randomized experiments are conceived as a sort of *gold standard*. Consequently, causal inference in non-experimental settings should imitate the conditions of a complete randomized experiment. Authors such as Paul Holland and Donald Rubin also proposed that, in contexts where a certain variable cannot be explicitly manipulated (for instance race or gender), it is hard to draw causal inference. On this issue, Angrist and Pischke (2008) note:

Research questions that cannot be answered by an experiment are FUQs: fundamentally unidentified questions. What does exactly look like? At first blush, questions about the causal effect of race or gender seem good candidates because these things are hard to manipulate in isolation ("imagine your chromosomes were switched at birth"). On the other hand, the issue economists care most about in the realm of race and sex, labor market discrimination, turns on whether someone treats you differently because they believe you to be black or white, male or female. The notion of a counterfactual world where men are perceived as women or vice versa has a long history and does not require Douglas-Adams style outlandishness to entertain (Rosalind disguised as Ganymede fools everyone in Shakespeare's As You Like It). The idea of changing race is similarly near-fetched: in The Human Stain, Philip Roth imagines the world of Coleman Silk, a black literature professor who passes as white in professional life. Labor economists imagine this sort of thing all time. Sometimes we even construct such scenarios for the advancement of science, as in audit studies involving fake job applicants and resumes. [Angrist and Pischke (2008), p. 6]

Causal inference from observational studies can be obtained by "miming" the conditions of a randomized study and different methodologies to achieve this objective have been proposed:

We hope to find natural or quasi-experiments that mimic a randomized trial by changing the variable of interest while other factors are kept balanced. Can we always find a convincing natural experiment? Of course, not. Nevertheless, we take the position that a notional randomized trial is our benchmark. Not all researchers share this view, but many do. [Angrist and Pischke (2008), p. 21]

In this chapter we analyze how an observational study can "mimic" a randomized experiment. Consider N units, indexed by i = 1, ..., N, drawn randomly from a large population. Each unit is characterized by a pair of potential outcomes $Y_i(0)$ and $Y_i(1)$ and by a vector of characteristics, referred to as covariates, that are pretreatment variables not affected by the treatment itself, and denoted by X_i . A single treatment is given to each unit: $A_i = 0$ indicates the non treated units and $A_i = 1$ indicates the treated units. For each unit, we therefore observe the triplet (A_i, Y_i, X_i) , such that:

$$Y_i^{obs} = Y_i(1) \cdot A_i + Y_i(0) \cdot (1 - A_i)$$

As we've seen in the previous chapter, causal estimands of interest are usually average treatment effects on subpopulations:

$$\tau_{ATE} = \mathbb{E}[Y(1) - Y(0)]$$

$$\tau_{ATT} = \mathbb{E}[Y(1) - Y(0)|A = 1]$$

$$\tau_{CATE} = \mathbb{E}[Y(1) - Y(0)|X = x]$$

$$\tau_{CATT} = \mathbb{E}[Y(1) - Y(0)|A = 1, X = x]$$

In general, τ_{ATE} is not equal to τ_{ATT} due to the presence of the selection bias:

$$\mathbb{E}[Y(1)|A=1] - \mathbb{E}[Y(0)|A=0] = \\ \mathbb{E}[Y(1)|A=1] - \mathbb{E}[Y(0)|A=1] + \mathbb{E}[Y(0)|A=1] - \mathbb{E}[Y(0)|A=0]$$

Such a bias can be originated by three main causes: (i) non overlapping with the respect to the covariates' values on the support between treated and non treated units; (ii) the presence of observed confounders (selection on observables); (iii) the presence of unobserved counfounders (selection on unobservables). In an observational study, the assignment mechanism A_i is generally not known. A usual assumption on the selection mechanism is that it is *strongly ignorable* (unconfounded + overlap on the covariates' support). If this assumption holds, observational studies can be interpreted as a completely randomized study, within subpopulations of units with the "same" values for the covariates.

The first assumption that has to be kept into account is that of *overlap-pinq*, for which:

$$0 < Pr(A_i = 1 | X_i = x) < 1$$
 for all x

From en econometric perspective, this assumption is also known as *full com-mon support* (see Figure 3.1 a). If we're only interested in examining the

causal effect of the treatment on the treated units (e.g. τ_{ATT}), the assumption can be relaxed as:

$$0 < Pr(A(1)|A = 1, X = x) < 1$$

In the case the overlapping assumption holds only for a subsample of the treated / not treated units, the analysis of causal relations should be narrowed only to the subset of values which share a common support. This assumption can be not satisfied in different ways: let's indicate as X_1 the covariate domain of the treated units and as X_0 the covariate domain of the control units with respect to a covariate X; the following cases can be given:

- 1. Full common support with respect to X_1 (see Figure 3.1 b)
- 2. Partial common support with respect to X_1 (see Figure 3.1 c)
- 3. Common support at the threshold (a discontinuity point) of X_1 (see Figure 3.1 d)
- 4. No common support with respect to X_1 (see Figure 3.1 e)

Second, the main statistical methods to draw causal inference from observational studies depends on relying or not on the *unconfoundedness* assumption. As we have seen, unconfoundedness demands that, after conditioning on the observed covariates, there are not unobserved factors that are correlated both with the mechanism of assignment and with the potential outcomes:

$$A \prod (Y(0), Y(1)) | X = x \qquad \text{for all } x$$

In order to unconfoundedness to hold in observational studies, we need a certain set of covariates so that –adjusting for differences in these covariates—causal effects can be estimated. Most of the methods dealing with causality in observational studies make use of the so-called *propensity score*, i.e. the conditional probability of receiving the treatment given the values of the covariates:

$$e(X_i) = Pr(A_i = a | X_i = x)$$
 for $i = 1, ..., N$

Alternatively, *matching methods*, that are methods that aim to match treated units and control units according to the covariates' values, have been proposed. Furthermore, methods that combine propensity score and matching methods have also been recently put forth.

Before briefly describing some of the main proposal for drawing causal inference in observational studies, it is necessary to discuss a fundamental

Figure 3.1: Some examples of the common support problem

premise. Using a metaphor, the unconfoundedness assumption shall constitute the rock on which we'll build our theoretical house. This assumption was originally proposed by Rosenbaum and Rubin (1983b) and it is a not directly testable assumption. Unconfoundedness states that –beyond the observed covariates X_i — there are no unobserved characteristics of the individuals associated both with the potential outcomes and with the assignment mechanism. In many applications, even if not explicitly declared, the unconfoundedness assumption is routinely used when performing multiple regression analyses. Assume that the treatment effect τ is constant across subjects: $\tau = Y_i(1) - Y_i(0)$ and consider the standard regression model $Y_i(0) = \alpha + \beta' X_i + \epsilon_i$, where $\epsilon_i = Y_i(0) - \mathbb{E}[Y_i(0)|X_i]$ is a residual capturing the unobservable variable actings on the response variable in the absence of the treatment. The observed outcome can be written as:

$$Y_i^{obs} = \alpha + \tau A_i + \beta' X_i + \epsilon_i$$

and, as we know, a common assumption of this model is given by the independence of the residuals ϵ_i from the regressors A_i conditional on the values of the covariates X_i .

Differing from the overlap assumption, the unconfoundedness assumption is a not directly testable assumption, as it involves the unknown values of the potential outcomes Y(0) and Y(1). Since the 1980s, indirect methodologies aimed to verify this hypothesis have been proposed (e.g. Rosenbaum (1987), Heckman and Hotz (1989)).

Think, for instance, you're a clinical psychologist and you want to test the effect of a new brief-cognitive psychotherapy (duration: 3 months) on the attentional symptoms of the Attention Deficit Hyperactivity Disorder (ADHD). A previous study asserted that this brief treatment is not effective on the behavioral symptoms of ADHD. Your objective is to test the effect of this brief therapy not on the behavioural symptoms but on the attentional deficit. For, you select a sample of 30 children for participating at a brief treatment (1-hour sessions, three times a week for three months) on the attentional deficit. The screening of attentional disorders requires a long sequence of examinations composed of neuropsychological and neurophysiological tests. The evaluation of the behavioral symptoms is based on a behavioral questionnaire compiled by the parents. In order to evaluate if the unconfoundedness assumption holds, you evaluate both at the start-up and at the follow-ups the attentional functions and the behavioural symptoms. In the case you find that a psychotherapy has a strong positive effect on both the behavioral and the attentional symptoms, you suspect that the unconfoundedness assumption does not hold in your sample and there exist

unobserved covariates that may act as confounders. This is because the null effect of the psychotherapy on the behavioural symptoms is a sort of counterfactual that is known *ex-ante* in your study. If you don't replicate the null effect of the treatment, you cannot exclude that a selection bias is affecting you results.

This clinical example shows the typical *indirect* procedure of assessing the unconfoundedness assumption, i.e. by testing the null hypothesis that an effect is equal to zero when such an effect is *already known* to be equal to zero. If the null hypothesis is rejected, the assumption is suspected of not to hold. Note that, even if we were able to reject the null hypothesis and consequently to weaken the unconfoundedness assumption, we would have no indication on which variables have been playing the role of confounders (that is a theoretical problem, and obviously cannot be solved by means of a statistical procedure).

Consider further the following example, adapted from Heckman et al. (1997). Imagine you're a Human Resources specialist and you've been asked by your company to test the effect of a new training program for unemployed people aged 16-24. You announce your program by mail to all the 136 contacts that you received from the local job-placement office. However, only 47 people are actually interested in this proposal. In order to assess the unconfoundedness assumption, you select 50 non-applicants as a control group, but you choose also a sample of 50 ineligible unemployed people (for instance aged 24-29) as a second control group. After a year, you evaluate the effect of your training program by comparing the number of new employed people in both the applicant and non-applicant groups. Moreover, in order to assess the unconfoundedness assumption, you compare the employment status across the populations of non-applicants and ineligibles. By definition, the effect of the treatment on non-applicants should be equal to zero. Nevertheless, it might be the case that non-applicants have found a new job more easily than ineligibles, and this would prove that the two groups are strictly comparable. Consequently, you cannot impute the values of the counterfactual outcomes $Y_i(0)$ for applicants by means of a matching procedure using non-applicants as a control group, because you've verified that non-applicants are not exchangeable with ineligibles, and you've no reason to think that they're exchangeable with applicants. You can only impute the counterfactual values of applicants using those of non applicants only conditioning on age. Nonetheless, this does not guarantee that there are not other covariates that act as a confounder.

Imbens and Wooldridge (2009) comment:

One can estimate a "pseudo" average treatment effect by analyzing the data from these two control groups as if one of them is the treatment group. In that case the effect of the

treatment is known to be zero, and statistical evidence of a non-zero effect implies that at least one of the control group is invalid. Again, not rejecting the test does not imply the unconfoundedness assumption is valid (as both the control groups can suffer the same bias), but not rejection in the case where the two control groups could potentially have different biases makes it more plausible that the unconfoundedness assumption holds. The key of the power of this test is to have available control groups that are likely to have different biases, if they have any at all. [Imbens and Wooldridge (2009), p. 43]

Another possibility to indirectly assess the unconfoundedness hypothesis is given by considering geographically distinct comparison groups: for instance, groups from areas bordering different sides of the treatment group (Imbens and Wooldridge (2009)). Formally, an higher-level treatment variable G_i is introduced, such that $G_i \in \{-1,0,1\}$ and:

$$A_i = \begin{cases} 0 \text{ if } G_i = -1, 0\\ 1 \text{ if } G_i = 1 \end{cases}$$

As we know, unconfoundedness only requires that:

$$(Y_i(0), Y_i(1)) \coprod A_i | X_i \tag{3.1}$$

and this is a not directly testable assumption. Consider now the higher-level (and stronger) conditional independence relation:

$$(Y_i(0), Y_i(1)) \coprod G_i | X_i \tag{3.2}$$

We have:

Since $G_i \in \{-1, 0\}$ implies that $Y_i = Y_i(0)$, we also have:

$$Y_i(0) \coprod G_i | X_i, G_i \in \{-1, 0\} \iff Y_i \coprod G_i | X_i, G_i \in \{-1, 0\}$$
 (3.3)

and the right side of the implication is *testable*, as it does not involve potential outcomes. Hence, the conditional independence relation in 3.2 can be split into the two following relations:

$$(Y_i(0), Y_i(1)) \coprod A_i | X_i, G_i \in \{-1, 1\}$$
 (3.4)

and:

$$(Y_i(0), Y_i(1)) \coprod A_i | X_i, G_i \in \{0, 1\}$$
(3.5)

Imbens and Wooldridge (2009) observe:

If 3.4 holds, then we can estimate the average causal effect by invoking the unconfoundedness assumption using only the first control group. Similarly, if 3.5 holds, then we can estimate the average causal effect by invoking the unconfoundedness assumption using only the second control group. The point is that it is difficult to envision a situation where unconfoundedness based on the two comparison groups holds –that is, 3.1 holds– but it does not hold using only one of the two comparison groups at the time. In practice, it seems likely that if unconfoundedness holds, then so would the stronger condition 3.2, and we have the testable implication 3.3. [Imbens and Wooldridge (2009), p. 44]

Afterwards, an hypotheses testing procedure is implemented in order to verify whether:

$$\mathbb{E}[\mathbb{E}[Y_i|G_i = -1, X_i] - \mathbb{E}[Y_i|G_i = 0, X_i]] = 0$$

or, more generally:

$$\mathbb{E}[\mathbb{E}[Y_i|G_i = -1, X_i = x] - \mathbb{E}[Y_i|G_i = 0, X_i = x]] = 0$$

Last, an important method in order to assess the unconfoundedness assumption is given by considering the effect of a treatment on a lagged outcome that acts as a pre-treatment covariate variable. From one side, if the treatment effect on a lagged outcome is not zero, the distribution of $Y_i(0)$ for the treated units is not comparable to the distribution of $Y_i(0)$ for the controls. From the other side, if the treatment effect on a lagged outcome is zero, it is more plausible that the unconfoundedness assumption holds.

Let's analyze the following example (see Imbens and Wooldridge (2009), p. 46): imagine you're a labour economist and you aim to evaluate the effect of a labour market program (A) on annual earnings (Y). Among all the eligible applicants, only a group of them enroll to the program (A = 1) whereas the others do not enroll (A = 0). For all the subjects, you collect timeseries data on pre-treatment earnings in the previous six years: $Y_{i,-1}, ..., Y_{i,-6}$. These lagged observed outcomes act as pre-treatment covariates and are not expected to influence participation to the program.

The overall set of covariates is now split in two subsets: a subset of lagged outcomes, denoted by X_i^p (that Imbens and Wooldridge (2009) defines as a pseudo-outcome) and the set of all the other covariates X_i^r . We now aim to evaluate the following conditional independence relation:

$$X_i^p \mid A \mid X_i^r \tag{3.6}$$

Let $Y_{i,-1}$ be X_i^p and $Y_{i,-2},...,Y_{i,-5}$ be X_i^r . If it can be shown that the relation in 3.6 holds, it can be reasonably generalized to non lagged outcomes (i.e. expost outcomes). Under unconfoundedness, $Y_i(c)$ is independent of A_i given $Y_{i,-1}, Y_{i,-6}$ (and other covariates) that would suggest that it is plausible that $Y_{i,-1}$ is independent of A_i given $Y_{i,-2},...,Y_{i,-6}$ (and other covariates). In other

words, if we're able to verify that the treated units and control units were exchangeable in the past, we may reasonably argue that such assumption also holds in the present (i.e., when treatment is allocated).

Note that, when we consider the hypothesis of unconfoundedness, we state:

$$(Y_i(0), Y_i(1)) \prod A_i | X_i = x$$
 for all x

whereas, with this method, only a subset of the covariates is considered, and it might be the case that the hypothesis is valid for a subset of the covariates, but not for all the covariates, and this possibility is not directly testable.

In the previous chapter we stated that, if both unconfoundedness and common support hold, the situation is defined as *strong ignorability* (Rosenbaum and Rubin (1983b)). In this case, the average causal effect can be defined as:

$$\tau(x) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x]$$

$$= \mathbb{E}[Y_i(1)|A_i = 1, X_i = x] - \mathbb{E}[Y_i(0)|A_i = 0, X_i = x]$$

$$= \mathbb{E}[Y_i(1)|X_i = x] - \mathbb{E}[Y_i(0)|X_i = x]$$

Under overlapping, both terms on the last line can be calculated and so the causal effect τ under different values of the covariate X = x can be estimated. An important estimator is given by $\hat{\tau}_{ATE}$, which it was defined as:

$$\hat{\tau}_{ATE} = \mathbb{E}[Y(1)|A=1, X=x] - \mathbb{E}[Y(0)|A=0, X=x]$$

It can be shown that, under both the assumptions of unconfoundedness and overlapping and under some smoothness conditions on the conditional expectations of potential outcomes, this estimator is \sqrt{N} -consistent and asymptotically normally distributed. The lower bound for the variance of a \sqrt{N} -consistent estimator $\hat{\tau}_{ATE}(x)$ and such that:

$$\hat{\tau}_{ATE} \stackrel{d}{\longrightarrow} \mathcal{N}(0, \mathbb{V})$$

has been derived by Hahn (1998):

$$\mathbb{V}_{\hat{\tau}_{ATE}} \ge \mathbb{E}\left[\frac{\sigma_1^2(X_i)}{e(X_1)} + \frac{\sigma_0^2(X_i)}{1 - e(X_i)} + (\tau(X_i) - \tau)^2\right]$$

where $e(X_i)$ is the propensity score, and:

$$\sigma_0^2(x) = \mathbb{V}[Y_i(0)|X_i = x]$$

$$\sigma_1^2(x) = \mathbb{V}[Y_i(1)|X_i = x]$$

In general, there exist estimators that achieve this lower bound and that do not require functional form restrictions on either the conditional means or the propensity score.

In the next sections the main methods of estimation under unconfoundedness will be briefly described. These are: regression methods, methods based on the propensity score, matching methods.

3.2 Selection on Observables

3.2.1 Regression Methods

First of all, regression is a basic tool for estimating causal effects. We are interested in estimating τ_{ATE} , that is:

$$\tau_{ATE} = \mathbb{E}[Y(1)|A=1] - \mathbb{E}[Y(0)|A=0] \tag{3.7}$$

We consider N individuals and we assume that the effect of treatment is the same across all the subjects: $\rho = Y_i(1) - Y_i(0)$ for i = 1, ..., N. We can write the observed outcomes in terms of a regression model:

$$Y_i^{obs} = \alpha + \rho A_i + \eta_i$$

where $\alpha = \mathbb{E}[Y_i(0)]$, $\rho = Y_i(1) - Y_i(0)$ and η_i is the random part of Y(0): $\eta_i = Y_i(0) - \mathbb{E}[Y_i(0)]$. If we consider the conditional expectation to the treatment status, we have:

$$\mathbb{E}[Y_i|A_i=1] = \alpha + \rho + \mathbb{E}[\eta_i|A_i=1]$$

$$\mathbb{E}[Y_i|A_i=0] = \alpha + \mathbb{E}[\eta_i|A_i=0]$$
(3.8)

And, by substituting 3.8 in 3.7:

$$\mathbb{E}[Y_i|A_i = 1] - \mathbb{E}[Y_i|A_i = 0] = \rho + \mathbb{E}[\eta_i|A_i = 1] - \mathbb{E}[\eta_i|A_i = 0]$$

Remember that in the previous chapter, also τ_{CATE} has been defined, i.e. the average treatment effect conditional to the values of a covariate X = x:

$$\tau_{CATE} = \mathbb{E}[Y_i(1)|A_i = 1, X_i = x] - \mathbb{E}[Y_i(0)|A_i = 0, X_i = x]$$

We can now define the two regression functions for the potential outcomes:

$$\mu_0(x) = \mathbb{E}[Y_i(0)|X_i = x]$$
 $\mu_1(x) = \mathbb{E}[Y_i(1)|X_i = x]$

Under the unconfoundedness assumption, we have that:

$$\tau_{CATE} = \mu_1(x) - \mu_0(x)$$

= $\mathbb{E}[Y_i(1)|X_i = x] - \mathbb{E}[Y_i(0)|X_i = x]$

as, by hypothesis, $Y_i(1) = Y_i(1)|A_i = 1$ and $(Y_i(0) = Y_i(0))|A_i = 0$. Our objective is to estimate τ_{CATE} . To this purpose, consider two subsamples of the treated units and of non-treated units in order to estimate μ_0 and μ_1 . It can be shown that a consistent estimator for τ_{ATE} is given by:

$$\hat{\tau}_{reg} = \frac{1}{N} \sum_{i=1}^{N} (\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i))$$

The problem is how to choose a parametrical model for $\mu_1(\cdot)$ and $\mu_0(\cdot)$ in order to estimate τ_{reg} . For, each conditional mean can be expressed by a function linear in the parameters:

$$\mu_0(x) = \alpha_0 + \beta_0'(x - \psi_X) \mu_1(x) = \alpha_1 + \beta_1'(x - \psi_X)$$

where ψ_X is the overall population covariate mean, that is rarely known, but that can be replaced by the sample average across units $\hat{\psi}_X$. In this case, the effect of the treatment is given by the difference between intercepts (as, by hypothesis, the effect of the treatment is considered to be constant across subjects, see Figure 3.2):

$$\hat{\tau}_{reg} = \hat{\alpha}_1 - \hat{\alpha}_0$$

These estimates can be obtained by means of a standard least squares regression. Furthermore, it can be shown that, under the linear model:

$$\hat{\tau}_{reg} = \bar{Y}_1 - \bar{Y}_0 - \left(\frac{N_0}{N_0 + N_1} \cdot \hat{\beta}_1 + \frac{N_1}{N_0 + N_1} \cdot \hat{\beta}_0\right)' (\bar{X}_1 - \bar{X}_0)$$

This equation shows that, the bigger is the difference in covariate means, the more the simple difference $\bar{Y}_1 - \bar{Y}_0$ is adjusted.

A serious problem that can raise with the regression methods in causal inference is that the estimates can be biased, if the linear approximation to the regression function is not globally accurate. Furthermore, if the averages of the covariates in the two treatment arms are very different, the correlation between the covariates and the treatment indicator is relatively high (multicollinearity problem). This problem can be evaluated, for instance, by considering the normalized differences $\bar{X}_1 - \bar{X}_0 / \sqrt{S_0^2 + S_1^2}$.

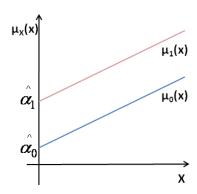


Figure 3.2: Example of a regression method in causal inference. The effect of the treatment is evaluated as an estimated difference in intercepts between the regression function for the treated $(\mu_1(x))$ and for the non treated units $(\mu_0(x))$.

We now mention some important asymptotic results for the estimates of τ_{ATE} and τ_{CATE} . By standard regression, we have:

$$\sqrt{N}(\hat{\tau}_{reg} - \tau_{CATE}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \mathbb{V}_0 + \mathbb{V}_1)$$

where:

$$\mathbb{V}_a = N \cdot \mathbb{E}[(\hat{\alpha}_a - \alpha_a)^2]$$
 $a = 0, 1$

Also if we consider the estimator of τ_{ATE} , it can be shown that:

$$\sqrt{N}(\hat{\tau}_{reg} - \tau_{ATE}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \mathbb{V}_0 + \mathbb{V}_1 + \mathbb{V}_{\tau})$$

where

$$\mathbb{V}_{\tau} = (\beta_1 - \beta_0)' \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_i - \mathbb{E}[X_i])'](\beta_1 - \beta_0)$$

which can be estimated as:

$$\hat{\mathbb{V}}_{\tau} = (\hat{\beta}_1 - \hat{\beta}_0)' \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(X_i - \bar{X})'(\hat{\beta}_1 - \hat{\beta}_0)$$

As we know, for many applications simple parametric models can represent a naive assumption. Two main solutions to face this problem have been proposed: i) the use of local smoothing methods (e.g. Heckman *et al.* (1997); Heckman *et al.* (1998)); ii) the use of global smoothing methods (e.g. Hahn (1998), Imbens *et al.* (2003)).

The most important among local smoothing methods is given by kernel regression. Given a kernel $K(\cdot)$, i.e. a non-negative real-valued integrable function satisfying the following two requirements:

(i)
$$\int_{-\infty}^{+\infty} K(u) du = 1$$

(ii)
$$K(-u) = K(u)$$

and given a bandwidth h, the kernel estimator for $\mu_a(x)$ is:

$$\hat{\mu}_a(x) = \sum_{i:A_i=a} Y_i \cdot \lambda_i \tag{3.9}$$

with weights:

$$\lambda_i = K\left(\frac{x - X_i}{h}\right) / \sum_{i:A_i = a} K\left(\frac{x - X_i}{h}\right)$$

Indeed, a kernel regression is a well-known non-parametric technique in order to estimating the conditional expectation of a random variable $\mathbb{E}[Y(1)|X=x]$ or $\mathbb{E}[Y(0)|X=x]$ when a non-linear relation between X and Y is supposed to hold. The objective of kernel regression is to find a regression function $\hat{\mu}_a(x)$, such that it can be considered as a best-fit match to the data points. This approach is nonparametric since no underlying distributional assumption is put forth in estimating the regression functions. In this technique, a set of identical symmetric functions known as kernel is assigned to each observed datum (X_i, Y_i) . A weight λ_i proportional to the distance from the data point (X_i, Y_i) can be assigned to each value of $x \in \mathfrak{R}$. Different kernel functions –each of which can vary with respect to the width (scale) parameter– have been proposed in the literature, for instance:

• Uniform kernel

$$K(u) = \frac{1}{2} \cdot \mathbb{1}_{\{|u| \le 1\}}$$

• Triangular kernel

$$K(u) = (1 - |u|) \cdot \mathbb{1}_{\{|u| \le 1\}}$$

• Epanechnikov's kernel

$$K(u) = \frac{3}{4}(1 - u^2) \cdot \mathbb{1}_{\{|u| \le 1\}}$$

• Quadratic kernel

$$K(u) = \frac{15}{16}(1 - u^2) \cdot \mathbb{1}_{\{|u| \le 1\}}$$

• Tricube kernel

$$K(u) = \frac{35}{32}(1 - u^2)^3 \cdot \mathbb{1}_{\{|u| \le 1\}}$$

• Gaussian kernel

$$K(u) = \frac{1}{\sqrt{2\pi}h}e^{-1/2u^2}$$

• Cosine kernel

$$K(u) = \frac{\pi}{4} cos\left(\frac{\pi}{2}u\right) \mathbb{1}_{\{|u| \le 1\}}$$

Note the use of the different variable names: X_i is referred to your original data (i = 1, ..., N); x is a real-valued variable and u represents the standardized x variable (with mean X_i and standard deviation h). By means of a kernel function, you can extend the value of the original data X_i to the potentially infinite values of x at a certain step dx from X_i . Consequently, you can estimate your nonlinear regression function by considering the kernel regression formula (also called Nadaraya-Watson kernel weighted average), that, as we've seen, is given by Equation 3.9. To this purpose, the conditional expectation can be written as:

$$\mathbb{E}[Y|X] = \mu_a(x)$$

where $\mu_a(x)$ is an unknown function and can be estimated by using a kernel as a weighting function (Nadaraya-Watson estimator):

$$\hat{\mu}_a(x) = \frac{\sum_{i=1}^{N} K[(x - X_i)/h] Y_i}{\sum_{i=1}^{N} K[(x - X_i)/h]}$$

where $K(\cdot)$ is a kernel with bandwidth h. The derivation of this estimator can be obtained by considering:

$$\mathbb{E}[Y|X] = \int yf(y|x)dx = \int y\frac{f(x;y)}{f(x)}dy$$

and the following kernel density estimations for the joint distribution f(x;y) and f(x):

$$\hat{f}(x;y) = \sum_{i=1}^{N} K\left(\frac{x - X_i}{h}\right) K\left(\frac{y - Y_i}{h}\right) / n \cdot h^2$$

$$\hat{f}(x) = \sum_{i=1}^{N} K\left(\frac{x - X_i}{h}\right) / n \cdot h$$

As noted by Imbens and Wooldridge (2009), although the rate of convergence of the kernel estimator to the regression function is slower than the conventional parametric rate $N^{-1/2}$, the rate of convergence of the implied estimator for the average treatment effect $\hat{\tau}_{reg}$ is the regular parametric rate under regularity conditions. These conditions include smoothness of the regression functions and require the use of higher order kernels (the order of kernel depends on the dimension of the covariates).

Heckman *et al.* (1997) and Heckman *et al.* (1998) used an alternative method, that is based on locally fitting a polynomial regression function. Instead of Equation 3.9, these authors considered local least square estimates, based on locally fitting a linear regression function:

$$(\hat{\alpha}(x), \hat{\beta}(x)) = \underset{\alpha, \beta}{\operatorname{argmin}} \sum_{i=1}^{N} \lambda_i \cdot (Y_i - \alpha - \beta'(x - X_i))^2$$

where λ_i are the same weights as in the standard kernel regression estimator. Consequently, the regression function at x is estimated as $\hat{\mu}(x) = \hat{\alpha}(x)$.

A common problem for both the standard kernel estimation and the local linear estimation is given by the choice of an optimal bandwidth h. In the nonparametric regression literature, there exist optimization algorithms aimed to minimize a global criterion such as the expected value of the squared difference between the estimated and the regression model, with the expectation taken with respect to the marginal distribution of the covariate. These criteria cannot be directly used in the nonparametric estimation of causal effects, but the debate on this issue is still open.

As it was mentioned, some authors have put forward the use of *global* smoothing methods instead of local smoothing methods. Following this approach, the regression function $\mu_a(x)$ is approximated by a K-th order polynomial:

$$\hat{\mu}_{a,k}(x) = \sum_{k=0}^{K} \beta_{a,k} \cdot x^k \tag{3.10}$$

The coefficients $\beta_{a,k}$ are estimated by least square regression and then the average treatment effect is estimated by:

$$\hat{\tau}_{reg} = \frac{1}{N} \sum_{i=1}^{N} (\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i))$$

For a discussion on the choice of the number of terms in the series 3.10 see Imbens *et al.* (2003).

Before concluding this discussion, it is very useful to mention a general remark by Imbens and Wooldridge (2009):

Generally, methods based on global approximations suffer from the same drawbacks of linear regression. If the covariate distributions are substantially different in both treatment groups, estimates based on such methods rely, perhaps more than desired, on extrapolation. Using these methods in cases with substantial differences in covariate distributions is therefore not recommended (except possibly in cases where the sample has been trimmed so that the covariates across the two treatment regimes have sufficient considerable overlap). [Imbens and Wooldridge (2009), p.27]

3.2.2 Methods based on the Propensity Score

Rosenbaum and Rubin (1983b) demonstrated this important implication:

$$(Y_i(0), Y_i(1)) \coprod A_i | X_i \Rightarrow (Y_i(0), Y_i(1)) \coprod A_i | e(X_i) \quad \forall i$$
(3.11)

where $e(X_i) = Pr(A_i = 1|X_i)$ is the propensity score, i.e. the probability of receiving the treatment given the covariates. By definition, a balancing score b(x) is a function of the covariates such that: $X_i \coprod A_i | b(x)$. It can be shown that the propensity score is a balancing score (see Rosenbaum and Rubin (1983b)). The proof can informally be summed up in the following way:

$$Pr[A_i = 1|X_i, e(X_i)] = Pr[A_i = 1|X_i] = e(X_i)$$

and

$$Pr[A_i = 1 | e(X_i)] = \mathbb{E}[A_i | e(X_i)] =$$

= $\mathbb{E}[\mathbb{E}[A_i | X_i, e(X_i)] | e(X_i)] = \mathbb{E}[e(X_i) | e(X_i)] = e(X_i)$

It follows:

$$e(X_i) = Pr[A_i = 1|X_i, e(X_i)] = Pr[A_i = 1|e(X_i)]$$

implying that A_i is independent of X_i given the propensity score. The result of Rosenbaum and Rubin (1983b) expressed by the Equation 3.11, shows that it is not necessary to simultaneously conditioning on all the covariates,

but all the bias due to *observable* covariates can be removed by conditioning solely on the propensity score. The proof consists in showing that:

$$Pr[A_i = 1|Y_i(0), Y_i(1), e(X_i)] = Pr[A_i = 1|e(X_i)] = e(X_i)$$

implying independence of $(Y_i(0), Y_i(1))$ and A_i conditional on $e(X_i)$.

$$Pr[A_{i} = 1|Y_{i}(0), Y_{i}(1), e(X_{i})] = \mathbb{E}[A_{i}|Y_{i}(0), Y_{i}(1), e(X_{i})] =$$

$$= \mathbb{E}[\mathbb{E}[A_{i}|Y_{i}(0), Y_{i}(1), e(X_{i}), X_{i}]|Y_{i}(0), Y_{i}(1), e(X_{i})] =$$

$$= \mathbb{E}[\mathbb{E}[A_{i}|Y_{i}(0), Y_{i}(1), X_{i}]|Y_{i}(0), Y_{i}(1), e(X_{i})] =$$

$$= \mathbb{E}[\mathbb{E}[A_{i}|X_{i}]|Y_{i}(0), Y_{i}(1), e(X_{i})] =$$

$$= \mathbb{E}[e(X_{i})|Y_{i}(0), Y_{i}(1), e(X_{i})] = e(X_{i})$$

Moreover,

$$Pr[A_i = 1 | e(X_i)] = \mathbb{E}[A_i | X_i] =$$

$$= \mathbb{E}[\mathbb{E}[A_i | X_i] | e(X_i)] = \mathbb{E}[e(X_i) | e(X_i)] = e(X_i)$$

It follows:

$$Pr[A_i = 1|Y_i(0), Y_i(1), e(X_i)] = Pr[A_i = 1|e(X_i)] = e(X_i)$$

i.e. $(Y_i(0), Y_i(1)) \coprod A_i | e(X_i)$. Under unconfoundedness, confounding is kept under control by regulating differences in the covariates, and consequently, according to the relation 3.11, by considering groups homogeneous with respect to the propensity score; covariates are independent of the treatment and treated units can be compared with control units. Among methods based on the propensity score, it is useful to list three main approaches.

First, the propensity score can be used in place of the covariates in the regression analysis, defining:

$$\nu_a(e) = \mathbb{E}[Y_i|A_i, e(X_i) = e]$$

By means of 3.11 and unconfoundedness, it follows:

$$\nu_a(e) = \mathbb{E}[Y_i(a)|e(X_i) = e]$$

and $\nu_a(e)$ can be estimated by means of the kernel methods that were mentioned in the previous section applied to the values of the propensity score instead of the values of the covariates.

Second, a methodology known as *blocking*, *stratification* or *subclassifications* has been proposed. The sample space is partitioned into strata, according to the values of the propensity score. Data are separately analyzed

within each stratum, that is homogeneous with respect to the covariates used to construct the propensity score. Hence, for each stratum, data are analyzed as if they were collected in a completely randomized experiment and the key-hypotheses (unconfoundedness and overlapping) to draw causal inference are assumed to hold.

A third method based on the propensity score is known as weighting. As we've seen, $\tau_{ATE} = \mathbb{E}[Y(1)|Y=1] - \mathbb{E}[Y(0)|Y=0]$; consider now the two terms separately: it can be shown that weighting the treated population by the inverse of the propensity score recovers the expectation of the unconditional response under treatment. Since A_i is a treatment indicator, we have: $A_i \cdot Y_i = A_i \cdot Y_i(1)$ for the treated and $(1 - A_i) \cdot Y_i = (1 - A_i) \cdot Y_i(0)$, and consequently:

$$\mathbb{E}\left[\frac{A_i \cdot Y_i}{e(X_i)}\right] = \mathbb{E}\left[\frac{A_i \cdot Y_i(1)}{e(X_i)}\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{A_i \cdot Y_i(1)}{e(X_i)}\right] \middle| X_i\right] =$$

$$= \mathbb{E}\left[\frac{\mathbb{E}[A_i|X_i] \cdot \mathbb{E}[Y_i(1)|X_i]}{e(X_i)}\right] =$$

$$= \mathbb{E}[\mathbb{E}[Y_i(1)|X_i]] = \mathbb{E}[Y_i(1)]$$

$$\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i}{(1 - A_i) \cdot Y_i}\right] = \mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1 - A_i) \cdot Y_i(0)}{(1 - A_i) \cdot Y_i(0)}\right]\right]$$

$$\mathbb{E}\left[\frac{(1-A_i)\cdot Y_i}{(1-e(X_i))}\right] = \mathbb{E}\left[\frac{(1-A_i)\cdot Y_i(0)}{(1-e(X_i))}\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{(1-A_i)\cdot Y_i(0)}{(1-e(X_i))}\right] | X_i\right] =$$

$$= \mathbb{E}\left[\frac{\mathbb{E}[(1-A_i)|X_i]\cdot \mathbb{E}[Y_i(0)|X_i]}{(1-e(X_i))}\right] =$$

$$= \mathbb{E}[\mathbb{E}[Y_i(0)|X_i]] = \mathbb{E}[Y_i(0)]$$

Hence, we have:

$$\tau_{ATE} = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)] = \mathbb{E}\left[\frac{A_i \cdot Y_i}{e(X_i)} - \frac{(1 - A_i) \cdot Y_i}{(1 - e(X_i))}\right]$$

And the following weighting estimator for τ_{ATE} has been proposed:

$$\hat{\tau}_{weight} = \frac{1}{N} \cdot \sum_{i=1}^{N} \left[\frac{A_i \cdot Y_i}{e(X_i)} - \frac{(1 - A_i) \cdot Y_i}{1 - e(X_i)} \right]$$

This is a sample average from a random sample and it can be shown that it is consistent for τ_{ATE} and \sqrt{N} -asymptotically normally distributed. The problem in calculating this estimator is that it depends on the propensity score function, which is rarely known. However, a fundamental disadvantage of this estimator is that it does not achieve the efficiency bound. In order to calculate the weighting estimator, the propensity score function $e(\cdot)$ can

be replaced with a *logistic sieve estimator*, to obtain the so-called *inverse* probability weighting estimator:

$$\hat{\tau}_{ipw} = \sum_{i=1}^{N} \frac{A_i \cdot Y_i}{\hat{e}(X_i)} / \sum_{i=1}^{N} \frac{A_i}{\hat{e}(X_i)} - \sum_{i=1}^{N} \frac{(1 - A_i) \cdot Y_i}{\hat{e}(X_i)} / \sum_{i=1}^{N} \frac{A_i}{\hat{e}(X_i)}$$

Imbens and Wooldridge (2009) remarkably comment:

A particular concern with IPW estimators arises again when the two covariate distributions are substantially different for the two treatment groups. That implies that the propensity score gets close to zero or one for some values of the covariates. Small or large values of the propensity score raises a number of issues. One concern is that alternative parametric models for the binary data, such as probit and logit models that can provide similar approximations in terms of estimated probabilities over the middle ranges of their arguments, tend to be more different when the probability are close to zero or one. Thus the choice of model and specification becomes more important, and it is often difficult to make well motivated choices in treatment effect settings. A second concern is that for units with propensity score close to zero or one, the weights can be large, making those units particularly influential in the estimates of the average treatment effects, and thus making the estimator imprecise. These concerns are less serious than those regarding regression estimators because at least the IPW estimates will accurately reflect uncertainty. Still, the concerns make the simple ipw estimators less attractive (As for regression cases, the problem can be less severe for the ATT parameters because propensity score values close to zero play no role). Problems for estimating ATT arise when some units, as described by their observed covariates, are almost certain to receive treatment). [Imbens and Wooldridge (2009), p.31]

Another important method that can be either based or not based on the propensity score is matching. By means of this methodology the values of the missing outcomes are imputed using only the outcomes of a few nearest neighbours of the opposite treatment group. In a certain sense, matching might be compared with non-parametric kernel regression, with the number of neighbours considered in order to match, playing the role of the bandwidth in the kernel regression. Hence, the asymptotic distribution for matching estimators is derived conditional on the implicit bandwidth, i.e. the number of neighbours, often fixed at a small number. Note that the implicit estimate $\hat{\mu}_a(x)$ is unbiased, but not consistent, in contrast to the kernel estimators. With regard to the advantages of this methodology, Imbens and Wooldridge (2009) observe:

Matching estimators have the attractive feature that smoothing parameters are easily interpretable. Given the matching metric, the researcher only has to choose the number of matches. Using only a single match leads to the most credible inference with the least bias, at the cost of sacrificing such precision. This sits well with the focus in the literature to reducing bias rather than variance. It also can make the matching estimator easier to use than those estimators that require more complex choices of smoothing parameters, and this may be another explanation for its popularity. Matching estimators have been widely studied in practice and theory (e.g. Gu and Rosenbaum (1993), Rosenbaum (1989), Rosenbaum (2002), Rubin (1973b), Rubin (1979), Rubin and Thomas (1992a), Rubin and Thomas (1992b), Rubin and Thomas (1992a), Rubin and Thomas (1992b), Rubin and Thomas (2000), Heckman et al. (1998), Dehejia and Wahba (1999), Abadie and Imbens (2008)). Most often they have been applied in settings where, (i) the interest is in the average treatment effect for the treated, and (ii) there is a large reservoir of potential controls, although recent work (Abadie and Imbens (2006)) shows that matching estimators can be modified to estimate the overall average effect. [Imbens and Wooldridge (2009), p. 32].

Matching methods require the choice of an algorithm in order to conveniently match the observations. As observed by Imbens and Wooldridge (2009), there are not—at the actual state of the art—fully efficient matching algorithms that take into account the effect of a particular choice of match on treated unit i on the pool of the potential matches for unit j. In practice, units are matched sequentially by current algorithms, i.e. they are ordered by the value of covariates or the propensity score with highest propensity score units matched first (see Gu and Rosenbaum (1993) and Rosenbaum (1995) for discussion). The most important algorithms used in the literature are the Nearest Neighbour Matching, the Caliper Matching, the Radius Matching and the Kernel Matching.

In the following, we briefly formalize these concepts with respect to the Nearest Neighbour Matching (see Abadie and Imbens (2006)). Let $\{(Y_i, X_i, A_i)\}_{i=1}^N$ be a sample, let $l_1(i)$ be the nearest neighbour to the unit i, i.e. $l_1(i)$ is equal to the nonnegative integer j, for $j \in \{1, ..., N\}$, if $A_i \neq A_j$, and:

$$||X_j - X_i|| = \underset{k:A_k \neq A_i}{argmin} ||X_k - X_i||$$

More generally, let $l_m(i)$ be the index that satisfies: $A_{l_m(i)} \neq A_i$ and that is the m-th unit closest to unit i:

$$\sum_{l: A_l \neq A_i} \mathbb{1}\{\|X_l - X_i\| \le \|X_{l_m(i)} - X_i\|\} = m$$

where $\mathbb{1}(\cdot)$ is the indicator function, that is equal to one if the expression in brackets is true and zero otherwise. In other words, $l_m(i)$ is the index of the unit in the opposite treatment group that is the m-th closest to unit i in terms of distance measure based on the norm $\|\cdot\|$. Let now $\mathbb{J}_M(i) \subset \{1,...,N\}$ denote the set of indexes for the first M matches for unit $i: \mathbb{J}_M(i) = \{l_1(i),...,l_m(i)\}$. The basic idea underlying matching methods is to impute the missing potential outcomes for the matches, by defining $\hat{Y}_i(0)$ and $\hat{Y}_i(1)$ as:

$$\hat{Y}_i(0) = \begin{cases} Y_i & \text{if } A_i = 0\\ 1/M \sum_{j \in \mathbb{J}(i)} Y_j & \text{if } A_i = 1 \end{cases}$$

$$\hat{Y}_i(1) = \begin{cases} 1/M \sum_{j \in \mathbb{J}(i)} Y_j & \text{if } A_i = 0 \\ Y_i & \text{if } A_i = 1 \end{cases}$$

The matching estimator proposed by Abadie and Imbens (2006) is given by:

$$\hat{\tau}_{match} = \frac{1}{N} \sum_{i=1}^{N} (\hat{Y}_i(1) - \hat{Y}_i(0))$$

This estimator has been shown to have a bias of order $O(N^{-1/K})$, where K is the dimension of the covariates. Imbens and Wooldridge (2009) comment:

There are three caveats to the Abadie-Imbens results. First, it is only the continuous covariates that should be counted in the dimension of the covariates. With discrete covariates, the matching will be exact in large samples, and as a result such covariates do not contribute to the order of the bias. Second, if one matches only the treated, and the number of potential controls is much larger than the number of treated units, one can justify ignoring the bias by appealing to an asymptotic sequence where the number of potential controls increases faster with the sample size than the number of treated units. Specifically, if the number of controls, N_0 , and the number of treated, N_1 , satisfy $N_1/N_0^{4/k} \to 0$, then the bias disappears in large samples after normalization by $\sqrt{N_1}$. Third, even though the order of the bias may be high, the actual bias may still be small if the coefficients in the leading term are small. This is possible, if the biases for different units are at least partially offsetting. For example, the leading term in the bias relies on the regression function being nonlinear, and the density of the covariates having a nonzero slope. If either, the regression function is well approximated by a linear function, or the density is approximately flat, the bias may be fairly limited. [Imbens and Wooldridge (2009), p. 33]

The variance of this estimator has been calculated using standard methods for differences in means or methods for paired randomized experiments. It has been shown that this estimator is not efficient and it does not reach the efficiency bound given a fixed number of matches (and the number would need to increase with the sample size in order to reach the bound). In the case $M \to \infty$, with $M/N \to 0$, then the matching estimator can be interpreted as a nonparametric regression estimator. Abadie and Imbens (2006) have shown that, under certain conditions, the Nearest Neighbour Matching estimator (with a fixed number of neighbours and matching with replacement), is \sqrt{N} consistent and asymptotically normally distributed with zero asymptotic bias. Abadie and Imbens (2010) have also derived the asymptotic distribution of the matching estimator when matching is carried out without replacement. Furthermore, in the absence of exact or large sample approximation results to the distribution of matching estimators, bootstrap procedures have been used. However, Abadie and Imbens (2008) have recently shown that, in general, the bootstrap does not provide valid large sample inference for matching estimators.

An additional problem deals with the number of nearest neighbours that should be used. In general, it has been shown that, from one side matching just one nearest neighbour minimizes the bias but increases the bias; on the other side, using additional neighbours increases the bias, but decreases the variance. As suggested by Imbens and Wooldridge (2009), at the actual state of the art it is not clear that using an approximation based on a sequence with an increasing number of matches improves the accuracy of the approximation. Furthermore, the discussion on the optimal number of matches or regarding data-dependent methods to choose the matches, is far to be conclusive.

The debate is open also with respect to either matching with replacement or matching without replacement. From one side, matching with replacement keeps the bias low but increases the variance; from the other side, matching without replacement keeps the variance low at the cost of a potential bias.

Nearest Neighbour Matching is not the only matching method that has been proposed in the literature. With Nearest Neighbour Matching, unit i is matched with unit j in the opposite group such that:

$$||X_i - X_j|| = \min_{k \in \{A=0\}} ||X_i - X_k||$$

Nearest Neighbour Matching always finds a neighbour j for each unit i in the treated sample, even if the covariates values are not strictly "equal".

With Caliper Matching, we pre-specify a real value $\delta > 0$ (that is fixed by means of theoretical issues) so that treated unit i is matched with untreated unit j only if:

$$\delta > \|X_i - X_j\| = \min_{k \in \{A = 0\}} \|X_i - X_k\|$$

If no untreated unit j is within δ from treated unit i, this is left unmatched.

Radius Matching does not involve a minimum problem with respect to a distance measure, but it only fixes a radius r, and then matches to unit i all the control units with X_i falling within a radius r from X_i :

$$||X_i - X_j|| < r$$

Last, also a method based on a Kernel function has been proposed. Given a kernel $K(\cdot)$, a bandwidth h, and given a treated unit i, the counterfactual outcome $Y_i(0)$ is imputed by considering a kernel-weighted average of the outcomes of all the non-treated units, where the weight attributed to non-treated unit j is in proportion to the closeness between i and j:

$$\hat{Y}_i = \frac{\sum_{j \in \{A=0\}} K\left(\frac{X_i - X_j}{h}\right) \cdot Y_j}{\sum_{j \in \{A=0\}} K\left(\frac{X_i - X_j}{h}\right)}$$

Let's now briefly consider the problem of which distance metrics to choose with respect to the covariates. Until today, three main approaches have been proposed:

(i) the use of an Euclidean metric:

$$||X_i - X_j|| = (X_i - X_j)'(X_i - X_j)$$

(ii) the use of the Mahalanobis metric, which is based on the inverse of the full covariate matrix Σ_X :

$$||X_i - X_j|| = (X_i - X_j)' \Sigma_X^{-1} (X_i - X_j)$$

(iii) the use of the diagonal matrix $diag\Sigma_X$, with each diagonal element equal to the inverse of the corresponding covariate variance:

$$||X_i - X_j|| = (X_i - X_j)' diag \Sigma_X^{-1} (X_i - X_j)$$

Other proposals (not used in the econometric or statistical literature) have been reviewed in Zhao (2004).

Note that, in the presence of many covariates of different types, it is not easy to find an "optimal" metric. For, it has been suggested to use matching methods with respect to the propensity score. The objective is to match each treated unit with a control unit characterized by a similar propensity score's value. The advantage of this procedure is that the dimensionality of matching is reduced from k (the number of the covariates), to 1. Similarly to other propensity-score based methods, the main problem of this approach is that the propensity score is rarely known and has to be estimated. Asymptotic theory shows that matching on the "true" propensity score value leads to a \sqrt{N} -consistent asymptotically normally distributed estimator for τ_{ATE} (see Abadie and Imbens (2009)).

3.2.3 Combining the Regression and the Propensity Score Methods

In the previous section, we've seen that two main methods in causal inference are given by *regression methods* and by methods based on the *propensity score*.

The first, is based on the estimation of the regression functions:

$$\mu_a(x) = \mathbb{E}[Y_i(a)|X_i = x]$$
 for $a = 0, 1$

and then averaging the difference:

$$\hat{\tau}_{reg} = \frac{1}{N} \sum_{i=1}^{N} (\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i))$$

The second class of methods are based on the estimation of the propensity score, $e(x) = pr(A_i = 1|X_i = x)$ and using this estimated propensity score for weighting the outcomes (inverse probability weighting estimator):

$$\hat{\tau}_{ipw} = \sum_{i=1}^{N} \frac{A_i \cdot Y_i}{\hat{e}(X_i)} / \sum_{i=1}^{N} \frac{A_i}{\hat{e}(X_i)} - \sum_{i=1}^{N} \frac{(1 - A_i) \cdot Y_i}{1 - \hat{e}(X_i)} / \sum_{i=1}^{N} \frac{A_i}{1 - \hat{e}(X_i)}$$

Asymptotic efficient estimators have been searched by contemporary authors. Two main suggestions have been proposed to this purpose: (i) if large

samples –with respect to the dimension of X_i – are available, then nonparametric estimators of the conditional means or propensity score are asymptotically efficient; (ii) if such large samples are not available, it is necessary to invoke flexible parametric hypotheses.

In this second case, estimates are sensible to misspecification of the parametric model. For this, strategies that combine regression and propensity score methods in order to achieve some robustness have been discussed. Imbens and Wooldridge (2009) put forth the following analogy. Think at a linear regression model and at the problem of omitted variables; consider the following full regression model:

$$Y_i^f = \alpha + \beta A_i + \gamma X_i + \epsilon_i$$

where A_i indicates a dichotomous treatment and X_i a full set of covariates. Imagine now to omit this set of covariates from your model and to run a short regression on the constant and on the treatment indicator:

$$Y_i^s = \alpha' + \beta' A_i + \epsilon_i'$$

then the omitted variable can be considered as a function of A_i in a conditional or auxiliary regression:

$$X_i = \alpha'' + \beta'' A_i + \epsilon_i''$$

it follows:

$$Y_i^f = \alpha + \beta A_i + \gamma [\alpha'' + \beta'' A_i + \epsilon_i''] + \epsilon_i$$

$$Y_i^f = [\alpha + \alpha'' \gamma] + [\beta + \beta''] A_i + [\epsilon_i + \gamma \epsilon_i'']$$

$$Y_i^f = \delta_0 + \delta_1 A_i + u_i$$

it can be shown that the estimated parameter in the short model $\hat{\beta}'$ is biased:

$$\mathbb{E}[\hat{\beta}'] = \beta' + \beta'' \left[\frac{\sum a_i x_i}{\sum a_i^2} \right]$$

and the bias picks up the part of the influence of A_i that is correlated with X_i . Weighting can be interpreted as removing the correlation between A_i and X_i and regression as removing the direct effect of X_i . Weighting therefore removes the bias from omitting X_i from the regression. As a result, combining regression and weighting can lead to additional robustness by both removing the correlation between the omitted covariates, and by reducing the correlation between the omitted and included variables. This is the general idea

underlying the *doubly robust estimators* developed in Robins and Rotnitzky (1995), Robins *et al.* (1995), van der Laan and Robins (2003).

Let's now formalize these concepts. Consider the following two regression functions:

$$\mu_a(x) = \alpha_a + \beta'_a(x - \bar{X})$$
 for $a = 0, 1$

Note that we substituted the covariate population mean ψ_X with the sample average \bar{X} . More generally, either a more flexible linear approximation or a nonlinear model could be used instead of the linear model. Suppose now we model the propensity score as a known probability density function:

$$e(x) = p(x; \gamma)$$

for instance, a logit model:

$$p(x,\gamma) = \frac{exp(\gamma_0 + x'\gamma_1)}{1 + exp(\gamma_0 + x'\gamma_1)}$$

First, γ is estimated by maximum likelihood, and consequently the propensity scores can be estimated as:

$$\hat{e}(X_i) = p(x; \hat{\gamma})$$

Second, least squares are used in the two regression models in order to estimate the parameters, and the objective functions are weighted by the inverse of the probability of treatment / not treatment. Formally, to estimate (α_0, β_0) and (α_1, β_1) , we would solve the following least squares problem:

$$\begin{aligned} & \min_{\alpha_{0},\beta_{0}} \sum_{i:A_{i}=0} \frac{(Y_{i} - \alpha_{0} - \beta_{0}'(X_{i} - \bar{X}))^{2}}{p(X_{i}, \hat{\gamma})} \\ & \min_{\alpha_{1},\beta_{1}} \sum_{i:A_{i}=1} \frac{(Y_{i} - \alpha_{1} - \beta_{1}'(X_{i} - \bar{X}))^{2}}{1 - p(X_{i}, \hat{\gamma})} \end{aligned}$$

Once the conditional mean functions are determined, τ_{ATE} is calculated by considering:

$$\hat{\tau} = \hat{\alpha}_1 - \hat{\alpha}_0$$

The motivation of weighting by the inverse of the propensity score is given by the double robustness result (see Robins and Rotnitzky (1995); Scharfstein et al. (1999)). We add now two additional remarks. First, consider the consistency of the least squares estimates: Is it affected by weighting? Wooldridge (2007) shows that, if the conditional expectation is indeed linear:

$$\mathbb{E}[Y_i(a)|X_i=x] = \alpha_a + \beta_a'(x-\bar{X})$$

then, weighting the objective function by any nonnegative function of X_i does not affect consistency. Moreover, even if the model for the propensity score are misspecified for the true propensity score but the conditional means $\mathbb{E}[Y(a)|X=x]$ are correctly specified, then least squares lead to a consistent estimator of τ_{ATE} . With regard to efficiency, Wooldridge (2007) shows that, assuming homoskedasticity of $Y_i(a)$ so that $\sigma_a^2 = \sigma_a^2(x)$, the inverse probability weighting estimator of α_a , β_a is less efficient than the unweighted estimator. The optimal weights would be given by the inverse of the variances.

Consider now the case in which the logit model (or any alternative binary response model) is correctly specified for the propensity score, but the conditional mean functions are misspecified. By double robustness it can be shown that:

$$\hat{\alpha}_a \to \mathbb{E}[Y_i(a)]$$

$$\hat{\tau}_{REG} = \hat{\alpha}_1 - \hat{\alpha}_0 \to \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)] = \tau_{ATE}$$

So, also in this case, the estimator is *consistent*. Actually, the linearity assumption $\mathbb{E}[Y_i(a)|X_i=x]$ is a poor assumption for certain kinds of responses (e.g. binary responses, fractional responses, and count responses). Hence, we need to correctly specify the functional form for the propensity score so that, even when the mean functions are misspecified, $\mathbb{E}[Y_i(a)] = \mathbb{E}[\mu(x_i, \delta_a^*)]$, where δ_a^* is the probability limit of $\hat{\delta}_a$, that is a functional form for the propensity score (see Wooldridge (2007)). In summary, it can be said that combining weighting and regression is more attractive than either regression or weighting on their own, but it still requires at least one of the specifications to be accurate to have consistent estimates.

Another possibility is given by combining subclassification with regression. The outcome is regressed on a constant, an indicator for the treatment, and the covariates within each stratum j:

$$Y_i = \alpha_j + \tau_j A_i + \beta_j' X_i + \epsilon_i$$

And, by least squares, we can obtain the estimates of τ_j for each stratum and the estimates of the variances V_j . Moreover, the estimated stratum-specific average treatment effects are then averaged and weighted by the relative stratum size:

$$\hat{\tau} = \sum_{j=1}^{J} \left(\frac{N_{j0} + N_{j1}}{N} \right) \cdot \hat{\tau}_{j}$$

$$\hat{\mathbb{V}} = \sum_{j=1}^{J} \left(\frac{N_{j0} + N_{j1}}{N} \right) \cdot \hat{\mathbb{V}}_{j}$$

The important advantage of this method compared to the use of regression alone or subclassification alone is that, by definition, within each stratum the propensity scores should be relatively similar. As a consequence, this leads to more flexible and more robust estimators.

Last, it has also been proposed to combine matching and regression. As we've seen, matching techniques entail the choice of an algorithm in order to match the treated units with the controls. Once we've N pairs $(\hat{Y}_i(0), \hat{Y}_i(1))$, we can calculate the following estimator:

$$\hat{\tau}_{match} = \frac{1}{N} \sum_{i=1}^{N} (\hat{Y}_i(1) - \hat{Y}_i(0))$$

which averages the difference. A serious concern with this estimator is that it can be biased, and it has been suggested that regression methods can be a useful tool in order to reduce the bias. Missing potential outcomes are imputed in the following way:

$$\hat{Y}_i(0) = \begin{cases} Y_i & \text{if } A_i = 0\\ \frac{1}{M} \sum_{j \in \mathbb{J}(i)} (Y_j + \beta'_0(X_i - X_j)) & \text{if } A_i = 1 \end{cases}$$

$$\hat{Y}_i(1) = \begin{cases} \frac{1}{M} \sum_{j \in \mathbb{J}(i)} (Y_j + \beta_1'(X_i - X_j)) & \text{if } A_i = 0\\ Y_i & \text{if } A_i = 1 \end{cases}$$

In this way, the average of the matched outcomes is adjusted by the difference in covariates relative to the matched observations. Quade (1982) and Rubin (1979) suggested two different ways in order to estimate the regression parameters (β_0, β_1) .

Abadie and Imbens (2006) proposed a regression adjustment with respect to the covariates. Given the set of matching indexes $\mathbb{J}_M(i)$, these authors defined:

$$\hat{X}_{i}(0) = \begin{cases} X_{i} & \text{if } A_{i} = 0\\ \frac{1}{M} \sum_{j \in \mathbb{J}(i)} X_{j} & \text{if } A_{i} = 1 \end{cases}$$

$$\hat{X}_{i}(1) = \begin{cases} \frac{1}{M} \sum_{j \in \mathbb{J}(i)} X_{j} & \text{if } A_{i} = 0\\ X_{i} & \text{if } A_{i} = 1 \end{cases}$$

and the parameters are estimated as:

$$\begin{pmatrix} \hat{\alpha}_a \\ \hat{\beta}_a \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^N \begin{pmatrix} 1 & \hat{X}_i(a)' \\ \hat{X}_i(a) & \hat{X}_i(a)\hat{X}_i(a)' \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \hat{Y}_i(a) \\ \hat{X}_i(a)\hat{Y}_i(a) \end{pmatrix}$$

3.3 Selection on Unobservables

At the beginning of this chapter, it was underlined that the unconfoundedness assumption can be considered as the "rock" on which building causal inference. Nevertheless, this assumption may be relaxed or may be not totally realistic in many applications. The reason for which it can be not realistic is that there can exist many factors or variables that cannot be observed, but that can confound the relation between the treatment indicator and the potential outcomes, so that the unconfoundedness assumption does not hold. This problem cannot be definitely solved, but many possibilities in order to keep it under control have been suggested.

A first approach (Rosenbaum and Rubin (1983b), Rosenbaum (1995)) is given by the *sensitivity analysis*. This considers mild violations of the unconfoundedness assumption and investigates changes in the results under these violations. In fact, the presence of these violations might be interpreted as an indirect proof of the presence of unobserved components correlated with both the potential outcomes and the treatment indicator.

A second method is given by the *bound analysis* (Manski (1990), Manski (1995), Manski (2003),), Manski (2005), Manski (2007)). As sensitivity analysis, this is an indirect method aimed to rule out the values of the parameters that are not realistic. Parameters and ranges for the parameters are estimated according to available data and the limited assumptions that are put forth.

Third, it has been proposed to introduce in the analyses the use of the so-called *instrumental variables* (Imbens and Angrist (1994), Angrist *et al.* (1996)), that have to be conceived as a sort of additional treatment variables, satisfying specific exogeneity and exclusion restrictions.

Fourth, when the assignment is a deterministic function of the covariates and thus overlapping is completely absent, it has been suggested to use a particular technique known as regression discontinuity design (Hahn et al. (2000), Shadish et al. (2002), Cook (2008)).

Fifth, if sampling data of treated and control units before and after the treatment are available, a technique known as difference in differences can be used (Ashenfelter and Card (1985), Abadie (2005), Athey and Imbens (2006), Donald and Lang (2007)).

3.3.1 Sensitivity Analysis

The basic principle underlying sensitivity analysis is not to drop the unconfoundedness assumption, but to relax it to some extent. If there are unobserved covariates that are correlated with both the potential outcomes and

the treatment indicator, these can lead to violations of the unconfoundedness assumption. Note that this violation may be mild or deep, depending on the strength of the correlations. The question is: Which is the size of the bias in the results between a situation in which unconfoundedness is assumed to hold and a situation in which modest violations of the assumption are put forth?

The formal methods to answer the previous question were originally developed in Rosenbaum and Rubin (1983a) and, for instance, applied in Imbens (2003) in the analysis of labour market training programs. An alternative approach to sensitivity analysis was developed by Rosenbaum (1995).

In order to introduce these methodologies, consider the following example. Imagine you're a developmental psychologist and you're studying the effect of a new training program aimed to improve the text-writing abilities in a group of teenagers. The program consists of three-hours lessons twice a week, conducted by a professional writer and with voluntary enrollment. You consider the performance of the students on text writing (evaluated by three external judges) before and after the program. Previous investigations suggest you to further consider in your analyses the effect of the motivation of the students in participating at the program. This can be thought as a latent variable, that is supposed to be correlated with both the treatment indicator and the potential outcomes. A sensitivity analysis, as developed in Rosenbaum and Rubin (1983a), is performed in order to compare the robustness of the results when the unconfoundedness hypothesis is not supposed to hold.

Let's now formalize this approach following Imbens and Wooldridge (2009), who recall the original work of Rosenbaum and Rubin (1983a) on binary outcomes. Remember the previous example and define as A_i the treatment (1: enrolling in the text-writing program; 0: not enrolling in the text-writing program), as $Y_i(0), Y_i(1)$ the potential outcomes, with U_i the motivation of the participants to join the program, and with X_i the other covariates. If the unconfoundedness assumption is supposed to hold only by considering both the observed and the unobserved covariates, we have:

$$Y_i(0), Y_i(1) \coprod A_i | X_i, U_i$$

Imbens and Wooldridge (2009) remarkably define the theoretical underpinning of the sensitivity analysis in the following way:

Consider both the distribution of the potential outcomes given observed and unobserved covariates and the conditional probability of assignment given observed and observed covariates. Rather than attempting to estimate both these conditional distributions, the idea behind the sensitivity analysis is to specify the form and the amount of dependence of these conditional distributions on the unobserved covariate, and estimate only the dependence on the observed covariate. Conditional on the specification of the first part of the

estimation of the latter is typically straightforward. The idea is then to vary the amount of dependence of the conditional distributions on the unobserved covariate and assess how much this changes the point estimate of the average treatment effect. [Imbens and Wooldridge (2009), p.51]

For instance, in Rosenbaum and Rubin (1983a) the marginal distribution of the unobserved covariate is fixed as a Binomial variable with parameter $p = pr(U_i = 1)$, and independence is supposed to hold between U_i and X_i . Consequently, a logistic distribution for the treatment is specified:

$$pr(A_i = 1 | X_i = x, U_i = u) = \frac{exp(\alpha_0 + \alpha_1' x + \alpha_2 \cdot u)}{1 + exp(\alpha_0 + \alpha_1' x + \alpha_2 \cdot u)}$$

A logistic distribution for the two potential outcomes is also specified:

$$pr(Y_i(a) = 1 | X_i = x, U_i = u) = \frac{exp(\beta_{a0} + \beta'_{a1}x + \beta'_{a2} \cdot u)}{1 + exp(\beta_{a0} + \beta'_{a1}x + \beta'_{a2} \cdot u)}$$

The conditional average treatment effect with respect to $X_i = x$ and $U_i = u$ is given by:

$$\mathbb{E}[Y_i(1) - Y_i(0)|X_i = x, U_i = u] = \frac{exp(\beta_{10} + \beta'_{11}x + \beta'_{12} \cdot u)}{1 + exp(\beta_{10} + \beta'_{11}x + \beta'_{12} \cdot u)} - \frac{exp(\beta_{00} + \beta'_{01}x + \beta'_{02} \cdot u)}{1 + exp(\beta_{00} + \beta'_{01}x + \beta'_{02} \cdot u)}$$

 τ_{CATE} is now expressed in terms of the parameters of this model and the distribution of the observable covariates, by averaging over X_i and integrating out the unobserved covariate U_1 :

$$\tau \equiv \tau(p, \alpha_0, \alpha_1, \alpha_2, \beta_{00}, \beta_{01}, \beta_{02}, \beta_{10}, \beta_{11}, \beta_{12})$$

$$= \frac{1}{N} \left\{ \sum_{i=1}^{N} p \left(\frac{exp(\beta_{10} + \beta'_{11}X_i + \beta_{12})}{1 + exp(\beta_{10} + \beta'_{11}X_i + \beta_{12})} - \frac{exp(\beta_{00} + \beta'_{01}X_i + \beta_{02})}{1 + exp(\beta_{00} + \beta'_{01}X_i + \beta_{02})} \right) + \left(1 - p \right) \left(\frac{exp(\beta_{10} + \beta'_{11}X_i)}{1 + exp(\beta_{10} + \beta'_{11}X_i)} - \frac{exp(\beta_{00} + \beta'_{01}X_i)}{1 + exp(\beta_{00} + \beta'_{01}X_i)} \right) \right\}$$

Consider that all the parameters are not known and have to be estimated in order to estimate τ_{CATE} . Contrary to this, Rosenbaum and Rubin (1983a) proposed to divide the parameters in two sets:

$$\tau_{sens} = (p, \alpha_2, \beta_{02}, \beta_{12})$$

and:

$$\tau_{other} = (\alpha_0, \alpha_1, \beta_{00}, \beta_{01}, \beta_{10}, \beta_{11})$$

 τ_{sens} includes the parameters that would be set to boundary values under unconfoundedness, $(\alpha_2, \beta_{02}, \beta_{12})$ and the parameter p capturing the marginal distribution of the unobserved covariate U_i . Hence, under unconfoundedness, estimation of τ_{other} can be obtained by fixing $\alpha_2 = \beta_{02} = \beta_{12} = 0$ and p at an arbitrary value. The values of τ_{sens} are fixed, and afterwards the remaining parameters are estimated through maximum likelihood:

$$\hat{\tau}_{other}(\tau_{sens}) = \underset{\tau_{other}}{argmax} \ l \ (\tau_{other} | \tau_{sens})$$

where $l(\cdot)$ is the logarithm of the likelihood function. Second, the following function is considered:

$$\tau(\theta_{sens}) = \tau(\theta_{sens}, \hat{\theta}_{other}(\theta_{sens}))$$

and different values of this function –according to different values of θ_{sens} – are compared. In this way, a set of values for τ_{CATE} can be obtained. Normally, when choosing the values of τ_{sens} , p is fixed at 1/2, while the effect of the unobserved covariate is assumed to be equal in both treatment arms: $\beta_2 = \beta_{02} = \beta_{21}$, so that only α_2 and β_2 have to be fixed.

Let's now briefly consider the approach developed by Rosenbaum (1995). The unconfoundedness assumption can be stated by affirming that, for each couple of units i and j in the population, given $x_i = x_j$, both units have the same probability of assignment to the treatment: $e(x_i) = e(x_j)$. In the case unconfoundedness only holds conditional on both X_i and a binary observed covariate U_i , the probabilities of assignment may differ. The following odds ratio is considered:

$$\frac{e(x_i)\cdot(1-e(x_j))}{(1-e(x_i))\cdot e(x_j)}$$

that is equal to 1 if unconfoundedness, unconditional to unobserved covariates, holds. Rosenbaum (1995) fixes different values of γ for the odds ratio and investigates the effect of this on the p-value of a test of no effect of the treatment based on the unconfoundedness assumption.

3.3.2 Bound Analysis

This approach has been developed by Manski, in a series of papers dating back the beginning of the nineties (Manski, 1990, 1995, 2003, 2005, 2007). This is a comprehensive approach, that can be applied not only in causal inference, but also in more general settings. Following Imbens and Wooldridge (2009), we're describing the simplest of these cases. Consider a setting with

a binary outcome $Y_i \in \{0, 1\}$ and there are no covariates. As we've seen, τ_{ATE} is given by:

$$\tau_{ATE} = \mathbb{E}[Y_i(1)|A_i = 1] - \mathbb{E}[Y_i(0)|A_i = 0]$$

If unconfoundedness unconditional of the covariates holds, we have:

$$(Y_i(1), Y_i(0)) \prod A_i$$

so that:

$$\mathbb{E}[Y_i(1)|A_i = 1] = \mathbb{E}[Y_i(1)|A_i = 0]$$

$$\mathbb{E}[Y_i(0)|A_i = 0] = \mathbb{E}[Y_i(0)|A_i = 0]$$

and:

$$\mathbb{E}[Y_i(1)] = \mathbb{E}[Y_i(1)|A_i = 1] \cdot pr(A_i = 1) + \mathbb{E}[Y_i(1)|A_i = 0] \cdot pr(A_i = 0)$$

$$\mathbb{E}[Y_i(0)] = \mathbb{E}[Y_i(0)|A_i = 0] \cdot pr(A_i = 0) + \mathbb{E}[Y_i(0)|A_i = 1] \cdot pr(A_i = 1)$$

so that τ_{ATE} can be developed as:

$$\tau_{ATE} = \mathbb{E}[Y_i(1)] = \mathbb{E}[Y_i(1)|A_i = 1] \cdot pr(A_i = 1) + \\ + \mathbb{E}[Y_i(1)|A_i = 0] \cdot pr(A_i = 0) - [\mathbb{E}[Y_i(0)] \\ = \mathbb{E}[Y_i(0)|A_i = 0] \cdot pr(A_i = 0) + \mathbb{E}[Y_i(0)|A_i = 1] \cdot pr(A_i = 1)]$$

Since data are not informative about the counterfactuals $\mathbb{E}[Y_i(1)|A_i=0]$ and $\mathbb{E}[Y_i(0)|A_i=1]$, we can only estimate six of the previous eight terms. Nevertheless, since the outcome is binary, we can deduce that these two conditional expectations must lie inside the interval [0,1]. In other words, we can write τ_{ATE} in terms of an interval, the bounds of which are estimable:

$$\tau_{ATE} \in [\tau_l, \tau_u]$$

and:

$$\tau_{l} = \mathbb{E}[Y_{i}(1)|A_{i} = 1] \cdot pr(A_{i} = 1) - pr(A_{i} = 1) - \mathbb{E}[Y_{i}(0)|A_{i} = 0] \cdot pr(A_{i} = 0)$$

$$\tau_{u} = \mathbb{E}[Y_{i}(1)|A_{i} = 1] \cdot pr(A_{i} = 1) + pr(A_{i} = 0) - \mathbb{E}[Y_{i}(0)|A_{i} = 0] \cdot pr(A_{i} = 0)$$

The problem of the identification and estimation of these bounds has been recently faced by many authors (e.g. Horowitz and Manski (2000), Imbens and Manski (2004), Chernozhukov *et al.* (2007)).

3.3.3 Instrumental Variables

We now introduce in our reasoning a variable, that we define as an *instru*mental variable and that we indicate as Z_i . Treatment status for each subject is now conceived as depending from the value of the instrument: $A_i(0)$ denotes the value of the treatment if the instrument takes on value 0; $A_i(1)$ denotes the value of the treatment if the instrument takes on value 1. $Y_i(0)$ and $Y_i(1)$ indicate the values of the potential outcomes. We can use, for the observed treatment, the same notation we used for the observed outcome:

$$A_i = A_i(0) \cdot (1 - Z_i) + A_i(1) \cdot Z_i = \begin{cases} A_i(0) & \text{if } Z_i = 0 \\ A_i(1) & \text{if } Z_i = 1 \end{cases}$$

We now put forward a basic assumption on the independence of all the potential outcomes and treatments from the instrument:

$$(Y_i(0), Y_i(1), A_i(0), A_i(1)) \mid Z_i$$

As suggested by Imbens and Wooldridge (2009), this assumption can be summed up in two different statements: i) the instrument is explicitly randomized; ii) there is not a direct effect of the instrument on the potential outcomes.

Let's further introduce the concept of compliance type of an individual. Imagine you're investigating the effect of a new drug on the cognitive symptoms of the Alzheimer's disease. You divide your sample according to the treatment status of the individuals: $A_i = 1$ indicates individuals taking the active treatment and $A_i = 0$ indicates individuals receiving placebo. You can expect that the results of your study will be affected by the real motivation of the participants in assuming the treatment during the entire period of the study. This information can be formally stated by introducing an instrumental variable indicating the real treatment values for each subject, for whom you define the couple of the two potential values $(A_i(0), A_i(1))$. Hence, individuals can now be classified according to the treatment status T_i , defined as a function of the variable A_i .

In particular, four types of responses for the potential treatment can be identified: i) never-takers are those who never take the treatment, either they are assigned to active treatment or to control treatment; ii) compliers are those who take active treatment if they are assigned to active treatment and they take control treatment if they are assigned to control treatment; iii) defiers are those who take active treatment if they are assigned to active treatment; iv) always takers are those who always take the active treatment, either they

are assigned to the active treatment or to the control group. The notation is the following:

$$T_{i} = \begin{cases} \text{never-taker} & \text{if } A_{i}(0) = A_{i}(1) = 0 \\ \text{complier} & \text{if } A_{i}(0) = 0, A_{i}(1) = 1 \\ \text{defier} & \text{if } A_{i}(0) = 1, A_{i}(1) = 0 \\ \text{always-taker} & \text{if } A_{i}(0) = A_{i}(1) = 1 \end{cases}$$

As we can see, in this context the variable A_i indicates the random assignment of the individuals to the treatment/control groups whereas T_i represents an endogenous indicator for the actual receipt of the treatment. Note that only the actual treatment status is observed, so we cannot infer from the data if an individual is a never-taker, a complier, a defier or an always-taker. To draw causal inference from studies where unobservable variables (as in this case of the regressor T_i) affect the real treatment status, an important assumption is commonly invoked: monotonicity. This requires that we exclude the presence of defiers in our population and can be formalized as:

$$A_i(1) \ge A_i(0)$$
 for all i

Angrist et al. (1996) show that, under the assumption of independence of all four potential outcomes from the instrument Z_i and monotonicity, the average treatment effect can be identified for the subpopulation of compliers. First, the population proportions of never-takers, always-takers and compliers can be identified: $P_t = pr(T_i = t)$ for $t \in \{n, a, c\}$. For the subpopulation with $Z_i = 0$, given the monotonicity assumption, we observe $W_i = 1$ only for always takers. Hence:

$$P_n = pr(A_i = 0|Z_i = 1)$$

It follows:

$$P_c = 1 - P_n - P_a$$

Second, we analyze the distribution of Y_i given (Z_i, A_i) . Consider the sub-population of individuals for which $(Z_i, A_i) = (1, 0)$; as it was underlined, under the monotonicity assumption we know that these individuals are nevertakers. So, we can calculate the distribution of $Y_i|A_i=0, T_i=n$:

$$pr(Y_i = y_i | A_i = 0, T_i = n)$$

Furthermore, we consider the distribution of $Y_i|Z_i=0$, $A_i=0$, that is a mixture of the distributions of $Y_i|A_i=0$, $T_i=n$ and $Y_i|A_i=0$, $T_i=c$ with mixture probabilities equal to the relative population shares: $P_n/(P_c+P_n)$ and

 $P_c/(P_c+P_n)$. It is now possible to back out the distributions of $Y_i|A_i=0, T_i=c$ and $Y_i|A_i=1, T_i=c$. Consequently, we can calculate the so-called Local Average Treatment Effect (Late, Imbens and Angrist (1994)):

$$\tau_{late} = \mathbb{E}[Y_i(1) - Y_i(0)|A_i(0) = 0, A_i(1) = 1] = \mathbb{E}[Y_i(1) - Y_i(0)|T_i = c]$$

However, this important theoretical result have to face important practical problems, as one should calculate mixture distributions in order to estimate τ_{late} . This problem is solved by means of the following theoretical result, due to Imbens and Angrist (1994), who showed that τ_{late} equals the standard instrumental variable estimand, i.e. the ratio of the covariance of Y_i and Z_i and the covariance of A_i and Z_i :

$$\tau_{late} = \frac{\mathbb{E}[Y_i|Z_i=1] - \mathbb{E}[Y_i|Z_i=0]}{\mathbb{E}[A_i|Z_i=1] - \mathbb{E}[A_i|Z_i=0]} = \frac{\mathbb{E}[Y_i \cdot [Z_i - \mathbb{E}[Z_i]]]}{\mathbb{E}[A_i \cdot [Z_i - \mathbb{E}[Z_i]]]}$$

Consider now that, as it is not possible to consistently estimate the average effect for either never-takers or always-takers, it would seem impossible to estimate the average treatment effect for the entire population in this setting. However, we can use the approach developed by Manski (and that was previously summed up) in order to bound the average treatment effect for the full population. If we maintain the monotonicity assumption, τ_{ATE} can be decomposed by compliance-type:

$$\tau_{ATE} = P_n \cdot \mathbb{E}[Y_i(1) - Y_i(0)|T_i = n] + P_a \cdot \mathbb{E}[Y_i(1) - Y_i(0)|T_i = a] + P_c \cdot \mathbb{E}[Y_i(1) - Y_i(0)|T_i = c]$$

and we can use the bound approach to estimate the terms for which data are uninformative.

3.3.4 Regression Discontinuity Design

This is a method for causal inference that can be only used in a specific situation: the case in which participants are deterministically assigned to the treatment according to the values of one or more covariates. Consider, for instance, the covariate X_i : annual income of a family, and the possibility for a student to get a grant from the university ($A_i = 1$: receiving the grant; $A_i = 0$: not receiving the grant). The government establishes the rules under which a student can receive the grant, according to the annual income of the family he/she belongs to (for instance, $A_i = 1$ if $X_i \leq 20000$ euros). The discontinuity is given from the fact that there is a point (in our example $X_i = 20000$) on the domain of one or more covariates around which subjects are explicitly

divided in participants / not participants. This variable (commonly known as forcing variable) is often associated with the potential outcomes, but such an association is assumed to be smooth (Imbens and Wooldridge (2009)).

Regression Discontinuity Design is one of the "oldest" methods in causal inference, dating back to applied works in psychology and statistics during the sixties (see Thistlethwaite and Campbell (1960), Trochim (1984), Shadish et al. (2002), Cook (2008)). More recently, this method has been used also in many economics applications (e.g. Van der Klaauw (2002), Lee (2008)).

Remember that Regression Discontinuity Design is indeed a design, and not a method for data analysis. Consequently, in order to apply this technique, there must be a point on a covariate's domain such that it divides subjects in participants / not participants to a certain program.

The design often arises from administrative decisions, where the incentives for individuals to participate in a program are rationed for reasons of resource constraints, and clear transparent rules, rather than discretion, by administrators are used for the allocation of the incentives. [Imbens and Wooldridge (2009), p. 59]

Regression Discontinuity Design techniques can be divided in two general frameworks: the *Sharp* and the *Fuzzy* Regression Discontinuity Design. We first analyze the Sharp Discontinuity Design. As it was previously mentioned, the assignment mechanism A_i is defined as a deterministic function of one of the covariates, the forcing variable X_i :

$$A_i = \mathbb{1}[X_i \ge c]$$

Consider now the following estimand:

$$\tau_{srd} = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = c] = \mathbb{E}[Y_i(1)|X_i = c] - \mathbb{E}[Y_i(0)|X_i = c]$$

 τ_{srd} cannot be estimated since, by design, there are no units with $X_i = c$ for which $Y_i(0)$ is observed. Hence, the basic idea underlying this technique is to consider units with covariate values arbitrarily close to c, under the assumption that the conditional expectations $\mathbb{E}[Y_i(a)|X_i=x]$ for a=0,1, are continuous functions in $X_i=x$. Under this assumption, we have:

$$\mathbb{E}[Y_i(0)|X_i = x] = \lim_{\substack{x \uparrow c}} \mathbb{E}[Y_i(0)|X_i = x] = \lim_{\substack{x \uparrow c}} \mathbb{E}[Y_i|X_i = c]$$

so that:

$$\tau_{srd} = \underset{x \downarrow c}{lim} \mathbb{E}[Y_i | X_i = x] - \underset{x \uparrow c}{lim} \mathbb{E}[Y_i | X_i = x]$$

The problem is now that of non-parametrically estimating a regression function at a boundary point (see Lee and Lemieux (2009) for a discussion).

As we've seen, in the Sharp Regression Discontinuity Design the probability of receiving the treatment changes from zero to one at the threshold. This is not the case for the Fuzzy Regression Discontinuity Design, that only requires a discontinuity in the probability of assignment to the treatment at the threshold:

$$\lim_{x \downarrow c} pr(A_i = 1 | X_i = x) \neq \lim_{x \uparrow c} pr(A_i = 1 | X_i = x)$$

For instance, this may be the case for some training programs or benefit programs, where the incentives to participate change discontinuously at a threshold, without being powerful enough to move all units from non participation to participation.

The estimand of interest in this case is given by the ratio of the jump in the regression of the outcome (on the covariate) to the jump in the regression of the treatment indicator (on the covariate):

$$\tau_{frd} = \frac{\lim_{\substack{x \downarrow c}} \mathbb{E}[Y_i | X_i = x] - \lim_{\substack{x \uparrow c}} \mathbb{E}[Y_i | X_i = x]}{\lim_{\substack{x \downarrow c}} \mathbb{E}[A_i | X_i = x] - \lim_{\substack{x \uparrow c}} \mathbb{E}[A_i | X_i = x]}$$

Consider now the problems of estimation and inference for both the Sharp and the Fuzzy Regression Discontinuity Design. In the former case, τ_{srd} has to be estimated, i.e. a difference in two regression functions at a particular point, in the latter case τ_{frd} has to be estimated, i.e. the ratio of two differences of regression functions. In both cases, these estimands have to be calculated without functional form assumptions, and in general by means of nonparametric regression methods. Among these methods, it has been already introduced the use of local smoothing methods, such as kernel regression. Given a kernel function $K(\cdot)$ and a bandwidth h, a regression function at x, $m(x) = \mathbb{E}[Y_i|X_i = x]$ is estimated as:

$$\hat{m}(x) = \sum_{i=1}^{N} Y_i \cdot \lambda_i$$

with weights:

$$\lambda_i = \frac{K(X_i - x/h)}{\sum_{i=1}^N K(X_i - x/h)}$$

Note that, in a Regression Discontinuity Design the interest is not focused on estimating a regression function by itself, but rather in evaluating the difference between two regression functions at a boundary point. So, it can be used a *local linear regression* method, which leads to an estimator for the regression function at x equals to:

$$\hat{m}(x) = \hat{\alpha}$$

where

$$(\hat{\alpha}, \hat{\beta}) = \underset{\alpha, \beta}{\operatorname{argmin}} \sum_{i=1}^{N} \lambda_i \cdot (Y_i - \alpha - \beta \cdot (X_i - x))^2$$

with the same weights of the previous case.

Furthermore, a basic problem is given by the choice of the bandwidth h, that leads to drop all observations such that $X_i \notin [c-h, c+h]$. A criterion is to choose h such that it minimizes:

$$\mathbb{E}[(\hat{m}(c) - m(c))^2]$$

Imbens and Kalyanaramang (2009) have recently shown that the optimal bandwidth depends on the second derivatives of the regression functions at the threshold and such that:

$$h_{opt} = N^{-1/5} \cdot C_k \cdot \sigma^2 \cdot \left(\frac{\frac{1}{p} + \frac{1}{1-p}}{\lim_{\substack{x \downarrow c}} \left(\frac{\partial^2 m}{\partial x^2}(x) \right) + \lim_{\substack{x \uparrow c}} \left(\frac{\partial^2 m}{\partial x^2}(x) \right)^2} \right)^{1/5}$$

where p is the fraction of observations with $X_i \ge c$ and C_k is a constant that depends on a kernel.

3.3.5 Difference-in-differences Methods

Consider an empirical problem in which we have two groups $(G_1 \text{ and } G_2)$ and we consider two time periods $(T_1 \text{ and } T_2)$. Individuals of group A are exposed to control on time 1 and to treatment on time 2, whereas individuals of group B are always exposed to control. In such a situation, a method, known as difference-in-differences method can be applied [Ashenfelter (1978), Ashenfelter and Card (1985)].

This method is based on subtracting the average gain over time in the non-exposed (control) group from the gain over time in the exposed (treatment) group. Such a double difference removes the bias on the second period comparisons between the treatment and the control group. In fact, this could originate from permanent differences between the two groups, as well as from biases in the comparisons over time in the treatment group, that could be

the result of time trends unrelated to the treatment [Imbens and Wooldridge (2009)].

Let's now formalize these concepts. Consider a random sample of N individuals from a population; for i = 1, ..., N individual i belongs to a group $G_i \in \{0, 1\}$ (where group 1 is the treatment group), and is observed in time period $T_i \in \{0, 1\}$. The outcome for individual i in the absence of intervention can be written as:

$$Y_i(0) = \alpha + \beta \cdot T_i + \gamma \cdot G_i + \epsilon_i$$

with unknown parameters α , β , γ . The error term ϵ represents unobservable characteristics of the individual and this term is assumed to be independent of the group indicator and has the same distribution over time (i.e. $\epsilon_i \coprod (G_i, T_i)$) and is normalized to have mean zero. The equation for the outcome without the treatment is now combined with an equation for the outcome given the treatment:

$$Y_i(1) = Y_i(0) + \tau_{did}$$

where τ_{did} is equal to:

$$\tau_{did} = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]$$

$$= [\mathbb{E}[Y_i|G_i = 1, T_i = 1] - \mathbb{E}[Y_i|G_i = 1, T_i = 0]]$$

$$- [\mathbb{E}[Y_i|G_i = 0, T_i = 1] - \mathbb{E}[Y_i|G_i = 0, T_i = 0]]$$

 τ_{did} is obtained by subtracting the population average difference over time in the control group $(G_i = 0)$ from the population average difference over time in the treatment group $(G_i = 1)$ to remove biases associated with a common time trend unrelated to the intervention.

 τ_{did} can be estimated by least squares methods on the regression function for the observed outcome:

$$Y_i = \alpha + \beta_1 \cdot T_i + \gamma_1 \cdot G_i + \tau_{did} \cdot W_i + \epsilon_i$$

where the treatment indicator W_i is equal to the interaction of the group and time indicators, $W_i = T_i \cdot G_i$. τ_{did} is estimated as:

$$\hat{\tau}_{did} = (\bar{Y}_{11} - \bar{Y}_{10}) - (\bar{Y}_{01} - \bar{Y}_{00})$$

where $\bar{Y}_{gt} = \sum_{i|G_i=g,T_i=t} Y_i/N_{gt}$ is the average outcome among units in group g and time period t.

The difference-in-differences method can be also generalized to the case of multiple time periods or multiple treatments. If we define two variables T

and G to indicate multiple times and groups, the outcome under control can be indicated as:

$$Y_i(0) = \alpha + \sum_{t=1}^{T} \beta_t \cdot \mathbb{1}_{T_i = t} + \sum_{g=1}^{G} \gamma_g \cdot \mathbb{1}_{G_i = g} + \epsilon_i$$

for g = 1, ..., G and t = 1, ..., T. Moreover, as in the case of two time periods, we consider an additive model for the treatment effect:

$$Y_i(1) = Y_i(0) + \tau_{did}$$

and the regression function:

$$Y_i = \alpha_i + \sum_{t=1}^T \beta_t \cdot \mathbb{1}_{T_i = t} + \sum_{g=1}^G \gamma_g \cdot \mathbb{1}_{G_i = g} + \tau_{did} \cdot I_i + \epsilon_i$$

where I_i is an indicator function for unit i being in a group and time period that was exposed to the treatment. The parameters of this model can be still estimated by ordinary least squares.

Let's now analyze the estimation of the standard errors in the regression models. Bertrand *et al.* (2004), Donald and Lang (2007), Hansen (2007a), Hansen (2007b) has faced the problem for which, as underlined by Imbens and Wooldridge (2009), ordinary least squares standard errors for $\hat{\tau}_{did}$ may not be accurate in the presence of correlations between outcomes within groups and between time periods. Define the error term as:

$$\epsilon_i = \eta_{G_i, T_i} + \nu_i$$

where ν_i is an individual-level error term, and η_{gt} is a group/time specific component. The hypotheses that have to be put forth are: i) the unit-level error term ν_i is independent across units; ii) $\mathbb{E}[\nu_i, \nu_j] = 0$ if $i \neq j$; iii) $\mathbb{E}[\nu_i^2] = \sigma_{\nu}^2$; iv) $\eta_{g,t} \sim \mathcal{N}(0, \sigma_{\eta}^2)$; v) $\eta_{g,t}$ are independent. If we consider the case with two groups and two time periods, it can be shown that the estimator for τ_{did} is not consistent. Hence, we have:

$$\bar{Y}_{qt} \rightarrow \alpha + \beta_t + \gamma_q + \mathbb{1}_{q=1,t=1} \cdot \tau_{did} + \eta_{q,t}$$

so that:

$$\hat{\tau}_{did} = (\bar{Y}_{11} - \bar{Y}_{10}) - (\bar{Y}_{01} - \bar{Y}_{00})$$

$$\to \tau_{did} + (\eta_{11} - \eta_{10}) - (\eta_{01} - \eta_{00}) \sim \mathcal{N}(\tau_{did}, 4 \cdot \sigma_n^2)$$

The estimator for τ_{did} is not consistent since the error term depends from an unobserved component η_{gt} . If data are available from more than two groups

or from more than two time periods, σ_{η}^2 can be estimated and confidence intervals for τ_{did} can be constructed.

If we consider the case with multiple time periods, the assumption that the parameters $\eta_{g,t}$ are independent over time can be relaxed, and an autoregressive model for $\eta_{g,t}$ can be put forth:

$$\eta_{a,t} = \alpha \cdot \eta_{a,t-1} + \omega_{a,t}$$

with a serially uncorrelated ω_{qt} .

The previous discussion refers to the case of two independent groups. We now briefly examine the case of panel data, i.e. we have N individuals, for whom we observe $(G_i, Y_{i0}, Y_{i1}, X_{i0}, X_{i1})$, where G_i indicates group membership. Note that, whereas in the previous case we had observations coming from repeated cross sections, in this case the observations in different time periods come from the same individuals.

Imbens and Wooldridge (2009) focus on two approaches aimed to analyze these data. The first approach considers estimation as in the case of repeated cross sections, ignoring the fact that the observations in different time periods come from the same units. The second approach assumes unconfoundedness given lagged outcomes:

$$(Y_{i,t_{1i}}, Y_{i,t_i}) \prod G_i | Y_{i,t_{i-1}}, Y_{i,t_{i-1}}$$

In this case, the unconfoundedness assumption would suggest the regression of the difference $Y_{i1} - Y_{i0}$ on the group indicator and the lagged outcome Y_{i0} :

$$Y_{i1} - Y_{i0} = \beta + \tau_{unconf} \cdot G_i + \delta \cdot Y_{i0} + \epsilon_i$$

3.4 The Structural Approach: A Brief Note

In this section, we briefly introduce the econometric approach to observational studies, as developed by authors such as James Heckman and Edward Vytlacil. In the previous chapter, it was underlined that, whereas the Program Evaluation Approach does not use models for the potential outcomes (hence, authors such as James Robins and Miguel Hernan define it as "counterfactual without models"), econometricians start from another perspective, that of generating the counterfactual distribution. In fact, three objectives are put forth in the econometric analysis of causality: i) defining the set of counterfactuals; ii) identifying causal models from hypothetical data; iii) identifying causal models from real data [see Heckman and Vytlacil (2007)].

The fundamental feature of the econometric approach is that it tries to keep into account the individual choices that an agent can take. If we indicate with S the set of all possible treatments an agent can choose, we can define the individual treatment effect for agent i, by comparing the outcome under treatment s with the outcome under treatment s:

$$Y(s,i) - Y(s',i)$$
 $s \neq s'$

for two elements s and s' (individual causal effect). In this approach the participant is conceived as an active *decision maker*, who is able to produce an evaluation V associated with each potential outcome:

For each unit i, the evaluation depends on which treatment s is either chosen or assigned. So, in this context, we can formally define a treatment as a rule:

$$\tau: \mathcal{I} \to \mathcal{S}$$

which assigns treatment to each individual i. Consequently, we indicate with τ , where $\tau \in \mathcal{T}$ the collection of possible assignment rules, and we indicate with Y(i,s), $i \in \mathcal{I}$ the consequences of the treatment to each individual.

In addition, we can introduce the so-called *benefits*, that are incentives (for instance, on taxation) that can be assigned to subjects and that can affect their selection of the treatment. For individual i, we can define a rule $a \in \mathcal{A}$ mapping individual i into constraints or benefits $b \in \mathcal{B}$ under different mechanisms $a: \mathcal{I} \to \mathcal{B}$ as a deterministic rule or a random assignment.

Two important invariance assumptions are put forth by the literature: i) for the same treatment s and agent i, different constraint assignment mechanisms a and a' and associated constraint state assignment b and b' produce the same outcome; ii) for a fixed a and b, the outcomes are the same, independent of the treatment assignment mechanism (social interaction and contagion are ruled out). After these assumptions have been posed, the problem faced by econometricians is to identify the counterfactual distributions. Obviously, the problem is that we do not observe the outcome of each subjects under different treatment states. Moreover, as it was underlined before, subjects are supposed to self-select themselves into treatment, in order to obtain the maximum benefit.

A last feature of the econometric approach that is useful to be underlined in this context, is that we can distinguish between ex-ante and ex-post evaluation of both subjective and objective outcomes (and this is very useful in order to understanding behaviour). Formally, if we indicate as D_i the informations available to agents in order to compare policy j with policy k,

we have that, under an expected utility criterion \mathcal{U} , policy j is preferred to policy k if:

$$\mathbb{E}[\mathcal{U}(Y(j,i),i)|D_i] > \mathbb{E}[\mathcal{U}(Y(k,i),i)|D_i]$$

After unit i experiences either policy j or k, there is also an ex-post evaluation of the treatment, but also this one is subjected to uncertainty, because people do not know the outcome associated with the policy they did not experience (see Heckman (2010) for a detailed analysis of this approach).

3.5 Final Remarks

In this chapter, the literature on the identification of causal effects in observational studies has been briefly reviewed. A fundamental distinction has been proposed between methods assuming unconfoundedness or methods not assuming unconfoundedness. In the former case, we're dealing with selection on observables, and the methods that have been reviewed are regression methods and methods based on the propensity score (and their combination). In the latter case, we're dealing with the selection on unobservables, as unobserved factors influencing the relation between treatment assignment and potential outcomes are supposed to exist. The methods that have been reviewed in this case are: sensitivity analysis, bound analysis, instrumental variables, regression discontinuity design, difference-in-differences. Last, a brief note on the structural approach to causality has been sketched.

Since the next chapter, causal inference methods will not further be analyzed in general, but the analysis will be narrowed on inference from risk differences. We will see that the theoretical background that has been built in the first three chapter can be applied on the specific case of the analysis of risk differences. The attention shall be focused on testing statistical hypothesis, and, after a general review of the literature (chapter 4), we will consider the proposal of Suissa and Shuster (1985) of an unconditional test. A development of this test and the derivation of the critical values and p-values will be proposed in Chapter 6. Application of this test for causal analysis in the Program Evaluation Approach will be proposed as a further development of the present work.

Chapter 4

Exact Analysis of 2×2 Binomial Trials

4.1 Overview

This chapter presents the exact methods for testing statistical hypotheses in a 2×2 binomial trial, that is the case in which the row marginal sums are fixed in a 2×2 table. Let's consider the following question from psycholinguistics: how can we identify and read words? Which is the "code" allowing us to identify that, for instance, SNAKE is a word whereas SNATE is not a word? The psychologist John Morton proposed a seminal theory on this issue (Morton (1969)). In this author's opinion, each word is stored as a "file" (which he defined a logogen) in our reading system. When we perceive a visual object matching the visual features of a word, we identify it as a whole word. Alternatively, if we perceive a string of letters like SNATE, we have no logogen activation, and we classify that string as a nonword. Think now at a morphologically complex language such as Italian, where a single root (e.g. LAMP-) can be suffixed in different ways in order to obtain words (e.g. LAMPADA, LAMPADINA, LAMPADARIO...). According to the Morton's original model, each of these words is stored as a distinct logogen. An alternative theory, put forth by the psycholinguist Ken Forster, states that there is not a single *logogen* for each word, but morphologically complex words are routinely decomposed into roots and suffixes in order to assemble the words (Forster (1976)).

Baldi and Traficante (1992) compared these two theories by means of a letter recognition task. Participants were randomly presented with roots (e.g. LAMP-, CAMP-) and non-roots (e.g. PLAM-, APML-, MAPL-). Stimuli were tachistoscopically projected at the center of a black screen and lasted

for 40 msec. Afterwards, subjects were presented with two letters, one of which belonged to the stimulus previously appeared, whereas the other was a distracter. For instance, the string LAMP was presented at the center of a black screen for 40 msec, followed by a perceptual mask (####). Subsequently, the consonants M and C were presented and subjects were asked to choose in 2 seconds which of them belonged to the original stimulus (the correct answer was randomly put either on the left side or on the right side of the screen). Overall accuracy in this task was measured. From one side, according to the Morton's original model, no difference in accuracy between roots and anagrams is expected, since both roots and anagrams have no logogen representation. From the other side, Forster's decomposition model clearly predicts a superiority in accuracy for roots over anagrams since the latter have no abstract representation, and are expected to be recognized less accurately than roots. Data collected in this experiment are reported in Table 4.1.

	Correct Answers	Incorrect Answers	Total
Roots	147	13	160
Anagrams	151	9	160
Total	298	22	320

Table 4.1: Association between Type of stimulus (root or anagram) and accuracy in a letter recognition task (Baldi and Traficante (1992)).

Authors tested the null hypothesis of independence by means of a χ^2 test. This statistical test is adequate when large samples are available, but it represents a rough approximation in cases of small samples. In this experiment, subjects were presented with 320 recognition trials, and an asymptotic analysis of the 2×2 table can be considered acceptable. This kind of analysis is defined analysis by item, since the statistical units are the items presented to participants. If we had considered subjects instead of items as statistical units (analysis by subjects), the asymptotic approximation would have been rough and imprecise, since only 15 subjects took part in the experiment. Hence, analysis by subjects would have lead the researcher to choose an exact rather than an asymptotic test. Note that the modern psychometric theory uses random effect models in order to simultaneously consider both the subjects' and the items' random effects.

Another case of incorrect application of the asymptotic approximation is given by the research of Pfirmann *et al.* (2005). These authors prospectively examined magnetic resonance imaging (MRI) of abductor tendons and muscles in asymptomatic and symptomatic patients after lateral transgluteal

total hip arthroplasty (THA). Two musculoskeletal radiologists (blinded to clinical information) analyzed triplanar MR images of the greater trochanter obtained in 25 patients without and 39 patients with trochanteric pain and abductor weakness after THA. Tendon defects, diameter, signal intensity and ossification, fatty atrophy and bursal fluid collections were assessed. Differences in the frequencies of findings between the two groups of symptomatic and asymptomatic patients were tested for significance using χ^2 analyses. As it is commonly known, the use of this test in the presence of small samples may conduct into fallacy. Table 4.2 reports the association between abductor tendon defect at the *Gluteus minimus* in asymptomatic vs not asymptomatic patients.

	Tendon defect	No tendon defect	Total
Asymptomatic patients	2	33	25
Symptomatic patients	22	17	39
	24	40	64

Table 4.2: Association between tendon defect and symptoms reported by patients (Pfirrmann *et al.* (2005)).

Authors report a significant p-value associated to a χ^2 test (p < 0.001) and I've replicated this result by means of a Fisher's exact test using the software SPSS 17.0 (p < 0.001) (see also Liao et al. (2006) for a discussion on the use of the Fisher's exact test). Hence, in this case, both the asymptotic test and the exact test would have conducted the researcher to the same conclusions (i.e. reject the null hypothesis of no association). Physicians also investigated the presence of Bursal fluid collection in asymptomatic and symptomatic patients (see Table 4.3). Also in this case, authors report a significant value of the χ^2 statistic (p = 0.21); I've replicated this result by means of a Fisher's exact test, but obtaining a higher p-value (p = 0.39). This example shows that, even in the case of medium sample size (N = 69), the use of an asymptotic approximation may lead into fallacy.

	Fluid	No Fluid	Total
Asymptomatic patients	8	17	25
Symptomatic patients	24	15	39
	32	32	64

Table 4.3: Association between presence of bursal fluid collection and symptoms reported by patients (Pfirrmann *et al.* (2005)).

In the present chapter, the main tests for comparing statistical hypothe-

ses in a 2×2 binomial trial shall be reviewed. First, we'll emphasize that a 2×2 table can represent a way to summarize data collected in three different experimental designs: i) all-margin fixed design; ii) one-margin fixed design; iii) total-sum fixed design. These cases should be analyzed by means of different statistical techniques, but only the second case will be discussed in this chapter, i.e. the case of two independent binomial trials. Second, we'll consider the main test statistics used in this analysis, as the Pearson's statistic, the likelihood ratio statistic, the z-unpooled and the z-pooled statistics. Third, we'll analyze how to compute the p-values in these cases. Fourth, we'll compare these tests with respect to the power they can achieve.

Before considering these four points, a general review on the theory of testing statistical hypotheses will be given. This review is adapted from Quatto (2008), Casella and Berger (2001), Lehmann and Romano (2005), Landenna *et al.* (1998), Shao (1999) and Rohatgi and Saleh (2008). This will be particularly useful in order to introduce some notation to be used in this chapter and to recall some important definitions and theorems.

4.2 Optimal and suboptimal testing of statistical hypotheses: a brief review

In the Neyman and Pearson (1936)'s theory, a problem of testing statistical hypotheses is conceived as an *optimization* problem, the solution of which (whenever exists), is called an *optimal test*. The Neyman and Pearson's theory, developed in the 1930s, constituted a fundamental step in the progress of the theory of testing statistical hypotheses. In the previous decades, there was not a formal and congruent theory, but a lot of approaches had been proposed.

An optimal test can be informally defined as a test for which the power function is maximized under the alternative hypothesis $((1-\beta))$ is maximum) provided that, under the null hypothesis, the power function does not exceed a fixed level α . If an optimal test does not exist, we search for a *suboptimal test*, i.e. an optimal test under some constraints. Among suboptimal tests, two main classes can be defined: unbiased most powerful tests (UMPU tests) and invariant most powerful tests (UMPI). Note that optimal tests—whenever they exist—might be not unique. This is a basic difference with respect to some theorems in the theory of point estimation. For instance, it can be proved that, if a uniformly minimum-variance unbiased estimator (UMVUE) exists, it is unique. This is not the case for optimal testing, where, if a most powerful test exists, it might be not unique.

Let now X be a random variable (either discrete or continuous), such that $\mathbb{X} \subseteq \mathfrak{R}$ and distribution function φ_{θ} belonging to the class of the parametrical models:

$$H = \{ \varphi_{\boldsymbol{\theta}} : \boldsymbol{\theta} \in \boldsymbol{\Theta} \} \tag{4.1}$$

Consider the partition of the m-dimensional parametrical space $\Theta \subseteq \Re^m$ determining a partition of H in the subclasses:

$$H_0 = \{ \varphi_{\boldsymbol{\theta}} : \boldsymbol{\theta} \in \boldsymbol{\Theta}_0 \} \tag{4.2}$$

$$H_1 = \{ \varphi_{\boldsymbol{\theta}} : \boldsymbol{\theta} \in \boldsymbol{\Theta}_1 \} \tag{4.3}$$

such that $\Theta_0 \cap \Theta_1 = \emptyset$, $\Theta_0 \cup \Theta_1 = \Theta$. Expressions 4.2 and 4.3 are respectively called **null** and **alternative** hypotheses. Let $X_1, ..., X_n$ be n i.i.d. random variables and identically distributed to X, so that:

$$\varphi(\mathbf{x}, \boldsymbol{\theta}) = \prod_{i=1}^{n} \varphi_{\boldsymbol{\theta}}(\mathbf{x}_i)$$

defined on all the points $\mathbf{x} = (x_1, ... x_n)$ of the sample space \mathbb{X} . A test for comparing the hypothesis H_{θ_0} vs H_{θ_1} is defined as a partition of the sample space \mathcal{X} in the two subsets Ω_0 and Ω_1 such that:

$$\Omega_0 \cup \Omega_1 = \mathcal{X}$$

$$\Omega_0 \cap \Omega_1 = \emptyset$$

 Ω_0 is called acceptance region, whereas Ω_1 is called reject region. A statistical **test function** for comparing H_0 vs H_1 can be defined as a measurable function τ :

$$\tau: \mathbb{X}^n \to [0,1]$$

associating to each $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{X}^n$ the probability of rejecting H_0 , given the observed sample \mathbf{x} .

Example 1. Let X be a continuous random variable with distribution function:

$$\varphi_X(\theta) = \begin{cases} \theta e^{-\theta x} & x > 0\\ 0 & elsewhere \end{cases}$$

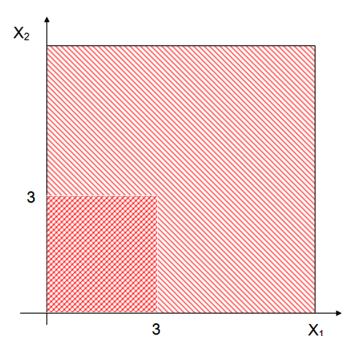


Figure 4.1: Example of a critical region for the test τ in Equation 4.4.

It follows that:

$$\mathbb{E}[X] = \int_0^\infty \theta e^{-\theta x} x dx = \frac{1}{\theta}$$

Consider the following hypotheses:

$$\begin{cases} H_0: \theta \le \theta_0 \\ H_1: \theta > \theta_0 \end{cases}$$

i.e.:

$$\begin{cases} H_0 : \mathbb{E}[X] \ge 1/\theta_0 \\ H_1 : \mathbb{E}[X] < 1/\theta_0 \end{cases}$$

Suppose that n = 2 and $\theta_0 = 10$. A statistical test is a function connecting each couple of observations (x_1, x_2) with the probability of rejecting H_0 . For instance τ is such that (see Figure 4.1):

$$\tau: \begin{cases} 1 & \text{if } x_1 < 3 \text{ and } x_2 < 3 \\ 0 & \text{elsewhere} \end{cases}$$

$$(4.4)$$

but τ' can also be such that (see Figure 4.3):

$$\tau' : \begin{cases} 1 & if \ x_1 + x_2 < t \\ 0 & elsewhere \end{cases}$$
 (4.5)

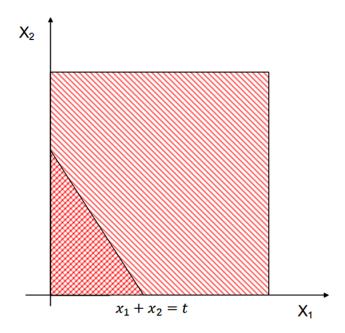


Figure 4.2: Example of a critical region for the test τ' in Equation 4.5.

For each statistical test we define a **power function** π_{τ} :

$$\pi_{\tau}: \mathbf{\Theta} \to [0,1]$$

such that to each

$$\boldsymbol{\theta} = (\theta_1, ..., \theta_m) \in \boldsymbol{\Theta}$$

corresponds the probability of rejecting H_0 , given $\boldsymbol{\theta}$ as a true parameter value:

$$\pi_{\tau}(\boldsymbol{\theta}) = \int_{\mathbb{X}^n} \tau(\mathbf{x}) \varphi(\mathbf{x}; \boldsymbol{\theta}) dx = \mathbb{E}_{\boldsymbol{\theta}} [\tau(X_1, ..., X_n)]$$

We fix now a significance level $\alpha \in [0,1]$ and we define the class of **level** α tests for H_0 :

$$L_{\alpha}(H_0) = \{ \tau : \forall \boldsymbol{\theta}_0 \in \boldsymbol{\Theta}_0, \pi_{\tau}(\boldsymbol{\theta}_0) \leq \alpha \}$$

We also define the subset of the **similar** α **tests** for H_0 :

$$S_{\alpha}(H_0) = \{ \tau : \forall \boldsymbol{\theta}_0 \in \boldsymbol{\Theta}_0, \pi_{\tau}(\boldsymbol{\theta}_0) = \alpha \} \subseteq L_{\alpha}(H_0)$$

A test τ is called **most powerful** at level α for H_0 vs the simple hypothesis $H_{\theta_1} = \{\varphi_{\theta_1} \subseteq H_1\}$ whether $\tau \in L_{\alpha}(H_0)$ and:

$$\forall \tau' \in L_{\alpha}(H_0), \pi_{\tau}(\boldsymbol{\theta}_1) \geq \pi'_{\tau}(\boldsymbol{\theta}_1)$$

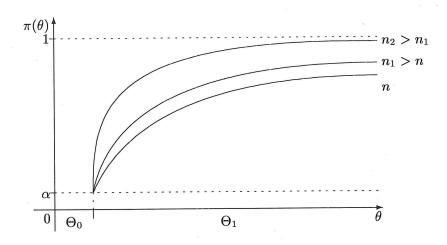


Figure 4.3: Consistency of a statistical test; as n increases, the power function under the alternative hypothesis is higher.

A test is called **uniformly most powerful** at level α for H_0 vs the composite hypothesis H_1 , whether it is powerful at level α for the hypothesis in 4.2 against every simple hypothesis H_{θ_1} in 4.3, i.e.:

$$\tau \in L_{\alpha}(H_0)$$
 and $\forall \tau' \in L_{\alpha}(H_0), \forall \boldsymbol{\theta}_1 \in \boldsymbol{\Theta}_1, \pi_{\tau}(\boldsymbol{\theta}_1) \geq \pi_{\tau}'(\boldsymbol{\theta}_1)$

We define a test τ to be **consistent**, if, fixed α :

$$\lim_{n\to\infty} \pi(\theta) = 1 \quad \text{for all } \theta \in \mathbf{\Theta}$$

We now introduce the Neyman-Pearson's fundamental Lemma, proposed in 1933 and that can be applied in order to find a most powerful test, when simple hypotheses are compared. This Lemma allows a researcher to construct an optimal critical region by considering the sample points for which the likelihood ratio is higher, provided that the power function under the null hypothesis does not exceed a fixed value α .

Theorem 3. Let Φ_0 and Φ_1 be probability distributions possessing densities $\varphi_{\boldsymbol{\theta}_0}$ and $\varphi_{\boldsymbol{\theta}_1}$ respectively with respect to a measure μ . Consider the following hypotheses: $H_{\boldsymbol{\theta}_0} = \{\varphi_{\boldsymbol{\theta}_0}\} \subseteq H_0$ and $H_{\boldsymbol{\theta}_1} = \{\varphi_{\boldsymbol{\theta}_1}\} \subseteq H_1$.

Existence For testing H_{θ_0} vs H_{θ_1} , there exists a test τ and a constant k such that:

$$\mathbb{E}_0\{\tau(\mathbf{x})\} = \alpha \tag{4.6}$$

and

$$\tau_{\boldsymbol{\theta}_0,\boldsymbol{\theta}_1}: \mathbb{X}^n \to [0,1] \tag{4.7}$$

$$\tau(x) = \begin{cases} 1 & when \quad \varphi_{\theta_1}(\mathbf{x}) > k\varphi_{\theta_0}(\mathbf{x}) \\ \gamma(x) & when \quad \varphi_{\theta_1}(\mathbf{x}) = k\varphi_{\theta_0}(\mathbf{x}) \\ 0 & when \quad \varphi_{\theta_1}(\mathbf{x}) < k\varphi_{\theta_0}(\mathbf{x}) \end{cases}$$
(4.8)

Sufficient condition for a most powerful test If a test satisfies 4.6 and 4.8 for some k, then it is most powerful for testing φ_{θ_0} vs φ_{θ_1} at a level α ;

Necessary condition for a most powerful test If τ is most powerful at level α for testing φ_{θ_0} vs φ_{θ_1} , then for some k it satisfies 4.8 a.e. μ . It also satisfies 4.6 unless there exists a test of size α and with power 1.

Proof. For $\alpha = 0$ and $\alpha = 1$ the theorem is easily seen to be true provided the value $k = +\infty$ is admitted in 4.8 and $0 \cdot \infty$ is interpreted as 0. Throughout the proof we shall therefore assume $0 < \alpha < 1$.

Existence Let $\alpha(c) = P_0\{\varphi_{\theta_1}(\mathbf{x}) > c\varphi_{\theta_0}(\mathbf{x})\}$. Since the probability is computed under P_0 , the inequality need to be considered only for the set where $\varphi_{\theta_0}(\mathbf{x}) > 0$, so that $\alpha(c)$ is the probability that the random variable $\frac{\varphi_{\theta_1}(\mathbf{x})}{\varphi_{\theta_0}(\mathbf{x})} > c$. Thus, $1 - \alpha(c)$ is a cumulative distribution function and $\alpha(c)$ is non-increasing and continuous on the right:

$$\alpha(c-0) - \alpha(c) = P_0 \left\{ \frac{\varphi_{\theta_1}(\mathbf{x})}{\varphi_{\theta_0}(\mathbf{x})} = c \right\}, \qquad \alpha(-\infty) = 1, \qquad \alpha(+\infty) = 0$$

Given any $0 < \alpha < 1$, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0 - 0)$ and consider the test τ defined by:

$$\tau(\mathbf{x}) = \begin{cases} 1 & \text{when } \varphi_{\boldsymbol{\theta}_1}(\mathbf{x}) > c_0 \varphi_{\boldsymbol{\theta}_0}(\mathbf{x}) \\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0 - 0) - \alpha(c_0)} & \text{when } \varphi_{\boldsymbol{\theta}_1}(\mathbf{x}) = c_0 \varphi_{\boldsymbol{\theta}_0}(\mathbf{x}) \\ 0 & \text{when } \varphi_{\boldsymbol{\theta}_1}(\mathbf{x}) < c_0 \varphi_{\boldsymbol{\theta}_0}(\mathbf{x}) \end{cases}$$

Here the middle expression is meaningful unless $\alpha(c_0) = \alpha(c_0 - 0)$; since then:

$$P_0\{\varphi_{\boldsymbol{\theta}_1}(\mathbf{x}) = c_0\varphi_{\boldsymbol{\theta}_0}(\mathbf{x})\} = 0$$

and τ is defined almost everywhere. The size of τ is:

$$\mathbb{E}_{0}\{\tau(\mathbf{x})\} = P_{0}\left\{\frac{\varphi_{\boldsymbol{\theta}_{1}}(\mathbf{x})}{\varphi_{\boldsymbol{\theta}_{0}}(\mathbf{x})} > c_{0}\right\} + \frac{\alpha - \alpha(c_{0})}{\alpha(c_{0} - 0) - \alpha(c_{0})}P_{0}\left\{\frac{\varphi_{\boldsymbol{\theta}_{1}}(\mathbf{x})}{\varphi_{\boldsymbol{\theta}_{0}}(\mathbf{x})} = c_{0}\right\} = \alpha \quad (4.9)$$

so that c_0 can be taken as the k of the theorem.

Sufficiency Let $\tau(\mathbf{x})$ be the test function of a size α test satisfying 4.8. Let $\tau'(\mathbf{x})$ be the test function of any other level α test and let $\pi_{\tau}(\theta)$ and $\pi'_{\tau}(\theta)$ be the power functions corresponding to the tests τ and τ' respectively. Because $0 \le \tau' \le 1$, 4.8 implies that:

$$(\tau(\mathbf{x}) - \tau'(\mathbf{x}))(\varphi_{\theta_1}(\mathbf{x}) - k\varphi_{\theta_0}(\mathbf{x})) \ge 0 \quad \forall \mathbf{x}$$
(4.10)

since $\tau = 1$ if $\varphi_{\theta_1}(\mathbf{x}) > k\varphi_{\theta_0}(\mathbf{x})$ and $\tau = 0$ if $\varphi_{\theta_1}(\mathbf{x}) < k\varphi_{\theta_0}(\mathbf{x})$. Thus:

$$0 \le \int [\tau(\mathbf{x}) - \tau'(\mathbf{x})] [\varphi_{\theta_1}(\mathbf{x}) - k\varphi_{\theta_0}(\mathbf{x})] dx$$

= $\pi_{\tau}(\theta_1) - \pi_{\tau'}(\theta_1) - k(\pi_{\tau}(\theta_0) - \pi_{\tau'}(\theta_0))$ (4.11)

Sufficiency is proved noting that, since τ' is a level α test and τ is a size α test, $\pi_{\tau}(\boldsymbol{\theta}_0) - \pi_{\tau'}(\boldsymbol{\theta}_0) = \alpha - \pi_{\tau'}(\boldsymbol{\theta}_0) \geq 0$. Thus, 4.11 and k > 0 imply that:

$$0 \le \pi_{\tau}(\boldsymbol{\theta}_1) - \pi_{\tau'}(\boldsymbol{\theta}_1) - k(\pi_{\tau}(\boldsymbol{\theta}_0) - \pi_{\tau'}(\boldsymbol{\theta}_0)) \le \pi_{\tau}(\boldsymbol{\theta}_1) - \pi_{\tau'}(\boldsymbol{\theta}_1)$$

showing that $\pi_{\tau}(\boldsymbol{\theta}_1) \geq \pi_{\tau'}(\boldsymbol{\theta}_1)$, and thus τ has greater power than τ' . Since τ' was an arbitrary level α test, τ is an UMP level α test.

Necessity Let now τ' be the test function for any UMP level α test. By sufficiency, τ , the test satisfying 4.6 and 4.8 is also an UMP level α test, thus $\pi_{\tau}(\boldsymbol{\theta}_1) = \pi_{\tau'}(\boldsymbol{\theta}_1)$. This fact, 4.11 and k > 0 imply:

$$\alpha - \pi_{\tau'}(\boldsymbol{\theta}_0) = \pi_{\tau}(\boldsymbol{\theta}_0) - \pi_{\tau'}(\boldsymbol{\theta}_0) \le 0$$

Now, since τ' is a level α test, $\pi_{\tau'}(\theta_0) \leq \alpha$. Thus, $\pi_{\tau'}(\theta_0) = \alpha$ that is, τ' is a size α test, and also it implies that 4.11 is an equality in this case. But the non-negative integrand:

$$(\tau(\mathbf{x}) - \tau'(\mathbf{x}))(\varphi_{\theta_1}(\mathbf{x}) - k\varphi_{\theta_0}(\mathbf{x}))$$

will also have zero integral only if τ' satisfies 4.8 except perhaps a set A with $\int_A \varphi_{\theta_1}(\mathbf{x}) d\mathbf{x} = 0$

The following examples are given in Landenna et al. (1998), p. 327-.

Example 2. As a first application of the Neyman-Pearson's theorem, consider a continuous r.v. X such that:

$$\varphi(x;\theta) = \theta e^{-\theta x} \quad x > 0 \quad \theta > 0$$

The following problem is given:

$$H_0: \theta = 1$$
 $H_1: \theta = 2$

The values of α and n are fixed. First, we derive the likelihood ratio:

$$\lambda = \frac{L(x;2)}{L(x;1)} = \frac{\prod_{i=1}^{n} 2 \cdot e^{-2x_i}}{\prod_{i=1}^{n} e^{-x_i}} = \frac{2^n \cdot e^{-2\sum_{i=1}^{n} x_i}}{e^{-\sum_{i=1}^{n} x_i}} = 2^n \cdot e^{-\sum_{i=1}^{n} x_i}$$

Applying the Neyman-Pearson's Lemma, the test function $\tau(\mathbf{x})$ is given by:

$$\tau(\mathbf{x}) = \begin{cases} 1 & 2^n \cdot e^{-\sum_{i=1}^n x_i} \ge k \\ 0 & elsewhere \end{cases}$$

$$\tau(\mathbf{x}) = \begin{cases} 1 & \sum_{i=1}^{n} x_i \le \ln \frac{2^n}{k} \\ 0 & elsewhere \end{cases}$$

where k is such that:

$$\mathbb{E}_{\theta_0}[\tau(x)] = \pi(1) = P\left[\sum_{i=1}^n X_i \le \ln \frac{2^n}{k} | \theta = 1\right] = \alpha$$

Since $X \sim Ga(1, \theta)$, for the summation property of the Gamma distribution, it follows: $Y = \sum_{i=1}^{n} X_i \sim Ga(n, \theta)$.

Under H_0 :

$$\varphi(y|\theta=1) = \frac{1}{\Gamma(n)} \cdot e^{-y} \cdot y^{n-1} \qquad y > 0$$

If we now consider the transformation of r.v. W = 2Y, dw = 2dy, it follows:

$$\eta(w|\theta = 1) = \frac{1}{\Gamma(n)} \cdot e^{-1/2w} \cdot \left(\frac{1}{2}\right)^{n-1} \cdot 2 \cdot w^{n-1} \qquad w > 0$$
$$= \frac{1}{\Gamma(n)} \cdot e^{-1/2w} \cdot \left(\frac{1}{2}\right)^{n} \cdot w^{n-1} \qquad w > 0$$

that is the density function of a χ^2_{2n} . Hence:

$$P\left[Y \le ln\frac{2^n}{k}\right] = P\left[2Y \le 2ln\frac{2^n}{k}\right] = P\left[\chi_{2n}^2 \le 2ln\frac{2^n}{k}\right] = \alpha$$

Indicating with χ^2_{α} the α -order quantile of the r.v. χ^2_{2n} , the Neyman-Pearson's most powerful test has critical region:

$$\Omega_1 = \{ y = \sum_{i=1}^n x_i : y \le 1/2\chi_\alpha^2 \}$$

and power function:

$$\pi(\theta) = \int_0^{1/2\chi_\alpha^2} \varphi(y|\theta) dy \qquad \theta = 1, 2$$

where $\varphi(y|\theta)$ indicates the density function of a Gamma r.v. (n,θ) . We can now obtain a value for k, by fixing n = 1, $\alpha = 0.05$:

$$\chi_{\alpha}^{2} = 2ln \frac{2^{n}}{k}$$
$$k = 2^{n} \cdot e^{-1/2\chi_{\alpha}^{2}}$$

and we obtain k = 4.506.

Note that the Neyman-Pearson's Lemma does not require that the hypotheses are identified by the same functional form. The only condition on the distributions that has to be satisfied is that the functional form must be *known*, so that the likelihood functions can be calculated. This concept is illustrated by the following example (Landenna *et al.* (1998), p. 331).

Example 3. Let X be an unknown distribution function and consider the following hypotheses:

$$H_0: \quad \varphi_0(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad -\infty < x < \infty$$

$$H_1: \quad \varphi_1(x) = \frac{1}{\pi(1+x^2)} \qquad -\infty < x < \infty$$

for which $\varphi_0(x)$ is a $\mathcal{N}(0,1)$ and $\varphi_1(x)$ is a Cauchy random variable. In order to compare the previous hypotheses, a sample such that n = 1 is drawn. The likelihood ratio is calculated as:

$$\frac{L(x,\varphi_1(x))}{L(x,\varphi_0(x))} = \frac{1}{\pi(1+x^2)} \cdot \frac{\sqrt{2\pi}}{e^{-\frac{x^2}{2}}} = \sqrt{\frac{2}{\pi}} \cdot \frac{e^{\frac{x^2}{2}}}{(1+x^2)}$$

and, applying the Neyman-Pearson's Lemma, the non-randomized most powerful test is given by:

$$\tau(\mathbf{x}) = \begin{cases} 1 & \lambda = \sqrt{\frac{2}{\pi}} \cdot \frac{e^{\frac{x^2}{2}}}{(1+x^2)} \ge k \\ 0 & elsewhere \end{cases}$$

Note now that λ is a monotonically increasing function of |x|, for which:

$$\tau(\mathbf{x}) = \begin{cases} 1 & |x| \ge k_1 \\ 0 & |x| < k_1 \end{cases}$$

and k_1 is such that $\mathbb{E}_{\varphi_0}[\tau(\mathbf{x})] = \alpha$, i.e.:

$$\int_{-k_1}^{k_1} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} dx = 1 - \alpha$$

and it follows that $k_1 = z_{1-\frac{\alpha}{2}}$ so that the power function is given by:

$$\mathbb{E}_{\varphi_1}[\tau(\mathbf{x})] = 1 - \int_{z_{\frac{\alpha}{2}}}^{z_{1-\frac{\alpha}{2}}} \frac{1}{\pi(1+x^2)} dx = 1 - \frac{2}{\pi} \arctan(z_{1-\frac{\alpha}{2}})$$

For the Neyman-Pearson's test, in the particular case for which the domain of the random variable X does not depend on the unknown parameter values, the following corollary holds.

Corollary 1. The Neyman-Pearson's test is unique, as the constant k for which it holds is unique.

Proof. Suppose, in the continuous case, there exist more than one positive value satisfying:

$$\tau(\mathbf{x}) = \begin{cases} 1 & \text{when } \varphi_{\boldsymbol{\theta}_1}(\mathbf{x}) > c_0 \varphi_{\boldsymbol{\theta}_0}(\mathbf{x}) \\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0 - 0) - \alpha(c_0)} & \text{when } \varphi_{\boldsymbol{\theta}_1}(\mathbf{x}) = c_0 \varphi_{\boldsymbol{\theta}_0}(\mathbf{x}) \\ 0 & \text{when } \varphi_{\boldsymbol{\theta}_1}(\mathbf{x}) < c_0 \varphi_{\boldsymbol{\theta}_0}(\mathbf{x}) \end{cases}$$

and:

$$\mathbb{E}_{\boldsymbol{\theta}_0}[\tau(\mathbf{x})] = \alpha$$

Suppose there exists a set of values (k', k'') for which $\alpha(k) = \alpha$. Consider the following set:

$$A = \left\{ \mathbf{x} : L(\mathbf{x}, \boldsymbol{\theta}_0) > 0, k' < \frac{L(\mathbf{x}, \boldsymbol{\theta}_1)}{L(\mathbf{x}, \boldsymbol{\theta}_0)} < k'' \right\}$$

it follows:

$$P_{\theta_0}(A) = \lim_{\epsilon \to 0^+} [\alpha(k') - \alpha(k'' - \epsilon)] = 0$$

But, since in these points $L(\mathbf{x}, \boldsymbol{\theta}_0 > 0)$, it follows that the measure of the set A is null, and therefore $P_{\boldsymbol{\theta}_1}(A) = 0$.

As it was mentioned, the previous Corollary does not hold in the case the domain of the r.v. X depends on the parameter values. This is illustrated by the following example:

Example 4. Let $(x_1,...,x_n)$ be a sample drawn from a r.v. with probability density function:

$$\varphi(x;\theta) = \begin{cases} 1/\theta & 0 \le x \le \theta \\ 0 & elsewhere \end{cases}$$

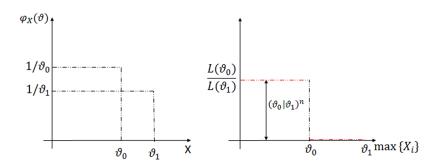


Figure 4.4: Pdfs under the null and alternative hypotheses (on the left), and likelihood ratio given the observed sample (on the right).

The following simple hypotheses are compared:

$$H_0: \theta = \theta_0 > 0$$

$$H_1: \theta = \theta_1 > \theta_0$$

The likelihood function is given by:

$$L(\theta) = \begin{cases} (1/\theta)^n & \text{if } \max\{X_i\} \le \theta \\ 0 & \text{if } \max\{X_i\} > \theta \end{cases}$$

In order to apply the Neyman-Pearson's Lemma, the likelihood ratio is calculated:

$$\frac{L(\theta_0)}{L(\theta_1)} = \frac{(1/\theta_0)^n}{(1/\theta_1)^n} = \begin{cases} (\theta_1/\theta_0)^n & \text{if } 0 \le \max\{X_i\} \le \theta_0 \\ 0 & \text{if } \theta_0 < \max\{X_i\} \le \theta_1 \end{cases}$$

If $\theta_0 < max\{X_i\} \le \theta_1$, the sample cannot be drawn from a distribution such as $\theta = \theta_0$ (i.e. H_0 is not true, see Figure 4.4).

So the set B such that:

$$B = \left\{ (x_1, ..., x_n) : \theta_0 < \max\{X_i\} \le \theta_1 \text{ i.e. } \frac{L(\theta_0)}{L(\theta_1)} = 0 \right\}$$

is part of the critical region. Since $P\{B|H_0\} = 0$, the set B cannot be the only set that defines the critical region, as $\alpha > 0$.

In the following, we'll show that, in this specific case, there exist two disjoint subregions B' and B" that both satisfy the Neyman-Pearson's Lemma, but that are equivalent in terms of power.

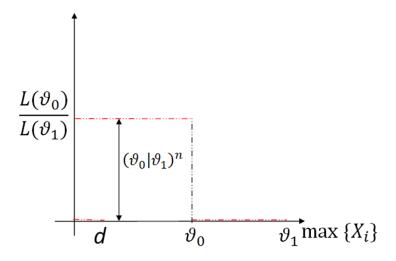


Figure 4.5: Critical region determined by the set B'.

B' is defined as (see Figure 4.5):

$$B' = \left\{ (x_1, ..., x_n) : 0 < \max\{X_i\} < d \text{ i.e. } \frac{L(\theta_0)}{L(\theta_1)} = \left(\frac{\theta_1}{\theta_0}\right)^n \right\}$$

The critical region is $C = B \cup B'$ and, as B and B' are disjoint, the probability of reject of H_0 given θ_0 is given by:

$$P\{C|H_0\} = P\{0 \le max\{X_i\} \le d|\theta_0\} + P\{\theta_0 \le max\{X_i\} \le \theta_1|\theta_0\}$$

and:

$$P\{\theta_0 \le \max\{X_i\} \le \theta_1 | \theta_0\} = 0$$

$$P\{0 \le \max\{X_i\} \le d | \theta_0\} = P\{0 \le X_i \le d | \theta_0\} \cdot \dots \cdot P\{0 \le X_n \le d | \theta_0\} = \left(\frac{d}{\theta}\right)^n$$

By defining a test of size α , we obtain:

$$\alpha = \left(\frac{d}{\theta_0}\right)^n \qquad \alpha^{1/n} = \frac{d}{\theta_0} \qquad d = \theta_0 \cdot \alpha^{1/n}$$

The power of the test is given by:

$$\pi(\theta_1) = P\{0 \le \max\{X_i\} \le d|\theta_1\} + P\{\theta_0 \le \max\{X_i\} \le \theta_1|\theta_1\}$$

$$P\{0 \le \max\{X_i\} \le d|\theta_1\} = \left(\frac{d}{\theta_1}\right)^n$$

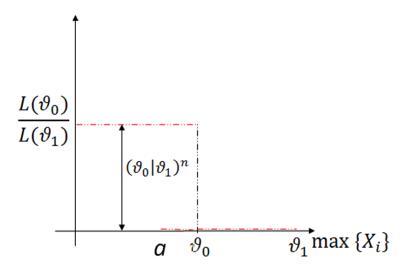


Figure 4.6: Critical region determined by the set B''.

$$P\{\theta_0 \le \max\{X_i\} \le \theta_1 | \theta_1\} = 1 - \left(\frac{\theta_0}{\theta_1}\right)^n$$
$$\pi(\theta_1) = \left(\frac{d}{\theta_1}\right)^n + \left[1 - \left(\frac{\theta_0}{\theta_1}\right)^n\right]$$

And, by substituting $d = \theta_0 \cdot \alpha^{1/n}$:

$$\pi(\theta_1) = \left(\frac{\theta_0 \cdot \alpha^{1/n}}{\theta_1}\right)^n + \left[1 - \left(\frac{\theta_0}{\theta_1}\right)^n\right]$$
$$= \alpha \cdot \left(\frac{\theta_0}{\theta_1}\right)^n + 1 - \left(\frac{\theta_0}{\theta_1}\right)^n = 1 - \left(\frac{\theta_0}{\theta_1}\right)^n \cdot (1 - \alpha)$$

and the probability of a second type error β is:

$$\beta = (1 - \alpha) \left(\frac{\theta_0}{\theta_1}\right)^n = \left(\frac{\theta_0}{\theta_1}\right)^n - \alpha \left(\frac{\theta_0}{\theta_1}\right)^n$$

Consider now another region B" (see Figure 4.6):

$$B'' = \{(x_1, ..., x_n) : a \le max\{X_i\} \le \theta_0\}$$

The critical region is given by:

$$C = \{(x_1, ..., x_n) : a \le \max\{X_i\} \le \theta_0\} \cup \{(x_1, ..., x_n) : \theta_0 \le \max\{X_i\} \le \theta_1\}$$

Hence:

$$P(C|H_0) = P\{(x_1, ..., x_n) : a \le \max\{X_i\} \le \theta_0 | \theta_0 \}$$

+ $P\{(x_1, ..., x_n) : \theta_0 \le \max\{X_i\} \le \theta_1 | \theta_0 \}$

$$P\{(x_1, ..., x_n) : \theta_0 \le \max\{X_i\} \le \theta_1 | H_0\} = 0$$
$$P\{(x_1, ..., x_n) : a \le \max\{X_i\} \le \theta_0 | \theta_0\} = 1 - \left(\frac{a}{\theta_0}\right)^n$$

and:

$$1 - \alpha = \left(\frac{a}{\theta_0}\right)^n \longleftrightarrow (1 - \alpha)^{1/n} = \frac{a}{\theta_0} \longleftrightarrow a = \theta_0 (1 - \alpha)^{1/n}$$

The power of the test is given by:

$$\pi(\theta_1) = P\{(x_1, ..., x_n) : a \le \max\{X_i\} \le \theta_0 | \theta_1\}$$

$$+ P\{(x_1, ..., x_n) : \theta_0 \le \max\{X_i\} \le \theta_1 | \theta_1\}$$

$$= P\{(x_1, ..., x_n) : a \le \max\{X_i\} \le \theta_1 | \theta_1\} = 1 - \left(\frac{a}{\theta_1}\right)^n$$

And, by substituting $a = \theta_0(1 - \alpha)^{1/n}$:

$$\pi(\theta_1) = 1 - \left(\frac{\theta_0 (1 - \alpha)^{1/n}}{\theta - 1}\right)^n = 1 - (1 - \alpha) \left(\frac{\theta_0}{\theta_1}\right)^n$$

that is equivalent to the power that can be achieved with the region B'.

Consider now the following theorem, associating the notion of sufficient statistic to the construction of a statistical test.

Theorem 4. Let X be a random variable with distribution function $\varphi(x; \boldsymbol{\theta})$ depending from an unknown vector of parameters $\boldsymbol{\theta}$ and let $S = s(X_1, ..., X_n)$ be a sufficient statistic for $\boldsymbol{\theta}$. It follows that for each test function $\tau(x)$:

$$\tau: \mathbb{X}^n \to [0,1]$$

defined on X, there exists a test function $\tau'(s)$ defined on S such that:

$$\pi_{\tau}(\boldsymbol{\theta}) = \pi_{\tau'}(\boldsymbol{\theta})$$
 for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$

Proof. For sufficiency, it follows that each function of X conditioned to S = s is independent of θ . Therefore:

$$\tau'(s) = \mathbb{E}[\tau(X)|S = s]$$

is independent of $\boldsymbol{\theta}$. Since $0 \leq \mathbb{E}[\tau(x)|S=s] \leq 1$, $\tau'(s)$ is a test function, rejecting H_0 with probability $\tau'(s)$, if S=s. By the properties of the conditioned expected value, it follows:

$$\pi_{\tau'}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[\tau'(s)] =$$

$$= \mathbb{E}_{\boldsymbol{\theta}}[\mathbb{E}[\tau(x)|S = s]]$$

$$= \mathbb{E}_{\boldsymbol{\theta}}[\tau(x)] = \pi_{\tau}(x)$$

that is the power function of $\tau(x)$.

Sufficiency leads to reduct the dimension of the sample space with no loss of information about $\theta = (\theta_1, ..., \theta_n)$. This implies that, if there exists a sufficient statistic for the unknown parameter vector, the research of an optimal test can be narrowed to the test built on such a sufficient statistic.

Theorem 5. If $S = s(X_1, ..., X_n)$ is a sufficient statistic for θ and τ^s and τ are the LRT statistics based on S and \mathbf{X} , respectively, then $\tau^s = \tau$ for every \mathbf{x} in the sample space.

Proof. From the Factorization Theorem, the pdf of X can be written as:

$$f(\mathbf{x}|\theta) = q(S(\mathbf{x})|\theta)h(\mathbf{x})$$

where $g(s|\theta)$ is the pdf of S and $h(\mathbf{x})$ does not depend on θ . Thus:

$$\tau = \frac{\sup_{\Theta_0} L(\theta|\mathbf{x})}{\sup_{\Theta} L(\theta|\mathbf{x})} = \frac{\sup_{\Theta_0} f(\mathbf{x}|\theta)}{\sup_{\Theta} f(\mathbf{x}|\theta)}$$
$$= \frac{\sup_{\Theta_0} g(S(\mathbf{x}|\theta))}{\sup_{\Theta} g(S(\mathbf{x})|\theta)} = \frac{\sup_{\Theta_0} L^s(\theta|S(\mathbf{x}))}{\sup_{\Theta} L^s(\theta|S(\mathbf{x}))}$$
$$= \tau^s$$

Let now $H = \{\varphi_{\theta}, \theta \in \Theta\}$ be an uniparametrical model and let the parametrical space $\Theta \subseteq \Re$ be an interval containing θ_0 and θ_1 and $\theta_0 < \theta_1$. Consider the likelihood ratio:

$$\frac{\varphi(X_1,...,X_n;\theta_1)}{\varphi(X_1,...,X_n;\theta_0)}$$

as a strictly increasing function of the 1-dimensional statistic:

$$T = t(X_1, ..., X_n) \tag{4.12}$$

with domain the real interval \mathbb{T} .

The Neyman-Pearson's test in order to test the hypotheses:

$$H_{\theta_0} = \{\varphi_{\theta_0}\} \qquad vs \qquad H_{\theta_1} = \{\varphi_{\theta_1}\} \tag{4.13}$$

is given by:

$$\tau_{\theta_0,\theta_1} : \mathbb{T} \to [0,1]$$

$$: t = \begin{cases} 1 & \text{when } t > c \\ \gamma(x) & \text{when } t = c \\ 0 & \text{when } t < c \end{cases}$$

with constants c and γ determined by the α -similarity condition: $\pi_{\theta_0,\theta_1}(\theta_0) = \alpha$.

Consider now the unidirectional hypotheses:

$$H_0 = \{ \varphi_\theta : \theta \le \theta_0 \}$$
 vs $H_1 = \{ \varphi_\theta : \theta > \theta_1 \}$

including the simple hypotheses in 4.13. If the statistic 4.12 is an increasing function of T for all $\theta_1 > \theta_0$, we have:

$$\forall \theta_1 \in \Theta_1 \qquad \tau_{\theta_0,\theta_1} = \tau_{\theta_0}$$

and τ_{θ_0} is uniformly most powerful at level α for H_0 vs each H_1 . This concept is formalized by the following theorem and lemma:

Theorem 6. Suppose that the distribution of X is in a parametric family \mathcal{P} indexed by a real-valued parameter θ and that \mathcal{P} has a monotone likelihood ratio in Y(X). Consider the problem of testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, where θ_0 is a given constant.

• There exists a UMP test of size α , which is given by:

$$\tau_{*}(Y) = \begin{cases} 1 & Y(X) > c \\ \gamma & Y(X) = c \\ 0 & Y(X) < c \end{cases}$$
(4.14)

where c and γ are determined by $\pi_{\tau_*}(\theta_0) = \alpha$ and $\pi_{\tau}(\theta)$ is the power function of a test τ .

- The power function $\pi_{\tau_*}(\theta)$ is strictly increasing for all θ 's for which $0 < \pi_{\tau_*}(\theta) < 1$.
- For any $\theta < \theta_0$, τ_* minimizes $\pi_{\tau}(\theta)$ (the type I error probability of τ) among all tests τ satisfying $\pi_{\tau}(\theta_0) = \alpha$.
- For any θ_1 , τ_* is UMP for testing $H_0: \theta \leq \theta_1$ vs $H_1: \theta > \theta_1$ with size $\pi_{\tau_*}(\theta_1)$.

Lemma 1. Suppose that there is a test τ_* of size α such that for every $P_1 \in \mathcal{P}_1$, τ_* is UMP for testing H_0 vs the hypothesis $P = P_1$. Then τ_* is UMP for testing H_0 vs H_1 .

Let now a parametrical model H be represented by a canonical uniparametrical exponential family:

$$\varphi_{\theta}(x_i) = exp[\theta B(x_i) - C(\theta)]D(x_i)$$

so that:

$$\varphi(\mathbf{x}; \theta) = \prod_{i=1}^{n} \varphi_{\theta}(x_i)$$
$$= \exp\left[\theta \sum_{i=1}^{n} B(x_i) - nC(\theta)\right] \prod_{i=1}^{n} D(x_i)$$

Let $t(x) = \sum_{i=1}^{n} B(x_i)$; we can conclude that, $\forall \theta \in \Theta, \ \forall \theta' > \theta$,

$$\frac{\varphi(\mathbf{x}; \theta')}{\varphi(\mathbf{x}; \theta)} = \{ (\theta' - \theta)t(\mathbf{x}) - n[c(\theta') - c(\theta)] \}$$

is a strictly increasing function in t(x) so that Theorem 6 applies.

Consider now a 1-dimensional parameter θ and the problem of finding an optimal test for the following system of hypotheses:

$$H_0: \theta \in \Theta_0 \qquad H_{\theta_1}: \theta = \theta_1 \tag{4.15}$$

 H_0 can be summed up by a simple functional hypothesis H_{λ} and the Neyman-Pearson's Lemma can be applied in order to construct the level α most powerful test for H_{λ} vs H_{θ_1} . In this view, the pdf defining H_{λ} is computed as a mixture of the pdfs under H_0 , assigning a distribution λ on Θ_0 called *least favorable distribution*, for which the power of τ_{λ,θ_1} is minimum. This is what is expressed by the following Lehmann & Stein's theorem.

Theorem 7. Let a σ -field be defined over ω such that the densities $\varphi_{\theta}(x)$ are jointly measurable in θ and x. Suppose over this σ -field there exists a probability distribution Λ such that the most powerful level α test τ_{λ} for testing H_{λ} against H_{θ_1} is of size $\leq \alpha$ also with respect to the original hypothesis H_0 .

- The test τ_{λ} is most powerful for testing H_0 against H_{θ_1} ;
- If τ_{λ} is the unique most powerful level α test for comparing H_{λ} against H_{θ_1} , it is also the unique most powerful test of H_0 against H_{θ_1} ;
- The distribution Λ is least favorable.

Observation 8. If the Neyman-Pearson's test τ_{λ,θ_1} preserves a level α on the original hypothesis H_0 , it is most powerful at level α for H_0 vs H_{θ_1} and λ is least favorable.

Corollary 2. Suppose that Λ is a probability distribution over ω and that ω' is a subset of ω with $\Lambda(\omega') = 1$. Let τ_{λ} be a test such that:

$$\tau_{\lambda}(x) = \begin{cases}
1 & when & \varphi_{\theta_{1}}(x) > k\varphi_{\theta_{0}}(x) \\
\gamma(x) & when & \varphi_{\theta_{1}}(x) = k\varphi_{\theta_{0}}(x) \\
0 & when & \varphi_{\theta_{1}}(x) < k\varphi_{\theta_{0}}(x)
\end{cases} \tag{4.16}$$

Then τ_{λ} is a most powerful α -level test for comparing H_{θ_0} against H_{θ_1} .

Observation 9. If the Lehmann and Stein's Theorem is applied to the Neyman-Pearson's τ_{θ_0,θ_1} test, for:

$$H_{\theta_0}: \theta = \theta_0 \qquad vs \qquad H_{\theta_1}: \theta = \theta_1 \qquad \theta_0 \in \Theta_0$$
 (4.17)

and if τ_{θ_0,θ_1} has a level α on H_0 , it is most powerful at level α for H_0 vs H_{θ_1} and $\theta = \theta_0$ identifies a least favorable distribution.

The Lehmann and Stein's theorem allows us to find a general solution for the search of an optimal test in the case of composite hypotheses. If an optimal solution does not exist, we can look for a *suboptimal* test, i.e. a constrained optimal test. We will impose a reasonable restriction on the tests to be considered and we will look for an optimal test in the class of tests under the restriction. Two types of restrictions are *unbiasedness* and *invariance*; in this context we can narrow our attention to the class of *unbiased tests*.

Consider a random variable X with domain $\mathbb{X} \subseteq \mathfrak{R}$ and pdf belonging to the parametrical model $H = \{\varphi_{\theta} : \theta \in \Theta\}$. Consider the partition (Θ_0, Θ_1) of the m-dimensional space and the system of hypotheses:

$$H_0 = \{ \varphi_\theta : \theta \in \Theta_0 \}$$
 $H_1 = \{ \varphi_\theta : \theta \in \Theta_1 \}$

A test τ is called *unbiased* if the following inequality holds:

$$\forall \theta_1 \in \Theta_1, \qquad \pi_{\tau}(\theta_1) \ge \alpha$$

A test τ is called *admissible* whether there does not exist a level α test $\tau' \in L_{\alpha}(H_0)$ such that:

$$\forall \theta_1 \in \Theta_1, \qquad \pi_{\tau'}(\theta_1) \ge \pi_{\tau}(\theta_1)$$

and

$$\exists \theta_1' \in \Theta_1, \qquad \pi_{\tau'}(\theta_1') > \pi_{\tau}(\theta')$$

A simple example of unbiased test is given by the purely random test:

$$\tau_{\alpha}: \mathbb{X}^n \to [0,1]$$
$$: x \to \alpha$$

for which the power function is constant:

$$\forall \theta \in \Theta, \pi_{\tau_{\alpha}} = \mathbb{E}_{\theta}[\alpha] = \alpha$$

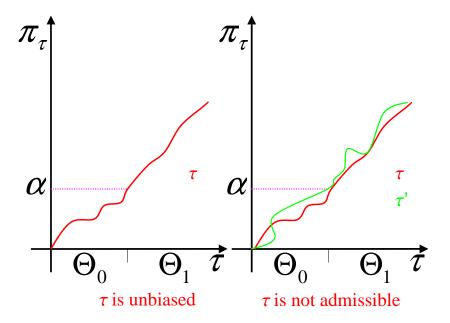


Figure 4.7: Examples of an unbiased and of a not admissible test.

Let U_{α} be the set of unbiased tests:

$$U_{\alpha} = \{ \tau \in L_{\alpha}(H_0) : \forall \theta_1 \in \Theta_1, \pi_{\tau}(\theta_1) \ge \alpha \}$$
$$= \{ \tau : \forall \theta_0 \in \Theta_0, \pi_{\tau}(\theta_0) \le \alpha \le \pi_{\tau}(\theta_1) \}$$

A test is called uniformly most powerful unbiased (UMPU) at level α in order to compare a null hypothesis H_0 vs an alternative hypothesis H_1 if:

$$\tau \in U_{\alpha}$$

and:

$$\forall \tau' \in U_{\alpha}, \forall \theta_1 \in \Theta_1, \qquad \pi_{\tau}(\theta_1) \ge \pi_{\tau'}(\theta_1)$$

Observation 10. If a test is uniformly most powerful (UMP), then it is uniformly most powerful unbiased (UMPU), since its power cannot fall below that of the purely random test $\tau(x) = \alpha$.

A very important Lemma is now introduced and proved.

Lemma 2. If a test is uniformly most powerful unbiased (UMPU), then it is admissible.

Proof. Let τ be a uniformly most powerful unbiased (UMPU) test. Suppose now, there exists another test τ' so that τ is not admissible:

$$\exists \tau' \in L_{\alpha}(H_0)$$

$$\forall \theta_1 \in \Theta_1, \pi_{\tau'}(\theta_1) \ge \pi_{\tau}(\theta_1)$$

$$\exists \theta'_1 \in \Theta_1, \pi_{\tau'}(\theta'_1) > \pi_{\tau}(\theta'_1)$$

It follows that:

$$\tau \in U_{\alpha} \Rightarrow \forall \theta_{1} \in \Theta_{1}, \pi_{\tau}(\theta_{1}) \geq \alpha \Rightarrow \forall \theta_{1} \in \Theta_{1}, \pi_{\tau'}(\theta_{1}) \geq \alpha$$
$$\Rightarrow \tau' \in U_{\alpha} \Rightarrow \forall \theta_{1} \in \Theta_{1}, \pi_{\tau}(\theta_{1}) \geq \pi_{\tau'}(\theta_{1})$$
$$\pi_{\tau'}(\theta'_{1}) > \pi_{\tau}(\theta'_{1}) \geq \pi_{\tau'}(\theta'_{1})$$

that is a contradiction. So, the UMPU test τ is admissible.

Observation 11. For a large class of problems for which a UMP test does not exist, there does exist a UMP unbiased test. This is the case, in particular, for certain hypotheses such as $\theta \leq \theta_0$ or $\theta = \theta_0$, where the distribution of the random observables depends on other parameters besides θ .

Let's consider a parametrical model $H = \{\varphi_{\theta} : \theta \in \Theta\}$ and the hypotheses:

$$H_0: \theta \in \Theta_0 \quad vs \quad H_1: \theta \in \Theta_1$$

the set of **boundary** α -similar tests is defined as:

$$S_{\alpha} = \{ \tau \in L_{\alpha}(H_0) : \forall \theta \in \partial \Theta_0, \quad \pi_{\tau}(\theta) = \alpha \}$$

Theorem 12. If a test τ has a continuous power function π_{τ} , then:

$$\tau \in U_{\alpha} \Rightarrow \tau \in S_{\alpha}$$

Proof. Consider $\tau \in L_{\alpha}(H_0)$ and consider a point θ^* on the boundary:

$$\theta^* \in \partial \Theta_0$$
 $\partial \Theta_0 = \bar{\Theta}_0 \cap \bar{\Theta}_1$

there do exist two sequences : $\{\theta_{0n}\}\subseteq\Theta_0$ and $\{\theta_{1n}\}\subseteq\Theta_1$ for which:

$$\theta_{0n} \to \theta^* \leftarrow \theta_{1n}$$

and so, for the continuity of the power function:

$$\alpha \geq \pi_{\tau}(\theta_{0n}) \rightarrow \pi_{\tau}(\theta^*) \leftarrow \pi_{\tau}(\theta_{1n}) \geq \alpha$$

and it follows $\pi_{\tau}(\theta^*) = \alpha$

A test $\tau \in S_{\alpha}$ is called α -similar uniformly most powerful in order to compare H_0 vs H_1 , whether:

$$\forall \tau' \in S_{\alpha}, \quad \forall \theta_1 \in \Theta_1, \quad \pi_{\tau}(\theta_1) \ge \pi_{\tau'}(\theta_1)$$

Lemma 3. A α -similar uniformly most powerful test is also UMPU (in the case that all the UMPU tests have continuous power function). Indeed, $U_{\alpha} \subseteq S_{\alpha}$.

Let S be a sufficient statistic for $\theta \in \partial \Theta_0$. The set of tests:

$$NS_{\alpha} = \{ \tau \in L_{\alpha}(H_0) : \forall \theta \in \partial \Theta_0, \mathbb{E}[\tau(x)|S] = \alpha \}$$

$$(4.18)$$

is called a Neyman-structure test.

Observation 13. A Neyman-structure test is characterized by the fact that the conditional probability of rejection is α on each of the surfaces S = s.

Observation 14. $NS_{\alpha} \subseteq S_{\alpha}$; indeed, if $\tau \in NS_{\alpha}$, by definition $\tau \in L_{\alpha}(H_0)$ and:

$$\forall \theta \in \partial \Theta_0, \pi_{\tau}(\theta) = \mathbb{E}_{\theta}[\tau(x)] = \mathbb{E}_{\theta}[E[\tau|S]] = \alpha$$

Observation 15. Since the distribution on each surface is independent of θ for $\theta \in \partial \Theta_0$, the condition 4.18 essentially reduces the problem to that of testing a simple hypothesis for each value of s. Frequently, it is easy to obtain a most powerful test among those having Neyman structure, by solving the optimum problem for each face separately. The resulting test is then most powerful among all similar tests provided each similar test has a Neyman structure.

We now introduce another important definition. A family \mathcal{P} of probability distributions is said to be **complete** if:

$$\mathbb{E}_p[f(x)] = 0 \qquad \text{for all } p \in \mathcal{P}$$

implies f(x) = 0 a.e. \mathcal{P}

Let's analyze the following two examples.

Example 5. Consider n independent trials with probability p of success, and let X_i be either 1 or 0 according to the i-th trial is a success or a failure. Then $T = X_1 + ... + X_n$ is a sufficient statistic for p, and the family of its possible distributions is $\mathcal{P} = \{Bi(n, p), 0 . For this family:$

$$\mathbb{E}_{p}[f(t)] = \sum_{t=0}^{n} f(t) \binom{n}{t} p^{t} (1-p)^{n-t} = \sum_{t=0}^{n} f(t) \binom{n}{t} (1-p)^{n} \rho^{t}$$

where $\rho = \frac{p}{1-p}$. Hence, this expected value is a polynomial function in ρ . This expected value is null if and only if all the polynomial coefficients are fixed at 0. It follows that f(t) = 0, for t = 0, ..., n and the binomial distribution of T is complete.

Example 6. Let $X_1, ..., X_n$ be a sample from the Uniform distribution $U(0, \theta)$, $0 < \theta < \infty$. Then $T = \max\{X_1, ..., X_n\}$ is a sufficient statistic for θ . T is complete if

$$\mathbb{E}_{\theta}[f(t)] = 0 \Rightarrow f(t) = 0 \text{ a.e. } \mathcal{P}$$

The distribution function of t can be derived:

$$\Phi_T(t) = \left[\frac{t}{\theta}\right]^n \qquad 0 \le t \le \theta \qquad \varphi_T(t) = \frac{n}{\theta} \left[\frac{t}{\theta}\right]^{n-1} \qquad 0 \le t \le \theta$$

Following the definition of completeness, the expected value is set to 0:

$$\mathbb{E}_{\theta}[f(t)] = \int_{0}^{\theta} f(t) \frac{n}{\theta} \left[\frac{1}{\theta} \right]^{n-1} t^{n-1} dt = n\theta^{-n} \int_{0}^{\theta} f(t) t^{n-1} dt = 0$$

Consider now $f(t) = f^+(t) - f^-(t)$,

$$\mathbb{E}_{\theta}[f(t)] \propto \int_{0}^{\theta} [f^{+}(t) - f^{-}(t)] t^{n-1} dt = 0$$

Define now:

$$v^{+}(A) = \int_{A} f^{+}(t)t^{n-1}$$
 $v^{-}(A) = \int_{A} f^{-}(t)t^{n-1}dt$

It follows:

$$v^+(A) = v^-(A) \longleftrightarrow f^+(t) = f^-(t) \longleftrightarrow f(t) = 0$$

Also the slightly weaker property of bounded completeness can be introduced: a family of probability distributions is said to be **boundedly complete** if, for all bounded functions f,

$$\mathbb{E}_p[f(x)] = 0$$
 for all $P \in \mathcal{P}$

implies f(x) = 0 a.e. \mathcal{P} . The following theorem holds:

Theorem 16. Let X be a random variable with distribution $P \in \mathcal{P}$, and let S be a sufficient statistic for P. Then, a necessary and sufficient condition for all similar tests to have Neyman's structure with respect to S is that the family \mathcal{P}^s of distributions of S is boundedly complete.

Theorem 16 is a fundamental theorem allowing statisticians to identify the Neyman's structure of a similar test by verifying the completeness of a family of distributions. In the following, we define and prove another fundamental theorem (Theorem 18), allowing us to identify an UMPU test in exponential families. The proof of this theorem is quite complicated, and only a draft of such a proof will be given. In order to prove this theorem, other theorems and definitions have now to be introduced.

Theorem 17. Let \mathcal{P} be a natural exponential family given by:

$$\tilde{f}_{\eta}(\omega) = exp\{T(\omega)\eta' - \zeta(\eta)\}h(\omega) \qquad \omega \in \Omega$$

1. The random vector T has the following pdf in an exponential family dominated by some measure on $(\mathcal{R}^p, \mathcal{B}^p)$:

$$exp\{t\eta^t - \zeta(\eta)\}g(t)$$
 $t \in \mathcal{R}^p$

where g is a nonnegative Borel function;

2. If η_0 is an interior point of the natural parameter space, then the moment generating function ψ_{η_0} of $\mathcal{P} \circ T^{-1}$ is finite in a neighbourhood of 0 and is given by:

$$\psi_{\eta_0}(t) = exp\{\zeta(\eta_0 + t) - \zeta(\eta_0)\}$$

Furthermore, if f is a Borel function satisfying $\int |f| d\mathcal{P}_{\eta_0} < \infty$, then the function:

$$\int f(\omega)exp\{T(\omega)\eta'\}h(\omega)d\nu(\omega)$$

is infinitely often differentiable in a neighborhood of η_0 and the derivatives can be computed under the integral sign.

Proposition 1. (Generalized Neyman-Pearson's Lemma) Let $f_1, ..., f_{m+1}$ be real-valued functions on \mathbb{R}^p that are integrable with respect to a σ -finite measure ν . For given constants $t_1, ..., t_m$, let T be the class of Borel functions ϕ (from \mathbb{R}^p to [0,1]) satisfying:

$$\int \phi f_i d\nu \le t_i \qquad i = 1, ..., m \tag{4.19}$$

and T_0 be the set of ϕ 's in T satisfying 4.19, with all inequalities replaced by equalities. If there are constants $c_1, ..., c_m$ such that:

$$\phi_{*}(x) = \begin{cases} 1 & f_{m+1}(x) > c_{1}f_{1}(x) + \dots + c_{m}f_{m}(x) \\ 0 & f_{m+1}(x) < c_{1}f_{1}(x) + \dots + c_{m}f_{m}(x) \end{cases}$$
(4.20)

is a member of T_0 , then $\phi_*(x)$ maximizes $\int \phi f_{m+1} d\nu$ over $\phi \in T_0$. If $c_i \ge 0$ for all i, then ϕ_* maximizes $\phi f_{m+1} d\nu$ over $\phi \in T$.

Lemma 4. Let $f_1,...,f_m$ and ν given by Proposition . Then the set:

$$M = \left\{ \int \phi f_1 d\nu, ..., \int \phi f_m d\nu : \phi \text{ is from } \mathcal{R}^p \text{ to } [0, 1] \right\}$$

is closed and convex. If $(t_1, ..., t_m)$ is an interior point of M, then there exist constants $c_1, ..., c_m$ such that the function defined in 4.20 is in T_0 .

Suppose now that the distribution of a r.v. X belongs to a multiparameter exponential family with the following pdf with respect to a σ -finite measure ν :

$$f_{\theta,\omega}(x) = \exp\{\theta Y T x\} + U(x) - \zeta(\theta,\omega)\}$$
(4.21)

where θ is a real-valued parameter, ω is a vector valued parameter, and T (real-valued) and U (vector-valued) are statistics. It can be shown that (Y, U) has the pdf:

$$exp\{\theta t + u\omega' - \zeta(\theta, \omega)\}\$$

with respect to some measure and, given U = u, the conditional distribution of T has the pdf $exp\{\theta t\}$ with respect to some measure ν_u , which also belongs to a natural exponential family. We now introduce and prove a fundamental theorem (see Shao (1999), p. 358- for details).

Theorem 18. Suppose that the distribution of X is in a multiparametric exponential family given by 4.35.

1. For testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, a UMPU test of size α is:

$$\tau_*(T, U) = \begin{cases}
1 & T > c(u) \\
\gamma(u) & T = c(u) \\
0 & T < c(u)
\end{cases}$$
(4.22)

where c(u) and $\gamma(u)$ are Borel functions determined by:

$$\mathbb{E}_{\theta_0}[\tau_*(T, U)|U = u] = \alpha \tag{4.23}$$

for every u, and \mathbb{E}_{θ_0} is the expectation with respect to $f_{\theta_0,\omega}$.

2. For testing two-sided hypotheses:

$$H_0: \theta \le \theta_1 \quad or \quad \theta \ge \theta_0 \qquad vs \qquad H_1: \theta_1 < \theta < \theta_2$$
 (4.24)

a UMPU test of size α is:

$$\tau_{*}(T,U) = \begin{cases} 1 & c_{1}(u) < T < c_{2}(u) \\ \gamma_{i}(u) & T = c_{i}(u), \ i = 1, 2 \\ 0 & T < c_{1} \ or \ T > c_{2} \end{cases}$$

$$(4.25)$$

where $c_i(u)$'s and $\gamma_i(u)$'s are Borel functions determined by:

$$\mathbb{E}_{\theta_1}[\tau_*(T, U)|U = u] = \alpha \tag{4.26}$$

for every u.

3. For testing two-sided hypotheses:

$$H_0: \theta_1 \le \theta \le \theta_2$$
 vs $H_1: \theta < \theta_1 \text{ or } \theta > \theta_2$ (4.27)

a UMPU test of size α is:

$$\tau_*(T, U) = \begin{cases}
1 & T < c_1(u) & \text{or } T > c_2(u) \\
\gamma_i(u) & T = c_i(u) & i = 1, 2 \\
0 & c_1(u) < T < c_2(u)
\end{cases}$$
(4.28)

4. For testing hypotheses

$$H_0: \theta = \theta_0 \qquad vs \qquad H_1: \theta \neq \theta_0 \tag{4.29}$$

a UMPU test of size α is given by 4.28, where $c_i(u)$'s and $\gamma_i(i)$'s are Borel functions determined by 4.23 and:

$$\mathbb{E}_{\theta_0} [\tau_*(T, U) | U = u] = \alpha \mathbb{E}_{\theta_0} (T | U = u) \tag{4.30}$$

for every u.

Proof. Since (T, U) is sufficient for (θ, ω) , we only need to consider tests that are functions of (T, U). Hypotheses in 1-4 are in the form:

$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta_1$

with:

$$\bar{\Theta}_{01} = \{(\theta, \omega) : \theta = \theta_0\} \text{ or } \{(\theta, \omega) : \theta = \theta_i, i = 1, 2\}$$

In any case, U is sufficient and complete for $P \in \bar{\mathcal{P}}$ and, thus, Theorem 16 applies. By Theorem 17, the power function of all tests are continuous and

Lemma 3, applies. Then for points 1-3, we only need to show that τ_* is UMP among all tests τ satisfying 4.23 (for part 1) or 4.26 (for part 2 or 3), with τ_* replaced by τ . For point 4, any unbiased T should satisfy 4.23 with τ_* replaced by τ and:

$$\frac{\partial}{\partial \theta} \mathbb{E}_{\theta,\omega} [\tau(T,U)] = 0 \qquad \theta \in \bar{\Theta}_{01}$$
(4.31)

By Theorem 17, the differentiation can be carried out under the expectation sign. Hence, it can be shown that 4.31 is equivalent to:

$$\mathbb{E}_{\theta,\omega}[\tau(T,U)Y - \alpha T] = 0 \qquad \theta \in \bar{\Theta}_{01}$$
(4.32)

Using the argument in the proof of Theorem 16 it can be shown that 4.32 is equivalent to 4.30 with τ_* replaced by τ . The power function of any test $\tau(T, U)$ is:

$$\pi_{\tau}(\theta,\omega) = \int \left[\int \tau(t,u) dP_{T|U=u}(t) \right] dP_U(u)$$

Thus, it suffices to show that, for every fixed u and $\theta \in \Theta_1$, τ_* maximizes:

$$\int \tau(t,u)dP_{T|U=u}(t)$$

over all τ subject to the given side conditions. Since $P_{T|U=u}$ is in a one-parameter exponential family, the results in points 1 and 3 follow from Theorem (see Theorem 6.3, Shao) by considering τ_* with τ_* given by:

$$\tau_*(X) = \begin{cases} 1 & c_1 < T(X) < c_2 \\ \gamma_i & T(X) = c_i \ i = 1, 2 \\ 0 & T(X) < c_1 \ \text{or} \ T(X) > c_2 \end{cases}$$
(4.33)

To prove the result in point 4, it suffices to show that if f has a pdf given by:

$$f_{\theta}(x) = \exp\{\eta(\theta)T(x) - \xi(\theta)\}h(x) \tag{4.34}$$

and if U is treated as a constant in 4.23, 4.28, 4.30, τ_* in 4.28 is UMP subject to conditions 4.23 and 4.30. We now omit U in the following proof for point 4, which is very similar to the proof of Theorem 6.3 (Shao (1999), p.353).

First, $(\alpha, \alpha \mathbb{E}_{\theta_0}(T))$ is an interior point on the set of points:

$$(\mathbb{E}[\tau(T)], \mathbb{E}[\tau(T)T])$$

as τ ranges over all sets of the form $\tau(T)$. By Lemma 4 and Proposition 1, for testing $\theta = \theta_0$ vs $\theta = \theta_1$, the UMP test is equal to 1 when:

$$(k_1 + k_2 y)e^{\theta_0 y} < C(\theta_0, \theta_1)e^{\theta_1 y} \tag{4.35}$$

where k_i 's and $C(\theta_0, \theta_1)$ are constants. Note that 4.35 is equivalent to:

$$\theta_1 + \theta_2 y < e^{bt}$$

for some constants θ_1 , θ_2 and b. This region is either one-sided or the outside of an interval.

By Theorem 6, a one-sided test has a strictly monotone power function and therefore cannot satisfy 4.30. Thus, this test must have the form 4.28. Since τ_* in 4.28 does not depend on θ_1 , by Lemma 1, it is UMP over all tests satisfying 4.23 and 4.30, in particular the test $\equiv \alpha$. Thus, τ_* is UMPU. Finally, it can be shown that all the c- and $\gamma-$ functions in 1-4 are Borel functions.

We can further comment this theorem. Consider a parametrical model H represented by a full-rank minimal canonical exponential family:

$$\varphi_{\theta,\omega}(x) = \exp\{\theta A(x) + \sum_{i=1}^{m} \omega_i B_i(x) - C(\theta, \omega_1, ..., \omega_m)\}D(x)$$
(4.36)

where the parametrical space contains an open set of R^{m+1} and no linear relationships exist both among $A, B_1, ..., B_m$ and among $\theta, \omega_1, ..., \omega_m$. Let $X_1, ..., X_n$ be i.i.d. r.v. with density function belonging to 4.36. Consider the following statistics:

$$T = \sum_{j=1}^{n} A(X_j)$$

$$U_1 = \sum_{j=1}^{n} B_1(X_j)$$
...
$$U_m = \sum_{j=1}^{n} B_m(X_j)$$

The statistic $S = (T, U_1, ..., U_m)$ is complete and sufficient for the parameter vector $(\theta, \omega_1, ..., \omega_m)$. Fix θ and consider the statistic $U = U_1, ..., U_m$, that is sufficient and complete for the nuisance parameters $\omega = (\omega_1, ..., \omega_m)$. Consider now the hypotheses:

$$H_0: \theta \le \theta_0 \qquad vs \qquad H_1: \theta > \theta_0$$

The test τ_* defined as:

$$\tau_*(t, u) = \begin{cases} 1 & : t > c(u) \\ \gamma(u) & : t = c(u) \\ 0 & : t < c(u) \end{cases}$$
(4.37)

is UMPU at level α whether the functions c(u) and $\gamma(u)$ satisfy:

$$\forall u \in U, E_{\theta}[\tau_*(T, U)|U = u] = \alpha$$

that is a functional equation in τ_* .

As we've seen, the proof of this theorem is quite complicated, but can be informally summed up as it follows: in the case of a family such as 4.36, the power function of a test τ is continue, and, fixed $\theta > \theta_0$ and ω ,

$$\pi_{\tau}(\theta,\omega) = \mathbb{E}_{\theta,\omega}[\tau(s)]$$

$$= \int \int \tau(t,u)\varphi(t,u;\theta,\omega)dtdu$$

$$= \int \int \tau(t,u)\varphi(t|u;\theta)\varphi(u;\theta,\omega)dtdu$$

$$= \int \left[\int \tau(t,u)\varphi(t|u;\theta)dt\right]\varphi(u;\theta,\omega)du$$

and has a maximum with respect to τ if, for each u, the internal integral is maximized. In conclusion, the UMPU test is the uniformly most powerful test in the class of the Neyman's structure family of tests with respect to the statistic U and such a test is τ_* as $\varphi(t|u;\theta)$ belongs to the exponential family. In this way, the Neyman-Pearson's Lemma can be applied, as $\varphi(t|u;\theta)$ does not depend on the nuisance parameter ω . The basic problem of the test defined in Theorem 18 is that such a test cannot be used unless c(u) and $\gamma(u)$ are determined. This problem can be solved in the case that there exists a statistic V = h(T, U) that is a strictly increasing function of T and independent from U in $\theta = \theta_0$. In this case, the test is equivalent to τ' :

$$\tau'(v) = \begin{cases} 1 & : v > c \\ \gamma(u) & : v = c \\ 0 & : v < c \end{cases}$$

$$(4.38)$$

and γ and c are constants such that:

$$\mathbb{E}_{\theta_0}[\tau'(V)] = \alpha$$

and

$$P_{\theta_0}[V>c(u)|U=u]+\gamma(u)P[V=c(u)|U=u]=\alpha$$

and, since V is independent from U,

$$P_{\theta_0}[V > c(u)] + \gamma(u)P[V = c(u)] = \alpha$$

Theorem 18 can be applied in the case of the Binomial distribution functions to give a UMPU test.

Example 7. Let X and Y be independent observations from the binomial distribution with sizes n_1 and n_2 and probabilities p_1 and p_2 respectively, where n_i 's are known and p_i 's are unknown. Let T = Y, U = X + Y, it can be shown that:

$$P(T = t|U = u) = K_u(\theta) \binom{n_1}{u - t} \binom{n_2}{t} e^{\theta t} \mathbb{1}_A(t) \quad u = 0, 1, ..., n_1 + n_2$$

where:

$$A = \{t : t = 0, 1, ..., min\{u, n_2\}, u - t \le n_1\}$$

$$\theta = log \frac{p_2(1 - p_1)}{p_1(1 - p_2)}$$

and:

$$K_u(\theta) = \left[\sum_{t \in A} \binom{n_1}{u-t} \binom{n_2}{t} e^{\theta t}\right]^{-1}$$

In fact, when $u = 0, 1, ..., n_1 + n_2$ and $t \in A$,

$$P(T=t) = \binom{n_2}{t} p_2^t (1-p_2)^{n_2-t}$$

$$P(X = x, T = t) = \binom{n_1}{x} \binom{n_2}{t} p_1^x (1 - p_1)^{n_1 - x} p_2^t (1 - p_2)^{n_2 - t}$$

And, by substituting X = U - T:

$$P(T = t, U = u) = \binom{n_1}{u - t} \binom{n_2}{t} p_1^{u - t} (1 - p_1)^{n_1 - u + t} p_2^t (1 - p_2)^{n_2 - t}$$

and, integrating out T = t,

$$P(U=u) = \sum_{t \in A} {n_1 \choose u-t} {n_2 \choose t} p_1^{u-t} (1-p_1)^{n_1-u+t} p_2^y (1-p_2)^{n_2-t}$$

Then, if $t \in A$,

$$P(T = t|U = u) = \frac{P(T = t, U = u)}{P(U = u)}$$

$$= \frac{\binom{n_1}{u - t} \binom{n_2}{t} \left(\frac{1 - p_1}{p_1}\right)^t \left(\frac{p_2}{1 - p_2}\right)^t}{\sum_{t \in A} \binom{n_1}{u - t} \binom{n_2}{t} \left(\frac{1 - p_1}{p_1}\right)^t \left(\frac{p_2}{1 - p_2}\right)^t}$$

and it follows:

$$P(T = t|U = u) = K_u(\theta) \binom{n_1}{u-t} \binom{n_2}{t} e^{\theta t} \mathbb{1}_A(t) \quad u = 0, 1, ..., n_1 + n_2$$

We now search for a UMPU test of size α for testing:

$$H_0: p_1 \ge p_2 \qquad vs \qquad H_1: p_1 < p_2$$

Since $\theta = log \frac{p_2(1-p_1)}{p_1(1-p_2)}$, the testing problem is equivalent to testing $H_0: \theta \leq 0$ vs $H_1: \theta > 0$. By the previous theorem, the UMPU test is:

$$\tau_*(T, U) = \begin{cases} 1 & T > c(U) \\ \gamma(U) & T = c(U) \\ 0 & T < c(U) \end{cases}$$

where C and U are functions of U such that $\mathbb{E}[\tau_*|U] = \alpha$ when $\theta = 0$ (i.e. $p_1 = p_2$), which can be determined using the conditional distribution of T given U. When $\theta = 0$, the conditional distribution is:

$$P(T = t|U = u) = \binom{n_1 + n_2}{u}^{-1} \binom{n_1}{u - t} \binom{n_2}{t} \mathbb{1}_A(t) \quad u = 0, 1, ..., n_1 + n_2$$

In the previous pages, some of the most important optimality properties of testing statistical hypotheses have been mentioned. Two milestones in this literature are given by the Neyman-Pearson's Lemma for testing simple statistical hypotheses and by the Lehmann and Stein's theorem for testing composite hypotheses. Then, it has been mentioned that, in the case an optimal solution cannot be found, we can narrow our attention to the search of a suboptimal test. Theorem 18 identifies a UMPU test in the case of a multiparameter exponential family and can be applied to the case of the Binomial random variable to give a UMPU (and hence, admissible) test. In the following paragraph, the discussion will be narrowed to a wide class of statistical tests, aimed to compare hypotheses in a 2×2 table. The main references for the next section will be the recent review of Lydersen et al. (2009), and the books of Hirji (2006) and Agresti (2002).

		j		
		1	2	Sum
i	1 2	$n_{11} \\ n_{21}$	n ₁₂ n ₂₂	$\frac{n_{1+}}{n_{2+}}$
	Sum	$n_{\pm 1}$	n_{+2}	N 2+

Figure 4.8: The general count of a 2×2 table.

4.3 The analysis of 2×2 tables

In section 4.3.1, we'll first describe three different experimental designs in the analysis of a 2×2 table, that should be independently treated from a theoretical point of view. In the following sections, we'll concentrate our attention on the case of a 2×2 binomial trial and we'll analyze the main test statistics that have been proposed in the literature (§ 4.3.2). These are: the Pearson's chi-squared statistic, the likelihood ratio statistic, the Fisher's statistic, the Leibermeister's statistic, the Lancaster's mid-P statistic, the z-pooled and the z-unpooled statistics. Subsequently, we'll mention several problems with respect to the derivation of the p-values in these cases (§ 4.3.3). Last (§ 4.3.4) we'll propose some relevant results in the power computation and power comparisons of these tests.

4.3.1 Experimental Designs

A first important point to be focused is that a 2×2 table can collect data drawn from three different experimental designs: i) both-margin fixed design; ii) one-margin fixed design; iii) total-number fixed design (see Figure 4.8).

The case of both-margins fixed design can be illustrated by the famous example of the lady tasting a cup of tea (Fisher (1925)). A woman claims she can taste whether milk or tea was added first to her cup. Consequently, four tea-first and four milk-first cups are presented to her in a randomized order. The woman knows in advance that there are four of each kind of cups and is asked to identify them. Hence, in this experiment, the row sums as well as the column sums are fixed by design (see Figure 4.9).

An example of one-margin fixed design is reported in Lydersen et al. (2009) and concerns the treatment of children with cardiac arrest (Perondi et al. (2004)). The problem considered by these authors is that the attempts to resuscitate a child after cardiac arrest with the administration of an initial dose of epinephrine can be unsuccessful. In particular, it is not clear

	Guess poured first		
Poured first	Milk	Tea	Sum
Milk	3	1	4*
Tea	1	3	4*
Sum	4*	4*	8*

Figure 4.9: Fisher's tea tasting example.

	Survival at 24 h		
Treatment	Yes	No	Sum
High dose	1	33	34*
Standard dose	7	27	34* 68*
Sum	8	60	68*

Figure 4.10: Treatment of children with cardiac arrest. High dose versus standard dose epinephrine Perondi et al. (2004).

whether the next dose of epinephrine should be the same dose or a higher dose. In order to analyze this issue more in depth, a prospective, randomized, double-blind trial study has been performed. Outcomes from 68 children either treated with high-dose epinephrine therapy or with standard-dose epinephrine therapy have been considered. High-dose epinephrine therapy represents a rescue therapy for in-hospital cardiac arrest in children, after failure of an initial, standard dose of epinephrine. The outcome measure considered by the authors was survival rate, 24 hours after the arrest (see Figure 4.10). The design underlying this research project is a one-margin fixed design, since only the row sums (i.e. the number of children that have to the receive the standard vs the experimental treatment) are fixed a priori by the researchers.

Last, it can be the case that only the total number N is fixed by design. Lydersen et al. (2009) report the example of the research of Ritland et al. (2007). These authors studied the effect of the genotype on eyes' exfoliative syndrome by investigating the influence of the CHRNA4 and APOE genotypes on the development of the syndrome. A sample of 88 healthy adults (aged from 50 to 75 years) genotyped for polymorphisms of APOE and CHRNA4 underwent an eye examination including slit-lamp examination and fundus photography, as well as measurements of visual acuity, refraction, IOP and RNFL thickness at the optic disc by optical coherence tomography. The result of this study are reported in Figure 4.11. This study exemplifies the case of a

	XFS		
	Yes	No	Sum
CHRNA4-CC	0	16	16
CHRNA4-TC/TT	15	57	72
Sum	15	73	88*

Figure 4.11: Effect of Genotype on Eyes' Exofoliative Syndrome, Ritland et al. (2007).

total-number fixed design, since only the total number of patients has been fixed before genotype determination and eye examination.

Let's now go back to Figure 4.8; we indicated with \mathbf{n} the observed table, with n_{1+} , n_{2+} the row sums, with n_{+1} , n_{+2} the column sums and with N the total sum. Consider a testing statistical hypotheses problem in a 2×2 table, in which the null hypothesis of independence is compared with an alternative hypothesis of presence of association between two phenomena.

If both the row sums and the column sums are fixed by design and if the null hypothesis of independence holds, the probability model under which the observed table has to be considered is that of the hypergeometric distribution:

$$P(n_{11} = t | n_{+1}, n_{+2}, n_{1+}, n_{2+}) = \frac{\binom{n_{1+}}{t} \binom{n_{2+}}{n_{+1} - t}}{\binom{N}{n_{+1}}}$$

If only the row margins, i.e. n_{1+} and n_{2+} and $N = n_{1+} + n_{2+}$ are fixed by design, the situation is that of a 2×2 binomial trial, where each trial is characterized by an unknown probability of success that can be respectively indicated with p_1 and p_2 . The joint probability distribution of observing the table **n** is given by:

$$P(\mathbf{n}) = \binom{n_{1+}}{n_{11}} p_1^{n_{11}} (1 - p_1)^{n_{1+} - n_{11}} \binom{n_{2+}}{n_{21}} p_2^{n_{21}} (1 - p_2)^{n_{2+} - n_{21}}$$

Last, in the case only the total N of cases is fixed by design, we have four unknown parameters that are represented by the probability cells p_{11} , p_{21} , p_{12} and p_{21} , so that the probability model to be considered is multinomial:

$$P(\mathbf{n}) = \frac{N!}{n_{11}! n_{12}! n_{21}! n_{22}!} p_{11}^{n_{11}} p_{21}^{n_{21}} p_{12}^{n_{12}} p_{22}^{n_{22}}$$

4.3.2 Test statistics

In this section we briefly review the classical test statistics that are used in the analysis of a 2×2 table. Since the next section, we'll consider how

these statistics are applied in order to obtain tests for comparing statistical hypotheses. A test statistic for the analysis of a 2×2 table can be defined as a function of the observations, providing a measure of the observed table's compliance with the null hypothesis of no association. Let \mathbf{n} denote the observed table with marginal sums $\mathbf{n}_+ = (n_{1+}, n_{2+}, n_{+1}, n_{+2})$. In the case of all the margins fixed design, it was shown that the probability that $n_{11} = t$ is given by the hypergeometric distribution, which coincides with the probability of observing the table \mathbf{n} . This is what is expressed by the Fisher's statistic $T_F = N_{11}$ that considers the number of successes in the first sample as a test statistic and where:

$$P(\mathbf{n}|\mathbf{n}_{+}) = p(n_{11}; n_{1+}, n_{2+}, n_{+1}, n_{+2}) = \binom{n_{+1}}{n_{11}} \binom{n_{+2}}{n_{1+} - n_{11}} / \binom{N}{n_{1+}}$$

In 1877, Carl Liebermeister (a statistician from the school of Tubingen), proposed to use the same Fisher's statistic: $T_L = T_F = N_{11}$, but with the following probability function:

$$P(\mathbf{n}|\mathbf{n}_{+}) = p(n_{11}; n_{1+}, n_{2+}, n_{+1}, n_{+2})$$

$$= {\binom{n_{+1}+1}{n_{11}}} {\binom{n_{+2}+1}{n_{1+}+1-n_{11}}} / {\binom{N+2}{n_{1+}+1}}$$

As we shall see, the Liebermeister's test adjusts the p-values of the Fisher's exact test in order to obtain a less conservative test.

If we now consider a null hypothesis H_0 of no association, the estimated expected counts are:

$$m_{ij} = n_{i+} n_{j+} / N$$

The Pearson's chi-squared test statistic T_{Pe} is given by:

$$T_{Pe}(\mathbf{n}) = \sum_{i,j} \frac{(n_{ij} - m_{ij})^2}{m_{ij}} = \frac{N(n_{11}n_{22} - n_{12}n_{21})}{n_{1+}n_{2+}n_{+1}n_{+2}}$$

As it is commonly known, the Pearson's statistic is one of the most used statistics in the applications in a lot of fields, as well as the *likelihood ratio* statistic T_{LR} :

$$T_{LR}(\mathbf{n}) = -2log \frac{L_0}{L_1} = 2\sum_{i,j} n_{i,j}log \left(\frac{n_{ij}}{m_{ij}}\right)$$

Furthermore, in the case of one margin fixed design, a common test statistic is given by the normalized difference between the observed proportions,

z-pooled and z-unpooled. Let $X \sim Bi(n_1, p_1)$ and let $Y \sim Bi(n_2, p_2)$; two estimators for p_1 and p_2 are given by:

$$\hat{p}_1 = \frac{x}{n_1} \qquad \hat{p}_2 = \frac{y}{n_2}$$

where x indicates the number of successes in the sample of size n_1 drawn from X whereas y indicates the number of successes in a sample of size n_2 drawn from Y. It follows:

$$\mathbb{E}[\hat{p}_1] = \frac{1}{n_1} \mathbb{E}[X] = \frac{1}{n_1} n_1 p_1 = p_1$$

$$\mathbb{V}[\hat{p}_1] = \frac{1}{n_1^2} \mathbb{V}[X] = \frac{1}{n_1^2} n_1 p_1 (1 - p_1) = \frac{p_1 (1 - p_1)}{n_1}$$

and

$$\mathbb{E}[\hat{p}_2] = \frac{1}{n_2} \mathbb{E}[Y] = \frac{1}{n_2} n_2 p_2 = p_2$$

$$\mathbb{V}[\hat{p}_2] = \frac{1}{n_2^2} \mathbb{V}[Y] = \frac{1}{n_2^2} n_2 p_2 (1 - p_2) = \frac{p_2 (1 - p_2)}{n_2}$$

Consider now a null hypothesis $H_0: p_1 = p_2 \leftrightarrow p_2 - p_1 = 0$. An estimator for $(p_2 - p_1)$ is given by: $\hat{p_2} - \hat{p_1} = \frac{y}{n_2} - \frac{x}{n_1}$. It follows:

$$\mathbb{E}[\hat{p}_2 - \hat{p}_1] = p_2 - p_1$$

$$\mathbb{V}[\hat{p}_2 - \hat{p}_1] = \mathbb{V}[\hat{p}_1] + \mathbb{V}[\hat{p}_2] - 2Cov(\hat{p}_1, \hat{p}_2)$$

$$= \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}$$

Hence, the standardized estimator for risk differences is given by:

$$\frac{(\hat{p}_2 - \hat{p}_1) - (p_2 - p_1)}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}$$

that, under H_0 , becomes:

$$\frac{\hat{p}_2 - \hat{p}_1}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}$$

There are two ways to estimate the variance at the denominator of the ratio:

1. Unpooled variance estimator:

$$\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}$$

2. Pooled variance estimator:

$$\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)$$

where $\hat{p} = \frac{(x+y)}{n_1+n_2}$. It follows that the z-unpooled statistic (Wald's) is given by:

$$z - unpooled = \frac{\hat{p}_2 - \hat{p}_1}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}$$

$$= \frac{\frac{n_{21}}{n_{2+}} - \frac{n_{11}}{n_{1+}}}{\sqrt{\frac{\frac{n_{11}}{n_{1+}}(1-\frac{n_{11}}{n_{1+}})}{n_{1+}} + \frac{\frac{n_{22}}{n_{2+}}(1-\frac{n_{22}}{n_{2+}})}{n_{2+}}}}$$

$$= \frac{\frac{n_{21}}{n_{2+}} - \frac{n_{11}}{n_{1+}}}{\sqrt{\frac{n_{11}n_{12}}{n_{1+}} + \frac{n_{21}n_{22}}{n_{2+}^3}}}$$

and z-pooled (score) is given by:

$$z - pooled = \frac{(\hat{p}_2 - \hat{p}_1)}{\sqrt{\hat{p}(1 - \hat{p})\frac{n_1 + n_2}{n_1 n_2}}}$$
$$= \frac{\frac{n_{21}}{n_{2+}} - \frac{n_{21}}{n_{2+}}}{\sqrt{\frac{n_{1+}}{N} \cdot \frac{n_{2+}}{N} \left(\frac{1}{n_{1+}} + \frac{1}{n_{2+}}\right)}}$$

4.3.3 Defining and Computing the p-value

A p-value can be defined as the probability of the test statistic T being equal to or more extreme than its value for the observed table (t_{obs}) under the null hypothesis:

$$p-value = P(T \ge t_{obs}|H_0)$$

In general, H_0 is rejected if the p-value does not exceed α , the nominal significance level, fixed a priori by the researcher. The calculated p-value depends on the design of the study, as well as on the value(s) of the unknown parameter(s), or nuisance parameter(s), under H_0 . Note that in a one-margin fixed design on a 2×2 binomial trial we have one nuisance parameter, the common success probability in rows 1 and 2: $p_1 = p_2 = p$. In the total sum fixed design there are two nuisance parameters, the row and column probabilities, that are unknown: p_{1+} and p_{+1} .

A test is said to preserve the test size if the actual significance level does not exceed the nominal significance level, for any value of the nuisance parameter(s). If the actual significance level is lower than α , the test is called *conservative*. Similarly, we define a valid p-value as a statistic p_* such that, under the null hypothesis H_0 :

$$P[p_* \le \alpha | H_0] \le \alpha \qquad \alpha \in [0, 1] \tag{4.39}$$

A statistic that satisfies 4.39 is said a valid p-value because it can be used in the standard way to define a level α test. Consider the test that rejects the null hypothesis if and only if $p_* \leq \alpha$. Hence, under the null hypothesis, $P(\text{reject null}) = P(p_* \leq \alpha) \leq \alpha$; that is, the test so defined is a level α test.

A p-value can be exactly calculated or asymptotically approximated. An exact p-value is the exact probability of observing a table at least as extreme as the observed one, under the null hypothesis. In 2×2 tables this probability typically depends on one or more unknown parameters, such as the common success probability in comparing two binomials in the one-margin fixed design. This obstacle vanishes if we condition on the marginals (observed row and column sums), as these were fixed by design like in the Fisher's tead drinker example. In this case, the conditional probability of a table given the marginals does not depend on any unknown parameters.

We now briefly recall the fundamental Theorem 18. In the present context we narrow our attention to the comparison of the hypotheses $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. In the previous pages it was shown that, given a real-valued statistic T and a vector-valued statistic U, a UMPU test of size α is:

$$\tau_*(T, U) = \begin{cases} 1 & T > c(u) \\ \gamma(u) & T = c(u) \\ 0 & T < c(u) \end{cases}$$

where c(u) and $\gamma(u)$ are Borel functions determined by the α -similarity condition:

$$\mathbb{E}_{\theta_0}[\tau_*(T,U)|U=u] = \alpha$$

for every u, and \mathbb{E}_{θ_0} is the expectation with respect to $f_{\theta_0,\omega}$. This test is admissible, but is not eligible for applications due to the randomization procedure. All the statistical tests for comparing hypotheses on the 2×2 binomial trials can be conceived as non-randomized tests aimed to approximate the UMPU test expressed in Theorem 18. In the following, we'll compare the properties of these test, with respect to the p-values. Ideally, we search a test suitable for applications provided with the following properties:

1. it is a non-randomized test;

- 2. it is a test with valid p-values;
- 3. it is a test with power as close as possible to the power of the UMPU test;

Consider now that the expected value of the UMPU test under the null hypothesis can be developed in the following way:

$$\alpha = \mathbb{E}_{\theta_0}[\tau_*|U=u] = P_{\theta_0}[T>c(u)|U=u] + \gamma(u)P_{\theta_0}[T=c(u)|U=u]$$

Furthermore, since $0 \le \gamma(u) \le 1$, the following inequalities hold:

$$\alpha = \mathbb{E}_{\theta_0} [\tau_* | U = u] = P_{\theta_0} [T > c(u) | U = u] + \gamma(u) P_{\theta_0} [T = c(u) | U = u]$$

$$\leq P_{\theta_0} [T \geq c(u) | U = u] \qquad (\gamma = 1)$$

$$\geq P_{\theta_0} [T > c(u) | U = u] \qquad (\gamma = 0)$$

Following Tocher (1950), who proposed a randomized version of a Fisher's exact test as a most powerful test, we now consider a discrete statistic T = t and we define the following p-value $\hat{\alpha}$ associated to a value T = t:

$$\hat{\alpha} = P_{\theta_0}[T \ge t | U = u]$$

If $\hat{\alpha} < \alpha$, in terms of the statistic T compared to the unknown function c(u), this means: t > c(u), and it follows the decision that we reject H_0 .

Consider two independent binomial r.v.: $X \sim Bi(p_1, n_1)$ and $Y \sim Bi(p_2, n_2)$ and consider the following system of hypotheses:

$$H_0: p_2 \le p_1$$
 vs $H_1: p_2 > p_1$

Consider the statistic U = X + Y that, on the boundary points $p_2 = p_1$, is such that $U \sim Bi(n_1 + n_2, p_2 = p_1 = p)$. We'll now show that $\hat{\alpha} = P[Y \ge y|U = u] = \hat{\alpha}(y, u)$ is a valid p-value. Given the definition of valid p-value, the following inequality has to be shown:

$$P[\hat{\alpha}(y,u) \leq \alpha | U = u] \leq \alpha$$

Proof $\forall u \leq m + n$:

$$\begin{split} A_u &= \{y \in \mathbb{N} : P\big[Y \geq y \big| U = u\big] \leq \alpha\} \subseteq \mathbb{N} \\ y_u &= min\{A_u\} \in A_u \\ A_u &= \{y_u, y_{u+1}, ..., n\} \\ p_u &= P\big[A_u \big| U = u\big] = P\big[Y \geq y_u \big| U = u\big] \leq \alpha \end{split}$$

Furthermore:

$$P[\hat{\alpha} \leq \alpha] = P[\hat{\alpha}(Y, U) \leq \alpha] = \sum_{u=0}^{m+n} P[\hat{\alpha}(Y, U) \leq \alpha | U = u] P(U = u)$$
$$\leq \alpha \sum_{u=0}^{m+n} P(U = u) = \alpha$$

Let's now define the p-value $\tilde{\alpha}$ associated at the value T = t of the statistic and such that:

$$\tilde{\alpha} = P_{\theta_0}[Y > y|U = u]$$

In the case that $\tilde{\alpha} > \alpha$, in terms of the statistic T compared to the unknown function c(u), this means: t < c(u) and we accept H_0 .

Consider two independent binomial r.v.: $X \sim Bi(p_1, n_1)$ and $Y \sim Bi(p_2, n_2)$ and consider the following system of hypotheses:

$$H_0: p_2 \le p_1$$
 vs $H_1: p_2 > p_1$

Consider the statistic U = X + Y that, on the boundary points $p_2 = p_1$, is such that $U \sim Bi(n_1 + n_2, p_2 = p_1 = p)$.

We'll now show that $\tilde{\alpha} = \tilde{\alpha}(y, u) = P[Y > y|U = u] \le \hat{\alpha}$ is not a valid p-value. Proof Fix $\alpha_0 = \tilde{\alpha}(y_0, u_0) \in (0, 1)$, $y_0 \in \mathbb{N}$, $\epsilon_0 = P(Y = y_0|U = u_0) > 0$. Consider the set A_0 such that:

$$A_0 = \{ y \in \mathbb{N} : \tilde{\alpha}(y, u_0) \le \alpha_0 \} = \{ y_0, y_0 + 1, ..., n \}$$

It follows:

$$P[\tilde{\alpha}(Y, u_0) \le \alpha_0 | U = u_0] = P(A_0 | U = u_0) = P(Y \ge y_0 | U = u_0) =$$

$$= P(Y = y_0 | U = u_0) + P(Y > y_0 | U = u_0)$$

$$= \epsilon_0 + \alpha_0 = \alpha_1 > \alpha_0$$

Consider now the values of the sample space that lead to values of the statistic T for which:

- 1. $\hat{\alpha}$ [associated to the value of the statistic T such that $T \geq t$] is bigger or equal to alpha;
- 2. $\tilde{\alpha}$ [associated to the value of the statistic T such that T > t] is less or equal to alpha;

If we now compare the value of the T statistic with the unknown value of the function c(u), it follows that both $t \le c(u)$ and $t \ge c(u)$ (i.e. t = c(u)) and, by Theorem 18, in order to obtain an unbiased most powerful test, a decision should be taken only after an extra-experiment is performed. These values of the sample space define the so-called **randomization region**.

Most of the literature on the 2×2 binomial trial focus on the proposal of **non-randomized** tests which can achieve **the best performance in terms of power**. The Fisher's exact test is the most famous test for comparing hypotheses on the 2×2 binomial trial, and it is a test such that, if $X \sim Bi(n_{1+}, p_1)$ and $Y \sim Bi(n_{2+}, p_2)$, the distribution of the statistic $t = n_{11}$ is hypergeometric. This test is commonly applied in fields such as medicine, biometry and psychology in cases of small sample sizes n_{1+} and n_{2+} . The p-value of the test is calculated as:

$$p_F(n_{11}; n_{+1}, n_{1+}, n_{2+}) = \sum_{t \ge n_{11}} = \frac{\binom{n_{1+}}{t} \binom{n_{2+}}{n_{+1} - t}}{\binom{N}{n_{+1}}}$$

where $0 < n_{+1} < n_{1+} + n_{2+} + 1$. This test rejects H_0 at a nominal level α if:

$$p_F(n_{11}; n_{+1}, n_{1+}, n_{2+}) \le \alpha$$

Consider $T = t_{\text{obs}} = n_{11}$ as a test statistic. The test function of a size α test is defined as:

$$\tau(T) = \begin{cases} 1 & T \ge t_{\alpha} \\ 0 & T < t_{\alpha} \end{cases}$$

Compared with the UMPU test, Fisher's exact test adds a sample point to the reject region (the point that in the UMPU test corresponds to t = c(u)), but it compels the test to have level α , since t_{α} is determined by the α -similarity condition: $\mathbb{E}[\tau(T)] = \alpha$. The p-value is calculated as:

$$p_F(n_{11}; n_{+1}, n_{1+}, n_{2+}) = P_0[T \ge t_{obs}] = \sum_{t \ge n_{11}} = \frac{\binom{n_{1+}}{t} \binom{n_{2+}}{n_{+1} - t}}{\binom{N}{n_{+1}}}$$

where $0 < n_{+1} < n_{1+} + n_{2+} + 1$ and, since the test is of level α , it is a valid p-value. Nevertheless, Fisher's exact test is widely known to be a conservative procedure, i.e. the p-value $p_F(n_{11}; n_{+1}, n_{1+}, n_{2+})$ tends to be too large. Barnard (1989) suggested that this is due to the discreteness of the hypergeometric distribution (i.e. the conditional distribution of X, given $X + Y = n_{+1}$).

A solution that has been proposed in order to obtain a less conservative test is to use the so-called Lancaster's (1961) mid-p test. This test reduces

the conservatorism of the p-value using the following adjusted p-value:

$$p_m = P_0(T > t_{obs}) + \frac{1}{2}P_0(T = t_{obs})$$

Remember that $p_F = P(T \ge t_{obs})$, so that:

$$p_{m} = p_{F} - P_{0}(t = t_{obs}) + \frac{1}{2} [p_{F} - P_{0}(t > t_{obs})]$$

$$= p_{F}(n_{11} + 1) + \frac{1}{2} p_{F} - \frac{1}{2} p_{F}(n_{11} + 1)$$

$$= \frac{p_{F}(n_{11}) + p_{F}(n_{11} + 1)}{2}$$

In other words, the Lancaster's mid-p test, is a non-randomized test that rejects the null hypothesis when $p_m = \frac{p_F(n_{11}) + p_F(n_{11}+1)}{2} \le \alpha$.

We now consider the Leibermeister's test, the p-value of which is calculated as:

$$p_L(n_{11}; n_{+1}, n_{1+}, n_{2+}) = \sum_{s \ge n_{11}+1} \frac{\binom{n_{1+}+1}{s} \binom{n_{2+}+1}{n_{+1}+1-s}}{\binom{N+2}{n_{+1}+1}}$$

This is a test which has similar properties to those of the mid-p test. In particular, following Seneta and Phipps (2001) it can be shown that, under reasonable conditions:

$$p_F(n_{11}+1;n_{+1},n_{1+},n_{2+}) < p_L(n_{11};n_{+1},n_{1+},n_{2+}) < p_F(n_{11};n_{+1},n_{1+},n_{2+})$$

for a integer $n_{11} \in [max(0, n_{+1} - n_{2+}), min(n_{1+}, n_{+1})]$. Consequently, p_L is more suitable than the Fisher's exact p-value in the analysis of a 2×2 binomial trial.

For sake of simplicity, in order to show the previous inequality, we now consider Table 4.12. In the new notation, the inequality that has to be proved is the following:

$$p_F(a+1;z,m,n) < p_L(a;z,m,n) < p_F(a;z,m,n)$$

for a integer a satisfying $a \in [max(0, z - n), min(m, z)]$, where:

$$p_L(a; z, m, n) = \sum_{s \ge a+1} \frac{\binom{m+1}{s} \binom{n+1}{z+1-s}}{\binom{m+n+2}{z+1}}$$
$$= \sum_{r \ge a} \frac{\binom{m+1}{r+1} \binom{n+1}{z-r}}{\binom{m+n+2}{z+1}}$$

	Success	Failure	Total
Sample 1	а	b	m
Sample 2	С	d	n
	Z	V	m+n

Figure 4.12: Contingency Table to show the inequality: $p_F(a+1;z,m,n) < p_L(a;z,m,n) < p_F(a;z,m,n)$.

and:

$$p_F(a;z,m,n) = \sum_{r \ge a} \frac{\binom{m}{r} \binom{n}{z-r}}{\binom{m+n}{z}}$$

We will also use the following substitutions: l = max(0, z - n) and u = min(m, z) for the lower and the upper bounds respectively for a, and we'll write $p_L(a)$, $p_F(a)$ for $p_L(a; z, m, n)$ and $p_F(a; z, m, n)$ respectively. The expressions $p_L(a)$ and $p_F(a)$ have the same number of summands, and we'll separately prove the following two inequalities:

$$p_L(a) < p_F(a) \tag{4.40}$$

and:

$$p_F(a+1) < p_L(a) (4.41)$$

for a = l, l + 1, ..., u. Remember that Hájek and Havránek (1978) have proved the inequality:

$$p_F(a; z, m, n) \ge p_F(a+1; z+1, m+1, n)$$

providing ad > bc. This inequality can be manipulated to give $p_L(a) \le p_F(a)$, providing ad > bc. Nevertheless, Seneta and Phipps (2001) have proved the strict inequality 4.40 without imposing the condition ad > bc. This fundamental result is used to obtain 4.41. In order to prove inequality 4.40 we search which r is large enough to satisfy:

$$\frac{\binom{m+1}{r+1}\binom{n+1}{z-r}}{\binom{m+n+2}{z+1}} < \frac{\binom{m}{r}\binom{n}{z-r}}{\binom{m+n}{z}}$$

i.e.:

$$\frac{(m+1)(n+1)}{(r+1)(n+1-z+r)} < \frac{(m+n+2)(m+n+1)}{(z+1)(m+n+1-z)}$$
(4.42)

The denominator parabola f(x) = (x+1)(n+1-z+x) is strictly positive and strictly increasing for all x where $l \le x \le u$. This ensures that:

$$\frac{(m+1)(n+1)}{(r+1)(n+1-z+r)}$$

decreases as r increases for r = l, l + 1, ..., u. It can be easily shown that 4.42 holds for r = m (when $z \ge m$):

$$\frac{(m+1)(n+1)}{(m+1)(n+1-z+m)} < \frac{(m+n+2)(m+n+1)}{(z+1)(m+n+1-z)}$$
$$(n+1)(z+1) < (m+n+2)(m+n+1)$$

But the previous inequality holds, as (n + 1) < (n + 2 + m) and (z + 1) < (m + n + 1). Moreover, inequality 4.42 holds for r = z (when z < m):

$$\frac{(m+1)(n+1)}{(z+1)(n+1)} < \frac{(m+n+2)(m+n+1)}{(z+1)(m+n+1-z)}$$
$$(m+n+1-z) < (m+n+1)$$

But the previous inequality holds, as (m+1) < (m+n+2) and (m+n+1-z) < (m+n+1). Hence, 4.42 holds for r = min(m, z) = u. Suppose a' is the smallest integer value of $r, l \le r \le u$, for which 4.42 holds. Since:

$$\frac{(m+1)(n+1)}{(r+1)(n+1-z+r)}$$

decreases as r increases for r = l, l + 1, ..., u and since 4.42 holds for r = a', it follows that 4.42 holds for r = a', a' + 1, ..., u. Further, since $p_L(a)$ and $p_F(a)$ have the same number of summands, for each of which 4.42 is satisfied, it follows that 4.40 holds for a = a', a' + 1, ..., u.

To show that 4.40 holds for a = l, l + 1, ..., a' - 1, consider:

$$q_F(a) = 1 - p_F(a) = \sum_{l \le r < a} \frac{\binom{m}{r} \binom{n}{z-r}}{\binom{m+n}{z}}$$
 (4.43)

and:

$$q_{L}(a) = 1 - p_{L}(a) = \sum_{l \leq s < a+1} \frac{\binom{m+1}{s} \binom{n+1}{z+1-s}}{\binom{m+n+2}{z+1}}$$

$$= \sum_{l-1 \leq r < a} \frac{\binom{m+1}{r+1} \binom{n+1}{z-r}}{\binom{m+n+2}{z+1}}$$

$$= \frac{\binom{m+1}{l} \binom{n+1}{z+1-l}}{\binom{m+n+2}{z+1}} + \sum_{l \leq r < a} \frac{\binom{m+1}{r+1} \binom{n+1}{z-r}}{\binom{m+n+2}{z+1}}$$

$$(4.44)$$

We note from 4.43 and 4.44 that $q_L(a)$ has one more positive summand than $q_F(a)$. Recall that a' is the smallest integer r satisfying 4.42, so that:

$$\frac{\binom{m+1}{r+1}\binom{n+1}{z-r}}{\binom{m+n+2}{z+1}} \ge \frac{\binom{m}{r}\binom{n}{z-r}}{\binom{m+n}{z}}$$

for r = a' - 1. Moreover,

$$\frac{\binom{m+1}{r+1}\binom{n+1}{z-r}}{\binom{m+n+2}{z+1}}$$

strictly increases as r decreases, and therefore the remaining corresponding summands of $q_L(a)$ and $q_F(a)$ satisfy 4.42 with the inequality reversed. Adding over these summands gives $q_L(a) > q_F(a)$ and it follows immediately that $p_L(a) < p_F(a)$, thus establishing inequality 4.40 for a = l, l + 1, ..., u.

We now have to prove inequality 4.41: $p_F(a+1) < p_L(a)$; we shall simplify notation by writing $p'_F(\cdot)$ and $p'_L(\cdot)$. Expressions for $p_F(a+1)$ and $p_L(a)$ in terms of $p'_F(\cdot)$ and $p'_L(\cdot)$ can be derived:

$$p_F(a+1) = \sum_{r \ge a+1} \frac{\binom{m}{r} \binom{n}{z-r}}{\binom{m+n}{r}}$$

and, substituting t = z - r,

$$p_F(a+1) = \sum_{z-t \ge a+1} \frac{\binom{m}{z-t} \binom{m}{t}}{\binom{m+n}{z}}$$

$$= 1 - \sum_{t > z-a-1} \frac{\binom{n}{t} \binom{m}{z-t}}{\binom{m+n}{z}}$$

$$= 1 - \sum_{t \ge z-a} \frac{\binom{n}{t} \binom{m}{z-t}}{\binom{m+n}{z}}$$

$$= 1 - p'_F(z-a)$$

Similarly,

$$p_L(a) = \sum_{s \ge a+1} \frac{\binom{m+1}{s} \binom{n+1}{z+1-s}}{\binom{m+n+2}{z+1}}$$
$$= \sum_{r \ge a} \frac{\binom{m+1}{r+1} \binom{n+1}{z-r}}{\binom{m+n+2}{z+1}}$$

Substituting t = z - r

$$p_{L}(a) = \sum_{t \leq z-a} \frac{\binom{m+1}{z-t+1} \binom{n+1}{t}}{\binom{m+n+2}{z+1}}$$

$$= 1 - \sum_{t > z-a} \frac{\binom{n+1}{t} \binom{m+1}{z-t+1}}{\binom{m+n+2}{z+1}}$$

$$= 1 - \sum_{t \geq z-a+1} \frac{\binom{n+1}{t} \binom{m+1}{z-t+1}}{\binom{m+n+2}{z+1}}$$

$$= 1 - p'_{L}(z-a)$$

From 4.42, it follows:

$$p'_L(z-a) < p'_F(z-a)$$

for $(z-a) = l', l'+1, ..., u$, i.e.:
 $p_F(a+1) < p_L(a)$

This establishes inequality 4.41 for a = l, l + 1, ..., u. Together, 4.40 and 4.41 imply that:

$$p_F(a+1) < p_L(a) < p_F(a)$$

Let's now sum up the main results achieved in this section. We've searched for a non-randomized test that can attain the highest level of power under the alternative (i.e. it is the closest test to the UMPU test in terms of power). Fisher's conditional test is unnecessarily conservative, with actual significance level notably less than α . There are several approaches for reducing this conservatism, for instance using adjusted versions of the Fisher's p-values (Liebermeister's test, Lancaster's mid-p test). These tests reduce the conservatorism of the Fisher's procedure (thus achieving more power), but the size of the test may be violated (even if typically not much). For, this approach is called quasi-exact approach.

Another possibility to reduce the conservatorism consists in applying an asymptotic method, like the asymptotic Pearson's chi-squared test. Consider the hypotheses $H_0: p_1 = p_2$ vs $H_1: p_1 \neq p_2$. Let \mathbf{n} denote the observed table with marginal sums $\mathbf{n}_+ = (n_{1+}, n_{2+}, n_{+1}, n_{+2})$. Testing $p_1 = p_2$ is equivalent to test the independence of the classification in the table \mathbf{n} . The independence frequency of each cell is the expected frequency under H_0 . For instance, consider the upper-left cell; the observed frequency is n_{11} and, under $p_1 = p_2$, the expected frequency is:

$$n_{1+}\hat{P} = n_{1+} \frac{n_{11} + n_{21}}{n_{1+} + n_{2+}} = \frac{n_{1+} \cdot n_{+1}}{N}$$

Define $m_{ij} = \frac{n_{i+} \cdot n_{+j}}{N}$; the Pearson's statistic (which has an asymptotic null chi-squared distribution) is given by:

$$T_{Pe}(\mathbf{n}) = \sum_{i,j} \frac{(n_{ij} - m_{ij})^2}{m_{ij}} = \frac{N(n_{11}n_{22} - n_{12}n_{21})}{n_{1+}n_{2+}n_{+1}n_{+2}}$$

However, also this approach may seriously violate test size for small samples. As it is widely known, Pearson's chi-squared statistic and LR statistic approximate the p-value as:

asym p-value =
$$P(\chi_1^2 \ge t_{obs})$$

where χ_1^2 is a chi-squared distribution with one degree of freedom. These asymptotic tests can be used for all designs described above (both-margins fixed design, one-margin fixed design, no-margin fixed design). It has also been proposed to correct the value of the statistic, using the so-called Yates' correction:

$$T_{Pe,CC}(\mathbf{n}) = \sum_{i,j} \frac{(|n_{ij} - m_{ij}| - 1/2)^2}{m_{ij}} = \frac{N(|n_{11}n_{22} - n_{12}n_{21}| - \frac{N}{2})^2}{n_{1+}n_{2+}n_{+1}n_{+2}}$$

The main disadvantage of the asymptotic approach is that it is a rough approximation in cases of small samples. Consequently, a more suitable possibility consists in considering test statistics with known asymptotic distribution function, such as the z-unpooled and the z-pooled and in calculating the $unconditional\ exact$ distribution function. As far as the design of the study is concerned, the unconditional approach represents a more appropriate statistical tool for the analysis of a 2×2 tables in cases of one-margin fixed design. As we've seen, the exact distribution of the Fisher's test is calculated conditioning on both the marginal row and column sums:

$$\mathbf{n}_{+} = (n_{1+}, n_{2+}, n_{+1}, n_{+2})$$

In one-margin fixed designs, it is not totally appropriate to use a double conditioning approach and the unconditional approach assumes that no marginal sums are fixed, save those fixed by design.

However, a noteworthy complication concerning the unconditional p-value is that $P(T \ge t_{obs})$ depends on the unknown nuisance parameter(s) under H_0 (see Basu (1977) for a discussion on this issue). The main methods in order to solve this problem can be summarized as following:

- 1. Plan the experiment in a way such that the probability model interpreting the phenomenon that is being studied depends only upon the parameter of interest and is relatively free of the disturbing nuisance parameter;
- 2. Replace the basic probability model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$, depending on both the parameter of interest $\theta \in \Theta$ and the nuisance parameter $\phi \in \Phi$, with a θ -oriented model $(\mathcal{T}, \mathcal{B}, \mathcal{Z})$, where the family \mathcal{Z} is indexed by θ alone. This can be done by means of a marginalization or conditioning procedure;
- 3. Construct a pivotal quantity involving the sample \mathbf{x} and the parameter of interest θ ;
- 4. Delimit the problem to a smaller class of decision procedures, for instance unbiased estimators, fixed confidence intervals, similar tests, whose average performance characteristics are, at least in part, free of nuisance parameters;
- 5. Use the so-called maximization (or minimax) principle to eliminate the nuisance parameter from the risk function $r_{\delta}(\theta, \phi)$ of the decision procedure δ . The recommendation for the choice δ is then made on the basis of the eliminated risk function:

$$R_{\delta}(\theta) = \sup_{\phi} r_{\delta}(\theta, \phi)$$

In Lehmann (1959), the size of a test in the presence of a nuisance parameter is frequently obtained by means of the maximization principle.

6. Justify the elimination of the nuisance parameter directly from the likelihood function $L(\theta, \phi|x)$ generated by the particular data (ϵ, x) . In this approach, the new likelihood function $L_e(\theta, x)$ is created for a direct comparison of the amount of support that the data provide for various values of θ . A classic example in this case is given by the maximization of the likelihood with the respect of the nuisance parameter ϕ ;

- 7. Substitute the unknown nuisance parameter ϕ , with its estimate $\hat{\phi}$, for instance its likelihood estimation;
- 8. Follow a Bayesian procedure by fixing a *prior*, compute the *posterior* and integrate out the nuisance parameter from the posterior to arrive at the posterior marginal distribution of the parameter of interest;

An example of an unconditional approach to testing statistical hypotheses in the 2×2 binomial trial is given by the test proposed by Suissa and Shuster (1985), that uses the z-unpooled and z-pooled statistics. The derivations proposed by these authors will be developed in the next chapter. Note that this test is implemented by the software StatXact, but it is misleadingly named as Barnard's test, which is not an unconditional test, but uses a more complex algorithm for building the reject region (Barnard (1947)). The Suissa and Shuster (1985)'s test uses the Lehmann (1959)'s procedure of maximization of the null power function over the nuisance parametric space. Hence, the p-value, defined as:

$$P_{0 \le p \le 1}(T \ge t_{obs}; p|H_0)$$

is maximized over all values of p.

The Z-pooled (also called *score statistic*) is given by:

$$Z_p(x,y) = \frac{\hat{p}_2 - \hat{p}_1}{\sqrt{\frac{\hat{p}(1-\hat{p})}{m} + \frac{\hat{p}(1-\hat{p})}{n}}}$$

where $\hat{p}_1 = x/m$, $\hat{p}_2 = y/n$ and $\hat{p} = (x+y)/(m+n)$, the pooled estimate of $p_1 = p_2 = p$. Then:

$$\begin{split} p_P(x,y) &= sup_{0 \leq p \leq 1} P_p(Z_p(X,Y) \geq Z_p(x,y)) \\ &= sup_{0 \leq p \leq 1} \sum_{(a,b) \in R_P(x,y)} Bi(a;m,p) Bi(b;n,p) \end{split}$$

where $R_P(x,y) = \{(a,b) : (a,b) \in \mathcal{X} \text{ and } Z_p(a,b) \geq Z_p(x,y)\}.$ The Z-unpooled statistic is given by:

$$Z_u(x,y) = \frac{\hat{p}_2 - \hat{p}_1}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{m} + \frac{\hat{p}_2(1-\hat{p}_2)}{n}}}$$

where $\hat{p}_1 = x/m$, $\hat{p}_2 = y/n$ and \hat{p}_1 and \hat{p}_2 are the unpooled estimate of $p_1 = p_2 = p$. Hence:

$$p_{U}(x,y) = \sup_{0 \le p \le 1} P_{u}(Z_{p}(X,Y) \ge Z_{u}(x,y))$$
$$= \sup_{0 \le p \le 1} \sum_{(a,b) \in R_{U}(x,y)} Bi(a;m,p)Bi(b;n,p)$$

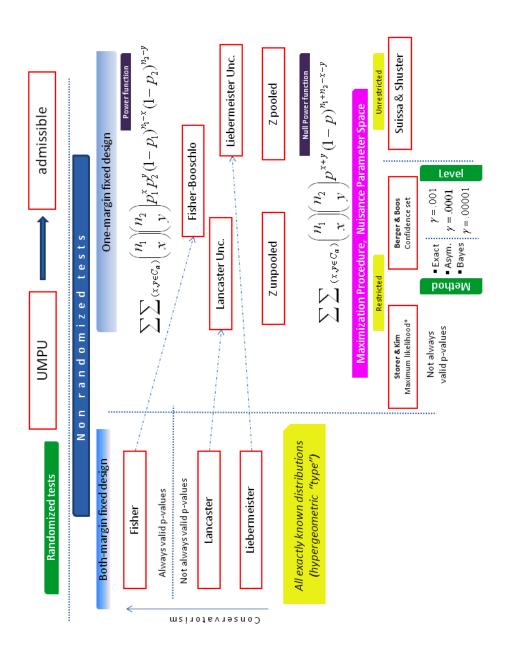


Figure 4.13: General diagram of testing statistical hypotheses on the 2×2 binomial trial.

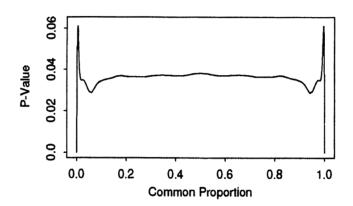


Figure 4.14: Exact p-values for the 2×2 table using the Chi-squared statistic: $Z^2 = \frac{(\hat{p}_2 - \hat{p}_1)}{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}$. Calculations are from independent binomial distributions with common proportion p. Note that the maximum is achieved for values of the parameter that are highly unlikely in light of the observations.

where $R_U(x, y) = \{(a, b) : (a, b) \in \mathcal{X} \text{ and } Z_u(a, b) \ge Z_u(x, y)\}.$

Another possibility is given by the so-called Boschloo (1970) test. Assume $p_1 = p_2 = p$.

$$\begin{aligned} p_B(x,y) &= sup_{0 \leq p \leq 1} P_f(p_F(X,Y) \geq p_F(x,y)) \\ &= sup_{0 \leq p \leq 1} \sum_{(a,b) \in R_B(x,y)} Bi(a;m,p) Bi(b;n,p) \end{aligned}$$

where $R_B(x,y) = \{(a,b) : (a,b) \in \mathcal{X} \text{ and } p_F(a,b) \ge p_F(x,y)\}$. Here, Fisher's p-value is used as the test statistic, not the p-value.

Nevertheless, the procedure of maximizing the null power function over the nuisance parameter space can lead to values of the nuisance parameter that are highly unlikely in the light of the observations (see Figure 4.14 for an example on the chi-squared statistic).

Such a drawback can be reduced by using the so-called *Berger and Boos* procedure (Berger and Boos (1994)). This procedure narrows the set of values in the domain of parameter value p, by considering a confidence set before taking the maximum:

$$\max_{p \in C_{\gamma}} P(T \ge t_{obs}; p) + \gamma$$

where C_{γ} is a $100(1-\gamma)$ per cent confidence interval for p. Normally, γ is taken to be very small, for instance 0.001. Consequently, the p-value of the Confidence-Interval Modified Boschloo Test can be defined in the following

way. Fix $\gamma, 0 \le \gamma \le 1$:

$$\begin{split} p_{B_c}(x,y) &= sup_{p \in C_{\gamma}} P_p(p_F(X,Y) \leq p_F(x,y)) + \gamma \\ &= sup_{p \in C_{\gamma}} \sum_{(a,b) \in R_B(x,y)} Bi(a;m,p)Bi(b;n,p) + \gamma \end{split}$$

where $R_B(x,y)$ is the same as in definition of the Boschloo's statistic and C_{γ} is a $100(1-\gamma)\%$ confidence interval for p calculated from the data (x,y) and assuming $p_1 = p_2 = p$. Berger and Boos (1994) have shown that this modification of the usual definition of a p-value yields a valid p-value.

Lemma 5. Let p_{γ} be given by:

$$p_{\gamma} = \sup_{\theta \in C_{\gamma}} p(\theta) + \gamma$$

and suppose that $p(\theta)$ is a valid p-value for any assumed known value of θ . Let C_{γ} satisfy: $P(\theta \in C_{\gamma}) \ge 1 - \gamma$ if the null hypothesis is true. Then p_{γ} is a valid p-value.

Proof. Suppose that the null hypothesis is true. Denote the true and unknown θ by θ_0 .

• If $\gamma > \alpha$, then because p_{γ} is never smaller than γ ,

$$P(p_{\gamma} \le \alpha) = 0 \le \alpha$$

• If $\gamma \leq \alpha$

$$P(p_{\gamma} \le \alpha) = P(p_{\gamma} \le \alpha, \theta_0 \in C_{\gamma}) + P(p_{\gamma} \le \alpha, \theta_0 \in \bar{C}_{\gamma})$$

Since $\sup_{\theta \in C_{\gamma}} p(\theta) \ge p(\theta_0)$ when $\theta_0 \in C_{\gamma}$, we have:

$$P(p_{\gamma} \le \alpha) \le P(p(\theta_0) + \gamma \le \alpha, \theta_0 \in C_{\gamma}) + P(\theta_0 \in \bar{C}_{\gamma})$$

$$\le P(p(\theta_0) \le \alpha - \gamma) + \gamma$$

$$\le \alpha - \gamma + \gamma = \alpha$$

In alternative to the use of a maximization procedure over a confidence set, it has also been proposed to consider the *maximum likelihood estimate* of p (Storer and Kim (1990)). The main problem of this approach is that the p-value is typically not valid (Berger and Boos, 1994).

We can now conclude this section analyzing Figure 4.13 that sums up the main results discussed above. The test function defined in Theorem 18

defines a level α optimum test among unbiased tests. From an applicative point of view, the disadvantage of this test is that it is a randomized test (very unsuitable for applied research). Hence, other non-randomized test functions have been proposed in the literature. The major challenge is to find a non-randomized test that is as close as possible to the UMPU test in terms of powers. As we've seen, this problem cannot be definitely solved due to the discreteness of the test statistics. Fisher's exact test represented the milestone in this search for a best test. The main drawback of this test is that it is too conservative. We've seen that this problem has been faced by two other conditional tests, proposed by Liebermeister (1877) and Lancaster (1961). Both the Lancaster's test and the Liebermeister's test use a Fisher's modified p-value, obtaining a less conservative test but with not always valid p-values. Hence, the problem of the conservatorism of the Fisher's exact test cannot be definitely solved only considering conditional tests.

An alternative approach, that was not taken into account until few decades ago due to computational problems, consists in changing the test statistic, considering for instance the z-pooled (score) and z-unpooled (Wald's) statistics, with known asymptotic distribution, but unknown exact distribution. The disadvantage of this approach is that the null power function depends on an unknown nuisance parameter (the common probability of success) that has to be eliminated in order to calculate the p-values. The main elimination technique suggested by the literature consists in maximizing the null power function over the domain of the nuisance parameter (Lehmann (1959)). This approach can also be used considering the critical regions of the Fisher, Lancaster and Liebermeister tests, thus obtaining the so-called Fisher-Boschloo test, Lancaster unconditional test and Liebermeister unconditional test. The main problem of the maximization approach, is that the maximum can be achieved for values of the unknown common success probability that are very atypical in applications. For, Berger and Boos (1994) proposed to restrict the maximization procedure over a confidence set for the nuisance parameter. These authors demonstrated that the p-values calculated with this procedure are valid. Nevertheless, at the current state of the art, neither the methods for the construction of the confidence interval, nor the levels of confidence have been yet compared.

4.3.4 Comparing the tests

The issue of the conservativeness of the Fisher's exact test and, more in general, of the conditional tests is commonly known. The research of less conservative approaches in the analysis of the 2×2 binomial trial has been also motivated by the wide range of applications of statistical methodologies.

As it was mentioned, a first approach in order to reduce the conservativeness of the Fisher's exact test has been given by the mid-p-value approach. However, the problem of such an approach is that the conditional mid-p test does not always preserve the size of the test. Note that, as we've seen, the test based on the mid-p-value is not computationally more intensive than the Fisher's exact test, as it only requires a correction to the Fisher's exact test. A systematic comparison of the Fisher's exact test, mid-p test and asymptotic chi-squared test has been conducted by Hirji et al. (1991). These authors have shown that, for both one-sided and two-sided tests, and for a wide range of sample sizes, the actual significance level of the mid-p test tends to be closer to the nominal level as compared with various classical tests. Moreover, Hirji (2006) has shown that the performance of a conditional mid-p test resembles that of an unconditional test.

From an historical point of view, before than the Lancaster's proposal of the mid-p tests, the main approach to the analysis of 2×2 tables was that of using an asymptotic approximation. Cochran (1954) has shown that an asymptotic chi-squared test is inaccurate in a 2×2 table if any of the expected counts are less than five $(m_{ij} \leq 5)$. As it was stated in the introduction of this chapter, this criterion is still widely used in the applications. In the previous lines, it has also been introduced the correction proposed by Yates for the chi-squared test. Note that such a correction assumes that the marginal sums $\mathbf{n}_+ = (n_{1+}, n_{2+}, n_{+1}, n_{+2})$ are fixed, and in this sense the use of the Yates' correction in the Pearson's chi-squared test is similar to a conditional approach. However, Haviland (1990) has shown that the use of the Yates' correction does not solve the problem of the conservatorism. Indeed, this correction reduces the numerical value of the test statistic, and consequently it reduces the power of the test, making it overly conservative.

The use of unconditional rather than conditional tests can be recommended, as the former are generally more powerful than the latter. Boschloo (1970) originally showed that the Fisher-Boschloo's test is uniformly more powerful than the Fisher's exact test, since its reject region always includes that of the Fisher's exact test. Seneta and Phipps (2001) show that, while the p-values of the Fisher-Boschloo test are valid, both the unconditional Lieber-meister's and Lancaster's unconditional procedures do not preserve the test size (see Figure 4.15).

Authors show that, for other choices of small m and n and for a range of values of p, the exceedance of the nominal level is consistently closer to α when the Liebermeister unconditional procedure is used. The procedures are judged by closeness of the step function to the diagonal line. A test is level α (and conservative) for those α for which the step function is below the diagonal and the test is anti-conservative when the step function is above

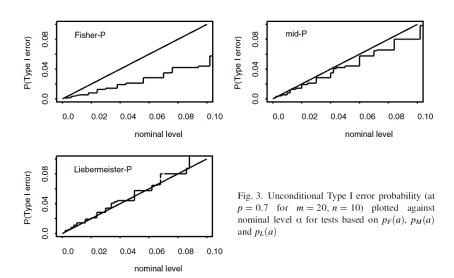


Figure 4.15: At p=0.7, m=20, n=10, the p-values of the Fisher-Boschloo test are valid, whereas both the unconditional Liebermeister's and Lancaster's unconditional procedures (respectively called Liebermeister-P and mid-P) do not preserve the test size

the diagonal. The first frame of Figure 4.15 shows that, although the Fisher-Boschloo procedure is strictly level α (as is well known theoretically) there is a price to pay. The Type I error is always far below and often half the value of α , as observed by Boschloo (1970), in contrast with the mid-P and Liebermeister unconditional procedures.

Let's now consider the problem of maximizing the null power function under unrestricted / restricted parameter space. The use of the Berger and Boos' procedure has been studied for unconditional Pearson's and Fisher-Boschloo's statistics (Mehrotra et al. (2003)); these authors found that this procedure gives a slight improvement in test power. The point is that this result has been obtained only for γ fixed as 0.001. Normally, in the application of this technique, γ is fixed either at 0.001 or 0.0001 (Lydersen et al. (2009)) and no research has been conducted to find optimal values of γ . This issue will be further considered and deepened in the next chapters.

Berger (1994) studied the power function of six unconditional tests for comparing binomial proportions. Authors report that, although no test is uniformly better than all the rest in all situations, Boschloo's (1970) test, with confidence interval modification of Berger and Boos (1994), generally has the best properties. The Suissa and Shuster (1985) test, using the pooled variance estimate and the confidence interval modification of Berger and Boos (1994), also has generally good power properties. Fisher's exact test shows

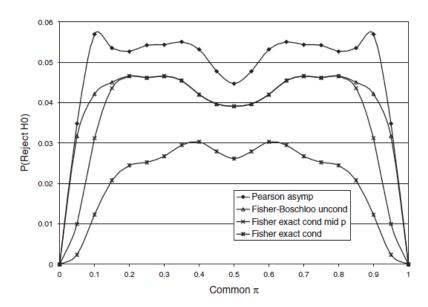


Figure 4.16: Actual significance level, two binomials (one-margin fixed design), row sums 34, $\alpha = 0.05$, Lydersen *et al.* (2009), p. 1169.

to reach poor unconditional power and is not recommended for applications.

Lydersen et al. (2009) compared two groups with fixed row sums n_{1+} = n_{2+} = 34 using different test statistics: the Pearson's asymptotic statistic, the Fisher-Boschloo's unconditional statistic, the Fisher's exact mid-p and the Fisher's exact conditional statistic. The study of the conservativeness of the tests based on these test statistics is shown in Figure 4.16. It appears that the Fisher's exact test is far more conservative than the Fisher-Boschloo's unconditional test that, by definition, preserves the test size.

Moreover, authors compared the power of these tests, considered as a function of the sample size for two equal groups with success probabilities $\pi_1 = 0.03$ and $\pi_2 = 0.2$ and with nominal significance level α fixed at 0.05 (see Figure 4.17).

It has also been showed that the conservatism of conditional tests is more pronounced in balanced designs than in unbalanced design (Duchateau and Janssen (1999)). Sample size reduction generally provokes a loosing of power in conditional mid-p tests as well as in unconditional tests.

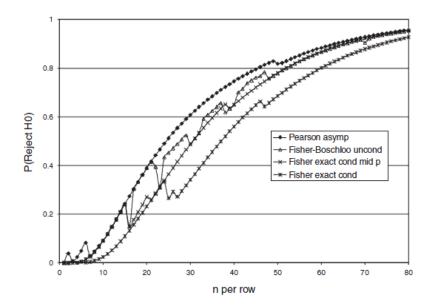


Figure 4.17: Power, two binomials (one margin fixed design), equal row sums, $\pi_1 = 0.03$, $\pi_2 = 0.2$, $\alpha = 0.05$ Lydersen *et al.* (2009), p. 1169.

4.4 Unbiased Estimation of Risk Differences in the Potential Outcomes Framework

In this section we consider the problem of finding an unbiased estimator for risk differences in the potential outcomes framework (the main reference for this section will be Borgoni *et al.* (2011)). We focus on this issue since we search for a non-randomized test with best powerful properties for testing statistical hypotheses in the potential outcomes framework.

Consider two dichotomous variables A (a treatment) and Y (an outcome). We aim to measure the causal relationship between A and Y. Various measures have been proposed in the literature, as risk differences, relative risk, odds ratio, and were briefly reviewed in the second chapter. In the present context, we will first consider associational risks difference, that can be defined as:

$$d = \bar{Y}_1 - \bar{Y}_0 = P(Y = 1|A = 1) - P(Y = 1|A = 0)$$
(4.45)

Consider a finite population U such that it can be divided into two subgroups E (A = 1, treated, or experimental group) of size N and C (A = 0, untreated or control group) of size M. The two probabilities in 4.45 measure the risks in the populations E and C, respectively. We consider now the problem of the estimation of the associative parameter in 4.45. At this point,

the assumptions in order to draw causal inference from our data are not yet considered; as a consequence, our results will only be given an associative interpretation. For these purposes, a sample (without replacement) of size t = n + m is selected from $U = E \cup C$;

Let s_1 be a sample of n units drawn from E and let s_0 be a sample of m units drawn from C and let $s = s_1 \cup s_0$ be the union of two independent samples. Each sample of size n from the population E has a probability of $1/\binom{N}{n}$ to be selected whereas each sample of size m from the population C has a probability of $1/\binom{M}{m}$ to be selected. From independence, it follows that $p(s) = 1/\binom{N}{n}\binom{M}{m}$.

An unbiased estimator for d is given by:

$$\hat{d} = \sum_{i \in s_1} \frac{y_i}{n} - \sum_{j \in s_0} \frac{y_j}{m} = \hat{y_1} - \hat{y_0}$$

where \hat{y}_1 and \hat{y}_0 are the usual estimates of the means \bar{Y}_1 and \bar{Y}_0 , respectively. The correspondent estimator \hat{D} is unbiased and:

$$Var(\hat{d}) = \frac{\hat{y_1}}{(1 - \hat{y_1})} \frac{N - n}{N} + \frac{\hat{y_0}}{(1 - \hat{y_0})} \frac{M - m}{M}$$

represents an unbiased estimate of the variance of \hat{D} :

$$Var(\hat{D}) = \frac{\hat{Y}_1}{(1 - \hat{Y}_1)} \frac{N - n}{N} + \frac{\hat{Y}_0}{(1 - \hat{Y}_0)} \frac{M - m}{M}$$

Let Y(1) and Y(0) be the potential outcomes of the outcome variable Y. The **causal risk difference** can be defined as:

$$\delta = P(Y(1) = 1) - P(Y(0) = 1)$$

In general, the causal risk difference is not equal to the associative risks difference (for the presence of the selection bias). The two conditions that have to be met in order to give a causal interpretation to associative risks difference are, as we've seen, the consistency condition:

$$\forall a = 0.1 \quad A = a \Rightarrow Y(a) = Y$$

and exchangeability:

$$\forall a = 0, 1 \quad Y(a) \coprod A$$

Under exchangeability:

$$P(Y(a) = 1) = P(Y(a) = 1|A = a)$$

and, under consistency:

$$P(Y(a) = 1|A = a) = P(Y = 1|A = a)$$

so that:

$$P(Y(a) = 1) = P(Y = 1|A = a)$$

and then:

$$\delta = P(Y(1) = 1) - P(Y(0) = 1) = P(Y = 1|A = 1) - P(Y = 1|A = 0) = d$$

It follows that, under consistency and exchangeability, the causal risk difference equals the associational risk difference. Nevertheless, the exchangeability condition is rarely met in observational designs. Hence, we introduce a covariate X, and exchangeability is assumed only within the strata defined by X:

$$\forall a = 0, 1 \quad Y(a) \coprod A | X$$

Causal risk difference under conditional exchangeability is given by:

$$d_x = \bar{Y}_{1x} - \bar{Y}_{0x} = P(Y = 1|A = 1, X = h) - P(Y = 1|A = 0, X = h)$$

and can be generalized to the weighted mean:

$$d = \sum_{h=1}^{H} w_h d_h = \sum_{h=1}^{H} w_h (\bar{Y}_{1h} - \bar{Y}_{0h})$$
(4.46)

where

$$w_h = P(X = h) = \frac{N_h + M_h}{N + M}$$

represents the stratum weight and N_h is the number of those units having X = 1 while M_h is the number of those units having X = 0.

Borgoni *et al.* (2011) prove that the parameter in 4.46 is equal to the causal risk difference, if the assumptions of consistency and conditional exchangeability hold. Under conditional exchangeability:

$$P(Y(a)|X = h) = P(Y(a)|A = a, X = h)$$

and, under consistency:

$$P(Y(a)|A = a, X = h) = P(Y = 1|A = a, X = h)$$

so that,

$$P(Y(a) = 1|X = h) = P(Y = 1|A = a, X = h)$$

and then:

$$\delta = P(Y(1) = 1) - P(Y(0) = 1)$$

$$= \sum_{h=1}^{H} P(X = h) [P(Y(1)|A = 1, X = h) - P(Y(0)|A = 1, X = h)]$$

$$= \sum_{h=1}^{H} P(X = h) [P(Y = 1|A = 1, X = h) - P(Y = 0|A = 1, X = h)] = d$$

The plug-in estimator of 4.46 becomes:

$$\hat{D} = \sum_{h=1}^{H} w_h \hat{D}_h = \sum_{h=1}^{H} w_h (\hat{\bar{Y}}_{1h} - \hat{\bar{Y}}_{0h})$$
(4.47)

It can be proved that the estimator 4.47 is unbiased and has variance:

$$Var(\hat{D}) = \sum_{h=1}^{H} w_h^2 \left[\frac{\sigma_{1h}^2}{N_h - 1} \left(\frac{N_h}{n_h} - 1 \right) + \frac{\sigma_{0h}^2}{M_h - 1} \left(\frac{M_h}{m_h} - 1 \right) \right]$$
(4.48)

with

$$\sigma_{1h}^2 = \bar{Y}_{1h} (1 - \bar{Y}_{1h})$$

$$\sigma_{0h}^2 = \bar{Y}_{0h} (1 - \bar{Y}_{0h})$$

It has also been derived an optimal allocation of sample sizes, by finding the minimum of 4.48 subject to the constraint:

$$\sum_{h=1}^{H} (n_h + m_h) = t$$

where t represents the total sample size. For this purpose, the method of Lagrange multipliers provides the optimal sample size:

$$n_{h} = \frac{w_{h}\sigma_{1h}}{\sum_{k=1}^{H} w_{k}(\sigma_{1k} + \sigma_{0k})} t$$

$$m_{h} = \frac{w_{h}\sigma_{0h}}{\sum_{k=1}^{H} w_{k}(\sigma_{1k} + \sigma_{0k})} t$$

$4.4.\,$ UNBIASED ESTIMATION OF RISK DIFFERENCES IN THE POTENTIAL OUTCOMES FRAMEWORK

In the following, we'll consider the following hypotheses:

$$H_0: d \ge 0$$
 vs $H_1: d < 0$

In Chapter 5, an unconditional method for testing these hypotheses, originally proposed by Suissa and Shuster (1985), will be reviewed. We'll focus on both the advantages of this method and the computational limitations of the Fortran algorithm originally developed by these authors.

Chapter 5

An Unconditional Approach to the Analysis of the 2×2 Binomial Trials

5.1 Overview

In the previous chapter it has been shown that it is possible to draw inference from the analysis of a 2×2 binomial trial by conditioning the distribution of the test statistic (under the null hypothesis) on an observable statistic, so that this distribution does not depend on nuisance parameter(s). This is what we do when we use the Fisher's exact test. Alternatively, it is possible to use the asymptotic theory and to derive an approximate p-value for the test statistic. The main problem of the conditional approach is that, in most cases, the conditional test is conservative, and loses power. It has been suggested that a possible solution to the problem of conservativeness is that of using a randomized statistical test (e.g. Bishop $et\ al.\ (1975)$). The main problem of the asymptotic approach is that it constitutes a good approximation only in the case of large sample sizes.

Furthermore, as recently reviewed in Hirji (2006), an unconditional approach to the exact analysis of the 2×2 binomial trial has been proposed. The main problem of this approach is that, normally, the null power function depends on an unknown nuisance parameter and consequently the p-values cannot be calculated. Many solutions to solve this problem have been put forward (see Basu (1977) for a review). The most popular *elimination method* in the applications is given by the maximization of the null power function over the domain of the nuisance parameter (Lehmann, 1959). Using this method, the attained size of the test is not the nominal one (i.e. that externally fixed

by the researcher), but the conservatism of the test is consistently reduced (Lehmann and Romano (2005)).

Nevertheless, the unconditional methods for testing statistical hypotheses can raise many mathematical and computational problems in the determination of the distribution of the test statistic under the null hypothesis. This practical trouble contrasts with the importance of unconditional methods in the applications, as underlined by Suissa and Shuster (1985):

A strong motivation of unconditional methods over the admittedly more popular conditional methods for this problem is the ease of explanation of results. An unconditional p-value of 0.038 means that if the study was replicated in a target population where the null hypothesis is true, there is at most 3.8 per cent chance of finding evidence "at least convincing" as that observed. The conditional inference clouds this very clear picture by conditioning on the total number of successes and producing conditional p-values which non-statisticians have significant difficulty in correctly interpreting. [Suissa and Shuster (1985), p. 318]

From the next paragraph, an unconditional test for the analysis of the 2×2 binomial trial will be developed and deepen (Suissa and Shuster (1985)).

5.2 The Null Power Function

Let $\varphi_X(\theta,\omega)$ be a parametrical model for a r.v. X and consider the following hypotheses testing problem:

$$H_0: \theta \in \Theta_0$$
 $H_1: \theta \in \Theta_1$

Since the probability density function (pdf) depends from θ (parameter of interest) and also from ω , ω is a **nuisance parameter**. The power function π_{τ} of a test $\tau: \mathbb{X}^n \to [0,1]$ is given by:

$$\pi_{\tau}(\theta,\omega):\Theta\to[0,1]$$

$$\pi_{\tau}(\theta,\omega)=\int_{\mathbb{X}^n}\tau(x)\varphi(x;\theta,\omega)dx=\mathbb{E}_{\theta,\omega}[\tau(X_1,...,X_n)]$$

The attained size of the test (p-value) can be defined as:

$$\pi_{\tau}(\theta_0,\omega) = \int_{\mathbb{X}^n} \tau(x) \varphi(x;\theta_0,\omega) dx = \mathbb{E}_{\theta_0,\omega} [\tau(X_1,...,X_n)]$$

and, fixed $\theta_0 \in \Theta_0$, the power function depends on the nuisance parameter ω . The test proposed in 1985 by Samy Suissa and Jonathan Shuster in order to testing statistical hypotheses for the 2×2 binomial trial applies to this problem the maximization method proposed in Lehmann (1959) (see also Lehmann and Romano (2005)).

Consider two independent r.v. X and Y such that $X \sim Bi(n, p_1)$ and $Y \sim Bi(n, p_2)$ and consider the following hypotheses testing problem:

$$H_0: p_2 = p_1$$
 vs $H_1: p_2 > p_1$

Remember the Wald's statistic Z_u :

$$Z_u = \frac{(\hat{p}_2 - \hat{p}_1)}{\sqrt{\frac{(\hat{p}_2\hat{q}_2 + \hat{p}_1\hat{q}_1)}{n}}}$$

which is a Z statistic with unpooled variance estimator, where $\hat{p}_1 = \frac{x}{n} = 1 - \hat{q}_1$ and $\hat{p}_2 = \frac{y}{n} = 1 - \hat{q}_2$. The *test function* can be expressed as:

$$\tau: \mathbb{X}^n \to [0,1]$$

$$\tau: \mathbb{X}^n \to \begin{cases} 1 & \text{when } \left\{ (x,y) : y - x > z_u \sqrt{\frac{y(n-y) + x(n-x)}{n}} \right\} \\ 0 & \text{when } \left\{ (x,y) : y - x \le z_u \sqrt{\frac{y(n-y) + x(n-x)}{n}} \right\} \end{cases}$$

If z_u is the value of the Z_u statistic that we set as a critical value), then the set of the outcomes as extremes or more extremes than the observed one for the one-sided alternative hypothesis is given by:

$$C = \left\{ (x,y) : \frac{y/n - x/n}{\sqrt{\frac{y/n(1-y/n) + x/n(1-x/n)}{n}}} > z_u \right\}$$

$$C = \left\{ (x,y) : \frac{y - x}{\sqrt{\frac{y(n-y) + x(n-x)}{n}}} > z_u \right\}$$
 (5.1)

and the power function:

$$\pi_{\tau}(p_{1}, p_{2}) = \langle \tau, \varphi_{p_{1}, p_{2}} \rangle = \int_{\mathbb{X}^{n}} \tau(x) \varphi_{p_{1}, p_{2}}(x) dx$$

$$\pi_{\tau}(p_{1}, p_{2}) = \sum \sum_{(x, y) \in C} 1 \cdot \varphi_{p_{1}, p_{2}}(x, y)$$

$$\varphi_{p_{1}}(x) = \binom{n}{x} p_{1}^{x} \cdot (1 - p_{1})^{n - x}$$

$$\varphi_{p_{2}}(y) = \binom{n}{y} p_{2}^{y} \cdot (1 - p_{2})^{n - y}$$

$$\varphi_{p_{1}, p_{2}}(x, y) = \binom{n}{x} \binom{n}{y} p_{1}^{x} \cdot (1 - p_{1})^{n - x} p_{2}^{y} \cdot (1 - p_{2})^{n - y}$$

so that the attained power function of the test is given by:

$$\pi(p_1, p_2) = \sum_{(x,y)\in C} \binom{n}{x} p_1^x (1 - p_1)^{n-x} \binom{n}{y} p_2^y (1 - p_2)^{n-y}$$
 (5.2)

and, under $H_0: p_1 = p_2$ (= p), the **attained null power function** is given by:

$$\pi(p) = \sum_{(x,y)\in C} {n \choose x} p^{x+y} {n \choose y} (1-p)^{2n-x-y}$$
 (5.3)

that is a function of the unknown nuisance parameter p. Following Lehmann (1959), the **attained size** of Z_u on the basis of z_u is given by $\sup_p \{\pi_\tau(p)\}, 0 .$

The function $\pi_{\tau}(p)$ can be reduced to a single summation:

$$(y-x) > z_u \sqrt{\frac{y(n-y) + x(n-x)}{n}}$$
$$y^2 \left(1 + \frac{z_u^2}{n}\right) - y\left(2x + z_u^2\right) + \left(1 + \frac{z_u^2}{n}\right)x^2 - z_u^2x > 0$$

Consider now the following substitutions:

$$a = \left(1 + \frac{z_u^2}{n}\right)$$
 $b = (2x + z_u^2)$ $c = ax^2 - z_u^2x$

and thus:

$$ay^2 - by + c > 0$$

and so we have:

$$y > h(x) = \frac{b + \sqrt{b^2 - 4ac}}{2a}$$

The critical region C can be re-written as:

$$C = \{(x,y) : y \ge h(x), \quad x = 0(1)...n, \quad y = 0(1)...n\}$$

In the case h(x) = 0, we have:

$$h(x) = \left\{ \frac{b + \sqrt{b^2 - 4ac}}{2a} \right\}$$
$$x = \frac{nz_u^2}{n + z_u^2}$$

and 5.2 can be rewritten as:

$$\pi(p) = \sum_{x=0}^{v} \sum_{y>h(x)} {n \choose x} p^{x+y} {n \choose y} (1-p)^{2n-x-y}$$

where $v = int\left\{\frac{nz_u^2}{(n+z_u^2)}\right\}$. It follows:

$$\pi(p) = \sum_{x=0}^{v} f(x) [1 - F\{h(x)\}]$$

where f(x) is the density of a Binomial (n,p) and $F(\cdot)$ is the cumulative distribution function. Following Lehmann (1959), the attained size of Z_u on the basis of z_u is $\sup\{\pi_{\tau}(p)\}$, $0 . In order to calculate the <math>\sup$, 5.3 is derived (we set from now $\sum_C = \sum_{(x,y) \in C}$)

5.3 The Derivative of $\pi_{\tau}(p)$

$$\frac{\partial \pi(p)}{\partial p} = \sum_{C} \binom{n}{x} \binom{n}{y} (x+y) p^{x+y-1} (1-p)^{2n-x-y} - \sum_{C} \binom{n}{x} \binom{n}{y} p^{x+y} (1-p)^{2n-x-y-1} (2n-x-y)$$

$$= \sum_{C} \binom{n}{x} \binom{n}{y} (x+y) p^{x+y-1} (1-p)^{2n-x-y} - \sum_{C} \binom{n}{x} \binom{n}{y} (n-x+n-y) p^{x+y} (1-p)^{2n-x-y-1}$$

The following expressions can be calculated:

$$\binom{n}{x}\binom{n}{y}(x+y) = n\binom{n-1}{x-1}\binom{n}{y} + n\binom{n-1}{y-1}\binom{n}{x}$$
$$\binom{n}{x}\binom{n}{y}(n-x+n-y) = n\binom{n-1}{x}\binom{n}{y} + n\binom{n-1}{y}\binom{n}{x}$$

and the derivative can be rewritten as the sum of four addends:

$$\frac{\partial \pi(p)}{\partial p} = \sum_{C} n \binom{n-1}{x-1} \binom{n}{y} p^{x+y-1} (1-p)^{2n-x-y} + \\
+ \sum_{C} n \binom{n}{x} \binom{n-1}{y-1} p^{x+y-1} (1-p)^{2n-x-y} - \\
- \sum_{C} n \binom{n-1}{x} \binom{n}{y} p^{x+y} (1-p)^{2n-x-y-1} - \\
- \sum_{C} n \binom{n}{x} \binom{n-1}{y} p^{x+y} (1-p)^{2n-x-y-1}$$
(5.4)

Consider now the first and the third addends:

$$\underbrace{\sum_{C} n \binom{n-1}{x-1} \binom{n}{y} p^{x+y-1} (1-p)^{2n-x-y}}_{A} - \underbrace{\sum_{C} n \binom{n-1}{x} \binom{n}{y} p^{x+y} (1-p)^{2n-x-y-1}}_{B}$$
(5.5)

A strict relationship between the terms A and B holds: if x is fixed in B, there exists an identical term (but opposite signed) in A corresponding to x + 1. Moreover, consider that in A the term corresponding to x = 0 vanishes, as we have $\binom{n-1}{-1}$ and, by definition, $\binom{n}{k} = 0$, $n, k \in \mathbb{Z}$, n > 0, k < 0. The only non-simplified term in 5.5 is the addend in the B sum corresponding to the x points located on the boundary W of the set C (critical region):

$$W = \{(x, y) : (x, y) \in C \land (x + 1, y) \notin C\}$$

Hence, the sum of the first and of the third term in 5.4 becomes, after cancellation of opposite signed terms:

$$\pi'_1(p) = -\sum_{W} n \binom{n-1}{x} \binom{n}{y} p^{x+y} (1-p)^{2n-x-y-1}$$

Consider now the second and the fourth addends:

$$\underbrace{\sum_{C} n \binom{n}{x} \binom{n-1}{y-1} p^{x+y-1} (1-p)^{2n-x-y}}_{C} - \underbrace{\sum_{C} n \binom{n}{x} \binom{n-1}{y} p^{x+y} (1-p)^{2n-x-y-1}}_{D}$$

In analogy with the previous case, a strict relationship between the terms in the sums C and D holds: set y in C, there exists an identical term (but opposite signed) in D corresponding to the term (y-1). All the terms in C are simplified with a corresponding term in D. The only non-simplified term is the term in the C sum corresponding to the y on the boundary V of the critical region:

$$V = \{(x, y) : (x, y) \in C \land (x, y - 1) \notin C\}$$

Hence, the sum of the second and the fourth terms in 5.4 becomes, after cancellation of opposite signed terms:

$$\pi_2'(p) = \sum_{V} n \binom{n}{x} \binom{n-1}{y-1} p^{x+y-1} (1-p)^{2n-x-y}$$
(5.6)

Upon combining 5.5 and 5.6 it follows:

$$\pi'(p) = \pi'_1(p) + \pi'_2(p)$$

It can now be easily noted that in 5.1 the following relationship holds:

$$(x_0, y_0) \in C \iff (n - y_0, n - x_0) \in C \tag{5.7}$$

Set now a point (x_1, y_1) belonging to the boundary V of C. By definition of V:

$$V = \{(x, y) : (x, y) \in C \land (x, y - 1) \notin C\}$$

And, applying the implication in 5.7 we have:

$$(n-y_1, n-x_1) \in C$$

but we also have $(n-y_1, n-x_1) \in W$, as $(n-y_1+1, n-x_1) \notin C$. The following implication holds:

$$(x_1, y_1) \in V \iff (n - y_1, n - x_1) \in W$$

The derivative $\pi(p)$ can be computed as sum of points on the boundary V:

$$\pi'(p) = \sum_{V} n \binom{n}{x} \binom{n-1}{y-1} p^{x+y-1} (1-p)^{2n-x-y} - \sum_{V} n \binom{n-1}{n-y} \binom{n}{n-x} p^{2n-x-y} (1-p)^{x+y-1}$$

For the properties of the binomial coefficients we have: $\binom{n}{n-x} = \binom{n}{x}$ and $\binom{n-1}{n-y} = \binom{n-1}{y-1}$, so that:

$$\pi'(p) = \sum_{v} n \binom{n}{x} \binom{n-1}{y-1} \left[p^{x+y-1} (1-p)^{2n-x-y} - p^{2n-x-y} (1-p)^{x+y-1} \right]$$
 (5.8)

Note that 5.8 is a linear combination of terms of the form:

$$h(p) = p^r (1-p)^{s-r}$$

so that:

$$\frac{\partial h(p)}{\partial p} = rp^{r-1}(1-p)^{s-r} - (s-r)(1-p)^{s-r-1}p^r$$

and it can be calculated that:

$$\frac{\partial h(p)}{\partial p} = 0 \qquad \text{for } \tilde{p} = r/s$$

$$\frac{\partial h(p)}{\partial p} > 0 \qquad \text{for } \tilde{p} < r/s$$

$$\frac{\partial h(p)}{\partial p} < 0 \qquad \text{for } \tilde{p} > r/s$$

Hence, it follows that, for any given Interval I = (a, b) with 0 < a < b < 1:

$$\sup_{p \in I} h(p) = h(b) \quad \text{if} \quad \frac{r}{s} > b$$

$$= h(a) \quad \text{if} \quad \frac{r}{s} < a$$

$$= h(\tilde{p}) \quad \text{if} \quad \frac{r}{s} \in I$$
(5.9)

and

$$\inf_{p \in I} h(p) = \min\{h(a), h(b)\}$$
 (5.10)

An upper bound for $\pi'(p)$ is obtained on (a,b) by substituting the right hand side of 5.9 in each positive term of 5.8 and the right side of 5.10 in each negative term of 5.8. Similarly, a lower bound for $\pi'(p)$ is obtained on (a,b) by reversing the substitutions. Finally, a bound M for $|\pi'(p)|$ on (a,b)is taken as the largest of the two bounds, in absolute value.

5.4 Exact Attained Size of the Test

Consider $p \in (0,1)$ and let $I_1 = (0,0.01), I_2 = (0.01,0.02), ..., I_{50} = (0.49,0.50);$ for each I_j , j = 1(1)50, we can find an M_j :

$$|\pi'(\theta_i)| < M_i \quad \forall \theta_i \in I_i$$

By the Mean Value Theorem of Calculus, we can conclude:

$$\pi(\theta_j) \in (\pi(p_j) - .005M_j, \pi(p_j) + .005M_j)$$

where $p_j = \frac{j-0.5}{100}$, the midpoint of I_j . Consider now, since $\pi(p) = \pi(1-p)$, the function $\pi(p)$ can be bounded above by:

$$\pi(p) < \max_{j=1...50} \{\pi(p_j) + .005Mj\}, p \in (0,1)$$
 (5.11)

The bound 5.11 has been improved by means of a numerical routine in order to produce a least upper bound of precision δ . An exact size of the test (with approximation δ) has been determined for any value z_u of Z_u . Attained significant levels using the Fisher's exact test and the exact Z test were compared in Table 1 in the case of n = 10. Notice that the exact unconditional p-values are smaller than the respective p-values from the exact conditional test for each outcome with n = 10;

TABLE 1

Comparison of one-sided exact significance levels for the case n = 10.

(Upper value is from Fisher's exact test. Lower value is from the exact unconditional test.)

y = 10	5 × 10 ⁻⁶										
9	9×10^{-7} 6×10^{-5}	0.0005			See entry fo						
9	1 × 10 ⁻⁵	0.0003			(10 - y, 10)	- x)				_	_
8	4×10^{-4} 8×10^{-5}	$0.0027 \\ 0.0012$	$0.0115 \\ 0.0059$						-	-	-
7	0.0015 0.0004	0.0099 0.0039	0.0348 0.0206	0.0894 0.0578				-	-	-	-
6	0.0054 0.0017	0.0286 0.0113	0.0849 0.0474	0.1849 0.1316	0.3281 0.2617		-	-	-	-	-
5	$0.0162 \\ 0.0063$	0.0704 0.0311	0.1749 0.1103	0.3249 0.2617	0.5000 0.4119	-	-	-	-	-	-
4	0.0433 0.0211	0.1517 0.0755	0.3142 0.2617	0.5000 0.3883	-	-	-	-	-	-	-
3	0.1052 0.0438	0.2910 0.1647	0.5000 0.3702	-	_	-	-	-	-	-	-
2	0.2368 0.1074	0.5000 0.3367	_	-	_	-	-	-	-	-	-
1	0.5000 0.2610	-	_	-	-	-	-	-	-	-	-
0	_	_	-	_	_	-	-	-	-	-	_
	x = 0	1	2	3	4	5	6	7	8	9	10

Figure 5.1: Table 1, from Suissa and Shuster (1985), p. 322

We now fix a significance level α and compute the power of the test. For a level α test, the critical value of Z_u , namely z_u^* , satisfies the equation:

$$z_u^* = \inf\{z_u : \sup_p\{\pi(p)\} \le \alpha\}$$

Authors considered the $100(1-\alpha)$ percentile point of the normal standard distribution as a starting value for z_u . This value was incremented until the attained size (precision 0.001), $\alpha^* \leq \alpha$ was achieved, and z_u^* was taken as the smallest of such values.

Remember now the expression of the power function:

$$\pi(p_1, p_2) = \sum_{(x,y)\in C} {n \choose x} p_1^x (1 - p_1)^{n-x} {n \choose y} p_2^y (1 - p_2)^{n-y}$$

$$C = \left\{ (x,y) : \frac{y-x}{\sqrt{\frac{y(n-y)+x(n-x)}{n}}} > z_u \right\}$$

Notice that $\pi(p_1, p_2)$ is a function of n and α through z_u (and hence the fixed value z_u^*). The critical values in Table 2 have been used to compute the minimal sample sizes (n^*) required per group to attain a power of at least

TABLE 2

Critical values and exact attained significance levels of Z tests for comparing two independent binomial proportions

$\alpha = .05$					α =	025		$\alpha = .01$				
n	α ₁	α*	z* u	z* p	α*	z* u	z* p	α*	z* u	z*		
10	.0068	.0476	1.96	1.80	.0212	2.17	1.96	.0064	2.76	2.35		
11	.0086	.0456	1.92	1.78	.0208	2.40	2.14	.0087	2.63	2.29		
12	.0105	.0471	1.86	1.74	.0225	2.26	2.06	.0087	2.83	2.45		
13	.0125	.0484	1.81	1.71	.0200	2.26	2.07	.0097	2.67	2.37		
14	.0146	.0495	1.77	1.68	.0209	2.19	2.03	.0083	2.65	2.37		
15	.0125	.0417	1.94	1.83	.0218	2.14	2.00	.0089	2.57	2.33		
16	.0188	.0421	1.92	1.82	.0252	2.10	1.97	.0100	2.72	2.45		
17	.0209	.0426	1.90	1.81	.0233	2.21	2.07	.0099	2.66	2.42		
18	.0230	.0430	1.88	1.80	.0241	2.14	2.02	.0084	2.63	2.41		
19	.0251	.0435	1.86	1.78	.0246	2.14	2.03	.0092	2.59	2.39		
	p = common probability of success					The following denote samples sizes determined by						
		ample size					= Fisher's ex	-		•		
		esired sig				6		seman (1978				
	$1-\beta^*=a$					n_c	= corrected			tion.		
	$\alpha^* = u$	pper bo	und (p	recision	0.001) for			d Greenhous				
	e	xact attai	ned sign	ificance l	evel		tabulated in	Fleiss (1973) ` ´			
					(0.05, 0.95)	n_r	= recorrected	chi-squared	approxima	tion,		
					ic with un-			et al., (197	(8b) and t	abu-		
	, p	ooled var					lated in Flei					
				statistic	with pooled	n_p :	= uncorrected		approxima	tion,		
		ariance es					Fleiss (1981					
			of su	iccess fo	or group i,	n_{as}	= arcsine form	iula, Cochran	and Cox (1	957)		
	1	= 1, 2										

Figure 5.2: Table 2, from Suissa and Shuster (1985), p. 324

 $(1-\beta)$ and significance level of at most α^* . These values were determined by solving the equation:

$$n^* = \min\{n : \pi(p_1, p_2) \ge (1 - \beta)\}$$

Last, authors computed the exact unconditional attained significance levels and these have been found to be smaller than the corresponding exact conditional attained significance levels for every possible outcomes of n = 10.

TABLE 3 Comparison of minimum sample sizes to achieve 80% power and one-sided $\alpha \le 0.05$ for comparing two independent binomial proportions

^p 1	P ₂	n _e	n _c	n _r	n p	n as	n*	1-β*	α*	z*	z* p
.05	.15	126	148	130	111	105	107	.8009	.0495	1.69	1.68
	.20	67	84	72	59	55	56	.8016	.0498	1.73	1.71
	.25	45	57	48	39	35	38	.8098	.0476	1.74	1.71
	.30	34	42	36	28	25	28	.8095	.0458	1.78	1.74
	.35	25	33	28	21	19	22	.8095	.0484	1.83	1.77
	.40	20	27	22	17	15	18	.8190	.0430	1.88	1.80
	.45	17	23	19	14	12	13	.8142	.0484	1.81	1.71
.10	.25	89	104	92	79	76	79	.8026	.0489	1.70	1.69
	.30	56	67	58	49	47	49	.8071 -	.0486	1.72	1.70
	.35	39	49	42	34	32	35	.8063	.0476	1.75	1.72
	.40	30	37	31	25	24	26	.8088	.0449	1.79	1.74
	.45	24	30	25	20	19	21	.8057	.0445	1.84	1.77
	.50	19	25	20	16	15	17	.8213	.0426	1.90	1.81
	.55	16	21	17	13	12	13	.8016	.0484	1.81	1.71
	.60	13	18	14	11	10	10	.8016	.0476	1.96	1.80
p	= commo			success	3	The	following	denote sa	amples s	izes dete	rmined by
n	= sample	size per g	group			n_e	n_e = Fisher's exact test, Casagrande <i>et al</i>				
α	= desired	significat	nce leve	1			(1978	a), Hase	man (19	78)	
$1-\beta$	*= attained	i power				n_c	e = corrected chi-squared approximation				
α*	= upper bound (precision 0.001) for exact attained significance level						Kram tabula	er and ited in F	Greenh leiss (19	ouse (1 73)	959) and
z_u^*	= lower bound for $\pi(p)$ in (0.05, 0.95) = critical value of Z statistic with unpooled variance estimator						n _r = recorrected chi-squared approximation Casagrande et al., (1978b) and tabulated in Fleiss (1981)				
z_p^*		estimate	or			n_p	Fleiss	(1981)	_		ximation,
p_i	= probabi $i = 1, 2$	lity of	success	for	group i,	n_{as}	= arcsin	e formul	a,Cochr	an and C	ox (1957)

Figure 5.3: Table 3, from Suissa and Shuster (1985), p. 325

Chapter 6

New developments on the Suissa & Shuster's test

6.1 Introduction

In this chapter, we consider the problem of calculating the attained sizes for unconditional tests when the power function depends on nuisance parameters. In Chapters 4 and 5 it has been shown that using unconditional methods for testing statistical hypotheses on the 2×2 binomial trial represents an appropriate approach for, at least, three reasons. First, the unconditional approach allows a researcher to handle data in a pertinent way when only the marginal rows are fixed by design (see, for instance, Perondi et al. (2004)). The use of the conditional approach to testing statistical hypotheses (e.g. the Fisher's exact test) would not been totally appropriate in these situations, since it would ex-post violate the marginal assumptions under which data have been collected. Second, as claimed by Suissa and Shuster (1985), the use of an unconditional approach permits a more natural and intuitive interpretation of the results (also for the non statisticians) than the conditional approach. Hence, in these authors' opinion, the unconditional approach represents the best practice for testing statistical hypotheses in the applications. Third, as reviewed for instance in Hirji (2006) and in Lydersen et al. (2009), the unconditional tests generally lead to achieve more power than the conditional tests.

In the case of the 2×2 binomial trial, the main problem of the unconditional approach is that the power function depends on a nuisance parameter (p, the common success probability under the null hypothesis), which has to be eliminated in order to calculate the attained sizes. Curiously, even if from an historical point of view several approaches have been proposed to solve

the elimination problem (see Basu (1977) for a classic review), normally only the method proposed in Lehmann (1959) is used in the applications. This approach eliminates the dependence upon the nuisance parameter by maximizing the null power function over the entire nuisance parameter space. In this way, *valid* attained sizes can be calculated (see Lehmann and Romano (2005) for a definition of attained size, Berger and Boos (1994) for a definition of validity).

Nevertheless, it has been shown by Berger and Boos (1994) that the Lehmann (1959)'s method calculates the attained sizes using values of the nuisance parameter which can be very unusual on the light of the observations. Occasionally, the maximum of the null power function on the nuisance parameter space is reached for values of p that are strictly close to 0 or to 1 (see, for instance, Example 2 from Berger and Boos (1994), which refers to real data appeared in Emerson and Moses (1985)). Consequently, Berger and Boos (1994) proposed a new approach for the computation of the attained sizes, for which these are obtained maximizing the null power function over a confidence set (calculated at a fixed level $(1-\gamma)$) for the nuisance parameter space and summing up the result of this maximization with the value of γ . Authors demonstrate that the attained sizes calculated with this restricted maximization procedure are valid. Moreover, it is shown by several examples that these attained sizes are improved (in the sens of less conservatorism) with respect to those calculated with the original unrestricted maximization procedure.

Several authors have compared the degree of conservatorism and the power achieved by the conditional and unconditional tests calculated with different methods (see Lydersen et al. (2009) and Hirji (2006) for general reviews). Among these work, the comparison proposed by Berger (1994) is particularly valuable. This author compared the power of six exact, unconditional tests for comparing two binomial proportions with total sample sizes ranging from 20 to 100 and including balanced and imbalanced designs. Previous works (see Hirji (2006)) had reported that unconditional tests generally achieve more power than conditional tests, but also unconditional tests are found to have poor power for imbalanced designs. Using the procedure of constrained maximization of the null power function over the nuisance parameter space proposed in Berger and Boos (1994), Berger (1994) shows that the confidence interval modifications of both the Boschloo's and the Suissa and Shuster's tests have the best power properties.

Nevertheless, as recently stated in Lydersen *et al.* (2009), no research has been yet conducted on: i) the use of different procedures aimed to calculate the confidence interval for the nuisance parameter and ii) the use of different confidence levels. With respect to the latter point, in the seminal work by

Berger and Boos (1994), it is suggested to fix γ at 0.001. Lydersen *et al.* (2009) claim that in the applications most authors fix γ at either 0.001 or 0.0001 (with the relevant exception of the popular software StatXact 8, which sets 0.000001 as default value). All these proposal appear as cryptic suggestions, since no investigation has been so far conducted in order to find optimal values of γ .

In this chapter, we first propose a new R's algorithm aimed to calculate the attained sizes and the power for the original Suissa & Shuster's test. In fact, although several softwares allow to perform this tests, at our knowledge the algorithms aimed to compute these values have not ever been discussed and published, with the exception of the original Fortran's algorithm. Furthermore, it has been correctly claimed (Lydersen *et al.* (2009)) that in the most popular software for exact statistics (StatXact 8), the Suissa & Shuster's original test has been misleadingly named Barnard's test.

We've previously mentioned that the original Suissa and Shuster (1985)'s article proposes a Fortran's algorithm to calculate the attained sizes. Nevertheless, these are typed only for the cases of balanced sample sizes. Since a comparison on the power of the unconditional tests is particularly relevant in cases of imbalanced sample sizes, we have written a new R's algorithm in order to compute both the attained sizes and the power of the test for both balanced and imbalanced sample sizes. Note that we've both considered the unpooled Z test, which is directly treated in Suissa and Shuster (1985), and the pooled Z test, which has been found to achieve higher levels of power than the unpooled test (Berger (1994)).

In Section 6.2, we briefly describe the algorithm we've built for computing the Suissa & Shuster's test (the full codes are reported in Appendix A). In Section 6.3, we report the main findings we've obtained using this algorithm, and we compare them with those originally obtained with the Fortran's algorithm. In Section 6.4 we propose a new algorithm aimed to compute the attained sizes for both the unpooled and pooled unconditional tests using the Berger & Boos' procedure. The structure of the algorithm is equivalent to that used for the Suissa & Shuster's test, unless the optimization procedure is constrained to a confidence interval for the nuisance parameter space. In the original Berger and Boos (1994)'s work the confidence interval is calculated on a real dataset, whereas in Berger (1994) it is calculated basing on the total number of successes in the two sample X + Y, which is a binomial (m + n, p) random variable if $p_1 = p_2 = p$.

We calculated the confidence interval using Monte Carlo simulations from binomial random variables with unequal sample sizes parameter (n_1, n_2) but equal success probability parameter (p). Clearly, this simulation procedure is not representative of all the possible datasets can be obtained in applied research. Nevertheless, this point does not narrows the generality of the procedure we've used to the purposes of the computation of both the critical values and the power of the test, since the Monte Carlo simulations are only employed in order to derive a confidence set on the nuisance parameter space. In section 6.5 we present and comment the results we've obtained, which are comprehensively reported in Appendix B and Appendix C. Last, in section 6.6, we critically discuss the results on the light of the literature.

6.2 A new R algorithm for the Suissa & Shuster's test

In the previous chapter, a two-step procedure aimed to compute the exact size of a test for comparing two binomial proportions has been described (Suissa and Shuster, 1985). The first step of this procedure is an analytical calculation on the derivative of a null power function; the second step consists in a numerical routine aimed to produce a least upper bound on the null power function. This was originally implemented in 1985 by means of a Fortran's algorithm, thus obtaining both the critical values and the sample sizes necessary to achieve a fixed level of power.

A first objective of the present work has been that of implementing an R's algorithm in order to directly calculate the attained sizes of the test. Consider first the case of the unpooled Z statistic (that's the case treated in Suissa and Shuster (1985)). The **R Code 1** (see Appendix A) has been written to calculate the attained sizes of the test. This code has been used for the computation of the attained sizes for the relevant cases of $\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$.

Let's briefly comment the code that has been written for the case $\alpha = 0.05$. The "core" of the computation is a function, that has been called *null.power*, which takes the two sample sizes $(n_1 \text{ and } n_2)$ as arguments:

```
null.power<-function(n1,n2){
}</pre>
```

First, this function defines a bidimensional critical region (dataframe.crit\$X, dataframe.crit\$Y) in the following way (the critical value quant is arbitrarily set at 1.64):

```
quant < -1.64
 x < -0:n1
 y < -0:n2
```

```
 \begin{array}{l} {\rm comb} < -({\rm expand.grid}\,(x\,,y\,)) \\ {\rm d} < -(({\rm comb}\,[\,\,,2\,]\,/\,n2\,) - ({\rm comb}\,[\,\,,1\,]\,/\,n1\,))/\,\,{\rm sqrt}\,(\\ {\rm (comb}\,[\,\,,1\,]\,/\,n1*(1-{\rm comb}\,[\,\,,1\,]\,/\,n1\,))/\,n1+\\ {\rm (comb}\,[\,\,,2\,]\,/\,n2*(1-{\rm comb}\,[\,\,,2\,]\,/\,n2\,)) \\ {\rm quant.vec} < -{\rm rep}\,({\rm quant}\,,\,\,\,{\rm length}\,({\rm d})) \\ {\rm dataframe.all} < -{\rm data.frame}\,({\rm comb}\,,{\rm d}\,,{\rm quant.vec}\,) \\ {\rm names}\,({\rm dataframe.all}\,)[1] < -\ ^{\rm "}X" \\ {\rm names}\,({\rm dataframe.all}\,)[2] < -\ ^{\rm "}Y" \\ {\rm dataframe.crit} < -{\rm dataframe.all}\, \\ {\rm dataframe.all}\, \\ {\rm dataframe.all}\, \\ {\rm dataframe.crit} < -{\rm dataframe.crit}\, \\ {\rm complete.cases}\,({\rm dataframe.crit}\,), \\ {\rm ]} \\ \end{array}
```

Second, we defined the null power function (which is a function of an unknown parameter p) and that has been called *opt.object*:

```
\begin{array}{l} {\rm opt.\,object} < - {\rm function}\,(p) \, \{ \\ {\rm for}\,(\,i\,\,\, i\,\, 1: length\,(\, data frame\,.\, crit\$X\,)) \, \{ \\ {\rm expr}\,[\,i\,] < - ({\rm choose}\,(n1\,,\, data frame\,.\, crit\$X\,[\,i\,]) \, * \\ {\rm p}\,^{\,}(\, data frame\,.\, crit\$X\,[\,i\,] + data frame\,.\, crit\$Y\,[\,i\,]) \, * \\ {\rm choose}\,(n2\,,\, data frame\,.\, crit\$Y\,[\,i\,]) \, * (n1 + n2 - data frame\,.\, crit\$X\,[\,i\,] - data frame\,.\, crit\$Y\,[\,i\,])) \, \} \\ \, \} \end{array}
```

Third, the attained size of the test is calculated by means of the built-in *optimization* function, which calculates the maximum of the null power function on the nuisance parameter space:

```
pvalue \leftarrow optimize (opt.object, c(0,1), maximum = TRUE)
```

Since the critical value is not generally known, the algorithm we've developed considers the asymptotic critical value of the normal distribution (e.g. quant $\leftarrow 1.64$) as a starting value and calculates the attained size of the test:

```
\begin{array}{l} \mbox{null.power} < -\mbox{function} \, (\mbox{n1}\,,\mbox{n2}) \{ \\ \mbox{quant} \, < \, -1.64 \\ \mbox{x} \, < \, -0.:\mbox{n1} \\ \mbox{y} \, < \, -0.:\mbox{n2} \\ \mbox{comb} \, < \, -(\mbox{expand.grid} \, (\mbox{x}\,,\mbox{y}\,)) \\ \mbox{d} \, < \, -((\mbox{comb} \, [\,\,,2\,]\,/\,\mbox{n2}) \, -(\mbox{comb} \, [\,\,,1\,]\,/\,\mbox{n1}))/\,\mbox{sqrt} \, (\mbox{comb} \, [\,\,,1\,]\,/\,\mbox{n1}))/\,\mbox{n1} + \\ \end{array}
```

```
(comb[,2]/n2*(1-comb[,2]/n2)/n2))
quant.vec<-rep(quant, length(d))
dataframe.all <-data.frame(comb,d,quant.vec)
names (dataframe all)[1] <- "X"
names (dataframe . all)[2] < -"Y"
dataframe.crit <-dataframe.all [
dataframe.all$d > dataframe.all$quant.vec,
dataframe.crit <-dataframe.crit
complete.cases (dataframe.crit),
expr<-rep(0, length(dataframe.crit$X))
opt.object <-function(p){
for (i in 1:length (dataframe.crit$X)){
expr[i]<-(choose(n1,dataframe.crit$X[i])*
p^(dataframe.crit$X[i]+dataframe.crit$Y[i])*
choose(n2, dataframe.crit\$Y[i])*(1-p)^
(n1+n2-dataframe.crit\$X[i]-dataframe.crit\$Y[i]))
somma < -sum (expr)
return (somma)
pvalue <- optimize (opt. object, c(0,1), maximum=TRUE)
```

If this attained size is less or equal to 0.05, the algorithm moves back to the value of the statistic: $quant \leftarrow 1.00$ and then moves on the right side $(quant \leftarrow quant + 0.01)$ up to the first value for which the attained size is less than α . This has been implemented by means of a *if* statement and a *while* loop:

```
\begin{split} & \text{if (pvalue\$objective} <= 0.05) \{ \\ & \text{quant} < -1.00 \\ & \text{while (quant)} \{ \\ & \text{quant} < -\text{quant} + 0.01 \\ & \text{x} < -0: \text{n1} \\ & \text{y} < -0: \text{n2} \\ & \text{comb} < -(\text{expand.grid}(\mathbf{x},\mathbf{y})) \\ & \text{d} < -((\text{comb}[\ ,2]/\text{n2}) - (\text{comb}[\ ,1]/\text{n1}))/\text{sqrt}(\\ & \text{(comb}[\ ,1]/\text{n1*}(1-\text{comb}[\ ,1]/\text{n1}))/\text{n1+} \\ & \text{(comb}[\ ,2]/\text{n2*}(1-\text{comb}[\ ,2]/\text{n2})/\text{n2})) \\ & \text{quant.vec} < -\text{rep}\left(\text{quant}, \ \text{length}(\text{d})\right) \end{split}
```

```
dataframe.all <-data.frame(comb,d,quant.vec)
  names (dataframe all)[1] <- "X"
  names (dataframe . all)[2] < -"Y"
  dataframe.crit <-dataframe.all
  dataframe.all$d > dataframe.all$quant.vec,
  dataframe.crit <-dataframe.crit [complete.cases (dataframe.crit),
  expr <-rep (0, length (dataframe.crit$X))
  opt.object <-function(p){
  for (i in 1: length (dataframe.crit$X)) {
     expr[i]<-(choose(n1,dataframe.crit$X[i])*
    p^(dataframe.crit$X[i]+dataframe.crit$Y[i])*
     choose (n2, dataframe.crit$Y[i])*
     (1-p)^(n1+n2-dataframe.crit$X[i]-dataframe.crit$Y[i]))
  somma < -sum (expr)
  return (somma)
  pvalue \leftarrow optimize (opt.object, c(0,1), maximum = TRUE)
  if (pvalue $objective < 0.05) break
  }
         return (c(quant, pvalue$maximum, pvalue$objective))
}
Otherwise, if the attained size of the test associated to the starting value is
strictly more than 0.05, we directly move on the right side (quant\leftarrowquant+0.01)
in order to obtain a attained size less or equal to 0.05. This pattern has also
been implemented by means of conditional if/if else statements and by means
of a while loop (see Figure 6.1):
else if (pvalue$objective > 0.05) {
while (quant) {
  quant < -quant + 0.01
  x < -0:n1
  v < -0:n2
  comb < -(expand.grid(x,y))
  d < -((comb[,2]/n2) - (comb[,1]/n1))/sqrt(
  (\text{comb}[,1]/\text{n1}*(1-\text{comb}[,1]/\text{n1}))/\text{n1}+
  (comb[,2]/n2*(1-comb[,2]/n2)/n2))
  quant.vec <-rep(quant, length(d))
  dataframe.all <-data.frame(comb,d,quant.vec)
```

```
names (dataframe . all)[1] <- "X"
names (dataframe . all) [2] < -"Y"
dataframe.crit <-dataframe.all
dataframe.all$d > dataframe.all$quant.vec,
dataframe.crit <-dataframe.crit
complete.cases (dataframe.crit),
expr <-rep (0, length (dataframe.crit$X))
opt.object <-function(p){
for (i in 1: length (dataframe.crit$X)) {
\exp[i] < -(\operatorname{choose}(n1, \operatorname{dataframe}.\operatorname{crit}X[i]) *
p^(dataframe.crit$X[i]+dataframe.crit$Y[i])*
choose (n2, dataframe.crit$Y[i])*(1-p)^
(n1+n2-dataframe.crit\$X[i]-dataframe.crit\$Y[i]))
somma < -sum (expr)
return (somma)
pvalue <- optimize (opt.object, c(0,1), maximum=TRUE)
if (pvalue$objective < 0.05) break
return (c (quant, pvalue$maximum, pvalue$objective))
```

Last, in order to calculate the power of the test, we've written the R function *AttPower* (see Appendix A, **R Code 2**), which takes four arguments: the sample sizes, the critical value, and fixed values of p1 and p2:

```
AttPower<-function(n1,n2,CritVal,p1,p2){
}
```

and computes the power of the test for these cases of p_1 and p_2 , which have been fixed as:

```
\begin{array}{l} p1 < -c \left( \, \operatorname{rep} \left( \, .05 \, ,7 \right) \, , \operatorname{rep} \left( \, .10 \, ,8 \right) \, , \operatorname{rep} \left( \, .15 \, ,8 \right) \, , \operatorname{rep} \left( \, .20 \, ,8 \right) \, , \\ \operatorname{rep} \left( \, .25 \, ,8 \right) \, , \operatorname{rep} \left( \, .30 \, ,6 \right) \, , \operatorname{rep} \left( \, .35 \, ,4 \right) \, , \operatorname{rep} \left( \, .40 \, ,2 \right) \right) \\ p2 < -c \left( \, \operatorname{seq} \left( \, .15 \, ,.45 \, ,.05 \right) \, , \operatorname{seq} \left( \, .25 \, ,.60 \, ,.05 \right) \, , \operatorname{seq} \left( \, .30 \, ,.65 \, ,.05 \right) \, , \\ \operatorname{seq} \left( \, .35 \, ,.70 \, ,.05 \right) \, , \operatorname{seq} \left( \, .40 \, ,.75 \, ,.05 \right) \, , \operatorname{seq} \left( \, .45 \, ,.70 \, ,.05 \right) \, , \\ \operatorname{seq} \left( \, .50 \, ,.65 \, ,.05 \right) \, ,.55 \, ,.60 \right) \end{array}
```

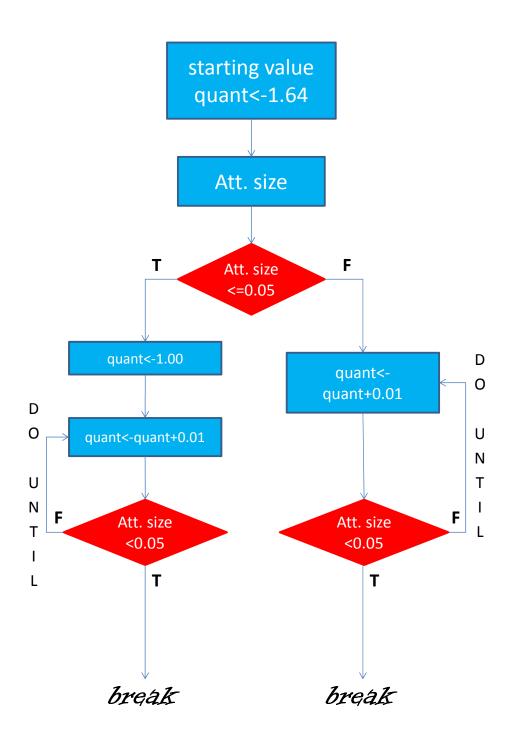


Figure 6.1: Structure of the R's algorithm used to compute the attained sizes of the Suissa and Shuster (1985)'s test, in case of different sample sizes for $\alpha = 0.05$.

6.3 Results on the Suissa & Shuster's test

We've first considered the case of balanced sample sizes for which we fixed n1 and n1 as:

```
n2 < -c (seq (10,40, by=1), seq (50,100,by=10), 150)

n1 < -c (seq (10,40, by=1), seq (50,100,by=10), 150)
```

Table B.1, Table B.2, and Table B.3 (see Appendix B) report the critical values calculated for these sample sizes for the unpooled Z statistic whereas Table B.4, Table B.5 and Table B.6 show the power values achieved when $\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$ respectively.

Table B.7, Table B.8, Table B.9 report the critical values calculated for these sample sizes for the pooled Z statistic whereas Table B.10, Table B.11, Table B.12 show the power values achieved when $\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$ respectively.

Suissa and Shuster (1985) claim that, in case of equal sample sizes, the unpooled Z test and the pooled Z tests are equivalent. Our results basically confirm this statement. In Figure C.1, Figure C.2 and Figure C.3 (see Appendix C) we've compared the attained size of the unpooled and pooled test. Apart from some exceptions, the two tests prove to have the same attained size under the null hypothesis.

Furthermore, we've considered the case of imbalanced sample sizes, for which we fixed n1 and n2 as:

```
\begin{array}{l} n1 < -c \left( \text{rep} \left( 10 \,, \ \text{length} \left( \text{seq} \left( 20 \,, 100 \,, \ \text{by} \!=\! 10 \right) \right) \right), \\ \text{rep} \left( 20 \,, \ \text{length} \left( \text{seq} \left( 30 \,, 100 \,, \text{by} \!=\! 10 \right) \right) \right), \\ \text{rep} \left( 30 \,, \ \text{length} \left( \text{seq} \left( 40 \,, 100 \,, \ \text{by} \!=\! 10 \right) \right) \right), \\ \text{rep} \left( 40 \,, \ \text{length} \left( \ \text{seq} \left( 50 \,, 100 \,, \text{by} \!=\! 10 \right) \right) \right) \\ n2 < -c \left( \text{seq} \left( 20 \,, 100 \,, \ \text{by} \!=\! 10 \right), \ \text{seq} \left( 30 \,, 100 \,, \text{by} \!=\! 10 \right), \\ \text{seq} \left( 40 \,, 100 \,, \ \text{by} \!=\! 10 \right), \ \text{seq} \left( 50 \,, 100 \,, \text{by} \!=\! 10 \right) \right) \end{array}
```

Table B.13, Table B.14, and Table B.15 report the critical values calculated for these sample sizes for the unpooled Z statistic whereas Table B.16, Table B.17 and Table B.18 show the power values calculated when $\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$ respectively.

Table B.19, Table B.20, Table B.21 report the critical values calculated for these sample sizes for the pooled Z statistic whereas Table B.22, Table B.23, Table B.24 show the power values when $\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$ respectively.

In Figure ??, Figure ??, Figure ?? is shown a comparison of the attained sizes for the unpooled and the pooled Z statistics for the cases of $\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$ respectively. Note that the attained size from the pooled

Z statistic shows to be less conservative than the attained size calculated from the unpooled Z statistic in the 63.33%, 56.67%, 56.67% of the times respectively when $\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$. Hence, the use of the pooled estimation insted of the unpooled estimation of the variance should be preferred in order to obtain a less conservative test (at least in the relevant cases we've examined).

In Figure C.7, Figure C.8, Figure C.9 we've compared the power achieved by the Z exact tests, calculated with either the unpooled or the pooled statistics respectively for $\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$. Results show that generally the pooled test achieve more power than the unpooled test (Berger (1994)). Nevertheless, we show that the pooled test is not uniformly more powerful than the unpooled test. In fact, we find that the unpooled Z test achieve more power than the pooled Z test in the following cases:

```
• n_1 = 10 \ n_2 = 20 \ (\alpha = 0.05);
```

•
$$n_1 = 30 \ n_2 = 40 \ (\alpha = 0.025);$$

•
$$n_1 = 40 \ n_2 = 50 \ (\alpha = 0.025);$$

•
$$n_1 = 40 \ n_2 = 60 \ (\alpha = 0.025);$$

•
$$n_1 = 30 \ n_2 = 40 \ (\alpha = 0.01);$$

•
$$n_1 = 40 \ n_2 = 50 \ (\alpha = 0.01);$$

The results reviewed in this section comprehensively indicate that the pooled Z test is eligible for application in case of imbalanced sample sizes, but the unpooled Z test can also be considered when the imbalance is slight (e.g. $n_1 = 10$, $n_2 = 20$; $n_1 = 10$, $n_2 = 40$). In these cases, the unpooled test prove to be more powerful than the pooled test.

6.4 A new R algorithm to compute the Berger & Boos' Modified Z test

We've modified the algorithm described in the previous section in order to implement the maximization procedure proposed by Berger and Boos (1994) and that has been summed up in Chapter 4. Consider a Binomial random variable X of parameters $(p_1; n_1)$ and a Binomial random variable Y of parameters $(p_2; n_2)$. Consider the null hypothesis $H_0: p_1 = p_2 = P$ and let's independently extract N Monte Carlo random vectors of size n_1 and n_2 respectively from X and Y:

By independence, it follows:

$$Pr(X = x, Y = y) = L(p) = \prod_{i=1}^{N} \prod_{i=1}^{N} {n_1 \choose x_i} {n_2 \choose y_i} p^{x_i + y_i} \cdot (1 - p)^{n_1 + n_2 - (x_i + y_i)}$$

$$L(p) \propto p^{\sum_{i=1}^{N} x_i + y_i} \cdot (1 - p)^{\sum_{i=1}^{N} (n_1 + n_2 - x_i - y_i)}$$
$$l(p) \propto \sum_{i=1}^{N} (x_i + y_i) lnp + \sum_{i=1}^{N} (n_1 + n_2 - x_i - y_i) ln(1 - p)$$

And it follows that the maximum likelihood estimation \hat{p} is given by:

$$\hat{p}_{MLE} = \frac{\sum_{i=1}^{N} (x_i + y_i)}{N(n_1 + n_2)}$$

This estimator is unbiased:

$$\mathbb{E}[\hat{p}_{MLE}] = \frac{1}{N(n_1 + n_2)} N n_1 p + N n_2 p = \frac{N p(n_1 + n_2)}{N(n_1 + n_2)} = p$$

and has variance:

$$\mathbb{V}[\hat{p}_{MLE}] = \frac{p(1-p)}{N(n_1 + n_2)}$$

which can be estimated as:

$$\frac{\hat{p}_{MLE}(1-\hat{p}_{MLE})}{N(n_1+n_2)}$$

Hence, a Wald's type confidence set for the parameter p at confidence level $(1-\gamma)$ is given by:

$$Pr\left[\hat{p} - z_{\gamma/2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{N(n_1 + n_2)}} \le p \le \hat{p} + z_{\gamma/2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{N(n_1 + n_2)}}\right] \le 1 - \gamma$$

We've implemented the calculation of this confidence set in R (see Appendix A, R Code 3), fixing N at 1000. Afterwards, we've defined a function, null.power, which takes four arguments: the sample sizes (n1, n2), the value of γ (gamma.value), the lower and the upper bounds of the asymptotic confidence set previously calculated (low.bound, upp.bound):

```
null.power<-function(n1, n2, gamma.value,
low.bound, upp.bound){
}
The "core" of this function is closed to the core of the previously described
function, which calculated the attained sizes for the Suissa & Shuster's test:
null.power<-function(n1,n2, gamma.value,
low.bound, upp.bound){
quant < -1.64
  x < -0:n1
  v < -0:n2
  comb < -(expand.grid(x,y))
  d < -((comb[, 2]/n2) - (comb[, 1]/n1))/sqrt(
  (\text{comb}[,1]/\text{n1}*(1-\text{comb}[,1]/\text{n1}))/\text{n1}+
  (comb[,2]/n2*(1-comb[,2]/n2)/n2))
  quant.vec <-rep (quant, length (d))
  dataframe.all <-data.frame(comb,d,quant.vec)
  names (dataframe all)[1] <- "X"
  names (dataframe . all)[2] < -"Y"
  dataframe.crit <-dataframe.all
  dataframe.all$d > dataframe.all$quant.vec,
  dataframe.crit <-dataframe.crit
  complete.cases (dataframe.crit),
  expr <-rep (0, length (dataframe.crit$X))
  opt.object <-function(p){
    for (i in 1:length (dataframe.crit$X)){
    expr[i]<-(choose(n1,dataframe.crit$X[i])*
    p^(dataframe.crit$X[i]+dataframe.crit$Y[i])*
    choose (n2, dataframe.crit$Y[i])*
    (1-p)^{(n_1+n_2-dataframe.crit}X[i]-dataframe.crit}Y[i])
  somma <- sum (expr)
  return (somma)
pvalue <- optimize (opt.object, c(low.bound, upp.bound),
maximum=TRUE)
```

Note that *opt.object* is now optimized over the confidence set:

```
c(low.bound, upp.bound)
```

and not over the entire parametric space c(0,1). Furthermore, following Berger and Boos (1994), the attained size is defined as:

```
pvalue$objective + gamma.value
```

and, consequently, the loops of the algorithm and the conditional statements are defined as:

```
if (pvalue $objective + gamma. value <= 0.05){
quant < -1.00
while (quant) {
  quant < -quant + 0.01
  x < -0:n1
  v < -0:n2
  comb < -(expand.grid(x,y))
  d < -((comb[, 2]/n2) - (comb[, 1]/n1))/sqrt(
  (comb[,1]/n1*(1-comb[,1]/n1))/n1+
  (comb[,2]/n2*(1-comb[,2]/n2)/n2))
  quant.vec<-rep(quant, length(d))
  dataframe.all <-data.frame(comb,d,quant.vec)
  names (dataframe all)[1] <- "X"
  names (dataframe . all)[2] < -"Y"
  dataframe.crit <-dataframe.all
  dataframe.all$d > dataframe.all$quant.vec,
  dataframe.crit <-dataframe.crit
  complete.cases (dataframe.crit),
  expr<-rep(0, length(dataframe.crit$X))
  opt.object <-function(p){
    for (i in 1: length (dataframe.crit$X)){
    expr[i]<-(choose(n1,dataframe.crit$X[i])*
    p^(dataframe.crit$X[i]+dataframe.crit$Y[i])*
    choose (n2, dataframe.crit$Y[i])*
    (1-p)^(n1+n2-dataframe.crit$X[i]-dataframe.crit$Y[i]))
somma < -sum (expr)
return (somma)
```

```
pvalue <- optimize (opt. object, c(low.bound, upp.bound),
 maximum=TRUE)
  if (pvalue $ objective + gamma. value < 0.05) break
  return (c(quant, pvalue$maximum, pvalue$objective + gamma.value))
else if (pvalue\$objective + gamma.value > 0.05) {
while (quant) {
quant < -quant + 0.01
  x < -0:n1
  y < -0:n2
  comb < -(expand.grid(x,y))
  d < -((comb[, 2]/n2) - (comb[, 1]/n1))/sqrt(
  (\text{comb}[,1]/\text{n1}*(1-\text{comb}[,1]/\text{n1}))/\text{n1}+
  (comb[,2]/n2*(1-comb[,2]/n2)/n2))
  quant.vec <-rep (quant, length (d))
  dataframe.all <-data.frame(comb,d,quant.vec)
  names (dataframe . all)[1] <- "X"
  names (dataframe . all)[2] < -"Y"
  dataframe.crit <-dataframe.all
  dataframe.all$d >dataframe.all$quant.vec,
  dataframe.crit <-dataframe.crit
  complete.cases(dataframe.crit),
  expr <-rep (0, length (dataframe.crit$X))
  opt.object <-function(p){
    for (i in 1:length (dataframe.crit$X)){
    expr[i]<-(choose(n1,dataframe.crit$X[i])*
    p^(dataframe.crit$X[i]+dataframe.crit$Y[i])*
    choose (n2, dataframe.crit$Y[i])*
    (1-p) ^ (n1+n2-dataframe.crit$X[i]-dataframe.crit$Y[i]))
somma < -sum (expr)
return (somma)
pvalue <- optimize (opt. object, c(low.bound, upp.bound),
maximum=TRUE)
  if (pvalue $objective + gamma. value < 0.05) break
return (c(quant, pvalue$maximum, pvalue$objective + gamma.value))
```

}

We've calculated the attained sizes and the achieved power of the test for:

```
\begin{array}{lll} & \text{n1} \!\!<\!\! -\!\! \text{c} \left( \text{rep} \left( 10 \,, \ \text{length} \left( \text{seq} \left( 20 \,, 100 \,, \ \text{by} \!=\! 10 \right) \right) \right), \\ & \text{rep} \left( 20 \,, \ \text{length} \left( \text{seq} \left( 30 \,, 100 \,, \text{by} \!=\! 10 \right) \right) \right), \\ & \text{rep} \left( 30 \,, \ \text{length} \left( \ \text{seq} \left( 40 \,, 100 \,, \ \text{by} \!=\! 10 \right) \right) \right), \\ & \text{rep} \left( 40 \,, \ \text{length} \left( \ \text{seq} \left( 50 \,, 100 \,, \text{by} \!=\! 10 \right) \right) \right), \\ & \text{n2} \!\!<\!\! -\!\! \text{c} \left( \text{seq} \left( 20 \,, \!100 \,, \ \text{by} \!=\! 10 \right), \ \text{seq} \left( 30 \,, \!100 \,, \text{by} \!=\! 10 \right) \right), \\ & \text{seq} \left( 40 \,, \!100 \,, \ \text{by} \!=\! 10 \right), \ \text{seq} \left( 50 \,, \!100 \,, \text{by} \!=\! 10 \right) \right) \\ & \text{constructing the confidence set under the hypotheses that:} \\ & \text{P} \!\! -\!\! \text{c} \left( \text{rep} \left( .10 \,, \!30 \right), \ \text{rep} \left( .25 \,, \!30 \right), \ \text{rep} \left( .50 \,, \!30 \right), \\ & \text{rep} \left( .75 \,, \!30 \right), \ \text{rep} \left( .90 \,, \!30 \right) \right) \\ & \text{and fixing} \, \gamma \, \text{at} \, 0.001; \, 0.0001; \, 0.00001. \\ \end{array}
```

6.5 Results on the Berger & Boos' Modified Z test

6.5.1 Comparison of sizes

In this section, we compare the attained sizes obtained either with the Suissa & Shuster's procedure or with the Berger & Boos' procedure.

In Figure C.10 we compare the attained sizes for the **unpoooled** Z test calculated when α = 0.05. This figure displays the ranking of the four tests with respect to the attained size that they achieve. Ideally, the true size should be closed to the nominal value of α . As it was reviewed in Chapter 4, the Fisher's exact test is known to be very conservative. Moreover, Berger (1994) shows that, even if used unconditionally, the Fisher's exact test is extremely conservative. In fact, when α is fixed at 0.10, the true size of the test ranges from 0.04 to 0.07. In Figure C.10 cells have been depicted in green, yellow, orange or pink according to the degree of conservatorism of the attained sizes (the less conservative attained size is in the green cell, the second less conservative test is in the yellow cell, the third less conservative test is in the pink cell).

When the confidence set for the nuisance parameter has been built with Monte Carlo simulations with success probability parameter P fixed at 0.10, we note that the classic Suissa & Shuster's test gives the less conservative test at 53.33 percent chance whereas the Berger & Boos' test when $\gamma = 0.001$

gives the less conservative test at 36.33 percent chance. The Berger & Boos' test when either $\gamma = 0.0001$ or $\gamma = 0.00001$ are less recommendable for applications. In particular, the Berger & Boos' test when $\gamma = 0.0001$ is the most conservative test at 40 percent chance whereas the Berger & Boos' test when $\gamma = 0.00001$ is the most conservative test at 13.3 percent chance. There does not hold a simple relation between the degree of conservatorism of the tests and the imbalance of the sample sizes. Note, for instance, that the Suissa & Shuster's test is the less conservative test when sample sizes are very imbalanced (e.g. $n_1 = 20$, $n_2 = 70, 80, 90, 100$) but in other similar imbalanced cases it is the most conservative test (e.g. $n_1 = 30$, $n_2 = 70, 80, 90, 100$). We obtained a different pattern of results when P = 0.25. In this case, the less conservative test is the Berger & Boos' test when $\gamma = 0.001$; indeed, this test has the more similar size with respect to the nominal size at 50 percent chance. The Suissa & Shuster's test is the less conservative test at 30 percent chance but it is also the most conservative test at 46.67 percent chance. The Berger & Boos' test when both $\gamma = 0.0001$ and $\gamma = 0.00001$ show intermediate degrees of conservatorism. Results completely change when P = 0.50; in this case, the Berger & Boos' procedure shows a clear superiority on the Suissa & Shuster's procedure in terms of less conservatorism. In fact, the Berger & Boos' procedure when $\gamma = 0.001$ is the less conservative procedure at 56.67 percent chance, whereas the Suissa & Shuster's procedure is the most conservative procedure at 73.33 percent chance. Similarly to the case of P = 0.25, both the Berger & Boos' test when $\gamma = 0.0001$ and when $\gamma = 0.00001$ show intermediate degrees of conservatorism, but are explicitly less conservative than the classic Suissa & Shuster's test. When P = 0.75, the Berger & Boos' test when $\gamma = 0.0001$ is the less conservative test, ranking first and second respectively at 30 percent chance and at 36.67 percent chance. This finding is very closed to that obtained with the Berger & Boos' test when $\gamma = 0.001$, which ranks first and second at 46.67 percent chance and at 16.67 percent chance respectively. The Suissa & Shuster's test is still the most conservative test, ranking fourth at 70 percent chance. When P = 0.90 results are similar to those obtained when P = 0.10. In fact, the Suissa & Shuster's test is the less conservative test at 43.33 percent chance but it is also the most conservative test at 53.33 percent chance. The Berger & Boos' procedure shows an intermediate pattern of performance, with an advantage using a lower confidence level (i.e. $\gamma = 0.001$).

These results comprehensively indicate that, in general, the Berger & Boos' procedure leads to a less conservative test, especially when the success probability in the population is not extreme (P = 0.25; 0.50; 0.75). In many cases, when the success probability in the population used to simulate the confidence interval is rather extreme (P = 0.10; 0.90), the classic Suissa &

Shuster's procedure seems to be eligible for applications.

Figure C.11 reports the results obtained for $\alpha = 0.025$. When P = 0.10, the Berger & Boos' procedure with $\gamma = 0.001$ leads to the less conservative test, which ranks first and second at 36.67 and at 43.33 percent chance respectively. The classic Suissa & Shuster's procedure is the less conservative method at 46.67 percent chance but it is also the most conservative procedure at 36.67 percent chance. The Berger & Boos' test when either $\gamma = 0.0001$ or $\gamma = 0.00001$ show intermediate degrees of conservatorism. Results significantly change when P = 0.25: the Berger & Boos' procedure when $\gamma = 0.001$ is clearly the less conservative test, ranking first at 46.67 percent chance. The Suissa & Shuster's original procedure leads to a clear disadvantage in terms of conservatorism, giving the most conservative test at 46.67 percent chance. Moreover, note that it does not seem useful to set a large confidence level for the nuisance parameter, since the use of the Berger & Boos' procedure when $\gamma = 0.0001$ leads to a less conservative test with respect to that obtained when $\gamma = 0.00001$ (the former ranks second at 53.33 percent chance whereas the latter ranks third at 50 percent chance). When P = 0.50 results clearly show that the use of the Berger & Boos' procedure is eligible for applications. Indeed, the use of this procedure when $\gamma = 0.0001$ ranks first and second at 36.67 and at 40 percent chance respectively. The use of the confidence set with either $\gamma = 0.001$ or $\gamma = 0.0001$ leads to intermediate degrees of conservatorism whereas the use of the Suissa & Shuster's test clearly gives the most conservative attained sizes, since this procedure ranks fourth at 60 percent chance. When P = 0.75, the use of the Berger & Boos' procedure with either $\gamma = 0.001$ or $\gamma = 0.0001$ leads to the less conservative attained sizes. The former procedure ranks first and second at 40 percent chance and at 20 percent chance respectively, whereas the latter procedure ranks first and second at 36.67 percent chance and at 36.67 percent chance respectively. The Suissa & Shuster's procedure gives the most conservative attained sizes at 60 percent chance whereas the use of the Berger & Boos' procedure with $\gamma = 0.00001$ gives an intermediate performance. A similar pattern of results is obtained when p = 0.90, with the use of the Berger & Boos' procedure giving the less conservative attained sizes with 60 percent chance whereas the use of the Suissa & Shuster's test leading to the most conservative attained sizes at 53.33 percent chance.

Also when $\alpha = 0.025$, we can sum up these results by stating that the use of the Berger & Boos' procedure leads to obtain less conservative attained sizes in all the cases that have been considered, with the only exception of the case of P = 0.10 (where, in some cases, the use of the original Suissa & Shuster's procedure can be more adequate). With respect to the use of

different confidence levels, similarly to the case of $\alpha = 0.05$, the choice of $\gamma = 0.001$ seems to be the most appropriate, thus leading to the less conservative attained sizes.

Figure C.12 reports the results obtained for these tests when $\alpha = 0.01$. When P = 0.10, both the use of the Suissa & Shuster's procedure and the use of the Berger & Boos' procedure with $\gamma = 0.001$ seem to be equivalent and give less conservative attained sizes with respect to the Berger & Boos procedure with γ fixed at either 0.0001 or 0.00001. Indeed, the use of the Suissa & Shuster's procedure ranks first at 46.67 percent chance and ranks second at 30 percent chance. When P = 0.25 the use of the Suissa & Shuster's test is not advisable, ranking fourth at 53.33 percent chance. The use of the Berger & Boos' test with $\gamma = 0.0001$ leads to the less conservative attained sizes, ranking first at 33.33 percent chance and ranking second at 23.33 percent chance. When P = 0.50, the use of the Berger & Boos' procedures with γ fixed at either 0.001 or 0.0001 seem to be equivalent, leading to less conservative attained sizes. Differently, fixing γ at 0.0001 does not lead to any consistent advantage, whereas the use of the Suissa & Shuster's procedure is no doubt the most conservative method, ranking fourth at 80 percent chance. The pattern of results when P = 0.75 or P = 0.90 are very closed to those obtained when P = 0.50. Indeed, in these cases, the use of use of the Berger & Boos' procedure fixing γ either equal to 0.001 or 0.0001 is the most appropriate choice.

Comprehensively, when $\alpha = 0.01$, we can draw the same conclusions previously put forth for the case of $\alpha = 0.025$ with the following *caveat*: when $\alpha = 0.01$, fixing γ at 0.001 or 0.0001 does not lead to considerable differences in the results with respect to the degree of conservatorism.

Overall, the results so far discussed suggest that in the unpooled case the use of the Berger & Boos' procedure in order to calculate the attained sizes leads to less conservative tests, especially when the probability in the population on which is calculated the confidence set is not extreme (P = 0.25; 0.50; 0.75). With respect to the use of different Berger & Boos' procedures, we can conclude that, in terms of conservatorism, it is not useful to calculate an interval at a larger confidence level (i.e. $\gamma = 0.00001$), but the best performances are obtained when $\gamma = 0.001$ or $\gamma = 0.0001$. Last, we aimed to investigate the relation between the conservatorism of the procedures and the degree of imbalance of the sample sizes. Nevertheless, as it has been previously mentioned, from our results it is not possible to infer any regularity pattern.

Let's now analyze the results for the **pooled** Z test calculated with either the Suissa & Shuster's procedure or the Berger & Boos' procedure. Let's begin

with the case of $\alpha = 0.05$, which is reported in Figure C.13. When P = 0.10the Suissa & Shuster's test is certainly the less conservative test, ranking first in the 76.67 percent of cases. Among the Berger & Boos' procedures, the test calculated fixing $\gamma = 0.001$ ranks second in 63.33 percent of cases. The use of the Berger & Boos' procedures with either $\gamma = 0.0001$ or $\gamma = 0.00001$ leads to the most conservative attained sizes. When P = 0.25, the use of the Berger & Boos' procedure when $\gamma = 0.001$ leads to the less conservative attained sizes in the 40 percent of cases, whereas both the use of larger confidence sets and of the classic Suissa & Shuster's procedures give more conservative attained sizes. When P = 0.50, using the Berger & Boos' procedure with $\gamma = 0.001$ leads to the less conservative attained sizes with the 53.33 percent chance of occurrence. However, both fixing other confidence levels and the use of the Suissa & Shuster's test lead to the most conservative attained sizes, with the latter ranking fourth 60 percent of the time. Similar results have been obtained in the case P = 0.75. Contrary to this, when P = 0.90, the use of the Suissa & Shuster's test leads to the less conservative attained sizes at 50 percent chance, and the use of this test is more adequate with respect to the use of the constrained optimization procedure proposed by Berger & Boos.

On the whole, we can state that the use of the Suissa & Shuster's procedure is only adequate when P = 0.10 or P = 0.90. In all the other cases, the Berger & Boos' procedure leads to less conservative attained sizes and the best practice is to fix γ at 0.001.

In Figure C.14 we compare the attained sizes for the **pooled** Z test calculated when $\alpha = 0.025$. Similarly to the case of $\alpha = 0.05$, when P = 0.10the Suissa & Shuster's test is the less conservative test at 63.33 percent chance. Among the three Berger & Boos' procedures, the most appropriate is that with the lowest confidence level (i.e. $\gamma = 0.001$), which ranks second at 63.33 percent chance. When P = 0.25 the pattern of results is substantially different. Indeed, the ranking of the Suissa & Shuster's test and of the Berger & Boos' test is reversed. The Berger & Boos' test when $\gamma = 0.001$ ranks first at 40 percent chance whereas the Berger & Boos' test when $\gamma = 0.0001$ ranks first at 23.33 percent chance and ranks second at 26.66 percent chance respectively. The Berger & Boos' test when $\gamma = 0.00001$ shows an intermediate pattern of results, ranking second and third at 40 percent chance and at 36.67 percent chance respectively. The Suissa & Shuster's test is definitely the most conservative test, ranking fourth at 50 percent chance. Similar conclusions can be drawn when P = 0.50. In particular, note that in this case the Suissa & Shuster's procedure is both the less conservative and the most conservative procedure at 40 percent chance and at 56.67 percent chance respectively. As previously commented, there does not hold a clear relation between the degree of conservatorism and the degree of imbalance of the sample sizes.

With respect to the Berger & Boos' procedures, the use of a lower confidence level (i.e. $\gamma=0.001$) leads to a more suitable test in terms of conservatorism. In fact, this test ranks first and second at 30 percent chance and at 26.67 percent chance respectively. Also the use of the Berger & Boos' procedure when $\gamma=0.0001$ has to be kept into consideration, ranking first and second at 30 percent chance and at 43.33 percent chance respectively. When P=0.75, the use of the Berger & Boos' procedure when $\gamma=0.0001$ leads to the less conservative test and the second less conservative test respectively at 40 percent chance and at 30 percent chance. Both the Berger & Boos' test when $\gamma=0.001$ and when $\gamma=0.00001$ show an intermediate pattern of results whereas the Suissa & Shuster's test is certainly the most conservative test, ranking fourth at 50 percent chance. When P=0.90, similarly to the case of $\alpha=0.05$, the Suissa & Shuster's test can be kept into consideration, being the less conservative test at 43.33 percent chance. Among the Berger & Boos' procedures, the most suitable for applications is the one which fixes $\gamma=0.001$.

The overall conclusions that can be drawn for $\alpha = 0.025$ are similar to those obtained for the case of $\alpha = 0.05$. Generally, the Berger & Boos' procedure leads to a less conservative test, especially when the success probability in the population is not extreme (P = 0.25; 0.50; 0.75). In many cases, when the success probability in the population is rather extreme (P = 0.10; 0.90), the classic Suissa & Shuster's procedure is adequate. Nevertheless, it is not easy to extrapolate regularity patterns with respect to the role of the balance of the sample sizes.

Let's now discuss the results when $\alpha = 0.01$, which are not substantially different from those previously commented. When P = 0.10, the Suissa & Shuster's test is the most suitable test, being the less conservative at 56.67 percent chance. With respect to the Berger & Boos' procedures, the most suitable is that with the largest value of γ (i.e. $\gamma = 0.001$), which ranks first and second at 30 percent chance and at 53.33 percent chance respectively. When P = 0.25, the Berger & Boos' tests when $\gamma = 0.001$ and $\gamma = 0.0001$ are the less conservative tests, ranking first at 43.33 and at 30 percent chance respectively. The Suissa & Shuster's procedure is the most conservative procedure at 56.67 percent chance. Similar results have been found when P = 0.50, with the Berger & Boos' procedures leading to less conservative tests, and the Suissa & Shuster's test ranking fourth at 60 percent chance. Also when P = 0.75, the Berger & Boos' procedure when $\gamma = 0.001$ and $\gamma = 0.0001$ lead to the most suitable tests, whereas the Suissa & Shuster's test ranks fourth at 50 percent chance. In the case of P = 0.90, the Berger & Boos' test when $\gamma = 0.0001$ leads to the less conservative test, which ranks first and second at 33.33 and at 46.67 percent chance respectively.

Overall, the results for the pooled Z statistic indicate that the use of the Berger & Boos' procedure to calculate the attained sizes leads to less conservative tests when the probability in the population is not extreme (P = 0.25; 0.50; 0.75). On the contrary, when P = 0.10 or P = 0.90 the use of the classic Suissa & Shuster's procedure is more appropriate. With respect to the Berger & Boos' procedures, it is not relevant (in terms of conservatorism) to fix a larger confidence level (i.e. $\gamma = 0.00001$), since the best performances have been obtained when $\gamma = 0.001$ or $\gamma = 0.0001$. Last, with respect to the relation between sample sizes and degree of conservatorism, we are not able to draw any conclusion, as in the case of the unpooled Z statistic previously discussed.

6.5.2 Power Comparison

In Figure C.16 we compare the power achieved by the four different un**pooled** tests we've considered for $\alpha = 0.05$. Diagrams represent the power difference between the power achieved by the Berger & Boos' test and the Suissa & Shuster's test, respectively when $\gamma = 0.001$ (red bars), $\gamma = 0.0001$ (green dots) and $\gamma = 0.00001$ (blue dots). When P = 0.10, the four tests achieve the same level of power when $n_1 = 10, n_2 = 20; n_1 = 20, n_2 = 40;$ $n_1 = 20, n_2 = 50; n_1 = 20, n_2 = 60; n_1 = 20, n_2 = 80; n_1 = 20, n_2 = 90$ and $n_1 = 20, n_2 = 100; n_1 = 30, n_2 = 60.$ In the other cases, the use of the Berger & Boos' modified test can lead to either more or less power than the original Suissa & Shuster's procedure. In particular, it can be noted that the use of the latter procedure achieve higher power where the sample sizes are less imbalanced (when $n_1 = 20, n_2 = 30$; $n_1 = 30, n_2 = 40$; $n_1 = 30, n_2 = 50$; $n_1 = 40, n_2 = 50; n_1 = 40, n_2 = 60; n_1 = 40, n_2 = 70$). Except from the case in which $n_1 = 20, n_2 = 70$, in all the other cases the power we've calculated does not vary using different confidence levels. When P = 0.25, the four tests achieve the same level of power in the following cases: $n_1 = 10, n_2 = 20$; $n_1 = 10, n_2 = 30; n_1 = 20, n_2 = 50; n_1 = 10, n_2 = 60; n_1 = 10, n_2 = 70;$ $n_1 = 10, n_2 = 100$. In all the other cases we've considered, the use of the Berger & Boos' procedure leads to achieve more power with respect to the use of the Suissa & Shuster's procedure, but not significant differences are found with respect to the use of different confidence level, with the exceptions of the cases when $n_1 = 40, n_2 = 50; n_1 = 40, n_2 = 60; n_1 = 40, n_2 = 70;$ $n_1 = 40, n_2 = 80$, where both the use of $\gamma = 0.0001$ and $\gamma = 0.00001$ prove to be more powerful with the respect to the use of a confidence interval at level $\gamma = 0.001$. When P = 0.50, the use of the Berger & Boos' procedure always shows to achieve more power with respect to the original Suissa & Shuster's

procedure. Note that the power improvement in using the Berger & Boos' procedure can be very small (e.g. $n_1 = 20, n_2 = 30; n_1 = 30, n_2 = 40$), but also very large, especially when the sizes of the samples are imbalanced (e.g. $n_1 = 10, n_2 = 80; n_1 = 10, n_2 = 90; n_1 = 10, n_2 = 100$, with a power improvement ranging from 0.20 to 0.60. Slight differences are found with respect to the use of different confidence levels; in particular when $n_1 = 30, n_2 = 50$; $n_1 = 30, n_2 = 80; n_1 = 40, n_2 = 70$, both fixing γ at 0.0001 and at 0.00001 lead to achieve more power with respect to fixing γ at 0.001. Furthermore, note that, when $n_1 = 30, n_2 = 70$, the use of a larger confidence level (i.e. $\gamma = 0.00001$) does not prove to achieve more power than fixing γ at both 0.0001 and 0.001. Also when P = 0.75, the use of the Berger & Boos' procedure leads to achieve more power with respect to the use of the Suissa & Shuster's procedure in all the cases we've considered. Note that it is equivalent to fix γ at 0.0001 or 0.00001, whereas these procedure prove to achieve a higher level of power when γ is fixed at 0.001 in these cases: $n_1 = 30, n_2 = 50; n_1 = 30, n_2 = 70;$ $n_1 = 40, n_2 = 70$. Last, also when the Monte Carlo simulations for calculating the confidence interval have been performed fixing P = 0.90, the use of the Berger & Boos' procedure leads to achieve more power with respect to the original unconstrained maximization on the nuisance parameter space. Similarly to the cases of P = 0.50 and of P = 0.75, the improvement in power is larger when the sample sizes are very imbalanced (e.g. $n_1 = 10, n_2 = 70$; $n_1 = 10, n_2 = 80; n_1 = 10, n_2 = 90; n_1 = 10, n_2 = 100$). Note that, from one side, fixing γ at either 0.0001 or at 0.00001 does not lead to any difference in power; from the other side the us of these confidence levels leads to achieve more power with respect to fixing γ at 0.001 only when $n_1 = 30, n_2 = 40$.

In Figure C.17 we compare the power achieved by the four different **unpooled** tests we've considered for $\alpha = 0.025$. When P = 0.10, in several cases all the four tests achieve the same level of power $(n_1 = 20, n_2 = 30; n_1 = 20, n_2 = 40; n_1 = 20, n_2 = 50; n_1 = 20, n_2 = 60; n_1 = 20, n_2 = 90; n_1 = 30, n_2 = 50; n_1 = 30, n_2 = 60; n_1 = 30, n_2 = 70; n_1 = 30, n_2 = 80; n_1 = 30, n_2 = 90; n_1 = 30, n_2 = 100). Note that these are mostly cases with relatively low imbalanced sample sizes. Furthermore, in other three cases of relatively low imbalanced sample sizes, the Suissa & Shuster's test prove to achieve more power with respect to the Berger & Boos' test <math>(n_1 = 40, n_2 = 50; n_1 = 40, n_2 = 60; n_1 = 40, n_2 = 70)$. Differences can be highlighted with respect to the use of different values of γ . From one side, when both $n_1 = 40, n_2 = 50$ and $n_1 = 40, n_2 = 60$, the Suissa & Shuster's original test achieves more power than all the three Berger & Boos' procedures. From the other side, when $n_1 = 40, n_2 = 70$, the Suissa & Shuster's test is more powerful only than the Berger & Boos' test when $\gamma = 0.001$, whereas achieve the same level of

power of the Berger & Boos' test when $\gamma = 0.0001$ or $\gamma = 0.00001$. In all the other cases that we've studied, all the Berger & Boos' tests prove to be more powerful than the Suissa & Shuster's test. In particular, we note that the difference in power is higher when the sample sizes are more imbalanced (e.g. $n_1 = 10, n_2 = 90; n_1 = 10, n_2 = 100$). No differences emerge with respect the values of γ we've fixed. Let's now comment the case of P = 0.25. As in the previous case, the four tests show to be equally powerful in several cases (e.g. $n_1 = 10, n_2 = 30; n_1 = 10, n_2 = 40$). Furthermore, the Suissa & Shuster's test proves to be more powerful than the Berger & Boos' test (only when γ is fixed at 0.001) in three cases ($n_1 = 10, n_2 = 20$; $n_1 = 10, n_2 = 60; n_1 = 40, n_2 = 50$) but these power differences are very low. In all the other cases, the Berger & Boos' procedure leads to achieve more power with respect to the original Suissa & Shuster's procedure. In most cases, these differences are particularly relevant in cases of very imbalanced sample sizes (e.g. $n_1 = 20, n_2 = 80; n_1 = 20, n_2 = 90$). The use of a larger confidence level (i.e. $\gamma = 0.0001$, $\gamma = 0.00001$) leads to a more powerful test with respect to the use of a lower confidence level (i.e. $\gamma = 0.001$) in the following cases: $n_1 = 20, n_2 = 40$; $n_1 = 20, n_2 = 50$; $n_1 = 20, n_2 = 60$; $n_1 = 30, n_2 = 50$; $n_1 = 20, n_2 = 60$, but these differences are not particularly relevant. When P = 0.50, the Berger & Boos' test is always more powerful than the Suissa & Shuster's test; this is particularly relevant, for instance, when $n_1 = 10, n_2 = 80$; $n_1 = 10, n_2 = 90; n_1 = 10, n_2 = 100.$ When $n_1 = 20, n_2 = 30$, the use of a larger confidence set ($\gamma = 0.0001$ or $\gamma = 0.00001$) leads to achieve more power with respect to the use of a lower confidence level. Curiously, when $n_1 = 20$, $n_2 = 90$, fixing γ at 0.0001 leads to a slight improvement in power with respect to fixing γ at both 0.001 and 0.00001. We find a similar pattern of results also when p = 0.75, where the Berger & Boos' test always achieve more power than the Suissa & Shuster's test, with the only exception of the case when $n_1 = 40, n_2 = 50$, where the four tests achieve a very similar level of power. No relevent differences emerge with respect to the use of different levels of γ . When P = 0.90, the Berger & Boos' test is always more powerful than the Suissa & Shuster's test, with stronger differences in cases of very imbalanced sample sizes. No differences are found among the use of the three different confidence sets.

Let's now discuss the results we've obtained for the **unpooled** test when $\alpha = 0.01$. When P = 0.10, in eleven cases that we've considered, the four tests achieve the same level of power (e.g. $n_1 = 20, n_2 = 30$; $n_1 = 30, n_2 = 50$; $n_1 = 40, n_2 = 60$). When $n_1 = 40, n_2 = 50$, using the Suissa & Shuster's procedure leads to achieve more power with respect to the use of all the Berger & Boos' procedures. This pattern is found also when $n_1 = 30, n_2 = 40$, but

this difference in power is higher when $\gamma = 0.001$. In the case $n_1 = 40, n_2 = 70$, the Suissa & Shuster's test is only more powerful with respect to the Berger & Boos' procedure when $\gamma = 0.001$. In all the other cases, the use of all the Berger & Boos' procedures leads to achieve more power with respect to the unconstrained maximization on the nuisance parameter space. When P = 0.25, in four cases all the tests show to achieve the same level of power $(n_1 = 10, n_2 = 20; n_1 = 10, n_2 = 30; n_1 = 10, n_2 = 40; n_1 = 10, n_2 = 50).$ In only two cases the Suissa & Shuster's test is more powerful than the Berger & Boos' test, but only when γ is set at 0.001 $(n_1 = 30, n_2 = 40;$ $n_1 = 40, n_2 = 50$). In all the other cases, the Berger & Boos' procedures show to achieve more power with respect to the Suissa & Shuster's procedure. This power difference is higher in cases of high imbalanced sample sizes (e.g. $n_1 = 20, n_2 = 90$; $n_1 = 20, n_2 = 100$; $n_1 = 30, n_2 = 100$). Differences emerge also with respect to the use of different levels of γ . Indeed, the use of both $\gamma = 0.0001$ and $\gamma = 0.00001$ leads to achieve more power when $n_1 = 10$, $n_2 = 100$; $n_1 = 20$, $n_2 = 50$; $n_1 = 30$, $n_2 = 50$; $n_1 = 30$, $n_2 = 60$; $n_1 = 40, n_2 = 60; n_1 = 40, n_2 = 70; n_1 = 40, n_2 = 80.$ In two cases, when $n_1 = 30, n_2 = 90$ and $n_1 = 30, n_2 = 100$, the use of both $\gamma = 0.001$ and $\gamma = 0.0001$ leads to achieve more power with respect to the use of $\gamma = 0.00001$. When P = 0.50 the Berger & Boos' tests lead to achieve more power with respect to the Suissa & Shuster's test, with the only exception of the case when $n_1 = 30, n_2 = 40$, where the four tests show to achieve similar levels of power. As in previous cases, also when P = 0.90 power differences are more relevant in cases of high imbalanced sample sizes (e.g. $n_1 = 10, n_2 = 90; n_1 = 10, n_2 = 100$). The use of the three Berger & Boos' procedures does not lead to relevant differences in power, with two exceptions. First, when $n_1 = 10, n_2 = 40$, fixing γ at 0.001 or 0.0001 leads to a more powerful test with respect to fixing γ at 0.00001. Second, when $n_1 = 40, n_2 = 50$ or when $n_1 = 40, n_2 = 60$, using the Berger & Boos' procedure with γ fixed at 0.0001 leads to the most powerful test; moreover, fixing γ at 0.00001 leads to a more powerful test with respect to fixing γ at 0.001. When P = 0.75 the Berger & Boos' tests are always more powerful than the original Suissa & Shuster's test. Also in this case, this power difference is higher in cases of high imbalanced sample sizes (e.g. $n_1 = 10, n_2 = 90; n_1 = 10, n_2 = 100$). No relevant differences emerge with respect to the use of different levels of γ . This "state of the art" also holds when P = 0.90, with the exceptions of the cases when $n_1 = 30$, $n_2 = 40$; $n_1 = 40, n_2 = 50$, where the use of $\gamma = 0.0001$ or $\gamma = 0.00001$ leads to more powerful tests with respect to fixing γ at 0.001.

We now comment the results we obtained for the **pooled** test; let's begin with the case when $\alpha = 0.05$ (see Figure C.19). When P = 0.10, the Berger &

Boos' test always prove to achieve more power than the Suissa & Shuster's test, with the only two exceptions of low imbalanced sample sizes, such as the cases of $n_1 = 20$, $n_2 = 30$ and $n_1 = 40$, $n_2 = 50$. In all the other cases, the Berger & Boos' tests lead to achieve more power, but not significant differences are found with respect to the use of different levels of γ . Furthermore, note that, as previously revealed for the unpooled statistic, the difference in power between the use of the constrained and the unconstrained optimization procedures is found in cases of high imbalanced sample sizes (e.g. $n_1 = 10, n_2 = 70; n_1 = 10, n_2 = 80; n_1 = 10, n_2 = 90; n_1 = 10, n_2 = 100$). When P = 0.25, the Berger & Boos' tests alway achieve more power than the Suissa & Shuster's test, with the only exception of the case when $n_1 = 40, n_2 = 50$, where the four tests achieve the same levels of power. Differences are found with respect to the use of different Berger & Boos' procedures. In particular, when $n_1 = 20, n_2 = 60$ and when $n_1 = 40, n_2 = 80$, fixing γ at 0.0001 leads to achieve more power than fixing γ at both 0.001 and 0.00001. Furthermore, in the cases when $n_1 = 30, n_2 = 60$; $n_1 = 30, n_2 = 80$; $n_1 = 40, n_2 = 80$; $n_1 = 40, n_2 = 90$, fixing γ at both 0.0001 and 0.00001 leads to achieve more power than fixing γ at 0.001. Also when P = 0.50, the use of the Berger & Boos' procedure leads to a more powerful test than the use of the Suissa & Shuster's procedure, with the only exception of the case when $n_1 = 40, n_2 = 70$. When $n_1 = 20$, $n_2 = 80$; $n_1 = 30$, $n_2 = 80$; $n_1 = 30$, $n_2 = 100$ and $n_1 = 40$, $n_2 = 90$, fixing γ at both 0.0001 and 0.00001 leads to achieve more power than fixing γ at 0.001. Moreover, when $n_1 = 20, n_2 = 70$ fixing γ at 0.0001 leads to achieve more power with respect to fixing γ at both 0.001 and 0.00001. When P = 0.75, the four tests are found to achieve the same level of power in several cases (e.g. $n_1 = 10, n_2 = 30; n_1 = 10, n_2 = 50; n_1 = 20, n_2 = 80;$ $n_1 = 40, n_2 = 100$). In all the other cases, the use of the Berger & Boos' procedure leads to achieve more power with respect to the use of the Suissa & Shuster's procedure. As previously noted, this power difference is higher in cases of high imbalanced sample sizes. No relevant power difference are found with respect to the use of different values of γ , with the exception of the case when $n_1 = 20, n_2 = 70$, where fixing γ at 0.0001 or 0.00001 leads to achieve more power than fixing γ at 0.001. Also when P = 0.90, the four tests show to be equivalent in several cases (e.g. $n_1 = 10, n_2 = 80$; $n_1 = 20, n_2 = 60$; $n_1 = 20, n_2 = 70$). In other cases, the Suissa & Shuster's test leads to achieve more power than the Berger & Boos' test, but these differences are slight (e.g. $n_1 = 20, n_2 = 50; n_1 = 20, n_2 = 80$). In few cases, the use of the constrained maximization procedure leads to achieve more power than the use of the unconstrained procedure, and typically these are cases of high imbalanced sample sizes (e.g. $n_1 = 10, n_2 = 90; n_1 = 10, n_2 = 100$). No differences are found with respect to the use of different values of γ .

Let's now comment the results we've obtained for the **pooled** statistic when α = 0.025. When P = 0.10, the Berger & Boos' tests always prove to be more powerful with respect to the Suissa & Shuster's test. As previously observed, these differences are particularly relevant when the sample sizes are high imbalanced (note, for instance, that the power difference can also reach 0.7, 0.8 or 0.9 when $n_1 = 20, n_2 = 90; n_1 = 10, n_2 = 100$). Slight difference are found with respect to the use of different levels of γ , with the use of $\gamma = 0.0001$ or $\gamma = 0.00001$ leading to more powerful tests with respect to the use of $\gamma = 0.001$. Also when P = 0.25, the Berger & Boos' test always prove to be more powerful than the Suissa & Shuster's test. Moreover, slight power differences are found with respect to the use of different levels of γ , but these differences always indicate that using $\gamma = 0.0001$ or $\gamma = 0.00001$ leads to more powerful tests with respect to fixing γ at 0.001. Similar conclusions can be drawn for the case of P = 0.50: apart from some exceptions (e.g. $n_1 = 10, n_2 = 20; n_1 = 20, n_2 = 30$), generally the use of the Berger & Boos' procedure leads to more powerful test than the Suissa & Shuster's procedure. Also in this case, sligth power differences are found with respect to the use of different levels of γ , but these differences always indicate that fixing $\gamma = 0.0001$ or $\gamma = 0.00001$ leads to more powerful tests with respect to fixing γ at 0.001. Different results are found when P = 0.75. In this case, in several situations the four tests show to achieve a similar level of power (e.g. $n_1 = 10, n_2 = 40; n_1 = 10, n_2 = 60$), whereas, as previously shed into light, the superiority of the Berger & Boos' procedure in cases of high imbalanced sample sizes is clear (see the cases when $n_1 = 10, n_2 = 90$; $n_1 = 10, n_2 = 100$). Moreover, minor power differences are found with respect to the use of different levels of γ . Similar conclusions to the case of P = 0.75 can be drawn for the case of P = 0.90.

Last, in Figure C.21 are reported the results obtained for the **pooled** statistic, when $\alpha = 0.01$. When P = 0.10, the Berger & Boos' tests always prove to be more powerful than the Suissa & Shuster's test. We note that, differently from several cases previously commented, the power difference between the two procedures is relevant also for cases of relatively low imbalanced sample sizes (e.g. $n_1 = 10, n_2 = 20$; $n_1 = 10, n_2 = 30$; $n_1 = 10, n_2 = 40$). Only minor differences are found with respect to the use of different levels of γ . Results are very similar when P = 0.25, where the constrained optimization procedure is still more powerful than the unconstrained optimization procedure. In two cases, it is found that the four tests achieve the same level of power $(n_1 = 40, n_2 = 50; n_1 = 40, n_2 = 60)$. Note that, in several cases, fixing γ at 0.0001 or 0.00001 leads to achieve more power than fixing γ at 0.001 (e.g.

 $n_1=30, n_2=90;\ n_1=40, n_2=70;$). When P=0.50, the Berger & Boos' procedure is always more powerful than the Suissa & Shuster's procedure, with the exception of some cases of relatively low imbalanced sample sizes $(n_1=30,n_2=40;\ n_1=40,n_2=50;\ n_1=40,n_2=60;\ n_1=40,n_2=70)$. Small differences are found with respect to the use of different levels of γ ; for instance, when $n_1=10,n_2=40$, fixing γ at 0.0001 leads to achieve more power than fixing γ at both 0.001 and 0.00001. When P=0.75, we can note that, in several cases, the four tests achieve the same (or very similar) level of power (e.g. $n_1=10,n_2=20;\ n_1=10,n_2=30;\ n_1=20,n_2=30)$. In cases in which the Suissa & Shuster's test achieves more power than the Berger & Boos' test (γ is fixed at 0.001), such a power difference is not relevant (e.g. $n_1=40,n_2=70;\ n_1=40,n_2=80$). When P=0.90, graphs show that all the four tests achieve similar levels of power, with only minor differences indicating either a better performance of the Suissa & Shuster's test or a better performance of the Berger & Boos' test.

6.6 Discussion

Exact unconditional tests are a useful tool for testing statistical hypotheses on the 2×2 binomial trial. From a historical point of view, these tests have not been developed for applications until the 1980s. In fact, computational intensive procedures are necessary for the derivation of the attained sizes and, hence, the conditional approach for testing statistical hypotheses has been far and away more popular. Nevertheless, the unconditional approach presents with three fundamental advantages with respect to the conditional approach: i) a better fit to the design of the study when only one margin is fixed by design; ii) a clearer and easier interpretation of the results; iii) stronger power properties.

In this chapter, a new R's algorithm has been developed in order to derive both the attained sizes and the power of the Suissa & Shuster's test. First, we've considered the case of balanced sample sizes, for which Suissa and Shuster (1985) report that the unpooled Z test and the pooled Z tests are equivalent. As shown in Figure C.1, Figure C.2 and Figure C.3 (see Appendix C), we essentially confirm this statement.

Second, we've used the R's algorithm to derive the attained sizes in the case of imbalanced sample sizes. This case has not yet been comprehensively studied, even if several authors (see Hirji (2006)) have reported that in these cases both conditional and unconditional tests have poor power properties. We find that: i) generally the pooled Z test is less conservative than the unpooled Z test; ii) generally the pooled Z test achieve more power than

the unpooled Z test, even if the pooled test is not uniformly more powerful than the unpooled test. Hence we suggest that, following Berger (1994), the pooled Z test is appropriate for applications.

Third, we've compared two different procedures aimed to unconditionally compute the attained sizes. Suissa and Shuster (1985) use the classic Lehmann (1959)'s procedure, which maximizes the null power function with respect to the nuisance parameter p over the entire parametric space. As it has been shown by Berger and Boos (1994), sometimes this procedure obtains the attained sizes adopting values of the nuisance parameter which can be very unusual on the light of the observations. In fact, the maximum of the null power function on the nuisance parameter space is achieved for values of p that are strictly closed to 0 or to 1. Hence, a new approach for the computation of the attained sizes has been proposed, for which these are calculated maximizing the null power function over a confidence set (calculated at a fixed level $(1-\gamma)$ for the nuisance parameter space and summing up the result of this maximization with the value of γ (Berger and Boos (1994)). However, no research has been yet conducted on the use of different confidence levels for calculating the attained sizes. In this chapter, we set different values of γ (0.001, 0.0001, 0.00001) in order to compare the conservatorism and the power achieved by both the pooled and the unpooled Z tests. Berger (1994) reports that the Suissa and Shuster (1985) test, using the pooled variance estimate and the confidence interval modification of Berger and Boos (1994), generally has good power properties. Note that Berger (1994)'s paper has been the first work to propose a thorough comparison of the powers of several unconditional tests. Previous works had mostly focused on the size and not on the power of the tests (e.g. Upton (1982), Storer and Kim (1990), Haber (1986)). However, also the comparison proposed in Berger (1994) has to be considered inadequate since only nine sample sizes have been compared and only one α level (0.10) has been fixed. In the present chapter, we've fixed three different α levels (0.05; 0.025; 0.01) and used 30 different sample sizes varying with respect to the degree of imbalance. Moreover, we've computed the confidence set for the nuisance parameter using Monte Carlo simulations from binomial random variables with different success probability parameter (P=0.10; 0.25; 0.50; 0.75; 0.90).

As far as the unpooled Z statistic is concerned, we report that the use of the Berger & Boos' procedure in order to calculate the attained sizes leads to less conservative tests with respect to the classic Suissa & Shuster's procedure. Note that the degree of conservatorism depends on the probability parameter in the population for which is calculated the confidence set. We report a larger advantage in the use of the Berger & Boos' procedure when P = 0.25; 0.50; 0.75. Furthermore, the best performances in terms of less con-

servatorism are obtained when γ is calculated at level 0.001 and 0.0001. Hence, it does not appear useful to set a too large confidence value for the confidence set (as, for instance, it is implemented in StatXact 8). Last, a no clear relation between the conservatorism of the procedures and the degree of imbalance of the sample sizes is reported.

Similar conclusions can be drawn for the pooled Z statistic when P = 0.25; 0.50; 0.75: using the Berger & Boos' procedure leads to less conservative attained sizes. On the contrary, when P = 0.10 or P = 0.90 the use of the classic Suissa & Shuster's procedure is more appropriate (and this result is stronger for the pooled case with respect to the unpooled case). Also in the pooled case, no advantage is found fixing a larger confidence interval and a no clear relation holds between the conservatorism of the procedures and the degree of imbalance of the sample sizes.

Altogether, we can state that the use of a Berger & Boos' procedure to calculate the attained sizes leads to a substantial advantage in terms of less conservatorism with respect to the classic Suissa & Shuster's procedure, both for the unpooled and for the pooled case. Moreover, our data support the Berger (1994)' s suggestion to fix γ at 0.001. In fact, in most cases we've considered, fixing γ at 0.001 leads to a less conservative test with respect to fixing γ either at 0.0001 or 0.00001. Nevertheless, for purposes of application, the Berger & Boos' procedure should be handled with caution when the success probability in the population is suspected to be either too low or too high. Indeed, in these cases, evidence is obtained on the superiority of the Suissa & Shuster's procedure in terms of less conservatorism.

As far as power is concerned, the results that have been presented in the previous section comprehensively indicate that, commonly, the use of the Berger & Boos' procedure leads to achieve more power with respect to the use of the Suissa & Shuster's procedure. This advantage is related to the degree of imbalance of the sample sizes, with high imbalanced designs (e.g. $n_1 = 10, n_2 = 100$) gaining much more power than low imbalanced designs. Our graphs clearly show that, in cases of low imbalanced designs (e.g. n_1 = $20, n_2 = 30; n_1 = 30, n_2 = 40$), using the Suissa & Shuster's or the Berger & Boos' procedure leads to very similar level of powers. This pattern of results has been obtained with all the levels of α that we've fixed ($\alpha = 0.05$, $\alpha = 0.025$, $\alpha = 0.01$) and both for the pooled and for the unpooled test. Furthermore, we've compared the use of different levels of γ with the Berger & Boos' procedure. No substantial differences emerge in any of the case we've considered. Normally, when there is a difference among the three procedures, this indicates a superiority of either the use of γ at 0.0001 or 0.00001 with respect to $\gamma = 0.001$. However, this difference in power is always very slight and unimportant for application purposes. Consequently, our suggestion is

6.6. DISCUSSION

to adopt a not too large level of confidence for the Berger & Boos' procedure (i.e. $\gamma=0.001$ or $\gamma=0.0001$), thus obtaining a less conservative test.

Conclusion and Perspectives

The present work has focused on testing hypotheses on the 2×2 binomial trial in the Potential Outcomes Framework. This is a theory for causal inference that was originally developed by Donald Rubin and coworkers during the 1970s. This is more than either a new statistical tool or a new statistical technique, but it is a distinctive way to look at the problem of causality, especially as far as observational studies are concerned. First of all, the Rubin Causal Model is a method of reasoning, that makes explicit and clear assumptions that are only implicitly put forward in classic approaches aimed to study the relation among variables, such as multiple regression. As we've mentioned in Chapter 1, the fundamental purpose of causal inference is to evaluate whether a certain treatment (or program) has / does not have an effect on each unit receiving this treatment (e.g. a pharmacological trail or an educational program). Since each unit can be either exposed or not exposed to the treatment, but cannot be both exposed and not exposed to the same treatment, it is not possible to draw causal inference at an individual level. This is the famous statement known as the fundamental problem of causal inference (Holland, 1986). This problem can be actually solved only at a population level, i.e. by considering different participants exposed to different levels of treatment or comparing the same units at different times. In order to draw causal inference at a population level, assumptions must be put forward, such as the fundamental unconfoundedness assumptions. In the last 30 years, several methods for estimating causal effects either under unconfoundedness or under other assumptions have been proposed.

Nevertheless, less interest has been given to the problem of testing statistical hypotheses in the Potential Outcomes Framework, which has been mainly treated by Donald Rubin and coworkers (see Imbens and Rubin (2011)). In the present thesis, we've reviewed the main approaches to causal inference—which refer to the Rubin Causal Model— essentially in order to make explicit hypotheses and assumptions that have to be put forth when testing statistical hypotheses in observational studies. We will set this to work in an observational study that shall be briefly presented in this Conclusion.

Let's now sum up the main results that have been achieved in Chapters 4,5 and 6, in which we've considered the problem of testing statistical hypotheses on the 2×2 binomial trial. First, the advantages of the unconditional approach over the widespread conditional approach have been highlighted. Second, the Suissa and Shuster (1985)'s work has been presented and some limitations (from a computational point of view) have been emphasized. Third, a new R algorithm for computing the p-values of the Suissa & Shuster's test (for both balanced and imbalanced sample sizes) has been presented. Fourth, we've computed the p-values using both the classic Lehmann (1959)'s procedure and the restricted Berger and Boos (1994)'s procedure.

At our knowledge (see for instance Lydersen *et al.* (2009)), at the actual "state of the art" there do not exist published works that have investigated on the choice of optimal values of the confidence level $(1 - \gamma)$ to be used in the Berger and Boos (1994)'s procedure. In Chapter 6 we've dealt with this problem using Monte Carlo simulations.

We now recall the main results we've obtained. First, as far as the Suissa & Shuster's test is concerned, we've found that, normally, the pooled Z test is less conservative than the unpooled Z test. Moreover, generally the pooled Z test achieves more power than the unpooled Z test, even if the pooled test is not uniformly more powerful than the unpooled test. This has also been reported by previous works (e.g Berger (1994)), but we've checked more cases, varying the degree of imbalance of the two sample sizes.

Second, we've compared the classic Suissa and Shuster (1985)'s procedure with the Berger and Boos (1994)'s procedure to unconditionally compute the p-values. We've set different values of γ (0.001, 0.0001, 0.00001) and we've computed the confidence set for the nuisance parameter using Monte Carlo simulations from binomial random variables with different success probability parameters (P=0.10; 0.25; 0.50; 0.75; 0.90).

It has been shown that, in the unpooled case, the use of the Berger & Boos' procedure in order to calculate the p-values leads to less conservative tests with respect to the classic Suissa & Shuster's procedure. The degree of conservatorism has proved to be dependent from the probability parameter of the random variable used to simulate and to derive the confidence set.

Larger advantages in the use of the Berger & Boos' procedure have been reported when P=0.25;0.50;0.75 rather than when P=0.10;0.90. Moreover, we've found that fixing γ at 0.001 or 0.0001 leads to less degrees of conservatorism.

Similar results have been found for the pooled Z statistic when P = 0.25; 0.50; 0.75. On the contrary, when P = 0.10 or P = 0.90 we've reported that the use of the classic Suissa & Shuster's procedure is more appropriate. With respect to the Berger & Boos' procedure, we've found that fixing

a larger confidence interval does not lead to a less conservative test. In addition, no clear relation has been found between the conservatorism of the procedures and the degree of imbalance of the sample sizes.

With respect to power, our results indicate that, generally, the use of the Berger & Boos' procedure leads to achieve more power than the use of the Suissa & Shuster's procedure. This advantage is related to the degree of imbalance of the sample sizes, with high imbalanced designs achieving higher levels of power than low imbalanced designs.

Furthermore, no substantial differences in terms of power have emerged using different levels of γ in the Berger & Boos' procedure. Consequently, our suggestion is to adopt a not too large level of confidence in the Berger & Boos' procedure (i.e. $\gamma = 0.001$ or $\gamma = 0.0001$), thus obtaining both a less conservative test and good power.

Two future directions of this work stand out: i) a comparison of the Berger and Boos (1994)'s procedure using different methods to construct the confidence set (e.g. Clopper-Pearson, Bayesian); ii) the use of other statistics with respect to the pooled and unpooled Z statistics (e.g. Fisher-Boschloo's test; Lancaster's unconditional test; Liebermeister's unconditional test) and a critical comparison of both the degree of conservatorism of the p-values and the power achieved by these unconditional tests.

Further work

We now present some details of an observational study we're applying the results obtained in the present thesis (Ripamonti et al., 2011). This research project aims to study the neural correlates of the major acquired reading impairments. Although nowadays there exists a flourishing literature describing in detail the cognitive performance of brain-damaged patients, the neuroanatomical localization of these syndromes is not totally clear and is mostly related to single-case studies, since not many group studies have been yet published.

Ever since the seminal papers by Marshall and Newcombe (1966, 1973), the investigation on acquired reading disorders has played a central role in cognitive neuropsychology. In the previous decades, acquired reading disorders were interpreted in the classical Déjerine (1891, 1892) framework. In 1891, the French neurologist Joseph-Jules Déjerine reported the case of a 63-year-old man, with both a reading and a spelling impairment (cécité verbale avec agraphie, i.e. verbal blindness with agraphia) in the absence of any object-naming deficit. This patient suddenly discovered not being able to read, apparently without any other language impairments (but verbal paraphasias, both in the spontaneous speech and in repetition, were found at a more detailed investigation of the patient's oral language). The post-mortem examination of the brain tissue revealed a cerebral damage to the left parietal lobe (including the angular gyrus). In 1892, Déjerine described the case of a second brain-damaged patient with a reading impairment, but with no associated spelling or oral language impairments (cécité verbale pure, i.e. pure alexia, also known as alexia without agraphia or agnosic alexia). The patient did not show either difficulties in writing or in naming objects, and he presented with right homonymous hemianopia but spared color naming ability. In this case, the autopsy revealed the presence of occipital and inferior temporal lesions, extending to the retroventricular white matter and the callosal splenium. A disconnection of the visual information in the right hemisphere from the intact store of "optical images of letters and words" in the left angular gyrus was proposed by Déjerine as a theoretical explanation of pure alexia. On the other side, a lesion of the left angular gyrus (as in the 1891's patient) would product both a spelling and a reading impairment. As wisely observed by Coslett (2000), although nowadays limited, Déjerine's ground-breaking accounts of acquired dyslexia in some aspects presage contemporary cognitive psychologists' theories. Moreover, note that, in his pioneering model of reading, Déjerine assumed the existence of a written word-form area in the left angular gyrus, while the right hemisphere is conceived as word-blind, so that the visual images of words would have to reach the left angular gyrus to be identified. Déjerine's anatomo-functional account of written language remained undisputed until the second half of the twentieth century, and continues to be considered as the major frame of reference for the clinical description of reading and writing disorders after brain damage.

However, Déjerine's taxonomy could not account for some qualitative aspects of reading disorders that can occur among acquired dyslexic patients following left-hemisphere lesions, left hemispherectomy or cerebral hemispheres dissections (split-brain patients). These aspects include the emergence of semantic, visual and morphological errors; grammatical class (e.g. nouns are read better than verbs), imageability, and word frequency effects. Furthermore, Déjerine's model could not account for the inability of reading irregular words or nonwords commonly found in dyslexic patients. A fundamental contribution to the study of acquired reading disorders came from the Dual-Route cognitive model, originally proposed from both a psycholinguistic and a neurolinguistic perspective in a series of seminal papers such as those by Marshall and Newcombe (1966, 1973), Morton (1969, 1980), Forster and Chambers (1973), Morton et al. (1980). These authors suggested that reading is underpinned by two distinct cognitive procedures: the lexical route and the sublexical route. Originally, Marshall and Newcombe (1966, 1973) proposed a detailed investigation of acquired dyslexias from a psycholinguistic perspective and also linked the study of reading disorders with the psycholinguistic theories of normal reading. Moreover, beginning from the mid of the 1970s, normal and disordered reading processes began to be described in encapsulated box-and-arrow type diagrams (see for instance Coltheart et al. (1987); Ellis and Young (1988)). Nowadays, many single-cases and some group studies have been published, some peculiar dissociation and psycholinguistic patterns have been reported and increasingly elaborated cognitive theories have been proposed. Although some of the original Marshall and Newcombe's hypotheses have been criticized, the fundamental idea for which reading is mediated by two different procedures has received considerable empirical support (Coslett (2000)). Furthermore, a computational realization of the Dual-Route theory of reading, called the Dual-Route Cascaded (DRC)

model, has been recently proposed by Coltheart *et al.* (2001). This model simulates a number of effects that other computational models of reading do not and there appear to be no effects that any other current computational model of reading can simulate but that the DRC model cannot.

Note that in the last thirty years, the Dual-Route model has been challenged by the formulation of other models, such as the parallel-distributed-processing (PDP) model (Seidenberg and McClelland, 1989) and an explicit model of reading by analogy (Sullivan and Damper, 1993). These two models postulate a procedure that can correctly translate both exception words and nonwords from print to phonology. There exists a long debate concerining these alternatives to the Dual-Route model (see Coltheart *et al.* (1993) for a discussion); in the present context we emphasize only that, from a clinical perspective, these alternative models cannot substitute the Dual-Route model.

The main difference between the original Déejerine's model and the Dual-Route model is that the latter provides for the existence of independent orthographic representations (orthographic input and output) and the process of reading aloud is based on two different pathways. According to the Dual Route model, after an early visual analysis, words are processed by means of an orthographic recognition system, that specifies the abstract identity (i.e. non dependent from the letter case, the font...) and the position of each letter within each word. This orthographic information can be converted into the phonological form of the word by means of three routes or processes. First, along the sub-word-level route regular words and non-lexical orthographic strings (nonwords) are processed by means of grapheme-to-phoneme conversion rules. This is a serial and slow procedure, but can provide for reading regular words or words that have a predictable relationship between spelling and sound. Contrary to words, nonwords can only be read via the sub-wordlevel route (but see Glushko (1979); Marcel (1980) for alternative explanations). Second, along the lexical route words are read through a three-steps procedure, proceeding from the orthographic input lexicon, through the semantic system and to the phonological output lexicon. This route provides for regular and irregular words reading and allows a fast and not laborious reading processing by activating automatically the stored conceptual knowledge (Coltheart et al., 1993, 2001). Third, also the existence of a direct pathway connecting the orthographic input lexicon and the phonologic output lexicon has been put forth (Schwartz and Marin, 1980).

From a clinical perspective, several single cases characterized by dissociations (either strong or not, see Shallice (1988)) in reading performance between irregular words and nonwords have been reported. Patients suffering from acquired surface dyslexia show a selective deficit in reading irregular words.

regular words (e.g. "yacht", "island", "colonel", "have", "borough") despite a preserved ability in reading both regular words and nonwords along the grapheme-to-phoneme conversion routine (e.g. Marshall and Newcombe (1973); Warrington et al. (1980); Behrmann and Bub (1992)). Actually, these patients fail in reading aloud low-frequency and inconsistent words (for instance, they may read "pint" as though it rhymed with "mint"); in contrast, reading of regular words and nonwords is significantly better and, in the purest cases, is closed to or within normal limits (Lambon Ralph and Patterson, 2005). As reported by Coltheart et al. (2001), word frequency affects reading along the lexical route, for both regular and irregular words. Consequently, surface dyslexic patients are expected to report more errors when reading high-frequency irregular words rather than low-frequency irregular words (Lambon Ralph and Patterson, 2005). Furthermore, it has long been observed that the performance of surface dyslexic patients can be highly variable with respect to both accuracy and reading latencies. It has also been proposed that there exist two different subtypes of surface dyslexia (Shallice and McCarthy, 1985). One typical pattern of surface dyslexia would be characterized by effortless and accurate reading of nonwords with poor performance only with irregular words. Another variety of surface dyslexia would be characterized by dissociated performance when reading regular/irregular words, and a generally slow, effortful reading. Surface dyslexia can be associated with fluent aphasia, as Wernicke's aphasia and Sensorial Transcortical aphasia and the syndrome has been described also in demented patients (e.g. Warrington (1975); Shallice et al. (1983); Hodges et al. (1992); Patterson and Hodges (1992))

Patients with acquired phonological dyslexia (e.g. Beauvois and Derouesne (1979), Dérouesné and Beauvois (1979)) show a marked failure in the ability to read nonwords but are still able to read both irregular and regular words (lexicality effect). Phonological dyslexia can also be defined in terms of a strong dissociation (i.e. a dissociation not requiring the better performance to be in the normal range, Shallice (1988)) between lexical and sublexical reading, with better performance on the lexical route. This dissociation can originate at multiple levels such as: i) an early peripheral deficit; ii) a damage to the grapheme-to-phoneme conversion procedure (classical phonological dyslexia); iii) a deficit of the phonological output buffer (Bisiacchi et al., 1989). Classical phonological dyslexia reflects a selective impairment in applying the grapheme-to-phoneme conversion rules, but usually this disorder is not so severe to affect the reading of real words (that may only be slight impaired). Lexicalization errors (e.g. BEM → "Ben") are typically interpreted as the patient's attempt to read nonwords via the lexical reading route (Lambon Ralph and Patterson, 2005). Visual errors (e.g. TOPPLE → "table")

have been reported as well as poor performance in reading aloud morphologically complex words (Funnell, 1983). Furthermore, it has long been observed that phonological dyslexic patients obtain a better performance on concrete words than on abstract or function words (see Coltheart (1996)). Actually, this is a controversial issue, since some phonological dyslexic patients read in the same manner all different types of words (Funnell, 1983; Friedman and Kohn, 1990) whereas other patients are relatively impaired in reading function words (Glosser and Friedman, 1990). Last, as observed by Coslett (2000), phonological dyslexia might be associated with different types of aphasias, ranging from very mild or absent (e.g. Dérouesné and Beauvois (1979)) to severe nonfluent (e.g. Funnell (1983)).

Differently from phonological dyslexia, *undifferentiated dyslexia* is characterized by poor reading both on the lexical and the sublexical route.

In the present project, we aim at identifying the neural correlates of phonological dyslexia. Previous research has currently provided insufficient or not consistent information. Usually, this impairment is caused by large left-hemisphere fronto-parietal perisylvian lesions and damage to the superior temporal lobe; angular and supermarginal gyri lesions have been found in most but not all patients (Coslett, 2000; Ralph and Graham, 2000). Also left frontal regions (e.g. the frontal opercolum) have been identified as keyregions in the pathogenesis of the impairment (Fiez and Petersen, 1998; Fiez et al., 2006). Recently, Rapcsak et al. (2009) have reported damage to a variety of perisylvian cortical regions associated with phonological dyslexia, consistent with distributed network models of phonological processing.

The main objective of the present study is to bring further evidence on the localization of the left brain areas that are critically involved in the pathogenesis of phonological dyslexia. No clear predictions can be put forward, since a wide number of critical areas have been identified by previous researches, ranging from inferior frontal, to superior temporal and inferior parietal areas.

Participants were recruited among circumscribed left-hemisphere lesioned patients consecutively admitted from three Northern Italian Rehabilitation Units over a period of one year. All patients had been discharged from the hospitals at the time of the present testing, were stable and were tested at a minimum of 3 months post-stroke. Inclusion Criteria were: i) to be Italian native speakers; ii) to have an educational level of at least 5 years of schooling; iii) to have an evidence of focal brain damage only in the left hemisphere (patients with diffuse/bilateral lesions and patients with no obvious lesions were excluded). These criteria were met in 64 patients (43 males and 21 females), aged 17-82 years (mean=55.65, SD=15.82, median=58,) who participated in the study after giving informed consent. The mean education level of the patients was 9.3 (SD=3.6, median=8) years of schooling. Hand-

edness was tested by means of the Edinburgh Inventory (Oldfield, 1971; 61 Right Handers, 3 Left Handers). The type and severity of the language disorder was assessed by means of the Italian version of the Aachen Aphasia Test (Luzzatti *et al.*, 1996).

Lesions in 61 patients were caused by cerebrovascular diseases (41 ischemic strokes and 20 cerebral hemorrhages) and in 3 patients by traumatic brain injury. Across patients, the damage covered a lot of left hemisphere areas, including the insula, the basal ganglia, left inferior and middle frontal gyri, superior and inferior parietal lobule, superior and middle temporal gyri, the occipital lobe. For all the participants, information on lesion location was only available from clinical CT or MRI.

Lesion data shall be analyzed using a Voxel-based Lesion Symptom Mapping approach (VLSM, Bates et al. (2003)). VLSM uses tools similar to those employed in functional neuroimaging studies. In VLSM, at each voxel patients are divided in two groups according to whether their lesions do or do not include that voxel. The performance on a reading task for the two groups is compared by means of a statistical test and the resultant p-values are displayed as a color maps. Analyses will be performed using the softwares MRIcron (Rorden et al., 2000), NPM and R. Exact unconditional test using either the Suissa & Shuster's test or the Berger & Boos' procedures will be performed.

Let's now indicate with L=1 a lesioned voxel, L=0 a not lesioned voxel; and with D=1 a phonological dyslexic patient; D=0 a not phonological dyslexic patient. In terms of the Rubin Causal Model we can define as: D(1)|L=1 the factual outcome for the lesioned patients, i.e. the outcome for the lesioned patients given they have been actually lesioned to a certain voxel. We indicate as D(0)|L=0 the factual outcome for the not lesioned patients, i.e. the outcome for the not lesioned patients given they have been actually not lesioned to a certain voxel. Furthermore, we define as D(0)|L=1 the counterfactual outcome for the lesioned patients, i.e. the outcome for the lesioned patients had they been not lesioned to a certain voxel. We indicate with D(1)|L=0 the counterfactual outcome for the not lesioned patients, i.e. the outcome for the not lesioned patients, i.e.

Let's define as Average Lesion Effect (A.L.E.), the outcome difference between the group of lesioned patients and the group of not lesioned patients. We also define the Average Lesion Effect on Lesioned patients (A.L.L.), that indicates the outcome difference between the group of lesioned patients if factually lesioned and if counterfactually not lesioned.

In these terms, we also define the Selection Bias, that is the outcome difference that would be observed between lesioned patients and not lesioned patients in the case they were all not lesioned, capturing pre-existing differences between the two groups that cannot be attributed to the lesion.

A causal interpretation to the effect of lesions on phonological dyslexia can only be given if the selection bias is eliminated. For, it is necessary to know the lesion generating mechanism for each voxel in order to control for factors determining the selection process. Remember now the following definitions (see Chapter 3):

- Unconditional exchangeability: the probability to belong to the group of lesioned patients does not vary with potential outcomes $L \perp (D(0), D(1))$
- Conditional exchangeability: the probability to belong to the group of lesioned patients does not vary with potential outcomes given the covariate X

$$L \perp (D(0), D(1)) \mid X$$

• Selection on unobservable: the probability of assignment to the group of lesioned patients has some dependence on the potential outcomes $L \perp (D(0), D(1)) \mid X, U$, where U are unobservable variables

In the present project, we'll assume the *conditional exchangeability* of the lesion generating mechanism:

$$Pr(D(0) = 1|L = 0, X = x) = Pr(D(0) = 1|L = 1, X = x)$$

This means that, for each voxel, the probability of suffering from phonological dyslexia in the group of not lesioned patients is equal to the probability of suffering from phonological dyslexia in the group of lesioned patients had not they been lesioned, given a covariate X = x. Matching methods will be used in order to pair lesioned and not lesioned patients that are similar with respect one or more covariates that we've considered (handedness, sex, age, etiology, years of school attended). Under a conditional exchangeability assumption and after performing a matching procedure, we'll use VLSM techniques in order to identify those voxel causally related with phonological dyslexia. The unconditional methods both reviewed and developed in this thesis for testing statistical hypotheses on risk differences will be used.

Bibliography

- Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. *Journal of the American Statistical Association*, **97**(457), 284–292.
- Abadie, A. (2005). Semiparametric difference-in-differences estimators. The Review of Economic Studies, 72(1), 1–19.
- Abadie, A. and Imbens, G. (2006). Large sample properties of matching estimators for average treatment effects. *Econometrica*, **74(1)**, 235–267.
- Abadie, A. and Imbens, G. (2008). On the failure of the bootstrap for matching estimators. *Econometrica*, **76**(6), 1537–1557.
- Abadie, A. and Imbens, G. (2009). A martingale representation for matching estimators. Working Paper 14756, National Bureau of Economic Research.
- Abadie, A. and Imbens, G. (2010). Matching on the estimated propensity score. Working Paper 15301, National Bureau of Economic Research.
- Agresti, A. (2002). Categorical data analysis. John Wiley and Sons, Hoboken (NJ).
- Angrist, J. and Pischke, J. (2008). Mostly harmless econometrics: An empiricist's companion. Princeton Univ Press, Princeton (NJ).
- Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of causal effects using instrumental variables. *Journal of the American Statistical Association*, **91**(434), 444–455.
- Ashenfelter, O. (1978). Estimating the effect of training programs on earnings. The Review of Economics and Statistics, **60**, 47–57.
- Ashenfelter, O. and Card, D. (1985). Using the longitudinal structure of earnings to estimate the effect of training programs. *The Review of Economics and Statistics*, **67**, 648–660.

- Athey, S. and Imbens, G. (2006). Identification and inference in nonlinear difference-in-differences models. *Econometrica*, **74**(2), 431–97.
- Baldi, P. and Traficante, D. (1992). Ipotesi di globalità e di decomposizione morfemica nell'accesso al lessico mentale: due paradigmi interpretativi a confronto. Archivio di Psicologia, Neurologia e Psichiatria, 53, 90–107.
- Barnard, G. (1947). Significance tests for 2×2 tables. *Biometrika*, 34((1/2)), 123-138.
- Barnard, G. (1989). On alleged gains in power from lower p-values. *Statistics in Medicine*, 8(12), 1469–1477.
- Basu, D. (1977). On the elimination of nuisance parameters. *Journal of the American Statistical Association*, **72**(358), 355–366.
- Bates, E., Wilson, S., Saygin, A., Dick, F., Sereno, M., Knight, R., and Dronkers, N. (2003). Voxel-based lesion-symptom mapping. *Nature Neuroscience*, **6**(5), 448–450.
- Beauvois, M. and Derouesne, J. (1979). Phonological alexia: three dissociations. *Journal of Neurology, Neurosurgery & Psychiatry*, **42**(12), 1115–1124.
- Behrmann, M. and Bub, D. (1992). Surface dyslexia and dysgraphia: Dual routes, single lexicon. *Cognitive Neuropsychology*, **9**(3), 209–251.
- Berger, R. (1994). Power comparison of exact unconditional tests for comparing two binomial proportions. *Institute of Statistics Mimeo Series*.
- Berger, R. and Boos, D. (1994). P values maximized over a confidence set for the nuisance parameter. *Journal of the American Statistical Association*, **89**(427), 1012–1016.
- Bertrand, M., Duflo, E., and Mullainathan, S. (2004). How much should we trust differences-in-differences estimates? *Quarterly Journal of Economics*, **119**(1), 249–275.
- Bishop, Y., Fienberg, S., and Holland, P. (1975). Discrete multivariate analysis: Theory and practice. MIT Press, Cambridge (MA).
- Bisiacchi, P., Cipolotti, L., and Denes, G. (1989). Impairment in processing meaningless verbal material in several modalities: The relationship between short-term memory and phonological skills. *The Quarterly Journal of Experimental Psychology*, **41**(2), 293–319.

- Blalock, H. (1964). Causal inferences in nonexperimental research. University of North Carolina Press, Chapel Hill.
- Bollen, K. (1989). Structural equations with latent variables. Wiley, New York.
- Bollen, K. (2002). Latent variables in psychology and the social sciences. *Annual Review of Psychology*, **53**(1), 605–634.
- Borgoni, R., Marasini, D., and Quatto, P. (2011). Control sample, association and causality. In S. Ingrassia, editor, *New Perspectives in Statistical Modeling and Data Analysis*, pages 517–524. Springer Verlag, Berlin.
- Boschloo, R. (1970). Raised conditional level of significance for the 2×2 -table when testing the equality of two probabilities. *Statistica Neerlandica*, **24**(1), 1–9.
- Bunge, M. (1963). Causality. The World Publishing Company, Cleveland.
- Casella, G. and Berger, R. (2001). *Statistical inference*. Duxbury Press, Pacific Grove (CA).
- Chernozhukov, V., Hong, H., and Tamer, E. (2007). Parameter set inference in a class of econometric models. *Econometrica*, **75**(5), 1243–1284.
- Cochran, W. (1954). Some methods for strengthening the common χ^2 tests. Biometrics, **10**(4), 417–451.
- Cole, S. and Frangakis, C. (2009). The Consistency Statement in Causal Inference: A Definition or an Assumption? *Epidemiology*, **20**(1), 3–5.
- Coltheart, M. (1996). *Phonological dyslexia*. Psychology Press, Hove, UK.
- Coltheart, M., Patterson, K., and Marshall, J. (1987). Deep dyslexia since 1980. Routledge, New York.
- Coltheart, M., Curtis, B., Atkins, P., and Haller, M. (1993). Models of reading aloud: Dual-route and parallel-distributed-processing approaches. *Psychological review*, **100**(4), 589–608.
- Coltheart, M., Rastle, K., Perry, C., Langdon, R., and Ziegler, J. (2001). Drc: A dual route cascaded model of visual word recognition and reading aloud. *Psychological review*, **108**(1), 204–256.

- Cook, T. (2008). Waiting for life to arrive: a history of the regression-discontinuity design in psychology, statistics and economics. *Journal of Econometrics*, **142**(2), 636–654.
- Coslett, H. (2000). Acquired dyslexia. In M. Farah and T. Feinberg, editors, *Patient-based Approaches to Cognitive Neuroscience*, pages 235–246. The MIT Press, Boston.
- Cox, D. (1958). Planning of experiments. Wiley, New York.
- Dawid, A. (2000). Causal inference without counterfactuals. *Journal of the American Statistical Association*, **95**(450), 407–424.
- Dehejia, R. and Wahba, S. (1999). Causal effects in non-experimental studies: Re-evaluating the evaluation of training programs. *Journal of the American Statistical Association*, **94**, 1053–1062.
- Déjerine, J. (1891). Sur un cas de cécité verbale avec agraphie, suivi dautopsie. Mémoires de la Société du Biologie, 3, 197–201.
- Déjerine, J. (1892). Contribution a l'étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. Comptes Rendus Hebdomadaries des Séances et Mémoires de la Société de Biologie, 4(Ninth series).
- Dérouesné, J. and Beauvois, M. (1979). Phonological processing in reading: data from alexia. *Journal of Neurology, Neurosurgery & Psychiatry*, **42**(12), 1125–1132.
- Donald, S. and Lang, K. (2007). Inference with difference-in-differences and other panel data. *The Review of Economics and Statistics*, **89**(2), 221–233.
- Duchateau, L. and Janssen, P. (1999). Small vaccination experiments with binary outcome: the paradox of increasing power with decreasing sample size and/or increasing imbalance. *Biometrical Journal*, **41**(5), 583–600.
- Ellis, A. and Young, A. (1988). *Human cognitive neuropsychology*. Taylor & Francis, London (UK).
- Emerson, J. and Moses, L. (1985). A note on the wilcoxon-mann-whitney test for 2xk ordered tables. *Biometrics*, (41), 303–309.
- Fiez, J. and Petersen, S. (1998). Neuroimaging studies of word reading. *Proceedings of the National Academy of Sciences*, **95**(3), 914.

- Fiez, J., Tranel, D., Seager-Frerichs, D., and Damasio, H. (2006). Specific reading and phonological processing deficits are associated with damage to the left frontal opercolum. *Cortex*, **42**, 624–643.
- Fisher, R. (1925). The design of Experiments. 1st ed, Oliver and Boyd, London.
- Forster, K. (1976). Accessing the mental lexicon. In E. Walker and R. Wales, editors, *New approaches to language mechanisms*, volume 30, pages 231–256. North Holland, Amsterdam.
- Forster, K. and Chambers, S. (1973). Lexical access and naming time. *Journal of verbal learning and verbal behavior*, **12**(6), 627–635.
- Friedman, R. and Kohn, S. (1990). Impaired activation of the phonological lexicon: Effects upon oral reading. *Brain and Language*, **38**(2), 278–297.
- Funnell, E. (1983). Phonological processes in reading: New evidence from acquired dyslexia. *British Journal of Psychology*, **74**(2), 159–180.
- Glosser, G. and Friedman, R. (1990). The continuum of deep/phonological alexia. *Cortex*, **26**(3), 343–359.
- Glushko, R. (1979). The organization and activation of orthographic knowledge in reading aloud. *Journal of experimental psychology: Human perception and performance*, **5**(4), 674–691.
- Gu, X. and Rosenbaum, P. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. *Journal of Computational and Graphical Statistics*, **2**, 405–420.
- Haber, M. (1986). An exact unconditional test for the 2×2 comparative trial. *Psychological Bulletin*, **99**(1), 129–132.
- Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average treatment effects. *Econometrica*, **66**(2), 315–331.
- Hahn, J., Todd, P., and Van der Klaauw, W. (2000). Identification and estimation of treatment effects with a regression-discontinuity design. *Econometrica*, **69**(1), 201–209.
- Hájek, P. and Havránek, T. (1978). Mechanizing hypothesis formation: mathematical foundations for a general theory, volume 396. Springer-Verlag.

- Hansen, C. (2007a). Asymptotic properties of a robust variance matrix estimator for panel data when t is large. *Journal of Econometrics*, **141**(2), 597–620.
- Hansen, C. (2007b). Generalized least squares inference in panel and multilevel models with serial correlation and fixed effects. *Journal of Econometrics*, **140**(2), 670–694.
- Haviland, M. (1990). Yates' correction for continuity and the analysis of 2×2 contingency tables. Statistics in Medicine, **9**(4), 363–367.
- Heckman, J. (2000). Causal Parameters and Policy Analysis in Economics: A Twentieth Century Retrospective. *Quarterly Journal of Economics*, **115**(1), 45–97.
- Heckman, J. (2005). The scientific model of causality. Sociological Methodology, **35**(1), 1–97.
- Heckman, J. (2010). Building bridges between structural and program evaluation approaches to evaluating policy. *Journal of Economic Literature*, 48, 356–398.
- Heckman, J. and Hotz, J. (1989). Alternative methods for evaluating the impact of training programs. *Journal of the American Statistical Association*, **84**(408), 862–880.
- Heckman, J. and Robb Jr, R. (1985). Alternative methods for evaluating the impact of interventions: An overview. *Journal of Econometrics*, **30**, 239–267.
- Heckman, J. and Vytlacil, E. (2007). Econometric evaluation of social programs, part i: Causal models, structural models and econometric policy evaluation. *Handbook of econometrics*, **6**, 4779–4874.
- Heckman, J., Ichimura, H., and Todd, P. (1997). Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. *The Review of Economic Studies*, **64**(4), 605–654.
- Heckman, J., Ichimura, H., and Todd, P. (1998). Matching as an econometric evaluation estimator. *The Review of Economic Studies*, **65**(2), 261–294.
- Hernán, M. and Robins, J. (2010). Causal Inference. In preparation.
- Hill, A. (1965). The environment and disease: association or causation? *Proceedings of the Royal Society of Medicine*, **58**(5), 295–300.

- Hirji, K. (2006). Exact analysis of discrete data. Chapman & Hall, CRC Press, Boca Raton (FL).
- Hirji, K., Tan, S., and Elashoff, R. (1991). A quasi-exact test for comparing two binomial proportions. *Statistics in Medicine*, **10**(7), 1137–1153.
- Hodges, J., Patterson, K., Oxbury, S., and Funnell, E. (1992). Semantic dementia. *Brain*, **115**(6), 1783–1806.
- Holland, P. (1986). Statistics and causal inference. *Journal of the American Statistical Association*, **81**, 945–960.
- Horowitz, J. and Manski, C. (2000). Nonparametric analysis of randomized experiments with missing covariate and outcome data. *Journal of the American Statistical Association*, **95**(449), 77–84.
- Hotz, V., Crump, R., Imbens, G., and Mitnik, O. (2008). Nonparametric tests for treatment effect heterogeneity. *Review of Economics and Statistics*, **90(3)**, 389–405.
- Hulswit, M. (2002). From cause to causation: A Peircean perspective. Kluwer Academic Publisher, Dordrecht, The Netherlands.
- Imbens, G. (2003). Sensitivity to exogeneity assumptions in program evaluation. *American Economic Review*, **93**(2), 126–132.
- Imbens, G. and Angrist, J. (1994). Identification and estimation of local average treatment effects. *Econometrica: Journal of the Econometric Society*, **62**(2), 467–475.
- Imbens, G. and Kalyanaramang, K. (2009). Optimal bandwidth choice for the regression discontinuity estimator. Working paper 14726, National Bureau of Economic Research.
- Imbens, G. and Manski, C. (2004). Confidence intervals for partially identified parameters. *Econometrica*, **72**(6), 1845–1857.
- Imbens, G. and Rubin, D. (2008). Rubin causal model. In *The New Palgrave Dictionary of Economics*. Palgrave McMillan, New York.
- Imbens, G. and Rubin, D. (2011). Causal Inference in Statistics. In preparation.
- Imbens, G. and Wooldridge, J. (2009). Recent developments in the econometrics of program evaluation. *Journal of Economic Literature*, **47**, 5–86.

- Imbens, G., Newey, W., and Ridder, G. (2003). Mean-square-error calculations for average treatment effects. Working paper 05.34, Institute for Economic Policy Research.
- LaLonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental data. *The American Economic Review*, **76**, 604–620.
- Lambon Ralph, M. and Patterson, K. (2005). Acquired disorders of reading. In *The science of reading*. Blackwell Publishing, Oxford (UK).
- Landenna, G., Marasini, D., and Ferrari, P. (1998). La verifica di ipotesi statistiche. Il Mulino, Bologna.
- Lee, D. (2008). Randomized experiments from non-random selection in us house elections. *Journal of Econometrics*, **142**(2), 675–697.
- Lee, D. and Lemieux, T. (2009). Regression discontinuity designs in economics. Technical report, National Bureau of Economic Research, Cambridge (MA).
- Lehmann, E. (1959). Testing Statistical Hypotheses. Springer, New York.
- Lehmann, E. and Romano, J. (2005). Testing statistical hypotheses. Springer Verlag, Berlin.
- Lewis, D. (1973). Causation. The Journal of Philosophy, 70(17), 556–567.
- Liao, Y., Lee, T., et al. (2006). A fisher exact test will be more proper. Radiology, 239(1), 300.
- Loehlin, J. (2004). Latent variable models: An introduction to factor, path, and structural equation analysis. Lawrence Erlbaum, Mahwah (NJ).
- Luzzatti, C., Willmes, K., and De Bleser, R. (1996). Aachener aphasie test (AAT). Organizzazioni Speciali, Firenze.
- Lydersen, S., Fagerland, M., and Laake, P. (2009). Recommended tests for association in 2× 2 tables. *Statistics in Medicine*, **28**(7), 1159–1175.
- Manski, C. (1990). Nonparametric bounds on treatment effects. The American Economic Review, 80, 319–323.
- Manski, C. (1995). *Identification problems in the social sciences*. Harvard Univ Press, Cambridge (MA).

- Manski, C. (2003). Partial identification of probability distributions. Springer Verlag, Berlin.
- Manski, C. (2005). Social choice with partial knowledge of treatment response. Princeton Univ Press, Princeton (NJ).
- Manski, C. (2007). *Identification for prediction and decision*. Harvard Univ Press, Cambridge (MA).
- Marcel, T. (1980). Surface dyslexia and beginning reading: A revised hypothesis of the pronunciation of print and its impairments. In M. Coltheart and J. Marshall, editors, *Deep dyslexia*, pages 227–258. Routledge and Kegan Paul, London.
- Marshall, J. and Newcombe, F. (1966). Syntactic and semantic errors in paralexia. *Neuropsychologia*, 4(2), 169–176.
- Marshall, J. and Newcombe, F. (1973). Patterns of paralexia: A psycholin-guistic approach. *Journal of Psycholinguistic Research*, **2**(3), 175–199.
- Mehrotra, D., Chan, I., and Berger, R. (2003). A cautionary note on exact unconditional inference for a difference between two independent binomial proportions. *Biometrics*, **59**(2), 441–450.
- Mill, J. (1967). A System of Logic: Ratiocinative and Inductive. Longmans (Original work published 1843), London.
- Morgan, S. and Winship, C. (2007). Counterfactuals and causal inference: Methods and principles for social research. Cambridge University Press, New York.
- Morton, J. (1969). Interaction of information in word recognition. *Psychological review*, **76**(2), 165–178.
- Morton, J. (1980). The logogen model and orthographic structure. In U. Frith, editor, *Cognitive Processes in Spelling*, pages 117–133. Academic Press, London.
- Morton, J., Patterson, K., and Coltheart, M. (1980). A new attempt at an interpretation, or, an attempt at a new interpretation. In M. Coltheart, K. Patterson, and J. Marshall, editors, *Deep dyslexia*, pages 91–118. Routledge and Kegan Paul, London.

- Neyman, J. (1923). On the application of probability theory to agricultural experiments. essay on principles. section 9. *Translated in Statistical Science*, 1990, 5, 465–480.
- Neyman, J. and Pearson, E. (1936). Contributions to the theory of testing statistical hypotheses. *Statistical Research Memoirs*, **1**(1).
- Patterson, K. and Hodges, J. (1992). Deterioration of word meaning: Implications for reading. *Neuropsychologia*, **30**(12), 1025–1040.
- Perondi, M., Reis, A., Paiva, E., Nadkarni, V., and Berg, R. (2004). A comparison of high-dose and standard-dose epinephrine in children with cardiac arrest. *New England Journal of Medicine*, **350**(17), 1722–1730.
- Pfirrmann, C., Notzli, H., Dora, C., Hodler, J., and Zanetti, M. (2005). Abductor tendons and muscles assessed at mr imaging after total hip arthroplasty in asymptomatic and symptomatic patients1. *Radiology*, **235**(3), 969–976.
- Quade, D. (1982). Nonparametric analysis of covariance by matching. *Biometrics*, **38**(3), 597–611.
- Quatto, P. (2008). Introduzione ai test ottimi e subottimi. Technical report, Quaderni del Dipartimento di Statistica, Universita degli Studi di Milano-Bicocca.
- Ralph, L. and Graham, N. (2000). Acquired phonological and deep dyslexia. *Neurocase*, **6**(2), 141–178.
- Rapcsak, S., Beeson, P., Henry, M., Leyden, A., Kim, E., Rising, K., Andersen, S., and Cho, H. (2009). Phonological dyslexia and dysgraphia: Cognitive mechanisms and neural substrates. *Cortex*, **45**(5), 575–591.
- Ripamonti, E., Aggujaro, S., Molteni, F., and Luzzatti, C. (2011). The anatomical foundation of reading disorders. *in preparation*.
- Ritland, J., Utheim, T., Utheim, Ø., Espeseth, T., Lydersen, S., Semb, S., Rootwelt, H., and Elsås, T. (2007). Effects of apoe and chrna4 genotypes on retinal nerve fibre layer thickness at the optic disc and on risk for developing exfoliation syndrome. *Acta Ophthalmologica Scandinavica*, **85**(3), 257–261.
- Robins, J. and Rotnitzky, A. (1995). Semiparametric efficiency in multivariate regression models with missing data. *Journal of the American Statistical Association*, **90**, 122–129.

- Robins, J., Rotnitzky, A., and Zhao, L. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, **90**, 106–121.
- Robins, J., Hernán, M., and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. *Epidemiology*, **11**(5), 550–560.
- Rohatgi, V. and Saleh, A. (2008). An introduction to probability and statistics. Wiley-India.
- Rorden, C., Brett, M., et al. (2000). Stereotaxic display of brain lesions. Behavioural neurology, 12(4), 191–200.
- Rosenbaum, P. (1987). The role of a second control group in an observational study. *Statistical Science*, **2(3)**, 292–306.
- Rosenbaum, P. (1989). Optimal matching for observational studies. *Journal of the American Statistical Association*, **84**, 1024–1032.
- Rosenbaum, P. (1995). Observational studies. Springer Verlag, New York.
- Rosenbaum, P. (2002). Covariance adjustment in randomized experiments and observational studies. *Statistical Science*, **17(3)**, 286–304.
- Rosenbaum, P. and Rubin, D. (1983a). Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. *Journal of the Royal Statistical Society. Series B (Methodological)*, **45**(2), 212–218.
- Rosenbaum, P. and Rubin, D. (1983b). The central role of the propensity score in observational studies for causal effects. *Biometrika*, **70**(1), 41–55.
- Rothman, K. and Greenland, S. (2005). Causation and causal inference in epidemiology. *American Journal of Public Health*, **95**(S1), 144–150.
- Rothman, K., Greenland, S., and Lash, T. (2008). *Modern epidemiology*. Lippincott Williams & Wilkins, Philadelphia (PA).
- Rubin, D. (1973a). Matching to remove bias in observational studies. *Biometrics*, **29**, 159–183.
- Rubin, D. (1973b). The use of matched sampling and regression adjustment to remove bias in observational studies. *Biometrics*, **29**, 185–203.
- Rubin, D. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology*, **66**, 688–701.

- Rubin, D. (1977). Assignment to treatment group on the basis of a covariate. Journal of Educational and Behavioral statistics, 2, 1–26.
- Rubin, D. (1978). Bayesian inference for causal effects: The role of randomization. *The Annals of Statistics*, **6**, 34–58.
- Rubin, D. (1979). Using multivariate matched sampling and regression adjustment to control bias in observational studies. *Journal of the American Statistical Association*, **74**, 318–328.
- Rubin, D. (1980). Discussion of randomization analysis of experimental data: the Fisher randomization test by D. Basu. *Journal of the American Statistical Association*, **75**(371), 591–593.
- Rubin, D. (1986). Statistics and causal inference: Comment: Which ifs have causal answers. *Journal of the American Statistical Association*, **81**, 961–962.
- Rubin, D. (1990). Comment: Neyman (1923) and causal inference in experiments and observational studies. *Statistical Science*, **5**(4), 472–480.
- Rubin, D. and Thomas, N. (1992a). Affinely invariant matching methods with ellipsoidal distributions. *The Annals of Statistics*, **20**(2), 1079–1093.
- Rubin, D. and Thomas, N. (1992b). Characterizing the effect of matching using linear propensity score methods with normal distributions. *Biometrika*, **79(4)**(4), 797–809.
- Rubin, D. and Thomas, N. (1996). Matching using estimated propensity scores: relating theory to practice. *Biometrics*, **52**(1), 249–264.
- Rubin, D. and Thomas, N. (2000). Combining propensity score matching with additional adjustments for prognostic covariates. *Journal of the American Statistical Association*, **95(450)**, 573–585.
- Salmon, W. (1984). Scientific Explanation and Causal Structure of the World. Princeton University Press, Princeton (NJ).
- Scharfstein, D., Rotnitzky, A., and Robins, J. (1999). Adjusting for non-ignorable drop-out using semiparametric nonresponse models. *Journal of the American Statistical Association*, **94**(448), 1096–1120.
- Schwartz, MF, S. E. and Marin, O. (1980). Fractionating the reading process in dementia: evidence for word-specific print-to-sound associations. In M. Coltheart, K. Patterson, and J. Marshall, editors, *Deep dyslexia*. Routledge and Kegan Paul, London.

- Seidenberg, M. and McClelland, J. (1989). A distributed, developmental model of word recognition and naming. *Psychological review*, **96**(4), 523–568.
- Seneta, E. and Phipps, M. (2001). On the comparison of two observed frequencies. *Biometrical Journal*, **43**(1), 23–43.
- Shadish, W., Campbell, D., and Cook, T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.
- Shallice, T. (1988). From neuropsychology to mental structure. Cambridge Univ Pr.
- Shallice, T. and McCarthy, R. (1985). Phonological reading: From patterns of impairment to possible procedures. In P. K.E., M. Coltheart, and J. Marshall, editors, *Surface Dyslexia*, pages 361–398. Lawrence Erlbaum Associates, London.
- Shallice, T., Warrington, E., and McCarthy, R. (1983). Reading without semantics. The Quarterly Journal of Experimental Psychology, **35**(1), 111–138.
- Shao, J. (1999). Mathematical Statistics. Springer, New York.
- Storer, B. and Kim, C. (1990). Exact properties of some exact test statistics for comparing two binomial proportions. *Journal of the American Statistical Association*, **85**(409), 146–155.
- Suissa, S. and Shuster, J. (1985). Exact unconditional sample sizes for the 2× 2 binomial trial. *Journal of the Royal Statistical Society. Series A (General)*, **148**(4), 317–327.
- Sullivan, K. and Damper, R. (1993). Novel-word pronunciation: a cross-language study. *Speech Communication*, **13**(3-4), 441–452.
- Thistlethwaite, D. and Campbell, D. (1960). Regression-discontinuity analysis: An alternative to the expost facto experiment. *Journal of Educational Psychology*, **51**(6), 309–317.
- Tocher, K. (1950). Extension of the neyman-pearson theory of tests to discontinuous variates. Biometrika, 37(1/2), 130–144.
- Trochim, W. (1984). Research design for program evaluation: The regression-discontinuity approach. Sage Publications, Beverly Hills.

- Upton, G. (1982). A comparison of alternative tests for the 2× 2 comparative trial. Journal of the Royal Statistical Society. Series A (General), 145, 86–105.
- Van der Klaauw, W. (2002). Estimating the effect of financial aid offers on college enrollment: A regression-discontinuity approach. *International Economic Review*, **43**(4), 1249–1287.
- van der Laan, M. and Robins, J. (2003). Unified methods for censored longitudinal data and causality. Springer Verlag.
- Vermunt, J. (2003). Multilevel latent class models. Sociological methodology, 33(1), 213–239.
- Vermunt, J. (2007). A hierarchical mixture model for clustering three-way data sets. Computational statistics & data analysis, 51(11), 5368–5376.
- Vermunt, J. and Magidson, J. (2005). Technical guide for latent gold 4.0: Basic and advanced. *Belmont Massachusetts: Statistical Innovations Inc.*
- Warrington, E. (1975). The selective impairment of semantic memory. The Quarterly journal of experimental psychology, 27(4), 635–657.
- Warrington, E., Shallice, T., *et al.* (1980). Word-form dyslexia. *Brain* **103**(1), 99–112.
- Wedel, M. and Kamakura, W. (2000). Market segmentation: Conceptual and methodological foundations. Springer, New York.
- White, P. (1990). Ideas about causation in philosophy and psychology. *Psychological Bulletin*, **108**(1), 3–18.
- Williamson, J. (2005). Bayesian nets and causality: philosophical and computational foundations. Oxford University Press, London.
- Wooldridge, J. (2007). Inverse probability weighted estimation for general missing data problems. *Journal of Econometrics*, **141**(2), 1281–1301.
- Zhao, Z. (2004). Using matching to estimate treatment effects: data requirements, matching metrics, and monte carlo evidence. *Review of Economics and Statistics*, **86**(1), 91–107.

Appendices

Appendix A

R Codes

Code 1

```
null.power < -function(n1, n2){
quant < -1.64
   x < -0: n1
  y < -0:n2
   \begin{array}{l} comb < -(expand.\,grid\,(x\,,y\,)) \\ d < -((comb\,[\,\,,2\,]\,/\,n2)\,-(comb\,[\,\,,1\,]\,/\,n1\,))/\,sqrt\,( \end{array} 
   (comb[,1]/n1*(1-comb[,1]/n1))/n1+
   (comb[,2]/n2*(1-comb[,2]/n2)/n2))
   quant.vec < -rep(quant, length(d))
   dataframe.all <-data.frame(comb,d,quant.vec)
  \begin{array}{l} names (\, data frame \, . \, \, all \, ) \, [\, 1\, ] \, <- \, \, "X" \\ names (\, data frame \, . \, \, all \, ) \, [\, 2\, ] <- \, "Y" \end{array}
   dataframe.crit <-dataframe.all [dataframe.all$d >
   dataframe.all$quant.vec,]
   dataframe.crit <-dataframe.crit [
   complete.cases(dataframe.crit),]
   expr < -rep(0, length(dataframe.crit$X))
   opt.object <-function(p){
   for(i in 1:length(dataframe.crit$X)){
   expr[i]<-(choose(n1,dataframe.crit$X[i])*
   p^{\hat{}}(dataframe.crit\$X\ [\ i\ ]+dataframe.crit\$Y\ [\ i\ ])
   *choose(n2, dataframe.crit$Y[i])*(1-p)^
   (n1+n2-dataframe.crit\$X[i]-dataframe.crit\$Y[i]))
   somma<-sum(expr)
   return (somma)
   pvalue <- optimize (opt.object, c(0,1), maximum=TRUE)
if (pvalue $objective <= 0.05){
\mathtt{quant}\,{<}\,{-}1.00
   while (quant) {
   quant < -quant + 0.01
   x < -0: n1
   y < -0: n2
   comb < -(expand.grid(x,y))
   d < -((comb[,2]/n2) - (comb[,1]/n1))/sqrt(
    \begin{array}{l} (comb [\ ,1] \ / \ n1*(1-comb [\ ,1] \ / \ n1)) \ / \ n1+ \\ (comb [\ ,2] \ / \ n2*(1-comb [\ ,2] \ / \ n2)) \end{array} 
   quant.vec <-rep(quant, length(d))
   dataframe.all <-data.frame(comb,d,quant.vec)
```

```
names (dataframe.all)[1] <- "X"
  names (dataframe . all)[2] < -"Y"
  dataframe.crit <-dataframe.all [dataframe.all$d
  > dataframe.all$quant.vec,]
  dataframe.crit <-dataframe.crit [complete.cases
  (dataframe.crit),
  expr <-rep (0, length (dataframe.crit$X))
  opt.object <-function(p){
  for(i in 1:length(dataframe.crit$X)){
    expr[i] < -(choose(n1, dataframe.crit$X[i])*
    p^(dataframe.crit$X[i]+dataframe.crit$Y[i])
    *choose(n2, dataframe.crit$Y[i])*
    (1-p)^(n1+n2-dataframe.crit$X[i]-dataframe.crit$Y[i]))
  somma < -sum (expr)
  return (somma)
  pvalue <- optimize (opt.object, c(0,1), maximum=TRUE)
  if (pvalue$objective < 0.05) break
         return (c(quant, pvalue$maximum, pvalue$objective))
}
else if (pvalue$objective>0.05) {
while (quant) {
  quant < -quant + 0.01
  x < -0: n1
  y < -0: n2
  comb < -(expand.grid(x,y))
  d < -((comb[,2]/n2) - (comb[,1]/n1))/sqrt(
  ({\rm comb}\,[\;,1]\,/\,{\rm n1}*(1-{\rm comb}\,[\;,1]\,/\,{\rm n1}))\,/\,{\rm n1}+({\rm comb}\,[\;,2]\,/\,{\rm n2}*(1-{\rm comb}\,[\;,2]\,/\,{\rm n2}))
  quant.vec < -rep(quant, length(d))
  dataframe.all <-data.frame(comb,d,quant.vec)
  names (dataframe.all)[1] <- "X"
  names (dataframe . all)[2] < -"Y"
  dataframe.crit <-dataframe.all [dataframe.all$d >
  dataframe.all$quant.vec,]
  dataframe.crit <-dataframe.crit [complete.cases
  (dataframe.crit),]
  expr < -rep(0, length(dataframe.crit X))
  opt.object <-function(p){
  for(i in 1:length(dataframe.crit$X)){
  expr[i] < -(choose(n1, dataframe.crit$X[i])*
  p^(dataframe.crit$X[i]+dataframe.crit$Y[i])
  *choose(n2, dataframe.crit$Y[i])*(1-p)^
  (n1+n2-dataframe.crit$X[i]-dataframe.crit$Y[i]))
  somma < -sum (expr)
  return (somma)
  pvalue <- optimize (opt.object, c(0,1), maximum=TRUE)
  if (pvalue$objective < 0.05) break
  return (c(quant, pvalue$maximum, pvalue$objective))
n2 < -c (seq (20,100, by=10), seq (30,100,by=10),
seq(40,100, by=10), seq(50,100,by=10))
n1\!<\!-c\,(\,rep\,(10\,,\ length\,(\,seq\,(\,20\,,\!100\,,\ by\!=\!10\,)\,))
rep(20, length(seq(30, 100, by=10))), rep(30, length(seq(40, 100, by=10))),
rep(40, length( seq(50,100,by=10))))
pvalues <- matrix (0, nrow=3, ncol=length(n1))
```

```
for(i in 1:length(n1)){
   pvalues[,i]<-null.power(n1[i],n2[i])
}
pvalues</pre>
```

Code 2

```
AttPower<-function(n1,n2,CritVal,p1,p2){
           x < -0:n1
        y < -0:n2
        comb < -(expand.grid(x,y))
        d\!<\!-((comb\left[\;,2\right]/\left.n2\right)-(comb\left[\;,1\right]/\left.n1\right))/\operatorname{sqrt}\left(
         (comb[,1]/n1*(1-comb[,1]/n1))/n1+(comb[,2]/n2*
         (1-\text{comb}[,2]/n2)/n2))
         quant.vec<-rep(CritVal, length(d))
         dataframe.all <-data.frame(comb,d,quant.vec)
        \begin{array}{l} names (\, data frame \, . \, all \, ) \, [\, 1\, ] \, <- \, \, "X" \\ names (\, data frame \, . \, all \, ) \, [\, 2\, ] <- \, "Y" \end{array}
         dataframe.crit <-dataframe.all [dataframe.all$d >
         dataframe.all$quant.vec,]
         dataframe.crit <-dataframe.crit [complete.cases
         (dataframe.crit),]
         expr <-rep (0, length (dataframe.crit$X))
                for (i in 1:length (dataframe.crit$X)){
                expr[i]<-choose(n1,dataframe.crit$X[i])*
                p1^{(dataframe.crit X[i])*(1-p1)^{(n1-dataframe.crit X[i])*}
                choose (n2, dataframe.crit$Y[i])*p2^(dataframe.crit$Y[i])*
                (1-p2) ^ (n2-dataframe.crit$Y[i])
        somma<-sum(expr)
         return (somma)
p1 < -c(rep(.05,7), rep(.10,8), rep(.15,8), rep(.20,8),
rep(.25,8), rep(.30,6), rep(.35,4), rep(.40,2))
p2 < -c \left( \, seq \left( \, .15 \, , .45 \, , .05 \right) \, , seq \left( \, .25 \, , .60 \, , .05 \right) \, , seq \left( \, .30 \, , .65 \, , .05 \right) \, , seq \left( \, .35 \, , .70 \, , .05 \right) \, ,
seq(.40,.75,.05), seq(.45,.70,.05), seq(.50,.65,.05),.55,.60)
n1seq < -rep(n1, length(p1))
\texttt{n1mat} \small <\!\!-\texttt{matrix} \left(\, \texttt{n1seq} \;,\;\; \texttt{nrow} \\ =\! \texttt{length} \left(\, \texttt{p1} \,\right) \;, \\ \texttt{ncol} \\ =\! \texttt{length} \left(\, \texttt{n1} \,\right) \;, \\ \texttt{byrow} \\ =\! T \right)
n1vecmat < -as.vector(n1mat)
n2seq < -rep(n2, length(p2))
n2mat <\!\!-matrix \left(\,n2seq\;,\;\;nrow =\! length \left(\,p2\,\right)\;, ncol =\! length \left(\,n2\,\right)\;, byrow =\!\!T\right)
n2vecmat < -as.vector(n2mat)
Criticals <-pvalues [1,]
Critseq <-rep (Criticals, 51)
Critmat <- matrix (Critseq, nrow=51, ncol=length (Criticals), byrow=T)
{\tt Critvecmat} \! < \! - \! {\tt as.vector} \, (\, {\tt Critmat} \, )
pvaluesseq <-rep (pvalues [3,],51)
pvaluesmat <-matrix (pvaluesseq, nrow=51, ncol=length (pvalues [3,]), byrow=T)
pvaluesvecmat <-as.vector(pvaluesmat)</pre>
vecp1 < -rep(p1, length(n1))
vecp2 < -rep(p2, length(n2))
powerval <-rep(0,length(vecp1))
for (i in 1:length (vecp1)) {
   powerval[i] < -AttPower(n1vecmat[i], n2vecmat[i], Critvecmat[i], vecp1[i], vecp2[i])
powerval
```

R Code 3

```
MLE<-function(n1,n2,P){
N < -1000
set.seed (1968)
            ymc \leftarrow rbinom(N, size = n2, prob = P)
            xmc <- rbinom(N, size = n1, prob = P)
                         expr < -rep(0, length(xmc))
                                                  for (i in 1: length(xmc)){
                                                                          expr[i] < -(xmc[i] + ymc[i])
                         stima < -sum(expr)/(N*(n1+n2))
             return (stima)
N < -1000
n2\!<\!\!-c\,(\,rep\,(\,c\,(\,seq\,(\,20\,,\!100\,,\,\,by\!=\!10)\,,\,\,seq\,(\,30\,,\!100\,,by\!=\!10)\,,
seq(40,100, by=10), seq(50,100, by=10)),5))
n1 < -c (rep(c(rep(10, length(seq(20, 100, by=10)))),
 \begin{array}{l} {\rm rep} \left( 20 \,, \, \, {\rm length} \left( {\rm seq} \left( 30 \,, 100 \,, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm rep} \left( 30 \,, \,\, {\rm length} \left( {\rm seq} \left( 40 \,, \! 100 \,, \,\, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm rep} \left( 40 \,, \,\, {\rm length} \left( {\rm seq} \left( 50 \,, \! 100 \,, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm sp} \left( 40 \,, \,\, {\rm length} \left( {\rm seq} \left( 50 \,, \! 100 \,, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm sp} \left( 40 \,, \,\, {\rm length} \left( {\rm seq} \left( 50 \,, \! 100 \,, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm sp} \left( 40 \,, \,\, {\rm length} \left( {\rm seq} \left( 40 \,, \! 100 \,, \,\, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm rep} \left( 40 \,, \,\, {\rm length} \left( {\rm seq} \left( 50 \,, \! 100 \,, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm rep} \left( 40 \,, \,\, {\rm length} \left( {\rm seq} \left( 50 \,, \! 100 \,, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm rep} \left( 40 \,, \,\, {\rm length} \left( {\rm seq} \left( 50 \,, \! 100 \,, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm rep} \left( 40 \,, \,\, {\rm length} \left( {\rm seq} \left( 50 \,, \! 100 \,, {\rm by} \! = \! 10 \right) \right) \right), \,\, {\rm rep} \left( 40 \,, \,\, {\rm length} \left( {\rm len
length (n1)
length(n2)
P < -c (rep (.10,30), rep (.25,30), rep (.50,30), rep (.75,30), rep (.90,30))
length (P)
MLE. cal \leftarrow matrix(0, nrow=1, ncol=length(n1))
for(i in 1:length(n1)){
     MLE. cal[, i]<-MLE(n1[i], n2[i], P[i])
MLE. cal
# Calculating a Confidence Set for the MLE Estimator using the Wald Confidence Interval
low.bound < -rep(0, length(n1))
for (i in 1: length(n1))
                        low.bound[i]<-MLE.cal[i]-qnorm(p = 0.9995)*
                         sqrt ((MLE. cal[i]*(1-MLE. cal[i]))/(N*(n1[i]+n2[i])))
low.bound
upp.bound < -rep(0, length(n1))
for (i in 1: length(n1)){
                         upp.bound[i]<-MLE.cal[i]+qnorm(p=0.9995)*
                         sqrt \, ((MLE.\,cal\,[\,i\,]*(1-MLE.\,cal\,[\,i\,])) \, / \, (N*(n1\,[\,i\,]+n2\,[\,i\,])))
upp.bound
gamma.value \leftarrow rep(0.001, length(n1))
null.power<-function(n1,n2, gamma.value, low.bound, upp.bound){
quant < -1.64
   x < -0:n1
                  y < -0:n2
                   comb < -(expand.grid(x,y))
                   d < -((comb[,2]/n2) - (comb[,1]/n1))/sqrt(
                   \left( {\mathop {\rm comb} \left[ {\,\,{\rm{,1}}} \right]/\,n1*\left( {1 - {\mathop {\rm comb} \left[ {\,\,{\rm{,1}}} \right]/\,n1}} \right)} \right)/n1 + \left( {\mathop {\rm comb} \left[ {\,\,{\rm{,2}}} \right]/\,n2*\left( {1 - {\mathop {\rm comb} \left[ {\,\,{\rm{,2}}} \right]/\,n2}} \right)} \right)
                   quant.vec<-rep(quant, length(d))
                   dataframe.all <-data.frame(comb,d,quant.vec)
                   names (dataframe . all)[1] <- "X"
                   names (data frame.all)[2] < -"Y"
                   dataframe.crit <-dataframe.all [dataframe.all$d > dataframe.all$quant.vec,]
                   dataframe.crit <-dataframe.crit [complete.cases(dataframe.crit),]
                   expr <-rep (0, length (dataframe.crit$X))
                   opt.object <-function(p){
```

```
for (i in 1:length (dataframe.crit$X)){
                   expr[i] < -(choose(n1, dataframe.crit$X[i])*
                   p^(dataframe.crit$X[i]+dataframe.crit$Y[i])
                   *choose(n2, dataframe.crit$Y[i])*
                   (1-p)^(n1+n2-dataframe.crit$X[i]-dataframe.crit$Y[i]))
                }
         somma < -sum (expr)
          return (somma)
         \verb|pvalue| < -\texttt{optimize} ( \texttt{opt.object} \ , \ \ \texttt{c} ( \texttt{low.bound} \ , \texttt{upp.bound}) \ , \ \ \texttt{maximum} = \texttt{TRUE}) \\
if (pvalue $objective + gamma. value <= 0.05) {
quant < -1.00
       while (quant) {
         quant < -quant + 0.01
         x < -0:n1
         y < -0:n2
         comb < -(expand.grid(x,y))
         d\!<\!-\!\left(\left(\mathrm{comb}\left[\right.,2\right.\right]/\left.\mathrm{n2}\right)-\!\left(\mathrm{comb}\left[\right.,1\right.\right]/\left.\mathrm{n1}\right.\right)\right)/\operatorname{sqrt}\left(
          \left( {\rm comb}\left[ \; ,1 \right] / \, {\rm n1}* \left( 1 - {\rm comb}\left[ \; ,1 \right] / \, {\rm n1} \right) \right) / \, {\rm n1} + \left( {\rm comb}\left[ \; ,2 \right] / \, {\rm n2}* \left( 1 - {\rm comb}\left[ \; ,2 \right] / \, {\rm n2} \right) \right)
          quant.vec < -rep(quant, length(d))
          dataframe.all <-data.frame(comb,d,quant.vec)
         names (dataframe . all)[1] <- "X"
          names (dataframe .all)[2] < -"Y"
          dataframe.crit <-dataframe.all [dataframe.all $d
         > dataframe.all$quant.vec,]
          dataframe.crit <-dataframe.crit [complete.cases
          (dataframe.crit),]
          expr <-rep (0, length (dataframe.crit$X))
          opt.object <-function(p){
                for (i in 1:length (dataframe.crit$X)){
                   \mathtt{expr} \hspace{.1cm} [\hspace{.1cm} \mathtt{i}\hspace{.1cm}] \hspace{-.1cm} < \hspace{-.1cm} - \hspace{-.1cm} (\hspace{.1cm} \mathtt{choose}\hspace{.1cm} (\hspace{.1cm} \mathtt{n1}\hspace{.1cm}, \mathtt{dataframe}\hspace{.1cm} \mathtt{.}\hspace{.1cm} \mathtt{crit}\hspace{.1cm} \hspace{-.1cm} \mathtt{X}\hspace{.1cm} \hspace{.1cm} [\hspace{.1cm} \mathtt{i}\hspace{.1cm}\hspace{.1cm}] \hspace{.1cm}) \hspace{.1cm} *
                   p^(dataframe.crit$X[i]+dataframe.crit$Y[i])
                   *choose(n2, dataframe.crit$Y[i])*(1-p)^
                    (n1+n2-dataframe.crit$X[i]-dataframe.crit$Y[i]))
                }
         somma <- sum (expr)
          return (somma)
         }
          pvalue <- optimize (opt.object, c(low.bound, upp.bound), maximum=TRUE)
          if (pvalue $ objective + gamma.value < 0.05) break
       return(c(quant, pvalue$maximum, pvalue$objective + gamma.value))
else if (pvaluesobjective + gamma.value > 0.05) {
while (quant) {
          quant < -quant + 0.01
         x < -0: n1
         y < -0:n2
         comb < -(expand.grid(x,y))
         d\!<\!-((comb\left[\;,2\;\right]/\,n2)\,-(comb\left[\;,1\;\right]/\,n1\,))/\,sqrt\,(
          ({\rm comb}\,[\ ,1\ ]\ /\ n1*(1-{\rm comb}\,[\ ,1\ ]\ /\ n1))\ /\ n1+({\rm comb}\,[\ ,2\ ]\ /\ n2*(1-{\rm comb}\,[\ ,2\ ]\ /\ n2))
          quant.vec<-rep(quant, length(d))
          dataframe \,.\; all <\!-data \,.\; frame \,(\,comb\,, d\,, quant\,.\, vec\,)
          names (dataframe . all)[1] <- "X"
          names (dataframe.all)[2] < -"Y"
          dataframe.crit <-dataframe.all [dataframe.all$d > dataframe.all$quant.vec,]
         dataframe.crit <-dataframe.crit [complete.cases(dataframe.crit),]
          expr < -rep(0, length(dataframe.crit X))
          opt.object <-function(p){
                for(i in 1:length(dataframe.crit$X)){
                   \mathtt{expr} \left[ \ \mathtt{i} \ \right] \! < \! - \! \left( \mathtt{choose} \left( \mathtt{n1} \, , \mathtt{dataframe.crit} \$ X \left[ \ \mathtt{i} \ \right] \right) *
                   p^(dataframe.crit$X[i]+dataframe.crit$Y[i])
```

Appendix B

Tables

Table B.1: P-values calculated for the z-unpooled statistic in cases of equal sample sizes, α = 0.05. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

n_1	n_2	$\mathbf{z_u}$	p	pvalue
10	10	1.96	0.7007	0.0474
11	11	1.92	0.8034	0.0454
12	12	1.86	0.8154	0.0468
13	13	1.81	0.8258	0.0480
14	14	1.77	0.8349	0.0491
15	15	1.74	0.5000	0.0495
16	16	1.92	0.1181	0.0416
17	17	1.90	0.8880	0.0420
18	18	1.88	0.1065	0.0424
19	19	1.86	0.7183	0.0415
20	20	1.85	0.5000	0.0404
21	21	1.83	0.5000	0.0442
22	22	1.81	0.5000	0.0481
23	23	1.84	0.6151	0.0438
24	24	1.80	0.3670	0.0455
25	25	1.77	0.3546	0.0472
26	26	1.75	0.3439	0.0489
27	27	1.79	0.2580	0.0413
28	28	1.78	0.7464	0.0423
29	29	1.78	0.7508	0.0432
30	30	1.77	0.7550	0.0440

Table B.1: continue on next page

Table B.1: -continued from previous page

$\overline{\mathbf{n_1}}$	n_2	$\mathbf{z}_{\mathbf{u}}$	р	pvalue
31	31	1.72	0.5000	0.0490
32	32	1.80	0.5966	0.0458
33	33	1.77	0.6118	0.0471
34	34	1.75	0.6289	0.0488
35	35	1.75	0.3468	0.0470
36	36	1.75	0.1520	0.0435
37	37	1.70	0.2186	0.0492
38	38	1.71	0.7884	0.0497
39	39	1.74	0.8539	0.0445
40	40	1.73	0.8556	0.0448
50	50	1.71	0.1289	0.0476
60	60	1.70	0.1608	0.0500
70	70	1.72	0.6132	0.0476
80	80	1.68	0.6877	0.0494
90	90	1.69	0.3616	0.0494
100	100	1.68	0.8758	0.0495
150	150	1.67	0.3544	0.0498

Table B.1: concluded from previous page

Table B.2: P-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.025$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

$\mathbf{n_1}$	$\mathbf{n_2}$	$\mathbf{z}_{\mathbf{u}}$	p	pvalue
10	10	2.17	0.5000	0.0211
11	11	2.40	0.6449	0.0207
12	12	2.26	0.3184	0.0225
13	13	2.16	0.3038	0.0243
14	14	2.19	0.7879	0.0208
15	15	2.14	0.7962	0.0216
16	16	2.29	0.8033	0.0224
17	17	2.21	0.1910	0.0231
18	18	2.14	0.3308	0.0239
19	19	2.14	0.1776	0.0243
20	20	2.10	0.1736	0.0249
21	21	2.17	0.8465	0.0248

Table B.2: continue on next page

Table B.2: -continued from previous page

n_1	n_2	$\mathbf{z}_{\mathbf{u}}$	p	pvalue
22	22	2.14	0.5000	0.0244
23	23	2.17	0.5585	0.0237
24	24	2.12	0.6050	0.0245
25	25	2.10	0.3416	0.0232
26	26	2.06	0.3330	0.0243
27	27	2.11	0.2867	0.0223
28	28	2.10	0.7180	0.0231
29	29	2.09	0.7224	0.0238
30	30	2.15	0.7875	0.0216
31	31	2.11	0.5936	0.0240
32	32	2.09	0.3606	0.0233
33	33	2.06	0.3530	0.0243
34	34	2.06	0.1975	0.0233
35	35	2.06	0.3043	0.0240
36	36	2.05	0.3002	0.0247
37	37	2.05	0.8105	0.0244
38	38	2.04	0.8114	0.0247
39	39	2.10	0.5987	0.0230
40	40	2.08	0.6084	0.0238
50	50	2.05	0.6056	0.0244
60	60	2.05	0.5875	0.0245
70	70	2.00	0.8245	0.0249
80	80	2.01	0.3210	0.0245
90	90	2.00	0.3654	0.0250
100	100	2.01	0.5967	0.0248
150	150	2.00	0.6112	0.0244

Table B.2: concluded from previous page

Table B.3: P-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.01$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

$\mathbf{n_1}$	n_2	$\mathbf{z}_{\mathbf{u}}$	р	pvalue
10	10	2.76	0.5000	0.0064
11	11	2.63	0.5000	0.0087
12	12	2.83	0.6114	0.0087

Table B.3: continue on next page

Table B.3: -continued from previous page

$\overline{\mathbf{n_1}}$	n_2	$\mathbf{z_u}$	р	pvalue
13	13	2.67	0.6577	0.0096
14	14	2.65	0.2519	0.0083
15	15	2.57	0.7560	0.0088
16	16	2.51	0.7612	0.0094
17	17	2.66	0.7714	0.0099
18	18	2.63	0.6552	0.0084
19	19	2.59	0.3353	0.0091
20	20	2.56	0.5000	0.0084
21	21	2.54	0.5000	0.0098
22	22	2.59	0.5519	0.0097
23	23	2.55	0.3287	0.0091
24	24	2.49	0.3236	0.0097
25	25	2.51	0.7387	0.0093
26	26	2.47	0.7534	0.0098
27	27	2.50	0.5000	0.0100
28	28	2.55	0.5908	0.0091
29	29	2.50	0.6087	0.0096
30	30	2.48	0.3498	0.0092
31	31	2.44	0.3434	0.0097
32	32	2.46	0.7043	0.0091
33	33	2.43	0.7063	0.0094
34	34	2.54	0.4659	0.0093
35	35	2.50	0.5821	0.0095
36	36	2.48	0.7760	0.0094
37	37	2.44	0.3649	0.0098
38	38	2.44	0.2197	0.0098
39	39	2.45	0.7277	0.0093
40	40	2.44	0.7304	0.0096
50	50	2.48	0.5818	0.0091
60	60	2.44	0.5839	0.0096
70	70	2.42	0.5838	0.0097
80	80	2.39	0.7375	0.0097
90	90	2.38	0.7609	0.0097
100	100	2.37	0.1185	0.0099
150	150	2.37	0.6167	0.0097

Table B.3: concluded from previous page

Table B.4: Achieved power and p-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.05$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in the first sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test.

$_{\rm n_1}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p2	power	1 u	$^{\mathrm{u}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	p ₂	power
10	10	1.96	0.0474	0.05	0.15	0.1109	29	29	1.78	0.0432	0.05	0.15	0.3151
10	10	1.96	0.0474	0.02	0.20	0.2037	50	59	1.78	0.0432	0.02	0.20	0.5053
10	10	1.96	0.0474	0.05	0.25	0.3101	59	53	1.78	0.0432	0.02	0.25	0.6861
10	10	1.96	0.0474	0.02	0.30	0.4205	59	59	1.78	0.0432	0.02	0.30	0.8247
10	10	1.96	0.0474	0.05	0.35	0.5276	59	59	1.78	0.0432	0.05	0.35	0.9137
10	10	1.96	0.0474	0.05	0.40	0.6267	59	59	1.78	0.0432	0.05	0.40	0.9627
10	10	1.96	0.0474	0.02	0.45	0.7151	59	59	1.78	0.0432	0.02	0.45	0.9860
10	10	1.96	0.0474	0.10	0.25	0.1995	59	59	1.78	0.0432	0.10	0.25	0.4129
10	10	1.96	0.0474	0.10	0.30	0.2827	59	59	1.78	0.0432	0.10	0.30	0.5864
10	10	1.96	0.0474	0.10	0.35	0.3725	59	59	1.78	0.0432	0.10	0.35	0.7384
10	10	1.96	0.0474	0.10	0.40	0.4655	59	59	1.78	0.0432	0.10	0.40	0.8521
10	10	1.96	0.0474	0.10	0.45	0.5585	59	53	1.78	0.0432	0.10	0.45	0.9254
10	10	1.96	0.0474	0.10	0.50	0.6478	59	53	1.78	0.0432	0.10	0.50	0.9667
10	10	1.96	0.0474	0.10	0.55	0.7298	59	59	1.78	0.0432	0.10	0.55	0.9869
10	10	1.96	0.0474	0.10	09.0	0.8016	59	59	1.78	0.0432	0.10	09.0	0.9956
10	10	1.96	0.0474	0.15	0.30	0.1871	59	59	1.78	0.0432	0.15	0.30	0.3649
10	10	1.96	0.0474	0.15	0.35	0.2587	59	53	1.78	0.0432	0.15	0.35	0.5262
10	10	1.96	0.0474	0.15	0.40	0.3394	58	53	1.78	0.0432	0.15	0.40	0.6770
10	10	1.96	0.0474	0.15	0.45	0.4263	59	59	1.78	0.0432	0.15	0.45	0.8001
10	10	1.96	0.0474	0.15	0.50	0.5160	59	53	1.78	0.0432	0.15	0.50	0.8892
10	10	1.96	0.0474	0.15	0.55	0.6043	58	56	1.78	0.0432	0.15	0.55	0.9461
10	10	1.96	0.0474	0.15	0.60	0.6876	50	53	1.78	0.0432	0.15	0.60	0.9777
10	10	1.96	0.0474	0.15	0.65	0.7629	59	53	1.78	0.0432	0.15	0.65	0.9924
10	10	1.96	0.0474	0.20	0.35	0.1761	59	53	1.78	0.0432	0.20	0.35	0.3304
10	10	1.96	0.0474	0.20	0.40	0.2417	59	53	1.78	0.0432	0.20	0.40	0.4783
10	10	1.96	0.0474	0.20	0.45	0.3168	58	53	1.78	0.0432	0.20	0.45	0.6270
10	10	1.96	0.0474	0.20	0.50	0.3987	50	53	1.78	0.0432	0.20	0.50	0.7595
10	10	1.96	0.0474	0.20	0.55	0.4844	58	53	1.78	0.0432	0.20	0.55	0.8631
10	10	1.96	0.0474	0.20	09.0	0.5707	58	56	1.78	0.0432	0.20	0.60	0.9327
10	10	1.96	0.0474	0.20	0.65	0.6548	50	53	1.78	0.0432	0.20	0.65	0.9722
10	10	1.96	0.0474	0.20	0.70	0.7344	59	53	1.78	0.0432	0.20	0.70	0.9907
10	10	1.96	0.0474	0.25	0.40	0.1675	50	53	1.78	0.0432	0.25	0.40	0.3020
10	10	1.96	0.0474	0.25	0.45	0.2285	58	59	1.78	0.0432	0.25	0.45	0.4454
10	10	1.96	0.0474	0.25	0.50	0.2986	58	56	1.78	0.0432	0.25	0.50	0.5979
10	10	1.96	0.0474	0.25	0.55	0.3763	58	53	1.78	0.0432	0.25	0.55	0.7390
10	10	1.96	0.0474	0.25	09.0	0.4595	58	53	1.78	0.0432	0.25	09.0	0.8512
10	10	1.96	0.0474	0.25	0.65	0.5465	59	53	1.78	0.0432	0.25	0.65	0.9271
10	10	1.96	0.0474	0.25	0.70	0.6353	59	59	1.78	0.0432	0.25	0.70	0.9701
10	10	1.96	0.0474	0.25	0.75	0.7235	59	59	1.78	0.0432	0.25	0.75	0.9902
10	10	1.96	0.0474	0.30	0.45	0.1598	59	53	1.78	0.0432	0.30	0.45	0.2877
10	10	1.96	0.0474	0.30	0.50	0.2168	59	53	1.78	0.0432	0.30	0.50	0.4320
10	10	1.96	0.0474	0.30	0.55	0.2836	59	53	1.78	0.0432	0.30	0.55	0.5875
10	10	1.96	0.0474	0.30	09.0	0.3598	59	53	1.78	0.0432	0.30	09.0	0.7320
10	10	1.96	0.0474	0.30	0.65	0.4448	59	29	1.78	0.0432	0.30	0.65	0.8473

Table B.4: continue on next page

Table B.4: continue on next page

1.	ı																																																	
Domon.	Toword Toword	0.9256	0.2849	0.4293	0.5850	0.7304	0.2856	0.4292	0.3237	0.5203	0.7029	0.8389	0.9233	0.9681	0.9886	0.4269	0.6036	0.7550	0.8652	0.9341	0.9715	0.9893	0.9966	0.3779	0.5422	0.6934	0.8147	0.9005	0.9537	0.9818	0.9942	0.3415	0.4935	0.6451	0.7770	0.0700	0.3427	0.9775	0.9929	0.0109	0.4055	0.7603	0.8681	0.9381	0.9759	0.9925	0.3024	0.4528	0.6112	0.7543
	22	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.22	09.0	0.65	0.35	0.40	0.45	0.50	0.00	0.00	0.00	0.70	0.40	0.45	0 0	0.60	0.65	0.70	0.75	0.45	0.50	0.55	0.60
2	4	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.02	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	07.0	0.20	0.20	0.70	0.20	200	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30
a mountaine a reasonal a	brance	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440
	n,	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	T	T./.	1 -	1.7.	1.1	1.1	1.77	1 7 2 2	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77
	711	56	50	59	56	59	58	58	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	900	900	000	000	900	000	000	300	8 8	900	30	30	30	30	30	30	30
,	T.,	59	59	59	59	59	59	59	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	000	00	900	000	000	30	30	30	30	30	30	30	30	30	30
nomod	Towner Towner	0.5373	0.1526	0.2078	0.2746	0.3536	0.1481	0.2043	0.1311	0.2344	0.3483	0.4621	0.5687	0.6640	0.7461	0.2166	0.3013	0.3898	0.4790	0.5662	0.6489	0.7253	0.7939	0.1902	0.2579	0.3325	0.4122	0.4953	0.5798	0.6634	0.7434	0.1648	0.2226	0.2893	0.3645	0.44/0	0.0007	0.0208	0.7104	0.1459	0.1962	0.3341	0.4192	0.5126	0.6106	0.7083	0.1287	0.1790	0.2419	0.3181
ç	22	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.52	09.0	0.65	0.35	0.40	0.45	0.50	0.00	0.00	0.00	0.0	0.40	0.45	0 C	0.60	0.65	0.70	0.75	0.45	0.50	0.55	0.60
ŝ	7	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.70	0.70	0.00	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30
onlessa	byana	0.0474	0.0474	0.0474	0.0474	0.0474	0.0474	0.0474	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0434	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454
	n,	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	20.1	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
٢	211	10	10	10	10	10	10	10	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	Ξ;	Ξ;	Ι:	Ξ;	1:	Ξ:	1 :	1 :	1 :	1 :	: :	11	11	11	11	11	11	11	11
,	- -	10	10	10	10	10	10	10	11	11	11	11	: ::	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	Ξ;	Ξ;	Ξ;	Ι:	Ξ;	1:	I :	1 :	1 -	1 :	1 :	: :	1 1	11	11	11	11	Π	Π;	11

в	į.		œ	ი,	_ (N 0	0 4	+ 01	7	œ	7	6	0 (o (ກ -	٦ ,	ი თ	າດ	00	00	3	4	o,	_ 0	21 1) c	0 4	က	9	9	o -	٦ .	-10	4	6	9	41	- 0	0 0	o 4	i rc	o ro	3	9	n
pag	power	0.8647	0.9368	0.3013	0.4511	0.6092	0.3024	0.4512	0.3952	0.5898	0.7502	0.8649	0.9360	0.9739	0.9909	0.4031	0.7723	0.8775	0.9418	0.9758	0.9913	0.9974	0.3919	0.5581	0.7092	0.0200	0.9604	0.9853	0.9956	0.3526	0.5089	0.0031	0.8917	0.9514	0.9819	0.9946	0.3264	0.4817	0.6410	0.7005	0.9475	0.9805	0.9943	0.3176	0.4735
evious	p2	0.65	0.70	0.50	0.55	0.60	0.0	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.70	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.40 0.40	0.55	09.0	0.65	0.35	0.40	U.45	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.65	0.70	0.75	0.45	0.50
om pr	$\mathbf{p_1}$	0.30	0.30	0.35	0.35	0.35 0.35	0.00	0.40	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	2.0	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
-continued from previous page	pvalue	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0430	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490
	$\mathbf{z}_{\mathbf{u}}$		1.77		1.77	1.7.7	1 77	1.77	1.72	1.72			1.72	1.72	1.72		1.72			1.72	1.72		1.72	1.72	1.72	727	1.72	1.72		1.72	1.72	1.72	1.72	1.72			1.72	1.72	1.72	1.72	1.72	1.72	1.72		170
3 B.4:	$^{\mathrm{n}_{2}}$	30	30	30	S 6	200	8 8	8 8	31	31	31	31	31	31	31	10	3 5	31	31	31	31	31	31	31	31	31	31	31	31	31	31	21	31	31	31	31	31	31	31	31	31	31	31	31	21
Table	$^{\mathrm{n}_{1}}$	30	30	30	30	30	300	30	31	31	31	31	31	31	31	0.1	3 6	31	31	31	31	31	31	31	31	3 5	31	31	31	31	31	21	31	31	31	31	31	31	31	31	31	31	31	31	2.
	power	0.4067	0.5056	0.1195	0.1698	0.2341	0.3132	0.1670	0.1510	0.2638	0.3845	0.5020	0.6096	0.7037	0.7827	0.2350	0.3240	0.5121	0.6028	0.6878	0.7649	0.8322	0.2026	0.2758	0.3568	0.4436	0.6251	0.7127	0.7929	0.1750	0.2394	0.3147	0.4928	0.5897	0.6854	0.7744	0.1550	0.2156	0.2895	0.3738	0.5735	0.6747	0.7693	0.1429	0 0002
	P2	0.65	0.70	0.50	0.55	0.00	0.0 7.0 7.0	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.70	0.32	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40		0.55	09.0	0.65	0.35	0.40	0.45	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.65	0.70	0.75	0.45	0
	p1	0.30	0.30	0.35	0.35	0.35 8.0	0.00	0.40	0.05	0.02	0.02	0.02	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	2.5	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.75	0.25	0.25	0.25	0.30	0 30
	pvalue	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0408	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468
	$\mathbf{z}_{\mathbf{n}}$	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.00	200.1	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.00	1.86	1.86	1.86	1.86	1.86	1.80	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.00	1.86	1.86	1.86	1.86	286
	$^{\mathrm{n}_{2}}$	11	11	11	Ξ;	I :	1 [11	12	12	12	12	12	12	7 7	7 5	2 1 2	12	12	12	12	12	12	175	2 5	1 5	12	12	12	12	175	2 5	12	12	12	12	12	7.	12	12	12	12	12	12	1.0
	$^{\mathrm{n}_{1}}$	11	11	11	Ξ;	I :	: :	: ::	12	12	12	12	12	15	7 7	7 5	2 1 2	12	12	12	12	12	15	7 7	2 5	1 5	12	12	12	12	175	7 5	12	12	12	12	12	7.	12	21.0	17	12	12	12	13

Table B.4: continue on next page

Table B.4: continue on next page

s page	power	0.7751	0.8803	0.9463	0.4725	0.6323	0.7737	0.3191	0.4725	0.5414	0.7334	0.8622	0.9374	0.9751	0.3313	0.6214	0.7682	0.8741	0.9403	0.9759	0.9919	0.9978	0.3787	0.7016	0.8283	0.9149	0.9643	0.9876	0.9964	0.3406	0.5057	0.8060	0.9010	0.9565	0.9836	0.9948	0.3289	0.4925	0.6549	0.1907	0.9476	0.9795	0.9938	0.3259	0.4820
reviou	p2	09.0	0.65	0.70	0.55	0.60	0.65	0.55	0.60	0.13	0.25	0.30	0.35	0.40	0.40	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.30	0.00	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.50	0.55	0.60	0.65	0.70	0.40	0.45	0.50	0.00	0.00	0.70	0.75	0.45	0.50
rom p	\mathbf{p}_1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.70	0.25	0.25	0.25	0.30	0.30
Table $B.4$: -continued from previous page	pvalue	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0400	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0450	0.0458	0.0458	0.0458	0.0458	0.0458
: $-con$	$\mathbf{z}_{\mathbf{u}}$	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	00.1	1.80	1.80	1.80	08.1	200	1.80	1.80	1.80	1.80	1.80	1.80	1.80	08.1	80.1	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.00	1.80	1.80	1.80	1.80	1.80
le B.4	$^{\mathrm{n}_{2}}$	31	31	3 2	31	31	31	3.5	31	3.08	35	32	32	25.0	2 %	32	32	32	32	32	35	75	325	3 6	3 2	32	32	32	35	22.0	25.5	32	32	32	32	35	35	35	27.5	2 6	3 2	35	32	32	32
Tab	$^{\mathrm{n}_{1}}$	31	31	3.1	31	31	31	37	31	3 6	32	32	32	3.5	2 6	32	32	32	32	32	32	200	2 0	4 6	3 2	32	32	32	32	37.0	200	328	32	32	32	32	32	32	325	7 0	3 6	32	32	32	32
	power	0.3650	0.4639	0.5691	0.1971	0.2724	0.3621	0.1350	0.1957	0.1703	0.4178	0.5381	0.6461	0.7384	0.0142	0.3468	0.4455	0.5437	0.6379	0.7248	0.8016	0.8660	0.2144	0.3850	0.4768	0.5745	0.6703	0.7593	0.8366	0.1862	0.2082	0.4385	0.5404	0.6429	0.7395	0.8239	0.1685	0.2384	0.3232	0.4203	0.6318	0.7323	0.8206	0.1600	0.2299
	p 2	09.0	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.13	0.25	0.30	0.35	0.40	0.40	0:30	0.35	0.40	0.45	0.50	0.55	00.0	0.30	9.0	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.00	0.70	0.75	0.45	0.50
	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.02	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.70	0.25	0.25	0.25	0.30	0.30
	pvalue	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480
	$\mathbf{z}_{\mathbf{u}}$	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.01	1.81	1.81	1.81	1.81	1.01	1.81	1.81	1.81	1.81	1.81	1.81	1.01	1.81	1.01	1.81	1.81	1.81	1.81	1.81	1.81	1.01	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.01	1.01	1.81	1.81	1.81	1.81
	$^{\mathrm{n}_{2}}$	12	12	12	12	12	12	7.7	77	13	13	13	13	13	2 5	13	13	13	13	13	13	1.5	13 13	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	$^{\mathrm{n}_{1}}$	12	15	7 7	12	12	12	7.7	7 7	13	13	13	13	T 1	1 12	13	13	13	13	13	13	1.5	1 T	7 7	13	13	13	13	13	L3	13	13	13	13	13	13	13	13	13	13	13 13	13	13	13	13

ge	/er	173	.19	44	24	99	24.0	2 6	33	33	02	39	28	.31	41	22	621	5 6	200	1 7	47	76.	36	84	362	86	83	31	22	00.	3 6	2 2	- 1	94	526	21	23	1 2	7.21	40	27.5	, L	69	24	118	0.9947
pa	power	9.0	0.7719	0.8744	0.9424	0.3166	0.4643	0.7613	0.3039	0.4539	0.3505	0.5639	0.7478	0.8731	0.9441	0.9785	0.9929	0.4579	0.0353	0.0014	0.9474	0.9797	0.9936	0.9984	0.3895	0.5598	0.7183	0.8431	0.9252	0.9700	0.9900	0.3537	0.5241	0.6894	0.8226	0.9121	0.9623	0.9861	0.9957	0.3440	0.0110	0.00	0.8969	0.9524	0.9818	0.9947
revion	p 2	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	5.0	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.0	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.40	2.00	0.60	0.65	0.70	0.75
from p	\mathbf{p}_1	0:30	0.30	0.30	0.30	0.35	0.35	0.00	0.40	0.40	0.02	0.05	0.02	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.70	0.20	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0458	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471
٠.١	$\mathbf{z}_{\mathbf{u}}$	1.80	1.80	1.80	1.80	1.80	1.80	1.00	1.80	1.80	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.7.	1.7.	1.1.	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.7.7	1 77	1.77	1.77	1.77	1.77	1.77	1.77	1.7.7	1.77	1.77	1 2 2	1.77	1.77	1.77	1
3 B.4	$^{\mathrm{n}_{2}}$	32	32	32	32	32	25.00	2 6	35	32	33	33	33	33	33	33	233	200	200	2 2	3 6	88	33	33	33	33	33	33	33	200	223	2 6	2 65	33	33	33	33	e e	233	200	33 0	333	33	33	33	cc
Table	$_{1}^{n_{1}}$	32	32	32	32	35	250	2 6	32	32	33	33	33	33	33	33	20.00	200	55 50	2 6	3 6	33	33	33	33	33	33	33	33	n 0	33	2 6	333	33	33	33	33	က္က	233	200	33	33	33	33	33	55
	power	0.3154	0.4139	0.5205	0.6290	0.1574	0.2274	0.5155	0.1571	0.2271	0.1888	0.3173	0.4484	0.5710	0.6788	0.7692	0.8416	0.2675	0.3678	0.4717	0.6719	0.7599	0.8350	0.8951	0.2263	0.3123	0.4086	0.5113	0.6152	0.7140	0.8016	0.01987	0.2793	0.3742	0.4791	0.5879	0.6929	0.7869	0.8642	0.1842	0.2640	0.3534	0.5772	0.6850	0.7818	0.000
	p 2	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.75	0.30	3.0	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	3.5	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	25.0	09.0	0.65	0.70	1
	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.40	0.40	0.05	0.02	0.02	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.12	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.70	25.0	0.25	0.25	0.25	0.0
	pvalue	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0431	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0431	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0431	0.0491	0.0491	0.0491	10101
	$\mathbf{z}_{\mathbf{u}}$	1.81	1.81	1.81	1.81	1.81	1.81		1.81	1.81	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1:	1.7.	1.7.	1 77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.7	1.77	1.77	1.77	1.77	1.77	1.77	1.77	T	1.77	1.7	1.	1.77	1.77	1.77	1 77
	$^{\mathrm{n}_{2}}$	13	13	13	13	13	1 T	2 5	13	13	14	14	14	14	14	14	14	4-	4 -	# <u>-</u>	4 4	14	14	14	14	14	14	14	14	14	4.	† †	1.1	14	14	14	14	14	14	4.	7 7	1 7	14	14	14	_
	1	13	13	13	13	13	13	2 5	13	13	14	14	14	14	14	14	14	41.	41	7 7	1 4	14	14	14	14	14	14	14	14	14	14	14	1.1	14	14	14	14	14	14	14	17	1 1	14	14	14	-

Table B.4: continue on next page

is page	power	0.4967	0.6504	0.7818	0.9467	0.3246	0.4724	0.6264	0.7689	0.3067	0.4586	0.3598	0.57637	0.8859	0.9529	0.9834	0.9950	0.4815	0.6670	0.8122	0.9070	0.9599	0.3052	0.9955	0.2269	0.6012	0.7528	0.8659	0.9376	0.9756	0.9921	0.9979	0.5555	0.7147	0.8401	0.9223	0.9674	0.9882	0.9965	0.3652	0.5327	0.6916	0.8184	0.9053	0.9841	0.9956
revion	p2	0.50	0.55	0.60	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.33	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.00	0.70	0.75
$\hat{r}om$	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.05	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	2.0	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.20	0.25	0.25	0.25
Table B.4: -continued from previous page	pvalue	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0488	0.0400	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0400	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488
: $-con$	$\mathbf{z}_{\mathbf{n}}$	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.75	1.70	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.70	1.75	1 - 1	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.0	1.75	1.75	1.75
e B.4	$^{\mathrm{n}_{2}}$	33	33		8 8	33	33	33	33	33	33	£ 6	2, 2,	2 45	34	34	34	34	34	34	24	85 c	0 7 7	0 4 7	5 8	34	34	34	34	34	34	χ, 4, 6	, 5 4, 5	34	34	34	34	34	34	34	34	34	4, 6	34	3.4	34
Tabl	^{1}u	33	33	20 00	9 8	33	33	33	33	33	33	3.4 4. c	97	2 6	34	34	34	34	34	34	34	42	0 c	0 4 7	34	34	34	34	34	34	34	χς 4 τ	34	34	34	34	34	34	34	34	34	34	450	34	2.5	34
	power	0.2594	0.3551	0.4622	0.6830	0.1794	0.2591	0.3545	0.4614	0.1804	0.2594	0.2064	0.3413	0.6010	0.7084	0.7966	0.8655	0.2824	0.3882	0.4975	0.6049	0.7049	0.1920	0.8648	0.0386	0.3320	0.4366	0.5468	0.6554	0.7548	0.8385	0.9030	0.3027	0.4073	0.5204	0.6337	0.7384	0.8273	0.8962	0.2021	0.2917	0.3968	0.5110	0.0230	0.8232	0.8944
	p ₂	0.50	0.55	0.60	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00 H	0.00	00.00	0.35	0.40	0.45	0.50	0.55	0.60	0.00 9.00	0.50	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.00	0.70	0.75
	\mathbf{p}_1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.05	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.0	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.20	0.25	0.25	0.25
	pvalue	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0493	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495
	$\mathbf{z}_{\mathbf{u}}$	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74 7.7	1.77	1.74	1 77	1.74	1.74	1.74	1.74	1.74	1.74	1.7 1.7	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74 1.74	1.74	1.74	1.74
	$^{\mathrm{n}_{2}}$	14	14	4 4	14	14	14	14	14	14	14	15	. T	1 12	15	15	12	15	12	12	15	1.5 1.5	O H	ο <u>τ</u>	1 1	12	15	15	15	12	12	L 1.	5 15	15	15	15	15	15	15	15	12	15		0 H	1 -	15
	1 u	14	14	14	14	14	14	14	14	14	14	15		12	15	15	15	15	12	12	T :	1 - 1 -	O H	1 L	, F	15	15	15	15	15	12	. T	5 12	12	15	15	15	15	15	15	12	15	. T	1 T	1 -	15

4.00 6.00 6.00 7.00 7.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.45 0.00
1.75 1.75 1.75 1.75 1.75			111111111111111111111111111111111111111
34 34 34 34 34 34 34 34 34 34 34			
7070	0.0495 0.0495 0.0495 0.0495 0.0416	0.0495 0.0495 0.0495 0.0416	0.0495 0.0495 0.0495 0.0495 0.0416
1.74 (
ம்ம்			

Table B.4: continue on next page

Table B.4: continue on next page

s $page$	power	0.9961	0.3495	0.5044	0.6576	0.8911	0.9542	0.3225	0.4743	0.6352	0.7812	0.3048	0.4631	0.37.63	0.0003	0.9011	0.9604	0.9864	0.9960	0.4923	0.6748	0.8180	0.9124	0.9644	0.9880	0.9967	0.9993	0.4229	0.6047	0.7640	0.8784	0.9460	0.9794	0.9933	0.3962	0.5684	0.7279	0.8479	0.9255	0.9689	0.9894	0.9972	0.3689	0.5334	0.6889	0.8170	0.9079	
reviou.	p2	0.75	0.45	0.50	0.55	0.00	0.70	0.50	0.55	0.60	0.65	0.55	0.60	0.00	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.30	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.65	1
from p	\mathbf{p}_1	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.0	0.00	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.TD	0.00	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	
-continued from previous page	pvalue	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0400	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0400	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	1
4: -con	$\mathbf{z}_{\mathbf{u}}$	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.5	1.70	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.73	1.10	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	
Table $B.4$	$^{\rm n}$	35	35		00 c	9 6	32	35	35	35	32	32	32	98	98	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	30	30	9 %	98	36	36	36	36	36	36	36	36	36	36	36	1
Tabl	$_{1}^{n}$	35	35		00 c	0 K	32	35	35	35	35	35	30	90	9 6	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	30	30	900	98	36	36	36	36	36	36	36	36	36	36	36	1
	power	0.8563	0.1706	0.2443	0.3327	0.4540	0.6613	0.1559	0.2270	0.3167	0.4246	0.1472	0.2206	0.2141	0.3340	0.5764	0.6907	0.7910	0.8706	0.2498	0.3609	0.4865	0.6133	0.7280	0.8213	0.8906	0.9377	0.2214	0.3295	0.4501	0.5711	0.6821	0.7769	0.8530	0.9104	0.3091	0.4176	0.5290	0.6369	0.7361	0.8220	0.8912	0.1981	0.2848	0.3838	0.4914	0.6023	
	p2	0.75	0.45	0.50	0.55	0.00	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.10	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.00	20.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.65	1
	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	20.0	0.0	0.05	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	1
	pvalue	0.0416	0.0416	0.0416	0.0416	0.0416	0.0416	0.0416	0.0416	0.0416	0.0416	0.0416	0.0416	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	1
	$\mathbf{z}_{\mathbf{u}}$	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1
	$^{\mathrm{n}_{2}}$	16	16	16	16	16	16	16	16	16	16	16	10	1 -	1 1	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	- I	1 -	- 1-	- 1-	17	17	17	17	17	17	17	17	17	17	17	
	\mathbf{n}_1	16	16	16	16	10	16	16	16	16	16	16	10	1 -	1 1	12	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	. I	1.7	- 1-	14	17	17	17	17	17	17	17	17	17	17	17	

0.25 0.70 0.25 0.75 0.30 0.45 0.30 0.50	7.4
75 50	٠.
	5.4
	. 52
	0.55
<u> </u>	0.60
ດ ⊂	0.65
0	0.50
n	0.55
0 1	0.60
വര	0.00
0	09.0
10	0.15
<u> </u>	0.20
	30.00
_	0.35
	0.40
	0.45
	0.25
	0.35
	0.40
	0.45
	5.50
	0.60
	0.30
	0.35
	0.45
_	0.50
,o (0.55
	0.00
	0.35
	0.40
	0.45
	0.50
	0.55
	0.60
	0.65
	9 9
	45
	0.50
	ì
_	0.55

Table B.4: continue on next page

Table B.4: continue on next page

.86 0.0415 0.25 0.60
22
0.0415 0.2
0.0415 0.25 0.75
0.0415 0.30 0.45
1.86 0.0415 0.30 0.50 0.3017 1.86 0.0415 0.30 0.85 0.4153
0.30 0.60
0.0415 0.30 0.65
0.0415 0.30 0.70
0.0415 0.35 0.50
1.86 0.0415 0.35 0.55 0.2936
0.0415 0.35 0.65
0.40 0.55
0.0415 0.40 0.60
0.0404 0.05 0.15
0.0404 0.05 0.20
0.0404 0.05 0.25
0.0404 0.05 0.30
1.85 0.0404 0.05 0.35 0.7649
0.0404 0.05 0.45
0.0404 0.10 0.25
0.0404 0.10 0.30
0.0404 0.10 0.35
1.85 0.0404 0.10 0.40 0.6747 1.85 0.0404 0.10 0.45 0.7821
0.0404 0.10 0.50
0.0404 0.10 0.55
0.0404 0.10
0.0404 0.15 0.30
0.0404 0.15 0.35
0.0404 0.15 0.40
0.0404 0.15 0.45
1.85 U.U4U4 U.15 U.5U U.7558 1.85 0.0404 0.15 0.55 0.8313
0.0404 0.15 0.60
0.0404 0.15 0.65
0.0404 0.20 0.35
0.0404 0.20 0.40
0.0404 0.20 0.45
0.0404 0.20 0.50
0.0404 0.20 0.55
0.0404 0.20 0.60
0.0404 0.20 0.65
0.0404 0.20 0.70
0.0404 0.25 0.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table B.4: continue on next page

Table B.4: continue on next page

s page	power	0.8490	0.9328	0.9759	0.9986	0.3592	0.5353	0.7064	0.8423	0.9299	0.3543	0.5312	0.7033	0.8407	0.3546	0.5307	0.6557	0.8302	0.9293	0.9751	0.9927	0.9982	0.5355	0.7227	0.8592	0.9399	0.9760	0.9936	0.9997	0.4665	0.6559	0.8077	0.9072	0.9618	0.9070	0.9903	0.4254	0.6055	0.7623	0.8774	0.9475	0.9819	0.9952	0.9990	0.5674	
reviou	p ₂	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.4.0	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.45	
from p	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.1.0	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	
-continued from previous page	pvalue	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0440	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0440	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	
	$\mathbf{z}_{\mathbf{u}}$	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.70	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.70	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	
Table B.4:	$^{\rm n_2}$	39	33	30	36	39	39	33	500	30	36	39	39	33	66 60 60 60 60 60 60 60 60 60 60 60 60 6	88	40	40	40	40	40	40	40	40	40	40	04.0	40	40	40	40	40	40	040	04.6	40	40	40	40	40	40	40	40	040	40	
Tabl	$_{1}$	39	30	n 0	39	39	39	33	33	200	30	39	39	39	33	8 6	40	40	40	40	40	40	40	40	40	040	04.0	040	40	40	40	40	40	40	0.4	4 4	40	40	40	40	40	40	40	040	40	
	power	0.5759	0.7018	0.8091	0.9456	0.2088	0.3157	0.4407	0.5728	0.6990	0.2110	0.3168	0.4406	0.5722	0.2128	0.3175	0.4580	0.6081	0.7330	0.8289	0.8975	0.9432	0.3490	0.4759	0.6009	0.7154	0.0170	0.9397	0.9717	0.2788	0.3947	0.5219	0.6491	0.7639	0.0004	0.9223	0.2411	0.3555	0.4865	0.6207	0.7434	0.8430	0.9146	0.9595	0.3433	
	p2	0.55	0.60	0.65	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.40	0.00	0.60	0.30	0.35	0.40	0.45	0.50	00.00	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.45	
	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.10	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	
	pvalue	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442 0.0442	
	$\mathbf{z}_{\mathbf{u}}$	1.85	1.85	1.85 28.55	1.85	1.85	1.85	1.85	1.85 1.85	1.00.1 20.2	1.85	1.85	1.85	1.85	1.85	1.85	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	00.1	283	1.83	1.83	1.83	1.83	1.83	1.83	1.00	1.05	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	
	$^{\mathrm{n}_{2}}$	20	20	200	20	20	20	20	0.70	0.00	20	20	20	20	70	0.20	21	21	21	21	21	21	21	21	21	7 5	170	2 2	21	21	21	21	21	7.7	170	2.1	21	21	21	21	21	21	21	17.5	21	
	$^{\mathrm{n}_{1}}$	20	50	200	20	20	20	20	700	0.00	20	20	20	20	50	202	21	21	21	21	21	21	21	21	21	77.	77.	21	21	21	21	21	21	77.	1 7 6	2.1	21	21	21	21	21	21	21	17.	21	

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4756 0.7357 0.7357 0.9115 0.9115 0.9227 0.7330 0.836 0.7330 0.836 0.7330 0.836 0.7330 0.836 0.6078
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.7357 0.7357 0.8376 0.9584 0.9584 0.7320 0.7330 0.7330 0.7330 0.7330 0.7330 0.7330 0.7330 0.7330 0.7330 0.7330 0.6078
4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 7 7 7 7 7	0.8376 0.9376 0.9584 0.9584 0.3424 0.6084 0.6086 0.2360 0.2360 0.2327 0.4339 0.6078 0.6078 0.6078 0.6078 0.6078 0.6078 0.6078 0.6078 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092
04 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6	0.9115 0.9284 0.2277 0.3424 0.6084 0.6084 0.2366 0.2366 0.2327 0.3447 0.327 0.4736 0.607 0.6256 0.607 0.6256 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092 0.6092
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.2274 0.2274 0.2274 0.6084 0.6084 0.2306 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327 0.2327
4 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0	0.3424 0.6084 0.6084 0.2306 0.2306 0.3439 0.4736 0.6078 0.6256 0.7439 0.6256 0.7439 0.6256 0.7439 0.6256 0.7439 0.6256 0.7439 0.6256 0.7439 0.7439 0.7439 0.7439 0.7439 0.7439 0.7439 0.7439 0.7439
4 4 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.04736 0.0534 0.7330 0.2306 0.3439 0.04736 0.0527 0.0526
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.7350 0.7350 0.7350 0.7350 0.7473 0.7473 0.7473 0.7474 0.7473 0.7474 0.
4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.8360 0.2306 0.3439 0.6078 0.2327 0.3447 0.3067 0.3067 0.3447 0.3067 0.4739 0.6256 0.7499 0.6256 0.9517 0.9502 0.9517 0.3590
4 4 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0	0.2306 0.3439 0.4736 0.2327 0.3247 0.3067 0.3067 0.4739 0.6256 0.7499 0.9837 0.9902 0.9517 0.3590
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.4735 0.6078 0.2327 0.3477 0.3067 0.4739 0.7439 0.7439 0.7439 0.7439 0.7439 0.7439 0.7439 0.9517 0.9517 0.3590
40 40 40 40 40 40 40 40 40 40 40 40 40 4	0.6078 0.2327 0.3477 0.3467 0.4739 0.626 0.7499 0.9837 0.992 0.9517 0.3590 0.4904 0.1357
40 40 40 40 40 40 40 40 40 40 40 40 40 4	0.2327 0.3447 0.3647 0.4739 0.6256 0.7499 0.8437 0.992 0.950 0.9517 0.3590
40 40 50 50 50 50 50 50 50 50	0.3447 0.3067 0.4739 0.6256 0.7499 0.8437 0.902 0.917 0.3590 0.1357
20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.439 0.6256 0.6256 0.7499 0.8437 0.9092 0.9517 0.4904 0.6195 0.7357
20000000000000000000000000000000000000	0.6256 0.7499 0.8437 0.9092 0.9517 0.3590 0.4904 0.6192
20 20 20 20 20 20 20 20	0.7499 0.8437 0.9092 0.9517 0.3590 0.4904 0.6192 0.7357
20 20 20 20 20 20 20 20	0.8437 0.9092 0.9517 0.3590 0.4904 0.6192 0.7357
20 20 20 20 20 20 20	0.9517 0.9517 0.4904 0.6192 0.7357
20 20 20 20 20	0.3590 0.4904 0.6192 0.7357
20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.4904 0.6192 0.7357
200 200	0.7357
50 50	
20	
50	0.55 0.9513 50
50	0.9786
50	0.2884
υ υ 0 υ	0.35 0.4115 50 0.40 0.5453 50
50	0.6763
20	0.7904
200	0.8783
200	0.60 0.9376 50
о и О О	0.9123
2.0	0.3773
20	0.5153
20	0.6525
20	0.7732
200	0.8670
50	0.9311
00 10	0.70 0.9692 50

Table B.4: continue on next page

Table B.4: continue on next page

is page	power	0.6700	0.8231	0.9225	0.97.55	0.9988	0.9999	0.4445	0.6372	0.8029	0.9142	0.9711	0.9928	0.4238	0.7970	0.9124	0.4221	0.6227	0.5849	0.8290	0.9475	0.9879	0.997.9	1.0000	0.7116	0.8802	0.9615	0.9905	0.9982	0.9997	1.0000	0.0000	0.8207	0.9310	0.9796	0.9955	0.9993	0.9999	1.0000	0.5733	0.7747	0.9070	0.9928	0.9987	0.9998	1.0000
revion	P2	0.45	0.50	0.55	0.00	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.00	09:0	0.65	0.55	09.0	0.15	0.20	0.75	0.30	0.00	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
rom p	p1	0.25	0.25	0.25	0.20	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.0	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.00	0.0	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0500	0.0500	0.0200	0.0200	0.0300	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0200	0.0200	0.0300	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0200	0.0500	0.0500	0.0500	0.0500	0.0500
: -con	$\mathbf{z}_{\mathbf{u}}$	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
Table B.4:	$^{\mathrm{n}_{2}}$	20	20	200	0.00	20	20	20	20	20	20	20	20.20	3 2	20	20	20	20	09	09	99	00	8 9	8 9	09	09	09	09	09	09	09	00 9	8 9	09	09	09	09	09	09	09 9	00	8 9	9	09	09	09
Tabi	\mathbf{n}_1	20	20	500	00.00	50	50	20	20	20	20	20	00 M	22.0	50	20	20	20	09	09	09	00	90	09	09	09	09	09	09	09	09	00	09	09	09	09	09	09	09	0.9	00	09	09	09	09	09
	power	0.3685	0.5068	0.6445	0.7663	0.9284	0.9683	0.2468	0.3689	0.5053	0.6417	0.7636	0.8606	0.3705	0.5052	0.6410	0.2525	0.3712	0.2673	0.4168	0.5731	0.7162	0.9281	0.9542	0.3270	0.4748	0.6204	0.7477	0.8476	0.9175	0.9607	0.3850	0.4220	0.5658	0.7010	0.8134	0.8954	0.9478	0.9769	0.2658	0.3976	0.6772	0.7919	0.8775	0.9346	0.9690
	p ₂	0.45	0.50	0.55	0.00	0.70	0.75	0.45	0.50	0.55	09.0	0.65	00	0.52	09.0	0.65	0.55	09.0	0.15	0.20	0.72	0.30	3.0	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
	p1	0.25	0.25	0.25	0.70	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.00	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0458	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438
	$\mathbf{z}_{\mathbf{n}}$	1.81	1.81	1.81	1.01	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.8	1.81	1.81	1.81	1.81	1.84	1.84	1.00 4.00	1.84	20.1	2 8	1.84	1.84	1.84	1.84	1.84	1.84	1.84	20.1	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.04	28.	8.7	1.84	1.84	1.84
	$^{\rm n_2}$	22	22	5 5	770	22	22	22	22	22	22	22	7 5	2 6	22	22	22	22	23	23	23.0	200	3 6	2 62	23	23	23	23	53	5.73	23.0	0 6	2 23	23	23	23	23	23	23	523	200	2 6	23	23	23	23
	$^{\mathrm{n}_{1}}$	22	22	5 5	7 00	22	22	22	22	22	22	22	77.5	2.00	22	22	22	22	23	23	223	200	3 6	2.5	23	23	23	23	53	5.73	223	0 6	23	23	23	23	23	23	53	200	200	2 62	23	23	23	23

23 1.84 0.0438 0.25 0.40 23 1.84 0.0438 0.25 0.45 23 1.84 0.0438 0.25 0.45 23 1.84 0.0438 0.25 0.55 23 1.84 0.0438 0.25 0.65 23 1.84 0.0438 0.25 0.70 23 1.84 0.0438 0.25 0.70 23 1.84 0.0438 0.30 0.55 23 1.84 0.0438 0.30 0.55 23 1.84 0.0438 0.30 0.55 23 1.84 0.0438 0.30 0.55 23 1.84 0.0438 0.30 0.55 23 1.84 0.0438 0.30 0.65 24 1.80 0.0438 0.30 0.65 23 1.84 0.0438 0.35 0.65 24 1.80 0.0458 0.35	0 0.2599 0 0.3871 0 0.3871 0 0.5531 0 0.6553 0 0.6558 0 0.9228 0 0.9228 0 0.9228 0 0.9228 0 0.9247 0 0.3736 0 0 0.3736 0 0 0.3736 0 0 0.3736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 60 60 60 60 60 60 60 60 60 60 60 60 6		0.0500 0.	0.25 0.25 0.25 0.25 0.25 0.25 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	0.40 0.45 0.55 0.05 0.06 0.06 0.45 0.45 0.05 0.05 0.05 0.05 0.05 0.05	0.5426 0.7487 0.9603 0.9603 0.9907 0.9907 0.0907 0.7182 0.8655 0.9867 0.
1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15				0.0500 0.	0.25 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.45 0.50 0.50 0.65 0.65 0.65 0.75 0.75 0.75 0.75 0.75 0.75 0.70 0.70	0.7487 0.96638 0.96639 0.9997 0.9997 0.7182 0.7182 0.7182 0.8655 0.8655 0.8655 0.8656 0.8666 0.8656 0.8656 0.8656 0.8656 0.8656 0.8656 0.8656 0.8656 0.8666
1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.00 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0500 0.0500	0.25	0.50 0.055 0.055 0.70 0.55 0.55 0.050 0.50 0.	0.88884 0.98814 0.9977 0.09977 0.09977 0.5191 0.7182 0.9503 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 0.9868 0.986
1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0500 0.0500	0.25 0.25 0.25 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	0.55 0.66 0.75 0.75 0.75 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6	0.9503 0.9381 0.9381 0.9997 1.0000 0.7182 0.9865 0.9865 0.9864 0.987 0.8524 0.628 0.6228
1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.00 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.025 0.025 0.030 0.030 0.030 0.035 0.035 0.035 0.040	0.00 0.75 0.75 0.55 0.05 0.05 0.05 0.05	0.9979 0.9997 1.0000 0.7189 0.8655 0.8655 0.9976 0.9976 0.6906 0.6528 0.6228 0.6228
1.84 0.0438 0.25 1.84 0.0438 0.25 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.04456 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.25 0.30 0.30 0.30 0.30 0.30 0.35 0.35 0.3	0.75 0.75 0.55 0.55 0.55 0.05 0.05 0.65 0.65 0.6	0.9997 1.0000 0.5191 0.5191 0.9565 0.9565 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.6986 0.6859 0.6859 0.6859
1.84 0.0438 0.25 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.25 0.30 0.30 0.30 0.30 0.35 0.35 0.35 0.40 0.40	0.75 0.55 0.55 0.65 0.65 0.70 0.55 0.65 0.65 0.65 0.65 0.65	$\begin{array}{c} 1.00000 \\ 0.5191 \\ 0.7182 \\ 0.98635 \\ 0.9867 \\ 0.9976 \\ 0.9976 \\ 0.9864 \\ 0.9867 \\ 0.9867 \\ 0.9867 \\ 0.9864 \\ 0.98680 \\ 0.8528 \\ 0.6828 \\ 0.$
1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0476 0.0476	0.30 0.30 0.30 0.30 0.30 0.35 0.35 0.35	0.45 0.55 0.55 0.60 0.65 0.55 0.55 0.65 0.6	0.5191 0.7182 0.8655 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 0.8524 0.8524 0.8687 0.6828 0.6828 0.6828
1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15 1.80 0.04455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0476 0.0476	0.30 0.30 0.30 0.35 0.35 0.35 0.40 0.40	0.50 0.55 0.55 0.65 0.55 0.65 0.65 0.15 0.15	0.7182 0.8655 0.9867 0.99867 0.9976 0.6906 0.8524 0.9471 0.6826 0.6826 0.6828
1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0476 0.0476	0.30 0.30 0.30 0.35 0.35 0.35 0.40 0.40	0.55 0.60 0.65 0.55 0.55 0.65 0.65 0.05 0.15	0.8655 0.9503 0.9503 0.9976 0.4864 0.6906 0.8524 0.9471 0.6826 0.6826 0.6228 0.8649
1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0476 0.0476	0.30 0.30 0.35 0.35 0.35 0.40 0.40	0.60 0.65 0.50 0.55 0.65 0.65 0.15	0.9503 0.9867 0.9976 0.4864 0.6906 0.8524 0.9471 0.4687 0.6826 0.6228
1.84 0.0438 0.30 1.84 0.0438 0.30 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0476 0.0476	0.000000000000000000000000000000000000	0.65 0.70 0.55 0.65 0.65 0.65 0.15	0.9867 0.9976 0.9976 0.6906 0.8524 0.9471 0.4687 0.6826 0.6228
1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.10 1.80 0.04455 0.15 1.80 0.04455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0476 0.0476	0.30 0.33 0.40 0.40 0.50 0.50 0.50	0.70 0.50 0.60 0.65 0.65 0.15 0.15	0.9976 0.4864 0.6906 0.8524 0.9471 0.4687 0.6826 0.6228
1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.40 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0500 0.0500 0.0500 0.0500 0.0500 0.0476 0.0476 0.0476	0.35 0.35 0.40 0.40 0.05	0.55 0.65 0.65 0.65 0.55 0.15 0.20	0.4864 0.6906 0.8524 0.9471 0.4687 0.6826 0.6228
1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.35 1.84 0.0438 0.40 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0500 0.0500 0.0500 0.0500 0.0476 0.0476 0.0476	0.35 0.35 0.40 0.05 0.05	0.55 0.60 0.65 0.55 0.15 0.20	0.8906 0.8524 0.9471 0.4687 0.6826 0.6228 0.8649
1.84 0.0438 0.35 1.84 0.0438 0.40 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.00 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0500 0.0500 0.0500 0.0476 0.0476 0.0476	0.35 0.40 0.05 0.05	0.65 0.55 0.60 0.15 0.20	0.8324 0.9471 0.4687 0.6826 0.6228 0.8649
1.84 0.0438 0.40 1.84 0.0438 0.40 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.05 1.80 0.04455 0.10 1.80 0.04455 0.10 1.80 0.04455 0.10 1.80 0.04455 0.10 1.80 0.04455 0.10 1.80 0.04455 0.15 1.80 0.04455 0.15				0.0500 0.0500 0.0500 0.0476 0.0476	0.40 0.40 0.05 0.05	0.65 0.60 0.15 0.20	0.9471 0.4687 0.6826 0.6228 0.8649
1.84 0.0435 0.45 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0500 0.0500 0.0476 0.0476 0.0476	0.40 0.05 0.05	0.60 0.15 0.20	0.6826 0.6228 0.8649
1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15				0.0476 0.0476 0.0476 0.0476	0.05	0.15	0.6228
1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0476 0.0476 0.0476	0.05	0.20	0.8649
1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0476 0.0476	0		
1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15	5 0.6577			0.0476	0.02	0.25	0.9667
1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15					0.02	0.30	0.9941
1.80 0.0455 0.05 1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0476	0.05	0.35	0.9992
1.80 0.0455 0.05 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0476	0.05	0.40	0.9999
1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15	5 0.9656			0.0476	0.05	0.45	1.0000
1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15			1.72	0.0476	0.10	0.25	0.7528
1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15				0.0476	0.10	0.35	0.9766
1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15		70 70	,	0.0476	0.10	0.40	0.9956
1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15			_	0.0476	0.10	0.45	0.9994
1.80 0.0455 0.10 1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15		70 70		0.0476	0.10	0.50	0.99999
1.80 0.0455 0.10 1.80 0.0455 0.15 1.80 0.0455 0.15			_	0.0476	0.10	0.55	1.0000
1.80 0.0455 0.15 1.80 0.0455 0.15		70 70		0.0476	0.10	0.60	1.0000
1.80 0.0455 0.15 1.80 0.0455 0.20				0.0476	0.15	0.30	0.6712
1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.20	5 0.4480		1.72	0.0476	0.15	0.35	0.8002
1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.20 1.80 0.0455 0.20		0/ 0/		0.0476	0.10	0.40	0.9551
1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.20 1.80 0.0455 0.20				0.0476	0.15	0.50	0.9982
1.80 0.0455 0.15 1.80 0.0455 0.15 1.80 0.0455 0.20 1.80 0.0455 0.20			'	0.0476	0.15	0.55	0.9998
1.80 0.0455 0.15 1.80 0.0455 0.20 1.80 0.0455 0.20		70 70		0.0476	0.15	0.60	1.0000
1.80 0.0455 0.20 1.80 0.0455 0.20				0.0476	0.15	0.65	1.0000
1.80 0.0455 0.20				0.0476	0.20	0.35	0.6150
		70 70	_	0.0476	0.20	0.40	0.8169
1.80 0.0455 0.20				0.0476	0.20	0.45	0.9351
1.80 0.0455 0.20				0.0476	0.20	0.50	0.9835
1.80 0.0455 0.20				0.0476	0.20	0.55	0.9971
$24 ext{ 1.80} ext{ 0.0455} ext{ 0.20} ext{ 0.50} ext{ 2.4} ext{ 1.80} ext{ 0.0455} ext{ 0.20} ext{ 0.65}$	0.8919 5.0.9435	70 70 70 70 70 70 70 70 70 70 70 70 70 7	1.72	0.0476	0.20	0.60	1.0000

Table B.4: continue on next page

ı	p1	p2	power	n	n2	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p ₁ p ₂ power	power
	00.0	0 40	0.0700	1	102	1 70	0.0476	00.0	0.40	1 0000
	0.20	0.70	0.2766	2 0	2 2	1.72	0.0476	0.20	0.70	0.5801
	0.25	0.45	0.4082	20	70	1.72	0.0476	0.25	0.45	0.7939
	0.25	0.50	0.5464	20	70	1.72	0.0476	0.25	0.50	0.9239
	0.25	0.55	0.6755	20	20	1.72	0.0476	0.25	0.55	0.9790
	0.25	09.0	0.7849	20	20	1.72	0.0476	0.25	0.60	0.9957
	0.25	0.65	0.8702	20	20	1.72	0.0476	0.25	0.65	0.9994
	0.25	0.70	0.9311	20	20	1.72	0.0476	0.25	0.70	0.9999
	0.25	0.75	0.9697	20	20	1.72	0.0476	0.25	0.75	1.0000
	0.30	0.45	0.2682	20	20	1.72	0.0476	0.30	0.45	0.5675
	0.30	0.20	0.3886	20	20	1.72	0.0476	0.30	0.50	0.7774
	0.30	0.55	0.5176	20	20	1.72	0.0476	0.30	0.55	0.9100
	0.30	09.0	0.6449	20	20	1.72	0.0476	0.30	09.0	0.9724
	0.30	0.65	0.7618	20	20	1.72	0.0476	0.30	0.65	0.9940
	0.30	0.70	0.8597	20	70	1.72	0.0476	0.30	0.70	0.9992
	0.35	0.50	0.2513	20	20	1.72	0.0476	0.35	0.50	0.5435
	0.35	0.55	0.3641	20	70	1.72	0.0476	0.35	0.55	0.7498
	0.35	09.0	0.4933	20	70	1.72	0.0476	0.35	09.0	0.8946
	0.35	0.65	0.6306	20	70	1.72	0.0476	0.35	0.65	0.9686
	0.40	0.55	0.2359	20	20	1.72	0.0476	0.40	0.55	0.5147
	0.40	09.0	0.3524	20	20	1.72	0.0476	0.40	09.0	0.7348
	0.05	0.15	0.3399	80	80	1.68	0.0494	0.02	0.15	0.7021
	0.05	0.20	0.5171	80	80	1.68	0.0494	0.02	0.20	0.9128
	0.05	0.25	0.6726	80	80	1.68	0.0494	0.05	0.25	0.9829
_	0.05	0.30	0.7946	80	80	1.68	0.0494	0.02	0.30	0.9977
	0.05	0.35	0.8817	80	80	1.68	0.0494	0.02	0.35	0.9998
	0.05	0.40	0.9382	80	80	1.68	0.0494	0.02	0.40	1.0000
	0.02	0.45	0.9712	80	80	1.68	0.0494	0.02	0.45	1.0000
	0.10	0.25	0.3889	80	80	1.68	0.0494	0.10	0.25	0.8078
	0.10	0.30	0.5347	80	80	1.68	0.0494	0.10	0.30	0.9439
	0.10	0.35	0.6746	80	80	1.68	0.0494	0.10	0.35	0.9887
	0.10	0.40	0.7941	08	9 8	1.68	0.0494	0.10	0.40	0.9984
	0.10	0.45	0.8839	80	80	1.68	0.0494	0.10	0.45	0.9998
	0.10	0.20	0.9425	000	00 S	1.68	0.0494	0.10	0.50	1.0000
	0.10	00.00	0.9753	000	000	00.1	0.0494	0.10	0.00	1.0000
	0.10	00.00	0.9909	000	000	00.1	0.0494	0.10	0.00	1.0000
	0.10	0.00	0.0224	000	000	00.1	0.0494	0.1.0	0.00	0.7000
	0.15	0.90	0.46/3	000	200	T.00	0.0494	0.15	0.33	0.9047
	0.1.0	0.40	0.0174	000	000	1.00	0.0494	0.15	0.40	0.9750
	0.15	0.45	0.7514	08	⊋ ;	T.68	0.0494	0.15	0.45	0.9958
	0.15	0.20	0.8549	80	80	1.68	0.0494	0.15	0.50	0.9995
	0.15	0.52	0.9243	80	80	1.68	0.0494	0.15	0.55	1.0000
	0.15	09.0	0.9647	80	80	1.68	0.0494	0.15	09.0	1.0000
	0.15	0.65	0.9854	80	80	1.68	0.0494	0.15	0.65	1.0000
	0.20	0.35	0.2993	80	80	1.68	0.0494	0.20	0.35	0.6831
	0.20	0.40	0.4434	80	80	1.68	0.0494	0.20	0.40	0.8736
	0.20	0.45	0.5922	80	80	1.68	0.0494	0.20	0.45	0.9635
	0.20	0.50	0.7256	80	80	1.68	0.0494	0.20	0.50	0.9924
	0.20	0.55	0.8306	80	80	1.68	0.0494	0.20	0.55	0.9989
	0.20	09.0	0.9044	80	80	1.68	0.0494	0.20	0.60	0.99999

power	1.0000	1.0000	0.6492	0.8444	0.9493	0.9886	0.9983	0.9999	1.0000	1.0000	0.6128	0.8213	0.9869	0.9981	0.9998	0.5984	0.8143	0.9389	0.9865	0.5963	0.0129	0.9369	0.9907	0.9991	0.9999	1.0000	0.8504	0.9637	0.9942	0.9994	1.0000	1.0000	1.0000	0.7786	0.9322	0.9858	00000	1.0000	1.0000	1.0000	0.7251	0.9018	0.00
p2	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.45	0.00	0.00	0.65	0.70	0.50	0.55	0.60	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.40	0.55	09.0	0.30	0.35	0.40	0.0	0.55	0.60	0.65	0.33	0.40	9 0
p1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.05	0.0	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.0	0.15	0.15	0.15	0.20	0.20	0.40
pvalue	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	10.0	0.0494	0.0494	0.0494	0.0494	0.0434	10100
$\mathbf{z}_{\mathbf{u}}$	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.00	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.00	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.60	1.69	1.69	1.69	1.09	1.69	T.000
$^{\mathrm{n}_{2}}$	80	80	80	œ 8	80	08	g 8	08	80	80	200	200	8 8	8 8	80	80	80	80	S 8	200	8 8	06	90	06	06 8	8 6	06	06	06	06 8	8 8	06	90	90	06	06 0	8 8	86	90	06	8 8	G G) (
$^{\rm n_1}$	80	80	80	080	80	80	080	80	80	80	080	200	8 8	80	80	80	80	80	080	200	000	06	06	06	06	000	06	06	06	060	000	06	06	06	06	06	80	06	06	06	000	06	0
power	0.9513	0.9784	0.2924	0.4278	0.5668	0.6943	0.8008	0.8828	0.9401	0.9749	0.2801	0.4028	0.6615	0.7779	0.8730	0.2591	0.3750	0.5076	0.6471	0.2420	0.3500	0.5304	0.6869	0.8079	0.8926	0.9460	0.3991	0.5501	0.6932	0.8123	0.6965	0.9805	0.9932	0.3354	0.4875	0.6409	0.5730	0.9353	0.9708	0.9883	0.3154	0.4650	0.010
p2	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.45	0.00	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.55	09.0	0.30	0.35	0.40	0.10	0.55	09.0	0.65	0.90	0.40	9
p1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	2.5	0.15	0.15	0.15	0.20	0.20	
pvalue	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0469	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0400
$\mathbf{z}_{\mathbf{n}}$	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1 77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.7	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	7.5	1.75	1.75	1.75	1.70	1.75	T .
$^{\mathrm{n}_{2}}$	22	22	25	25	25	22	22	22	22	22	22	2 K	2 6	22	25	22	22	22	25	0 I	0.7	26	26	56	26	26	26	26	26	56	96	26	26	26	26	26	90	26	26	26	070	26	0
$^{\rm n_1}$	25	22	22	52	52	52	52	52	52	52	22	ο 17 Ο 12	9 C	2 2 2	25	22	22	22	22	Ω LC Ω LC	0.70	26	56	56	56	0 7 0	26	26	56	56	200	26	26	56	26	56	9 6	26	56	26	070	200	1

Table B.4: continue on next page

Table B.4: continue on next page

s page	power	1.0000	1.0000	1.0000	0.0897	0.9692	0.9944	0.9993	1.0000	1.0000	1.0000	0.6680	0.8622	0.9594	0.9991	6666.0	0.6355	0.8431	0.9544	0.9916	0.6211	0.8389	0.7782	0.9572	0.9951	0.9997	1.0000	1.0000	0.8852	0.9773	0.9972	0.9998	1.0000	1.0000	1.0000	0.8189	0.9523	0.9920	0.9992	0.9999	1.0000	1.0000	1.0000	0.9295	0.9856	0.9981
revious	P2	09.0	0.65	0.70	0.40	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.00	0.00	0.70	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.00	0.45	0.25	0.30	0.35	0.40	0.45	0.0	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.45	0.50
$from_{\ j}$	p1	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.0 0.0 0.0 0.0	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20
-continued from previous page	pvalue	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0404	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495
con	za	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.60	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.68	1.68	1.68	1.68	200.1	1.68	1.68	1.68	1.68	1.68	1.08	200.1	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	00.1	1.68	1.68
e B.4:	$^{\mathrm{n}_{2}}$	06	06	06 8	G 6	06	06	06	06	06	06	06	G 8	8 8	8 8	86	06	06	06	06	06	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$^{\mathrm{n}_{1}}$	06	06	06	06	06	06	06	06	06	06	06	06	000	00	06	90	06	06	06	06	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	power	0.9153	0.9583	0.9824	0.3075	0.5854	0.7117	0.8164	0.8955	0.9489	0.9797	0.2911	0.4165	0.5496	0.0197	0.8872	0.2676	0.3881	0.5253	0.6669	0.2510	0.3766	0.2986	0.4752	0.6505	0.7932	0.8310	0.9789	0.3846	0.5508	0.7023	0.8221	0.9046	0.9806	0.9928	0.3384	0.4923	0.6416	0.7682	0.8637	0.9282	0.9670	0.9872	0.3076	0.5909	0.7221
	p2	09.0	0.65	0.70	0.40	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.00	9.00	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.75	0.30	0.35	0.45	0.25	0.30	0.35	0.40	0.45	0.00	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.45	0.50
	p1	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.00	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.05	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20
	pvalue	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0483	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413
	$\mathbf{z}_{\mathbf{n}}$	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.5	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.79	1.79	1.79	1.79	1.70	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79
	$^{\mathrm{n}_{2}}$	26	56	56	96	26	26	26	26	56	26	26	50	970	90	26	26	26	56	56	56	26	27	27	7 10	2 7.7	0 6	27	27	27	27	27	2 17	2 6	27	27	27	27	27	27	27	27	2 5	27	27	27
	$^{\mathrm{n}_{1}}$	26	26	56	200	26	26	26	26	56	26	26	56	076	900	26	26	26	26	26	56	26	27	27	7 10	2 7.7	0 6	27	27	27	27	27	1 7	2 6	27	27	27	27	27	27	27	27	2 7.	27	27	27

							Table	e B.4:	٠.١	-continued from previous page	from 1	previou	s page
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	p2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	D 1	P2	power
27	27	1.79	0.0413	0.20	0.55	0.8301	100	100	1.68	0.0495	0.20	0.55	0.9999
27	27	1.79	0.0413	0.20	0.60	0.9087	100	100	1.68	0.0495	0.20	0.60	1.0000
27.	2 5 5 5 5	1.79	0.0413	0.20	0.65	0.9580	100	100	1.68	0.0495	0.20	0.65	1.0000
27	2 6	1.79	0.0413	0.25	0.40	0.2798	100	100	1.68	0.0495	0.25	0.40	0.7288
27	27	1.79	0.0413	0.25	0.45	0.4113	100	100	1.68	0.0495	0.25	0.45	0.9065
27	27	1.79	0.0413	0.25	0.50	0.5546	100	100	1.68	0.0495	0.25	0.50	0.9792
27	27	1.79	0.0413	0.25	0.55	0.6937	100	100	1.68	0.0495	0.25	0.55	0.9972
27	27	1.79	0.0413	0.25	0.60	0.8124	100	100	1.68	0.0495	0.25	0.60	0.9998
27.	27.	1.79	0.0413	0.25	0.65	0.8998	100	100	1.68	0.0495	0.25	0.65	1.0000
2 6	2 6	1.79	0.0413	2.0	2.0	0.9540	100	100	200.1	0.0495	0.25	0.70	1 0000
27	27	1.79	0.0413	0.30	0.45	0.2604	100	100	1.68	0.0495	0.30	0.45	0.7012
27	27	1.79	0.0413	0.30	0.50	0.3911	100	100	1.68	0.0495	0.30	0.50	0.8949
27	27	1.79	0.0413	0.30	0.55	0.5380	100	100	1.68	0.0495	0.30	0.55	0.9762
27	27	1.79		0.30	09.0	0.6827	100	100	1.68	0.0495	0.30	09.0	0.9967
27	27	1.79	0.0413	0.30	0.65	0.8064	100	100	1.68	0.0495	0.30	0.65	0.9997
7 7	1 0	1.79		0.30	0.70	0.8970	100	100	1.00	0.0495	0.30	0.70	0.0000
2 6	1 6	7.0	0.0413	3.5	 	0.3848	100	100	200.1	0.0495	0.00	0.00	0.8909
27	27	1.79	0.0413	0.35	0.60	0.5335	100	100	1.68	0.0495	0.35	0.60	0.9750
27	27	1.79	0.0413	0.35	0.65	0,6803	100	100	1.68	0.0495	0.35	0.65	0.9966
27	27	1.79	0.0413	0.40	0.55	0.2519	100	100	1.68	0.0495	0.40	0.55	0.6928
27	27	1.79	0.0413	0.40	09.0	0.3839	100	100	1.68	0.0495	0.40	09.0	0.8897
28	28	1.78	0.0423	0.02	0.15	0.3068	150	150	1.67	0.0498	0.02	0.15	0.9039
28	28	1.78	0.0423	0.02	0.20	0.4902	150	150	1.67	0.0498	0.02	0.20	0.9931
58	58	1.78	0.0423	0.02	0.25	0.6686	150	150	1.67	0.0498	0.02	0.25	0.9998
58	8 6	1.78	0.0423	0.05	0.30	0.8095	150	150	1.67	0.0498	0.05	0.30	1.0000
200	200	1.78	0.0423	0.05	0.35	0.9030	150	150	1.67	0.0498	0.05	0.35	1.0000
28	200	1.78	0.0423	0.05	0.40	0.9563	150	150	1.67	0.0498	0.05	0.40	1.0000
8 6	x 0	1.0	0.0423	0.05	0.45	0.9828	150	150	1.07	0.0498	0.05	0.45	1.0000
0 X	0 0 0 0	1.70	0.0423	0.10	0.25	0.0300	150	150	1.07	0.0498	0.10	0.25	0.9679
8 6	28	1.78	0.0423	0.10	0.35	0.7208	150	150	1.67	0.0498	0.10	0.35	0.0999
28	28	1.78	0.0423	0.10	0.40	0.8378	150	150	1.67	0.0498	0.10	0.40	1.0000
28	28	1.78	0.0423	0.10	0.45	0.9157	150	150	1.67	0.0498	0.10	0.45	1.0000
58	58	1.78	0.0423	0.10	0.20	0.9609	150	150	1.67	0.0498	0.10	0.50	1.0000
58	200	1.78	0.0423	0.10	0.55	0.9840	150	150	1.67	0.0498	0.10	0.55	1.0000
8 6	200	1.78	0.0423	0.10	0.60	0.9944	150	150	1.67	0.0498	0.10	0.60	1.0000
8 6	8 0	 2	0.0423	0.15	0.30	0.3518	150	150	1.67	0.0498	0.15	0.30	0.9324
0 0	0 0	1.0	0.0423	0.15	0.93	0.5095	150	150	1.07	0.0498	0.13	0.30	0.9924
8 8	x x	- 1. 20 20 20 20 20 20 20 20 20 20 20 20 20	0.0423	0.15	0.40	0.6598	150	150	1.07	0.0498	0.13 0.13	0.40	1,0000
0 0 0 0 0 0	0 0 0 0	2 2	0.0423	0.0	0.40	0.8769	120	150	1.07	0.0436	0.10	0.40	1 0000
82	28	1.78	0.0423	0.15	0.55	0.9376	150	150	1.67	0.0498	0.15	0.55	1,0000
28	28	1.78	0.0423	0.15	09.0	0.9727	150	150	1.67	0.0498	0.15	09.0	1.0000
28	28	1.78	0.0423	0.15	0.65	0.9901	150	150	1.67	0.0498	0.15	0.65	1.0000
28	28	1.78	0.0423	0.20	0.35	0.3191	150	150	1.67	0.0498	0.20	0.35	0.8997
28	28	1.78	0.0423	0.20	0.40	0.4631	150	150	1.67	0.0498	0.20	0.40	0.9852
78	78	1.78	0.0423	07.70	0.45	0.6090	150	150	1.67	0.0498	0.20	0.45	0.9989

Table B.4: continue on next page

n2 zu pvalue p1 p2 power n1 n2 zu pvalue 28 1.78 0.0423 0.20 0.50 0.7410 150 150 1.67 0.0498 0 28 1.78 0.0423 0.20 0.50 0.541 150 1.67 0.0498 0 28 1.78 0.0423 0.20 0.65 0.9658 150 1.67 0.0498 0 28 1.78 0.0423 0.20 0.60 0.9214 150 1.67 0.0498 0 28 1.78 0.0423 0.20 0.60 0.9278 150 1.67 0.0498 0 28 1.78 0.0423 0.25 0.45 0.4280 1.60 1.67 0.0498 0 28 1.78 0.0423 0.25 0.50 0.55 0.716 1.67 0.0498 0 28 1.78 0.0423 0.25 0.50								7 000	4.C		Table D.4: Consentated from proceeds	11011	pronord d	o bade
28 1.78 0.0423 0.20 0.55 0.7410 28 1.78 0.0423 0.20 0.55 0.8471 28 1.78 0.0423 0.20 0.65 0.8471 28 1.78 0.0423 0.20 0.65 0.9658 28 1.78 0.0423 0.20 0.70 0.9878 28 1.78 0.0423 0.25 0.40 0.9878 28 1.78 0.0423 0.25 0.50 0.57 28 1.78 0.0423 0.25 0.50 0.5761 29 1.78 0.0423 0.25 0.50 0.5761 28 1.78 0.0423 0.25 0.65 0.9144 29 1.78 0.0423 0.25 0.65 0.9144 28 1.78 0.0423 0.30 0.65 0.7361 28 1.78 0.0423 0.30 0.65 0.7631 29 1.78	nı	n2	za	pvalue	p1	p ₂	power	n1	n2	$\mathbf{z}_{\mathbf{n}}$	pvalue	P1	p2	power
28 1.78 0.0423 0.20 0.55 0.8471 28 1.78 0.0423 0.20 0.60 0.9214 28 1.78 0.0423 0.20 0.60 0.9878 28 1.78 0.0423 0.20 0.70 0.9878 28 1.78 0.0423 0.25 0.40 0.2907 28 1.78 0.0423 0.25 0.40 0.5761 28 1.78 0.0423 0.25 0.55 0.7168 28 1.78 0.0423 0.25 0.55 0.7144 28 1.78 0.0423 0.25 0.65 0.9144 28 1.78 0.0423 0.25 0.65 0.9144 28 1.78 0.0423 0.25 0.75 0.931 28 1.78 0.0423 0.30 0.56 0.4113 28 1.78 0.0423 0.30 0.55 0.5630 28 1.78	28	28	1.78	0.0423	0.20	0.50	0.7410	150	150	1.67	0.0498	0.20	0.50	1.0000
28 1.78 0.0423 0.20 0.66 0.9214 28 1.78 0.0423 0.20 0.65 0.965 28 1.78 0.0423 0.20 0.70 0.95 28 1.78 0.0423 0.25 0.40 0.2907 28 1.78 0.0423 0.25 0.40 0.2907 28 1.78 0.0423 0.25 0.60 0.576 28 1.78 0.0423 0.25 0.60 0.8326 28 1.78 0.0423 0.25 0.60 0.8326 28 1.78 0.0423 0.25 0.70 0.9631 28 1.78 0.0423 0.25 0.75 0.9871 28 1.78 0.0423 0.25 0.70 0.9631 28 1.78 0.0423 0.25 0.75 0.9871 28 1.78 0.0423 0.30 0.65 0.5530 28 1.78 0.0423 0.30 0.65 0.5530 28 1.78 0.0423 0.30 0.60 0.8729 28 1.78 0.0423 0.30 0.60 0.5598 28 1.78 <td< td=""><td>28</td><td>28</td><td>1.78</td><td>0.0423</td><td>0.20</td><td>0.55</td><td>0.8471</td><td>150</td><td>150</td><td>1.67</td><td>0.0498</td><td>0.20</td><td>0.55</td><td>1.0000</td></td<>	28	28	1.78	0.0423	0.20	0.55	0.8471	150	150	1.67	0.0498	0.20	0.55	1.0000
28 1.78 0.0423 0.20 0.65 0.9658 1 28 1.78 0.0423 0.20 0.70 0.9878 1 28 1.78 0.0423 0.25 0.40 0.2978 1 28 1.78 0.0423 0.25 0.45 0.4280 1 28 1.78 0.0423 0.25 0.65 0.57 1 28 1.78 0.0423 0.25 0.60 0.8326 1 28 1.78 0.0423 0.25 0.65 0.9444 1 28 1.78 0.0423 0.25 0.75 0.9871 1 28 1.78 0.0423 0.25 0.75 0.9871 1 28 1.78 0.0423 0.30 0.50 0.413 0.30 28 1.78 0.0423 0.30 0.50 0.70 1 28 1.78 0.0423 0.30 0.60 0.781	58	28	1.78	0.0423	0.20	0.60	0.9214	150	150	1.67	0.0498	0.20	09.0	1.0000
28 1.78 0.0423 0.20 0.70 0.9878 1 28 1.78 0.0423 0.25 0.46 0.2907 1 28 1.78 0.0423 0.25 0.46 0.2907 1 28 1.78 0.0423 0.25 0.55 0.766 1 28 1.78 0.0423 0.25 0.66 0.9144 1 28 1.78 0.0423 0.25 0.66 0.9144 1 28 1.78 0.0423 0.25 0.70 0.9631 1 28 1.78 0.0423 0.25 0.70 0.9631 1 28 1.78 0.0423 0.30 0.50 0.4113 1 28 1.78 0.0423 0.30 0.55 0.5360 1 28 1.78 0.0423 0.30 0.65 0.8279 1 28 1.78 0.0423 0.30 0.60 0.7082 <t< td=""><td>28</td><td>28</td><td>1.78</td><td>0.0423</td><td>0.20</td><td>0.65</td><td>0.9658</td><td>150</td><td>150</td><td>1.67</td><td>0.0498</td><td>0.20</td><td>0.65</td><td>1.0000</td></t<>	28	28	1.78	0.0423	0.20	0.65	0.9658	150	150	1.67	0.0498	0.20	0.65	1.0000
28 1.78 0.0423 0.25 0.40 0.2907 28 1.78 0.0423 0.25 0.45 0.450 0.50 28 1.78 0.0423 0.25 0.50 0.5761 0.7168 28 1.78 0.0423 0.25 0.60 0.8356 0.7168 28 1.78 0.0423 0.25 0.60 0.8356 0.9331 28 1.78 0.0423 0.25 0.75 0.9631 1 28 1.78 0.0423 0.30 0.75 0.56 0.9871 28 1.78 0.0423 0.30 0.50 0.4113 1 28 1.78 0.0423 0.30 0.55 0.5630 1 28 1.78 0.0423 0.30 0.55 0.5630 1 28 1.78 0.0423 0.30 0.65 0.8279 1 28 1.78 0.0423 0.30 0.60 0.5598	28	28	1.78	0.0423	0.20	0.70	0.9878	150	150	1.67	0.0498	0.20	0.70	1.0000
28 1.78 0.0423 0.25 0.45 0.4280 28 1.78 0.0423 0.25 0.56 0.57 0.51 28 1.78 0.0423 0.25 0.55 0.768 1 28 1.78 0.0423 0.25 0.65 0.9144 1 28 1.78 0.0423 0.25 0.75 0.9871 1 28 1.78 0.0423 0.25 0.75 0.9871 1 28 1.78 0.0423 0.30 0.50 0.713 0.31 28 1.78 0.0423 0.30 0.50 0.713 1 28 1.78 0.0423 0.30 0.50 0.70 1 28 1.78 0.0423 0.30 0.60 0.781 1 28 1.78 0.0423 0.30 0.60 0.287 1 28 1.78 0.0423 0.30 0.60 0.287 1	28	28	1.78	0.0423	0.25	0.40	0.2907	150	150	1.67	0.0498	0.25	0.40	0.8715
28 1.78 0.0423 0.25 0.56 0.5761 28 1.78 0.0423 0.25 0.65 0.7168 28 1.78 0.0423 0.25 0.66 0.9144 28 1.78 0.0423 0.25 0.70 0.9631 28 1.78 0.0423 0.25 0.70 0.9631 28 1.78 0.0423 0.30 0.45 0.276 28 1.78 0.0423 0.30 0.50 0.4113 28 1.78 0.0423 0.30 0.60 0.7081 28 1.78 0.0423 0.30 0.60 0.7081 28 1.78 0.0423 0.30 0.60 0.7081 28 1.78 0.0423 0.30 0.60 0.7081 28 1.78 0.0423 0.30 0.60 0.7081 28 1.78 0.0423 0.30 0.60 0.707 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 <	28	28	1.78	0.0423	0.25	0.45	0.4280	150	150	1.67	0.0498	0.25	0.45	0.9786
28 1.78 0.0423 0.25 0.55 0.7168 28 1.78 0.0423 0.25 0.60 0.8326 28 1.78 0.0423 0.25 0.60 0.8326 28 1.78 0.0423 0.25 0.70 0.9631 28 1.78 0.0423 0.25 0.75 0.9871 28 1.78 0.0423 0.30 0.45 0.4113 28 1.78 0.0423 0.30 0.55 0.5630 28 1.78 0.0423 0.30 0.65 0.8279 28 1.78 0.0423 0.30 0.65 0.8279 28 1.78 0.0423 0.30 0.60 0.9127 28 1.78 0.0423 0.30 0.60 0.9279 28 1.78 0.0423 0.30 0.70 0.9127 28 1.78 0.0423 0.35 0.55 0.4072 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.35 0.65 0.7062 28 1.78 0.0423 0.35 0.65 0.7062 28 1.78	28	28	1.78	0.0423	0.25	0.50	0.5761	150	150	1.67	0.0498	0.25	0.50	0.9981
28 1.78 0.0423 0.25 0.60 0.8326 28 1.78 0.0423 0.25 0.65 0.9144 28 1.78 0.0423 0.25 0.70 0.9631 28 1.78 0.0423 0.25 0.75 0.9871 28 1.78 0.0423 0.30 0.45 0.25 28 1.78 0.0423 0.30 0.50 0.4113 28 1.78 0.0423 0.30 0.60 0.7031 28 1.78 0.0423 0.30 0.60 0.7031 28 1.78 0.0423 0.30 0.60 0.9127 28 1.78 0.0423 0.30 0.60 0.5879 28 1.78 0.0423 0.30 0.60 0.5879 28 1.78 0.0423 0.35 0.50 0.267 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.35 0.65 0.5598 28 1.78 0.0423 0.35 0.65 0.7062 28 1.78 0.0423 0.35 0.65 0.5598 28 1.78 <t< td=""><td>28</td><td>28</td><td>1.78</td><td>0.0423</td><td>0.25</td><td>0.55</td><td>0.7168</td><td>150</td><td>150</td><td>1.67</td><td>0.0498</td><td>0.25</td><td>0.55</td><td>0.99999</td></t<>	28	28	1.78	0.0423	0.25	0.55	0.7168	150	150	1.67	0.0498	0.25	0.55	0.99999
28 1.78 0.0423 0.25 0.65 0.9144 28 1.78 0.0423 0.25 0.70 0.9631 28 1.78 0.0423 0.25 0.77 0.9631 28 1.78 0.0423 0.30 0.45 0.2736 28 1.78 0.0423 0.30 0.50 0.4113 28 1.78 0.0423 0.30 0.65 0.536 28 1.78 0.0423 0.30 0.60 0.7081 28 1.78 0.0423 0.30 0.60 0.8279 28 1.78 0.0423 0.35 0.50 0.927 28 1.78 0.0423 0.35 0.50 0.55 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.30 0.60 0.5598 28 1.78 0.0423 0.30 0.60 0.5698 28 1.78 0.0423 0.40 0.60 0.4068 29 1.78 <td< td=""><td>28</td><td>28</td><td>1.78</td><td>0.0423</td><td>0.25</td><td>09.0</td><td>0.8326</td><td>150</td><td>150</td><td>1.67</td><td>0.0498</td><td>0.25</td><td>0.60</td><td>1.0000</td></td<>	28	28	1.78	0.0423	0.25	09.0	0.8326	150	150	1.67	0.0498	0.25	0.60	1.0000
28 1.78 0.0423 0.25 0.70 0.9631 28 1.78 0.0423 0.25 0.75 0.9751 28 1.78 0.0423 0.30 0.46 0.2736 28 1.78 0.0423 0.30 0.55 0.4113 28 1.78 0.0423 0.30 0.65 0.5630 28 1.78 0.0423 0.30 0.65 0.8279 28 1.78 0.0423 0.30 0.60 0.8279 28 1.78 0.0423 0.30 0.70 0.9127 28 1.78 0.0423 0.35 0.55 0.4072 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.35 0.60 0.5598 28 1.78 0.0423 0.40 0.65 0.7062 28 1.78 0.0423 0.40 0.65 0.7062 28 1.78 0.0423 0.40 0.65 0.7062 29 1.78 0.0423 0.40 0.65 0.7062 1 0.0423	28	28	1.78	0.0423	0.25	0.65	0.9144	150	150	1.67	0.0498	0.25	0.65	1.0000
28 1.78 0.0423 0.25 0.75 0.9871 28 1.78 0.0423 0.30 0.45 0.276 28 1.78 0.0423 0.30 0.60 0.4113 28 1.78 0.0423 0.30 0.65 0.5630 28 1.78 0.0423 0.30 0.65 0.7631 28 1.78 0.0423 0.30 0.60 0.7031 28 1.78 0.0423 0.30 0.70 0.9127 28 1.78 0.0423 0.35 0.55 0.407 28 1.78 0.0423 0.35 0.55 0.407 28 1.78 0.0423 0.35 0.65 0.7687 28 1.78 0.0423 0.35 0.65 0.7682 28 1.78 0.0423 0.35 0.65 0.7682 28 1.78 0.0423 0.40 0.55 0.7062 28 1.78 0.0423 0.40 0.65 0.7062 29 1.78 0.0423 0.40 0.65 0.7062 20 1.78 0.0423 0.40 0.65 0.4068 21 1.78 <t< td=""><td>28</td><td>28</td><td>1.78</td><td>0.0423</td><td>0.25</td><td>0.70</td><td>0.9631</td><td>150</td><td>150</td><td>1.67</td><td>0.0498</td><td>0.25</td><td>0.70</td><td>1.0000</td></t<>	28	28	1.78	0.0423	0.25	0.70	0.9631	150	150	1.67	0.0498	0.25	0.70	1.0000
28 1.78 0.0423 0.30 0.45 0.2736 138 28 1.78 0.0423 0.30 0.50 0.4113 13 13 13 13 13 13 13 13 13 13 13 13	28	28	1.78	0.0423	0.25	0.75	0.9871	150	150	1.67	0.0498	0.25	0.75	1.0000
28 1.78 0.0423 0.30 0.50 0.4113 1 1 2 8 1.78 0.0423 0.30 0.55 0.5530 1 1 2 8 1.78 0.0423 0.30 0.55 0.5530 1 1 2 8 1.78 0.0423 0.30 0.65 0.8279 1 2 8 1.78 0.0423 0.30 0.60 0.7081 1 1 2 8 1.78 0.0423 0.35 0.55 0.927 1 2 8 1.78 0.0423 0.35 0.55 0.4072 1 2 8 1.78 0.0423 0.35 0.55 0.4072 1 2 8 1.78 0.0423 0.35 0.60 0.5598 1 2 8 1.78 0.0423 0.35 0.65 0.7598 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28	28	1.78	0.0423	0.30	0.45	0.2736	150	150	1.67	0.0498	0.30	0.45	0.8514
28 1.78 0.0423 0.30 0.55 0.5630 1	28	28	1.78	0.0423	0.30	0.50	0.4113	150	150	1.67	0.0498	0.30	0.50	0.9709
28 1.78 0.0423 0.30 0.60 0.7081 1 28 1.78 0.0423 0.30 0.65 0.8279 1 28 1.78 0.0423 0.30 0.65 0.8279 1 28 1.78 0.0423 0.35 0.50 0.2687 1 28 1.78 0.0423 0.35 0.55 0.4072 1 28 1.78 0.0423 0.35 0.60 0.5687 1 28 1.78 0.0423 0.35 0.60 0.5988 1 28 1.78 0.0423 0.35 0.60 0.5988 1 28 1.78 0.0423 0.40 0.55 0.2687 1 28 1.78 0.0423 0.40 0.60 0.4068 1	28	58	1.78	0.0423	0.30	0.55	0.5630	150	150	1.67	0.0498	0.30	0.55	0.9971
28 1.78 0.0423 0.30 0.65 0.8279 1 28 1.78 0.0423 0.30 0.70 0.9127 1 28 1.78 0.0423 0.35 0.50 0.20 0.9287 1 28 1.78 0.0423 0.35 0.55 0.4072 1 28 1.78 0.0423 0.35 0.60 0.5598 1 28 1.78 0.0423 0.35 0.60 0.5598 1 28 1.78 0.0423 0.40 0.55 0.2687 1 28 1.78 0.0423 0.40 0.60 0.4068 1	28	28	1.78	0.0423	0.30	09.0	0.7081	150	150	1.67	0.0498	0.30	09.0	0.99999
28 1.78 0.0423 0.30 0.70 0.9127 11 28 1.78 0.0423 0.35 0.50 0.2687 12 28 1.78 0.0423 0.35 0.55 0.4072 11 28 1.78 0.0423 0.35 0.60 0.5598 12 28 1.78 0.0423 0.35 0.65 0.7062 12 28 1.78 0.0423 0.40 0.65 0.268 12 28 1.78 0.0423 0.40 0.60 0.4068 11	28	28	1.78	0.0423	0.30	0.65	0.8279	150	150	1.67	0.0498	0.30	0.65	1.0000
28 1.78 0.0423 0.35 0.50 0.2687 1 28 1.78 0.0423 0.35 0.55 0.4072 1 28 1.78 0.0423 0.35 0.65 0.4072 1 28 1.78 0.0423 0.35 0.65 0.7662 1 28 1.78 0.0423 0.40 0.55 0.2687 1 28 1.78 0.0423 0.40 0.60 0.4068 1	28	28	1.78	0.0423	0.30	0.70	0.9127	150	150	1.67	0.0498	0.30	0.70	1.0000
28 1.78 0.0423 0.35 0.55 0.4072 1 28 1.78 0.0423 0.35 0.60 0.5988 1 28 1.78 0.0423 0.35 0.60 0.5988 1 28 1.78 0.0423 0.40 0.55 0.687 1 28 1.78 0.0423 0.40 0.56 0.2687 1 28 1.78 0.0423 0.40 0.60 0.4068 1	28	28	1.78	0.0423	0.35	0.50	0.2687	150	150	1.67	0.0498	0.35	0.50	0.8300
28 1.78 0.0423 0.35 0.60 0.5598 1 28 1.78 0.0423 0.35 0.65 0.7662 1 28 1.78 0.0423 0.40 0.55 0.2687 1 28 1.78 0.0423 0.40 0.60 0.4068 1	28	28	1.78	0.0423	0.35	0.55	0.4072	150	150	1.67	0.0498	0.35	0.55	0.9664
28 1.78 0.0423 0.35 0.65 0.7062 1 28 1.78 0.0423 0.40 0.55 0.2687 1 28 1.78 0.0423 0.40 0.60 0.4068 1	28	28	1.78	0.0423	0.35	09.0	0.5598	150	150	1.67	0.0498	0.35	09.0	0.9967
28 1.78 0.0423 0.40 0.55 0.2687 1 28 1.78 0.0423 0.40 0.60 0.4068 1	28	28	1.78	0.0423	0.35	0.65	0.7062	150	150	1.67	0.0498	0.35	0.65	0.99999
28 1.78 0.0423 0.40 0.60 0.4068 1	28	28	1.78	0.0423	0.40	0.55	0.2687	150	150	1.67	0.0498	0.40	0.55	0.8254
Table B.4: concluded from	28	28	1.78	0.0423	0.40	09.0	0.4068	150	150	1.67	0.0498	0.40	0.60	0.9655
								Tal	ole B.	4: con	cluded	from	previou	s bage

288

Table B.5: Achieved power and p-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.025$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in the first sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test.

\mathbf{n}_1	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	$\mathbf{p_1}$	P2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p ₁	p ₂	power
10	10	2.17	0.0211	0.02	0.15	0.0304	29	56	2.09	0.0238	0.05	0.15	0.2090
10	10	2.17	0.0211	0.02	0.20	0.0744	59	50	2.09	0.0238	0.02	0.20	0.3775
10	10	2.17	0.0211	0.05	0.25	0.1407	59	59	2.09	0.0238	0.02	0.25	0.5637
10	10	2.17	0.0211	0.05	0.30	0.2255	59	59	2.09	0.0238	0.02	0.30	0.7304
10	10	2.17	0.0211	0.02	0.35	0.3230	59	59	2.09	0.0238	0.05	0.35	0.8533
10	10	2.17	0.0211	0.02	0.40	0.4265	59	53	2.09	0.0238	0.02	0.40	0.9300
10	10	2.17	0.0211	0.02	0.45	0.5298	59	59	2.09	0.0238	0.02	0.45	0.9709
10	10	2.17	0.0211	0.10	0.25	0.0865	59	59	2.09	0.0238	0.10	0.25	0.3005
10	10	2.17	0.0211	0.10	0.30	0.1427	59	59	2.09	0.0238	0.10	0.30	0.4687
10	10	2.17	0.0211	0.10	0.35	0.2116	59	50	2.09	0.0238	0.10	0.35	0.6356
10	10	2.17	0.0211	0.10	0.40	0.2911	59	59	2.09	0.0238	0.10	0.40	0.7761
10	10	2.17	0.0211	0.10	0.45	0.3786	59	50	2.09	0.0238	0.10	0.45	0.8774
10	10	2.17	0.0211	0.10	0.50	0.4713	59	59	2.09	0.0238	0.10	0.50	0.9406
10	10	2.17	0.0211	0.10	0.55	0.5660	59	56	2.09	0.0238	0.10	0.55	0.9747
10	10	2.17	0.0211	0.10	09.0	0.6590	59	59	2.09	0.0238	0.10	09.0	0.9907
10	10	2.17	0.0211	0.15	0.30	0.0886	59	59	2.09	0.0238	0.15	0.30	0.2646
10	10	2.17	0.0211	0.15	0.35	0.1365	59	53	2.09	0.0238	0.15	0.35	0.4162
10	10	2.17	0.0211	0.15	0.40	0.1961	59	53	2.09	0.0238	0.15	0.40	0.5749
10	10	2.17	0.0211	0.15	0.45	0.2673	59	58	2.09	0.0238	0.15	0.45	0.7180
10	10	2.17	0.0211	0.15	0.50	0.3490	59	53	2.09	0.0238	0.15	0.50	0.8311
10	10	2.17	0.0211	0.15	0.55	0.4393	59	58	2.09	0.0238	0.15	0.55	0.9103
10	10	2.17	0.0211	0.15	09.0	0.5352	59	56	2.09	0.0238	0.15	0.60	0.9589
10	10	2.17	0.0211	0.15	0.65	0.6321	59	59	2.09	0.0238	0.15	0.65	0.9843
10	10	2.17	0.0211	0.20	0.35	0.0866	59	50	2.09	0.0238	0.20	0.35	0.2407
10	10	2.17	0.0211	0.20	0.40	0.1301	59	56	2.09	0.0238	0.20	0.40	0.3765
10	10	2.17	0.0211	0.20	0.45	0.1857	59	53	2.09	0.0238	0.20	0.45	0.5257
10	10	2.17	0.0211	0.20	0.50	0.2540	59	53	2.09	0.0238	0.20	0.50	0.6709
10	10	2.17	0.0211	0.20	0.55	0.3343	59	53	2.09	0.0238	0.20	0.55	0.7959
10	10	2.17	0.0211	0.20	09.0	0.4248	59	50	2.09	0.0238	0.20	0.60	0.8896
10	10	2.17	0.0211	0.20	0.65	0.5221	59	56	2.09	0.0238	0.20	0.65	0.9493
10	10	2.17	0.0211	0.20	0.70	0.6216	59	59	2.09	0.0238	0.20	0.70	0.9809
10	10	2.17	0.0211	0.25	0.40	0.0847	59	56	2.09	0.0238	0.25	0.40	0.2190
10	10	2.17	0.0211	0.25	0.45	0.1267	59	59	2.09	0.0238	0.25	0.45	0.3455
10	10	2.17	0.0211	0.25	0.50	0.1811	59	50	2.09	0.0238	0.25	0.50	0.4933
10	10	2.17	0.0211	0.25	0.55	0.2487	59	53	2.09	0.0238	0.25	0.55	0.6448
10	10	2.17	0.0211	0.25	09.0	0.3288	59	59	2.09	0.0238	0.25	09.0	0.7792
10	10	2.17	0.0211	0.25	0.65	0.4196	59	59	2.09	0.0238	0.25	0.65	0.8810
10	10	2.17	0.0211	0.25	0.70	0.5178	59	59	2.09	0.0238	0.25	0.70	0.9459
10	10	2.17	0.0211	0.25	0.75	0.6190	59	59	2.09	0.0238	0.25	0.75	0.9800
10	10	2.17	0.0211	0.30	0.45	0.0845	59	59	2.09	0.0238	0.30	0.45	0.2054
10	10	2.17	0.0211	0.30	0.50	0.1260	59	53	2.09	0.0238	0.30	0.50	0.3307
10	10	2.17	0.0211	0.30	0.55	0.1801	59	56	2.09	0.0238	0.30	0.55	0.4807
10	10	2.17	0.0211	0.30	09.0	0.2474	59	59	2.09	0.0238	0.30	09.0	0.6359
10	10	2.17	0.0211	0.30	0.65	0.3273	59	53	2.09	0.0238	0.30	0.65	0.7740

Table B.5: continue on next page

Table B.5: continue on next page

s page	power	0.8789	0.2017	0.3274	0.6342	0.2021	0.3274	0.1732	0.3639	0.5702	0.7444	0.8656	0.9375	0.3087	0.4792	0.6433	0.7793	0.8780	0.9406	0.9752	0.9913	0.2632	0.4105	0.5672	0.7130	0.8313	0.9136	0.9022	0.9860	0.3663	0.5219	0.6747	0.8027	0.8941	0.9501	0.9799	0.2126	0.3447	0.4370	0.7769	0.8735	0.9387	0.9763	0.2040	0.3280	0.4712	0.6176
reviou	p2	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.00	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.40	0 C	0.00	0.00	0.70	0.75	0.45	0.50	0.55	0.60
from p	p1	0:30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.00	0.03	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.To	0.1.0	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.70	0.60 0.00	0.60	0.25	0.25	0.25	0.30	0.30	0.30	0.30
-continued from previous page	pvalue	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0210	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0210	0.0210	0.0210	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216
	$\mathbf{z}_{\mathbf{u}}$	2.09	2.09	2.09	2.09	2.09	2.09	2.15	2.15	2.15	2.15	2.15	2.13	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.13	0.1.0	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.TO	 	2.1.C	2.15	2.15	2.15	2.15	2.15	2.15	2.15
e B.5:	$^{\mathrm{n}_{2}}$	59	53	800	29	59	59	30	30	30	30	9 8	900	9 %	30	30	30	30	30	30	30	30	30	30	30	200	900	000	900	30	30	30	30	30	30	200	200	900	8 6	8 8	8 8	30	30	30	30	30	30
Table	$_{1}^{n}$	29	50	200	29	59	59	30	30	30	30	30	200	900	30	30	30	30	30	30	30	30	30	30	30	30	200	000	30	30	30	30	30	30	30	30	30	30	900	800	30	30	30	30	30	30	30
	power	0.4184	0.0852	0.1200	0.2473	0.0860	0.1269	0.0404	0.0957	0.1750	0.2725	0.3801	0.4901	0.1048	0.1697	0.2482	0.3371	0.4329	0.5314	0.6278	0.7175	0.1038	0.1592	0.2275	0.3074	0.3963	0.4902	0.0047	0.0793	0.1500	0.2125	0.2864	0.3697	0.4594	0.5522	0.6449	0.0961	0.1424	0.2003	0.2034	0.5453	0.5329	0.6333	0.0923	0.1354	0.1900	0.2568
	p2	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.0 0.0 0.0	0.00	0.00	0.70	0.75	0.45	0.50	0.55	09.0
	p1	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.10	0.1.0	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.75	0.00	0.00	2.5	0.25	0.25	0.30	0.30	0.30	0.30
	pvalue	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207
	$\mathbf{z}_{\mathbf{u}}$	2.17	2.17	2.17	2.17	2.17	2.17	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	04.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	0.10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 . c	2.40	2.40	2.40	2.40	2.40	2.40	2.40
	$^{\rm n_2}$	10	10	10	10	10	10	11	11	1	Ξ;	Ξ:	I :	I :	11	11	11	11	11	11	Π	Ξ;	Ξ;	Ξ;	Ξ;	Ξ:	I :	Ξ:	1 -	: ::	11	11	11	11	Ξ;	Ξ;	Ξ:	I :	1 :	1 :	: =	11	11	11	11	Ξ;	Π
	\mathbf{n}_1	10	10	10	10	10	10	11	11	11	Ξ;	Ξ:	I :	: :	11	11	11	11	11	11	1	Ξ;	Ξ;	Ξ;	Ξ;	Ξ:	I :	Ξ:	I :	Ξ	11	11	11	11	Ξ;	Ξ;	Ξ:	I :	1 =	1 =	1 :	11	11	11	11	Ξ;	11

1	p ₁
1	
0.65	0.65 0.
0.70	0.70
0.50	0.50
0.55	
35 0.60 0.1650	0.00
0.55	0.55
09:0	09:0
0.15	0.15
0.20	0.20
0.55	
15 0.35	
	0.15 0.45
0.50	0.20 0.50
	0.25 0.45
	09.0
	0.65
30 0.50	0.30 0.50

Table B.5: continue on next page

33 31 31 2.11 0.0240 0.30 0.66 0.660 34 31 31 2.11 0.0240 0.30 0.65 0.7907 31 31 31 2.11 0.0240 0.30 0.65 0.7907 31 31 2.11 0.0240 0.35 0.65 0.75 0.7907 30 31 31 2.11 0.0240 0.35 0.65 0.4919 31 31 2.11 0.0240 0.35 0.65 0.4919 31 31 2.11 0.0240 0.35 0.65 0.4918 44 32 31 2.11 0.0240 0.35 0.65 0.4923 44 32 32 2.09 0.0233 0.05 0.42 0.42 45 32 2.09 0.0233 0.05 0.42 0.42 46 32 32 2.09 0.0233 0.05 0.42	pvalue p ₁ p ₂ pow	0.60 0.00	power				zn	byarae	1		power
0.3566 31 31 2.11 0.0240 0.30 0.65 0.0331 31 2.11 0.0240 0.30 0.65 0.0931 31 31 2.11 0.0240 0.35 0.50 0.1360 31 31 2.11 0.0240 0.35 0.55 0.1360 31 31 2.11 0.0240 0.35 0.55 0.0878 31 31 2.11 0.0240 0.35 0.55 0.0878 31 31 2.11 0.0240 0.35 0.55 0.0878 31 32 2.09 0.0233 0.05 0.15 0.0878 32 2.29 0.0233 0.05 0.15 0.1410 32 32 2.09 0.0233 0.05 0.35 0.1489 32 32 2.09 0.0233 0.10 0.45 0.1480 32 32 2.09 0.0233 0.10 0.45	0.0225 0.30			0.2733	31	31	2.11	0.0240	0.30	09.0	0.6602
31 2.11 0.0240 0.55 31 3.1 2.11 0.0240 0.35 0.50 31 31 2.11 0.0240 0.35 0.55 31 31 2.11 0.0240 0.35 0.55 31 31 2.11 0.0240 0.35 0.55 32 31 2.11 0.0240 0.35 0.55 32 32 2.09 0.0233 0.05 0.15 32 32 2.09 0.0233 0.05 0.15 32 32 2.09 0.0233 0.05 0.35 32 32 2.09 0.0233 0.05 0.35 32 32 2.09 0.0233 0.10 0.40 32 32 2.09 0.0233 0.10 0.45 32 32 2.09 0.0233 0.10 0.45 32 32 2.09 0.0233 0.10 0.45	2.26 0.0225 0.30 0.65			0.3566	31	31	2.11	0.0240	0.30	0.65	0.7907
31 31 2.11 0.0240 0.35 0.55 31 31 2.11 0.0240 0.35 0.66 31 31 2.11 0.0240 0.35 0.65 31 31 2.11 0.0240 0.40 0.65 32 32 2.19 0.0233 0.05 0.023 32 2.09 0.0233 0.05 0.15 32 2.09 0.0233 0.05 0.15 32 2.09 0.0233 0.05 0.25 32 2.09 0.0233 0.05 0.45 32 2.09 0.0233 0.05 0.45 32 2.09 0.0233 0.10 0.45 32 2.09 0.0233 0.10 0.23 32 2.09 0.0233 0.10 0.45 32 2.09 0.0233 0.10 0.45 32 2.09 0.0233 0.15 0.45	0.0225 0.35			0.0931	31	31	2.11	0.0240	0.35	0.50	0.2156
31 31 2.11 0.0240 0.35 0.66 31 3.1 2.11 0.0240 0.35 0.66 31 3.1 2.11 0.0240 0.40 0.65 32 32 2.09 0.0233 0.05 0.25 32 32 2.09 0.0233 0.05 0.25 32 32 2.09 0.0233 0.05 0.25 32 32 2.09 0.0233 0.05 0.25 32 32 2.09 0.0233 0.05 0.40 32 32 2.09 0.0233 0.05 0.45 32 2.09 0.0233 0.10 0.45 32 2.09 0.0233 0.10 0.40 32 2.09 0.0233 0.10 0.40 32 2.09 0.0233 0.10 0.40 32 2.09 0.0233 0.10 0.40 32 32	0.0225 0.35			0.1360	31	31	2.11	0.0240	0.35	0.55	0.3426
31 31 2.11 0.0240 0.55 0.65 31 31 2.11 0.0240 0.55 0.65 32 32 2.09 0.0233 0.05 0.15 32 32 2.09 0.0233 0.05 0.15 32 32 2.09 0.0233 0.05 0.15 32 32 2.09 0.0233 0.05 0.15 32 32 2.09 0.0233 0.05 0.40 32 32 2.09 0.0233 0.05 0.45 32 32 2.09 0.0233 0.10 0.45 32 32 2.09 0.0233 0.10 0.45 32 32 2.09 0.0233 0.10 0.45 32 32 2.09 0.0233 0.10 0.45 32 32 2.09 0.0233 0.15 0.46 32 32 2.09 0.0233	0.0225 0.35			0.1924	31	31	2.11	0.0240	0.35	09.0	0.4919
0.1317 3.1 2.1 0.1240 0.40 0.00 0.0634 32 2.09 0.0233 0.05 0.15 0.0634 32 2.09 0.0233 0.05 0.15 0.1410 32 32 2.09 0.0233 0.05 0.15 0.4849 32 32 2.09 0.0233 0.05 0.02 0.4849 32 32 2.09 0.0233 0.05 0.05 0.7080 32 32 2.09 0.0233 0.05 0.40 0.7080 32 32 2.09 0.0233 0.05 0.40 0.7080 32 22 0.0 0.0233 0.10 0.45 0.4270 32 22 0.0 0.0233 0.10 0.45 0.4270 32 22 0.0 0.0233 0.10 0.45 0.4270 32 22 20 0.0233 0.10 0.45 0.4270	2.26 0.0225 0.35 0.65 2.26 0.0225 0.40 0.55			0.2653	31	3.1	2.11	0.0240	0.35	0.00	0.0482
0.0634 32 32 2.09 0.0233 0.06 0.15 0.1410 32 32 2.09 0.0233 0.05 0.05 0.1410 32 32 2.09 0.0233 0.05 0.02 0.4849 32 32 2.09 0.0233 0.05 0.05 0.4849 32 32 2.09 0.0233 0.05 0.05 0.7080 32 32 2.09 0.0233 0.05 0.40 0.7080 32 32 2.09 0.0233 0.05 0.45 0.1412 32 2.09 0.0233 0.10 0.45 0.4270 32 2.09 0.0233 0.10 0.45 0.4270 32 2.09 0.0233 0.10 0.45 0.4270 32 2.09 0.0233 0.10 0.45 0.4270 32 2.09 0.0233 0.10 0.45 0.4286 32 2.0	0.0225 0.40			0.1317	31	31	2.11	0.0240	0.40	0.60	0.3337
0.1410 32 2.09 0.0233 0.05 0.25 0.36243 32 2.09 0.0233 0.05 0.25 0.3625 32 2.09 0.0233 0.05 0.35 0.4849 32 32 2.09 0.0233 0.05 0.35 0.7080 32 32 2.09 0.0233 0.05 0.35 0.1412 32 32 2.09 0.0233 0.05 0.35 0.1412 32 32 2.09 0.0233 0.10 0.45 0.3208 32 2.09 0.0233 0.10 0.45 0.4270 32 2.09 0.0233 0.10 0.45 0.4270 32 2.09 0.0233 0.10 0.45 0.4270 32 2.09 0.0233 0.10 0.45 0.4270 32 2.09 0.0233 0.15 0.45 0.4270 32 2.09 0.0233 0.15	0.0243 0.05			0.0634	32	32	2.09	0.0233	0.02	0.15	0.2325
0.2443 3.2 2.09 0.0233 0.05 0.2444 0.24443 3.2 3.2 2.09 0.0233 0.05 0.03 0.4849 3.2 3.2 2.09 0.0233 0.05 0.45 0.6024 3.2 3.2 2.09 0.0233 0.05 0.45 0.7237 3.2 3.2 2.09 0.0233 0.05 0.40 0.2387 3.2 3.2 2.09 0.0233 0.10 0.35 0.2378 3.2 3.2 2.09 0.0233 0.10 0.45 0.2387 3.2 3.2 2.09 0.0233 0.10 0.45 0.5388 3.2 3.2 2.09 0.0233 0.10 0.45 0.7386 3.2 3.2 2.09 0.0233 0.10 0.45 0.7386 3.2 3.2 2.09 0.0233 0.10 0.45 0.7386 3.2 3.2 2.09 0.0233 0.10	0.0243 0.05			0.1410	32	32	2.09	0.0233	0.05	0.20	0.4224
0.4849 32 32 2.09 0.0233 0.05 0.35 0.6024 32 2.09 0.0233 0.05 0.45 0.6024 32 2.09 0.0233 0.05 0.45 0.7237 32 2.09 0.0233 0.05 0.45 0.2237 32 2.09 0.0233 0.10 0.35 0.4270 32 32 2.09 0.0233 0.10 0.35 0.4270 32 32 2.09 0.0233 0.10 0.45 0.538 32 32 2.09 0.0233 0.10 0.45 0.7386 32 2.09 0.0233 0.10 0.45 0.8125 32 2.09 0.0233 0.10 0.45 0.8126 32 2.09 0.0233 0.15 0.45 0.8126 32 2.09 0.0233 0.15 0.45 0.8286 32 2.09 0.0233 0.15	Z.16 0.0243 0.05 0.25 2.16 0.0243 0.05 0.30			0.2443	3 6	32.5	2.09	0.0233	0.00	0.30	0.7839
0.6024 32 32 2.09 0.0233 0.06 0.40 0.7080 32 32 2.09 0.0233 0.05 0.45 0.7080 32 32 2.09 0.0233 0.00 0.25 0.1237 32 32 2.09 0.0233 0.10 0.35 0.3308 32 32 2.09 0.0233 0.10 0.35 0.5358 32 2.09 0.0233 0.10 0.35 0.6400 32 32 2.09 0.0233 0.10 0.45 0.8125 32 2.09 0.0233 0.10 0.45 0.8126 32 2.09 0.0233 0.10 0.46 0.1351 32 2.09 0.0233 0.15 0.40 0.1384 32 32 2.09 0.0233 0.15 0.40 0.1384 32 32 2.09 0.0233 0.15 0.45 0.2846 32<	0.0243 0.05			0.4849	35	35	2.09	0.0233	0.05	0.35	0.8923
0.7080 32 32 2.09 0.0233 0.05 0.45 0.1412 32 32 2.09 0.0233 0.10 0.45 0.2237 32 32 2.09 0.0233 0.10 0.35 0.4378 32 32 2.09 0.0233 0.10 0.45 0.4378 32 32 2.09 0.0233 0.10 0.45 0.7336 32 32 2.09 0.0233 0.10 0.45 0.7386 32 2.09 0.0233 0.10 0.45 0.1351 32 2.09 0.0233 0.10 0.40 0.2067 32 2.09 0.0233 0.10 0.40 0.2067 32 2.09 0.0233 0.15 0.40 0.2086 32 2.09 0.0233 0.15 0.45 0.2087 32 2.09 0.0233 0.15 0.45 0.4886 32 2.09 0	0.0243 0.05		0	0.6024	32	32	2.09	0.0233	0.02	0.40	0.9531
0.1411 3.2 3.2 1.09 0.0233 0.10 0.25 0.3208 3.2 3.2 2.09 0.0233 0.10 0.35 0.4270 3.2 3.2 2.09 0.0233 0.10 0.45 0.4378 3.2 2.09 0.0233 0.10 0.45 0.6400 3.2 3.2 2.09 0.0233 0.10 0.45 0.7386 3.2 3.2 2.09 0.0233 0.10 0.45 0.1351 3.2 2.09 0.0233 0.10 0.55 0.2067 3.2 2.09 0.0233 0.15 0.30 0.2067 3.2 2.09 0.0233 0.15 0.45 0.2084 3.2 2.09 0.0233 0.15 0.45 0.4886 3.2 2.09 0.0233 0.15 0.45 0.4886 3.2 2.09 0.0233 0.15 0.45 0.1923 3.2 2.09 0.0	0.0243 0.05			0.7080	32	32	2.09	0.0233	0.02	0.45	0.9822
0.3208 3.2 2.0 0.0233 0.10 0.35 0.4270 3.2 3.2 2.09 0.0233 0.10 0.40 0.4358 3.2 2.09 0.0233 0.10 0.45 0.6400 3.2 2.09 0.0233 0.10 0.45 0.7336 3.2 2.09 0.0233 0.10 0.55 0.1351 3.2 2.09 0.0233 0.10 0.55 0.2067 3.2 2.09 0.0233 0.10 0.55 0.2067 3.2 2.09 0.0233 0.15 0.33 0.2067 3.2 2.09 0.0233 0.15 0.45 0.2086 3.2 2.09 0.0233 0.15 0.45 0.4886 3.2 2.09 0.0233 0.15 0.45 0.4886 3.2 2.09 0.0233 0.15 0.45 0.1383 3.2 2.09 0.0233 0.15 0.45 0	2.16 0.0243 0.10 0.25			0.1412	322	32.5	2.09	0.0233	0.10	0.25	0.3369
0.4270 3.2 3.2 2.09 0.0233 0.10 0.45 0.5358 3.2 2.09 0.0233 0.10 0.45 0.6360 3.2 2.09 0.0233 0.10 0.45 0.6135 3.2 2.09 0.0233 0.10 0.45 0.8125 3.2 2.09 0.0233 0.10 0.55 0.2067 3.2 2.09 0.0233 0.10 0.56 0.2067 3.2 2.09 0.0233 0.15 0.35 0.2067 3.2 2.09 0.0233 0.15 0.45 0.2086 3.2 2.09 0.0233 0.15 0.45 0.2873 3.2 2.09 0.0233 0.15 0.45 0.5873 3.2 2.09 0.0233 0.15 0.45 0.5873 3.2 2.09 0.0233 0.15 0.45 0.1286 3.2 2.09 0.0233 0.15 0.45	0.0243 0.10			0.3208	2 6	3.05	60.6	0.0233	0.10	3.50	0.6790
0.5358 32 32 2.09 0.0233 0.10 0.45 0.6400 32 32 2.09 0.0233 0.10 0.55 0.8125 32 2.09 0.0233 0.10 0.55 0.1351 32 2.09 0.0233 0.10 0.55 0.2926 32 2.09 0.0233 0.15 0.30 0.2926 32 2.09 0.0233 0.15 0.40 0.2884 32 2.09 0.0233 0.15 0.40 0.5873 32 2.09 0.0233 0.15 0.40 0.5873 32 2.09 0.0233 0.15 0.40 0.5873 32 2.09 0.0233 0.15 0.45 0.6799 32 2.09 0.0233 0.15 0.45 0.7864 32 2.09 0.0233 0.15 0.45 0.1923 32 2.09 0.0233 0.20 0.45	0.0243 0.10		_	0.4270	32	32	2.09	0.0233	0.10	0.40	0.8110
0.6400 32 32 2.09 0.0233 0.10 0.50 0.7336 32 32 2.09 0.0233 0.10 0.55 0.8135 32 32 2.09 0.0233 0.10 0.65 0.1351 32 32 2.09 0.0233 0.15 0.35 0.2067 32 32 2.09 0.0233 0.15 0.40 0.4886 32 32 2.09 0.0233 0.15 0.40 0.4886 32 32 2.09 0.0233 0.15 0.40 0.6730 32 32 2.09 0.0233 0.15 0.40 0.6730 32 2.09 0.0233 0.15 0.65 0.6730 32 2.09 0.0233 0.15 0.65 0.1923 32 2.09 0.0233 0.20 0.40 0.1841 32 32 2.09 0.0233 0.20 0.40 0.2841<				0.5358	32	32	2.09	0.0233	0.10	0.45	0.9020
0.7336 32 2.09 0.0233 0.10 0.55 0.1821 32 2.09 0.0233 0.10 0.55 0.1821 32 2.09 0.0233 0.15 0.30 0.2067 32 32 2.09 0.0233 0.15 0.30 0.2084 32 32 2.09 0.0233 0.15 0.45 0.4886 32 32 2.09 0.0233 0.15 0.45 0.4886 32 32 2.09 0.0233 0.15 0.45 0.4886 32 32 2.09 0.0233 0.15 0.40 0.7630 32 2.09 0.0233 0.15 0.60 0.7630 32 2.09 0.0233 0.20 0.40 0.1923 32 2.09 0.0233 0.20 0.40 0.1924 32 2.09 0.0233 0.20 0.40 0.2841 32 2.09 0.0233 <	0.0243 0.10		_	0.6400	32	32	2.09	0.0233	0.10	0.50	0.9561
0.5125 3.2 2.09 0.0233 0.10 0.00 0.2067 3.2 2.09 0.0233 0.15 0.30 0.2084 3.2 3.2 2.09 0.0233 0.15 0.30 0.3884 3.2 3.2 2.09 0.0233 0.15 0.45 0.4886 3.2 3.2 2.09 0.0233 0.15 0.45 0.5873 3.2 2.09 0.0233 0.15 0.40 0.7630 3.2 2.09 0.0233 0.15 0.60 0.7630 3.2 2.09 0.0233 0.15 0.60 0.1286 3.2 2.09 0.0233 0.15 0.60 0.1284 3.2 2.09 0.0233 0.20 0.40 0.2684 3.2 2.09 0.0233 0.20 0.40 0.2841 3.2 3.2 2.09 0.0233 0.20 0.44 0.2841 3.2 3.2 2.09 0.0	0.0243 0.10			0.7336	35	35	2.09	0.0233	0.10	0.55	0.9835
0.2067 32 20 0.0233 0.15 0.35 0.2926 32 2.09 0.0233 0.15 0.45 0.2884 32 2.09 0.0233 0.15 0.45 0.5873 32 2.09 0.0233 0.15 0.45 0.5873 32 2.09 0.0233 0.15 0.40 0.7630 32 2.09 0.0233 0.15 0.50 0.7630 32 2.09 0.0233 0.15 0.60 0.1286 32 2.09 0.0233 0.15 0.60 0.1286 32 2.09 0.0233 0.20 0.40 0.2684 32 2.09 0.0233 0.20 0.40 0.2684 32 2.09 0.0233 0.20 0.45 0.3541 32 2.09 0.0233 0.20 0.45 0.445 32 2.09 0.0233 0.20 0.45 0.5406 32	2.16 0.0243 0.10 0.60 $2.16 0.0243 0.15 0.30$			0.8125	3 22	32.2	2.09	0.0233	0.10	0.60	0.9949
0.2926 32 32 2.09 0.0233 0.15 0.40 0.3884 32 32 2.09 0.0233 0.15 0.46 0.4884 32 32 2.09 0.0233 0.15 0.45 0.6873 32 32 2.09 0.0233 0.15 0.50 0.6799 32 32 2.09 0.0233 0.15 0.65 0.1286 32 2.09 0.0233 0.15 0.65 0.1923 32 2.09 0.0233 0.20 0.35 0.1924 32 2.09 0.0233 0.20 0.40 0.4459 32 2.09 0.0233 0.20 0.45 0.4459 32 2.09 0.0233 0.20 0.50 0.4450 32 2.09 0.0233 0.20 0.50 0.5460 32 2.09 0.0233 0.20 0.50 0.7260 32 2.09 0.0233 <	0.0243 0.15			0.2067	32	32	2.09	0.0233	0.15	0.35	0.4415
0.3884 32 2.09 0.0233 0.15 0.45 0.5878 32 2.09 0.0233 0.15 0.45 0.6799 32 2.09 0.0233 0.15 0.65 0.6780 32 2.09 0.0233 0.15 0.60 0.7861 32 2.09 0.0233 0.15 0.60 0.1923 32 2.09 0.0233 0.20 0.35 0.1923 32 2.09 0.0233 0.20 0.45 0.2684 32 2.09 0.0233 0.20 0.45 0.3459 32 2.09 0.0233 0.20 0.45 0.4459 32 2.09 0.0233 0.20 0.50 0.4459 32 32 2.09 0.0233 0.20 0.50 0.5405 32 32 2.09 0.0233 0.20 0.50 0.7206 32 32 2.09 0.0233 0.25 0.40 <	0.0243 0.15			0.2926	32	32	2.09	0.0233	0.15	0.40	0.6054
0.4880 3.2 2.09 0.0233 0.15 0.55 0.6799 3.2 2.09 0.0233 0.15 0.65 0.7630 3.2 2.09 0.0233 0.15 0.65 0.1923 3.2 2.09 0.0233 0.15 0.65 0.1923 3.2 2.09 0.0233 0.20 0.40 0.2684 3.2 2.09 0.0233 0.20 0.40 0.2684 3.2 2.09 0.0233 0.20 0.45 0.4459 3.2 2.09 0.0233 0.20 0.45 0.4459 3.2 2.09 0.0233 0.20 0.45 0.5405 3.2 2.09 0.0233 0.20 0.50 0.5406 3.2 2.09 0.0233 0.20 0.50 0.1260 3.2 2.09 0.0233 0.25 0.40 0.1260 3.2 2.09 0.0233 0.25 0.40 0.1260 <	0.0243 0.15			0.3884	35	35	2.09	0.0233	0.15	0.45	0.7520
0.6799 3.2 2.09 0.0233 0.15 0.67 0.7630 3.2 3.2 2.09 0.0233 0.15 0.60 0.1928 3.2 3.2 2.09 0.0233 0.15 0.65 0.1928 3.2 2.09 0.0233 0.20 0.40 0.2684 3.2 2.09 0.0233 0.20 0.40 0.2684 3.2 2.09 0.0233 0.20 0.40 0.45451 3.2 2.09 0.0233 0.20 0.45 0.4459 3.2 2.09 0.0233 0.20 0.55 0.5405 3.2 2.09 0.0233 0.20 0.65 0.7406 3.2 2.09 0.0233 0.20 0.65 0.7765 3.2 2.09 0.0233 0.25 0.45 0.7766 3.2 2.09 0.0233 0.25 0.45 0.7767 3.2 3.2 2.09 0.0233 0.25 <t< td=""><td></td><td></td><td></td><td>0.4886</td><td>32</td><td>32</td><td>2.09</td><td>0.0233</td><td>0.15</td><td>0.55</td><td>0.8039</td></t<>				0.4886	32	32	2.09	0.0233	0.15	0.55	0.8039
0.7630 32 32 2.09 0.0233 0.15 0.65 0.1286 32 32 2.09 0.0233 0.20 0.405 0.1284 32 32 2.09 0.0233 0.20 0.40 0.2684 32 32 2.09 0.0233 0.20 0.40 0.3541 32 32 2.09 0.0233 0.20 0.45 0.5405 32 2.09 0.0233 0.20 0.50 0.6349 32 32 2.09 0.0233 0.20 0.50 0.7206 32 2.09 0.0233 0.20 0.65 0.70 0.1206 32 2.09 0.0233 0.20 0.65 0.40 0.1206 32 2.09 0.0233 0.25 0.45 0.1765 32 2.09 0.0233 0.25 0.50 0.1767 32 32 2.09 0.0233 0.25 0.50 0.	0.0243 0.15			0.6799	32	32	2.09	0.0233	0.15	0.60	0.9740
0.1286 32 2.09 0.0233 0.20 0.35 0.1284 32 32 2.09 0.0233 0.20 0.35 0.2684 32 32 2.09 0.0233 0.20 0.45 0.3541 32 32 2.09 0.0233 0.20 0.45 0.5405 32 2.09 0.0233 0.20 0.50 0.5406 32 2.09 0.0233 0.20 0.60 0.6349 32 2.09 0.0233 0.20 0.60 0.1206 32 2.09 0.0233 0.20 0.60 0.1765 32 2.09 0.0233 0.25 0.40 0.1766 32 2.09 0.0233 0.25 0.45 0.1765 32 2.09 0.0233 0.25 0.50 0.1766 32 2.09 0.0233 0.25 0.50 0.283 32 2.09 0.0233 0.25 0.65 </td <td>0.0243 0.15</td> <td></td> <td></td> <td>0.7630</td> <td>32</td> <td>32</td> <td>2.09</td> <td>0.0233</td> <td>0.15</td> <td>0.65</td> <td>0.9911</td>	0.0243 0.15			0.7630	32	32	2.09	0.0233	0.15	0.65	0.9911
0.1928 3.2 2.09 0.10233 0.20 0.445 0.3541 32 32 2.09 0.0233 0.20 0.45 0.4459 32 32 2.09 0.0233 0.20 0.55 0.6349 32 2.09 0.0233 0.20 0.55 0.7260 32 2.09 0.0233 0.20 0.55 0.7260 32 2.09 0.0233 0.20 0.65 0.1766 32 2.09 0.0233 0.20 0.70 0.1766 32 2.09 0.0233 0.25 0.45 0.2440 32 32 2.09 0.0233 0.25 0.45 0.2440 32 32 2.09 0.0233 0.25 0.55 0.4460 32 32 2.09 0.0233 0.25 0.55 0.5066 32 32 2.09 0.0233 0.25 0.55 0.6088 32 32	2.16 0.0243 0.20 0.35			0.1286	35	32	2.09	0.0233	0.20	0.35	0.2513
0.3541 3.2 3.2 2.09 0.0233 0.20 0.50 0.4459 3.2 3.2 2.09 0.0233 0.20 0.50 0.5405 3.2 2.09 0.0233 0.20 0.55 0.6405 3.2 3.2 2.09 0.0233 0.20 0.55 0.7260 3.2 3.2 2.09 0.0233 0.20 0.65 0.1266 3.2 3.2 2.09 0.0233 0.25 0.40 0.1266 3.2 3.2 2.09 0.0233 0.25 0.40 0.2440 3.2 3.2 2.09 0.0233 0.25 0.50 0.4166 3.2 3.2 2.09 0.0233 0.25 0.50 0.4166 3.2 3.2 2.09 0.0233 0.25 0.55 0.4088 3.2 3.2 2.09 0.0233 0.25 0.65 0.7123 3.2 3.2 2.09 0.0233 0.25 <td>0.0243 0.20</td> <td></td> <td></td> <td>0.1923</td> <td>200</td> <td>7 c</td> <td>90.0</td> <td>0.0233</td> <td>0.20</td> <td>0.40</td> <td>0.4007</td>	0.0243 0.20			0.1923	200	7 c	90.0	0.0233	0.20	0.40	0.4007
0.4459 32 32 2.09 0.0233 0.20 0.55 0.5405 32 32 2.09 0.0233 0.20 0.60 0.6405 32 32 2.09 0.0233 0.20 0.65 0.7260 32 32 2.09 0.0233 0.25 0.70 0.1206 32 2.09 0.0233 0.25 0.40 0.1240 32 2.09 0.0233 0.25 0.50 0.4102 32 2.09 0.0233 0.25 0.50 0.4102 32 2.09 0.0233 0.25 0.50 0.608 32 2.09 0.0233 0.25 0.50 0.608 32 2.09 0.0233 0.25 0.65 0.608 32 2.09 0.0233 0.25 0.75 0.7123 32 2.09 0.0233 0.25 0.75 0.7133 32 2.09 0.0233 0.30 <t< td=""><td>0.0243 0.20</td><td></td><td>_</td><td>0.3541</td><td>35</td><td>35</td><td>2.03</td><td>0.0233</td><td>0.20</td><td>0.50</td><td>0.7179</td></t<>	0.0243 0.20		_	0.3541	35	35	2.03	0.0233	0.20	0.50	0.7179
0.5405 32 32 2.09 0.0233 0.20 0.66 0.6349 32 32 2.09 0.0233 0.20 0.65 0.7260 32 32 2.09 0.0233 0.20 0.65 0.1206 32 32 2.09 0.0233 0.25 0.40 0.1765 32 2.09 0.0233 0.25 0.45 0.3222 32 2.09 0.0233 0.25 0.50 0.4102 32 32 2.09 0.0233 0.25 0.50 0.6088 32 32 2.09 0.0233 0.25 0.60 0.6088 32 32 2.09 0.0233 0.25 0.60 0.7123 32 32 2.09 0.0233 0.25 0.75 0.7133 32 32 2.09 0.0233 0.35 0.75 0.1601 32 32 2.09 0.0233 0.30 0.45	0.0243 0.20		10	0.4459	32	32	2.09	0.0233	0.20	0.55	0.8373
0.6349 32 2.09 0.0233 0.20 0.655 0.1266 32 32 2.09 0.0233 0.20 0.65 0.1266 32 32 2.09 0.0233 0.25 0.40 0.1765 32 32 2.09 0.0233 0.25 0.45 0.3222 32 2.09 0.0233 0.25 0.50 0.4102 32 2.09 0.0233 0.25 0.65 0.6088 32 2.09 0.0233 0.25 0.65 0.6088 32 2.09 0.0233 0.25 0.65 0.7123 32 2.09 0.0233 0.25 0.65 0.7124 32 2.09 0.0233 0.25 0.70 0.1601 32 2.09 0.0233 0.35 0.75	0.0243 0.20			0.5405	32	32	2.09	0.0233	0.20	0.60	0.9171
0,7260 32 32 2.09 0.0233 0.20 0.70 0,1266 32 2.09 0.0233 0.25 0.45 0,1765 32 32 2.09 0.0233 0.25 0.45 0,2440 32 32 2.09 0.0233 0.25 0.45 0,3322 32 2.09 0.0233 0.25 0.55 0,5066 32 2.09 0.0233 0.25 0.60 0,6088 32 2.09 0.0233 0.25 0.65 0,7123 32 2.09 0.0233 0.25 0.70 0,7133 32 2.09 0.0233 0.25 0.75 0,7143 32 2.09 0.0233 0.35 0.75 0,1601 32 32 2.09 0.0233 0.35 0.45	0.0243 0.20			0.6349	32	32	2.09	0.0233	0.20	0.65	0.9631
32 32 2.09 0.0233 0.25 0.40 32 32 2.09 0.0233 0.25 0.45 32 32 2.09 0.0233 0.25 0.55 32 32 2.09 0.0233 0.25 0.55 32 32 2.09 0.0233 0.25 0.65 32 32 2.09 0.0233 0.25 0.65 32 32 2.09 0.0233 0.25 0.75 32 32 2.09 0.0233 0.25 0.75 32 32 2.09 0.0233 0.25 0.75 32 32 2.09 0.0233 0.30 0.50	0.0243 0.20			0.7260	32	32	2.09	0.0233	0.20	0.70	0.9862
32 32 2.09 0.0233 0.25 0.45 32 32 2.09 0.0233 0.25 0.50 32 32 2.09 0.0233 0.25 0.55 32 32 2.09 0.0233 0.25 0.65 32 32 2.09 0.0233 0.25 0.65 32 32 2.09 0.0233 0.25 0.70 32 32 2.09 0.0233 0.25 0.75 32 32 2.09 0.0233 0.35 0.75 32 32 2.09 0.0233 0.30 0.50	0.0243 0.25			0.1206	32	32	2.09	0.0233	0.25	0.40	0.2368
32 32 2.09 0.0233 0.25 0.50 32 32 2.09 0.0233 0.25 0.65 32 32 2.09 0.0233 0.25 0.65 32 32 2.09 0.0233 0.25 0.65 32 32 2.09 0.0233 0.25 0.70 32 32 2.09 0.0233 0.25 0.75 32 32 2.09 0.0233 0.25 0.75 32 32 2.09 0.0233 0.30 0.45	0.0243 0.25			0.1765	32	32	2.09	0.0233	0.25	0.45	0.3799
0.3222 32 32 2.09 0.0233 0.25 0.55 0.56 0.50 0.506 32 32 2.09 0.0233 0.25 0.60 0.506 32 32 2.09 0.0233 0.25 0.60 0.6088 32 32 2.09 0.0233 0.25 0.75 0.7123 32 2.09 0.0233 0.25 0.75 0.11601 32 32 2.09 0.0233 0.30 0.45 0.1601 32 32 2.09 0.0233 0.30 0.45	0.0243 0.25		_	0.2440	32	35	5.09	0.0233	0.25	0.50	0.5375
0.4060 32 32 2.09 0.0233 0.25 0.65 0.65 0.67 0.7123 32 32 2.09 0.0233 0.25 0.75 0.75 0.7123 32 32 2.09 0.0233 0.25 0.75 0.11601 32 32 2.09 0.0233 0.30 0.45	2.16 0.0243 0.25 0.55			0.3222	35	35	2.09	0.0233	0.25	0.55	0.6858
0.0000 32 32 2.09 0.0233 0.25 0.70 0.7123 32 2.09 0.0233 0.25 0.77 0.1104 32 32 2.09 0.0233 0.30 0.45 0.1601 32 32 2.09 0.0233 0.30 0.45	0.75		э ы	0.4102	700	700	20.0	0.0233	0.70	0.00	0.0010
0.7123 32 2.209 0.0233 0.25 0.75 0.75 0.1601 32 32 2.09 0.0233 0.30 0.45 0.1601 32 32 2.09 0.0233 0.30 0.50	0.0243 0.25		ე (-	0.5066	22	32	20.0	0.0233	0.25	0.00	0.8968
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0243 0.25		ຸທຸ	0.7123	32	32	2.09	0.0233	0.25	0.75	0.9837
0.1601 32 32 2.09 0.0233 0.30 0.50	0.0243 0.30		20	0.1104	32	32	2.09	0.0233	0.30	0.45	0.2255
	0.0243 0.30		0	0.1601	32	32	2.09	0.0233	0.30	0.50	0.3564

$_{1}^{n_{1}}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	p ₂	power	$_{1}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	p 2	power
	13	2.16	0.0243	0.30	0.55	0.2225	32	32	2.09	0.0233	0.30	0.55	0.5037
	13	2.16	0.0243	0.30	09.0	0.2988	32	32	2.09	0.0233	0.30	0.60	0.6517
	13	2.16	0.0243	0.30	0.65	0.3896	325	325	2.09	0.0233	0.30	0.65	0.7842
	2 5	2.16	0.0243	0.35	0.70	0.4942	2 6	3 6	2.09	0.0233	0.35	0.70	0.0073
	13	2.16	0.0243	0.35	0.55	0.1474	35	35	2.09	0.0233	0.35	0.55	0.3292
	13	2.16	0.0243	0.35	09.0	0.2098	32	32	2.09	0.0233	0.35	09.0	0.4770
	13	2.16	0.0243	0.35	0.65	0.2901	32	32	2.09	0.0233	0.35	0.65	0.6364
13	13	2.16	0.0243	0.40	0.55	0.0940	32	32	2.09	0.0233	0.40	0.55	0.1918
	13	2.16	0.0243	0.40	09.0	0.1426	32	32	2.09	0.0233	0.40	09.0	0.3169
	14	2.19	0.0208	0.02	0.15	0.0756	33	33	2.06	0.0243	0.02	0.15	0.2907
	7.	2.19	0.0208	0.05	0.20	0.1632	e e	800	2.06	0.0243	0.05	0.20	0.4923
4.5	4.	2.19	0.0208	0.05	0.25	0.2749	200	200	2.06	0.0243	0.05	0.25	0.6760
# 7	1 -	2.TS	0.0208	0.0	0.00	0.3374	22	3 6	00.7	0.0243	0.00	0.00	0.0107
	1 4	2.13	0.0208	0.00	0.50	0.0132	2 6	9 6	200.2	0.0243	0.00	0.35	0.9608
1.1	1.1	2.19	0.0208	0.05	0.45	0.7300	333	3 8	2.08	0.0243	0.05	0.45	0.9855
14	14	2.19	0.0208	0.10	0.25	0.1521	33	33	2.06	0.0243	0.10	0.25	0.3624
14	14	2.19	0.0208	0.10	0.30	0.2347	33	33	2.06	0.0243	0.10	0.30	0.5358
14	14	2.19	0.0208	0.10	0.35	0.3286	33	33	2.06	0.0243	0.10	0.35	0.6978
14	14	2.19	0.0208	0.10	0.40	0.4292	33	33	2.06	0.0243	0.10	0.40	0.8260
	14	2.19	0.0208	0.10	0.45	0.5318	33	33	2.06	0.0243	0.10	0.45	0.9127
14	14	2.19	0.0208	0.10	0.50	0.6318	33	33	2.06	0.0243	0.10	0.50	0.9626
14	4.	2.19	0.0208	0.10	0.55	0.7250	က္က	e :	2.06	0.0243	0.10	0.55	0.9866
	7 -	2.19	0.0208	0.10	00.00	0.8072	200	200	2.00	0.0243	0.10	0.00	0.9901
# T	4 7	2.19	0.0208	0.10	0.00	0.1330	0 69	9 6	2.00	0.0243	0.15	0.00	0.2303
. 4	4.	2.19	0.0208	0.15	0.40	0.2781	33	3 8	2.06	0.0243	0.15	0.40	0.6244
14	14	2.19	0.0208	0.15	0.45	0.3690	33	33	2.06	0.0243	0.15	0.45	0.7705
14	14	2.19	0.0208	0.15	0.50	0.4686	33	33	2.06	0.0243	0.15	0.50	0.8782
14	14	2.19	0.0208	0.15	0.55	0.5728	33	33	2.06	0.0243	0.15	0.55	0.9445
14	14	2.19	0.0208	0.15	09.0	0.6756	33	33	2.06	0.0243	0.15	0.60	0.9784
14	14	2.19	0.0208	0.15	0.65	0.7706	33	33	2.06	0.0243	0.15	0.65	0.9929
14	14	2.19	0.0208	0.20	0.35	0.1157	33	33	2.06	0.0243	0.20	0.35	0.2628
14	14	2.19	0.0208	0.20	0.40	0.1732	က္က	89	2.06	0.0243	0.20	0.40	0.4183
4.	14	2.19	0.0208	0.20	0.45	0.2460	200	200	2.00	0.0243	0.20	0.45	0.5861
4.	4.	2.19	0.0208	0.20	0.50	0.3340	23	22	2.00	0.0243	0.20	0.50	0.7373
7.	77 -	Z.19	0.0208	0.20	0.00	0.4349	55	200	2.00	0.0243	0.20	0.00	0.8520
4.4	77 -	2.TS	0.0208	0.20	0.00	0.5450	000	200	00.7	0.0243	0.20	0.00	0.9204
# =	1 -	9 10	0.0208	0.20	3.5	0.0031	2 6	3 6	00.7	0.0243	0.20	0.00	0.000.0
. 4	1.1	2.19	0.0208	0.25	0.40	0.1039	333	3 8	2.08	0.0243	0.25	0.40	0.2490
14	14	2.19	0.0208	0.25	0.45	0.1582	33	33	2.06	0.0243	0.25	0.45	0.3967
14	14	2.19	0.0208	0.25	0.50	0.2294	33	33	2.06	0.0243	0.25	0.50	0.5559
14	14	2.19	0.0208	0.25	0.55	0.3177	33	33	2.06	0.0243	0.25	0.55	0.7030
14	14	2.19	0.0208	0.25	0.60	0.4205	33	33	2.06	0.0243	0.25	09.0	0.8225
14	14	2.19	0.0208	0.25	0.65	0.5322	33	33	2.06	0.0243	0.25	0.65	0.9079
14	14	2.19	0.0208	0.25	0.70	0.6454	33	00	206	0.0073	0.05	0.40	0.000
7						1010	2	2	000	0.00	0.40	0.70	0.9005

Table B.5: continue on next page

Table B.5: continue on next page

0.30 0.45 0.1128 34 2.06 0.0233 0.30 0.45 0.30 0.50 0.1761 34 34 2.06 0.0233 0.30 0.50 0.30 0.50 0.1761 34 34 2.06 0.0233 0.30 0.50 0.30 0.60 0.3587 34 34 2.06 0.0233 0.30 0.60 0.30 0.70 0.60 0.1132 34 34 2.06 0.0233 0.30 0.60 0.35 0.50 0.1142 34 2.06 0.0233 0.35 0.60 0.35 0.55 0.1762 34 34 2.06 0.0233 0.35 0.50 0.35 0.56 0.1283 34 34 2.06 0.0233 0.40 0.00 0.05 0.1772 34 34 2.06 0.0233 0.35 0.50 0.10 0.25 0.138 34 2.06 0	$_{1}^{n_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P 2	power	$_{1}^{n_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p ₁	p 2	power
15 2.14 0.0216 0.35 0.55 0.175 34 2.0 0.0234 0.05 0.05 0.175 34 2.0 0.0234 0.35 0.55 0.175 0.00 <t< td=""><td>20</td><td>15</td><td>2.14</td><td>0.0216</td><td>0.30</td><td>0.45</td><td>0.1128</td><td>34</td><td>34</td><td>2.06</td><td>0.0233</td><td>0.30</td><td>0.45</td><td>0.2290</td></t<>	20	15	2.14	0.0216	0.30	0.45	0.1128	34	34	2.06	0.0233	0.30	0.45	0.2290
15 2.14 0.0216 0.35 0.55 0.2586 3.4 3.4 2.06 0.0233 0.30 0.55 15 2.14 0.0216 0.30 0.55 0.474 3.4 3.4 2.06 0.0233 0.30 0.65 0.4714 3.4 2.06 0.0233 0.30 0.65 0.4714 3.4 2.06 0.0233 0.30 0.65 0.4714 3.4 2.06 0.0233 0.30 0.65 0.1754 3.4 2.06 0.0233 0.30 0.65 0.1754 3.4 2.06 0.0233 0.30 0.65 0.1754 3.4 2.06 0.0233 0.30 0.65 0.1754 3.4 2.06 0.0233 0.30 0.65 0.1764 3.4 2.06 0.0233 0.30 0.65 0.1764 3.4 2.06 0.0233 0.30 0.65 0.1764 3.4 2.06 0.0233 0.30 0.65 0.1764 3.4 3.4 2.06 0.0233 0.30	.0	15	2.14	0.0216	0.30	0.50	0.1761	34	34	2.06	0.0233	0.30	0.50	0.3641
15 2.14 0.0216 0.330 0.60 0.3587 34 34 2.06 0.0233 0.30 0.60 15 2.14 0.0216 0.330 0.65 0.4714 34 34 2.06 0.0233 0.30 0.67 15 2.14 0.0216 0.35 0.75 0.5853 34 34 2.06 0.0233 0.35 0.60 15 2.14 0.0216 0.35 0.65 0.1764 34 34 2.06 0.0233 0.36 0.65 15 2.14 0.0216 0.35 0.65 0.1769 34 34 2.06 0.0233 0.36 0.65 0.1769 34 2.06 0.0233 0.36 0.65 0.1769 34 2.06 0.0233 0.36 0.65 0.1169 34 2.06 0.0233 0.36 0.65 0.1769 34 2.06 0.0233 0.36 0.65 0.1769 34 34 2.06 0.0		12	2.14	0.0216	0.30	0.55	0.2586	34	34	2.06	0.0233	0.30	0.55	0.5209
15 2.14 0.0216 0.33 0.65 15 2.14 0.0216 0.33 0.76 0.5845 34 34 2.06 0.0233 0.35 0.56 15 2.14 0.0216 0.35 0.75 0.1132 34 34 2.06 0.0233 0.35 0.57 15 2.14 0.0216 0.35 0.76 0.1362 34 34 2.06 0.0233 0.35 0.57 15 2.14 0.0216 0.40 0.60 0.1763 34 34 2.06 0.0233 0.36 0.57 16 2.24 0.0216 0.40 0.60 0.1763 34 34 2.06 0.0233 0.36 0.56 0.1763 34 34 2.06 0.0233 0.30 0.06 0.1763 0.38 0.38 0.36 0.076 0.38 0.1763 0.38 0.38 0.39 0.36 0.39 0.06 0.023 0.03 0.03 <td></td> <td>12</td> <td>2.14</td> <td>0.0216</td> <td>0.30</td> <td>09.0</td> <td>0.3587</td> <td>34</td> <td>34</td> <td>2.06</td> <td>0.0233</td> <td>0.30</td> <td>09.0</td> <td>0.6790</td>		12	2.14	0.0216	0.30	09.0	0.3587	34	34	2.06	0.0233	0.30	09.0	0.6790
15 2.14 0.0216 0.33 0.70 0.1885 3.4 4.06 0.0233 0.35 0.70 15 2.14 0.0216 0.33 0.75 0.1764 3.4 4.06 0.0233 0.35 0.55 15 2.14 0.0216 0.35 0.55 0.1769 3.4 4.0 2.06 0.0233 0.35 0.56 15 2.14 0.0216 0.40 0.55 0.1769 3.4 3.4 2.06 0.0233 0.35 0.56 0.3886 3.4 2.06 0.0233 0.35 0.56 0.3886 3.4 2.06 0.0233 0.35 0.56 0.1769 3.4 2.06 0.0233 0.35 0.56 0.1769 3.2 0.06 0.0234 0.06 0.030 0.40 0.1709 0.35 0.5661 3.5 2.06 0.0240 0.05 0.23 0.40 0.7072 0.040 0.034 0.06 0.034 0.06 0.034 0.056		15	2.14	0.0216	0.30	0.65	0.4714	34	34	2.06	0.0233	0.30	0.65	0.8143
15 2.14 0.0216 0.35 0.50 0.1336 0.35 0.45 0.1432 34 2.06 0.0233 0.35 0.50 0.1346 34 2.06 0.0233 0.35 0.50 0.1432 34 2.06 0.0233 0.35 0.60 0.2866 34 34 2.06 0.0233 0.35 0.60 0.0234 0.35 0.60 0.0234 0.023 0.024 35 2.06 0.0233 0.03 0.024 35 2.06 0.0240 0.05 0.02 0.028 35 2.06 0.0240 0.05 0.02 0.028 35 2.06 0.0240 0.05 0.02 0.028 35 2.06 0.0240 0.05 0.02 0.0240 0.02 0.0240 0.02 0.		12	2.14	0.0216	0.30	0.70	0.5895	34	34	2.06	0.0233	0.30	0.70	0.9103
15 2.14 0.0216 0.35 0.55 0.1764 34 2.06 0.0233 0.35 0.55 15 2.14 0.0216 0.35 0.056 0.1764 34 2.06 0.0233 0.35 0.05 15 2.14 0.0216 0.35 0.05 0.1764 34 2.06 0.0233 0.35 0.05 15 2.14 0.0216 0.40 0.06 0.1764 34 2.06 0.0233 0.40 0.05 16 2.29 0.0224 0.05 0.1044 35 35 2.06 0.0234 0.05 0.		12	2.14	0.0216	0.35	0.50	0.1132	34	34	2.06	0.0233	0.35	0.50	0.2120
15 2.14 0.0216 0.35 0.60 0.2586 34 2.06 0.0233 0.35 0.60 15 2.14 0.0216 0.35 0.06 0.2586 34 2.06 0.0233 0.35 0.05 15 2.14 0.0216 0.40 0.56 0.1462 34 2.06 0.0233 0.40 0.05 16 2.29 0.0224 0.05 0.19 0.2882 35 2.06 0.0240 0.05 16 2.29 0.0224 0.05 0.36 0.2882 35 2.06 0.0240 0.05 16 2.29 0.0224 0.05 0.36 0.2882 35 2.06 0.0240 0.05 16 2.29 0.0224 0.05 0.30 0.7469 35 2.06 0.0240 0.05 0.36 16 2.29 0.0224 0.05 0.40 0.7472 35 2.06 0.0240 0.05 0.36 <t< td=""><td></td><td>15</td><td>2.14</td><td>0.0216</td><td>0.35</td><td>0.55</td><td>0.1764</td><td>£.</td><td>34 4</td><td>2.06</td><td>0.0233</td><td>0.35</td><td>0.55</td><td>0.3463</td></t<>		15	2.14	0.0216	0.35	0.55	0.1764	£.	34 4	2.06	0.0233	0.35	0.55	0.3463
15 2.14 0.0216 0.35 0.66 0.1358 3.4 3.4 2.06 0.0233 0.40 0.05 15 2.14 0.0216 0.40 0.66 0.11743 34 2.06 0.0233 0.40 0.65 16 2.29 0.0224 0.05 0.2082 35 2.06 0.0240 0.05 16 2.29 0.0224 0.05 0.29 0.2082 35 2.06 0.0240 0.05 16 2.29 0.0224 0.05 0.29 0.2882 35 2.06 0.0240 0.05 16 2.29 0.0224 0.05 0.40 0.7791 35 2.06 0.0240 0.05 16 2.29 0.0224 0.10 0.25 0.7831 35 2.06 0.0240 0.10 16 2.29 0.0224 0.10 0.24 0.791 35 35 2.06 0.0240 0.05 0.12 16		12	2.14	0.0216	0.35	0.60	0.2586	34	34	2.06	0.0233	0.35	0.60	0.5079
15 2.14 0.0215h 0.40 0.550 0.1142 3.4 2.0b 0.0233 0.40 0.15 16 2.29 0.0224 0.05 0.1142 3.5 2.06 0.0234 0.05 0.15 0.1142 3.5 2.06 0.0243 0.05 0.15 0.1142 3.5 2.06 0.0240 0.05 0.05 0.15 0.05		12	2.14	0.0216	0.35	0.65	0.3583	34	34	2.06	0.0233	0.35	0.65	0.6728
15 2.14 0.0216 0.40 0.1769 34	_	15	2.14	0.0216	0.40	0.55	0.1142	34	34	2.06	0.0233	0.40	0.55	0.2052
16 2.29 0.0224 0.05 0.15 0.10104 35 35 2.06 0.0240 0.05 0.15 0.11014 35 35 2.06 0.0240 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0	^ -	T ?	2.14	0.0216	0.40	0.00	0.1769	34	34	2.06	0.0233	0.40	0.60	0.3419
16 2.29 0.0224 0.05 0.2084 35 35 2.06 0.0240 0.05 0.2084 35 35 2.06 0.0240 0.05 0.2084 35 35 2.06 0.0240 0.05 0.024 0.05 0.024 0.05 0.024 0.05 0.04 0.0772 35 35 2.06 0.0240 0.05 0.04 0.0772 35 36 2.06 0.0240 0.05 0.04 0.0772 35 36 2.06 0.0240 0.05 0.04 0.0779 35 2.06 0.0240 0.05 0.04 0.0791 35 36 2.06 0.0240 0.05 0.04 0.05		9 .	2.29	0.0224	0.05	0.15	0.1014	33.0	300	2.06	0.0240	0.05	0.15	0.2573
16 2.29 0.0224 0.05 0.3584 35 35 2.06 0.0240 0.05 0.35 16 2.29 0.0224 0.05 0.35 0.3561 35 35 2.06 0.0240 0.05 0.35 16 2.29 0.0224 0.05 0.40 0.7991 35 2.06 0.0240 0.05 0.43 16 2.29 0.0224 0.05 0.44 0.7991 35 2.06 0.0240 0.05 0.45 16 2.29 0.0224 0.10 0.38 0.2763 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.35 0.2783 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.40 0.4956 35 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.45 0.6775 35		16	2.29	0.0224	0.05	0.20	0.2082	35	35	2.06	0.0240	0.05	0.20	0.4676
16 2.29 0.0224 0.05 0.30 0.4869 35 35 2.06 0.0240 0.05 0.35 16 2.29 0.0224 0.05 0.34 0.7072 35 35 2.06 0.0240 0.05 0.45 16 2.29 0.0224 0.05 0.45 0.7073 35 2.06 0.0240 0.05 0.45 16 2.29 0.0224 0.10 0.25 0.2763 35 2.06 0.0240 0.10 0.25 16 2.29 0.0224 0.10 0.35 0.3830 35 2.06 0.0240 0.10 0.45 16 2.29 0.0224 0.10 0.45 0.4075 35 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.45 0.4075 35 35 2.06 0.0240 0.10 0.45 16 2.29 0.0224 0.10 0.45		97	2.29	0.0224	0.05	0.25	0.3364	35	30	2.00	0.0240	0.05	0.25	0.6738
16 2.29 0.0224 0.05 0.35 0.5961 35 35 2.06 0.0240 0.05 0.03 16 2.29 0.0224 0.05 0.45 0.7991 35 2.06 0.0240 0.05 0.45 16 2.29 0.0224 0.05 0.45 0.7991 35 2.06 0.0240 0.05 0.45 16 2.29 0.0224 0.10 0.35 0.3830 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.45 0.7991 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.45 0.45 35 2.06 0.0240 0.10 0.45 16 2.29 0.0224 0.10 0.50 0.7119 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.50 0.7119 35 2.06	_	16	2.29	0.0224	0.05	0.30	0.4699	35	35	5.06	0.0240	0.05	0.30	0.8284
16 2.29 0.0224 0.05 0.40 0.7991 35 35 2.06 0.0240 0.05 0.41 16 2.29 0.0224 0.05 0.44 0.7991 35 2.06 0.0240 0.05 0.45 16 2.29 0.0224 0.01 0.25 0.1813 35 2.06 0.0240 0.10 0.30 0.2763 35 2.06 0.0240 0.10 0.30 0.2763 35 2.06 0.0240 0.10 0.30 0.2763 35 2.06 0.0240 0.10 0.40 0.4956 35 2.06 0.0240 0.10 0.40		16	2.29	0.0224	0.02	0.35	0.5961	32	32	2.06	0.0240	0.05	0.35	0.9221
16 2.29 0.0224 0.05 0.45 0.7891 35 2.06 0.0240 0.05 0.45 16 2.29 0.0224 0.10 0.30 0.7830 35 2.06 0.0240 0.10 0.25 16 2.29 0.0224 0.10 0.30 0.2763 35 2.06 0.0240 0.10 0.30 16 2.29 0.0224 0.10 0.35 0.3830 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.45 0.6075 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.50 0.7119 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.50 0.7148 35 2.06 0.0240 0.10 0.50 16 2.29 0.0224 0.10 0.50 0.7148 35 2.06 0.0240		16	2.29	0.0224	0.02	0.40	0.7072	32	32	5.06	0.0240	0.02	0.40	0.9695
16 2.29 0.0224 0.10 0.25 0.1863 35 35 2.06 0.0240 0.10 0.25 16 2.29 0.0224 0.10 0.35 0.3830 35 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.40 0.4856 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.40 0.4856 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.50 0.7119 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.50 0.7119 35 2.06 0.0240 0.10 0.55 16 2.29 0.0224 0.15 0.30 0.1548 35 2.06 0.0240 0.10 0.55 16 2.29 0.0224 0.15 0.30 0.1548 35		16	2.29	0.0224	0.02	0.45	0.7991	32	32	2.06	0.0240	0.02	0.45	0.9898
16 2.29 0.0224 0.10 0.3763 35 35 2.06 0.0240 0.10 0.30 16 2.29 0.0224 0.10 0.36 0.3763 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.40 0.4956 35 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.45 0.8075 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.60 0.8755 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.60 0.8755 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.15 0.40 0.3294 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.40 0.3294 35 2.06		16	2.29	0.0224	0.10	0.25	0.1813	32	32	5.06	0.0240	0.10	0.25	0.3741
16 2.29 0.0224 0.10 0.35 0.3830 35 2.06 0.0240 0.10 0.35 16 2.29 0.0224 0.10 0.45 0.6456 35 35 2.06 0.0240 0.10 0.45 16 2.29 0.0224 0.10 0.45 0.6075 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.50 0.7119 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.60 0.8752 35 2.06 0.0240 0.10 0.50 16 2.29 0.0224 0.15 0.30 0.1548 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.45 0.45 35 2.06		16	2.29	0.0224	0.10	0.30	0.2763	32	32	2.06	0.0240	0.10	0.30	0.5608
16 2.29 0.0224 0.10 0.40 0.4956 35 2.06 0.0240 0.10 0.40 16 2.29 0.0224 0.10 0.40 0.4956 35 2.06 0.0240 0.10 0.45 16 2.29 0.0224 0.10 0.50 0.7119 35 2.06 0.0240 0.10 0.55 16 2.29 0.0224 0.10 0.55 0.8027 35 2.06 0.0240 0.10 0.55 16 2.29 0.0224 0.15 0.30 0.1548 35 2.06 0.0240 0.10 0.50 16 2.29 0.0224 0.15 0.35 0.2339 35 2.06 0.0240 0.15 0.35 16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240 0.15 0.45 16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240		16	2.29	0.0224	0.10	0.35	0.3830	32	32	2.06	0.0240	0.10	0.35	0.7271
16 2.29 0.0224 0.10 0.45 0.6075 35 2.06 0.0240 0.10 0.45 16 2.29 0.0224 0.10 0.45 0.8075 35 2.06 0.0240 0.10 0.45 16 2.29 0.0224 0.10 0.55 0.8755 35 2.06 0.0240 0.10 0.56 16 2.29 0.0224 0.10 0.60 0.8755 35 2.06 0.0240 0.10 0.60 16 2.29 0.0224 0.15 0.40 0.3294 35 2.06 0.0240 0.15 0.05 16 2.29 0.0224 0.15 0.40 0.3294 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.40 0.3294 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.45 0.4263 35 2.06 0.0240		16	2.29	0.0224	0.10	0.40	0.4956	35	35	2.06	0.0240	0.10	0.40	0.8516
16 2.29 0.0224 0.10 0.50 0.7119 35 35 2.06 0.0240 0.10 0.50 16 2.29 0.0224 0.10 0.60 0.8755 35 2.06 0.0240 0.10 0.50 16 2.29 0.0224 0.10 0.60 0.8755 35 2.06 0.0240 0.10 0.60 16 2.29 0.0224 0.15 0.30 0.1548 35 2.06 0.0240 0.15 0.30 16 2.29 0.0224 0.15 0.40 0.3294 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.45 0.4575 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.65 0.6529 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.65 0.8456 35 2.06 <td></td> <td>16</td> <td>2.29</td> <td>0.0224</td> <td>0.10</td> <td>0.45</td> <td>0.6075</td> <td>32</td> <td>32</td> <td>2.06</td> <td>0.0240</td> <td>0.10</td> <td>0.45</td> <td>0.9305</td>		16	2.29	0.0224	0.10	0.45	0.6075	32	32	2.06	0.0240	0.10	0.45	0.9305
16 2.29 0.0224 0.10 0.55 0.8027 35 2.06 0.0240 0.10 0.55 16 2.29 0.0224 0.10 0.55 0.8027 35 2.06 0.0240 0.10 0.55 16 2.29 0.0224 0.15 0.30 0.1548 35 2.06 0.0240 0.10 0.50 16 2.29 0.0224 0.15 0.30 0.4575 35 2.06 0.0240 0.15 0.30 16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240 0.15 0.30 16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.60 0.7631 35 2.06 0.0240 0.15 0.60 16 2.29 0.0224 0.15 0.65 0.8456 35 2.06 0.0240		16	2.29	0.0224	0.10	0.50	0.7119	35	35	2.06	0.0240	0.10	0.50	0.9724
16 2.29 0.0224 0.10 0.60 0.8755 35 2.06 0.0240 0.10 0.60 16 2.29 0.0224 0.15 0.35 0.2394 35 35 2.06 0.0240 0.15 0.03 16 2.29 0.0224 0.15 0.40 0.3294 35 2.06 0.0240 0.15 0.03 16 2.29 0.0224 0.15 0.40 0.5394 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.45 0.4515 35 2.06 0.0240 0.15 0.45 16 2.29 0.0224 0.15 0.65 0.659 35 2.06 0.0240 0.15 0.50 16 2.29 0.0224 0.15 0.65 0.753 35 2.06 0.0240 0.15 0.55 16 2.29 0.0224 0.20 0.40 0.2994 35 2.06		16	2.29	0.0224	0.10	0.55	0.8027	32	32	2.06	0.0240	0.10	0.52	0.9909
16 2.29 0.0224 0.15 0.39 0.1548 35 35 2.06 0.0240 0.15 0.39 16 2.29 0.0224 0.15 0.39 0.2344 35 2.06 0.0240 0.15 0.35 16 2.29 0.0224 0.15 0.40 0.3294 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.65 0.6629 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.60 0.7631 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.15 0.60 0.7631 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.2044 35 2.06 <td></td> <td>16</td> <td>2.29</td> <td>0.0224</td> <td>0.10</td> <td>09.0</td> <td>0.8755</td> <td>32</td> <td>32</td> <td>2.06</td> <td>0.0240</td> <td>0.10</td> <td>09.0</td> <td>0.9975</td>		16	2.29	0.0224	0.10	09.0	0.8755	32	32	2.06	0.0240	0.10	09.0	0.9975
16 2.29 0.0224 0.15 0.339 35 35 2.06 0.0240 0.15 0.35 16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240 0.15 0.34 16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.60 0.7631 35 2.06 0.0240 0.15 0.45 16 2.29 0.0224 0.15 0.60 0.7631 35 2.06 0.0240 0.15 0.55 16 2.29 0.0224 0.15 0.65 0.8456 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.2094 35 2.06 0.0240 0.15 0.45 16 2.29 0.0224 0.20 0.40 0.2094 35 2.06 0.0240 <td></td> <td>16</td> <td>2.29</td> <td>0.0224</td> <td>0.15</td> <td>0.30</td> <td>0.1548</td> <td>32</td> <td>32</td> <td>2.06</td> <td>0.0240</td> <td>0.15</td> <td>0.30</td> <td>0.3160</td>		16	2.29	0.0224	0.15	0.30	0.1548	32	32	2.06	0.0240	0.15	0.30	0.3160
16 2.29 0.0224 0.15 0.40 0.3294 35 2.06 0.0240 0.15 0.40 16 2.29 0.0224 0.15 0.45 0.4375 35 35 2.06 0.0240 0.15 0.45 16 2.29 0.0224 0.15 0.50 0.6513 35 2.06 0.0240 0.15 0.50 16 2.29 0.0224 0.15 0.65 0.8456 35 2.06 0.0240 0.15 0.55 16 2.29 0.0224 0.15 0.65 0.8456 35 2.06 0.0240 0.15 0.56 16 2.29 0.0224 0.20 0.40 0.204 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.204 35 2.06 0.0240 0.20 0.40 16 2.29 0.0224 0.20 0.40 0.204 35 2.06		16	2.29	0.0224	0.15	0.35	0.2339	32	32	2.06	0.0240	0.15	0.35	0.4875
16 2.29 0.0224 0.15 0.45 0.4375 35 2.06 0.0240 0.15 0.45 16 2.29 0.0224 0.15 0.45 0.6529 35 35 2.06 0.0240 0.15 0.45 16 2.29 0.0224 0.15 0.65 0.6629 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.15 0.65 0.845 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.204 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.2094 35 2.06 0.0240 0.20 0.45 16 2.29 0.0224 0.20 0.40 0.2094 35 2.06 0.0240 0.20 0.45 0.30 0.65 0.45 0.30 0.65 0.46 0.30 0.66 0.24 <td></td> <td>16</td> <td>2.29</td> <td>0.0224</td> <td>0.15</td> <td>0.40</td> <td>0.3294</td> <td>35</td> <td>35</td> <td>2.06</td> <td>0.0240</td> <td>0.15</td> <td>0.40</td> <td>0.6581</td>		16	2.29	0.0224	0.15	0.40	0.3294	35	35	2.06	0.0240	0.15	0.40	0.6581
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	2.29	0.0224	0.15	0.45	0.4375	35	35	2.06	0.0240	0.15	0.45	0.7997
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	2.29	0.0224	0.15	0.50	0.5515	35	35	2.06	0.0240	0.15	0.50	0.8976
16 2.29 0.0224 0.15 0.60 0.7631 35 2.06 0.0240 0.15 0.60 16 2.29 0.0224 0.15 0.65 0.8456 35 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.2094 35 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.2094 35 2.06 0.0240 0.20 0.40 16 2.29 0.0224 0.20 0.40 0.2094 35 2.06 0.0240 0.20 0.45 16 2.29 0.0224 0.20 0.50 0.5197 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.20 0.56 0.5735 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.20 0.60 0.8235 35		16	2.29	0.0224	0.15	0.55	0.6629	35	35	2.06	0.0240	0.15	0.55	0.9547
16 2.29 0.0224 0.15 0.65 0.8456 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.204 35 35 2.06 0.0240 0.15 0.65 16 2.29 0.0224 0.20 0.40 0.204 35 35 2.06 0.0240 0.20 0.40 16 2.29 0.0224 0.20 0.45 0.3063 35 2.06 0.0240 0.20 0.40 16 2.29 0.0224 0.20 0.55 0.5197 35 2.06 0.0240 0.20 0.40 16 2.29 0.0224 0.20 0.55 0.5197 35 2.06 0.0240 0.20 0.40 16 2.29 0.0224 0.20 0.60 0.6320 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.20 0.70 0.8235 35		16	2.29	0.0224	0.15	0.60	0.7631	35	35	2.06	0.0240	0.15	0.60	0.9829
16 2.29 0.0224 0.20 0.35 0.1368 35 35 2.06 0.0240 0.20 0.35 16 2.29 0.0224 0.20 0.44 0.2094 35 35 2.06 0.0240 0.20 0.45 16 2.29 0.0224 0.20 0.45 0.3005 35 35 2.06 0.0240 0.20 0.45 16 2.29 0.0224 0.20 0.50 0.4063 35 2.06 0.0240 0.20 0.406 16 2.29 0.0224 0.20 0.55 0.5197 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.20 0.65 0.7323 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.20 0.70 0.8235 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.25 0.75 0.75		16	2.29	0.0224	0.15	0.65	0.8456	35	35	2.06	0.0240	0.15	0.65	0.9947
16 2.29 0.0224 0.20 0.40 0.2094 35 35 2.06 0.0240 0.20 0.44 16 2.29 0.0224 0.20 0.45 0.306 35 35 2.06 0.0240 0.20 0.45 16 2.29 0.0224 0.20 0.50 0.5197 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.20 0.56 0.5197 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.20 0.65 0.7353 35 2.06 0.0240 0.20 0.50 16 2.29 0.0224 0.20 0.70 0.8235 35 2.06 0.0240 0.20 0.70 16 2.29 0.0224 0.20 0.40 0.1874 35 2.06 0.0240 0.20 0.40 16 2.29 0.0224 0.25 0.45 0.1874 35		16	2.29	0.0224	0.20	0.35	0.1368	35	35	2.06	0.0240	0.20	0.35	0.2828
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	2.29	0.0224	0.20	0.40	0.2094	35	32	2.06	0.0240	0.20	0.40	0.4447
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	2.29	0.0224	0.20	0.45	0.3005	35	35	2.06	0.0240	0.20	0.45	0.6117
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	2.29	0.0224	0.20	0.50	0.4063	35	35	2.06	0.0240	0.20	0.50	0.7570
16 2.29 0.0224 0.20 0.60 0.6320 35 35 2.06 0.0240 0.20 0.65 0.7353 35 2.06 0.0240 0.20 0.60 16 2.29 0.0224 0.20 0.65 0.7353 35 2.06 0.0240 0.20 0.65 16 2.29 0.0224 0.20 0.40 0.1274 35 35 2.06 0.0240 0.20 0.40 16 2.29 0.0224 0.25 0.45 0.1967 35 36 2.06 0.0240 0.25 0.40 16 2.29 0.0224 0.25 0.45 0.1967 35 2.06 0.0240 0.25 0.45 16 2.29 0.0224 0.25 0.50 0.2841 35 2.06 0.0240 0.25 0.50 16 2.29 0.0224 0.25 0.60 0.694 35 35 2.06 0.0240 0.25 0.60		16	2.29	0.0224	0.20	0.55	0.5197	35	35	2.06	0.0240	0.20	0.55	0.8659
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	2.29	0.0224	0.20	09.0	0.6320	35	35	2.06	0.0240	0.20	09.0	0.9364
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	2.29	0.0224	0.20	0.65	0.7353	35	35	2.06	0.0240	0.20	0.65	0.9751
16 2.29 0.0224 0.25 0.40 0.1274 35 35 2.06 0.0240 0.25 0.40 16 2.29 0.0224 0.25 0.45 0.1967 35 35 2.06 0.0240 0.25 0.45 16 2.29 0.0224 0.25 0.50 0.2841 35 35 2.06 0.0240 0.25 0.45 16 2.29 0.0224 0.25 0.56 0.3841 35 35 2.06 0.0240 0.25 0.50 16 2.29 0.0224 0.25 0.60 0.4968 35 3.06 0.0240 0.25 0.60 16 2.29 0.0224 0.25 0.65 0.6094 35 36 2.06 0.0240 0.25 0.65		16	2.29	0.0224	0.20	0.70	0.8235	35	35	2.06	0.0240	0.20	0.70	0.9924
16 2.29 0.0224 0.25 0.45 0.1967 35 35 2.06 0.0240 0.25 0.45 16 2.29 0.0224 0.25 0.50 0.2841 35 2.06 0.0240 0.25 0.50 16 2.29 0.0224 0.25 0.60 0.9684 35 2.06 0.0240 0.25 0.55 16 2.29 0.0224 0.25 0.60 0.4968 35 2.06 0.0240 0.25 0.60 16 2.29 0.0224 0.25 0.65 0.6094 35 35 2.06 0.0240 0.25 0.65		16	2.29	0.0224	0.25	0.40	0.1274	35	35	2.06	0.0240	0.25	0.40	0.2607
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	2.29	0.0224	0.25	0.45	0.1967	35	35	2.06	0.0240	0.25	0.45	0.4091
16 2.29 0.0224 0.25 0.55 0.3861 35 3.06 0.0240 0.25 0.55 16 2.29 0.0224 0.25 0.60 0.4968 35 35 2.06 0.0240 0.25 0.60 16 2.29 0.0224 0.25 0.65 0.6094 35 35 2.06 0.0240 0.25 0.65		16	2.29	0.0224	0.25	0.50	0.2841	35	35	2.06	0.0240	0.25	0.50	0.5694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16		0.0224	0.25	0.55	0.3861	35	35	2.06	0.0240	0.25	0.55	0.7200
16 2.29 0.0224 0.25 0.65 0.6094 35 35 2.06 0.0240 0.25 0.65		16		0.0224	0.25	09.0	0.4968	35	23.	2.06	0.0240	0.25	0.60	0.8421
		9												

Table B.5: continue on next page

Table B.5: continue on next page

	pvalue p1	p ₂	power	^{1}u	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	p 2	power
0.0224	0.25	0.75	0.8141	35	35	2.06	0.0240	0.25	0.75	0.9917
	0.30	0.45	0.1223	35	35	2.06	0.0240	0.30	0.45	0.2380
0.0224 0.30	0 0	0.50	0.1883		35	2.06	0.0240	0.30	0.50	0.3788
0.0224 0.30		0.00	0.2718	3 c	9 K	2.06	0.0240	0.30	0.00	0.5409
		0.65	0.4822	35	32	2.06	0.0240	0.30	0.65	0.8327
		0.70	0.6002	35	35	2.06	0.0240	0.30	0.70	0.9225
		0.50	0.1181	35	35	2.06	0.0240	0.35	0.50	0.2229
		0.55	0.1814	33 10 1		2.06	0.0240	0.35	0.55	0.3643
0.0224 0.35		0.60	0.2636	00 c	S o	2.06	0.0240	0.35	0.60	0.5309
		0.55	0.1149	3 2	32.5	2.06	0.0240	0.40	0.55	0.2182
		09.0	0.1785	35	35	2.06	0.0240	0.40	09.0	0.3613
		0.15	0.1144	36	36	2.05	0.0247	0.02	0.15	0.2658
		0.20	0.2300	36	36	2.05	0.0247	0.05	0.20	0.4825
		0.25	0.3652	36	36	2.05	0.0247	0.05	0.25	0.6900
0.0231 0.05		0.30	0.5028	3 20	9 9 9	2.05 0.5	0.0247	0.05	0.30	0.8412
		3.0	0.0302	98	36	0.00	0.0247	0.00	0.00	0.9361
		0.45	0.8277	98	98	200	0.0247	0.00	0.45	0.9915
		0.25	0.1952	36	39	2.05	0.0247	0.10	0.25	0.3861
		0.30	0.2965	36	36	2.05	0.0247	0.10	0.30	0.5758
		0.35	0.4098	36	36	2.02	0.0247	0.10	0.35	0.7419
		0.40	0.5283	36	36	2.05	0.0247	0.10	0.40	0.8636
		0.45	0.6437	36	36	2.05	0.0247	0.10	0.45	0.9384
		0.50	0.7482	36	36	2.02	0.0247	0.10	0.50	0.9765
		0.55	0.8353	36	36	2.05	0.0247	0.10	0.55	0.9926
		09.0	0.9012	36	9 6	2.05	0.0247	0.10	0.60	0.9981
0.0231 0.15		0.30	0.1661	900	98	2.05	0.0247	0.15	0.30	0.3268
0.0231 0.15		0.00	0.2526	36	36	0.00 0.00	0.0247	0.15	0.35	0.5050
		0.45	0.3301	98	98	20.0	0.0247	0.10	0.40	0.0102
		0.50	0.5910	36	36	2.05	0.0247	0.15	0.50	0.9076
		0.55	0.7019	36	36	2.05	0.0247	0.15	0.55	0.9604
		09.0	0.7969	36	36	2.02	0.0247	0.15	0.60	0.9856
		0.65	0.8713	36	36	2.02	0.0247	0.15	0.65	0.9958
		0.32	0.1487	36	36	2.02	0.0247	0.20	0.35	0.2940
		0.40	0.2292	36	36	2.05	0.0247	0.20	0.40	0.4600
		0.45	0.3284	36	36	2.02	0.0247	0.20	0.45	0.6282
		0.50	0.4400	36	36	2.05	0.0247	0.20	0.50	0.7719
		0.55	0.5552	36	36	2.02	0.0247	0.20	0.55	0.8776
		09.0	0.6650	36	36	2.02	0.0247	0.20	0.60	0.9443
		0.65	0.7626	36	36	2.02	0.0247	0.20	0.65	0.9793
		0.70	0.8441	36	36	2.02	0.0247	0.20	0.70	0.9941
		0.40	0.1398	36	36	2.02	0.0247	0.25	0.40	0.2704
		0.45	0.2153	36	36	2.05	0.0247	0.25	0.45	0.4228
0.0231 0.25		0.50 7.70	0.3077	36	98	2.05 0.5	0.0247	0.25	0.50	0.5861
		00.0	17.1	2	2		11/2	0.4.0		
		09.0	1 CC 2 C	96	36	0.0	0.0047	0 0	090	0 0 0 0

17 2.21 0.0231 0.25 0.75 0.88 36 2.05 0.0247 0.25 0.77 17 2.21 0.0231 0.25 0.77 0.8192 36 2.05 0.0247 0.25 0.77 17 2.21 0.0231 0.25 0.77 0.819 36 2.05 0.0247 0.30 0.45 17 2.21 0.0231 0.30 0.65 0.2416 36 2.05 0.0247 0.30 0.65 17 2.21 0.0231 0.30 0.66 0.2494 36 2.05 0.0247 0.30 0.60 17 2.21 0.0231 0.30 0.66 0.2494 36 2.05 0.0247 0.30 0.60 17 2.21 0.0231 0.35 0.56 0.2494 36 2.05 0.0247 0.30 0.60 17 2.21 0.0231 0.35 0.56 0.247 38 2.05 0.0247 <th>n1 n2</th> <th>, N</th> <th>pvalue</th> <th>5</th> <th>6</th> <th>Dower</th> <th>n i</th> <th>: :</th> <th></th> <th>z., bvalue b, bower</th> <th>5</th> <th>000</th> <th>Dower</th>	n1 n2	, N	pvalue	5	6	Dower	n i	: :		z., bvalue b, bower	5	000	Dower
17 2.21 0.0231 0.25 0.77 0.773 9.8 36 2.05 0.0247 0.25 0.77 17 2.21 0.0231 0.25 0.77 0.745 9.83 36 2.05 0.0247 0.25 0.74 0.21 0.75 0.74 0.21 0.75 0.0231 0.0231 0.020<		1				1	1	,	1				
17 2.21 0.02341 0.25 0.75 0.8381 36 2.05 0.0244 0.25 0.75 17 2.21 0.0231 0.245 0.456 0.2870 36 2.05 0.0247 0.30 0.45 17 2.21 0.0231 0.30 0.45 0.2870 36 36 2.05 0.0247 0.30 0.45 17 2.21 0.0231 0.30 0.65 0.2870 36 36 2.05 0.0247 0.30 0.65 17 2.21 0.0231 0.30 0.65 0.1387 36 2.05 0.0247 0.30 0.65 17 2.21 0.0231 0.35 0.66 0.1384 36 2.05 0.0247 0.30 0.55 17 2.21 0.0231 0.30 0.66 0.1384 36 2.05 0.0247 0.30 0.55 17 2.22 0.0231 0.30 0.66 0.1384 36 <td></td> <td>2.21</td> <td>0.0231</td> <td>0.25</td> <td>0.40</td> <td>0.7379</td> <td>36</td> <td>36</td> <td>2.05</td> <td>0.0247</td> <td>0.25</td> <td>0.70</td> <td>0.9767</td>		2.21	0.0231	0.25	0.40	0.7379	36	36	2.05	0.0247	0.25	0.70	0.9767
17 2.21 0.0234 0.39 0.135 36 2.05 0.0244 0.39 0.45 17 2.21 0.0234 0.39 0.132 36 36 2.05 0.0244 0.39 0.55 17 2.21 0.0231 0.30 0.56 0.2870 36 36 2.05 0.0247 0.39 0.56 17 2.21 0.0231 0.30 0.56 0.1347 36 36 2.05 0.0247 0.39 0.56 17 2.21 0.0231 0.36 0.57 0.1347 36 36 2.05 0.0247 0.39 0.56 17 2.21 0.0231 0.36 0.56 0.1348 36 2.05 0.0247 0.39 0.56 17 2.22 0.0231 0.30 0.56 0.1349 36 2.05 0.0247 0.39 0.56 17 2.22 0.0231 0.30 0.25 0.1344 0.49			0.0231	0.20	0.79 9.19	0.8319	30	20	2.05	0.0247	0.25	0.73	0.9936
17 2.21 0.0231 0.35 0.25 0.24 0.0247 0.30 0.55 17 2.21 0.0231 0.35 0.25 0.28 36 2.05 0.0244 0.30 0.55 17 2.21 0.0231 0.30 0.65 0.3872 36 36 2.05 0.0244 0.30 0.65 0.3872 36 2.05 0.0247 0.30 0.66 0.3872 36 36 2.05 0.0247 0.30 0.66 0.3872 36 2.05 0.0247 0.30 0.66 0.3872 36 2.05 0.0247 0.30 0.66 0.3872 36 2.05 0.0247 0.30 0.66 0.3872 36 2.05 0.0247 0.30 0.66 0.3872 36 2.05 0.0247 0.30 0.66 0.3872 37 37 2.05 0.0247 0.30 0.65 0.3872 37 2.05 0.0244 0.05 0.04 0.25 0.1244			0.0231	0.30	0.45	0.1325	30	30	2.05	0.0247	0.30	0.45	0.2474
17 2.21 0.0231 0.35 0.25 0.25 0.0247 0.30 0.55 17 2.21 0.0231 0.35 0.25 0.24 36 2.05 0.0247 0.30 0.65 17 2.21 0.0231 0.35 0.65 0.137 36 36 2.05 0.0247 0.30 0.66 17 2.21 0.0231 0.35 0.65 0.137 36 36 2.05 0.0247 0.30 0.66 17 2.21 0.0231 0.35 0.66 0.1324 36 36 2.05 0.0247 0.30 0.66 17 2.21 0.0231 0.35 0.66 0.15 0.1124 37 37 2.05 0.0247 0.30 0.65 0.124 37 37 2.05 0.0247 0.30 0.66 18 2.14 0.0239 0.05 0.124 37 37 2.05 0.0244 0.05 0.03			0.0231	0.30	0.50	0.2016	36	30	2.02	0.0247	0.30	0.50	0.3942
17 2.21 0.0231 0.36 0.0487 36 36 2.05 0.0247 0.39 0.66 17 2.21 0.0231 0.36 0.4894 36 2.05 0.0247 0.39 0.67 17 2.21 0.0231 0.36 0.76 0.6489 36 2.05 0.0247 0.39 0.67 17 2.21 0.0231 0.35 0.66 0.1883 36 2.05 0.0247 0.39 0.67 17 2.21 0.0231 0.36 0.77 0.1883 36 2.05 0.0247 0.39 0.66 17 2.21 0.0231 0.40 0.56 0.1384 36 2.05 0.0247 0.39 0.66 18 2.14 0.0239 0.05 0.10 0.27 0.37 2.05 0.0244 0.05 0.12 0.27 0.36 0.03 0.04 0.28 0.05 0.12 0.0244 0.05 0.12 0.0		2.21	0.0231	0.30	0.55	0.2870	36	36	2.02	0.0247	0.30	0.55	0.5613
17 2.21 0.0231 0.36 0.4994 36 2.05 0.0247 0.30 0.05 17 2.21 0.0231 0.30 0.05 0.1337 36 2.05 0.0247 0.30 0.70 17 2.21 0.0231 0.35 0.50 0.1337 36 2.05 0.0247 0.35 0.06 17 2.21 0.0231 0.35 0.60 0.2772 36 2.05 0.0247 0.35 0.60 17 2.21 0.0231 0.35 0.60 0.2772 36 2.05 0.0247 0.35 0.60 17 2.21 0.0231 0.40 0.60 0.2772 36 2.05 0.0247 0.40 0.60 18 2.14 0.0239 0.05 0.20 0.1824 37 2.05 0.0244 0.05 0.15 18 2.14 0.0239 0.05 0.25 0.239 37 2.05 0.0244 0.05<			0.0231	0.30	0.60	0.3872	36	36	2.02	0.0247	0.30	09.0	0.7218
17 2.21 0.0231 0.35 0.70 0.6190 36 2.05 0.0247 0.35 0.70 17 2.21 0.0231 0.35 0.50 0.1377 36 2.05 0.0247 0.35 0.50 17 2.21 0.0231 0.35 0.66 0.2772 36 2.05 0.0247 0.35 0.60 17 2.21 0.0231 0.35 0.66 0.3784 36 2.05 0.0247 0.35 0.60 17 2.21 0.0231 0.40 0.55 0.1169 36 2.05 0.0247 0.35 0.66 18 2.14 0.0239 0.05 0.16 0.1744 37 2.05 0.0244 0.05 0.30 18 2.14 0.0239 0.05 0.35 0.35 37 2.05 0.0244 0.05 0.30 18 2.14 0.0239 0.05 0.30 0.23 37 2.05 0.0244 <td></td> <td></td> <td>0.0231</td> <td>0.30</td> <td>0.65</td> <td>0.4994</td> <td>36</td> <td>36</td> <td>2.02</td> <td>0.0247</td> <td>0.30</td> <td>0.65</td> <td>0.8498</td>			0.0231	0.30	0.65	0.4994	36	36	2.02	0.0247	0.30	0.65	0.8498
17 2.21 0.0231 0.35 0.50 0.1237 36 2.05 0.0247 0.35 0.50 17 2.21 0.0231 0.35 0.50 0.1883 36 2.05 0.0247 0.35 0.65 17 2.21 0.0231 0.35 0.66 0.2786 36 2.05 0.0247 0.35 0.66 17 2.21 0.0231 0.40 0.60 0.2786 36 2.05 0.0247 0.40 0.65 18 2.14 0.0239 0.05 0.1274 37 2.05 0.0247 0.40 0.65 18 2.14 0.0239 0.05 0.1274 37 2.05 0.0244 0.05 0.10 0.05 0.1274 37 2.05 0.0244 0.05 0.05 0.1274 37 2.05 0.0244 0.05 0.05 0.0244 0.05 0.0244 0.06 0.0274 0.06 0.0244 0.06 0.0244 0.06			0.0231	0.30	0.70	0.6190	36	36	2.02	0.0247	0.30		0.9332
17 2.21 0.0231 0.35 0.65 0.1883 36 36 2.05 0.0247 0.35 0.65 17 2.21 0.0231 0.35 0.66 0.1722 36 36 2.05 0.0247 0.35 0.06 17 2.21 0.0231 0.40 0.55 0.1169 36 2.05 0.0244 0.05 0.05 18 2.14 0.0239 0.05 0.1274 37 2.05 0.0244 0.05 0.05 18 2.14 0.0239 0.05 0.20 0.1274 37 2.05 0.0244 0.05 0.05 18 2.14 0.0239 0.05 0.20 0.1272 37 2.05 0.0244 0.05 0.05 18 2.14 0.0239 0.05 0.30 0.1272 37 2.05 0.0244 0.05 0.35 18 2.14 0.0239 0.05 0.35 0.45 3.7 2.05		2.21	0.0231	0.35	0.50	0.1237	36	36	2.05	0.0247	0.35		0.2346
17 2.21 0.0231 0.35 0.66 0.2722 36 36 2.05 0.0247 0.35 0.66 17 2.21 0.0231 0.35 0.65 0.1766 36 2.05 0.0247 0.40 0.65 17 2.21 0.0231 0.40 0.60 0.1824 36 36 2.05 0.0244 0.05 0.05 0.05 0.05 0.05 0.024 0.05 0.		2.21	0.0231	0.35	0.55	0.1883	36	36	2.02	0.0247	0.35		0.3828
17 2.21 0.0231 0.35 0.65 0.3766 36 36 36 2.05 0.0244 0.35 0.65 17 2.21 0.0233 0.40 0.55 0.1169 36 36 2.05 0.0244 0.05 0.018 36 36 2.05 0.0244 0.05 0.023 0.05 0.15 0.1274 37 2.05 0.0244 0.05 0.05 0.05 0.1274 37 2.05 0.0244 0.05 0.05 0.05 0.023 0.05 0.023 0.05 <t< td=""><td></td><td></td><td>0.0231</td><td>0.35</td><td>09.0</td><td>0.2722</td><td>36</td><td>36</td><td>2.05</td><td>0.0247</td><td>0.35</td><td></td><td>0.5537</td></t<>			0.0231	0.35	09.0	0.2722	36	36	2.05	0.0247	0.35		0.5537
17 2.21 0.0231 0.40 0.55 0.1169 36 2.05 0.0244 0.40 0.55 18 2.14 0.0231 0.40 0.60 0.1824 36 36 2.05 0.0244 0.05 0.18 18 2.14 0.0239 0.05 0.12 0.2512 37 2.05 0.0244 0.05 0.15 18 2.14 0.0239 0.05 0.20 0.2512 37 37 2.05 0.0244 0.05 0.10 0.30 0.2530 0.05 0.04 0.0539 0.05 0.04 0.7832 37 37 2.05 0.0244 0.05		2.21	0.0231	0.35	0.65	0.3766	36	36	2.05	0.0247	0.35	0.65	0.7183
17 2.21 0.0231 0.40 0.60 0.1824 36 2.05 0.0244 0.40 0.60 18 2.14 0.0239 0.056 0.05 0.1824 37 37 2.05 0.0244 0.05 0.02 18 2.14 0.0239 0.05 0.02 0.235 0.25 0.0244 0.05 0.02 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.02 0.0239 0.05 0.0239 0.05 0.0244 0.05 0.0244 0.05 0.0244 0.05 0.0244 0.05 0.0244 0.05 0.024 0.0249 0.0244 0.05		2.21	0.0231	0.40	0.55	0.1169	36	36	2.05	0.0247	0.40	0.55	0.2316
18 2.14 0.0239 0.05 0.15 0.1274 37 2.05 0.0244 0.05 0.15 18 2.14 0.0239 0.05 0.25 0.2512 37 37 2.05 0.0244 0.05 0.20 18 2.14 0.0239 0.05 0.25 0.2532 37 37 2.05 0.0244 0.05 0.024 18 2.14 0.0239 0.05 0.30 0.338 37 37 2.05 0.0244 0.05 0.02 18 2.14 0.0239 0.05 0.40 0.7682 37 37 2.05 0.0244 0.05 0.40 18 2.14 0.0239 0.10 0.25 0.7883 37 37 2.05 0.0244 0.05 0.40 18 2.14 0.0239 0.10 0.25 0.7816 37 37 2.05 0.0244 0.05 0.40 18 2.14 0.0239		2.21	0.0231	0.40	09.0	0.1824	36	36	2.05	0.0247	0.40	09.0	0.3808
18 2.14 0.0239 0.05 0.2512 37 37 2.05 0.0244 0.05 0.25 18 2.14 0.0239 0.05 0.2538 3.327 37 37 2.05 0.0244 0.05 0.25 18 2.14 0.0239 0.05 0.35 0.3538 37 37 2.05 0.0244 0.05 0.35 18 2.14 0.0239 0.05 0.35 0.6617 37 37 2.05 0.0244 0.05 0.35 18 2.14 0.0239 0.00 0.35 0.2688 37 37 2.05 0.0244 0.05 0.35 18 2.14 0.0239 0.10 0.35 0.3666 37 37 2.05 0.0244 0.05 0.35 18 2.14 0.0239 0.10 0.35 0.4867 37 37 2.05 0.0244 0.05 0.35 18 2.14 0.0239 <		2.14	0.0239	0.02	0.15	0.1274	37	37	2.05	0.0244	0.05	0.15	0.2745
18 2.14 0.0239 0.05 0.3927 37 37 2.05 0.0244 0.05 0.25 18 2.14 0.0239 0.05 0.33 0.5338 37 37 2.05 0.0244 0.05 0.35 18 2.14 0.0239 0.05 0.39 0.55 0.34 0.7692 37 37 2.05 0.0244 0.05 0.35 0.2488 37 37 2.05 0.0244 0.05 0.36 0.38 0.3166 37 37 2.05 0.0244 0.05 0.04 0.2888 37 37 2.05 0.0244 0.05 0.45 0.2888 37 37 2.05 0.0244 0.05 0.45 0.2888 37 37 2.05 0.0244 0.05 0.45 0.2888 37 37 2.05 0.0244 0.05 0.45 0.2888 37 37 2.05 0.0244 0.10 0.45 0.2888 37 37 2.05 <td></td> <td>2.14</td> <td>0.0239</td> <td>0.02</td> <td>0.20</td> <td>0.2512</td> <td>37</td> <td>37</td> <td>2.05</td> <td>0.0244</td> <td>0.02</td> <td>0.20</td> <td>0.4973</td>		2.14	0.0239	0.02	0.20	0.2512	37	37	2.05	0.0244	0.02	0.20	0.4973
18 2.14 0.0239 0.05 0.30 0.5338 37 37 2.05 0.0244 0.05 0.33 18 2.14 0.0239 0.05 0.35 0.651 37 37 2.05 0.0244 0.05 0.35 18 2.14 0.0239 0.05 0.35 0.651 37 2.05 0.0244 0.05 0.40 18 2.14 0.0239 0.01 0.25 0.2088 37 37 2.05 0.0244 0.05 0.45 18 2.14 0.0239 0.10 0.25 0.2088 37 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 0.10 0.26 0.286 37 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 0.10 0.45 0.8634 37 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 <td< td=""><td></td><td>2.14</td><td>0.0239</td><td>0.05</td><td>0.25</td><td>0.3927</td><td>37</td><td>37</td><td>2.05</td><td>0.0244</td><td>0.05</td><td>0.25</td><td>0.7055</td></td<>		2.14	0.0239	0.05	0.25	0.3927	37	37	2.05	0.0244	0.05	0.25	0.7055
18 2.14 0.0239 0.05 0.35 0.6617 37 2.05 0.0244 0.05 0.34 18 2.14 0.0239 0.05 0.40 0.7692 37 2.05 0.0244 0.05 0.40 18 2.14 0.0239 0.05 0.40 0.7683 37 2.05 0.0244 0.05 0.40 18 2.14 0.0239 0.10 0.35 0.2366 37 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 0.10 0.30 0.3666 37 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 0.10 0.50 0.866 37 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.10 0.45 0.686 37 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.10 0.45		2.14	0.0239	0.05	0.30	0.5338	37	37	2.05	0.0244	0.05	0.30	0.8532
18 2.14 0.0239 0.05 0.40 0.7692 37 37 2.05 0.0244 0.05 0.45 18 2.14 0.0239 0.05 0.45 0.8531 37 2.05 0.0244 0.05 0.45 18 2.14 0.0239 0.10 0.30 0.3166 37 37 2.05 0.0244 0.10 0.25 18 2.14 0.0239 0.10 0.35 0.4367 37 2.05 0.0244 0.10 0.35 18 2.14 0.0239 0.10 0.56 0.586 37 37 2.05 0.0244 0.10 0.35 18 2.14 0.0239 0.10 0.56 0.7816 37 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 0.10 0.50 0.7816 37 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 0.10		2.14	0.0239	0.05	0.35	0.6617	37	37	2.05	0.0244	0.05	0.35	0.9373
18 2.14 0.0239 0.05 0.45 0.8531 37 37 2.05 0.0244 0.05 0.45 18 2.14 0.0239 0.10 0.25 0.2088 37 37 2.05 0.0244 0.10 0.35 18 2.14 0.0239 0.10 0.35 0.2686 37 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 0.10 0.40 0.5606 37 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 0.10 0.40 0.560 37 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 0.10 0.50 0.7816 37 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.15 0.25 0.7824 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 <		2.14	0.0239	0.05	0.40	0.7692	37	37	2.05	0.0244	0.05		0.9772
18 2.14 0.0239 0.10 0.25 0.2088 37 37 2.05 0.0244 0.10 0.25 18 2.14 0.0239 0.10 0.35 0.3666 37 37 2.05 0.0244 0.10 0.35 18 2.14 0.0239 0.10 0.36 0.3666 37 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 0.10 0.40 0.5606 37 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 0.10 0.45 0.6863 37 37 2.05 0.0244 0.10 0.45 18 2.14 0.0239 0.10 0.56 0.823 37 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.15 0.60 0.9220 37 37 2.05 0.0244 0.10 0.50 18 2.14 0		2.14	0.0239	0.05	0.45	0.8531	37	37	2.05	0.0244	0.05		0.9930
18 2.14 0.0239 0.10 0.30 0.3166 37 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 0.10 0.35 0.436 37 37 2.05 0.0244 0.10 0.45 18 2.14 0.0239 0.10 0.45 0.65606 37 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 0.10 0.50 0.7816 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 0.10 0.60 0.9220 37 37 2.05 0.0244 0.10 0.60 18 2.14 0.0239 0.10 0.60 0.9220 37 37 2.05 0.0244 0.10 0.60 18 2.14 0.0239 0.15 0.80 0.374 37 2.05 0.0244 0.10 0.60 18 2.14 0.0239 0.15		2.14	0.0239	0.10	0.25	0.2088	37	37	2.05	0.0244	0.10		0.3979
18 2.14 0.0239 0.10 0.35 0.4367 37 2.05 0.0244 0.10 0.36 18 2.14 0.0239 0.10 0.45 0.566 37 37 2.05 0.0244 0.10 0.45 18 2.14 0.0239 0.10 0.45 0.566 37 37 2.05 0.0244 0.10 0.45 18 2.14 0.0239 0.10 0.50 0.7816 37 2.05 0.0244 0.10 0.45 18 2.14 0.0239 0.10 0.50 0.7816 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.15 0.30 0.1779 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.15 0.50 0.572 37 2.05 0.0244 0.15 0.02 18 2.14 0.0239 0.15 0.50 0.582 37		2.14	0.0239	0.10	0.30	0.3166	37	37	2.05	0.0244	0.10		0.5899
18 2.14 0.0239 0.10 0.40 0.5606 37 37 2.05 0.0244 0.10 0.40 18 2.14 0.0239 0.10 0.45 0.6566 37 37 2.05 0.0244 0.10 0.45 18 2.14 0.0239 0.10 0.56 0.8634 37 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.10 0.85 0.8634 37 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.15 0.86 0.9223 37 37 2.05 0.0244 0.15 0.95 18 2.14 0.0239 0.15 0.36 0.372 37 2.05 0.0244 0.15 0.95 18 2.14 0.0239 0.15 0.50 0.6282 37 37 2.05 0.0244 0.15 0.95 18 2.14 0.0239 <		2.14	0.0239	0.10	0.35	0.4367	37	37	2.05	0.0244	0.10		0.7548
18 2.14 0.0239 0.10 0.45 0.6786 37 2.05 0.0244 0.10 0.45 18 2.14 0.0239 0.10 0.55 0.6844 37 2.05 0.0244 0.10 0.56 18 2.14 0.0239 0.10 0.56 0.6843 37 2.05 0.0244 0.10 0.56 18 2.14 0.0239 0.10 0.60 0.9220 37 2.05 0.0244 0.10 0.56 18 2.14 0.0239 0.15 0.30 0.1773 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.40 0.3848 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.45 0.5672 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.45 0.5672 37 2.05 <td></td> <td>2.14</td> <td>0.0239</td> <td>0.10</td> <td>0.40</td> <td>0.5606</td> <td>37</td> <td>37</td> <td>2.05</td> <td>0.0244</td> <td>0.10</td> <td></td> <td>0.8727</td>		2.14	0.0239	0.10	0.40	0.5606	37	37	2.05	0.0244	0.10		0.8727
18 2.14 0.0239 0.10 0.50 0.7816 37 2.05 0.0244 0.10 0.50 18 2.14 0.0239 0.10 0.56 0.8243 37 2.05 0.0244 0.10 0.55 18 2.14 0.0239 0.10 0.65 0.8220 37 2.05 0.0244 0.10 0.55 18 2.14 0.0239 0.15 0.30 0.1779 37 2.05 0.0244 0.10 0.60 18 2.14 0.0239 0.15 0.40 0.348 37 37 2.05 0.0244 0.15 0.00 18 2.14 0.0239 0.15 0.45 0.5782 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.60 0.8262 37		2.14	0.0239	0.10	0.45	0.6786	37	37	2.05	0.0244	0.10		0.9431
18 2.14 0.0239 0.10 0.55 0.8634 37 2.05 0.0244 0.10 0.55 18 2.14 0.0239 0.10 0.56 0.9240 37 37 2.05 0.0244 0.10 0.56 18 2.14 0.0239 0.15 0.36 0.9723 37 2.05 0.0244 0.15 0.30 18 2.14 0.0239 0.15 0.36 0.2723 37 2.05 0.0244 0.15 0.36 18 2.14 0.0239 0.15 0.45 0.5072 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.50 0.682 37 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.65 0.8262		2.14	0.0239	0.10	0.50	0.7816	37	37	2.02	0.0244	0.10		0.9784
18 2.14 0.0239 0.10 0.60 0.9220 37 2.05 0.0244 0.10 0.60 18 2.14 0.0239 0.15 0.35 0.2723 37 2.05 0.0244 0.15 0.03 18 2.14 0.0239 0.15 0.40 0.3848 37 37 2.05 0.0244 0.15 0.03 18 2.14 0.0239 0.15 0.40 0.3848 37 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.50 0.6282 37 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.55 0.7370 37 2.05 0.0244 0.15 0.56 18 2.14 0.0239 0.15 0.65 0.8933 37 37 2.05 0.0244 0.15 0.56 18 2.14 0.0239 0.20 0.65		2.14	0.0239	0.10	0.55	0.8634	37	37	2.02	0.0244	0.10		0.9931
18 2.14 0.0239 0.15 0.30 0.1779 37 2.05 0.0244 0.15 0.30 18 2.14 0.0239 0.15 0.36 0.1773 37 2.05 0.0244 0.15 0.36 18 2.14 0.0239 0.15 0.40 0.3848 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.45 0.5672 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.65 0.6282 37 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.20 0.40 0.2483 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.20 0.40 0.2498		2.14	0.0239	0.10	09.0	0.9220	37	37	2.02	0.0244	0.10		0.9982
18 2.14 0.0239 0.15 0.35 0.2723 37 2.05 0.0244 0.15 0.35 18 2.14 0.0239 0.15 0.45 0.348 37 37 2.05 0.0244 0.15 0.46 18 2.14 0.0239 0.15 0.45 0.6772 37 2.05 0.0244 0.15 0.46 18 2.14 0.0239 0.15 0.60 0.68262 37 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.65 0.8933 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.20 0.40 0.3562 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20		2.14	0.0239	0.15	0.30	0.1779	37	37	2.02	0.0244	0.15		0.3350
18 2.14 0.0239 0.15 0.40 0.3848 37 37 2.05 0.0244 0.15 0.40 18 2.14 0.0239 0.15 0.45 0.570 37 37 2.05 0.0244 0.15 0.45 18 2.14 0.0239 0.15 0.50 0.7370 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.20 0.40 0.2498 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.40 0.2498 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 <		2.14	0.0239	0.15	0.35	0.2723	37	37	2.05	0.0244	0.15		0.5116
18 2.14 0.0239 0.15 0.45 0.5072 37 2.05 0.0244 0.15 0.45 18 2.14 0.0239 0.15 0.65 0.6730 37 37 2.05 0.0244 0.15 0.45 18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.40 0.2498 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.40 0.2498 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.40 0.2498 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20		2.14	0.0239	0.15	0.40	0.3848	37	37	2.02	0.0244	0.15		0.680
18 2.14 0.0239 0.15 0.50 0.6282 37 37 2.05 0.0244 0.15 0.50 18 2.14 0.0239 0.15 0.60 0.8282 37 37 2.05 0.0244 0.15 0.55 18 2.14 0.0239 0.15 0.65 0.8933 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.15 0.65 0.8933 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.40 0.2498 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.40 0.456 37 2.05 0.0244 0.20 0.40 18 2.14 0.0239 0.20 0.45 0.3562 37 37 2.05 0.0244 0.20 0.40 18 2.14 0.0239 <		2.14	0.0239	0.15	0.45	0.5072	37	37	2.02	0.0244	0.15		0.8165
18 2.14 0.0239 0.15 0.55 0.7370 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.15 0.65 0.8932 37 2.05 0.0244 0.15 0.66 18 2.14 0.0239 0.15 0.65 0.8933 37 37 2.05 0.0244 0.15 0.66 18 2.14 0.0239 0.12 0.46 0.85 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.45 0.3562 37 2.05 0.0244 0.20 0.40 18 2.14 0.0239 0.20 0.45 0.37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.60 0.6963 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.60 0.6963 37		2.14	0.0239	0.15	0.20	0.6282	37	37	2.02	0.0244	0.15		0.9084
18 2.14 0.0239 0.15 0.60 0.8262 37 37 2.05 0.0244 0.15 0.60 18 2.14 0.0239 0.15 0.65 0.8933 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.40 0.2498 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.40 0.2498 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.60 0.562 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.60 0.6887 37 2.05 0.0244 0.20 0.50 18 2.14 0.0239 0.20 0.60 0.6963 37 37 2.05 0.0244 0.20 0.50 18 2.14 0.0239 0.20		2.14	0.0239	0.15	0.52	0.7370	37	37	2.02	0.0244	0.15		0.9612
18 2.14 0.0239 0.25 0.8933 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.36 0.8933 37 37 2.05 0.0244 0.15 0.65 18 2.14 0.0239 0.20 0.40 0.2498 37 37 2.05 0.0244 0.20 0.40 18 2.14 0.0239 0.20 0.45 0.3562 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.45 0.5887 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.60 0.6963 37 37 2.05 0.0244 0.20 0.55 18 2.14 0.0239 0.20 0.60 0.6963 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.70		2.14	0.0239	0.15	09.0	0.8262	37	37	2.02	0.0244	0.15		0.9866
18 2.14 0.0239 0.20 0.35 0.1616 37 2.05 0.0244 0.20 0.35 18 2.14 0.0239 0.20 0.45 0.3562 37 37 2.05 0.0244 0.20 0.40 18 2.14 0.0239 0.20 0.45 0.3562 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.56 0.4724 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.60 0.6983 37 37 2.05 0.0244 0.20 0.55 18 2.14 0.0239 0.20 0.60 0.6983 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.60 0.6983 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20		2.14	0.0239	0.15	0.65	0.8933	37	37	2.02	0.0244	0.15		0.9964
18 2.14 0.0239 0.20 0.40 0.2498 37 2.05 0.0244 0.20 0.40 18 2.14 0.0239 0.20 0.45 0.3562 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.56 0.4724 37 2.05 0.0244 0.20 0.50 18 2.14 0.0239 0.20 0.60 0.6887 37 2.05 0.0244 0.20 0.55 18 2.14 0.0239 0.20 0.60 0.6963 37 37 2.05 0.0244 0.20 0.55 18 2.14 0.0239 0.20 0.60 0.6863 37 37 2.05 0.0244 0.20 0.60 18 2.14 0.0239 0.20 0.70 0.8663 37 37 2.05 0.0244 0.20 0.70 18 2.14 0.0239 0.25 0.40		2.14	0.0239	0.20	0.35	0.1616	37	37	2.02	0.0244	0.20		0.2933
18 2.14 0.0239 0.20 0.45 0.3562 37 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.45 0.3587 37 2.05 0.0244 0.20 0.45 18 2.14 0.0239 0.20 0.65 0.6963 37 37 2.05 0.0244 0.20 0.55 18 2.14 0.0239 0.20 0.60 0.6963 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.70 0.8663 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.70 0.8663 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.25 0.40 0.1526 37 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239		2.14	0.0239	0.20	0.40	0.2498	37	37	2.02	0.0244	0.20		0.4563
18 2.14 0.0239 0.20 0.550 0.4724 37 37 2.05 0.0244 0.20 0.56 18 2.14 0.0239 0.20 0.56 0.6963 37 37 2.05 0.0244 0.20 0.55 18 2.14 0.0239 0.20 0.66 0.6963 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.66 0.7863 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.70 0.124 0.20 0.70 0.65 18 2.14 0.0239 0.25 0.40 0.1526 37 37 2.05 0.0244 0.20 0.40 18 2.14 0.0239 0.25 0.45 0.238 37 37 2.05 0.0244 0.25 0.40 18 2.14 0.0239 0.25 0.45 <		2.14	0.0239	0.20	0.45	0.3562	37	37	2.02	0.0244	0.20		0.6243
18 2.14 0.0239 0.20 0.55 0.5887 37 2.05 0.0244 0.20 0.55 18 2.14 0.0239 0.20 0.66 0.6963 37 37 2.05 0.0244 0.20 0.56 18 2.14 0.0239 0.20 0.66 0.7898 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.70 0.8663 37 37 2.05 0.0244 0.20 0.70 18 2.14 0.0239 0.25 0.40 0.1526 37 3.05 0.0244 0.25 0.40 18 2.14 0.0239 0.25 0.45 0.2337 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239 0.25 0.50 0.50 0.3308 37 37 2.05 0.0244 0.25 0.50 18 2.14 0.0239 0.25		2.14	0.0239	0.20	0.50	0.4724	37	37	2.02	0.0244	0.20		0.7718
18 2.14 0.0239 0.20 0.66 0.6963 37 37 2.05 0.0244 0.20 0.60 18 2.14 0.0239 0.20 0.65 0.7988 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.70 0.8663 37 37 2.05 0.0244 0.20 0.70 18 2.14 0.0239 0.25 0.40 0.1526 37 37 2.05 0.0244 0.25 0.40 18 2.14 0.0239 0.25 0.50 0.2338 37 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239 0.25 0.50 0.3308 37 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239 0.25 0.4383 37 37 2.05 0.0244 0.25 0.50		2.14	0.0239	0.20	0.52	0.5887	37	37	2.02	0.0244	0.20		0.881
18 2.14 0.0239 0.20 0.65 0.7898 37 37 2.05 0.0244 0.20 0.65 18 2.14 0.0239 0.20 0.70 0.1566 37 37 2.05 0.0244 0.20 0.70 18 2.14 0.0239 0.25 0.40 0.1526 37 37 2.05 0.0244 0.25 0.40 18 2.14 0.0239 0.25 0.45 0.2337 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239 0.25 0.56 0.43 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239 0.25 0.56 0.4383 37 37 2.05 0.0244 0.25 0.50 18 2.14 0.0239 0.25 0.438 37 37 2.05 0.0244 0.25 0.50		2.14	0.0239	0.20	09.0	0.6963	37	37	2.02	0.0244	0.20		0.949(
18 2.14 0.0239 0.20 0.70 0.8663 37 37 2.05 0.0244 0.20 0.70 18 2.14 0.0239 0.25 0.40 0.1526 37 37 2.05 0.0244 0.25 0.40 18 2.14 0.0239 0.25 0.50 0.3308 37 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239 0.25 0.50 0.4383 37 37 2.05 0.0244 0.25 0.50 18 2.14 0.0239 0.25 0.55 0.4383 37 37 2.05 0.0244 0.25 0.55		2.14	0.0239	0.20	0.65	0.7898	37	37	2.02	0.0244	0.20		0.982
18 2.14 0.0239 0.25 0.40 0.1526 37 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239 0.25 0.45 0.2337 37 37 2.05 0.0244 0.25 0.45 18 2.14 0.0239 0.25 0.50 0.3308 37 37 2.05 0.0244 0.25 0.50 18 2.14 0.0239 0.25 0.55 0.4383 37 37 2.05 0.0244 0.25 0.55		2.14	0.0239	0.20	0.70	0.8663	37	37	2.02	0.0244	0.20		0.9953
18 2.14 0.0239 0.25 0.45 0.2337 37 37 2.05 0.0244 0.25 0.45 1.8 2.14 0.0239 0.25 0.55 0.4383 37 37 2.05 0.0244 0.25 0.50 0.50 1.8 2.14 0.0239 0.25 0.55 0.4383 37 37 2.05 0.0244 0.25 0.55 0.55		2.14	0.0239	0.25	0.40	0.1526	37	37	2.02	0.0244	0.25		0.2629
18 2.14 0.0239 0.25 0.50 0.3308 37 37 2.05 0.0244 0.25 0.50 18 2.14 0.0239 0.25 0.55 0.4383 37 37 2.05 0.0244 0.25 0.55		2.14	0.0239	0.25	0.45	0.2337	37	37	2.02	0.0244	0.25		0.418
18 2.14 0.0239 0.25 0.55 0.4383 37 37 2.05 0.0244 0.25 0.55		2.14	0.0239	0.25	0.50	0.3308	37	37	2.02	0.0244	0.25		0.5899
		2 14	00000	0	1	0000	1		1				

Table B.5: continue on next page

Table B.5: continue on next page

		ı																																											
ıs page	power	0.9438	0.9808	0.9950	0.4027	0.5778	0.7407	0.8652	0.9426	0.2439	0.4000	0.7392	0.2449	0.4001	0.2833	0.5118	0.7204	0.8643	0.9803	0.9942	0.4096	0.6040	0.7682	0.8828	0.9493	0.9814	0.9943	0.3452	0.5255	0.6954	0.8288	0.9171	0.9000	0.9972	0.3027	0.4698	0.6401	0.7872	0.8934	0.9561	0.9856	0.2726	0.4339	0.6092	0.7669
revion	p2	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.20	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.00	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.10	0.45	0.50	0.55
rom p	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.00 0.00	0.0	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.1.0	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247
: -con	$\mathbf{z}_{\mathbf{u}}$	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05 9.05	2.05	2.05	2.05	2.04	2.04	2.04	20.0	20:00	2.04	2.04	2.04	2.04	2.04	2.04	40.2	20.04	2.04	2.04	2.04	2.04	2.04	40.0	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	20.2	2.04	2.04	2.04
le B.5:	$^{\mathrm{n}_{2}}$	37	37	37	37	37	37	37	37	37	27	37	37	37	38	38	80 8	x x	3 8	8 8	38	38	38	38	38	× ×	x x	0 00	38	38	38	œ 6	0 0	0 00	38	38	38	38	38	x 6	x x	8 %	38	38	38
Table	1 u	37	37	37	37	37	37	37	37	3.1	27.	37	37	37	38	38	x 0	x 0	0 00	80 80	38	38	38	38	38	o c	x 0x	0 00	38	38	38	00 c	0 0	0 00	38	38	38	38	38	x 0	x x	0 oc	38	38	38
	power	0.6607	0.7643	0.8546	0.2153	0.3044	0.4082	0.5240	0.6459	0.1304	0.1980	0.3959	0.1215	0.1908	0.1402	0.2717	0.4189	0.5628	0.0300	0.8738	0.2217	0.3350	0.4594	0.5846	0.7000	0.7973	0.8731	0.1866	0.2838	0.3965	0.5159	0.6323	0.7575	0.8950	0.1635	0.2492	0.3513	0.4642	0.5808	0.6935	0.7943	0.1453	0.2220	0.3173	0.4282
	p ₂	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.00	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.00	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.10	0.45	0.50	0.55
	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.92	0.35	0.40	0.40	0.02	0.02	0.05	0.0 0 0 0	0.0	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	20.0	0.25	0.25	0.25
	pvalue	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0245	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243
	$\mathbf{z}_{\mathbf{n}}$	2.14	2.14	2.12	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	1.0	2.14	2.14	2.14	2.14	2.14	2.14	41.7	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14
	$_{\rm n_2}$	18	200	<u>x</u> x	18	18	18	18	× 5	20 5	× ×	18	18	18	19	19	61	91	01	19	19	19	19	19	19	2 -	61	19	19	19	19	19	10	1.9	19	19	19	19	19	19	91 01	5	19	19	19
	$^{\mathrm{n}_{1}}$	18	200	x x	18	18	18	18	20 0	x :	× ×	18	18	18	19	19	61	51.0	10	13	19	19	19	19	19	5 -	5 -	19	19	19	19	19	n -	19	19	19	19	19	19	19	D 1	51	19	19	19

n1 n2 Zu Dyang PJ PS 38 38 2.04 0.0247 0.25 0.66 0.68 38 38 2.04 0.0247 0.25 0.66 0.68 38 38 2.04 0.0247 0.25 0.75 0.66 38 38 2.04 0.0247 0.25 0.75 0.65 38 38 2.04 0.0247 0.30 0.65 0.65 38 38 2.04 0.0247 0.30 0.65 0.75 38 38 2.04 0.0247 0.30 0.65 0.65 38 38 2.04 0.0247 0.30 0.66 0.65 38 38 2.04 0.0247 0.30 0.66 0.65 38 38 2.04 0.0247 0.30 0.66 0.30 39 39 2.10 0.0230 0.05 0.25 0.70	n1 n2 Zu Dyanue PJ 38 38 2.04 0.0247 0.25 38 38 2.04 0.0247 0.25 38 38 2.04 0.0247 0.25 38 38 2.04 0.0247 0.25 38 38 2.04 0.0247 0.30 38 38 2.04 0.0247 0.30 38 38 2.04 0.0247 0.30 38 38 2.04 0.0247 0.30 38 38 2.04 0.0247 0.30 38 38 2.04 0.0247 0.30 38 38 2.04 0.0247 0.35 38 38 2.04 0.0247 0.35 38 38 2.04 0.0247 0.35 39 39 2.10 0.0230 0.05 39 39 2.10 0.0230 0.05	
38 38 2.04 0.0247 0.25 0.66 38 38 2.04 0.0247 0.25 0.65 0 38 38 2.04 0.0247 0.25 0.65 0 38 38 2.04 0.0247 0.25 0.75 0 38 38 2.04 0.0247 0.30 0.45 0 38 38 2.04 0.0247 0.30 0.45 0 38 38 2.04 0.0247 0.30 0.65 0 38 38 2.04 0.0247 0.30 0.65 0 38 38 2.04 0.0247 0.30 0.65 0 38 38 2.04 0.0247 0.30 0.65 0 38 38 2.04 0.0247 0.35 0.65 0 39 39 2.10 0.0230 0.10 0.55 0 39 39 <th>38 38 2.04 0.0247 0.25 0.66 38 38 2.04 0.0247 0.25 0.65 0 38 38 2.04 0.0247 0.25 0.65 0 38 38 2.04 0.0247 0.25 0.75 0 38 38 2.04 0.0247 0.30 0.45 0 38 38 2.04 0.0247 0.30 0.45 0 38 38 2.04 0.0247 0.30 0.55 0 38 38 2.04 0.0247 0.30 0.56 0 38 38 2.04 0.0247 0.30 0.56 0 38 38 2.04 0.0247 0.35 0.56 0 38 38 2.04 0.0247 0.35 0.56 0 39 39 2.10 0.0230 0.05 0.15 0 39 39<th>z_u pvalue p₁ p₂ power</th></th>	38 38 2.04 0.0247 0.25 0.66 38 38 2.04 0.0247 0.25 0.65 0 38 38 2.04 0.0247 0.25 0.65 0 38 38 2.04 0.0247 0.25 0.75 0 38 38 2.04 0.0247 0.30 0.45 0 38 38 2.04 0.0247 0.30 0.45 0 38 38 2.04 0.0247 0.30 0.55 0 38 38 2.04 0.0247 0.30 0.56 0 38 38 2.04 0.0247 0.30 0.56 0 38 38 2.04 0.0247 0.35 0.56 0 38 38 2.04 0.0247 0.35 0.56 0 39 39 2.10 0.0230 0.05 0.15 0 39 39 <th>z_u pvalue p₁ p₂ power</th>	z _u pvalue p ₁ p ₂ power
38 2.04 0.0247 0.25 0.65 38 38 2.04 0.0247 0.25 0.65 38 38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 <t< td=""><td>38 2.04 0.0247 0.25 0.05 38 38 2.04 0.0247 0.25 0.05 38 38 2.04 0.0247 0.25 0.05 38 38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 <t< td=""><td>0.25 0.60 $0.$</td></t<></td></t<>	38 2.04 0.0247 0.25 0.05 38 38 2.04 0.0247 0.25 0.05 38 38 2.04 0.0247 0.25 0.05 38 38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 <t< td=""><td>0.25 0.60 $0.$</td></t<>	0.25 0.60 $0.$
38 20.4 0.0247 0.25 0.75 38 38 2.04 0.0247 0.25 0.75 38 38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 <t< td=""><td>38 28 2.04 0.0247 0.25 0.70 38 38 2.04 0.0247 0.25 0.75 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230</td><td>0.0243 0.25 0.65</td></t<>	38 28 2.04 0.0247 0.25 0.70 38 38 2.04 0.0247 0.25 0.75 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230	0.0243 0.25 0.65
38 38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230	38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.45 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 <t< td=""><td>0.75</td></t<>	0.75
38 38 2.04 0.0247 0.30 0.50 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.50 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.01 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230	38 38 2.04 0.0247 0.30 0.50 38 38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.50 38 2.04 0.0247 0.35 0.65 38 2.04 0.0247 0.40 0.65 38 2.04 0.0247 0.40 0.65 39 2.10 0.0230 0.05 0.40 39 2.10 0.0230 0.05 0.40 39 2.10 0.0230 0.05 0.45 39 2.10 0.0230	0.0243 0.30 0.45
38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.56 38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 <td>38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.56 38 38 2.04 0.0247 0.30 0.66 38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 39 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 <t< td=""><td>0.0243 0.30 0.50</td></t<></td>	38 2.04 0.0247 0.30 0.55 38 38 2.04 0.0247 0.30 0.56 38 38 2.04 0.0247 0.30 0.66 38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 39 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 <t< td=""><td>0.0243 0.30 0.50</td></t<>	0.0243 0.30 0.50
38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 39 39 2.10 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 <t< td=""><td>38 38 2.04 0.0247 0.30 0.66 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.35 0.60 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 39 39 2.10 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.46 39 39 2.10 0.0230</td><td>0.0243 0.30 0.55</td></t<>	38 38 2.04 0.0247 0.30 0.66 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.35 0.60 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 39 39 2.10 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.46 39 39 2.10 0.0230	0.0243 0.30 0.55
38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230	38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.30 0.65 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.40 0.55 39 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230	0.0243 0.30 0.60
38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.35 0.50 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.40 0.65 39 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230	38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.30 0.70 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.40 0.65 38 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230	0.0243 0.30 0.65
38 2.04 0.0247 0.35 0.55 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.23 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.10 0.46 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.15 0.45 <td>38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 <t< td=""><td>0.0243 0.30 0.70</td></t<></td>	38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.35 0.65 38 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 <t< td=""><td>0.0243 0.30 0.70</td></t<>	0.0243 0.30 0.70
38 28 2.04 0.0241 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.12 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.15	38 38 2.04 0.0247 0.55 0.55 38 38 2.04 0.0247 0.35 0.55 38 38 2.04 0.0247 0.35 0.65 39 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.46 39 39 2.10 0.0230 0.10 0.46 39 39 2.10 0.0230 0.10 0.46 39 39 2.10 0.0230	0.50
38 38 2.04 0.0247 0.035 38 38 2.04 0.0247 0.40 0.55 38 38 2.04 0.0247 0.40 0.55 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 <th< td=""><td>38 38 2.04 0.0247 0.035 0.05 38 38 2.04 0.0247 0.40 0.55 38 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 <th< td=""><td>0.0243 0.35 0.95</td></th<></td></th<>	38 38 2.04 0.0247 0.035 0.05 38 38 2.04 0.0247 0.40 0.55 38 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 <th< td=""><td>0.0243 0.35 0.95</td></th<>	0.0243 0.35 0.95
38 38 2.04 0.0247 0.02 38 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 30 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15	38 38 2.04 0.0247 0.02 38 38 2.04 0.0247 0.40 0.65 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 30 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15	0.0243 0.33 0.00
38 38 2.04 0.0247 0.04 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.02 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.46 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.46 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15	38 38 2.04 0.0247 0.04 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15	0.0243 0.40 0.55
39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230	39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.15 39 39 2.10 0.0230 0.05 0.02 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230	0.0243 0.40 0.60
39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.46 39 39 2.10 0.0230 0.05 0.46 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230	39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.05 0.40 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230	0.0249 0.05 0.15
39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230	39 39 2.10 0.0230 0.05 0.25 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230	0.0249 0.05 0.20
39 39 2.10 0.0230 0.05 0.33 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230	39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230	0.0249 0.05 0.25
39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.46 39 39 2.10 0.0230 0.01 0.25 39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230	39 39 2.10 0.0230 0.05 0.35 39 39 2.10 0.0230 0.05 0.46 39 39 2.10 0.0230 0.01 0.46 39 39 2.10 0.0230 0.10 0.23 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.50 30 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230	0.30
39 39 2.10 0.0230 0.05 0.445 39 39 2.10 0.0230 0.05 0.445 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.65 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 <t< td=""><td>39 39 2.10 0.0230 0.05 0.44 39 39 2.10 0.0230 0.05 0.44 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230</td><td>0.35</td></t<>	39 39 2.10 0.0230 0.05 0.44 39 39 2.10 0.0230 0.05 0.44 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230	0.35
39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230	39 39 2.10 0.0230 0.05 0.45 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.65 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230	0.0249 0.05 0.40
39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230	39 39 2.10 0.0230 0.10 0.25 39 39 2.10 0.0230 0.10 0.23 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.30 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230	0.0249 0.05 0.45
39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.35 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230	39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230	0.0249 0.10 0.25
39 39 2.10 0.0230 0.10 0.35 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.40 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.65 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.46 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230	39 39 2.10 0.0230 0.10 0.435 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.30 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 <th< td=""><td>0.0249 0.10 0.30</td></th<>	0.0249 0.10 0.30
39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.46 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230	39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.30 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230	0.0249 0.10 0.35
39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.66 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.35 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230	39 39 2.10 0.0230 0.10 0.45 39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.10 0.66 39 39 2.10 0.0230 0.15 0.30 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.46 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.41 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230	2.10 0.0249 0.10 0.40 0.6
39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230	39 39 2.10 0.0230 0.10 0.55 39 39 2.10 0.0230 0.10 0.65 39 39 2.10 0.0230 0.15 0.30 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.60 39 39 2.10 0.0230	0.0249 0.10 0.43
39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.11 0.50 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.50 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230	39 39 2.10 0.0230 0.10 0.50 39 39 2.10 0.0230 0.10 0.60 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230	0.0243 0.10 0.30
39 39 2.10 0.0230 0.11 0.30 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230	39 39 2.10 0.0230 0.11 0.03 39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.60 39 39 2.10 0.0230	0.0249 0.10 0.93
39 30 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.50 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 2.10 0.0230 0.20 0.35 39 2.10 0.0230 0.20 0.40 39 2.10 0.0230 0.20 0.45 39 2.10 0.0230 0.20 0.55 39 2.10 0.0230 0.20 0.55 39 2.10 0.0230 0.20 0.65 39 2.10 0.0230 0.20 0.65 39 2.10 0.0230 0.20 0.65 39 2.10 0.0230 0.20 0.65	39 39 2.10 0.0230 0.15 0.35 39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.50 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.60 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230	0.0249 0.15 0.30
39 39 2.10 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230	39 39 210 0.0230 0.15 0.40 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0	0.0249 0.15 0.35
39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.50 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 30 30 2.10 0.0230 0.25 0.46 39 30 0.0230 0.25	39 39 2.10 0.0230 0.15 0.45 39 39 2.10 0.0230 0.15 0.50 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.25 0.46 39 30 0.0230 0.25	0.0249 0.15 0.40
39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.35 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.50 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45 30 2.10 0.0230 0.25 <t< td=""><td>39 39 2.10 0.0230 0.15 0.50 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.35 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.60 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.46 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 <t< td=""><td>2.10 0.0249 0.15 0.45 0.</td></t<></td></t<>	39 39 2.10 0.0230 0.15 0.50 39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.35 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.60 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.46 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 <t< td=""><td>2.10 0.0249 0.15 0.45 0.</td></t<>	2.10 0.0249 0.15 0.45 0.
39 39 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.60 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.45 30 2.10 0.0230 0.25 0.45 30 2.10 0.0230 0.55 0.45 <td>39 38 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.66 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45 <td>0.50</td></td>	39 38 2.10 0.0230 0.15 0.55 39 39 2.10 0.0230 0.15 0.66 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45 <td>0.50</td>	0.50
39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.45 30 2.10 0.0230 0.25 0.45 30 2.10 0.0230 0.25 0.45	39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.50 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.50	0.0249 0.15 0.55
39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45 30 2.10 0.0230 0.25 0.45 30 2.10 0.0230 0.25 0.45	39 39 2.10 0.0230 0.15 0.65 39 39 2.10 0.0230 0.20 0.35 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.50 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45	0.15 0.60
39 39 2.10 0.0230 0.20 0.35 39 39 2.10 0.0230 0.20 0.46 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.67 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45 30 2.10 0.0230 0.25 0.45	39 39 2.10 0.0230 0.20 0.35 39 39 2.10 0.0230 0.20 0.46 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.60 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.50	0.0249 0.15 0.65
39 39 2.10 0.0230 0.20 0.46 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45	39 39 2.10 0.0230 0.20 0.40 39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.50 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45	0.0249 0.20 0.35
39 39 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.56 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.70 39 39 2.10 0.0230 0.25 0.46 30 2.10 0.0230 0.25 0.45	39 38 2.10 0.0230 0.20 0.45 39 39 2.10 0.0230 0.20 0.56 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.40	0.0249 0.20 0.40
39 39 2.10 0.0230 0.20 0.50 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.40	39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.50	2.10 0.0249 0.20 0.45 0.3
39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45	39 39 2.10 0.0230 0.20 0.55 39 39 2.10 0.0230 0.20 0.60 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 39 2.10 0.0230 0.25 0.45	0.50
39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 30 30 2.10 0.0230 0.25 0.45	39 39 2.10 0.0230 0.20 0.60 39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45	2.10 0.0249 0.20 0.55 0.6
39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 30 30 2.10 0.0320 0.25 0.45	39 39 2.10 0.0230 0.20 0.65 39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45	
39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 30 30 310 0.030 0.35 0.45	39 39 2.10 0.0230 0.20 0.70 39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.45	0.0249 0.20 0.65
39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 30 30 2.10 0.0230 0.25 0.45	39 39 2.10 0.0230 0.25 0.40 39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.50	0.0249 0.20 0.70
39 39 2.10 0.0230 0.25 0.45 30 30 2.10 0.0230 0.25 0.50	39 39 2.10 0.0230 0.25 0.45 39 39 2.10 0.0230 0.25 0.50	0.0249 0.25 0.40
30 30 910 00330 095 050	39 39 2.10 0.0230 0.25 0.50	0.25 0.45
00.0 62.0 0620.0 01.7 66 66		0.0249 0.25 0.50

2.10 0.0230 0.25 0.50 0.6198

Table B.5: continue on next page

Table B.5: continue on next page

s $page$	power	0.7755	0.8856	0.9505	0.9955	0.2638	0.4268	0.5993	0.7526	0.8694	0.9443	0.4061	0.5756	0.7388	0.2394	0.3930	0.2997	0.5336	0.7363	0.8720	0.9471	0.9949	0.4038	0.5996	0.7690	0.8865	0.9529	0.9838	0.9955	0.9990	0.3365	0.5230	0.6999	0.9268	0.9731	0.9921	0.9982	0.2990	0.4764	0.6583	0.8097	0.9109	0.9653	0.9888	0.9816	0.4566
reviou	p2	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	0.00	0.0	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.00	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.45
from p	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.50	0.00	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.00	0.0	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.10	2.5	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.40	0.25
-continued from previous page	pvalue	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238
5: -con	$\mathbf{z}_{\mathbf{u}}$	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	01.7	2.10	2.10	2.10	2.10	2.10	2.10	2.08	2.08	2.08	20.0	00.0	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	00.7	00.0	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	00.00	2.08
В.	$^{\mathrm{n}_{2}}$	39	33	30	39	39	33	33	33	600	30	39	39	39	39	33	40	40	040	040	9 5	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	40	2 7	40
Table	$^{\rm n_1}$	39	30	30	33	39	39	33	666	000	000	33	39	39	39	33	40	40	40	040	0,7	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	0.7	40
	power	0.4607	0.5874	0.7099	0.8977	0.1414	0.2215	0.3247	0.4467	0.5778	0.7052	0.2147	0.3190	0.4432	0.1326	0.2132	0.1652	0.3101	0.4656	0.6111	0.733	0.8981	0.2408	0.3578	0.4827	0.6062	0.7198	0.8163	0.8910	0.9428	0.1901	0.2874	0.4027	0.555	0.7700	0.8622	0.9273	0.1588	0.2492	0.3635	0.4942	0.6283	0.7511	0.8505	0.3212	0.2352
	p2	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	0.00	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.70	0.30	3.0	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.15	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.0	0.45
	p1	0.25	0.25	0.20	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.00	0.0	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25
	pvalue	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248
	$\mathbf{z}_{\mathbf{u}}$	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	07.70	2.10	2.10	2.10	2.10	2.10	2.10	2.17	2.17	2.17	2.T.	2.1.0	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	7 T. C	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2 1.1	2.17
	$^{\rm n_2}$	20	50	020	20	20	20	50	50	0 0	000	20	20	20	20	50	21	77.	17.	7 5	170	21	21	21	21	21	21	21	21	21	27	7.7	176	1 6	21	21	21	21	21	21	21	21	21	21	1 1 1 1	21
	$^{\mathrm{n}_{1}}$	20	20	0.00	20	20	20	50	500	0 7 6	0.00	20	20	20	20	20	21	77.	7.7	17 6	1 6	21	21	21	21	21	21	21	21	21	21	7.7	176	2 17	21	21	21	21	21	21	21	21	21	21	2.1	21

power			0.8949			_	_	_			0.9494	_			0.2441		_	_	_	0.9802	_		0.7035				_	0.9999			-		0.9920		_	_	0.7616			0.9975	
p2	0.50	0.55	0.60	0.00	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.45	0.25	0.30	0.33	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.55	09.0	0.65	
\mathbf{p}_{1}	0.25	0.25	0.25	0.40	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	
pvalue	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	
$\mathbf{z}_{\mathbf{n}}$	2.08	2.08	20.0	00.7	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	0.00	2.05	2.05	2.02	2.05 0.5	2.05	2.05	2.05	2.03	2.05	2.05	2.02	2.05	2.05	2.05	2.05	2.05	2.05	2002	2.05	2.05	2.05	2.05	2.05	2.05	
$^{\mathrm{n}_{2}}$	40	40	04.0	40	40	40	40	40	40	40	40	40	40	40	40	04 75	20	20	20	0 0 0 0	20	20	200	. r.	20	20	20	200		20	20	20	200	0 r.	20	20	200	20.00	20	50	
$^{\rm n_1}$	40	40	040	40	40	40	40	40	40	40	40	40	40	40	40	2 r.	20	20	20	0.00	20	20	500	0 10	50	20	20	000	0 2.0	20	20	50	00.	0 10	50	20	500	20.02	20	ν. Ο)
power	0.3506	0.4832	0.6195	0.8465	0.9195	0.1433	0.2336	0.3489	0.4811	0.6172	0.7430	0.2354	0.3496	0.4809	0.1475	0.2303	0.3284	0.4878	0.6342	0.7554	0.9121	0.2515	0.3734	0.5029	0.7446	0.8393	0.9095	0.9554	0.3023	0.4254	0.5584	0.6881	0.8006	0.9438	0.1687	0.2677	0.3913	0.6657	0.7852	0.8772	
p2	0.50	0.55	0.00	0.62	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.45	0.25	0.30	0.30	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.52	09.0	0.65	
p1	0.25	0.25	0.75 0.75	0.60	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	
pvalue	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	
$\mathbf{z}_{\mathbf{u}}$	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17 2.17	2.17	2.17	2.17	2.17	2.17	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	
$^{\mathrm{n}_{2}}$	21	21	17.0	2.5	21	21	21	21	21	21	21	21	21	21	21	2.5	22	22	22	2 5	22	22	22	7 6	22	22	22	5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22	22	22	7 7	2 6	22	22	55	222	22	22	
$_{1}$	21	21	7 5	1 5	21	21	21	21	21	21	7 7	21	21	21	5 5	25	22	22	22	2 5	22	22	55	222	22	22	22	225	2 2 2 2 2 2	22	22	22	7 7	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22	22	5 5	22	22	22	

Table B.5: continue on next page

Table B.5: continue on next page

us page	power	0.5496	0.7391	0.8751	0.9845	0.9963	0.9994	0.3366	0.5327	0.7165	0.8548	0.9816	0.3212	0.5047	0.6895	0.8422	0.2991	0.4870	0.7165	0.8948	0.9704	0.9937	0.9990	0.9999	0.5792	0.9216	0.9769	0.9948	0.9991	0.9999	1.0000	0.4954	0.8735	0.9555	0.9880	0.9976	0.9997	1.0000	0.4392	0.0080	0.9368	0.9822	0.9964	0.9995	0.9999
revion	p2	0.45	0.50	0.55	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.55	09.0	0.65	0.70
rom p	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245
	$\mathbf{z}_{\mathbf{u}}$	2.05	2.02	2.05 0.5	2.05	2.05	2.05	2.05	2.05	2.05	2.05 0.05	2.03	2.05	2.05	2.02	2.05	2.05	2.05 0.5	2.05	2.05	2.05	2.02	2.05	2.02	2.05	2.05	2.05	2.05	2.02	2.05	2.05	2.05	2.05	2.05	2.02	2.05	2.02	2.05	2.05	20.0 0 E	2.05	2.05	2.05	2.05	2.05
le B.5:	$^{\mathrm{n}_{2}}$	20	20	0° 50	20	20	20	20	20	20	00.0	0 rc	20	20	20	20	20.	000	8 9	09	09	09	09	09	99	09	09	09	09	09	9 8	9 9	09	09	09	09	09	09	99	09	8 9	09	09	09	09
Table	$^{\rm n_1}$	20	20	0°0 0°7	20	20	20	20	20	20	0 v	0 rc	20	20	20	20	50	00	09	09	09	09	09	09	09	09	09	09	09	09	09	00	09	09	09	09	09	09	09	00	09	09	09	09	09
	power	0.2575	0.3820	0.5208	0.7796	0.8737	0.9375	0.1589	0.2580	0.3815	0.5192	0.7781	0.1622	0.2603	0.3824	0.5190	0.1644	0.2013	0.2919	0.4399	0.5922	0.7297	0.8380	0.9125	0.2201	0.4953	0.6374	0.7613	0.8579	0.9248	0.9654	0.1908	0.4423	0.5848	0.7176	0.8269	0.9056	0.9549	0.1756	0.2848	0.5607	0.6960	0.8088	0.8919	0.9460
	p2	0.45	0.50	0.55	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	0.60	0.50	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237
	$\mathbf{z}_{\mathbf{n}}$	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17
	$^{\mathrm{n}_{2}}$	22	22	2 22	222	22	22	22	22	55	7 5	2 6	22	22	22	22	7.7	7 6	23	23	23	23	23	23	2 13	23	23	23	23	23	223	2 6	23	23	23	23	23	23	5 73	2 6	2 6	23	23	23	23
	$^{\mathrm{n}_{1}}$	22	22	7 7	222	22	22	22	22	22	77.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22	22	22	22	7.7	7 6	23	23	23	23	23	23	2 13	23	23	23	23	23	233	0.6	23	23	23	23	23	23	233	2 6	2 6	23	23	23	23

22.17 0.0 22.17 0.0 22.17 0.0 22.17 0.0 22.17 0.0 22.17 0.0 22.17 0.0 22.17 0.0					T		n _z	pyarac	ы		
	0.0237	0.25	0.40	0.1712	09	09	2.05	0.0245	0.25	0.40	0.4017
	0.0237	0.25	0.45	0.2779	09	09	2.05	0.0245	0.25	0.45	0.6240
	0.0237	0.25	0.50	0.4075	09	09	2.05	0.0245	0.25	0.50	0.8115
	0.0237	0.25	0.60	0.6793	09	8 9	2.05	0.0245	0.25	0.60	0.9781
	0.0237	0.25	0.65	0.7932	09	09	2.05	0.0245	0.25	0.65	0.9950
	0.0237	0.25	0.70	0.8812	09	09	2.02	0.0245	0.25	0.70	0.9992
	0.0237	0.25	0.75	0.9416	09	09	2.02	0.0245	0.25	0.75	0.9999
	0.0237	0.30	0.45	0.1712	09	09	2.05	0.0245	0.30	0.45	0.3895
	0.0237	0.30	00.00	0.2737	09	00	2.05 0.05	0.0245	0.30	0.00 7.00 7.00	0.6104
	0.0237	0.30	0.00	0.5374	00	8 9	0.00	0.0245	0.50	0.00	0.1870
	0.0237	0.30	0.65	0.6659	09	8 9	2.05	0.0245	0.30	0.65	0.9728
	0.0237	0.30	0.70	0.7856	09	09	2.05	0.0245	0.30	0.70	0.9940
	0.0237	0.35	0.50	0.1691	09	09	2.05	0.0245	0.35	0.50	0.3797
	0.0237	0.35	0.55	0.2672	09	09	2.05	0.0245	0.35	0.55	0.5896
	0.0237	0.35	09.0	0.3884	09	09	2.05	0.0245	0.35	09.0	0.7765
	0.0237	0.35	0.65	0.5255	09	99	2.05	0.0245	0.35	0.65	0.9065
2.17 0.0	0.0237	0.40	0.55	0.1657	09	09	2.05 0.05	0.0245	0.40	0.55	0.3595
	0.0237	0.40	0.00	0.2006	200	3 2	200.2	0.0249	0.40	0.00	0.5050
_	0.0245	0.05	0.20	0.3629	20	20	2.00	0.0249	0.05	0.20	0.7938
	0.0245	0.05	0.25	0.5290	20	20	2.00	0.0249	0.05	0.25	0.9395
	0.0245	0.05	0.30	0.6763	20	20	2.00	0.0249	0.02	0.30	0.9874
2.12 0.0	0.0245	0.05	0.35	0.7937	70	2 2	2.00	0.0249	0.05	0.35	0.9981
	0.0245	0.0	0.45	0.8790	2 0	2 2	00.7	0.0249	0.00	0.40	1 0000
	0.0245	0.10	0.25	0.2724	20	2.2	2.00	0.0249	0.10	0.25	0.6605
	0.0245	0.10	0.30	0.4042	20	70	2.00	0.0249	0.10	0.30	0.8601
	0.0245	0.10	0.35	0.5433	20	20	2.00	0.0249	0.10	0.35	0.9569
	0.0245	0.10	0.40	0.6765	20	20	2.00	0.0249	0.10	0.40	0.9902
	0.0245	0.10	0.45	0.7916	20	20	2.00	0.0249	0.10	0.45	0.9984
	0.0245	0.10	0.50	0.8800	20	0 1	2.00	0.0249	0.10	0.50	0.9998
2.12 0.0	0.0245	0.10	0.55	0.9393	1 40	2 2	2.00	0.0249	0.10	0.55	1.0000
	0.0245	0.10	0.00	0.9736	2 0	2 2	200.2	0.0243	0.10	0.00	0.5662
	0.0245	0.15	0.35	0.3352	202	202	2.00	0.0249	0.15	0.35	0.7872
	0.0245	0.15	0.40	0.4737	20	20	2.00	0.0249	0.15	0.40	0.9218
2.12 0.0	0.0245	0.15	0.45	0.6173	20	20	2.00	0.0249	0.15	0.45	0.9789
_	0.0245	0.15	0.50	0.7478	20	20	2.00	0.0249	0.15	0.50	0.9959
_	0.0245	0.15	0.55	0.8511	20	20	2.00	0.0249	0.15	0.55	0.9994
_	0.0245	0.15	0.60	0.9220	20	29	2.00	0.0249	0.15	0.60	0.9999
2.12	0.0245	0.15	0.65	0.9640	10	2 2	2.00	0.0249	0.15	0.65	1.0000
	0.0245	0.20	0.00	0.1919	2 0	2 2	00.7	0.0249	0.20	0.00	0.0000
_	0.0245	0.20	0.45	0.4470	20	2 2	2.00	0.0249	0.20	0.45	0.8922
_	0.0245	0.20	0.50	0.5921	20	20	2.00	0.0249	0.20	0.50	0.9664
	0.0245	0.20	0.55	0.7245	20	20	2.00	0.0249	0.20	0.55	0.9925
2.12 0.0	0.0245	0.20	0.60	0.8305	70	2 2	2.00	0.0249	0.20	0.60	0.9989

Table B.5: continue on next page

Table B.5: continue on next page

		ı																																											
is page	power	1.0000	0.4694	0.8664	0.9570	0.9904	0.9986	0.9999	1.0000	0.4402	0.0744	0.9534	0.9896	0.9985	0.4336	0.6694	0.8528	0.9525	0.4557	0.5728	0.8489	0.9638	0.9941	0.9993	0.9999	1.0000	0.7091	0.9370	0.9958	0.9995	1.0000	1.0000	1.0000	0.8402	0.9514	0.9896	0.9985	0.99999	1.0000	0.5641	0.7942	0.9293	0.9825	0.9969	0.9997
reviou	P2	0.70	0.40	0.40	0.55	09.0	0.65	0.70	0.75	0.45	0.00	0.60	0.65	0.70	0.50	0.55	0.60	0.65	0.00	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	09.0
$\hat{r}om$	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.13	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0243	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245
	$\mathbf{z}_{\mathbf{u}}$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.2	2.00	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01
le B.5:	$^{\mathrm{n}_{2}}$	20	2 2	9.9	20	20	20	20	21	2 2	9 9	2 2	202	20	20	20	2	2 2	3 9	2 &	80	80	80	80	80	200	8 8	8 8	80	80	80	80	8 8	08	80	80	80	80	08 S	000	08	80	80	80	80
Table	1 u	70	100	2 0	20	20	20	20	0 i	10	2 0	20	20	20	20	20	20	20	10	2 &	80	80	80	80	80	000	200	8	80	80	80	80	000	000	80	80	80	80	80	000	80	80	80	80	80
	power	0.9534	0.1862	0.2994	0.5716	0.7001	0.8081	0.8909	0.9477	0.1839	0.2896	0.5474	0.6786	0.7968	0.1764	0.2750	0.3966	0.5353	0.1079	0.2073	0.3793	0.5482	0.6956	0.8109	0.8926	0.9450	0.2826	0.5636	0.6991	0.8129	0.8965	0.9498	0.9789	0.3524	0.4971	0.6422	0.7689	0.8650	0.9290	0.9000	0.3245	0.4650	0.6065	0.7324	0.8330
	p ₂	0.70	0.40	0.40	0.55	09.0	0.65	0.70	0.75	0.45	0.00 R	0.60	0.65	0.70	0.50	0.55	0.60	0.65	0.00	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	09.0
	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232
	$\mathbf{z}_{\mathbf{n}}$	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	21.7	21.7	2.10	2.10	2.10	2.10	2.10	2.10	2. IO	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
	$^{\mathrm{n}_{2}}$	24	42.0	2 24	24	24	24	24	77	42.5	77.0	4 2	24	24	24	24	24	77.7	4 5	4 C	25	22	22	22	22	2 7 2	2 г С п	0 6 57 0	25	25	22	222	2 Z	2 12	25	25	22	22	22.0	и С п	2 12	25	22	22	22
	$^{\mathrm{n}_{1}}$	24	77.7	4 2	24	24	24	24	27	77.0	77.0	4 2	24	24	24	24	24	77.7	77 0	4 C	25	22	25	22	25	2 12	υ ς Ω μ	2 10	25	25	22	22	27.2	2 12	25	22	22	22	222	о с С п	2 22	25	22	22	22

power		0 1.0000		_			_	0 1.0000					0.9950			0 0.8894			_	0 0.8904 7 0.9794		_	1.0000	_			0.9983				0.6784			0 0.9994				_	A 0 0 5 2 6
P2		0.70							0.73				0.00			0.60				0.20			0.40				0.40				0.35			0.50					
P1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.33	0.40	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	000
pvalue	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	
zn	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	٥
$^{\mathrm{n}_{2}}$	80	80	8 8	80	80	80	08	080	2 2	8 8	80	80	2 2	80	80	08	8 8	80	06	06 6	8 6	06	06 8	8 6	06	06	8 8	8 6	06	8 8	06	06	06	06	06	06	06	06	
$^{\mathrm{n}_{1}}$	80	80	80	80	80	80	80	80	8 8	80	80	80	08	80	80	80	8	80	06	06	06	06	06	06	90	90	060	06	06	06	06	90	06	06	06	90	06	90	0
power	0.9061	0.9539	0.3056	0.4347	0.5682	0.6946	0.8043	0.8902	0.9486	0.2815	0.4019	0.5350	0.6701	0.1647	0.2594	0.3805	0.5221	0.2507	0.2226	0.3951	0.7138	0.8268	0.9049	0.2929	0.4355	0.5841	0.7215	0.9117	0.9592	0.9836	0.2374	0.5216	0.6685	0.7919	0.9399	0.9729	0.2161	0.3441	2007
P2	0.65	0.70	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.50	0.55	0.60	0.00	0.50	0.55	0.60	0.00	09.0	0.15	0.20	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.60	0.65	0.35	0.40	2
P1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	000
pvalue	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	2.7.7.
zn	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	5.06	900
$_{1}^{n}$	25	25.5	2 10	22	25	25	222	222	0 K	22	25	25.5	0 70 0 70	25	25	200	0 10 57 0	25	26	26 26	26	26	56	26	26	26	56 26	26	26	26	26	26	26	26	26	26	26	52	900
$^{\rm n_1}$	25	22	2 22	25	25	22	52	22.2	0 70	22	25	22.5	0 7 2 10	25	25	22.5	0 70	25	26	26	26	26	56	26	26	26	56	26	26	56	26	26	26	56	26	26	56	5 26	3

Table B.5: continue on next page

Table B.5: continue on next page

s page	power	0.9999	1.0000	0.5720	0.8092	0.9401	0.9869	0.9981	1.0000	1.0000	0.5491	0.7828	0.9247	0.9827	0.9976	0.9998	0.7593	0.9170	0.9816	0.5028	0.7543	0.6640	0.9156	0.9874	0.9988	0.9999	1.0000	0.0000	0.9516	0.9924	0.9992	1.0000	1.0000	1.0000	1.0000	0.0007	0.9811	0.9975	0.9998	1.0000	1.0000	1.0000	0.6568	0.8730	0.9950
reviou	p 2	0.60	0.65	0.40	0.45	0.50	0.55	0.60	0.02	0.70	0.45	0.50	0.55	0.60	0.65	0.70		0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.50
from p	p1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.70	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.1.0	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20
-continued from previous page	pvalue	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0220	0.0250	0.0250	0.0250	0.0250	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0240	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248
	$\mathbf{z}_{\mathbf{u}}$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.2	2.00	2.00	2.00	2.00	2.00	00.2	00:00	2.00	2.00	2.00	2.00	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	10.0	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01
e B.5:	$^{\rm n_2}$	06	06	06	06	06	06	06	3 8	000	8 6	06	06	06	06	G 6	86	06	06	06	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$_{1}^{n}$	06	06	06	06	06	06	06	000	000	06	90	06	06	06	000	000	06	06	06	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	power	0.8508	0.9194	0.2056	0.3222	0.4548	0.5906	0.7178	0.8257	0.9008	0.1905	0.2958	0.4219	0.5602	0.6972	0.8169	0.2750	0.4034	0.5497	0.1639	0.2678	0.1936	0.3482	0.5229	0.6882	0.8188	0.9065	0.9575	0.4298	0.5916	0.7351	0.8456	0.9197	0.9629	0.9850	0.2393	0.5325	0.6766	0.7958	0.8836	0.9413	0.9746	0.2183	0.3445	0.6269
	p2	09.0	0.65	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50	0.55	0.60	0.65	0.70	25.0	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	00.0	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50
	p1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.75	0.75	0.30	0.30	0.30	0.30	0.30	0.30	3.50	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.1.0	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20
	pvalue	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223
	$\mathbf{z}_{\mathbf{u}}$	2.06	2.06	2.06	2.06	2.06	2.06	5.06	90.7	00.2	2.06	2.06	2.06	2.06	5.06	90.7	20.20	2.06	2.06	2.06	2.06	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11
	$^{\rm n_2}$	26	26 26	26	26	56	26	56	200	070	26	26	56	26	56	076	92	26	26	26	56	27	27	27	27	2 7.	7 10	27	27	27	27	27	27	27	1 -	1 0	27	27	27	27	27	27	27	2 7.2	27
	\mathbf{n}_1	26	5e	26	26	56	26	50	97.	070	26	26	26	26	50	076	92	26	26	26	56	27	27	22	27	27.5	7 1	27.	27	27	27	27	27	27	2 6	1 - 0	27	27	27	27	27	27	27	2 7.2	27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.000000000000000000000000000000000000	00000000000000000000000000000000000000	20000000000000000000000000000000000000	
			0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.20 0.20 0.20 0.20 0.25 0.25 0.25 0.25	0.020 0.020 0.020 0.020 0.020 0.030	0.020 0.20 0.20 0.25 0.25 0.25 0.25 0.25			
0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248									
0.25 0.25 0.25 0.25	0.25 0.25 0.25 0.25 0.25 0.25 0.30 0.30	0.25 0.25 0.25 0.25 0.25 0.30 0.30 0.30 0.30	0.25 0.25 0.25 0.25 0.25 0.30 0.30 0.30 0.33 0.33 0.35 0.35	0.25	0.25	0.25	0.25	0.25	0.25
0.0223	0.0223 0.0223 0.0223 0.0223 0.0223 0.0223								
	27 2.11 27 2.11 27 2.11 27 2.11								

Table B.5: continue on next page

p ₂ power							_	_	_	Ī					_	_	0.55 0.9928	_			_	Ī	Ī	_	_	_	Table B.5: concluded from previous page
p ₁		0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	ta most
z _u pvalue p ₁ p ₂ I		0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	cluded
		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	5:con
n ₁ n ₂	1	150	120	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	le B.
n	ı i	150	120	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	Tab
power		0.6490	0.7751	0.8730	0.9386	0.9754	0.2089	0.3291	0.4706	0.6188	0.7546	0.8621	0.9341	0.9742	0.1935	0.3112	0.4546	0.6073	0.7481	0.8595	0.1876	0.3058	0.4506	0.6050	0.1870	0.3052	
P2	i i	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	
P1		0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	
pvalue	1000	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	
z	9	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	
n2	9	20	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	
n	9	8	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	

Table B.6: Achieved power and p-values calculated for the z-unpooled statistic in cases of equal sample sizes, $\alpha = 0.01$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in the first sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test.

10 1.0 2.7% 0.0064 0.05 0.15 0.0066 0.05 0.05 0.0099 0.00	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	zu	pvalue	P ₁	P2	power	$^{\mathrm{l}}$	n2	zu	pvalue	P1	P2	power
10 2.7% 0.0064 0.05 0.20 0.0199 29 2.50 0.0096 0.05 0.20 10 2.7% 0.0064 0.05 0.25 0.0479 29 2.50 0.0096 0.05 0.25 10 2.7% 0.0064 0.05 0.23 0.0479 29 2.50 0.0096 0.05 0.33 10 2.7% 0.0064 0.05 0.35 0.1574 29 2.50 0.0096 0.05 0.35 10 2.7% 0.0064 0.05 0.35 0.1574 29 29 2.50 0.0096 0.05 0.35 10 2.7% 0.0064 0.10 0.35 0.0377 29 29 2.50 0.0096 0.10 0.35 10 2.7% 0.0064 0.10 0.35 0.2479 29 2.50 0.0096 0.10 0.35 10 2.7% 0.0064 0.10 0.35 0.2479 29	10	10	2.76	0.0064	0.05	0.15	0.0060	59	56	2.50	0.0096	0.05	0.15	0.0816
10 2.77 0.00044 0.05 0.0459 2.95 2.00 0.00049 0.05 0.0459 2.95 2.00 0.00049 0.05 0.0459 0.0459 2.05 0.00049 0.00 0.0	2 -	2 -	2 1.0	0.0064		02.0	0.000	000	G C	, c	90000		0000	20000
10 2.76 0.00044 0.05 0.0434 29 2.50 0.00996 0.05 0.05 10 2.76 0.00064 0.05 0.03 0.0344 29 2.50 0.00996 0.05 0.03 10 2.76 0.0064 0.05 0.05 0.03 0.0341 29 2.50 0.0096 0.05 0.04 10 2.76 0.0064 0.05 0.45 0.0347 29 29 2.50 0.0096 0.05 0.40 10 2.76 0.0064 0.10 0.23 0.0887 29 2.50 0.0096 0.10 0.35 10 2.76 0.0064 0.10 0.35 0.037 29 29 2.50 0.0096 0.10 0.35 10 2.76 0.0064 0.10 0.35 0.381 29 2.50 0.0096 0.10 0.35 10 2.76 0.0064 0.10 0.34 29 2.50	9 6	9 6	1 -	4.0000	0.0	9 6	0.00	0 0	3 6	9 0	0000	0.0	9 6	0 0 0 0
10 2.76 0.0064 0.05 0.034 0.0344 29 2.50 0.0096 0.05 0.03 10 2.76 0.0064 0.05 0.034 0.2379 29 2.50 0.0096 0.05 0.40 10 2.76 0.0064 0.05 0.40 0.2379 29 2.50 0.0096 0.05 0.40 10 2.76 0.0064 0.10 0.23 0.0287 29 2.50 0.0096 0.10 0.40 10 2.76 0.0064 0.10 0.23 0.0387 29 29 2.50 0.0096 0.10 0.30 10 2.76 0.0064 0.10 0.36 0.037 29 29 2.50 0.0096 0.10 0.30 10 2.76 0.0064 0.10 0.34 0.235 2.20 2.50 0.0096 0.10 0.34 10 2.76 0.0064 0.10 0.36 0.235 2.20 <td>TO</td> <td>Π</td> <td>7.70</td> <td>0.0004</td> <td>0.05</td> <td>0.75</td> <td>0.0479</td> <td>23</td> <td>67</td> <td>7.50</td> <td>0.0030</td> <td>0.00</td> <td>0.75</td> <td>0.3797</td>	TO	Π	7.70	0.0004	0.05	0.75	0.0479	23	67	7.50	0.0030	0.00	0.75	0.3797
10 2.76 0.0064 0.05 0.35 0.1874 29 2.50 0.0096 0.05 0.05 0.05 10 2.76 0.0064 0.05 0.45 0.331 29 2.50 0.0096 0.05 0.45 0.004 10 2.76 0.0064 0.01 0.25 0.0387 29 2.50 0.0096 0.01 0.35 0.04 10 2.77 0.0064 0.10 0.35 0.0387 29 2.50 0.0096 0.10 0.35 0.0097 29 2.50 0.0096 0.10 0.35 0.0097 29 2.50 0.0096 0.10 0.35 0.0096 0.10 0.03 0.035 0.035 0.035 0.035 0.035 0.036 0.036 0.01 0.035 0.035 0.035 0.036 0.036 0.01 0.035 0.036 0.036 0.01 0.036 0.036 0.01 0.036 0.036 0.036 0.036 0.01	10	10	2.76	0.0064	0.02	0.30	0.0934	53	53	2.50	0.0096	0.02	0.30	0.5620
10 2.76 0.0064 0.05 0.40 0.2379 29 2.50 0.0096 0.05 0.40 10 2.76 0.0064 0.05 0.44 0.2377 29 2.50 0.0096 0.05 0.45 10 2.76 0.0064 0.10 0.39 0.0287 29 2.50 0.0096 0.10 0.39 10 2.76 0.0064 0.10 0.30 0.0377 29 2.50 0.0096 0.10 0.39 10 2.76 0.0064 0.10 0.45 0.1779 29 2.50 0.0096 0.10 0.30 10 2.76 0.0064 0.10 0.45 0.2871 29 2.50 0.0096 0.10 0.30 10 2.76 0.0064 0.10 0.45 0.2871 29 2.50 0.0096 0.10 0.30 10 2.76 0.0064 0.10 0.30 0.2871 29 2.50 0.0096	10	10	2.76	0.0064	0.05	0.35	0.1574	58	50	2.50	0.0096	0.02	0.35	0.7238
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.02	0.40	0.2379	58	59	2.50	0.0096	0.05	0.40	0.8458
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.05	0.45	0.3310	58	53	2.50	0.0096	0.05	0.45	0.9244
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.10	0.25	0.0287	29	53	2.50	0.0096	0.10	0.25	0.1662
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.10	0.30	0.0568	53	56	2.50	0.0096	0.10	0.30	0.3002
10 2.7% 0.0064 0.10 0.44 0.1516 29 250 0.0096 0.10 0.45 10 2.7% 0.0064 0.10 0.45 0.2179 29 2.50 0.0096 0.10 0.45 10 2.7% 0.0064 0.10 0.56 0.2474 29 2.50 0.0096 0.10 0.56 10 2.7% 0.0064 0.10 0.56 0.4740 29 2.50 0.0096 0.11 0.50 10 2.7% 0.0064 0.10 0.56 0.4740 29 29 2.50 0.0096 0.11 0.50 10 2.7% 0.0064 0.15 0.40 0.1412 29 29 2.50 0.0096 0.15 0.30 10 2.7% 0.0064 0.15 0.40 0.143 29 2.50 0.0096 0.15 0.30 10 2.7% 0.0064 0.15 0.40 0.1447 29	10	10	2.76	0.0064	0.10	0.35	0.0977	53	53	2.50	0.0096	0.10	0.35	0.4601
10 2.76 0.0064 0.10 0.45 0.2179 29 2.50 0.0096 0.10 0.45 10 2.76 0.0064 0.10 0.45 0.2179 29 2.50 0.0096 0.10 0.45 10 2.76 0.0064 0.10 0.56 0.2871 29 2.50 0.0096 0.10 0.50 10 2.76 0.0064 0.10 0.65 0.2873 29 2.50 0.0096 0.11 0.60 10 2.76 0.0064 0.15 0.30 0.0534 29 2.50 0.0096 0.15 0.30 10 2.76 0.0064 0.15 0.45 0.1442 29 2.50 0.0096 0.15 0.45 10 2.76 0.0064 0.15 0.45 0.1442 29 2.50 0.0096 0.15 0.45 10 2.76 0.0064 0.15 0.45 0.1442 29 2.50 0.0096	0.1	10	2.76	0.0064	010	0.30	0.1516	000	000	0.20	9600.0	0.10	0.20	0.6214
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	0.76	0.0064	0.10	24.0	0.1010	000	000	0.00	0600.0	0.10	24.0	0.7616
10 2.76 0.0064 0.10 0.55 0.3812 2.9 2.5 0.0096 0.10 0.55 10 2.76 0.0064 0.10 0.66 0.4740 29 2.50 0.0096 0.10 0.60 10 2.76 0.0064 0.11 0.60 0.4740 29 2.50 0.0096 0.11 0.60 10 2.76 0.0064 0.15 0.40 0.0949 29 2.50 0.0096 0.15 0.40 10 2.76 0.0064 0.15 0.40 0.0949 29 2.50 0.0096 0.15 0.40 10 2.76 0.0064 0.15 0.40 0.0494 29 2.50 0.0096 0.15 0.40 10 2.76 0.0064 0.15 0.40 0.0440 29 2.50 0.0096 0.15 0.40 10 2.76 0.0064 0.15 0.45 0.1848 29 2.50 0.0096	0 -	0 -	2 10	0.0064	0.10	. O	0.000	9 0	3 6	000	0.0000	0.10		0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	0 1	2 10	0.0004	0.10	0.0 H	0.2331	0 0	67 6	. v	0.0090	0.10		0.000.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,	01	0 . 70	0.0004	0.10	0.00	0.3012	67	67	00.7	0.0090	0.10	0.00	0.9501
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	5.76	0.0064	0.10	0.60	0.4740	57	67.	2.50	0.0096	0.10	0.60	0.9740
10 2.76 0.0064 0.15 0.35 0.0594 29 2.50 0.0096 0.15 0.35 10 2.76 0.0064 0.15 0.45 0.1412 29 2.50 0.0096 0.15 0.45 10 2.76 0.0064 0.15 0.45 0.1412 29 250 0.0096 0.15 0.40 10 2.76 0.0064 0.15 0.50 0.1884 29 2.50 0.0096 0.15 0.40 10 2.76 0.0064 0.15 0.60 0.3494 29 2.50 0.0096 0.15 0.40 10 2.76 0.0064 0.15 0.60 0.349 29 2.50 0.0096 0.15 0.60 10 2.76 0.0064 0.20 0.40 0.0582 29 2.50 0.0096 0.15 0.45 10 2.76 0.0064 0.20 0.45 0.089 29 2.50 0.0096 <td>10</td> <td>10</td> <td>2.76</td> <td>0.0064</td> <td>0.15</td> <td>0.30</td> <td>0.0337</td> <td>58</td> <td>53</td> <td>2.50</td> <td>0.0096</td> <td>0.15</td> <td>0.30</td> <td>0.1426</td>	10	10	2.76	0.0064	0.15	0.30	0.0337	58	53	2.50	0.0096	0.15	0.30	0.1426
10 2.76 0.0064 0.15 0.40 0.0949 29 2.50 0.0096 0.15 0.40 10 2.76 0.0064 0.15 0.45 0.1482 29 2.50 0.0096 0.15 0.45 10 2.76 0.0064 0.15 0.56 0.2884 29 2.50 0.0096 0.15 0.55 10 2.76 0.0064 0.15 0.65 0.2884 29 2.50 0.0096 0.15 0.50 10 2.76 0.0064 0.15 0.65 0.4407 29 29 2.50 0.0096 0.15 0.50 10 2.76 0.0064 0.20 0.35 0.085 29 2.50 0.0096 0.15 0.55 10 2.76 0.0064 0.20 0.45 0.088 29 2.50 0.0096 0.15 0.40 10 2.76 0.0064 0.20 0.45 0.088 29 2.50	10	10	2.76	0.0064	0.15	0.35	0.0594	58	58	2.50	0.0096	0.15	0.35	0.2569
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.15	0.40	0.0949	58	50	2.50	0.0096	0.15	0.40	0.4017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.15	0.45	0.1412	58	56	2.50	9600.0	0.15	0.45	0.5602
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.15	0.50	0.1989	58	53	2.50	0.0096	0.15	0.50	0.7102
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.15	0.55	0.2684	58	56	2.50	9600.0	0.15	0.55	0.8318
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.15	0.60	0.3494	29	53	2.50	0.0096	0.15	0.60	0.9152
10 2.76 0.0064 0.20 0.35 0.0352 29 2.50 0.0096 0.20 0.40 10 2.76 0.0064 0.20 0.40 0.0583 29 250 0.0096 0.20 0.40 10 2.76 0.0064 0.20 0.40 0.0589 29 250 0.0096 0.20 0.40 10 2.76 0.0064 0.20 0.50 0.1318 29 250 0.0096 0.20 0.40 10 2.76 0.0064 0.20 0.55 0.1857 29 250 0.0096 0.20 0.40 10 2.76 0.0064 0.20 0.55 0.1857 29 250 0.0096 0.20 0.50 10 2.76 0.0064 0.20 0.45 0.425 29 250 0.0096 0.20 0.40 10 2.76 0.0064 0.20 0.45 0.425 29 250 0.0096	10	10	2.76	0.0064	0.15	0.65	0.4407	58	56	2.50	9600.0	0.15	0.65	0.9632
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.20	0.35	0.0352	58	58	2.50	0.0096	0.20	0.35	0.1287
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.20	0.40	0.0582	58	56	2.50	9600.0	0.20	0.40	0.2337
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.20	0.45	0.0898	58	53	2.50	0.0096	0.20	0.45	0.3727
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.20	0.50	0.1318	29	53	2.50	0.0096	0.20	0.50	0.5300
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.20	0.55	0.1857	59	56	2.50	0.0096	0.20	0.55	0.6817
10 2.76 0.0064 0.20 0.65 0.3330 29 250 0.0096 0.20 0.65 10 2.76 0.0064 0.20 0.70 0.4256 29 25 0.0096 0.20 0.70 10 2.76 0.0064 0.25 0.45 0.0560 29 25 0.0096 0.25 0.45 10 2.76 0.0064 0.25 0.45 0.0560 29 25 0.0096 0.25 0.45 10 2.76 0.0064 0.25 0.45 0.0856 29 25 0.0096 0.25 0.45 10 2.76 0.0064 0.25 0.45 0.29 29 250 0.0096 0.25 0.45 10 2.76 0.0064 0.25 0.70 0.2453 29 25 0.0096 0.25 0.50 10 2.76 0.0064 0.25 0.70 0.2453 29 25 0.0096 <t< td=""><td>10</td><td>10</td><td>2.76</td><td>0.0064</td><td>0.20</td><td>0.60</td><td>0.2527</td><td>29</td><td>59</td><td>2.50</td><td>0.0096</td><td>0.20</td><td>0.60</td><td>0.8068</td></t<>	10	10	2.76	0.0064	0.20	0.60	0.2527	29	59	2.50	0.0096	0.20	0.60	0.8068
10 2.76 0.0064 0.20 0.70 0.4256 29 29 2.50 0.0096 0.20 0.70 10 2.76 0.0064 0.25 0.40 0.0348 29 250 0.0096 0.25 0.40 10 2.76 0.0064 0.25 0.40 0.0348 29 250 0.0096 0.25 0.40 10 2.76 0.0064 0.25 0.50 0.0856 29 29 2.50 0.0096 0.25 0.40 10 2.76 0.0064 0.25 0.55 0.1259 29 250 0.0096 0.25 0.50 10 2.76 0.0064 0.25 0.55 0.1259 29 2.50 0.0096 0.25 0.55 10 2.76 0.0064 0.25 0.70 0.3265 29 250 0.0096 0.25 0.55 10 2.76 0.0064 0.25 0.70 0.3265 29	10	10	2.76	0.0064	0.20	0.65	0.3330	29	53	2.50	0.0096	0.20	0.65	0.8957
10 2.76 0.0064 0.25 0.40 0.0348 29 250 0.0096 0.25 0.40 10 2.76 0.0064 0.25 0.40 0.0356 29 29 2.50 0.0096 0.25 0.45 10 2.76 0.0064 0.25 0.50 0.025 29 29 2.50 0.0096 0.25 0.50 10 2.76 0.0064 0.25 0.60 0.1787 29 29 2.50 0.0096 0.25 0.50 10 2.76 0.0064 0.25 0.60 0.1787 29 29 2.50 0.0096 0.25 0.55 10 2.76 0.0064 0.25 0.70 0.3265 29 29 2.50 0.0096 0.25 0.65 10 2.76 0.0064 0.25 0.75 0.4214 29 250 0.0096 0.25 0.65 10 2.76 0.0064 0.30 <	10	10	2.76	0.0064	0.20	0.70	0.4256	58	53	2.50	0.0096	0.20	0.70	0.9510
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.25	0.40	0.0348	58	56	2.50	9600.0	0.25	0.40	0.1236
10 2.76 0.0064 0.25 0.50 0.0856 29 29 2.50 0.0096 0.25 0.50 10 2.76 0.0064 0.25 0.55 0.1287 29 29 2.50 0.0096 0.25 0.55 10 2.76 0.0064 0.25 0.65 0.2453 29 29 2.50 0.0096 0.25 0.55 10 2.76 0.0064 0.25 0.70 0.3265 29 29 2.50 0.0096 0.25 0.65 10 2.76 0.0064 0.25 0.70 0.3265 29 29 2.50 0.0096 0.25 0.70 10 2.76 0.0064 0.25 0.70 0.3265 29 2.50 0.0096 0.25 0.70 10 2.76 0.0064 0.30 0.45 0.0340 29 2.50 0.0096 0.35 0.45 10 2.76 0.0064 0.30	10	10	2.76	0.0064	0.25	0.45	0.0560	58	56	2.50	9600.0	0.25	0.45	0.2244
10 2.76 0.0064 0.25 0.55 0.1259 29 2.50 0.0096 0.25 0.55 10 2.76 0.0064 0.25 0.66 0.1787 29 2.50 0.0096 0.25 0.65 10 2.76 0.0064 0.25 0.70 0.3265 29 2.50 0.0096 0.25 0.60 10 2.76 0.0064 0.25 0.70 0.3265 29 29 2.50 0.0096 0.25 0.70 10 2.76 0.0064 0.25 0.77 0.4314 29 29 2.50 0.0096 0.25 0.75 10 2.76 0.0064 0.30 0.50 0.044 29 29 2.50 0.0096 0.35 0.45 10 2.76 0.0064 0.30 0.50 0.0543 29 250 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.55 0.083	10	10	2.76	0.0064	0.25	0.50	0.0856	59	56	2.50	9600.0	0.25	0.50	0.3571
10 2.76 0.0064 0.25 0.60 0.1787 29 29 2.50 0.0096 0.25 0.60 10 2.76 0.0064 0.25 0.65 0.2453 29 29 2.50 0.0096 0.25 0.65 10 2.76 0.0064 0.25 0.75 0.4214 29 29 2.50 0.0096 0.25 0.65 10 2.76 0.0064 0.25 0.75 0.4214 29 29 2.50 0.0096 0.25 0.75 10 2.76 0.0064 0.30 0.45 0.0340 29 2.50 0.0096 0.35 0.75 10 2.76 0.0064 0.30 0.50 0.0543 29 29 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.60 0.0131 29 29 2.50 0.0096 0.30 0.65 10 2.76 0.0064	10	10	2.76	0.0064	0.25	0.55	0.1259	59	50	2.50	9600.0	0.25	0.55	0.5063
10 2.76 0.0064 0.25 0.65 0.2453 29 29 2.50 0.0096 0.25 0.65 10 2.76 0.0064 0.25 0.70 0.3265 29 250 0.0096 0.25 0.70 10 2.76 0.0064 0.25 0.77 0.340 29 29 2.50 0.0096 0.25 0.75 10 2.76 0.0064 0.30 0.45 0.044 29 29 2.50 0.0096 0.30 0.45 10 2.76 0.0064 0.30 0.50 0.0543 29 250 0.0096 0.30 0.50 10 2.76 0.0064 0.30 0.55 0.083 29 250 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.65 0.1231 29 29 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.65 <t< td=""><td>10</td><td>10</td><td>2.76</td><td>0.0064</td><td>0.25</td><td>09.0</td><td>0.1787</td><td>58</td><td>56</td><td>2.50</td><td>9600.0</td><td>0.25</td><td>0.60</td><td>0.6522</td></t<>	10	10	2.76	0.0064	0.25	09.0	0.1787	58	56	2.50	9600.0	0.25	0.60	0.6522
10 2.76 0.0064 0.25 0.70 0.3265 29 25.0 0.0096 0.25 0.75 10 2.76 0.0064 0.25 0.75 0.4214 29 29 2.50 0.0096 0.25 0.75 10 2.76 0.0064 0.30 0.45 0.0340 29 29 2.50 0.0096 0.35 0.45 10 2.76 0.0064 0.30 0.50 0.0543 29 2.50 0.0096 0.30 0.50 10 2.76 0.0064 0.30 0.55 0.083 29 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.55 0.083 2.9 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.65 0.1759 29 2.50 0.0096 0.30 0.65	10	10	2.76	0.0064	0.25	0.65	0.2453	59	50	2.50	9600.0	0.25	0.65	0.7789
10 2.76 0.0064 0.25 0.75 0.4214 29 29 2.50 0.0096 0.25 0.75 0.75 10 2.76 0.0064 0.30 0.45 0.0340 29 2.50 0.0096 0.30 0.45 10 2.76 0.0064 0.30 0.50 0.0543 29 29 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.65 0.083 29 29 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.60 0.1231 29 29 2.50 0.0096 0.30 0.65 10 2.76 0.0064 0.30 0.65 0.1759 29 25 0.0096 0.30 0.60	10	10	2.76	0.0064	0.25	0.70	0.3265	58	56	2.50	9600.0	0.25	0.70	0.8773
10 2.76 0.0064 0.30 0.45 0.0340 29 250 0.0096 0.30 0.45 0.45 10 2.76 0.0064 0.30 0.50 0.0543 29 250 0.0096 0.30 0.50 10 2.76 0.0064 0.30 0.65 0.0331 29 29 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.60 0.1331 29 29 2.50 0.0096 0.30 0.60 10 2.76 0.0064 0.30 0.65 0.1759 29 29 2.50 0.0096 0.30 0.60 10 2.76 0.0064 0.30 0.65 0.1759 29 250 0.0096 0.30 0.65 0.65	10	10	2.76	0.0064	0.25	0.75	0.4214	58	59	2.50	0.0096	0.25	0.75	0.9441
10 2.76 0.0064 0.30 0.50 0.0543 29 29 2.50 0.0096 0.30 0.50 10 2.76 0.0064 0.30 0.55 0.0231 29 29 2.50 0.0096 0.30 0.50 10 2.76 0.0064 0.30 0.65 0.1231 29 29 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.65 0.1759 29 29 2.50 0.0096 0.30 0.65 10 2.76 0.0064 0.30 0.65 0.1759 29 29 2.50 0.0096 0.30 0.65 10 2.76 0.0064 0.30 0.65 0.1759 29 29 2.50 0.0096 0.30 0.65 10 2.76 0.0064 0.30 0.65 0.1759 29 29 2.50 0.0096 0.30 0.65 10 2.76 0.0064 0.30 0.0064 0.0064 0.30 0.0064 0.0064 0.0064 0.	10	10	2.76	0.0064	0.30	0.45	0.0340	58	53	2.50	9600.0	0.30	0.45	0.1213
10 2.76 0.0064 0.30 0.55 0.0833 29 29 2.50 0.0096 0.30 0.55 10 2.76 0.0064 0.30 0.60 0.1231 29 29 2.50 0.0096 0.30 0.60 10 2.76 0.0064 0.30 0.65 0.1759 29 2.50 0.0096 0.30 0.65	10	10	2.76	0.0064	0.30	0.50	0.0543	58	56	2.50	9600.0	0.30	0.50	0.2148
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	2.76	0.0064	0.30	0.55	0.0833	59	56	2.50	9600.0	0.30	0.55	0.3366
10 2.76 0.0064 0.30 0.65 0.1759 29 29 2.50 0.0096 0.30 0.65	10	10	2.76	0.0064	0.30	09.0	0.1231	58	53	2.50	0.0096	0.30	0.60	0.4775
	10	10	2.76	0.0064	0.30	0.65	0.1759	59	56	2.50	9600.0	0.30	0.65	0.6252

Table B.6: continue on next page

s $page$	power	0.7643	0.1144	0.1996	0.4627	0.1063	0.1915	0.0887	0.2232	0.4011	0.5867	0.7470	0.9359	0.1770	0.3179	0.4832	0.6461	0.7838	0.8840	0.9464	0.9790	0.2728	0.4237	0.5850	0.7323	0.8470	0.9231	0.9664	0.1375	0.2480	0.3903	0.5460	0.8120	0.8987	0.9536	0.1298	0.2314	0.3617	0.5074	0.6525	0.7816	0.8823	0.9484	0.2115	0.3316	0.4748
reviou	p2	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50 88	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.7 0.7	0.50	0.55	09.0
from p	p1	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.20	0.30	0.30	0.30
-continued from previous page	pvalue	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0092	0.0092	0.0092	0.0092	0.0092	0.0032	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.000	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0032	0.0092	0.0092
	$\mathbf{z}_{\mathbf{u}}$	2.50	2.50	2.50	2.50	2.50	2.50	2.48	2.48	2.48	2.48	84.2	04.2	2.48	2.48	2.48	2.48	2.48	2.48	84.2	24.7 84.0	64.2 0 4.8 0 8	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	84.7	24.7 84.0	24.5	2.48	2.48	2.48	2.48	2.48	2.48	2.48	84.7	84.2	84.0	04.2	2.48	2.48
e B.6:	$^{\rm n_2}$	59	29	67.6	29	53	59	30	30	30	30	9 6	9 6	30	30	30	30	30	S 8	30	000	000	30	8 8	30	30	30	30	30	900	90	9 8	8	300	30	30	30	30	30	30	080	200	000	9 6	30	30
Table	$_{1}$	29	29	50	29	29	59	30	30	30	30	30	30	30	30	30	30	30	30	30	90	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	300	200	30	30	30
	power	0.2433	0.0335	0.0536	0.0324	0.0334	0.0534	0.0091	0.0293	0.0678	0.1271	0.2063	0.3011	0.0391	0.0752	0.1261	0.1914	0.2699	0.3595	0.4572	0.5590	0.0455	0.1198	0.1772	0.2483	0.3327	0.4284	0.5318	0.0444	0.0736	0.1144	0.1685	0.3206	0.4166	0.5215	0.0443	0.0723	0.1119	0.1651	0.2333	0.3165	0.4129	0.5191	0.0440	0.1116	0.1645
	p2	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.55	00.0	0.32	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	00.00	09.00	0.65	0.70	0.40	0.45	0.50	0.52	09.0	0.65	0.70	0.70 0.71	0.50	0.55	09.0
	p1	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.52	0.25	0.25	0.25	0.20	0.30	0.30	0.30
	pvalue	0.0064	0.0064	0.0064	0.0064	0.0064	0.0064	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087
	$\mathbf{z}_{\mathbf{u}}$	2.76	2.76	2.76	2.76	2.76	2.76	2.63	2.63	2.63	2.63	2.63	2 63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	20.00	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	63.0	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.03	2.03	2.63	2.63	2.63
	$^{\rm n_2}$	10	10	10	10	10	10	11	11	11	Ξ;	Ι:	I :	11	11	11	11	Π;	Ξ;	Π:	I :	: :	: :	11	11	11	11	11	Π;	Ξ;	Ξ;	Ι:	: :	11	11	11	11	Π	11	11	Ι;	I :	I :	: :	11	11
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	11	11	11	Π;	Ξ:	T =	11	11	11	11	11	11	Π:	Ι:	: :	11	11	11	11	11	11	11	Ξ;	Ξ;	I :	1 :	11	11	11	11	11	11	11	Π;	I :	Ι:	1 :	11	11

p2 power		0.70 0.7701		_	0.65 0.4627		_	_		0.25 0.4414		_	_	_	0.30 0.3372		_	_	_	_	0.30 0.1618			_	0.55 0.8649			_	_	0.50 0.5705			_	_	0.45 0.2459						
P1 F		0.30 0.								0.05					0.10						0.15 0.				0.15 0.						0.20										
pvalue	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0 0097	1 - 000	0.0097	0.0097 0.0097 0.0097	0.0097 0.0097 0.0097 0.0097	0.0097 0.0097 0.0097 0.0097
$\mathbf{z}_{\mathbf{u}}$	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.44	2.44	2. c 4. c	2.44	2.44	2.44	2.44	2. c 4. c	4. C	2.44	2.44	2.44	2.44	2.44 44.4	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.4 4.4 4.4 4.4	2.44	2.44	2.44	2.44	2.44		2.44	2.44 2.44 2.44	2.44 2.44 2.44 2.44	2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4
n2	30	30	8 8	30	30	30	30	31	31	31	31	31	31	31	3 17	3 5	31	31	31	31	3 25	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	Č	31	31 31	31 31 31 31 31	3 3 3 3 3 3
\mathbf{n}_1	30	30	30	30	30	30	30	31	31	31	31	31	31	31	7 F	3 5	31	31	31	31	7 E	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	ť	31	31	31 31 31 31	31 31 31 31
power	0.2325	0.3157	0.0730	0.1120	0.1646	0.0459	0.0733	0.0132	0.0406	0.0903	0.2566	0.3633	0.4760	0.0505	0.0948	0.2317	0.3212	0.4202	0.5239	0.6265	0.0538	0.1450	0.2120	0.2927	0.3844	0.5835	0.0536	0.0885	0.1362	0.1975	0.2720	0.4528	0.5532	0.0525	0.0847	0.1287	ì	0.1855	0.1855 0.2558 0.3391	0.1855 0.2558 0.3391 0.4349	0.1855 0.2558 0.3391 0.4349 0.5415
P 2	0.65	0.70	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.75	0.35	0.40	0.45	0.25	0.30	0.00	0.45	0.50	0.55	0.60	0.30	0.40	0.45	0.50	0.55	0.65	0.35	0.40	0.45	0.50	0.55	0.65	0.70	0.40	0.45	0.50		0.55	0.55 0.60 0.65	0.50 0.60 0.65 0.70	0.55 0.60 0.65 0.70
D 1	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25		0.70	0.25	0.25 0.25 0.25	0.25 0.25 0.25
pvalue	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	×	0.0087	0.0087	0.0087 0.0087 0.0087	0.0087 0.0087 0.0087 0.0087
$\mathbf{z}_{\mathbf{u}}$	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.83	2.83	20.00	2.83	2.83	2.83	2.83	2 63		2.83	2.83	2.83	2.83	2 53	2.83	2.83	2.83	2.83	2 63	2.83	2.83	2.83	5.83	2 63	2.83	2.83	2.83	2.83	2.83	· ·	20.00	2 2 2 2 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3	5.83 2.83 2.83 2.83	888383
n ₂	11	Ξ:	11	11	11	11	11	12	15	7 5	12	12	12	12	2 5	100	12	12	12	12	2 5	12	12	12	15	12	12	12	12	175	2 5	12	12	12	12	175	`	1 5	12	1222	12222
$^{\mathrm{n}_{1}}$	11	=======================================	: ::	11	11	11	11	12	12	7 5	12	12	12	12	2 5	12	12	12	12	12	2 12	12	12	12	172	17	17	12	12	12	2 12	12	12	12	12	175		7 12	12 2 2	2222	12222

Table B.6: continue on next page

Table B.6: continue on next page

s page	power	0.5004	0.6561	0.1166	0.2074	0.3346	0.4906	0.1098	0.2019	0.1031	0.4431	0.6335	0.7889	0.8942	0.9543	0.1990	0.5055	0.6911	0.8214	0.9097	0.9605	0.9853	0.1705	0.3029	0.4621	0.0238	0.8689	0.9368	0.9745	0.1520	0.2692	0.4148	0.5700	0.8365	0.9199	0.9680	0.1370	0.2417	0.3783	0.5345	0.6897	0.8210	0.9135	0.1244	0.2236
reviou	p2	0.60	0.65	0.70	0.55	0.60	0.65	0.55	0.60	0.15	0.25	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.40	0.55	0.60	0.65	0.35	0.40	0.45	0.00	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	24.0	0.50
rom p	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.03	0.05	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.0	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
-continued from previous page	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091
: -con	$\mathbf{z}_{\mathbf{u}}$	2.44	2.44	2.2 4.4.4 4.4.4	2.44	2.44	2.44	2.44	2.44	2.40	2.46	2.46	2.46	2.46	2.46	2.40	04.40	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	04.40	2.46	2.46	2.46	2.46	2.46	2.46	04.40	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.40	2.46	2.46
le B.6:	$^{\mathrm{n}_{2}}$	31	31	3 2	31	31	31	37	31	2 6	32 25	32	32	32	35	22.5	2 68	32	32	32	32	32	32	35	35	2 68	32	32	32	32	32	35	2 6	32.2	32	32	32	32	32	35	35	35	32.5	3 8	32
Table	$_{1}^{n}$	31	31	3.1	31	31	31	31	31	250	3 2	32	32	32	32	325	3 6	35	32	32	32	32	32	32	325	3 6	35	32	32	32	32	35	7 0	3 2	32	32	32	32	32	32	35	35	322	308	32
	power	0.1766	0.2460	0.3319	0.0776	0.1180	0.1731	0.0476	0.0763	0.0180	0.1149	0.2014	0.3071	0.4235	0.5417	0.0627	0.1861	0.2732	0.3730	0.4799	0.5874	0.6885	0.0646	0.1104	0.1720	0.2430	0.4370	0.5381	0.6367	0.0637	0.1048	0.1599	0.2287	0.3995	0.4960	0.5959	0.0614	0.0984	0.1474	0.2089	0.2832	0.3702	0.4696	0.0577	0.0906
	p 2	09.0	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.25	0.30	0.35	0.40	0.45	0.750	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.55	09.0	0.65	0.35	0.40	0.45	0.00	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	45.0	0.50
	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.05	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.0	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.72	30	0.30
	pvalue	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0096	0.0036	0.0096	0.0096	0.0096	0.0096	0.0036	0.0036	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0030	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0036	0.0036	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096
	$\mathbf{z}_{\mathbf{n}}$	2.83	2.83	2 83	2.83	2.83	2.83	2.83	2.83	2.07	2.67	2.67	2.67	2.67	2.67	2.07	20.7	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	20.7	2.67	2.67	2.67	2.67	2.67	2.67	0.07	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	0.0	2.67
	$^{\mathrm{n}_{2}}$	12	7.	12	12	12	12	7.7	175	15	13	13	13	13	13	13	2 5	13	13	13	13	13	13	13	13	2 5	13	13	13	13	13	13	2 1 2	13	13	13	13	13	13	13	133	13	13 13	13	13
	$^{\mathrm{n}_{1}}$	12	175	122	12	12	12	7.7	15	1 T	13	13	13	13	13	. T	13.5	13	13	13	13	13	13	13	13	13.5	13	13	13	13	13	133	1.0	13	13	13	13	13	13	13	13	13	13 T	13	13

13 2.67 0.0096 0.30 0.55 0.1349 13 1.3 2.67 0.0096 0.30 0.60 0.1029 13 1.3 2.67 0.0096 0.30 0.60 0.1029 13 1.3 2.67 0.0096 0.35 0.50 0.0583 13 1.3 2.67 0.0096 0.35 0.60 0.1268 13 1.3 2.67 0.0096 0.35 0.65 0.1083 13 2.67 0.0096 0.35 0.60 0.1083 14 1.4 2.65 0.0086 0.05 0.050 0.1865 14 1.4 2.65 0.0088 0.05 0.15 0.0234 14 1.4 2.65 0.0088 0.05 0.15 0.1401 14 2.65 0.0088 0.05 0.15 0.0509 14 1.4 2.65 0.0088 0.05 0.25 0.1401 <	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	P2	power
13 2.67 0.0096 0.30 0.65 13 2.67 0.0096 0.30 0.65 13 2.67 0.0096 0.35 0.50 13 2.67 0.0096 0.35 0.50 13 2.67 0.0096 0.35 0.50 13 2.67 0.0096 0.35 0.60 13 2.67 0.0096 0.35 0.60 14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.40 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.40 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10	32	32	2.46	0.0091	0:30	0.55	0.3593
1.3 2.67 0.0096 0.30 0.70 1.3 2.67 0.0096 0.35 0.50 1.3 2.67 0.0096 0.35 0.50 1.3 2.67 0.0096 0.35 0.50 1.3 2.67 0.0096 0.35 0.50 1.3 2.67 0.0096 0.35 0.60 1.4 2.65 0.0083 0.05 0.35 1.4 2.65 0.0083 0.05 0.35 1.4 2.65 0.0083 0.05 0.30 1.4 2.65 0.0083 0.05 0.30 1.4 2.65 0.0083 0.05 0.30 1.4 2.65 0.0083 0.00 0.35 1.4 2.65 0.0083 0.00 0.35 1.4 2.65 0.0083 0.10 0.35 1.4 2.65 0.0083 0.10 0.35 1.4 2.65 0.0083 0.10 0.35 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.10 0.45 1.4 2.65 0.0083 0.15 0.35 1.4 2.65 0.0083 0.15 0.35 1.4 2.65 0.0083 0.15 0.45 1.4 2.65 0.0083 0.15 0.45 1.4 2.65 0.0083 0.15 0.55 1.4 2.65 0.0083 0.15 0.55 1.4 2.65 0.0083 0.15 0.55 1.4 2.65 0.0083 0.15 0.55 1.4 2.65 0.0083 0.20 0.45 1.4 2.65 0.0083 0.	32	32	2.46	0.0091	0.30	0.60	0.5195
13 2.67 0.0096 0.35 0.50 13 2.67 0.0096 0.35 0.50 13 2.67 0.0096 0.35 0.55 13 2.67 0.0096 0.35 0.55 13 2.67 0.0096 0.35 0.55 14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.00 0.35 14 2.65 0.0083 0.10 0.25 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55	22.0	32 62	2.40	0.0091	0.30	0.65	0.6808
13 2.67 0.0096 0.35 0.55 13 2.67 0.0096 0.35 0.55 13 2.67 0.0096 0.35 0.65 14 2.65 0.0096 0.40 0.65 14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.15	2 6	2 6	2.46	0.0031	0.00	0.50	0.1183
13 2.67 0.0096 0.35 0.65 13 2.67 0.0096 0.35 0.65 13 2.67 0.0096 0.35 0.65 14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.40 14 2.65 0.0083 0.15 0.40 14 2.65 0.0083 0.15	3 2	3 2	2.46	0.0091	0.35	0.55	0.2171
13 2.67 0.0096 0.33 0.65 13 2.67 0.0096 0.35 0.65 14 2.65 0.0098 0.40 0.55 14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.30 14 2.65 0.0083 0.05 0.40 14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15	32	32	2.46	0.0091	0.35	0.60	0.3541
13 2.67 0.0096 0.40 0.55 14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.40 14 2.65 0.0083 0.10 0.25 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.40 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15	35	32	2.46	0.0091	0.35	0.65	0.5166
13 2.67 0.0096 0.40 0.60 14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.20 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.50 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15	32	32	2.46	0.0091	0.40	0.55	0.1172
14 2.65 0.0083 0.05 0.15 14 2.65 0.0083 0.05 0.20 14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.01 0.25 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.50 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.56 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15	32	32	2.46	0.0091	0.40	09.0	0.2162
14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.05 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.40 14 2.65 0.0083 0.05 0.40 14 2.65 0.0083 0.10 0.25 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15	33	33	2.43	0.0094	0.02	0.15	0.1105
14 2.65 0.0083 0.05 0.25 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.40 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.56 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15	33	33	2.43	0.0094	0.05	0.20	0.2670
14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.40 14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.40 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.05	0.25	0.4637
14 2.65 0.0083 0.05 0.35 14 2.65 0.0083 0.05 0.46 14 2.65 0.0083 0.01 0.25 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.50 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.56 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.05	0.30	0.6556
14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.40 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.02	0.35	0.8076
14 2.65 0.0083 0.05 0.45 14 2.65 0.0083 0.10 0.25 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.50 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.40 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.44 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.05	0.40	0.9071
14 2.65 0.0083 0.10 0.25 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.50 14 2.65 0.0083 0.10 0.50 14 2.65 0.0083 0.15 0.50 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.56 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.05	0.45	0.9615
14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.10 0.56 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.10	0.25	0.2102
14 2.65 0.0083 0.10 0.35 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.40 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.10	0.30	0.3709
14 2.65 0.0083 0.10 0.40 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.15 0.30 14 2.65 0.0083 0.15 0.40 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.10	0.35	0.5490
14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.45 14 2.65 0.0083 0.10 0.50 14 2.65 0.0083 0.10 0.60 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.50 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.64 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.10	0.40	0.7124
14 2.65 0.0083 0.10 0.50 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.15 0.30 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.40 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.10	0.45	0.8387
14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.10 0.55 14 2.65 0.0083 0.15 0.30 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.35 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.10	0.50	0.9214
14 2.65 0.0083 0.10 0.60 14 2.65 0.0083 0.15 0.30 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.50 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20	33	33	2.43	0.0094	0.10	0.55	0.9670
14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.50 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.56 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25	33	m :	2.43	0.0094	0.10	0.60	0.9883
14 2.65 0.1083 0.15 0.35 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.60 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25	33	89	2.43	0.0094	0.15	0.30	0.1802
14 2.65 0.0083 0.15 0.40 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.35 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25	333	33	2.43	0.0094	0.15	0.35	0.3188
14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.45 14 2.65 0.0083 0.15 0.50 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25	33	333	2.43	0.0094	0.15	0.40	0.4828
14 2.65 0.0083 0.15 0.50 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.50 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25	333	33	2.43	0.0094	0.15	0.45	0.6457
14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.55 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.35 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.67 14 2.65 0.0083 0.20 0.67 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45	33	ee :	2.43	0.0094	0.15	0.50	0.7834
14 2.65 0.0083 0.15 0.66 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.55	33	33	2.43	0.0094	0.15	0.52	0.8836
14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.15 0.65 14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.67 14 2.65 0.0083 0.20 0.67 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.55	33	33	2.43	0.0094	0.15	0.60	0.9463
14 2.65 0.0083 0.20 0.35 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.55	33	33	2.43	0.0094	0.15	0.65	0.9796
14 2.65 0.0083 0.20 0.40 14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.67 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.55	33	33	2.43	0.0094	0.20	0.32	0.1608
14 2.65 0.0083 0.20 0.45 14 2.65 0.0083 0.20 0.50 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.55 0.56	33	33	2.43	0.0094	0.20	0.40	0.2835
14 2.65 0.0083 0.20 0.50 14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.55 14 2.65 0.0083 0.25 0.56	33	33	2.43	0.0094	0.20	0.45	0.4341
14 2.65 0.0083 0.20 0.55 14 2.65 0.0083 0.20 0.66 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.45	33	33	2.43	0.0094	0.20	0.50	0.5931
14 2.65 0.0083 0.20 0.60 14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.77 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.50 14 2.65 0.0083 0.55 0.50	33	33	2.43	0.0094	0.20	0.55	0.7394
14 2.65 0.0083 0.20 0.65 14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.50 14 2.65 0.0083 0.25 0.50	33	33	2.43	0.0094	0.20	0.60	0.8553
14 2.65 0.0083 0.20 0.70 14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.50 14 2.65 0.0083 0.25 0.50	33	33	2.43	0.0094	0.20	0.65	0.9326
14 2.65 0.0083 0.25 0.40 14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.50 14 2.65 0.0083 0.25 0.50	33	33	2.43	0.0094	0.20	0.70	0.9747
14 2.65 0.0083 0.25 0.45 14 2.65 0.0083 0.25 0.50 14 2.65 0.0083 0.25 0.50	33	33	2.43	0.0094	0.25	0.40	0.1448
14 2.65 0.0083 0.25 0.50	33	33	2.43	0.0094	0.25	0.45	0.2554
14 9.6K 0.0083 0.9K 0.KK	33	33	2.43	0.0094	0.25	0.50	0.3989
14 2.03 0.0003 0.23 0.33	33	33	2.43	0.0094	0.25	0.55	0.5604
14 2.65 0.0083 0.25 0.60	33	33	2.43	0.0094	0.25	0.60	0.7164
14 2.65 0.0083 0.25 0.65	33	33	2.43	0.0094	0.25	0.65	0.8430
14 2.65 0.0083 0.25 0.70	33	33	2.43	0.0094	0.25	0.70	0.9278
14 14 2.65 0.0083 0.25 0.75 0.6047	33	33	0 7 0	. 0000			1

Table B.6: continue on next page

$_{e}$	ı,	8	-	Г - и	ວ ຕ:	4	0	7	9	က	oo o	⊃ -	16	ഹ	7	2	6	110	- 0	ານ) 4	2	2	∞	0	90	o ₹	, 1.	. 4	4	2	<u>, -1</u>	_ 0	N C	0 4	. 9	က	1	6	4	⊳ 0	٥٥	Nσ	2 2	1 00
ıs pag	power	0.2393	0.383	0.5487	0.8403	0.1284	0.2350	0.3797	0.5466	0.1283	0.2348	0.1170	0.4699	0.6555	0.8037	0.9035	0.9599	0.2002	0.0047	0.0000	0.8344	0.9202	0.9672	0.9888	0.1670	0.3046	0.4710	0.7817	0.8864	0.9504	0.9825	0.1507	0.2731	0.4282	0.7494	0.8666	0.9403	0.9781	0.1389	0.2544	0.4067	0.5755	0.8539	0.933	0.9758
revion	p2	0.50	0.55	0.60	0.00	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.25	0.30	0.35	0.40	0.45	0.25	0.50	0.33	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.55	0.60	0.65	0.70	0.40	0.45	0.50	0.00	0.00	0.70	0.75
from f	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.10	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.20	0.25	0.25	0.25
-continued from previous page	pvalue	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093
	$\mathbf{z}_{\mathbf{n}}$	2.43	2.43	2.43	54.2	2.43	2.43	2.43	2.43	2.43	2.43	2.0 40.7	2.54	2.54	2.54	2.54	2.54	2.54	40.0 40.0	2.75	2.54	2.54	2.54	2.54	2.54	2.54	2.0 40.7	2.52	2.54	2.54	2.54	2.54	2.54	2.0 40.7	4 45.5	2.54	2.54	2.54	2.54	2.54	2.54	40.2	2.54	2.54	2.54
Table B.6:	$^{\mathrm{n}_{2}}$	33	33	33	2 65	33	33	33	33	33	33	85 E	34	34	34	34	34	34	ů ç	5 K	34	34	34	34	34	24.2	χς 4. ε	, K	34	34	34	34	25 c	χς 4. ε	, ç	34	34	34	34	34	34 4	ر د د د	5. 5. 7. 2.	45.	34
Tab	1 u	33	33	33	2 65	33	33	33	33	33	33	2, 6	34	34	34	34	34	34	4.0	2 6	34	34	34	34	34	42	υ ς 7 7	2 6	34	34	34	34	24.	υ ς 7 7	, c	34	34	34	34	34	34	ري 4 د	34 4	2.5	34
	power	0.0803	0.1258	0.1884	0.3702	0.0463	0.0773	0.1229	0.1863	0.0454	0.0765	0.0299	0.1665	0.2746	0.3960	0.5192	0.6349	0.0852	0.1493	0.2303	0.4287	0.5358	0.6412	0.7394	0.0779	0.1284	0.1943	0.3706	0.4764	0.5876	0.6968	0.0686	0.1114	0.1699	0.3393	0.4473	0.5636	0.6796	0.0614	0.1009	0.1570	0.2321	0.3262	0.5557	0.6755
	p2	0.50	0.52	0.60	0.02	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.25	0.30	0.35	0.40	0.45	0.25	0.50	0.33	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.00	0.70	0.75
	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.05	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.20	0.25	0.25	0.25
	pvalue	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088
	$\mathbf{z}_{\mathbf{u}}$	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.57	2.57	2.57	2.57	2.57	2.57	2.57	7.07	2 6	2.57	2.57	2.57	2.57	2.57	7.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	7.07	2.57	2.57	2.57
	$^{\mathrm{n}_{2}}$	14	14	4 -	1 1	14	14	14	14	14	4;	υ. Έ	12	15	15	15	12	15	. T		12	15	15	15	15	۲. د ۲	ე <u>.</u>		15	15	15	15	15	ე <u>.</u>	1 12	15	15	15	15	12	15	C 1	5 E	, <u>-</u>	15
	$^{\mathrm{n}_{1}}$	14	14	14	1 1	14	14	14	14	14	14	υ. υ.π.	15	15	15	15	12	15	C F		12	15	15	15	15	က <u>.</u>	υ. υ.π.		15	15	15	15	. I.	от С и	5 12	12	15	15	15	15	15			, <u>-</u>	15

2 n n n n n n n n n n n n n n n n n n n	Poelue 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094	P1 0.30 0.30 0.30 0.33 0.33 0.335 0.335 0.335 0.035 0.005 0.005 0.005 0.005	P2 0.45 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.07 0.08 0.08 0.09 0.09 0.09 0.09	Dower 0.0577 0.0963 0.0963 0.02275 0.3223 0.4338 0.0566 0.0953 0.0566 0.0959 0.0959 0.0989 0.0989 0.1934 0.1934 0.1934 0.1934	n 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	n2 34 34 34 34	z u 2.54 2.54	pvalue 0.0093	P1	P2 0.45	power 0.1345
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,0088 1,0088 1,0088 1,0088 1,0088 1,0088 1,0088 1,0094 1,	0.33 0.33 0.33 0.33 0.033 0.033 0.033 0.033 0.035 0.005 0.005 0.005 0.005	0.45 0.55 0.05 0.05 0.05 0.05 0.05 0.05	0.0577 0.0963 0.0963 0.2275 0.3223 0.0566 0.0953 0.0566 0.0952 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	28 8 8 8 24 4 5 4 5	2.54	0.0093	0.30	0.45	0.1345
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,0088 1,0088 1,0088 1,0088 1,0088 1,0088 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094	0.30 0.33 0.33 0.33 0.33 0.03 0.04 0.05 0.05 0.05 0.05	0.50 0.55 0.65 0.65 0.55 0.55 0.55 0.25 0.25 0.33 0.40	0.0963 0.2275 0.2275 0.3223 0.0566 0.0953 0.0952 0.0952 0.0952 0.0989 0.0989 0.1934 0.1934	\$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 8 4 7 8	2.54		000	0.50	1
	1,0088 1,0088 1,0088 1,0088 1,0088 1,0088 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094	0.33 0.33 0.33 0.33 0.03 0.04 0.05 0.05 0.05 0.05	0.55 0.06 0.06 0.50 0.55 0.05 0.05 0.25 0.25 0.33 0.35	0.1522 0.3223 0.3223 0.4338 0.0953 0.1511 0.1513 0.0952 0.0952 0.0989 0.1934 0.1934	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 7 7 1		0.0093	0.30	5	0.2475
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,0088 1,0088 1,0088 1,0088 1,0088 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094	0.33 0.33 0.33 0.33 0.03 0.05 0.05 0.05	0.60 0.65 0.55 0.65 0.65 0.20 0.25 0.45	0.2275 0.4338 0.0568 0.0553 0.1511 0.2266 0.0566 0.0952 0.0989 0.1934 0.1934 0.1934	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34	2.54	0.0093	0.30	0.55	0.3963
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,0088 1,0088 1,0088 1,0088 1,0088 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094	0.33 0.333 0.335 0.035 0.055 0.055 0.052 0.052	0.65 0.70 0.65 0.65 0.05 0.05 0.35 0.35 0.35 0.40	0.3223 0.0566 0.0953 0.0566 0.0956 0.0952 0.0989 0.0369 0.03431 0.3111	2		2.54	0.0093	0.30	0.60	0.5622
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,0088 1,0088 1,0088 1,0088 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094	0.33 0.335 0.040 0.05 0.05 0.05 0.05	0.70 0.50 0.55 0.65 0.65 0.55 0.15 0.25 0.30 0.30 0.35 0.40	0.4538 0.0956 0.0956 0.1511 0.2266 0.0959 0.0989 0.1934 0.3111 0.4391	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42.5	2.54	0.0093	0.30	0.65	0.7199
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.0088 7.0088 7.0088 7.0088 7.0094 7.0094 7.0094 7.0094 7.0094	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.55 0.66 0.65 0.65 0.15 0.20 0.35 0.35	0.0300 0.1511 0.2266 0.0369 0.0369 0.0389 0.1934 0.3111 0.4391		ς 4, δ	40.0	0.0093	0.30	0.70	0.8476
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.0088 7.0088 7.0088 7.0088 7.0094 7.0094 7.0094 7.0094 7.0094 7.0094 7.0094	0.05 0.05 0.05 0.05 0.05 0.05 0.10	0.65 0.65 0.65 0.15 0.20 0.25 0.35 0.35	0.13313 0.2266 0.0266 0.0352 0.0369 0.0989 0.1934 0.3111 0.4391		0 7 7	40.0 4 4	0.0093	0.00	0.00	0.7422
	7,0088 7,0088 7,0088 7,0094 7,0094 7,0094 7,0094 7,0094 7,0094	0.35 0.05 0.05 0.05 0.05 0.05 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.1511 0.2266 0.0566 0.0969 0.0989 0.1934 0.3111 0.4391	2 8 8 8 8 8 8 8 8 4 4 4 4 5 5 5 5 5	٠ 4	40.7	0.0093	0.33	0.00	0.2422
	7.0088 7.0088 7.0094 7.0094 7.0094 7.0094 7.0094 7.0094 7.0094	0.40 0.40 0.05 0.05 0.05 0.05 0.10	0.55 0.55 0.15 0.20 0.30 0.35 0.40	0.0256 0.0566 0.0352 0.0389 0.1934 0.3111 0.4391	0 8 8 8 8 8 8 8 4 4 4 7 7 7 7 7 7	χ 4 τ	2.0 4.0	0.0093	0.35	0.00	0.3878
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.0088 7.0088 7.0094 7.0094 7.0094 7.0094 7.0094 7.0094	0.440 0.040 0.050 0.055 0.055 0.10	0.55 0.15 0.20 0.25 0.35 0.40	0.0566 0.0952 0.0989 0.1934 0.3111 0.4391	2 6 6 6 6 6 4 4 7 7 7 7 7	4.	40.0	0.0093	0.35	0.00	0.5553
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2),0088),0094),0094),0094),0094),0094),0094),0094	0.40 0.05 0.05 0.05 0.05 0.10 0.10	0.60 0.15 0.20 0.30 0.35 0.40	0.0952 0.0369 0.0989 0.1934 0.3111 0.4391 0.5650	აით ით ი 4 ი ი ი ი ი	% 4.	2.54	0.0093	0.40	0.55	0.1308
2.51), 0094), 0094), 0094), 0094), 0094), 0094), 0094	0.00 0.00 0.00 0.00 0.10 0.10	0.15 0.20 0.25 0.30 0.40	0.0369 0.0989 0.1934 0.3111 0.4391	လ လ လ လ တ တ တ တ	34	2.54	0.0093	0.40	0.60	0.2389
2.51 2.51), 0094), 0094), 0094), 0094), 0094), 0094), 0094	0.05 0.05 0.05 0.05 0.10	0.20 0.25 0.35 0.40	0.0989 0.1934 0.3111 0.4391 0.5651	3 3 3 3 3	32	2.50	0.0095	0.02	0.15	0.1243
2.51), 0094), 0094), 0094), 0094), 0094), 0094), 0094	0.05 0.05 0.05 0.05 0.10	0.25 0.30 0.40 0.45	0.1934 0.3111 0.4391 0.5651	355	35	2.50	0.0095	0.02	0.20	0.2899
2.51), 0094), 0094), 0094), 0094), 0094), 0094	0.05 0.05 0.05 0.05 0.10	0.30 0.35 0.40 0.45	0.3111 0.4391 0.5651	35	35	2.50	0.0095	0.02	0.25	0.4879
), 0094), 0094), 0094), 0094), 0094), 0094	0.05 0.05 0.05 0.10 0.10	0.35 0.40 0.45	0.4391		35	2.50	0.0095	0.02	0.30	0.6745
16.2.91).0094).0094).0094).0094).0094	0.05 0.05 0.10 0.10	0.40	0.5651	35	35	2.50	0.0095	0.02	0.35	0.8200
2.51).0094).0094).0094).0094	0.05 0.10 0.10	0.45	0 6700	35	35	2.50	0.0095	0.02	0.40	0.9149
2.51).0094).0094).0094	0.10		0.0700	35	35	2.50	0.0095	0.02	0.45	0.9662
2.51	0.0094	0.10	0.25	0.0970	200	23.	2.50	0.0095	0.10	0.25	0.2099
2.51	0.0094		0.30	0.1678	20.00	32.0	2.50	0.0095	0.10	0.30	0.3713
2.51	7000	0.10	0.35	0.2564	100	.c.	2.50	0.0095	0.10	0.35	0.5546
2.51		0.10	0.40	0.3586) K	25.	2.50	0.0095	0.10	0.40	0.7234
2.51	0.0094	0.10	0.45	0.4690	32.	32.	2.50	0.0095	0.10	0.45	0.8508
2.51	0.0094	0.10	0.50	0.5814	35	35	2.50	0.0095	0.10	0.50	0.9307
2.51	0.0094	0.10	0.55	0.6891	32	35	2.50	0.0095	0.10	0.55	0.9728
2.51	0.0094	0.10	0.60	0.7856	, cc	2 2	2.50	0.0095	0.10	0.60	0.9912
2.51	0.0094	21.0	0.30	0.0866) K	2 2	2.50	0.0095	0.10	0.30	0.1767
2.51	0.0094	0.15	0.35	0.1429) K	2 6	2.50	0.0095	0.15	0.35	0.3206
2.51	0.0094	21.0	0.40	0.2166) K	2 2	2.50	0.0095	0.10	0.40	0.4915
2.51	0.0094	0.15	0.45	0.3075) K	2 6	2.50	0.0095	0.15	0.45	0.6602
2.5	0.003	21.0	0.50	0.4129) K	2 6	2.50	0.0095	0.15	0.50	0.8011
2.51	0.0094	21.0	0.55	0.5278) K	25.	2.50	0.0095	0.15	0.00	0.9005
2.5	0.0094	21.0	09.0	0.6441) K	2 6	2.50	0.0095	2.0	0 60	0.0587
2.51	0.0094	5.15	0.65	0.7524	200	23.	2.50	0.0095	0.15	0.65	0.9861
2.51	0.0094	0.20	0.35	0.0763	35	35	2.50	0.0095	0.20	0.35	0.1595
16 2.51 C	0.0094	0.20	0.40	0.1256	35	35	2.50	0.0095	0.20	0.40	0.2881
2.51	0.0094	0.20	0.45	0.1934	35	35	2.50	0.0095	0.20	0.45	0.4495
	0.0094	0.20	0.50	0.2811	35	35	2.50	0.0095	0.20	0.50	0.6202
2.51	0.0094	0.20	0.55	0.3868	35	35	2.50	0.0095	0.20	0.55	0.7715
2.51	0.0094	0.20	09.0	0.5048	35	35	2.50	0.0095	0.20	0.60	0.8821
2.51	0.0094	0.20	0.65	0.6262	35	35	2.50	0.0095	0.20	0.65	0.9486
2.51	0.0094	0.20	0.70	0.7402	35	35	2.50	0.0095	0.20	0.70	0.9814
2.51	0.0094	0.25	0.40	0.0701	35	35	2.50	0.0095	0.25	0.40	0.1481
2.51	0.0094	0.25	0.45	0.1171	35	35	2.50	0.0095	0.25	0.45	0.2706
2.51	0.0094	0.25	0.50	0.1837	35	35	2.50	0.0095	0.25	0.50	0.4290
2.51	0.0094	0.25	0.55	0.2713	35	35	2.50	0.0095	0.25	0.55	0.5990
2.51	0.0094	0.25	09.0	0.3779	35	35	2.50	0.0095	0.25	09.0	0.7511
	0.0094	0.25	0.65	0.4974	35	35	2.50	0.0095	0.25	0.65	0.8658
2.51	0.0094	0.25	0.70	0.6208	35	32	2.50	0.0095	0.25	0.70	0.9393

Table B.6: continue on next page

Table B.6: continue on next page

s $page$	power	0.9785	0.1442	0.2623	0.5780	0.7320	0.8563	0.1401	0.2512	0.3974	0.5659	0.1338	0.1330	0.3109	0.5232	0.7162	0.8553	0.9369	0.9766	0.2436	0.4196	0.6025	0.732	0.9418	0.9778	0.9932	0.2026	0.3504	0.5197	0.6843	0.8196	0.9124	0.9645	0.1728	0.3056	0.4702	0.6405	0.7863	0.8898	0.9512	0.9821	0.1571	0.2835	0.4422	0.007	0.8656
reviou	p2	0.75	0.45	0.00	0.60	0.65	0.70	0.50	0.55	0.60	0.65	0.55	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.75	0.30	0.35	 	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50 n	0.00	0.65
from p	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.02	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.150	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.60	0.25
-continued from previous page	pvalue	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	10000	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0034	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0034	0.0094
	$\mathbf{z}_{\mathbf{u}}$	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.5	2.48	2.48	2.48	2.48	2.48	2.48	2.7 8.4.5 8.6	2.4 8.4 8.4 8.4	2.2 4.4 8 8	2 C	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	84.5	4. c	24.5	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2. c 84. c	24.0 24.0	2.48
e B.6:	$^{\mathrm{n}_{2}}$	35		3 c	32	32	32	32	32.	32	35	3 50	39	36	36	36	36	36	36	92	200	36	98	39	36	36	36	36	36	36	36	98	36	36	36	36	36	36	36	36	36	36	36	36	98	36
Table	$^{\mathrm{n}_{1}}$	35		ა დ ი დ	35	35	35	321	321		33.5	0 0 70 70	36	36	36	36	36	36	36	36	200	3,60	98	36	36	36	36	36	36	36	36	36	36	98	36	36	36	36	36	36	36	36	36	36	98	36
	power	0.7373	0.0681	0.1150	0.2693	0.3759	0.4960	0.0686	0.1156	0.1820	0.2693	0.0695	0.0444	0.1156	0.2203	0.3466	0.4798	0.6072	0.7197	0.1088	0.1861	0.2817	0.0004	0.6191	0.7237	0.8127	0.0950	0.1566	0.2363	0.3322	0.4396	0.5512	0.0592	0.836	0.1352	0.2052	0.2917	0.3911	0.4983	0.6076	0.7135	0.0730	0.1190	0.1810	0.2532	0.4596
	p2	0.75	0.45	0.50	09.0	0.65	0.70	0.50	0.55	0.60	0.00	0.55	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.75	0.30	0.35	77	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.20	0.55	0.00	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	00.00	0.00	0.65
	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.05	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.00	0.25
	pvalue	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.000	0.0099	6600.0	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	6600.0	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	00000	0.0099
	$\mathbf{z}_{\mathbf{u}}$	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.66	2.66	2.66	2.66	2.66	2.66	2.66	5.66	00.7	2.66	9.00	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	5.66	00.7	2.66	2.66	2.66	2.66	5.66	2.66	2.66	2.66	2.66	2.66	2.66	00.7	2.66
	$^{\mathrm{n}_{2}}$	16	16	16	16	16	16	16	16	16	10	16	17	17	17	17	17	17	17	17	1 -	- L	1 1	17	17	17	17	17	17	17	17	17	1 7	1 1	17	17	17	17	17	17	17	17	17	14	1 1	17
	$^{\mathrm{n}_{1}}$	16	16	16	16	16	16	16	16	16	97	16	17	17	17	17	17	17	17	14	1 -	- L	- 1-	17	17	17	17	17	17	17	17	1 -	1 -	1 -	17	17	17	17	17	17	17	17	17	14	- 1-	17

							Table	Table B.6:		-continued from previous page	from p	revious	g page
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	P1	p2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	P2	power
17	17	2.66	0.0099	0.25	0.70	0.5764	36	36	2.48	0.0094	0.25	0.70	0.9391
17	17	2.66	0.0099	0.25	0.75	0.6967	36	36	2.48	0.0094	0.25	0.75	0.9788
17	17	2.66	0.0099	0.30	0.45	0.0647	36	36	2.48	0.0094	0.30	0.45	0.1487
14	14	5.66	0.0099	0.30	0.50	0.1051	98	36	2.4 84.5	0.0094	0.30	0.50	0.2652
14	1 -	2.00	0.0099	0.30	0.00	0.1011	36	36	2.7 0.4.0	0.0094	0.30	0.00	0.4118
14	17	00.7	0.0039	0.30	0.00	0.2332	36	98	04.7 0 x	0.0094	0.30	0.00	0.0123
17	17	2.66	0.0099	0.30	0.70	0.4448	36	36	2.48	0.0094	0.30	0.70	0.8537
17	17	2.66	0.0099	0.35	0.50	0.0572	36	36	2.48	0.0094	0.35	0.50	0.1365
17	17	2.66	0.0099	0.35	0.55	0.0944	36	36	2.48	0.0094	0.35	0.55	0.2427
17	17	2.66	0.0099	0.35	09.0	0.1490	36	36	2.48	0.0094	0.35	09.0	0.3857
17	17	2.66	0.0099	0.35	0.65	0.2261	36	36	2.48	0.0094	0.35	0.65	0.5554
17	17	2.66	0.0099	0.40	0.55	0.0525	36	36	2.48	0.0094	0.40	0.55	0.1248
. T	10	2.66	0.0099	0.40	0.00	0.0902	30	30	21.0 24.0	0.0094	0.40	0.60	0.2316
2 0	2 2	5.63	0.0084	0.00	0.10	0.0430	3 0	3 6	2.44	0.0038	0.00	0.10	0.3254
8	8	2.63	0.0084	0.05	0.25	0.2161	37	37	2.44	0.0098	0.05	0.25	0.5423
18	18	2.63	0.0084	0.02	0.30	0.3291	37	37	2.44	0.0098	0.05	0.30	0.7345
18	18	2.63	0.0084	0.02	0.35	0.4508	37	37	2.44	0.0098	0.02	0.35	0.8688
18	18	2.63	0.0084	0.05	0.40	0.5750	37	37	2.44	0.0098	0.05	0.40	0.9448
18	18	2.63	0.0084	0.05	0.45	0.6934	37	37	2.44	0.0098	0.05	0.45	0.9803
18	18	2.63	0.0084	0.10	0.25	0.0958	37	37	2.44	0.0098	0.10	0.25	0.2549
18	18	2.63	0.0084	0.10	0.30	0.1629	37	37	2.44	0.0098	0.10	0.30	0.4358
18	18	2.63	0.0084	0.10	0.35	0.2533	37	37	2.44	0.0098	0.10	0.35	0.6204
18	18	2.63	0.0084	0.10	0.40	0.3658	37	37	2.44	0.0098	0.10	0.40	0.7752
18	200	2.63	0.0084	0.10	0.45	0.4929	37	37	2.44	0.0098	0.10	0.45	0.8843
× •	20 0	2.63	0.0084	0.10	0.20	0.6217	37	37	2.44	0.0098	0.10	0.50	0.9493
x :	20 5	2.63	0.0084	0.10	0.55	0.7385	3.7	37	2.44	0.0098	0.10	0.55	0.9816
0 0	0 0	0.00	0.0084	0.10	00.0	0.0000	0 0	0.7	44.0	0.0038	0.10	0.00	0.9947
2 2	2 2	5.63	0.0084	0.10	0.00	0.0803	3 0	3 6	2.44	0.0038	0.10	0.00	0.3643
18	18	2.63	0.0084	0.15	0.40	0.2264	37	37	2.44	0.0098	0.15	0.40	0.5379
18	18	2.63	0.0084	0.15	0.45	0.3340	37	37	2.44	0.0098	0.15	0.45	0.7036
18	18	2.63	0.0084	0.15	0.50	0.4550	37	37	2.44	0.0098	0.15	0.50	0.8360
18	18	2.63	0.0084	0.15	0.55	0.5778	37	37	2.44	0.0098	0.15	0.55	0.9234
0 2	0 ×	20.00	0.0084	0.15	0.00	0.0918	27	37	24.4 44.4	0.0098	0.15	0.00	0.9702
2 ×	2 00	2.63	0.0084	0.20	0.35	0.0759	3.2	37	2.44	0.0098	0.20	0.35	0.1810
18	18	2.63	0.0084	0.20	0.40	0.1333	37	37	2.44	0.0098	0.20	0.40	0.3204
18	18	2.63	0.0084	0.20	0.45	0.2121	37	37	2.44	0.0098	0.20	0.45	0.4906
18	18	2.63	0.0084	0.20	0.50	0.3093	37	37	2.44	0.0098	0.20	0.50	0.6621
18	18	2.63	0.0084	0.20	0.55	0.4189	37	37	2.44	0.0098	0.20	0.55	0.8042
18	18	2.63	0.0084	0.20	0.60	0.5340	37	37	2.44	0.0098	0.20	0.60	0.9017
× 0	× 5	2.63	0.0084	0.20	0.65	0.6480	37	37	2.44	0.0098	0.20	0.65	0.9579
0 2	0 2	0.00	0.0084	0.20	0.70	0.737	27	27	24.4	0.0030	0.20	0.70	0.9000
2 0	2 2	2.63	0.0084	0.25	0.45	0.1254	3 0	3 2	4 4 4	0.0098	0.25	0.45	0.2989
18	18	2.63	0.0084	0.25	0.50	0.1950	37	37	2.44	0.0098	0.25	0.50	0.4615
18	18	2.63	0.0084	0.25	0.55	0.2821	37	37	2.44	0.0098	0.25	0.55	0.6273
18	18	2.63	0.0084	0.25	09.0	0.3848	37	37	2.44	0.0098	0.25	0.60	0.7712
								1		۰			

Table B.6: continue on next page

Table B.6: continue on next page

ıs page	power	0.8789	0.9475	0.9827	0.2779	0.4285	0.5918	0.7458	0.8687	0.1432	0.2543	0.5764	0.1315	0.2438	0.1482	0.3400	0.5609	0.7519	0.0011	0.9834	0.2661	0.4517	0.6376	0.7903	0.8953	0.9557	0.9957	0.2201	0.3780	0.5549	0.7200	0.8479	0.9230	0.9912	0.1887	0.3321	0.5031	0.6711	0.8088	0.9043	0.9870	0.1705	0.3022	0.4625	0.6283
revion	p 2	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.00	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55
rom p	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.0	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.10	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098
: $-con$	$\mathbf{z}_{\mathbf{u}}$	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	4. 4	2.44	2.44	2.44	2.44	2.44	2.44	4.6	2.44	2.44	2.44	2.44	2.44	2.44	24.4 44.4	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44
le B.6:	$^{\rm n_2}$	37	37	37	37	37	37	37	37	37	37	37	37	37	38	38	80 0	x x	000	8 %	38	38	38	38	888	0 0	9 60	88	38	38	38	20 00	0 00	8 8	38	38	38	38	œ c	x c	6 %	38	38	38	38
Table	\mathbf{n}_1	37	37	3.4	3.7	37	37	37	37	37	31.	3 0	37	37	38	38	00 c	x 0	0 0	o oc	38	38	38	38	œ 0	0 0	0 00	38	38	38	38	00 0	0 00	38	38	38	38	38	00 c	x o	0 00	38	38	38	38
	power	0.4999	0.6216	0.7409	0.1143	0.1773	0.2603	0.3644	0.4872	0.0625	0.1046	0.2522	0.0582	0.1009	0.0562	0.1333	0.2366	0.3563	0.4649	0.7336	0.1041	0.1789	0.2798	0.4031	0.5374	0.0671	0.8646	0.0894	0.1584	0.2539	0.3700	0.4959	0.0134	0.8236	0.0859	0.1502	0.2363	0.3401	0.4552	0.5744	0.5901	0.0826	0.1396	0.2157	0.3106
	p ₂	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.00	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55
	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.0	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25
	pvalue	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091
	$\mathbf{z}_{\mathbf{u}}$	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.59	2.59	2.59	2.59	0.00 E	2.50	2.59	2.59	2.59	2.59	2.59	2.03 5.03	2.59	2.59	2.59	2.59	2.59	2.59	9.70	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59
	$^{\rm n_2}$	18	18	χ <u>α</u>	2 00	18	18	18	18	18	× 2	2 8	18	18	19	19	19	19	61.	61	19	19	19	19	19	1.0	19	19	19	19	19	19	10	19	19	19	19	19	19	61	19	19	19	19	19
	\mathbf{n}_1	18	18	χ α	2 00	18	18	18	18	9 9	× 2	8 7	18	18	19	19	19	19	1 13	61	19	19	19	19	19	10	19	19	19	19	19	19	61	19	19	19	19	19	19	91	19	19	19	19	19

2.59		ī	D2	power	$_{1}^{n_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_1	p ₂	power
	0.0091	0.25	09.0	0.4219	38	38	2.44	8600.0	0.25	09.0	0.7756
2.59	0.0091	0.25	0.65	0.5442	38	38	2.44	0.0098	0.25	0.65	0.8860
2.59	0.0091	0.25	0.70	0.6689	98	38	2.44	0.0098	0.25	0.70	0.9535
2.59	0.0091	0.25	0.75	0.7844	00 c	80 00	2.44	0.0098	0.25	0.75	0.9856
2.59	0.0091	0.30	0.45	0.0763	x 0	x 0	44.5	0.0098	0.30	0.45	0.1548
2.03 5.03	0.0091	0.30	0.00	0.1271	0 0	0 0	4. 6	0.0098	0.00	0.0 0.0 0.0 0.0	0.2740
2.50	0.0091	0.30	09.0	0.2906	0 00	9 6	24.4	0.0098	0.30	0.00	0.6006
2.59	0.0091	0.30	0.65	0.4046	0 00	000	2.44	0.0098	0.30	0.65	0.7597
2.59	0.0091	0.30	0.70	0.5343	38	38	2.44	0.0098	0.30	0.70	0.8806
2.59	0.0091	0.35	0.50	0.0698	38	38	2.44	0.0098	0.35	0.50	0.1409
2.59	0.0091	0.35	0.55	0.1181	38	38	2.44	0.0098	0.35	0.55	0.2573
2.59	0.0091	0.35	09.0	0.1884	38	38	2.44	0.0098	0.35	0.60	0.4146
2.59	0.0091	0.35	0.65	0.2840	38	38	2.44	0.0098	0.35	0.65	0.5929
2.59	0.0091	0.40	0.55	0.0662	38	38	2.44	0.0098	0.40	0.55	0.1347
2.59	0.0091	0.40	09.0	0.1150	38	38	2.44	0.0098	0.40	0.60	0.2526
2.56	0.0084	0.02	0.15	0.0635	39	39	2.45	0.0093	0.02	0.15	0.1531
2.56	0.0084	0.02	0.20	0.1468	39	39	2.45	0.0093	0.05	0.20	0.3425
2.56	0.0084	0.02	0.25	0.2562	39	39	2.45	0.0093	0.02	0.25	0.5563
2.56	0.0084	0.02	0.30	0.3818	39	39	2.45	0.0093	0.02	0.30	0.7437
2.56	0.0084	0.02	0.35	0.5149	39	39	2.45	0.0093	0.02	0.35	0.8755
2.56	0.0084	0.02	0.40	0.6453	39	33	2.45	0.0093	0.02	0.40	0.9500
2.56	0.0084	0.05	0.45	0.7612	66	66 60 60 60 60 60 60 60 60 60 60 60 60 6	2.45	0.0093	0.05	0.45	0.9836
00.70	0.0084	0.10	0.20	0.1112	000	600	24.0 04.0	0.0093	0.10	0.73	0.2512
2.00	0.0084	0.10	0.00	0.1903	000	6 C	4. C	0.0093	0.10	0.0	0.4531
2.56	0,0084	0.10	0.40	0.4186	33	33	2.45	0.0093	0.10	0.40	0.7953
2.56	0.0084	0.10	0.45	0.5496	33	33	2.45	0.0093	0.10	0.45	0.9017
2.56	0.0084	0.10	0.50	0.6745	39	39	2.45	0.0093	0.10	0.50	0.9599
2.56	0.0084	0.10	0.55	0.7827	39	39	2.45	0.0093	0.10	0.55	0.9863
2.56	0.0084	0.10	09.0	0.8679	39	39	2.45	0.0093	0.10	0.60	0.9962
2.56	0.0084	0.15	0.30	0.0919	39	39	2.45	0.0093	0.15	0.30	0.2164
2.56	0.0084	0.15	0.35	0.1604	39	39	2.45	0.0093	0.15	0.35	0.3820
2.56	0.0084	0.15	0.40	0.2532	39	39	2.45	0.0093	0.15	0.40	0.5643
2.56	0.0084	0.15	0.45	0.3661	39	39	2.45	0.0093	0.15	0.45	0.7291
2.56	0.0084	0.15	0.50	0.4913	66	33	2.45	0.0093	0.15	0.50	0.8534
2.56	0.0084	0.15	0.55	0.6188	33	33	2.45	0.0093	0.15	0.55	0.9321
2.50	0.0084	0.15	0.00	0.7373	900	900	04.2 04.0	0.0093	0.I5	0.00	0.9739
00.00	0.0084	0.1.0	0.00	0.000	600	60	4. c	0.0093	0.1.0	0.00	0.3920
2.56	0.0084	0.20	0.40	0.1430	000	68	24.5	0.0093	0.20	0.30	0.3362
2.56	0.0084	0.20	0.45	0.2272	39	33	2.45	0.0093	0.20	0.45	0.5056
2.56	0.0084	0.20	0.50	0.3340	39	39	2.45	0.0093	0.20	0.50	0.6723
2.56	0.0084	0.20	0.55	0.4583	39	39	2.45	0.0093	0.20	0.55	0.8112
2.56	0.0084	0.20	09.0	0.5902	39	39	2.45	0.0093	0.20	0.60	0.9085
2.56	0.0084	0.20	0.65	0.7165	39	39	2.45	0.0093	0.20	0.65	0.9643
2.56	0.0084	0.20	0.70	0.8243	39	39	2.45	0.0093	0.20	0.70	0.9893
2.56	0.0084	0.25	0.40	0.0758	39	39	2.45	0.0093	0.25	0.40	0.1687
5											

Table B.6: continue on next page

Table B.6: continue on next page

s page	power	0.6340	0.7869	0.9607	0.9886	0.1514	0.2760	0.4400	0.6193	0.7795	0.8949	0.1442	0.2690	0.4349	0.1434	0.2684	0.1603	0.3553	0.5726	0.7595	0.8872	0.9565	0.9864	0.2622	0.4560	0.6533	0.8105	0.9116	0.9652	0.9886	0.9970	0.2265	0.3970	0.3010	0.1434	0.9399	0.9779	0.9936	0.1997	0.3492	0.5222	0.6898	0.8266	0.9194	0.9702	0.9916	0.1760	0.0110
reviou	p 2	0.55	0.60	0.40	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.40	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.4:0
from p	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.0	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.1.0	0.10	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.70	0.40
-continued from previous page	pvalue	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0036	0.0000	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0000	0.0030
	$\mathbf{z}_{\mathbf{u}}$	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.40 540	24.5	2.45	2.45	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	4. 4	4.4.	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	44.0	1,1
e B.6:	$^{\rm n_2}$	39	33	000	39	39	39	33	33	66.0	33	680	900	000	39	33	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	04.0	04.0	40	40	40	40	40	40	40	40	40	40	40	04	750
Table	$_{1}^{n}$	39	30	0.00	39	39	39	39	39	66	33	66	90°	000	39	39	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	04	0,7	40	40	40	40	40	40	40	40	40	40	40	040	7.5
	power	0.3195	0.4451	0.3900	0.8213	0.0728	0.1286	0.2094	0.3155	0.4418	0.5779	0.0728	0.1286	0.2032	0.0735	0.1290	0.0708	0.1601	0.2759	0.4084	0.5475	0.6801	0.7933	0.1198	0.2066	0.3201	0.4513	0.5862	0.7108	0.8149	0.8933	0.1004	0.1759	0.2700	0.3377	0.6597	0.7762	0.8689	0.0904	0.1580	0.2512	0.3679	0.5006	0.6362	0.7599	0.8594	0.0846	U.1430
	p2	0.55	0.60	0.02	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.7 7 7	24.0 77.0	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.40
	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.0	0.40	0.40	0.02	0.05	0.05	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.1.0	0.10	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.70	0.70
	pvalue	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0030
	$\mathbf{z}_{\mathbf{n}}$	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.30	2 20	2.56	2.56	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	40.2	4 C	4 C	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	20.7 40.0	40.0
	$^{\rm n_2}$	20	50	20	20	20	20	50	50	50	20	500	070	070	20	20	21	21	21	21	21	21	21	21	21	21	21	21	21	21	7.7	7.7	77.	176	170	21	21	21	21	21	21	21	21	21	21	7.7	17 6	17
	$^{\mathrm{n}_{1}}$	20	50	20	20	20	20	50	20	50	20	500	070	0.00	20	20	21	21	21	21	21	21	21	21	21	21	21	21	21	21	7.7	77	77.	170	2 17	21	21	21	21	21	21	21	21	21	21	77	17 6	77

21	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_1	P2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	P2	power
	2.54	0.0098	0.25	0.50	0.2402	40	40	2.44	0.0096	0.25	0.50	0.4799
_	2.54	0.0098	0.25	0.55	0.3567	40	40	2.44	0.0096	0.25	0.55	0.6553
21	2.54	0.0098	0.25	09.0	0.4907	40	40	2.44	0.0096	0.25	0.60	0.8061
21	2.54	0.0098	0.25	0.65	0.6285	40	40	2.44	0.0096	0.25	0.65	0.9105
21		0.0098	0.25	0.70	0.7549	40	40	2.44	0.0096	0.25	0.70	0.9674
2.5	2.54	0.0098	0.25	0.75	0.8571	40	40	2.44	0.0096	0.25	0.75	0.9911
7 5	2.0.2 4.0.7	0.0098	0.30	0.45	0.0832	040	04	7.7	0.0036	0.30	0.45	0.1596
7 5	4. c	0.0098	0.50	0.00	0.1472	040	040	44.0	0.0096	0.30	0.00	0.2913
1 5	., c	0.0038	0.30	0.00	0.2303	0,4	04.0	# T	0.0030	0.30	0.00	0.4019
1 5	 	0.0038	0.00	9.0	0.354	40	40	24.4 44.4	0.0030	0.30	0.00	0.0454
2.5		0.0098	0.30	0.70	0.6270	40	40	2.44	0.0096	0.30	0.20	0.9085
21	2.54	0.0098	0.35	0.50	0.0844	40	40	2.44	0.0096	0.35	0.50	0.1542
21		0.0098	0.35	0.55	0.1485	40	40	2.44	0.0096	0.35	0.55	0.2864
21	2.54	0.0098	0.35	09.0	0.2390	40	40	2.44	0.0096	0.35	09.0	0.4583
21	2.54	0.0098	0.35	0.65	0.3547	40	40	2.44	0.0096	0.35	0.65	0.6414
21	2.54	0.0098	0.40	0.55	0.0858	40	40	2.44	0.0096	0.40	0.55	0.1543
21	2.54	0.0098	0.40	09.0	0.1493	40	40	2.44	0.0096	0.40	0.60	0.2863
22	2.59	0.0097	0.02	0.15	0.0372	20	20	2.48	0.0091	0.02	0.15	0.2281
22	2.59	0.0097	0.02	0.20	0.1118	20	20	2.48	0.0091	0.02	0.20	0.4659
52	2.59	0.0097	0.05	0.25	0.2331	200	20	2.48	0.0091	0.05	0.25	0.6948
	2.59	0.0097	0.05	0.30	0.3870	00.	200	84.2	0.0091	0.05	0.30	0.8591
	2.59	0.0097	0.00	0.35	0.5499	00 H	00 M	24.0 84.0	0.0091	0.0 0.0 0.0 0.0	0.35	0.9487
	2.50	0.0097	0.00	0.40	0.8161	0 10	S 75	04.0	0.0031	0.00	0.40	0.9968
	2.59	0.0097	0.10	0.25	0.1098	20	20	2.48	0.0091	0.10	0.25	0.3290
22	2.59	0.0097	0.10	0.30	0.2089	20	20	2.48	0.0091	0.10	0.30	0.5537
	2.59	0.0097	0.10	0.35	0.3367	20	20	2.48	0.0091	0.10	0.35	0.7550
	2.59	0.0097	0.10	0.40	0.4791	20	20	2.48	0.0091	0.10	0.40	0.8898
	2.59	0.0097	0.10	0.45	0.6194	20	20	2.48	0.0091	0.10	0.45	0.9597
22	2.59	0.0097	0.10	0.50	0.7437	20	20	2.48	0.0091	0.10	0.50	0.9882
	2.59	0.0097	0.10	0.55	0.8431	200	200	2.48	0.0091	0.10	0.55	0.9973
	2.59	0.0097	0.10	0.60	0.9143	50 0 u	200	2.7 2.4.0 8.0	0.0091	0.10	0.60	0.9995
	2.0 2.0 2.0	0.0097	2.5	0.00	0.1001	0 10	2 2	04.0	0.0031	0 . E	0.00	0.4760
22	2.59	0.0097	0.15	0.40	0.2996	200	20	24.2	0.0091	0.15	0.40	0.6774
^1	2.59	0.0097	0.15	0.45	0.4289	20	20	2.48	0.0091	0.15	0.45	0.8335
01	2.59	0.0097	0.15	0.50	0.5659	20	20	2.48	0.0091	0.15	0.50	0.9299
~1	2.59	0.0097	0.15	0.55	0.6966	20	20	2.48	0.0091	0.15	0.55	0.9768
22	2.59	0.0097	0.15	09.0	0.8078	20	20	2.48	0.0091	0.15	09.0	0.9943
01	2.59	0.0097	0.15	0.65	0.8914	20	20	2.48	0.0091	0.15	0.65	0.9990
~1	2.59	0.0097	0.20	0.35	0.0984	20	20	2.48	0.0091	0.20	0.35	0.2372
22	2.59	0.0097	0.20	0.40	0.1733	20	20	2.48	0.0091	0.20	0.40	0.4192
	2.59	0.0097	0.20	0.45	0.2753	20	200	2.48	0.0091	0.20	0.45	0.6190
7 6	2.59	0.0097	0.20	0.50	0.3999	20 10 10	200	84.2	0.0091	0.20	0.50	0.7924
7 0	0.00 E	0.0097	0.20	00.00	0.5502	0 0	0 0	04.0	0.0031	0.20	0.00	0.9090
a 0	2.50	0.0097	0.20	0.00	0.7851	0 10	S 75	04.0	0.0031	0.20	0.00	0.9020
1 0	2.50	0.000	000	100	1000	0 1	0 1	9 0	1000	000	0 0	0000
				=	X	C.		0 X	500	060	2	X 3 5 5

Table B.6: continue on next page

Table B.6: continue on next page

s page	power	0.3872	0.5907	0.8964	0.9621	0.9894	0.9980	0.3755	0.5736	0.7524	0.8822	0.9572	0.3595	0.5516	0.7386	0.1871	0.3473	0.2907	0.5642	0.9262	0.9802	0.9961	0.9994	0.4112	0.6570	0.9444	0.9849	0.9969	0.9995	1.0000	0.3413	0.7763	0.9070	0.9700	0.9928	0.9988	0.9999	0.2982	0.5144	0.8749	0.9572	0.9893	0.9981	0.9998
reviou	p2	0.45	0.00	0.60	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.50	0.40	0.45	0.50	0.55	0.60	0.30	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
rom p	\mathbf{p}_1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0096	0.0036	0.0096	0.0096	0.0096	0.0096	0.0096	0.0036	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0030	0.0096	0.0096	0.0096	0.0096	0.0096
	$\mathbf{z}_{\mathbf{n}}$	2.48	2, c 4, c 8, 4	2.48	2.48	2.48	2.48	2 4 5	2.48	2.48	2.48	2.4 8.4 8.0	2.48	2.48	2.48	2.48	2.48	2.44	2.44 4.44	2.44	2.44	2.44	2.44	2.44	2.44 2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	4.7 4.4 4.4	2.44	2.44	2.44	2.44	2.44
e B.6:	$^{\mathrm{n}_{2}}$	50	00 02	20	20	20	200		20	20	20	200	20	20	20	20	20	99	9 9	09	09	09	09	09	9 9	99	09	09	09	90	9 6	09	09	09	09	09	09	09	8 9	09	09	09	90	09
Table	$_{1}^{n}$	50	0 r	20	20	20	50 0 0	20.00	50	50	20	50	20	20	20	20	20	09	00	09	09	09	09	09	00	09	09	09	09	09	09	09	09	09	09	09	09	09	99	09	09	09	09	09
	power	0.1647	0.2627	0.5354	0.6494	0.7695	0.8672	0.1600	0.2539	0.3705	0.5030	0.6406	0.1555	0.2470	0.3647	0.0881	0.1532	0.0431	0.2584	0.4210	0.5873	0.7329	0.8436	0.1221	0.2234	0.5117	0.6524	0.7731	0.8658	0.9291	0.1153	0.3231	0.4572	0.5947	0.7208	0.8238	0.8992	0.1069	0.1909	0.4179	0.5497	0.6753	0.7845	0.8716
	p2	0.45	0.00	0.60	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.90	0.40	0.45	0.50	0.55	0.60	0.30	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
	p1	0.25	0.72	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091
	$\mathbf{z}_{\mathbf{n}}$	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.55	2.00	2.55	2.55	2.55	2.55	2.55	0.00 0.00 0.00 0.00	2.55	2.55	2.55	2.55	2.55	2.5 5.55 7.77	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2 C	2.55	2.55	2.55	2.55	2.55
	$^{\mathrm{n}_{2}}$	22	77.5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22	22	525	222	22	22	22	7.7.5	7 7 7	22	22	22	55	23.0	2.5	23	23	23	23	53	070	23	23 23	23	23	23	2 73	23 2	23	23	23	23	53	533	2 6	23	23	23	23	23
	1 u	22	77.5	2 22	22	22	52	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22	22	22	7.7.5	2 2 2 2 2 2	22	22	22	22	20.00	2.5	23	23	23	23	23	0.70	23 23	23	23	23	23	2 23	2 2 2	23	23	23	23	23	523	2 6	23 8	23	23	23	23

1	pvalue	p1	P2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_1	P2	power
55	0.0091	0.25	0.40	0.0994	09	09	2.44	0.0096	0.25	0.40	0.2678
2.55	0.0091	0.25	0.45	0.1715	09	90	2.44	0.0096	0.25	0.45	0.4762
2 . c 5 . c	0.0091	0.25	0.50	0.2673	09	00	2.44 44.0	0.0096	0.25	0.50	0.6927
2.55	_	0.25	09.0	0.5082	09	09	2.44	0.0096	0.25	0.60	0.9489
2.55	_	0.25	0.65	0.6367	09	09	2.44	9600.0	0.25	0.65	0.9860
2.55	_	0.25	0.70	0.7575	09	09	2.44	0.0096	0.25	0.70	0.9972
2.55	_	0.25	0.75	0.8598	09	09	2.44	0.0096	0.25	0.75	0.9997
2.55	0.0091	0.30	0.45	0.0914	09	09	2.44	0.0096	0.30	0.45	0.2553
0.00 7.00 7.00		0.30	0.50	0.1553	09	00	44.0	0.0096	0.30	0.00	0.4611
2.55		0.30	0.60	0.3517	9	8 8	4.44	0.0096	0.30	0.60	0.8406
2.55		0.30	0.65	0.4808	09	09	2.44	0.0096	0.30	0.65	0.9391
2.55	0.0091	0.30	0.70	0.6210	09	09	2.44	9600.0	0.30	0.70	0.9835
2.55	_	0.35	0.50	0.0821	09	09	2.44	9600.0	0.35	0.50	0.2480
2.55		0.35	0.55	0.1406	09	09	2.44	0.0096	0.35	0.55	0.4415
2.55		0.35	0.60	0.2252	09	09	2.44	0.0096	0.35	0.60	0.6506
2.00	0.0091	0.35	0.00 E	0.3394	00	00	44.0	0.0096	0.35	0.0 0 H	0.000
0.0 0.0 0.0		0.40	0.00	0.0755	09	9 6	24.4	0.0036	0.40	0.00	0.2525
2.49		0.05	0.15	0.0924	20	28	2.42	0.0097	0.05	0.15	0.3504
2.49	_	0.05	0.20	0.1990	202	2 2	2.42	0.0097	0.05	0.20	0.6530
2.49	_	0.05	0.25	0.3353	70	70	2.42	0.0097	0.05	0.25	0.8675
2.49	_	0.05	0.30	0.4887	20	20	2.42	0.0097	0.05	0.30	0.9638
2.49	0.0097	0.05	0.35	0.6408	70	2 8	2.42	0.0097	0.05	0.35	0.9928
24.7		0.00	0.40	0.7713	2 2	2 2	24.0	0.0097	0.00	0.40	0.888.0
2.49	_	0.10	0.25	0.1486	202	2.2	2.42	0.0097	0.10	0.25	0.4900
2.49	_	0.10	0.30	0.2594	20	2	2.42	0.0097	0.10	0.30	0.7394
2.49		0.10	0.35	0.3973	70	70	2.42	0.0097	0.10	0.35	0.9002
2.49	_	0.10	0.40	0.5453	70	70	2.42	0.0097	0.10	0.40	0.9719
2.49	_	0.10	0.45	0.6846	20	20	2.42	0.0097	0.10	0.45	0.9943
2.49	_	0.10	0.50	0.8010	70	2 1	2.42	0.0097	0.10	0.50	0.9992
2.49		0.10	0.55	0.8871	70	2 1	2.42	0.0097	0.10	0.55	0.9999
2.49	0.0097	0.10	09.0	0.9431	2.5	2 5	24.2	0.0097	0.10	0.60	1.0000
2.49		0.15	0.35	0.2246	2.0	2.2	2.42	0.0097	0.15	0.35	0.6501
2.49	_	0.15	0.40	0.3481	20	2	2.42	0.0097	0.15	0.40	0.8439
2.49		0.15	0.45	0.4875	70	20	2.42	0.0097	0.15	0.45	0.9479
2.49	_	0.15	0.50	0.6268	70	70	2.42	0.0097	0.15	0.50	0.9872
2.49	_	0.15	0.55	0.7502	20	70	2.42	0.0097	0.15	0.55	0.9978
2.49	_	0.15	09.0	0.8475	20	20	2.42	0.0097	0.15	09.0	0.9997
2.49		0.15	0.65	0.9161	20	2	2.42	0.0097	0.15	0.65	1.0000
2.49		0.20	0.35	0.1165	70	2 1	2.42	0.0097	0.20	0.35	0.3512
24.49	0.0097	0.20	0.40	0.2029	2.5	2 5	24.2	0.0097	0.20	0.40	0.5930
2.49		0.20	0.50	0.4458	2.0	2.2	2.42	0.0097	0.20	0.50	0.9249
2.49	_	0.20	0.55	0.5798	202	2 2	2.42	0.0097	0.20	0.55	0.9799
2.49	0.0097	0.20	09.0	0.7046	70	20	2.42	0 0007	06.0	080	0 0062
							1	0.00	0.50	00.0	0.2200

Table B.6: continue on next page

s page	power	1.0000	0.3182	0.5518	0.9114	0.9750	0.9949	0.9993	0.9999	0.3020	0.5346	0.020	0.9689	0.9937	0.2934	0.5132	0.7289	0.8873	0.2744	0.4946	0.4099	0.7310	0.9182	0.9832	8666.0	1.0000	0.5704	0.8152	0.9439	0.9881	0.9983	1.0000	1.0000	0.4779	0.7347	0.9011	0.9736	0.9951	0.9994	1 0000	0.4182	0.6722	0.8609	0.9572	0.9910
reviou	p 2	0.70	0.40	0.45	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.00	9.0	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.75	0.50	0.30	0.45	0.25	0.30	0.35	0.40	0.45	0.0 0.0 0.0 0.0	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	9.0	0.40	0.45	0.50	0.60
rom p	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.05 0.05	0.00	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097
	$\mathbf{z}_{\mathbf{u}}$	2.42	2.42	24.2	2.42	2.42	2.42	2.42	2.42	2.42	2.42	4.7 24.0	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.39	2.39	2.39	20.0	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	00.00	2.39	2.39	2.39	2.39	2.39
e B.6:	$^{\rm n_2}$	70	70	2 5	2 2	20	70	70	20	20	2 2	2 5	2.5	202	20	20	20	20	20	20	80	080	200	000	8 8	80	80	80	80	80	80	200	80	80	80	80	80	9 8	200	000	8 8	80	80	08	8 8
Table	$^{\mathrm{n}_{1}}$	20	70	2 9	20	20	20	20	20	20	10	10	20	20	20	20	20	20	20	20	80	80	080	00	80	80	80	80	80	80	80	000	80	80	80	80	80	80	080	000	800	80	80	80	80
	power	0.8926	0.1081	0.1856	0.4074	0.5381	0.6689	0.7878	0.8834	0.0987	0.1674	0.2507	0.5133	0.6556	0.0886	0.1526	0.2447	0.3668	0.0821	0.1469	0.0560	0.1575	0.3098	0.4867	0.7919	0.8871	0.1472	0.2699	0.4171	0.5685	0.7053	0.8157	0.9470	0.1345	0.2353	0.3602	0.4973	0.6325	0.7531	0.0000	0.3203	0.2040	0.3138	0.4422	0.5787
	p2	0.70	0.40	0.45	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.00	0.00	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.00	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.:0 7.20	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.60
	p1	0.20	0.25	0.72	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.00	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093
	$\mathbf{z}_{\mathbf{u}}$	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	24.7 40	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.51	2.51	2.51	10.7	2.5	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.01	2.5	2.51	2.51	2.51	2.51
	$^{\mathrm{n}_{2}}$	24	24	77 6	4 2	24	24	24	24	24	77.	4 5	4.5	24	24	24	24	24	24	24	22	22	Ω Ω 11	0 K	25	25	25	25	22	22	222	о с С п	22	25	25	22	25	52	272	о г о п	9 C 73	25	25	22	22
	$^{\mathrm{n}_{1}}$	24	24	42.0	24	24	24	24	24	24	42.5	4 6	4.5	24	24	24	24	24	24	24	22	22.5	0 Z	0 K	25	25	25	25	25	22	22	0 K	22	25	25	25	25	52	220	0 K	3 6	25	25	22	222

25 25 1 1 1 1 2 23 0	n_1 n_2	n _z	pvalue	p1	p2	power	$_{1}$	n2	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	p2	power
25 2.51 0.00093 0.20 0.77 0.90142 80 2.39 0.00097 0.20 0.77 25 2.51 0.00093 0.25 0.44 0.1791 80 80 2.39 0.00097 0.25 0.44 25 2.51 0.00093 0.25 0.56 0.4531 80 80 2.39 0.00097 0.25 0.45 25 2.51 0.00093 0.25 0.66 0.547 80 80 2.39 0.0097 0.25 0.45 25 2.51 0.00093 0.25 0.70 0.8113 80 80 2.39 0.0097 0.25 0.75 25 2.51 0.00093 0.25 0.75 0.823 80 80 2.39 0.0097 0.35 0.45 0.923 0.0097 0.35 0.45 0.923 0.0097 0.35 0.45 0.923 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097<		2.	0.0093	0.20	0.65	0.8224	80	80	2.39	0.0097	0.20	0.65	0.9999
25 2.51 0.00093 0.25 0.46 0.1791 80 2.39 0.0007 0.25 0.46 25 2.51 0.00093 0.25 0.46 0.1791 80 9.39 0.0007 0.25 0.46 25 2.51 0.00093 0.25 0.46 0.481 80 2.39 0.0007 0.25 0.46 25 2.51 0.00093 0.25 0.77 0.8119 80 2.39 0.0007 0.25 0.46 25 2.51 0.00093 0.25 0.77 0.8119 80 2.39 0.0007 0.25 0.46 25 2.51 0.00093 0.25 0.16 0.383 80 80 2.39 0.0007 0.35 0.46 25 2.51 0.00093 0.30 0.66 0.383 80 80 2.39 0.0007 0.35 0.66 25 2.51 0.00093 0.30 0.66 0.2838 80<			0.0093	0.20	0.70	0.9061	80	80	2.39	0.0097	0.20	0.70	1.0000
2.5 2.5.1 0.00033 0.2.5 0.1791 80 80 2.39 0.00947 0.25 0.45 2.5 2.5.1 0.00033 0.25 0.45 0.4081 80 2.39 0.00947 0.25 0.55 2.5 2.5.1 0.00033 0.25 0.56 0.4081 80 2.39 0.00947 0.25 0.56 2.5 2.5.1 0.00033 0.25 0.56 0.4081 80 2.39 0.00947 0.25 0.56 2.5 2.5.1 0.00033 0.26 0.75 0.6923 80 2.39 0.00947 0.25 0.75 2.5 2.5.1 0.00033 0.30 0.56 0.2638 80 2.39 0.00947 0.30 0.55 0.568 0.289 0.0097 0.30 0.56 0.2688 80 2.39 0.0097 0.25 0.55 0.568 0.289 0.0097 0.30 0.56 0.2688 80 2.39 0.0097			0.0093	0.25	0.40	0.1042	80	80	2.39	0.0097	0.25	0.40	0.3747
25 2.51 0.00033 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.05 0.45 0.25 0.05 0.45 0.05 0.25 0.05 0.55 0.45 0.05 0.55 0.05 0.55 0.05 <t< td=""><td></td><td></td><td>0.0093</td><td>0.25</td><td>0.45</td><td>0.1791</td><td>080</td><td>000</td><td>2.39</td><td>0.0097</td><td>0.25</td><td>0.45</td><td>0.6237</td></t<>			0.0093	0.25	0.45	0.1791	080	000	2.39	0.0097	0.25	0.45	0.6237
25 2.51 0.0003 0.22 0.0404 0.0403 0.22 0.0404 0.0450			0.0093	0.70	0.00	0.2014	000	000	60.7	0.0097	0.40	0.0 0 H	0.0001
25 2.51 0.0093 0.25 0.69 0.6902 80 2.39 0.0097 0.25 0.67 25 2.51 0.0093 0.25 0.67 0.68119 80 2.39 0.0097 0.25 0.70 25 2.51 0.0093 0.25 0.77 0.8119 80 2.39 0.0097 0.23 0.75 25 2.51 0.0093 0.30 0.45 0.033 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.56 0.5388 80 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.56 0.5884 80 80 2.39 0.0097 0.30 0.56 0.5884 80 80 2.39 0.0097 0.30 0.56 0.5884 80 80 2.39 0.0097 0.30 0.56 0.5884 80 80 2.39 0.0097 0.30 </td <td></td> <td></td> <td>0.0033</td> <td>20.0</td> <td>0.00</td> <td>0.5497</td> <td>80</td> <td>8 8</td> <td>08.6</td> <td>0.0097</td> <td>0.25</td> <td>0.00</td> <td>0.0400</td>			0.0033	20.0	0.00	0.5497	80	8 8	08.6	0.0097	0.25	0.00	0.0400
25 2.51 0.0093 0.25 0.70 0.8119 80 239 0.0097 0.25 0.75 25 2.51 0.00933 0.25 0.75 0.9024 80 2.39 0.0097 0.25 0.75 25 2.51 0.00933 0.20 0.55 0.1641 80 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.50 0.2388 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.56 0.2388 80 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.56 0.2389 80 80 2.39 0.0097 0.30 0.56 25 2.51 0.0093 0.30 0.56 0.289 80 2.39 0.0097 0.30 0.56 25 2.51 0.0093 0.30 0.288 80			0.0093	0.25	0.65	0.6902	80	80	2.39	0.0097	0.25	0.65	0.9985
25 2.51 0.00093 0.25 0.75 0.75 0.75 25 2.51 0.00093 0.25 0.75 0.0093 0.20 0.0097 0.0097 0.25 25 2.51 0.00093 0.20 0.55 0.1641 80 2.39 0.0097 0.30 0.55 25 2.51 0.00093 0.30 0.66 0.5388 80 2.39 0.0097 0.30 0.65 25 2.51 0.00093 0.30 0.66 0.2880 80 2.39 0.0097 0.30 0.65 25 2.51 0.00093 0.30 0.66 0.2800 80 2.39 0.0097 0.30 0.65 25 2.51 0.00093 0.35 0.66 0.280 80 80 2.39 0.0097 0.30 0.65 25 2.51 0.00093 0.35 0.086 0.20 0.29 0.239 0.0097 0.39 0.29 0.39			0.0093	0.25	0.70	0.8119	80	80	2.39	0.0097	0.25	0.70	0.9999
25 2.51 0.0093 0.39 0.445 0.0933 80 2.39 0.0097 0.30 0.45 25 2.51 0.0093 0.30 0.55 0.1641 80 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.56 0.5838 80 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.56 0.5884 80 80 2.39 0.0097 0.30 0.56 25 2.51 0.0093 0.35 0.50 0.1884 80 80 2.39 0.0097 0.50 25 2.51 0.0093 0.35 0.56 0.1884 80 80 2.39 0.0097 0.50 25 2.51 0.0093 0.35 0.260 0.280 80 2.39 0.0097 0.35 0.55 25 2.51 0.0093 0.35 0.260 0.280			0.0093	0.25	0.75	0.9024	80	80	2.39	0.0097	0.25	0.75	1.0000
25 2.51 0.0093 0.30 0.50 0.1641 80 2.3 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.55 0.5388 80 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.66 0.5388 80 80 2.39 0.0097 0.30 0.55 25 2.51 0.0093 0.30 0.665 80 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.35 0.55 0.1884 80 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.35 0.55 0.1884 80 80 2.39 0.0097 0.35 0.55 25 2.51 0.0093 0.40 0.65 0.3007 80 2.39 0.0097 0.35 0.55 26 2.47 0.0093 0.03 0.23			0.0093	0.30	0.45	0.0933	80	80	2.39	0.0097	0.30	0.45	0.3484
25 2.51 0.0093 0.30 0.55 0.2650 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.30 0.65 0.2854 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.30 0.66 0.5838 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.35 0.50 0.0884 80 2.39 0.0097 0.33 0.50 25 2.51 0.0093 0.35 0.56 0.1584 80 80 2.39 0.0097 0.35 0.55 25 2.51 0.0093 0.40 0.66 0.1584 80 80 2.39 0.0097 0.35 0.55 26 2.47 0.0093 0.40 0.65 0.1584 80 80 2.39 0.0097 0.15 0.1684 80 2.39 0.0097 0.35 0.55 0.1884 80 <td></td> <td></td> <td>0.0093</td> <td>0.30</td> <td>0.50</td> <td>0.1641</td> <td>80</td> <td>80</td> <td>2.39</td> <td>0.0097</td> <td>0.30</td> <td>0.50</td> <td>0.6018</td>			0.0093	0.30	0.50	0.1641	80	80	2.39	0.0097	0.30	0.50	0.6018
25 2.51 0.0093 0.30 0.66 0.3388 80 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.30 0.66 0.5388 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.36 0.56 0.0880 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.35 0.56 0.1880 80 2.39 0.0097 0.30 0.65 25 2.51 0.0093 0.35 0.66 0.2800 80 2.39 0.0097 0.35 0.65 25 2.51 0.0093 0.40 0.56 0.2600 80 2.39 0.0097 0.35 0.65 26 2.47 0.0098 0.05 0.15 0.1574 80 80 2.39 0.0097 0.15 0.15 0.25 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097			0.0093	0.30	0.55	0.2650	80	80	2.39	0.0097	0.30	0.55	0.8190
25 2.51 0.0093 0.30 0.65 0.5398 80 80 2.39 0.0097 0.30 0.70 25 2.51 0.0093 0.35 0.59 0.0884 80 2.39 0.0097 0.35 0.65 25 2.51 0.0093 0.35 0.50 0.1884 80 2.39 0.0097 0.35 0.60 25 2.51 0.0093 0.35 0.60 0.2800 80 2.39 0.0097 0.35 0.60 25 2.51 0.0093 0.40 0.65 0.3907 80 80 2.39 0.0097 0.35 0.60 26 2.47 0.0093 0.40 0.65 0.1847 80 80 2.39 0.0097 0.15 0.1687 80 80 2.39 0.0097 0.15 0.1687 80 80 2.39 0.0097 0.15 0.1687 80 80 2.39 0.0097 0.10 0.0097 0.15 </td <td></td> <td></td> <td>0.0093</td> <td>0.30</td> <td>09.0</td> <td>0.3938</td> <td>80</td> <td>80</td> <td>2.39</td> <td>0.0097</td> <td>0.30</td> <td>0.60</td> <td>0.9421</td>			0.0093	0.30	09.0	0.3938	80	80	2.39	0.0097	0.30	0.60	0.9421
25 2.51 0.00933 0.30 0.770 0.08854 80 2.39 0.0097 0.30 0.770 25 2.51 0.00933 0.35 0.770 0.0884 80 2.39 0.0097 0.35 0.50 25 2.51 0.0093 0.35 0.66 0.2600 80 2.39 0.0097 0.35 0.66 25 2.51 0.0093 0.35 0.66 0.2060 80 2.39 0.0097 0.35 0.66 26 2.47 0.0098 0.05 0.166 0.1674 80 80 2.39 0.0097 0.40 0.55 26 2.47 0.0098 0.05 0.166 0.2069 90 2.38 0.0097 0.05 0.15 0.20 0.2248 90 90 2.38 0.0097 0.05 0.10 0.2085 0.20 0.238 0.0097 0.05 0.10 0.20 0.238 0.0097 0.0097 0.05 0.20 <td></td> <td></td> <td>0.0093</td> <td>0.30</td> <td>0.65</td> <td>0.5398</td> <td>80</td> <td>80</td> <td>2.39</td> <td>0.0097</td> <td>0.30</td> <td>0.65</td> <td>0.9877</td>			0.0093	0.30	0.65	0.5398	80	80	2.39	0.0097	0.30	0.65	0.9877
25 2.51 0.0093 0.35 0.50 0.0880 80 2.39 0.0097 0.35 0.50 25 2.51 0.0093 0.35 0.50 0.2600 80 80 2.39 0.0097 0.35 0.55 25 2.51 0.0093 0.35 0.65 0.2600 80 80 2.39 0.0097 0.35 0.65 25 2.51 0.0093 0.40 0.65 0.280 80 2.39 0.0097 0.40 0.65 26 2.47 0.0098 0.05 0.15 0.1546 90 90 2.38 0.0097 0.05 0.20 26 2.47 0.0098 0.05 0.30 0.5456 90 90 2.38 0.0097 0.05 0.25 26 2.47 0.0098 0.05 0.30 0.5456 90 90 2.38 0.0097 0.05 0.35 26 2.47 0.0098 0.05			0.0093	0.30	0.70	0.6854	80	98	2.39	0.0097	0.30	0.70	0.9984
25 2.5.1 0.0093 0.35 0.25 0.1284 80 2.39 0.0097 0.35 0.158 25 2.51 0.0093 0.35 0.65 0.3907 80 2.39 0.0097 0.35 0.65 25 2.51 0.0093 0.40 0.65 0.3907 80 2.39 0.0097 0.35 0.65 26 2.47 0.0098 0.05 0.15 0.1063 90 2.39 0.0097 0.05 0.15 26 2.47 0.0098 0.05 0.20 0.248 90 90 2.38 0.0097 0.05 0.15 26 2.47 0.0098 0.05 0.35 0.6969 90 2.38 0.0097 0.05 0.25 26 2.47 0.0098 0.05 0.35 0.6969 90 2.38 0.0097 0.05 0.35 26 2.47 0.0098 0.01 0.25 0.1699 90 2.38 <td></td> <td></td> <td>0.0093</td> <td>0.35</td> <td>0.50</td> <td>0.0880</td> <td>80</td> <td>80</td> <td>2.39</td> <td>0.0097</td> <td>0.35</td> <td>0.50</td> <td>0.3446</td>			0.0093	0.35	0.50	0.0880	80	80	2.39	0.0097	0.35	0.50	0.3446
25 2.5.1 0.0093 0.35 0.60 0.2000 80 2.39 0.0097 0.35 0.06 25 2.51 0.0093 0.35 0.60 0.1574 80 2.39 0.0097 0.35 0.065 25 2.51 0.0093 0.40 0.65 0.0867 80 2.39 0.0097 0.05 0.65 26 2.47 0.0098 0.05 0.20 0.248 90 90 2.38 0.0097 0.05 0.15 26 2.47 0.0098 0.05 0.20 0.248 90 90 2.38 0.0097 0.05 0.25 26 2.47 0.0098 0.05 0.45 0.9669 90 2.38 0.0097 0.05 0.40 26 2.47 0.0098 0.05 0.45 0.9669 90 2.38 0.0097 0.05 0.35 26 2.47 0.0098 0.10 0.25 0.1696 90			0.0093	0.35	0.55	0.1584	080	0 0 0 0	2.39	0.0097	0.35	0.55	0.5981
25 2.51 0.0093 0.43 0.55 0.387 80 2.39 0.0094 0.55 0.05 25 2.51 0.0093 0.40 0.56 0.1574 80 80 2.39 0.0097 0.05 0.05 26 2.47 0.0098 0.05 0.15 0.1683 90 90 2.38 0.0097 0.05 0.15 26 2.47 0.0098 0.05 0.25 0.3758 90 90 2.38 0.0097 0.05 0.15 26 2.47 0.0098 0.05 0.30 0.5416 90 90 2.38 0.0097 0.05 0.15 26 2.47 0.0098 0.05 0.40 0.8208 90 90 2.38 0.0097 0.05 0.45 26 2.47 0.0098 0.10 0.45 0.9569 90 2.38 0.0097 0.05 0.40 26 2.47 0.0098 0.10			0.0093	0.35	0.00	0.2600	080	000	2.39	0.0097	0.35	0.60	0.8161
2.5 2.3 0.0097 0.05 0.13 2.5 2.5 2.3 0.0097 0.05 0.13 2.2 2.2 2.2 2.2 2.2 2.2 3.2 3.0 <			0.0093	0.30	0.00 E	0.3907	000	000	2.03	0.0097	0.30	O.00 H	0.9411
2.5 2.7 0.0093 0.150 0.11074 0.0 0.238 0.0097 0.040 0.0107 2.6 2.47 0.0098 0.05 0.20 0.2248 90 0.238 0.0097 0.05 0.15 2.6 2.47 0.0098 0.05 0.20 0.2248 90 0.238 0.0097 0.05 0.15 2.6 2.47 0.0098 0.05 0.35 0.6969 90 2.38 0.0097 0.05 0.15 2.6 2.47 0.0098 0.05 0.45 0.9569 90 2.38 0.0097 0.05 0.15 2.6 2.47 0.0098 0.05 0.46 0.9569 90 2.38 0.0097 0.05 0.15 2.6 2.47 0.0098 0.10 0.25 0.1699 90 2.38 0.0097 0.10 0.40 2.4 0.0098 0.10 0.25 0.1699 90 2.38 0.0097 0.10			0.0093	0.40	0.00	0.0867	000	000	60.0	0.0097	0.40	0.00	0.0400
26 2.47 0.0098 0.05 0.15 0.1103 0.1003 0.0097 0.009 0.009 26 2.47 0.0098 0.05 0.248 90 90 2.38 0.0097 0.05 0.27 26 2.47 0.0098 0.05 0.35 0.248 90 90 2.38 0.0097 0.05 0.25 26 2.47 0.0098 0.05 0.40 0.8208 90 90 2.38 0.0097 0.05 0.40 26 2.47 0.0098 0.05 0.40 0.8208 90 90 2.38 0.0097 0.05 0.45 26 2.47 0.0098 0.10 0.35 0.4451 90 90 2.38 0.0097 0.05 0.445 26 2.47 0.0098 0.10 0.35 0.4451 90 90 2.38 0.0097 0.10 0.35 0.445 90 90 2.38 0.0097 0.10			0.0093	0.40	0.00	0.1574	000	8	0.00	0.0097	0.40	0.00	0.0970
26 2.47 0.0098 0.05 0.25 0.2478 90 2.38 0.0097 0.05 0.25 26 2.47 0.0098 0.05 0.35 0.5416 90 2.38 0.0097 0.05 0.25 26 2.47 0.0098 0.05 0.36 0.5416 90 2.38 0.0097 0.05 0.35 26 2.47 0.0098 0.05 0.45 0.9056 90 2.38 0.0097 0.05 0.40 26 2.47 0.0098 0.01 0.25 0.1699 90 2.38 0.0097 0.05 0.40 26 2.47 0.0098 0.10 0.25 0.4651 90 2.38 0.0097 0.10 0.35 26 2.47 0.0098 0.10 0.45 0.2657 90 0.23 0.0097 0.10 0.35 26 2.47 0.0098 0.10 0.45 0.2667 90 0.238 0.009			0.0098	0.00	0.10	0.1003	000	9 9	2.50	0.0097	0.00	0.10	0.4097
26 2.47 0.0098 0.05 0.21 0.0097 0.009 0.009 26 2.47 0.0098 0.05 0.39 0.5416 99 2.38 0.0097 0.05 0.35 26 2.47 0.0098 0.05 0.35 0.6969 90 2.38 0.0097 0.05 0.35 26 2.47 0.0098 0.05 0.45 0.056 90 2.38 0.0097 0.05 0.35 26 2.47 0.0098 0.10 0.25 0.1699 90 2.38 0.0097 0.05 0.45 26 2.47 0.0098 0.10 0.45 0.7597 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.45 0.7512 90 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.45 0.7512 90 90 2.38 0.0097 0.10 <td></td> <td></td> <td>0.0008</td> <td>0.00</td> <td>0.00</td> <td>0.444</td> <td>00</td> <td>00</td> <td>2.00</td> <td>0.0097</td> <td>0.00</td> <td>0.00</td> <td>0.000</td>			0.0008	0.00	0.00	0.444	00	00	2.00	0.0097	0.00	0.00	0.000
26 2.47 0.0098 0.03 0.83 0.6969 9 2.38 0.0097 0.03 0.35 0.25 0.240 0.0808 0.05 0.44 0.8208 9 9 2.38 0.0097 0.05 0.44 0.8208 9 9 2.38 0.0097 0.05 0.44 0.8208 9 9 2.38 0.0097 0.05 0.44 0.8208 0.00 2.38 0.0097 0.05 0.44 0.8208 0.00			0.0008	0.00	0.00	0.5416	00	8 6	2000	0.0037	0.00	0.30	0.000
26 2.47 0.0098 0.05 0.40 0.8208 90 90 2.38 0.0097 0.00 0.40 26 2.47 0.0098 0.05 0.45 0.9056 90 2.38 0.0097 0.05 0.45 26 2.47 0.0098 0.10 0.36 0.2957 90 90 2.38 0.0097 0.05 0.45 26 2.47 0.0098 0.10 0.36 0.451 90 90 2.38 0.0097 0.10 0.36 26 2.47 0.0098 0.10 0.45 0.7312 90 90 2.38 0.0097 0.10 0.40 26 2.47 0.0098 0.10 0.50 0.8369 90 2.38 0.0097 0.10 0.40 26 2.47 0.0098 0.10 0.50 0.9188 0.90 2.38 0.0097 0.10 0.40 26 2.47 0.0098 0.10 0.50			86000	0.0	20.0	0.6969	00	8 8	2000	0.0097	20.0	0.00	00000
26 2.47 0.0098 0.05 0.45 0.9056 90 2.38 0.0097 0.05 0.45 26 2.47 0.0098 0.05 0.45 0.9056 90 2.38 0.0097 0.05 0.45 26 2.47 0.0098 0.10 0.25 0.1699 90 2.38 0.0097 0.10 0.25 26 2.47 0.0098 0.10 0.46 0.5967 90 2.38 0.0097 0.10 0.35 26 2.47 0.0098 0.10 0.40 0.5967 90 2.38 0.0097 0.10 0.35 26 2.47 0.0098 0.10 0.45 0.759 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.55 0.9108 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.15 0.25 0.9108 90 2.38 0.0097<			0.000	0.00	0.30	0.8308	06	86	0 00	0.0097	0.00	0.30	0 0000
26 2.47 0.0098 0.10 0.25 0.1699 9 2.38 0.0097 0.10 0.25 26 2.47 0.0098 0.10 0.30 0.2957 90 2.38 0.0097 0.10 0.30 26 2.47 0.0098 0.10 0.30 0.2957 90 90 2.38 0.0097 0.10 0.35 26 2.47 0.0098 0.10 0.40 0.5967 90 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.40 0.569 90 2.38 0.0097 0.10 0.40 26 2.47 0.0098 0.10 0.55 0.9108 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.15 0.35 0.2515 90 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.15 0.45 0.7515			0.0098	0.05	0.45	0.9056	06	06	2.38	0.0097	0.05	0.45	1.0000
26 2.47 0.0098 0.10 0.33 0.2957 90 2.38 0.0097 0.10 0.30 26 2.47 0.0098 0.10 0.35 0.4451 90 2.38 0.0097 0.10 0.35 26 2.47 0.0098 0.10 0.45 0.7312 90 90 2.38 0.0097 0.10 0.35 26 2.47 0.0098 0.10 0.50 0.8369 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.50 0.8369 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.50 0.8369 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.15 0.30 0.1457 90 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.15 0.35 0.2315 90			0.0098	0.10	0.25	0.1699	06	06	2.38	0.0097	0.10	0.25	0.6310
26 2.47 0.0098 0.10 0.35 0.4451 90 2.38 0.0097 0.10 0.35 26 2.47 0.0098 0.10 0.40 0.5967 90 2.38 0.0097 0.10 0.40 26 2.47 0.0098 0.10 0.40 0.5967 90 2.38 0.0097 0.10 0.40 26 2.47 0.0098 0.10 0.50 0.8369 90 2.38 0.0097 0.10 0.40 26 2.47 0.0098 0.10 0.55 0.9108 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.15 0.30 0.1457 90 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.15 0.35 0.2515 90 90 2.38 0.0097 0.15 0.35 26 2.47 0.0098 0.15 0.45 0.5214 90			0.0098	0.10	0.30	0.2957	06	06	2.38	0.0097	0.10	0.30	0.8640
26 2.47 0.0098 0.10 0.40 0.5967 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.45 0.7312 90 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.56 0.9108 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.56 0.9108 90 2.38 0.0097 0.10 0.50 26 2.47 0.0098 0.15 0.30 0.1457 90 90 2.38 0.0097 0.10 0.50 26 2.47 0.0098 0.15 0.45 90 90 2.38 0.0097 0.10 0.50 26 2.47 0.0098 0.15 0.45 0.524 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.45 0.753			0.0098	0.10	0.35	0.4451	06	06	2.38	0.0097	0.10	0.35	0.9667
26 2.47 0.0098 0.10 0.45 0.7312 90 90 2.38 0.0097 0.10 0.45 26 2.47 0.0098 0.10 0.50 0.8369 90 90 2.38 0.0097 0.10 0.50 26 2.47 0.0098 0.10 0.50 0.8569 90 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.15 0.30 0.1457 90 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.15 0.30 0.1457 90 90 2.38 0.0097 0.15 0.30 26 2.47 0.0098 0.15 0.40 0.5815 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.45 0.524 90 90 2.38 0.0097 0.15 0.40 26 2.47 0			0.0098	0.10	0.40	0.5967	90	06	2.38	0.0097	0.10	0.40	0.9946
26 2.47 0.0098 0.10 0.50 0.8369 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.10 0.65 0.9569 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.10 0.65 0.9569 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.15 0.36 0.245 90 90 2.38 0.0097 0.15 0.35 26 2.47 0.0098 0.15 0.35 0.2515 90 90 2.38 0.0097 0.15 0.35 26 2.47 0.0098 0.15 0.50 0.6591 90 2.38 0.0097 0.15 0.45 26 2.47 0.0098 0.15 0.50 0.6591 90 2.38 0.0097 0.15 0.45 26 2.47 0.0098 0.15 0.50 0.6591 90			0.0098	0.10	0.45	0.7312	06	06	2.38	0.0097	0.10	0.45	0.9994
26 2.47 0.0098 0.10 0.55 0.9108 90 2.38 0.0097 0.10 0.55 26 2.47 0.0098 0.11 0.60 0.9569 90 2.38 0.0097 0.10 0.66 26 2.47 0.0098 0.15 0.35 0.2515 90 90 2.38 0.0097 0.15 0.30 26 2.47 0.0098 0.15 0.45 0.2515 90 90 2.38 0.0097 0.15 0.30 26 2.47 0.0098 0.15 0.45 0.5244 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.50 0.6591 90 2.38 0.0097 0.15 0.45 26 2.47 0.0098 0.15 0.55 0.7783 90 90 2.38 0.0097 0.15 0.55 26 2.47 0.0098 0.15 0.65			0.0098	0.10	0.50	0.8369	90	06	2.38	0.0097	0.10	0.50	1.0000
26 2.47 0.0098 0.10 0.60 0.9569 90 2.38 0.0097 0.10 0.60 26 2.47 0.0098 0.15 0.38 0.2151 90 90 2.38 0.0097 0.15 0.30 26 2.47 0.0098 0.15 0.40 0.3815 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.45 0.5214 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.45 0.5224 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.65 0.651 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.15 0.66 0.8714 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.15	-		0.0098	0.10	0.55	0.9108	06	06	2.38	0.0097	0.10	0.55	1.0000
26 2.47 0.0098 0.15 0.30 0.1457 90 90 2.38 0.0097 0.15 0.30 26 2.47 0.0098 0.15 0.35 0.2214 90 90 2.38 0.0097 0.15 0.35 26 2.47 0.0098 0.15 0.45 0.524 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.45 0.524 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.60 0.8714 90 90 2.38 0.0097 0.15 0.50 26 2.47 0.0098 0.15 0.65 0.8714 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.15 0.65 0.9353 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.			0.0098	0.10	09.0	0.9569	90	06	2.38	0.0097	0.10	0.60	1.0000
26 2.47 0.0098 0.15 0.35 0.2515 90 90 2.38 0.0097 0.15 0.35 26 2.47 0.0098 0.15 0.46 0.3524 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.50 0.6591 90 90 2.38 0.0097 0.15 0.40 26 2.47 0.0098 0.15 0.50 0.6591 90 2.38 0.0097 0.15 0.50 26 2.47 0.0098 0.15 0.60 0.8714 90 90 2.38 0.0097 0.15 0.55 26 2.47 0.0098 0.15 0.65 0.9353 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.20 0.40 0.2173 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098			0.0098	0.15	0.30	0.1457	06	06	2.38	0.0097	0.15	0.30	0.5355
26 2.47 0.0098 0.15 0.49 0.3815 99 90 2.38 0.0097 0.15 0.46 26 2.47 0.0098 0.15 0.45 0.6591 90 2.38 0.0097 0.15 0.45 26 2.47 0.0098 0.15 0.56 0.7783 90 90 2.38 0.0097 0.15 0.45 26 2.47 0.0098 0.15 0.56 0.7743 90 90 2.38 0.0097 0.15 0.55 26 2.47 0.0098 0.15 0.65 0.9353 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.20 0.35 0.1270 90 90 2.38 0.0097 0.20 0.45 26 2.47 0.0098 0.20 0.45 0.335 90 90 2.38 0.0097 0.20 0.45 26 2.47 0.0098 <			0.0098	0.15	0.35	0.2515	06	06	2.38	0.0097	0.15	0.35	0.7912
26 2.47 0.0098 0.15 0.45 0.5224 90 90 2.38 0.0097 0.15 0.45 26 2.47 0.0098 0.15 0.56 0.7783 90 90 2.38 0.0097 0.15 0.55 26 2.47 0.0098 0.15 0.60 0.8714 90 90 2.38 0.0097 0.15 0.55 26 2.47 0.0098 0.15 0.65 0.9353 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.20 0.65 0.2173 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.20 0.40 0.2173 90 90 2.38 0.0097 0.20 0.40 26 2.47 0.0098 0.20 0.45 0.3335 90 90 2.38 0.0097 0.20 0.40 27 0.0098 <t< td=""><td></td><td></td><td>0.0098</td><td>0.15</td><td>0.40</td><td>0.3815</td><td>90</td><td>06</td><td>2.38</td><td>0.0097</td><td>0.15</td><td>0.40</td><td>0.9343</td></t<>			0.0098	0.15	0.40	0.3815	90	06	2.38	0.0097	0.15	0.40	0.9343
26 2.47 0.0098 0.15 0.50 0.6591 90 2.38 0.0097 0.15 0.50 26 2.47 0.0098 0.15 0.55 0.7783 90 90 2.38 0.0097 0.15 0.55 26 2.47 0.0098 0.15 0.65 0.9353 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.21 0.35 0.127 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.20 0.40 0.2173 90 90 2.38 0.0097 0.20 0.40 26 2.47 0.0098 0.20 0.45 0.3335 90 90 2.38 0.0097 0.20 0.45 26 2.47 0.0098 0.20 0.45 0.3335 90 90 2.38 0.0097 0.20 0.45 27 0.0098 0.20 <	-		0.0098	0.15	0.45	0.5224	06	06	2.38	0.0097	0.15	0.45	0.9861
26 2.47 0.0098 0.15 0.55 0.7783 90 90 2.38 0.0097 0.15 0.55 26 2.47 0.0098 0.15 0.66 0.9353 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.12 0.35 0.1270 90 90 2.38 0.0097 0.15 0.65 26 2.47 0.0098 0.20 0.35 0.1273 90 90 2.38 0.0097 0.20 0.40 26 2.47 0.0098 0.20 0.45 0.335 90 90 2.38 0.0097 0.20 0.45 26 2.47 0.0098 0.20 0.45 0.335 90 90 2.38 0.0097 0.20 0.45 26 2.47 0.0098 0.20 0.45 0.468 90 90 2.38 0.0097 0.45 27 0.0098 0.20 0			0.0098	0.15	0.20	0.6591	90	06	2.38	0.0097	0.15	0.50	0.9981
26 2.47 0.0098 0.15 0.60 0.8714 90 90 2.38 0.0097 0.15 0.60 2.6 2.47 0.0098 0.15 0.65 0.9353 90 90 2.38 0.0097 0.15 0.65 2.47 0.0098 0.20 0.35 0.1270 90 90 2.38 0.0097 0.20 0.35 2.47 0.0098 0.20 0.40 0.2173 90 90 2.38 0.0097 0.20 0.40 2.5 2.47 0.0098 0.20 0.45 0.335 90 90 2.38 0.0097 0.20 0.40 2.5 2.47 0.0098 0.20 0.45 0.335 90 90 2.38 0.0097 0.20 0.45 2.47 0.0098 0.20 0.45 0.46 2.47 0.0098 0.20 0.45 0.46 0.40 0.40 0.40 0.40 0.40 0.40 0.40			0.0098	0.15	0.55	0.7783	06	06	2.38	0.0097	0.15	0.55	0.9998
26 2.47 0.0098 0.15 0.65 0.9353 90 90 2.38 0.0097 0.15 0.65 2.6 2.47 0.0098 0.20 0.35 0.1770 90 90 2.38 0.0097 0.20 0.35 26 2.47 0.0098 0.20 0.40 0.2173 90 90 90 2.38 0.0097 0.20 0.40 2.3 0.2173 90 90 90 2.38 0.0097 0.20 0.40 2.3 0.0098 0.20 0.45 0.218 0.0097 0.20 0.45 0.40 0.40 0.0098 0.20 0.45 0.40 0.40 0.0098 0.20 0.45 0.40 0.40 0.40 0.0098 0.20 0.40 0.40 0.40 0.40 0.40 0.40 0.40			0.0098	0.15	0.60	0.8714	06	06	2.38	0.0097	0.15	0.60	1.0000
26 2.47 0.0098 0.20 0.40 0.173 90 90 2.38 0.0097 0.20 0.45 26 2.47 0.0098 0.20 0.45 0.335 90 90 2.38 0.0097 0.20 0.40 2.5 2.47 0.0098 0.20 0.45 0.335 90 90 2.38 0.0097 0.20 0.45 2.47 0.0098 0.20 0.45 0.335 90 90 2.38 0.0097 0.20 0.45 2.47 0.0098 0.20 0.55 0.468 90 90 2.38 0.0097 0.20 0.50 2.5 2.47 0.0098 0.20 0.55 0.468 0.20 0.20 0.20 0.50 0.45 0.45 0.45 0.45 0.45 0.45 0.4			0.0098	0.15	0.65	0.9353	06	06	2.38	0.0097	0.15	0.65	1.0000
26 2.47 0.0098 0.20 0.40 0.2173 90 90 2.38 0.0097 0.20 0.40 2.6 2.47 0.0098 0.20 0.45 0.3335 90 90 2.38 0.0097 0.20 0.45 26 2.47 0.0098 0.20 0.50 0.468 90 90 2.38 0.0097 0.20 0.50 2.50 2.47 0.0098 0.20 0.55 0.4684 90 90 2.38 0.0097 0.20 0.50 2.50 2.50 2.50 2.50 2.50 2.50			0.0098	0.20	0.35	0.1270	06	06	2.38	0.0097	0.20	0.35	0.4690
26 2.47 0.0098 0.20 0.45 0.3335 90 90 2.38 0.0097 0.20 0.45 26 2.47 0.0098 0.20 0.50 0.4684 90 90 2.38 0.0097 0.20 0.50 96 9.47 0.0008 0.90 0.55 0.660.4 90 90 2.8 0.0007 0.90 0.55			0.0098	0.20	0.40	0.2173	90	06	2.38	0.0097	0.20	0.40	0.7326
26 2.47 0.0098 0.20 0.30 0.4684 90 90 2.38 0.0097 0.20 0.50 96 9.47 0.0088 0.20 0.50 0.4684 90 90 2.38 0.0097 0.20 0.50			0.0098	0.20	0.45	0.3335	06	06.0	2.38	0.0097	0.20	0.45	0.9050
			0.0098	0.20	0.50	0.4684	90	200	2.38	0.0097	0.20	0.50	0.9767

Table B.6: continue on next page

ī	ı																																																	
o pays	power	0.9996	1.0000	1.0000	0.4295	0.6912	0.8784	0.9674	0.9945	0.9995	1.0000	1.0000	0.3967	0.6591	0.8632	0.9635	0.9939	0.9994	0.3830	0.6507	0.8596	0.9626	0.3827	0.6497	0.5281	0.8462	0.9700	0.9964	0.9997	1.0000	1.0000	0.6899	0.9026	0.9806	0.8970	1 0000	1.0000	1.0000	0.0000	0.0880	0.0577	00000	0.9993	1 0000	1.0000	1.0000	0.5206	0.7835	0.9343	0.9872
2000	P2	09.0	0.65	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	4.0 4.0		0.00	0.00	0.30	0.00		0.40	0.00	0.60	0.65	0.35	0.40	0.45	0.50
1 01101	p1	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.0	0.0	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20
t word with the property of th	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0039	0.0039	0.000	0.0099	0.0039	00000	6600.0	6600 0	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099
	zn	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	7.37	0.0	0.0	0 0	0.0	0.0	0.00	2 6 6	2 6	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37
	n2	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
3	$^{\mathrm{n}_{1}}$	06	06	06	06	90	06	06	06	90	06	06	06	06	90	06	06	90	06	06	90	06	06	90	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	power	0.7411	0.8490	0.9248	0.1114	0.1926	0.3032	0.4385	0.5856	0.7258	0.8413	0.9222	0.1015	0.1799	0.2903	0.4279	0.5785	0.7224	0.0980	0.1764	0.2874	0.4259	0.0978	0.1761	0.0678	0.1795	0.3366	0.5116	0.6760	0.8088	0.9009	0.1475	0.2719	0.4271	0.5902	0.7330	0.0470	0.9211	0.9044	0.1338	0.2850	0.5367	0.6800	0.8003	0.8899	0.9480	0.1264	0.2241	0.3498	0.4932
	p2	09.0	0.65	0.70	0.40	0.45	0.20	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.32	0.40	0.45	0.25	0.30	0.35	0.40	 	0.00	00.00	00.00	0.30	3.0		0.50	22.0	0.60	0.65	0.35	0.40	0.45	0.50
	P1	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20
	pvalue	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
	zn	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	02.50	00.7	00.00	00.00	00.00	00.00	0.50	0.00	9 C	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
	n ₂	26	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	27	27	22	27	27	27	27	27	27	1 2	1 0	1 -	1 -	1 -	1 -	1 0	- 1-	1 0	2 6	27	27	27	27	27	27	27
	n1	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	27	27	22	27	27	27	27	27	27	2 7 2	1 0	1 -	1 -	1 -	1 -	1 0	2 6	1 0	2 6	27	27	27	27	27	27	27

100 2.37 0.0099 0.20 0.59 100 2.37 0.0099 0.20 0.59 0.59 100 2.37 0.0099 0.20 0.65 1.000 100 2.37 0.0099 0.20 0.75 1.000 100 2.37 0.0099 0.25 0.45 0.7453 100 2.37 0.0099 0.25 0.65 0.9908 100 2.37 0.0099 0.25 0.60 0.9918 100 2.37 0.0099 0.25 0.60 0.9918 100 2.37 0.0099 0.25 0.60 0.9918 100 2.37 0.0099 0.25 0.60 0.9918 100 2.37 0.0099 0.25 0.75 1.0000 100 2.37 0.0099 0.30 0.65 0.9918 100 2.37 0.0099 0.30 0.65 0.9918 100 2.37 0.0099	3	0.6392 100 0.7704 100 0.8727 100 0.9403 100 0.1170 100 0.2058 100
100 2.37 0.0099 0.20 0.65 100 2.37 0.0099 0.20 0.70 100 2.37 0.0099 0.25 0.40 100 2.37 0.0099 0.25 0.40 100 2.37 0.0099 0.25 0.50 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.30 0.45 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 110 2.37 0.0099 0.35 </td <td>2</td> <td></td>	2	
100 2.37 0.0099 0.20 0.70 100 2.37 0.0099 0.25 0.45 100 2.37 0.0099 0.25 0.45 100 2.37 0.0099 0.25 0.45 100 2.37 0.0099 0.25 0.50 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.20 0.75 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 110 2.37 0.0099 0.35 </td <td></td> <td></td>		
100 2.37 0.0099 0.25 0.45 100 2.37 0.0099 0.25 0.45 100 2.37 0.0099 0.25 0.55 100 2.37 0.0099 0.25 0.50 100 2.37 0.0099 0.25 0.50 100 2.37 0.0099 0.25 0.70 100 2.37 0.0099 0.25 0.70 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.50 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.55 110 2.37 0.0099 0.35 0.55 120 2.37 0.0099 0.35 </td <td>\simeq</td> <td></td>	\simeq	
100 237 0.0099 0.25 0.55 100 2.37 0.0099 0.25 0.55 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.65 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.30 0.45 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.55 150 2.37 0.0099 0.35 0.55 150 2.37 0.0099 0.35 0.45 150 2.37 0.0099 0.35 <td></td> <td></td>		
100 2.37 0.0099 0.25 0.55 100 2.37 0.0099 0.25 0.55 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.55 150 2.37 0.0099 0.35 0.55 150 2.37 0.0099 0.35 0.45 150 2.37 0.0097 0.05 </td <td>\simeq</td> <td></td>	\simeq	
100 2.37 0.0099 0.25 0.05 100 2.37 0.0099 0.25 0.05 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.60 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 150 2.37 0.0099 0.35 0.65 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.05 0.45 150 2.37 0.0097 0.01 </td <td>\subseteq</td> <td></td>	\subseteq	
100 2.37 0.0099 0.25 0.70 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.50 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.35 0.60 100 2.37 0.0099 0.35 0.60 100 2.37 0.0099 0.40 0.55 150 2.37 0.0099 0.40 0.55 150 2.37 0.0099 0.40 0.65 150 2.37 0.0099 0.01 0.25 150 2.37 0.0097 0.10 </td <td></td> <td>0.6206 IC</td>		0.6206 IC
100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.25 0.75 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.40 0.65 150 2.37 0.0099 0.40 0.65 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.05 0.45 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 </td <td>2</td> <td></td>	2	
100 2.37 0.0099 0.30 0.45 100 2.37 0.0099 0.30 0.45 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.50 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 150 2.37 0.0099 0.35 0.65 150 2.37 0.0099 0.35 0.65 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 </td <td>9</td> <td></td>	9	
100 2.37 0.0099 0.30 0.50 100 2.37 0.0099 0.30 0.55 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.50 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 150 2.37 0.0099 0.40 0.55 150 2.37 0.0099 0.03 0.15 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 </td <td>9</td> <td></td>	9	
100 2.37 0.0099 0.23 0.009 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.50 100 2.37 0.0099 0.35 0.50 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.40 0.55 150 2.37 0.0099 0.40 0.50 150 2.37 0.0097 0.05 0.15 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.05 0.45 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10<	2 9	0.1969 10
100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.30 0.65 100 2.37 0.0099 0.35 0.50 100 2.37 0.0099 0.35 0.50 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.40 0.65 150 2.37 0.0099 0.40 0.65 150 2.37 0.0097 0.05 0.15 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.40 150 2.37 0.0097 0.10 </td <td>2 2</td> <td></td>	2 2	
100 237 0.0099 0.33 0.70 100 2.37 0.0099 0.35 0.50 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.40 0.60 150 2.37 0.0097 0.05 0.15 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.10 0.40 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 <td>2</td> <td></td>	2	
100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.55 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.40 0.65 150 2.37 0.0097 0.05 0.15 150 2.37 0.0097 0.05 0.20 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.15 </td <td>9</td> <td></td>	9	
100 2.37 0.0099 0.35 0.50 100 2.37 0.0099 0.35 0.60 100 2.37 0.0099 0.35 0.65 100 2.37 0.0099 0.40 0.55 100 2.37 0.0099 0.40 0.55 150 2.37 0.0097 0.05 0.15 150 2.37 0.0097 0.05 0.20 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.50 150 2.37 0.0097 0.10 0.50 150 2.37 0.0097 0.10 0.50 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55	9	
100 2.37 0.0099 0.35 0.65 0.60 0.00 0.237 0.0099 0.40 0.55 0.60 0.10 0.237 0.0099 0.40 0.55 0.60 0.10 0.237 0.0099 0.40 0.55 0.00 0.237 0.0099 0.40 0.55 0.15 0.237 0.0097 0.05 0.25 0.25 0.25 0.237 0.0097 0.05 0.25 0.30 0.237 0.0097 0.05 0.30 0.25 0.237 0.0097 0.05 0.40 0.25 0.237 0.0097 0.05 0.40 0.25 0.237 0.0097 0.00 0.40 0.25 0.237 0.0097 0.10 0.25 0.237 0.0097 0.10 0.25 0.237 0.0097 0.10 0.25 0.237 0.0097 0.10 0.25 0.237 0.0097 0.10 0.25 0.237 0.0097 0.10 0.25 0.237 0.0097 0.10 0.25 0.237 0.0097 0.10 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.15 0.25 0.237 0.0097 0.20 0.35 0.20 0.35 0.237 0.0097 0.20 0.35 0.20 0.25 0.25	2 2	0.1954 10
100 2.37 0.0099 0.40 0.55 100 2.37 0.0099 0.40 0.60 150 2.37 0.0099 0.40 0.60 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.05 0.40 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.40 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.15 </td <td>2 2</td> <td></td>	2 2	
100 2.37 0.0099 0.40 0.60 150 2.37 0.0097 0.05 0.15 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.25 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.45 150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.15 0.46 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 </td <td>2</td> <td></td>	2	
150 2.37 0.0097 0.05 0.15 150 2.37 0.0097 0.05 0.15 150 2.37 0.0097 0.05 0.20 1150 2.37 0.0097 0.05 0.20 1150 2.37 0.0097 0.05 0.30 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.15 0.30 150 2.37 0.0097 0.15 0.30 150 2.37 0.0097 0.15 0.35 150 2.37 0.0097 0.15 0.35 150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.45 150 2.37 0.0097 0.20 0.45	2 '	
150 2.37 0.0097 0.05 0.25 0.25 0.25 0.25 0.25 0.25 0.25	_υ	0.0746 15
150 237 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.35 150 2.37 0.0097 0.05 0.45 150 2.37 0.0097 0.05 0.45 150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 <td>2 22</td> <td></td>	2 22	
150		
150 2.37 0.0097 0.05 0.45 0.15 0.237 0.0097 0.05 0.45 0.15 0.237 0.0097 0.05 0.45 0.15 0.237 0.0097 0.010 0.25 0.15 0.237 0.0097 0.10 0.35 0.15 0.237 0.0097 0.10 0.35 0.15 0.237 0.0097 0.10 0.45 0.15 0.237 0.0097 0.10 0.45 0.15 0.237 0.0097 0.10 0.55 0.15 0.237 0.0097 0.10 0.55 0.15 0.237 0.0097 0.15 0.25 0.15 0.237 0.0097 0.15 0.25 0.15 0.237 0.0097 0.15 0.45 0.15 0.237 0.0097 0.15 0.25 0.15 0.237 0.0097 0.15 0.55 0.15 0.237 0.0097 0.15 0.55 0.15 0.237 0.0097 0.15 0.55 0.15 0.237 0.0097 0.15 0.55 0.15 0.237 0.0097 0.15 0.55 0.15 0.237 0.0097 0.15 0.55 0.15 0.237 0.0097 0.15 0.25 0.15 0.237 0.0097 0.15 0.25 0.237 0.0097 0.20 0.35 0.20 0.35 0.20 0.237 0.0097 0.20 0.45 0.45 0.20 0.25 0.45 0.20 0.25 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.25		
150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.25 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.50 150 2.37 0.0097 0.10 0.50 150 2.37 0.0097 0.15 0.30 150 2.37 0.0097 0.15 0.35 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.45 150 2.37 0.0097 0.20 0		0.9111
150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.40 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.50 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.15 0.35 150 2.37 0.0097 0.15 0.35 150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 </td <td></td> <td></td>		
150 2.37 0.0097 0.10 0.35 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.15 0.35 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.40 150 0.45 150 2.37 0.0097 0.20 0.40 150 0.45 150 0.20 0.44 150 0.44 150	<u> </u>	
150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.45 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.15 0.30 150 2.37 0.0097 0.15 0.35 150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.45 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.40		0.4366 1
150 2.37 0.0097 0.10 0.50 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.10 0.55 150 2.37 0.0097 0.15 0.30 150 2.37 0.0097 0.15 0.35 150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.45 150 2.37 0.0097 0.20 0.45		
150		
150 2.37 0.0097 0.110 0.00 150 2.37 0.0097 0.15 0.30 150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.40		
150 2.37 0.0097 0.13 0.35 150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.45	., .	0.9668 IE
150 2.37 0.0097 0.15 0.40 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.45	·	
150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.45 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.45	, L.	
150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.40	- 12	
150 2.37 0.0097 0.15 0.55 150 2.37 0.0097 0.15 0.60 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.45		
150 2.37 0.0097 0.1.5 0.60 150 2.37 0.0097 0.15 0.65 150 2.37 0.0097 0.20 0.35 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.45		
150 2.37 0.0097 0.15 0.05 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.45		
150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.40 150 2.37 0.0097 0.20 0.45		0.9544 L
150 2.37 0.0097 0.20 0.45		

Table B.6: continue on next page

page	power	0.9994	1.0000	1.0000	1.0000	1.0000	0.6683	0.9061	0.9862	0.9990	1.0000	1.0000	1.0000	1.0000	0.6389	0.8891	0.9811	0.9984	0.9999	1.0000	0.6082	0.8716	0.9782	0.9983	0.5940	0.8684	nane
-continued from previous	p2	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	rom previous page
from p	p1	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	from n
tinued	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	cluded
	$\mathbf{z}_{\mathbf{u}}$	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	able B.6: concluded
B.6	$^{\mathrm{n}_{2}}$	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	e B.
Table $B.6$:	$^{\mathrm{n}_{1}}$	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	Tabl
	power	0.5004	0.6529	0.7838	0.8805	0.9425	0.1136	0.2073	0.3339	0.4807	0.6287	0.7600	0.8638	0.9357	0.1119	0.2007	0.3193	0.4589	0.6068	0.7475	0.1080	0.1906	0.3046	0.4474	0.1027	0.1848	
	p2	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	
	p1	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	
	pvalue	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	
	$\mathbf{z}_{\mathbf{u}}$	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	
	$^{\mathrm{n}_{2}}$	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	
	$^{\mathrm{n}_{1}}$	28	28	28	28	28	28	28	28	28	28	58	28	28	28	28	28	28	28	28	28	28	28	28	28	28	

Table B.7: P-values calculated for the z-pooled statistic in cases of equal sample sizes, $\alpha = 0.05$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

n_1	n_2	$\mathbf{z}_{\mathbf{p}}$	p	pvalue
10	10	1.79	0.7007	0.0474
11	11	1.78	0.8034	0.0454
12	12	1.74	0.8154	0.0468
13	13	1.70	0.8258	0.0480
14	14	1.68	0.8349	0.0491
15	15	1.66	0.5000	0.0495
16	16	1.82	0.3212	0.0361
17	17	1.80	0.8880	0.0420
18	18	1.79	0.1065	0.0424
19	19	1.78	0.7183	0.0415
20	20	1.78	0.5000	0.0404
21	21	1.76	0.5000	0.0442
22	22	1.75	0.5000	0.0481
23	23	1.78	0.6151	0.0438
24	24	1.74	0.3670	0.0455
25	25	1.71	0.3546	0.0472
26	26	1.70	0.3439	0.0489
27	27	1.74	0.2580	0.0413
28	28	1.73	0.7464	0.0423
29	29	1.73	0.7508	0.0432
30	30	1.73	0.7550	0.0440
31	31	1.68	0.5000	0.0490
32	32	1.76	0.6279	0.0432
33	33	1.73	0.6118	0.0471
34	34	1.71	0.6289	0.0488
35	35	1.71	0.3468	0.0470
36	36	1.71	0.1520	0.0435
37	37	1.67	0.2186	0.0492
38	38	1.68	0.7884	0.0497
39	39	1.70	0.8539	0.0445
40	40	1.70	0.8556	0.0448
50	50	1.69	0.8711	0.0476
60	60	1.68	0.1608	0.0500
70	70	1.70	0.6020	0.0486

Table B.7: continue on next page

Table B.7: -continued from previous page

$\mathbf{n_1}$	n_2	$\mathbf{z}_{\mathbf{p}}$	p	pvalue
80	80	1.67	0.6877	0.0494
90	90	1.67	0.3616	0.0494
100	100	1.67	0.8758	0.0495
150	150	1.66	0.3544	0.0498

Table B.7: concluded from previous page

Table B.8: P-values calculated for the z-pooled statistic in cases of equal sample sizes, $\alpha = 0.025$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

				1
$\frac{\mathrm{n_1}}{-}$	n_2	$\mathbf{z_p}$	p	pvalue
10	10	1.96	0.5000	0.0211
11	11	2.14	0.6449	0.0207
12	12	2.05	0.3184	0.0225
13	13	1.99	0.3038	0.0243
14	14	2.03	0.7879	0.0208
15	15	2.00	0.7962	0.0216
16	16	2.13	0.8033	0.0224
17	17	2.07	0.1910	0.0231
18	18	2.02	0.3308	0.0239
19	19	2.02	0.1776	0.0243
20	20	1.99	0.1736	0.0249
21	21	2.05	0.8465	0.0248
22	22	2.04	0.5000	0.0244
23	23	2.07	0.5585	0.0237
24	24	2.03	0.6050	0.0245
25	25	2.01	0.3416	0.0232
26	26	1.98	0.3330	0.0243
27	27	2.03	0.2867	0.0223
28	28	2.03	0.7180	0.0231
29	29	2.02	0.5000	0.0240
30	30	2.07	0.4471	0.0235
31	31	2.04	0.5936	0.0240
32	32	2.02	0.3606	0.0233
33	33	2.00	0.3530	0.0243
34	34	2.00	0.1975	0.0233

Table B.8: continue on next page

Table B.8: -continued from previous page

n_1	n_2	$\mathbf{z}_{\mathbf{p}}$	p	pvalue
35	35	2.00	0.3043	0.0240
36	36	1.99	0.3002	0.0247
37	37	1.99	0.8105	0.0244
38	38	1.99	0.8114	0.0247
39	39	2.04	0.4543	0.0248
40	40	2.02	0.6084	0.0238
50	50	2.01	0.6056	0.0244
60	60	2.02	0.6023	0.0238
70	70	1.98	0.8245	0.0249
80	80	1.98	0.3210	0.0245
90	90	1.98	0.3654	0.0250
100	100	1.99	0.5967	0.0248
150	150	1.99	0.6112	0.0244

Table B.8: concluded from previous page

Table B.9: P-values calculated for the z-pooled statistic in cases of equal sample sizes, $\alpha = 0.01$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

$\mathbf{n_1}$	n_2	$\mathbf{z}_{\mathbf{p}}$	p	pvalue
10	10	2.35	0.5000	0.0064
11	11	2.29	0.5000	0.0087
12	12	2.45	0.6114	0.0087
13	13	2.37	0.6577	0.0096
14	14	2.37	0.2519	0.0083
15	15	2.33	0.7560	0.0088
16	16	2.29	0.7612	0.0094
17	17	2.42	0.7714	0.0099
18	18	2.41	0.3519	0.0083
19	19	2.39	0.3353	0.0091
20	20	2.38	0.5000	0.0084
21	21	2.36	0.5000	0.0098
22	22	2.42	0.5519	0.0097
23	23	2.38	0.3287	0.0091
24	24	2.35	0.3236	0.0097
25	25	2.36	0.7387	0.0093

Table B.9: continue on next page

Table B.9: -continued from previous page

n_1	n_2	$\mathbf{z}_{\mathbf{p}}$	р	pvalue
26	26	2.34	0.7534	0.0098
27	27	2.37	0.5000	0.0100
28	28	2.41	0.5908	0.0091
29	29	2.37	0.6087	0.0096
30	30	2.36	0.3498	0.0092
31	31	2.34	0.3434	0.0097
32	32	2.35	0.7043	0.0091
33	33	2.33	0.7063	0.0094
34	34	2.43	0.6136	0.0084
35	35	2.40	0.6215	0.0089
36	36	2.38	0.7760	0.0094
37	37	2.35	0.3649	0.0098
38	38	2.35	0.2197	0.0098
39	39	2.37	0.7277	0.0093
40	40	2.36	0.7304	0.0096
50	50	2.41	0.6033	0.0086
60	60	2.38	0.5839	0.0096
70	70	2.37	0.5684	0.0100
80	80	2.35	0.7375	0.0097
90	90	2.34	0.7609	0.0097
100	100	2.34	0.1185	0.0099
150	150	2.34	0.6121	0.0099

Table B.9: concluded from previous page

Table B.10: Achieved power and p-values calculated for the z-pooled statistic in cases of equal sample sizes, $\alpha = 0.05$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p1: fixed value of the probability of success in the first sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test.

n,	n	z	pvalue	La	D2	power	n,	n ₂	z,	pvalue	D1	D2	power
		4							4				
10	10	1.79	0.0474	0.05	0.15	0.1109	58	56	1.73	0.0432	0.05	0.15	0.3151
10	10	1.79	0.0474	0.05	0.20	0.2037	58	59	1.73	0.0432	0.05	0.20	0.5053
10	10	1.79	0.0474	0.05	0.25	0.3101	58	53	1.73	0.0432	0.02	0.25	0.6861
10	10	1.79	0.0474	0.02	0.30	0.4205	59	56	1.73	0.0432	0.02	0.30	0.8247
10	10	1.79	0.0474	0.02	0.35	0.5276	59	59	1.73	0.0432	0.05	0.35	0.9137
10	10	1.79	0.0474	0.05	0.40	0.6267	59	59	1.73	0.0432	0.05	0.40	0.9627
10	10	1.79	0.0474	0.05	0.45	0.7151	59	59	1.73	0.0432	0.02	0.45	0.9860
10	10	1.79	0.0474	0.10	0.25	0.1995	59	59	1.73	0.0432	0.10	0.25	0.4129
10	10	1.79	0.0474	0.10	0.30	0.2827	59	59	1.73	0.0432	0.10	0.30	0.5864
10	10	1.79	0.0474	0.10	0.35	0.3725	59	59	1.73	0.0432	0.10	0.35	0.7384
10	10	1.79	0.0474	0.10	0.40	0.4655	59	59	1.73	0.0432	0.10	0.40	0.8521
10	10	1.79	0.0474	0.10	0.45	0.5585	59	56	1.73	0.0432	0.10	0.45	0.9254
10	10	1.79	0.0474	0.10	0.50	0.6478	59	59	1.73	0.0432	0.10	0.50	0.9667
10	10	1.79	0.0474	0.10	0.55	0.7298	59	56	1.73	0.0432	0.10	0.55	0.9869
10	10	1.79	0.0474	0.10	09.0	0.8016	59	56	1.73	0.0432	0.10	0.60	0.9956
10	10	1.79	0.0474	0.15	0.30	0.1871	59	56	1.73	0.0432	0.15	0.30	0.3649
10	10	1.79	0.0474	0.15	0.35	0.2587	59	56	1.73	0.0432	0.15	0.35	0.5262
10	10	1.79	0.0474	0.15	0.40	0.3394	59	59	1.73	0.0432	0.15	0.40	0.6770
10	10	1.79	0.0474	0.15	0.45	0.4263	59	59	1.73	0.0432	0.15	0.45	0.8001
10	10	1.79	0.0474	0.15	0.50	0.5160	58	53	1.73	0.0432	0.15	0.50	0.8892
10	10	1.79	0.0474	0.15	0.55	0.6043	59	59	1.73	0.0432	0.15	0.55	0.9461
10	10	1.79	0.0474	0.15	09.0	0.6876	59	59	1.73	0.0432	0.15	09.0	0.9777
10	10	1.79	0.0474	0.15	0.65	0.7629	59	59	1.73	0.0432	0.15	0.65	0.9924
10	10	1.79	0.0474	0.20	0.35	0.1761	59	59	1.73	0.0432	0.20	0.35	0.3304
10	10	1.79	0.0474	0.20	0.40	0.2417	59	59	1.73	0.0432	0.20	0.40	0.4783
10	10	1.79	0.0474	0.20	0.45	0.3168	58	59	1.73	0.0432	0.20	0.45	0.6270
10	10	1.79	0.0474	0.20	0.50	0.3987	59	59	1.73	0.0432	0.20	0.50	0.7595
10	10	1.79	0.0474	0.20	0.55	0.4844	58	59	1.73	0.0432	0.20	0.55	0.8631
10	10	1.79	0.0474	0.20	09.0	0.5707	59	59	1.73	0.0432	0.20	0.60	0.9327
10	10	1.79	0.0474	0.20	0.65	0.6548	58	59	1.73	0.0432	0.20	0.65	0.9722
10	10	1.79	0.0474	0.20	0.70	0.7344	58	59	1.73	0.0432	0.20	0.70	0.9907
10	10	1.79	0.0474	0.25	0.40	0.1675	58	59	1.73	0.0432	0.25	0.40	0.3020
10	10	1.79	0.0474	0.25	0.45	0.2285	58	56	1.73	0.0432	0.25	0.45	0.4454
10	10	1.79	0.0474	0.25	0.50	0.2986	59	59	1.73	0.0432	0.25	0.50	0.5979
10	10	1.79	0.0474	0.25	0.55	0.3763	59	59	1.73	0.0432	0.25	0.55	0.7390
10	10	1.79	0.0474	0.25	09.0	0.4595	58	59	1.73	0.0432	0.25	09.0	0.8512
10	10	1.79	0.0474	0.25	0.65	0.5465	59	59	1.73	0.0432	0.25	0.65	0.9271
10	10	1.79	0.0474	0.25	0.70	0.6353	59	59	1.73	0.0432	0.25	0.70	0.9701
10	10	1.79	0.0474	0.25	0.75	0.7235	59	59	1.73	0.0432	0.25	0.75	0.9902
10	10	1.79	0.0474	0.30	0.45	0.1598	59	59	1.73	0.0432	0.30	0.45	0.2877
10	10	1.79	0.0474	0.30	0.50	0.2168	58	59	1.73	0.0432	0.30	0.50	0.4320
10	10	1.79	0.0474	0.30	0.55	0.2836	59	59	1.73	0.0432	0.30	0.55	0.5875
10	10	1.79	0.0474	0.30	0.60	0.3598	59	56	1.73	0.0432	0.30	0.60	0.7320
10	10	1.79	0.0474	0.30	0.65	0.4448	59	59	1.73	0.0432	0.30	0.65	0.8473

Table B.10: continue on next page

Table B.10: continue on next page

s page	power	0.9256	0.2849	0.4295	0.7304	0.2856	0.4292	0.3237	0.5203	0.7029	0.8389	0.9681	0.9886	0.4269	0.6036	0.7550	0.8652	0.9341	0.9715	0.9893	0.9966	0.3779	0.0422	0.0934	0.0147	0.9005	0.9818	0.9942	0.3415	0.4935	0.6451	0.7776	0.8780	0.9427	0.9775	0.3139	0.4633	0.6196	0.7603	0.8681	0.9381	0.9759	0.9925	0.3024	0.4326	0.7543
reviou	p 2	0.70	0.50	0.00	0.65	0.55	0.60	0.15	0.20	0.75	0.30	0.33	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.40	0.4:0	0.50	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.0 0.0 0.0	0.60
from p	p1	0:30	0.35	0.00	0.35	0.40	0.40	0.05	0.05	0.05	0.03	0.03	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.1.0	0.15	0.10	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	000	0.30
-continued from previous page	pvalue	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440
	$\mathbf{z}_{\mathbf{p}}$	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.70	1.73	1.70	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
B.10:	$^{\mathrm{n}_{2}}$	59	53	67 6	53	53	53	30	30	200	30	8 8	30	30	30	30	30	30	30	30	80	9 6	000	200	000	30	30	30	30	30	30	30	30	80	30	30	30	30	30	30	30	30	30	30	30	308
Table	$_{1}^{n}$	59	29	67 67 67	29	59	59	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	000	200	000	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	000	30
	power	0.5373	0.1526	0.2078	0.3536	0.1481	0.2043	0.1311	0.2344	0.3483	0.4621	0.5640	0.7461	0.2166	0.3013	0.3898	0.4790	0.5662	0.6489	0.7253	0.7939	0.1902	0.2079	0.3325	0.4122	0.4953	0.6634	0.7434	0.1648	0.2226	0.2893	0.3645	0.4473	0.5357	0.0208	0.1439	0.1962	0.2595	0.3341	0.4192	0.5126	0.6106	0.7083	0.1287	0.1130	0.3181
	p2	0.70	0.50	0.00	0.65	0.55	09.0	0.15	0.20	0.75	0.30	0.50	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.40	0.40	0.50	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.0	0.60
	p1	0.30	0.35	0.00	0.35	0.40	0.40	0.05	0.05	0.05	0.00	0.03	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.1.0	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.50	0.30
	pvalue	0.0474	0.0474	0.0474	0.0474	0.0474	0.0474	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.040	0.0454
	$\mathbf{z}_{\mathbf{p}}$	1.79	1.79	1.79	1.79	1.79	1.79	1.78	1.78	1.78	7. v	7.0	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	10	1.0	1.0	1.78	22.	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	28	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	70 7	1.78
	$^{\rm n_2}$	10	10	10	10	10	10	Ξ;	Π;	I :	Ξ:	: E	11	11	11	11	11	11	11	11	Ξ:	Π:	1 :	I :	T :	I :	: :	11	11	11	11	11	11	Ξ;	1 -	: =	11	11	11	11	11	11	11	11	1 -	11
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	Ξ;	Π;	Ι:	Ι.	1 [11	11	11	11	11	11	11	11	Ξ:	11	1 :	I :	T :	1 :	: :	: ::	11	11	11	11	11	Ξ;	1 -	: =	: ::	11	11	11	11	11	11	11	1 -	11

s page	power	0.8647	0.9368	0.3013	0.6092	0.7529	0.3024	0.4512	0.3952	0.0898	0.7302	0.9360	0.9739	0.9909	0.4531	0.6253	0.7723	0.8775	0.9418	0.9758	0.9913	0.9974	0.3919	0.5581	0.7092	0.8285	0.9110	0.9853	0.9956	0.3526	0.5089	0.6631	0.7950	0.0317	0.9819	0.9946	0.3264	0.4817	0.6410	0.7803	0.8834	0.9475	0.9805	0.9943	0.3176	0.6341
reviou	p2	0.65	0.70	0.50	0.60	0.65	0.55	0.60	0.15	0.20	0.70	0.32	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.00	0.60	0.65	0.35	0.40	0.45	0.50	0.00	0.00	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.55
from p	p1	0:30	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.00	0.00	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.10	0.15	0.15	0.20	0.20	0.20	0.20	02.0	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
-continued from previous page	pvalue	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0490	0.0490	0.0430	0.0430	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0430	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0430	0.0430	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490
	$\mathbf{z}_{\mathbf{p}}$	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.68	1.08	00.1	1.00	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	200.1	1.68	1.68	1.68	1.68	1.68	1.68	00.1	200.1	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	20.7	20.1	1.68
B.10:	n2	30	စ္က ရ	0 8	30	30	30	30	31	21	31	3 5	31	31	31	31	31	31	31	31	31	31	31	31	31	31	3.5	3 5	31	31	31	31	31	31	3.1	31	31	31	31	31	31	31	31	31	31	31
Table	$^{\mathrm{n}_{1}}$	30	30	30	30	30	30	30	31	21	31	3 5	31	31	31	31	31	31	31	31	31	31	31	31	31	31	3.1	3 5	31	31	31	31	31	31	3.1	31	31	31	31	31	31	31	31	31	31	31
	power	0.4067	0.5056	0.1698	0.2341	0.3132	0.1154	0.1670	0.1510	0.2038	0.5045	0.5020	0.7037	0.7827	0.2350	0.3248	0.4184	0.5121	0.6028	0.6878	0.7649	0.8322	0.2026	0.2758	0.3568	0.4438	0.0342	0.7127	0.7929	0.1750	0.2394	0.3147	0.3999	0.4920	0.0837	0.7744	0.1550	0.2156	0.2895	0.3758	0.4719	0.5735	0.6747	0.7693	0.1429	0.2027
	p2	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.20	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.00	0.60	0.65	0.35	0.40	0.45	0.50	0.00	0.00	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50
	p1	0.30	0.30	0.32	0.35	0.35	0.40	0.40	0.05	0.00	0.00	0.00	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.0	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
	pvalue	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0454	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0408	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468 0.0468
	$\mathbf{z}_{\mathbf{p}}$	1.78	1.78	2 2 2	1.78	1.78	1.78	1.78	1.74	1.74	1.77	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	I. 7	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.77	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74 7.4	1.74	1.74
	n2	11	11	1 :	11	11	11	Π	12	7 5	7 1 1	2 5	12	12	12	12	12	12	12	12	12	12	15	7.7	7.	2 5	7 6	12	12	12	12	12	12	7 1 1	2 5	12	12	12	12	12	12	12	12	7 .	7 .	12
	$_{1}$	11	11	1 :	11	11	11	11	12	7 5	7 1 1 2	2 1 2	12	12	12	12	12	12	12	12	12	12	12	7.7	77	2 5	2 1 2	12	12	12	12	12	12	7 1 1 2	2 5	12	12	12	12	12	12	12	12	77.	77	12

Table B.10: continue on next page

Table B.10: continue on next page

is page	power	0.7751	0.8803	0.9463	0.3177	0.6323	0.7737	0.3191	0.4725	0.3414	0.5495	0.7334	0.8622	0.9574	0.9913	0.4459	0.6214	0.7682	0.8741	0.9403	0.9758	0.9919	0.9978	0.3787	0.0447	0.8281	0.9145	0.9638	0.9871	0.9961	0.3405	0.5051	0.8033	0.8975	0.9532	0.9814	0.9938	0.3270	0.4878	0.6465	0.7798	0.8772	0.9400	0.9924	0.3176	0.4668
revion	p2	09.0	0.65	0.70	0.0	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.00	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.40	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.00	0.75	0.45	0.50
rom p	p 1	0.30	0.30	0.30	0.0	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	 	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25 0.75	0.40	0.25	0.30	0.30
-continued from previous page	pvalue	0.0490	0.0490	0.0490	0.0430	0.0490	0.0490	0.0490	0.0490	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432
	$\mathbf{z}_{\mathbf{p}}$	1.68	1.68	1.68	2001	1.68	1.68	1.68	1.68	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76
Table B.10:	$^{\rm n}$	31	31	31	3 5	31	31	31	31	32	32	32	325	7 C	35	32	32	32	32	32	35	35	27.0	22.00	7 00	3 2	32	32	32	35	37	25	3 6	35	32	32	32	32	32	32	35	3 3	3 6	35	32	32
Table	$^{\mathrm{n}_{1}}$	31	31	31	3 5	31	31	31	31	32	32	32	22.0	200	32	32	32	32	32	32	32	32	22.0	200	7 0	3 2	32	32	32	32	32	22.0	2 6	32	32	32	32	32	32	32	32	2 22	2 6	32	32	32
	power	0.3650	0.4639	0.5691	0.1370	0.2724	0.3621	0.1350	0.1957	0.1703	0.2914	0.4178	0.5381	0.6461	0.8142	0.2518	0.3468	0.4455	0.5437	0.6379	0.7248	0.8016	0.8660	0.2144	0.2337	0.4768	0.5745	0.6703	0.7593	0.8366	0.1862	0.2582	0.4385	0.5404	0.6429	0.7395	0.8239	0.1685	0.2384	0.3232	0.4205	0.5255	0.0318	0.8206	0.1600	0.2299
	p 2	09.0	0.65	0.70	0.00	09:0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.33	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	3.0	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.75	0.45	0.50
	p1	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.00	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.43	0.25	0.30	0.30
	pvalue	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480
	$\mathbf{z}_{\mathbf{p}}$	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	. i	1.70	1.5	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
	$^{\rm n}$	12	12	12	2 1	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	1.5	2 -	13	13	13	13	13	133	13	2 5	13	13	13	13	13	13	13	13	2 5	2 5	13	13	13
	$^{\mathrm{n}_{1}}$	12	12	12	12	17	12	12	12	13	13	13	1.3	13	13	13	13	13	13	13	13	13	13	1 T	10	13	13	13	13	13	13	η . Ε	2 5	13	13	13	13	13	13	13	13	13	2 5	13	13	13

s page	power	0.6169	0.7511	0.8584	0.9330	0.2980	0.4580	0.0000	0.2784	0.4234	0.3505	0.5639	0.7478	0.8731	0.9441	0.9785	0.9929	0.43.53	0.7814	0.8847	0.9474	0.9797	0.9936	0.9984	0.3895	0.5598	0.7183	0.8431	0.9252	0076.0	0.9973	0.3537	0.5241	0.6894	0.8226	0.9121	0.9023	0.9861	0.3440	0.5115	0.6734	0.8051	0.8969	0.9524	0.9818	0.9947 0.3394	
-continued from previous page	p ₂	0.55	09.0	0.65	0.70	0.50	0.00	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.40 0.40	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.00 R	0.00	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75 0.45	
from p	P1	0.30	0.30	0.30	0.30	0.35	0.00	0.00	0.30	0.40	0.02	0.02	0.02	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.13	0.TO	1.0	0.15	0.20	0.20	0.20	0.20	0.20	0.50	0.50	0.00	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
tinued	pvalue	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0452	0.0432	0.0432	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471 0.0471	
	$\mathbf{z}_{\mathbf{p}}$	1.76	1.76	1.76	1.76	1.76	1.70	1.76	1.76	1.76	1.73	1.73	1.73	1.73	1.73	1.70	1.73	1 73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1 70	1 73	1 73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	
B.10:	$^{\mathrm{n}_{2}}$	32	32	32	32	35	7 6	2 6	32	32	33	33	33	33	22.0	3	000	33	33	33	33	33	33	33	33	33	ee e	200	22	3 6	3 8	33	33	33	33	200	3 6	9 6	33	33	33	33	33	33	33	88 88	
Table	$^{\rm n_1}$	32	32	32	32	35	700	200	32	32	33	33	33	33	200	200	000	3 6	33	33	33	33	33	33	33	33	က္က	200	200	3 6	333	33	33	33	33	200	000	0 00	33	33	33	33	33	33	33	3333	
	power	0.3154	0.4139	0.5205	0.6290	0.1574	0.22/4	0.0100	0.1571	0.2271	0.1888	0.3173	0.4484	0.5710	0.6788	0.7692	0.0410	0.3678	0.4717	0.5745	0.6719	0.7599	0.8350	0.8951	0.2263	0.3123	0.4086	0.5113	0.0152	0.7140	0.8733	0.1987	0.2793	0.3742	0.4791	0.5879	0.0929	0.8642	0.1842	0.2640	0.3594	0.4661	0.5772	0.6850	0.7818	0.8619 0.1794	
	p2	0.55	09.0	0.65	0.70	0.50	0.00	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.40 0.40	30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	00.0	0.00	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.02	0.10	0.45	0.50	0.55	09.0	0.65	0.70	0.75	
	D1	0.30	0.30	0.30	0.30	0.35	0.00	0.00	0.40	0.40	0.05	0.02	0.02	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.TO	0.0	0.15	0.20	0.20	0.20	0.20	0.20	07.0	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
	pvalue	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491 0.0491	
	$\mathbf{z}_{\mathbf{p}}$	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.68	1.68	1.68	1.68	1.68	00.1	1.00	89	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	20.1	1.08	1.00	89.1	1.68	1.68	1.68	1.68	1.68	00.1	20.1	89	1.68	1.68	1.68	1.68	1.68	1.68	1.68	
	$^{\mathrm{n}_{2}}$	13	13	13	13	13	1 C	13	13	13	14	14	14	14	14	14	4 -	1 1	14	14	14	14	14	14	14	14	14	14	1 1	# <u>7</u>	4 1	14	14	14	14	41.	# -	1 4	1 7	14	14	14	14	14	14	14 14	
	$^{\rm n_1}$	13	13	13	13	13	01	13	13	13	14	14	14	14	14	T -	4 -	1.1	14	14	14	14	14	14	14	14	14	14	14	* 7	1 1	14	14	14	14	41	# -	14	1.1	14	14	14	14	14	14	14 14	

Table B.10: continue on next page

Table B.10: continue on next page

		ı																																												
is page	power	0.4967	0.6504	0.7818	0.9467	0.3246	0.4724	0.6264	0.7689	0.3067	0.4586	0.6218	0.7836	0.8927	0.9546	0.9837	0.9951	0.4883	0.6693	0.8127	0.9071	0.9852	0.9955	0.9989	0.4274	0.6013	0.7528	0.8659	0.9376	0.9700	0.9979	0.3862	0.5556	0.7147	0.8401	0.9223	0.9674	0.3002	0.8905	0.5327	0.6916	0.8184	0.9053	0.9572	0.9841	20000
revion	P2	0.50	0.55	0.60	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.13	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.0 1.0 7.4 7.4	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.00	100	0.70	0.45	0.50	0.55	09.0	0.65	0.70	
rom p	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.02	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.T5	0.1.0	2.5	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	
B.10: -continued from previous page	pvalue	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0471	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0466	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0466	0.0400	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	20.0
: -con	$\mathbf{z}_{\mathbf{p}}$	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1 7 1	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.1	1.7	1.71	1.71	1.71	1.71	1.71	1./1	1.7	1.71	1.71	1.71	1.71	1.71	1.71	1.71	
B.10	$^{\mathrm{n}_{2}}$	33	8 8	22 23	33	33	33	33	33	8	833	, K	34	34	34	34	34	2 2	34	χ, ς 4, ς	, ç	, &	34	34	34	34	34	34	χ, ς 4, ς	, c	, K	34	34	34	34	34	9 6 7 7	7 6	5 6 7 7 7	34	34	34	34	4.5	8, 8, 4, 4,	
Table	$_{1}$	33	m 0	n n	33	33	33	33	33	က္က	33	0 K	34	34	34	34	34	4.	42.	χ, ς 4, τ	, c	, c.	34	34	34	34	34	34	χ, ς 4, τ	5 0	, c	34	34	34	34	4.5	0 4 6	2 0	9 7 7 7	34	34	34	34	4.	ж 4 4	5
	power	0.2594	0.3551	0.4622	0.6830	0.1794	0.2591	0.3545	0.4614	0.1804	0.2594	0.2004	0.4768	0.6010	0.7084	0.7966	0.8655	0.2824	0.3882	0.4975	0.0049	0.7928	0.8648	0.9192	0.2386	0.3320	0.4366	0.5468	0.6554	0.000	0.8383	0.2128	0.3027	0.4073	0.5204	0.6337	0.7334	0.027.0	0.0902	0.2917	0.3968	0.5110	0.6256	0.7321	0.8232	
	p2	0.50	0.55	0.60	0.70	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	7.00	0.50	0.55	09.0	0.30	0.35	0.40	0.45	00.00	000	0.00	0.35	0.40	0.45	0.50	0.55	0.00	3 6	0.70	0.45	0.50	0.55	09.0	0.65	0.70	
	P1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	 	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.40	0.20	0.25	0.25	0.25	0.25	0.25	0.25	
	pvalue	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0493	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0493	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0100
	$\mathbf{z}_{\mathbf{p}}$	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.00	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.00	1.00	1.66	1.66	1.66	1.66	1.66	1.00	1.00	1.66	1.66	1.66	1.66	1.66	1.66	1.66	
	$^{\mathrm{n}_{2}}$	14	14	4 1 4	14	14	14	14	14	14	4. 1	5 12	15	15	15	15	12	15	T.	ე <u>.</u>		5 12	15	15	15	15	15	15	ე <u>.</u>	2 H	3 12	15	15	15	15	L 1.	0 H) H	5 10	15	15	15	15	12	1 L	
	$^{\mathrm{n}_{1}}$	14	14	1 T	14	14	14	14	14	14	1 - 4 n		15	15	15	15	12	15	r.	ე <u>.</u>	5 F	5 12	15	15	15	15	15	15	ე <u>.</u>	Э H	3 12	15	15	15	15	15	0 H) H	. L	15	15	15	15	12	15 15 15	1

s page	power	0.3530	0.5109	0.0031	0.8891	0.9516	0.3325	0.4814	0.6364	0.7787	0.3114	0.4661	0.3691	0.5918	0.7746	0.0323	0.9000	0.9952	0.4810	0.6620	0.8063	0.9039	0.9595	0.9858	0.9960	0.9991	0.4117	0.5903	0.7505	0.0033	0.5750	0.9990	0.9981	0.3803	0.5585	0.7222	0.8462	0.9251	0.9682	0.9886	0.9967	0.3685	0.5368	0.6929	0.8176	0.9050	0.9882
reviou	P2	0.45	0.50	0.55	0.65	0.70	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.70	0.00	0.00	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.40 0.40	0.0	09.0	0.65	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.00	0.70
from p	\mathbf{p}_1	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.00	0.00	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.10	0.10	1.0	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.20	0.25
-continued from previous page	pvalue	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0470	0.0470	0.0470	0.0470	0.0410	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470
	$\mathbf{z}_{\mathbf{p}}$	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.7	1.7	1.1	1.7	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.1	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.7	1.71	1.71
B.10:	$_{\rm n_2}$	34	£ 3	4 K	34	34	34	34	34	34	34	85 g		χ, υ,	ر د ا	0 c	3 %	3 6	35.	32	35	35	35	35	35	35	35	32	ა ლა	o c	3 6	3 6	35.	35	35	35	35	35	35	35	35	35	32		χ, υ,	000 H	35
Table	$^{\rm n_1}$	34	34	3.4	34	34	34	34	34	34	34	34	3.5 C 7	35	ري د د د	0 c	2 6	2 60	35.	32	35	35	35	35	35	35	35	32	00 c 00 m	0 0 71 C	5 K) K	35.	35	35	35	35	35	35	35	35	35	35		35	00 H	35
	power	0.2005	0.2900	0.5947	0.6232	0.7306	0.2024	0.2911	0.3948	0.5080	0.2040	0.2917	0.1021	0.2113	0.3448	0.4504	0.0217	0.8344	0.1985	0.3109	0.4381	0.5678	0.6878	0.7887	0.8662	0.9210	0.1940	0.2976	0.4150	0.5554	0.0480	0 8278	0.8902	0.1923	0.2859	0.3908	0.4995	0.6057	0.7044	0.7920	0.8655	0.1846	0.2668	0.3605	0.4621	0.5677	0.5727
	p ₂	0.45	0.50	0.00	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.70	0.00	3.0	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	 	0 C	09.0	0.65	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.00	0.70
	p1	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.00	0.00	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.10	2.5	2.0	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.20	0.25
	pvalue	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361
	$\mathbf{z}_{\mathbf{p}}$	1.66	1.66	1.00 1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.87	1.82	1.82	20.1	20.0	82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	20.1	25.1	2.62	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82
	$^{\mathrm{n}_{2}}$	15	15	- F	15	15	15	15	15	12	15	12	16	9 7	10	10	9 1	91	16	16	16	16	16	16	16	16	16	16	16	01	91	1 1 1	16	16	16	16	16	16	16	16	16	16	16	16	9 7	16	16
	$^{\rm n_1}$	15	15	1.0	15	15	15	15	15	12	15	12	16	9 7	10	0 7 5	9 -	19	16	16	16	16	16	16	16	16	16	16	16	16	19	10	16	16	16	16	16	16	16	16	16	16	16 1	16	9 7	16	16

Table B.10: continue on next page

Table B.10: continue on next page

		l																																											
is page	power	0.9961	0.3495	0.5044	0.7911	0.8915	0.9542	0.3225	0.4743	0.6352	0.7812	0.3048	0.3785	0.6053	0.7870	0.9011	0.9604	0.9864	0.9960	0.4923	0.0740	0.9124	0.9644	0.9880	0.9967	0.9993	0.4229	0.6047	0.8784	0.9460	0.9794	0.9933	0.9982	0.3907	0.5084	0.8479	0.9255	0.9689	0.9894	0.9972	0.3689	0.5334	0.6889	0.0110	0.9617
revion	p2	0.75	0.45	0.50	0.60	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50 8.00 8.00 8.00	0.00	0.65
rom p	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.05	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.00	0.25
-continued from previous page	pvalue	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0433	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0435	0.0433	0.0435
	$\mathbf{z}_{\mathbf{p}}$	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.7	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71
Table B.10:	$^{\mathrm{n}_{2}}$	35	35		3 2	35	35	35	35	32	32.	ა გ ი ყ	36	36	36	36	36	36	30	36	36	38	36	36	36	36	36	36	36	36	36	36	36	98	36	98	36	36	36	36	36	9 9	36	98	36
Table	$^{\rm n_1}$	35	32	20 co 20 co	32.0	35	35	35	35	35	32	ა გ ი ყ	98	36	36	36	36	36	30	36	36	36	36	36	36	36	36	3 20	98	36	36	36	36	36	36	98.	36	36	36	36	36	36	36	98	36
	power	0.8563	0.1705	0.2443	0.4345	0.5461	0.6613	0.1559	0.2270	0.3167	0.4246	0.1472	0.2141	0.3346	0.4560	0.5764	0.6907	0.7910	0.8706	0.2498	0.3603	0.6133	0.7280	0.8213	0.8906	0.9377	0.2214	0.3295	0.5711	0.6821	0.7769	0.8530	0.9104	0.2111	0.3091	0.5290	0.6369	0.7361	0.8220	0.8912	0.1981	0.2848	0.3838	0.6033	0.7097
	p2	0.75	0.45	0.50	09:0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.02
	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.02	0.05	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.00	0.25
	pvalue	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0361	0.0381	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420
	$\mathbf{z}_{\mathbf{p}}$	1.82	1.82	 8.5 8.5 8.5	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	80.1	1.80	1.80	1.80	1.80	1.80	1.80	1.80	00.1	1.80	1.80	1.80	1.80	1.80	1.80	08.1	80.1	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.00	1.80
	$^{\mathrm{n}_{2}}$	16	16	91	16	16	16	16	16	16	16	91	14	17	17	17	17	17	. I	17	14	17	17	17	17	17	17	17	12	17	17	17	17	17	17	1	17	17	17	17	17	17	17	1 -	17
	$^{\mathrm{n}_{1}}$	16	16	16	16	16	16	16	16	16	16	16	17	17	17	17	17	17	. I	17	14	17	17	17	17	17	17	17	17	17	17	17	17	17	17	14	17	17	17	17	17	17	17	1 -	17

							Table	B.10:		-continued from previous page	from p	reviou	s page
$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	P1	P2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	p ₂	power
17	17	1.80	0.0420	0.25	0.70	0.8062	36	36	1.71	0.0435	0.25	0.70	0.9874
17	17	1.80	0.0420	0.25	0.75	0.8848	36	36	1.71	0.0435	0.25	0.75	0.9969
17	17	1.80	0.0420	0.30	0.45	0.1815	36	36	1.71	0.0435	0.30	0.45	0.3408
17	17	1.80	0.0420	0.30	0.50	0.2615	36	36	1.71	0.0435	0.30	0.50	0.4986
1 -	1 -	1.80	0.0420	0.30	0.55	0.3579	30	30	1.71	0.0435	0.30	0.55	0.6594
17	17	1.80	0.0420	0.30	0.00	0.4677	36	9, 9,	1./1	0.0455	0.50	0.00	0.0992
17	17	1.80	0.0420	0.30	0.70	0.7012	36	30	1.71	0.0435	0.30	0.70	0.9597
17	17	1.80	0.0420	0.35	0.50	0.1678	36	36	1.71	0.0435	0.35	0.50	0.3196
17	17	1.80	0.0420	0.35	0.55	0.2465	36	36	1.71	0.0435	0.35	0.55	0.4802
17	17	1.80	0.0420	0.35	09.0	0.3450	36	36	1.71	0.0435	0.35	0.60	0.6481
17	17	1.80	0.0420	0.35	0.65	0.4601	36	36	1.71	0.0435	0.35	0.65	0.7947
17	17	1.80	0.0420	0.40	0.55	0.1608	36	36	1.71	0.0435	0.40	0.55	0.3121
J. T).T	1.80	0.0420	0.40	0.60	0.2416	30	30	1.71	0.0435	0.40	0.60	0.4760
0 7	0 2	1.79	0.0424	0.00	0.10	0.2240	3.7	34	1.07	0.0492	0.00	0.13	0.4410
2 2	2 00	1.79	0.0424	0.05	0.25	0.4759	3 2	3.2	1.67	0.0492	0.05	0.25	0.8142
18	18	1.79	0.0424	0.05	0.30	0.6023	37	37	1.67	0.0492	0.02	0.30	0.9162
18	18	1.79	0.0424	0.02	0.35	0.7199	37	37	1.67	0.0492	0.02	0.35	0.9684
18	18	1.79	0.0424	0.05	0.40	0.8190	37	37	1.67	0.0492	0.02	0.40	0.9900
18	18	1.79	0.0424	0.05	0.45	0.8936	37	37	1.67	0.0492	0.02	0.45	0.9974
18	18	1.79	0.0424	0.10	0.25	0.2640	37	37	1.67	0.0492	0.10	0.25	0.5241
18	18	1.79	0.0424	0.10	0.30	0.3850	37	37	1.67	0.0492	0.10	0.30	0.7096
18	18	1.79	0.0424	0.10	0.35	0.5183	37	37	1.67	0.0492	0.10	0.35	0.8464
18	18	1.79	0.0424	0.10	0.40	0.6479	37	37	1.67	0.0492	0.10	0.40	0.9299
18	9 9	1.79	0.0424	0.10	0.45	0.7601	37	37	1.67	0.0492	0.10	0.45	0.9727
× :	× .	1.79	0.0424	0.10	0.50	0.8476	3.7	37	1.67	0.0492	0.10	0.50	0.9912
× 5	× 5	1.79	0.0424	0.10	0.55	0.9098	3.7	37	1.67	0.0492	0.10	0.55	0.9977
0 0	0 0	1.7	0.0424	0.10	00.00	0.9507	0 0	0 0	1.07	0.0492	0.10	0.00	0.9995
2 2	2 0	1.79	0.0424	0.10	0.00	0.2560	2 00	34 6	1.07	0.0432	0.10	0.00	0.4010
28	00	1.79	0.0424	0.15	0.40	0.4796	37	37	1.67	0.0492	0.15	0.40	0.7919
18	18	1.79	0.0424	0.15	0.45	0.6019	37	37	1.67	0.0492	0.15	0.45	0.8962
18	18	1.79	0.0424	0.15	0.50	0.7116	37	37	1.67	0.0492	0.15	0.50	0.9559
18	18	1.79	0.0424	0.15	0.55	0.8033	37	37	1.67	0.0492	0.15	0.55	0.9841
18	18	1.79	0.0424	0.15	0.60	0.8752	37	37	1.67	0.0492	0.15	0.60	0.9952
× :	× .	1.79	0.0424	0.15	0.65	0.9279	3.7	37	1.67	0.0492	0.15	0.65	0.9988
× 5	× 5	1.79	0.0424	0.20	0.35	0.2266	3 0	37	1.67	0.0492	0.20	0.35	0.4203
0 0	0 0	1.79	0.0424	0.20	0.40	0.3290	27	27	1.07	0.0492	0.20	0.40	0.0980
2 2	2 0	1.79	0.0424	0.20	0.45	0.5569	2 00	34 6	1.07	0.0432	0.20	0.40	0.00
2 8	8 2	1.79	0.0424	0.20	0.55	0.6671	37	37	1.67	0.0492	0.20	0.55	0.9386
18	18	1.79	0.0424	0.20	09.0	0.7665	37	37	1.67	0.0492	0.20	09.0	0.9755
18	18	1.79	0.0424	0.20	0.65	0.8500	37	37	1.67	0.0492	0.20	0.65	0.9920
18	18	1.79	0.0424	0.20	0.70	0.9137	37	37	1.67	0.0492	0.20	0.70	0.9980
18	18	1.79	0.0424	0.25	0.40	0.2103	37	37	1.67	0.0492	0.25	0.40	0.3959
18	8 9	1.79	0.0424	0.25	0.45	0.3024	37	37	1.67	0.0492	0.25	0.45	0.5650
× 5	× 5	1.79	0.0424	0.25	0.50	0.4079	3.7	37	1.67	0.0492	0.25	0.50	0.7187
0 8	18	1.79	0.0424	0.25	0.60	0.6377	37	37	1.67	0.0492	0.25	0.60	0.9213

Table B.10: continue on next page

Table B.10: continue on next page

		ı																																											
is page	power	0.9683	0.9900	0.9977	0.5283	0.6857	0.8186	0.9124	0.9660	0.3415	0.5037	0.6700	0.3293	0.4967	0.4488	0.6620	0.8238	0.9231	0.9720	0.9915	0.3373	0.7220	0.8562	0.9360	0.9758	0.9924	0.9980	0.9996	0.4713	0.0323	0.9013	0.9579	0.9847	0.9954	0.9989	0.4264	0.0026	1898.0	0.9389	0.9765	0.9928	0.9984	0.3910	0.5586	0.8413
revion	P2	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.60	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	 	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.0	0.00	09.0	0.65	0.70	0.40	0.45	0.55
rom p	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.30	0.40	0.02	0.02	0.02	0.05	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.T5	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0000	0.20	0.20	0.20	0.20	0.25	0.25	0.25
-continued from previous page	pvalue	0.0492	0.0492	0.0492	0.0492	0.0492	0.0492	0.0492	0.0492	0.0492	0.0492	0.0492	0.0492	0.0492	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0437	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0407	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497	0.0497
	$\mathbf{z}_{\mathbf{p}}$	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.68	1.68	1.68	1.68	20.1	1.68	00.1	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.00	1.68	1.68	1.68	1.68	1.68	20.1	1.00	2001	2001	1.68	1.68	1.68	1.68	20.1	1.68
Table $B.10$:	$^{\mathrm{n}_{2}}$	37	37	37	3.7	37	37	37	37	37	3.7	37	37	37	38	38	38	œ 9	x 0	x 0	0 0	9 00	38	38	38	38	38	œ 0	x 0	0 00	8 8	38	38	38	00 c	x c	0 0	9 8	0 00	38	38	38	38	x 0	× ×
Table	$_{1}^{n}$	37	37	37	3 2	37	37	37	37	37	3.4	27.	37	37	38	38	38	80 c	x c	x 0	0 0	0 00	38	38	38	38	38	00 c	x 0	0 00	8000	38	38	38	00 c	x c	0 0	0 00	0 00	38	38	38	38	x 0	8 8 8 8
	power	0.7461	0.8386	0.9094	0.2807	0.3857	0.5033	0.6250	0.7401	0.1818	0.2691	0.3763	0.1770	0.2658	0.2342	0.3628	0.4962	0.6283	0.7479	0.8444	0.9191	0.4098	0.5493	0.6798	0.7883	0.8697	0.9256	0.9611	0.2560	0.3782	0.6301	0.7383	0.8271	0.8950	0.9427	0.2412	0.3490	0.400 787 787	0.6967	0.7956	0.8751	0.9325	0.2223	0.3205	0.4331 0.5536
	p2	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	 	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	3.0	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0 F C	0.52	09.0	0.65	0.70	0.40	0.45	0.50
	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.To	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	00.0	0.20	0.20	0.20	0.20	0.25	0.25	0.25
	pvalue	0.0424	0.0424	0.0424	0.0424	0.0424	0.0424	0.0424	0.0424	0.0424	0.0424	0.0424	0.0424	0.0424	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415 0.0415
	$\mathbf{z}_{\mathbf{p}}$	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.78	1.78	1.78	1.78	× 1.	1.0	100	7.78	1.78	1.78	1.78	1.78	1.78	1.78	1.0	70 0	1.78	1.78	1.78	1.78	1.78	1.0	1.0	7.0	1.78	1.78	1.78	1.78	1.78	1.78	1.78
	$^{\mathrm{n}_{2}}$	18	180	<u>∞</u> =	000	18	18	18	18	18	× 5	× ×	81	18	19	19	19	19	61.	5 -	10	61	19	19	19	19	19	13	5 -	10	13	19	19	19	130	61.	n 0	01	61	19	19	19	19	61	19
	$^{\mathrm{n}_{1}}$	18	18	2 ×	2 00	18	18	18	18	18	× 5	× ×	18	18	19	19	19	19	61.	91	10	61	19	19	19	19	19	19	61	10	19	19	19	19	19	61.	61 1	01	61	19	19	19	19	61	19

						Table	ΨΙ.		-continued from previous page	from p	reviou	s page
	$\mathbf{z}_{\mathbf{p}}$	pvalue	P1	P 2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	D 1	P2	power
	1.78	0.0415	0.25	09.0	0.6728	38	38	1.68	0.0497	0.25	09.0	0.9258
	1.78	0.0415	0.25	0.65	0.7801	38	38	1.68	0.0497	0.25	0.65	0.9719
	1.78	0.0415	0.25	0.70	0.8671	38	38	1.68	0.0497	0.25	0.70	0.9917
	1.78	0.0415	0.25	0.75	0.9296	38	38	1.68	0.0497	0.25	0.75	0.9982
	1.78	0.0415	0.30	0.45	0.2062	38	38	1.68	0.0497	0.30	0.45	0.3599
	1.78	0.0415	0.30	0.50	0.3017	38	38	1.68	0.0497	0.30	0.50	0.5270
	1.78	0.0415	0.30	0.55	0.4153	8 °	88	1.68	0.0497	0.30	0.55	0.6927
	200	0.0415	0.30	0.60	0.5396	x 0	x 0	1.68	0.0497	0.30	0.60	0.8292
		0.0415	0.30	0.65	0.6637	x 0	× ×	T.08	0.0497	0.30	0.65	0.9211
	1.78	0.0415	0.30	0.70	0.7760	00 c	88 8	1.68	0.0497	0.30	0.70	0.9707
	1.78	0.0415	0.35	0.50	0.1976	x 0	80 0	1.68	0.0497	0.35	0.50	0.3441
	1.78	0.0415	0.35	0.55	0.2936	200	88	1.68	0.0497	0.35	0.55	0.5150
	1.78	0.0415	0.35	09.0	0.4090	38	38	1.68	0.0497	0.35	09.0	0.6858
	1.78	0.0415	0.35	0.65	0.5361	38	38	1.68	0.0497	0.35	0.65	0.8265
	1.78	0.0415	0.40	0.55	0.1950	38	38	1.68	0.0497	0.40	0.55	0.3406
	1.78	0.0415	0.40	09.0	0.2918	38	38	1.68	0.0497	0.40	09.0	0.5129
	1.78	0.0404	0.02	0.15	0.2430	39	39	1.70	0.0445	0.02	0.15	0.4071
	1.78	0.0404	0.02	0.20	0.3755	39	39	1.70	0.0445	0.02	0.20	0.6436
	1.78	0.0404	0.02	0.25	0.5133	39	39	1.70	0.0445	0.02	0.25	0.8203
	1.78	0.0404	0.02	0.30	0.6474	39	39	1.70	0.0445	0.02	0.30	0.9231
	1.78	0.0404	0.02	0.35	0.7649	39	39	1.70	0.0445	0.02	0.35	0.9720
	1.78	0.0404	0.02	0.40	0.8563	39	39	1.70	0.0445	0.02	0.40	0.9914
	1.78	0.0404	0.02	0.45	0.9197	39	39	1.70	0.0445	0.05	0.45	0.9978
	1.78	0.0404	0.10	0.25	0.2842	39	39	1.70	0.0445	0.10	0.25	0.5249
	1.78	0.0404	0.10	0.30	0.4132	39	39	1.70	0.0445	0.10	0.30	0.7111
	1.78	0.0404	0.10	0.35	0.5483	39	39	1.70	0.0445	0.10	0.35	0.8496
	1.78	0.0404	0.10	0.40	0.6747	39	39	1.70	0.0445	0.10	0.40	0.9338
	1.78	0.0404	0.10	0.45	0.7821	39	39	1.70	0.0445	0.10	0.45	0.9755
	1.78	0.0404	0.10	0.50	0.8656	39	39	1.70	0.0445	0.10	0.50	0.9925
	1.78	0.0404	0.10	0.55	0.9248	39	39	1.70	0.0445	0.10	0.55	0.9981
	1.78	0.0404	0.10	09.0	0.9627	39	39	1.70	0.0445	0.10	0.60	0.9996
	1.78	0.0404	0.15	0.30	0.2454	39	39	1.70	0.0445	0.15	0.30	0.4553
	1.78	0.0404	0.15	0.35	0.3616	39	39	1.70	0.0445	0.15	0.35	0.6430
	1.78	0.0404	0.15	0.40	0.4890	39	39	1.70	0.0445	0.15	0.40	0.7965
	1.78	0.0404	0.15	0.45	0.6167	39	36	1.70	0.0445	0.15	0.45	0.8995
	1.78	0.0404	0.15	0.50	0.7338	39	39	1.70	0.0445	0.15	0.50	0.9574
	1.78	0.0404	0.15	0.55	0.8312	39	39	1.70	0.0445	0.15	0.55	0.9849
	1.78	0.0404	0.15	09.0	0.9039	39	33	1.70	0.0445	0.15	0.60	0.9957
	1.78	0.0404	0.15	0.65	0.9518	39	39	1.70	0.0445	0.15	0.65	0.9991
	1.78	0.0404	0.20	0.35	0.2219	39	39	1.70	0.0445	0.20	0.35	0.4152
	1.78	0.0404	0.20	0.40	0.3307	39	39	1.70	0.0445	0.20	0.40	0.5934
	1.78	0.0404	0.20	0.45	0.4560	39	39	1.70	0.0445	0.20	0.45	0.7503
	1.78	0.0404	0.20	0.50	0.5870	39	39	1.70	0.0445	0.20	0.50	0.8675
	1.78	0.0404	0.20	0.22	0.7106	39	39	1.70	0.0445	0.20	0.52	0.9410
	1.78	0.0404	0.20	09.0	0.8153	33	33	1.70	0.0445	0.20	0.60	0.9787
	1.78	0.0404	0.20	0.65	0.8944	39	39	1.70	0.0445	0.20	0.65	0.9940
	1.78	0.0404	0.20	0.70	0.9469	39	39	1.70	0.0445	0.20	0.70	0.9987
	1.78	0.0404	0.52	0.40	0.2105	39	39	1.70	0.0445	0.25	0.40	0.3802
	1.78	0.0404	0.25	0.45	0.3178	33	330	1.70	0.0445	0.25	0.45	0.5535
	1.78	0.0404	0.25	00.0	0.4434	39	33	1.70	0.0445	0.25	0.50	0.7180
1								:				

Table B.10: continue on next page

Table B.10: continue on next page

		ı																																												
is page	power	0.8490	0.9328	0.9759	0.9986	0.3592	0.5353	0.7064	0.8423	0.9299	0.9751	0.3543	0.7033	0.8407	0.3546	0.5307	0.4166	0.6557	0.8302	0.9293	0.9751	0.9927	0.9982	0.5355	0.1221	0.9399	0.9786	0.9936	0.9984	0.9997	0.4665	0.6559	0.0072	0.9618	0.9870	0.9965	0.9993	0.4254	0.6055	0.7623	0.8774	0.9475	0.9819	0.9952	0.3901	0.5674
revion	p2	0.55	0.60	0.65	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45
rom p	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.00	0.0	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25
-continued from previous page	pvalue	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448
: -con	$\mathbf{z}_{\mathbf{p}}$	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
B.10:	$^{\rm n_2}$	39	33	30	36	39	39	39	36	39	33	30	30	36	39	39	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Table	$^{\mathrm{n}_{1}}$	39	39	30	33	39	39	39	39	39	30	n 0	000	33	39	39	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40
	power	0.5759	0.7018	0.8091	0.9456	0.2088	0.3157	0.4407	0.5728	0.6990	0.8075	0.2110	0.3108	0.5722	0.2128	0.3175	0.2945	0.4580	0.6081	0.7330	0.8289	0.8975	0.9432	0.3490	0.4759	0.7154	0.8125	0.8875	0.9397	0.9717	0.2788	0.3947	0.5219	0.7639	0.8564	0.9223	0.9633	0.2411	0.35555	0.4865	0.6207	0.7434	0.8430	0.9146	0.2281	0.3433
	p2	0.55	0.60	0.65	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	9.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.75	0.00	0.35	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.52	0.00	0.00	0.40	0.45
	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.92	9.0	0.35	0.40	0.40	0.05	0.02	0.05	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25
	pvalue	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0404	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442
	$\mathbf{z}_{\mathbf{p}}$	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.0	7.70	1.78	1.78	1.78	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.70	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.0	1.76	1.76	1.76
	$^{\mathrm{n}_{2}}$	20	20	200	20	20	20	20	20	20	50	02.0	0.00	20	20	20	21	21	21	21	21	51	77	7.7	170	217	21	21	21	21	21	7.7	2.1	21	21	21	21	21	21	21	21	51	7 5	21	21	21
	$^{\mathrm{n}_{1}}$	20	50	50	20	20	20	20	20	20	50	0.20	0.00	20	20	20	21	21	21	21	21	21	77	7.7	7 5	21	21	21	21	21	21	7.7	21	21	21	21	21	21	21	21	21	21	77.	21	21	21

							Table	B.10:		-continued from previous page	from	previou	s page
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	P2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	P1	P2	power
21	21	1.76	0.0442	0.25	0.50	0.4756	40	40	1.70	0.0448	0.25	0.50	0.7336
21	21	1.76	0.0442	0.25	0.55	0.6112	40	40	1.70	0.0448	0.25	0.55	0.8613
21	21	1.76	0.0442	0.25	09.0	0.7357	40	40	1.70	0.0448	0.25	0.60	0.9405
7.7	5.7	1.76	0.0442	0.25	0.65	0.8376	40	40	1.70	0.0448	0.25	0.65	0.9795
2.5	17 6	1.76	0.0442	0.75 0.75	0.70	0.9115	40	04	1.70 1.70	0.0448	0.25	0.70	0.9946
2 17	2 1 6	1.76	0.0442	0.70	5.5	0.9364	04.0	04.0	1.70	0.0440	0.20	0.7	0.3330
21	21	1.76	0.0442	0.30	0.50	0.3424	40	40	1.70	0.0448	0.30	0.50	0.5521
21	21	1.76	0.0442	0.30	0.55	0.4736	40	40	1.70	0.0448	0.30	0.55	0.7233
21	21	1.76	0.0442	0.30	09.0	0.6084	40	40	1.70	0.0448	0.30	09.0	0.8555
21	21	1.76	0.0442	0.30	0.65	0.7330	40	40	1.70	0.0448	0.30	0.65	0.9379
21	21	1.76	0.0442	0.30	0.70	0.8360	40	40	1.70	0.0448	0.30	0.70	0.9789
21	21	1.76	0.0442	0.35	0.50	0.2306	40	40	1.70	0.0448	0.35	0.50	0.3685
21	21	1.76	0.0442	0.35	0.55	0.3439	40	40	1.70	0.0448	0.35	0.55	0.5488
21	21	1.76	0.0442	0.35	0.60	0.4736	40	40	1.70	0.0448	0.35	0.60	0.7205
21	21	1.76	0.0442	0.35	0.65	0.6078	40	40	1.70	0.0448	0.35	0.65	0.8540
5 5	21	1.76	0.0442	0.40	0.55	0.2327	40	40	1.70	0.0448	0.40	0.55	0.3691
17	17	9 1	0.0442	0.40	0.00	0.3447	040	047	0.70	0.0448	0.40	0.60	0.5484
77.0	770	1.70	0.0481	0.00	0.15	0.3067	00 1	00.0	1.09	0.0476	0.00	0.15	0.5071
77.7	77.7	T	0.0481	0.05	0.20	0.4739	00.	00.	1.69	0.0476	0.05	0.20	0.7566
77.7	77.7	. i	0.0481	0.00	0.7.0	0.6256	00.	200	1.09	0.0476	0.05	0.25	0.9045
77.0	770	1.70	0.0481	0.00	0.30	0.7499	00 1	00.0	1.09	0.0476	0.00	0.30	0.9700
7 6	7 6	1.7 1.7 1.0	0.0481	0.00	0.33	0.8437	00 10	00 00	1.09	0.0476	0.00	0.30	0.9925
4 5	4 0	7.5	0.0481	0.0	7.0	0.9092	S 70	3 2	1.60	0.0476	0.00	0.0 7.7 7.7	0.0000
2 6	200	7.5	0.0481	0.00	0.05	0.3590	ν. Ο Γ.	8 20	1.69	0.0476	0.00	0.15	0.6308
22	22	1.75	0.0481	0.10	0.30	0.4904	200	20	1.69	0.0476	0.10	0.30	0.8151
22	22	1.75	0.0481	0.10	0.35	0.6192	20	20	1.69	0.0476	0.10	0.35	0.9244
22	22	1.75	0.0481	0.10	0.40	0.7357	20	20	1.69	0.0476	0.10	0.40	0.9750
22	22	1.75	0.0481	0.10	0.45	0.8321	20	20	1.69	0.0476	0.10	0.45	0.9935
22	22	1.75	0.0481	0.10	0.50	0.9039	20	20	1.69	0.0476	0.10	0.50	0.9987
22	22	1.75	0.0481	0.10	0.55	0.9513	20	20	1.69	0.0476	0.10	0.55	0.9998
22	22	1.75	0.0481	0.10	09.0	0.9786	20	20	1.69	0.0476	0.10	09.0	1.0000
22	22	1.75	0.0481	0.15	0.30	0.2884	20	20	1.69	0.0476	0.15	0.30	0.5513
22	22	1.75	0.0481	0.15	0.35	0.4115	20	20	1.69	0.0476	0.15	0.35	0.7468
77.0	77.0	1.75	0.0481	0.15	0.40	0.5453	200	00.0	1.69	0.0476	0.15	0.40	0.8828
4 C	4 6	1.75	0.0481	0.0	0.45	0.0700	0 r.	20.00	1.69	0.0470	0.10	0.40	0.9555
22	22	1.75	0.0481	0.15	0.55	0.8783	320	20	1.69	0.0476	0.15	0.55	0.9967
22	22	1.75	0.0481	0.15	09.0	0.9376	20	20	1.69	0.0476	0.15	09.0	0.9994
22	22	1.75	0.0481	0.15	0.65	0.9723	20	20	1.69	0.0476	0.15	0.65	0.99999
22	22	1.75	0.0481	0.20	0.35	0.2543	20	20	1.69	0.0476	0.20	0.35	0.5026
22	22	1.75	0.0481	0.20	0.40	0.3773	20	20	1.69	0.0476	0.20	0.40	0.6997
22	22	1.75	0.0481	0.20	0.45	0.5153	20	20	1.69	0.0476	0.20	0.45	0.8471
7.7.	7.7.	1.75	0.0481	0.20	0.50	0.6525	200	20.	1.69	0.0476	0.20	0.50	0.9355
77.0	77.0	1.75	0.0481	0.20	0.55	0.7732	200	00.0	1.69	0.0476	0.20	0.55	0.9782
7 0	7 0	1.75	0.0481	0.20	0.00	0.0070	00 70	20.00	1.69	0.0476	0.20	0.00	0.9944
2 6	2 6 6	1.75	0.0481	0.20	20.02	0.9511	0 K	20.00	1.69	0.0470		0.00	0.888.0
22	22	1.75	0.0481	0.25	0.40	0.2451	20	20	1.69	0.0476	0.25	0.40	0.4646
									:				

Table B.10: continue on next page

Table B.10: continue on next page

ıs page	power	0.6569	0.8156	0.9199	0.9729	0.9988	0.9999	0.4336	0.6309	0.8007	0.9138	0.9711	0.9928	0.4228	0.7968	0.9123	0.4218	0.6226	0.5849	0.8290	0.9475	0.9879	0.9979	0.9997	1.0000	0.7116	0.9615	0.9905	0.9982	0.9997	1.0000	1.0000	0.6313	0.8207	0.9510	0.9955	0.9993	0.9999	1.0000	0.5733	0.7747	0.9070	0.9705	0.9928	80000	1.0000
revion	p2	0.45	0.50	0.55	0.00	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.00	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.70
rom p	p1	0.25	0.25	0.25	0.40	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.00 0.00	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0000	0.20
-continued from previous page	pvalue	0.0476	0.0476	0.0476	0.0470	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0476	0.0500	0.0500	0.0500	0.0500	0.0200	0.0500	0.0500	0.0200	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0200	0.0300	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0200	0.0500	0.0200	0.0500
Table B.10: -con	$\mathbf{z}_{\mathbf{p}}$	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	20.1	1.00	1.68	1.68	1.68	1.68	1.68	1.68	1.68	T.08	1.68	20.1	1.68
	$^{\rm n_2}$	20	20	200	8 2	20	20	20	20	20	20	20	50	0 r	20	20	20	20	09	09	09	09	09	09	09	9 9	09	09	09	09	09	09	09	00	9	09	09	09	09	09	09	09	09	00	8 9	8 9
	$_{1}$	50	20	20	5 K	20	50	20	20	20	20	20	50	00 70	50	20	20	20	09	09	09	09	0.9	09	0.9	09	09	09	09	09	09	09	09	00	00	09	09	09	09	09	09	9	09	09	9	09
	power	0.3685	0.5068	0.6445	0.7003	0.9284	0.9683	0.2468	0.3689	0.5053	0.6417	0.7636	0.8606	0.2503	0.5052	0.6410	0.2525	0.3712	0.2673	0.4168	0.5731	0.7162	0.8291	0.9069	0.9542	0.3270	0.6204	0.7477	0.8476	0.9175	0.9607	0.9838	0.2860	0.4220	0.3638	0.8134	0.8954	0.9478	0.9769	0.2658	0.3976	0.5407	0.6772	0.7919	0.0376	0.9690
	p2	0.45	0.50	0.55	0.00	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.00	09.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.70
	P1	0.25	0.25	0.25	0.43	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.13	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.00	0.20
	pvalue	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0458	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438	0.0438
	$\mathbf{z}_{\mathbf{p}}$	1.75	1.75	1.75	7.5	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	10	1.70	1.78	1.78	1.78	1.78	1.78	1.78	1.78	× 1	1.0	7.0	1.78
	$^{\rm n_2}$	22	22	22	4 0	22	22	22	22	22	22	22	7.7	7 6	22	22	22	22	23	23	23	23	53	53	523	2 73	23 23	23	23	23	23	23	53	2 0	0.70	23 2	23	23	23	23	23	23	22.0	2 23	0 0	23
	\mathbf{n}_1	22	22	5 5	4 6	2 2 2	22	22	22	22	22	22	7.7	7 6	22	22	22	22	23	23	23	23	23	23	5.73	2 73	23 8	23	23	23	23	23	533	200	0 6	23 8	23	23	23	23	23	23	223	200	3 0	23

							Table	B.10:		-continued from previous page	from p	reviou	s page
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	p2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	P1	P2	power
23	23	1.78	0.0438	0.25	0.40	0.2599	09	09	1.68	0.0500	0.25	0.40	0.5426
23	23	1.78	0.0438	0.25	0.45	0.3871	09	09	1.68	0.0500	0.25	0.45	0.7487
23	23	1.78	0.0438	0.25	0.50	0.5241	09	09	1.68	0.0200	0.25	0.20	0.8884
53	53	1.78	0.0438	0.25	0.55	0.6553	09	09	1.68	0.0500	0.25	0.55	0.9603
2 23	2 2	1.0	0.0438	0.72 0.72	0.00	0.7686	09	09	1.68	0.0200	0.25 0.75	0.00	0.9891
2.53	2.5	2 20	0.0438	0.25	0.00	0.9228	09	8 6	1.68	0.0500	0.25	0.00	0.9997
23	23	1.78	0.0438	0.25	0.75	0.9647	09	09	1.68	0.0500	0.25	0.75	1.0000
23	23	1.78	0.0438	0.30	0.45	0.2552	09	09	1.68	0.0500	0.30	0.45	0.5191
23	23	1.78	0.0438	0.30	0.50	0.3736	09	09	1.68	0.0500	0.30	0.50	0.7182
53	53	1.78	0.0438	0.30	0.55	0.5023	09	09	1.68	0.0500	0.30	0.55	0.8655
233	233	1.78	0.0438	0.30	0.60	0.6305	09	09	1.68	0.0500	0.30	0.60	0.9503
2 62	2 6	1.78	0.0438	0.30	0.00	0.8484	09	8 9	1.00	0.0500	0.30	0.00	0.9976
23	23	1.78	0.0438	0.35	0.50	0.2440	09	09	1.68	0.0500	0.35	0.50	0.4864
23	23	1.78	0.0438	0.35	0.55	0.3555	09	09	1.68	0.0500	0.35	0.55	0.6906
23	23	1.78	0.0438	0.35	09.0	0.4830	09	09	1.68	0.0500	0.35	0.60	0.8524
233	233	1.78	0.0438	0.35	0.65	0.6184	0.9	09	1.68	0.0500	0.35	0.65	0.9471
2 6	2 6	1.70	0.0438	0.40	0.55	0.2327	00	00	1.08	0.0200	0.40	0.00	0.4687
2.4.0	24.0	1.74	0.0455	0.40	0.00	0.3203	2 0	3 8	1.00	0.0200	0.40	0.0	0.0820
4.5	4.5	1.74	0.0455	0.05	0.20	0.5034	20	2.02	1.70	0.0486	0.05	0.20	0.8649
24	24	1.74	0.0455	0.05	0.25	0.6577	20	2.02	1.70	0.0486	0.05	0.25	0.9667
24	24	1.74	0.0455	0.02	0.30	0.7806	20	20	1.70	0.0486	0.05	0.30	0.9941
24	24	1.74	0.0455	0.02	0.35	0.8699	20	20	1.70	0.0486	0.02	0.35	0.9992
24	24	1.74	0.0455	0.02	0.40	0.9295	20	20	1.70	0.0486	0.02	0.40	0.99999
24	24	1.74	0.0455	0.02	0.45	0.9656	20	20	1.70	0.0486	0.02	0.45	1.0000
27	4.2	1.74	0.0455	0.10	0.25	0.3789	100	29	1.70	0.0486	0.10	0.25	0.7528
7 6	77 0	1.74	0.0455	0.10	0.30	0.5197	9 9	9 9	1.70	0.0486	0.10	0.30	0.9111
4.2	4 4	1.74	0.0455	0.10	0.35	0.0500	2 0	2 2	1.70	0.0400	0.10	0.35	0.9766
2.5	24	1.74	0.0455	0.10	0.45	0.8679	20	2.0	1.70	0.0486	0.10	0.45	0.9994
24	24	1.74	0.0455	0.10	0.50	0.9313	20	202	1.70	0.0486	0.10	0.50	0.9999
24	24	1.74	0.0455	0.10	0.55	0.9688	20	20	1.70	0.0486	0.10	0.55	1.0000
24	24	1.74	0.0455	0.10	09.0	0.9879	20	0 1	1.70	0.0486	0.10	0.60	1.0000
4 5	7 C	1.74	0.0455	0.15	0.30	0.3102	3 0	2 5	1.70	0.0486	0.T5	0.30	0.6712
242	242	1.74	0.0455	0.15	0.40	0.5934	202	202	1.70	0.0486	0.15	0.40	0.9551
24	24	1.74	0.0455	0.15	0.45	0.7275	20	20	1.70	0.0486	0.15	0.45	0.9893
24	24	1.74	0.0455	0.15	0.50	0.8355	20	20	1.70	0.0486	0.15	0.50	0.9982
24	24	1.74	0.0455	0.15	0.55	0.9111	20	20	1.70	0.0486	0.15	0.55	0.9998
24	24	1.74	0.0455	0.15	0.60	0.9572	70	2 1	1.70	0.0486	0.15	0.60	1.0000
77.0	4.5	1.74	0.0455	0.15	0.65	0.9817	40	2 2	1.70	0.0486	0.15	0.65	1.0000
4 6	4 6	1.74	0.0455	0.20	0.33	0.2050	207	2.5	1.70	0.0400	0.20	0.55	0.0150
24.	24	1.74	0.0455	0.20	0.45	0.5674	20	202	1.70	0.0486	0.20	0.45	0.9351
24	24	1.74	0.0455	0.20	0.50	0.7027	20	20	1.70	0.0486	0.20	0.50	0.9835
24	24	1.74	0.0455	0.20	0.55	0.8126	20	20	1.70	0.0486	0.20	0.55	0.9971
24	24	1.74	0.0455	0.20	0.60	0.8919	70	2 2	1.70	0.0486	0.20	0.60	0.9996
i	i		2) 1	2	2	-	?	,)	1)	2

Table B.10: continue on next page

Table B.10: continue on next page

is page	power	1.0000	0.5802	0.7943	0.9796	0.9959	0.9994	0.9999	1.0000	0.5698	0.7814	0.9738	0.9944	0.9992	0.5521	0.7573	0.8982	0.9698	0.7406	0.7021	0.9128	0.9829	0.9977	0.9998	1.0000	0.8078	0.9439	0.9887	0.9984	0.9998	1.0000	1.0000	0.7969	0.9047	0.9758	0.9958	0.9995	1.0000	1.0000	1.0000	0.6831	0.0750	0.9924	0.9989	0.9999
revion	p2	0.70	0.40	0.45	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.60	0.65	0.70	0.50	0.55	0.60	0.0 0.0 0.0	0.00	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0
rom p	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.02	0.02	0.02	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0480	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0434	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0434	0.0494	0.0494	0.0494
: $-con$	$\mathbf{z}_{\mathbf{p}}$	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.67	1.67	1.67	1.67	1.67	1.67	1.07	1.67	1.67	1.67	1.67	1.67	1.67	1.07	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.0.1	1.67	1.67	1.67
B.10:	$^{\rm n}$	20	2 1	2 2	202	20	20	20	2 6	2 2	9 9	2.2	20	20	20	21	2 1	9 9	2 2	0 8	80	80	80	80	08 S	8 8	8 8	80	80	80	80	08	000	8 8	80	80	80	80	80	80	8 8	00	80	80	80
Table	$^{\mathrm{n}_{1}}$	70	2 6	202	20	20	70	20	10	10	2 2	202	70	70	20	0 1	10	2 9	1 -	0 0	80	80	80	80	08	000	80	80	80	80	80	080	000	0 0	80	80	80	80	80	80	200	000	80	80	80
	power	0.9739	0.2766	0.5464	0.6755	0.7849	0.8702	0.9311	0.9697	0.2682	0.3880	0.6449	0.7618	0.8597	0.2513	0.3641	0.4933	0.6306	0.2503	0.3399	0.5171	0.6726	0.7946	0.8817	0.9382	0.3880	0.5347	0.6746	0.7941	0.8839	0.9425	0.9753	0.9909	0.4675	0.6174	0.7514	0.8549	0.9243	0.9647	0.9854	0.2993	0.4434	0.7256	0.8306	0.9044
	p2	0.70	0.40	0.45	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.60	0.65	0.70	0.50	0.55	0.60	0.0 0.0 0.0	0.00	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0:30	0.35	0.40	0.45	0.20	0.52	00.0	0.32	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0
	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.05	0.02	0.02	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	2.5	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0455	0.0400	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472
	$\mathbf{z}_{\mathbf{p}}$	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74 1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74 1.74	1.14	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.7	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.7	1.71	1.71	1.71
	$^{\rm n_2}$	24	47.	2 7 7	24	24	24	24	4.2	77.	4 6	42	24	24	24	24	77.	4 5	4 5	2.5	25	25	22	22	20 c 70 m	0 to	2 2 2	25	25	25	22	22.5	И С О п	3 6	25	25	22	22	25	52	2 2	и с С п	52 22	25	25
	$^{\mathrm{n}_{1}}$	24	47.	4 4	24	24	24	24	77.7	77.7	4 5	2 2	24	24	24	24	77.7	7 7	# c	2.5	25	22	22	22	255	9 C	22	25	22	22	22	22.5	0 to	4 C 73	25	22	22	22	22	22	2 IZ	4 с 5 п	25	22	25

		0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20		0.0472 0.0472
.9784 .2924 .4278		0.70 0.45 0.55 0.55 0.65 0.65 0.65 0.65 0.65 0.6	0.25 0.70 0.25 0.45 0.25 0.45 0.25 0.45 0.25 0.45 0.25 0.25 0.45 0.25 0.25 0.25 0.25 0.30 0.25 0.30 0.55 0.30 0.55 0.30 0.55 0.30 0.55 0.30 0.55 0.30 0.55 0.30 0.55 0.30 0.55 0.30 0.55 0.30 0.55 0.30 0.05 0.35 0.55 0.30 0.05 0.35 0.05 0.0	0.0472 0.20 0.70 0.0472 0.25 0.40 0.0472 0.25 0.45 0.0472 0.25 0.55 0.0472 0.25 0.60 0.0472 0.25 0.65 0.0472 0.25 0.65 0.0472 0.25 0.65 0.0472 0.30 0.45 0.0472 0.30 0.55 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.35 0.55 0.0472 0.35 0.60 0.0489 0.05 0.05 0.0489 0.05 0.05 0.0489 0.05 0.05 0.0489 0.05 0.05
4278		0.55 0.55 0.65 0.65 0.65 0.65 0.65 0.65	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.45 0.30 0.00	0.0472 0.25 0.45 0.0472 0.025 0.0472 0.025 0.050 0.0472 0.25 0.050 0.0472 0.25 0.055 0.0472 0.025 0.055 0.0472 0.025 0.055 0.0472 0.030 0.055 0.0472 0.030 0.055 0.0472 0.030 0.055 0.0472 0.035 0.055 0.0472 0.035 0.055 0.0472 0.035 0.055 0.0472 0.035 0.055 0.0488 0.05 0.05 0.0488 0.05 0.05 0.0488 0.05 0.05 0.0488 0.05 0.05 0.0488 0.05 0.05 0.0488 0.05 0.05 0.0488 0.05 0.05 0.05 0.0488 0.05 0.05 0.05 0.0488 0.05 0.05 0.05 0.0488 0.05 0.05 0.05 0.0488 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.
		0.50 0.65 0.65 0.70 0.70 0.55 0.55 0.65 0.65 0.65 0.65 0.65 0.6	0.25 0.50 0.25 0.65 0.25 0.65 0.25 0.75 0.30 0.75 0.30 0.55 0.30 0.60 0.30 0.60 0.30 0.60 0.30 0.65 0.30 0.65 0.30 0.65 0.30 0.65 0.30 0.65 0.30 0.65 0.30 0.70 0.35 0.55 0.35 0.60 0.35 0.60 0.35 0.60 0.35 0.60 0.35 0.60 0.35 0.60 0.35 0.60 0.35 0.60	0.0472 0.25 0.50 0.0472 0.25 0.60 0.0472 0.25 0.65 0.0472 0.25 0.65 0.0472 0.25 0.70 0.0472 0.30 0.45 0.0472 0.30 0.55 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.30 0.65 0.0472 0.35 0.55 0.0472 0.35 0.55 0.0472 0.35 0.55 0.0472 0.35 0.60 0.0472 0.35 0.60 0.0472 0.35 0.60 0.0472 0.35 0.60 0.0472 0.35 0.60 0.0472 0.35 0.60 0.0472 0.05 0.0489 0.05 0.15 0.0489 0.05 0.20
0.5668		0.55 0.65 0.70 0.45 0.55 0.65 0.65 0.65 0.65 0.65 0.65 0.6	0.25 0.55 0.55 0.25 0.25 0.25 0.25 0.25	0.0472 0.25 0.55 0.0472 0.025 0.055 0.0472 0.025 0.050 0.0472 0.025 0.075 0.0472 0.025 0.055 0.0472 0.030 0.055 0.0472 0.030 0.055 0.0472 0.035 0.055 0.0472 0.035 0.055 0.0472 0.035 0.055 0.0472 0.035 0.055 0.0489 0.055 0.056 0.0489 0.05 0.05 0.056 0.0489 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0
0.6943		0.65 0.55 0.55 0.55 0.66 0.66 0.66 0.65 0.65	0.25 0.065 0.25 0.065 0.25 0.065 0.25 0.065 0.25 0.075 0.30 0.55 0.30 0.35 0.65 0.35 0.65 0.35 0.65 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.0472 0.25 0.65 0.0472 0.25 0.25 0.0472 0.25 0.75 0.0472 0.25 0.75 0.0472 0.30 0.55 0.0472 0.30 0.55 0.0472 0.30 0.55 0.0472 0.30 0.55 0.0472 0.35 0.55 0.0472 0.35 0.55 0.0472 0.35 0.65 0.0472 0.35 0.65 0.0472 0.35 0.65 0.0489 0.05 0.05 0.0489 0.05 0.05 0.0489 0.05 0.05 0.05 0.0489 0.05 0.05 0.05 0.0489 0.05 0.05 0.05 0.0489 0.05 0.05 0.05 0.05 0.05 0.0489 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0
0.8008		0.75 0.75 0.55 0.65 0.65 0.65 0.65 0.20 0.20 0.33	0.25 0.75 0.75 0.25 0.75 0.25 0.75 0.30 0.50 0.30 0.55 0.30 0.55 0.30 0.45 0.35 0.55 0.40 0.55 0.40 0.65 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.0472 0.25 0.70 0.0472 0.025 0.70 0.0472 0.25 0.75 0.0472 0.30 0.55 0.0472 0.30 0.55 0.0472 0.30 0.65 0.0472 0.35 0.55 0.0472 0.35 0.65 0.0472 0.35 0.65 0.0472 0.35 0.65 0.0472 0.35 0.65 0.0472 0.35 0.65 0.0472 0.40 0.65 0.0489 0.05 0.05 0.0489 0.05 0.05 0.0489 0.05 0.05 0.0489 0.05 0.05 0.05 0.0489 0.05 0.05 0.05 0.0489 0.05 0.05 0.05 0.0489 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0
0.9401	0.75 0.50 0.50 0.50 0.50 0.50 0.50 0.60 0.55		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0472 0.25 0.0472 0.30 0.0472 0.30 0.0472 0.30 0.0472 0.30 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.40 0.0489 0.05 0.0489 0.05
0.9749	0.45 0.50 0.60 0.60 0.60 0.70 0.60 0.60 0.60		0.30 0.33 0.33 0.33 0.03 0.03 0.03 0.03	0.0472 0.30 0.0472 0.30 0.0472 0.30 0.0472 0.30 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.40 0.0472 0.40 0.0489 0.05 0.0489 0.05
0.2801	0.55 0.55 0.55 0.55 0.65 0.65		0.000000000000000000000000000000000000	0.0472 0.30 0.0472 0.30 0.0472 0.30 0.0472 0.30 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.40 0.0472 0.40 0.0489 0.05 0.0489 0.05
0.4028	0.60 0.50 0.50 0.50 0.60 0.60		0.00 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.05	0.0472 0.30 0.0472 0.30 0.0472 0.30 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.40 0.0472 0.40 0.0489 0.05 0.0489 0.05
0.6615	0.65 0.70 0.50 0.55 0.65		0.30 0.30 0.33 0.33 0.33 0.44 0.04 0.05 0.05 0.05 0.05	0.0472 0.30 0.0472 0.30 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.40 0.0472 0.40 0.0489 0.05 0.0489 0.05
0.7779	0.70 0.50 0.65 0.65		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.40 0.0489 0.05 0.0489 0.05 0.0489 0.05
0.8730	0.50 0.55 0.65		0.03 0.03 0.04 0.00	0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.35 0.0472 0.40 0.0489 0.05 0.0489 0.05 0.0489 0.05
0.2591	0.00		0.035 0.04.0 0.04.0 0.055 0.055 0.055	0.0472 0.35 0.0472 0.35 0.0472 0.40 0.0472 0.40 0.0489 0.05 0.0489 0.05 0.0489 0.05
0.5750	0.00 75 75 75		0.35 0.40 0.40 0.05 0.05	0.0472 0.35 0.0472 0.40 0.0472 0.40 0.0489 0.05 0.0489 0.05 0.0489 0.05
0.6471		0.55 0.60 0.15 0.20 0.25 0.30	0.40 0.55 0.40 0.60 0.05 0.15 0.05 0.25 0.05 0.30	0.0472 0.40 0.55 0.0472 0.40 0.60 0.0489 0.05 0.20 0.0489 0.05 0.20 0.0489 0.05 0.25
0.2420	00.00		0.40 0.05 0.05 0.05	0.0472 0.40 0.0489 0.05 0.0489 0.05 0.0489 0.05 0.0489 0.05
0.3626	09.0		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0489 0.05 0.0489 0.05 0.0489 0.05 0.0489 0.05
0.3500	0.15		0.05	0.0489 0.05 0.0489 0.05
0.5504	0.25		0.05	0.0489 0.05
0.8079	0.30			100
0.8926	0.35		0.02	0.0489 0.05
0.9460	0.40			0.00
0.9761	0.45	0.05 0.45	0.03	0.0489 0.05
0.5501	0.30		0.10	0.0489 0.10
0.6932	0.35		0.10	0.0489 0.10
0.8123	0.40		0.10	0.0489 0.10
0.8985	0.45		0.10	0.0489 0.10
0.9521	0.50	0.10 0.50		0.10
0.9932	0.60		0.10	0.0489 0.10
0.3354	0.30		0.15	0.0489 0.15
0.4875	0.35		0.15	0.0489 0.15
0.6409	0.40		0.15	0.0489 0.15
0.7735	0.45		0.15	0.0489 0.15
0.8720	0.50		0.15	0.0489 0.15
0.9353	0.55		0.15	0.0489 0.15
0.9708	0.60		0.15	0.0489 0.15
0.9883	0.65		0.15	0.0489 0.15
0.3154	0.35		0.20	0.0489 0.20
0.4650	0.40		0.20	0.0489 0.20
0.6153	0.45		0.20	0.0489 0.20
0.7401	0.00	0.20 0.30		0.20

Table B.10: continue on next page

Table B.10: continue on next page

is page	power	1.0000	1.0000	0.0001	0.8829	0.9692	0.9944	0.9993	1.0000	1.0000	1.0000	0.6680	0.0022	0.9922	0.9991	0.9999	0.6355	0.8431	0.9544	0.9916	0.6211	0.8389	0.7782	0.9572	0.9951	1.0000	1,0000	1.0000	0.8852	0.9773	0.9972	0.9998	1.0000	1.0000	1.0000	0.8189	0.9523	0.9920	0.9992	0.99999	1.0000	1.0000	1.0000	0.7684	0.0856	0.9981
revion	p2	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.00	0.00	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.00	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	24.0	0.50
rom p	\mathbf{p}_1	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	000	0.20
-continued from previous page	pvalue	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495
: -con	$\mathbf{z}_{\mathbf{p}}$	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.07	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.07	1.07	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67
B.10:	$^{\rm n_2}$	06	G 6	8 6	06	06	06	90	06	06	6 8	3 8	8 8	86	06	06	06	06	06	06	90	06	100	100	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$^{\mathrm{n}_{1}}$	06	06	06	06	90	90	06	90	06	06	06	06	06	06	06	90	90	90	90	06	06	100	100	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	power	0.9153	0.9583	0.9824	0.4459	0.5854	0.7117	0.8164	0.8955	0.9489	0.9797	0.2911	0.4165	0.6797	0.7957	0.8872	0.2676	0.3881	0.5253	0.6669	0.2510	0.3766	0.2986	0.4752	0.6505	0.7932	0.9490	0.9789	0.3846	0.5508	0.7023	0.8221	0.9046	0.9543	0.9900	0.3384	0.4923	0.6416	0.7682	0.8637	0.9282	0.9670	0.9872	0.3076	0.5909	0.7221
	p2	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.00	0:30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.45	0.50
	p1	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	000	0.20
	pvalue	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413
	$\mathbf{z}_{\mathbf{p}}$	1.70	1.70	1.70 1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.77	1.74
	$^{\mathrm{n}_{2}}$	26	56	978	26	26	56	56	26	56	26	97.0	070	26	26	26	26	56	56	56	56	26	27	27	27	27.0	27	27	27	27	27	27	27	2 7	27	27	27	27	27	27	27	27	7 1	2 5	2 1	27
	$^{\mathrm{n}_{1}}$	26	56	5. 5. 5. 6.	26	26	26	56	56	56	56	970	0 7 0	26	26	26	26	26	56	56	56	26	27	27	.57	22.	27	27	27	27	27	27	27	2 7 7	2 6	27	27	27	27	27	22	27	7.70	27.0	2 1	27

page	power	0.9999	1.0000	1.0000	1.0000	0.7288	0.9065	0.9792	0.9972	0.9998	1.0000	1.0000	1.0000	0.7012	0.8949	0.9762	0.9967	0.9997	1.0000	0.6947	0.8909	0.9750	0.9966	0.6928	0.8897	0.9070	0.9937	8666.0	1.0000	1.0000	1.0000	1.0000	0.9680	0.9977	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	0.9324	0.9924	9666.0	1.0000	1.0000	1.0000	1.0000	1.0000	0.8997	0.9852	0.9989
revious	p2	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45
$_{rom \ p_{l}}$	p1	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20
-continued from previous page	pvalue	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498
	$\mathbf{z}_{\mathbf{p}}$	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.00
Table $B.10$:	$_{\rm n_2}$	100	100	100	100	100	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	120	150	150	120	150	120	150	150	150	пет
Table	$^{\mathrm{n}_{1}}$	100	100	100	100	100	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	120	150	120	150	150	150	150	150	пет
	power	0.8301	0.9087	0.9580	0.9840	0.2798	0.4113	0.5546	0.6937	0.8124	0.8998	0.9546	0.9832	0.2604	0.3911	0.5380	0.6827	0.8064	0.8976	0.2529	0.3848	0.5335	0.6803	0.2519	0.3839	0.3068	0.4902	0.6686	0.8095	0.9030	0.9563	0.9828	0.3988	0.5688	0.7208	0.8378	0.9157	0.9609	0.9840	0.9944	0.3518	0.5095	0.6598	0.7847	0.8769	0.9376	0.9727	0.9901	0.3191	0.4631	0.6090
	p2	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.45	0.20	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.20	0.55	09.0	0.65	0.35	0.40	0.45
	p1	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.75	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20
	pvalue	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0413	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423
	$\mathbf{z}_{\mathbf{p}}$	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
	$_{\rm n_2}$	27	27	27	27	27	2.7.	27	27	.57	27	27	27	27	27	27	27	22	27	22	27	27	22	27	22	28	28	28	28	28	28	28	28	28	58	28	28	8 7	287	28	58	28	28	28	28	28	28	28	58	8 6	22
	$^{\rm n_1}$	27	27	27	27	27	1.7.	27	27	.77	27	27	27	27	27	22	27	27	27	27	27	27	27	27	27	28	28	28	28	28	28	28	28	28	28	58	28	200	78	28	28	28	28	28	28	58	28	58	58	8 6	22

Table B.10: continue on next page

1.0000 1.0000 1.0000 1.0000 0.8514 0.9709 0.999 1.0000 1.0000 0.8300 0.8254 0.8255 -continued from previous page $\begin{array}{c} 0.8715 \\ 0.9786 \\ 0.9981 \\ 0.9999 \end{array}$ from previous 0.0498 0. Table B.10: 0.7410 0.9214 0.9528 0.92878 0.29878 0.29878 0.7561 0.7571 0.9571 0.9871 0.9871 0.9871 0.9871 0.9871 0.9871 0.9871 0.9871 0.9871 0.9871 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9773 0.550 0.650 0.760 0.700 0.700 0.700 0.650 0.650 0.650 0.650 0.700 \mathbf{p}_2 \mathbf{p}_1 pvalue 0.0423 0. 11.73 n_2 $_{\rm n}$

Table B.11: Achieved power and p-values calculated for the z-pooled statistic in cases of equal sample sizes, $\alpha = 0.025$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p1: fixed value of the probability of success in the first sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test.

$_{1}^{\mathrm{u}}$	$_{\rm n_2}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	p2	power	n_1	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	\mathbf{p}_1	p ₂	power
10	10	1.96	0.0211	0.05	0.15	0.0304	29	59	2.03	0.0240	0.02	0.15	0.2090
10	10	1.96	0.0211	0.02	0.20	0.0744	29	53	2.03	0.0240	0.02	0.20	0.3774
10	10	1.96	0.0211	0.02	0.25	0.1407	29	53	2.03	0.0240	0.02	0.25	0.5634
10	10	1.96	0.0211	0.02	0.30	0.2255	59	56	2.03	0.0240	0.02	0.30	0.7297
10	10	1.96	0.0211	0.02	0.35	0.3230	59	53	2.03	0.0240	0.02	0.35	0.8521
10	10	1.96	0.0211	0.02	0.40	0.4265	59	53	2.03	0.0240	0.02	0.40	0.9284
10	10	1.96	0.0211	0.02	0.45	0.5298	59	50	2.03	0.0240	0.02	0.45	0.9694
10	10	1.96	0.0211	0.10	0.25	0.0865	59	53	2.03	0.0240	0.10	0.25	0.2983
10	10	1.96	0.0211	0.10	0.30	0.1427	59	53	2.03	0.0240	0.10	0.30	0.4626
10	10	1.96	0.0211	0.10	0.35	0.2116	59	50	2.03	0.0240	0.10	0.35	0.6246
10	10	1.96	0.0211	0.10	0.40	0.2911	59	53	2.03	0.0240	0.10	0.40	0.7621
10	10	1.96	0.0211	0.10	0.45	0.3786	53	53	2.03	0.0240	0.10	0.45	0.8644
10	10	1.96	0.0211	0.10	0.50	0.4713	59	58	2.02	0.0240	0.10	0.50	0.9314
10	10	1.96	0.0211	0.10	0.55	0.5660	59	53	2.03	0.0240	0.10	0.55	0.9699
10	10	1.96	0.0211	0.10	09.0	0.6590	59	50	2.03	0.0240	0.10	09.0	0.9889
10	10	1.96	0.0211	0.15	0.30	0.0886	59	53	2.03	0.0240	0.15	0.30	0.2529
10	10	1.96	0.0211	0.15	0.35	0.1365	53	53	2.03	0.0240	0.15	0.35	0.3951
10	10	1.96	0.0211	0.15	0.40	0.1961	59	59	2.03	0.0240	0.15	0.40	0.5480
10	10	1.96	0.0211	0.15	0.45	0.2673	59	53	2.03	0.0240	0.15	0.45	0.6928
10	10	1.96	0.0211	0.15	0.50	0.3490	53	53	2.03	0.0240	0.15	0.50	0.8135
10	10	1.96	0.0211	0.15	0.55	0.4393	59	59	2.02	0.0240	0.15	0.55	0.9011
10	10	1.96	0.0211	0.15	09.0	0.5352	59	56	2.02	0.0240	0.15	0.60	0.9553
10	10	1.96	0.0211	0.15	0.65	0.6321	59	50	2.02	0.0240	0.15	0.65	0.9833
10	10	1.96	0.0211	0.20	0.35	0.0866	59	59	2.02	0.0240	0.20	0.35	0.2199
10	10	1.96	0.0211	0.20	0.40	0.1301	59	56	2.02	0.0240	0.20	0.40	0.3500
10	10	1.96	0.0211	0.20	0.45	0.1857	59	59	2.03	0.0240	0.20	0.45	0.5009
10	10	1.96	0.0211	0.20	0.50	0.2540	53	53	2.03	0.0240	0.20	0.50	0.6535
10	10	1.96	0.0211	0.20	0.55	0.3343	59	59	2.03	0.0240	0.20	0.55	0.7868
10	10	1.96	0.0211	0.20	09.0	0.4248	59	53	2.03	0.0240	0.20	0.60	0.8861
10	10	1.96	0.0211	0.20	0.65	0.5221	59	59	2.02	0.0240	0.20	0.65	0.9484
10	10	1.96	0.0211	0.20	0.70	0.6216	59	50	2.02	0.0240	0.20	0.70	0.9808
10	10	1.96	0.0211	0.25	0.40	0.0847	59	56	2.02	0.0240	0.25	0.40	0.2019
10	10	1.96	0.0211	0.25	0.45	0.1267	59	50	2.02	0.0240	0.25	0.45	0.3295
10	10	1.96	0.0211	0.25	0.50	0.1811	59	59	2.02	0.0240	0.25	0.50	0.4821
10	10	1.96	0.0211	0.25	0.55	0.2487	59	59	2.02	0.0240	0.25	0.55	0.6389
10	10	1.96	0.0211	0.25	09.0	0.3288	59	59	2.02	0.0240	0.25	0.60	0.7769
10	10	1.96	0.0211	0.25	0.65	0.4196	53	53	2.03	0.0240	0.25	0.65	0.8804
10	10	1.96	0.0211	0.25	0.70	0.5178	59	59	2.03	0.0240	0.25	0.70	0.9458
10	10	1.96	0.0211	0.25	0.75	0.6190	59	53	2.03	0.0240	0.25	0.75	0.9800
10	10	1.96	0.0211	0.30	0.45	0.0845	59	59	2.03	0.0240	0.30	0.45	0.1978
10	10	1.96	0.0211	0.30	0.50	0.1260	59	58	2.02	0.0240	0.30	0.50	0.3254
10	10	1.96	0.0211	0.30	0.55	0.1801	59	56	2.02	0.0240	0.30	0.55	0.4779
10	10	1.96	0.0211	0.30	09.0	0.2474	59	59	2.03	0.0240	0.30	09.0	0.6348
10	10	1.96	0.0211	0.30	0.65	0.3273	59	56	2.02	0.0240	0.30	0.65	0.7737

Table B.11: continue on next page

Table B.11: continue on next page

s $page$	power	0.8788	0.1998	0.3264	0.6340	0.2018	0.3271	0.2167	0.3923	0.5832	0.8668	0.9377	0.9744	0.3113	0.4801	0.6435	0.7794	0.8780	0.9407	0.9914	0.2634	0.4105	0.5673	0.7133	0.8318	0.9145	0.9632	0.9869	0.3668	0.5233	0.6777	0.8076	0.9001	0.9556	0.3654	0.3484	0.5052	0.6608	0.7929	0.8892	0.9496	0.9816	0.2100	0.3413	0.6471
reviou	p2	0.70	0.50	0.00	0.65	0.55	0.60	0.15	0.20	0.25	0.00	0.40	0.45	0.25	0.30	0.35	0.40	0.40 0.40	0.0 0.10 0.11	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.05	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.00	0.60
from p	p1	0:30	0.35	0.0	0.35	0.40	0.40	0.05	0.05	0.05	0.00	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.50	0.30
-continued from previous page	pvalue	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0233	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0233	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0255	0.0235
: -cont	$\mathbf{z}_{\mathbf{p}}$	2.02	2.02	20.2	2.02	2.02	2.02	2.07	2.07	2.07	20.7	2.07	2.07	2.07	2.07	2.07	2.07	20.0	20.0	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	20.7	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	20.7	2.07
B.11:	$^{\rm n_2}$	59	50	67 6	53	59	59	99	30	9 6	0 8	30	30	30	30	90	90	900	900	9 6	30	30	30	30	30	99	200	9 6	30	30	30	30	30	200	30	8 6	30	30	30	30	30	30	30	9 6	30
Table .	$^{\mathrm{n}_{1}}$	59	50	9.0	29	59	29	30	30	30	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	power	0.4184	0.0852	0.1200	0.2473	0.0860	0.1269	0.0404	0.0957	0.1750	0.2723	0.4901	0.5962	0.1048	0.1697	0.2482	0.3371	0.4329	0.0014	0.7175	0.1038	0.1592	0.2275	0.3074	0.3963	0.4902	0.5847	0.6753	0.1500	0.2125	0.2864	0.3697	0.4594	0.5522	0.0443	0.0301	0.2003	0.2694	0.3489	0.4373	0.5329	0.6333	0.0923	0.1334	0.2568
	p2	0.70	0.50	0.00	0.65	0.55	0.60	0.15	0.20	0.25	0.00	0.40	0.45	0.25	0.30	0.35	0.40	U.45	0.0	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.05	0.40	0.45	0.50	0.55	0.60	0.65	9.0	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.00	09.0
	p1	0.30	0.35	0.00	0.35	0.40	0.40	0.05	0.05	0.00	0.00	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30
	pvalue	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207	0.0207
	$\mathbf{z}_{\mathbf{p}}$	1.96	1.96	1.96	1.96	1.96	1.96	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	41.7	1.0	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14 1.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14
	$^{\rm n_2}$	10	10	2 0	10	10	10	Ξ;	Ξ;	I :	I =	11	11	11	11	Ξ:	Ξ;	1 :	1 :	: I	11	11	11	11	11	Ξ;	Ι;	1 [11	11	11	11	Π;	Ξ:	I :	1 =	11	11	11	11	11	Π	11	: :	11
	$^{\mathrm{n}_{1}}$	10	10	100	10	10	10	Ι;	11	I :	I :	11	11	11	11	Ξ:	Ξ;	I :	1 1	1 [11	11	11	11	11	Ι;	Π;	I	11	11	11	11	11	Π:	I :	1 [11	11	11	11	11	11	11	1 :	11

					7 700 1	4 I		-continued from previous page	TOTE P	1 cotto	s page
- 1	pvalue	p1	b 2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	b 1	P2	power
	0.0207	0.30	0.65	0.3365	30	30	2.07	0.0235	0.30	0.65	0.7814
	0.0207	0.30	0.70	0.4289	30	30	2.07	0.0235	0.30	0.70	0.8837
	0.0207	0.35	0.50	0.0884	30	30	2.07	0.0235	0.35	0.50	0.2076
	0.0207	0.35	0.55	0.1297	30	90	2.07	0.0235	0.35	0.55	0.3342
	0.0207	0.35	0.00	0.1836	30	9 8	2.0.7	0.0235	0.35 0.35	0.00	0.4840
	0.0207	0.50		0.2220	30	8 8	20.0	0.0235	0.33	0.0	0.0400
	0.0207	0.40	09.0	0.1275	30	30	2.07	0.0235	0.40	09.0	0.3298
	0.0225	0.02	0.15	0.0515	31	31	2.04	0.0240	0.02	0.15	0.2246
	0.0225	0.02	0.20	0.1180	31	31	2.04	0.0240	0.02	0.20	0.4073
	0.0225	0.05	0.25	0.2098	31	31	2.04	0.0240	0.02	0.25	0.6025
	0.0225	0.02	0.30	0.3183	31	31	2.04	0.0240	0.02	0.30	0.7670
	0.0225	0.02	0.35	0.4341	31	31	2.04	0.0240	0.05	0.35	0.8802
	0.0225	0.02	0.40	0.5488	31	31	2.04	0.0240	0.05	0.40	0.9459
	0.0225	0.02	0.45	0.6555	31	31	2.04	0.0240	0.05	0.45	0.9787
	0.0225	0.10	0.25	0.1230	31	31	2.04	0.0240	0.10	0.25	0.3242
	0.0225	0.10	0.30	0.1967	31	31	2.04	0.0240	0.10	0.30	0.4971
	0.0225	0.10	0.35	0.2846	3.1	31	2.04	0.0240	0.10	0.35	0.0010
	0.0225	0.10	0.40	0.3820	ς 1.0	31	40.0	0.0240	0.10	0.40	0.7957
	0.0225	0.10	0.45	0.4858	31	31	2.04	0.0240	0.10	0.45	0.8905
	0.0225	0.10	0.00	0.5884	0.1	10	40.0	0.0240	0.10	0.50	0.9469
	0.0223	0.10	0.00	0.0040	0.1	01	40.0	0.0240	0.10	0.00	0.9780
	0.0223	0.10	00.00	0.7695	31	31	40.0	0.0240	0.10	0.00	0.9954
	0.0225	0.10	0.50	0.1828	3 2	3.5	20.2	0.0240	0.13	0.00	0.4260
	0.0225	0.15	0.40	0.2602	3 5	3.1	2.04	0.0240	0.15	0.40	0.5865
	0.0225	0.15	0.45	0.3486	31	31	2.04	0.0240	0.15	0.45	0.7333
	0.0225	0.15	0.50	0.4439	31	31	2.04	0.0240	0.15	0.50	0.8490
	0.0225	0.15	0.55	0.5408	31	31	2.04	0.0240	0.15	0.55	0.9265
2.05	0.0225	0.15	09.0	0.6342	31	31	2.04	0.0240	0.15	09.0	0.9699
2.05	0.0225	0.15	0.65	0.7204	31	31	2.04	0.0240	0.15	0.65	0.9897
2.05	0.0225	0.20	0.32	0.1142	31	31	2.04	0.0240	0.20	0.35	0.2406
2.05	0.0225	0.20	0.40	0.1712	31	31	2.04	0.0240	0.20	0.40	0.3841
0.00 0.00	0.0225	0.20	0.45	0.2408	21	21	40.2	0.0240	0.20	0.45	0.5459
2.05	0.0225	0.20	0.55	0.4078	3 5	3.1	2.04	0.0240	0.20	0.00	0.8268
2.05	0.0225	0.20	09.0	0.4988	31	31	2.04	0.0240	0.20	0.60	0.9126
2.05	0.0225	0.20	0.65	0.5909	31	31	2.04	0.0240	0.20	0.65	0.9619
2.05	0.0225	0.20	0.70	0.6816	31	31	2.04	0.0240	0.20	0.70	0.9859
2.05	0.0225	0.25	0.40	0.1085	31	31	2.04	0.0240	0.25	0.40	0.2265
2.05	0.0225	0.25	0.45	0.1595	31	31	2.04	0.0240	0.25	0.45	0.3676
	0.0225	0.25	0.50	0.2217	31	31	2.04	0.0240	0.25	0.50	0.5279
2.05	0.0225	0.25	0.55	0.2942	31	31	2.04	0.0240	0.25	0.55	0.6819
	0.0225	0.25	09.0	0.3761	31	31	2.04	0.0240	0.25	09.0	0.8083
2.05	0.0225	0.52	0.65	0.4665	31	31	2.04	0.0240	0.25	0.65	0.8983
2.05	0.0225	0.25	0.70	0.5641	31	31	2.04	0.0240	0.25	0.70	0.9541
	0.0225	0.25	0.75	0.6664	31	31	2.04	0.0240	0.25	0.75	0.9836
2.05	0.0225	0.30	0.45	0.1011	31	31	2.04	0.0240	0.30	0.45	0.2226
	0.0225	0.30	0.55	0.2037	31	31	2.04	0.0240	0.30	0.55	0.5102
- [

Table B.11: continue on next page

Table B.11: continue on next page

ıs page	power	0.6602	0.8903	0.2156	0.3426	0.4919	0.6482	0.2061	0.2325	0.4224	0.6212	0.7839	0.8923	0.9531	0.3369	0.5136	0.6790	0.8110	0.9020	0.9561	0.9835	0.9949	0.4415	0.6054	0.7520	0.8639	0.9356	0.9740	0.9911	0.4007	0.5653	0.7179	0.8373	0.9171	0.9051	0.2368	0.3799	0.5375	0.6858	0.8078	0.8968	0.9536	0.9955	0.3564
reviou	p 2	09.0	0.40	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55	0.60	0.0	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	0.60	0.65	0.70	45.0	0.50
rom p	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20	02.0	0.25	0.25	0.25	0.25	0.25	0.25	0.25	03.0	0.30
-continued from previous page	pvalue	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233
	$\mathbf{z}_{\mathbf{p}}$	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.02	2.02	2.02	2.02	2.02	20.2	2.02	2.03	2.02	2.02	2.02	2.02	20.2	20.2	2.02	2.02	2.02	2.02	2.02	20.0	2.02	2.02	2.02	2.02	2.02	20.0	2.02	2.02	2.02	2.02	2.02	2.02	2.02	00.0	2.02
B.11:	$^{\mathrm{n}_{2}}$	31	3 5	31	31	31	31	31	33	35	32	32	32	3 62	3.5	35	32	32	32	32	27.0	25.5	3.05	35	32	32	32	325	2 6	325	32	32	32	33	2 6	32	32	32	32	32	32.5	3 25	3 8	32
Table	$_{1}^{n}$	31	3 17	31	31	31	31	31	33	35	32	32	32	32 62	3 6	35	32	32	32	32	3.5	7 0	3 6	35	32	32	32	3.5	700	3 2	32	32	32	35	700	32	32	32	32	32	35	3 22	308	32
	power	0.2733	0.3360	0.0931	0.1360	0.1924	0.2653	0.0878	0.1517	0.1410	0.2443	0.3625	0.4849	0.6024	0.1412	0.2237	0.3208	0.4270	0.5358	0.6400	0.7336	0.8125	0.2067	0.2926	0.3884	0.4886	0.5873	0.6799	0.7050	0.1923	0.2684	0.3541	0.4459	0.5405	0.0349	0.1206	0.1765	0.2440	0.3222	0.4102	0.5066	0.6088	0 1104	0.1601
	p2	09.0	0.03	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55	0.60	0.00	0.35	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	0.60	0.65	0.70	45.0	0.50
	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.80	0.30
	pvalue	0.0225	0.0225	0.0225	0.0225	0.0225	0.0225	0.0225	0.0223	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243
	$\mathbf{z}_{\mathbf{p}}$	2.05	2.05	2.05	2.02	2.02	2.05	2.05	1 99	1.99	1.99	1.99	1.99	1.99	1 99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.00	1.99	1.99	1.99	1.99	1.99	1.00	1.99	1.99	1.99	1.99	1.99	1.99	1.99 1.99	00.1	1.99
	$_{\rm n_2}$	12	7 1 2	12	12	12	12	7 5	7 17	13	13	13	13	1 T	2 5	13	13	13	13	13	13	1 T	13	13	13	13	13	13	0 1	12	13	13	13	13	0 1	13	13	13	13	13	13	13 13	13	13
	$^{\mathrm{n}_{1}}$	12	12	12	12	12	15	7 5	7 17	13	13	13	13	L T	2 5	13	13	13	13	13	13	13	13	13	13	13	13	13	1.5	7 2	13	13	13	13	1.0	13	13	13	13	13	13	13.	13	13

1																																															ı
ıs page	power	0.5037	0.0017	0.8873	0.2073	0.3292	0.4770	0.6364	0.1918	0.3169	0.2406	0.4375	0.0394	0.7998	0.9059	0.9852	0.3495	0.5298	0.6957	0.8254	0.9126	0.9625	0.9866	0.9961	0.2949	0.4572	0.6242	0.7704	0.0775	0.9784	0.9929	0.2627	0.4183	0.5861	0.7373	0.8520	0.9264	0.9084	0.9000	0.3967	0.5559	0.7030	0.8225	0.9079	0.9605	0.9869	U.2004
revior	p ₂	0.55	0.00	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.33	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.0	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.40
$rom_{\ \ p}$	p1	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.00	0.00	0.0	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.00
-continued from previous page	pvalue	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0240
	$\mathbf{z}_{\mathbf{p}}$	2.02	20.2	2.02	2.02	2.02	2.02	2.02	2.02	2.03	2.00	2.00	2.00	00.2	00.6	200	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.2	00.4	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.4
B.11:	$^{\mathrm{n}_{2}}$	32	3 6	32	32	32	32	32	32	35	33	33	n c	, ,	9 6	33	33	33	33	33	33	33	33	33	33	33	200	22.0	22.5	3 8	33	33	33	33	33	88	22.0	22	2 00	3 6	33	33	33	33	88		က
Table	$^{\rm n_1}$	32	3 6	32	32	32	32	32	32	32	33	33	200	200) e	6.6	33	33	33	33	33	33	33	33	33	33	200	33	2 2	2 65	33	33	33	33	33	33	23	200	2 0	2 65	33	33	33	33	33	n 0	ဂဂ
	power	0.2225	0.3896	0.4942	0.1003	0.1474	0.2098	0.2901	0.0940	0.1426	0.0756	0.1632	0.2749	0.3974	0.0192	0.7300	0.1521	0.2347	0.3286	0.4292	0.5318	0.6318	0.7250	0.8072	0.1330	0.1990	0.2781	0.3690	0.4080	0.6756	0.7706	0.1157	0.1732	0.2460	0.3340	0.4349	0.5436	0.0031	0.7.334	0.1582	0.2294	0.3177	0.4205	0.5322	0.6454	0.7516	0.0300
	p 2	0.55	0.00	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.50	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.0	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.40
	\mathbf{p}_1	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.00	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.00
	pvalue	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0208	0.0208	0.0208	0.0208	0.0208	0.000	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0200
	$\mathbf{z}_{\mathbf{p}}$	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	2.03	2.03	2.03	20.03	20.0	20.3	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	20.03	30.0	2.03	2.03	2.03	2.03	2.03	2.03	2.03	20.7
	$^{\mathrm{n}_{2}}$	13	13	13	13	13	13	13	13	13	14	14	4 -	41	14	14	14	14	14	14	14	14	14	14	14	14	4.	4.	1 1	4 4	14	14	14	14	14	14	14	14	# 7	1 4	14	14	14	14	14	41	1.4
	$^{\mathrm{n}_{1}}$	13	13	13	13	13	13	13	13	13	14	14	4.	4 -	† T	14	14	14	14	14	14	14	14	14	14	14	14	14	14	1 4	14	14	14	14	14	14	14	14	# T	4 1	14	14	14	14	14	14	# T

Table B.11: continue on next page

Table B.11: continue on next page

s page	power	0.3698	0.5201	0.6699	0.9001	0.2153	0.3423	0.4951	0.2004	0.3311	0.2489	0.4526	0.6569	0.9132	0.9648	0.9877	0.3619	0.5455	0.8388	0.9218	0.9676	0.9888	0.9968	0.3053	0.4720	0.0400	0.8865	0.9481	0.9796	0.9933	0.2717	0.5945	0.7413	0.8534	0.9279	0.9703	0.9903	0.2508	0.5504	0.7022	0.8263	0.9142	0.9655	0.9893
reviou	p2	0.50	0.55	0.60	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.00	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.55	09.0	0.65	0.70	0.75
$^{from p}$	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.40	0.40	0.02	0.05	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.40	0.25	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233
: -con	$\mathbf{z}_{\mathbf{p}}$	2.00	2.00	2.00	2.00	2.00	2.00	00.2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.2	2.00	2.00	2.00	2.00	2.00	2.00	00.2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
B.11:	$^{\mathrm{n}_{2}}$	33	89	2 22	33	33	33	200	3 65	33	34	34	80 6 44 6	8 2	34	34	34	85 c	4 6 4 7	, K	34	34	34	34	8 4 7	5 K	34	34	34	34	34	, K	34	34	34	34	85 G	85 c	† 7 7	34.	34	34	34	34
Table	$^{\mathrm{n}_{1}}$	33	က	n n	33	33	33	200	; e:	33	34	34	85 c	34	34	34	34	42.	0 4 7	4 6	34	34	34	34	4.5	2, c	34	34	34	34	34	, K	34	34	34	34	34	£. c	5 K	34	34	34	34	34
	power	0.1517	0.2231	0.3121	0.5295	0.0963	0.1501	0.2210	0.0962	0.1499	0.0884	0.1859	0.3063	0.5593	0.6714	0.7667	0.1670	0.2558	0.0001	0.5702	0.6732	0.7664	0.8452	0.1439	0.2162	0.3034	0.5117	0.6218	0.7262	0.8174	0.1259	0.2740	0.3732	0.4841	0.5992	0.7095	0.8066	0.1160	0.2733	0.3616	0.4740	0.5913	0.7042	0.8039
	p 2	0.50	0.55	0.60	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.00	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.40	0.55	09.0	0.65	0.70	0.75
	p ₁	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.33	0.40	0.02	0.05	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.45	0.25	0.25	0.25	0.25	0.25
	pvalue	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0210	0.0216	0.0216	0.0216	0.0216	0.0216
	$\mathbf{z}_{\mathbf{p}}$	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.7	2.00	2.00	2.00	2.00	2.00	2.00	9.70	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	9.6	2.00	2.00	2.00	2.00	2.00
	$^{\rm n_2}$	14	14	14	14	14	14	41	14	14	15	15	15 15	15	15	15	15	15	. L	2 12	15	15	15	15	15	5 T	15	15	15	15	15	5 12	15	15	15	12	15	15 15	- F	15	15	15	15	15
	$_{1}^{n}$	14	14	4 1	14	14	14	7 -	1 1	14	15	12	С п	15	15	15	15	15		5 12	15	15	15	15	15	5 T	12	15	15	15	151	5 12	15	15	15	12	15	15	3 12	15	15	15	15	15

page	power	0.2290	0.3641	0.5209	0.6790	0.8143	0.9103	0.2120	0.5405	0.507.9	0.2052	0.3419	0.2573	0.4676	0.6738	0.8284	0.9221	0.9695	0.9898	0.3741	0.5608	0.7271	0.8516	0.9305	0.9724	0.9909	0.9975	0.3160	0.4875	0.6581	0.7997	0.8976	0.9547	0.9947	0.2828	0.4447	0.6117	0.7570	0.8659	0.9364	0.9751	0.9924	0.2607	0.4091	0.5694	0.7200	0.8421	0.9254	0.9716
revious	P2	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.00	0.00	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70
from p	\mathbf{p}_1	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.00	0.00	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.To	0.15	0.15	0.To	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0255	0.0233	0.0233	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240
	$\mathbf{z}_{\mathbf{p}}$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.7	00.7	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	00.7	2.00	2.00	2.00	2.00	2.00	2.00	0.200	2.00	00.2	00.2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
B.11:	$^{\mathrm{n}_{2}}$	34	34	34	34	34	8 G	4. 5	0 0 7 0	* 75 * 75	. K	34	35	35	35	35	35			35	33	33	ა ი	υς υ τ	35	32	35	35.		က်	υς Ω 1		8 8 72	8 %	35	35	35	35	35	35	35	35	35	35	35	32	35	35	35
Table	$^{\rm n_1}$	34	34	34	34	34	4.	4.5	4 6	4 4	2 4	34	35	35	35	35	35	32.		35		35	ა ი	υ, C	35	35	35	321	က်	30	ა ი .	က်	2 c 2 r	2 6	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
	power	0.1128	0.1761	0.2586	0.3587	0.4714	0.5895	0.1132	0.1764	0.2583	0.1142	0.1769	0.1014	0.2082	0.3364	0.4699	0.5961	0.7072	0.7991	0.1813	0.2763	0.3830	0.4956	0.6075	0.7119	0.8027	0.8755	0.1548	0.2339	0.3294	0.4375	0.5515	0.0029	0.8456	0.1368	0.2094	0.3005	0.4063	0.5197	0.6320	0.7353	0.8235	0.1274	0.1967	0.2841	0.3861	0.4968	0.6094	0.7174
	p2	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.00	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	9.0	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70
	\mathbf{p}_1	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.00	0.00	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.52	0.25	0.25
	pvalue	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0216	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224
	$\mathbf{z}_{\mathbf{p}}$	2.00	2.00	2.00	2.00	2.00	2.00	00.7	00.7	9.6	2.00	2.00	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.T3	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13
	$^{\mathrm{n}_{2}}$	15	15	15	12	15	12	L L	0 H	- F	2 12	15	16	16	16	16	16	16	9 7	97	9 .	9 ;	9 7	9 7	97	9 ;	9 ,	16	9 7	97	9 7	9 7	10	9 -	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
	1	15	15	15	12	15	12	1.5	C 1	- F	12	15	16	16	16	16	16	16	16	16	16 1	97	16	91	16	16	16	16	10	10	16	10	16	19	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16

Table B.11: continue on next page

Table B.11: continue on next page

		ı																																												
is page	power	0.9917	0.2380	0.3788	0.7007	0.8327	0.9225	0.2229	0.3643	0.5309	0.6961	0.2182	0.2658	0.4825	0.6900	0.8412	0.9301	0.9736	0.9915	0.3861	0.5758	0.7419	0.8030	0.9384	0.9765	0.9920	0.3268	0.5030	0.6752	0.8143	0.9076	0.9604	0.9850	0.2940	0.4600	0.6282	0.7719	0.8776	0.9443	0.9793	0.9941	0.2704	0.4220	0.7376	0.8572	0.9354
revion	p2	0.75	0.45	0.50	0.60	0.65	0.70	0.50	0.55	0.60	U.65	0.00	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.4:0 0.4:0	0.55	0.60	0.65
rom p	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.40	0.25	0.25	0.25
-continued from previous page	pvalue	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247
	$\mathbf{z}_{\mathbf{p}}$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
Table $B.11$:	$^{\rm n_2}$	35	32		32	35	35	35	32		S .	9 6 20	36	36	36	36	36	36	36	36	36	900	သို့ ဇ	30	000	98	36	36	36	36	36	36	36	39	36	36	36	36	36	36	36	36	90	36	36	36
Table	$_{1}^{n}$	35	32	3 G	32	35	35	32	32		300	0 K	36	36	36	36	36	36	36	36	36	36	200	36	00	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	96	36	36	36
	power	0.8141	0.1223	0.1883	0.3709	0.4822	0.6002	0.1181	0.1814	0.2636	0.3647	0.1149	0.1144	0.2300	0.3652	0.5028	0.6302	0.7397	0.8277	0.1952	0.2965	0.4098	0.0283	0.6437	0.7402	0.9012	0.1661	0.2526	0.3567	0.4725	0.5910	0.7019	0.7909	0.1487	0.2292	0.3284	0.4400	0.5552	0.6650	0.7626	0.8441	0.1398	0.2155	0.4121	0.5224	0.6328
	p2	0.75	0.45	0.50	09:0	0.65	0.70	0.50	0.52	0.60	0.00	0.00	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.55	0.60	0.65
	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.05	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.70	0.25	0.25	0.25
	pvalue	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0224	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231
	$\mathbf{z}_{\mathbf{p}}$	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.07	2.07	2.07	2.07	2.07	2.02	2.02	2.02	2.07	2.07	0.0	2.07	0.07	2.07	2.07	2.07	2.07	2.02	2.07	2.07	20.0	2.07	2.07	2.07	2.07	2.02	2.02	2.07	2.07	2.07	0.0	2.07	2.07	2.07
	$^{\mathrm{n}_{2}}$	16	16	9 9	16	16	16	16	16	16	10	19	17	17	17	17	17	17	17	17	17	17	1 -	14	1 -	17	17	17	17	17	17	17	17	12	17	17	17	17	17	17	17	17	1 -	17	14	17
	$^{\mathrm{n}_{1}}$	16	16	16	16	16	16	16	16	16	16	10	17	17	17	17	17	17	17	17	17	17	1 -	1 - 1 -	1 -	17	17	17	17	17	17	1.	17	14	17	17	17	17	17	17	17	17	1 -	17	17	17

s $page$	power	0.9767	0.9936	0.2474	0.3942	0.2013	0.8498	0.9332	0.2346	0.3828	0.5537	0.7183	0.2316	0.3506	0.273	0.7055	0.8532	0.9373	0.9772	0.9930	0.3979	0.5899	0.7548	0.8727	0.9431	0.9784	0.9931	0.9982	0.3350	0.5116	0.6809	0.8165	0.9084	0.9612	0.9964	0.2933	0.4563	0.6243	0.7718	0.8815	0.9490	0.9824	0.9953	0.2629	0.4184	0.5899	0.7483)
reviou	p2	0.70	0.75	0.45	0.50	0.00	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.00	0.50	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.00	0.00	0.65	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	2
from p	p1	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	1
-continued from previous page	pvalue	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	1
	$\mathbf{z}_{\mathbf{p}}$	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.00	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99 1.99)) !
B.11	$^{\mathrm{n}_{2}}$	36	36	36	30	36	36	36	36	36	36	36	36	37	24.0	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	0 c	27	37	37	37	37	37	37	37	37	37	37	37	37	37	
Table $B.11$:	$^{\mathrm{n}_{1}}$	36	36	36	30	36	36	36	36	36	36	36	36	3 00	3 0	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	3.7	1 c	27.0	37	37	37	37	37	37	37	37	37	37	37	1 2	37	
	power	0.7379	0.8319	0.1325	0.2016	0.3872	0.4994	0.6190	0.1237	0.1883	0.2722	0.3766	0.1169	0.1924	0.2512	0.3927	0.5338	0.6617	0.7692	0.8531	0.2088	0.3166	0.4367	0.5606	0.6786	0.7816	0.8634	0.9220	0.1779	0.2723	0.3848	0.5072	0.6282	0.6370	0.8933	0.1616	0.2498	0.3562	0.4724	0.5887	0.6963	0.7898	0.8663	0.1526	0.2337	0.3308	0.4383 0.5501	
	D 2	0.70	0.75	0.45	0.50	0.00	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.00	0.00	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.00	0.65	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55)
	p1	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25)
	pvalue	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239)
	$\mathbf{z}_{\mathbf{p}}$	2.07	2.07	2.07	2.0.7	2.07	2.07	2.07	2.07	2.07	2.02	2.07	2.07	20.0	20.0	2.02	2.03	2.03	2.03	2.02	2.03	2.03	2.02	2.03	2.03	2.02	2.02	2.05	2.02	2.02	2.05	2.05	7.07	20.0	2.02	2.03	2.03	2.02	2.02	2.02	2.02	2.05	2.05	2.05	2.05	7.05	2.02	1
	$^{\mathrm{n}_{2}}$	17	17	17	T -	17	17	17	17	17	17	17	17	- 04	2 00	2 8	18	18	18	18	18	18	18	18	18	18	18	18	18	200	18	× 5	× c	× ×	2 8	18	18	18	18	18	18	18	18	200	× ;	20 0	8 R)
	$^{\mathrm{n}_{1}}$	17	17	17	1.7	17	17	17	17	17	17	17	17	- 0	2 0	8	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	200	× •	ο <u>σ</u>	8	18	18	18	18	18	18	18	18	200	<u>s</u>	× 5	8 R	ì

Table B.11: continue on next page

Table B.11: continue on next page

$ m z_p$ pvalue $ m p_1$ $ m p_2$ power	0.65 0.9438		0.45 0.2468			0.65 0.8652																																		
p1	0.25 (0.30			0.30																																		
pvalue	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244 0.0244	0.0244 0.0244 0.0247	0.0244 0.0244 0.0247 0.0247	0.0244 0.0244 0.0247 0.0247 0.0247	0.0244 0.0244 0.0247 0.0247 0.0247 0.0247	0.0244 0.0244 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0244 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247	0.0244 0.0247	0.0244 0.0247	0.0244 0.0247	0.0244 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247	0.0244 0.0247	0.0244 0.0247	0.0244 0.0247
$\mathbf{z}_{\mathbf{p}}$	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1 00	1.99	1.99 1.99 1.99	1.99 1.99 1.99	1.99 1.99 1.99 1.99	1.99 1.99 1.99 1.99 1.99	1.99 1.99 1.99 1.99 1.99 1.99	1.99 1.99 1.99 1.99 1.99	1.999 1.999 1.999 1.999 1.999 1.999	1.999 1.999 1.999 1.999 1.999 1.999	1 1 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	1,99 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199	1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	1,99 1,99 1,99 1,99 1,99 1,99 1,99 1,99	1,99 1,09 1,0	1,99 1,99 1,99 1,99 1,99 1,99 1,99 1,99	1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	1,99 1,99 1,99 1,99 1,99 1,99 1,99 1,99	1,99 1,09 1,0	1,99 1,199 1	1,099 1,09 1,0	1,99 1,99 1,99 1,99 1,99 1,99 1,99 1,99	1,99 1,99 1,99 1,99 1,99 1,99 1,99 1,99
n2	37	37	37	37	37	37.	37	37	37	3.4		37	337	38 33 34	8 8 8 3 3 5 8 8 8 8 6 7	8 8 8 8 4 c	3 8 8 8 3 3 3 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3888833	\$ 38 38 38 38 33 34 5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 8 8 8 8 8 8 8 8 8 3 3	3 8 8 8 8 8 8 8 8 3 3 3 3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	38 88 88 88 88 88 88 88 88 88 88 88 88 8	888888888888888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888888888888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	88 88 88 88 88 88 88 88 88 88 88 88 88	* * * * * * * * * * * * * * * * * * *	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	*
Tu	37	37	37	37	37	37.	37	37	37	3 27		37	337	0884	x x x x x -1-	x x x x x x x x x x x x x x x x x x x		- t- x x x x x x x x x x x x x x x x x x	- t- & & & & & & & & & & & & & & & & & &	- t- & & & & & & & & & & & & & & & & & &	- t- & & & & & & & & & & & & & & & & & &	- L & & & & & & & & & & & & & & & & & &								- N- 20 20 20 20 20 20 20 20 20 20 20 20 20		- I -	- I-	- h- w w w w w w w w w w w w w w w w w w	- N- 20 20 20 20 20 20 20 20 20 20 20 20 20	- I -	- h- x x x x x x x x x x x x x x x x x x	- N- 20 20 20 20 20 20 20 20 20 20 20 20 20	- I-	- I-
power	0.6607	0.8546	0.1427	0.3044	0.4082	0.5240	0.1304	0.1980	0.2862	0.3959		0.1908	0.1908 0.1402	0.1908 0.1402 0.2717	0.1908 0.1402 0.2717 0.4189	0.1908 0.1402 0.2717 0.4189 0.5628 0.6905	0.1908 0.1402 0.2717 0.4189 0.5628 0.6905 0.7949	0.1908 0.1908 0.1908 0.2717 0.4189 0.5628 0.6905 0.7949 0.7949	0.1219 0.1908 0.1402 0.2717 0.4189 0.5628 0.6905 0.7949 0.8738 0.2217	0.1219 0.1402 0.1408 0.2717 0.5628 0.5628 0.7949 0.8738 0.2217 0.3350	0.1213 0.1402 0.1402 0.2717 0.5628 0.6909 0.7949 0.7949 0.8738 0.8738 0.2217 0.3350 0.4594	0.1213 0.1402 0.1402 0.2717 0.5628 0.6909 0.7949 0.8738 0.8738 0.3350 0.4594 0.5846 0.5846	0.1928 0.1402 0.2717 0.4588 0.5628 0.6905 0.7948 0.3350 0.3350 0.5848 0.2217 0.3350 0.5848 0.5848	0.1928 0.1402 0.2717 0.2717 0.5628 0.5628 0.6905 0.7348 0.2217 0.3350 0.5846 0.7975 0.7975	0.1908 0.1402 0.2417 0.4189 0.5628 0.6905 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628	0.1928 0.1402 0.1402 0.4189 0.5628 0.6905 0.7938 0.3217 0.3350 0.7975 0.7975 0.7975 0.7975 0.7976 0.7976 0.7976 0.7978	0.1908 0.1402 0.1402 0.2117 0.4189 0.5628 0.6905 0.7348 0.7348 0.7348 0.7348 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.7378 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.737888 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73788 0.73	0.1908 0.1402 0.1402 0.2418 0.65028 0.65028 0.7949 0.2317 0.2317 0.5328 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.7	0.1908 0.1402 0.2418 0.5628 0.6905 0.76905 0.7388 0.2217 0.3350 0.7384 0.7384 0.7384 0.7386 0.7386 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.73888 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.7388 0.73	0.1908 0.1908 0.2410 0.2418 0.5628 0.6905 0.7938 0.3350 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.	0.1908 0.1402 0.2418 0.4189 0.5628 0.6905 0.7628 0.7638 0.3350 0.4594 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628 0.7628	0.1908 0.1402 0.2418 0.4189 0.5628 0.6905 0.7938 0.73217 0.32217 0.32217 0.32217 0.32217 0.32217 0.4594 0.7975 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978	0.1928 0.1402 0.24189 0.5628 0.5628 0.7938 0.33217 0.33217 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7978 0.7	0.1908 0.1402 0.24189 0.65028 0.65028 0.76905 0.76905 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.76906 0.769	0.1908 0.1402 0.2418 0.4189 0.6905 0.76905 0.76905 0.3350 0.75846 0.75846 0.75846 0.75846 0.75846 0.75875 0.75876 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875 0.75875	0.1908 0.1402 0.2717 0.4189 0.5628 0.6905 0.7638 0.3350 0.3350 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975 0.7975	0.1908 0.1402 0.24189 0.65028 0.65028 0.70409 0.70409 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0.7070 0	0.1908 0.1402 0.1402 0.5628 0.6905 0.7908 0.8738 0.8738 0.8738 0.8738 0.8738 0.9878 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888 0.9888	0.1908 0.1402 0.24189 0.65628 0.6905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.7690	0.1908 0.1402 0.2418 0.2628 0.6905 0.7628 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905 0.76905
P2	0.65	0.75	0.45	0.55	0.60	0.65	0.50	0.55	0.60	0.65	00.0	09.0	$0.60 \\ 0.15$	0.60 0.15 0.20	0.60 0.15 0.20 0.25	0.60 0.15 0.20 0.25 0.30 0.35	0.60 0.15 0.20 0.25 0.30 0.35	0.60 0.15 0.20 0.25 0.35 0.40 0.45	0.60 0.15 0.25 0.35 0.40 0.45 0.25	0.60 0.15 0.25 0.35 0.35 0.45 0.35 0.35 0.35	0.60 0.15 0.20 0.25 0.30 0.40 0.45 0.35 0.35	0.60 0.15 0.20 0.20 0.30 0.40 0.35 0.40 0.35	0.60 0.15 0.20 0.20 0.35 0.35 0.40 0.45 0.35 0.35 0.40	0.60 0.15 0.25 0.25 0.30 0.45 0.25 0.30 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	0.60 0.15 0.15 0.22 0.23 0.35 0.45 0.45 0.25 0.35 0.40 0.40 0.25 0.25 0.25 0.26 0.26	0.60 0.15 0.15 0.22 0.23 0.35 0.35 0.35 0.40 0.40 0.40 0.40 0.55 0.60 0.30	0.60 0.20 0.20 0.20 0.30 0.30 0.30 0.30 0.3	0.60 0.20 0.20 0.20 0.30 0.30 0.45 0.45 0.50 0.60 0.60 0.60 0.60 0.60 0.60 0.6	0.60 0.15 0.20 0.20 0.38 0.38 0.38 0.25 0.39 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	0.60 0.15 0.20 0.20 0.38 0.38 0.45 0.38 0.55 0.60 0.60 0.60 0.60 0.60 0.60 0.60	0.60 0.20 0.20 0.23 0.23 0.35 0.45 0.45 0.55 0.66 0.66 0.65 0.66	0.60 0.20 0.20 0.20 0.33 0.33 0.34 0.45 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3	0.60 0.25 0.25 0.25 0.33 0.33 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.60 0.15 0.25 0.38 0.38 0.38 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.60 0.20 0.20 0.30 0.33 0.35 0.35 0.05 0.05 0.05 0.0	0.60 0.15 0.20 0.23 0.23 0.45 0.45 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6	0.60 0.15 0.25 0.25 0.33 0.33 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.60 0.15 0.20 0.33 0.33 0.33 0.03 0.03 0.03 0.03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.15 0.20 0.20 0.23 0.23 0.23 0.33 0.33 0.34 0.05
b 1	0.25	0.25	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35		0.40	0.40	0.40	0.40 0.05 0.05 0.05	0.40 0.05 0.05 0.05 0.05	0.40 0.05 0.05 0.05 0.05 0.05	0.40 0.05 0.05 0.05 0.05 0.05	0.40 0.05 0.05 0.05 0.05 0.10	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10	0.40 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10	0.40 0.05 0.005 0.005 0.005 0.00 0.10 0.10	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pvalue	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	-	0.0239	0.0239 0.0243	0.0239 0.0239 0.0243 0.0243	0.0239 0.0243 0.0243 0.0243	0.0239 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243	0.0233 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0233 0.0233 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243	0.0233 0.0233 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0239 0.0239 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0233 0.0233 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243	0.0233 0.0233 0.0243	0.0233 0.0233 0.0243
$\mathbf{z}_{\mathbf{p}}$	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.03	2.02	1	2.03	2.02	2.05 2.02 2.02	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20.02 20.02	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.02 20.02 20.02 20.02 20.02 20.03	000000000000000000000000000000000000000			20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
n2	188	18	18 8 2	18	18	x x	8 7	18	18	<u>x</u> x	0	18	18	18 19 19	18 119 119	18 19 19 19	18 19 19 19 19 19	18 19 19 19 19 19	10 10 10 10 10 10 10 10	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 110 110 110 110 110 110 110	18 119 119 119 119 119	18 19 19 19 19 19 19 19	18 19 19 19 19 19 19 19 19	18 19 19 19 19 19 19 19 19 19 19 19	18 19 19 19 19 19 19 19 19 19 19 19 19 19	81 90 91 90 90 90 90 90 90 90 90 90 90	1	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 1 9 9 9 1 1 1 8 1 1 9 9 1 1 1 9 1 1 1 1	8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$^{\rm n_1}$	8 1 2 ×	18	× 100	18	18	x x	2 8	18	18	<u>×</u> ×	9	18	18	18 11 11 11 11 11 11 11 11 11 11 11 11 1	18 19 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 119 119 119 119	110000000000000000000000000000000000000	118 119 119 119	118 119 119 119	118 119 119 119 119	118 119 119 119 119	1 1 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.00									

							Table	B.11:		-continued from previous page	from p	reviou	s page
\mathbf{n}_1	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	P2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	P2	power
19	19	2.03	0.0243	0.25	09.0	0.5489	38	38	1.99	0.0247	0.25	09.0	0.8830
19	19	2.03	0.0243	0.25	0.65	0.6699	38	38	1.99	0.0247	0.25	0.65	0.9519
19	19	2.05	0.0243	0.25	0.40	0.7804	00 c	ж е	1.99	0.0247	0.25	0.70	0.9844
10	. T	20.0	0.0243	0.25	0.70 0.72	0.8706	00 00 00 00	x x	1.99	0.0247	0.20	0.0 0.4	0.9962
19	19	2.02	0.0243	0.30	0.50	0.2029	0 00	8 8	1.99	0.0247	0.30	0.50	0.4210
19	19	2.03	0.0243	0.30	0.55	0.2966	38	38	1.99	0.0247	0.30	0.55	0.5994
19	19	2.02	0.0243	0.30	09.0	0.4096	38	38	1.99	0.0247	0.30	09.0	0.7605
19	19	2.02	0.0243	0.30	0.65	0.5354	38	38	1.99	0.0247	0.30	0.65	0.8796
19	19	2.05	0.0243	0.30	0.70	0.6631	တ္တ (88	1.99	0.0247	0.30	0.70	0.9508
19	19	2.02	0.0243	0.35	0.50	0.1217	20 0	x 6	1.99	0.0247	0.35	0.20	0.2576
10	91	2.02	0.0243	0.35 0.35	0.55	0.1931	x 0	x	1.99	0.0247	0.35 0.85	0.55	0.4194
19	61	20.0	0.0243	0.0	9.0	0.2660	0 00	9 oc	1 99	0.0247	0.00	0.00	0.00
19	19	2.02	0.0243	0.40	0.55	0.1180	88	8 8	1.99	0.0247	0.40	0.55	0.2590
19	19	2.03	0.0243	0.40	09.0	0.1903	38	38	1.99	0.0247	0.40	09.0	0.4196
20	20	1.99	0.0249	0.02	0.15	0.1529	39	39	2.04	0.0248	0.05	0.15	0.2625
20	20	1.99	0.0249	0.02	0.20	0.2915	39	39	2.04	0.0248	0.02	0.20	0.4771
20	20	1.99	0.0249	0.05	0.25	0.4439	39	39	2.04	0.0248	0.02	0.25	0.6888
50	50	1.99	0.0249	0.05	0.30	0.5903	33	66 68	2.04	0.0248	0.05	0.30	0.8451
70	07.0	1.99	0.0249	0.05	0.35	0.7175	33	33	2.04	0.0248	0.05	0.35	0.9354
50	700	1.99	0.0249	0.05	0.40	0.8189	33	66	2.04	0.0248	0.05	0.40	0.9775
0 20	0.70	1.99 1.00	0.0249	0.05	0.45	0.8929	900	£ 6	40.2	0.0248	0.05	0.45	0.9935
0.00	070	1.99	0.0243	0.10	0.20	0.2340	30	300	40.0	0.0240	0.10	0.20	0.5765
200	200	1 99	0.0249	0.10	0.35	0.4845	68	500	2.04	0.0248	0.10	0.35	0.7523
20	20	1.99	0.0249	0.10	0.40	0.6128	36	368	2.04	0.0248	0.10	0.40	0.8758
20	20	1.99	0.0249	0.10	0.45	0.7280	39	39	2.04	0.0248	0.10	0.45	0.9470
20	20	1.99	0.0249	0.10	0.50	0.8222	39	39	2.04	0.0248	0.10	0.50	0.9810
20	20	1.99	0.0249	0.10	0.55	0.8927	39	39	2.04	0.0248	0.10	0.55	0.9944
20	20	1.99	0.0249	0.10	09.0	0.9409	39	39	2.04	0.0248	0.10	09.0	0.9987
20	20	1.99	0.0249	0.15	0.30	0.1979	39	39	2.04	0.0248	0.15	0.30	0.3236
50	20	1.99	0.0249	0.15	0.35	0.3015	30	6 6 7	2.04	0.0248	0.15	0.35	0.5080
07.0	070	1.99	0.0249	0.15	0.40	0.4200	33	900	2.04	0.0248	0.15	0.40	0.6846
020	200	1.99	0.0249	0.15	0.45	0.5434	30	30	40.0	0.0248	0.15	0.45	0.8251
20	20	1.99	0.0249	0.15	0.55	0.7659	39	36	2.04	0.0248	0.15	0.55	0.9686
20	20	1.99	0.0249	0.15	09.0	0.8513	39	36	2.04	0.0248	0.15	09.0	0.9904
20	20	1.99	0.0249	0.15	0.65	0.9151	39	39	2.04	0.0248	0.15	0.65	0.9978
20	20	1.99	0.0249	0.20	0.35	0.1737	39	39	2.04	0.0248	0.20	0.35	0.2886
20	20	1.99	0.0249	0.20	0.40	0.2651	39	39	2.04	0.0248	0.20	0.40	0.4610
20	20	1.99	0.0249	0.20	0.45	0.3735	39	39	2.04	0.0248	0.20	0.45	0.6407
20	20	1.99	0.0249	0.20	0.50	0.4924	39	36	2.04	0.0248	0.20	0.50	0.7947
50	20	1.99	0.0249	0.20	0.55	0.6136	30	6 6 7	2.04	0.0248	0.20	0.55	0.9017
07.0	070	1.99	0.0249	0.20	0.00	0.7279	33	200	2.04	0.0248	0.20	0.00	0.9614
020	0 2 0	1.99	0.0249	0.20	0.00	0.8200	800	30	40.0	0.0248	0.20	0.00	0.9878
070	000	1 00	0.0249	0.20	0.0	0.3014	30	30	40.0	0.0248	0.20	0.0	0.98.0
202	200	1 99	0.0249	0.25	0.45	0.2380	68	30	2.04	0.0248	0.25	0.45	0.4406
20	20	1.99	0.0249	0.25	0.50	0.3414	39	39	2.04	0.0248	0.25	0.50	0.6230

Table B.11: continue on next page

Table B.11: continue on next page

_																																												
us page	power	0.7811	0.8923	0.9560	0.9965	0.2669	0.4347	0.6133	0.7701	0.8844	0.2656	0.4275	0.6034	0.7638	0.2612	0.4224	0.5336	0.7363	0.8720	0.9471	0.9818	0.9949	0.4038	0.5996	0.8865	0.9529	0.9838	0.9955	0.9990	0.3365	0.5230	0.8380	0.9268	0.9731	0.9921	0.9982	0.2990	0.4764	0.8097	0.9109	0.9653	0.9888	0.9971	0.4566
revion	P2	0.55	0.60	0.65	0.75	0.45	0.50	0.55	0.60	0.65	0.50	0.55	09.0	0.65	0.55	0.60	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.40	0.45	0.50	0.55	0.60	0.30	0.55	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.40
rom p	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.02	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25
-continued from previous page	pvalue	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238
	$\mathbf{z}_{\mathbf{p}}$	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	20.2	2.04	2.04	2.04	2.04	2.04	20.2	2.02	2.03	2.02	2.02	2.02	2.02	7.07	2.02	2.02	2.02	2.02	2.02	2.02	20.2	2.02	2.02	2.02	2.05	2.02	2.02	20.2	2.02	2.02	2.02	2.02	2.0.2	2.02
B.11:	$^{\mathrm{n}_{2}}$	39	33	0 0 0 0 0 0	39	39	39	39	33	36	68	39	39	39	33	8 6	4 4	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	04.0	40	40	40	40	40	40
Table	$^{\mathrm{n}_{1}}$	39	30	5 C	39	39	39	39	39	68	0 0	38	39	39	39	გ	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40
	power	0.4607	0.5874	0.7099	0.8977	0.1414	0.2215	0.3247	0.4467	0.5778	0.1346	0.2147	0.3190	0.4432	0.1326	0.2132	0.3101	0.4656	0.6111	0.7339	0.8294	0.8981	0.2408	0.3578	0.4827	0.7198	0.8163	0.8910	0.9428	0.1901	0.4027	0.5290	0.6556	0.7700	0.8622	0.9273	0.1588	0.2492	0.4942	0.6283	0.7511	0.8505	0.9212	0.2352
	p2	0.55	0.60	0.65	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.45	0.50	0.55	0.60	0.30	0.50	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.40
	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.35	0.40	0.40	0.0	0.05	0.02	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	2.5	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25
	pvalue	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248
	$\mathbf{z}_{\mathbf{p}}$	1.99	1.99	1.99 1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99 70	2.00	2.05	2.02	2.05	2.02	2.02	2.05	2.02 2.03	2.05	2.05	2.05	2.05	2.02	2.02 0.05	20.05	2.05	2.05	2.05	2.02	2.05	0.00	2.05 05	2.02	2.05	2.02	2.05	2.05	2.05
	$^{\mathrm{n}_{2}}$	20	20	50	20	20	20	20	20	070	200	20	20	20	50	2.0	2.5	21	21	21	21	21	5.7	7.7	21	21	21	21	7.7	7.7	2 2	21	21	21	21	5.7	77.	21	21	21	21	21	7.7	21
	1 u	20	20	20	20	20	20	20	20	0 20	070	20	20	20	50	20	1 5	21	21	21	21	21	21	77.	21	21	21	21	7.7	77.	2.1	21	21	21	21	21	7.7	21	21	21	21	21	77	21

							Table	B.11:		-continued from previous page	from 1	previou	s $page$
1 u	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	p2	power	$^{\rm n_1}$	n ₂	$\mathbf{z}_{\mathbf{p}}$	pvalue	\mathbf{p}_1	P2	power
21	21	2.02	0.0248	0.25	0.50	0.3506	40	40	2.02	0.0238	0.25	0.50	0.6380
21	21	2.02	0.0248	0.25	0.55	0.4832	40	40	2.02	0.0238	0.25	0.55	0.7901
21	21	2.05	0.0248	0.25	0.60	0.6195	40	40	2.02	0.0238	0.25	0.60	0.8949
7.7	5.1	2.02	0.0248	0.25	0.65	0.7446	40	40	2.0.2	0.0238	0.25	0.65	0.9554
2.5	7 5	2.05 0.05	0.0248	0.72 0.72	0.70	0.8465	040	04.0	2.02	0.0238	0.25	0.70	0.9848
2 1 6	2 1 0	9.00	0.0248	0.20	0.75	0.9190	04.0	40	20.2	0.0238	0.20	0.70	0.9905
21	21	2.02	0.0248	0.30	0.50	0.2336	40	40	2.02	0.0238	0.30	0.50	0.4414
21	21	2.02	0.0248	0.30	0.55	0.3489	40	40	2.03	0.0238	0.30	0.55	0.6135
21	21	2.05	0.0248	0.30	09.0	0.4811	40	40	2.02	0.0238	0.30	09.0	0.7642
21	21	2.02	0.0248	0.30	0.65	0.6172	40	40	2.02	0.0238	0.30	0.65	0.8777
21	21	2.02	0.0248	0.30	0.70	0.7430	40	40	2.02	0.0238	0.30	0.70	0.9494
21	21	2.02	0.0248	0.35	0.50	0.1455	40	40	2.02	0.0238	0.35	0.50	0.2621
21	21	2.02	0.0248	0.35	0.55	0.2354	40	40	2.02	0.0238	0.35	0.55	0.4158
21	21	2.05	0.0248	0.35	0.60	0.3496	40	40	2.02	0.0238	0.35	0.60	0.5862
21	21	2.05	0.0248	0.35	0.65	0.4809	40	40	2.02	0.0238	0.35	0.65	0.7492
21	5 5	2.05	0.0248	0.40	0.55	0.1475	40	40	2.02	0.0238	0.40	0.55	0.2441
17.	17	2.02	0.0248	0.40	0.00	0.2363	040	047	2.02	0.0238	0.40	0.60	0.4006
77.0	770	40.0	0.0244	0.00	0.15	0.1773	200	00 0	2.01	0.0244	0.00	0.15	0.3460
77 6	770	40.0	0.0244	0.00	0.20	0.3284	00.1	00 0	2.01	0.0244	0.00	0.20	0.6147
7 6	7 0	40.0	0.0244	0.00	0.70	0.4070	00 10	000	10.2	0.0244	0.00	0.20	0.8210
7 0	7 0	40.0	0.0244	0.00	0.00	0.0342	00.07	20.00	2.01	0.0244	0.00	0.00	0.9555
1 0	1 0	2 5	0.0244	0.00	0.00	0.8475	, r.	8 25	20.0	0.0244	0.00	0.33	0.9862
22	22	2.04	0.0244	0.05	0.45	0.9121	200	20	2.01	0.0244	0.05	0.45	0.9991
22	22	2.04	0.0244	0.10	0.25	0.2515	20	20	2.01	0.0244	0.10	0.25	0.4870
22	22	2.04	0.0244	0.10	0.30	0.3734	20	20	2.01	0.0244	0.10	0.30	0.7035
22	22	2.04	0.0244	0.10	0.35	0.5029	20	20	2.01	0.0244	0.10	0.35	0.8606
22	22	2.04	0.0244	0.10	0.40	0.6298	20	20	2.01	0.0244	0.10	0.40	0.9474
22	22	2.04	0.0244	0.10	0.45	0.7446	20	20	2.01	0.0244	0.10	0.45	0.9841
22	22	2.04	0.0244	0.10	0.50	0.8393	20	20	2.01	0.0244	0.10	0.50	0.9962
22	22	2.04	0.0244	0.10	0.55	0.9095	20	20	2.01	0.0244	0.10	0.55	0.9993
22	22	2.04	0.0244	0.10	09.0	0.9554	20	20	2.01	0.0244	0.10	0.60	0.9999
22	22	2.04	0.0244	0.15	0.30	0.1985	20	20	2.01	0.0244	0.15	0.30	0.4165
7.7.7	7.7.	2.04	0.0244	0.15	0.35	0.3023	50	200	2.01	0.0244	0.15	0.35	0.6309
7 0	7 00	4.0	0.0244	0.10	0.40	4.024.0 4.024.0	00 70	20.00	2.01	0.0244	0.10	0.40	0.8049
22	22	2.04	0.0244	0.15	0.50	0.6881	22.0	20.5	2.01	0.0244	0.15	0.50	0.9704
22	22	2.04	0.0244	0.15	0.55	0.8006	20	20	2.01	0.0244	0.15	0.55	0.9920
22	22	2.04	0.0244	0.15	09.0	0.8866	20	20	2.01	0.0244	0.15	09.0	0.9984
22	22	2.04	0.0244	0.15	0.65	0.9438	20	20	2.01	0.0244	0.15	0.65	0.9998
22	22	2.04	0.0244	0.20	0.35	0.1687	20	20	2.01	0.0244	0.20	0.35	0.3744
22	22	2.04	0.0244	0.20	0.40	0.2677	20	20	2.01	0.0244	0.20	0.40	0.5783
22	22	2.04	0.0244	0.20	0.45	0.3913	20	20	2.01	0.0244	0.20	0.45	0.7616
7.7.	7.7.	2.04	0.0244	0.20	0.50	0.5292	50	20	2.01	0.0244	0.20	0.50	0.8905
77.0	77.7	40.5	0.0244	0.20	0.55	0.6657	200	00.00	2.01	0.0244	0.20	0.55	0.9602
7 0	7 0	40.0	0.0244	0.20	0.00	0.722	00 r	20.00	2.01	0.0244	0.20	0.00	0.9007
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 6	20.0	0.0244	0.20	0.02	0.0380	0 10	2 K	2.01	0.0244	0.20	0.02	0.9996
22	22	2.04	0.0244	0.25	0.40	0.1585	20	20	2.01	0.0244	0.25	0.40	0.3466

Table B.11: continue on next page

Table B.11: continue on next page

is page	power	0.5496	0.7391	0.8751	0.9845	0.9963	0.9994	0.3366	0.5327	0.7165	0.8548	0.9816	0.3212	0.5047	0.6895	0.8422	0.2991	0.4870	0.4470	0.8948	0.9704	0.9937	0.9990	0.9999	0.5792	0.7942	0.9769	0.9948	0.9991	0.9999	1.0000	0.4954	0.7174	0.9555	0.9880	0.9976	0.9997	1.0000	0.4392	0.00000	0.9367	0.9821	0.9963	0.9994	0.9999
reviou	P2	0.45	0.50	0.55	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	0.60	0.65	0.55	0.60	0.10	0.20	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
rom p	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.0	0.00	0.02	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238
	$\mathbf{z}_{\mathbf{p}}$	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	20.0	20.2	2.02	2.02	2.02	2.02	2.02	20.2	2.02	2.02	2.02	2.02	2.02	2.02	20.2	2.02	2.03	2.02	2.02	2.02	2.02	20.2	2.02	2.02	2.02	2.02	2.02
B.11:	$^{\rm n_2}$	20	20	20 20	20	20	20	20	20	20	20	. r.	20	20	20	20	20	20	00	8 9	09	09	09	09	9 9	00	09	09	09	09	09	09	00	8 9	09	09	09	09	09	00	8 9	09	09	09	09
Table	$_{1}^{n}$	20	20	20 20 20	50	20	20	20	20	200	20	20.00	50	20	20	20	20	20	000	99	09	09	09	09	09	00	09	09	09	09	09	09	00	09	09	09	09	09	0.9	00	09	09	09	09	09
	power	0.2575	0.3820	0.5208	0.7796	0.8737	0.9375	0.1589	0.2580	0.3815	0.5192	0.0505	0.1622	0.2603	0.3824	0.5190	0.1644	0.2613	0.1021	0.2319	0.5922	0.7297	0.8380	0.9125	0.2201	0.3500	0.6374	0.7613	0.8579	0.9248	0.9654	0.1908	0.3064	0.5848	0.7176	0.8269	0.9056	0.9549	0.1756	0.2848	0.5607	0.6960	0.8088	0.8919	0.9460
	p ₂	0.45	0.50	0.55	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.55	0.60	01.0	0.20	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.0	0.00	0.05	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0244	0.0244	0.0244 0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237
	$\mathbf{z}_{\mathbf{p}}$	2.04	2.04	2.04 40.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	20.0	2.07	2.07	2.07	2.07	2.07	2.07	20.0	2.07	2.07	2.07	2.07	2.07	2.07	20.0	2.07	2.07	2.07	2.07	2.07	2.07	20.0	2.07	2.07	2.07	2.07	2.07
	$^{\mathrm{n}_{2}}$	22	55	222	22	22	22	22	22	22	7.7.	2 6	22	22	22	22	22	7.7.	0 0	2 6	23	23	23	23	53	0 0	23.0	23	23	23	23	533	0 0	2 62	23	23	23	23	523	2 6	23	23	23	23	23
	$^{\mathrm{n}_{1}}$	22	7.5	2 22	22	22	22	22	22	55	7.7.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22	22	22	22	22	7.7.5	0 0	2 6	23	23	23	23	533	0 0	23	23	23	23	23	533	0 0	2 62	23	23	23	23	233	2 6	2 23	23	23	23	23

page	power	0.4016	0.6236	0.8104	0.9252	0.9770	0.9940	0.9999	0.3877	0909.0	0.7908	0.9104	0.9706	0.9934	0.3715	0.5777	1007.0	0.3466	0.5588	0.5050	0.7938	0.9395	0.9874	0.9981	0.9998	1.0000	0.6605	0.8601	0.9569	0.9902	0.9984	1.0000	1.0000	0.5662	0.7872	0.9218	0.9789	0.9959	0.9994	0.9999	1.0000	0.5080	0.7384	0.8922	0.9004	0.9920	0.9999
revious	P2	0.40	0.45	0.50	0.55	0.00	0.00	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.55	0.00	0.0	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.00	0.65
from p	\mathbf{p}_1	0.25	0.25	0.25	0.25	0.25	0.20	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.33	0.55	0.40	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	07.0	0.20
-continued from previous page	pvalue	0.0238	0.0238	0.0238	0.0238	0.0238	0.0250	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0238	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249 0.0249
	z _D	2.03	2.02	2.02	2.02	2.02	20.7	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.0.5	2.02	20.7	20.0	2.02	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	T.98	20.1	2.7 80.1	00.1	1.98
B.11:	$^{\mathrm{n}_{2}}$	09	09	09	09	00	8 9	8 9	09	09	09	09	9	09	09	00	00	8 9	09	70	20	20	20	20	20	20	20	20	20	2 1	2 2	2 5	202	20	20	20	20	20	20	29	20	2 8	2 6	2 5	9 9	3 9	2 2
Table	$^{\mathrm{n}_{1}}$	09	09	09	09	09	00	09	09	09	09	09	09	09	09	00	09	89	09	20	20	20	20	20	20	20	20	20	20	70	100	2.0	202	20	20	20	20	20	20	0 i	20	9 2	2 6	10	10	1 -	20
	power	0.1712	0.2779	0.4075	0.5465	0.6793	0.1952	0.9416	0.1712	0.2737	0.3976	0.5324	0.6659	0.7856	0.1691	0.2672	0.3884	0.0255	0.2635	0.2006	0.3629	0.5290	0.6763	0.7937	0.8790	0.9354	0.2724	0.4042	0.5433	0.6765	0.7916	0.8800	0.9736	0.2167	0.3352	0.4737	0.6173	0.7478	0.8511	0.9220	0.9640	0.1919	0.3079	0.4470	0.5921	0.7243	0.9057
	P2	0.40	0.45	0.50	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.55	0.00	0.0	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.50	00.00	0.65
	p1	0.25	0.25	0.25	0.25	0.25	0.20	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.00 0.00	0.50	0.40	0.02	0.02	0.02	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245
	$\mathbf{z}_{\mathbf{p}}$	2.07	2.07	2.07	2.07	2.07	20.7	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	70.7	0.00	2.07	2.07	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	20.03	00.00	2.03
	$^{\mathrm{n}_{2}}$	23	23	23	23	233	0 6	2 2	23	23	23	23	23	23	5 73	23	2 2	3 6	23	24	24	24	24	24	24	24	24	24	24	4.	77.7	4 6	24	24	24	24	24	24	24	24	24	77.7	77.0	7, 6	7 6	4 2	2 4
	\mathbf{n}_1	23	23	23	23	23	0 6	73 23	23	23	23	23	53	53	73	27.7	27.0	2 6	23	24	24	24	24	24	24	24	24	24	24	24	42.	4.6	24	24	24	24	24	24	24	24	24	77.7	42.	42.6	42.0	4 6	2 2 4 4

Table B.11: continue on next page

Table B.11: continue on next page

ıs page	power	1.0000	0.4694	0.8664	0.9570	0.9904	0.9986	0.9999	1.0000	0.4402	0.8557	0.9534	0.9896	0.9985	0.4336	0.0094	0.9525	0.4337	0.6685	0.5728	0.8489	0.9638	0.9941	0.9993	1,0000	0.7091	0.8970	0.9747	0.9958	1.0000	1.0000	1.0000	0.6214	0.8402	0.9514	0.9896	0.0000	1.0000	1.0000	0.5641	0.7942	0.9293	0.9825	0.9997
revion	P2	0.70	0.40	0.50	0.55	09.0	0.65	0.70	0.75	0.40	0.55	09.0	0.65	0.70	0.00	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.00	09.0	0.30	0.35	0.40	0.45	0.00	0.00	0.65	0.35	0.40	0.45	0.50	0.60
rom p	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.50	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.05	0.02	0.05	0.05	0.00	0.03	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.1.0	0.15	0.15	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245
: $-con$	$\mathbf{z}_{\mathbf{p}}$	1.98	86.1	1.98	1.98	1.98	1.98	2.98	1.98	1.90	1.98	1.98	1.98	1.98	20.T	20.1	86.1	1.98	1.98	1.98	1.98	1.98	1.98	20.T	1.98	1.98	1.98	1.98	1.98	2.98	06.1	1.98	1.98	1.98	1.98	86.1	00.1	1.90	1.98	1.98	1.98	1.98	1.98	1.98
B.11:	$^{\rm n_2}$	0.5	2 2	2 2	70	70	2 2	2 8	2 6	2 5	2.02	20	20	2 2	2 6	2 5	2.2	202	70	80	80	08	08 8	200	8 8	80	80	80	08	200	8 8	80	80	80	08 8	200	000	8 8	80	80	80	80	200	08 08
Table	1 u	70	2.0	70	20	20	70	100	2 9	2 0	20	20	20	20	9 9	2 0	20	20	20	80	80	80	80	000	000	80	80	80	80	200	8 8	80	80	80	80	200	000	8	80	80	80	80	000	80
	power	0.9534	0.1862	0.4329	0.5716	0.7001	0.8081	0.8909	0.9477	0.2896	0.4141	0.5474	0.6786	0.7968	0.1764	0.2750	0.5353	0.1679	0.2673	0.2117	0.3793	0.5482	0.6956	0.8109	0.8926	0.2826	0.4198	0.5636	0.6991	0.8129	0.9498	0.9789	0.2267	0.3524	0.4971	0.6422	0.7009	0.0000	0.9666	0.2032	0.3245	0.4650	0.6065	0.8330
	p ₂	0.70	0.40	0.50	0.55	09.0	0.65	0.70	0.7 0.7	0.45	0.55	09.0	0.65	0.70	0.00	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.00	09.0	0.30	0.35	0.40	0.45	0.00	0.00	0.65	0.35	0.40	0.45	0.50	09.0
	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.90	0.30	0.30	0.30	0.30	0.33	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.00	0.03	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.10	0.15	0.15	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232
	$\mathbf{z}_{\mathbf{p}}$	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	10.0	2.01	2.01	2.01	2.01	2.01	2.01	2.01
	$^{\rm n_2}$	24	77.0	2 4	24	24	24	77 7	77.0	4 6	242	24	24	24	7 7	4 6	24	24	24	22	22	52	20 0	0 1	22 22	25	25	22	52	0 72	0 K	25	25	25	22	0 72	И С П	0 K	25	25	25	22	2.20	25
	1 u	24	42.5	4 24	24	24	24	42.0	42.0	4.6	24	24	24	24	77.0	4 6	24	24	24	22	25	25	22.57	0.70	5 2 2 2	25	25	22	25	2.25	0 75 0 75	25	25	25	22	225	0 L	0 70 0 70	25	25	25	22	27.2	22.0

s page	power	1.0000	1.0000	0.5257	0.7577	0.9071	0.9748	0.9955	1.0000	1.0000	1.0000	0.4890	0.7265	0.6951	0.9950	0 9995	0.4717	0.7165	0.8894	0.9705	0.4698	0.7151	0.6317	0.8904	0.9794	0.9975	8666.0	1.0000	1.0000	0.7668	0.9317	0.9867	0.9983	0.9999	1.0000	1.0000	1.0000	0.6784	0.8815	0.9699	0.9949	0.9994	1.0000	1.0000	1.0000	0.6135	0.8366	0.9526	0.9910	0.9989
reviou	p2	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.00	0.6	0.7 0.7	0.40 0.10	0.50	0.00	90.0	0.20	0.50	0.55	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.22	0.60	0.30	0.35	0.40	0.45	0.20	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.00
from p	p1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.20	0.25	0.30	0.30	0.50	0.30	0.00	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250
	$\mathbf{z}_{\mathbf{p}}$	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	20.1	1.90	86.1	1.90	1 98	1 98	1 98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98
B.11	$^{\mathrm{n}_{2}}$	80	80	80	80	08 8	200	200	200	200	000	8	200	00 00	8 8	8 8	8 8	8	80	80	80	80	06	06	06	06	90	06	06	06	06	06	06	06	06	06	06	98	06	96	06	90	06	06	06	06	06	06	06	200
Table $B.11$:	$^{\mathrm{n}_{1}}$	80	80	80	80	80	080	000	000	000	000	000	000	000	0 0	8	8	80	80	80	80	80	06	90	90	06	90	90	06	06	06	06	06	06	06	06	06	90	06	06	06	90	06	06	06	06	06	06	060	an
	power	0.9061	0.9539	0.1935	0.3056	0.4347	0.5682	0.6946	0.8043	0.8902	0.9486	0.1810	0.2815	0.4019	0.6203	0.2131	0.1647	0.2594	0.3805	0.5221	0.1534	0.2507	0.2226	0.3951	0.5665	0.7138	0.8268	0.9049	0.9534	0.2929	0.4355	0.5841	0.7215	0.8331	0.9117	0.9592	0.9836	0.2374	0.3708	0.5216	0.6685	0.7919	0.8821	0.9399	0.9729	0.2161	0.3441	0.4887	0.6307	0.7541
	p2	0.65	0.70	0.40	0.45	0.50	0.55	0.00	0.00	100	٠. ت ب	0.40	0.50	0.00	90.0	20.00	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.20	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.00
	p1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.20	0.25	0.30	0.30	0.30	0.30	0.00	33.5	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243
	$\mathbf{z}_{\mathbf{p}}$	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	50.0	20.0	2 01	2.01	2.01	2.01	2.01	2.01	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98
	$^{\mathrm{n}_{2}}$	25	22	22	22	222	27.0		Ω Z	Ω L		0 1	2 2 2	9 C	1 C	1 C	2.0	22	25	25	25	25	26	56	56	56	56	56	56	56	56	56	56	56	56	56	56	97.0	97.	56	26	56	56	56	56	56	56	56	9 7 9	20
	$^{\mathrm{n}_{1}}$	25	25	25	22	22.	27.0	27.0	2 2 2	0 10	27.2	0 10	27.2	9 C	1 0	1 C	2.0	22	25	25	25	22	26	26	26	26	26	26	56	56	56	56	56	56	56	56	56	97.0	97.	97.	26	56	56	56	56	56	56	56	56	07

Table B.11: continue on next page

Table B.11: continue on next page

		ı																																										
is page	power	0.9999	1.0000	1.0000	0.8092	0.9401	0.9869	0.9981	0.9998	1.0000	1.0000	0.7828	0.9247	0.9827	0.9976	0.9998	0.5167	0.9170	0.9816	0.5028	0.7543	0.6640	0.9156	0.9874	0.9999	1.0000	1.0000	0.8043	0.9516	0.9924	1.0000	1.0000	1.0000	1.0000	0.7172	0.9087	0.9975	0.9998	1.0000	1.0000	1.0000	0.8730	0.9685	0.9950
revion	p2	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.55	09.0	0.65	0.70	0.00	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.50	0.55	0.60	0.30	0.35	0.45	0.50	0.55	0.60	0.65	0.35	0.45	0.50
rom p	p1	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20
-continued from previous page	pvalue	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248	0.0248
	$\mathbf{z}_{\mathbf{p}}$	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	20.1	1.98	1.98	1.98	1.98	1.98	20.1	1.98	1.98	1.98	1.98	1.99	1.99	1.99	66.T	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
B.11:	$_{\rm n_2}$	06	06	S S	06	06	06	06	06	06	3 6	6 6	06	06	06	06	3 6	06	06	06	90	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$^{\rm n_1}$	06	06	06	06	90	06	06	06	06	000	06	90	06	06	06	000	06	06	06	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	power	0.8508	0.9194	0.9626	0.3222	0.4548	0.5906	0.7178	0.8257	0.9068	0.9588	0.2958	0.4219	0.5602	0.6972	0.8169	0.1738	0.4034	0.5497	0.1639	0.2678	0.1936	0.3482	0.5229	0.8882	0.9065	0.9575	0.2731	0.4298	0.5916	0.8456	0.9197	0.9629	0.9850	0.2393	0.5797	0.6766	0.7958	0.8836	0.9413	0.9746	0.2183	0.4858	0.6269
	p2	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.75 5.75	0.50	0.55	09.0	0.65	0.70	00.00	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.50	0.55	09.0	0.30	0.35	0.45	0.50	0.55	0.60	0.65	0.35	0.45	0.50
	p1	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.03	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20
	pvalue	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223	0.0223
	$\mathbf{z}_{\mathbf{p}}$	1.98	1.98	1.98 8 8	1.98	1.98	1.98	1.98	1.98	1.98	20.1	1.98	1.98	1.98	1.98	1.98	20.1	1.98	1.98	1.98	1.98	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03
	$^{\rm n_2}$	26	56	9 7 9	26	26	56	56	56	26	970	26	26	56	56	26	970	26	26	56	56	27	27	2.5	27.	27	27	27	2 7 7	2 7.	27	27	27	27	1 7	2 6	27	27	27	27	2 7	27	27	27
	$^{\mathrm{n}_{1}}$	26	56	97 97 97	26	26	56	56	56	26	97.0	26	26	56	56	26	070	26	26	26	56	27	27	2.7	27.2	27	27	27	27.7	2 7.7	27	27	27	27	2 7	2 6	27	27	27	27	2 7.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	27	27

	l						апп	D.11:		ring	from	previou	-continued from previous page
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	p2	power	1	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	P1	P2	power
27	27	2.03	0.0223	0.20	0.55	0.7534	100	100	1.99	0.0248	0.20	0.55	0.9995
27	27	2.03	0.0223	0.20	09.0	0.8549	100	100	1.99	0.0248	0.20	09.0	1.0000
27	27	2.03	0.0223	0.20	0.65	0.9260	100	100	1.99	0.0248	0.20	0.65	1.0000
27	27	2.03	0.0223	0.20	0.70	0.9684	100	100	1.99	0.0248	0.20	0.70	1.0000
27	27	2.03	0.0223	0.25	0.40	0.1990	100	100	1.99	0.0248	0.25	0.40	0.6121
27.0	1 - 0	2.03	0.0223	0.25	0.45	0.3132	100	100	1.99	0.0248	0.25	0.45	0.8428
27	2 6	2.03	0.0223	0.25	0.00	0.5925	100	100	1.99	0.0248	0.25	0.50	0.9565
27	27	2.03	0.0223	0.25	0.60	0.7286	100	100	1.99	0.0248	0.25	0.60	0.9993
27	27	2.03	0.0223	0.25	0.65	0.8409	100	100	1.99	0.0248	0.25	0.65	1.0000
27	27	2.03	0.0223	0.25	0.70	0.9200	100	100	1.99	0.0248	0.25	0.70	1.0000
27	27	2.03	0.0223	0.25	0.75	0.9668	100	100	1.99	0.0248	0.25	0.75	1.0000
27	27	2.03	0.0223	0.30	0.45	0.1825	100	100	1.99	0.0248	0.30	0.45	0.5895
27	27	2.03	0.0223	0.30	0.50	0.2925	100	100	1.99	0.0248	0.30	0.50	0.8281
27	27	2.03	0.0223	0.30	0.55	0.4288	100	100	1.99	0.0248	0.30	0.55	0.9507
27	27	2.03	0.0223	0.30	09.0	0.5777	100	100	1.99	0.0248	0.30	0.60	0.9906
27	27	2.03	0.0223	0.30	0.65	0.7200	100	100	1.99	0.0248	0.30	0.65	0.9989
27	27	2.03	0.0223	0.30	0.70	0.8374	100	100	1.99	0.0248	0.30	0.70	0.99999
27	27	2.03	0.0223	0.35	0.50	0.1742	100	100	1.99	0.0248	0.35	0.20	0.5715
27	27	2.03	0.0223	0.35	0.55	0.2846	100	100	1.99	0.0248	0.35	0.55	0.8061
27	27	2.03	0.0223	0.35	09.0	0.4227	100	100	1.99	0.0248	0.35	09.0	0.9403
27	27	2.03	0.0223	0.35	0.65	0.5744	100	100	1.99	0.0248	0.35	0.65	0.9889
27	27	2.03	0.0223	0.40	0.55	0.1723	100	100	1.99	0.0248	0.40	0.55	0.5417
27	27	2.03	0.0223	0.40	09.0	0.2832	100	100	1.99	0.0248	0.40	09.0	0.7914
28	28	2.03	0.0231	0.02	0.15	0.2013	150	150	1.99	0.0244	0.02	0.15	0.8320
28	28	2.03	0.0231	0.02	0.20	0.3627	150	150	1.99	0.0244	0.05	0.20	0.9833
28	28	2.03	0.0231	0.02	0.25	0.5435	120	120	1.99	0.0244	0.02	0.25	0.9993
28	28	2.03	0.0231	0.02	0.30	0.7098	150	150	1.99	0.0244	0.05	0.30	1.0000
58	28	2.03	0.0231	0.02	0.32	0.8368	120	150	1.99	0.0244	0.02	0.35	1.0000
28	28	2.03	0.0231	0.02	0.40	0.9190	150	150	1.99	0.0244	0.02	0.40	1.0000
28	28	2.03	0.0231	0.02	0.45	0.9648	120	120	1.99	0.0244	0.02	0.45	1.0000
58	28	2.03	0.0231	0.10	0.25	0.2867	150	150	1.99	0.0244	0.10	0.25	0.9351
28	28	2.03	0.0231	0.10	0.30	0.4494	150	150	1.99	0.0244	0.10	0.30	0.9937
58	58	2.03	0.0231	0.10	0.35	0.6140	150	150	1.99	0.0244	0.10	0.35	0.9997
28	28	2.03	0.0231	0.10	0.40	0.7563	150	150	1.99	0.0244	0.10	0.40	1.0000
28	200	2.03	0.0231	0.10	0.45	0.8624	150	150	1.99	0.0244	0.10	0.45	1.0000
58	28	2.03	0.0231	0.10	0.50	0.9309	150	150	1.99	0.0244	0.10	0.50	1.0000
58	28	2.03	0.0231	0.10	0.55	0.9693	150	150	1.99	0.0244	0.10	0.55	1.0000
28	28	2.03	0.0231	0.10	09.0	0.9882	150	150	1.99	0.0244	0.10	0.60	1.0000
28	28	2.03	0.0231	0.15	0.30	0.2519	150	150	1.99	0.0244	0.15	0.30	0.8780
28	28	2.03	0.0231	0.15	0.35	0.3981	150	150	1.99	0.0244	0.15	0.35	0.9819
28	28	2.03	0.0231	0.15	0.40	0.5542	150	150	1.99	0.0244	0.15	0.40	0.9987
58	58	2.03	0.0231	0.15	0.45	0.6979	150	150	1.99	0.0244	0.15	0.45	1.0000
28	28	2.03	0.0231	0.15	0.50	0.8142	150	150	1.99	0.0244	0.15	0.50	1.0000
58	28	2.03	0.0231	0.15	0.55	0.8976	150	150	1.99	0.0244	0.15	0.55	1.0000
28	200	2.03	0.0231	0.15	0.60	0.9507	150	150	1.99	0.0244	0.15	0.60	1.0000
28	200	2.03	0.0231	0.15	0.65	0.9799	150	150	1.99	0.0244	0.15	0.65	1.0000
x 0	x 0	2.03	0.0231	0.20	0.35	0.2296	150	150	1.99	0.0244	0.20	0.35	0.8278
0 X	0 X	2.03	0.0231	0.20	0.40	0.3000	150	150	1.99	0.0244	0.20	0.40	0.9679
))	1		1	;)	>	>	2	1	1	;	

Table B.11: continue on next page

	7	ф	L	Ы	P.2	Power	T.	711	ζb	pvalue	P1	P2	bower
82	28	2.03	0.0231	0.20	0.50	0.6490	150	150	1.99	0.0244	0.20	0.50	0.9998
00	28	2.03	0.0231	0.20	0.55	0.7751	150	150	1.99	0.0244	0.20	0.55	1.0000
00	28	2.03	0.0231	0.20	09.0	0.8730	150	150	1.99	0.0244	0.20	09.0	1.0000
00	28	2.03	0.0231	0.20	0.65	0.9386	150	150	1.99	0.0244	0.20	0.65	1.0000
00	28	2.03	0.0231	0.20	0.70	0.9754	150	150	1.99	0.0244	0.20	0.70	1.0000
œ	28	2.03	0.0231	0.25	0.40	0.2089	150	150	1.99	0.0244	0.25	0.40	0.7887
00	28	2.03	0.0231	0.25	0.45	0.3291	150	150	1.99	0.0244	0.25	0.45	0.9538
∞	28	2.03	0.0231	0.25	0.50	0.4706	150	150	1.99	0.0244	0.25	0.50	0.9949
œ	28	2.03	0.0231	0.25	0.55	0.6188	150	150	1.99	0.0244	0.25	0.55	0.9997
00	28	2.03	0.0231	0.25	09.0	0.7546	150	150	1.99	0.0244	0.25	09.0	1.0000
28	28	2.03	0.0231	0.25	0.65	0.8621	150	150	1.99	0.0244	0.25	0.65	1.0000
00	28	2.03	0.0231	0.25	0.70	0.9341	150	150	1.99	0.0244	0.25	0.70	1.0000
00	28	2.03	0.0231	0.25	0.75	0.9742	150	150	1.99	0.0244	0.25	0.75	1.0000
∞	28	2.03	0.0231	0.30	0.45	0.1935	150	150	1.99	0.0244	0.30	0.45	0.7649
∞	28	2.03	0.0231	0.30	0.50	0.3112	150	150	1.99	0.0244	0.30	0.50	0.9446
∞	28	2.03	0.0231	0.30	0.55	0.4546	150	150	1.99	0.0244	0.30	0.55	0.9928
∞	28	2.03	0.0231	0.30	09.0	0.6073	150	150	1.99	0.0244	0.30	09.0	0.9995
28	28	2.03	0.0231	0.30	0.65	0.7481	150	150	1.99	0.0244	0.30	0.65	1.0000
∞	28	2.03	0.0231	0.30	0.70	0.8595	150	150	1.99	0.0244	0.30	0.70	1.0000
00	28	2.03	0.0231	0.35	0.50	0.1876	150	150	1.99	0.0244	0.35	0.50	0.7402
∞	28	2.03	0.0231	0.35	0.55	0.3058	150	150	1.99	0.0244	0.35	0.55	0.9324
∞	28	2.03	0.0231	0.35	09.0	0.4506	150	150	1.99	0.0244	0.35	09.0	0.9911
∞	28	2.03	0.0231	0.35	0.65	0.6050	150	150	1.99	0.0244	0.35	0.65	0.9995
∞	28	2.03	0.0231	0.40	0.55	0.1870	150	150	1.99	0.0244	0.40	0.55	0.7223
∞	28	2.03	0.0231	0.40	09.0	0.3052	150	150	1.99	0.0244	0.40	09.0	0.9292

 $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p1: fixed value of the probability of success in the second sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test. Table B.12: Achieved power and p-values calculated for the z-pooled statistic in cases of equal sample sizes, $\alpha = 0.025$.

$_{1}$	$_{\rm n_2}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	p2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	\mathbf{p}_1	P 2	power
10	10	2.35	0.0064	0.02	0.15	0.0060	29	59	2.37	9600.0	0.05	0.15	0.0816
10	10	2.35	0.0064	0.02	0.20	0.0199	59	59	2.37	9600.0	0.05	0.20	0.2085
10	10	2.35	0.0064	0.05	0.25	0.0479	59	59	2.37	9600.0	0.05	0.25	0.3797
10	10	2.35	0.0064	0.05	0.30	0.0934	59	59	2.37	0.0096	0.05	0.30	0.5620
10	10	2.35	0.0064	0.05	0.35	0.1574	59	59	2.37	9600.0	0.05	0.35	0.7238
10	10	2.35	0.0064	0.02	0.40	0.2379	59	59	2.37	0.0096	0.02	0.40	0.8458
10	10	2.35	0.0064	0.05	0.45	0.3310	59	53	2.37	0.0096	0.05	0.45	0.9244
10	10	2.35	0.0064	0.10	0.25	0.0287	58	59	2.37	0.0096	0.10	0.25	0.1662
10	10	2.35	0.0064	0.10	0.30	0.0568	58	59	2.37	0.0096	0.10	0.30	0.3002
10	10	2.35	0.0064	0.10	0.35	0.0977	59	59	2.37	0.0096	0.10	0.35	0.4601
10	10	2.35	0.0064	0.10	0.40	0.1516	59	59	2.37	0.0096	0.10	0.40	0.6214
10	10	2.35	0.0064	0.10	0.45	0.2179	59	53	2.37	0.0096	0.10	0.45	0.7616
10	10	2.35	0.0064	0.10	0.50	0.2951	58	59	2.37	0.0096	0.10	0.50	0.8673
10	10	2.35	0.0064	0.10	0.55	0.3812	58	59	2.37	0.0096	0.10	0.55	0.9361
10	10	2.35	0.0064	0.10	09.0	0.4740	59	53	2.37	0.0096	0.10	09.0	0.9740
10	10	2.35	0.0064	0.15	0.30	0.0337	58	59	2.37	0.0096	0.15	0.30	0.1426
10	10	2.35	0.0064	0.15	0.35	0.0594	59	59	2.37	0.0096	0.15	0.35	0.2569
10	10	2.35	0.0064	0.15	0.40	0.0949	58	59	2.37	0.0096	0.15	0.40	0.4017
10	10	2.35	0.0064	0.15	0.45	0.1412	58	59	2.37	0.0096	0.15	0.45	0.5602
10	10	2.35	0.0064	0.15	0.50	0.1989	58	58	2.37	0.0096	0.15	0.50	0.7102
10	10	2.35	0.0064	0.15	0.55	0.2684	59	59	2.37	0.0096	0.15	0.55	0.8318
10	10	2.35	0.0064	0.15	09.0	0.3494	59	53	2.37	0.0096	0.15	09.0	0.9152
10	10	2.35	0.0064	0.15	0.65	0.4407	59	59	2.37	0.0096	0.15	0.65	0.9632
10	10	2.35	0.0064	0.20	0.35	0.0352	59	59	2.37	0.0096	0.20	0.35	0.1287
10	10	2.35	0.0064	0.20	0.40	0.0582	59	53	2.37	0.0096	0.20	0.40	0.2337
10	10	2.35	0.0064	0.20	0.45	0.0898	59	59	2.37	9600.0	0.20	0.45	0.3727
10	10	2.35	0.0064	0.20	0.50	0.1318	59	59	2.37	0.0096	0.20	0.50	0.5300
10	10	2.35	0.0064	0.20	0.55	0.1857	59	59	2.37	9600.0	0.20	0.55	0.6817
10	10	2.35	0.0064	0.20	09.0	0.2527	58	59	2.37	0.0096	0.20	0.60	0.8068
10	10	2.35	0.0064	0.20	0.65	0.3330	59	59	2.37	0.0096	0.20	0.65	0.8957
10	10	2.35	0.0064	0.20	0.70	0.4256	58	59	2.37	0.0096	0.20	0.70	0.9510
10	10	2.35	0.0064	0.25	0.40	0.0348	58	50	2.37	0.0096	0.25	0.40	0.1236
10	10	2.35	0.0064	0.25	0.45	0.0560	59	59	2.37	0.0096	0.25	0.45	0.2244
10	10	2.35	0.0064	0.25	0.50	0.0856	58	58	2.37	0.0096	0.25	0.50	0.3571
10	10	2.35	0.0064	0.25	0.55	0.1259	58	58	2.37	0.0096	0.25	0.55	0.5063
10	10	2.35	0.0064	0.25	09.0	0.1787	58	58	2.37	0.0096	0.25	09.0	0.6522
10	10	2.35	0.0064	0.25	0.65	0.2453	58	58	2.37	0.0096	0.25	0.65	0.7789
10	10	2.35	0.0064	0.25	0.70	0.3265	58	56	2.37	9600.0	0.25	0.70	0.8773
10	10	2.35	0.0064	0.25	0.75	0.4214	59	59	2.37	0.0096	0.25	0.75	0.9441
10	10	2.35	0.0064	0.30	0.45	0.0340	59	53	2.37	0.0096	0.30	0.45	0.1213
10	10	2.35	0.0064	0.30	0.50	0.0543	58	58	2.37	0.0096	0.30	0.50	0.2148
10	10	2.35	0.0064	0.30	0.55	0.0833	58	59	2.37	0.0096	0.30	0.55	0.3366
10	10	2.35	0.0064	0.30	09.0	0.1231	58	56	2.37	9600.0	0.30	09.0	0.4775
10	10	2.35	0.0064	0.30	0.65	0.1759	59	59	2.37	0.0096	0.30	0.65	0.6252

Table B.12: continue on next page

Table B.12: continue on next page

s page	power	0.7643	0.1144	0.1996	0.4627	0.1063	0.1915	0.0887	0.2232	0.4011	0.5867	0.7470	0.8037	0.9339	0.3179	0.4832	0.6461	0.7838	0.8840	0.9464	0.9790	0.1519	0.2728	0.4237	0.5850	0.7323	0.8470	0.9231	0.9664	0.1375	0.2400	0.5303	0.6922	0.8120	0.8987	0.9536	0.1298	0.2314	0.3617	0.5074	0.6525	0.7816	0.8823	0.9484	0.1209	0.3316	0.4748
reviou	p2	0.70	0.50	0.00	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	 	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	 	0.55	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.45	0.0	0.60
from p	p1	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.02	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.50	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30
-continued from previous page	pvalue	9600.0	0.0096	0.0036	0.0096	0.0096	0.0096	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0032	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.000	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.000	0.0092
	$\mathbf{z}_{\mathbf{p}}$	2.37	2.37	5.57	2.37	2.37	2.37	2.36	2.36	2.36	2.36	2.36	2.30	9.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.30	00.7	0.20	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.30	0.20	2.36
B.12:	$^{\rm n_2}$	59	29	62.0	29	59	59	30	30	30	30	30	9 6	9 6	30	30	30	30	30	30	30	30	30	30	30	30	30	30	900	9 6	000	9 %	800	30	30	30	30	30	30	30	30	30	200	200	200	8 8	30
Table	$_{1}^{n}$	59	29	67.0	29	59	59	30	30	30	30	30	200	000	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	200	000	300	30	30	30	30	30	30	30	30	30	30	30	30	30	80	30
	power	0.2433	0.0335	0.0530	0.1223	0.0334	0.0534	0.0091	0.0293	0.0678	0.1271	0.2063	0.3011	0.4030	0.0752	0.1261	0.1914	0.2699	0.3595	0.4572	0.5590	0.0435	0.0756	0.1198	0.1772	0.2483	0.3327	0.4284	0.5318	0.0444	0.0736	0.1584	0.2373	0.3206	0.4166	0.5215	0.0443	0.0723	0.1119	0.1651	0.2333	0.3165	0.4129	0.5191	0.0446	0.0123	0.1645
	p2	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	2.0	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.20	0.55	09.0	0.65	0.35	0.40	. O	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.40	0.75	0.45	0 0	0.60
	p1	0.30	0.35	0.00	0.35	0.40	0.40	0.02	0.05	0.02	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.52	0.25	0.25	0.25	0.25	0.30	0.00	0.30
	pvalue	0.0064	0.0064	0.0064	0.0064	0.0064	0.0064	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0007	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087
	$\mathbf{z}_{\mathbf{p}}$	2.35	2.35	2.35 35	2.35	2.35	2.35	2.29	2.29	2.29	2.29	2.29	67.7	2.73	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	67.7	20.00	00.00	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	5.29	67.76	000	2.29
	$^{\mathrm{n}_{2}}$	10	10	10	10	10	10	11	11	11	Ξ;	Ξ:	I :	1 :	11	11	11	11	11	11	11	11	11	11	11	11	11	11	Ξ:	I :	1 :	1 [11	11	11	11	11	11	11	11	11	Ξ;	Ξ:	Ξ;	= =	: :	11
	$^{\mathrm{n}_{1}}$	10	10	0 1	10	10	10	11	11	11	Ξ;	Π:	Ι:	1 :	11	11	11	11	11	11	11	11	1	11	11	11	11	11	11	Ι:	1 :	1 -	11	11	11	11	11	11	11	11	11	Π;	Ξ:	Ξ;	I :	1 =	: ::

n2 zp pvalue p1 p2 30 2.36 0.0092 0.30 0.65 30 2.36 0.0092 0.30 0.70 30 2.36 0.0092 0.35 0.50 30 2.36 0.0092 0.35 0.50 30 2.36 0.0092 0.35 0.50 30 2.36 0.0092 0.35 0.65 31 2.34 0.0092 0.40 0.65 31 2.34 0.0092 0.40 0.65 31 2.34 0.0097 0.05 0.15 31 2.34 0.0097 0.05 0.40 31 2.34 0.0097 0.05 0.40 31 2.34 0.0097 0.05 0.40 31 2.34 0.0097 0.05 0.40 31 2.34 0.0097 0.10 0.45 31 2.34 0.0097 0.10 0.45 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Table</th> <th>⊣1</th> <th></th> <th>-continued from previous page</th> <th>from p</th> <th>reviou</th> <th>s page</th>							Table	⊣ 1		-continued from previous page	from p	reviou	s page
0.0087 0.30 0.66 0.2225 30 2.36 0.0092 0.30 0.65 0.0087 0.32 0.37 0.3157 30 2.36 0.0092 0.33 0.0087 0.0087 0.36 0.0092 0.33 0.0087 0.0092 0.33 0.0087 0.0092 0.35 0.0730 0.0092 0.33 0.0092 0.0092 0.33 0.0092 0.	- 1	$\mathbf{z}_{\mathbf{p}}$	pvalue	P1	P2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	P1	P2	power
0.0087 0.36 0.770 0.3157 3.91 3.0 2.36 0.0092 0.35 0.70 0.0087 0.35 0.35 0.04 0.04 0.35 0.00 0.35 0.00 0.00 0.35 0.00		2.29	0.0087	0.30	0.65	0.2325	30	30	2.36	0.0092	0.30	0.65	0.6276
0.0087 0.35 0.56 0.04453 3.9 2.36 0.0092 0.35 0.56 0.0087 0.35 0.56 0.0453 3.9 2.36 0.0092 0.35 0.56 0.0087 0.35 0.65 0.0126 3.0 2.36 0.0092 0.35 0.56 0.0087 0.40 0.66 0.0123 3.0 2.36 0.0092 0.35 0.56 0.0087 0.40 0.66 0.0173 3.0 2.36 0.0092 0.35 0.66 0.0087 0.65 0.02 0.0173 3.1 3.1 2.34 0.0092 0.35 0.66 0.0087 0.05 0.25 0.0203 3.1 3.1 2.34 0.0097 0.05 0.05 0.0087 0.05 0.45 0.0263 3.1 3.1 2.34 0.0097 0.05 0.05 0.0087 0.10 0.45 0.25 0.25 3.1 3.1 2.34 0.0097<		2.29	0.0087	0.30	0.70	0.3157	30	30	2.36	0.0092	0.30	0.70	0.7701
0.0087 0.35 0.55 0.0730 30 2.36 0.0092 0.35 0.65 0.0087 0.35 0.55 0.0730 30 2.36 0.0092 0.35 0.65 0.0087 0.35 0.65 0.1446 30 2.36 0.0092 0.35 0.65 0.0087 0.40 0.65 0.13 0.01453 30 2.36 0.0092 0.40 0.65 0.0087 0.04 0.65 0.15 0.0132 31 2.34 0.0097 0.05 0.15 0.0087 0.05 0.15 0.0363 31 31 2.34 0.0097 0.05 0.15 0.0087 0.05 0.25 0.0363 31 31 2.34 0.0097 0.05 0.00 0.0087 0.05 0.35 0.266 31 31 2.34 0.0997 0.05 0.05 0.0087 0.10 0.25 0.0450 31 31 2.34 <		2.29	0.0087	0.35	0.50	0.0453	30	30	2.36	0.0092	0.35	0.50	0.1092
0.0087 0.35 0.60 0.1120 30 36 2.86 0.0092 0.35 0.60 0.0087 0.35 0.60 0.1120 30 30 2.36 0.0092 0.35 0.60 0.0087 0.04 0.55 0.1466 30 31 2.34 0.0092 0.35 0.60 0.0087 0.05 0.20 0.0466 31 31 2.34 0.0097 0.05 0.15 0.0087 0.05 0.20 0.0406 0.35 0.0406 0.0997 0.05 0.15 0.0087 0.05 0.25 0.0406 31 31 2.34 0.0097 0.05 0.25 0.0087 0.05 0.45 0.4760 31 31 2.34 0.0097 0.05 0.35 0.0087 0.05 0.45 0.4760 31 31 2.34 0.0097 0.05 0.35 0.0087 0.05 0.45 0.4760 0.3231		2.29	0.0087	0.35	0.55	0.0730	30	30	2.36	0.0092	0.35	0.55	0.1935
0.0087 0.35 0.65 0.1464 3.0 3.0 2.36 0.0092 0.43 0.65 0.0087 0.035 0.65 0.1464 3.0 3.0 2.36 0.0092 0.40 0.55 0.0087 0.04 0.65 0.1732 3.1 3.1 2.34 0.0097 0.05 0.25 0.0087 0.05 0.25 0.04063 3.1 3.1 2.34 0.0097 0.05 0.25 0.0087 0.05 0.25 0.05063 3.1 3.1 2.34 0.0097 0.05 0.35 0.0087 0.05 0.25 0.05063 3.1 3.1 2.34 0.0097 0.05 0.35 0.0087 0.05 0.05 3.1 3.1 3.24 0.0097 0.05 0.45 0.0087 0.10 0.35 0.1565 3.1 3.1 2.34 0.0097 0.05 0.45 0.0087 0.10 0.35 0.1565 3.1 <td></td> <td>2.29</td> <td>0.0087</td> <td>0.35</td> <td>09.0</td> <td>0.1120</td> <td>30</td> <td>30</td> <td>2.36</td> <td>0.0092</td> <td>0.35</td> <td>0.60</td> <td>0.3126</td>		2.29	0.0087	0.35	09.0	0.1120	30	30	2.36	0.0092	0.35	0.60	0.3126
0.0087 0.40 0.55 0.0435 3.0 3.0 2.36 0.0092 0.40 0.55 0.0087 0.04 0.055 0.0435 3.0 3.0 2.36 0.0092 0.40 0.55 0.0087 0.05 0.15 0.0132 3.1 3.24 0.0097 0.05 0.20 0.0087 0.05 0.20 0.04068 3.1 3.1 2.34 0.0097 0.05 0.20 0.0087 0.05 0.25 0.0408 3.1 3.1 2.34 0.0097 0.05 0.35 0.0087 0.05 0.45 0.0583 3.1 3.1 2.34 0.0097 0.05 0.45 0.0087 0.10 0.35 0.1555 3.1 3.1 2.34 0.0097 0.10 0.35 0.0087 0.10 0.45 0.3212 3.1 3.24 0.0097 0.10 0.35 0.0087 0.10 0.45 0.3212 3.1 3.24 </td <td></td> <td>2.29</td> <td>0.0087</td> <td>0.35</td> <td>0.65</td> <td>0.1646</td> <td>30</td> <td>30</td> <td>2.36</td> <td>0.0092</td> <td>0.35</td> <td>0.65</td> <td>0.4627</td>		2.29	0.0087	0.35	0.65	0.1646	30	30	2.36	0.0092	0.35	0.65	0.4627
0.0087 0.100 0.10733 3.0 3.0 3.3 3.3 0.0097 0.00		2.29	0.0087	0.40	0.55	0.0459	30	30	2.36	0.0092	0.40	0.55	0.1013
0.0087 0.05 0.15 0.0132 31 2.34 0.0097 0.05 0.15 0.0087 0.05 0.25 0.0406 31 31 2.34 0.0097 0.05 0.20 0.0087 0.05 0.25 0.0903 31 31 2.34 0.0097 0.05 0.20 0.0087 0.05 0.45 0.2563 31 31 2.34 0.0097 0.05 0.35 0.0087 0.05 0.45 0.4760 31 31 2.34 0.0097 0.05 0.45 0.0087 0.05 0.44 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.35 0.0548 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.45 0.4212 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.45 0.2312 31 31 2.34 <td></td> <td>2.29</td> <td>0.0087</td> <td>0.40</td> <td>09.0</td> <td>0.0733</td> <td>30</td> <td>e 3</td> <td>2.36</td> <td>0.0092</td> <td>0.40</td> <td>0.60</td> <td>0.1867</td>		2.29	0.0087	0.40	09.0	0.0733	30	e 3	2.36	0.0092	0.40	0.60	0.1867
0.0087 0.05 0.20 0.0406 31 31 2.34 0.0097 0.05 0.20 0.0087 0.05 0.25 0.0406 31 31 2.34 0.0097 0.05 0.25 0.0087 0.05 0.45 0.1634 31 31 2.34 0.0097 0.05 0.25 0.0087 0.05 0.45 0.4760 31 31 2.34 0.0097 0.05 0.45 0.0087 0.10 0.25 0.0456 31 31 2.34 0.0097 0.05 0.45 0.0087 0.10 0.25 0.0556 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.45 0.255 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.45 0.255 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.45 0.255 31 <td></td> <td>2.45</td> <td>0.0087</td> <td>0.02</td> <td>0.15</td> <td>0.0132</td> <td>31</td> <td>31</td> <td>2.34</td> <td>0.0097</td> <td>0.02</td> <td>0.15</td> <td>0.0958</td>		2.45	0.0087	0.02	0.15	0.0132	31	31	2.34	0.0097	0.02	0.15	0.0958
0.0087 0.05 0.25 0.09093 31 31 2.34 0.0097 0.05 0.25 0.0087 0.05 0.35 0.0968 31 31 2.34 0.0097 0.05 0.35 0.0087 0.05 0.40 0.3863 31 31 2.34 0.0097 0.05 0.30 0.0087 0.10 0.25 0.0566 31 31 2.34 0.0097 0.05 0.40 0.0087 0.10 0.25 0.0566 31 31 2.34 0.0097 0.10 0.25 0.0087 0.10 0.35 0.155 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.46 0.2317 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.45 0.2223 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.46 0.2329 31 31 2.3		2.45	0.0087	0.02	0.20	0.0406	31	31	2.34	0.0097	0.02	0.20	0.2378
0.0087 0.05 0.35 0.1564 31 2.34 0.0097 0.05 0.35 0.0087 0.05 0.35 0.1564 31 31 2.34 0.0097 0.05 0.35 0.0087 0.05 0.40 0.3653 31 31 2.34 0.0097 0.05 0.45 0.0087 0.01 0.25 0.0456 31 31 2.34 0.0097 0.05 0.45 0.0087 0.10 0.35 0.1555 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.45 0.2372 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.45 0.2220 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.45 0.2220 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.45 0.320 31 31 </td <td></td> <td>2.45</td> <td>0.0087</td> <td>0.02</td> <td>0.25</td> <td>0.0903</td> <td>31</td> <td>31</td> <td>2.34</td> <td>0.0097</td> <td>0.02</td> <td>0.25</td> <td>0.4223</td>		2.45	0.0087	0.02	0.25	0.0903	31	31	2.34	0.0097	0.02	0.25	0.4223
0.0087 0.05 0.35 0.2566 31 31 2.34 0.0097 0.05 0.35 0.0087 0.05 0.45 0.4563 31 31 2.34 0.0097 0.05 0.45 0.0087 0.10 0.25 0.0565 31 31 2.34 0.0097 0.01 0.25 0.0087 0.10 0.35 0.0568 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.35 0.1555 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.45 0.3217 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.56 0.4202 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.20 0.4528 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.20 0.4528 31 31<		2.45	0.0087	0.02	0.30	0.1634	31	31	2.34	0.0097	0.05	0.30	0.6106
0.0087 0.05 0.44 0.3653 31 31 2.34 0.0097 0.05 0.44 0.0087 0.05 0.45 0.4760 31 31 2.34 0.0097 0.05 0.45 0.0087 0.10 0.35 0.0506 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.43 0.2317 31 2.34 0.0097 0.10 0.40 0.0087 0.10 0.45 0.2317 31 2.34 0.0097 0.10 0.40 0.0087 0.10 0.45 0.2312 31 2.34 0.0097 0.10 0.40 0.0087 0.10 0.45 0.2222 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.45 0.15 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.45 0.0224 31 31 2.34 0.0097 <td< td=""><td></td><td>2.45</td><td>0.0087</td><td>0.02</td><td>0.35</td><td>0.2566</td><td>31</td><td>31</td><td>2.34</td><td>0.0097</td><td>0.05</td><td>0.35</td><td>0.7687</td></td<>		2.45	0.0087	0.02	0.35	0.2566	31	31	2.34	0.0097	0.05	0.35	0.7687
0.0087 0.05 0.45 0.4760 31 31 2.34 0.0097 0.05 0.45 0.0087 0.01 0.25 0.0555 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.35 0.1555 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.40 0.2317 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.45 0.4202 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.55 0.5239 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.55 0.5239 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.05 0.6238 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.05 0.6239 31 31<		2.45	0.0087	0.02	0.40	0.3633	31	31	2.34	0.0097	0.02	0.40	0.8798
0.0087 0.10 0.25 0.0505 31 31 2.34 0.0097 0.10 0.25 0.0087 0.10 0.38 0.0484 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.35 0.0245 31 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.45 0.2217 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.55 0.5239 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.56 0.5239 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.40 0.1450 31 31 2.34 0.0097 0.10 0.55 0.0087 0.15 0.40 0.1450 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.40 0.1450 31 31<		2.45	0.0087	0.02	0.45	0.4760	31	31	2.34	0.0097	0.05	0.45	0.9458
0.0087 0.10 0.30 0.0948 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.35 0.1555 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.45 0.23212 31 31 2.34 0.0097 0.10 0.40 0.0087 0.10 0.45 0.3212 31 31 2.34 0.0097 0.10 0.40 0.0087 0.10 0.55 0.4222 31 31 2.34 0.0097 0.10 0.40 0.0087 0.10 0.55 0.4220 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.45 0.450 31 31 2.34 0.0097 0.10 0.45 0.0087 0.15 0.45 0.2120 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.45 0.1450 31 31 2.3		2.45	0.0087	0.10	0.25	0.0505	31	31	2.34	0.0097	0.10	0.25	0.1879
0.0087 0.10 0.35 0.1555 31 2.34 0.0097 0.10 0.35 0.0087 0.10 0.40 0.2317 31 2.34 0.0097 0.10 0.40 0.0087 0.10 0.40 0.2317 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.55 0.5239 31 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.56 0.5239 31 31 2.34 0.0097 0.10 0.40 0.0087 0.15 0.35 0.0224 31 31 2.34 0.0097 0.10 0.55 0.0087 0.15 0.45 0.220 31 31 2.34 0.0097 0.15 0.35 0.0087 0.15 0.45 0.220 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.56 0.2827 31 31 2.34 0.0		2.45	0.0087	0.10	0.30	0.0948	31	31	2.34	0.0097	0.10	0.30	0.3357
0.0087 0.10 0.44 0.2317 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.45 0.3212 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.55 0.5239 31 31 2.34 0.0097 0.10 0.50 0.0087 0.10 0.55 0.5239 31 31 2.34 0.0097 0.10 0.50 0.0087 0.15 0.40 0.6255 31 31 2.34 0.0097 0.10 0.50 0.0087 0.15 0.40 0.1450 31 31 2.34 0.0097 0.10 0.55 0.0087 0.15 0.40 0.1450 31 31 2.34 0.0097 0.15 0.35 0.0087 0.15 0.40 0.1450 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.55 0.3824 31 31 2.3		2.45	0.0087	0.10	0.35	0.1555	31	31	2.34	0.0097	0.10	0.35	0.5059
0.0087 0.10 0.45 0.3212 31 2.34 0.0097 0.10 0.45 0.0087 0.10 0.55 0.4292 31 31 2.34 0.0097 0.10 0.56 0.0087 0.10 0.56 0.4292 31 31 2.34 0.0097 0.10 0.56 0.0087 0.10 0.66 0.6258 31 31 2.34 0.0097 0.10 0.56 0.0087 0.15 0.36 0.6258 31 31 2.34 0.0097 0.15 0.60 0.0087 0.15 0.45 0.2120 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.45 0.2120 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.45 0.2384 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.46 0.2385 31 31<		2.45	0.0087	0.10	0.40	0.2317	31	31	2.34	0.0097	0.10	0.40	0.6700
0.0087 0.10 0.50 0.4202 31 3.34 0.0097 0.10 0.55 0.0087 0.10 0.55 0.5239 31 2.34 0.0097 0.10 0.55 0.0087 0.10 0.65 0.5239 31 31 2.34 0.0097 0.10 0.65 0.0087 0.15 0.30 0.0538 31 31 2.34 0.0097 0.15 0.30 0.0087 0.15 0.35 0.0224 31 31 2.34 0.0097 0.15 0.30 0.0087 0.15 0.45 0.2120 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.65 0.2827 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.65 0.2826 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.65 0.2827 31 31 2.3		2.45	0.0087	0.10	0.45	0.3212	31	31	2.34	0.0097	0.10	0.45	0.8048
0.0087 0.10 0.55 0.5239 31 31 2.34 0.0097 0.10 0.56 0.0087 0.11 0.66 0.6288 31 31 2.34 0.0097 0.10 0.56 0.0087 0.15 0.36 0.6288 31 31 2.34 0.0097 0.15 0.36 0.0087 0.15 0.40 0.1450 31 31 2.34 0.0097 0.15 0.36 0.0087 0.15 0.45 0.22027 31 31 2.34 0.0097 0.15 0.35 0.0087 0.15 0.55 0.2820 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.65 0.5835 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.65 0.5885 31 31 2.34 0.0097 0.15 0.45 0.0087 0.20 0.45 0.1362 31		2.45	0.0087	0.10	0.50	0.4202	31	31	2.34	0.0097	0.10	0.50	0.8994
0.0087 0.10 0.60 0.6265 31 31 2.34 0.0097 0.10 0.60 0.0087 0.15 0.30 0.0538 31 2.34 0.0097 0.15 0.30 0.0087 0.15 0.30 0.0538 31 2.34 0.0097 0.15 0.30 0.0087 0.15 0.46 0.1450 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.45 0.2120 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.60 0.4830 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.60 0.4830 31 31 2.34 0.0097 0.15 0.40 0.0087 0.20 0.45 0.4885 31 31 2.34 0.0097 0.15 0.45 0.0087 0.20 0.45 0.4885 31 31 2.3		2.45	0.0087	0.10	0.55	0.5239	31	31	2.34	0.0097	0.10	0.55	0.9556
0.0087 0.15 0.36 0.0538 31 31 2.34 0.0097 0.15 0.35 0.0087 0.15 0.35 0.0924 31 31 2.34 0.0097 0.15 0.35 0.0087 0.15 0.45 0.2120 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.45 0.2227 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.50 0.2837 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.60 0.4830 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.66 0.4830 31 31 2.34 0.0097 0.15 0.65 0.0087 0.15 0.65 0.5835 31 31 2.34 0.0097 0.15 0.40 0.0087 0.20 0.45 0.1862 31<		2.45	0.0087	0.10	09.0	0.6265	31	31	2.34	0.0097	0.10	09.0	0.9835
0.0087 0.15 0.35 0.0224 31 3.34 0.0097 0.15 0.46 0.0087 0.15 0.46 0.1450 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.46 0.1202 31 31 2.34 0.0097 0.15 0.40 0.0087 0.15 0.55 0.3844 31 3.34 0.0097 0.15 0.50 0.0087 0.15 0.66 0.5830 31 31 2.34 0.0097 0.15 0.65 0.0087 0.15 0.65 0.5835 31 31 2.34 0.0097 0.15 0.60 0.0087 0.20 0.45 0.1362 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.45 0.1362 31 31 2.34 0.0097 0.15 0.45 0.0087 0.20 0.45 0.1375 31 31 2.3		2.45	0.0087	0.15	0.30	0.0538	31	31	2.34	0.0097	0.15	0.30	0.1615
0.0087 0.15 0.40 0.1450 31 3.34 0.0097 0.15 0.46 0.0087 0.15 0.45 0.2120 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.45 0.2297 31 31 2.34 0.0097 0.15 0.45 0.0087 0.15 0.60 0.4830 31 31 2.34 0.0097 0.15 0.50 0.0087 0.15 0.60 0.4830 31 31 2.34 0.0097 0.15 0.50 0.0087 0.20 0.40 0.0386 31 31 2.34 0.0097 0.15 0.60 0.0087 0.20 0.40 0.0885 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.40 0.0885 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.45 0.1752 31 31<		2.45	0.0087	0.15	0.35	0.0924	31	31	2.34	0.0097	0.15	0.35	0.2892
0.0087 0.15 0.45 0.2120 31 3.34 0.0097 0.15 0.45 0.0087 0.15 0.56 0.2927 31 31 2.34 0.0097 0.15 0.56 0.0087 0.15 0.56 0.2844 31 31 2.34 0.0097 0.15 0.65 0.0087 0.15 0.66 0.4830 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.35 0.40 0.0885 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.40 0.0885 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.45 0.1362 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.45 0.1362 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.50 0.2720 3		2.45	0.0087	0.15	0.40	0.1450	31	31	2.34	0.0097	0.15	0.40	0.4465
0.0087 0.15 0.2927 31 2.34 0.0097 0.15 0.56 0.0087 0.15 0.55 0.3844 31 3.34 0.0097 0.15 0.55 0.0087 0.15 0.66 0.5830 31 3.34 0.0097 0.15 0.65 0.0087 0.15 0.65 0.5835 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.40 0.0085 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.40 0.1962 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.45 0.1362 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.65 0.458 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.45 0.1522 31 31 2.34 0.0097		2.45	0.0087	0.15	0.45	0.2120	31	31	2.34	0.0097	0.15	0.45	0.6108
0.0087 0.15 0.3544 31 2.34 0.0097 0.15 0.56 0.0087 0.15 0.66 0.4836 31 31 2.34 0.0097 0.15 0.66 0.0087 0.15 0.66 0.4836 31 31 2.34 0.0097 0.15 0.66 0.0087 0.20 0.40 0.0885 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.40 0.0885 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.40 0.0885 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.40 0.1975 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.45 0.2752 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.45 0.428 31 31 2.34 </td <td></td> <td>2.45</td> <td>0.0087</td> <td>0.15</td> <td>0.50</td> <td>0.2927</td> <td>31</td> <td>31</td> <td>2.34</td> <td>0.0097</td> <td>0.15</td> <td>0.50</td> <td>0.7560</td>		2.45	0.0087	0.15	0.50	0.2927	31	31	2.34	0.0097	0.15	0.50	0.7560
0.0087 0.15 0.60 0.4880 31 2.34 0.0097 0.15 0.65 0.0087 0.15 0.65 0.5836 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.45 0.6885 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.46 0.1855 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.55 0.2720 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.55 0.2720 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.56 0.2720 31 31 2.34 0.0097 0.20 0.55 0.0087 0.20 0.60 0.3580 31 31 2.34 0.0097 0.20 0.50 0.0087 0.20 0.55 0.40 0.6522 3		2.45	0.0087	0.15	0.55	0.3844	31	31	2.34	0.0097	0.15	0.55	0.8649
0.0087 0.15 0.65 0.5835 31 3.34 0.0097 0.15 0.65 0.0087 0.20 0.35 0.0585 31 31 2.34 0.0097 0.15 0.65 0.0087 0.20 0.40 0.0085 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.45 0.1362 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.55 0.1752 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.55 0.1752 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.65 0.458 31 31 2.34 0.0097 0.20 0.55 0.0087 0.20 0.70 0.652 31 31 2.34 0.0097 0.20 0.40 0.0087 0.25 0.40 0.0525 31 31 <td></td> <td>2.45</td> <td>0.0087</td> <td>0.15</td> <td>09.0</td> <td>0.4830</td> <td>31</td> <td>31</td> <td>2.34</td> <td>0.0097</td> <td>0.15</td> <td>09.0</td> <td>0.9344</td>		2.45	0.0087	0.15	09.0	0.4830	31	31	2.34	0.0097	0.15	09.0	0.9344
0.0087 0.20 0.35 0.0536 31 31 2.34 0.0097 0.20 0.36 0.0087 0.20 0.40 0.0885 31 31 2.34 0.0097 0.20 0.40 0.0087 0.20 0.46 0.0885 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.56 0.1975 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.65 0.4528 31 31 2.34 0.0097 0.20 0.55 0.0087 0.20 0.65 0.4528 31 31 2.34 0.0097 0.20 0.55 0.0087 0.20 0.70 0.552 31 31 2.34 0.0097 0.20 0.55 0.0087 0.25 0.45 0.0552 31 31 2.34 0.0097 0.20 0.40 0.0087 0.25 0.45 0.0552 31 </td <td></td> <td>2.45</td> <td>0.0087</td> <td>0.15</td> <td>0.65</td> <td>0.5835</td> <td>31</td> <td>31</td> <td>2.34</td> <td>0.0097</td> <td>0.15</td> <td>0.65</td> <td>0.9725</td>		2.45	0.0087	0.15	0.65	0.5835	31	31	2.34	0.0097	0.15	0.65	0.9725
0.0087 0.20 0.440 0.0885 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.45 0.1382 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.55 0.1382 31 31 2.34 0.0097 0.20 0.50 0.0087 0.20 0.55 0.2720 31 31 2.34 0.0097 0.20 0.50 0.0087 0.20 0.66 0.3580 31 31 2.34 0.0097 0.20 0.50 0.0087 0.20 0.60 0.3582 31 31 2.34 0.0097 0.20 0.50 0.0087 0.20 0.70 0.5522 31 31 2.34 0.0097 0.20 0.50 0.0087 0.25 0.40 0.0525 31 31 2.34 0.0097 0.25 0.40 0.0087 0.25 0.50 0.1857 31 31		2.45	0.0087	0.20	0.35	0.0536	31	31	2.34	0.0097	0.20	0.35	0.1471
0.0087 0.20 0.45 0.1362 31 3.34 0.0097 0.20 0.45 0.0087 0.20 0.56 0.1975 31 31 2.34 0.0097 0.20 0.45 0.0087 0.20 0.55 0.1975 31 31 2.34 0.0097 0.20 0.55 0.0087 0.20 0.65 0.4528 31 31 2.34 0.0097 0.20 0.55 0.0087 0.20 0.70 0.6528 31 31 2.34 0.0097 0.20 0.70 0.0087 0.25 0.40 0.0525 31 31 2.34 0.0097 0.20 0.70 0.0087 0.25 0.40 0.0525 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.45 0.0287 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.45 0.1857 31 31<		2.45	0.0087	0.20	0.40	0.0885	31	31	2.34	0.0097	0.20	0.40	0.2645
0.0087 0.20 0.4075 31 334 0.0097 0.50 0.55 0.0087 0.20 0.55 0.2720 31 31 2.34 0.0097 0.20 0.55 0.0087 0.20 0.65 0.4528 31 31 2.34 0.0097 0.20 0.65 0.0087 0.20 0.65 0.4528 31 31 2.34 0.0097 0.20 0.65 0.0087 0.25 0.46 0.6532 31 31 2.34 0.0097 0.20 0.65 0.0087 0.25 0.45 0.0847 31 31 2.34 0.0097 0.20 0.70 0.0087 0.25 0.45 0.0847 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.1855 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.1855 31 31 2.34 0.0097 0.25		2.45	0.0087	0.20	0.45	0.1362	31	31	2.34	0.0097	0.20	0.45	0.4126
0.0087 0.20 0.55 0.2720 31 3.34 0.0097 0.20 0.55 0.0087 0.20 0.66 0.3580 31 31 2.34 0.0097 0.20 0.56 0.0087 0.20 0.66 0.3582 31 31 2.34 0.0097 0.20 0.65 0.0087 0.20 0.70 0.5532 31 31 2.34 0.0097 0.20 0.65 0.0087 0.25 0.40 0.0255 31 31 2.34 0.0097 0.25 0.40 0.0087 0.25 0.40 0.0255 31 31 2.34 0.0097 0.25 0.40 0.0087 0.25 0.1287 31 31 2.34 0.0097 0.25 0.55 0.0087 0.25 0.55 0.1855 31 31 2.34 0.0097 0.25 0.50 0.0087 0.25 0.75 0.1439 31 31 2.34<		2.45	0.0087	0.20	0.50	0.1975	31	31	2.34	0.0097	0.20	0.50	0.5705
0.0087 0.20 0.4580 31 31 234 0.0097 0.20 0.65 0.0087 0.20 0.65 0.4528 31 31 2.34 0.0097 0.20 0.65 0.0087 0.20 0.70 0.6522 31 31 2.34 0.0097 0.20 0.70 0.0087 0.25 0.40 0.6525 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.45 0.0847 31 3.34 0.0097 0.25 0.45 0.0087 0.25 0.50 0.1887 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.50 0.1885 31 3.34 0.0097 0.25 0.50 0.0087 0.25 0.60 0.2589 31 31 2.34 0.0097 0.25 0.50 0.0087 0.25 0.70 0.4349 31 31 2.34 0.0097		2.45	0.0087	0.20	0.55	0.2720	31	31	2.34	0.0097	0.20	0.55	0.7151
0.0087 0.20 0.65 0.4528 31 31 2.34 0.0097 0.20 0.65 0.0087 0.20 0.70 0.5532 31 31 2.34 0.0097 0.20 0.70 0.0087 0.25 0.46 0.0847 31 31 2.34 0.0097 0.25 0.40 0.0087 0.25 0.45 0.0847 31 31 2.34 0.0097 0.25 0.40 0.0087 0.25 0.50 0.1287 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.55 0.1887 31 3.34 0.0097 0.25 0.50 0.0087 0.25 0.60 0.1389 31 31 2.34 0.0097 0.25 0.55 0.0087 0.25 0.65 0.3391 31 3.34 0.0097 0.25 0.65 0.0087 0.25 0.75 0.5449 31 31 2.3		2.45	0.0087	0.20	09.0	0.3580	31	31	2.34	0.0097	0.20	0.60	0.8309
0.0087 0.20 0.70 0.5532 31 31 2.34 0.0097 0.20 0.70 0.0087 0.25 0.44 0.0552 31 31 2.34 0.0097 0.25 0.40 0.0087 0.25 0.45 0.0487 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.50 0.1287 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.55 0.1885 31 31 2.34 0.0097 0.25 0.50 0.0087 0.25 0.75 0.1885 31 31 2.34 0.0097 0.25 0.55 0.0087 0.25 0.76 0.449 31 31 2.34 0.0097 0.25 0.75 0.0087 0.25 0.77 0.4449 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.0568 31 </td <td></td> <td>2.45</td> <td>0.0087</td> <td>0.20</td> <td>0.65</td> <td>0.4528</td> <td>31</td> <td>31</td> <td>2.34</td> <td>0.0097</td> <td>0.20</td> <td>0.65</td> <td>0.9125</td>		2.45	0.0087	0.20	0.65	0.4528	31	31	2.34	0.0097	0.20	0.65	0.9125
0.0087 0.25 0.40 0.0525 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.45 0.0847 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.56 0.1887 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.185 31 31 2.34 0.0097 0.25 0.50 0.0087 0.25 0.16 0.258 31 31 2.34 0.0097 0.25 0.55 0.0087 0.25 0.70 0.4349 31 3.34 0.0097 0.25 0.75 0.0087 0.25 0.75 0.5415 31 3.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.80 0.80 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.50 0.0809 31 31 2.34 <td></td> <td>2.45</td> <td>0.0087</td> <td>0.20</td> <td>0.70</td> <td>0.5532</td> <td>31</td> <td>31</td> <td>2.34</td> <td>0.0097</td> <td>0.20</td> <td>0.70</td> <td>0.9621</td>		2.45	0.0087	0.20	0.70	0.5532	31	31	2.34	0.0097	0.20	0.70	0.9621
0.0087 0.25 0.45 0.0847 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.60 0.1857 31 31 2.34 0.0097 0.25 0.45 0.0087 0.25 0.60 0.2558 31 31 2.34 0.0097 0.25 0.50 0.0087 0.25 0.60 0.2558 31 31 2.34 0.0097 0.25 0.60 0.0087 0.25 0.70 0.4349 31 31 2.34 0.0097 0.25 0.60 0.0087 0.25 0.70 0.4439 31 31 2.34 0.0097 0.25 0.70 0.0087 0.35 0.75 0.5415 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.45 0.0087 0.30 0.50 0.0809 31<		2.45	0.0087	0.25	0.40	0.0525	31	31	2.34	0.0097	0.25	0.40	0.1390
0.0087 0.25 0.50 0.1287 31 31 2.34 0.0097 0.25 0.50 0.0087 0.25 0.55 0.1288 31 31 2.34 0.0097 0.25 0.55 0.0087 0.25 0.66 0.3391 31 3.34 0.0097 0.25 0.65 0.0087 0.25 0.70 0.4349 31 3.34 0.0097 0.25 0.65 0.0087 0.25 0.75 0.5449 31 3.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.0508 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.0808 31 31 2.34 0.0097 0.30 0.45 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.50 0.0087 0.30 0.55 0.1221 31 31 2.34 0		2.45	0.0087	0.25	0.45	0.0847	31	31	2.34	0.0097	0.25	0.45	0.2459
0.0087 0.25 0.1855 31 31 2.34 0.0097 0.25 0.56 0.0087 0.25 0.66 0.25391 31 31 2.34 0.0097 0.25 0.56 0.0087 0.25 0.76 0.4349 31 31 2.34 0.0097 0.25 0.75 0.0087 0.25 0.76 0.4349 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.5648 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.0568 31 31 2.34 0.0097 0.35 0.45 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.45 0.0087 0.30 0.55 0.1221 31 31 2.34 0.0097 0.30 0.50		2.45	0.0087	0.25	0.50	0.1287	31	31	2.34	0.0097	0.25	0.50	0.3809
0.0087 0.25 0.60 0.2558 31 31 2.34 0.0097 0.25 0.66 0.0087 0.25 0.65 0.65 31 31 2.34 0.0097 0.25 0.65 0.0087 0.25 0.70 0.4349 31 31 2.34 0.0097 0.25 0.70 0.0087 0.25 0.75 0.5415 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.45 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.50 0.0087 0.30 0.55 0.1221 31 2.34 0.0097 0.30 0.55		2.45	0.0087	0.25	0.55	0.1855	31	31	2.34	0.0097	0.25	0.55	0.5302
0.0087 0.25 0.65 0.3391 31 2.34 0.0097 0.25 0.65 0.0087 0.25 0.77 0.4349 31 31 2.34 0.0097 0.25 0.70 0.0087 0.26 0.75 0.5415 31 31 2.34 0.0097 0.25 0.70 0.0087 0.30 0.45 0.0508 31 31 2.34 0.0097 0.35 0.75 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.45 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.50 0.0087 0.30 0.55 0.1221 31 31 2.34 0.0097 0.30 0.55		2.45	0.0087	0.25	09.0	0.2558	31	31	2.34	0.0097	0.25	09.0	0.6769
0.0087 0.25 0.70 0.4349 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.0568 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.0568 31 31 2.34 0.0097 0.35 0.45 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.50 0.0087 0.30 0.55 0.1221 31 31 2.34 0.0097 0.30 0.50		2.45	0.0087	0.52	0.65	0.3391	31	31	2.34	0.0097	0.25	0.65	0.8043
0.0087 0.25 0.75 0.5415 31 31 2.34 0.0097 0.25 0.75 0.0087 0.30 0.45 0.0508 31 31 2.34 0.0097 0.30 0.45 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.50 0.0087 0.30 0.55 0.1221 31 31 2.34 0.0097 0.30 0.55		2.45	0.0087	0.25	0.70	0.4349	31	31	2.34	0.0097	0.25	0.70	0.8995
0.0087 0.30 0.45 0.0568 31 31 2.34 0.0097 0.30 0.45 0.0087 0.30 0.50 0.0809 31 31 2.34 0.0097 0.30 0.50 0.0087 0.30 31 31 2.34 0.0097 0.30 0.55		2.45	0.0087	0.52	0.72	0.5415	31	31	2.34	0.0097	0.25	0.72	0.9584
0.0087 0.30 0.50 0.0209 31 3.1 2.34 0.0097 0.30 0.50 0.0087 0.30 3.5 0.1221 3.1 3.1 2.34 0.0097 0.30 0.55		2.45	0.0087	0.30	0.45	0.0508	31	31	2.34	0.0097	0.30	0.45	0.1285
0.00 0.00 1.000 1.00 1.00 1.00 1.00 1.0		2.45	0.0087	0.30	0.50	0.0809	31	31	2.34	0.0097	0.30	0.50	0.2242
		OF - 7	0.0001	0.00	0.00	0.1221	10	7.0	F.O. 7	0.0031	00:0	0.00	0.000

Table B.12: continue on next page

Table B.12: continue on next page

s $page$	power	0.5004	0.6561	0.1953	0.2074	0.3346	0.4906	0.1098	0.2019	0.1031	0.2524	0.4431	0.7889	0.8942	0.9543	0.1990	0.3533	0.5275	0.6911	0.8214	0.9097	0.9853	0.1705	0.3029	0.4621	0.6238	0.7641	0.8689	0.9368	0.9745	0.1520	0.2692	0.4140	0.7170	0.8365	0.9199	0.9680	0.1370	0.2417	0.3783	0.5345	0.6897	0.8210	0.9135	0.1244	0.2236
reviou	p2	09.0	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00 m	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	 	0.55	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50
from p	p1	0:30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.00	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
-continued from previous page	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091
	$\mathbf{z}_{\mathbf{p}}$	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.50 0.00 0.00	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	0.0 0.0 70 70	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35
B.12:	$^{\rm n_2}$	31	31	31	31	31	31	31	31	32	3.5	32	35	32	32	32	32	32	32	35	25.0	32	32	35	32	32	32	32	32	35	32	32	200	32	32	32	32	32	32	32	32	32	3.5	32	32	32
Table	$_{1}^{n}$	31	31	31	31	31	31	31	31	32	3.5	22.0	3 2	32	32	32	32	32	32	3.5	200	3 2	32	32	32	32	32	32	32	32	32	22.0	7 0 0	3 2	32	32	32	32	32	32	32	32	3.5	32	32	32
	power	0.1766	0.2460	0.3319	0.0776	0.1180	0.1731	0.0476	0.0763	0.0180	0.0535	0.1149	0.3071	0.4235	0.5417	0.0627	0.1153	0.1861	0.2732	0.3730	0.4799	0.5874	0.0646	0.1104	0.1720	0.2490	0.3388	0.4370	0.5381	0.6367	0.0637	0.1048	0.1599	0.3095	0.3995	0.4960	0.5959	0.0614	0.0984	0.1474	0.2089	0.2832	0.3702	0.4696	0.0577	0.0906
	p2	09.0	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.70	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.40	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50
	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.00	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
	pvalue	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0036	0.0036	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0030	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096
	$\mathbf{z}_{\mathbf{p}}$	2.45	2.45	2.45 45	2.45	2.45	2.45	2.45	2.45	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	0.07	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	0.00	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37
	$^{\mathrm{n}_{2}}$	12	12	12	12	12	12	12	12	13	13	1 T	13	13	13	13	13	13	13	13	1.0	2 5	13	13	13	13	13	13	13	13	13	ν . Σ :	13	13.	13	13	13	13	13	13	13	13	13	13 13	13	13
	$^{\mathrm{n}_{1}}$	12	12	12	12	12	12	12	12	13	13	1 T	13	13	13	13	13	13	13	13	13 13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13

s $page$	power	0.3593	0.5195	0.6808	0.8175	0.1183	0.3541	0.5166	0.1172	0.2162	0.1105	0.2670	0.4637	0.6556	0.8076	0.9071	0.9615	0.2102	0.5709	0.0120	0 8387	0.0001	0.9670	0.9883	0.1802	0.3188	0.4828	0.6457	0.7834	0.8836	0.9463	0.9796	0.1608	0.2835	0.4341	0.5951	0.8553	0.9326	0.9747	0.1448	0.2554	0.3989	0.5604	0.7164	0.8430	0.9278	0.1328	
reviou	P2	0.55	0.60	0.65	0.70	0.00	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.70	0.00	0.00	24.0	0 C	0.0	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.32	0.40	0.45	0.00	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.40	0.45	
$from \ p$	p1	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.40	0.40	0.05	0.05	0.02	0.02	0.05	0.05	0.03	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
-continued from previous page	pvalue	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.001	0.00.0	0.003	0.003	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	
- 1	$\mathbf{z}_{\mathbf{p}}$	2.35	2.35	2.35	2.35	2.30 2.35 3.55	20.00	2.35	2.35	2.35	2.33	2.33	2.33	2.33	2.33	2.33	2.33	0.00	0.00	0.00	2.00	0.00	2.6	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	0.00	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	
B.12:	$^{\mathrm{n}_{2}}$	32	32	32	27.5	3.5	2 6	32	32	32	33	33	33	33	33	223	200	ç,	33	3 2	3 2	33	2 6	3 8	33	33	33	33	33	33	33	33	33	89	200	33	3 8	33	33	33	33	33	33	33	33	22.0	33	
Table	$^{\mathrm{n}_{1}}$	32	32	32	3.5	25	3.00	328	32	32	33	33	33	33	22	33	00 00	00	33	200	2 6	33	2 6	33	33	33	33	33	33	33	33	33	33	33	200	33	333	33	33	33	33	33	33	33	33	22.0	333	
	power	0.1349	0.1929	0.2668	0.3588	0.0552	0.000	0.1865	0.0501	0.0809	0.0236	0.0675	0.1401	0.2374	0.3506	0.4696	0.5850	0.0799	0.1300	0.2011	0.2870	0.0810	0.5910	0.0886	0.0692	0.1144	0.1732	0.2454	0.3304	0.4262	0.5296	0.6355	0.0615	0.0987	0.1490	0.2141	0.3906	0.4980	0.6113	0.0541	0.0871	0.1336	0.1963	0.2768	0.3745	0.4860	0.0490	
	P 2	0.55	09.0	0.65	0.70	0.50	09.0	0.65	0.55	09.0	0.15	0.20	0.52	0.30	0.35	0.40	0.45	0.40	0.00	90.0	2.0	20.0	0.0 2.0 7.0	09.0	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.32	0.40	0.45	0.00	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	
	p1	0.30	0.30	0.30	0.30	0.35	30.0	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	
	pvalue	0.0096	0.0096	0.0096	0.0096	0.0096	0600.0	0.0096	0.0096	0.0096	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0003	0.0083	0.0000	0.0063	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	
	$\mathbf{z}_{\mathbf{p}}$	2.37	2.37	2.37	2.37	5.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.07	0.0	0.07	2 6	2 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.3	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	0.07	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	
	$^{\mathrm{n}_{2}}$	13	13	13	13	13	2 5	13	13	13	14	14	14	14	14	4.	7 -	# F	7 -		7 7	17	1 4	4 -	14	14	14	14	14	14	14	14	14	4.	4.	7 -	1 1	14	14	14	14	14	14	14	14	4.	14	
	$^{\mathrm{n}_{1}}$	13	13	13	13	13	3 5	13	13	13	14	14	14	14	14	14	41	1 -	7 -	7 -	17	17	14	1.1	14	14	14	14	14	14	14	14	14	14	4.	7 -	14	14	14	14	14	14	14	14	14	14	14	

Table B.12: continue on next page

Table B.12: continue on next page

s $page$	power	0.2393	0.3831	0.5487	0.8403	0.1284	0.2350	0.3797	0.5466	0.1283	0.1170	0.2764	0.4699	0.6555	0.8037	0.9035	0.2002	0.3547	0.5333	0.7025	0.8344	0.9202	0.9672	0.9888	0.1670	0.3046	0.4710	0.7814	0.8857	0.9496	0.9816	0.1506	0.2729	0.4275	0.0959 0.7455	0.8612	0.9348	0.9742	0.1384	0.2524	0.4013	0.5648	0.7166	0.8370	0.9698
reviou	p2	0.50	0.55	0.60	0.70	0.50	0.55	0.60	0.65	0.00	0.15	0.20	0.25	0.30	0.35	0.40 740	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.30	 1	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.00	0.00	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.00	0.75
from p	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.05	0.02	0.02	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.50	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.73	0.25
-continued from previous page	pvalue	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0094	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0094	0.003	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084
	$\mathbf{z}_{\mathbf{p}}$	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	0.00	2.43	2.43	2.43	2.43	2.43	24.2 24.2	2.43	2.43	2.43	2.43	2.43	2.43	2.43	2.43	2.43	54.2	4. C	2.43	2.43	2.43	2.43	2.43	2.43	2.43	04.7 04.7 04.7	0.43	2.43	2.43	2.43	2.43	2.43	2.43	2.43	04.7	2.43
B.12:	$^{\rm n_2}$	33	33	23	33	33	33	33	233	22	34	34	34	34	24.	5 7 7 7	2 65	34	34	34	34	34	34	34	24.	4,0	7 0	34	34	34	34	34	34	34	5 7 7 7	2 2	34	34	34	34	34	34	34	0 0 7	34
Table	$^{\mathrm{n}_{1}}$	33	33	2 23	33	33	33	800	200	2 00	34	34	34	34	34	50 C	3 4	34	34	34	34	34	34	34	34	45	2 0	34	34	34	34	34	34	42.	27	8 4	34	34	34	34	34	34	45.	0 c	34
	power	0.0803	0.1258	0.1884	0.3702	0.0463	0.0773	0.1229	0.1863	0.0454	0.0299	0.0828	0.1665	0.2746	0.3960	0.5192	0.0852	0.1493	0.2305	0.3252	0.4287	0.5358	0.6412	0.7394	0.0779	0.1284	0.1345	0.3706	0.4764	0.5876	0.6968	0.0686	0.1114	0.1699	0.2459	0.5555	0.5636	0.6796	0.0614	0.1009	0.1570	0.2321	0.3262	0.4505	0.6755
	p2	0.50	0.55	0.60	0.70	0.50	0.55	0.60	0.65	0.00	0.15	0.20	0.25	0.30	0.35	0.40	0.25	0:30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40 140 140	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.00	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.00	0.75
	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.05	0.02	0.02	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.To	 	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.70	0.25
	pvalue	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0000	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0000	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088
	$\mathbf{z}_{\mathbf{p}}$	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	0.07	2.33	2.33	2.33	2.33	2.33	2.53	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	200	2.33	2.33	2.33	2.33	2.33	2.33	2.33	0.70	9.6	2.33	2.33	2.33	2.33	2.33	2.33	2.33	20.00	2.33
	$^{\mathrm{n}_{2}}$	14	14	4 4	14	14	14	14	4 -	4 -	12	15	15	15	. I.	ο F	2 12	12	15	15	15	12	15	15	13.		- F	122	15	15	15	15	13	15		- F	12	15	15	15	15	15	15	C 1	12
	$^{\mathrm{n}_{1}}$	14	14	14	14	14	14	14	14	14	15	15	15	15	15	. T	2.5	15	15	15	15	15	15	15	15.		- F	15	15	15	15	15	12	15		- F	12	15	15	15	15	15	15	C 1	12

							Table	B.12:		tinued	from	-continued from previous page	s page
1 u	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	\mathbf{p}_1	P2	power	$^{\rm n_1}$	n ₂	$\mathbf{z}_{\mathbf{p}}$	pvalue	\mathbf{p}_1	P2	power
15	15	2.33	0.0088	0.30	0.45	0.0577	34	34	2.43	0.0084	0.30	0.45	0.1313
15	15	2.33	0.0088	0.30	0.50	0.0963	34	34	2.43	0.0084	0.30	0.50	0.2386
15	12	2.33	0.0088	0.30	0.55	0.1522	34	34	2.43	0.0084	0.30	0.55	0.3784
15	15	2.33	0.0088	0.30	0.60	0.2275	4.	34	2.43	0.0084	0.30	0.60	0.5354
υ. Έ	υ. υ.π	2.33	0.0088	0.30	0.65	0.3223	χ, ς 4, ς	χς 4. γ	2.43	0.0084	0.30	0.00	0.6906
5 E		0.00	0.0008	0.00	0.70	0.4556	, c	7 8	04.4 04.4	0.0094	0.50	0.70	0.0240
12	12	2.33	0.0088	0.35	0.55	0.0953	34	34	2.43	0.0084	0.35	0.55	0.2222
15	15	2.33	0.0088	0.35	09.0	0.1511	34	34	2.43	0.0084	0.35	09.0	0.3568
15	15	2.33	0.0088	0.35	0.65	0.2266	34	34	2.43	0.0084	0.35	0.65	0.5197
15	15	2.33	0.0088	0.40	0.55	0.0566	34	34	2.43	0.0084	0.40	0.55	0.1148
15	12	2.33	0.0088	0.40	0.60	0.0952	34	34	2.43	0.0084	0.40	0.60	0.2131
16	16	2.29	0.0094	0.05	0.15	0.0369	က်		2.40	0.0089	0.05	0.15	0.1243
16	16	2.29	0.0094	0.05	0.20	0.0989			2.40	0.0089	0.05	0.20	0.2899
16	16	67.7	0.0094	0.00 0.00	0.75	0.1934	ა ა ი ო	8 8 1	2.40	0.0089	0.00	0.25	0.4879
19	19	00.00	0.0034	0.0	0.50	0.3311	່ວິດ	3 %	04.0	0.0080	0.0	0.35	0.0300
16	16	2.23	0.0094	0.02	0.40	0.5651	32.0	32.53	2.40	0.0089	0.05	0.40	0.9149
16	16	2.29	0.0094	0.05	0.45	0.6798	35	35	2.40	0.0089	0.05	0.45	0.9662
16	16	2.29	0.0094	0.10	0.25	0.0970	35	35	2.40	0.0089	0.10	0.25	0.2099
16	16	2.29	0.0094	0.10	0.30	0.1678	35	35	2.40	0.0089	0.10	0.30	0.3713
16	16	2.29	0.0094	0.10	0.35	0.2564	35	35	2.40	0.0089	0.10	0.35	0.5546
16	16	2.29	0.0094	0.10	0.40	0.3586	35	35	2.40	0.0089	0.10	0.40	0.7234
16	16	2.29	0.0094	0.10	0.45	0.4690	32	32	2.40	0.0089	0.10	0.45	0.8508
16	16	2.29	0.0094	0.10	0.50	0.5814	32	32	2.40	0.0089	0.10		0.9307
16	16	2.29	0.0094	0.10	0.55	0.6891	3.55 1.55		2.40	0.0089	0.10		0.9727
01	10	67.7	0.0094	0.10	00.0	0.7856	S C	S t	04.7	0.0089	0.10	0.00	0.9912
16	16	67.76	0.0094	0.15	0.30	0.0866	00 c 10 m	0 0 1	07.40	0.0089	0.T5	0.30	0.1767
01	01	67.0	0.0094	 	0.00	0.1429	0 c	o c	04.0	0.0089	0.1.0		0.3200
19	1 1 1	0000	0.0034	0.0	0.40	0.2100	5 m	5 K	2.40	0.0080	0.10		0.6600
19	19	2.29	0.0094	0.15	0.50	0.4129	, c.	3 6	2.40	0.0089	0.15		0.8006
16	16	2.29	0.0094	0.15	0.55	0.5278	35	35	2.40	0.0089	0.15		0.8997
16	16	2.29	0.0094	0.15	09.0	0.6441	35	35	2.40	0.0089	0.15		0.9576
16	16	2.29	0.0094	0.15	0.65	0.7524	35	35	2.40	0.0089	0.15	0.65	0.9852
16	16	2.29	0.0094	0.20	0.35	0.0763	3.55 1.55		2.40	0.0089	0.20	0.35	0.1594
16	91	67.7	0.0094	0.20	0.40	0.1256	ა ი ო	о 2 1	04.40	0.0089	0.20	0.40	0.2878
19	19	2.20	0.003	0.20	0.50	0.2811	. v.	3 6	2.40	0.0089	0.20	0.50	0.6175
16	16	2.29	0.0094	0.20	0.55	0.3868	32.	35.	2.40	0.0089	0.20	0.55	0.7667
16	16	2.29	0.0094	0.20	09.0	0.5048	35	35	2.40	0.0089	0.20	0.60	0.8763
16	16	2.29	0.0094	0.20	0.65	0.6262	35	35	2.40	0.0089	0.20	0.65	0.9436
16	16	2.29	0.0094	0.20	0.70	0.7402	35	35	2.40	0.0089	0.20	0.70	0.9784
16	16	2.29	0.0094	0.25	0.40	0.0701	35	35	2.40	0.0089	0.25	0.40	0.1472
16	16	2.29	0.0094	0.25	0.45	0.1171	32	32	2.40	0.0089	0.25	0.45	0.2678
16	16	2.29	0.0094	0.25	0.20	0.1837	35	35	2.40	0.0089	0.25	0.50	0.4220
16	16	2.29	0.0094	0.25	0.52	0.2713	လ လ က	ic i	2.40	0.0089	0.25	0.55	0.5868
16	16	2.23	0.0094	0.70	0.00	0.3778	ი ი ო	o n	04.40	0.0089	0.20	0.00	0.7358
16	16	2.29	0.0094	0.25	0.70	0.6208	35	32.5	2.40	0.0089	0.25	0.70	0.9302
								E	:				

Table B.12: continue on next page

Table B.12: continue on next page

1	ı																																																		
s page	power	0.9744	0.1400	0.2520	0.3952	0.5535	0.7079	0.8388	0.1300	0.2320	0.3702	0.5364	0.1192	0.2213	0.1330	0.3109	0.5232	0.7162	0.8553	0.9369	0.9766	0.2436	0.4196	0.6025	0.7591	0.8722	0.9418	0.9778	0.9932	0.2026	0.3504	0.5197	0.6843	0.8196	0.9124	0.9645	0.9881	0.1728	0.3056	0.4702	0.6405	0.7863	0.8898	0.9512	0.9821	0.1571	0.2835	0.4422	0.0077	0.8656	,
reviou	p ₂	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.20	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.20	0.22	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.65	;
rom p	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	!
Table B.12: -continued from previous page	pvalue	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	
-con	$\mathbf{z}_{\mathbf{p}}$	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	85.0	2.38	1
B.12.	$^{\mathrm{n}_{2}}$	35	35	32	35	32	35	32	32	35	35	35	35	35	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	900	36)
Table	$^{\rm n_1}$	35	35	32	33.0	32	35	32	32	35	35	35	35	35	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	200	36)
	power	0.7373	0.0681	0.1150	0.1817	0.2693	0.3759	0.4960	0.0686	0.1156	0.1820	0.2693	0.0695	0.1161	0.0444	0.1156	0.2203	0.3466	0.4798	0.6072	0.7197	0.1088	0.1861	0.2817	0.3904	0.5054	0.6191	0.7237	0.8127	0.0950	0.1566	0.2363	0.3322	0.4396	0.5512	0.6592	0.7565	0.0826	0.1352	0.2052	0.2917	0.3911	0.4983	0.6076	0.7135	0.0730	0.1190	0.1810	0.2592	0.3527	,
	p2	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.20	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.32	0.40	0.45	0.50	0.22	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.60)
	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.32	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.75	0.25	
	pvalue	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0039	0.0099	2
	$\mathbf{z}_{\mathbf{p}}$	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.45	2.45	2.42	2.42	2.45	2.45	2.42	2.42	2.45	2.42	2.45	2.42	2.45	2.45	2.42	2.42	2.42	2.45	2.45	2.42	2.42	27.7	2.42	ļ
	$^{\mathrm{n}_{2}}$	16	16	16	16	16	16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	1 -	17	
	$^{\rm n_1}$	16	16	16	16	16	16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	1 -	17	

17 1.7 2.42 0.0099 0.25 0.77 0.6764 36 36 2.38 0.0094 0.25 0.77 0.6967 36 2.38 0.0094 0.25 0.77 0.6967 36 36 2.38 0.0094 0.30 0.69 0.1051 36 2.38 0.0094 0.30 0.69 0.1051 36 2.38 0.0094 0.30 0.69 0.1051 36 2.38 0.0094 0.30 0.69 0.1051 36 2.38 0.0094 0.30 0.60 0.1051 36 2.38 0.0094 0.30 0.60 0.1051 36 2.38 0.0094 0.30 0.60 0.1051 36 2.38 0.0094 0.30 0.60 0.1051 36 2.38 0.0094 0.30 0.60 0.1051 36 2.38 0.0094 0.30 0.60 0.1051 36 2.38 0.0094 0.30 0.60 0.1051 38 2.38 0.0094 0.30 <t< th=""><th>n₁</th><th>$^{ m n_2}$ $^{ m z_p}$</th><th></th><th>pvalue</th><th>\mathbf{p}_1</th><th>p2</th><th>power</th><th>$_{1}^{n}$</th><th>$_{1}^{2}$</th><th>z_p</th><th>pvalue</th><th>p1</th><th>P2</th><th>power</th></t<>	n ₁	$^{ m n_2}$ $^{ m z_p}$		pvalue	\mathbf{p}_1	p 2	power	$_{1}^{n}$	$_{1}^{2}$	z _p	pvalue	p1	P2	power
17 2.42 0.0099 0.25 0.75 0.0647 36 2.63 0.0094 0.25 0.75 17 2.42 0.0099 0.25 0.75 0.0647 36 2.63 0.0094 0.30 0.45 0.1611 36 2.88 0.0094 0.30 0.45 0.1611 36 2.88 0.0094 0.30 0.65 0.2552 36 2.88 0.0094 0.30 0.65 0.1611 36 2.88 0.0094 0.30 0.65 0.1611 36 2.88 0.0094 0.30 0.65 0.1611 36 2.88 0.0094 0.30 0.65 0.1611 36 2.88 0.0094 0.30 0.65 0.0199 0.0099 0.35 0.65 0.0199 36 0.258 0.0094 0.30 0.05 0.0099 0.0099 0.35 0.052 0.0099 0.0099 0.035 0.0644 38 2.38 0.0094 0.30 0.0099 0.0099 0.0099 0.0		2		660	0.25	0.70	0.5764	36	36	2.38	0.0094	0.25	0.70	0.9391
17 2.42 0.0099 0.30 0.54 0.0647 36 2.38 0.0094 0.30 0.55 17 2.42 0.0099 0.30 0.55 0.1611 36 36 2.38 0.0094 0.30 0.55 17 2.42 0.0099 0.30 0.55 0.1611 36 36 2.38 0.0094 0.30 0.55 17 2.42 0.0099 0.30 0.55 0.1611 36 2.38 0.0094 0.30 0.55 17 2.42 0.0099 0.35 0.56 0.0244 36 2.38 0.0094 0.30 0.55 17 2.42 0.0099 0.35 0.56 0.2621 36 2.38 0.0094 0.30 0.55 17 2.42 0.0099 0.35 0.56 0.2621 36 2.38 0.0094 0.35 0.56 18 2.41 0.0099 0.35 0.52 0.2621 0.39 <td></td> <td></td> <td>_</td> <td>660</td> <td>0.25</td> <td>0.75</td> <td>0.6967</td> <td>36</td> <td>36</td> <td>2.38</td> <td>0.0094</td> <td>0.25</td> <td>0.75</td> <td>0.9788</td>			_	660	0.25	0.75	0.6967	36	36	2.38	0.0094	0.25	0.75	0.9788
17 2.42 0.0099 0.30 0.30 0.1051 36 36 2.38 0.0094 0.30 0.30 0.1051 36 36 2.38 0.0094 0.30 0.65 0.2852 36 2.38 0.0094 0.30 0.66 0.2852 36 2.38 0.0094 0.30 0.66 0.2852 36 2.38 0.0094 0.30 0.66 0.2852 36 2.38 0.0094 0.30 0.66 0.2852 36 2.38 0.0094 0.30 0.66 0.2852 36 2.38 0.0094 0.30 0.66 0.0094 0.36 0.285 0.69 0.39 0.0094 0.36 0.285 0.69 0.38 0.0094 0.30 0.66 0.0094 0.36 0.39 0.0094 0.36 0.0094 0.36 0.36 0.285 0.0094 0.39 0.0094 0.36 0.36 0.38 0.0094 0.39 0.0094 0.39 0.0094 0.39 0.0094 0.39				660	0.30	0.45	0.0647	36	36	2.38	0.0094	0.30	0.45	0.1487
17 2.42 0.0099 0.32 0.025 0.42 0.0094 0.32 0.42 0.0094 0.32 0.42 0.0094 0.32 0.42 0.0099 0.32 0.42 0.0099 0.32 0.55 0.0247 36 36 2.38 0.0094 0.30 0.65 0.0247 36 36 2.38 0.0094 0.30 0.65 0.0247 36 36 2.38 0.0094 0.30 0.65 0.0247 36 36 2.38 0.0094 0.30 0.65 0.024 0.36 0.0094 0.00 <td></td> <td></td> <td></td> <td>660</td> <td>0.30</td> <td>0.50</td> <td>0.1051</td> <td>30</td> <td>30</td> <td>2.50 0.50 0.50</td> <td>0.0094</td> <td>0.30</td> <td>0.00</td> <td>0.2052</td>				660	0.30	0.50	0.1051	30	30	2.50 0.50 0.50	0.0094	0.30	0.00	0.2052
17 2.42 0.0099 0.20 0.050 0.253 3 2.38 0.0094 0.30 0.009 0.230 0.009 0.230 0.009 0.230 0.009 0.230 0.009 0.009 0.35 0.059 0.009 <td></td> <td></td> <td></td> <td>800</td> <td>000</td> <td>0.00</td> <td>0.1011</td> <td>00</td> <td>00</td> <td>00.0</td> <td>0.0094</td> <td>0.00</td> <td>0.00</td> <td>0.4110</td>				800	000	0.00	0.1011	00	00	00.0	0.0094	0.00	0.00	0.4110
17 2.42 0.0099 0.50 0.5220 3 2.38 0.0094 0.30 0.057 17 2.42 0.0099 0.35 0.56 0.0244 36 2.38 0.0094 0.35 0.05 0.044 36 2.38 0.0094 0.35 0.06 0.0244 36 2.38 0.0094 0.35 0.05 0.0244 36 2.38 0.0094 0.35 0.05 0.0244 36 2.38 0.0094 0.35 0.05 0.0094 0.05 0.0094 0.00 0.0099 0.0099 0.00 0.00 0.0090 38 2.38 0.0094 0.00 0.0090 0.00 0.0090 0.00 0.0090				660	0.30	0.00	0.2352	000	000	0.0	0.0094	0.50	0.00	0.57.23
17 2.42 0.00999 0.70 0.74429 36 2.38 0.00944 0.35 0.55 17 2.42 0.00999 0.35 0.56 0.00944 36 2.38 0.00944 0.35 0.65 17 2.42 0.00999 0.35 0.65 0.02461 36 2.38 0.00944 0.35 0.65 17 2.42 0.00999 0.40 0.056 0.0261 36 2.38 0.00944 0.35 0.65 18 2.41 0.0099 0.40 0.60 0.0902 36 2.38 0.0094 0.35 0.65 18 2.41 0.0089 0.40 0.60 0.0922 36 2.38 0.0094 0.35 0.65 18 2.41 0.0089 0.40 0.097 37 2.35 0.0099 0.01 0.075 0.078 37 2.35 0.0099 0.01 0.007 0.018 37 37 2.35 0.0099		N C		660	0.30	0.00	0.3297	30	200	2.50 2.50 2.50 2.50	0.0094	0.30	0.00	0.7205
17 2.42 0.0099 0.35 0.034 36 36 2.38 0.0044 0.35 0.56 17 2.42 0.0099 0.35 0.05 0.0244 36 38 2.38 0.0094 0.35 0.06 0.05 0.0				660	0.00	0.70	0.4440	36	00	00.00	0.0094	0.00	0.70	0.000
17 2.42 0.0099 0.35 0.66 0.1400 36 2.38 0.0094 0.35 0.66 0.0094 0.35 0.66 0.0094 0.009 0.009 0.035 0.65 0.024 36 2.38 0.0094 0.00				000	9.0	0.0	0.0012	98	9 %	3000	0.0034	0.0	0.0	0.2497
17 2.42 0.0099 0.35 0.2261 36 2.38 0.0094 0.35 0.65 0.2261 36 2.38 0.0094 0.35 0.65 17 2.42 0.0099 0.40 0.55 0.0152 36 2.38 0.0094 0.40 0.65 18 2.41 0.0083 0.05 0.13 0.1372 37 2.35 0.0098 0.05 0.15 0.1372 37 2.35 0.0098 0.05 0.15 0.1372 37 2.35 0.0098 0.05 0.05 0.10 0.0098 0.05 0.0098 0.05				660	0.35	0.60	0.1490	36	36	2.38	0.0094	0.35	0.60	0.3857
17 2.42 0.00099 0.40 0.55 0.0525 36 36 2.38 0.00044 0.40 0.55 18 2.44 0.0089 0.40 0.60 0.0002 36 36 38 0.0099 0.00 0.00 0.0008 0.00				660	0.35	0.65	0.2261	36	30	2.38	0.0094	0.35	0.65	0.5554
17 2.42 0.00099 0.40 0.60 0.0902 36 2.38 0.00094 0.40 0.60 0.0907 37 37 2.35 0.00094 0.40 0.60 18 2.41 0.0083 0.05 0.15 0.0177 37 2.35 0.0098 0.05 0.20 18 2.41 0.0083 0.05 0.25 0.1372 37 2.35 0.0098 0.05 0.05 18 2.41 0.0083 0.05 0.25 0.1372 37 2.35 0.0098 0.05 0.05 18 2.41 0.0083 0.10 0.2594 37 37 2.35 0.0098 0.05 0.05 18 2.41 0.0083 0.10 0.40 0.482 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.40 0.482 37 37 2.35 0.0098 0.10 0.25		1 (2)		660	0.40	0.55	0.0525	36	36	2.38	0.0094	0.40	0.55	0.1248
18 2.41 0.0083 0.05 0.15 0.0178 37 37 2.35 0.0098 0.05 0.15 18 2.41 0.0083 0.05 0.20 0.0597 37 2.35 0.0098 0.05 0.20 18 2.41 0.0083 0.05 0.20 0.2489 37 2.35 0.0098 0.05 0.20 18 2.41 0.0083 0.05 0.40 0.2847 37 2.35 0.0098 0.05 0.40 18 2.41 0.0083 0.05 0.45 0.6670 37 37 2.35 0.0098 0.05 0.40 18 2.41 0.0083 0.10 0.35 0.288 37 37 2.35 0.0098 0.10 0.30 0.1326 37 37 2.35 0.0098 0.10 0.35 0.1326 37 37 2.35 0.0098 0.01 0.05 0.1326 37 37 2.35 0.0098				660	0.40	09.0	0.0902	36	36	2.38	0.0094	0.40	09.0	0.2316
18 2.41 0.0083 0.05 0.25 0.0597 37 2.35 0.0098 0.05 0.22 18 2.41 0.0083 0.05 0.2489 37 37 2.35 0.0098 0.05 0.32489 37 37 2.35 0.0098 0.05 0.38 0.3847 37 2.35 0.0098 0.05 0.36 0.3847 37 2.35 0.0098 0.05 0.36 0.38 0.38 0.38 0.08 0.06 0.03 0.028 0.03 0.03 0.09 0.05 0.04 0.5294 37 37 2.35 0.0098 0.05 0.46 0.38 0.09 0.05 0.46 0.38 0.09 0.05 0.46 0.38 0.09 0.09 0.05 0.46 0.38 0.09 0.06 0.38 0.00 0.09 0.09 0.09 0.05 0.45 0.08 0.09 0.09 0.09 0.00 0.09 0.09 0.00 0.09				083	0.02	0.15	0.0178	37	37	2.35	0.0098	0.05	0.15	0.1405
18 241 0.0083 0.05 0.1372 37 2.35 0.0098 0.05 0.25 18 2.41 0.0083 0.05 0.33 0.2347 37 2.35 0.0098 0.05 0.30 18 2.41 0.0083 0.05 0.40 0.5294 37 2.35 0.0098 0.05 0.45 18 2.41 0.0083 0.10 0.35 0.2594 37 2.35 0.0098 0.05 0.45 18 2.41 0.0083 0.10 0.30 0.1326 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.30 0.1386 37 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083 0.10 0.45 0.4829 37 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083 0.10 0.45 0.4829 37	~			083	0.05	0.20	0.0597	37	37	2.35	0.0098	0.02	0.20	0.3254
18 2.41 0.0083 0.05 0.39 0.2489 37 2.35 0.0098 0.05 0.35 18 2.41 0.0083 0.05 0.35 0.384 37 37 2.35 0.0098 0.05 0.35 18 2.41 0.0083 0.05 0.45 0.6670 37 2.35 0.0098 0.05 0.40 18 2.41 0.0083 0.10 0.25 0.0559 37 37 2.35 0.0098 0.01 0.40 18 2.41 0.0083 0.10 0.35 0.283 37 37 2.35 0.0098 0.10 0.35 18 2.41 0.0083 0.10 0.40 0.3486 37 37 2.35 0.0098 0.10 0.35 18 2.41 0.0083 0.10 0.45 0.7869 37 37 2.35 0.0098 0.10 0.35 18 2.41 0.0083 0.10				083	0.02	0.25	0.1372	37	37	2.35	0.0098	0.02	0.25	0.5423
18 2.41 0.0083 0.05 0.35 0.3847 37 2.35 0.0098 0.05 0.40 18 2.41 0.0083 0.05 0.40 0.5294 37 37 2.35 0.0098 0.05 0.40 18 2.41 0.0083 0.01 0.25 0.0659 37 37 2.35 0.0098 0.01 0.40 18 2.41 0.0083 0.10 0.35 0.1288 37 37 2.35 0.0098 0.10 0.25 18 2.41 0.0083 0.10 0.40 0.3486 37 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083 0.10 0.40 0.3486 37 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083 0.10 0.40 0.3486 37 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083				083	0.02	0.30	0.2489	37	37	2.35	0.0098	0.02	0.30	0.7345
18 2.41 0.0083 0.05 0.40 0.5294 37 2.35 0.0098 0.05 0.44 18 2.41 0.0083 0.05 0.45 0.6659 37 37 2.35 0.0098 0.05 0.45 18 2.41 0.0083 0.10 0.35 0.1326 37 37 2.35 0.0098 0.10 0.35 18 2.41 0.0083 0.10 0.36 0.1386 37 37 2.35 0.0098 0.10 0.35 18 2.41 0.0083 0.10 0.45 0.486 37 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083 0.10 0.45 0.4829 37 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083 0.10 0.65 0.8325 37 37 2.35 0.0098 0.10 0.55 0.7369 0.15 0.0098 0.10				083	0.02	0.35	0.3847	37	37	2.35	0.0098	0.02	0.35	0.8688
18 2.41 0.0083 0.05 0.45 0.6670 37 2.35 0.0098 0.05 0.45 18 2.41 0.0083 0.10 0.25 0.0659 37 37 2.35 0.0098 0.10 0.35 18 2.41 0.0083 0.10 0.35 0.283 37 37 2.35 0.0098 0.10 0.35 18 2.41 0.0083 0.10 0.40 0.3486 37 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083 0.10 0.50 0.6168 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.50 0.7365 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.15 0.730 0.730 37 2.35 0.0098 0.10 0.40 18 2.41 0.0083 0.15	~			083	0.02	0.40	0.5294	37	37	2.35	0.0098	0.05	0.40	0.9448
18 2.41 0.0083 0.10 0.25 0.0659 37 2.35 0.0098 0.10 0.25 18 2.41 0.0083 0.10 0.33 0.1285 37 37 2.35 0.0098 0.10 0.36 18 2.41 0.0083 0.10 0.40 0.3486 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.45 0.486 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.55 0.7365 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.15 0.35 0.136 37 37 2.35 0.0098 0.10 0.50 18 2.41 0.0083 0.15 0.25 0.736 37 2.35 0.0098 0.15 0.35 18 2.41 0.0083 0.15 <	~			083	0.02	0.45	0.6670	37	37	2.35	0.0098	0.02	0.45	0.9803
18 2.41 0.0083 0.10 0.39 0.1326 37 37 2.35 0.0098 0.10 0.35 18 2.41 0.0083 0.10 0.45 0.2486 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.45 0.486 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.55 0.7468 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.65 0.8325 37 37 2.35 0.0098 0.10 0.55 18 2.41 0.0083 0.15 0.40 0.2202 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.40 0.2202 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15	~			083	0.10	0.25	0.0659	37	37	2.35	8600.0	0.10	0.25	0.2549
18 2.41 0.0083 0.10 0.35 0.2283 37 37 2.35 0.0098 0.10 0.36 18 2.41 0.0083 0.10 0.45 0.4829 37 37 2.35 0.0098 0.10 0.46 18 2.41 0.0083 0.10 0.50 0.6168 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.50 0.6168 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.50 0.695 37 37 2.35 0.0098 0.10 0.55 18 2.41 0.0083 0.15 0.30 0.0695 37 37 2.35 0.0098 0.15 0.30 18 2.41 0.0083 0.15 0.45 0.320 37 37 2.35 0.0098 0.15 0.30 18 2.41 0.				083	0.10	0.30	0.1326	37	37	2.35	0.0098	0.10	0.30	0.4358
18 2.41 0.0083 0.10 0.49 0.3486 37 235 0.0098 0.10 0.40 18 2.41 0.0083 0.10 0.55 0.456 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.55 0.7365 37 37 2.35 0.0098 0.10 0.55 18 2.41 0.0083 0.15 0.85 0.7365 37 37 2.35 0.0098 0.10 0.56 18 2.41 0.0083 0.15 0.30 0.0695 37 37 2.35 0.0098 0.15 0.30 18 2.41 0.0083 0.15 0.45 0.4532 37 37 2.35 0.0098 0.15 0.35 18 2.41 0.0083 0.15 0.45 0.4532 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 <t< td=""><td></td><td></td><td></td><td>083</td><td>0.10</td><td>0.35</td><td>0.2283</td><td>37</td><td>37</td><td>2.35</td><td>0.0098</td><td>0.10</td><td>0.35</td><td>0.6204</td></t<>				083	0.10	0.35	0.2283	37	37	2.35	0.0098	0.10	0.35	0.6204
18 2.41 0.0083 0.10 0.45 0.4829 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.65 0.7365 37 37 2.35 0.0098 0.10 0.45 18 2.41 0.0083 0.10 0.66 0.8325 37 37 2.35 0.0098 0.10 0.65 18 2.41 0.0083 0.15 0.35 0.1369 37 37 2.35 0.0098 0.10 0.65 18 2.41 0.0083 0.15 0.40 0.2202 37 37 2.35 0.0098 0.15 0.35 18 2.41 0.0083 0.15 0.45 0.430 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.45 0.430 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.				083	0.10	0.40	0.3486	37	37	2.35	0.0098	0.10	0.40	0.7752
18 2.41 0.0083 0.10 0.50 0.0468 37 37 2.35 0.0098 0.10 0.50 18 2.41 0.0083 0.10 0.50 0.666 8325 37 37 2.35 0.0098 0.10 0.55 18 2.41 0.0083 0.15 0.30 0.0695 37 37 2.35 0.0098 0.10 0.50 18 2.41 0.0083 0.15 0.40 0.2202 37 37 2.35 0.0098 0.15 0.35 18 2.41 0.0083 0.15 0.40 0.2202 37 37 2.35 0.0098 0.15 0.40 18 2.41 0.0083 0.15 0.45 0.34 37 37 2.35 0.0098 0.15 0.40 18 2.41 0.0083 0.15 0.65 0.671 37 2.35 0.0098 0.15 0.45 18 2.41 0.				083	0.10	0.45	0.4829	37	37	2.35	0.0098	0.10	0.45	0.8843
18 2.41 0.0083 0.10 0.55 0.7355 37 2.35 0.0098 0.10 0.55 18 2.41 0.0083 0.10 0.55 0.7355 37 37 2.35 0.0098 0.10 0.55 18 2.41 0.0083 0.15 0.30 0.0695 37 37 2.35 0.0098 0.15 0.30 18 2.41 0.0083 0.15 0.45 0.3204 37 37 2.35 0.0098 0.15 0.30 18 2.41 0.0083 0.15 0.45 0.37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.50 0.4532 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.60 0.6516 37 37 2.35 0.0098 0.15 0.65 18 2.41 0.0083 0.15				083	0.10	0.50	0.6168	37	37	2.35	0.0098	0.10	0.50	0.9493
18 2.41 0.0083 0.15 0.8555 37 37 2.35 0.0098 0.10 0.60 18 2.41 0.0083 0.15 0.35 0.1319 37 37 2.35 0.0098 0.15 0.30 18 2.41 0.0083 0.15 0.40 0.2202 37 37 2.35 0.0098 0.15 0.30 18 2.41 0.0083 0.15 0.46 0.2202 37 37 2.35 0.0098 0.15 0.35 18 2.41 0.0083 0.15 0.50 0.4532 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.55 0.5771 37 2.35 0.0098 0.15 0.50 18 2.41 0.0083 0.15 0.65 0.7897 37 2.35 0.0098 0.15 0.55 18 2.41 0.0083 0.20 0.55	~			083	0.10	0.55	0.7365	37	37	2.35	0.0098	0.10	0.55	0.9816
18 2.41 0.0083 0.15 0.39 0.0089 37 37 2.35 0.0098 0.15 0.30 18 2.41 0.0083 0.15 0.40 0.2202 37 37 2.35 0.0098 0.15 0.40 18 2.41 0.0083 0.15 0.40 0.2202 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.50 0.5771 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.65 0.5771 37 2.35 0.0098 0.15 0.50 18 2.41 0.0083 0.15 0.65 0.5797 37 2.35 0.0098 0.15 0.55 18 2.41 0.0083 0.20 0.45 0.139 37 37 2.35 0.0098 0.15 0.40 18 2.41 0.0083 0.20 0.45	~			083	0.10	0.60	0.8325	37	37	2.35	0.0098	0.10	0.60	0.9947
18 2.41 0.0083 0.15 0.45 0.18 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.45 0.3304 37 37 2.35 0.0098 0.15 0.40 18 2.41 0.0083 0.15 0.45 0.3304 37 37 2.35 0.0098 0.15 0.40 18 2.41 0.0083 0.15 0.60 0.6916 37 37 2.35 0.0098 0.15 0.60 18 2.41 0.0083 0.15 0.60 0.6916 37 37 2.35 0.0098 0.15 0.60 18 2.41 0.0083 0.15 0.65 0.7897 37 2.35 0.0098 0.15 0.65 18 2.41 0.0083 0.20 0.40 0.2133 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 <t< td=""><td>•</td><td></td><td></td><td>083</td><td>0.15</td><td>0.30</td><td>0.0695</td><td>37</td><td>37</td><td>2.35</td><td>0.0098</td><td>0.15</td><td>0.30</td><td>0.2114</td></t<>	•			083	0.15	0.30	0.0695	37	37	2.35	0.0098	0.15	0.30	0.2114
18 2.41 0.0083 0.15 0.40 0.2304 37 37 2.35 0.0098 0.15 0.40 18 2.41 0.0083 0.15 0.40 0.4532 37 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.50 0.4532 37 2.35 0.0098 0.15 0.50 18 2.41 0.0083 0.15 0.65 0.7897 37 2.35 0.0098 0.15 0.55 18 2.41 0.0083 0.15 0.65 0.7897 37 2.35 0.0098 0.15 0.55 18 2.41 0.0083 0.20 0.35 0.0729 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.20 0.50 0.45 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.50	~			083	0.15	0.35	0.1319	37	37	2.35	0.0098	0.15	0.35	0.3643
18 2.41 0.0083 0.15 0.45 0.3304 37 2.35 0.0098 0.15 0.45 18 2.41 0.0083 0.15 0.55 0.5771 37 2.35 0.0098 0.15 0.50 18 2.41 0.0083 0.15 0.65 0.5771 37 2.35 0.0098 0.15 0.50 18 2.41 0.0083 0.15 0.66 0.6916 37 37 2.35 0.0098 0.15 0.50 18 2.41 0.0083 0.20 0.45 0.729 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20 0.45 0.2199 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20 0.45 0.2199 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20 0.45	•			083	0.15	0.40	0.2202	37	37	2.35	0.0098	0.15	0.40	0.5379
18 2.41 0.0083 0.15 0.50 0.4532 37 2.35 0.0098 0.15 0.05 18 2.41 0.0083 0.15 0.56 0.6916 37 37 2.35 0.0098 0.15 0.65 18 2.41 0.0083 0.15 0.66 0.7897 37 2.35 0.0098 0.15 0.65 18 2.41 0.0083 0.20 0.40 0.1313 37 37 2.35 0.0098 0.15 0.65 18 2.41 0.0083 0.20 0.40 0.1313 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20 0.40 0.1313 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20 0.45 0.218 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20	~ .			083	0.15	0.45	0.3304	37	37	2.35	0.0098	0.15	0.45	0.7036
18 2.41 0.0083 0.15 0.55 0.57/1 37 2.35 0.0098 0.15 0.55 18 2.41 0.0083 0.15 0.65 0.7897 37 2.35 0.0098 0.15 0.60 18 2.41 0.0083 0.15 0.65 0.7897 37 2.35 0.0098 0.15 0.65 18 2.41 0.0083 0.20 0.35 0.0729 37 2.35 0.0098 0.20 0.35 18 2.41 0.0083 0.20 0.45 0.2109 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.45 0.2109 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.50 0.387 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.60 0.65 0.6480	•			083	0.15	0.50	0.4532	37	37	2.35	0.0098	0.15	0.50	0.8360
18 2.41 0.0083 0.15 0.65 0.7897 37 2.35 0.0098 0.15 0.06 18 2.41 0.0083 0.15 0.65 0.7897 37 2.35 0.0098 0.15 0.65 18 2.41 0.0083 0.20 0.45 0.0729 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20 0.45 0.2109 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.50 0.3087 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.50 0.486 37 37 2.35 0.0098 0.20 0.55 18 2.41 0.0083 0.20 0.65 0.6480 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.20	•			083	0.15	0.55	0.5771	37.	37	2.35	0.0098	0.15	0.55	0.9234
18 2.41 0.0083 0.15 0.759 37 37 2.35 0.0098 0.15 0.05 18 2.41 0.0083 0.20 0.40 0.1313 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20 0.40 0.1313 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.45 0.1387 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.65 0.186 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.60 0.5339 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.20 0.66 0.6480 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.25 <t< td=""><td>•</td><td></td><td></td><td>000</td><td>0.15</td><td>0.00</td><td>0.0910</td><td>1 c</td><td>o 1</td><td>0.0</td><td>0.0098</td><td>0.15</td><td>0.00</td><td>0.9702</td></t<>	•			000	0.15	0.00	0.0910	1 c	o 1	0.0	0.0098	0.15	0.00	0.9702
18 2.41 0.0083 0.20 0.45 0.0173 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.45 0.2193 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.20 0.45 0.2199 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.50 0.3846 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.60 0.5339 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.20 0.65 0.6480 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.20 0.65 0.6480 37 37 2.35 0.0098 0.20 0.65 18 2.41	~			083	0.15	0.00	0.7897	37.	37	2.35	0.0098	0.15	0.65	0.9905
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•			083	0.20	0.35	0.0729	37.	37	2.35	0.0098	0.20	0.35	0.1810
18 2.41 0.0083 0.20 0.45 0.2109 37 37 2.35 0.0098 0.20 0.45 18 2.41 0.0083 0.20 0.55 0.4186 37 37 2.35 0.0098 0.20 0.50 18 2.41 0.0083 0.20 0.65 0.4186 37 37 2.35 0.0098 0.20 0.55 18 2.41 0.0083 0.20 0.65 0.6486 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.20 0.76 0.743 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.25 0.40 0.773 37 2.35 0.0098 0.25 0.40 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.40 18 2.41 0.0083 0.25	•			083	0.20	0.40	0.1313	0 0	2 0	22.30	0.0098	0.20	0.40	0.3204
18 2.41 0.0083 0.20 0.35 0.186 37 37 2.35 0.0098 0.20 0.55 18 2.41 0.0083 0.20 0.66 0.5339 37 37 2.35 0.0098 0.20 0.55 18 2.41 0.0083 0.20 0.66 0.6480 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.20 0.76 0.7743 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.26 0.40 0.731 37 37 2.35 0.0098 0.20 0.40 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.45 0.1250 37 3.5 0.0098 0.25 0.45 18 2.41 0.0083 0.25 <	•			083	0.20	0.45	0.2109	2 0	3 0	2.35	0.0098	0.20	0.45	0.4906
18 2.41 0.0083 0.20 0.53 0.4186 37 37 2.35 0.0098 0.20 0.53 18 2.41 0.0083 0.20 0.66 0.6480 37 37 2.35 0.0098 0.20 0.65 18 2.41 0.0083 0.20 0.70 0.7543 37 2.35 0.0098 0.20 0.70 18 2.41 0.0083 0.25 0.40 0.731 37 37 2.35 0.0098 0.20 0.70 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.40 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.56 0.1948 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 <	•			200	0.20	00.00	0.5067	1 0	1 0	0.0	0.0090	0.20	0.00	0.0021
18 2.41 0.0083 0.20 0.00 0.5359 37 37 2.35 0.0098 0.20 0.50 0.50 18 2.41 0.0083 0.20 0.70 0.7543 37 37 2.35 0.0098 0.20 0.75 0.65 18 2.41 0.0083 0.25 0.40 0.0731 37 37 2.35 0.0098 0.20 0.70 0.75 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.40 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.55 0.150 0.1948 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.55 0.150 0.	•			083	0.20	0.55	0.4186	0.7	0.7	2.30	0.0098	0.20	0.55	0.8042
18 2.41 0.0083 0.20 0.70 0.7543 37 37 2.35 0.0098 0.20 0.70 1.8 2.41 0.0083 0.25 0.40 0.0731 37 37 2.35 0.0098 0.25 0.40 18 2.41 0.0083 0.25 0.40 0.0731 37 37 2.35 0.0098 0.25 0.40 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.55 0.1948 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.55 0.55 0.55 0.55 0.55 0.55 0.55	•			200	0.40	0.00	0.5559	1 0	0 0	0.00	0.0030	07.0	0.00	0.9017
18 2.41 0.0083 0.25 0.40 0.0731 37 37 2.35 0.0098 0.25 0.40 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.45 0.1250 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.55 0.1948 37 37 2.35 0.0098 0.25 0.55 0.50 18 2.41 0.0083 0.25 0.55 0.2990 37 37 2.35 0.0098 0.25 0.55 0.50	• ~			000	0.20	0.00	0.0460	24	27	0.00 0.00 0.00 0.00	0.0038	0.20	0.00	0.9079
18 2.41 0.0083 0.25 0.54 0.0148 37 37 2.35 0.0098 0.25 0.45 1.8 2.41 0.0083 0.25 0.56 0.198 37 37 2.35 0.0098 0.25 0.45 18 2.41 0.0083 0.25 0.56 0.198 37 37 2.35 0.0098 0.25 0.50				280	0.00	9.0	0.731	2 0	2 6	9 C	0.0038	0.10	0.0	0.3653
18 2.41 0.0083 0.25 0.50 0.1948 37 37 2.35 0.0098 0.25 0.50 1.8 2.41 0.0083 0.25 0.55 0.55 0.35 0.0098 0.25 0.55	. ~			083	20.0	0.45	0.0750	3 0	3 2	20.00	0.0098	0.25	0.45	0.2080
18 241 0.0083 0.25 0.55 0.2820 37 3.7 2.35 0.0098 0.25 0.55	. ~			083	0.25	2.5	0 1048	7 .	1 -	1 0	0000	10) (0.00
1. Z.				1)	2	0 + 0 + 0	ò	9	2.35	0.0098	0.70	0.50	0.4010

Table B.12: continue on next page

Table B.12: continue on next page

ıs page	power	0.8789	0.9475	0.9827	0.2779	0.4285	0.5918	0.7458	0.8687	0.1432	0.2543	0.5764	0.1315	0.2438	0.1482	0.3400	0.5609	0.7519	0.9517	0.9834	0.2661	0.4517	0.6376	0.7903	0.8953	0.9337	0.9940	0.2201	0.3780	0.5549	0.7200	0.8479	0.9296	0.9912	0.1887	0.3321	0.5031	0.6711	0.8088	0.9043	0.9602	0.3810	0.3022	0.4625	0.6283
revion	p2	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.20	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50	0.55
rom p	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35 0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.00	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.1.0	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.25	0.25	0.25
-continued from previous page	pvalue	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0030	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098
: $-con$	$\mathbf{z}_{\mathbf{p}}$	2.35	2.35	2.35 3.35	2.35	2.35	2.35	2.35	2.35	2.35	2.5 2.5 2.5 7.5	2 2 3 2 3 2 3 2	2.35	2.35	2.35	2.35	2.35	2.50 2.50	2 6	2.35	2.35	2.35	2.35	2.35	2.35	2.0 2.0 7.0 7.0	2.35	2.35	2.35	2.35	2.35	2.35	0.0 0.0 0.0	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35 2.35 2.35	9 6	2.35	2.35	2.35
B.12:	$_{\rm n_2}$	37	37	37	37	37	37	37	37	37	27	37	37	37	38	38	80 0	x x	8 8	88	38	38	38	38	8 8	0 00	9 8	88	38	38	38	œ 6	8 8	0 00	38	38	38	38	38	x 8	x x	9 00) 86 83	38	38
Table	$^{\mathrm{n}_{1}}$	37	37	3 4	37	37	37	37	37	37	o 0	3 0	37	37	38	38	800	x x	0 00	38	38	38	38	38	00 o	0 00	0 00	38	38	38	38	00 c	000	0 00	38	38	38	38	38	90 c	x 0	0 00	38	38	38
	power	0.4999	0.6216	0.7409	0.1143	0.1773	0.2603	0.3644	0.4872	0.0625	0.1046	0.2522	0.0582	0.1009	0.0562	0.1333	0.2366	0.3303	0.6141	0.7336	0.1041	0.1789	0.2798	0.4031	0.5374	0.0071	0.8646	0.0894	0.1584	0.2539	0.3700	0.4959	0.0194	0.8236	0.0859	0.1502	0.2363	0.3401	0.4552	0.5744	0.6901	0.0826	0.1396	0.2157	0.3106
	p2	0.65	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.80	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.02	0.70	0.45	0.50	0.55
	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.00	0.00	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.1.0	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.40	0.25	0.25	0.25
	pvalue	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091
	$\mathbf{z}_{\mathbf{p}}$	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.39	2.39	2.39	2.39	230	2.39	2.39	2.39	2.39	2.39	2.39	05.03	2.39	2.39	2.39	2.39	2.39	2.39	20.00	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	0.00	2.39	2.39	2.39
	$_{\rm n_2}$	18	20 9	<u>x</u> x	18	18	18	18	18	18	0 0	2 8	18	18	19	19	61	1.9	01	19	19	19	19	19	19	10	19	19	19	19	19	19	n -	1.9	19	19	19	19	19	13	61	10	19	19	19
	$^{\mathrm{n}_{1}}$	18	× ;	x x	18	18	18	18	18	200	χ ο ο	2 8	18	18	19	19	61	61 -	51	19	19	19	19	19	10	10	13	19	19	19	19	19	n -	1.9	19	19	19	19	19	19	91	10	19	19	19

page	power	0.7756	0.8860	0.9535	0.9856	0.1548	0.2748	0.4295	0.7597	0.8806	0.1409	0.2573	0.4146	0.5929	0.1347	0.2526	0.1531	0.5425	0.0000	0.8755	0.9500	0.9836	0.2512	0.4391	0.6348	0.7953	0.9017	0.9599	0.9863	0.9962	0.2164	0.3820	0.7291	0.8534	0.9321	0.9739	0.9920	0.1914	0.3362	0.5056	0.0723	0.9085	0.9643	0.9893	0.1687	0.2988	0.4614
revious	P2	09.0	0.65	0.70	0.75	0.45	0.50	0.00	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.40	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.22	0.60	0.30	0.35	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.00	0.60	0.65	0.70	0.40	0.45	0.50
from p	\mathbf{p}_1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.00	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25
-continued from previous page	pvalue	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0030	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0033	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093
- 1	$\mathbf{z}_{\mathbf{p}}$	2.35	2.35	2.35	2.35	2.35	2.35	0.50 25.00	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.37	0.07	2 6	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	75.37	2.37	0.2	2.37	2.37	2.37	2.37	2.37	2.37
B.12:	$^{\mathrm{n}_{2}}$	38	38	38	38	80 6	x c	0 %	88	38	38	38	38	38	38	88	33	30	30	30	33	36	39	39	39	39	39	39	33	33	33	30	39	39	39	39	33	33	68	30	30	68	39	39	39	39	33
Table	$^{\rm n_1}$	38	38	38	38	x 0	x 0	0 00	000	38	38	38	38	38	800	200	33	800	000	68	33	39	39	39	39	39	39	39	39	39	33	30	39	39	39	39	33	33	33	30	30	6 C	39	39	39	39	39
	power	0.4219	0.5442	0.6689	0.7844	0.0763	0.1271	0.1978	0.4046	0.5343	0.0698	0.1181	0.1884	0.2840	0.0662	0.1150	0.0635	0.1408	0.2002	0.5149	0.6453	0.7612	0.1112	0.1903	0.2948	0.4186	0.5496	0.6745	0.7827	0.8679	0.0919	0.1504	0.3661	0.4913	0.6188	0.7373	0.8369	0.0821	0.1430	0.3272	0.5540	0.5902	0.7165	0.8243	0.0758	0.1325	0.2136
	p2	09.0	0.65	0.70	0.75	0.45	0.50	0.00	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.00	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.20	0.55	0.60	0.30	0.35	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.60	0.65	0.70	0.40	0.45	0.50
	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.00	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25
	pvalue	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084
	$\mathbf{z}_{\mathbf{p}}$	2.39	2.39	2.39	2.39	2.39	2.39	2.09	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.38	0.7 0.00 0.00	2000	88	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.0	2.38	2.38	2.38	2.38	2.38	2.38	2.3	2.3	00.70	2 2 2	2.38	2.38	2.38	2.38	2.38
	$^{\mathrm{n}_{2}}$	19	19	19	19	61	61.	10	19	19	19	19	19	19	19	19	70	0.00	0 0	200	20	20	20	20	20	20	20	20	20	20	50	200	20	20	20	20	50	20	07.0	0 00	0.00	20 20	20	20	20	20	20
	$^{\rm n_1}$	19	19	19	19	19	5 5	10	19	19	19	19	19	19	19	19	70	020	000	200	20	20	20	20	20	20	20	20	20	20	50	20	20	20	20	20	20	20	700	0 20	2 6	20	20	20	20	20	20

Table B.12: continue on next page

Table B.12: continue on next page

. 1	ı																																																	
s puye	power	0.6340	0.7869	0.8974	0.9607	0.9886	0.1514	0.2760	0.4400	0.6193	0.7795	0.8949	0.1442	0.2690	0.4349	0.6166	0.1434	0.2684	0.1603	0.3553	0.5726	0.7595	0.8872	0.9565	0.9864	0.2622	0.4560	0.6533	0.8105	0.9116	0.9652	0.9886	0.9970	0.2265	0.3970	0.5816	0.7452	0.805.0	0.9599	0.9719	0.9950	0.3793	0.5222	8689.0	0.8266	0.9194	0.9702	0.9916	0.1760	0.3116
Leviou	P2	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.22	0.60	0.30	0.35	0.40	0.45	0.00 E	0.00	0.00	0.00	0.00	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45
יווטו	p1	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.1.0	0.TO	0.1.0	0.1.0	0.00	0000	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25
-continued from previous page	pvalue	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0036	0.0096	0600.0	0.000	0.0096	0.0096	0.0096	9600.0	0.0096	0.0096	0.0096	0.0096
	$\mathbf{z}_{\mathbf{p}}$	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.30	2.30	2.30	2.30	00.7	00.7	0.20	00.0	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36
1 400€ D:1 %.	n2	39	39	39	33	39	39	39	33	33	39	39	39	39	39	39	39	39	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	04.6	04.0	QF QF	Q (40	40	40	40	40	40	40	40
79797	$^{\rm n_1}$	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	0.4	04.5	7	2	40	40	40	40	40	40	40	40
	power	0.3195	0.4451	0.5800	0.7099	0.8213	0.0728	0.1286	0.2094	0.3155	0.4418	0.5779	0.0728	0.1286	0.2092	0.3150	0.0735	0.1290	0.0708	0.1601	0.2759	0.4084	0.5475	0.6801	0.7933	0.1198	0.2066	0.3201	0.4513	0.5862	0.7108	0.8149	0.8933	0.1004	0.1759 0.9769	0.2768	0.3977	0.5294	0.0097	0.707	0.8083	0.0004	0.2512	0.3679	0.5006	0.6362	0.7599	0.8594	0.0846	0.1490
	p ₂	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.22	0.60	0.30	0.35	0.40	0.45	0.00	0.00	0.00	20.0	8.0	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45
	p1	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.10	0.10	0.10	0.1.0	0.00	0000	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25
	pvalue	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0084	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0038	0.0038	0.0000	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098
	$\mathbf{z}_{\mathbf{p}}$	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.30	2.30	2.30	2.30	00.70	00.70	0.36	00:00	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36
	n ₂	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	77	7.7	77	170	170	170	21	1 5	21	21	21	21	21	21	21	21
	$^{\mathrm{1}}$	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	77	17.	77	17 6	7 5	170	1 1 0	1 5	21	2.1	21	21	21	21	21	21

s page	power	0.4799	0.6553	0.8001	0.9674	0.9911	0.1596	0.2913	0.4619	0.6434	0.8001	0.9085	0.1542	0.2864	0.4505	0.0414	0.2863	0.2281	0.4659	0.6948	0.8591	0.9487	0.9855	0.9968	0.3290	0.5537	0.7550	0.8898	0.9597	0.9882	0.9995	0.2749	0.4769	0.6774	0.8335	0.9299	0.9768	0.9942	0.9990	0.2372	0.4192	0.0188	0.9084	0.9682	0.9914	0.9982	0.2117
reviou	P2	0.50	0.55	0.60	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.0 0.0 0.0 0.0	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.05	0.35	0.40	0.40	0.55	0.60	0.65	0.70	0.40
from p	P1	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.00	0.40	0.05	0.05	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25
-continued from previous page	pvalue	9600.0	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0036	0.0036	0.0096	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0080	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0080	0.0086	0.0086	0.0086	0.0086	0.0086
	$\mathbf{z}_{\mathbf{p}}$	2.36	2.36	2.30	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	00.7	00.7	0.00	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	14.7	2.41	2.41	2.41	2.41	2.41	2.41
B.12:	$^{\mathrm{n}_{2}}$	40	40	04.0	40	40	40	40	40	40	40	40	40	40	04.0	97	40	22.0	20	20	20	20	20	20	20	20	20	200	20.02	, r.	20	20	20	20	20	20	20	00.	200	50	00 5	0 20	20	20	20	20	20
Table	$^{\mathrm{n}_{1}}$	40	40	040	40	40	40	40	40	40	40	40	40	040	04.0	04.4	40	22.0	20	20	20	20	20	20	20	20	50	200	50 0 20	0 rc	20	20	20	20	20	20	200	00.	200	500	00.1	00 10	200	20	20	20	20
	power	0.2402	0.3567	0.4907	0.7549	0.8571	0.0832	0.1472	0.2383	0.3547	0.4885	0.6270	0.0844	0.1485	0.2330	0.0047	0.0838	0.0372	0.1118	0.2331	0.3870	0.5499	0.6982	0.8161	0.1098	0.2089	0.3367	0.4791	0.6194	0.7437	0.9143	0.1051	0.1893	0.2996	0.4289	0.5659	0.6966	0.8078	0.8914	0.0984	0.1755	0.2753	0.5362	0.6693	0.7851	0.8748	0.0936
	p2	0.50	0.55	0.60	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.0 0.0 0.0	9.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.0	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.35	0.40	0.45	0.55	0.60	0.65	0.70	0.40
	p1	0.25	0.25	0.72	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.00	0.40	0.05	0.05	0.05	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	07.0	0.20	0.20	0.20	0.20	0.20	0.25
	pvalue	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0030	0.0030	0.0038	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097
	$\mathbf{z}_{\mathbf{p}}$	2.36	2.36	2.30	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.30	00.7	00.7	2.36	2.42	2.42	2.42	2.43	2.42	2.42	2.42	2.42	2.42	2.42	2.42	24.2	2 C A C	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	75.42	24.2 CA C	2.42	2.42	2.42	2.45	2.42
	$^{\mathrm{n}_{2}}$	21	21	17.0	21	21	21	21	21	21	21	7.7	7.7	7.7	170	170	2.5	22	22	22	22	22	22	22	22	22	55	7.7.5	2.7.0	1 0	22	22	22	22	22	22	7.7	77.7	7.7	7 7 7	7 0	2 6 6	22	22	22	22	22
	$^{\mathrm{n}_{1}}$	21	21	2.1	21	21	21	21	21	21	21	77.	77	7.7	170	176	2 17	22	22	22	22	22	22	22	22	22	55	7.7.	7.7.	4 6	22	22	22	22	22	55	7.7.	77.7	77.7	7.7.5	7 0	220	22	22	22	22	22

Table B.12: continue on next page

Table B.12: continue on next page

es page	power	0.3863	0.5881	0.7677	0.9588	0.9881	0.9977	0.2015	0.3694	0.5626	0.7399	0.9527	0.1906	0.3451	0.5334	0.7229	0.1751	0.3296	0.2907	0.5642	0.0969	0.9202	0.9961	0.9994	0.4112	0.6570	0.8432	0.9444	0.9849	0.9969	1.0000	0.3413	0.5734	0.7763	0.9070	0.9700	0.9928	0.9988	0.9999	0.2982	0.5144	0.8749	0.9572	0.9893	0.9981	0.9998
reviou	p2	0.45	0.50	0.50	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.70	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
rom p	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.0	0.00	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0096	0.0096	0.0036	0.0030	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0090	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0030	0.0036	0.0096	0.0096	0.0096	0.0096
	$\mathbf{z}_{\mathbf{p}}$	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.3	2.38	000	2 000	238	2.38	2.38	2.38	2.38	2.38	2.38	80.00	2.30	2 C	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	00.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.38	2.38	2.38	2.38
B.12:	$^{\rm n_2}$	20	20		20	20	20	20	20	50		20 00	20	20	20	20	20	20	09	09	000	8 9	09	09	09	09	09	09	09	9 8	00	8 9	09	09	09	09	09	09	09	09	9	9	09	09	09	09
Table	1 u	20	50	200	20	20	20	20	50	50	00 M	200	50	20	20	20	20	50	09	09	000	90	09	09	09	09	09	09	09	09	09	90	09	09	09	09	09	09	09	09	00	09	09	09	09	09
	power	0.1647	0.2627	0.5354	0.6494	0.7695	0.8672	0.0917	0.1600	0.2539	0.3705	0.6406	0.0900	0.1555	0.2470	0.3647	0.0881	0.1532	0.0431	0.1265	0.2304	0.5873	0.7329	0.8436	0.1221	0.2294	0.3648	0.5117	0.6524	0.7731	0.8658	0.9291	0.2061	0.3231	0.4572	0.5947	0.7208	0.8238	0.8992	0.1069	0.1969	0.4179	0.5497	0.6753	0.7845	0.8716
	p 2	0.45	0.50	0.60	0.65	0.70	0.75	0.45	0.50	0.55	0.00	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.TS	0.20	0.70	0.32	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70
	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.0	0.00	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091	0.0091
	$\mathbf{z}_{\mathbf{p}}$	2.42	2.42	2.42	2.42	2.45	2.42	2.42	2.42	2.42	27.7	2.42	2.42	2.45	2.45	2.45	2.42	2.42	2.38	20.00	00.0	2 6	2 38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	20.00	2 6	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	00.7	2 6	2.38	2.38	2.38	2.38
	$^{\mathrm{n}_{2}}$	22	55	22	22	22	22	22	55	2 2	7 6	2 2 2 2 2	22	22	22	22	22	22	233	200	0 0	2 6	23	23	23	23	23	23	53	27.0	200	2 6	23	23	23	23	23	23	53	200	0.70	2.53	23	23	23	23
	$^{\mathrm{n}_{1}}$	22	22	222	22	22	22	22	55	2 2	7 6	2 2 2 2 2 2	22	22	22	22	22	22	233	200	0 0	2 6	23	23	23	23	23	23	53	27.3	200	2 6	23	23	23	23	23	23	23	27.3	0.0	2.5	23	23	23	23

							Table	B.12:	- 1	-continued from previous page	from 1	previou	s page
1 u	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	P1	p2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	\mathbf{p}_1	P2	power
23	23	2.38	0.0091	0.25	0.40	0.0994	09	09	2.38	0.0096	0.25	0.40	0.2678
23	23	2.38	0.0091	0.25	0.45	0.1715	09	09	2.38	0.0096	0.25	0.45	0.4762
23	23	2.38	0.0091	0.25	0.50	0.2673	09	09	2.38	0.0096	0.25	0.50	0.6927
23	23	2.38	0.0091	0.25	0.55	0.3821	09	09	2.38	0.0096	0.25	0.55	0.8576
5.73	200	20.00	0.0091	0.75	0.60	0.5082	09	09	20.00	0.0096	0.25	0.60	0.9489
2.5	0.00	2.50 38	0.0091	0.25	0.00	0.0307	09	8 9	0 5.5 0 3.8 0 3.8	0.0036	0.25	0.00	0.9860
2 23	233	2.38	0.0091	0.25	0.75	0.8598	09	8 9	2.38	0.0096	0.25	0.75	0.9997
23	23	2.38	0.0091	0.30	0.45	0.0914	09	09	2.38	0.0096	0.30	0.45	0.2553
23	23	2.38	0.0091	0.30	0.50	0.1553	09	09	2.38	0.0096	0.30	0.50	0.4611
23	23	2.38	0.0091	0.30	0.55	0.2422	09	09	2.38	0.0096	0.30	0.55	0.6749
23	23	2.38	0.0091	0.30	09.0	0.3517	09	09	2.38	0.0096	0.30	09.0	0.8406
23	23	2.38	0.0091	0.30	0.65	0.4808	09	09	2.38	0.0096	0.30	0.65	0.9391
23	23	2.38	0.0091	0.30	0.70	0.6210	09	90	2.38	0.0096	0.30	0.70	0.9835
53	53	2.38	0.0091	0.35	0.50	0.0821	09	09	2.38	0.0096	0.35	0.50	0.2480
53	53	2.38	0.0091	0.35	0.55	0.1406	0.9	09	2.38	0.0096	0.35	0.55	0.4415
533	5 73	2.38	0.0091	0.35	0.60	0.2252	09	09	2.38	0.0096	0.35	0.60	0.6506
0 0	0 0	00.7	0.0091	0.00	0.0	0.0094	00	000	000	0.0096	0.00	0.0 8 8 8	0.0277
0 0	0 0	00.7	0.0091	0.40	0.00	0.0703	00	9 6	0 00 00	0.0000	0.40	0.00	0.2320
2.5	54.5	2.35	0.0097	0.150	0.00	0.0924	20	8 8	2.37	0.0030	0.15	0.00	0.3504
24	242	2.35	0.0097	0.05	0.20	0.1990	20	2.2	2.37	0.0100	0.05	0.20	0.6530
24	24	2.35	0.0097	0.05	0.25	0.3353	20	20	2.37	0.0100	0.05	0.25	0.8675
24	24	2.35	0.0097	0.02	0.30	0.4887	20	20	2.37	0.0100	0.02	0.30	0.9638
24	24	2.35	0.0097	0.02	0.35	0.6408	70	70	2.37	0.0100	0.05	0.35	0.9928
24	24	2.35	0.0097	0.05	0.40	0.7719	20	20	2.37	0.0100	0.02	0.40	0.9990
24	24	2.35	0.0097	0.05	0.45	0.8701	20	20	2.37	0.0100	0.02	0.45	0.9999
24	24	2.35	0.0097	0.10	0.25	0.1486	20	20	2.37	0.0100	0.10	0.25	0.4900
24	24	2.35	0.0097	0.10	0.30	0.2594	20	2	2.37	0.0100	0.10	0.30	0.7394
24	24	2.32	0.0097	0.10	0.35	0.3973	20	2 i	2.37	0.0100	0.10	0.35	0.9002
24	24	2.35	0.0097	0.10	0.40	0.5453	70	29	2.37	0.0100	0.10	0.40	0.9719
24	24	2.35	0.0097	0.10	0.45	0.6846	0 i	P 1	2.37	0.0100	0.10	0.45	0.9943
77.0	77.0	2.3 2.3 2.3	0.0097	0.10	0.50	0.8010	9 9	2 6	2.3	0.0100	0.10	0.50	0.9992
4 5	4 5	00.00	0.0097	0.10	0.00	0.0071	1 2	2 5	0.0	0.0100	0.10	0.00	1,0000
24 24	24 24	9.00	0.0097	0.10	0.00	0.9451	20	2.5	2.57	0.0100	0.10	0.00	0.3998
24	2.4	2.35	0.0097	0.15	0.35	0.2246	20	2	2.37	0.0100	0.15	0.35	0.6501
24	24	2.35	0.0097	0.15	0.40	0.3481	20	20	2.37	0.0100	0.15	0.40	0.8439
24	24	2.35	0.0097	0.15	0.45	0.4875	20	70	2.37	0.0100	0.15	0.45	0.9479
24	24	2.35	0.0097	0.15	0.50	0.6268	20	20	2.37	0.0100	0.15	0.50	0.9872
24	24	2.35	0.0097	0.15	0.55	0.7502	20	2	2.37	0.0100	0.15	0.55	0.9978
24	77	2.35	0.0097	0.15	0.60	0.8475	2 2	2 1	2.37	0.0100	0.15	0.60	0.9997
77.0	7 6	2.35	0.0097	0.15	0.00	0.9161	2 9	2 5	2.37	0.0100	0.15	0.05	1.0000
4 6	# C	2.6 2.8	0.0097	0.20	0.50	0.2020	4.0	2.5	0.0	0.0100	0.20	0.33	0.5030
2.4	2 2	2.35	0.0097	0.20	0.45	0.3157	20	2.2	2.37	0.0100	0.20	0.45	0.7989
24	24	2.35	0.0097	0.20	0.50	0.4458	20	20	2.37	0.0100	0.20	0.50	0.9250
24	24	2.35	0.0097	0.20	0.55	0.5798	20	20	2.37	0.0100	0.20	0.55	0.9800
24	24	2.35	0.0097	0.20	09.0	0.7046	20	20	2.37	0.0100	0.20	09.0	0.9964
24	24	2.35	0.0097	0.20	0.65	0.8107	7.0	20	2.37	0.0100	0.20	0.65	0.9996
								-					

Table B.12: continue on next page

Table B.12: continue on next page

ı	ı																																															
s page	power	1.0000	0.3183	0.5519	0.7699	0.9121	0.97.00	0.9905	1 0000	0.3025	0.0000	0.7569	0.9024	0.9712	0.9944	0.2981	0.5230	0.7400	0.8943	0.2857	0.5095	0.4099	0.7310	0.9182	0.9832	0.9976	1.0000	0.6704	0.0104	0.9439	0.9881	0.9983	0.9998	1.0000	1.0000	0.4779	0.7347	0.9011	0.9736	0.9951	0.9994	1 0000	0.4182	0.6722	0.8609	0.9572	0.9910	0.9988
reviou	P2	0.70	0.40	0.45	0.50	0.55	0.00	0.00	100	0.73	0.10	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.4.0 7.0.0	0.20	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.0 0.0 1.0 1.0	0.00	0.65	0.35	0.40	0.45	0.50	0.55	09.0
$_{rom\ p}$	p1	0.20	0.25	0.25	0.25	0.25	0.70	0.20	9.0 9.0	0.20	0.00	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.05	0.05	0.0 0.0 0.0	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.1.0	0.10	0.15	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0037	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0037	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097
	$\mathbf{z}_{\mathbf{p}}$	2.37	2.37	2.37	7.37	2.3	0.0	0.00	1 0	2.57	2 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.35	2.35	2.35	3.35	3.35	2.35	0.00	9 6	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.35	2.3 2.35 7.57	0.0 0.0	9 6	23.5	2.35	2.35	2.35	2.35	2.35	2.35
B.12:	$^{\mathrm{n}_{2}}$	20	20	29	2 8	2 9	19	2 2	3 5	2 2	2.5	2 2	202	20	20	20	20	20	20	20	20	80	200	200	200	200	8 8	000	8 8	8 8	80	80	80	80	80	08 8	0 0 0 0	200	200	000	8 8	8 8	8	80	80	80	80	80
Table	$^{\rm n_1}$	20	20	0 i	100	9 9	1 -	2 0	1 -	2 0	10	20	20	20	20	20	20	20	20	20	20	80	080	200	080	000	000	000	800	80	80	80	80	80	80	80	080	080	0 0 0	000	800	8	80	80	80	80	80	80
	power	0.8926	0.1081	0.1856	0.2871	0.4074	0.5551	0.0003	0.000	0.0034	0.0351	0.2607	0.3777	0.5133	0.6556	0.0886	0.1526	0.2447	0.3668	0.0821	0.1469	0.0560	0.1575	0.3098	0.4867	0.6555	0.7919	0.0071	0.2472	0.4171	0.5685	0.7053	0.8157	0.8954	0.9470	0.1345	0.2353	0.3602	0.4973	0.0020	0.7551	0.9203	0.1190	0.2040	0.3138	0.4422	0.5787	0.7100
	p2	0.70	0.40	0.45	0.50	0.55	00.0	0.00	1 - 0	0.75	0 O	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.22	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.40	0.20	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.00	9.0	0.00	0.35	0.40	0.45	0.50	0.55	09.0
	p1	0.20	0.25	0.25	0.25	0.25	0.70	0.20		0.20	0.00	0.30	0.30	0.30	0.30	0.35	0.35	0.32	0.35	0.40	0.40	0.05	0.05	0.05	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.1.0	0.10	0.15	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0037	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0033	0.0033	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0033	0.0033	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093
	$\mathbf{z}_{\mathbf{p}}$	2.35	2.35	2.35	2.35	2.35	0.00	0.00 20.00 20.00	9 C	2.00 35	9 C	2.35	2.35	2.35	2.35	2.35	2.35	2.32	2.32	2.32	2.35	2.36	2.36	2.36	2.36	2.30	2.30	00.7	2 36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	00.7	2 36	2.36	2.36	2.36	2.36	2.36	2.36	2.36
	n2	24	24	27	77.0	7 7	4 2	4 6	4 C	4 6	1 0	4.5	24	24	24	24	24	24	24	24	24	25	5.5	272		S 12	0 K	0 K	4 C	22	25	25	22	25	22	25	2 12	2.72	υς Ω μ	0 P	4 C	5.0	22	25	25	25	25	25
	$^{\rm n_1}$	24	24	24	77.7	77.0	7 0	4 C	4 C	24 24	1 0	24	24	24	24	24	24	24	24	24	24	25	5.5	272	2 2	2 2	0 K	и с С п	4 C	22	25	22	22	22	22	22	2 7	2 7	υ ς Ω π	0 L	4 C	55.5	22	25	22	22	22	22

power n1 p2 power n1 n2 power n1 p2 power n1 n2 power n1 p2 power n1 n2 pp. power n1 p2 power n1 p2 power n1 p2 p2 power n2 p3							:	2		and employed and if management	,		bade
(0.0033 (0.20) (0.55) (0.8224) (8) (8) (0.837) (0.0033) (0.20) (0.604) (0.0033) (0.20) (0.004) (0.0033) (0.20) (0.0033) (0.22) (0.70) (0.9061) (8) (0.235) (0.004) (0.1791) (8) (8) (2.35) (0.0034) (0.1791) (8) (8) (2.35) (0.0034) (0	$\mathbf{z}_{\mathbf{p}}$		pvalue	p1	p 2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{p}}$	pvalue	p1	P 2	power
0.0093 0.20 0.77 0.9061 80 2.35 0.0097 0.20 0.77 0.0093 0.25 0.45 0.1791 80 80 2.35 0.0097 0.25 0.40 0.0093 0.25 0.45 0.1791 80 80 2.35 0.0097 0.25 0.40 0.0093 0.25 0.66 0.5497 80 80 2.35 0.0097 0.25 0.60 0.0093 0.25 0.66 0.5497 80 80 2.35 0.0097 0.25 0.60 0.0093 0.25 0.76 0.5497 80 80 2.35 0.0097 0.25 0.65 0.0093 0.25 0.77 0.8243 80 80 2.35 0.0097 0.25 0.65 0.0093 0.30 0.56 0.72 0.8844 80 80 2.35 0.0097 0.30 0.55 0.0093 0.35 0.66 0.250 80	2.36		0.0093	0.20	0.65	0.8224	80	80	2.35	0.0097	0.20	0.65	0.99999
0.0093 0.25 0.40 0.1042 80 2.35 0.0097 0.25 0.40 0.0093 0.25 0.40 0.1041 80 80 2.35 0.0097 0.25 0.40 0.0093 0.25 0.56 0.4081 80 2.35 0.0097 0.25 0.40 0.0093 0.25 0.66 0.5497 80 80 2.35 0.0097 0.25 0.65 0.0093 0.25 0.66 0.5497 80 80 2.35 0.0097 0.25 0.65 0.0093 0.25 0.69 80 2.35 0.0097 0.25 0.65 0.0093 0.30 0.56 0.2650 80 80 2.35 0.0097 0.75 0.75 0.0093 0.30 0.56 0.2863 80 80 2.35 0.0097 0.75 0.75 0.0093 0.30 0.56 0.2863 80 80 2.35 0.0097 0	2.36		0.0093	0.20	0.70	0.9061	80	80	2.35	0.0097	0.20	0.70	1.0000
0.0093 0.25 0.45 0.41791 80 80 2.35 0.0097 0.025 0.45 0.1791 80 80 2.35 0.0097 0.025 0.45 0.0093 0.025 0.45 0.45 0.0093 0.025 0.65 0.45497 80 80 2.35 0.0097 0.25 0.55 0.00933 0.25 0.70 0.88119 80 80 2.35 0.0097 0.25 0.55 0.00933 0.25 0.77 0.98119 80 80 2.35 0.0097 0.25 0.75 0.0093 0.25 0.75 0.6802 80 80 2.35 0.0097 0.25 0.75 0.0093 0.30 0.66 0.2538 80 80 2.35 0.0097 0.30 0.65 0.0093 0.30 0.66 0.2538 80 80 2.35 0.0097 0.30 0.65 0.0093 0.33 0.46 0.886 80	2.36		0.0093	0.25	0.40	0.1042	80	80	2.35	0.0097	0.25	0.40	0.3747
0.0093 0.25 0.50 0.425 0.50 0.4281 8.0 8.0 2.35 0.0097 0.25 0.50 0.0093 0.25 0.65 0.4847 80 80 2.35 0.0097 0.25 0.55 0.0093 0.25 0.65 0.6602 80 80 2.35 0.0097 0.25 0.75 0.0093 0.25 0.77 0.8119 80 80 2.35 0.0097 0.25 0.75 0.0093 0.23 0.56 0.1641 80 80 2.35 0.0097 0.25 0.75 0.0093 0.30 0.55 0.1641 80 80 2.35 0.0097 0.75 0.65 0.0093 0.30 0.55 0.1687 80 80 2.35 0.0097 0.75 0.65 0.867 80 80 2.35 0.0097 0.75 0.65 0.8867 80 80 2.35 0.0097 0.75 0.66 0	2.3		0.0093	0.25	0.45	0.1791	80	80	2.35	0.0097	0.25	0.45	0.6237
0.0093 0.25 0.25 0.25 0.25 0.25 0.05 0.4407 8.0 8.0 2.55 0.0097 0.25 0.05	20.00		0.0093	0.25	0.50	0.2814	08	200	2.35	0.0097	0.25	0.50	0.8301
0.0093 0.25 0.65 0.745 0.89 0.23 0.0097 0.25 0.70 0.0093 0.25 0.76 0.8119 80 2.35 0.0097 0.25 0.70 0.0093 0.25 0.77 0.8119 80 2.35 0.0097 0.25 0.77 0.0093 0.30 0.45 0.0933 80 2.35 0.0097 0.23 0.0097 0.25 0.70 0.0093 0.30 0.56 0.2698 80 2.35 0.0097 0.30 0.45 0.0093 0.30 0.66 0.5388 80 80 2.35 0.0097 0.30 0.70 0.0093 0.35 0.56 0.0580 80 2.35 0.0097 0.30 0.70 0.0093 0.35 0.56 0.0580 80 2.35 0.0097 0.30 0.75 0.0093 0.35 0.56 0.0580 80 2.35 0.0097 0.30 0.75 <td>4 0</td> <td></td> <td>0.0033</td> <td>0.00</td> <td>0.00</td> <td>0.4001</td> <td>000</td> <td>000</td> <td>0.00</td> <td>0.0097</td> <td>0.40</td> <td>0.00</td> <td>0.9460</td>	4 0		0.0033	0.00	0.00	0.4001	000	000	0.00	0.0097	0.40	0.00	0.9460
0.0033 0.25 0.75 0.8119 80 80 2.35 0.0097 0.25 0.75 0.0033 0.25 0.75 0.0024 80 2.35 0.0097 0.25 0.75 0.0033 0.25 0.75 0.0024 80 2.35 0.0097 0.25 0.75 0.0033 0.30 0.45 0.1641 80 80 2.35 0.0097 0.30 0.45 0.0033 0.30 0.46 0.5388 80 80 2.35 0.0097 0.30 0.55 0.0033 0.30 0.46 0.5388 80 80 2.35 0.0097 0.30 0.55 0.0033 0.35 0.56 0.0867 80 80 2.35 0.0097 0.30 0.55 0.0033 0.35 0.56 0.1584 80 80 2.35 0.0097 0.35 0.55 0.0033 0.35 0.66 0.390 80 2.35 0.	4 c	0 (0.0093	0.20	0.00	0.5497	00	000	0.00 2.00 2.00	0.0097	0.20	0.00	0.9000
0.0033 0.25 0.75 0.9024 80 2.35 0.0097 0.25 0.75 0.0033 0.30 0.45 0.0934 80 2.35 0.0097 0.30 0.45 0.0033 0.30 0.45 0.0933 80 2.35 0.0097 0.30 0.55 0.0033 0.30 0.56 0.2550 80 2.35 0.0097 0.30 0.55 0.0033 0.30 0.66 0.0388 80 80 2.35 0.0097 0.30 0.55 0.0033 0.35 0.56 0.1584 80 80 2.35 0.0097 0.30 0.55 0.0033 0.35 0.56 0.1584 80 80 2.35 0.0097 0.30 0.55 0.0033 0.35 0.66 0.2460 80 2.35 0.0097 0.35 0.66 0.0033 0.40 0.55 0.1267 80 80 2.35 0.0097 0.35	10	ي د	0.003	20.0	0.00	0.0302	8 8	8 8	2 6	0.0097	0.25	0.00	0 9999
0.0093 0.30 0.45 0.0933 80 2.35 0.0097 0.30 0.45 0.0093 0.30 0.45 0.053 80 2.35 0.0097 0.30 0.45 0.0093 0.30 0.50 0.16541 80 80 2.35 0.0097 0.30 0.45 0.0093 0.30 0.70 0.6884 80 80 2.35 0.0097 0.30 0.75 0.0093 0.35 0.50 0.0880 80 2.35 0.0097 0.30 0.75 0.0093 0.35 0.50 0.0880 80 2.35 0.0097 0.30 0.75 0.0093 0.35 0.65 0.2600 80 2.35 0.0097 0.35 0.65 0.0093 0.35 0.65 0.3907 80 2.35 0.0097 0.35 0.65 0.0098 0.05 0.154 80 80 2.35 0.0097 0.35 0.45 <	10	2 9	0.0093	0.25	0.75	0.9024	80	8 8	2.35	0.0097	0.25	0.75	1.0000
0.0093 0.30 0.55 0.1641 80 80 2.35 0.0097 0.30 0.55 0.0093 0.30 0.65 0.5398 80 2.35 0.0097 0.30 0.55 0.0093 0.30 0.65 0.5398 80 80 2.35 0.0097 0.30 0.65 0.0093 0.35 0.50 0.6884 80 80 2.35 0.0097 0.30 0.65 0.0093 0.35 0.50 0.0580 80 2.35 0.0097 0.30 0.55 0.0093 0.35 0.66 0.2600 80 2.35 0.0097 0.30 0.55 0.0093 0.40 0.55 0.0867 80 2.35 0.0097 0.40 0.55 0.0098 0.40 0.56 0.248 90 90 2.34 0.0097 0.40 0.55 0.0098 0.10 0.248 90 90 2.34 0.0097 0.40 <th< td=""><td>2</td><td>36</td><td>0.0093</td><td>0.30</td><td>0.45</td><td>0.0933</td><td>80</td><td>80</td><td>2.35</td><td>0.0097</td><td>0.30</td><td>0.45</td><td>0.3484</td></th<>	2	36	0.0093	0.30	0.45	0.0933	80	80	2.35	0.0097	0.30	0.45	0.3484
0.0093 0.30 0.55 0.2650 80 2.35 0.0097 0.30 0.55 0.0093 0.30 0.65 0.2338 80 80 2.35 0.0097 0.30 0.56 0.0093 0.30 0.66 0.53388 80 80 2.35 0.0097 0.30 0.70 0.0093 0.35 0.56 0.1584 80 80 2.35 0.0097 0.30 0.70 0.0093 0.35 0.66 0.2600 80 2.35 0.0097 0.35 0.60 0.0093 0.35 0.66 0.0867 80 2.35 0.0097 0.35 0.65 0.0093 0.40 0.66 0.1574 80 80 2.35 0.0097 0.40 0.0098 0.05 0.1574 80 80 2.35 0.0097 0.05 0.25 0.0098 0.05 0.22 0.0097 0.0097 0.005 0.005 0.0098	2	36	0.0093	0.30	0.50	0.1641	80	80	2.35	0.0097	0.30	0.50	0.6018
0.0093 0.30 0.66 0.3338 80 80 2.35 0.0097 0.30 0.66 0.0093 0.30 0.65 0.5398 80 80 2.35 0.0097 0.30 0.66 0.0093 0.35 0.56 0.6880 80 80 2.35 0.0097 0.30 0.66 0.0093 0.35 0.66 0.1884 80 80 2.35 0.0097 0.35 0.56 0.0093 0.35 0.66 0.3907 80 80 2.35 0.0097 0.35 0.66 0.0093 0.35 0.66 0.3248 80 80 2.35 0.0097 0.35 0.66 0.0098 0.00 0.2248 90 90 2.34 0.0097 0.05 0.00 0.0098 0.05 0.25 0.1639 90 90 2.34 0.0097 0.05 0.00 0.0098 0.10 0.25 0.1669 90 90 <td>2</td> <td>36</td> <td>0.0093</td> <td>0.30</td> <td>0.55</td> <td>0.2650</td> <td>80</td> <td>80</td> <td>2.35</td> <td>0.0097</td> <td>0.30</td> <td>0.55</td> <td>0.8190</td>	2	36	0.0093	0.30	0.55	0.2650	80	80	2.35	0.0097	0.30	0.55	0.8190
0.0093 0.30 0.65 0.5398 80 80 235 0.0097 0.30 0.65 0.0093 0.32 0.50 0.6854 80 80 2.35 0.0097 0.30 0.70 0.0093 0.35 0.55 0.1884 80 80 2.35 0.0097 0.35 0.50 0.0093 0.35 0.66 0.2600 80 80 2.35 0.0097 0.35 0.55 0.0093 0.40 0.55 0.0867 80 80 2.35 0.0097 0.35 0.55 0.0093 0.40 0.55 0.0867 80 80 2.35 0.0097 0.05 0.55 0.55 0.0097 0.00 0	2	36	0.0093	0.30	09.0	0.3938	80	80	2.35	0.0097	0.30	09.0	0.9421
0.0093 0.36 0.70 0.6854 80 83 2.35 0.0097 0.35 0.70 0.0093 0.35 0.56 0.0886 80 80 2.35 0.0097 0.35 0.70 0.0093 0.35 0.56 0.2800 80 80 2.35 0.0097 0.35 0.65 0.0093 0.35 0.66 0.2804 80 80 2.35 0.0097 0.35 0.65 0.0093 0.40 0.66 0.1574 80 80 2.35 0.0097 0.35 0.65 0.0098 0.05 0.15 0.1063 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.25 0.3758 90 90 2.34 0.0097 0.05 0.25 0.0098 0.05 0.35 0.5416 90 90 2.34 0.0097 0.05 0.25 0.0098 0.05 0.35 0.256 90 </td <td>ς.</td> <td>36</td> <td>0.0093</td> <td>0.30</td> <td>0.65</td> <td>0.5398</td> <td>80</td> <td>80</td> <td>2.35</td> <td>0.0097</td> <td>0.30</td> <td>0.65</td> <td>0.9877</td>	ς.	36	0.0093	0.30	0.65	0.5398	80	80	2.35	0.0097	0.30	0.65	0.9877
0.0093 0.35 0.50 0.0880 80 235 0.0097 0.35 0.50 0.0093 0.35 0.55 0.1584 80 80 2.35 0.0097 0.35 0.50 0.0093 0.35 0.66 0.3907 80 80 2.35 0.0097 0.35 0.66 0.0093 0.35 0.66 0.3907 80 80 2.35 0.0097 0.35 0.65 0.0098 0.05 0.15 0.1063 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.20 0.2248 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.35 0.6669 90 90 2.34 0.0097 0.05 0.10 0.0098 0.10 0.25 0.1689 90 90 2.34 0.0097 0.10 0.25 0.0098 0.10 0.25 0.1689 90 90 2.34	α.	36	0.0093	0.30	0.70	0.6854	80	80	2.35	0.0097	0.30	0.70	0.9984
0.0093 0.35 0.1584 80 80 2.35 0.0097 0.35 0.56 0.0093 0.35 0.66 0.2607 80 80 2.35 0.0097 0.35 0.56 0.0093 0.35 0.66 0.2607 80 80 2.35 0.0097 0.35 0.56 0.0093 0.40 0.55 0.0867 80 80 2.35 0.0097 0.40 0.56 0.0098 0.05 0.15 0.248 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.25 0.378 90 90 2.34 0.0097 0.05 0.25 0.0098 0.05 0.35 0.4669 90 90 2.34 0.0097 0.05 0.35 0.0098 0.10 0.25 0.1899 90 90 2.34 0.0097 0.05 0.35 0.0098 0.10 0.25 0.1899 90 90	ς,	36	0.0093	0.35	0.50	0.0880	80	80	2.35	0.0097	0.35	0.50	0.3446
0.0003 0.35 0.60 0.2600 80 80 2.35 0.0097 0.35 0.65 0.0093 0.43 0.65 0.3807 80 80 2.35 0.0097 0.35 0.65 0.0093 0.40 0.65 0.1574 80 80 2.35 0.0097 0.40 0.65 0.0098 0.05 0.15 0.1683 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.20 0.375 0.376 0.90 0.234 0.0097 0.05 0.20 0.0098 0.05 0.30 0.5416 90 90 2.34 0.0097 0.05 0.25 0.0098 0.05 0.45 0.966 90 90 2.34 0.0097 0.05 0.45 0.0098 0.10 0.25 0.455 0.966 90 90 2.34 0.0097 0.05 0.40 0.0098 0.10 0.25 0	c,	36	0.0093	0.35	0.55	0.1584	80	80	2.35	0.0097	0.35	0.55	0.5981
0.00093 0.35 0.65 0.3807 80 2.35 0.0097 0.35 0.65 0.0093 0.40 0.55 0.0867 80 80 2.35 0.0097 0.40 0.55 0.0098 0.05 0.15 0.1663 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.20 0.2748 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.25 0.236 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.45 0.9056 90 90 2.34 0.0097 0.05 0.35 0.0098 0.05 0.45 0.9056 90 90 2.34 0.0097 0.05 0.40 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.35 0.4451 90 90<	ςį	36	0.0093	0.35	09.0	0.2600	80	80	2.35	0.0097	0.35	09.0	0.8161
0.00093 0.440 0.55 0.0867 80 2.35 0.0007 0.05 0.00093 0.440 0.66 0.1574 80 80 2.35 0.0097 0.40 0.56 0.0098 0.05 0.15 0.248 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.25 0.2416 90 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.35 0.6669 90 90 2.34 0.0097 0.05 0.35 0.0098 0.05 0.46 0.8268 90 90 2.34 0.0097 0.05 0.35 0.0098 0.10 0.25 0.1699 90 90 2.34 0.0097 0.05 0.45 0.0098 0.10 0.25 0.1699 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.35 0.4451 90 90 2.	7	.36	0.0093	0.35	0.65	0.3907	80	80	2.35	0.0097	0.35	0.65	0.9411
0.0093 0.40 0.60 0.1574 80 80 2.35 0.0097 0.40 0.60 0.0098 0.05 0.15 0.163 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.25 0.3758 90 90 2.34 0.0097 0.05 0.20 0.0098 0.05 0.30 0.5416 90 90 2.34 0.0097 0.05 0.20 0.0098 0.05 0.35 0.46 0.8208 90 90 2.34 0.0097 0.05 0.35 0.0098 0.05 0.45 0.9656 90 90 2.34 0.0097 0.05 0.45 0.0098 0.10 0.25 0.451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.35 0.4451 90<	7	.36	0.0093	0.40	0.55	0.0867	80	80	2.35	0.0097	0.40	0.55	0.3458
0.0098 0.05 0.15 0.1063 90 2.34 0.0097 0.05 0.15 0.0098 0.05 0.25 0.2248 90 90 2.34 0.0097 0.05 0.20 0.0098 0.05 0.25 0.2416 90 90 2.34 0.0097 0.05 0.35 0.0098 0.05 0.35 0.6969 90 90 2.34 0.0097 0.05 0.35 0.0098 0.05 0.45 0.9056 90 90 2.34 0.0097 0.05 0.40 0.0098 0.01 0.32 0.4451 90 90 2.34 0.0097 0.10 0.40 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.40 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.40 0.0098 0.10 0.45 0.90 90 2.34<	CJ	.36	0.0093	0.40	09.0	0.1574	80	80	2.35	0.0097	0.40	09.0	0.5976
0.0098 0.05 0.20 0.2448 90 90 2.34 0.0097 0.05 0.25 0.0098 0.05 0.25 0.3416 90 90 2.34 0.0097 0.05 0.25 0.0098 0.05 0.35 0.6669 90 90 2.34 0.0097 0.05 0.35 0.0098 0.05 0.45 0.8268 90 90 2.34 0.0097 0.05 0.35 0.0098 0.10 0.25 0.1689 90 90 2.34 0.0097 0.05 0.35 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.45 0.7312 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.45 0.7312 90<	7	.34	0.0098	0.02	0.15	0.1063	90	06	2.34	0.0097	0.02	0.15	0.4697
0.0098 0.05 0.25 0.3788 90 90 2:34 0.0097 0.05 0.35 0.0098 0.05 0.35 0.6969 90 2:34 0.0097 0.05 0.30 0.0098 0.05 0.35 0.6969 90 90 2:34 0.0097 0.05 0.30 0.0098 0.05 0.40 0.8208 90 90 2:34 0.0097 0.05 0.45 0.0098 0.10 0.25 0.1699 90 90 2:34 0.0097 0.10 0.45 0.0098 0.10 0.45 0.751 90 90 2:34 0.0097 0.10 0.45 0.0098 0.10 0.45 0.7312 90 90 2:34 0.0097 0.10 0.45 0.0098 0.10 0.45 0.7323 90 90 2:34 0.0097 0.10 0.45 0.0098 0.10 0.56 0.90 90 2:34 </td <td>CJ</td> <td>.34</td> <td>0.0098</td> <td>0.02</td> <td>0.20</td> <td>0.2248</td> <td>90</td> <td>06</td> <td>2.34</td> <td>0.0097</td> <td>0.02</td> <td>0.20</td> <td>0.7954</td>	CJ	.34	0.0098	0.02	0.20	0.2248	90	06	2.34	0.0097	0.02	0.20	0.7954
0.0098 0.05 0.34 0.0097 0.05 0.35 0.0098 0.05 0.35 0.340 9.94 2.34 0.0097 0.05 0.35 0.0098 0.05 0.45 0.8208 90 90 2.34 0.0097 0.05 0.45 0.0098 0.05 0.45 0.9056 90 90 2.34 0.0097 0.05 0.45 0.0098 0.10 0.25 0.4451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.45 0.7386 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.45 0.5869 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9108 90 2.34 0.0097 0.10 0.45	01 0	.34	0.0098	0.05	0.25	0.3758	06	06	2.34	0.0097	0.05	0.25	0.9500
0.0098 0.05 0.35 0.6999 90 2.34 0.0097 0.05 0.45 0.0098 0.05 0.45 0.9056 90 90 2.34 0.0097 0.05 0.40 0.0098 0.10 0.25 0.1689 90 90 2.34 0.0097 0.01 0.45 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.46 0.567 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.46 0.5869 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9108 90 90 2.34 0.0097 0.10 0.45 0.0098 0.15 0.36 0.945 90 90 <td>.N (</td> <td>24.</td> <td>0.0098</td> <td>0.02</td> <td>0.30</td> <td>0.5416</td> <td>06</td> <td>96</td> <td>2.34</td> <td>0.0097</td> <td>0.05</td> <td>0.30</td> <td>0.9920</td>	.N (24.	0.0098	0.02	0.30	0.5416	06	96	2.34	0.0097	0.05	0.30	0.9920
0.0098 0.05 0.440 0.8208 90 2.34 0.0097 0.05 0.440 0.0098 0.05 0.45 0.1699 90 2.34 0.0097 0.05 0.45 0.0098 0.10 0.25 0.1699 90 2.34 0.0097 0.10 0.25 0.0098 0.10 0.35 0.2567 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.45 0.7312 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.45 0.7321 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9108 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.35 0.215 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.55 0.9158 90 90 2.34	.4	3.34	0.0098	0.05	0.35	0.6969	90	06	2.34	0.0097	0.05	0.35	0.9992
0.0098 0.10 0.45 0.9056 90 2.34 0.0097 0.05 0.05 0.0098 0.10 0.25 0.4451 90 90 2.34 0.0097 0.10 0.25 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.45 0.7325 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.45 0.7325 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9569 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.91869 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.35 0.2515 90 90 2.34 0.0097 0.10 0.45 0.0098 0.15 0.35 0.2515 90 90	. 4 (2.34	0.0098	0.05	0.40	0.8208	06	06 8	2.34	0.0097	0.05	0.40	0.9999
0.0098 0.10 0.25 0.1299 90 2.34 0.0097 0.10 0.25 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.30 0.0098 0.10 0.35 0.4451 90 90 2.34 0.0097 0.10 0.30 0.0098 0.10 0.40 0.5869 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.56 0.8369 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9108 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.30 0.1457 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.35 0.2515 90 90 2.34 0.0097 0.15 0.36 0.0098 0.15 0.45 0.5215 90 90<	4 (45.5	0.0098	0.05	0.45	0.9056	06	98	45.54	0.0097	0.05	0.45	1.0000
0.0098 0.10 0.30 0.2957 90 2.34 0.0097 0.11 0.35 0.0098 0.10 0.35 0.7312 90 90 2.34 0.0097 0.10 0.35 0.0098 0.10 0.45 0.7312 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9108 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9168 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.66 0.9569 90 2.34 0.0097 0.10 0.50 0.0098 0.15 0.40 0.3815 90 90 2.34 0.0097 0.15 0.30 0.0098 0.15 0.40 0.3815 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.40 0.3815 90 90 2.3	. 4 (2.34	0.0098	0.10	0.25	0.1699	90	98	2.34	0.0097	0.10	0.25	0.6310
0.0098 0.10 0.35 0.4451 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.45 0.7312 90 90 2.34 0.0097 0.10 0.46 0.0098 0.10 0.45 0.7312 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.56 0.9569 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.65 0.9569 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.35 0.2345 90 90 2.34 0.0097 0.15 0.35 0.0098 0.15 0.45 0.5224 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.45 0.5224 90 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.65 0.5231 90 90<	. 4	3.34	0.0098	0.10	0.30	0.2957	06	96	2.34	0.0097	0.10	0.30	0.8640
0.0098 0.10 0.440 0.5967 90 2.34 0.0097 0.10 0.40 0.0098 0.10 0.45 0.8369 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9108 90 90 2.34 0.0097 0.10 0.55 0.0098 0.10 0.55 0.9108 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.36 0.2515 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.35 0.2515 90 90 2.34 0.0097 0.15 0.30 0.0098 0.15 0.45 0.5224 90 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.45 0.5224 90 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.55 0.7783 90 90	. 4	34	0.0098	0.10	0.35	0.4451	90	06	2.34	0.0097	0.10	0.35	0.9667
0.0098 0.10 0.45 0.7532 90 90 2.34 0.0097 0.10 0.45 0.0098 0.10 0.55 0.9108 90 90 2.34 0.0097 0.10 0.50 0.0098 0.10 0.56 0.9168 90 90 2.34 0.0097 0.10 0.50 0.0098 0.15 0.36 0.255 90 90 2.34 0.0097 0.10 0.50 0.0098 0.15 0.40 0.3815 90 90 2.34 0.0097 0.15 0.30 0.0098 0.15 0.40 0.3815 90 90 2.34 0.0097 0.15 0.30 0.0098 0.15 0.45 0.6591 90 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.55 0.7783 90 90 2.34 0.0097 0.15 0.55 0.0098 0.15 0.65 0.7783 90 </td <td>• • •</td> <td>2.34</td> <td>0.0098</td> <td>0.10</td> <td>0.40</td> <td>0.5967</td> <td>06</td> <td>06 8</td> <td>2.34</td> <td>0.0097</td> <td>0.10</td> <td>0.40</td> <td>0.9946</td>	• • •	2.34	0.0098	0.10	0.40	0.5967	06	06 8	2.34	0.0097	0.10	0.40	0.9946
0.0098 0.10 0.550 9.8335 9.0 2.34 0.0097 0.10 0.55 0.0098 0.10 0.55 0.9569 90 90 2.34 0.0097 0.10 0.55 0.0098 0.11 0.56 0.9569 90 90 2.34 0.0097 0.10 0.55 0.0098 0.15 0.35 0.245 90 90 2.34 0.0097 0.15 0.35 0.0098 0.15 0.45 0.524 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.45 0.524 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.45 0.5234 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.66 0.8714 90 90 2.34 0.0097 0.15 0.65 0.0098 0.15 0.66 0.8714 90 90 </td <td>4 0</td> <td>2.54</td> <td>0.0098</td> <td>0.10</td> <td>0.45</td> <td>0.7312</td> <td>06</td> <td>S 8</td> <td>45.54</td> <td>0.0097</td> <td>0.10</td> <td>0.45</td> <td>1.0004</td>	4 0	2.54	0.0098	0.10	0.45	0.7312	06	S 8	45.54	0.0097	0.10	0.45	1.0004
0.0098 0.10 0.55 0.9169 90 2.34 0.0097 0.10 0.55 0.0098 0.10 0.60 0.465 90 90 2.34 0.0097 0.10 0.50 0.0098 0.15 0.35 0.2515 90 90 2.34 0.0097 0.15 0.35 0.0098 0.15 0.45 0.5224 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.45 0.5224 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.45 0.5291 90 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.65 0.6591 90 90 2.34 0.0097 0.15 0.55 0.0098 0.15 0.65 0.9553 90 90 2.34 0.0097 0.15 0.65 0.0098 0.15 0.65 0.9553 90 90 </td <td>4 0</td> <td>40.0</td> <td>0.0098</td> <td>0.10</td> <td>0.00</td> <td>0.8309</td> <td>06</td> <td>8 8</td> <td>40.0</td> <td>0.0097</td> <td>0.10</td> <td>0.00</td> <td>1.0000</td>	4 0	40.0	0.0098	0.10	0.00	0.8309	06	8 8	40.0	0.0097	0.10	0.00	1.0000
0.0098 0.15 0.36 9.9 2.34 0.0097 0.10 0.00 0.0098 0.15 0.36 0.215 90 90 2.34 0.0097 0.15 0.36 0.0098 0.15 0.45 0.524 90 90 2.34 0.0097 0.15 0.36 0.0098 0.15 0.45 0.524 90 90 2.34 0.0097 0.15 0.36 0.0098 0.15 0.56 0.7783 90 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.56 0.7783 90 90 2.34 0.0097 0.15 0.55 0.0098 0.15 0.65 0.7783 90 90 2.34 0.0097 0.15 0.65 0.0098 0.15 0.65 0.9353 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.45 0.335 0.127 90 90	•	9.0	0.0030	0.10	00.00	0.9108	000	000	0.0	0.0097	0.10	0.00	1.0000
0.0098 0.15 0.20 0.1451 90 90 2.34 0.0097 0.15 0.15 0.0098 0.15 0.46 0.3815 90 90 2.34 0.0097 0.15 0.35 0.0098 0.15 0.45 0.5224 90 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.45 0.5244 90 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.60 0.8714 90 90 2.34 0.0097 0.15 0.50 0.0098 0.15 0.60 0.8714 90 90 2.34 0.0097 0.15 0.65 0.0098 0.15 0.60 0.8714 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.35 0.90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.46 0.2173 90 90 2.34<	4 6	4.0	0.0030	0.10	00.00	0.9369	000	8 8	4 c	0.0097	0.10	0.00	0.0000
0.0098 0.15 0.45 0.2315 90 90 2.34 0.0097 0.11 0.13 0.35 0.0098 0.15 0.45 0.5224 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.45 0.5234 90 90 2.34 0.0097 0.15 0.40 0.0098 0.15 0.50 0.6531 90 90 2.34 0.0097 0.15 0.50 0.0098 0.15 0.60 0.8714 90 90 2.34 0.0097 0.15 0.60 0.0098 0.15 0.65 0.9873 90 90 2.34 0.0097 0.15 0.60 0.0098 0.20 0.43 0.0097 0.15 0.65 0.65 0.0098 0.20 0.40 0.2173 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.46 0.2173 90 90 2.34<	4 0	7 7	0.0030	0.0	0.00	0.140	06	200	3.0	0.0037	0.1	000	1000
0.0098 0.15 0.45 0.2244 9 0.234 0.0097 0.15 0.45 0.0098 0.15 0.45 0.4524 9 90 2.34 0.0097 0.15 0.45 0.0098 0.15 0.55 0.7783 90 90 2.34 0.0097 0.15 0.55 0.0098 0.15 0.65 0.8734 90 90 2.34 0.0097 0.15 0.55 0.0098 0.15 0.65 0.9353 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.45 0.177 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.40 90 2.34 0.0097 0.20 0.35 0.0098 0.20 0.45 0.3335 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.45 0.3335 90 90 2.34 0.0097<	4 6	4.0	0.0030	0.1.0	0.00	0.2515	00	000	0.0	0.0097	0.15	0.00	0.7912
0.0098 0.15 0.45 0.5254 90 2.34 0.0097 0.13 0.45 0.0098 0.15 0.56 0.7783 90 90 2.34 0.0097 0.15 0.50 0.0098 0.15 0.65 0.7783 90 90 2.34 0.0097 0.15 0.50 0.0098 0.15 0.65 0.9373 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.35 0.1270 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.46 0.2173 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.46 0.2173 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.45 0.3335 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.46 4.96 90 2.34<	M C	40.	0.0098	0.15	0.40	0.3815	06	G 8	45.5	0.0097	0.10	0.40	0.9343
0.0098 0.15 0.50 0.73831 90 90 2.34 0.0097 0.113 0.50 0.0098 0.15 0.55 0.8714 90 90 2.34 0.0097 0.15 0.55 0.0098 0.15 0.65 0.9333 90 90 2.34 0.0097 0.15 0.65 0.0098 0.15 0.65 0.9333 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.40 0.2173 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.45 0.3335 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.45 0.3335 90 90 2.34 0.0097 0.20 0.45 0.0098 0.20 0.56 0.4684 90 90 2.34 0.0097 0.20 0.45 0.0098 0.20 0.55 0.4684 9	A C	40.	0.0098	0.15	0.45	0.5224	06	8 8	4.0.0	0.0097	0.15	0.40	0.9861
0.0098 0.15 0.50 0.4753 90 90 2.34 0.0097 0.13 0.53 0.0098 0.15 0.65 0.9553 90 90 2.34 0.0097 0.15 0.66 0.0098 0.15 0.65 0.9353 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.40 0.2173 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.45 0.3335 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.45 0.3335 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.45 0.408 90 90 2.34 0.0097 0.20 0.45 0.0098 0.20 0.456 90 90 2.34 0.0097 0.20 0.45 0.0098 0.20 0.55 0.6694 90 90	A C	40.	0.0038	0.1.0	0.00	0.0591	06	8 8	40.0	0.0097	0.10	0.00	0.9991
0.0098 0.15 0.40 0.5114 90 90 2.34 0.0097 0.13 0.01 0.0098 0.15 0.65 0.1270 90 90 2.34 0.0097 0.15 0.65 0.0098 0.20 0.46 0.2173 90 90 2.34 0.0097 0.20 0.35 0.0098 0.20 0.46 0.2173 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.45 0.3335 90 90 2.34 0.0097 0.20 0.45 0.0098 0.20 0.56 0.4684 90 90 2.34 0.0097 0.20 0.55 0.0098 0.20 0.55 0.6694 90 2.34 0.0097 0.20 0.55	4 C		0.0030	0.1.0	0.00	0.772	000	8 8	40.0	0.0097	0.10	0.00	1.0000
0.0098 0.20 0.35 0.2573 90 90 2.34 0.0097 0.20 0.35 0.0098 0.20 0.45 0.2773 90 90 2.34 0.0097 0.20 0.35 0.0098 0.20 0.45 0.2173 90 90 2.34 0.0097 0.20 0.40 0.45 0.0098 0.20 0.45 0.464 90 90 2.34 0.0097 0.20 0.45 0.0098 0.20 0.55 0.4684 90 90 2.34 0.0097 0.20 0.45 0.0098 0.20 0.55 0.6094 90 90 2.34 0.0097 0.20 0.55 0.50	4 C		0.0030	0.1.0	0.00	0.00/14	000	2 2	40.0	0.0097	0.1.0	0.00	1.0000
0.0098 0.20 0.40 0.2173 90 90 2.34 0.0097 0.20 0.40 0.0098 0.20 0.40 0.40 0.0098 0.20 0.45 0.40 0.0098 0.20 0.45 0.45 0.0098 0.20 0.45 0.45 0.40 0.0098 0.20 0.45 0.46 0.40 0.0098 0.20 0.45 0.46 0.40 0.0098 0.20 0.45 0.46 0.40 0.0098 0.20 0.55 0.46 0.40 0.234 0.0097 0.20 0.55 0.0098 0.20 0.55 0.40 0.40 0.0097 0.20 0.55 0.0098 0.20 0.55 0.40 0.40 0.40 0.20 0.20 0.25 0.40 0.40 0.20 0.20 0.20 0.25 0.40 0.40 0.20 0.20 0.20 0.25 0.20 0.25 0.20 0.20	4 C		0.0030	0.10	0.00	0.9555	000	8 8	40.0	0.0097	0.1.0	0.00	0.0000
0.0038 0.20 0.45 0.21113 30 0.2.34 0.0031 0.20 0.45 0.0038 0.20 0.45 0.3335 90 90 2.34 0.0037 0.20 0.45 0.0038 0.20 0.50 0.50 0.50 0.6034 90 90 2.34 0.0037 0.20 0.55 0.6034 90 90 2.34 0.0037 0.20 0.55	4 C		0.0030	0.20	0.00	0.1270	000	8 8	40.0	0.0097	0.20	0.00	0.4090
0.0038 0.20 0.55 0.6034 90 90 2.34 0.0037 0.20 0.55 0.0038 0.20 0.55 0.6034 90 90 2.34 0.0037 0.20 0.55	4 C		0.0038	0.20	0.40	0.217.0	06	8 8	4.0.0	0.0097	0.20	0.40	0.7320
0.0098 0.20 0.55 0.6094 90 90 2.34 0.0097 0.20 0.55	4 C		0.0030	0.20	 	0.0000	06	8 8	4 c	0.0097	02.0	 	0.9030
	1 C	. K	0.0098	0.20	0.50	0.4084	06	86	2.6	0.0097	0.20	0.00	0.9962

Table B.12: continue on next page

Table B.12: continue on next page

		ı																																											
is page	power	0.9996	1.0000	0.4295	0.6912	0.8784	0.9674	0.9945	1 0000	1.0000	0.3967	0.6591	0.8632	0.9635	0.9959	0.3830	0.6507	0.8596	0.9626	0.3827	0.6497	0.5281	0.8462	0.9700	0.9964	1.0000	1.0000	0.6899	0.9026	0.9806	0.9976	1.0000	1.0000	1.0000	0.5886	0.8379	0.9577	0.9929	1.0000	1,0000	1.0000	0.5206	0.7835	0.9343	0.3012
revion	p2	09.0	0.65	0.40	0.45	0.50	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	100	0.70	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.70	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.40	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.60	0.65	0.35	0.40	0.45	0.00
rom p	\mathbf{p}_1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.70	0.25	0.30	0.30	0.30	0.30	0.00	0.50	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.00	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0037	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0035
: -con	$\mathbf{z}_{\mathbf{p}}$	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.54	2.34	2.34	2.34	2.34	2.34	4 c	2.04	2.34	2.34	2.34	2.34	2.34	2.34	2.34	45.54	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	40.7 40.0	2.34	2.34	2.34	2.34	2.34	4.04
B.12:	$^{\rm n_2}$	06	3 8	8 6	06	06	06	3 8	8 8	8 6	06	06	06	3 8	200	8 6	06	06	06	90	90	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	nnt
Table	1	06	06	06	90	06	06	000	06	06	90	06	06	06	000	06	06	06	90	90	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	OOT
	power	0.7411	0.8490	0.3248	0.1926	0.3032	0.4385	0.5856	0.720	0.9222	0.1015	0.1799	0.2903	0.4279	0.0700	0.7224	0.1764	0.2874	0.4259	0.0978	0.1761	0.0678	0.1795	0.3300	0.6760	0.8088	0.9009	0.1475	0.2719	0.4271	0.5902	0.8470	0.9211	0.9644	0.1338	0.2449	0.3852	0.5367	0.6800	0.8899	0.9480	0.1264	0.2241	0.3498	0.4332
	p2	09.0	0.65	0.40	0.45	0.50	0.55	0.00	0.00	0.75	0.45	0.50	0.55	0.60	3 6	0.70	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.70	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.60	0.65	0.35	0.40	0.45	00.0
	p1	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.00	0.00	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.00	0.03	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20
	pvalue	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
	$\mathbf{z}_{\mathbf{p}}$	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.04	2.34	2.34	2.34	2.34	2.34	4.0	2.04	2.34	2.34	2.34	2.34	2.34	2.37	2.37	7.0	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.07	2.37	2.37	2.37	2.37	2.37	70.7
	$^{\mathrm{n}_{2}}$	26	97.0	7 7 7 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	26	56	26	97.0	96	26	26	56	26	97.0	0 0	9 6	26	26	56	56	56	27	27	1 0	27	27	27	27	27	24	2 7.	27	27	27	27	27	27	27	1 0	2 2	22	27	27	27.5	4
	$^{\mathrm{1}}\mathrm{u}$	26	97.0	7 7 8	26	26	26	97.0	26	26	26	26	26	97.	0 0	200	26	26	56	56	26	27	27	1 7	2 7 2	27	27	27	27	27	2 7.0	27	27	27	27	27	27	27	7 6	27	27	27	27	2 7.7	14

0.6392 100 1334 0.00999 0.20 0.555 0.5984 0.7774 100 100 2.34 0.00999 0.20 0.55 0.5984 0.7774 100 100 2.34 0.0099 0.20 0.77 1.0000 0.1170 100 100 2.34 0.0099 0.25 0.45 0.0099 0.1170 100 100 2.34 0.0099 0.25 0.45 0.7453 0.2626 100 100 2.34 0.0099 0.25 0.50 0.313 0.6264 100 100 2.34 0.0099 0.25 0.59 0.25 0.29 0.6264 100 100 2.34 0.0099 0.25 0.59 0.39 0.6264 100 100 2.34 0.0099 0.25 0.59 0.39 0.6264 100 100 2.34 0.0099 0.25 0.47 0.0099 0.103 100	$\mathbf{z}_{\mathbf{p}}$
100 100 2.3.4 0.0099 0.02 0.04 100 100 2.3.4 0.0099 0.20 0.70 100 100 2.3.4 0.0099 0.25 0.44 100 100 2.3.4 0.0099 0.25 0.45 100 100 2.3.4 0.0099 0.25 0.45 100 100 2.3.4 0.0099 0.25 0.55 100 100 2.3.4 0.0099 0.25 0.55 100 100 2.3.4 0.0099 0.25 0.55 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4	0.55
100 100 2.3.4 0.0099 0.20 0.70 100 100 2.3.4 0.0099 0.25 0.44 100 100 2.3.4 0.0099 0.25 0.45 100 100 2.3.4 0.0099 0.25 0.45 100 100 2.3.4 0.0099 0.25 0.55 100 100 2.3.4 0.0099 0.25 0.65 100 100 2.3.4 0.0099 0.25 0.65 100 100 2.3.4 0.0099 0.25 0.65 100 100 2.3.4 0.0099 0.20 0.70 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4	2.37 0.0100 0.20 0.65
100 2.3.4 0.0099 0.025 0.45 100 100 2.3.4 0.0099 0.25 0.45 100 100 2.3.4 0.0099 0.25 0.55 100 100 2.3.4 0.0099 0.25 0.50 100 100 2.3.4 0.0099 0.25 0.50 100 100 2.3.4 0.0099 0.25 0.50 100 100 2.3.4 0.0099 0.25 0.70 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.	2.37 0.0100 0.20 0.70
100 100 2.3.4 0.0099 0.25 0.55 100 100 2.3.4 0.0099 0.25 0.55 100 100 2.3.4 0.0099 0.25 0.55 100 100 2.3.4 0.0099 0.25 0.60 100 100 2.3.4 0.0099 0.25 0.70 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.30 0.45 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4	2.37 0.0100 0.25 0.45
100 100 2.34 0.0099 0.25 0.55 100 100 2.34 0.0099 0.25 0.55 100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.30 0.65 100 100 2.34 0.0099 0.30 0.65 100 100 2.34 0.0099 0.30 0.65 100 100 2.34 0.0099 0.30 0.65 100 100 2.34 0.0099 0.35 0.55 100 100 2.34 0.0099 0.35 0.55 100 100 2.34 0.0099 0.35 0.55 100 100 2.34	2.37 0.0100 0.25 0.50
100 100 2.3.4 0.0099 0.25 0.05 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.25 0.75 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.05 0.40 110 100 2.3.4	2.37 0.0100 0.25 0.55 2.37 0.0100 0.25 0.60
100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.35 0.60 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.05 0.15 120 120 2.34 0.0099 0.05 0.15 120 120 2.34	2.37 0.0100 0.25 0.65
100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.25 0.75 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.35 0.50 100 100 2.34 0.0099 0.35 0.50 100 100 2.34 0.0099 0.35 0.60 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.05 0.25 100 100 2.34 0.0099 0.05 0.25 120 150 2.34 0.0099 0.05 0.25 150 150 2.34	2.37 0.0100 0.25
100 100 2.34 0.0099 0.30 0.45 100 100 2.34 0.0099 0.30 0.45 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.70 100 100 2.34 0.0099 0.35 0.55 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.05 0.15 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099	2.37 0.0100
100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.55 100 100 2.34 0.0099 0.30 0.66 100 100 2.34 0.0099 0.30 0.70 100 100 2.34 0.0099 0.35 0.50 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.05 0.15 150 2.34 0.0099 0.05 0.15 150 2.34 0.0099 0.05 0.15 150 2.34 0.0099 0.05 0.35 150 2.34 0.0099 0.01 0.25 150 2.34 0.0099 0.01 0.02 150	2.37 0.0100 0.30
100 100 2.3.4 0.0099 0.30 0.66 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.65 100 100 2.3.4 0.0099 0.04 0.55 100 100 2.3.4 0.0099 0.05 0.15 150 150 2.3.4 0.0099 0.05 0.35 150 150 2.3.4 0.0099 0.05 0.35 150 150 2.3.4 0.0099 0.05 0.35 150 150 2.3.4 0.0099 0.05 0.35 150 150 2.3.4	2.37 0.0100 0.30
100 100 2.3.4 0.0099 0.33 0.65 100 100 2.3.4 0.0099 0.30 0.65 100 100 2.3.4 0.0099 0.35 0.50 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.55 100 100 2.3.4 0.0099 0.35 0.65 100 100 2.3.4 0.0099 0.40 0.65 150 150 2.3.4 0.0099 0.05 0.15 150 150 2.3.4 0.0099 0.05 0.25 150 150 2.3.4 0.0099 0.05 0.40 150 150 2.3.4 0.0099 0.05 0.40 150 150 2.3.4 0.0099 0.05 0.40 150 150 2.3.4 0.0099 0.01 0.02 150 150 2.3.4	2.37 0.0100 0.30
100 100 2.34 0.0099 0.30 0.70 100 100 2.34 0.0099 0.35 0.50 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.35 0.60 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.40 0.65 150 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.25 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.40 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34	2.37 0.0100 0.30 0.65
100 100 2.3.4 0.0099 0.053 0.53 100 100 2.3.4 0.0099 0.35 0.65 100 100 2.3.4 0.0099 0.35 0.65 100 100 2.3.4 0.0099 0.35 0.65 100 100 2.3.4 0.0099 0.05 0.15 150 150 2.3.4 0.0099 0.05 0.15 150 150 2.3.4 0.0099 0.05 0.25 150 150 2.3.4 0.0099 0.05 0.25 150 150 2.3.4 0.0099 0.05 0.45 150 150 2.3.4 0.0099 0.05 0.45 150 150 2.3.4 0.0099 0.10 0.25 150 150 2.3.4 0.0099 0.10 0.45 150 150 2.3.4 0.0099 0.10 0.45 150 150 2.3.	2.37 0.0100 0.30 0.70
100 100 2.34 0.0099 0.35 0.60 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.35 0.65 150 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.12 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.01 0.40 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34	2.37 0.0100 0.35
100 100 2.34 0.0099 0.35 0.65 100 100 2.34 0.0099 0.40 0.55 150 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34	2.37 0.0100 0.35 0.60
100 100 2.34 0.0099 0.40 0.55 100 150 2.34 0.0099 0.40 0.60 150 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.25 150 150 2.34 0.0099 0.05 0.25 150 150 2.34 0.0099 0.05 0.30 150 150 2.34 0.0099 0.05 0.40 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.25 150 150 2.34 0.0099 0.10 0.40 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.40 150 150 2.34 0.0099 0.10 0.45 150 150 2.34	2.37 0.0100 0.35 0.65
100 100 2.34 0.0099 0.40 0.60 150 150 2.34 0.0099 0.04 0.60 150 150 2.34 0.0099 0.05 0.25 150 150 2.34 0.0099 0.05 0.25 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.40 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.25 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34	2.37 0.0100 0.40 0.55
150 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.15 150 150 2.34 0.0099 0.05 0.20 150 150 2.34 0.0099 0.05 0.20 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.40 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.25 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.40 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 0.34 0.0099 0.20 0.45 150 150 0.34 0.0099 0.20 0.45 150 150 0.34 0.0099 0.20 0.45 150 150 0.34 0.0099 0.20 0.45 150 150 0.34 0	2.37 0.0100 0.40 0.60
150 150 2.34 0.0099 0.05 0.25 150 150 2.34 0.0099 0.05 0.25 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.40 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.25 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.40 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150	28 2.41 0.0091 0.05 0.15
150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.25 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 0.45 150 150 0.45 150 0.45 150 0.45 150 0.45 150 0.4	2.41 0.0091 0.05 0.25
150 150 2.34 0.0099 0.05 0.35 150 150 2.34 0.0099 0.05 0.40 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.25 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.50 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45	0.0091 0.05 0.30
150 150 2.34 0.0099 0.05 0.40 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.40 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.45 150 150 150 15	2.41 0.0091 0.05
150 150 2.34 0.0099 0.05 0.45 150 150 2.34 0.0099 0.10 0.25 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.40 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 0.45 150 150 0.45 150 150 0.45 150 150 0.45 150 150 0.45	2.41 0.0091 0.05
130 2.34 0.0099 0.10 0.23 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.40 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.60 150 150 2.34 0.0099 0.15 0.60 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150	2.41 0.0091 0.05
130 130 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.35 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.50 150 150 2.34 0.0099 0.10 0.50 150 150 2.34 0.0099 0.10 0.50 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.50 150 150 2.34 0.0099 0.15 0.50 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20	8 2.41 0.0091 0.10 0.25
150 150 2.34 0.0099 0.10 0.40 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 2.34 0.0099 0.20 150 150 150 150 0.20 150 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 150 0.45 150 150 0.4	0.0091 0.10
150 150 2.34 0.0099 0.10 0.45 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.10 0.65 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.50 150 150 2.34 0.0099 0.15 0.50 150 150 2.34 0.0099 0.15 0.50 150 150 2.34 0.0099 0.15 0.60 150 150 2.34 0.0099 0.15 0.60 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 0.45 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150	2.41 0.0091 0.10
150 150 2.34 0.0099 0.10 0.50 150 150 2.34 0.0099 0.10 0.55 150 150 2.34 0.0099 0.10 0.65 150 150 2.34 0.0099 0.15 0.30 150 150 2.34 0.0099 0.15 0.35 150 150 2.34 0.0099 0.15 0.40 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.60 150 150 2.34 0.0099 0.15 0.60 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150	2.41 0.0091 0.10
150 150 2.34 0.1099 0.10 0.55 150 150 2.34 0.1099 0.110 0.55 150 150 2.34 0.1099 0.15 0.30 150 150 2.34 0.1099 0.15 0.35 150 150 2.34 0.1099 0.15 0.45 150 150 2.34 0.1099 0.15 0.45 150 150 2.34 0.1099 0.15 0.55 150 150 2.34 0.1099 0.15 0.55 150 150 2.34 0.1099 0.15 0.60 150 150 2.34 0.1099 0.15 0.60 150 150 2.34 0.1099 0.20 0.35 150 150 2.34 0.1099 0.20 0.35 150 150 2.34 0.1099 0.20 0.35 150 150 2.34 0.1099 0.20 0.45 150 150 2.34 0.1099 0.20 0.45 150 150 2.34 0.1099 0.20 0.45 150 150 2.34 0.1099 0.20 0.45 150 150 2.34 0.1099 0.20 0.45 150 150 2.34 0.1099 0.20 0.45 150 150 2.34 0.1099 0.20 0.45 150 150 2.34 0.1099 0.20 0.45 150 150 2.34 0.1099 0.20 0.45 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 1	2.41 0.0091 0.10
150 150 2.34 0.0099 0.110 0.100	0.0091
150 150 2.34 0.0099 0.15 0.35	2.41 0.0091 0.10
150 150 2.34 0.0099 0.15 0.45 0.40 150 150 2.34 0.0099 0.15 0.40 150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.40 150 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.45 150	0.0091 0.15
150 150 2.34 0.0099 0.15 0.45 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.60 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.30 150 150 2.34 0.0099 0.20 0.40	2.41 0.0091 0.15 0.35 3.41 0.0001 0.1E 0.40
130 150 2.34 0.0099 0.15 0.50 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.40	0.0091 0.13 0.40
130 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.55 150 150 2.34 0.0099 0.15 0.60 150 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.30 150 150 2.34 0.0099 0.20 0.40	2.41 0.0091 0.15 0.45
150 150 2.34 0.0099 0.15 0.60 150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.20 0.35 150 150 2.34 0.0099 0.20 0.40 150 150 2.34 0.0099 0.20 0.40	0.0031 0.15
150 150 2.34 0.0099 0.15 0.65 150 150 2.34 0.0099 0.20 0.45 150 2.34 0.0099 0.20 0.45 150 150 2.34 0.0099 0.20 0.40 150 150 2.34 0.0099 0.20 0.45	2.41 0.0031 0.13
150 150 2.34 0.0099 0.20 0.40 150 150 2.34 0.0099 0.20 0.40 150 150 2.34 0.0099 0.20 0.45	2.41 0.0031 0.13
150 150 2.34 0.0099 0.20 0.40 150 150 2.34 0.0099 0.20 0.45	2.41 0.0091 0.15
150 150 2.34 0.0099 0.20 0.45	2.41 0.0091 0.20
	0.0091 0.20

Table B.12: continue on next page

	7.17	ď2	pvalue	h1	P2	bower	$^{\mathrm{n}_{1}}$	112	Zρ	pvalue	P1	P2	power
28	28	2.41	0.0091	0.20	0.50	0.5004	150	150	2.34	0.0099	0.20	0.50	0.9994
80	28	2.41	0.0091	0.20	0.55	0.6529	150	150	2.34	0.0099	0.20	0.55	1.0000
80	28	2.41	0.0091	0.20	09.0	0.7838	150	150	2.34	0.0099	0.20	09.0	1.0000
80	28	2.41	0.0091	0.20	0.65	0.8805	150	150	2.34	0.0099	0.20	0.65	1.0000
00	28	2.41	0.0091	0.20	0.70	0.9425	150	150	2.34	0.0099	0.20	0.70	1.0000
00	28	2.41	0.0091	0.25	0.40	0.1136	150	150	2.34	0.0099	0.25	0.40	0.6728
00	28	2.41	0.0091	0.25	0.45	0.2073	150	150	2.34	0.0099	0.25	0.45	0.9076
00	28	2.41	0.0091	0.25	0.50	0.3339	150	150	2.34	0.0099	0.25	0.50	0.9864
<u>∞</u>	28	2.41	0.0091	0.25	0.55	0.4807	150	150	2.34	0.0099	0.25	0.55	0.9990
00	28	2.41	0.0091	0.25	0.60	0.6287	150	150	2.34	0.0099	0.25	09.0	1.0000
00	28	2.41	0.0091	0.25	0.65	0.7600	150	150	2.34	0.0099	0.25	0.65	1.0000
28	28	2.41	0.0091	0.25	0.70	0.8638	150	150	2.34	0.0099	0.25	0.70	1.0000
00	28	2.41	0.0091	0.25	0.75	0.9357	150	150	2.34	0.0099	0.25	0.75	1.0000
00	28	2.41	0.0091	0.30	0.45	0.1119	150	150	2.34	0.0099	0.30	0.45	0.6413
00	28	2.41	0.0091	0.30	0.50	0.2007	150	150	2.34	0.0099	0.30	0.50	0.8911
00	28	2.41	0.0091	0.30	0.55	0.3193	150	150	2.34	0.0099	0.30	0.55	0.9816
00	28	2.41	0.0091	0.30	09.0	0.4589	150	150	2.34	0.0099	0.30	09.0	0.9985
00	28	2.41	0.0091	0.30	0.65	0.6068	150	150	2.34	0.0099	0.30	0.65	0.9999
00	28	2.41	0.0091	0.30	0.70	0.7475	150	150	2.34	0.0099	0.30	0.70	1.0000
00	28	2.41	0.0091	0.35	0.50	0.1080	150	150	2.34	0.0099	0.35	0.50	0.6121
00	28	2.41	0.0091	0.35	0.55	0.1906	150	150	2.34	0.0099	0.35	0.55	0.8726
<u>∞</u>	28	2.41	0.0091	0.35	09.0	0.3046	150	150	2.34	0.0099	0.35	09.0	0.9783
00	28	2.41	0.0091	0.35	0.65	0.4474	150	150	2.34	0.0099	0.35	0.65	0.9983
<u>∞</u>	28	2.41	0.0091	0.40	0.55	0.1027	150	150	2.34	0.0099	0.40	0.55	0.5944
00	28	2.41	0.0091	0.40	0.60	0.1848	150	150	2.34	0.0099	0.40	09.0	0.8684

Table B.13: P-values calculated for the z-unpooled statistic in cases of different sample sizes, $\alpha = 0.05$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

n_1	n_2	$\mathbf{z_u}$	p	pvalue
10	20	2.24	0.2119	0.0427
10	30	2.74	0.2087	0.0427
10	40	3.17	0.2132	0.0445
10	50	3.54	0.2171	0.0463
10	60	3.88	0.2197	0.0479
10	70	4.19	0.2214	0.0494
10	80	4.65	0.2338	0.0430
10	90	4.91	0.2335	0.0448
10	100	5.16	0.2332	0.0464
20	30	1.87	0.4135	0.0412
20	40	2.14	0.1048	0.0467
20	50	2.36	0.1069	0.0480
20	60	2.59	0.1067	0.0486
20	70	2.79	0.1079	0.0498
20	80	3.19	0.1194	0.0385
20	90	3.36	0.1194	0.0405
20	100	3.52	0.1194	0.0423
30	40	1.79	0.2770	0.0459
30	50	1.84	0.2094	0.0468
30	60	2.08	0.0714	0.0489
30	70	2.33	0.0750	0.0427
30	80	2.55	0.0782	0.0387
30	90	2.76	0.0810	0.0359
30	100	2.75	0.0748	0.0462
40	50	1.78	0.2003	0.0442
40	60	1.86	0.3169	0.0381
40	70	1.79	0.3262	0.0473
40	80	2.1	0.0540	0.0500
40	90	2.31	0.0577	0.0402
40	100	2.52	0.0526	0.0498

Table B.13: concluded from previous page

Table B.14: P-values calculated for the z-unpooled statistic in cases of different sample sizes, $\alpha = 0.025$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

n_1	n_2	$\mathbf{z_u}$	p	pvalue
10	20	2.59	0.2478	0.0242
10	30	3.31	0.2569	0.0185
10	40	3.66	0.2529	0.0235
10	50	4.20	0.2668	0.0211
10	60	4.48	0.2624	0.0247
10	70	4.93	0.2713	0.0230
10	80	5.34	0.2781	0.0218
10	90	5.56	0.2735	0.0245
10	100	5.93	0.2787	0.0234
20	30	2.30	0.3053	0.0209
20	40	2.66	0.1430	0.0171
20	50	2.86	0.1388	0.0208
20	60	3.04	0.1331	0.0236
20	70	3.42	0.1419	0.0191
20	80	3.58	0.1397	0.0219
20	90	3.73	0.1380	0.0244
20	100	4.04	0.1450	0.0212
30	40	2.21	0.1329	0.0236
30	50	2.36	0.1012	0.0200
30	60	2.59	0.0980	0.0188
30	70	2.79	0.0977	0.0183
30	80	2.99	0.0982	0.0180
30	90	3.17	0.0977	0.0177
30	100	3.15	0.0909	0.0245
40	50	2.05	0.3855	0.0245
40	60	2.06	0.3861	0.0249
40	70	2.33	0.0802	0.0246
40	80	2.55	0.0749	0.0198
40	90	2.76	0.0754	0.0171
40	100	2.75	0.0690	0.0227

Table B.14: concluded from previous page

Table B.15: P-values calculated for the z-unpooled statistic in cases of different sample sizes, $\alpha = 0.01$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

n_1	n_2	$\mathbf{z_u}$	p	pvalue
10	20	3.29	0.3138	0.0071
10	30	3.88	0.3056	0.0077
10	40	4.39	0.3116	0.0085
10	50	4.86	0.3159	0.0092
10	60	5.28	0.3187	0.0097
10	70	5.86	0.3328	0.0083
10	80	6.21	0.3328	0.0089
10	90	6.55	0.3327	0.0094
10	100	6.86	0.3326	0.0098
20	30	2.74	0.2031	0.0085
20	40	3.11	0.1540	0.0097
20	50	3.32	0.1644	0.0085
20	60	3.68	0.1703	0.0077
20	70	3.92	0.1642	0.0100
20	80	4.12	0.1701	0.0092
20	90	4.42	0.1747	0.0087
20	100	4.69	0.1786	0.0083
30	40	2.50	0.4129	0.0097
30	50	2.86	0.1391	0.0068
30	60	3.04	0.1253	0.0072
30	70	3.22	0.1207	0.0078
30	80	3.39	0.1154	0.0081
30	90	3.55	0.1151	0.0088
30	100	3.70	0.1144	0.0093
40	50	2.50	0.2674	0.0091
40	60	2.62	0.1579	0.0096
40	70	2.79	0.1016	0.0090
40	80	2.99	0.0969	0.0079
40	90	3.17	0.0934	0.0073
40	100	3.34	0.0928	0.0070

Table B.15: concluded from previous page

 $\alpha = 0.05$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in Table B.16: Achieved power and p-values calculated for the z-unpooled statistic in cases of different sample sizes, the first sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test.

T	112	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_1	P 2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P2	power
10	20	2.24	0.0427	0.05	0.15	0.1023	20	06	3.36	0.0405	0.02	0.15	0.2907
10	20	2.24	0.0427	0.05	0.20	0.2249	20	06	3.36	0.0405	0.02	0.20	0.3622
10	20	2.24	0.0427	0.02	0.25	0.3633	20	06	3.36	0.0405	0.05	0.25	0.4454
10	20	2.24	0.0427	0.02	0.30	0.4926	20	90	3.36	0.0405	0.02	0.30	0.6045
10	20	2.24	0.0427	0.05	0.35	0.6043	20	06	3.36	0.0405	0.05	0.35	0.7496
10	20	2.24	0.0427	0.02	0.40	0.7000	20	90	3.36	0.0405	0.02	0.40	0.8544
10	20	2.24	0.0427	0.02	0.45	0.7820	20	06	3.36	0.0405	0.02	0.45	0.9255
10	20	2.24	0.0427	0.10	0.25	0.2201	20	06	3.36	0.0405	0.10	0.25	0.1843
10	20	2.24	0.0427	0.10	0.30	0.3108	20	90	3.36	0.0405	0.10	0.30	0.3045
10	20	2.24	0.0427	0.10	0.35	0.4034	20	06	3.36	0.0405	0.10	0.35	0.4406
10	20	2.24	0.0427	0.10	0.40	0.4989	20	90	3.36	0.0405	0.10	0.40	0.5825
10	20	2.24	0.0427	0.10	0.45	0.5956	20	06	3.36	0.0405	0.10	0.45	0.7141
10	20	2.24	0.0427	0.10	0.50	0.6886	20	06	3.36	0.0405	0.10	0.50	0.8222
10	20	2.24	0.0427	0.10	0.55	0.7727	20	90	3.36	0.0405	0.10	0.55	0.9019
10	20	2.24	0.0427	0.10	09.0	0.8440	20	06	3.36	0.0405	0.10	09.0	0.9530
10	20	2.24	0.0427	0.15	0.30	0.1909	20	06	3.36	0.0405	0.15	0.30	0.1352
10	20	2.24	0.0427	0.15	0.35	0.2618	20	90	3.36	0.0405	0.15	0.35	0.2229
10	20	2.24	0.0427	0.15	0.40	0.3438	20	06	3.36	0.0405	0.15	0.40	0.3374
10	20	2.24	0.0427	0.15	0.45	0.4355	20	06	3.36	0.0405	0.15	0.45	0.4682
10	20	2.24	0.0427	0.15	0.50	0.5327	20	06	3.36	0.0405	0.15	0.50	0.6046
10	20	2.24	0.0427	0.15	0.55	0.6299	20	90	3.36	0.0405	0.15	0.55	0.7327
10	20	2.24	0.0427	0.15	09.0	0.7221	20	06	3.36	0.0405	0.15	09.0	0.8389
10	20	2.24	0.0427	0.15	0.65	0.8038	20	06	3.36	0.0405	0.15	0.65	0.9144
10	20	2.24	0.0427	0.20	0.35	0.1647	20	90	3.36	0.0405	0.20	0.35	0.1002
10	20	2.24	0.0427	0.20	0.40	0.2288	20	06	3.36	0.0405	0.20	0.40	0.1712
10	20	2.24	0.0427	0.20	0.45	0.3064	20	90	3.36	0.0405	0.20	0.45	0.2673
10	20	2.24	0.0427	0.20	0.50	0.3953	20	06	3.36	0.0405	0.20	0.50	0.3879
10	20	2.24	0.0427	0.20	0.55	0.4923	20	06	3.36	0.0405	0.20	0.55	0.5247
10	20	2.24	0.0427	0.20	09.0	0.5923	20	90	3.36	0.0405	0.20	09.0	0.6633
10	20	2.24	0.0427	0.20	0.65	0.6889	20	06	3.36	0.0405	0.20	0.65	0.7847
10	20	2.24	0.0427	0.20	0.70	0.7750	20	06	3.36	0.0405	0.20	0.70	0.8780
10	20	2.24	0.0427	0.25	0.40	0.1469	20	06	3.36	0.0405	0.25	0.40	0.0772
10	20	2.24	0.0427	0.25	0.45	0.2074	20	06	3.36	0.0405	0.25	0.45	0.1349
10	20	2.24	0.0427	0.25	0.50	0.2819	20	90	3.36	0.0405	0.25	0.50	0.2194
10	20	2.24	0.0427	0.25	0.55	0.3693	20	06	3.36	0.0405	0.25	0.55	0.3323
10	20	2.24	0.0427	0.25	09.0	0.4662	20	06	3.36	0.0405	0.25	09.0	0.4675
10	20	2.24	0.0427	0.25	0.65	0.5665	20	90	3.36	0.0405	0.25	0.65	0.6088
10	20	2.24	0.0427	0.25	0.70	0.6626	20	06	3.36	0.0405	0.25	0.70	0.7410
10	20	2.24	0.0427	0.25	0.75	0.7488	20	90	3.36	0.0405	0.25	0.75	0.8509
10	20	2.24	0.0427	0.30	0.45	0.1349	20	06	3.36	0.0405	0.30	0.45	0.0605
10	20	2.24	0.0427	0.30	0.50	0.1931	20	06	3.36	0.0405	0.30	0.50	0.1100
10	20	2.24	0.0427	0.30	0.55	0.2659	20	06	3.36	0.0405	0.30	0.55	0.1866
10	20	2.24	0.0427	0.30	0.60	0.3518	20	06	3.36	0.0405	0.30	09.0	0.2930
10	20	2.24	0.0427	0.30	0.65	0.4462	20	06	3.36	0.0405	0.30	0.65	0.4232

Table B.16: continue on next page

page	power	0.5683	0.0490	0.0929	0.1629	0.0408	0.0800	0.3000	0.3615	0.4368	0.5976	0.7365	0.8367	0.3155	0.2959	0.4185	0.5510	0.6852	0.7982	0.8843	0.9415	0.1288	0.2042	0.3001	0.5688	0.6984	0.8100	0.8952	0.0885	0.1511	0.2394	0.3522	0.6204	0.7501	0.8561	0.0659	0.1165	0.1918	0.2938	0.4212	0.5648	0.7005	0.8253	0.0304	0.1581	0.2535
revious	P2	0.70	0.50	0.55	0.60	0.00	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.40 70 70	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.70	0.40	0.00	09.0
from p	\mathbf{p}_{1}	0.30	0.35	0.35	0.35	0.33	0.40	0.02	0.02	0.02	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.1.0	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30
-continued from previous page	pvalue	0.0405	0.0405	0.0405	0.0405	0.0405	0.0405	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423
	$\mathbf{z}_{\mathbf{n}}$	3.36	3.36	3.36	3.36	3.36	3.36	3.52	3.52	3.52	3.52	3.52	20.5	0.00 40.00	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	20.0	30.02	3.52	3.52	3.52	3.52	3.52	3.52	3.52	20.0	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52 5.52	3 0.02	0 00	3.52
B.16:	$^{\mathrm{n}_{2}}$	06	06	06 8	G 6	G 6	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$^{\rm n_1}$	20	20	20	0.70	20	20	20	20	20	20	20	07.0	0 0	20	20	20	20	20	20	07.0	0 70	0 0	200	20	20	20	20	20	20	20	07.0	20	20	20	20	20	20	50	50	50	07.0	0.00	070	000	20
	power	0.5430	0.1267	0.1833	0.2539	0.1205	0.1746	0.0914	0.2356	0.3929	0.5159	0.6036	0.6790	0.7305	0.3086	0.3775	0.4549	0.5465	0.6422	0.7293	0.8035	0.1794	0.2230	0.2950	0.4706	0.5629	0.6522	0.7370	0.1354	0.1847	0.2507	0.3281	0.5020	0.5958	0.6884	0.1113	0.1590	0.2180	0.2871	0.3675	0.4582	0.5552	0.6544	0.0903	0 1905	0.2560
	p2	0.70	0.50	0.55	0.60	0.00	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.4.0 7.0.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.00	0.60	0.65	0.70	0.40	0.45	0.50	0.52	0.60	0.65	0.70	0.75	0.40	0 0	09.0
	p1	0.30	0.35	0.35	0.35	0.50	0.40	0.02	0.02	0.02	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.1.0	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	07.0	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.00	0.30	0.30
	pvalue	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427
	$\mathbf{z}_{\mathbf{u}}$	2.24	2.24	2.24	2.24	2.24	2.24	2.74	2.74	2.74	2.74	2.74	7.7	7 7 7	2.74	2.74	2.74	2.74	2.74	2.74	47.7	2.74	7 7	47.6	2.74	2.74	2.74	2.74	2.74	2.74	2.74	7.7	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	4.7.7	4.7.0	7.77	2.74	2.74
	$^{\mathrm{n}_{2}}$	20	20	50	200	2 0	202	30	30	30	30	30	30	300	30	30	30	30	30	30	98	200	000	300	30	30	30	30	30	30	30	30	9 %	30	30	30	30	30	30	30	9 80	30	30 80	300	30	308
	$\mathbf{n_1}$	10	10	10	10	1 1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	07	10	10	10	10	10	10	10	10	10	10	107	10	10	10	10	10	10	10	10	10	10	10	10	10	10

Table B.16: continue on next page

Table B.16: continue on next page

	. 1																																																	
s $page$	power	0.3797	0.5267	0.0394	0.0752	0.1351	0.2270	0.0316	0.0635	0.3765	0.5828	0.7641	0.8863	0.9532	0.9837	0.9953	0.4713	0.6573	0.8070	0.9061	0.9606	0.9857	0.9956	0.9989	0.4167	0.5962	0.7514	0.8645	0.9355	0.9737	0.9911	0.9975	0.3824	0.5492	0.7042	0.8284	0.9137	0.9631	0.9869	0.9963	0.3520	0.5117	0.6694	0.8023	0.8977	0.9554	0.9045	0.3298	0.4865	0.6462
reviou	p2	0.65	0.70	0.20	0.55	0.60	0.65	0.22	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.45	0.20	0.55	0.60	0.00	0.70	0.45	0.50	0.55
rom p	p1	0.30	0.30	0.32	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.70	0.30	0.30	0.30
Table B.16: -continued from previous page	pvalue	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0423	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459	0.0459
	$\mathbf{z}_{\mathbf{n}}$	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.73	1.79	1.79	1.79	1.79
B.16.	$^{\mathrm{n}_{2}}$	100	100	100	100	100	100	100	100	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	04.5	40	40	40
Table	$^{\rm n_1}$	20	20	20	50	20	20	20	20	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	power	0.3352	0.4265	0.0830	0.1201	0.1695	0.2331	0.0717	0.1063	0.0811	0.2436	0.4194	0.5342	0.5921	0.6360	0.6979	0.2444	0.3124	0.3522	0.3969	0.4713	0.5704	0.6681	0.7483	0.1772	0.2035	0.2409	0.3073	0.3977	0.4910	0.5770	0.6615	0.1139	0.1417	0.1930	0.2642	0.3413	0.4200	0.5068	0.5987	0.0804	0.1165	0.1674	0.2252	0.2900	0.3080	0.4555	0.0672	0.1009	0.1411
	p ₂	0.65	0.70	0.20	0.55	0.60	0.65	0.22	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.00	0.70	0.45	0.50	0.55
	p1	0.30	0.30	0.32	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.52	0.25	0.25	0.25	0.25	0.20	0.30	0.30	0.30
	pvalue	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445	0.0445
	$\mathbf{z}_{\mathbf{n}}$	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17 2.17	9.17	3.17	3.17	3.17
	$^{\mathrm{n}_{2}}$	30	30	30	30	30	30	30	30	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40
	$^{\rm n_1}$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	01	07	01	10	10	10	10	10	10	10	10	01	10	10	10	10

3.17 3.17 3.17 3.17 3.17	pvalue	\mathbf{p}_{1}	D 2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_1	P 2	power
3.17	0.0445	0.30	09.0	0.1902	30	40	1.79	0.0459	0:30	0.60	0.7855
3.17	0.0445	0.30	0.65	0.2534	30	40	1.79	0.0459	0.30	0.65	0.8887
3.17	0.0445	0.30	0.70	0.3281	30	40	1.79	0.0459	0.30	0.70	0.9522
3.17	0.0445	0.35	0.50	0.0576	30	40	1.79	0.0459	0.35	0.50	0.3152
	0.0445	0.35	0.55	0.0838	30	40	1.79	0.0459	0.35	0.55	0.4706
3.17	0.0445	0.35	0.60	0.1182	30	40	1.79	0.0459	0.35	0.60	0.6334
3.17	0.0445	0.35	0.65	0.1653	30	40	1.79	0.0459	0.35	0.65	0.7785
3.17	0.0445	0.40	0.55	0.0469	30	40	1.79	0.0459	0.40	0.55	0.3066
0.T.0	0.0445	0.40	0.00	0.0093	000	0 1 7	1.7	0.0453	0.40	0.00	0.4033
0 0 0 7 1 7	0.0403	0.00	0.00	0.0716	200	8 2	0.00	0.0408	0.00	0.10	0.4029
0.0 4.7 4.7	0.0463	0.0	0.20	0.2433	000	0 0	40.1	0.0400	0.00	0.40	0.0220
0 0 0 7 1 7 1 7	0.0463	0.00	0.20	0.4410	000	20.00	1.0 4.0 4.0 4.0	0.0468	0.00	0.23	0.9031
3.54	0.0463	0.05	0.35	0.5923	30	20.00	1.84	0.0468	0.05	0.35	0.9700
3.74	0.0463	0.05	0.30	0.6155	30	20.5	2 8	0.0468	0.05	0.30	0.9908
3.54	0.0463	0.05	0.45	0.6606	30	20	1.84	0.0468	0.05	0.45	0.9975
3.54	0.0463	0.10	0.25	0.2573	30	20	1.84	0.0468	0.10	0.25	0.5116
3.54	0.0463	0.10	0.30	0.3215	30	20	1.84	0.0468	0.10	0.30	0.7006
3.54	0.0463	0.10	0.35	0.3470	30	20	1.84	0.0468	0.10	0.35	0.8378
3.54	0.0463	0.10	0.40	0.3701	30	20	1.84	0.0468	0.10	0.40	0.9226
3.54	0.0463	0.10	0.45	0.4248	30	20	1.84	0.0468	0.10	0.45	0.9683
3.54	0.0463	0.10	0.50	0.5209	30	20	1.84	0.0468	0.10	0.50	0.9892
3.54	0.0463	0.10	0.55	0.6281	30	20	1.84	0.0468	0.10	0.55	0.9970
3.54	0.0463	0.10	0.60	0.7087	30	20	1.84	0.0468	0.10	0.60	0.9994
3.54	0.0463	0.15	0.30	0.1817	30	20.2	4.8	0.0468	0.15	0.30	0.4419
0.0 7.74	0.0463	0.10	0.00	0.1972	300	00.00	4.0	0.0400	0.1.0	0.00	0.0140
5 K	0.0463	0.10	0.40	0.25104	8 8	20.00	20.1	0.0468	0.5	0.40	0.2750
5 K	0.0463	0.15	0.50	0.3514	300	20.00	2 8	0.0468	0.10	0.50	0.9440
3.54	0.0463	0.15	0.55	0.4485	30	20	1.84	0.0468	0.15	0.55	0.9792
3.54	0.0463	0.15	09.0	0.5252	30	20	1.84	0.0468	0.15	09.0	0.9938
3.54	0.0463	0.15	0.65	0.5890	30	20	1.84	0.0468	0.15	0.65	0.9986
3.54	0.0463	0.20	0.35	0.1084	30	20	1.84	0.0468	0.20	0.35	0.3823
3.54	0.0463	0.20	0.40	0.1225	30	20	1.84	0.0468	0.20	0.40	0.5509
3.54	0.0463	0.20	0.45	0.1602	30	20	1.84	0.0468	0.20	0.45	0.7120
3.54	0.0463	0.20	0.50	0.2269	30	20	1.84	0.0468	0.20	0.50	0.8407
3.54	0.0463	0.20	0.55	0.3027	30	20	1.84	0.0468	0.20	0.55	0.9258
0.04 F 7	0.0463	0.20	0.00	0.3059	90	00 10	1.04	0.0468	0.20	0.00	0.9710
0.0 7.7.4	0.0463	0.20	0.00	0.4271	300	20.00	6. 1	0.0400	0.20	0.00	0.9912
3.54	0.0463	0.25	0.40	0.0670	30	20	8.1	0.0468	0.25	0.40	0.3451
3.54	0.0463	0.25	0.45	0.0932	30	20	1.84	0.0468	0.25	0.45	0.5136
3.54	0.0463	0.25	0.50	0.1400	30	20	1.84	0.0468	0.25	0.50	0.6819
3.54	0.0463	0.25	0.55	0.1936	30	20	1.84	0.0468	0.25	0.55	0.8211
3.54	0.0463	0.25	09.0	0.2409	30	20	1.84	0.0468	0.25	09.0	0.9149
3.54	0.0463	0.25	0.65	0.2932	30	20	1.84	0.0468	0.25	0.65	0.9661
3.54	0.0463	0.25	0.70	0.3712	30	20	1.84	0.0468	0.25	0.70	0.9890
3.54	0.0463	0.25	0.75	0.4660	30	20	1.84	0.0468	0.25	0.75	0.9973
3.54	0.0463	0.30	0.45	0.0521	30	20	1.84	0.0468	0.30	0.45	0.3267

Table B.16: continue on next page

Table B.16: continue on next page

s page	power	0.6676	0.8093	0.9063	0.3206	0.4880	0.6562	0.7993	0.3155	0.9745	0.6076	0.7988	0.9134	0.9682	0.9900	0.4836	0.6719	0.8170	0.9114	0.9638	0.9880	0.0000	0.3986	0.5736	0.7335	0.8577	0.9367	0.9766	0.3920	0.3366	0.5066	0.6787	0.8196	0.9132	0.9090	0.9973	0.3006	0.4692	0.6418	0.7885	0.8942	0.9569	0.0066	0.2809
reviou	p2	0.55	0.60	0.65	0.50	0.55	0.60	0.65	0.55	0.00	0.20	0.25	0.30	0.32	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.00	0.70	0.40	0.45	0.50	0.55	0.60	0.65	7.0	0.45
$from \ p$	p1	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.03	0.05	0.02	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.T.O	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	20.0	0.30
-continued from previous page	pvalue	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0469	0.0469	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0469	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489
	$\mathbf{z}_{\mathbf{u}}$	1.84	1.84	48. I 48. L	1.84	1.84	1.84	1.84	1.84	40.0	2.08	2.08	2.08	2.08	00.7	2.08	2.08	2.08	2.08	2.08	2.08	00.7	2.00	2.08	2.08	2.08	2.08	2.08	00.7	2.08	2.08	2.08	2.08	20.0	00.7	2.08	2.08	2.08	2.08	2.08	2.08	2.08	20:00 00:00	2.08
B.16:	$_{\rm n_2}$	20	20	20 20	20	20	20	20	200	200	8 9	09	09	09	8 8	09	09	09	09	09	99	8 9	8 9	09	09	09	09	09	9	99	09	09	9 8	09	90	09	09	09	09	09	09	99	8 9	09
Table	$_{1}^{n}$	30	30	0 00	30	30	30	30	30	300	30	30	30	30	30	30	30	30	30	30	30	000	300	30	30	30	30	30	000	30	30	30	30	300	300	30	30	30	30	30	30	30	30	30
	power	0.1174	0.1501	0.1909	0.0459	0.0672	0.0884	0.1176	0.0362	0.0490	0.2536	0.4601	0.5648	0.5940	0.0024	0.2679	0.3289	0.3461	0.3535	0.3785	0.4492	0.5652	0.0095	0.1956	0.2013	0.2237	0.2870	0.3894	0.4600	0.1068	0.1109	0.1281	0.1770	0.2562	0.3846	0.4482	0.0588	0.0708	0.1050	0.1605	0.2137	0.2548	0.3118	0.0376
	p2	0.55	0.60	0.65	0.50	0.55	0.60	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.50	000	0.00	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.00	0.70	0.40	0.45	0.50	0.55	0.60	0.65	7.0	0.45
	p1	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.00	0.30
	pvalue	0.0463	0.0463	0.0463	0.0463	0.0463	0.0463	0.0463	0.0463	0.0463	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479	0.0479
	$\mathbf{z}_{\mathbf{u}}$	3.54	3.54	3.54	3.54	3.54	3.54	3.54	3.54	40.0	0 80 0 80 0 80	3.88	3.88	80 c	000	3.88	3.88	3.88	3.88	80.00 80.00		000	0 00	88.0	3.88	3.88	3.88	% % %	0000	88.8	3.88	3.88	88.0 88.0	000	0 00	3.88	3.88	3.88	3.88	3.88	80.00 80.00	00 00 00 00 00 00	0 00	3.88
	$_{\rm n_2}$	20	20		20	20	20	20	20	20	8 9	09	09	09	8 9	09	09	09	09	09	09	8 9	8 9	09	09	09	09	09	00	8 9	09	09	9 8	09	90	8 9	09	09	09	09	09	9	8 9	09
	1 u	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9 5	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

$_{1}^{n}$	$^{\mathrm{n}_{2}}$	zn	pvalue	p1	p 2	power	$_{1}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p 2	power
10	09	3.88	0.0479	0:30	0.50	0.0597	30	09	2.08	0.0489	0.30	0.50	0.4414
10	09	3.88	0.0479	0.30	0.55	0.0955	30	09	2.08	0.0489	0.30	0.55	0.6127
_	09	3.88	0.0479	0.30	0.60	0.1303	30	09	2.08	0.0489	0.30	0.60	0.7685
_	09	3.88	0.0479	0.30	0.65	0.1596	30	09	2.08	0.0489	0.30	0.65	0.8845
_	09	3.88	0.0479	0.30	0.70	0.2057	30	09	2.08	0.0489	0.30	0.70	0.9532
_	09	3.88	0.0479	0.35	0.50	0.0323	30	09	2.08	0.0489	0.35	0.50	0.2638
_	09	3.88	0.0479	0.35	0.55	0.0538	30	09	2.08	0.0489	0.35	0.55	0.4216
_	09	3.88	0.0479	0.35	0.60	0.0750	30	09	2.08	0.0489	0.35	09.0	0.5984
10	09	3.88	0.0479	0.35	0.65	0.0945	30	09	2.08	0.0489	0.35	0.65	0.7609
_	09	3.88 8.88	0.0479	0.40	0.55	0.0285	30	09	2.08	0.0489	0.40	0.55	0.2538
	09	200.0	0.0479	0.40	0.60	0.0405	30	09 i	2.08	0.0489	0.40	0.60	0.4143
	2 1	4.19	0.0494	0.05	0.15	0.0564	30	21	2.33	0.0427	0.05	0.15	0.3410
_	20	4.19	0.0494	0.02	0.20	0.2569	30	20	2.33	0.0427	0.05	0.20	0.5641
_	20	4.19	0.0494	0.02	0.25	0.4754	30	20	2.33	0.0427	0.02	0.25	0.7609
10	20	4.19	0.0494	0.02	0.30	0.5740	30	20	2.33	0.0427	0.02	0.30	0.8904
_	20	4.19	0.0494	0.02	0.35	0.5960	30	20	2.33	0.0427	0.02	0.35	0.9585
10	20	4.19	0.0494	0.02	0.40	0.5994	30	20	2.33	0.0427	0.02	0.40	0.9869
_	20	4.19	0.0494	0.02	0.45	0.6074	30	20	2.33	0.0427	0.02	0.45	0.9965
_	20	4.19	0.0494	0.10	0.25	0.2769	30	20	2.33	0.0427	0.10	0.25	0.4212
_	20	4.19	0.0494	0.10	0.30	0.3343	30	20	2.33	0.0427	0.10	0.30	0.6162
_	20	4.19	0.0494	0.10	0.35	0.3471	30	20	2.33	0.0427	0.10	0.35	0.7792
10	20	4.19	0.0494	0.10	0.40	0.3496	30	20	2.33	0.0427	0.10	0.40	0.8895
_	20	4.19	0.0494	0.10	0.45	0.3594	30	20	2.33	0.0427	0.10	0.45	0.9529
_	20	4.19	0.0494	0.10	0.50	0.4033	30	20	2.33	0.0427	0.10	0.50	0.9835
10	20	4.19	0.0494	0.10	0.55	0.5062	30	20	2.33	0.0427	0.10	0.55	0.9954
10	2 2	4.19	0.0494	0.10	09.0	0.6321	30	2 6	2.33	0.0427	0.10	0.60	0.9990
	2 6	4.19	0.0494	0.1.0	0.30	0.1888	200	2 €	2.33	0.0427	0.13	0.30	0.3400
10	2 6	4.19	0.0494	0.15	0.35	0.1960	30	2 6	2.33	0.0427	0.15	0.35	0.5160
01	2 6	4.19	0.0494	0.1.0	0.40	0.1978	200	2 6	2.33	0.0427	0.1.0	0.40	0.0841
01	2 6	4.19	0.0494	0.10	0.40	0.2065	200	2 6	2.00	0.0427	0.10	0.40	0.8210
010	9 9	4.19	0.0494	0.15	0.00	0.2459	000	9 9	0.00	0.0427	0.10	0.00	0.9151
	2 6	4.19	0.0494	0.1.0	0.00	0.3392	000	2 6	00.0	0.0427	0.1.0	0.00	0.9670
010	2 6	4.19	0.0494	0.1.0	0.00	0.4512	200	2 6	2.00	0.0427	0.10	0.00	0.9898
0.1	2 6	4.19	0.0494	0.1.0	0.00	0.5262	000	2 6	00.0	0.0427	0.1.0	0.00	0.9970
01	2 6	4.19	0.0494	07.0	0.00	0.1069	000	2 6	00.7	0.0427	0.20	0.30	0.2012
0.0	2 6	4.19	0.0494	0.20	0.40	0.1081	000	2 6	2.00	0.0427	0.20	0.40	0.4410
	2 6	4.19	0.0494	0.20	0.45	0.1148	200	2 €	2.33	0.0427	0.20	0.45	0.0148
01	2 1	4.19	0.0494	0.20	0.50	0.1452	30	2 1	2.33	0.0427	0.20	0.50	0.7704
_	70	4.19	0.0494	0.20	0.55	0.2166	30	70	2.33	0.0427	0.20	0.55	0.8852
10	20	4.19	0.0494	0.20	0.60	0.3041	30	20	2.33	0.0427	0.20	09.0	0.9531
10	20	4.19	0.0494	0.20	0.65	0.3636	30	20	2.33	0.0427	0.20	0.65	0.9846
10	20	4.19	0.0494	0.20	0.70	0.4095	30	20	2.33	0.0427	0.20	0.70	0.9961
10	20	4.19	0.0494	0.25	0.40	0.0568	30	20	2.33	0.0427	0.25	0.40	0.2404
	2 i	4.19	0.0494	0.25	0.45	0.0615	30	2 i	2.33	0.0427	0.25	0.45	0.3944
01	2 1	4.19	0.0494	0.25	0.50	0.0828	30	2 1	2.33	0.0427	0.25	0.50	0.5711
	2 i	4.19	0.0494	0.25	0.55	0.1327	30	2 i	2.33	0.0427	0.25	0.55	0.7382
01	2 8	4.19	0.0494	0.25	0.60	0.1940	30	2 6	2.33	0.0427	0.25	0.60	0.8653
_	2.	2:	10494	97.1	2								
,	1			1 0	0.0	0.4303	200	2 €	2.33	0.0427	0.25	0.65	0.9428

Table B.16: continue on next page

Table B.16: continue on next page

ıs page	power	0.2166	0.3681	0.5470	0.8517	0.9363	0.2047	0.3543	0.5318	0.7055	0.1981	0.3447	0.5100	0.7302	0.8665	0.9450	0.9817	0.9952	0.3727	0.5575	0.7308	0.8618	0.9413	0.9794	0.9941	0.2817	0.4535	0.6355	0.7908	0.8976	0.9583	0.9865	0.9966	0.3899	0.5682	0.7324	0.8594	0.9391	0.9786	0.9941	0.2004	0.3454	0.5179	0.0900	0.9234	0.9723
reviou	p2	0.45	0.50	0.55	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.10	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.00	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.30	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.00	0.00	0.70
rom p	p1	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.03	0.00	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0307	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387	0.0387
	$\mathbf{z}_{\mathbf{n}}$	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	0.7 0.7 0.7	2 6	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55 5.75	0. V U H	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2 . c c . c c . r	0 C	2.55	2.55	2.55	2.55	2.55	2.55	2.52	2.55	2.55	0.00 0.00 0.00	2.5	2.55
B.16:	$^{\mathrm{n}_{2}}$	20	2 i	2 2	2.2	20	20	20	20	2	2	2 9	0 0	8 8	80	80	80	80	80	80	80	080	080	200	000	8 8	80	80	80	80	80	080	000	8 8	80	80	80	80	80	80	80	080	200	8 8	8 8	80
Table	^{1}u	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	power	0.0316	0.0453	0.0775	0.1457	0.1760	0.0237	0.0430	0.0668	0.0845	0.0225	0.0357	0.0267	0.4409	0.5670	0.5954	0.5986	0.5995	0.2568	0.3302	0.3468	0.3486	0.3497	0.3597	0.4091	0.3260	0.1958	0.1969	0.1978	0.2067	0.2510	0.3559	0.4732	0.1074	0.1081	0.1150	0.1492	0.2302	0.3209	0.3685	0.0563	0.0568	0.0616	0.0856	0.2057	0.2395
	p2	0.45	0.50	0.55	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.1.0	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.00	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.00 0.000	0.30	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.00	0.70
	p1	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.03	0.00	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25
	pvalue	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430
	$\mathbf{z}_{\mathbf{u}}$	4.19	4.19	4.19	4.19	4.19	4.19	4.19	4.19	4.19	4.19	4.19	4.00.4 6.00.7	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.00	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65 6.75	20.4	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.03	4.65	4.65
	$^{\mathrm{n}_{2}}$	70	2 i	2,2	70	20	20	20	20	20	20	20	00	8 8	80	80	80	80	80	80	80	80	080	080	000	000	80	80	80	80	80	080	200	8 &	80	80	80	80	80	80	80	080	080	200	8 8	80
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	01	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

$_{1}^{n_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P2	power	$_{1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P2	power
10	80	4.65	0.0430	0.25	0.75	0.2644	30	80	2.55	0.0387	0.25	0.75	0.9925
0 (80	4.65	0.0430	0.30	0.45	0.0286	30	80	2.55	0.0387	0.30	0.45	0.1775
9 9	200	4.65 7.85	0.0430	0.30	0.50 77 77	0.0317	30	200	2. c 5. c 5. r 7. r	0.0387	0.30	0.0 0.0 7.0 7.0	0.3138
	8 8	20.4	0.0430	0.30	090	0.0471	30	8 8	9 C	0.0387	0.30	09.0	0.6620
	80	4.65	0.0430	0.30	0.65	0.1246	30	8	2.55	0.0387	0.30	0.65	0.8109
0	80	4.65	0.0430	0.30	0.70	0.1468	30	80	2.55	0.0387	0.30	0.70	0.9139
0	80	4.65	0.0430	0.35	0.50	0.0155	30	80	2.55	0.0387	0.35	0.50	0.1620
0	80	4.65	0.0430	0.35	0.55	0.0248	30	80	2.55	0.0387	0.35	0.55	0.2941
0	80	4.65	0.0430	0.35	09.0	0.0466	30	80	2.55	0.0387	0.35	09.0	0.4631
0	80	4.65	0.0430	0.35	0.65	0.0712	30	80	2.55	0.0387	0.35	0.65	0.6433
0	80	4.65	0.0430	0.40	0.55	0.0123	30	80	2.55	0.0387	0.40	0.55	0.1519
0	80	4.65	0.0430	0.40	0.60	0.0245	30	80	2.55	0.0387	0.40	09.0	0.2798
0	06	4.91	0.0448	0.05	0.15	0.0260	30	06	2.76	0.0359	0.02	0.15	0.3028
0	06	4.91	0.0448	0.05	0.20	0.2025	30	06	2.76	0.0359	0.02	0.20	0.5120
0	06	4.91	0.0448	0.05	0.25	0.4577	30	06	2.76	0.0359	0.05	0.25	0.7074
10	06	4.91	0.0448	0.05	0.30	0.5754	30	06	2.76	0.0359	0.02	0.30	0.8491
0	06	4.91	0.0448	0.05	0.35	0.5969	30	06	2.76	0.0359	0.05	0.35	0.9362
0	06	4.91	0.0448	0.02	0.40	0.5987	30	06	2.76	0.0359	0.02	0.40	0.9787
0	06	4.91	0.0448	0.02	0.45	0.5988	30	06	2.76	0.0359	0.02	0.45	0.9941
0	06	4.91	0.0448	0.10	0.25	0.2665	30	06	2.76	0.0359	0.10	0.25	0.3418
0	06	4.91	0.0448	0.10	0.30	0.3351	30	06	2.76	0.0359	0.10	0.30	0.5222
0	06	4.91	0.0448	0.10	0.35	0.3476	30	06	2.76	0.0359	0.10	0.35	0.7029
0	06	4.91	0.0448	0.10	0.40	0.3486	30	06	2.76	0.0359	0.10	0.40	0.8423
10	98 8	16.91	0.0448	0.10	0.45	0.3488	30	98 8	0.70	0.0359	0.10	0.45	0.9286
10	06 0	4.91	0.0448	0.10	0.50	0.3516	30	3 8	27.76	0.0359	0.10	0.50	0.9736
	200	16.4	0.0448	0.10	00.0	0.0701	000	000	10	0.0333	0.10	0.00	0.3923
0 1	2 2	16.4	0.0448	0.10	00.0	0.4030	000	2 2	2 7 0	0.0359	0.10	0.00	0.0000
0 0	8 6	10.7	0.0448	0.10	200	0.1963	900	00	2 10	0.0359	0.0	0.00	0.4175
0 0	8 6	1.91	0.0448	0.10	5.0	0.1969	30	8 0	0 7 0	0.0359	0.10	3.0	0.4173
	8 6	1.31	0.0448	2.5	2.0	0.1970	800	80	21.0	0.0359	0.0	0.0	0.030
	8 6	4 91	0.0448	21.0	2.0	0.1995	80	8 6	2 7 6	0.0359	2 - 0	0.50	0.8759
010	86	4 91	0.0448	2.0	0.0	0.2206	08.	86	2.76	0.0359	0.15	0.0	0.0488
10	06	4.91	0.0448	0.15	0.60	0.3001	30	06	2.76	0.0359	0.15	0.60	0.9830
10	06	4.91	0.0448	0.15	0.65	0.4310	30	06	2.76	0.0359	0.15	0.65	0.9955
10	06	4.91	0.0448	0.20	0.35	0.1070	30	06	2.76	0.0359	0.20	0.35	0.2013
10	06	4.91	0.0448	0.20	0.40	0.1074	30	06	2.76	0.0359	0.20	0.40	0.3449
0	06	4.91	0.0448	0.20	0.45	0.1075	30	06	2.76	0.0359	0.20	0.45	0.5178
10	06	4.91	0.0448	0.20	0.50	0.1094	30	06	2.76	0.0359	0.20	0.50	0.6927
10	06	4.91	0.0448	0.20	0.55	0.1257	30	06	2.76	0.0359	0.20	0.55	0.8348
10	06	4.91	0.0448	0.20	09.0	0.1872	30	06	2.76	0.0359	0.20	09.0	0.9257
10	06	4.91	0.0448	0.20	0.65	0.2883	30	06	2.76	0.0359	0.20	0.65	0.9724
0	06	4.91	0.0448	0.20	0.70	0.3573	30	06	2.76	0.0359	0.20	0.70	0.9917
10	06	4.91	0.0448	0.25	0.40	0.0563	30	06	2.76	0.0359	0.25	0.40	0.1657
0	06	4.91	0.0448	0.25	0.45	0.0564	30	06	2.76	0.0359	0.25	0.45	0.2980
10	06	4.91	0.0448	0.25	0.50	0.0577	30	06	2.76	0.0359	0.25	0.50	0.4701
0	06	4.91	0.0448	0.25	r.	0691	~	c	2 10	02220	000	C U	0.000
				1		10000	000	90	0 1	0.000	0.20	0.00	0.0000

Table B.16: continue on next page

Table B.16: continue on next page

. 1																																														
power	0.9623	0.9888	0.1445	0.2713	0.4380	0.6154	0.777.19	0.8876	0.1325	0.2516	0.4100	0.0800	0.3330	0.2023	0.5119	0.7232	0.8678	0.9483	0.9837	0.9958	0.3598	0.5518	0.7308	0.8622	0.9402	0.9789	0.9942	0.9988	0.4446	0.6238	0.7787	0.8914	0.9567	0.9860	0.9903	0.3687	0.5438	0.7158	0.8504	0.9339	0.9760	0.9932	0.3178	0.4926	0.6696	0.8145
P2	0.70	0.75	0.45	0.50	0.00	0.60	0.00	0.70	0.50	0.55	0.60	0.0 0 H	00.00	0.0	0.50	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.30	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50	0.55	0.60
p1	0.25	0.25	0.30	0.30	000	0.30	0.30	0.30	0.35	0.35	0.35	0.00	0.40	0.40	0.05	0.05	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.13	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25
pvalue	0.0359	0.0359	0.0359	0.0359	0.0359	0.0359	0.0359	0.0359	0.0359	0.0359	0.0359	0.0359	0.0359	0.0353	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462	0.0462
zn	2.76	2.76	2.76	27.70	07.70	2.70	0.70	27.0	2.76	2.76	2.76	07.70	2 1 0	2 10	2 4 2	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	0 7.	0 7.0 1 0 1 1	27.2	2.75	2.75	2.75	2.75	1.0	0 7.7 7.7 7.7 7.2	2.75	2.75	2.75	2.75	2.75	2.75	0 7.7 2 7 2 7 2 4	2.75	2.75	2.75	2.75
n ₂	06	06	96 8	3 8	06.0	3 8	3 8	G 6	96 8	06	G 8	8 8	8 8	301	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
$^{\mathrm{n}_{1}}$	30	30	30	30	000	30	30	30	30	30	30	000	000	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
power	0.2311	0.2462	0.0283	0.0291	0.0365	0.0642	0.1098	0.1410	0.0140	0.0184	0.0350	0.0023	0.0086	0.0135	0.2071	0.4721	0.5815	0.5977	0.5987	0.5988	0.2750	0.3386	0.3481	0.3487	0.3487	0.3494	0.3592	0.4182	0.1965	0.1969	0.1969	0.1975	0.2063	0.2592	0.3800	0.1074	0.1074	0.1078	0.1147	0.1556	0.2539	0.3447	0.0563	0.0566	0.0614	0.0900
p2	0.70	0.75	0.45	0.50	0.00	0.60	0.00	0.70	0.50	0.55	0.60	0.0 0 H	00.00	0.00	0.50	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.45	0.50	0.55	09.0
p1	0.25	0.25	0.30	0.30	0.50	0.30	0.30	0.30	0.35	0.35	0.35	0.00	0.40	20.0	0.0	0.05	0.02	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25
pvalue	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0444	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464
zn	4.91	4.91	4.91	4.91	16.4	4.91	4.91	4.91	4.91	4.91	4.91	16.4	1.07	1.0.1	91.2	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	0.10	0.10	5.16	5.16	5.16	5.16	5.16	5.16	5.10 7.16	5.16	5.16	5.16	5.16	5.16	5.16	0.To	5.16	5.16	5.16	5.16
$^{\mathrm{n}_{2}}$	06	06	06 8	3 8	2 2	3 8	G 6	98	96 8	96	G 6	8 8	8 8	8 2	100	100	100	100	100	100	100	100	100	100	100	100	307	100	801	100	100	100	100	100	100	100	100	100	100	100	100	8 1	100	100	100	100
n_1	10	10	01	10	07	10	10	10	10	01	10	10	1 0	10	01	10	10	10	10	10	10	10	10	10	10	10	01	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

100 5.16 0.0464 0.25 0.65 0.1588 30 100 2.75 0.0462 0.25 0.70 100 5.16 0.0464 0.25 0.70 0.2422 30 100 2.75 0.0462 0.25 0.70 100 5.16 0.0464 0.25 0.77 0.2425 30 100 2.75 0.0462 0.25 0.77 100 5.16 0.0464 0.30 0.45 0.0285 30 100 2.75 0.0462 0.25 0.75 100 5.16 0.0464 0.30 0.65 0.0285 30 100 2.75 0.0462 0.30 0.65 100 5.16 0.0464 0.30 0.65 0.03 0.04 0.0	\mathbf{n}_1	n2	zn	pvalue	P1	p2	power	n	n2	zu		l d	P2	power
100 5.16 0.00444 0.25 0.70 0.22222 3.0 1.00 2.75 0.04622 0.25 0.00 2.75 0.0462 0.25 0.00 0.00 2.75 0.0462 0.25 0.00 0.00 0.00 2.75 0.0462 0.02 0.00 <td></td> <td>90</td> <td>100</td> <td>0.0464</td> <td>0 0</td> <td>200</td> <td>- C</td> <td>000</td> <td>001</td> <td>1 1</td> <td>0.046.0</td> <td>0</td> <td>20 0</td> <td>00100</td>		90	100	0.0464	0 0	200	- C	000	001	1 1	0.046.0	0	20 0	00100
100 516 0.0464 0.25 0.77 0.0425 9.0 100 277 0.0462 0.25 0.77 0.0428 9.0 100 277 0.0462 0.25 0.77 0.0462 0.05 0.04 0.00 0.0288 9.0 100 2.77 0.0462 0.30 0.04 0.00		100	2.10	0.0464	200	0.00	0.2222	30	100	2 1.0	0.0462	0.25	0.00	0.9674
100 5.16 0.0464 0.30 0.45 0.0283 30 100 2.75 0.0462 0.30 0.45 100 5.16 0.0464 0.30 0.45 0.0283 30 100 2.75 0.0462 0.30 0.50 110 5.16 0.0464 0.30 0.55 0.0343 30 100 2.75 0.0462 0.30 0.50 110 5.16 0.0464 0.30 0.50 0.0343 30 100 2.75 0.0462 0.30 0.50 110 5.16 0.0464 0.30 0.70 0.0383 30 100 2.75 0.0462 0.30 0.70 0.0384 0.00 2.75 0.0462 0.30 0.70 0.0384 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0	100	5.16	0.0464	0.25	0.75	0.2425	30	100	2.75	0.0462	0.25	0.75	0.9908
100 5.16 0.0464 0.30 0.55 0.0285 3 0.10 2.75 0.0462 0.30 0.55 100 5.16 0.0464 0.30 0.55 0.059 3 100 2.75 0.0462 0.30 0.55 110 5.16 0.0464 0.30 0.55 0.059 3 100 2.75 0.0462 0.30 0.55 110 5.16 0.0464 0.32 0.50 0.0133 3 100 2.75 0.0462 0.39 0.00 110 5.16 0.0464 0.35 0.55 0.0134 3 100 2.75 0.0462 0.35 0.05 0.014 0.04 0.05 0.014 0.05 0.05 0.004 0.04 0.05 0.014 0.004 0.06 0.05 0.004 0.004 0.05 0.05 0.004 0.00 0.05 0.04 0.05 0.004 0.004 0.004 0.004 0.004 0.004	0	100	5.16	0.0464	0.30	0.45	0.0283	30	100	2.75	0.0462	0.30	0.45	0.1557
100 5.16 0.0464 0.30 0.55 0.0315 30 1.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.063 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.00 0.04 0.04 0.05 0.00 0.04 0.04 0.05 0.00 0.04 0.04 0.05 0.00 0.04 0.04 0.05 0.00 0.04 0.04 0.05 0.00 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.05 <	0	100	5.16	0.0464	0.30	0.50	0.0285	30	100	2.75	0.0462	0.30	0.50	0.2870
100 5.16 0.0464 0.30 0.60 0.050 0.0462 0.30 0.60 100 5.16 0.0464 0.30 0.60 0.050 3 0.06 3.30 0.60 100 5.16 0.0464 0.30 0.75 0.0462 0.33 0.60 0.0464 0.30 0.75 0.0462 0.33 0.60 0.01 2.75 0.0462 0.33 0.60 0.01 0.0462 0.33 0.60 0.01 0.0462 0.33 0.60 0.03 0.0462 0.33 0.06 0.0462 0.33 0.06 0.0462 0.33 0.06 0.0462 0.33 0.06 0.0462 0.33 0.06 0.0462 0.33 0.06 0.0462 <th< td=""><td>0</td><td>100</td><td>5.16</td><td>0.0464</td><td>0.30</td><td>0.55</td><td>0.0315</td><td>30</td><td>100</td><td>2.75</td><td>0.0462</td><td>0.30</td><td>0.55</td><td>0.4549</td></th<>	0	100	5.16	0.0464	0.30	0.55	0.0315	30	100	2.75	0.0462	0.30	0.55	0.4549
100 5.16 0.0464 0.33 0.65 0.0943 30 100 2.75 0.0462 0.33 0.65 100 5.16 0.0464 0.33 0.65 0.0943 30 100 2.75 0.0462 0.33 0.65 100 5.16 0.0464 0.35 0.65 0.0136 30 100 2.75 0.0462 0.33 0.65 100 5.16 0.0464 0.35 0.65 0.0138 30 100 2.75 0.0462 0.33 0.66 100 5.16 0.0464 0.35 0.65 0.0133 30 100 2.75 0.0462 0.33 0.66 0.053 0.053 0.0442 0.05 0.053 0.054 0.0442 0.05 0.053 0.054 0.0442 0.05 0.053 0.054 0.0442 0.05 0.053 0.054 0.0442 0.05 0.053 0.054 0.0442 0.05 0.053 0.0442 0.0442	0	100	5.16	0.0464	0.30	0.60	0.0500	30	100	2.75	0.0462	0.30	0.60	0.6309
100 5.16 0.0464 0.33 0.77 0.1333 30 100 2.75 0.0462 0.33 0.77 1100 5.16 0.0464 0.33 0.77 0.0133 30 100 2.75 0.0462 0.33 0.05 1100 5.16 0.0464 0.35 0.65 0.0154 30 0.05 0.0462 0.35 0.05 0.056 0.056 0.056 0.056 0.066 0.0462 0.046 0.066 0.0462 0.046 0.066 0.056 0.066 <td>0</td> <td>100</td> <td>5.16</td> <td>0.0464</td> <td>0.30</td> <td>0.65</td> <td>0.0943</td> <td>30</td> <td>100</td> <td>2.75</td> <td>0.0462</td> <td>0.30</td> <td>0.65</td> <td>0.7862</td>	0	100	5.16	0.0464	0.30	0.65	0.0943	30	100	2.75	0.0462	0.30	0.65	0.7862
100 5.16 0.0464 0.35 0.50 0.0136 30 100 2.75 0.0462 0.35 0.50 100 5.16 0.0464 0.35 0.50 0.0136 30 100 2.75 0.0462 0.35 0.50 0.0254 30 100 2.75 0.0462 0.35 0.05 0.0563 30 100 2.75 0.0462 0.35 0.05 0.056 0.056 0.058 0.00 2.75 0.0462 0.04 0.05 0.04	0	100	5.16	0.0464	0.30	0.70	0.1353	30	100	2.75	0.0462	0.30	0.70	0.8988
100 5.16 0.0464 0.35 0.55 0.0154 3.0 0.0154 3.0 0.0154 3.0 0.0154 0.05 0.0154 0.05 0.0154 0.044 0.35 0.55 0.0164 0.05 0.0265 3.0 100 2.75 0.0462 0.35 0.65 0.0263 3.0 100 2.75 0.0462 0.35 0.65 0.05 0.015 0.0464 0.05 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00 0.015 0.00	0	100	5.16	0.0464	0.35	0.50	0.0136	30	100	2.75	0.0462	0.35	0.50	0.1407
100 5.16 0.0464 0.35 0.60 0.0265 3.0 100 2.75 0.0462 0.35 0.60 100 5.16 0.0464 0.35 0.60 0.0256 3.0 100 2.75 0.0462 0.40 0.60 0.03 3.0 0.0462 0.40 0.55 0.0071 3.0 1.00 2.75 0.0462 0.40 0.60 0.0073 3.0 1.00 2.75 0.0462 0.40 0.60 0.0042 0.00 0.0042 0.00 0.00 2.75 0.0462 0.40 0.00<	0	100	5.16	0.0464	0.35	0.55	0.0154	30	100	2.75	0.0462	0.35	0.55	0.2626
100 5.16 0.0464 0.35 0.053 30 100 2.75 0.0462 0.35 0.05 100 5.16 0.0464 0.35 0.055 0.0071 30 100 2.75 0.0462 0.40 0.05 0.0037 30 100 2.75 0.0462 0.04 0.05 0.003 0.003 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.004	0	100	5.16	0.0464	0.35	0.60	0.0265	30	100	2.75	0.0462	0.35	0.60	0.4234
100 5.16 0.0464 0.40 0.55 0.0071 30 100 2.75 0.0462 0.40 0.50 0.0071 30 100 2.75 0.0442 0.40 0.05 0.0033 30 100 2.75 0.0442 0.05 0.00 30 1.78 0.0442 0.05 0.00 30 1.78 0.0442 0.05 0.00 30 1.78 0.0442 0.05 0.00 30 0.00 30 1.78 0.0442 0.05 0.00 0.00 0.00 30 1.78 0.0442 0.05 0.00 <	0	100	5.16	0.0464	0.35	0.65	0.0530	30	100	2.75	0.0462	0.35	0.65	0.6038
100 5.16 0.0464 0.40 0.60 0.0133 30 100 2.75 0.0462 0.04 0.06 30 1.87 0.0412 0.05 0.15 0.325 4.0 50 1.78 0.0442 0.05 0.15 30 1.87 0.0412 0.05 0.25 0.6313 40 50 1.78 0.0442 0.05 0.05 30 1.87 0.0412 0.05 0.30 0.7500 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.05 0.44 0.9528 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.05 0.44 0.95 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.05 0.44 0.95 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.05 0.44 0.40	0	100	5.16	0.0464	0.40	0.55	0.0071	30	100	2.72	0.0462	0.40	0.55	0.1274
30 187 0.0412 0.05 0.15 0.3226 40 50 178 0.0442 0.05 0.15 30 1.87 0.0412 0.05 0.2479 0.047 0.047 0.047 0.049 0.05 <t< td=""><td>0</td><td>100</td><td>5.16</td><td>0.0464</td><td>0.40</td><td>09.0</td><td>0.0133</td><td>30</td><td>100</td><td>2.75</td><td>0.0462</td><td>0.40</td><td>0.60</td><td>0.2420</td></t<>	0	100	5.16	0.0464	0.40	09.0	0.0133	30	100	2.75	0.0462	0.40	0.60	0.2420
30 1.87 0.0412 0.05 0.22 0.4349 40 50 1.78 0.0442 0.05 0.25 30 1.87 0.0412 0.05 0.25 0.250 40 50 1.78 0.0442 0.05 0.25 30 1.87 0.0412 0.05 0.35 0.8567 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.05 0.35 0.8567 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.05 0.3597 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.10 0.25 0.3897 40 50 1.78 0.0442 0.10 0.40 30 1.87 0.0412 0.10 0.35 0.6881 40 50 1.78 0.0442 0.10 0.35 0.368 0.178 0.0442 0.10	0	30	1.87	0.0412	0.02	0.15	0.3026	40	20	1.78	0.0442	0.02	0.15	0.4584
30 1.87 0.0412 0.05 0.25 0.6313 40 50 1.78 0.0442 0.05 0.25 30 1.87 0.0412 0.05 0.25 0.6350 40 50 1.78 0.0442 0.05 0.25 30 1.87 0.0412 0.05 0.35 0.3551 40 50 1.78 0.0442 0.05 0.49 30 1.87 0.0412 0.05 0.35 0.3591 40 50 1.78 0.0442 0.05 0.40 30 1.87 0.0412 0.10 0.25 0.3597 40 50 1.78 0.0442 0.05 0.45 30 1.87 0.0412 0.10 0.30 0.4952 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.10 0.30 0.4952 40 50 1.78 0.0442 0.05 0.35 30 1.87	0	30	1.87	0.0412	0.02	0.20	0.4749	40	20	1.78	0.0442	0.02	0.20	0.6855
30 1.87 0.04412 0.05 0.30 0.7600 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.04412 0.05 0.35 0.3567 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.05 0.45 0.9328 40 50 1.78 0.0442 0.05 0.45 30 1.87 0.0412 0.10 0.30 0.9327 40 50 1.78 0.0442 0.05 0.40 30 1.87 0.0412 0.10 0.30 0.4992 40 50 1.78 0.0442 0.10 0.30 30 1.87 0.0412 0.10 0.30 0.7595 40 50 1.78 0.0442 0.10 0.30 30 1.87 0.0412 0.10 0.35 0.9868 40 50 1.78 0.0442 0.10 0.50 30 1.87 <t< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.05</td><td>0.25</td><td>0.6313</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.05</td><td>0.25</td><td>0.8561</td></t<>	0	30	1.87	0.0412	0.05	0.25	0.6313	40	20	1.78	0.0442	0.05	0.25	0.8561
30 1.87 0.04412 0.05 0.35 0.8567 40 50 1.78 0.0442 0.05 0.35 30 1.87 0.0412 0.05 0.44 0.9531 40 50 1.78 0.0442 0.05 0.44 30 1.87 0.0412 0.05 0.45 0.9631 40 50 1.78 0.0442 0.05 0.45 30 1.87 0.0412 0.10 0.25 0.3897 40 50 1.78 0.0442 0.10 0.25 30 1.87 0.0412 0.10 0.25 0.3897 40 50 1.78 0.0442 0.10 0.25 30 1.87 0.0412 0.10 0.40 0.7518 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.10 0.45 0.9863 40 50 1.78 0.0442 0.10 0.50 0.9863 40 50	0	30	1.87	0.0412	0.05	0.30	0.7600	40	20	1.78	0.0442	0.05	0.30	0.9480
30 1.87 0.0412 0.05 0.44 0.9228 40 50 1.78 0.0442 0.05 0.44 30 1.87 0.0412 0.05 0.45 0.9531 40 50 1.78 0.0442 0.05 0.44 30 1.87 0.0412 0.10 0.245 0.3951 40 50 1.78 0.0442 0.10 0.25 30 1.87 0.0412 0.10 0.30 0.4992 40 50 1.78 0.0442 0.10 0.25 30 1.87 0.0412 0.10 0.490 40 50 1.78 0.0442 0.10 0.40 30 1.87 0.0412 0.10 0.45 0.865 40 50 1.78 0.0442 0.10 0.40 30 1.87 0.0412 0.10 0.45 0.865 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412	0	30	1.87	0.0412	0.05	0.35	0.8567	40	20	1.78	0.0442	0.05	0.35	0.9848
30 1.87 0.0412 0.05 0.45 0.931 40 50 1.78 0.0442 0.05 0.45 30 1.87 0.0412 0.10 0.35 0.3897 40 50 1.78 0.0442 0.10 0.35 0.3897 40 50 1.78 0.0442 0.10 0.35 0.3897 40 50 1.78 0.0442 0.10 0.35 0.3892 40 50 1.78 0.0442 0.10 0.35 0.3992 40 50 1.78 0.0442 0.10 0.35 0.3992 40 50 1.78 0.0442 0.10 0.40 0.0492 40 50 1.78 0.0442 0.10 0.40 0.30 0.0892 40 50 1.78 0.0442 0.10 0.40 0.40 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	0	30	1.87	0.0412	0.05	0.40	0.9228	40	20	1.78	0.0442	0.02	0.40	0.9964
30 1.87 0.04412 0.10 0.25 0.3897 40 50 1.78 0.0442 0.10 0.25 30 1.87 0.04412 0.10 0.35 0.4992 40 50 1.78 0.0442 0.10 0.23 30 1.87 0.0412 0.10 0.35 0.6881 40 50 1.78 0.0442 0.10 0.36 30 1.87 0.0412 0.10 0.45 0.9863 40 50 1.78 0.0442 0.10 0.45 30 1.87 0.0412 0.10 0.50 0.9863 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.10 0.55 0.9664 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.15 0.36 0.9688 40 50 1.78 0.0442 0.10 0.50 30 1.87 <t< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.05</td><td>0.45</td><td>0.9631</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.05</td><td>0.45</td><td>0.9993</td></t<>	0	30	1.87	0.0412	0.05	0.45	0.9631	40	20	1.78	0.0442	0.05	0.45	0.9993
30 1.87 0.04412 0.10 0.33 0.4892 40 50 1.78 0.0442 0.10 0.30 30 1.87 0.0412 0.10 0.35 0.4892 40 50 1.78 0.0442 0.10 0.35 30 1.87 0.0412 0.10 0.45 0.8892 40 50 1.78 0.0442 0.10 0.40 30 1.87 0.0412 0.10 0.45 0.8863 40 50 1.78 0.0442 0.10 0.40 30 1.87 0.0412 0.10 0.55 0.9664 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.10 0.55 0.9868 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.15 0.46 0.586 40 50 1.78 0.0442 0.10 0.50 30 1.87	_	30	1.87	0.0412	0.10	0.25	0.3597	40	20	1.78	0.0442	0.10	0.25	0.5682
30 1.87 0.04412 0.10 0.35 0.6381 40 50 1.78 0.0442 0.10 0.35 30 1.87 0.04412 0.10 0.35 0.6381 40 50 1.78 0.0442 0.10 0.35 30 1.87 0.0412 0.10 0.45 0.8992 40 50 1.78 0.0442 0.10 0.46 30 1.87 0.0412 0.10 0.50 0.9868 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.10 0.56 0.9868 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.15 0.36 0.9868 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.15 0.36 0.9255 40 50 1.78 0.0442 0.15 0.36 30 1.87 <t< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.10</td><td>0.30</td><td>0.4992</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.10</td><td>0.30</td><td>0.7616</td></t<>	0	30	1.87	0.0412	0.10	0.30	0.4992	40	20	1.78	0.0442	0.10	0.30	0.7616
30 1.87 0.04412 0.10 0.440 0.7618 40 50 1.78 0.0442 0.10 0.44 30 1.87 0.04412 0.10 0.45 0.8592 40 50 1.78 0.0442 0.10 0.45 30 1.87 0.0412 0.10 0.50 0.9664 40 50 1.78 0.0442 0.10 0.55 30 1.87 0.0412 0.10 0.55 0.9664 40 50 1.78 0.0442 0.10 0.55 30 1.87 0.0412 0.15 0.36 0.2858 40 50 1.78 0.0442 0.10 0.55 30 1.87 0.0412 0.15 0.35 0.4289 40 50 1.78 0.0442 0.15 0.36 30 1.87 0.0412 0.15 0.35 0.4289 40 50 1.78 0.0442 0.15 0.36 30 1.87 <	0	30	1.87	0.0412	0.10	0.35	0.6381	40	20	1.78	0.0442	0.10	0.35	0.8894
30 1.87 0.04412 0.10 0.445 0.8892 40 50 1.78 0.0442 0.10 0.445 30 1.87 0.0412 0.10 0.45 0.8663 40 50 1.78 0.0442 0.10 0.45 30 1.87 0.0412 0.10 0.55 0.9664 40 50 1.78 0.0442 0.10 0.65 30 1.87 0.0412 0.15 0.35 0.2858 40 50 1.78 0.0442 0.10 0.60 30 1.87 0.0412 0.15 0.4289 40 50 1.78 0.0442 0.15 0.35 30 1.87 0.0412 0.15 0.4289 40 50 1.78 0.0442 0.15 0.35 30 1.87 0.0412 0.15 0.4289 40 50 1.78 0.0442 0.15 0.35 30 1.87 0.0412 0.15 0.40	0	30	1.87	0.0412	0.10	0.40	0.7618	40	20	1.78	0.0442	0.10	0.40	0.9574
30 1.87 0.0412 0.10 0.50 0.9963 40 50 1.78 0.0442 0.10 0.50 30 1.87 0.0412 0.10 0.56 0.9964 40 50 1.78 0.0442 0.10 0.55 30 1.87 0.0412 0.10 0.60 0.9868 40 50 1.78 0.0442 0.10 0.55 30 1.87 0.0412 0.15 0.35 0.2855 40 50 1.78 0.0442 0.15 0.35 30 1.87 0.0412 0.15 0.40 50 1.78 0.0442 0.15 0.35 30 1.87 0.0412 0.15 0.40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.40 0.70 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.75 0.70 0.78 0.78	0	30	1.87	0.0412	0.10	0.45	0.8592	40	20	1.78	0.0442	0.10	0.45	0.9866
30 1.87 0.0442 0.10 0.55 30 1.87 0.0442 0.10 0.55 0.9868 40 50 1.78 0.0442 0.10 0.55 30 1.87 0.0412 0.10 0.5868 40 50 1.78 0.0442 0.10 0.65 30 1.87 0.0412 0.15 0.35 0.2858 40 50 1.78 0.0442 0.15 0.30 30 1.87 0.0412 0.15 0.35 0.4289 40 50 1.78 0.0442 0.15 0.30 30 1.87 0.0412 0.15 0.45 0.7866 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.50 0.9225 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.50 0.9225 40 50 1.78 0.0442 <t< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.10</td><td>0.50</td><td>0.9263</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.10</td><td>0.50</td><td>0.9966</td></t<>	0	30	1.87	0.0412	0.10	0.50	0.9263	40	20	1.78	0.0442	0.10	0.50	0.9966
30 1.87 0.04412 0.10 0.66 0.9868 40 50 1.78 0.0442 0.10 0.60 30 1.87 0.0412 0.15 0.35 0.29555 40 50 1.78 0.0442 0.15 0.36 30 1.87 0.0412 0.15 0.36 0.2855 40 50 1.78 0.0442 0.15 0.36 30 1.87 0.0412 0.15 0.45 0.7086 40 50 1.78 0.0442 0.15 0.45 30 1.87 0.0412 0.15 0.50 0.8212 40 50 1.78 0.0442 0.15 0.45 30 1.87 0.0412 0.15 0.50 0.9212 40 50 1.78 0.0442 0.15 0.50 30 1.87 0.0412 0.15 0.50 0.9225 40 50 1.78 0.0442 0.15 0.55 30 1.87 <t< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.10</td><td>0.55</td><td>0.9664</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.10</td><td>0.55</td><td>0.9993</td></t<>	0	30	1.87	0.0412	0.10	0.55	0.9664	40	20	1.78	0.0442	0.10	0.55	0.9993
30 1.87 0.04412 0.15 0.3255 40 50 1.78 0.0442 0.15 0.30 30 1.87 0.0412 0.15 0.35 0.4285 40 50 1.78 0.0442 0.15 0.35 30 1.87 0.0412 0.15 0.45 0.786 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.45 0.786 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.5021 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.5021 40 50 1.78 0.0442 0.15 0.55 30 1.87 0.0412 0.15 0.5021 40 50 1.78 0.0442 0.15 0.55 30 1.87 0.0412 0.15 0.2020 0.40 <	0	30	1.87	0.0412	0.10	0.60	0.9868	40	20	1.78	0.0442	0.10	09.0	0.9999
30 1.87 0.04412 0.15 0.35 0.4289 40 50 1.78 0.0442 0.15 0.35 30 1.87 0.0412 0.15 0.44 0.7266 40 50 1.78 0.0442 0.15 0.35 30 1.87 0.0412 0.15 0.45 0.7866 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.50 0.8212 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.50 0.825 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.65 0.895 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 0.356 0.895 40 50 1.78 0.0442 0.15 0.65 30 1	0	30	1.87	0.0412	0.15	0.30	0.2955	40	20	1.78	0.0442	0.15	0.30	0.4959
30 1.87 0.04412 0.15 0.44 0.5726 40 50 1.78 0.0442 0.15 0.40 30 1.87 0.0412 0.15 0.45 0.7086 40 50 1.78 0.0442 0.15 0.45 30 1.87 0.0412 0.15 0.50 0.8212 40 50 1.78 0.0442 0.15 0.50 30 1.87 0.0412 0.15 0.55 0.921 40 50 1.78 0.0442 0.15 0.50 30 1.87 0.0412 0.15 0.65 0.9255 40 50 1.78 0.0442 0.15 0.50 30 1.87 0.0412 0.15 0.650 0.9355 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 0.3865 40 50 1.78 0.0442 0.15 0.65 30 1.87 <td< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.15</td><td>0.35</td><td>0.4289</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.15</td><td>0.35</td><td>0.6891</td></td<>	0	30	1.87	0.0412	0.15	0.35	0.4289	40	20	1.78	0.0442	0.15	0.35	0.6891
30 1.87 0.04412 0.15 0.45 0.7786 40 50 1.78 0.0442 0.15 0.45 30 1.87 0.0412 0.15 0.45 0.7786 40 50 1.78 0.0442 0.15 0.45 30 1.87 0.0412 0.15 0.55 0.9021 40 50 1.78 0.0442 0.15 0.55 30 1.87 0.0412 0.15 0.65 0.925 40 50 1.78 0.0442 0.15 0.55 30 1.87 0.0412 0.20 0.35 0.2560 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 0.365 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 0.365 0.41 40 50 1.78 0.0442 0.15 0.65 30 1.	0	30	1.87	0.0412	0.15	0.40	0.5726	40	20	1.78	0.0442	0.15	0.40	0.8377
30 1.87 0.04412 0.15 0.56 0.8212 40 50 1.78 0.0442 0.15 0.50 30 1.87 0.0412 0.15 0.55 0.921 40 50 1.78 0.0442 0.15 0.55 30 1.87 0.0412 0.15 0.60 0.9252 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.15 0.65 0.9797 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 0.3965 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 50 1.78 0.0442 0.20 0.40 30 1.87 0.0412 0.20 0.45 0.5144 40 50 1.78 0.0442 0.20 0.40 30 1.87 0.0412 0.20 <t< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.15</td><td>0.45</td><td>0.7086</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.15</td><td>0.45</td><td>0.9290</td></t<>	0	30	1.87	0.0412	0.15	0.45	0.7086	40	20	1.78	0.0442	0.15	0.45	0.9290
30 1.87 0.04412 0.15 0.55 0.9291 40 50 1.78 0.0442 0.15 0.55 30 1.87 0.0412 0.15 0.55 0.9925 40 50 1.78 0.0442 0.15 0.55 30 1.87 0.0412 0.15 0.66 0.9797 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.15 0.265 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 0.365 40 50 1.78 0.0442 0.20 0.40 30 1.87 0.0412 0.20 0.40 0.365 0.7474 40 50 1.78 0.0442 0.20 0.40 30 1.87 0.0412 0.20 0.50 0.6807 40 50 1.78 0.0442 0.20 0.40 30 1.87	0	30	1.87	0.0412	0.15	0.20	0.8212	40	20	1.78	0.0442	0.15	0.50	0.9743
30 1.87 0.0412 0.15 0.60 0.9525 40 50 1.78 0.0442 0.15 0.60 30 1.87 0.0412 0.15 0.65 0.9797 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 0.365 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.46 0.365 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.45 0.5414 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.50 0.7975 40 50 1.78 0.0442 0.20 0.50 30 1.87 0.0412 0.20 0.50 0.7975 40 50 1.78 0.0442 0.20 0.50 30 1.87 0.	0	30	1.87	0.0412	0.15	0.55	0.9021	40	20	1.78	0.0442	0.15	0.55	0.9924
30 1.87 0.0412 0.15 0.65 0.97597 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.45 0.3560 40 50 1.78 0.0442 0.15 0.65 30 1.87 0.0412 0.20 0.40 0.3665 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.45 0.5414 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.45 0.7875 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.45 0.5475 40 50 1.78 0.0442 0.20 0.50 30 1.87 0.0412 0.20 0.65 0.7875 40 50 1.78 0.0442 0.20 0.55 30 1.87 <td< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.15</td><td>0.60</td><td>0.9525</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.15</td><td>09.0</td><td>0.9983</td></td<>	0	30	1.87	0.0412	0.15	0.60	0.9525	40	20	1.78	0.0442	0.15	09.0	0.9983
30 1.87 0.0412 0.20 0.35 0.2650 40 50 1.78 0.0442 0.20 0.35 30 1.87 0.0412 0.20 0.44 0.3655 40 50 1.78 0.0442 0.20 0.40 30 1.87 0.0412 0.20 0.45 0.5414 40 50 1.78 0.0442 0.20 0.40 30 1.87 0.0412 0.20 0.50 0.6807 40 50 1.78 0.0442 0.20 0.55 30 1.87 0.0412 0.20 0.50 0.6807 40 50 1.78 0.0442 0.20 0.55 30 1.87 0.0412 0.20 0.55 0.7875 40 50 1.78 0.0442 0.20 0.55 30 1.87 0.0412 0.20 0.56 0.9402 40 50 1.78 0.0442 0.20 0.55 30 1.87	0	30	1.87	0.0412	0.15	0.65	0.9797	40	20	1.78	0.0442	0.15	0.65	0.9997
30 1.87 0.0412 0.20 0.44 0.3945 40 50 1.78 0.0442 0.20 0.40 30 1.87 0.0412 0.20 0.45 0.5414 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.55 0.7975 40 50 1.78 0.0442 0.20 0.55 30 1.87 0.0412 0.20 0.55 0.7975 40 50 1.78 0.0442 0.20 0.55 30 1.87 0.0412 0.20 0.5902 40 50 1.78 0.0442 0.20 0.50 30 1.87 0.0412 0.20 0.5902 40 50 1.78 0.0442 0.20 0.60 30 1.87 0.0412 0.20 0.70 0.972 40 50 1.78 0.0442 0.20 0.70 30 1.87 0.0412 0.25 <td< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.20</td><td>0.35</td><td>0.2650</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.20</td><td>0.35</td><td>0.4477</td></td<>	0	30	1.87	0.0412	0.20	0.35	0.2650	40	20	1.78	0.0442	0.20	0.35	0.4477
30 1.87 0.0412 0.20 0.45 0.5414 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.45 0.7875 40 50 1.78 0.0442 0.20 0.45 30 1.87 0.0412 0.20 0.55 0.7875 40 50 1.78 0.0442 0.20 0.55 30 1.87 0.0412 0.20 0.65 0.8837 40 50 1.78 0.0442 0.20 0.60 30 1.87 0.0412 0.20 0.65 0.9732 40 50 1.78 0.0442 0.20 0.65 30 1.87 0.0412 0.20 0.70 0.9732 40 50 1.78 0.0442 0.20 0.65 30 1.87 0.0412 0.25 0.40 0.278 0.978 40 50 1.78 0.0442 0.20 0.70 30	0	30	1.87	0.0412	0.20	0.40	0.3965	40	20	1.78	0.0442	0.20	0.40	0.6380
30 1.87 0.0412 0.20 0.56 0.6807 40 50 1.78 0.0442 0.20 0.50 30 1.87 0.0412 0.20 0.55 0.7837 40 50 1.78 0.0442 0.20 0.55 30 1.87 0.0412 0.20 0.65 0.9402 40 50 1.78 0.0442 0.20 0.65 30 1.87 0.0412 0.20 0.65 0.9402 40 50 1.78 0.0442 0.20 0.65 30 1.87 0.0412 0.20 0.70 0.9732 40 50 1.78 0.0442 0.20 0.65 30 1.87 0.0412 0.25 0.40 0.2541 40 50 1.78 0.0442 0.20 0.70 30 1.87 0.0412 0.25 0.40 0.2541 40 50 1.78 0.0442 0.25 0.40 30 1.87	0	30	1.87	0.0412	0.20	0.45	0.5414	40	20	1.78	0.0442	0.20	0.45	0.7962
30 1.87 0.0412 0.20 0.55 0.7975 40 50 1.78 0.0442 0.20 0.55 30 1.87 0.0412 0.20 0.66 0.8837 40 50 1.78 0.0442 0.20 0.66 30 1.87 0.0412 0.20 0.65 0.9402 40 50 1.78 0.0442 0.20 0.65 30 1.87 0.0412 0.20 0.70 0.9402 40 50 1.78 0.0442 0.20 0.70 30 1.87 0.0412 0.25 0.40 0.2341 40 50 1.78 0.0442 0.25 0.40 30 1.87 0.0412 0.25 0.40 0.23541 40 50 1.78 0.0442 0.25 0.40 30 1.87 0.0412 0.25 0.50 0.5241 40 50 1.78 0.0442 0.25 0.45 30 1.87 <td< td=""><td>0</td><td>30</td><td>1.87</td><td>0.0412</td><td>0.20</td><td>0.50</td><td>0.6807</td><td>40</td><td>20</td><td>1.78</td><td>0.0442</td><td>0.20</td><td>0.50</td><td>0.9032</td></td<>	0	30	1.87	0.0412	0.20	0.50	0.6807	40	20	1.78	0.0442	0.20	0.50	0.9032
30 1.87 0.0412 0.20 0.65 0.8837 40 50 1.78 0.0442 0.20 0.60 30 1.87 0.0412 0.20 0.65 0.9802 40 50 1.78 0.0442 0.20 0.65 30 1.87 0.0412 0.20 0.70 0.9782 40 50 1.78 0.0442 0.20 0.70 0.70 0.9782 40 50 1.78 0.0442 0.20 0.70 0.70 0.8782 40 50 1.78 0.0442 0.20 0.70 0.70 30 1.87 0.0412 0.25 0.45 0.8834 40 50 1.78 0.0442 0.25 0.40 30 1.87 0.0412 0.25 0.45 0.8834 40 50 1.78 0.0442 0.25 0.45 0.45 0.88 0.0442 0.25 0.45 0.45 0.88 0.0442 0.25 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	0	30	1.87	0.0412	0.20	0.55	0.7975	40	20	1.78	0.0442	0.20	0.55	0.9623
30 1.87 0.0412 0.20 0.65 0.9402 40 50 1.78 0.0442 0.20 0.65 30 1.78 0.0412 0.20 0.65 30 1.87 0.0412 0.20 0.70 0.9732 40 50 1.78 0.0442 0.20 0.70 0.70 30 1.87 0.0412 0.25 0.45 0.45 0.8830 40 50 1.78 0.0442 0.25 0.45 30 1.87 0.0412 0.25 0.50 0.5241 40 50 1.78 0.0442 0.25 0.45 0.45 0.28 0.24 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	0	30	1.87	0.0412	0.20	0.00	0.8837	40	20	1.78	0.0442	0.20	09.0	0.9884
30 1.87 0.0412 0.20 0.70 0.9732 40 50 1.78 0.0442 0.20 0.70 30 1.87 0.0412 0.25 0.40 0.2541 40 50 1.78 0.0442 0.25 0.40 30 1.87 0.0412 0.25 0.45 0.8354 40 50 1.78 0.0442 0.25 0.45 30 1.87 0.0412 0.25 0.50 0.5241 40 50 1.78 0.0442 0.25 0.45	0	30	1.87	0.0412	0.20	0.65	0.9402	40	20	1.78	0.0442	0.20	0.65	0.9973
30 1.87 0.0412 0.25 0.40 0.2841 40 50 1.78 0.0442 0.25 0.40 30 1.87 0.0412 0.25 0.45 0.3830 40 50 1.78 0.0442 0.25 0.45 30 1.87 0.0412 0.25 0.50 0.5241 40 50 1.78 0.0442 0.25 0.50 0.50	0	30	1.87	0.0412	0.20	0.70	0.9732	40	20	1.78	0.0442	0.20	0.70	0.9996
30 1.87 0.0412 0.25 0.45 0.3830 40 50 1.78 0.0442 0.25 0.45 30 1.87 0.0412 0.25 0.50 0.5241 40 50 1.78 0.0442 0.25 0.50	0	30	1.87	0.0412	0.25	0.40	0.2541	40	20	1.78	0.0442	0.25	0.40	0.4134
30 1.87 0.0412 0.25 0.50 0.5241 40 50 1.78 0.0442 0.25 0.50	0	30	1.87	0.0412	0.25	0.45	0.3830	40	20	1.78	0.0442	0.25	0.45	0.5993
	0	30	0 1	0	1									

Table B.16: continue on next page

Table B.16: continue on next page

. [. 1																																																	
o bade	power	0.9552	0.9863	0.9969	0.9995	0.3895	0.5770	0.7507	0.8785	0.9523	0.9855	0.3811	0.5709	0.7464	0.8761	0.3806	0.5694	0.4979	0.7326	0.8833	0.9580	0.9879	0.9973	0.9995	0.5727	0.7626	0.8935	0.9622	0.9895	0.9977	0.9996	0.9999	0.4847	0.6908	0.8476	0.9383	0.9795	0.9945	0.9989	0.9998	0.4456	0.6475	0.8095	0.9141	0.9686	0.9909	0.9980	0.4162	0.6089	0.7768
10000	p2	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.65	0.40	0.45	0.50
Jane P	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.05	0.02	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25
continued from presidus page	pvalue	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0442	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381	0.0381
	$\mathbf{z}_{\mathbf{n}}$	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.80	28.1	1.86	1.86	1.86
	n2	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	9 9	00	3 9	09	09	09
	$^{\rm n_1}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40
	power	0.7769	0.8679	0.9313	0.9698	0.2501	0.3727	0.5073	0.6409	0.7616	0.8595	0.2436	0.3602	0.4926	0.6295	0.2353	0.3507	0.2903	0.4408	0.5996	0.7478	0.8600	0.9307	0.9693	0.3273	0.4824	0.6347	0.7637	0.8608	0.9264	0.9657	0.9861	0.2765	0.4127	0.5553	0.6896	0.8031	0.8877	0.9429	0.9744	0.2404	0.3621	0.4990	0.6367	0.7588	0.8547	0.9223	0.2135	0.3273	0.4598
	p2	0.60	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.05	0.40	0.45	0.50
	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25
	pvalue	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467	0.0467
	$\mathbf{z}_{\mathbf{n}}$	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14
	n2	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	$^{\rm n_1}$	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	50	50	50	50	20	20	20	20	20	20	50	0 70	07.0	20	20	20	20

_	n_2 z_u	n	pvalue	\mathbf{p}_1	p ₂	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p ₁	p 2	power
	40 2	14	0.0467	0.25	0.55	0.5965	40	09	1.86	0.0381	0.25	0.55	0.8943
	40 2.:	.14	0.0467	0.25	09.0	0.7233	40	09	1.86	0.0381	0.25	0.60	0.9596
•		2.14	0.0467	0.25	0.65	0.8299	40	09	1.86	0.0381	0.25	0.65	0.9880
		2.14	0.0467	0.25	0.70	0.9092	40	0.9	1.86	0.0381	0.25	0.70	0.9974
•	40 2	2.14	0.0467	0.25	0.75	0.9593	40	09	1.86	0.0381	0.25	0.75	0.9996
		2.14	0.0467	0.30	0.45	0.1948	40	09	1.86	0.0381	0.30	0.45	0.3898
	40	2.14	0.0467	0.30	0.50	0.3019	40	99	1.86	0.0381	0.30	0.50	0.5800
		27.14	0.0467	0.30	0.55	0.4289	40	99	1.86	0.0381	0.30	0.55	0.7537
		41.5	0.0467	0.30	0.00	0.5000	40	00	1.80	0.0381	0.30	0.00	0.8810
	40	41.0	0.0467	0.00	0.00	0.7007	04.6	00 0	1.00	0.0361	0.00	0.00	0.9944
		1.7	0.0467	33.0	0.0	0.1707	40	8 9	1.00	0.0381	0.00	0.0	0.3715
		2.14	0.0467	0.35	0.55	0.2809	40	909	1.86	0.0381	0.35	0.55	0.5614
•		2.14	0.0467	0.35	09.0	0.4070	40	09	1.86	0.0381	0.35	0.60	0.7411
•		2.14	0.0467	0.35	0.65	0.5496	40	09	1.86	0.0381	0.35	0.65	0.8756
•		2.14	0.0467	0.40	0.55	0.1670	40	09	1.86	0.0381	0.40	0.55	0.3610
•		2.14	0.0467	0.40	09.0	0.2674	40	09	1.86	0.0381	0.40	0.60	0.5539
-		2.36	0.0480	0.02	0.15	0.3037	40	20	1.79	0.0473	0.05	0.15	0.5245
		2.36	0.0480	0.02	0.20	0.4532	40	20	1.79	0.0473	0.02	0.20	0.7641
-		2.36	0.0480	0.02	0.25	0.6087	40	20	1.79	0.0473	0.02	0.25	0.9095
-		2.36	0.0480	0.02	0.30	0.7479	40	20	1.79	0.0473	0.02	0.30	0.9729
-		2.36	0.0480	0.02	0.35	0.8550	40	20	1.79	0.0473	0.02	0.35	0.9936
-		2.36	0.0480	0.02	0.40	0.9281	40	20	1.79	0.0473	0.02	0.40	0.9989
	50 2.5	2.36	0.0480	0.05	0.45	0.9695	40	29	1.79	0.0473	0.05	0.45	0.9999
		2.36	0.0480	0.10	0.25	0.3185	40	2 i	1.79	0.0473	0.10	0.25	0.6286
		2.36	0.0480	0.10	0.30	0.4609	40	2 8	1.79	0.0473	0.10	0.30	0.8148
		00.7	0.0480	0.10	0.00	0.0123	04.0	3 9	1.73	0.0473	0.10	0.00	0.9272
		0.20	0.0480	0.10	0.40	0.7512	7	2.5	1.79	0.0473	0.10	0.40	0.9770
		2.36	0.0480	0.10	0.50	0.9248	4 4	2.5	1.79	0.0473	0.10	0.50	06660
		2.36	0.0480	0.10	0.55	0.9652	40	202	1.79	0.0473	0.10	0.55	0.9999
		36	0.0480	0.10	09.0	0.9861	40	70	1.79	0.0473	0.10	0.60	1.0000
•	50 2.3	2.36	0.0480	0.15	0.30	0.2507	40	20	1.79	0.0473	0.15	0.30	0.5490
ĺ		2.36	0.0480	0.15	0.35	0.3852	40	70	1.79	0.0473	0.15	0.35	0.7515
-		2.36	0.0480	0.15	0.40	0.5346	40	20	1.79	0.0473	0.15	0.40	0.8892
-		2.36	0.0480	0.15	0.45	0.6746	40	20	1.79	0.0473	0.15	0.45	0.9602
-		2.36	0.0480	0.15	0.20	0.7919	40	20	1.79	0.0473	0.15	0.50	0.9886
-		36	0.0480	0.15	0.55	0.8809	40	20	1.79	0.0473	0.15	0.55	0.9974
-		2.36	0.0480	0.15	09.0	0.9401	40	20	1.79	0.0473	0.15	09.0	0.9995
	50 2.5	2.36	0.0480	0.15	0.65	0.9737	40	2 i	1.79	0.0473	0.15	0.65	0.99999
-		2.36	0.0480	0.20	0.35	0.2165	40	2	1.79	0.0473	0.20	0.35	0.5071
		2.36	0.0480	0.20	0.40	0.3380	40	2 1	1.79	0.0473	0.20	0.40	0.7085
		36	0.0480	0.20	0.45	0.4744	40	2 1	1.79	0.0473	0.20	0.45	0.8568
	50 2.5	2.36	0.0480	0.20	0.50	0.6137	40	2 6	1.79	0.0473	0.20	0.50	0.9423
		00.70	0.0480	0.20	0.00	0.7419	04.6	9 6	1.70	0.0473	0.20	0.00	0.3012
		0.20	0.0480	0.20	0.00	0.9452	7	2 2	1.79	0.0473	0.20	0.00	0.0001
	50 2.3	2.36	0.0480	0.20	0.70	0.9614	4 4	2 2	1.79	0.0473	0.20	0.70	0.9999
		,								0			0.00
		2.36	0.0480	0.25	0.40	0.1914	40	40	1 79	0.0473	0.25	0.40	0.4765

Table B.16: continue on next page

Table B.16: continue on next page

s $page$	power	0.8276	0.9252	0.9742	0.9988	8666.0	0.4491	0.6414	0.8035	0.9130	0.9703	0.9924	0.6192	0.7910	0.9086	0.4116	0.6116	0.4412	0.6968	0.8746	0.9602	0.9904	0.9900	0.9998	0.0491	0.9000	0.9670	0.9913	0.9982	0.9997	1.0000	0.4689	0.6838	0.8446	0.9797	0.9949	0.9991	0.9999	0.4172	0.6222	0.7933	0.9074	0.9676	0.9916	0.9964	0.3744
reviou	p2	0.50	0.55	0.60	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	04.0	0.40 0.40	0.40	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.40	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40
from p	P1	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.To	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25
-continued from previous page	pvalue	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0500	0.0500	0.0500	0.0500	0.0200	0.0300	0.0200	0.0300	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0200	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0300	0.0500
	$\mathbf{z}_{\mathbf{u}}$	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	2.1	2.1	2.1	7.7	7.7	1.7	1.7	7	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	7.7	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.7	2.1
B.16:	$^{\mathrm{n}_{2}}$	70	20	2 5	2.2	20	20	20	2	2 i	2 6	2 5	2 2	20	20	70	20	80	80	80	200	080	000	000	000	8 8	80	80	80	80	80	80	080	000	8 8	80	80	80	80	80	80	80	80	08 8	000	8 8
Table	$^{\mathrm{n}_{1}}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	04.0	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	power	0.4296	0.5706	0.7043	0.8985	0.9531	0.1700	0.2716	0.3984	0.5378	0.6741	0.7946	0.2514	0.3733	0.5118	0.1426	0.2340	0.3032	0.4263	0.5751	0.7216	0.8360	0.9104	0.9030	0.2007	0.5720	0.7160	0.8296	0.9061	0.9537	0.9806	0.2169	0.3402	0.4854	0.7487	0.8482	0.9206	0.9646	0.1801	0.2901	0.4171	0.5521	0.6869	0.8061	0.0343	0.1543
	p2	0.50	0.55	0.00	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.55	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.40 n	0.4.0	0.0	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.40	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40
	p1	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.To	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25
	pvalue	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0486	0.0486	0.0486	0.0486	0.0486	0.0400	0.0486	0.0480	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486
	$\mathbf{z}_{\mathbf{n}}$	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.59	2.59	2.59	2.59	2.59	0.0 0.0 0.0	2 2	0.10 0.10	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59 5.09	2.50	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	0.70	2.59
	$_{\rm n_2}$	50	20	50	20	20	20	20	20	20	200	200	2.0	20	20	20	20	09	09	09	99	09	00	00	8 9	8 9	09	09	09	09	09	09	9 8	00	8 9	09	09	09	09	09	09	09	09	09	9 9	8 8
	1 u	20	20	50	20	20	20	20	20	20	50	070	20	20	20	20	20	20	20	20	07.0	07.0	0 0	070	0 0	20	20	20	20	20	20	20	50	020	200	20	20	20	20	20	20	20	20	50	070	20

$_{\rm n_2}$	2 Zu	pvalue	\mathbf{p}_1	P2	power	1	$^{\rm n}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P2	power
)9		0.0486	0.25	0.45	0.2469	40	80	2.1	0.0500	0.25	0.45	0.5714
9	60 2.59	0.0486	0.25	0.50	0.3641	40	80	2.1	0.0500	0.25	0.50	0.7538
9		0.0486	0.25	0.55	0.5032	40	80	2.1	0.0500	0.25	0.55	0.8870
9		0.0486	0.25	09.0	0.6479	40	80	2.1	0.0500	0.25	09.0	0.9602
9	0 2.59	0.0486	0.25	0.65	0.7750	40	80	2.1	0.0500	0.25	0.65	0.9895
9		0.0486	0.25	0.70	0.8719	40	80	2.1	0.0500	0.25	0.70	0.9980
9		0.0486	0.25	0.75	0.9378	40	80	2.1	0.0500	0.25	0.75	0.9997
õ		0.0486	0.30	0.45	0.1305	40	80	2.1	0.0500	0.30	0.45	0.3417
9		0.0486	0.30	0.50	0.2154	40	80	2.1	0.0500	0.30	0.50	0.5407
Õ		0.0486	0.30	0.55	0.3326	40	80	2.1	0.0500	0.30	0.55	0.7350
ő		0.0486	0.30	09.0	0.4734	40	80	2.1	0.0200	0.30	0.60	0.8780
٠		0.0486	0.30	0.65	0.6182	40	80	2.1	0.0500	0.30	0.65	0.9564
ō		0.0486	0.30	0.70	0.7501	40	08 8	2.1	0.0500	0.30	0.70	0.9883
Ő		0.0486	0.35	0.50	0.1143	40	80	2.1	0.0500	0.35	0.50	0.3274
ő	0 2.59	0.0486	0.35	0.55	0.1978	40	80	2.1	0.0500	0.35	0.52	0.5311
9		0.0486	0.35	09.0	0.3124	40	80	2.1	0.0500	0.35	09.0	0.7288
Õ		0.0486	0.35	0.65	0.4489	40	80	2.1	0.0500	0.35	0.65	0.8740
9		0.0486	0.40	0.55	0.1053	40	80	2.1	0.0500	0.40	0.55	0.3257
9		0.0486	0.40	09.0	0.1849	40	80	2.1	0.0500	0.40	0.60	0.5291
7		0.0498	0.02	0.15	0.3073	40	06	2.31	0.0402	0.02	0.15	0.4049
7		0.0498	0.02	0.20	0.4075	40	06	2.31	0.0402	0.02	0.20	0.6687
7		0.0498	0.02	0.25	0.5489	40	06	2.31	0.0402	0.02	0.25	0.8592
7		0.0498	0.02	0.30	0.7022	40	06	2.31	0.0402	0.02	0.30	0.9552
K 1		0.0498	0.02	0.35	0.8217	40	06	2.31	0.0402	0.02	0.35	0.9888
Γ.		0.0498	0.02	0.40	0.9073	40	00	2.31	0.0402	0.02	0.40	0.9977
K i	0 2.79	0.0498	0.05	0.45	0.9589	40	06	2.31	0.0402	0.05	0.45	0.9997
⊂ i		0.0498	0.10	0.25	0.2627	40	G 8	2.31	0.0402	0.10	0.25	0.5149
Γì		0.0498	0.10	0.30	0.3969	40	06	2.31	0.0402	0.10	0.30	0.7307
	0 2.79	0.0498	0.10	0.33	0.5434	40	06	2.3	0.0402	0.10	0.35	0.00
1 -		0.0498	0.10	04.0	0.0902	04.0	200	10.2	0.0402	0.10	0.40	0.9000
		0.0498	0.10	4. P	0.0039	04.6	2 2	10.2	0.0402	0.10	 	0.9000
		0.0498	0.10	о с о и	0.0320	7	8 8	2 0	0.0402	0.10	 	0.0000
	0 2.79	0.0438	0.10	0000	0.3407	7	000	20.0	0.0402	0.10	0.00	1.0000
200		0.0498	2.0	0.00	0.000	40	8 6	23.0	0.0402	2	0.00	0.4163
	0 2.79	0.0498	0.15	0.35	0.3104	40	06	2.31	0.0402	0.15	0.35	0.6260
		0.0498	0.15	0.40	0.4518	40	06	2.31	0.0402	0.15	0.40	0.8067
		0.0498	0.15	0.45	0.5940	40	06	2.31	0.0402	0.15	0.45	0.9201
		0.0498	0.15	0.50	0.7214	40	06	2.31	0.0402	0.15	0.50	0.9732
		0.0498	0.15	0.55	0.8304	40	06	2.31	0.0402	0.15	0.55	0.9930
		0.0498	0.15	09.0	0.9120	40	06	2.31	0.0402	0.15	0.60	0.9987
7		0.0498	0.15	0.65	0.9612	40	06	2.31	0.0402	0.15	0.65	0.9998
7	0 2.79	0.0498	0.20	0.35	0.1574	40	06	2.31	0.0402	0.20	0.35	0.3527
7		0.0498	0.20	0.40	0.2597	40	06	2.31	0.0402	0.20	0.40	0.5636
7		0.0498	0.20	0.45	0.3819	40	06	2.31	0.0402	0.20	0.45	0.7521
7		0.0498	0.20	0.50	0.5170	40	06	2.31	0.0402	0.20	0.50	0.8834
~	0 2.79	0.0498	0.20	0.55	0.6594	40	06	2.31	0.0402	0.20	0.55	0.9568
		0.0498	0.20	0.60	7887	ΨV	0	0 31	0000	0	000	0000
1						O.	90	7.01	0.0402	0.20	0.60	0.9880

Table B.16: continue on next page

Table B.16: continue on next page

		ı																																											
is page	power	0.3171	0.5126	0.7050	0.9451	0.9842	0.9967	0.9995	0.2849	0.4756	0.6775	0.9377	0.9815	0.2657	0.4583	0.6639	0.8302	0.2581	0.3543	0.6171	0.8268	0.9396	0.9839	0.9969	0.9996	0.4307	0.8487	0.9449	0.9839	0.9963	0.9994	0.9999	0.5785	0.7697	0.8965	0.9635	0.9903	0.9981	0.9997	0.5038	0.7003	0.8533	0.9440	0.9839	0.9965
revion	P2	0.40	0.45	0.00 0.00 0.00	0.60	0.65	0.70	0.75	0.45	0.50	0.55	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.2.0	0.35	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.55	0.45	0.50	0.55	0.60	0.65
rom p	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.0	0.05	0.02	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0402	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0438	0.0498	0.0498	0.0498	0.0498	0.0498
: -con	$\mathbf{z}_{\mathbf{u}}$	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	0.50	2.52	2.52	2.52	2.52	2.52	2.52	0.7 0.7 0.7 0.7	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	0.00	2.52	2.52	2.52	2.52	7.57
B.16:	$^{\mathrm{n}_{2}}$	06	06	06 0	06	06	06	90	06	06	06 0	6 6	06	90	06	90	06	3 8	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$_{1}^{n_{1}}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	70	40	40	40	40	40	40	0,4	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	power	0.1326	0.2176	0.3302	0.6228	0.7583	0.8619	0.9306	0.1104	0.1886	0.3028	0.5953	0.7323	0.0964	0.1744	0.2863	0.4236	0.0896	0.1040	0.3731	0.4888	0.6496	0.7818	0.8770	0.9389	0.2103	0.4822	0.6232	0.7494	0.8500	0.9200	0.9620	0.2555	0.3769	0.5122	0.6484	0.7684	0.8614	0.9266	0.1199	0.3058	0.4336	0.5689	0.6973	0.8088
	P2	0.40	0.45	0.50 7.70	09.0	0.65	0.70	0.75	0.45	0.50	0.55	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.2.0	0.35	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.33	0.45	0.50	0.55	09.0	0.65
	P1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.0	0.05	0.02	0.05	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0498	0.0438	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385	0.0385
	$\mathbf{z}_{\mathbf{n}}$	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.73	21.0	3.19	3.19	3.19	3.19	3.19	3.19	2.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.10	3.19	3.19	3.19	3.19	3.19
	$^{\mathrm{n}_{2}}$	20	20	2.5	20.	20	20	20	20	29	2 2	2 2	202	20	20	20	20	3 9	2 8	8 8	80	80	80	80	80	000	80	80	80	80	80	200	8 8	80	80	80	80	80	000	8 8	8 8	80	80	80	SO.
	^{1}u	20	20	500	20	20	20	20	20	20	0 70	20	20	20	20	20	50	07.0	000	20	20	20	20	20	50	070	20	20	20	20	20	0 70	20	20	20	20	20	20	50	000	20	20	20	20	70

$_{1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_{1}	p 2	power	$_{1}$	$_{\rm n_2}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	P 2	power
20	80	3.19	0.0385	0.20	0.70	0.8938	40	100	2.52	0.0498	0.20	0.70	0.9994
20	80	3.19	0.0385	0.25	0.40	0.0940	40	100	2.52	0.0498	0.25	0.40	0.2606
20	80	3.19	0.0385	0.25	0.45	0.1615	40	100	2.52	0.0498	0.25	0.45	0.4486
20	80	3.19	0.0385	0.25	0.50	0.2561	40	100	2.52	0.0498	0.25	0.50	0.6530
20	80	3.19	0.0385	0.25	0.55	0.3732	40	100	2.52	0.0498	0.25	0.55	0.8234
20	80	3.19	0.0385	0.25	09.0	0.5051	40	100	2.52	0.0498	0.25	0.60	0.9289
20	80	3.19	0.0385	0.25	0.65	0.6420	40	100	2.52	0.0498	0.25	0.65	0.9775
20	80	3.19	0.0385	0.25	0.70	0.7674	40	100	2.52	0.0498	0.25	0.70	0.9947
20	80	3.19	0.0385	0.25	0.75	0.8680	40	100	2.52	0.0498	0.25	0.75	0.9992
20	80	3.19	0.0385	0.30	0.45	0.0759	40	100	2.52	0.0498	0.30	0.45	0.2321
20	80	3.19	0.0385	0.30	0.50	0.1342	40	100	2.52	0.0498	0.30	0.50	0.4166
20	80	3.19	0.0385	0.30	0.55	0.2173	40	100	2.52	0.0498	0.30	0.55	0.6251
20	80	3.19	0.0385	0.30	09.0	0.3264	40	100	2.52	0.0498	0.30	0.60	0.8011
20	80	3.19	0.0385	0.30	0.65	0.4588	40	100	2.52	0.0498	0.30	0.65	0.9149
20	80	3.19	0.0385	0.30	0.70	0.6016	40	100	2.52	0.0498	0.30	0.70	0.9728
20	80	3.19	0.0385	0.35	0.50	0.0624	40	100	2.52	0.0498	0.35	0.50	0.2173
20	80	3.19	0.0385	0.35	0.55	0.1122	40	100	2.52	0.0498	0.35	0.55	0.3980
20	80	3.19	0.0385	0.35	09.0	0.1876	40	100	2.52	0.0498	0.35	0.60	0.6013
20	80	3.19	0.0385	0.35	0.65	0.2933	40	100	2.52	0.0498	0.35	0.65	0.7820
20	80	3.19	0.0385	0.40	0.55	0.0512	40	100	2.52	0.0498	0.40	0.55	0.2070
20	80	3.19	0.0385	0.40	09.0	0.0955	40	100	2.52	0.0498	0.40	0.60	0.3785

 $\alpha = 0.025$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in Table B.17: Achieved power and p-values calculated for the z-unpooled statistic in cases of different sample sizes, the first sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test.

10 20 2.59 0.0242 0.05 0.14 20 90 3.73 0.0244 0.05 10 20 2.59 0.0242 0.05 0.23 0.0244 0.05 0.23 0.0244 0.05 0.024 0.05 0.0244 0.05 0.024	\mathbf{n}_1	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	p 2	power	\mathbf{n}_1	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	$\mathbf{p_2}$	power
20 2.55 0.0242 0.05 0.1180 2.0 90 3.73 0.0244 0.05 20 2.59 0.0242 0.05 0.236 0.0346 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.05 0.30 0.336 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.05 0.40 0.6887 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.10 0.20 0.1389 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.10 0.20 0.1389 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.40 0.2892 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.40 0.4892 20 90 3.73 0.0244 <	10	20	2.59	0.0242	0.05	0.15	0.0404	20	06	3.73	0.0244	0.05	0.15	0.2164
20 2.55 0.0242 0.05 0.2336 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.05 0.3346 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.05 0.35 0.4406 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.05 0.45 0.0892 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.10 0.25 0.1388 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.25 0.1388 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.436 0.4308 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.436 0.4308 20 90 3.73 0.0244 0.10 <td>10</td> <td>20</td> <td>2.59</td> <td>0.0242</td> <td>0.05</td> <td>0.20</td> <td>0.1180</td> <td>20</td> <td>06</td> <td>3.73</td> <td>0.0244</td> <td>0.02</td> <td>0.20</td> <td>0.3370</td>	10	20	2.59	0.0242	0.05	0.20	0.1180	20	06	3.73	0.0244	0.02	0.20	0.3370
20 2.5.9 0.0242 0.05 0.364 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.05 0.36 0.3646 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.05 0.40 0.6022 20 90 3.73 0.0244 0.05 20 2.59 0.0242 0.01 0.22 0.1385 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.35 0.2223 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.406 0.35 0.2223 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.406 0.4090 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.406 0.4090 90 3.73 0.0244 0.10	10	20	2.59	0.0242	0.05	0.25	0.2336	20	06	3.73	0.0244	0.02	0.25	0.3995
25 0.0242 0.05 0.35 0.400 20 37.3 0.0244 0.05 20 2.59 0.0242 0.05 0.40 0.66022 20 90 37.3 0.0244 0.05 20 2.59 0.0242 0.05 0.45 0.6887 20 90 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.35 0.3115 20 90 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.35 0.3115 20 90 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.46 0.4990 9 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.46 0.4990 9 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.46 0.4990 9 37.3 0.0244 0.10 20 2.59 <t< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.05</td><td>0.30</td><td>0.3646</td><td>20</td><td>06</td><td>3.73</td><td>0.0244</td><td>0.05</td><td>0.30</td><td>0.5293</td></t<>	10	20	2.59	0.0242	0.05	0.30	0.3646	20	06	3.73	0.0244	0.05	0.30	0.5293
25 0.0242 0.05 0.44 0.6022 20 37.3 0.0244 0.05 20 2.59 0.0242 0.05 0.45 0.6987 20 90 37.3 0.0244 0.05 20 2.59 0.0242 0.10 0.25 0.3115 20 90 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.35 0.2315 20 90 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4990 20 90 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4990 20 90 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4890 20 90 37.3 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4890 20 90 37.3 0.0244 0.10 <td>10</td> <td>20</td> <td>2.59</td> <td>0.0242</td> <td>0.05</td> <td>0.35</td> <td>0.4906</td> <td>20</td> <td>06</td> <td>3.73</td> <td>0.0244</td> <td>0.05</td> <td>0.35</td> <td>0.6822</td>	10	20	2.59	0.0242	0.05	0.35	0.4906	20	06	3.73	0.0244	0.05	0.35	0.6822
25 0.0242 0.05 0.45 0.6987 20 37.3 0.0244 0.05 20 2.59 0.0242 0.10 0.25 0.2223 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.35 0.213 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.40 0.4038 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4990 2.73 0.0244 0.10 20 2.59 0.0242 0.10 0.65 0.5951 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.65 0.5951 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.65 0.7842 20 90 3.73 0.0244 0.10 20 <t< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.05</td><td>0.40</td><td>0.6022</td><td>20</td><td>06</td><td>3.73</td><td>0.0244</td><td>0.05</td><td>0.40</td><td>0.7950</td></t<>	10	20	2.59	0.0242	0.05	0.40	0.6022	20	06	3.73	0.0244	0.05	0.40	0.7950
20 2.59 0.0242 0.10 0.25 0.1389 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.35 0.3135 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.40 0.4038 2.0 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.50 0.4038 2.0 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.50 0.637 2.0 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.50 0.637 2.0 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.36 0.1342 2.0 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.45 0.4242 2.0 90 3.73	10	20	2.59	0.0242	0.05	0.45	0.6987	20	06	3.73	0.0244	0.05	0.45	0.8826
20 2.59 0.0242 0.10 0.30 0.2223 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.35 0.2213 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4990 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4990 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.65 0.6872 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.60 0.7697 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.45 0.4890 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.49 0.7634 20 90 3.73	10	20	2.59	0.0242	0.10	0.25	0.1389	20	06	3.73	0.0244	0.10	0.25	0.1516
20 2.59 0.0242 0.10 0.35 0.3115 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4990 2.9 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4990 2.9 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.50 0.5951 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.50 0.637 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.50 0.230 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.45 0.45 0.242 0.10 0.45 0.242 0.10 0.45 0.242 0.10 0.45 0.242 0.10 0.45 0.484 20 90 3.73 0.0244 0.10 <td>10</td> <td>20</td> <td>2.59</td> <td>0.0242</td> <td>0.10</td> <td>0.30</td> <td>0.2223</td> <td>20</td> <td>06</td> <td>3.73</td> <td>0.0244</td> <td>0.10</td> <td>0.30</td> <td>0.2453</td>	10	20	2.59	0.0242	0.10	0.30	0.2223	20	06	3.73	0.0244	0.10	0.30	0.2453
20 2.59 0.0242 0.10 0.4038 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.4950 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.45 0.6951 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.65 0.6872 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.11 0.60 0.7697 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.45 0.3422 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.40 0.4842 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.44 0.4442 20 90 3.73 0.0244 <t< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.10</td><td>0.35</td><td>0.3115</td><td>20</td><td>06</td><td>3.73</td><td>0.0244</td><td>0.10</td><td>0.35</td><td>0.3676</td></t<>	10	20	2.59	0.0242	0.10	0.35	0.3115	20	06	3.73	0.0244	0.10	0.35	0.3676
20 2.59 0.0242 0.10 0.45 0.4990 20 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.55 0.6951 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.56 0.6851 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.60 0.7697 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.40 0.2690 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.40 0.2630 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.45 0.442 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.46 0.4284 20 90 3.73 0.0244 0.15 <td>10</td> <td>20</td> <td>2.59</td> <td>0.0242</td> <td>0.10</td> <td>0.40</td> <td>0.4038</td> <td>20</td> <td>06</td> <td>3.73</td> <td>0.0244</td> <td>0.10</td> <td>0.40</td> <td>0.4930</td>	10	20	2.59	0.0242	0.10	0.40	0.4038	20	06	3.73	0.0244	0.10	0.40	0.4930
20 2.59 0.0242 0.10 0.5951 20 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.55 0.0872 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.10 0.55 0.0872 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.30 0.1319 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.34 2.0 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.43 0.20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.43 0.4342 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.44 0.46 0.4842 20 90 3.73 0.0244 0.15	10	20	2.59	0.0242	0.10	0.45	0.4990	20	06	3.73	0.0244	0.10	0.45	0.6292
20 2.59 0.0242 0.10 0.55 0.6872 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.11 0.60 0.7697 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.36 0.7697 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.45 0.342 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.45 0.3442 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.45 0.4342 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.60 0.4342 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.46 0.4342 20 90 3.73 0	10	20	2.59	0.0242	0.10	0.50	0.5951	20	06	3.73	0.0244	0.10	0.50	0.7529
20 2.59 0.0242 0.10 0.60 0.7697 20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.15 0.38 0.1319 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.36 0.1319 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.46 0.2630 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.46 0.2634 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.65 0.5284 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.65 0.7044 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.20 0.40 0.6212 20 90	10	20	2.59	0.0242	0.10	0.55	0.6872	20	90	3.73	0.0244	0.10	0.55	0.8519
20 2.59 0.0242 0.15 0.30 0.1319 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.35 0.1925 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.45 0.432 2.0 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.45 0.4342 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.60 0.4342 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.60 0.6212 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.60 0.61 0.70 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.45 0.7044 2.0 90 3.73 <td< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.10</td><td>09.0</td><td>0.7697</td><td>20</td><td>90</td><td>3.73</td><td>0.0244</td><td>0.10</td><td>0.60</td><td>0.9207</td></td<>	10	20	2.59	0.0242	0.10	09.0	0.7697	20	90	3.73	0.0244	0.10	0.60	0.9207
20 2.59 0.0242 0.15 0.1925 0.1925 0.0244 0.15 20 2.59 0.0242 0.15 0.44 0.2432 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.46 0.2432 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.65 0.4342 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.65 0.7074 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.65 0.7074 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.45 0.20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.45 0.20 0.40 0.70 0.20 0.20 0.02 0.20 0.02	10	20	2.59	0.0242	0.15	0.30	0.1319	20	06	3.73	0.0244	0.15	0.30	0.1022
20 2.59 0.0242 0.15 0.40 0.2630 20 37.3 0.0244 0.15 20 2.59 0.0242 0.15 0.45 0.3442 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.15 0.45 0.5284 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.15 0.65 0.5284 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.15 0.60 0.6212 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.15 0.40 0.1660 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.20 0.40 0.1660 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.20 0.40 0.1660 20 90 37.3 0.0244	10	20	2.59	0.0242	0.15	0.35	0.1925	20	90	3.73	0.0244	0.15	0.35	0.1715
20 2.59 0.0242 0.15 0.45 0.3442 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 6.56 0.5284 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 6.56 0.5284 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.60 0.6212 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.40 0.1660 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.40 0.1660 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.476 0.20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.476 0.1660 20 90 3.73 0.0244	10	20	2.59	0.0242	0.15	0.40	0.2630	20	06	3.73	0.0244	0.15	0.40	0.2615
20 2.59 0.0242 0.15 0.50 0.4342 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.65 0.5284 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.66 0.5284 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.66 0.7074 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.36 0.165 2.0 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.40 0.166 0.20 90 3.73 0.0244 0.10 20 2.59 0.0242 0.20 0.50 0.4776 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.20 0.4776 20 90 3.73 <td< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.15</td><td>0.45</td><td>0.3442</td><td>20</td><td>06</td><td>3.73</td><td>0.0244</td><td>0.15</td><td>0.45</td><td>0.3803</td></td<>	10	20	2.59	0.0242	0.15	0.45	0.3442	20	06	3.73	0.0244	0.15	0.45	0.3803
20 2.59 0.0242 0.15 0.5284 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.66 0.6212 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.15 0.66 0.0214 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.40 0.1660 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.40 0.1660 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.50 0.90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.50 0.90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0.38 2.0 90 3.73 0.0244 0.20 20 2.59	10	20	2.59	0.0242	0.15	0.50	0.4342	20	06	3.73	0.0244	0.15	0.50	0.5135
20 2.59 0.0242 0.15 0.60 0.6212 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.15 0.66 0.6215 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.20 0.46 0.1660 20 90 37.3 0.0244 0.15 20 2.59 0.0242 0.20 0.46 0.1660 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.476 0.90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.4776 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.4776 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.40 0.40 0.40 0.024 0.024 0.024 20 2.59 <	10	20	2.59	0.0242	0.15	0.55	0.5284	20	06	3.73	0.0244	0.15	0.55	0.6480
20 2.59 0.0242 0.15 0.65 0.7074 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.35 0.01155 20 90 3.73 0.0244 0.15 20 2.59 0.0242 0.20 0.45 0.1155 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.45 0.2290 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.55 0.3842 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.60 0.4776 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0.4776 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.4776 20 90 3.73 0.0244 <	10	20	2.59	0.0242	0.15	09.0	0.6212	20	06	3.73	0.0244	0.15	09.0	0.7664
20 2.59 0.0242 0.20 0.35 0.1155 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.46 0.1660 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.46 0.1660 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.55 0.3040 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0.65 0.90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0.656 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.656 0.656 0.90 3.73 0.0244 0.20 20 2.59 0.0242 0.25 0.46 0.1466 20 90 3.73 0.0244 0.20 <	10	20	2.59	0.0242	0.15	0.65	0.7074	20	06	3.73	0.0244	0.15	0.65	0.8592
20 2.59 0.0242 0.20 0.40 0.1660 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.45 0.0290 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.45 0.2882 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0.3882 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.66 0.66 0.670 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.70 0.656 0.69 3.73 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.1012 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.1012 20 90 3.73 0.0244	10	20	2.59	0.0242	0.20	0.35	0.1155	20	06	3.73	0.0244	0.20	0.35	0.0713
20 2.59 0.0242 0.20 0.45 0.2290 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.55 0.3840 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.55 0.3842 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.60 0.4776 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0 90 3.73 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.1012 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.1012 20 90 3.73 0.0244 0.25 <t< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.20</td><td>0.40</td><td>0.1660</td><td>20</td><td>06</td><td>3.73</td><td>0.0244</td><td>0.20</td><td>0.40</td><td>0.1226</td></t<>	10	20	2.59	0.0242	0.20	0.40	0.1660	20	06	3.73	0.0244	0.20	0.40	0.1226
20 2.59 0.0242 0.20 0.50 0.3040 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.56 0.3862 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0.4762 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.70 0.6556 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.70 0.656 90 37.3 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.656 0.90 37.3 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.40 0.3544 2.0 0.0244 0.25 20 2.59	10	20	2.59	0.0242	0.20	0.45	0.2290	20	06	3.73	0.0244	0.20	0.45	0.2008
20 2.59 0.0242 0.20 0.55 0.3882 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0.4776 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.65 0.656 0.656 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.70 0.656 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.1012 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.40 0.1012 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.50 0.2777 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.50 0.2447 20 90 3	10	20	2.59	0.0242	0.20	0.50	0.3040	20	06	3.73	0.0244	0.20	0.50	0.3049
20 2.59 0.0242 0.20 0.60 0.4776 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.20 0.65 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.1012 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.1012 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.40 0.1012 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.65 0.247 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.65 0.447 20 90 3.73 0.0244 0.25 <t< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.20</td><td>0.55</td><td>0.3882</td><td>20</td><td>06</td><td>3.73</td><td>0.0244</td><td>0.20</td><td>0.55</td><td>0.4303</td></t<>	10	20	2.59	0.0242	0.20	0.55	0.3882	20	06	3.73	0.0244	0.20	0.55	0.4303
20 2.59 0.0242 0.20 0.65 0.5679 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.20 0.770 0.0556 20 90 37.3 0.0244 0.20 20 2.59 0.0242 0.25 0.40 0.0146 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.40 0.1466 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.50 0.2041 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.50 0.2741 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.60 0.3544 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.70 0.3533 20 90 37.3 <td< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.20</td><td>09.0</td><td>0.4776</td><td>20</td><td>06</td><td>3.73</td><td>0.0244</td><td>0.20</td><td>0.60</td><td>0.5632</td></td<>	10	20	2.59	0.0242	0.20	09.0	0.4776	20	06	3.73	0.0244	0.20	0.60	0.5632
20 2.59 0.0242 0.20 0.70 0.6556 20 90 3.73 0.0244 0.20 20 2.59 0.0242 0.25 0.46 0.1012 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.46 0.1012 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.50 0.2041 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.26 0.20 0.2744 0.25 20 2.59 0.0242 0.25 0.70 0.2747 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.70 0.5233 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.70 0.6148 20 90 3.73 0.0244 0.25 <td< td=""><td>10</td><td>20</td><td>2.59</td><td>0.0242</td><td>0.20</td><td>0.65</td><td>0.5679</td><td>20</td><td>06</td><td>3.73</td><td>0.0244</td><td>0.20</td><td>0.65</td><td>0.6915</td></td<>	10	20	2.59	0.0242	0.20	0.65	0.5679	20	06	3.73	0.0244	0.20	0.65	0.6915
20 2.59 0.0242 0.25 0.404 0.1012 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.45 0.0441 20 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.45 0.2761 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.65 0.2777 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.65 0.4374 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.65 0.4347 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.76 0.6133 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.30 0.50 0.1312 20 90 37.3 0.0244	10	20	2.59	0.0242	0.20	0.70	0.6556	20	06	3.73	0.0244	0.20	0.70	0.8083
20 2.59 0.0242 0.25 0.44 0.1466 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.56 0.2741 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.56 0.2747 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.60 0.3504 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.76 0.5233 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.76 0.5233 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.30 0.45 0.0901 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.45 0.1312 20 90 3.73	10	20	2.59	0.0242	0.25	0.40	0.1012	20	06	3.73	0.0244	0.25	0.40	0.0514
20 2.59 0.0242 0.25 0.50 0.2041 20 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.50 0.2741 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.66 0.3504 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.60 0.3504 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.70 0.5233 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.76 0.6148 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.30 0.50 0.1312 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.50 0.1312 20 90 3.73 0.0244	10	20	2.59	0.0242	0.25	0.45	0.1466	20	06	3.73	0.0244	0.25	0.45	0.0940
20 2.59 0.0242 0.25 0.55 0.2727 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.66 0.3547 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.66 0.3547 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.25 0.76 0.5233 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.36 0.75 0.061 20 90 37.3 0.0244 0.25 20 2.59 0.0242 0.30 0.60 0.1312 20 90 37.3 0.0244 0.30 20 2.59 0.0242 0.30 0.56 0.1312 20 90 37.3 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.1830 20 90 37.3 0	10	20	2.59	0.0242	0.25	0.50	0.2041	20	06	3.73	0.0244	0.25	0.50	0.1598
20 2.59 0.0242 0.25 0.60 0.3504 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.65 0.4347 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.75 0.6148 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.75 0.6148 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.30 0.45 0.0901 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.50 0.1312 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.55 0.1830 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73	10	20	2.59	0.0242	0.25	0.55	0.2727	20	90	3.73	0.0244	0.25	0.55	0.2516
20 2.59 0.0242 0.25 0.65 0.4347 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.70 0.5233 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.70 0.5233 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.30 0.45 0.0901 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.50 0.1312 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.55 0.1832 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73	10	20	2.59	0.0242	0.25	09.0	0.3504	20	06	3.73	0.0244	0.25	0.60	0.3654
20 2.59 0.0242 0.25 0.70 0.5233 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.25 0.75 0.6148 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.30 0.45 0.9011 20 90 3.73 0.0244 0.35 20 2.59 0.0242 0.30 0.50 0.1312 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.55 0.1830 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.1830 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73	10	20	2.59	0.0242	0.25	0.65	0.4347	20	06	3.73	0.0244	0.25	0.65	0.4967
20 2.59 0.0242 0.25 0.75 0.6148 20 90 3.73 0.0244 0.25 20 2.59 0.0242 0.30 0.45 0.0901 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.55 0.1312 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.1820 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.60 0.2453 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.66 0.2453 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30	10	20	2.59	0.0242	0.25	0.70	0.5233	20	06	3.73	0.0244	0.25	0.70	0.6401
20 2.59 0.0242 0.30 0.45 0.0901 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.50 0.1312 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.55 0.1830 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.66 0.2453 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30	10	20	2.59	0.0242	0.25	0.75	0.6148	20	06	3.73	0.0244	0.25	0.75	0.7690
20 2.59 0.0242 0.30 0.50 0.1312 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.55 0.1830 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.66 0.2453 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30	10	20	2.59	0.0242	0.30	0.45	0.0901	20	90	3.73	0.0244	0.30	0.45	0.0392
20 2.59 0.0242 0.30 0.55 0.1830 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.60 0.2453 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30	10	20	2.59	0.0242	0.30	0.50	0.1312	20	06	3.73	0.0244	0.30	0.50	0.0743
20 2.59 0.0242 0.30 0.60 0.2453 20 90 3.73 0.0244 0.30 20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30	10	20	2.59	0.0242	0.30	0.55	0.1830	20	06	3.73	0.0244	0.30	0.55	0.1301
20 2.59 0.0242 0.30 0.65 0.3174 20 90 3.73 0.0244 0.30	10	20	2.59	0.0242	0.30	0.00	0.2453	20	06	3.73	0.0244	0.30	0.60	0.2097
	10	20	2.59	0.0242	0.30	0.65	0.3174	20	06	3.73	0.0244	0.30	0.65	0.3176

Table B.17: continue on next page

page	power	0.4553	0.0306	0.0595	0.1065	0.1803	0.0240	0.0477	0.1946	0.3302	0.3734	0.4680	0.6289	0.7574	0.8529	0.1330	0.2003	0.3210	0.4432	0.5747	0.6963	0.8003	0.8848	0.0788	0.1431	0.2222	0.3272	0.4434	0.5706	0.6988	0.8107	0.0571	0.0987	0.1625	0.2449	0.3532	0.4828	0.0200	0.0303	0.0000	0.0710	0.1000	0.2934	0.4208	0.5650	0.7075	0.0280	0.0515	0.0925	0.1576
-continued from previous page	P2	0.70	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.0	0.40 74	 	0.0 7.0 7.0	09.0	0.65	0.70	0.75	0.45	0.50	0.55	0.60
from p	\mathbf{p}_1	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00 0.00 0.00 0.00	24.0 74.0	0.00	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30
tinued	pvalue	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0244	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212
	$\mathbf{z}_{\mathbf{u}}$	3.73	3.73	3.73	3.73	3.73	3.73	3.73	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	†.O.†	10.7	10.4	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04
B.17:	$^{\mathrm{n}_{2}}$	06	06	06	06	06	06	06	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	1	20	20	20	20	20	20	20	50	50	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	50	20	070	0 0	0 0	0 0	0 0	000	000	20	20	20	20	20	20	20
	power	0.3988	0.0805	0.1171	0.1635	0.2207	0.0711	0.1035	0.0166	0.0770	0.1955	0.3410	0.4681	0.5576	0.6229	0.1139	0.1990	0.2751	0.3346	0.3906	0.4607	0.5489	0.6440	0.1127	0.1569	0.1951	0.2383	0.2991	0.3799	0.4717	0.5654	0.0866	0.1103	0.1409	0.1874	0.2517	0.3287	0.4144	0.5108	0.0001	0.0803	0.1130	0.2183	0.2894	0.3772	0.4831	0.0442	0.0653	0.0966	0.1382
	P2	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.70	1.0 T	 	0 0	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0
	p1	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	07.0	0.20	0.00	0.40	0.00	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30
	pvalue	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0195	0.0105	0.0100	0.0165	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185
	$\mathbf{z}_{\mathbf{u}}$	2.59	2.59	2.59	2.59	2.59	2.59	2.59	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31	0.01	2 2 2	0.01	2.0	3 3 1	3.31	3.31	3.31	3.31	3.31	3.31	3.31	3.31
	$^{\mathrm{n}_{2}}$	20	20	20	50	50	50	20	S 8	80	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	80	္က ဗ	2 6	9 6	000	3 6	9 6	8 8	8 8	30	30	30	30	30	30	30
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	10	0 ;	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	2 -	9 5	10	1 1	10	10	10	10	10	10	10

Table B.17: continue on next page

Table B.17: continue on next page

page	power	0.6619	0.8036	0.9038	0.1939	0.3276	0.6583	0.1928	0.3268	0.2464	0.4452	0.6464	0.8064	0.9103	0.3030	0.3214	0.5051	0.6868	0.8313	0.9228	0.9697	0.9899	0.9973	0.2637	0.4364	0.6177	0.7712	0.8802	0.0400	0.9803	0.2368	0.3930	0.5627	0.7204	0.8459	0.9284	0.9912	0.2146	0.3565	0.5229	0.6876	0.8221	0.9131	0.9649	0.9891	0.3338
revious	P2	09.0	0.65	0.70	0.50	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.00	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.50
from p	\mathbf{p}_1	0.30	0.30	0.30	0.35	0.0	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.10	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30
-continued from previous page	pvalue	0.0236	0.0236	0.0236	0.0236	0.0230	0.0236	0.0236	0.0236	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200
	$\mathbf{z}_{\mathbf{u}}$	2.21	2.21	2.21	2.21	2.21	2.21	2.21	2.21	2.36	2.36	2.36	2.36	2.30	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.30	00.4	2.36	2.36	2.36	2.36	2.36	2.36	2.30	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36
B.17:	$^{\mathrm{n}_{2}}$	40	40	40	40	40	40	40	40	20	20	20	200	00 1	3 20	20	20	20	20	20	20	20	20	20	20	20	200	200	5 H	3 15	22.	20	20	20	200	00 Z	25.0	20	20	20	20	20	20	20	200	20
l'able	1	30	30	30	30	000	30	30	30	30	30	30	30	200	000	30	30	30	30	30	30	30	30	30	30	30	30	200	000	30	300	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	power	0.1199	0.1630	0.2198	0.0292	0.0400	0.0986	0.0246	0.0381	0.0079	0.0662	0.2173	0.4024	0.5292	0.0030	0.1266	0.2344	0.3082	0.3402	0.3562	0.3878	0.4596	0.5665	0.1323	0.1741	0.1925	0.2042	0.2320	0.2903	0.3324	0.0950	0.1053	0.1132	0.1345	0.1842	0.2586	0.3868	0.0554	0.0605	0.0753	0.1101	0.1622	0.2136	0.2573	0.3168	0.0310
	p2	09.0	0.65	0.70	0.50	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.33	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.00	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.00	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.50
	p1	0.30	0.30	0.30	0.35	0.00	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.13	 	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30
	pvalue	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0235	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211
	$\mathbf{z}_{\mathbf{n}}$	3.66	3.66	3.66	3.66	999	3.66	3.66	3.66	4.20	4.20	4.20	4.20	02.4	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	02.4	02.4	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20
	$^{\mathrm{n}_{2}}$	40	40	40	40	40	40	40	40	20	20	20	200	200	3 2	20	20	20	20	20	20	20	20	20	20	20	200	200	2 10	3 2	22.0	20	20	20	20	00 02		20	20	20	20	20	20	20	20	20
	1 u	10	10	10	10	10	10	10	10	10	10	10	01	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1 0	1 0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

Table B.17: continue on next page

Table B.17: continue on next page

		ı																																												
is page	power	0.4985	0.6628	0.8021	0.1861	0.3176	0.4769	0.6437	0.1759	0.3022	0.2398	0.4316	0.8023	0.9112	0.9667	0.9895	0.3016	0.4874	0.6703	0.8148	0.9039	0.9874	0.9966	0.2397	0.3998	0.5728	0.7309	0.8536	0.9327	0.9745	0.1980	0.3368	0.5021	0.6688	0.8091	0.9075	0.9640	0.3034	0.1677	0.4553	0.6264	0.7801	0.8931	0.9584	0.9874	0.1482
revion	P2	0.55	0.60	0.65	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.40 0.40	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.0	0.40	0.50	0.55	09.0	0.65	0.70	0.75	0.45
rom p	p1	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.40	0.70	0.25	0.25	0.25	0.25	0.25	0.25	0.30
-continued from previous page	pvalue	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0100	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0100	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0100	0.0100	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188	0.0188
	$\mathbf{z}_{\mathbf{u}}$	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	0.00 0.00	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	0.0 E	2.59	2.59	2.59	2.59	2.59	2.59	2.59	0.0	0.20	2.59	2.59	2.59	2.59	2.59	2.59	2.59
B.17:	$^{\rm n_2}$	20	20	20	20	20	20	20	20	20	99	9	09	09	09	09	09	09	09	9 8	9	8 9	09	09	09	09	09	9	09	00	8 9	09	09	09	09	9 8	00	3 8	9	8 9	09	09	09	09	09	09
Table	$_{1}^{n_{1}}$	30	30	3.0	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	200	000	00 8	30	30	30	30	30	30	30
	power	0.0629	0.0967	0.1305	0.0208	0.0342	0.0545	0.0753	0.0176	0.0289	0.0081	0.0782	0.4528	0.5595	0.5924	0.6003	0.1504	0.2637	0.3258	0.3451	0.3566	0.4192	0.5235	0.1489	0.1840	0.1949	0.1991	0.2129	0.2602	0.5557	0.1003	0.1064	0.1091	0.1198	0.1563	0.2286	0.3106	0.00	0.0000	0.0650	0.0905	0.1411	0.1987	0.2405	0.2842	0.0291
	p 2	0.55	0.60	0.65	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.4.O	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.0	0.40	0.50	0.55	09.0	0.65	0.70	0.75	0.45
	p1	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.40	0.70	0.25	0.25	0.25	0.25	0.25	0.25	0.30
	pvalue	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247
	$\mathbf{z}_{\mathbf{u}}$	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.4 84.4	4. 4 6. 4 8 4	4.48	4.48	4.48	4.48	4.48	84.48	4.48	4.4 84.4	4. 4 0. 4. 4	4 4 5 4	4.48	4.48	4.48	4.48	4.48	84.4	4. 4 8. 4. 4	04.4	1, 4 1, 4 0, 8	4.48	4.48	4.48	4.48	84.4	4.4 84.4	1, - 0, -	4. 4 6. 4. 4	4. 4.	4.48	4.48	4.48	4.48	84.48	4.48
	$^{\mathrm{n}_{2}}$	20	20	20.02	20	20	20	20	20	20	9 8	9 9	09	09	09	09	09	09	09	9 9	9 6	8 8	09	09	09	09	09	09	09	00	8 8	09	09	09	09	9	00	3 8	8 9	8 9	09	09	09	09	09	09
	1	10	01	010	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0 1	10	10	10	10	10	10	10	0 1	10	10	10	10	10	10	10	10	0 1	10	10	10	10	10	10	10	10

	z_{u} pvalue p_{1}
$0.0247 \qquad 0.30 \qquad 0.50$	0.0247 0.30 0.50
	0.0247 0.30 0.55
0.65	0.0247 0.30 0.65
0.0247 0.30 0.70	0.0247 0.30 0.70
0.0247 0.35 0.50	0.0247 0.35 0.50
0.0247 0.35 0.55	0.0247 0.35 0.55
4.48 0.0247 0.35 0.60 0.0462 4.48 0.0247 0.35 0.65 0.0687	0.0247 0.35 0.60
0.0247 0.40 0.55	0.0247 0.40 0.55
0.0247 0.40 0.60	0.0247 0.40 0.60
0.0230	0.0230 0.05 0.15
	0.0230 0.03 0.20
0.0230 0.03 0.30	0.0230 0.03 0.30
0.0230 0.05 0.35	0.0230 0.05 0.35
0.0230 0.05 0.40	0.0230 0.05 0.40
0.0230 0.05 0.45	0.0230 0.05 0.45
0.0230 0.10 0.25	0.0230 0.10 0.25
0.10 0.30	0.0230 0.10 0.30
0.0230	0.0230 0.10 0.33
0.0230 0.10 0.45	0.0230 0.10 0.45
0.0230 0.10 0.50	0.0230 0.10 0.50
0.0230 0.10 0.55	0.0230 0.10 0.55
4.93 0.0230 0.10 0.60 0.4251	0.0230 0.10 0.60
0.15 0.30	0.0230 0.13 0.30
0.0230 0.15 0.40	0.0230 0.15 0.40
0.0230 0.15 0.45	0.0230 0.15 0.45
0.0230 0.15 0.50	0.0230 0.15 0.50
0.0230 0.15 0.55	0.0230 0.15 0.55
0.0230 0.15 0.60	0.0230 0.15 0.60
0.0230 0.15	0.0230 0.15 0.65
4.93 0.0230 0.20 0.35 0.1005 4.03 0.0230 0.30 0.40 0.1064	0.0230 0.20 0.35
0.0230 0.20 0.45	0.0230 0.20 0.45
0.0230 0.20 0.50	0.0230 0.20 0.50
0.0230 0.20 0.55	0.0230 0.20 0.55
0.0230 0.20 0.60	0.0230 0.20 0.60
0.0230 0.20 0.65	0.0230 0.20 0.65
0.0230 0.20 0.70	0.0230 0.20 0.70
0.0230 0.25 0.40	0.0230 0.25 0.40
0.0230 0.25 0.45	0.0230 0.25 0.45
0.0230 0.25 0.50	0.0230 0.25 0.50
0.0230 0.25 0.55	0.0230 0.25 0.55
0.0230 0.25 0.60	0.0230 0.25 0.60
0.0230 0.25	00:0 00:0
0.0230 0.25 0.70	0.0230 0.25 0.65
00000	0.0230 0.25 0.0230 0.25 0.0230 0.25

Table B.17: continue on next page

Table B.17: continue on next page

ge	power	0.1240	0.3906	0.5665	0.7303	0.8593	0.1132	3691	0.5425	0.1059	0.2066	0.2332	0.4138	0.6076	0.8897	0.9565	0.9863	0.2572	0.4209	0.6031	0.7673	0.8857	0.9847	0.9959	811	0.3231	266	0.6778	0.8221	0.9168	0.9904	0.1425	0.2683	0.4344	0.0117	0.8845	0.9529	0.9845	0.1207	0.2336	0.3869	0.5626	8558	0.9394
$ns \ pc$	pov	0.13	0.3	0.5	0.7	× ·	0.0	1 6	0.57	0.10	0.2	0.2	0.4	0.0	8.0	0.9	0.9	0.2	0.4	0.6	2.0	8.0	6.0	0.9	0.1811	0.3	0.4997	0.6	0.8221	0.0	0.9	0.1	0.2	4.0	0 0	200	0.9	0.9	0.13	0.2	 	0.0	œ	0.9
revio	P2	0.45	0.55	09.0	0.65	0.70	0.50	090	0.65	0.55	09.0	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.65	0.35	0.40	0.45	0.00	0.55	0.65	0.70	0.40	0.45	0.50	0.00	0.65	0.70
$irom_{I}$	P1	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0183	0.0183	0.0183	0.0183	0.0183	0.0183	0.0183	0.0183	0.0183	0.0183	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180
	$\mathbf{z}_{\mathbf{u}}$	2.79	2.79	2.79	2.79	2.79	2.79	2.70	2.79	2.79	2.79	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	20.00	2.99	2.99	2.99	2.99	2.99	2.99	2.99	5 66	2.99
B.17:	$^{\rm n_2}$	70	202	20	0.7	2 2	2 2	2.5	202	20	20	80	80	8 8	8 8	80	80	80	80	80	200	8 8	8 8	80	80	80	80	08	0 0 0	8 8	80	80	80	80	000	8 8	80	80	80	80	0x 0	8 8	8	8 8
Table	$^{\mathrm{n}_{1}}$	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	200	30	30	30	30	30	30	30	30	30
	power	0.0283	0.0337	0.0521	0.0894	0.1280	0.0139	0.0278	0.0501	0.0079	0.0140	0.0017	0.0395	0.2051	0.5619	0.5944	0.5985	0.1195	0.2530	0.3272	0.3462	0.3485	0.3519	0.3748	0.1428	0.1848	0.1955	0.1968	0.1971	0.2203	0.2947	0.1008	0.1066	0.1073	0.1075	0.1096	0.1830	0.2813	0.0559	0.0563	0.0564	0.0579	0.1092	0.1779
	p ₂	0.45	0.55	09.0	0.65	0.70	0.50	0.00	0.65	0.55	0.60	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.65	0.35	0.40	0.45	0.00	0.00	0.65	0.70	0.40	0.45	0.50	0.00	0.65	0.70
	p1	0.30	0.30	0.30	0.30	0.30	0.35	0.00	0.35	0.40	0.40	0.02	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25
	pvalue	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218	0.0218
	$\mathbf{z}_{\mathbf{n}}$	4.93	4.93	4.93	4.93	4.93	4.93 4.93	4.93	4.93	4.93	4.93	5.34	5.34	5.34 4.24	5.34	5.34	5.34	5.34	5.34	5.34	5.34	5.34	2.6.	5.34	5.34	5.34	5.34	5.34	2.34	20.0	5.34	5.34	5.34	5.34	0.04 4.0	5.34	5.34	5.34	5.34	5.34	5.34	5.34	5.34	5.34
	$^{\rm n_2}$	70	2.2	20	0.1	2 6	2.2	2 6	2.2	20	20	80	80	200	80	80	80	80	80	80	200	8 8	8 8	80	80	80	80	08	000	8 8	80	80	80	80	000	8 8	80	80	80	80	200	8 8	8 8	8 8
	$^{\rm n_1}$	10	10	10	10	07	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0 7	10	10	10	10	10	10	10	0 7	1 0	10	10	10	10	10	9 5	10	10	10	10	10	0 1	01	10

80 5.34 0.0218 0.25 0.75 0.2291 30 80 2.99 0.0180 0.23 0.74 80 5.34 0.0218 0.30 0.45 0.0283 30 80 2.99 0.0180 0.30 0.45 80 5.34 0.0218 0.30 0.65 0.0283 30 80 2.99 0.0180 0.30 0.65 80 5.34 0.0218 0.30 0.65 0.0299 0.0180 0.30 0.65 80 5.34 0.0218 0.30 0.65 0.0299 0.0180 0.30 0.05 0.0180 0.05 0.0180 0.05 0.0180 0.05 0.0180 0.029 0.0180 0.03 0.0180 0.03 0.0180 0.03 0.0180 0.03 0.0180 0.03 0.0180 0.03 0.0180 0.03 0.0180 0.03 0.0180 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 <t< th=""><th>n 1 n</th><th>nz z_u</th><th>pvalue</th><th>p1</th><th>p2</th><th>power</th><th>$^{\mathrm{n}_{1}}$</th><th>n2</th><th>zu</th><th>pvalue</th><th>p1</th><th>P2</th><th>power</th></t<>	n 1 n	nz z _u	pvalue	p1	p2	power	$^{\mathrm{n}_{1}}$	n2	zu	pvalue	p1	P2	power
80 5.3.4 0.0218 0.30 0.45 0.0283 3.9 9.9 0.0180 0.018 0.05 0.05 0.018 0.05 0.05 0.05 0.028 3.0 0.05 0.018 0.05 0.028 0.029 0.0180 0.039 0.018 0.039 0.018 0.039 0.0180 0.039 0.018 0.039 0.0180 0.039 0.0180 0.039 0.0180 0.039 0.0180 0.039 0.0180 0.039 0.0180 0.039 0.0180 0.039 0.0180 0.039 0.0180 0.039 0.0180 0.039 0.039 0.0180 0.039 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.038 0			0.0218	0.25	0.75	0.2291	30	08	2.99	0.0180	0.25	0.75	0.9791
80 5.3.4 0.0218 0.30 0.50 0.0283 30 0.018 0.018 0.03 0.55 80 5.3.4 0.0218 0.30 0.55 0.018 0.30 0.55 0.018 0.30 0.55 80 5.3.4 0.0218 0.30 0.65 0.0824 3 0.99 0.0180 0.30 0.65 80 5.3.4 0.0218 0.30 0.65 0.018 3 2.99 0.0180 0.30 0.65 80 5.3.4 0.0218 0.35 0.65 0.0180 0.30 0.018 <td></td> <td></td> <td>0.0218</td> <td>0.30</td> <td>0.45</td> <td>0.0282</td> <td>30</td> <td>80</td> <td>2.99</td> <td>0.0180</td> <td>0.30</td> <td>0.45</td> <td>0.1058</td>			0.0218	0.30	0.45	0.0282	30	80	2.99	0.0180	0.30	0.45	0.1058
80 5.34 0.0218 0.36 0.65 0.0233 30 2.9 0.0180 0.30 0.65 80 5.34 0.0218 0.36 0.66 0.0634 30 2.99 0.0180 0.30 0.65 80 5.34 0.0218 0.32 0.65 0.0634 30 2.99 0.0180 0.30 0.65 80 5.34 0.0218 0.35 0.55 0.0144 30 80 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.35 0.65 0.0184 30 80 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.35 0.65 0.0184 30 80 2.99 0.0180 0.35 0.65 0.0184 30 80 2.99 0.0180 0.35 0.65 0.0184 30 2.99 0.0180 0.35 0.05 0.028 0.0184 30 2.99 0.0180 0.35			0.0218	0.30	0.50	0.0283	30	80	2.99	0.0180	0.30	0.50	0.2075
80 5.34 0.0218 0.36 0.660 0.0364 30 2.99 0.0180 0.39 0.65 80 5.34 0.0218 0.320 0.65 0.0654 30 2.99 0.0180 0.39 0.65 80 5.34 0.0218 0.32 0.75 0.1041 30 80 2.99 0.0180 0.39 0.65 80 5.34 0.0218 0.35 0.65 0.0141 30 80 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.45 0.065 0.0141 30 80 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.45 0.065 0.068 30 2.99 0.0180 0.35 0.65 90 5.54 0.0218 0.45 0.068 30 31 0.0177 0.05 0.03 90 5.56 0.0245 0.05 0.048 30 31			0.0218	0.30	0.55	0.0293	30	80	2.99	0.0180	0.30	0.55	0.3542
80 5.34 0.0218 0.39 0.65 0.0624 30 2.99 0.0180 0.39 0.65 80 5.34 0.0218 0.370 0.70 0.0184 30 2.99 0.0180 0.39 0.05 80 5.34 0.0218 0.35 0.70 0.0184 30 80 2.99 0.0180 0.35 0.05 80 5.34 0.0218 0.35 0.60 0.0184 30 80 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.40 0.65 0.0084 30 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.45 0.0084 30 2.99 0.0180 0.35 0.05 90 5.56 0.0245 0.05 0.0418 30 31 0.0177 0.05 0.03 90 5.56 0.0245 0.05 0.0418 30 31 0.0177 0.05			0.0218	0.30	0.60	0.0364	30	80	2.99	0.0180	0.30	09.0	0.5307
80 5.34 0.0218 0.35 0.70 0.1067 30 2.99 0.0180 0.35 0.70 80 5.34 0.0218 0.35 0.040 0.0180 0.35 0.05 80 5.34 0.0218 0.35 0.05 0.0184 30 2.99 0.0180 0.35 0.50 80 5.34 0.0218 0.35 0.066 0.0084 30 2.99 0.0180 0.35 0.60 80 5.34 0.0218 0.40 0.55 0.0064 30 2.99 0.0180 0.35 0.0180 30 0.0180 0.0180 0.05 0.05 0.006 0.006 0.008 0.0180 0.0180 0.018 0.05 0.006 0.008 0.008 0.0180 0.018 0.05 0.008 0.018 0.018 0.018 0.018 0.018 0.008 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 <td></td> <td></td> <td>0.0218</td> <td>0.30</td> <td>0.65</td> <td>0.0624</td> <td>30</td> <td>80</td> <td>2.99</td> <td>0.0180</td> <td>0.30</td> <td>0.65</td> <td>0.7027</td>			0.0218	0.30	0.65	0.0624	30	80	2.99	0.0180	0.30	0.65	0.7027
80 5.34 0.0218 0.35 0.05 0.0138 3.0 0.018 0.35 0.05 0.018 0.35 0.05 0.018 0.35 0.018 0.35 0.018 0.35 0.018 0.35 0.018 0.02 0.018 0.03 0.05 0.018 0.03			0.0218	0.30	0.70	0.1067	30	80	2.99	0.0180	0.30	0.70	0.8396
80 5.34 0.0218 0.35 0.55 0.01414 30 80 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.35 0.65 0.0144 30 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.35 0.065 0.0044 30 2.99 0.0180 0.35 0.05 90 5.56 0.0245 0.05 0.015 0.004 30 3.17 0.0177 0.05 0.05 90 5.66 0.0245 0.05 0.024 0.05 0.034 30 3.17 0.0177 0.05 0.05 90 5.66 0.0245 0.05 0.0247 3 0.04 0.05 0.04 0.05<			0.0218	0.35	0.50	0.0135	30	80	2.99	0.0180	0.35	0.50	0.0942
80 5.34 0.0218 0.35 0.60 0.0184 30 2.99 0.0180 0.35 0.60 80 5.34 0.0218 0.35 0.60 0.0388 30 2.99 0.0180 0.35 0.66 80 5.34 0.0218 0.40 0.55 0.0088 30 2.99 0.0180 0.40 0.55 90 5.56 0.0245 0.05 0.20 0.0461 30 90 3.17 0.0177 0.05 0.15 90 5.56 0.0245 0.05 0.20 0.0461 30 90 3.17 0.0177 0.05 0.20 90 5.56 0.0245 0.05 0.20 0.24 0.05 0.24 0.05 0.24 0.05 0.24 0.05 0.24 0.05 0.24 0.05 0.24 0.06 0.25 0.045 0.06 0.05 0.04 0.06 0.06 0.04 0.06 0.07 0.04 0.06 <td></td> <td></td> <td>0.0218</td> <td>0.35</td> <td>0.55</td> <td>0.0141</td> <td>30</td> <td>80</td> <td>2.99</td> <td>0.0180</td> <td>0.35</td> <td>0.55</td> <td>0.1904</td>			0.0218	0.35	0.55	0.0141	30	80	2.99	0.0180	0.35	0.55	0.1904
80 5.34 0.0218 0.35 0.65 0.0339 30 80 2.99 0.0180 0.35 0.65 80 5.34 0.0218 0.040 0.60 0.0038 30 80 2.99 0.0180 0.40 0.65 90 5.54 0.0245 0.05 0.12 0.0041 30 3.17 0.0177 0.05 0.15 90 5.56 0.0245 0.05 0.23 0.24718 30 90 3.17 0.0177 0.05 0.25 90 5.56 0.0245 0.05 0.23 0.24718 30 90 3.17 0.0177 0.05 0.25 90 5.56 0.0245 0.05 0.2748 30 90 3.17 0.0177 0.05 0.040 90 5.56 0.0245 0.010 0.25 0.1883 30 90 3.17 0.0177 0.10 0.05 90 5.56 0.0245 0.010			0.0218	0.35	0.60	0.0184	30	80	2.99	0.0180	0.35	09.0	0.3330
80 5.34 0.0218 0.40 0.656 30.004 30 80 2.99 0.0180 0.40 0.60 90 5.34 0.0218 0.40 0.60 0.0088 30 2.99 0.0180 0.00 <td< td=""><td></td><td></td><td>0.0218</td><td>0.35</td><td>0.65</td><td>0.0339</td><td>30</td><td>80</td><td>2.99</td><td>0.0180</td><td>0.35</td><td>0.65</td><td>0.5061</td></td<>			0.0218	0.35	0.65	0.0339	30	80	2.99	0.0180	0.35	0.65	0.5061
80 5.34 0.0243 0.40 0.0088 30 80 3.17 0.0175 0.05 90 5.56 0.0245 0.05 0.05 0.004 0.064 30 3.17 0.0177 0.05 0.00 90 5.56 0.0245 0.05 0.02 0.0461 30 0.0177 0.05 0.05 90 5.56 0.0245 0.05 0.03 0.471 30 0.0177 0.05 0.05 90 5.56 0.0245 0.05 0.03 0.271 30 0.0177 0.0177 0.05 0.03 90 5.56 0.0245 0.05 0.45 0.5771 30 0.0177 0.01 0.05 0.04 0.05			0.0218	0.40	0.55	0.0064	30	80	2.99	0.0180	0.40	0.55	0.0866
90 5.56 0.02445 0.05 0.01018 30 90 3.17 0.0177 0.05 0.01 90 5.56 0.02445 0.05 0.020 0.04041 30 90 3.17 0.0177 0.05 0.02 90 5.56 0.02445 0.05 0.23 0.4718 30 90 3.17 0.0177 0.05 0.02 90 5.56 0.0245 0.05 0.45 0.577 30 90 3.17 0.0177 0.05 0.30 90 5.56 0.0245 0.05 0.45 0.5887 30 90 3.17 0.0177 0.05 0.05 90 5.56 0.0245 0.10 0.35 0.2488 30 90 3.17 0.0177 0.10 0.05 90 5.56 0.0245 0.10 0.35 0.2488 30 90 3.17 0.0177 0.10 0.05 0.0248 0.05 0.0248 0.05 <td></td> <td></td> <td>0.0218</td> <td>0.40</td> <td>0.60</td> <td>0.0088</td> <td>30</td> <td>80</td> <td>2.99</td> <td>0.0180</td> <td>0.40</td> <td>09.0</td> <td>0.1781</td>			0.0218	0.40	0.60	0.0088	30	80	2.99	0.0180	0.40	09.0	0.1781
90 5.56 0.0245 0.05 0.20 0.0461 30 90 3.17 0.0177 0.05 0.20 90 5.56 0.0245 0.05 0.237 0.4718 30 90 3.17 0.0177 0.05 0.25 90 5.56 0.0245 0.05 0.35 0.5771 30 90 3.17 0.0177 0.05 0.35 90 5.56 0.0245 0.05 0.45 0.587 30 90 3.17 0.0177 0.05 0.40 90 5.56 0.0245 0.10 0.25 0.23843 30 90 3.17 0.0177 0.05 0.25 90 5.56 0.0245 0.10 0.46 0.3477 30 90 3.17 0.0177 0.01 0.35 90 5.56 0.0245 0.10 0.3477 30 90 3.17 0.0177 0.10 0.35 90 5.56 0.0245 <			0.0245	0.02	0.15	0.0018	30	06	3.17	0.0177	0.02	0.15	0.2155
90 5.56 0.0245 0.0274 30 90 3.17 0.0177 0.05 0.25 90 5.56 0.0245 0.025 0.2374 30 90 3.17 0.0177 0.05 0.35 90 5.56 0.0245 0.05 0.471 30 90 3.17 0.0177 0.05 0.40 90 5.56 0.0245 0.05 0.44 0.587 30 3.17 0.0177 0.05 0.45 90 5.56 0.0245 0.10 0.25 0.1383 30 90 3.17 0.0177 0.01 0.45 0.45 90 5.56 0.0245 0.10 0.45 0.3487 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.45 0.3487 30 90 3.17 0.0177 0.10 0.25 90 5.56 0.0245 0.10 0.45 0.3347			0.0245	0.02	0.20	0.0461	30	06	3.17	0.0177	0.02	0.20	0.3734
90 5.56 0.0245 0.05 0.370 0.4718 30 90 3.17 0.0177 0.05 0.38 90 5.56 0.0245 0.05 0.340 0.5771 30 90 3.17 0.0177 0.05 0.45 90 5.56 0.0245 0.05 0.44 0.587 30 90 3.17 0.0177 0.05 0.45 90 5.56 0.0245 0.10 0.30 0.2748 30 90 3.17 0.0177 0.05 0.45 90 5.56 0.0245 0.10 0.35 0.2381 30 90 3.17 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.45 0.3487 30 90 3.17 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.45 0.3487 30 90 3.17 0.017 0.10 0.35 90 5.56			0.0245	0.02	0.25	0.2374	30	06	3.17	0.0177	0.02	0.25	0.5808
90 5.56 0.0245 0.05 0.357 1 90 3.17 0.0177 0.05 0.35 90 5.56 0.0245 0.05 0.3587 30 90 3.17 0.0177 0.05 0.48 90 5.56 0.0245 0.05 0.48 0.5887 30 90 3.17 0.0177 0.05 0.48 90 5.56 0.0245 0.10 0.25 0.1381 30 90 3.17 0.0177 0.10 0.25 90 5.56 0.0245 0.10 0.44 0.3477 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.45 0.3486 30 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.45 0.3487 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.45 <t< td=""><td></td><td></td><td>0.0245</td><td>0.02</td><td>0.30</td><td>0.4718</td><td>30</td><td>06</td><td>3.17</td><td>0.0177</td><td>0.02</td><td>0.30</td><td>0.7592</td></t<>			0.0245	0.02	0.30	0.4718	30	06	3.17	0.0177	0.02	0.30	0.7592
90 5.56 0.0245 0.05 0.40 0.587 30 90 3.17 0.0177 0.05 0.44 90 5.56 0.0245 0.05 0.44 0.587 30 90 3.17 0.0177 0.05 0.44 90 5.56 0.0245 0.10 0.24 0.188 30 90 3.17 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.34 0.0248 30 3.17 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.40 0.3477 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.10 0.40 0.3487 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.10 0.50 0.3487 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 <td< td=""><td></td><td></td><td>0.0245</td><td>0.02</td><td>0.35</td><td>0.5771</td><td>30</td><td>06</td><td>3.17</td><td>0.0177</td><td>0.02</td><td>0.35</td><td>0.8825</td></td<>			0.0245	0.02	0.35	0.5771	30	06	3.17	0.0177	0.02	0.35	0.8825
90 5.56 0.0245 0.05 0.45 0.5887 30 91 3.17 0.0177 0.05 0.45 90 5.56 0.0245 0.10 0.35 0.2748 30 90 3.17 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.35 0.3487 30 90 3.17 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.35 0.3487 30 90 3.17 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.45 0.3887 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.10 0.50 0.3847 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.10 0.50 0.3487 30 3.17 0.0177 0.10 0.50 90 5.56 0.0245			0.0245	0.02	0.40	0.5970	30	06	3.17	0.0177	0.02	0.40	0.9539
90 5.56 0.0245 0.10 0.2348 30 90 3.17 0.0177 0.10 0.25 90 5.56 0.0245 0.10 0.35 0.3361 30 3.17 0.0177 0.10 0.23 90 5.56 0.0245 0.10 0.45 0.3361 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.45 0.3486 30 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.50 0.3487 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.50 0.3497 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.15 0.40 0.1551 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.15 0.45			0.0245	0.02	0.45	0.5987	30	06	3.17	0.0177	0.02	0.45	0.9856
90 5.56 0.0245 0.10 0.3748 30 90 3.17 0.0177 0.10 0.30 90 5.56 0.0245 0.10 0.34 3.347 30 90 3.17 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.45 0.3477 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.45 0.3487 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.55 0.3497 30 90 3.17 0.0177 0.10 0.46 90 5.56 0.0245 0.15 0.3417 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.15 0.45 0.1898 30 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.15 0.45 <			0.0245	0.10	0.25	0.1383	30	06	3.17	0.0177	0.10	0.25	0.2376
90 5.56 0.0245 0.10 0.337 1 0.0177 0.10 0.35 90 5.56 0.0245 0.10 0.337 3 9 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.45 0.3477 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.10 0.50 0.3487 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.10 0.60 0.3417 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.15 0.36 0.1589 30 3.17 0.0177 0.10 0.50 90 5.56 0.0245 0.15 0.40 0.1693 30 3.17 0.0177 0.15 0.40 90 5.56 0.0245 0.15 0.40 0.1693 30 3.17 <			0.0245	0.10	0.30	0.2748	30	06	3.17	0.0177	0.10	0.30	0.4005
90 5.56 0.0245 0.10 0.40 0.3487 30 90 3.17 0.0177 0.10 0.40 90 5.56 0.0245 0.10 0.45 0.3487 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.50 0.3487 30 90 3.17 0.0177 0.10 0.55 90 5.56 0.0245 0.15 0.3487 30 90 3.17 0.0177 0.10 0.55 90 5.56 0.0245 0.15 0.3487 30 90 3.17 0.0177 0.10 0.55 90 5.56 0.0245 0.15 0.35 0.1898 30 3.17 0.0177 0.15 0.30 90 5.56 0.0245 0.15 0.45 0.1898 30 3.17 0.0177 0.15 0.36 90 5.56 0.0245 0.15 0.169 30			0.0245	0.10	0.35	0.3361	30	06	3.17	0.0177	0.10	0.35	0.5844
90 5.56 0.0245 0.10 0.45 0.3848 30 90 3.17 0.0177 0.10 0.45 90 5.56 0.0245 0.10 0.45 0.3848 30 90 3.17 0.0177 0.10 0.50 90 5.56 0.0245 0.10 0.65 0.3497 30 90 3.17 0.0177 0.10 0.50 90 5.56 0.0245 0.15 0.351 30 90 3.17 0.0177 0.10 0.50 90 5.56 0.0245 0.15 0.351 30 90 3.17 0.0177 0.15 0.30 90 5.56 0.0245 0.15 0.40 0.1669 30 3.17 0.0177 0.15 0.35 90 5.56 0.0245 0.15 0.40 0.1669 30 3.17 0.0177 0.15 0.55 90 5.56 0.0245 0.15 0.169 30 <			0.0245	0.10	0.40	0.3477	30	06	3.17	0.0177	0.10	0.40	0.7545
90 5.56 0.0245 0.10 0.538 30 317 0.0177 0.10 0.55 90 5.56 0.0245 0.10 0.55 0.3487 30 90 3.17 0.0177 0.10 0.55 90 5.56 0.0245 0.10 0.60 0.3611 30 90 3.17 0.0177 0.10 0.55 90 5.56 0.0245 0.15 0.40 0.1963 30 3.17 0.0177 0.10 0.50 90 5.56 0.0245 0.15 0.40 0.1963 30 3.17 0.0177 0.15 0.30 90 5.56 0.0245 0.15 0.40 0.1963 30 3.17 0.0177 0.15 0.40 90 5.56 0.0245 0.15 0.45 0.1963 30 3.17 0.0177 0.15 0.40 90 5.56 0.0245 0.15 0.1978 30 3.17 0.0177			0.0245	0.10	0.45	0.3486	30	06	3.17	0.0177	0.10	0.45	0.8760
90 5.56 0.0245 0.10 0.5347 30 90 3.17 0.0177 0.10 0.55 90 5.56 0.0245 0.10 0.5341 30 90 3.17 0.0177 0.10 0.50 90 5.56 0.0245 0.15 0.36 0.1551 30 90 3.17 0.0177 0.10 0.50 90 5.56 0.0245 0.15 0.35 0.1898 30 90 3.17 0.0177 0.15 0.39 90 5.56 0.0245 0.15 0.45 0.1969 30 3.17 0.0177 0.15 0.35 90 5.56 0.0245 0.15 0.50 0.1969 30 3.17 0.0177 0.15 0.46 90 5.56 0.0245 0.15 0.20 0.20 0.35 0.1085 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.20 0.20			0.0245	0.10	0.50	0.3487	30	06	3.17	0.0177	0.10	0.50	0.9471
90 5.56 0.0245 0.10 0.60 0.351 30 317 0.0177 0.10 0.050 90 5.56 0.0245 0.15 0.351 31 0.0177 0.15 0.30 90 5.56 0.0245 0.15 0.35 0.1551 3 0.0177 0.15 0.10 0.00 90 5.56 0.0245 0.15 0.46 0.1663 30 3.17 0.0177 0.15 0.30 90 5.56 0.0245 0.15 0.50 0.1969 30 3.17 0.0177 0.15 0.30 90 5.56 0.0245 0.15 0.50 0.1969 30 3.17 0.0177 0.15 0.50 90 5.56 0.0245 0.15 0.268 30 3.17 0.0177 0.15 0.55 90 5.56 0.0245 0.20 0.35 0.1074 30 3.17 0.0177 0.15 0.55			0.0245	0.10	0.55	0.3497	30	06 8	3.17	0.0177	0.10	0.55	0.9815
90 5.56 0.0245 0.15 0.350 0.1581 30 90 3.17 0.0177 0.15 0.33 90 5.56 0.0245 0.15 0.40 0.1898 30 3.17 0.0177 0.15 0.35 90 5.56 0.0245 0.15 0.40 0.1969 30 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.46 0.1969 30 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.5286 30 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.1978 30 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.1074 30 3.17 0.0177 0.15 0.40 90 5.56 0.0245 0.20 0.40 0.1074 30 3.17 0.0177 0.15 0.40<			0.0245	0.10	0.60	0.3611	30	06	3.17	0.0177	0.10	0.60	0.9948
90 5.56 0.0245 0.15 0.1888 30 90 3.17 0.0177 0.15 0.15 90 5.56 0.0245 0.15 0.45 0.1963 30 3.17 0.0177 0.15 0.40 90 5.56 0.0245 0.15 0.45 0.1969 30 3.17 0.0177 0.15 0.40 90 5.56 0.0245 0.15 0.50 0.1969 30 3.17 0.0177 0.15 0.40 90 5.56 0.0245 0.15 0.60 0.2086 30 3.17 0.0177 0.15 0.50 90 5.56 0.0245 0.15 0.65 0.2086 30 3.17 0.0177 0.15 0.65 90 5.56 0.0245 0.20 0.45 0.1074 30 3.17 0.0177 0.20 0.45 90 5.56 0.0245 0.20 0.45 0.1074 30 3.17 0.0177 </td <td></td> <td></td> <td>0.0245</td> <td>0.To</td> <td>0.30</td> <td>0.1551</td> <td>30</td> <td>G 8</td> <td>3.17</td> <td>0.0177</td> <td>0.15</td> <td>0.30</td> <td>0.1660</td>			0.0245	0.To	0.30	0.1551	30	G 8	3.17	0.0177	0.15	0.30	0.1660
90 5.56 0.0245 0.15 0.44 0.19693 30 3.17 0.0177 0.15 0.44 90 5.56 0.0245 0.15 0.45 0.1969 30 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.50 0.1969 30 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.50 0.2087 30 3.17 0.0177 0.15 0.55 90 5.56 0.0245 0.15 0.268 30 3.17 0.0177 0.15 0.55 90 5.56 0.0245 0.20 0.35 0.1074 30 3.17 0.0177 0.15 0.55 90 5.56 0.0245 0.20 0.35 0.1074 30 3.17 0.0177 0.20 0.35 90 5.56 0.0245 0.20 0.50 0.1074 30 3.17 0.0177 0.20			0.0245	0.15	0.35	0.1898	30	06	3.17	0.0177	0.15	0.35	0.3038
90 5.56 0.0245 0.15 0.456 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.45 0.19693 30 3.17 0.0177 0.15 0.45 90 5.56 0.0245 0.15 0.52 0.1978 30 3.17 0.0177 0.15 0.50 90 5.56 0.0245 0.15 0.5286 30 3.17 0.0177 0.15 0.50 90 5.56 0.0245 0.12 0.0326 3.0 3.17 0.0177 0.15 0.60 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.15 0.65 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.45 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 <td></td> <td></td> <td>0.0245</td> <td>0.15</td> <td>0.40</td> <td>0.1963</td> <td>30</td> <td>06</td> <td>3.17</td> <td>0.0177</td> <td>0.15</td> <td>0.40</td> <td>0.4775</td>			0.0245	0.15	0.40	0.1963	30	06	3.17	0.0177	0.15	0.40	0.4775
90 5.56 0.0245 0.15 0.50 0.1978 30 317 0.0177 0.15 0.05 90 5.56 0.0245 0.15 0.56 0.1978 30 3.17 0.0177 0.15 0.55 90 5.56 0.0245 0.15 0.65 0.286 30 3.17 0.0177 0.15 0.65 90 5.56 0.0245 0.15 0.65 0.2826 30 3.17 0.0177 0.15 0.65 90 5.56 0.0245 0.20 0.40 0.1071 30 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.40 0.1071 30 90 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.45 0.1064 3.17			0.0245	0.15	0.45	0.1969	30	98 8	3.17	0.0177	0.15	0.45	0.6516
90 5.56 0.0245 0.15 0.1897 30 90 3.17 0.0177 0.15 0.15 0.05 90 5.56 0.0245 0.15 0.65 0.286 30 3.17 0.0177 0.15 0.60 90 5.56 0.0245 0.15 0.65 0.2626 30 3.17 0.0177 0.15 0.65 90 5.56 0.0245 0.20 0.35 0.1074 30 90 3.17 0.0177 0.15 0.65 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.45 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.45 90 5.56 0.0245 0.20 0.50 0.1601 30 3.17 0.0177 0.20 0.45 90 5.56 0.0245 0.20 0.65			0.0245	0.15	0.50	0.1969	30	06	3.17	0.0177	0.15	0.50	0.7988
90 5.56 0.0245 0.15 0.0268 30 90 3.17 0.0177 0.15 0.05 90 5.56 0.0245 0.15 0.65 0.3268 30 3.17 0.0177 0.15 0.05 90 5.56 0.0245 0.15 0.1036 30 3.17 0.0177 0.15 0.05 90 5.56 0.0245 0.20 0.40 0.1074 30 90 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.40 0.1074 30 90 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.45 0.1081 30 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.45 0.1081 30			0.0245	0.13	0.00	0.1978	30	98	0.1.7	0.0177	0.15	0.00	0.9013
90 5.56 0.0245 0.15 0.155 0.0245 0.0 0.15 0.0545 0.0			0.0245	0.15	0.00	0.2080	200	G 6	0.I.	0.0177	0.15	0.00	0.9092
90 5.56 0.0245 0.20 0.35 0.10713 30 90 3.17 0.0177 0.20 0.35 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.40 90 5.56 0.0245 0.20 0.50 0.1081 30 3.17 0.0177 0.20 0.50 90 5.56 0.0245 0.20 0.65 0.11681 30 3.17 0.0177 0.20 0.50 90 5.56 0.0245 0.20 0.65 0.1681 30 3.17 0.0177 0.20 0.65 90 5.56 0.0245 0.20 0.65 0.1581 30 90 3.17 0.0177 0.20 0.65 90 5.56 0.0245 0.25 0.45			0.0245	0.10	0.00	0.2020	000	06	0.I.	0.0177	0.15	0.00	0.9864
90 5.56 0.0245 0.20 0.40 0.1071 30 90 3.17 0.0177 0.20 0.40 0.40 0.55 0.0245 0.20 0.44 0.1074 30 90 3.17 0.0177 0.20 0.45 0.0 0.55 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.45 0.0 0.55 0.20 0.1081 30 90 3.17 0.0177 0.20 0.55 0.0 0.50 0.5 0.0 0.0			0.0245	0.20	0.35	0.1035	30	98 8	3.17	0.0177	0.20	0.35	0.1291
90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.45 90 5.56 0.0245 0.20 0.45 0.1074 30 90 3.17 0.0177 0.20 0.45 90 5.56 0.0245 0.20 0.55 0.1081 30 90 3.17 0.0177 0.20 0.45 90 5.56 0.0245 0.20 0.65 0.1081 30 90 3.17 0.0177 0.20 0.55 0.65 90 5.56 0.0245 0.20 0.65 0.1881 30 90 3.17 0.0177 0.20 0.65 90 5.56 0.0245 0.20 0.65 0.1881 30 90 3.17 0.0177 0.20 0.65 90 5.56 0.0245 0.25 0.40 0.0561 30 90 3.17 0.0177 0.25 0.40 90 5.56 0.0245 0.25 0.45 0.0663 30 90 3.17 0.0177 0.25 0.40 90 5.56 0.0245 0.25 0.45 0.0681 30 90 3.17 0.0177 0.25 0.45 90 5.56 0.0245 0.25 0.45 0.0683 30 90 3.17 0.0177 0.25 0.45 0.0 5.56 0.0245 0.25 0.60 0.0248 0.25 0.00 0.0083 30 90 3.17 0.0177 0.25 0.45 0.0 5.56 0.0245 0.25 0.60 0.0083 30 90 3.17 0.0177 0.25 0.55 0.60 0.0245 0.25 0.60 0.0023 30 90 3.17 0.0177 0.25 0.55 0.60 0.0024 0			0.0245	0.20	0.40	0.1071	30	G ;	3.17	0.0177	0.20	0.40	0.2456
90 5.56 0.0245 0.20 0.50 0.1081 30 90 3.17 0.0177 0.20 0.50 0.50 90 5.56 0.0245 0.20 0.55 0.1081 30 90 3.17 0.0177 0.20 0.55 0.50 90 5.56 0.0245 0.20 0.65 0.1160 30 90 3.17 0.0177 0.20 0.55 0.60 0.0245 0.20 0.65 0.1581 30 90 3.17 0.0177 0.20 0.65 0.60 90 5.56 0.0245 0.20 0.65 0.1581 30 90 3.17 0.0177 0.20 0.65 0.60 90 5.56 0.0245 0.25 0.40 0.0561 30 90 3.17 0.0177 0.25 0.40 0.0561 30 90 3.17 0.0177 0.25 0.40 90 5.56 0.0245 0.25 0.45 0.0563 30 90 3.17 0.0177 0.25 0.40 0.0561 90 5.56 0.0245 0.25 0.45 0.0563 30 90 3.17 0.0177 0.25 0.45 0.40 0.556 0.0245 0.25 0.50 0.0663 30 90 3.17 0.0177 0.25 0.45 0.40 0.556 0.0245 0.25 0.60 0.0243 30 90 3.17 0.0177 0.25 0.55 0.55 0.60 0.556 0.0245 0.25 0.60 0.0223 30 90 3.17 0.0177 0.25 0.55 0.65			0.0245	0.20	0.45	0.1074	30	06	3.17	0.0177	0.20	0.45	0.3997
90 5.56 0.0245 0.20 0.55 0.1081 30 90 3.17 0.0177 0.20 0.55 0.50 0.55 0.55 0.55 0.55 0.55			0.0245	0.20	0.50	0.1074	30	06	3.17	0.0177	0.20	0.50	0.5729
90 5.56 0.0245 0.20 0.60 0.1160 30 90 3.17 0.0177 0.20 0.60 90 5.56 0.0245 0.20 0.65 0.1581 30 90 3.17 0.0177 0.20 0.65 90 5.56 0.0245 0.20 0.70 0.2555 30 90 3.17 0.0177 0.20 0.70 0.20 0.70 0.2555 30 90 3.17 0.0177 0.20 0.70 0.20 0.70 0.2555 0.40 90 5.56 0.0245 0.25 0.45 0.0563 30 90 3.17 0.0177 0.25 0.40 90 5.56 0.0245 0.25 0.45 0.0563 30 90 3.17 0.0177 0.25 0.45 90 5.56 0.0245 0.25 0.55 0.0563 30 90 3.17 0.0177 0.25 0.45 90 5.56 0.0245 0.25 0.60 0.0688 30 90 3.17 0.0177 0.25 0.50 90 5.56 0.0245 0.25 0.60 0.0688 30 90 3.17 0.0177 0.25 0.50 0.50 90 5.56 0.0245 0.25 0.60 0.023 30 90 3.17 0.0177 0.25 0.55			0.0245	0.20	0.55	0.1081	30	06	3.17	0.0177	0.20	0.55	0.7330
90 5.56 0.0245 0.20 0.65 0.1881 30 90 3.17 0.0177 0.20 0.65 90 5.56 0.0245 0.20 0.65 0.0555 30 90 3.17 0.0177 0.20 0.65 0.70 90 5.56 0.0245 0.25 0.40 0.0561 30 90 3.17 0.0177 0.25 0.40 0.70 0.5 0.056 0.0245 0.25 0.45 0.0561 30 90 3.17 0.0177 0.25 0.40 0.00 5.56 0.0245 0.25 0.45 0.0563 30 90 3.17 0.0177 0.25 0.45 0.0 5.56 0.0245 0.25 0.50 0.0568 30 90 3.17 0.0177 0.25 0.50 0.0 5.56 0.0245 0.25 0.60 0.0623 30 90 3.17 0.0177 0.25 0.55 0.50 0.0 5.56 0.0245 0.25 0.60 0.0023 30 90 3.17 0.0177 0.25 0.65			0.0245	0.20	0.60	0.1160	30	06	3.17	0.0177	0.20	09.0	0.8561
90 5.56 0.0245 0.20 0.70 0.0555 30 90 3.17 0.0177 0.20 0.70 0.70 5.56 0.0245 0.25 0.40 0.0561 30 90 3.17 0.0177 0.25 0.40 90 5.56 0.0245 0.25 0.45 0.0563 30 90 3.17 0.0177 0.25 0.40 90 5.56 0.0245 0.25 0.45 0.0563 30 90 3.17 0.0177 0.25 0.45 90 5.56 0.0245 0.25 0.55 0.0688 30 90 3.17 0.0177 0.25 0.50 0.90 5.56 0.0245 0.25 0.60 0.0623 30 90 3.17 0.0177 0.25 0.55 0.50 90 5.56 0.0245 0.25 0.60 0.0623 30 90 3.17 0.0177 0.25 0.60			0.0245	0.20	0.65	0.1581	30	06	3.17	0.0177	0.20	0.65	0.9362
90 5.56 0.0245 0.25 0.40 0.0561 30 90 3.17 0.0177 0.25 0.40 90 5.56 0.0245 0.25 0.44 0.0563 30 90 3.17 0.0177 0.25 0.45 90 5.56 0.0245 0.25 0.45 0.0563 30 90 3.17 0.0177 0.25 0.45 90 5.56 0.0245 0.25 0.55 0.0568 30 90 3.17 0.0177 0.25 0.50 90 5.56 0.0245 0.25 0.60 0.0688 30 90 3.17 0.0177 0.25 0.55 0.60 90 5.56 0.0245 0.25 0.60 0.0623 30 90 3.17 0.0177 0.25 0.60			0.0245	0.20	0.70	0.2555	30	06	3.17	0.0177	0.20	0.70	0.9785
90 5.56 0.0245 0.25 0.45 0.563 30 90 3.17 0.0177 0.25 0.45 90 5.56 0.0245 0.25 0.45 90 3.17 0.0177 0.25 0.45 90 5.56 0.0245 0.25 0.55 0.0568 30 90 3.17 0.0177 0.25 0.55 90 5.56 0.0245 0.25 0.60 0.0688 30 90 3.17 0.0177 0.25 0.65 90 5.56 0.0245 0.25 0.60 0.0623 30 90 3.17 0.0177 0.25 0.60			0.0245	0.25	0.40	0.0561	30	06	3.17	0.0177	0.25	0.40	0.1047
90 5.56 0.0245 0.25 0.50 0.0563 30 90 3.17 0.0177 0.25 0.50 90 5.56 0.0245 0.25 0.65 0.0628 30 90 3.17 0.0177 0.25 0.55 90 5.56 0.0245 0.25 0.60 0.0023 30 90 3.17 0.0177 0.25 0.60			0.0245	0.25	0.45	0.0563	30	06	3.17	0.0177	0.25	0.45	0.2036
90 5.56 0.0245 0.25 0.55 0.0568 30 90 3.17 0.0177 0.25 0.55 90 5.56 0.0245 0.25 0.60 0.0623 30 90 3.17 0.0177 0.25 0.60			0.0245	0.25	0.20	0.0563	30	06	3.17	0.0177	0.25	0.50	0.3449
90 5.56 0.0245 0.25 0.60 0.0623 30 90 3.17 0.0177 0.25 0.60			0.0245	0.25	0.55	0.0568	30	06	3.17	0.0177	0.25	0.55	0.5115
			7,000	1									

Table B.17: continue on next page

Table B.17: continue on next page

s page	power	0.9222	0.9740	0.1740	0.3023	0.4657	0.6462	0.8072	0.0735	0.2733	0.4442	0.0627	0.1360	0.2393	0.414.0	0.7894	0.9024	0.9618	0.9878	0.2620	0.4335	0.7691	0.8853	0.9539	0.9848	0.9959	0.1844	0.4895	0.6670	0.8150	0.9124	0.9658	0.9894	0.2528	0.4150	0.5929	0.7522	0.8726	0.9459	0.3010	0.2141	0.3616	0.5336	0.7032
revious	p ₂	0.70	0.70	0.50	0.55	0.60	0.65	00	0.00	0.60	0.65	0.55	0.60	0.15	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50	0.55	0.60
$_{rom\ p}$	p1	0.25	0.20	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.40	0.40	0.00	0.00	0.05	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0177	0.0177	0.0177	0.0177	0.0177	0.0177	0.0177	0.0177	0.0177	0.0177	0.0177	0.0177	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245
	$\mathbf{z}_{\mathbf{u}}$	3.17	3.17	3.17	3.17	3.17	3.17	0.17	3.17	3.17	3.17	3.17	3.17	3.L5	2.5	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.I5	3.15	3.15	3.15	3.15	3.15	3.15	3 . F	3.15	3.15	3.15	3.15
B.17:	$^{\rm n_2}$	06	G G	06	06	06	06	3 8	8 8	06	06	90	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$_{1}$	30	30	30	30	30	30	200	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	300	30	30	30	30
	power	0.1599	0.0282	0.0283	0.0286	0.0321	0.0511	0.0950	0.0135	0.0158	0.0272	0.0062	0.0073	0.0008	0.2145	0.4644	0.5777	0.5973	0.5987	0.1249	0.2704	0.3478	0.3487	0.3487	0.3487	0.3505	0.1527	0.1964	0.1969	0.1969	0.1969	0.1985	0.2163	0.1071	0.1074	0.1074	0.1074	0.1086	0.1224	0.1509	0.0563	0.0563	0.0563	0.0572
	p2	0.70	0.75	0.50	0.55	09.0	0.65	0.70	0.50	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.20	0.55	0.60	0.65	0.70	0.45	0.50	0.55	0.60
	p1	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.40	0.40	0.05	0.0	0.02	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25
	pvalue	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234	0.0234
	$\mathbf{z}_{\mathbf{u}}$	5.56	0 10 0 10 0 10	5.56	5.56	5.56	5.56	00.0	0.0 7.00	5.56	5.56	5.56	5.56	0. r 0. u 0. u	. r.	5.93	5.93	5.93	5.93	5.03 6.03	0. 70 0. 00 0. 00	5.93	5.93	5.93	5.93	5.93	5.93	5.03	5.93	5.93	5.93	5.93	0.07 0.03	5.93	5.93	5.93	5.93	5.93	ъ. 93	7 C. 02 C. 0	5.93	5.93	5.93	5.93
	$^{\mathrm{n}_{2}}$	06	8 6	06	06	06	06	3 8	8 8	06	06	06	8	901	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	01	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	ΤO

pyvaline Pj Pover H1 Pg Z Applied Pj Pp 0.0234 0.25 0.76 0.0788 3.0 100 3.15 0.0245 0.25 0.77 0.0234 0.25 0.77 0.1119 3.0 100 3.15 0.0245 0.25 0.77 0.0234 0.25 0.77 0.1119 3.0 100 3.15 0.0245 0.25 0.77 0.0234 0.20 0.45 0.1282 3.0 100 3.15 0.0245 0.25 0.77 0.0234 0.30 0.56 0.0288 3.0 100 3.15 0.0245 0.30 0.67 0.0234 0.30 0.66 0.0288 3.0 100 3.15 0.0245 0.30 0.65 0.0234 0.35 0.670 0.0138 3.0 100 3.15 0.0245 0.30 0.0245 0.30 0.0245 0.0245 0.0245 0.0245 0.0245 </th <th></th> <th></th> <th> </th> <th></th> <th></th> <th></th> <th>Taple</th> <th>4I</th> <th></th> <th>-continued from previous page</th> <th>from p</th> <th>revious</th> <th>page</th>							Taple	4I		-continued from previous page	from p	revious	page
0.0234 0.25 0.66 0.0668 30 100 3.15 0.0245 0.25 0.67 0.1119 30 100 3.15 0.0245 0.25 0.77 0.1119 30 100 3.15 0.0245 0.25 0.77 0.1119 30 100 3.15 0.0245 0.25 0.75 0.0234 0.30 0.45 0.0282 30 100 3.15 0.0245 0.25 0.75 0.75 0.024 0.024 0.0283 30 100 3.15 0.0245 0.30 0.05 0.0283 30 100 3.15 0.0245 0.30 0.05 0.0245 0.05 0.0245 0.05 0.024 0.05 0.0245 0.024 0.05 0.0245 0.05 0.0245 0.	zn		pvalue	p1	P 2	power	$^{\rm n_1}$	n ₂	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	P2	power
0.0234 0.25 0.77 0.1119 30 100 3.15 0.0245 0.25 0.77 0.0234 0.25 0.77 0.1119 30 100 3.15 0.0245 0.25 0.77 0.0234 0.30 0.45 0.0282 30 100 3.15 0.0245 0.30 0.50 0.0234 0.30 0.66 0.0288 30 100 3.15 0.0245 0.30 0.60 0.0234 0.30 0.60 0.0288 30 100 3.15 0.0245 0.30 0.60 0.0234 0.30 0.60 0.0288 30 100 3.15 0.0245 0.30 0.60 0.0234 0.35 0.0450 0.04 0.15 0.0424 0.04 0.05 0.06 0.03 0.04 0.05 0.04 0.04 0.05 0.05 0.04 0.04 0.05 0.05 0.024 0.024 0.024 0.024 0.024 0.024	5.93		0.0234	0.25	0.65	0.0668	30	100	3.15	0.0245	0.25	0.65	0.8392
0.0234 0.25 0.75 0.75 0.0234 0.25 0.75 0.1919 3.15 0.0245 0.75 0.75 0.0234 0.25 0.75 0.0234 0.30 0.55 0.024 0.35 0.05 0.0234 0.30 0.55 0.0282 30 100 3.15 0.0245 0.30 0.55 0.0234 0.30 0.65 0.0288 30 100 3.15 0.0245 0.30 0.65 0.0234 0.30 0.65 0.0388 30 100 3.15 0.0245 0.35 0.50 0.0234 0.35 0.65 0.0135 30 100 3.15 0.0245 0.35 0.55 0.0234 0.35 0.65 0.0135 0.0135 30 100 3.15 0.0245 0.35 0.55 0.0234 0.35 0.0245 0.0245 0.0245 0.35 0.55 0.0234 0.35 0.0245 0.0245	5.93		0.0234	0.25	0.70	0.1119	30	100	3.15	0.0245	0.25	0.70	0.9288
0.0234 0.30 0.43 0.02624 3.0 0.024 0.0264 0.026 0.024 0.0264 0.024 0.0264 0.024 0.0264 0.024 0.0244 0.024 0.0244 0.00 0.0234 0.00 0.0234 0.00 0.0234 0.00 0.024 0.024 0.024 0.00 0.0234 0.00 0.024 0.00 0.0234 0.00 0.024 0.00<	5.93		0.0234	0.25	0.75	0.1919	30	100	3.15	0.0245	0.25	0.75	0.9763
0.0234 0.36 0.55 0.02883 30 100 3.15 0.0245 0.39 0.55 0.0234 0.36 0.65 0.02888 30 100 3.15 0.0245 0.39 0.50 0.0234 0.39 0.60 0.0388 30 100 3.15 0.0245 0.39 0.70 0.0234 0.39 0.70 0.0138 30 100 3.15 0.0245 0.39 0.70 0.0234 0.35 0.60 0.0138 30 100 3.15 0.0245 0.39 0.70 0.0234 0.35 0.06 0.0138 30 100 3.15 0.0245 0.50 0.0234 0.35 0.06 0.0061 30 100 3.15 0.0245 0.50 0.0234 0.40 0.55 0.0061 30 100 3.15 0.0245 0.35 0.56 0.0234 0.40 0.55 0.0061 3 10 <t< td=""><td>50.00</td><td></td><td>0.0234</td><td>0.30</td><td>0.50</td><td>0.0282</td><td>30</td><td>100</td><td>3.15</td><td>0.0245</td><td>0.30</td><td>0.43</td><td>0.0921</td></t<>	50.00		0.0234	0.30	0.50	0.0282	30	100	3.15	0.0245	0.30	0.43	0.0921
0.0234 0.30 0.60 0.0288 30 100 3.15 0.024 0.30 0.60 0.0288 30 100 3.15 0.0245 0.30 0.06 0.0234 0.35 0.50 0.045 0.03 0.02 0.024 0.30 0.70 0.041 3.0 100 3.15 0.0245 0.30 0.70 0.045 0.0234 0.35 0.50 0.0135 3.0 100 3.15 0.0245 0.35 0.50 0.0234 0.35 0.00 0.0135 3.0 100 3.15 0.0245 0.35 0.50 0.0234 0.35 0.0175 3.0 100 3.15 0.0245 0.35 0.05 0.0234 0.36 0.05 0.016 3.0 0.006 3.15 0.0245 0.05 0.05 0.0234 0.36 0.05 0.016 3.0 0.0245 0.35 0.05 0.05 0.05 0.05 0.05 0.05 0.05 </td <td>5.93</td> <td></td> <td>0.0234</td> <td>0.30</td> <td>0.55</td> <td>0.0283</td> <td>30</td> <td>100</td> <td>3.15</td> <td>0.0245</td> <td>0.30</td> <td>0.55</td> <td>0.3208</td>	5.93		0.0234	0.30	0.55	0.0283	30	100	3.15	0.0245	0.30	0.55	0.3208
0.0234 0.38 0.65 0.0350 0.045 0.0350 0.05 0.0350 0.05 0.0354 0.03 0.0244 0.03 0.0234 0.03 0.0234 0.03 0.0234 0.03 0.05 0.0354 0.03 0.05 0.0135 30 100 3.15 0.0245 0.35 0.05 0.0135 30 100 3.15 0.0245 0.35 0.05 0.005 0.03 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 3.15 0.0245 0.03 0.05 0.005	5.93		0.0234	0.30	0.60	0.0288	30	100	3.15	0.0245	0.30	09.0	0.4909
0.0234 0.30 0.770 0.0941 30 100 3.15 0.0245 0.30 0.770 0.0234 0.35 0.55 0.0135 30 100 3.15 0.0245 0.35 0.50 0.0234 0.35 0.55 0.0138 30 100 3.15 0.0245 0.35 0.50 0.0234 0.35 0.65 0.0178 30 100 3.15 0.0245 0.35 0.50 0.0234 0.40 0.55 0.0061 30 100 3.15 0.0245 0.40 0.55 0.0209 0.05 0.12 0.1818 40 50 2.05 0.0245 0.40 0.50 0.0209 0.05 0.20 0.280 40 50 2.05 0.0245 0.05 0.05 0.0209 0.05 0.30 0.05 0.40 50 2.05 0.0245 0.05 0.05 0.0209 0.05 0.05 0.25 <td< td=""><td>5.93</td><td></td><td>0.0234</td><td>0.30</td><td>0.65</td><td>0.0350</td><td>30</td><td>100</td><td>3.15</td><td>0.0245</td><td>0.30</td><td>0.65</td><td>0.6655</td></td<>	5.93		0.0234	0.30	0.65	0.0350	30	100	3.15	0.0245	0.30	0.65	0.6655
0.0224 0.03 <	0.0 0.0		0.0234	0.30	0.70	0.0641	30	100	3.15 3.15	0.0245	0.30	0.70	0.8163
0.35 0.60 0.0138 30 100 3.15 0.0245 0.35 0.60 0.35 0.65 0.01375 30 100 3.15 0.0245 0.35 0.60 0.40 0.65 0.0061 30 100 3.15 0.0245 0.40 0.50 0.40 0.66 0.0062 30 100 3.15 0.0245 0.40 0.50 0.05 0.18 0.0061 30 100 3.15 0.0245 0.40 0.50 0.05 0.15 0.1815 40 50 2.05 0.0245 0.05 0.15 0.05 0.25 0.40 50 2.05 0.0245 0.05 0.15 0.05 0.36 0.40 50 2.05 0.0245 0.05 0.35 0.05 0.40 0.8011 40 50 2.05 0.0245 0.05 0.02 0.05 0.40 0.8011 40 50	5.93		0.0234	0.35	0.55	0.0135	30	100	3.15	0.0245	0.35	0.55	0.1623
0.0234 0.35 0.65 0.0175 30 100 3.15 0.0245 0.35 0.66 0.00761 30 100 3.15 0.0245 0.35 0.65 0.0234 0.40 0.55 0.00661 30 100 3.15 0.0245 0.40 0.65 0.0209 0.05 0.12 0.1815 40 50 2.05 0.0245 0.00 0.00 0.0209 0.05 0.23 0.6183 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.33 0.6183 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.43 0.6183 40 50 2.05 0.0245 0.05 0.02 0.0209 0.010 0.35 0.4861 40 50 2.05 0.0245 0.05 0.02 0.0209 0.10 0.35 0.256 0.255 0.0245 0.05 0.05	5.93		0.0234	0.35	0.60	0.0138	30	100	3.15	0.0245	0.35	0.60	0.2918
0.0234 0.40 0.55 0.0061 30 100 3.15 0.0245 0.40 0.55 0.0234 0.40 0.55 0.0062 30 100 3.15 0.0245 0.40 0.56 0.0209 0.05 0.15 0.1815 40 50 2.05 0.0245 0.04 0.05 0.0209 0.05 0.25 0.6183 40 50 2.05 0.0245 0.05 0.15 0.0209 0.05 0.35 0.7552 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.35 0.7552 40 50 2.05 0.0245 0.05 0.35 0.0209 0.10 0.25 0.436 40 50 2.05 0.0245 0.05 0.35 0.0209 0.10 0.25 0.234 40 50 2.05 0.0245 0.05 0.05 0.0209 0.10 0.25 0.25 0.024	5.93		0.0234	0.35	0.65	0.0175	30	100	3.15	0.0245	0.35	0.65	0.4594
0.0234 0.40 0.60 0.0062 30 100 3.15 0.0245 0.40 0.60 0.0209 0.055 0.025 0.025 0.0245 0.025 0.025 0.0209 0.055 0.025 0.3206 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.25 0.3206 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.35 0.46 0.8611 40 50 2.05 0.0245 0.05 0.02 0.0209 0.01 0.32 0.40 0.8611 40 50 2.05 0.0245 0.05 0.45 0.0209 0.10 0.32 0.3861 40 50 2.05 0.0245 0.05 0.45 0.0209 0.10 0.32 0.3861 40 50 2.05 0.0245 0.05 0.05 0.0209 0.10 0.32 0.25 0.024	5.93		0.0234	0.40	0.55	0.0061	30	100	3.15	0.0245	0.40	0.55	0.0686
0.0209 0.05 0.115 0.1815 40 50 2.05 0.0245 0.05 0.15 0.1815 40 50 2.05 0.0245 0.05 0.02 0.0209 0.056 0.230 0.4678 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.35 0.6183 40 50 2.05 0.0245 0.05 0.35 0.0209 0.05 0.40 0.8611 40 50 2.05 0.0245 0.05 0.40 0.0209 0.05 0.45 0.8611 40 50 2.05 0.0245 0.05 0.45 0.0209 0.10 0.36 0.3860 40 50 2.05 0.0245 0.05 0.45 0.0209 0.10 0.35 0.5186 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.35 0.5186 40 50 2.05 0.0245 0	5.93		0.0234	0.40	09.0	0.0062	30	100	3.15	0.0245	0.40	09.0	0.1460
0.0209 0.05 0.20 0.3206 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.25 0.4678 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.35 0.7552 40 50 2.05 0.0245 0.05 0.35 0.0209 0.05 0.44 0.8611 40 50 2.05 0.0245 0.05 0.35 0.0209 0.01 0.25 0.44 50 2.05 0.0245 0.05 0.44 0.0209 0.10 0.25 0.2324 40 50 2.05 0.0245 0.10 0.40 0.0209 0.10 0.25 0.2324 40 50 2.05 0.0245 0.10 0.45 0.0245 0.10 0.45 0.0245 0.10 0.0245 0.10 0.0245 0.02 0.0245 0.01 0.0245 0.02 0.02 0.0245 0.02 0.02	2.30	_	0.0209	0.02	0.15	0.1815	40	20	2.05	0.0245	0.02	0.15	0.3664
0.0209 0.05 0.25 0.4678 40 50 2.05 0.0245 0.05 0.02 0.0209 0.05 0.35 0.4678 40 50 2.05 0.0245 0.05 0.05 0.0209 0.05 0.43 0.7552 40 50 2.05 0.0245 0.05 0.45 0.0209 0.05 0.44 0.8611 40 50 2.05 0.0245 0.05 0.45 0.0209 0.10 0.23 40 50 2.05 0.0245 0.10 0.25 0.0209 0.10 0.35 0.3660 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.40 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.45 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.45 0.7883 40 50	2.30	_	0.0209	0.02	0.20	0.3206	40	20	2.05	0.0245	0.02	0.20	0.5906
0.0209 0.05 0.30 0.6183 40 50 2.05 0.0245 0.05 0.30 0.0209 0.05 0.35 0.7552 40 50 2.05 0.0245 0.05 0.45 0.0209 0.05 0.46 0.8611 40 50 2.05 0.0245 0.05 0.45 0.0209 0.10 0.24 0.8011 40 50 2.05 0.0245 0.05 0.45 0.0209 0.10 0.36 0.3667 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.36 0.3784 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.45 0.7881 40 50 2.05 0.0245 0.10 0.40 0.0209 0.10 0.46 0.7881 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.46 0.7892 2.0	2.3	_	0.0209	0.02	0.25	0.4678	40	20	2.02	0.0245	0.02	0.25	0.7829
0.0209 0.03 0.7552 40 50 2.05 0.0445 0.045 0.045 0.0209 0.05 0.440 0.8611 40 50 2.05 0.0245 0.05 0.45 0.0209 0.05 0.440 0.8611 40 50 2.05 0.0245 0.05 0.45 0.45 0.0209 0.10 0.356 0.2866 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.36 0.657 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.45 0.657 40 50 2.05 0.0245 0.10 0.40 0.0209 0.10 0.45 0.657 40 50 2.05 0.0245 0.10 0.40 0.0209 0.10 0.45 0.657 40 50 2.05 0.0245 0.10 0.40 0.0209 0.15 0.20 0.20 0.02	20.00	_ ,	0.0209	0.05	0.30	0.6183	40	20	2.05	0.0245	0.05	0.30	0.9075
0.0209 0.03 0.440 0.8801 4 50 2.03 0.0245 0.049 0.440 0.0209 0.010 0.45 0.9304 4 50 2.05 0.0245 0.010 0.45 0.0209 0.10 0.35 0.5186 40 50 2.05 0.0245 0.10 0.36 0.0209 0.10 0.36 0.5186 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.40 0.6657 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.46 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.46 0.7871 40 50 2.05 0.0245 0.10 0.45 0.0209 0.11 0.60 0.9704 40 50 2.05 0.0245 0.10 0.45 0.0209 0.11 0.32 0.20 0.	2.3	_	0.0209	0.05	0.35	0.7552	40	200	2.05	0.0245	0.05	0.35	0.9686
0.0209 0.03 0.445 0.5304 40 50 2.05 0.0245 0.019 0.45 0.0209 0.010 0.23 0.3664 40 50 2.05 0.0245 0.10 0.25 0.0209 0.10 0.36 0.3664 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.35 0.5186 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.45 0.7883 40 50 2.05 0.0245 0.10 0.40 0.0209 0.10 0.45 0.8781 40 50 2.05 0.0245 0.10 0.40 0.0209 0.10 0.50 0.8764 40 50 2.05 0.0245 0.10 0.40 0.0209 0.15 0.46 0.9704 40 50 2.05 0.0245 0.10 0.45 0.0209 0.15 0.46 0.20 2.	22.03		0.0209	0.05	0.40	0.8611	40	20	2.05	0.0245	0.05	0.40	0.9915
0.0209 0.10 0.25 0.254 40 50 2.05 0.0445 0.10 0.12 0.0209 0.10 0.35 0.5866 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.45 0.7586 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.45 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.55 0.9704 40 50 2.05 0.0245 0.10 0.40 0.0209 0.10 0.55 0.9704 40 50 2.05 0.0245 0.10 0.40 0.0209 0.15 0.36 0.201 40 50 2.05 0.0245 0.10 0.55 0.0209 0.15 0.40 0.201 40 50 2.05 0.0245 0.10 0.45 0.0209 0.15 0.40 0.201 2.05 <td>25.03</td> <td></td> <td>0.0209</td> <td>0.05</td> <td>0.45</td> <td>0.9304</td> <td>40</td> <td>50</td> <td>2.05</td> <td>0.0245</td> <td>0.05</td> <td>0.45</td> <td>0.9982</td>	25.03		0.0209	0.05	0.45	0.9304	40	50	2.05	0.0245	0.05	0.45	0.9982
0.0209 0.10 0.35 0.0300 40 50 2.05 0.0245 0.10 0.35 0.0209 0.10 0.45 0.5186 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.45 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.50 0.9365 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.50 0.9365 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.50 0.2010 40 50 2.05 0.0245 0.10 0.50 0.0209 0.15 0.30 0.2010 40 50 2.05 0.0245 0.10 0.40 0.0209 0.15 0.45 0.2010 40 50 2.05 0.0245 0.10 0.40 0.0209 0.15 0.45 0.20 2.05<	20.00		0.0209	0.10	0.25	0.2324	040	20.0	0.7 0.0 0.0 0.0	0.0245	0.10	0.75	0.4509
0.0209 0.10 0.40 0.6657 40 50 2.05 0.0245 0.10 0.40 0.0209 0.10 0.45 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.45 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.55 0.9365 40 50 2.05 0.0245 0.10 0.45 0.0209 0.11 0.60 0.9704 40 50 2.05 0.0245 0.10 0.45 0.0209 0.15 0.33 0.2010 40 50 2.05 0.0245 0.15 0.15 0.45 0.0209 0.15 0.46 0.46 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.45 0.665 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.44 50	9 0		0.0209	0.10	0.00	0.3060	04	8 2	0.00	0.0243	0.10	0.00	0.0000
0.0209 0.10 0.45 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.45 0.7883 40 50 2.05 0.0245 0.10 0.45 0.0209 0.10 0.50 0.8784 40 50 2.05 0.0245 0.10 0.45 0.0209 0.11 0.60 0.8704 40 50 2.05 0.0245 0.10 0.60 0.0209 0.15 0.30 0.2010 40 50 2.05 0.0245 0.15 0.35 0.0209 0.15 0.4648 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.40 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.45 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.45 40 50 2.05 0.0245 0.15	3 0		0.0203	0.10	0.55	0.0160	40	8 2	0.00	0.0245	0.10	0.33	0.0200
0.0209 0.10 0.50 0.8781 40 50 2.05 0.0245 0.10 0.50 0.0209 0.10 0.65 0.9704 40 50 2.05 0.0245 0.10 0.55 0.0209 0.10 0.65 0.9704 40 50 2.05 0.0245 0.10 0.55 0.0209 0.15 0.36 0.2010 40 50 2.05 0.0245 0.15 0.35 0.0209 0.15 0.40 0.4648 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.40 0.6056 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.40 0.76 2.05 0.0245 0.15 0.40 0.0209 0.15 0.65 0.9045 40 50 2.05 0.0245 0.15 0.55 0.0209 0.15 0.65 0.905 0.70 0.02 0.	1 01	0	0.0209	0.10	0.45	0.7883	40	20	2.05	0.0245	0.10	0.45	0.9733
0.0209 0.10 0.55 0.9865 40 50 2.05 0.0245 0.10 0.55 0.0209 0.10 0.60 0.9704 40 50 2.05 0.0245 0.10 0.60 0.0209 0.15 0.35 0.32010 40 50 2.05 0.0245 0.10 0.60 0.0209 0.15 0.40 0.4648 40 50 2.05 0.0245 0.15 0.30 0.0209 0.15 0.45 0.4648 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.45 0.40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.45 0.7311 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.65 0.8316 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.65 0.8316 40 50 </td <td>2.3</td> <td>0</td> <td>0.0209</td> <td>0.10</td> <td>0.50</td> <td>0.8781</td> <td>40</td> <td>20</td> <td>2.05</td> <td>0.0245</td> <td>0.10</td> <td>0.50</td> <td>0.9923</td>	2.3	0	0.0209	0.10	0.50	0.8781	40	20	2.05	0.0245	0.10	0.50	0.9923
0.0209 0.10 0.66 0.9704 40 50 2.05 0.0245 0.10 0.60 0.0209 0.15 0.38 0.2010 40 50 2.05 0.0245 0.15 0.30 0.0209 0.15 0.38 0.3240 40 50 2.05 0.0245 0.15 0.35 0.0209 0.15 0.45 0.66 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.45 0.605 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.45 0.60 0.9348 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.60 0.9348 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.60 0.9348 40 50 2.05 0.0245 0.15 0.45 0.0209 0.21 0.60 0.9448 </td <td>23</td> <td>0</td> <td>0.0209</td> <td>0.10</td> <td>0.55</td> <td>0.9365</td> <td>40</td> <td>20</td> <td>2.02</td> <td>0.0245</td> <td>0.10</td> <td>0.55</td> <td>0.9983</td>	23	0	0.0209	0.10	0.55	0.9365	40	20	2.02	0.0245	0.10	0.55	0.9983
0.0209 0.15 0.30 0.2010 40 50 2.05 0.0245 0.15 0.30 0.0209 0.15 0.40 0.40 40 50 2.05 0.0245 0.15 0.35 0.0209 0.15 0.46 0.6656 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.45 0.6056 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.65 0.8316 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.65 0.9045 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.65 0.9045 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.40 0.9045 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.40 0.0245 0.024	2	0	0.0209	0.10	09.0	0.9704	40	20	2.05	0.0245	0.10	09.0	0.9997
0.0209 0.15 0.324 40 50 2.05 0.0245 0.15 0.35 0.0209 0.15 0.46 0.4648 40 50 2.05 0.0245 0.15 0.35 0.0209 0.15 0.46 0.6056 40 50 2.05 0.0245 0.15 0.40 0.0209 0.15 0.55 0.7311 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.60 0.9045 40 50 2.05 0.0245 0.15 0.55 0.0209 0.15 0.65 0.9045 40 50 2.05 0.0245 0.15 0.60 0.0209 0.20 0.35 0.9520 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.45 0.453 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.45 0.4230 40 50	7	30	0.0209	0.15	0.30	0.2010	40	20	2.02	0.0245	0.15	0.30	0.3879
0.0209 0.15 0.40 0.44648 40 50 2.05 0.0245 0.15 0.44 0.0209 0.15 0.45 0.6056 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.50 0.7311 40 50 2.05 0.0245 0.15 0.45 0.0209 0.15 0.55 0.8316 40 50 2.05 0.0245 0.15 0.55 0.0209 0.15 0.66 0.9342 40 50 2.05 0.0245 0.15 0.55 0.0209 0.15 0.66 0.9350 40 50 2.05 0.0245 0.15 0.55 0.0209 0.20 0.35 0.1852 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.45 0.4230 40 50 2.05 0.0245 0.20 0.45 0.0209 0.20 0.45 0.4230 40	21	200	0.0209	0.15	0.35	0.3240	40	200	2.05	0.0245	0.15	0.35	0.5864
0.0209 0.13 0.503 40 50 2.05 0.0243 0.13 0.14 0.0209 0.15 0.55 0.7311 40 50 2.05 0.0245 0.15 0.55 0.0209 0.15 0.55 0.8316 40 50 2.05 0.0245 0.15 0.56 0.0209 0.15 0.65 0.9520 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.35 0.1852 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.40 0.2950 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.43 40 50 2.05 0.0245 0.20 0.40 0.0209 0.20 0.56 0.568 40 50 2.05 0.0245 0.20 0.40 0.0209 0.20 0.50 0.56 0.754 0.20 0.50 <td>71 0</td> <td>200</td> <td>0.0209</td> <td>0.15</td> <td>0.40</td> <td>0.4648</td> <td>40</td> <td>200</td> <td>2.05</td> <td>0.0245</td> <td>0.15</td> <td>0.40</td> <td>0.7600</td>	71 0	200	0.0209	0.15	0.40	0.4648	40	200	2.05	0.0245	0.15	0.40	0.7600
0.0209 0.15 0.55 0.0245 0.15 0.05 0.0209 0.15 0.65 0.9045 40 50 2.05 0.0245 0.15 0.05 0.0209 0.15 0.66 0.9045 40 50 2.05 0.0245 0.15 0.05 0.0209 0.20 0.35 0.965 0.9045 40 50 2.05 0.0245 0.15 0.05 0.0209 0.20 0.40 0.2950 40 50 2.05 0.0245 0.15 0.05 0.0209 0.20 0.45 0.4230 40 50 2.05 0.0245 0.20 0.45 0.0209 0.20 0.45 0.4230 40 50 2.05 0.0245 0.20 0.45 0.0209 0.20 0.56 0.5783 40 50 2.05 0.0245 0.20 0.55 0.0209 0.20 0.65 0.683 40 50 2.05 0.024	4 0	0 0	0.0209	0.1.0	0.4.0 0.4.0	0.0036	040	00 20	0.00	0.0245	0.1.0	0.4.0 0.4.0	0.0000
0.0209 0.15 0.60 0.945 40 50 2.05 0.0245 0.15 0.60 0.0209 0.15 0.65 0.9520 40 50 2.05 0.0245 0.15 0.65 0.0209 0.20 0.40 0.9520 40 50 2.05 0.0245 0.15 0.60 0.0209 0.20 0.40 0.2950 40 50 2.05 0.0245 0.15 0.60 0.0209 0.20 0.40 0.2950 40 50 2.05 0.0245 0.20 0.40 0.0209 0.20 0.45 0.433 40 50 2.05 0.0245 0.20 0.40 0.0209 0.20 0.65 0.438 40 50 2.05 0.0245 0.20 0.55 0.0209 0.20 0.65 0.8797 40 50 2.05 0.0245 0.20 0.65 0.0209 0.20 0.65 0.8797 40 <td>4 0</td> <td>2 0</td> <td>0.0209</td> <td>0.15</td> <td>0.50</td> <td>0.8316</td> <td>40</td> <td>S 75</td> <td>20.0</td> <td>0.0245</td> <td>0.10</td> <td>0.00</td> <td>0.9853</td>	4 0	2 0	0.0209	0.15	0.50	0.8316	40	S 75	20.0	0.0245	0.10	0.00	0.9853
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	200	0.0209	0.15	0.60	0.9045	40	20	2.05	0.0245	0.15	0.60	0.9964
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	30	0.0209	0.15	0.65	0.9520	40	20	2.05	0.0245	0.15	0.65	0.9993
0.0209 0.20 0.440 0.2950 40 50 2.05 0.0245 0.20 0.440 0.0209 0.20 0.45 0.4530 40 50 2.05 0.0245 0.20 0.45 0.0209 0.20 0.56 0.683 40 50 2.05 0.0245 0.20 0.50 0.0209 0.20 0.56 0.683 40 50 2.05 0.0245 0.20 0.55 0.0209 0.20 0.60 0.7938 40 50 2.05 0.0245 0.20 0.55 0.0209 0.20 0.70 0.9391 40 50 2.05 0.0245 0.20 0.70 0.0209 0.25 0.40 0.170 0.94 50 2.05 0.0245 0.20 0.70 0.0209 0.25 0.45 0.2695 40 50 2.05 0.0245 0.20 0.70 0.0209 0.25 0.45 0.20 2.05	2	30	0.0209	0.20	0.35	0.1852	40	20	2.02	0.0245	0.20	0.35	0.3426
0.0209 0.20 0.445 0.4230 40 50 2.05 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245 0.020 0.45 0.0209 0.20 0.55 0.6839 40 50 2.05 0.0245 0.20 0.50 0.0209 0.20 0.60 0.7938 40 50 2.05 0.0245 0.20 0.55 0.0209 0.20 0.60 0.7938 40 50 2.05 0.0245 0.20 0.60 0.0209 0.20 0.60 0.773 40 50 2.05 0.0245 0.20 0.65 0.0209 0.25 0.40 0.1709 40 50 2.05 0.0245 0.20 0.40 0.0209 0.25 0.45 0.269 40 50 2.05 0.0245 0.25 0.40 0.0209 0.25 0.50 0.3882 40 50 2.05 0.0245 0.25 0.45 </td <td>2</td> <td>30</td> <td>0.0209</td> <td>0.20</td> <td>0.40</td> <td>0.2950</td> <td>40</td> <td>20</td> <td>2.05</td> <td>0.0245</td> <td>0.20</td> <td>0.40</td> <td>0.5329</td>	2	30	0.0209	0.20	0.40	0.2950	40	20	2.05	0.0245	0.20	0.40	0.5329
0.0209 0.20 0.556 40 50 2.05 0.0245 0.20 0.50 0.0209 0.20 0.55 0.6833 40 50 2.05 0.0245 0.20 0.55 0.0209 0.20 0.60 0.7793 40 50 2.05 0.0245 0.20 0.65 0.0209 0.20 0.60 0.793 40 50 2.05 0.0245 0.20 0.65 0.0209 0.20 0.70 0.9391 40 50 2.05 0.0245 0.20 0.70 0.0209 0.25 0.44 0.1709 40 50 2.05 0.0245 0.20 0.40 0.0209 0.25 0.45 0.2895 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.50 0.3882 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.50 0.3882 40 50	2	00	0.0209	0.20	0.45	0.4230	40	20	2.05	0.0245	0.20	0.45	0.7155
0.0209 0.20 0.55 0.6839 40 50 2.05 0.0245 0.20 0.55 0.0209 0.20 0.66 0.7938 40 50 2.05 0.0245 0.20 0.55 0.0209 0.20 0.67 0.8797 40 50 2.05 0.0245 0.20 0.60 0.0209 0.20 0.70 0.9891 40 50 2.05 0.0245 0.20 0.70 0.0209 0.25 0.40 0.1769 40 50 2.05 0.0245 0.25 0.40 0.0209 0.25 0.45 0.5 0.0545 0.25 0.40 0.0209 0.25 0.50 0.3882 40 50 2.05 0.0245 0.25 0.50 0.0209 0.25 0.50 0.3882 40 50 2.05 0.0245 0.25 0.55 0.0209 0.25 0.50 0.588 40 50 2.05 0.0245<	2	00	0.0209	0.20	0.50	0.5568	40	20	2.05	0.0245	0.20	0.50	0.8546
0.0209 0.20 0.60 0.7938 40 50 2.05 0.0245 0.20 0.60 0.0209 0.20 0.65 0.8797 40 50 2.05 0.0245 0.20 0.65 0.0209 0.25 0.40 0.1709 40 50 2.05 0.0245 0.20 0.70 0.0209 0.25 0.40 0.1709 40 50 2.05 0.0245 0.25 0.40 0.0209 0.25 0.45 0.2695 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.45 0.2695 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.50 0.3882 40 50 2.05 0.0245 0.25 0.50 0.0209 0.25 0.5188 40 50 2.05 0.0245 0.25 0.55	7	30	0.0209	0.20	0.55	0.6839	40	20	2.05	0.0245	0.20	0.55	0.9386
0.0209 0.20 0.65 0.8797 40 50 2.05 0.0245 0.20 0.620 0.65 0.0209 0.20 0.70 0.9391 40 50 2.05 0.0245 0.20 0.70 0.0209 0.25 0.40 50 2.05 0.0245 0.25 0.40 0.0209 0.25 0.45 0.2695 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.45 0.3882 40 50 2.05 0.0245 0.25 0.50 0.0209 0.25 0.5188 40 50 2.05 0.0245 0.25 0.50	2	00	0.0209	0.20	09.0	0.7938	40	20	2.05	0.0245	0.20	09.0	0.9788
0.0209 0.20 0.70 0.9391 40 50 2.05 0.0245 0.20 0.70 0.0209 0.25 0.40 0.1709 40 50 2.05 0.0245 0.25 0.40 0.7009 0.25 0.45 0.2895 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.45 0.2892 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.55 0.5188 40 50 2.05 0.0245 0.25 0.50 0.0209 0.25 0.55 0.5188 40 50 2.05 0.0245 0.25 0.55	0	00	0.0209	0.20	0.65	0.8797	40	20	2.02	0.0245	0.20	0.65	0.9942
0.0209 0.25 0.40 0.1709 40 50 2.05 0.0245 0.25 0.40 0.0209 0.25 0.45 0.2695 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.50 0.3882 40 50 2.05 0.0245 0.25 0.50 0.0209 0.25 0.5188 40 50 2.05 0.0245 0.25 0.55	2	0	0.0209	0.20	0.70	0.9391	40	20	2.02	0.0245	0.20	0.70	0.9988
0.0209 0.25 0.45 0.2693 40 50 2.05 0.0245 0.25 0.45 0.0209 0.25 0.50 0.5188 40 50 2.05 0.0245 0.25 0.55 0.50 0.5188 40 50 2.05 0.0245 0.25 0.55	ω. ω.	0 (0.0209	0.25	0.40	0.1709	40	20	2.05	0.0245	0.25	0.40	0.3177
0.0209 0.25 0.55 0.5188 40 50 2.05 0.0245 0.25 0.55	20.00	-	0.0209	0.25	0.45	0.2695	40	20.2	2.05	0.0245	0.25	0.45	0.5045
	4 C1		0.0209	0.25	0.55	0.5188	40	20 20	2.05	0.0245	0.25	0.55	0.8323
		-											

Table B.17: continue on next page

Table B.17: continue on next page

_																																														
is page	power	0.9248	0.9730	0.9927	0.3045	0.4830	0.6634	0.8142	0.9165	0.9708	0.2903	0.4639	0.8480	0.2803	0.4566	0.4145	0.6604	0.8403	0.9381	0.9805	0.9952	0.9991	0.5016	0.7025	0.000	0.9816	0.9955	0.9992	0.9999	0.4101	0.6151	0.7909	0.9077	6066.0	0.9980	0.9997	0.3635	0.5668	0.7518	0.8823	0.9545	0.9860	0.9967	0.9994	0.5384	0.7233
revion	p2	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.70	0.30	0.00	0.40	0.50	0.55	09.0	0.30	0.35	0.40	0.45 0.70	20.0	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.70	0.45	0.50
rom p	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	3.55	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	07.0	0.20	0.25	0.25
-continued from previous page	pvalue	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249
	$\mathbf{z}_{\mathbf{u}}$	2.05	2.02	2.05	2.05	2.05	2.05	2.02	2.05	2.05	2.05	2.05 0.05	20.0	2.05	2.05	2.06	2.06	2.06	2.06	2.06	2.06	2.06	0.70	2.00	00.7	2.06	2.06	2.06	2.06	2.06	2.06	2.06	3.06	2.00	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	0.70	2.00	2.06	2.06
B.17:	$^{\rm n_2}$	20	20	00 00	20	20	20	20	20	20	200	0° 7°	8 25	20.02	20	09	09	09	09	09	09	9 8	00	9	00	8 9	09	09	09	09	09	09	9	8 9	09	09	09	09	09	09	09	09	00	09	09	09
Table	$^{\mathrm{n}_{1}}$	40	40	40	40	40	40	40	40	40	40	40	4	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
(1	power	0.6504	0.7700	0.8664	0.1569	0.2480	0.3629	0.4953	0.6330	0.7599	0.1453	0.2339	0.3434	0.1385	0.2272	0.1456	0.2905	0.4420	0.5993	0.7452	0.8572	0.9291	0.2033	0.3310	0.4029	0.7614	0.8578	0.9228	0.9624	0.1667	0.2788	0.4125	0.5516	0.7912	0.8764	0.9361	0.1453	0.2403	0.3567	0.4853	0.6162	0.7389	0.8428	0.9190	0.2073	0.3115
	p2	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.7.0	0.30	0.00	0.40	0.50	0.55	0.60	0.30	0.35	0.40	0.45	20.0	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.70	0.45	0.50
	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	3.5	0.40	0.40	0.05	0.02	0.02	0.02	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.10	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25
	pvalue	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171
	$\mathbf{z}_{\mathbf{u}}$	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.66	2.66	2.66	2.66	2.66	2.66	5.66	2.00	2.00	00.7	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.00	20.00	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.00	2.66	2.66	2.66
	$^{\mathrm{n}_{2}}$	30	30	8 8	30	30	30	30	30	30	90	30	8 8	30	30	40	40	40	40	40	40	40	040	040	040	40	40	40	40	40	40	40	940	40	40	40	40	40	40	40	40	40	40	40	40	40
	$^{\mathrm{n}_{1}}$	20	20	200	20	20	20	20	20	20	50	0.70	0.00	20	20	20	20	20	20	50	20	50	070	07.0	0 0	20	20	20	20	20	20	50	0.70	000	20	20	20	20	20	20	20	50	070	20	20	20

0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208	0.55 0.65 0.70 0.75 0.45 0.55 0.55 0.65 0.65 0.65 0.65 0.65 0.6	0.4358 0.5728 0.07090 0.07162 0.01117 0.0873 0.0950 0.0950 0.0971		66 66 66 66 66 66 66 66 66 66 66 66 66	99999999999999999999999999999999999999	0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249	0.25 0.25 0.25 0.25 0.20 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.55 0.66 0.70 0.70 0.70 0.70 0.70 0.70 0.70	0.8612 0.9432 0.99518 0.99518 0.99518 0.9953 0.3266 0.3266 0.3266 0.3326 0.3326 0.3326 0.3326 0.3326 0.3326 0.3326 0.3326 0.3689 0.3689 0.3689 0.3689 0.3689
40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.60 0.75 0.75 0.55 0.55 0.65 0.65 0.65 0.65 0.65 0.6	0.5728 0.7090 0.7090 0.1087 0.1087 0.1087 0.4072 0.6525 0.6971 0.0950 0.0950 0.0871 0.0871 0.0871 0.0871 0.0871 0.0871 0.0871 0.0871 0.0871 0.0871 0.0871	04 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	72	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249	0.25 0.25 0.25 0.25 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	0.60 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7	0.9432 0.99518 0.99518 0.9953 0.5126 0.5126 0.9738 0.9738 0.6854 0.8381 0.6854
40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.75 0.75 0.75 0.55 0.65 0.65 0.65 0.65 0.65 0.65 0.6	0.07090 0.9262 0.01112 0.1087 0.2803 0.4072 0.6971 0.0950 0.0950 0.0871 0.0871 0.0871 0.0871 0.0871 0.0873	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7	33300000000000000000000000000000000000	0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249	0.25 0.25 0.30 0.30 0.30 0.30 0.35 0.35 0.35 0.40 0.40	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.9918 0.9993 0.9993 0.5155 0.7000 0.7000 0.8452 0.8452 0.8452 0.8381 0.
40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.73 0.75 0.65 0.65 0.65 0.60 0.60 0.60 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.9111 0.1087 0.2803 0.2803 0.4072 0.6971 0.0950 0.1640 0.1640 0.1640 0.1640 0.1640 0.1640 0.1640 0.1640 0.1640 0.1640 0.1640 0.1641 0.0041 0.		70		0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.59933 0.3266 0.7000 0.8452 0.9798 0.3126 0.4973 0.6854 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883
40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.45 0.50 0.50 0.65 0.65 0.55 0.55 0.65 0.25 0.25 0.33 0.33	0.1087 0.1808 0.4808 0.4072 0.5525 0.5525 0.0871 0.0871 0.0871 0.1568 0.1775 0.3324 0.1768 0.1768 0.1775 0.		660 660 660 660 660 660 70 70 70	3333 3333 3333 3333 3333 3333 3333 3333 3333	0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249	0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.45 0.55 0.05 0.05 0.05 0.05 0.05 0.05	0.3266 0.5155 0.5156 0.8750 0.9361 0.6854 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883 0.6883
40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.50 0.65 0.65 0.70 0.70 0.55 0.55 0.65 0.65 0.20 0.20 0.30 0.30	0.1808 0.2803 0.4072 0.0525 0.0971 0.0967 0.0871 0.1568 0.1768 0.1768 0.1768 0.1768 0.1768 0.1768 0.1768 0.1768 0.1768	0444	660 600 600 600 600 600 70 70 70	999999999998 00000000000000000000000000	0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0246 0.0246 0.0246	0.30 0.30 0.30 0.30 0.30 0.35 0.35 0.35	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.5155 0.7000 0.7000 0.9452 0.9361 0.8372 0.8381 0.3022 0.3089 0.6281 0.3089 0.6281 0.3089 0.6281 0.3089 0.6281 0.3089 0.6281 0.3089 0.6281 0.3089 0.6281
40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.55 0.65 0.65 0.70 0.50 0.65 0.65 0.65 0.05 0.15 0.25 0.30 0.30 0.35	0.2803 0.4072 0.5525 0.6971 0.0950 0.2647 0.3962 0.1775 0.1775 0.3324 0.4847 0.6368	04 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	660 600 600 600 600 70 70 70 70	90 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0246 0.0246	0.30 0.30 0.30 0.30 0.30 0.35 0.35 0.35	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.7000 0.8452 0.8452 0.9738 0.3126 0.4973 0.6854 0.6883 0.3689 0.6281 0.6281
40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.65 0.70 0.50 0.50 0.55 0.65 0.65 0.15 0.20 0.30 0.35 0.35	0.4072 0.5525 0.0950 0.0950 0.1640 0.2647 0.2647 0.0871 0.1568 0.1775 0.4847 0.4847 0.6368	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	660 600 600 600 600 70 70 70	2 2 2 2 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0246 0.0246	0.30 0.30 0.30 0.30 0.35 0.35 0.35 0.40 0.40	0.60 0.55 0.55 0.55 0.55 0.55 0.20 0.20	0.03458 0.03758 0.03128 0.03128 0.0458 0.048
40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.65 0.70 0.55 0.65 0.65 0.65 0.20 0.20 0.35 0.35 0.40	0.5525 0.6971 0.0950 0.1640 0.3647 0.3862 0.1775 0.1775 0.3324 0.4847 0.6368	0 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	660 660 660 660 770 770 770	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0246 0.0246	0.30 0.30 0.35 0.35 0.35 0.40 0.40	0.65 0.55 0.55 0.65 0.05 0.15 0.20	0.9361 0.9798 0.3126 0.43126 0.6854 0.6854 0.3022 0.3689 0.3689 0.3689 0.9300 0.9300
40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.70 0.50 0.65 0.65 0.65 0.15 0.20 0.35 0.35 0.40	0.6971 0.0950 0.0950 0.2647 0.3962 0.0871 0.1755 0.3324 0.4847 0.6368 0.7673	0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	660 60 60 60 77 70 70	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0249 0.0249 0.0249 0.0249 0.0249 0.0246 0.0246 0.0246	0.35 0.35 0.40 0.40 0.55 0.55	0.50 0.50 0.50 0.50 0.20 0.20 0.20	0.9798 0.3126 0.4873 0.68381 0.3023 0.3083 0.3689 0.3689 0.9200 0.9200
40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.50 0.65 0.65 0.65 0.15 0.25 0.35 0.35 0.35	0.0950 0.2647 0.2647 0.3962 0.0871 0.1568 0.1775 0.3324 0.4847 0.6368 0.6368	0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	660 60 60 60 70 70 70	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0249 0.0249 0.0249 0.0249 0.0249 0.0246 0.0246	0.35 0.35 0.40 0.40	0.55 0.65 0.65 0.05 0.15 0.25	0.3125 0.4937 0.8381 0.3022 0.3022 0.4883 0.6281 0.6281 0.9300
40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.55 0.65 0.55 0.55 0.15 0.20 0.25 0.35 0.40	0.1640 0.2647 0.3962 0.0871 0.1568 0.1775 0.3324 0.4847 0.6368 0.6368	04 4 4 4 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0	660 60 60 70 70 70 70	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0249 0.0249 0.0249 0.0249 0.0246 0.0246 0.0246	0.35 0.35 0.40 0.40	0.65 0.65 0.55 0.15 0.25	0.4874 0.08381 0.3022 0.4883 0.3689 0.3689 0.08219 0.09779
40 2.00 0.0171 1 40 2.66 0.0171 1 50 2.86 0.0171 2 50 2.86 0.0208	0.65 0.65 0.60 0.15 0.20 0.30 0.35 0.40 0.40	0.2047 0.3962 0.1568 0.1775 0.3324 0.4847 0.6368 0.7673	0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 60 70 70 70 70	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0249 0.0249 0.0249 0.0246 0.0246 0.0246 0.0246	0.35 0.40 0.40 0.05	0.65 0.55 0.15 0.20 0.25	0.836 0.308 0.308 0.308 0.308 0.308 0.038 0.032 0.032 0.032 0.032 0.032 0.032 0.032
40 2.66 0.0171 40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.55 0.60 0.15 0.20 0.20 0.35 0.40 0.40	0.0871 0.1758 0.1775 0.3324 0.4847 0.6368 0.7673 0.8650	1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 06 2 2 3 3 2 3 3 3	0.0249 0.0249 0.0246 0.0246 0.0246 0.0246	0.40 0.05 0.05	0.55 0.15 0.20 0.25	0.3022 0.3022 0.4883 0.3689 0.6281 0.8219 0.9300
40 2.66 0.0171 50 2.86 0.0208 50 2.86 0.0208	0.60 0.15 0.25 0.30 0.35 0.40 0.45	0.1568 0.1775 0.3324 0.4847 0.6368 0.7673 0.8650	0444444	882222	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	0.0246 0.0246 0.0246 0.0246 0.0246	0.40	0.60 0.15 0.20 0.25	0.4883 0.4883 0.3689 0.6281 0.8219 0.9300 0.9779
50 2.86 0.0208 50 2.86 0.0208	0.15 0.15 0.20 0.25 0.30 0.40 0.45	0.1775 0.1775 0.3324 0.6368 0.7673 0.8650	044444	82228	2.33	0.0246 0.0246 0.0246 0.0246	0.05	0.15 0.20 0.25	0.3689 0.3689 0.6281 0.8219 0.9300 0.9779
50 2.86 0.0208 50 2.86 0.0208	0.20 0.25 0.30 0.30 0.40 0.45 0.25	0.3324 0.4847 0.6368 0.7673 0.8650	40 40 40 40 40	2222	2.33	0.0246 0.0246 0.0246	000	0.20	0.6281 0.8219 0.9300 0.9779
50 2.86 0.0208 50 2.86 0.0208	0.25 0.30 0.40 0.45 0.25	0.4847 0.6368 0.7673 0.8650	40 40 40 40 40	2 2 2		0.0246	25.0	0.25	0.8219 0.9300 0.9779
50 2.86 0.0208 50 2.86 0.0208	0.35 0.40 0.45 0.25	0.6368 0.7673 0.8650	0 4 4 0 0 4 4 0 0 0 0 0	20	2.33	0.0246	0.05	000	0.9300
50 2.86 0.0208 50 2.86 0.0208	0.35 0.40 0.45 0.25	0.7673 0.8650 0.9302	40		2.33		0.02	00.0	0.9779
50 2.86 0.0208 50 2.86 0.0208	0.40 0.45 0.25	0.8650	40	70	2.33	0.0246	0.02	0.35	0.0046
50 2.86 0.0208 50 2.86 0.0208	0.45	0.9302		70	2.33	0.0246	0.05	0.40	0.9946
50 2.86 0.0208 50 2.86 0.0208	0.25	1	40	70	2.33	0.0246	0.02	0.45	0.9990
50 2.86 0.0208 50 2.86 0.0208		0.2225	40	20	2.33	0.0246	0.10	0.25	0.4596
50 2.86 0.0208 50 2.86 0.0208	0.30	0.3447	40	20	2.33	0.0246	0.10	0.30	0.6669
50 2.86 0.0208 50 2.86 0.0208	0.35	0.4820	40	2	2.33	0.0246	0.10	0.35	0.8322
50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208	0.40	0.6211	40	21	2.33	0.0246	0.10	0.40	0.9321
50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208	0.45	0.7464	40	2 i	2.33	0.0246	0.10	0.45	0.9778
50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208	0.50	0.8456	40	2 1	2.33	0.0246	0.10	0.50	0.9942
50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208	0.55	0.9156	40	2 1	2.33	0.0246	0.10	0.55	0.9988
50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208	0.60	0.9597	40	2 6	2.33	0.0246	0.10	0.60	0.9998
50 2.86 0.0208 50 2.86 0.0208 50 2.86 0.0208	0.30	0.1657	40	2 8	2.33	0.0246	0.15	0.30	0.3530
50 2.86 0.0208	0.00	0.2040	040	3 9	00.7	0.0246	0.1.0	0.00	0.0701
0070.0 00.7 00	0.40	0.30/0	04.0	2 9	00.7	0.0246	0.10	04.0	0.7040
000000000000000000000000000000000000000		0.0218	0,40	3 9	3.0	0.0240	0.0	0.4.0 E.E.O	0.0000
00.20		0.0343	0,4	2 5	2000	0.0240	0.10	0.0 0.0 0.0	1406.0
2020.0 2000	09:0	8668	2 7	1.0	2000	0.0246	0.10	0.00	0 9969
202030	0.00	0.8008	07	3 5	200	0.0240	0.10	0.00	0.0900
50 2.30 0.0208	0.00	0.3321	40	2.5	200	0.0240	0.20	0.00	03000
50 286 0.0008	0.00	0.2140	27	2.5	3 3 3 3	0.0246	000	0.80	0.5011
50 286 0.0208	24.0	0.3230	40	2.5	2000	0.0246	0.00	24.0	0.000
50 2.86 0.0208	0.50	0.4505	40	2.2	2.33	0.0246	0.20	0.50	0.8410
50 2.86 0.0208	0.55	0.5875	40	70	2.33	0.0246	0.20	0.55	0.9342
50	09.0	0.7192	40	70	2.33	0.0246	0.20	0.60	0.9787
50 2.86 0.0208	0.65	0.8296	40	20	2.33	0.0246	0.20	0.65	0.9949
50 2.86 0.0208	0.70	9606.0	40	70	2.33	0.0246	0.20	0.70	0.9991
20	0.40	0.1062	40	20	2.33	0.0246	0.25	0.40	0.2701

Table B.17: continue on next page

Table B.17: continue on next page

1																																														
is page	power	0.6481	0.8120	0.9198	0.9038	0.9989	0.2460	0.4245	0.6229	0.7969	0.9136	0.9718	0.2328	0.4109	0.7925	0.2290	0.4089	0.3154	0.5706	0.7856	0.9127	0.9719	0.9933	0.9988	0.4031	0.8019	0.9186	0.9731	0.9929	0.9986	0.9998	0.3112	0.5206	0.8691	0.9456	0.9834	0.9962	0.9994	0.2640	0.4520	0.6492	0.8141	0.9215	0.9741	0.9987	0.2275
revion	P2	0.50	0.55	0.60	0.00	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.20	0.40
$_{rom\ p}$	p1	0.25	0.25	0.25	0.45	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.00	0.35	0.40	0.40	0.02	0.05	0.02	0.02	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25
-continued from previous page	pvalue	0.0246	0.0246	0.0246	0.0240	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198	0.0198
: -con	$\mathbf{z}_{\mathbf{u}}$	2.33	2.33	2.33	9.50	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	25.50	2.33	2.33	2.33	2.55	2.55	2.55	2.55	2.55	2.55	2.55	0.7. 0.1.	2.0	2.55	2.55	2.55	2.55	2.55	2.55	2.55	0.0 0.0 0.0 0.0	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.00 5.00	25.5	2.55
B.17:	$^{\rm n_2}$	20	20	2 2	2.5	2.2	70	20	70	70	20	20	2 2	9 9	2.02	70	20	80	80	80	80	80	80	200	0 8	8 8	80	80	80	80	80	80	200	000	8 8	80	80	80	80	80	80	80	200	8 8	8 8	80
Table	$^{\rm n_1}$	40	40	40	40	40	40	40	40	40	40	40	40	04	40	40	40	40	40	40	40	40	40	40	40	04 04 04 0	40	40	40	40	40	40	40	7	40	40	40	40	40	40	40	40	40	40	40	40
	power	0.2780	0.4028	0.5434	0.0024	0.8953	0.0889	0.1543	0.2491	0.3722	0.5136	0.6587	0.0771	0.1388	0.3515	0.0694	0.1281	0.2012	0.3423	0.4747	0.6258	0.7606	0.8611	0.9283	0.2100	0.3290	0.6064	0.7338	0.8351	0.9073	0.9543	0.1537	0.2483	0.3074	0.6311	0.7498	0.8490	0.9218	0.1179	0.1965	0.2992	0.4200	0.5527	0.0870	0.8963	0.0939
	p2	0.50	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.70	0.40
	p1	0.25	0.25	0.25	0.40	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.00	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25
	pvalue	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0230	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236
	$\mathbf{z}_{\mathbf{n}}$	2.86	2.86	2.86	00.4 00.8 00.8	2.86	2.86	2.86	2.86	2.86	2.86	2.86	9.30	00.7	2.86	2.86	2.86	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	40.0	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04
	$^{\rm n_2}$	20	20	200	3 2	20	20	20	20	20	20	20	0° 7	00 20	20	20	20	09	09	09	09	09	09	99	98	9 9	09	09	09	09	09	09	99	8 8	8 9	09	09	09	09	09	09	09	99	00	8 9	09
	$^{\mathrm{n}_{1}}$	20	20	50	000	20	20	20	20	20	20	20	070	0 0	20	20	20	20	20	20	20	20	50	50	070	20	20	20	20	20	20	20	0.70	000	20	20	20	20	20	20	20	20	70	20	000	20

							Table	B.17:		-continued from previous page	from p	reviou	s page
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	P2	power	\mathbf{n}_1	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	P2	power
20	09	3.04	0.0236	0.25	0.45	0.1590	40	80	2.55	0.0198	0.25	0.45	0.4027
20	09	3.04	0.0236	0.25	0.50	0.2484	40	80	2.55	0.0198	0.25	0.50	0.6036
20	09	3.04	0.0236	0.25	0.55	0.3642	40	08	2.55	0.0198	0.25	0.55	0.7820
20	09	3.04	0.0236	0.25	0.60	0.5033	40	08	2.55	0.0198	0.25	0.60	0.9022
07.0	09	3.04	0.0236	0.25	0.00	0.6489	40	S S	2.55 5.75 7.75	0.0198	0.25	0.00	0.9649
0.00	8 9	20.0	0.0236	0.20	0.70	0.1709	040	8 8	0.0 0.0 0.0 0.0	0.0198	0.20	0.70	0.9900
20	8 09	3.04	0.0236	0.30	0.45	0.0755	40	8 8	2.55	0.0198	0.30	0.45	0.2042
20	09	3.04	0.0236	0.30	0.50	0.1312	40	80	2.55	0.0198	0.30	0.50	0.3748
20	09	3.04	0.0236	0.30	0.55	0.2152	40	80	2.55	0.0198	0.30	0.55	0.5748
20	09	3.04	0.0236	0.30	09.0	0.3321	40	80	2.55	0.0198	0.30	0.60	0.7552
20	09	3.04	0.0236	0.30	0.65	0.4735	40	80	2.55	0.0198	0.30	0.65	0.8852
20	09	3.04	0.0236	0.30	0.70	0.6191	40	80	2.55	0.0198	0.30	0.70	0.9592
20	09	3.04	0.0236	0.35	0.50	0.0620	40	08	2.55	0.0198	0.35	0.50	0.1918
20	09	3.04	0.0236	0.35	0.55	0.1140	40	08 S	2.55	0.0198	0.35	0.55	0.3544
50	09	3.04	0.0236	0.35	0.60	0.1970	40) S	2.55	0.0198	0.35	0.60	0.5480
070	99	3.04	0.0236	0.35	0.65	0.3117	40	200	2.55	0.0198	0.35	0.65	0.7359
070	00	\$0.0 \$0.0	0.0230	0.40	0.00	0.0540	040	8 8	0.00	0.0198	0.40	0.00	0.1794
0 0	3 60	40.0	0.0230	0.40	0.00	0.1040	04.	8 8	0.00	0.0198	0.40	0.00	0.5540
07 6	9 9	24.0	0.0191	0.00	0.1.0	0.1/3/	04.0	8 8	07.70	0.0171	0.00	0.10	0.2780
0 6	2.5	. c	0.0191	0.0	0.00	0.3113	7	8 8	2 7 0	0.0171	0.00	0.00	0.7413
0 0	2.5	4. 6	0.0191	0.00	0.00	0.4021	7	8 8	2 1 0	0.0171	0.00	0.00	0.805.0
02.0	2.5	24.5	0.0191	0.0	33.0	0.9230	40	8 6	2.70	0.0171	0.00	2000	0.9671
20	20.	3.42	0.0191	0.05	0.40	0.8033	40	06	2.76	0.0171	0.05	0.40	0.9919
20	20	3.42	0.0191	0.02	0.45	0.8915	40	06	2.76	0.0171	0.02	0.45	0.9985
20	20	3.42	0.0191	0.10	0.25	0.1561	40	06	2.76	0.0171	0.10	0.25	0.3532
20	20	3.42	0.0191	0.10	0.30	0.2485	40	90	2.76	0.0171	0.10	0.30	0.5784
20	20	3.42	0.0191	0.10	0.35	0.3766	40	06	2.76	0.0171	0.10	0.35	0.7721
20	70	3.42	0.0191	0.10	0.40	0.5160	40	06	2.76	0.0171	0.10	0.40	0.9010
20	20	3.42	0.0191	0.10	0.45	0.6547	40	06	2.76	0.0171	0.10	0.45	0.9663
20	20	3.42	0.0191	0.10	0.50	0.7768	40	90	2.76	0.0171	0.10	0.50	0.9912
20	20	3.42	0.0191	0.10	0.55	0.8716	40	90	2.76	0.0171	0.10	0.55	0.9983
20	20	3.42	0.0191	0.10	0.60	0.9351	40	06	2.76	0.0171	0.10	0.60	0.9998
20	2 i	3.42	0.0191	0.15	0.30	0.1055	40	06 8	2.76	0.0171	0.15	0.30	0.2711
070	3 9	0.47 74.0	0.0191	0.1.0	0.00	0.1823	04.	200	07.70	0.0171	0.10	0.90	0.4095
000	1.0	2 5	0.0101	0.10		0.110	9	8 8	2 1 2	0.01	0.10		0.0100
200	2.2	3.42	0.0191	0.15	0.50	0.5509	40	86	2.76	0.0171	0.15	0.50	0.9353
20	20	3.42	0.0191	0.15	0.55	0.6870	40	06	2.76	0.0171	0.15	0.55	0.9801
20	20	3.42	0.0191	0.15	0.60	0.8028	40	06	2.76	0.0171	0.15	0.60	0.9953
20	20	3.42	0.0191	0.15	0.65	0.8896	40	90	2.76	0.0171	0.15	0.65	0.9992
20	20	3.42	0.0191	0.20	0.35	0.0791	40	06	2.76	0.0171	0.20	0.35	0.2198
20	20	3.42	0.0191	0.20	0.40	0.1398	40	06	2.76	0.0171	0.20	0.40	0.4011
20	20	3.42	0.0191	0.20	0.45	0.2278	40	06	2.76	0.0171	0.20	0.45	0.6070
20	20	3.42	0.0191	0.20	0.50	0.3431	40	06	2.76	0.0171	0.20	0.50	0.7872
20	2 i	3.42	0.0191	0.20	0.55	0.4782	40	06	2.76	0.0171	0.20	0.55	0.9065
07.0	2 8	3.42	0.0191	0.20	0.60	0.6175	40	36	27.70	0.0171	0.20	0.60	0.9674
20	2 2	3.42	0.0191	0.20	0.70	0.8526	40	06	2.76	0.0171	0.20	0.70	0.9984
										, ,			

Table B.17: continue on next page

Table B.17: continue on next page

_																																													
is page	power	0.1892	0.3581	0.5605	0.8810	0.9570	0.9886	0.9979	0.1705	0.3280	0.5230	0.7162	0.9509	0.1555	0.3037	0.4994	0.7007	0.1438	0.2905	0.3056	0.5654	0.9226	0.9772	0.9948	0.9991	0.4039	0.6265	0.8059	0.9169	0.9931	0.9987	8666.0	0.3052	0.5061	0.7039	0.0000	0.9829	0.9963	0.9994	0.2417	0.4242	0.6249	0.7992	0.9728	0.9934
revion	p2	0.40	0.45	0.00 0.00 0.00	0.60	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.70	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.20	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.10	0.55	09.0	0.30	0.35	0.40	0.45	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.00	0.65
rom p	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.00	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0171	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227	0.0227
	$\mathbf{z}_{\mathbf{u}}$	2.76	2.76	2.76	2.76	2.76	2.76	2.76	2.76	2.76	2.76	2.70	2.76	2.76	2.76	2.76	2.76	2.76	2.76	2.72	0 F 1 C	0 10	2.75	2.75	2.75	2.75	2.75	2.75	0 7.7	2 1 2	2.75	2.75	2.75	2.75	2.75	0 7.0	2.75	2.75	2.75	2.75	2.75	2.75	2.75 7.75	2.75	2.75
B.17:	$^{\mathrm{n}_{2}}$	06	06	06 6	86	06	06	06	06	06	6 8	8 8	86	06	06	06	06	06	06 ;	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$_{1}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	404	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	power	0.0614	0.1122	0.1897	0.4240	0.5663	0.7070	0.8255	0.0494	0.0935	0.1625	0.2598	0.5331	0.0411	0.0796	0.1420	0.2360	0.0346	0.0690	0.1965	0.3268	0.4010	0.6854	0.8080	0.8950	0.1540	0.2478	0.3782	0.5178	0.0000	0.8633	0.9260	0.1045	0.1817	0.2843	0.4067	0.6659	0.7800	0.8746	0.0781	0.1379	0.2225	0.3283	0.5846	0.7201
	p2	0.40	0.45	0.50	0.60	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.20	32.0	0.40	0.45	0.25	0.30	0.35	0.40	0.50	0.55	09.0	0.30	0.35	0.40	0.40	0.55	0.60	0.65	0.35	0.40	0.45	0.50	0.00	0.65
	\mathbf{p}_1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.00	0.00	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.10	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0191	0.0219	0.0219	0.0213	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219	0.0219
	$\mathbf{z}_{\mathbf{u}}$	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42 2.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	 	0.0 0.0	0 00 0 00 0 00	0 00	3.58	3.58	3.58	3.58		0 K	0 00	3.58	3.58	3.58	3.58		0 0 0 0 0 0	8 5 5 8 8 8	3.58	3.58	3.58	3.58	30.00	20 c 20 r 20 c 20 c	0 K	3.58
	$_{\rm n_2}$	70	20	2 2	2.2	20	20	20	20	20	2 2	2 2	2.2	20	20	20	20	20	70	200	000	8 8	8 8	8	80	80	80	08 8	8 8	8 8	8 8	80	80	80	08 8	000	8 8	80	80	80	80	080	S &	8 8	80
	^{1}u	20	20	50	20	20	20	20	20	20	50	200	20	20	20	20	20	20	50	700	070	070	000	20	20	20	20	0 70	0 00	000	20	20	20	20	500	0 00	20	20	20	20	20	20	0 70	000	20

$_{1}^{n_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_1	p ₂	power	$_{1}^{n_{1}}$	$_{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P 2	power
20	80	3.58	0.0219	0.20	0.70	0.8326	40	100	2.75	0.0227	0.20	0.70	0.9988
_	80	3.58	0.0219	0.25	0.40	0.0597	40	100	2.75	0.0227	0.25	0.40	0.2002
_	80	3.58	0.0219	0.25	0.45	0.1073	40	100	2.75	0.0227	0.25	0.45	0.3691
_	80	3.58	0.0219	0.25	0.50	0.1759	40	100	2.75	0.0227	0.25	0.50	0.5727
_	80	3.58	0.0219	0.25	0.55	0.2681	40	100	2.75	0.0227	0.25	0.55	0.7623
_	80	3.58	0.0219	0.25	0.60	0.3896	40	100	2.75	0.0227	0.25	09.0	0.8952
_	80	3.58	0.0219	0.25	0.65	0.5329	40	100	2.75	0.0227	0.25	0.65	0.9636
	80	3.58	0.0219	0.25	0.70	0.6748	40	100	2.75	0.0227	0.25	0.70	0.9904
_	80	3.58	0.0219	0.25	0.75	0.7963	40	100	2.75	0.0227	0.25	0.75	0.9983
20	80	3.58	0.0219	0.30	0.45	0.0461	40	100	2.75	0.0227	0.30	0.45	0.1745
	80	3.58	0.0219	0.30	0.50	0.0836	40	100	2.75	0.0227	0.30	0.50	0.3371
20	80	3.58	0.0219	0.30	0.55	0.1418	40	100	2.75	0.0227	0.30	0.55	0.5427
	80	3.58	0.0219	0.30	0.60	0.2311	40	100	2.75	0.0227	0.30	09.0	0.7380
20	80	3.58	0.0219	0.30	0.65	0.3527	40	100	2.75	0.0227	0.30	0.65	0.8776
_	80	3.58	0.0219	0.30	0.70	0.4934	40	100	2.75	0.0227	0.30	0.70	0.9560
	80	3.58	0.0219	0.35	0.50	0.0352	40	100	2.75	0.0227	0.35	0.50	0.1616
_	80	3.58	0.0219	0.35	0.55	0.0667	40	100	2.75	0.0227	0.35	0.55	0.3202
	80	3.58	0.0219	0.35	0.60	0.1219	40	100	2.75	0.0227	0.35	09.0	0.5206
_	80	3.58	0.0219	0.35	0.65	0.2079	40	100	2.75	0.0227	0.35	0.65	0.7154
_	80	3.58	0.0219	0.40	0.55	0.0277	40	100	2.75	0.0227	0.40	0.55	0.1533
_	80	3.58	0.0219	0.40	09.0	0.0570	40	100	2.75	0.0227	0.40	09.0	0.3038

 $\alpha = 0.01$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in Table B.18: Achieved power and p-values calculated for the z-unpooled statistic in cases of different sample sizes, the first sample; p2: fixed value of the probability of success in the second sample; p-value: attained size of the test.

\mathbf{n}_1	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_1	P2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P2	power
10	20	3.29	0.0071	0.05	0.15	0.0035	20	90	4.42	0.0087	0.02	0.15	0.0666
10	20	3.29	0.0071	0.05	0.20	0.0193	20	06	4.42	0.0087	0.02	0.20	0.2314
10	20	3.29	0.0071	0.02	0.25	0.0613	20	06	4.42	0.0087	0.05	0.25	0.3375
10	20	3.29	0.0071	0.02	0.30	0.1380	20	06	4.42	0.0087	0.02	0.30	0.3958
10	20	3.29	0.0071	0.05	0.35	0.2451	20	06	4.42	0.0087	0.05	0.35	0.5141
10	20	3.29	0.0071	0.02	0.40	0.3677	20	06	4.42	0.0087	0.02	0.40	0.6657
10	20	3.29	0.0071	0.02	0.45	0.4895	20	06	4.42	0.0087	0.02	0.45	0.7830
10	20	3.29	0.0071	0.10	0.25	0.0359	20	06	4.42	0.0087	0.10	0.25	0.1158
10	20	3.29	0.0071	0.10	0.30	0.0814	20	06	4.42	0.0087	0.10	0.30	0.1491
10	20	3.29	0.0071	0.10	0.35	0.1468	20	06	4.42	0.0087	0.10	0.35	0.2343
10	20	3.29	0.0071	0.10	0.40	0.2259	20	06	4.42	0.0087	0.10	0.40	0.3539
10	20	3.29	0.0071	0.10	0.45	0.3127	20	06	4.42	0.0087	0.10	0.45	0.4773
10	20	3.29	0.0071	0.10	0.50	0.4044	20	06	4.42	0.0087	0.10	0.50	0.6069
10	20	3.29	0.0071	0.10	0.55	0.5000	20	06	4.42	0.0087	0.10	0.55	0.7236
10	20	3.29	0.0071	0.10	09.0	0.5973	20	06	4.42	0.0087	0.10	09.0	0.8243
10	20	3.29	0.0071	0.15	0.30	0.0466	20	06	4.42	0.0087	0.15	0.30	0.0529
10	20	3.29	0.0071	0.15	0.35	0.0854	20	06	4.42	0.0087	0.15	0.35	0.0966
10	20	3.29	0.0071	0.15	0.40	0.1351	20	06	4.42	0.0087	0.15	0.40	0.1634
10	20	3.29	0.0071	0.15	0.45	0.1945	20	06	4.42	0.0087	0.15	0.45	0.2488
10	20	3.29	0.0071	0.15	0.50	0.2643	20	06	4.42	0.0087	0.15	0.50	0.3568
10	20	3.29	0.0071	0.15	0.55	0.3453	20	06	4.42	0.0087	0.15	0.55	0.4758
10	20	3.29	0.0071	0.15	09.0	0.4364	20	06	4.42	0.0087	0.15	09.0	0.6057
10	20	3.29	0.0071	0.15	0.65	0.5341	20	06	4.42	0.0087	0.15	0.65	0.7305
10	20	3.29	0.0071	0.20	0.35	0.0482	20	06	4.42	0.0087	0.20	0.35	0.0362
10	20	3.29	0.0071	0.20	0.40	0.0784	20	06	4.42	0.0087	0.20	0.40	0.0674
10	20	3.29	0.0071	0.20	0.45	0.1174	20	06	4.42	0.0087	0.20	0.45	0.1146
10	20	3.29	0.0071	0.20	0.50	0.1673	20	06	4.42	0.0087	0.20	0.50	0.1828
10	20	3.29	0.0071	0.20	0.55	0.2301	20	06	4.42	0.0087	0.20	0.55	0.2718
10	20	3.29	0.0071	0.20	09.0	0.3062	20	06	4.42	0.0087	0.20	09.0	0.3875
10	20	3.29	0.0071	0.20	0.65	0.3946	20	06	4.42	0.0087	0.20	0.65	0.5191
10	20	3.29	0.0071	0.20	0.70	0.4932	20	06	4.42	0.0087	0.20	0.70	0.6482
10	20	3.29	0.0071	0.25	0.40	0.0440	20	06	4.42	0.0087	0.25	0.40	0.0251
10	20	3.29	0.0071	0.25	0.45	0.0685	20	06	4.42	0.0087	0.25	0.45	0.0472
10	20	3.29	0.0071	0.25	0.50	0.1023	20	06	4.42	0.0087	0.25	0.50	0.0829
10	20	3.29	0.0071	0.25	0.55	0.1476	20	06	4.42	0.0087	0.25	0.55	0.1370
10	20	3.29	0.0071	0.25	09.0	0.2064	20	06	4.42	0.0087	0.25	09.0	0.2181
10	20	3.29	0.0071	0.25	0.65	0.2796	20	06	4.42	0.0087	0.25	0.65	0.3246
10	20	3.29	0.0071	0.25	0.70	0.3678	20	06	4.42	0.0087	0.25	0.70	0.4474
10	20	3.29	0.0071	0.25	0.75	0.4700	20	06	4.42	0.0087	0.25	0.75	0.5808
10	20	3.29	0.0071	0.30	0.45	0.0385	20	06	4.42	0.0087	0.30	0.45	0.0174
10	20	3.29	0.0071	0.30	0.50	0.0602	20	06	4.42	0.0087	0.30	0.50	0.0335
10	20	3.29	0.0071	0.30	0.55	0.0910	20	06	4.42	0.0087	0.30	0.55	0.0613
10	20	3.29	0.0071	0.30	0.60	0.1334	20	06	4.42	0.0087	0.30	0.60	0.1086
10	20	3.29	0.0071	0.30	0.65	0.1899	20	90	4.42	0.0087	0.30	0.65	0.1792

Table B.18: continue on next page

$_{1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	P2	power	$_{1}$	$_{\rm n_2}$	zu	pvalue	p1	p2	power
10	20	3.29	0.0071	0.30	0.70	0.2629	20	06	4.42	0.0087	0.30	0.70	0.2731
10	20	3.29	0.0071	0.35	0.50	0.0339	20	06	4.42	0.0087	0.35	0.50	0.0120
0 0	200	3.29	0.0071	0.35	0.55	0.0537	50	06	4.42	0.0087	0.35	0.55	0.0243
2 9	0 6	0.23	0.0071	0.00	0.00	0.0626	0 0	8 8	4.4 4.4 5.4 5.4	0.0007	0.00	0.00	0.0479
	0 6	2.53	0.0071	0.00	0 C	0.1233	0.00	06 0	7 t. t	0.0087	5.0	0.0 0.0 0.0 0.0	0.000.0
	000	200	0.0071	0.40	0.00	0.000	010	8 8	21.7	0.0087	0.40	0.00	0.0080
	8 8	0 00 0 00 0 00	0.0077	25.0	0.0	0.0487	0.00	100	4.4	0.0083	0.0 0.0	0.0	0.0160
	30	0 00	0.0077	0.05	0.20	0.0153	20	100	4.69	0.0083	0.05	0.20	0.2287
	308	3.88	0.0077	0.05	0.25	0.0633	20	100	4.69	0.0083	0.05	0.25	0.3369
2 01	30	3.88	0.0077	0.02	0.30	0.1615	20	100	4.69	0.0083	0.02	0.30	0.3769
10	30	3.88	0.0077	0.05	0.35	0.2952	20	100	4.69	0.0083	0.02	0.35	0.4710
0	30	3.88	0.0077	0.02	0.40	0.4268	20	100	4.69	0.0083	0.02	0.40	0.6252
0	30	3.88	0.0077	0.02	0.45	0.5284	20	100	4.69	0.0083	0.02	0.45	0.7460
	30	3.88	0.0077	0.10	0.25	0.0369	20	100	4.69	0.0083	0.10	0.25	0.1147
10	30	3.88	0.0077	0.10	0.30	0.0941	20	100	4.69	0.0083	0.10	0.30	0.1354
	30	3.88	0.0077	0.10	0.35	0.1722	20	100	4.69	0.0083	0.10	0.35	0.2024
	30	3.88	0.0077	0.10	0.40	0.2503	20	100	4.69	0.0083	0.10	0.40	0.3166
10	30	3.88	0.0077	0.10	0.45	0.3146	20	100	4.69	0.0083	0.10	0.45	0.4269
_	30	3.88	0.0077	0.10	0.50	0.3704	20	100	4.69	0.0083	0.10	0.20	0.5525
	30	3.88	0.0077	0.10	0.55	0.4348	20	100	4.69	0.0083	0.10	0.22	0.6849
	30	3.88	0.0077	0.10	0.60	0.5180	20	100	4.69	0.0083	0.10	09.0	0.7961
10	30	3.88	0.0077	0.15	0.30	0.0531	20	100	4.69	0.0083	0.15	0.30	0.0458
_ ,	90	3.00 00.00	0.0077	0.15	0.35	0.0974	20	100	4.69	0.0083	0.15	0.35	0.0798
01	30	80.00	0.0077	0.15	0.40	0.1424	70	001	4.69	0.0083	0.15	0.40	0.1398
10	200	x x x	0.0077	0.15	0.45	0.1819	07.	100	4.69	0.0083	0.15	0.45	0.2094
	000	000	0.0077	0.1.0	0.00	0.2222	0 0	100	4.09	0.0003	0.1.0	0.00	0.5095
0 1	200	00.0	0.0077	0.15	0.00	0.2761	070	100	4.09	0.0083	0.10	0.00	0.4330
0 5	200	00.00 00.00	0.0077	0.15	0.00	0.3508	070	100	4.09	0.0083	0.1.0	0.00	0.5035
01	30	8.00 80.00	0.0077	0.15	0.00	0.4405	707	001	4.69	0.0083	0.15	0.05	0.6836
01	30	20.00	0.0077	0.20	0.35	0.0532	50	100	4.69	0.0083	0.20	0.35	0.0289
	30	3.88	0.0077	0.20	0.40	0.0783	70	100	4.69	0.0083	0.20	0.40	0.0552
10	30	80.00 80.00	0.0077	0.20	0.45	0.1019	50	100	4.69	0.0083	0.20	0.45	0.0911
	30	3.88	0.0077	0.20	0.50	0.1292	70	100	4.69	0.0083	0.20	0.50	0.1519
01	30	20.00	0.0077	0.20	0.55	0.1696	70.	100	4.69	0.0083	0.20	0.55	0.2384
10	30	3.88	0.0077	0.50	09.0	0.2280	50	100	4.69	0.0083	0.20	0.60	0.3453
10	30	3.88	0.0077	0.20	0.65	0.3009	20	100	4.69	0.0083	0.20	0.65	0.4631
10	30	3.88	0.0077	0.20	0.70	0.3816	20	100	4.69	0.0083	0.20	0.70	0.5940
10	30	3.88	0.0072	0.25	0.40	0.0415	20	100	4.69	0.0083	0.25	0.40	0.0197
10	30	3.88	0.0077	0.25	0.45	0.0550	20	100	4.69	0.0083	0.25	0.45	0.0356
10	30	3.88	0.0077	0.25	0.50	0.0726	20	100	4.69	0.0083	0.25	0.50	0.0663
10	30	3.88	0.0077	0.25	0.55	0.1003	20	100	4.69	0.0083	0.25	0.55	0.1156
01	30	3.88	0.0077	0.25	0.60	0.1419	20	100	4.69	0.0083	0.25	09.0	0.1854
10	30	3.88	0.0077	0.25	0.65	0.1958	20	100	4.69	0.0083	0.25	0.65	0.2751
10	30	3.88	0.0077	0.25	0.70	0.2596	20	100	4.69	0.0083	0.25	0.70	0.3928
	30	3.88	0.0077	0.25	0.75	0.3352	20	100	4.69	0.0083	0.25	0.75	0.5291
10	30	3.88	0.0077	0.30	0.45	0.0285	20	100	4.69	0.0083	0.30	0.45	0.0125
	30	3.88	0.0077	0.30	0.50	0.0392	20	100	4.69	0.0083	0.30	0.50	0.0258
10	0												
0.7	30	3.88	0.0072	0.30	0.55	0.0570	20	100	4.69	0.0083	0.30	0.55	0.0497

Table B.18: continue on next page

Table B.18: continue on next page

		ı																																												
is page	power	0.1441	0.2293	0.0190	0.0367	0.0666	0.0064	0.0135	0.1710	0.3431	0.5307	0.8351	0.9217	0.9685	0.2339	0.3895	0.5627	0.7230	0.8473	0.9282	0.9718	0.3310	0.3205	0.4862	0.6544	0.7973	0.8981	0.9569	0.9849	0.1.000	0.4460	0.6157	0.7654	0.8759	0.9443	0.9794	0.1480	0.2021	0.5895	0.7410	0.8582	0.9348	0.9759	0.1428	0.2573 0.4052	
revion	P2	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.32	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.65	5.0	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0 F	0.00	09.0	0.65	0.70	0.75	0.45	0.55	
rom p	\mathbf{p}_1	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.00	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.75	0.00	0.45	0.25	0.25	0.25	0.25	0.30	0.30	
-continued from previous page	pvalue	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	
: $-con$	$\mathbf{z}_{\mathbf{u}}$	4.69	4.69	4.69	4.69	4.69	4.69	4.69	2.50	2.50	02.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	00.00	2.50	2.50	2.50	2.50	2.50	2.50	2.50	0.50	Э. Б.	2.50	2.50	2.50	2.50	2.50	0.50	2.50	9 C	2.50	2.50	2.50	2.50	2.50	2.50	2.50	
B.18:	$^{\rm n_2}$	100	100	100	100	100	100	100	40	040	40	40	40	40	40	40	40	40	40	40	04.0	0 1 4	40	40	40	40	40	40	040	Q	40	40	40	40	40	040	04.0	Q# QF	0 1 4	40	40	40	40	40	40 40	
Table	$^{\mathrm{n}_{1}}$	20	0.70	20	20	20	20	20	30	30	30	30	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	800	30	30	30	30	30	30	30	
	power	0.1213	0.1678	0.0308	0.0477	0.0713	0.0158	0.0255	0.0008	0.0116	0.0618	0.3349	0.4727	0.5565	0.0360	0.1035	0.1950	0.2755	0.3258	0.3576	0.3989	0.4713	0.1101	0.1557	0.1851	0.2071	0.2423	0.3076	0.3990	0.0001	0.1016	0.1161	0.1427	0.1932	0.2647	0.3408	0.0447	0.00.0	0.0811	0.1165	0.1672	0.2234	0.2851	0.0272	0.0326 0.0443	
	p2	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.00	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.65 0.05	5.0	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.0	0.0 0.0 0.0 0.0	09.0	0.65	0.70	0.75	0.45	0.50	
	\mathbf{p}_1	0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.00	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.75	0.00	0.45	0.25	0.25	0.25	0.25	0.30	0.30	
	pvalue	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0000	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	
	$\mathbf{z}_{\mathbf{u}}$	3.88	00 0 00 0	0 80	3.88	3.88	3.88	88. 88.	4.39	4.39	4.39	4.39	4.39	4.39	4.39	4.39	4.39	4.39	4.39	4.39	25.4 20.4	4.39	4.39	4.39	4.39	4.39	4.39	4.39	4.39	2.5	4.39	4.39	4.39	4.39	4.39	95.4	4.59	2007	4.39	4.39	4.39	4.39	4.39	4.39	4.39	
	$^{\mathrm{n}_{2}}$	30	200	30	30	30	30	30	40	40	40	0 1 40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	Q# C	40	40	40	40	40	40	40	Q# Q	40	40	40	40	40	40	40 40	
	1 u	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0 1	10	10	10	10	10	10	10	0 1	10	10	10	10	10	10	10	10	10	2 0	10	10	10	10	10	10	

4.4 4.5 0.0085 0.30 0.60 0.0071 30 40 2.50 0.0097 0.30 0.70 10 4.0 4.39 0.0085 0.30 0.70 0.1364 30 40 2.50 0.0097 0.30 0.70 10 4.0 4.39 0.0085 0.33 0.70 0.1364 30 40 2.50 0.0097 0.33 0.50 11 4.0 4.39 0.0085 0.33 0.50 0.0079 0.33 0.50 11 4.0 4.39 0.0085 0.35 0.55 0.007 0	$_{1}^{n_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	p ₂	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	P1	P2	power
40 4.39 0.0085 0.36 0.65 0.1004 30 40 2.50 0.0097 0.03 40 4.39 0.0085 0.33 0.65 0.10151 30 40 2.50 0.0097 0.03 40 4.39 0.0085 0.35 0.50 0.01811 30 40 2.50 0.0097 0.35 40 4.39 0.0085 0.35 0.65 0.01911 30 40 2.50 0.0097 0.35 40 4.39 0.0085 0.45 0.55 0.01911 30 40 2.50 0.0097 0.35 40 4.39 0.0085 0.40 0.65 0.0191 0.0097 0.00		40	4.39	0.0085	0.30	09.0	0.0671	30	40	2.50	0.0097	0.30	0.60	0.5683
40 4.39 0.0085 0.30 0.70 0.1188 30 40 2.50 0.0097 0.08 40 4.39 0.0085 0.35 0.70 0.0188 30 40 2.50 0.0097 0.08 40 4.39 0.0085 0.35 0.65 0.0171 30 40 2.50 0.0097 0.035 40 4.39 0.0085 0.35 0.60 0.0114 30 40 2.50 0.0097 0.35 50 4.86 0.0085 0.40 0.55 0.0114 30 40 2.50 0.0097 0.05 50 4.86 0.0092 0.05 0.15 0.0044 30 50 2.86 0.0097 0.05 50 4.86 0.0092 0.05 0.15 0.05 30 2.86 0.0098 0.05 50 4.86 0.0092 0.01 0.025 30 50 2.86 0.0098 0.05	0	40	4.39	0.0085	0.30	0.65	0.1004	30	40	2.50	0.0097	0.30	0.65	0.7228
40 4.39 0.0085 0.35 0.50 0.00161 3.0 4.0 2.50 0.0097 0.85 40 4.39 0.0085 0.35 0.50 0.0231 3.0 4.0 2.50 0.0097 0.085 40 4.39 0.0085 0.35 0.65 0.0114 3.0 4.0 2.50 0.0097 0.35 40 4.39 0.0085 0.40 0.60 0.0191 3.0 4.0 2.50 0.0097 0.35 50 4.86 0.0092 0.05 0.02 0.005 0.0092 0.05 0.0092 0.05 0.0092	0	40	4.39	0.0085	0.30	0.70	0.1389	30	40	2.50	0.0097	0.30	0.70	0.8474
40 4.39 0.0085 0.35 0.55 0.0231 30 40 2.50 0.0097 0.85 40 4.39 0.0085 0.35 0.55 0.0571 30 40 2.50 0.0097 0.095 40 4.39 0.0085 0.40 0.65 0.0114 30 40 2.50 0.0097 0.05 50 4.86 0.0092 0.05 0.15 0.0004 30 50 2.86 0.0097 0.05 50 4.86 0.0092 0.05 0.15 0.0094 30 50 2.86 0.0098 0.05 50 4.86 0.0092 0.05 0.018 0.05 0.06 0.05 0.06 0.05 0.06	_	40	4.39	0.0085	0.35	0.50	0.0161	30	40	2.50	0.0097	0.35	0.50	0.1377
40 4.39 0.0085 0.35 0.60 0.0548 30 40 2.50 0.0097 0.054 40 4.39 0.0085 0.35 0.60 0.0514 30 40 2.50 0.0097 0.055 40 4.39 0.0085 0.40 0.55 0.0141 30 40 2.50 0.0097 0.09 50 4.86 0.0092 0.05 0.25 0.0098 30 50 2.86 0.0097 0.05 50 4.86 0.0092 0.05 0.25 0.0088 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.35 0.0183 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.01 0.35 0.112 30 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.35 0.112 30 2.86 0.0068 0.05 </td <td>_</td> <td>40</td> <td>4.39</td> <td>0.0085</td> <td>0.35</td> <td>0.55</td> <td>0.0231</td> <td>30</td> <td>40</td> <td>2.50</td> <td>0.0097</td> <td>0.35</td> <td>0.55</td> <td>0.2464</td>	_	40	4.39	0.0085	0.35	0.55	0.0231	30	40	2.50	0.0097	0.35	0.55	0.2464
40 4.39 0.0085 0.35 0.0571 30 40 4.39 0.0085 0.35 0.0571 30 40 4.39 0.0085 0.40 0.55 0.01571 30 40 4.39 0.0085 0.40 0.55 0.0191 30 40 2.50 0.0097 0.04 50 4.86 0.0092 0.05 0.25 0.0058 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.25 0.0589 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.135 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.25 0.0343 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.23 0.0133 30 50 2.86 0.0068 0.10 50 4.86	0	40	4.39	0.0085	0.35	0.60	0.0368	30	40	2.50	0.0097	0.35	09.0	0.3901
40 4.39 0.0085 0.40 0.55 0.0114 30 40 2.50 0.0097 0.04 50 4.86 0.0082 0.05 0.0114 30 40 2.50 0.0086 0.05 50 4.86 0.0092 0.05 0.15 0.0086 30 50 2.86 0.0088 0.05 50 4.86 0.0092 0.05 0.25 0.0585 30 50 2.86 0.0088 0.05 50 4.86 0.0092 0.05 0.25 0.0585 30 50 2.86 0.0088 0.05 50 4.86 0.0092 0.01 0.25 0.0412 30 50 2.86 0.0088 0.05 50 4.86 0.0092 0.10 0.23 0.1102 30 2.86 0.0088 0.10 50 4.86 0.0092 0.10 0.40 0.24 8 0.0088 0.10 50 4.		40	4.39	0.0085	0.35	0.65	0.0571	30	40	2.50	0.0097	0.35	0.65	0.5540
40 4.39 0.0085 0.40 0.0191 30 40 2.50 0.0097 0.04 50 4.86 0.0092 0.05 0.15 0.0086 30 50 2.86 0.0087 0.05 50 4.86 0.0092 0.05 0.25 0.0869 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.35 0.3659 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.045 0.1893 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.35 0.3659 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.349 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.349 3.9 50 2.86 0.0068 0.10 5	0	40	4.39	0.0085	0.40	0.55	0.0114	30	40	2.50	0.0097	0.40	0.55	0.1317
50 4.86 0.0092 0.05 0.015 0.0094 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.25 0.0086 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.35 0.3659 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.35 0.355 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.35 0.1102 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.35 0.1102 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.35 0.1102 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.35 0.1102 30 50 2.86	0	40	4.39	0.0085	0.40	0.60	0.0191	30	40	2.50	0.0097	0.40	09.0	0.2373
50 4.86 0.0092 0.05 0.0086 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.25 0.0589 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.35 0.385 3.85 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.45 0.5735 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.35 0.1343 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.35 0.2434 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.40 0.2343 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.40 0.2349 30 50 2.86 0	_	20	4.86	0.0092	0.02	0.15	0.0004	30	20	2.86	0.0068	0.02	0.15	0.1260
50 4.86 0.0092 0.05 0.05 0.05 50 4.86 0.0092 0.05 0.35 0.055 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.49 0.055 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.25 0.43 0.110 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.32 0.110 30 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.32 0.110 30 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.46 0.2491 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.46 0.2491 30 50 2.86 0.008 0.10 50 4.86 0.0092 0.1		20	4.86	0.0092	0.02	0.20	0.0086	30	20	2.86	0.0068	0.02	0.20	0.2884
50 4.86 0.0092 0.05 0.30 0.1893 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.40 0.5633 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.45 0.5733 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.30 0.1102 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.35 0.2131 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.45 0.349 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.45 0.349 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.45 0.3449 30 50 2.86 0.	_	20	4.86	0.0092	0.02	0.25	0.0589	30	20	2.86	0.0068	0.02	0.25	0.4873
50 4.86 0.0092 0.05 0.35 0.3659 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.05 0.45 0.5755 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.01 0.25 0.0343 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.25 0.0343 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.49 0.2943 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.49 0.2943 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.45 0.349 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.45 0.1849 30 50 2.86 0		20	4.86	0.0092	0.02	0.30	0.1893	30	20	2.86	0.0068	0.02	0.30	0.6796
50 4.86 0.0092 0.05 0.440 0.5053 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.015 0.445 0.5735 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.35 0.1102 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.34 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.440 0.2343 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.4091 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.40 0.1623 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.42 0.1623 30 50 2.86 0.0068 0.10 <td></td> <td>20</td> <td>4.86</td> <td>0.0092</td> <td>0.02</td> <td>0.35</td> <td>0.3659</td> <td>30</td> <td>20</td> <td>2.86</td> <td>0.0068</td> <td>0.02</td> <td>0.35</td> <td>0.8279</td>		20	4.86	0.0092	0.02	0.35	0.3659	30	20	2.86	0.0068	0.02	0.35	0.8279
50 4.86 0.0092 0.05 0.45 0.5735 30 50 2.86 0.0068 0.05 50 4.86 0.0092 0.10 0.25 0.0343 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.35 0.2131 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.44 0.2349 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.50 0.3490 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.50 0.4391 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.45 0.188 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.42 0.188 30 50 2.86 0.	_	20	4.86	0.0092	0.02	0.40	0.5053	30	20	2.86	0.0068	0.02	0.40	0.9214
50 4.86 0.0092 0.10 0.25 0.0343 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.33 0.1102 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.49 0.2943 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.49 0.2943 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.49 0.3494 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.36 0.0492 30 50 2.86 0.0068 0.11 50 4.86 0.0092 0.15 0.45 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.42 0.1888 30 50 2.86		20	4.86	0.0092	0.02	0.45	0.5735	30	20	2.86	0.0068	0.02	0.45	0.9698
50 4.86 0.0092 0.11 0.30 0.1102 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.45 0.2341 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.45 0.2341 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.4091 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.60 0.4091 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.40 0.1662 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.40 0.1662 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.42 0.1888 30 50 2.86 0.0068 <t< td=""><td></td><td>20</td><td>4.86</td><td>0.0092</td><td>0.10</td><td>0.25</td><td>0.0343</td><td>30</td><td>20</td><td>2.86</td><td>0.0068</td><td>0.10</td><td>0.25</td><td>0.2008</td></t<>		20	4.86	0.0092	0.10	0.25	0.0343	30	20	2.86	0.0068	0.10	0.25	0.2008
50 4.86 0.0092 0.10 0.35 0.2131 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.44 0.2943 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.50 0.3490 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.50 0.3491 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.11 0.65 0.4891 30 50 2.86 0.0068 0.11 50 4.86 0.0092 0.15 0.40 0.1682 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.40 0.1682 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.42 0.1888 30 50 2.86		20	4.86	0.0092	0.10	0.30	0.1102	30	20	2.86	0.0068	0.10	0.30	0.3575
50 4.86 0.0092 0.10 0.49 0.2943 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.45 0.3341 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.55 0.3499 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.11 0.60 0.4091 30 50 2.86 0.0068 0.11 50 4.86 0.0092 0.15 0.45 0.1862 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.45 0.1868 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.46 0.1886 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.46 0.1888 30 50 2.86	_	20	4.86	0.0092	0.10	0.35	0.2131	30	20	2.86	0.0068	0.10	0.35	0.5371
50 4.86 0.0092 0.10 0.45 0.3341 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.55 0.3490 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.60 0.4091 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.35 0.1622 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.40 0.1662 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.45 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.40 0.1662 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.40 0.1662 30 50 2.86	_	20	4.86	0.0092	0.10	0.40	0.2943	30	20	2.86	0.0068	0.10	0.40	0.7056
50 4.86 0.0092 0.10 0.50 0.3490 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.10 0.55 0.3849 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.11 0.55 0.3649 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.35 0.1203 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.45 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.45 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.231 30 50 2.86 0	_	20	4.86	0.0092	0.10	0.45	0.3341	30	20	2.86	0.0068	0.10	0.45	0.8360
50 4.86 0.0092 0.10 0.55 0.3649 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.11 0.60 0.04091 30 50 2.86 0.0068 0.10 50 4.86 0.0092 0.15 0.30 0.0622 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.42 0.1868 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.45 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.45 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.232 0.48 0.0068 0.15 50 4.86 0.0092 0.15 0.62 0.286 0.0068 0.15 50 4.86	_	20	4.86	0.0092	0.10	0.50	0.3490	30	20	2.86	0.0068	0.10	0.50	0.9210
50 4.86 0.0092 0.10 0.60 0.4091 30 50 2.86 0.0068 0.115 50 4.86 0.0092 0.115 0.38 0.0622 30 50 2.86 0.0068 0.115 50 4.86 0.0092 0.15 0.38 0.1662 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.48 0.1662 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.48 0.0092 0.15 0.25 0.2115 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.2115 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.2211 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40 0.0366	_	20	4.86	0.0092	0.10	0.55	0.3649	30	20	2.86	0.0068	0.10	0.55	0.9679
50 4.86 0.0092 0.15 0.30 0.0622 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.045 0.1203 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.48 0.168 0.06 0.15 0.04 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.60 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.60 0.2511 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.60 0.2511 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40 0.0906 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40	_	20	4.86	0.0092	0.10	0.60	0.4091	30	20	2.86	0.0068	0.10	09.0	0.9894
50 4.86 0.0092 0.15 0.35 0.1203 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.46 0.16888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.46 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.60 0.2115 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.2322 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.45 0.0056 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.45 0.1086 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.45 0.1086 30 50 2.86 <td< td=""><td>_</td><td>20</td><td>4.86</td><td>0.0092</td><td>0.15</td><td>0.30</td><td>0.0622</td><td>30</td><td>20</td><td>2.86</td><td>0.0068</td><td>0.15</td><td>0.30</td><td>0.1565</td></td<>	_	20	4.86	0.0092	0.15	0.30	0.0622	30	20	2.86	0.0068	0.15	0.30	0.1565
50 4.86 0.0092 0.15 0.40 0.1662 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.45 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.25 0.2115 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.2211 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40 0.0252 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40 0.0906 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.40 0.0966 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.40 0.0966 30 50 2.86		20	4.86	0.0092	0.15	0.35	0.1203	30	20	2.86	0.0068	0.15	0.35	0.2866
50 4.86 0.0092 0.15 0.45 0.1888 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.55 0.1986 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.2511 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.2511 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40 0.0906 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40 0.0906 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.40 0.0906 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.40 0.1493 30 50 2.86	_	20	4.86	0.0092	0.15	0.40	0.1662	30	20	2.86	0.0068	0.15	0.40	0.4477
50 4.86 0.0092 0.15 0.50 0.1980 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.2115 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.3322 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.43 0.0056 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.45 0.1036 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.45 0.1086 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.60 0.1493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.60 0.1493 30 50 2.86	_	20	4.86	0.0092	0.15	0.45	0.1888	30	20	2.86	0.0068	0.15	0.45	0.6146
50 4.86 0.0092 0.15 0.2511 3.0 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.66 0.2211 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.66 0.2211 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40 0.0966 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.50 0.1086 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.50 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.50 0.1143 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.50 0.1143 30 50 2.86 0.0068 <	_	20	4.86	0.0092	0.15	0.50	0.1980	30	20	2.86	0.0068	0.15	0.50	0.7628
50 4.86 0.0092 0.15 0.60 0.2511 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.15 0.65 0.3322 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.40 0.0906 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.45 0.1030 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.45 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.55 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.70 0.1493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.70 0.2931 30 50 2.86	_	20	4.86	0.0092	0.15	0.55	0.2115	30	20	2.86	0.0068	0.15	0.55	0.8746
50 4.86 0.0092 0.15 0.65 0.3322 30 50 2.86 0.0068 0.15 50 4.86 0.0092 0.20 0.35 0.0056 30 50 2.86 0.0068 0.12 50 4.86 0.0092 0.20 0.45 0.1036 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.45 0.1086 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.65 0.1493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.60 0.1493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.60 0.1493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.60 0.1493 30 50 2.86		20	4.86	0.0092	0.15	0.60	0.2511	30	20	2.86	0.0068	0.15	09.0	0.9442
50 4.86 0.0092 0.20 0.35 0.0656 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.44 0.0096 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.56 0.1086 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.55 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.65 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.65 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.70 0.2931 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.42 0.0447 30 50 2.86		20	4.86	0.0092	0.15	0.65	0.3322	30	20	2.86	0.0068	0.15	0.65	0.9795
50 4.86 0.0092 0.20 0.40 0.0906 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.45 0.1036 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.55 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.55 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.70 0.1493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.70 0.2931 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.40 0.0475 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0573 30 50 2.86	_	20	4.86	0.0092	0.20	0.35	0.0656	30	20	2.86	0.0068	0.20	0.35	0.1293
50 4.86 0.0992 0.20 0.45 0.1039 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.55 0.1186 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.55 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.65 0.1493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.65 0.2131 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.25 0.45 0.0475 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.45 0.0541 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.45 0.0541 30 50 2.86	_	20	4.86	0.0092	0.20	0.40	0.0906	30	20	2.86	0.0068	0.20	0.40	0.2392
50 4.86 0.0092 0.20 0.50 0.1086 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.55 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.65 0.2120 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.70 0.2931 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.25 0.45 0.0475 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.45 0.0541 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.45 0.0543 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0643 30 50 2.86	_	20	4.86	0.0092	0.20	0.45	0.1030	30	20	2.86	0.0068	0.20	0.45	0.3849
50 4.86 0.0092 0.20 0.55 0.1187 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.65 0.11493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.70 0.2931 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.25 0.40 0.0475 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.45 0.0473 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0573 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0643 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.1867 30 50 2.86 <t></t>		20	4.86	0.0092	0.20	0.50	0.1086	30	20	2.86	0.0068	0.20	0.50	0.5509
50 4.86 0.0992 0.20 0.66 0.1493 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.65 0.2131 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.25 0.40 0.0475 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.49 0.05473 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0573 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.0643 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.1295 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86 <t></t>	_	20	4.86	0.0092	0.20	0.55	0.1187	30	20	2.86	0.0068	0.20	0.55	0.7105
50 4.86 0.0092 0.20 0.65 0.2120 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.20 0.770 0.2931 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.40 0.0475 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.45 0.0643 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0643 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.0643 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.1295 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.76 0.1867 30 50 2.86 <t></t>	_	20	4.86	0.0092	0.20	0.60	0.1493	30	20	2.86	0.0068	0.20	09.0	0.8381
50 4.86 0.0092 0.20 0.77 0.2931 30 50 2.86 0.0068 0.20 50 4.86 0.0092 0.25 0.44 0.0475 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.45 0.0573 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0643 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.60 0.0856 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86	_	20	4.86	0.0092	0.20	0.65	0.2120	30	20	2.86	0.0068	0.20	0.65	0.9229
50 4.86 0.0092 0.25 0.40 0.0475 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.45 0.0541 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0573 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.60 0.0573 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.1295 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.76 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.76 0.238 0.76 0.28 0.0068	_	20	4.86	0.0092	0.20	0.70	0.2931	30	20	2.86	0.0068	0.20	0.70	0.9697
50 4.86 0.0092 0.25 0.45 0.0541 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.50 0.0573 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.0856 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.1295 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.76 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.77 0.283 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.77 0.233 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.30 0.45 0.271 30 50 2.86 0.0		20	4.86	0.0092	0.25	0.40	0.0475	30	20	2.86	0.0068	0.25	0.40	0.1094
50 4.86 0.0092 0.25 0.50 0.0573 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.55 0.66 0.0643 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.1295 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.77 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.75 0.23 0.25 0.75 0.28 0.0068 0.25 50 4.86 0.0092 0.75 0.27 0.28 0.068 0.25	_	20	4.86	0.0092	0.25	0.45	0.0541	30	20	2.86	0.0068	0.25	0.45	0.2073
50 4.86 0.0092 0.25 0.55 0.0643 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.66 0.0065 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.60 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.75 0.78 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.75 0.28 0.28 0.0068 0.25 50 4.86 0.0092 0.37 0.45 0.0271 30 50 2.86 0.0068 0.25	_	20	4.86	0.0092	0.25	0.50	0.0573	30	20	2.86	0.0068	0.25	0.50	0.3453
50 4.86 0.0092 0.25 0.60 0.0856 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.65 0.1295 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.75 0.73 0.25 50 4.86 0.0092 0.30 0.45 0.0271 30 50 2.86 0.0068 0.30		20	4.86	0.0092	0.25	0.55	0.0643	30	20	2.86	0.0068	0.25	0.55	0.5087
50 4.86 0.0092 0.25 0.65 0.1295 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.75 0.283 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.30 0.45 0.0271 30 50 2.86 0.0068 0.30	_	20	4.86	0.0092	0.25	0.60	0.0856	30	20	2.86	0.0068	0.25	09.0	0.6715
50 4.86 0.0092 0.25 0.70 0.1867 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.25 0.75 0.238 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.30 0.45 0.0271 30 50 2.86 0.0068 0.30		20	4.86	0.0092	0.25	0.65	0.1295	30	20	2.86	0.0068	0.25	0.65	0.8087
50 4.86 0.0092 0.25 0.75 0.2383 30 50 2.86 0.0068 0.25 50 4.86 0.0092 0.30 0.45 0.0271 30 50 2.86 0.0068 0.30	_	20	4.86	0.0092	0.25	0.70	0.1867	30	20	2.86	0.0068	0.25	0.70	0.9066
50 4.86 0.0092 0.30 0.45 0.0271 30 50 2.86 0.0068 0.30	_	20	4.86	0.0092	0.25	0.75	0.2383	30	20	2.86	0.008	0.25	0.75	0.9641
	_	0												

Table B.18: continue on next page

Table B.18: continue on next page

is page	power	0.3178	0.4765	0.6426	0.0880	0.1721	0.2963	0.4555	0.0804	0.1603	0.1394	0.3023	0.6833	0.8257	0.9177	0.9677	0.1943	0.3395	0.5088	0.6778	0.8188	0.9671	0.9897	0.1366	0.2521	0.4082	0.5843	0.7468	0.9419	0.9787	0.1050	0.2064	0.3529	0.5259	0.0929	0.9169	0.9676	0.0893	0.1818	0.3173	0.4810	0.0470	0.8987	0.9613	0.0802
revion	p2	0.55	0.60	0.65	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.40 0.40	0.00	0.60	0.30	0.35	0.40	0.45	0.50	0.00	0.65	0.35	0.40	0.45	0.50	0.00	0.65	0.70	0.40	0.45	0.50	0.55	0.00	0.70	0.75	0.45
rom p	p1	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.40	0.25	0.25	0.30
-continued from previous page	pvalue	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072
: -con	$\mathbf{z}_{\mathbf{u}}$	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	5.04 20.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	20.0	3.04	3.04	3.04
B.18:	$^{\rm n_2}$	20	20	0°0 0°0	20	20	20	20	20	20	09	9	09	09	09	09	09	09	09	09	00	8 9	09	09	09	09	09	09	9 9	09	09	09	09	09	00	09	09	09	09	09	09	00	8 9	09	09
Table	$_{1}^{n}$	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	000	30	30	30
	power	0.0334	0.0472	0.0755	0.0139	0.0165	0.0248	0.0418	0.0078	0.0123	0.0002	0.0064	0.1981	0.3911	0.5287	0.5840	0.0322	0.1154	0.2278	0.3079	0.3401	0.3535	0.3765	0.0651	0.1286	0.1738	0.1921	0.1967	0.2012	0.2844	0.0701	0.0948	0.1048	0.1074	0.1108	0.1750	0.2586	0.0497	0.0549	0.0564	0.0587	0.0098	0.1621	0.2170	0.0276
	P2	0.55	09.0	0.65	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.40 0.40	0.00	09:0	0.30	0.35	0.40	0.45	0.50	0.00	0.65	0.35	0.40	0.45	0.50	0.00	0.65	0.70	0.40	0.45	0.50	0.55	0.00	0.70	0.75	0.45
	p1	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.02	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.70	0.25	0.25	0.30
	pvalue	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0037	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0037	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097
	$\mathbf{z}_{\mathbf{n}}$	4.86	4.86	4.86 8.86	4.86	4.86	4.86	4.86	4.86	4.86	2.28	0.7. 0.7. 0.8. 0.8.	5.28	5.28	5.28	5.28	5.28	5.28	5.28		0 7 0 0	0 7.0	5.28	5.28	5.28	5.28	5.28	7.78 2.28 2.00	07.0	5.28	5.28	5.28	5.28	5.28	0.70	5.28	5.28	5.28	5.28	2.28	5.28	0 7. 0 0	5.28	5.28	5.28
	$^{\mathrm{n}_{2}}$	20	20	0° 0°	20	20	20	20	20	20	09	90	09	09	09	09	09	09	09	09	00	8 9	09	09	09	09	09	09	9 9	09	09	09	09	09	00	09	09	09	09	09	09	00	8 9	09	09
	^{1}u	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0 ;	10	01	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0 -	10	10	10

0 6 5.28 0.0097 0.30 0.50 0.0283 30 60 3.04 0.0072 0.30 0.50 0.287 30 0.00 0.287 0.00 0.0	$^{\mathrm{n}_{1}}$	$^{\rm n}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	P 2	power	$_{1}$	$_{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	p ₂	power
60 52.8 0.0097 0.30 0.55 0.0298 3.0 60 3.04 0.0077 0.30 0.65 60 5.28 0.0097 0.30 0.65 0.0889 3.0 60 3.04 0.0072 0.30 0.65 60 5.28 0.0097 0.35 0.65 0.0187 3.0 0.007 0.007 0.30 0.65 60 5.28 0.0097 0.35 0.65 0.0144 3.0 0.007 0.007 0.35 0.05 60 5.28 0.0097 0.35 0.0187 3.0 0.0 3.04 0.0072 0.35 0.008 60 5.28 0.0097 0.40 0.00 0.00 0.000 0.00 0.000 0.000 0.00	0	09	5.28	0.0097	0.30	0.50	0.0283	30	09	3.04	0.0072	0.30	0.50	0.1638
60 5.28 0.0097 0.30 0.650 0.0087 3.0 0.0072 0.30 0.650 60 5.28 0.0097 0.30 0.650 0.0087 3.0 0.0072 0.30 0.05 60 5.28 0.0097 0.35 0.55 0.0144 30 60 3.04 0.0072 0.39 0.05 60 5.28 0.0097 0.35 0.65 0.0144 30 60 3.04 0.0072 0.39 0.05 60 5.28 0.0097 0.40 0.65 0.0144 30 60 3.04 0.0072 0.39 0.05 0.05 0.05 0.009 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0	09	5.28	0.0097	0.30	0.55	0.0298	30	09	3.04	0.0072	0.30	0.55	0.2875
60 5.28 0.0097 0.30 0.765 0.0065 3.0 3.04 0.0072 0.30 0.056 60 5.28 0.0097 0.35 0.056 0.0186 3.0 0.0 3.04 0.0072 0.35 0.05 60 5.28 0.0097 0.35 0.65 0.0187 3.0 0.0 3.04 0.0072 0.35 0.05 60 5.28 0.0097 0.35 0.0066 3.0 0.0 3.04 0.0072 0.35 0.05 60 5.28 0.0097 0.43 0.0068 3.0 0.0072 0.35 0.05 60 5.86 0.0083 0.05 0.15 0.0000 3.0 0.07 3.24 0.077 0.35 0.05 70 5.86 0.0083 0.05 0.15 0.0000 3.0 0.077 0.075 0.35 0.05 0.05 0.05 0.0000 3.0 0.0077 0.007 0.00 0.00		09	5.28	0.0097	0.30	0.60	0.0369	30	09	3.04	0.0072	0.30	09.0	0.4439
60 5.28 0.0097 0.33 0.70 0.0055 3.0 0.0072 0.35 0.55 60 5.28 0.0097 0.35 0.55 0.0187 3.0 0.0 3.04 0.0072 0.35 0.55 60 5.28 0.0097 0.35 0.55 0.0187 3.0 0.0 3.04 0.0072 0.35 0.65 60 5.28 0.0097 0.35 0.65 0.0081 3.0 0.0072 0.35 0.65 70 5.86 0.0083 0.05 0.15 0.0022 3.0 0.0772 0.075 0.35 0.15 70 5.86 0.0083 0.05 0.12 0.0022 3.0 0.0778 0.0778 0.05 0.25 70 5.86 0.0083 0.05 0.35 0.1521 3.0 7.0 3.22 0.0778 0.05 0.35 0.1521 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0	_	09	5.28	0.0097	0.30	0.65	0.0587	30	09	3.04	0.0072	0.30	0.65	0.6149
60 5.28 0.0097 0.35 0.50 0.0144 30 0.00 3.04 0.0072 0.35 0.50 60 5.28 0.0097 0.35 0.55 0.0144 30 60 3.04 0.0072 0.35 0.66 60 5.28 0.0097 0.35 0.65 0.0187 30 60 3.04 0.0072 0.35 0.66 60 5.28 0.0097 0.45 0.006 3.0 0.0072 0.35 0.66 70 5.86 0.0083 0.05 0.15 0.0009 30 40 0.0072 0.35 0.20 70 5.86 0.0083 0.05 0.35 0.1313 30 70 3.22 0.0078 0.05 0.3 70 5.86 0.0083 0.05 0.40 0.5175 30 70 3.22 0.0078 0.05 0.3 70 5.86 0.0083 0.10 0.40 0.5175		09	5.28	0.0097	0.30	0.70	0.0965	30	09	3.04	0.0072	0.30	0.70	0.7734
60 5.28 0.0097 0.35 0.0144 30 60 3.04 0.0072 0.35 0.05 60 5.28 0.0097 0.35 0.055 0.0144 30 60 3.04 0.0072 0.35 0.05 60 5.28 0.0097 0.35 0.65 0.0017 3 0.05 0.007 0.00 0.009 3.04 0.0072 0.35 0.05 70 5.28 0.0097 0.05 0.02 0.0093 3 0.0 3.04 0.0072 0.35 0.05 70 5.86 0.0083 0.05 0.02 0.0313 3 70 3.22 0.0078 0.05 0.05 70 5.86 0.0083 0.05 0.03 0.01 0.03 0.01 0.0078 0.00 0.0078 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td></td> <td>0.9</td> <td>5.28</td> <td>0.0097</td> <td>0.35</td> <td>0.50</td> <td>0.0135</td> <td>30</td> <td>09</td> <td>3.04</td> <td>0.0072</td> <td>0.35</td> <td>0.50</td> <td>0.0722</td>		0.9	5.28	0.0097	0.35	0.50	0.0135	30	09	3.04	0.0072	0.35	0.50	0.0722
60 5.28 0.0097 0.35 0.06 0.0187 30 60 3.04 0.0072 0.35 0.06 60 5.28 0.0097 0.35 0.0067 0.0087 0.00 3.04 0.0072 0.35 0.06 60 5.28 0.0097 0.40 0.55 0.0069 30 40 0.0072 0.40 0.00 70 5.86 0.0083 0.05 0.002 30 70 3.22 0.0078 0.05 70 5.86 0.0083 0.05 0.03 70 3.22 0.0078 0.05 70 5.86 0.0083 0.05 0.35 0.152 3.0 70 3.22 0.0078 0.05 0.35 70 5.86 0.0083 0.10 0.35 0.158 3.0 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.35 0.35 0.0078 0.10 0.00	_	09	5.28	0.0097	0.35	0.55	0.0144	30	09	3.04	0.0072	0.35	0.22	0.1473
60 5.28 0.0097 0.03 0.063 3.04 0.0072 0.04 0.05 60 5.28 0.0097 0.03 0.003 3.04 0.0072 0.04 0.06 60 5.28 0.0097 0.04 0.65 0.0083 0.06 0.0097 0.007 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.00 0.0097	_	09	5.28	0.0097	0.35	0.60	0.0187	30	09	3.04	0.0072	0.35	0.60	0.2637
60 5.28 0.0097 0.40 0.55 0.0066 3.04 0.0072 0.40 0.65 70 5.28 0.0097 0.40 0.55 0.0068 3.0 0.0078 0.00		09	5.28	0.0097	0.35	0.65	0.0317	30	09	3.04	0.0072	0.35	0.65	0.4210
60 5.28 0.0083 0.60 0.0083 0.00 0.0072 0.40 0.06 70 5.86 0.0083 0.05 0.20 0.0078 0.05 0.25 70 5.86 0.0083 0.05 0.25 0.0013 0.05 0.0078 0.05 0.05 70 5.86 0.0083 0.05 0.35 0.3518 30 70 3.22 0.0078 0.05 0.35 70 5.86 0.0083 0.05 0.35 0.35 30 70 3.22 0.0078 0.05 0.35 70 5.86 0.0083 0.01 0.35 0.088 30 70 3.22 0.0078 0.01 0.35 70 5.86 0.0083 0.10 0.35 0.274 30 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.35 0.274 30 0.078 0.10 0.35	_	09	5.28	0.0097	0.40	0.55	0.0066	30	09	3.04	0.0072	0.40	0.22	0.0643
7.0 5.86 0.0083 0.05 0.15 0.00000 3.0 7.0 3.22 0.0078 0.05 0.10 7.0 5.86 0.0083 0.05 0.15 0.00003 3.0 7.0 3.22 0.0078 0.05 0.20 7.0 5.86 0.0083 0.05 0.35 0.3538 3.0 7.0 3.22 0.0078 0.05 0.05 0.45 0.5175 3.0 7.0 3.22 0.0078 0.05 0.45 0.58 3.0 7.0 3.22 0.0078 0.05 0.45 0.58 3.0 7.0 3.22 0.0078 0.05 0.45 0.05 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.00 0.05 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00	_	09	5.28	0.0097	0.40	0.60	0.0089	30	09	3.04	0.0072	0.40	0.60	0.1348
70 5.86 0.0083 0.05 0.20 0.00323 30 70 3.22 0.0078 0.05 0.20 70 5.86 0.0083 0.05 0.35 0.0323 3 70 3.22 0.0078 0.05 0.20 70 5.86 0.0083 0.05 0.43 0.1521 30 70 3.22 0.0078 0.05 0.40 0.5830 30 70 3.22 0.0078 0.05 0.40 0.5830 30 70 3.22 0.0078 0.05 0.40 0.5830 30 70 3.22 0.0078 0.05 0.40 0.5830 30 70 3.22 0.0078 0.10 0.45 0.5830 30 70 3.22 0.0078 0.10 0.40 0.5830 30 70 3.22 0.0078 0.10 0.45 0.8341 30 70 3.22 0.0078 0.10 0.45 0.5830 30 70 3.22 0.0078 0.10<	_	20	5.86	0.0083	0.02	0.15	0.0000	30	20	3.22	0.0078	0.02	0.15	0.1507
70 5.86 0.0083 0.05 0.25 0.03313 30 70 3.22 0.0078 0.05 0.03 70 5.86 0.0083 0.05 0.35 0.1551 30 70 3.22 0.0078 0.05 0.35 70 5.86 0.0083 0.05 0.45 0.587 30 70 3.22 0.0078 0.05 0.46 70 5.86 0.0083 0.10 0.35 0.0886 30 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.35 0.2082 30 70 3.22 0.0078 0.10 0.35 0.3914 30 70 3.22 0.0078 0.10 0.30 0.3014 30 70 3.22 0.0078 0.10 0.30 0.3014 30 70 3.22 0.0078 0.10 0.30 0.3147 30 70 3.22 0.0078 0.10 0.30 0.3147	_	20	5.86	0.0083	0.05	0.20	0.0022	30	20	3.22	0.0078	0.02	0.20	0.3125
70 5.86 0.0083 0.05 0.35 0.1521 30 70 3.22 0.0078 0.05 0.35 70 5.86 0.0083 0.05 0.45 0.3558 30 70 3.22 0.0078 0.05 0.45 70 5.86 0.0083 0.05 0.45 0.5880 30 70 3.22 0.0078 0.05 0.45 70 5.86 0.0083 0.10 0.25 0.0886 30 70 3.22 0.0078 0.10 0.25 70 5.86 0.0083 0.10 0.35 0.2072 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.45 0.3477 30 70 3.22 0.0078 0.10 0.45 0.3477 30 70 3.22 0.0078 0.10 0.45 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345<		20	5.86	0.0083	0.02	0.25	0.0313	30	20	3.22	0.0078	0.02	0.52	0.5071
70 5.86 0.0083 0.05 0.35 0.3558 30 70 3.22 0.0078 0.05 0.35 70 5.86 0.0083 0.05 0.45 0.5478 30 70 3.22 0.0078 0.05 0.40 70 5.86 0.0083 0.10 0.25 0.0182 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.35 0.2072 30 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.46 0.3448 30 70 3.22 0.0078 0.10 0.46 70 5.86 0.0083 0.10 0.45 0.3448 30 70 3.22 0.0078 0.10 0.46 70 5.86 0.0083 0.15 0.3448 30 70 3.22 0.0078 0.10 0.46 70 5.86 0.0083 <t< td=""><td>_</td><td>20</td><td>5.86</td><td>0.0083</td><td>0.02</td><td>0.30</td><td>0.1521</td><td>30</td><td>20</td><td>3.22</td><td>0.0078</td><td>0.02</td><td>0.30</td><td>0.6939</td></t<>	_	20	5.86	0.0083	0.02	0.30	0.1521	30	20	3.22	0.0078	0.02	0.30	0.6939
70 5.86 0.0083 0.05 0.44 0.5175 30 70 3.22 0.0078 0.05 0.44 70 5.86 0.0083 0.05 0.44 0.5175 30 70 3.22 0.0078 0.05 0.44 70 5.86 0.0083 0.10 0.35 0.0886 30 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.45 0.3974 30 70 3.22 0.0078 0.10 0.40 70 5.86 0.0083 0.10 0.45 0.3395 30 70 3.22 0.0078 0.10 0.40 70 5.86 0.0083 0.10 0.45 0.3521 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.15 0.45 0.170 30 0.0078 0.15 0.45 70 5.86 0.0083 0.15 <		20	5.86	0.0083	0.02	0.35	0.3558	30	20	3.22	0.0078	0.02	0.35	0.8382
70 5.86 0.0083 0.05 0.45 0.5830 30 70 3.22 0.0078 0.05 0.45 70 5.86 0.0083 0.10 0.25 0.01882 30 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.35 0.2072 30 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.45 0.3477 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.55 0.3477 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.15 0.3477 30 70 3.22 0.0078 0.15 0.35 70 5.86 0.0083 0.15 0.35 0.1177 30 70 3.22 0.0078 0.15 0.35 70 5.86 0.0083 <	_	20	5.86	0.0083	0.02	0.40	0.5175	30	20	3.22	0.0078	0.02	0.40	0.9277
70 5.86 0.0083 0.10 0.25 0.0182 30 70 3.22 0.0078 0.10 0.25 70 5.86 0.0083 0.10 0.35 0.2072 30 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.45 0.3475 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.45 0.3475 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.50 0.3477 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.15 0.350 0.1170 30 0.0078 0.15 0.36 70 5.86 0.0083 0.15 0.45 0.1171 30 70 3.22 0.0078 0.15 0.46 70 5.86 0.0083 0.15		20	5.86	0.0083	0.02	0.45	0.5830	30	20	3.22	0.0078	0.05	0.45	0.9725
70 5.86 0.0083 0.10 0.386 30 70 3.22 0.0078 0.10 0.30 70 5.86 0.0083 0.10 0.304 30.47 30 70 3.22 0.0078 0.10 0.35 70 5.86 0.0083 0.10 0.45 0.3345 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.45 0.3487 30 70 3.22 0.0078 0.10 0.40 70 5.86 0.0083 0.10 0.55 0.3487 30 70 3.22 0.0078 0.10 0.40 70 5.86 0.0083 0.15 0.45 0.1702 30 70 3.22 0.0078 0.15 0.35 70 5.86 0.0083 0.15 0.45 0.1971 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 <td< td=""><td>_</td><td>20</td><td>5.86</td><td>0.0083</td><td>0.10</td><td>0.25</td><td>0.0182</td><td>30</td><td>20</td><td>3.22</td><td>0.0078</td><td>0.10</td><td>0.25</td><td>0.1948</td></td<>	_	20	5.86	0.0083	0.10	0.25	0.0182	30	20	3.22	0.0078	0.10	0.25	0.1948
70 5.86 0.0083 0.10 0.35 0.2072 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.44 0.3914 30 70 3.22 0.0078 0.10 0.46 70 5.86 0.0083 0.10 0.45 0.3477 30 70 3.22 0.0078 0.10 0.46 70 5.86 0.0083 0.10 0.50 0.3417 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.15 0.3281 30 70 3.22 0.0078 0.10 0.50 70 5.86 0.0083 0.15 0.35 0.1170 30 70 3.22 0.0078 0.15 0.30 70 5.86 0.0083 0.15 0.45 0.1917 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 <t< td=""><td>_</td><td>20</td><td>5.86</td><td>0.0083</td><td>0.10</td><td>0.30</td><td>0.0886</td><td>30</td><td>20</td><td>3.22</td><td>0.0078</td><td>0.10</td><td>0.30</td><td>0.3450</td></t<>	_	20	5.86	0.0083	0.10	0.30	0.0886	30	20	3.22	0.0078	0.10	0.30	0.3450
70 5.86 0.0083 0.10 0.40 0.3014 30 70 3.22 0.0078 0.10 0.40 70 5.86 0.0083 0.10 0.45 0.3335 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.50 0.3489 30 70 3.22 0.0078 0.10 0.55 70 5.86 0.0083 0.10 0.50 0.35021 30 70 3.22 0.0078 0.10 0.50 70 5.86 0.0083 0.15 0.350 0.1170 30 70 3.22 0.0078 0.15 0.30 70 5.86 0.0083 0.15 0.40 0.1191 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.40 0.1191 30 70 3.22 0.0078 0.15 0.40 70 5.86 <t< td=""><td>_</td><td>20</td><td>5.86</td><td>0.0083</td><td>0.10</td><td>0.35</td><td>0.2072</td><td>30</td><td>20</td><td>3.22</td><td>0.0078</td><td>0.10</td><td>0.35</td><td>0.5214</td></t<>	_	20	5.86	0.0083	0.10	0.35	0.2072	30	20	3.22	0.0078	0.10	0.35	0.5214
70 5.86 0.0083 0.10 0.45 0.3395 30 70 3.22 0.0078 0.10 0.45 70 5.86 0.0083 0.10 0.55 0.34877 30 70 3.22 0.0078 0.10 0.55 70 5.86 0.0083 0.10 0.65 0.3487 30 70 3.22 0.0078 0.10 0.55 70 5.86 0.0083 0.15 0.35 0.170 30 0.0078 0.15 0.50 70 5.86 0.0083 0.15 0.45 0.1963 30 70 3.22 0.0078 0.15 0.35 70 5.86 0.0083 0.15 0.45 0.1961 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 0.15 0.45 0.1961 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 0.15	_	20	5.86	0.0083	0.10	0.40	0.3014	30	20	3.22	0.0078	0.10	0.40	0.6886
70 5.86 0.0083 0.10 0.50 0.3477 30 70 3.22 0.0078 0.10 0.50 70 5.86 0.0083 0.10 0.55 0.3489 30 70 3.22 0.0078 0.10 0.55 70 5.86 0.0083 0.15 0.32 0.0500 30 0.0078 0.10 0.55 70 5.86 0.0083 0.15 0.35 0.1170 30 70 3.22 0.0078 0.15 0.35 70 5.86 0.0083 0.15 0.45 0.1917 30 70 3.22 0.0078 0.15 0.35 70 5.86 0.0083 0.15 0.46 0.1917 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.45 0.1963 30 70 3.22 0.0078 0.15 0.46 70 5.86 0.0083 0.15	_	20	5.86	0.0083	0.10	0.45	0.3395	30	20	3.22	0.0078	0.10	0.45	0.8213
70 5.86 0.0083 0.10 0.55 0.3489 30 70 3.22 0.0078 0.10 0.55 70 5.86 0.0083 0.10 0.560 0.3521 30 70 3.22 0.0078 0.10 0.66 70 5.86 0.0083 0.15 0.35 0.1170 30 70 3.22 0.0078 0.15 0.36 70 5.86 0.0083 0.15 0.44 0.1197 30 70 3.22 0.0078 0.15 0.36 70 5.86 0.0083 0.15 0.45 0.1963 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.50 0.2091 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.201 0.45 0.1041 30 70 3.22 0.0078 0.15 0.45 70 <t< td=""><td>_</td><td>20</td><td>5.86</td><td>0.0083</td><td>0.10</td><td>0.50</td><td>0.3477</td><td>30</td><td>20</td><td>3.22</td><td>0.0078</td><td>0.10</td><td>0.50</td><td>0.9121</td></t<>	_	20	5.86	0.0083	0.10	0.50	0.3477	30	20	3.22	0.0078	0.10	0.50	0.9121
70 5.86 0.0083 0.10 0.60 0.3221 30 70 3.22 0.0078 0.10 0.60 70 5.86 0.0083 0.15 0.35 0.1570 30 70 3.22 0.0078 0.15 0.36 70 5.86 0.0083 0.15 0.46 0.1702 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 0.15 0.45 0.1961 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 0.15 0.50 0.2000 30 70 3.22 0.0078 0.15 0.50 70 5.86 0.0083 0.15 0.65 0.1971 30 70 3.22 0.0078 0.15 0.55 70 5.86 0.0083 0.20 0.35 0.1048 30 70 3.22 0.0078 0.15 0.40 70 5.86	_	20	5.86	0.0083	0.10	0.55	0.3489	30	20	3.22	0.0078	0.10	0.55	0.9644
70 5.86 0.0083 0.15 0.35 0.0560 30 70 3.22 0.0078 0.15 0.33 70 5.86 0.0083 0.15 0.35 0.1170 30 70 3.22 0.0078 0.15 0.35 70 5.86 0.0083 0.15 0.46 0.1177 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.50 0.19943 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.200 3.2 0.0078 0.15 0.55 70 5.86 0.0083 0.15 0.60 0.200 3.2 0.0078 0.15 0.60 70 5.86 0.0083 0.20 0.40 0.023 30 70 3.22 0.0078 0.20 0.40 70 5.86 0.0083 0.20 0.40 0.044 0.044	_	20	5.86	0.0083	0.10	09.0	0.3521	30	20	3.22	0.0078	0.10	0.60	0.9885
70 5.86 0.0083 0.15 0.35 0.1170 30 70 3.22 0.0078 0.15 0.35 70 5.86 0.0083 0.15 0.44 0.1917 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.45 0.1917 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.50 0.2000 30 70 3.22 0.0078 0.15 0.60 70 5.86 0.0083 0.15 0.5200 30 70 3.22 0.0078 0.15 0.60 70 5.86 0.0083 0.20 0.40 0.1048 30 70 3.22 0.0078 0.20 0.40 0.1048 30 70 3.22 0.0078 0.15 0.40 0.1048 0.008 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	_	20	5.86	0.0083	0.15	0.30	0.0500	30	20	3.22	0.0078	0.15	0.30	0.1380
70 5.86 0.0083 0.15 0.40 0.1702 30 70 3.22 0.0078 0.15 0.40 70 5.86 0.0083 0.15 0.45 0.1917 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 0.15 0.50 0.1991 30 70 3.22 0.0078 0.15 0.50 70 5.86 0.0083 0.15 0.65 0.2191 30 70 3.22 0.0078 0.15 0.55 70 5.86 0.0083 0.15 0.65 0.2191 30 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.20 0.45 0.1048 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.56 0.1041 30 70 3.22 0.0078 0.20 0.45 70 5.86	_	20	5.86	0.0083	0.15	0.35	0.1170	30	20	3.22	0.0078	0.15	0.35	0.2560
70 5.86 0.0083 0.15 0.45 0.1917 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 0.15 0.55 0.1971 30 70 3.22 0.0078 0.15 0.45 70 5.86 0.0083 0.15 0.60 0.2000 30 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.15 0.65 0.2191 30 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.20 0.40 0.0928 30 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.20 0.40 0.0928 30 70 3.22 0.0078 0.20 0.40 70 5.86 0.0083 0.20 0.40 0.1046 30 70 3.22 0.0078 0.20 0.40 70 5.86	_	20	5.86	0.0083	0.15	0.40	0.1702	30	20	3.22	0.0078	0.15	0.40	0.4063
70 5.86 0.0083 0.15 0.50 0.1963 30 70 3.22 0.0078 0.15 0.50 70 5.86 0.0083 0.15 0.2000 3 2 0.0078 0.15 0.55 70 5.86 0.0083 0.15 0.65 0.2191 30 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.20 0.49 3 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.20 0.40 0.0283 30 70 3.22 0.0078 0.20 0.40 70 5.86 0.0083 0.20 0.40 0.1048 30 70 3.22 0.0078 0.20 0.40 70 5.86 0.0083 0.20 0.60 0.1098 30 70 3.22 0.0078 0.20 0.50 70 5.86 0.0083 0.20 0.60 0.1	_	20	5.86	0.0083	0.15	0.45	0.1917	30	20	3.22	0.0078	0.15	0.45	0.5709
70 5.86 0.0083 0.15 0.55 0.1971 30 70 3.22 0.0078 0.15 0.55 70 5.86 0.0083 0.15 0.66 0.2000 30 70 3.22 0.0078 0.15 0.66 70 5.86 0.0083 0.15 0.63 3.0 70 3.22 0.0078 0.15 0.66 70 5.86 0.0083 0.20 0.45 0.1048 30 70 3.22 0.0078 0.20 0.35 70 5.86 0.0083 0.20 0.45 0.1048 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.50 0.1075 30 70 3.22 0.0078 0.20 0.40 70 5.86 0.0083 0.20 0.65 0.1045 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 <td< td=""><td>_</td><td>20</td><td>5.86</td><td>0.0083</td><td>0.15</td><td>0.50</td><td>0.1963</td><td>30</td><td>20</td><td>3.22</td><td>0.0078</td><td>0.15</td><td>0.50</td><td>0.7277</td></td<>	_	20	5.86	0.0083	0.15	0.50	0.1963	30	20	3.22	0.0078	0.15	0.50	0.7277
70 5.86 0.0083 0.15 0.60 0.2000 30 70 3.22 0.0078 0.15 0.60 70 5.86 0.0083 0.15 0.65 0.2191 30 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.20 0.40 0.0928 30 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.20 0.40 0.0928 30 70 3.22 0.0078 0.20 0.40 70 5.86 0.0083 0.20 0.45 0.1074 30 70 3.22 0.0078 0.20 0.40 70 5.86 0.0083 0.20 0.65 0.1074 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.20 0.65 0.1745 30 70 3.22 0.0078 0.20 0.45 70 5.86	_	20	5.86	0.0083	0.15	0.55	0.1971	30	20	3.22	0.0078	0.15	0.55	0.8533
70 5.86 0.0083 0.15 0.65 0.2191 30 70 3.22 0.0078 0.15 0.65 70 5.86 0.0083 0.20 0.45 0.0493 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.45 0.1071 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.45 0.1071 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.65 0.1071 30 70 3.22 0.0078 0.20 0.55 70 5.86 0.0083 0.20 0.60 0.1098 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.20 0.60 0.11743 30 70 3.22 0.0078 0.20 0.65 70 5.86 <td< td=""><td>_</td><td>20</td><td>5.86</td><td>0.0083</td><td>0.15</td><td>0.60</td><td>0.2000</td><td>30</td><td>20</td><td>3.22</td><td>0.0078</td><td>0.15</td><td>09.0</td><td>0.9347</td></td<>	_	20	5.86	0.0083	0.15	0.60	0.2000	30	20	3.22	0.0078	0.15	09.0	0.9347
70 5.86 0.0083 0.20 0.35 0.0638 30 70 3.22 0.0078 0.20 0.35 70 5.86 0.0083 0.20 0.45 0.1048 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.50 0.1047 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.55 0.1077 30 70 3.22 0.0078 0.20 0.55 70 5.86 0.0083 0.20 0.65 0.1045 30 70 3.22 0.0078 0.20 0.55 70 5.86 0.0083 0.20 0.65 0.1445 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.25 0.40 0.0487 30 70 3.22 0.0078 0.25 0.40 70 5.86	_	20	5.86	0.0083	0.15	0.65	0.2191	30	20	3.22	0.0078	0.15	0.65	0.9768
70 5.86 0.0083 0.20 0.40 0.0928 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.45 0.1074 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.55 0.1074 30 70 3.22 0.0078 0.20 0.50 70 5.86 0.0083 0.20 0.65 0.1098 30 70 3.22 0.0078 0.20 0.55 70 5.86 0.0083 0.20 0.65 0.1445 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.20 0.40 0.0487 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.25 0.40 0.0487 30 70 3.22 0.0078 0.25 0.45 70 5.86		20	5.86	0.0083	0.20	0.35	0.0638	30	20	3.22	0.0078	0.20	0.35	0.1034
70 5.86 0.0083 0.20 0.45 0.1046 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.55 0.1077 30 70 3.22 0.0078 0.20 0.45 70 5.86 0.0083 0.20 0.65 0.1074 30 70 3.22 0.0078 0.20 0.55 70 5.86 0.0083 0.20 0.65 0.1743 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.20 0.70 0.1743 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.25 0.40 0.0487 30 70 3.22 0.0078 0.25 0.40 70 5.86 0.0083 0.25 0.40 0.0487 30 70 3.22 0.0078 0.25 0.40 70 5.86	_	20	5.86	0.0083	0.20	0.40	0.0928	30	20	3.22	0.0078	0.20	0.40	0.1962
70 5.86 0.0083 0.20 0.55 0.1071 30 70 3.22 0.0078 0.20 0.50 70 5.86 0.0083 0.20 0.55 0.1075 30 70 3.22 0.0078 0.20 0.55 70 5.86 0.0083 0.20 0.65 0.1445 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.20 0.65 0.1445 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.25 0.40 0.0487 30 70 3.22 0.0078 0.25 0.40 70 5.86 0.0083 0.25 0.45 0.0584 30 70 3.22 0.0078 0.25 0.45 70 5.86 0.0083 0.25 0.45 0.0584 30 70 3.22 0.0078 0.25 0.45 70 5.86	_	20	5.86	0.0083	0.20	0.45	0.1046	30	20	3.22	0.0078	0.20	0.45	0.3282
70 5.86 0.0083 0.20 0.55 0.1075 30 70 3.22 0.0078 0.20 0.55 70 5.86 0.0083 0.20 0.66 0.1145 30 70 3.22 0.0078 0.20 0.66 70 5.86 0.0083 0.20 0.76 0.1473 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.25 0.40 0.1487 30 70 3.22 0.0078 0.20 0.70 70 5.86 0.0083 0.25 0.40 0.0487 30 70 3.22 0.0078 0.25 0.40 70 5.86 0.0083 0.25 0.45 0.0562 30 70 3.22 0.0078 0.25 0.45 70 5.86 0.0083 0.25 0.562 0.0562 30 70 3.22 0.0078 0.25 0.55 70 5.86 <td< td=""><td>_</td><td>20</td><td>5.86</td><td>0.0083</td><td>0.20</td><td>0.50</td><td>0.1071</td><td>30</td><td>20</td><td>3.22</td><td>0.0078</td><td>0.20</td><td>0.50</td><td>0.4920</td></td<>	_	20	5.86	0.0083	0.20	0.50	0.1071	30	20	3.22	0.0078	0.20	0.50	0.4920
70 5.86 0.0083 0.20 0.60 0.1998 30 70 3.22 0.0078 0.20 0.66 70 5.86 0.0083 0.20 0.65 0.1734 30 70 3.22 0.0078 0.20 0.65 70 5.86 0.0083 0.25 0.40 0.0487 30 70 3.22 0.0078 0.25 0.40 70 5.86 0.0083 0.25 0.40 0.0484 30 70 3.22 0.0078 0.25 0.40 70 5.86 0.0083 0.25 0.45 3.0 70 3.22 0.0078 0.25 0.45 70 5.86 0.0083 0.25 0.50 0.0564 30 70 3.22 0.078 0.25 0.45 70 5.86 0.0083 0.25 0.65 0.0654 30 70 3.22 0.078 0.25 0.65 70 5.86 0.0083 0		20	5.86	0.0083	0.20	0.55	0.1075	30	20	3.22	0.0078	0.20	0.55	0.6627
70 5.86 0.0083 0.20 0.65 0.1245 30 70 3.22 0.0078 0.20 0.76 70 5.86 0.0083 0.20 0.77 0.1773 30 70 3.22 0.0078 0.20 0.70 70 5.86 0.0083 0.25 0.45 0.0548 30 70 3.22 0.0078 0.25 0.45 70 5.86 0.0083 0.25 0.50 0.0562 30 70 3.22 0.0078 0.25 0.45 70 5.86 0.0083 0.25 0.50 0.0562 30 70 3.22 0.0078 0.25 0.50 70 5.86 0.0083 0.25 0.55 0.0564 30 70 3.22 0.0078 0.25 0.55 70 5.86 0.0083 0.25 0.65 0.0683 30 70 3.22 0.0078 0.25 0.65 70 5.86	_	20	5.86	0.0083	0.20	09.0	0.1098	30	20	3.22	0.0078	0.20	09.0	0.8091
70 5.86 0.0083 0.20 0.70 0.1773 30 70 3.22 0.0078 0.20 0.70 70 5.86 0.0083 0.25 0.44 0.0487 30 70 3.22 0.0078 0.25 0.40 70 5.86 0.0083 0.25 0.50 0.0562 30 70 3.22 0.0078 0.25 0.40 70 5.86 0.0083 0.25 0.50 0.0564 30 70 3.22 0.0078 0.25 0.50 70 5.86 0.0083 0.25 0.65 0.0564 30 70 3.22 0.0078 0.25 0.50 70 5.86 0.0083 0.25 0.65 0.0580 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.70 0.1652 30 70 3.22 0.0078 0.25 0.65 70 5.86	_	20	5.86	0.0083	0.20	0.65	0.1245	30	20	3.22	0.0078	0.20	0.65	0.9105
70 5.86 0.0083 0.25 0.40 0.0487 30 70 3.22 0.0078 0.25 0.40 70 5.86 0.0083 0.25 0.45 0.0564 30 70 3.22 0.0078 0.25 0.45 70 5.86 0.0083 0.25 0.50 0.0564 30 70 3.22 0.0078 0.25 0.50 70 5.86 0.0083 0.25 0.55 0.0564 30 70 3.22 0.0078 0.25 0.55 70 5.86 0.0083 0.25 0.65 0.0680 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.65 0.0683 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.70 0.1052 30 70 3.22 0.0078 0.25 0.65	_	20	5.86	0.0083	0.20	0.70	0.1773	30	20	3.22	0.0078	0.20	0.70	0.9657
70 5.86 0.0083 0.25 0.45 0.0548 30 70 3.22 0.0078 0.25 0.45 70 5.86 0.0083 0.25 0.45 0.0564 30 70 3.22 0.0078 0.25 0.55 70 5.86 0.0083 0.25 0.65 0.0584 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.65 0.0683 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.70 0.1053 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.70 0.1052 30 0.0078 0.25 0.65		20	5.86	0.0083	0.25	0.40	0.0487	30	20	3.22	0.0078	0.25	0.40	0.0793
70 5.86 0.0083 0.25 0.50 0.0562 30 70 3.22 0.0078 0.25 0.50 70 5.86 0.0083 0.25 0.55 0.0564 30 70 3.22 0.0078 0.25 0.55 70 5.86 0.0083 0.25 0.65 0.0683 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.65 0.0683 33 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.70 0.1052 30 70 3.22 0.0078 0.25 0.70	_	20	5.86	0.0083	0.25	0.45	0.0548	30	20	3.22	0.0078	0.25	0.45	0.1584
70 5.86 0.0083 0.25 0.55 0.0564 30 70 3.22 0.0078 0.25 0.55 70 5.86 0.0083 0.25 0.60 0.0580 30 70 3.22 0.0078 0.25 0.60 70 5.86 0.0083 0.25 0.70 0.1653 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.70 0.1652 30 0.078 0.25 0.70 70 5.86 0.0083 0.25 0.70 0.1652 0.70 3.22 0.0078 0.25 0.70	_	20	5.86	0.0083	0.25	0.50	0.0562	30	20	3.22	0.0078	0.25	0.50	0.2818
70 5.86 0.0083 0.25 0.66 0.0580 30 70 3.22 0.0078 0.25 0.60 70 5.86 0.0083 0.25 0.65 0.0683 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.70 0.1052 30 70 3.22 0.0078 0.25 0.70	_	20	5.86	0.0083	0.25	0.55	0.0564	30	20	3.22	0.0078	0.25	0.55	0.4440
70 5.86 0.0083 0.25 0.65 0.0683 30 70 3.22 0.0078 0.25 0.65 70 5.86 0.0083 0.25 0.70 0.1052 30 70 3.22 0.0078 0.25 0.70	_	20	5.86	0.0083	0.25	0.60	0.0580	30	20	3.22	0.0078	0.25	0.60	0.6212
70 5.86 0.0083 0.25 0.70 0.1052 30 70 3.22 0.0078 0.25 0.70		20	5.86	0.0083	0.25	0.65	0.0683	30	20	3.22	0.0078	0.25	0.65	0.7784
	_	40	,	00000	1									

Table B.18: continue on next page

Table B.18: continue on next page

s $page$	power	0.0649	0.1373	0.4151	0.5921	0.7535	0.0569	0.1253	0.3925	0.0523	0.1168	0.1527	0.2888	0.6820	0.8325	0.9234	0.9701	0.1786	0.3292	0.5019	0.8078	0.9080	0.9645	0.9889	0.1264	0.2355	0.5503	0.7188	0.8508	0.9338	0.9765	0.0903	0.3096	0.4795	0.6542	0.8027	0.9070	0.9646	0.0089	0.2690	0.4297	0.6071	0.7686	0.8859
reviou	P2	0.45	0.50	0.60	0.65	0.70	0.50	0.00	0.00	0.55	09.0	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.00	0.45	0.50	0.55	09.0	0.30	0.35	0.45	0.50	0.55	0.60	0.65	0.33	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.40	0.55	09.0	0.65	0.70
$from \ p$	p1	0.30	0.30	0.30	0.30	0.30	0.35	0.33	0.35	0.40	0.40	0.05	0.05	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.70	0.25	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0078	0.0078	0.0078	0.0078	0.0078	0.0078	0.0078	0.0078	0.0078	0.0078	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081	0.0081
	$\mathbf{z}_{\mathbf{n}}$	3.22	3.22	3.22	3.22	3.22	3.22	27.5	3.22	3.22	3.22	3.39	9.39	3.39	3.39	3.39	3.39	3.39	3.39	3.30	3.39	3.39	3.39	3.39	3.39	3.00	3.39	3.39	3.39	3.39	3.39	30.00	3.39	3.39	3.39	3.39	3.39	3.39	00.00	0.00	3.39	3.39	3.39	3.39
B.18:	$_{\rm n_2}$	70	29	2 2	20	20	28	9 9	2 2	20	20	80	200	8 8	80	80	80	g 8	8	8	8 8	80	80	80	200	000	80	80	80	80	80	8 8	80	80	80	80	80	08	200	8 8	80	80	80	80
Table	$^{\mathrm{n}_{1}}$	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	300	30	30	30	30	30	30	30	30	30	30	30	300	30	30	30	30	30	30	000	30	30	30	30	30
	power	0.0275	0.0282	0.0283	0.0360	0.0598	0.0134	0.0135	0.0141	0.0061	0.0064	0.0000	0.0017	0.1603	0.3792	0.5366	0.5895	0.0174	0.0933	0.2209	0.3433	0.3483	0.3487	0.3493	0.0527	0.1247	0.1938	0.1966	0.1969	0.1975	0.2041	0.0000	0.1057	0.1072	0.1074	0.1078	0.1130	0.1437	0.0505	0.0554	0.0563	0.0566	0.0602	0.0817
	p ₂	0.45	0.50	0.60	0.65	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.33	0.45	0.50	0.55	0.60	0.30	0.33	0.45	0.50	0.55	09.0	0.65	0.33	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.40	0.55	09.0	0.65	0.70
	p1	0.30	0.30	0.30	0.30	0.30	0.35	0.00	0.35	0.40	0.40	0.05	0.0 0.0 0.0	0.02	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.7.0	0.25	0.25	0.25	0.25	0.25
	pvalue	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0080	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0080	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089
	$\mathbf{z}_{\mathbf{n}}$	5.86	38.2	5.80 5.80 5.80	5.86	5.86		0.0 0.0 0.0	20.00	5.86	5.86	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	6.21	0.21	6.21	6.21	6.21	6.21	6.21
	$^{\mathrm{n}_{2}}$	70	2 2	2 2	20	20	2 6	9 9	2 2	20	20	80	9 8	80	80	80	80	80	000	000	80	80	80	80	000	8 8	80	80	80	80	80	8	80	80	80	80	80	08	000	8 8	80	80	80	80
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

$_{1}$	2	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p2	power	$_{1}$	$_{\rm n_2}$	zu	pvalue	p1	p ₂	power
10	80	6.21	0.0089	0.25	0.75	0.1421	30	80	3.39	0.0081	0.25	0.75	0.9540
10	80	6.21	0.0089	0.30	0.45	0.0278	30	80	3.39	0.0081	0.30	0.45	0.0581
10	80	6.21	0.0089	0.30	0.50	0.0282	30	80	3.39	0.0081	0.30	0.50	0.1272
10	80	6.21	0.0089	0.30	0.55	0.0283	30	80	3.39	0.0081	0.30	0.55	0.2399
0	80	6.21	0.0089	0.30	0.60	0.0284	30	80	3.39	0.0081	0.30	0.60	0.3965
0	80	6.21	0.0089	0.30	0.65	0.0308	30	80	3.39	0.0081	0.30	0.65	0.5760
	80	6.21	0.0089	0.30	0.70	0.0446	30	80	3.39	0.0081	0.30	0.70	0.7426
	80	6.21	0.0089	0.35	0.50	0.0134	30	80	3.39	0.0081	0.35	0.50	0.0507
0	80	6.21	0.0089	0.35	0.55	0.0135	30	80	3.39	0.0081	0.35	0.55	0.1135
_	80	6.21	0.0089	0.35	09.0	0.0136	30	80	3.39	0.0081	0.35	0.60	0.2213
0	80	6.21	0.0089	0.35	0.65	0.0150	30	80	3.39	0.0081	0.35	0.65	0.3740
0	80	6.21	0.0089	0.40	0.55	0.0060	30	80	3.39	0.0081	0.40	0.55	0.0453
0	80	6.21	0.0089	0.40	0.60	0.0061	30	80	3.39	0.0081	0.40	0.60	0.1046
0	06	6.55	0.0094	0.02	0.15	0.0000	30	06	3.55	0.0088	0.02	0.15	0.1616
0	06	6.55	0.0094	0.02	0.20	0.0012	30	06	3.55	0.0088	0.02	0.20	0.2935
0	06	6.55	0.0094	0.05	0.25	0.0283	30	06	3.55	0.0088	0.05	0.25	0.4755
0	90	6.55	0.0094	0.05	0.30	0.1672	30	06	3.55	0.0088	0.02	0.30	0.6613
_	06	6.55	0.0094	0.05	0.35	0.3996	30	06	3.55	0.0088	0.02	0.35	0.8174
0	06	6.55	0.0094	0.02	0.40	0.5510	30	06	3.55	0.0088	0.02	0.40	0.9198
10	06	6.55	0.0094	0.02	0.45	0.5932	30	06	3.55	0.0088	0.02	0.45	0.9706
0	06	6.55	0.0094	0.10	0.25	0.0165	30	06	3.55	0.0088	0.10	0.25	0.1666
10	06	6.55	0.0094	0.10	0.30	0.0974	30	06	3.55	0.0088	0.10	0.30	0.3029
10	06	6.55	0.0094	0.10	0.35	0.2327	30	06	3.55	0.0088	0.10	0.35	0.4814
10	06	6.55	0.0094	0.10	0.40	0.3209	30	90	3.55	0.0088	0.10	0.40	0.6613
10	06	6.55	0.0094	0.10	0.45	0.3455	30	06	3.55	0.0088	0.10	0.45	0.8063
	06	6.55	0.0094	0.10	0.50	0.3485	30	06	3.55	0.0088	0.10	0.50	0.9054
10	06	6.55	0.0094	0.10	0.55	0.3487	30	06	3.55	0.0088	0.10	0.55	0.9621
10	06	6.55	0.0094	0.10	0.60	0.3487	30	06	3.55	0.0088	0.10	0.60	0.9878
10	06	6.55	0.0094	0.15	0.30	0.0550	30	06	3.55	0.0088	0.15	0.30	0.1114
10	06	6.55	0.0094	0.15	0.35	0.1314	30	06	3.55	0.0088	0.15	0.35	0.2218
10	06	6.55	0.0094	0.15	0.40	0.1812	30	06	3.55	0.0088	0.15	0.40	0.3720
10	06	6.55	0.0094	0.15	0.45	0.1951	30	06	3.55	0.0088	0.15	0.45	0.5411
0	06	6.55	0.0094	0.15	0.50	0.1968	30	06	3.55	0.0088	0.15	0.50	0.7053
10	06	6.55	0.0094	0.15	0.55	0.1969	30	06	3.55	0.0088	0.15	0.55	0.8387
10	06	6.55	0.0094	0.15	09.0	0.1969	30	06	3.55	0.0088	0.15	0.60	0.9255
10	06	6.55	0.0094	0.15	0.65	0.1979	30	06	3.55	0.0088	0.15	0.65	0.9714
10	06	6.55	0.0094	0.20	0.35	0.0717	30	06	3.55	0.0088	0.20	0.35	0.0838
10	06	6.55	0.0094	0.20	0.40	0.0988	30	90	3.55	0.0088	0.20	0.40	0.1695
10	06	6.55	0.0094	0.20	0.45	0.1064	30	06	3.55	0.0088	0.20	0.45	0.2956
10	06	6.55	0.0094	0.20	0.50	0.1073	30	06	3.55	0.0088	0.20	0.50	0.4572
10	90	6.55	0.0094	0.20	0.55	0.1074	30	06	3.55	0.0088	0.20	0.55	0.6295
10	90	6.55	0.0094	0.20	09.0	0.1074	30	06	3.55	0.0088	0.20	09.0	0.7793
10	06	6.55	0.0094	0.20	0.65	0.1082	30	06	3.55	0.0088	0.20	0.65	0.8882
0	06	6.55	0.0094	0.20	0.70	0.1178	30	06	3.55	0.0088	0.20	0.70	0.9547
10	06	6.55	0.0094	0.25	0.40	0.0518	30	06	3.55	0.0088	0.25	0.40	0.0641
0	06	6.55	0.0094	0.25	0.45	0.0558	30	06	3.55	0.0088	0.25	0.45	0.1338
0	06	6.55	0.0094	0.25	0.50	0.0563	30	06	3.55	0.0088	0.25	0.50	0.2467
10	06	6.55	0.0094	0.25	0.55	0.0563	30	06	3.55	0.0088	0.25	0.55	0.3988
0	6	ŗ											
	3	0.00	0.0094	0.25	09.0	0.0563	30	90	3.55	0.0088	0.25	09.0	0.5685

Table B.18: continue on next page

Table B.18: continue on next page

							Table	B.18:	con	-continued from previous page	from p	reviou	s page
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	p2	power	$^{\mathrm{11}}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	p 2	power
10	06	6.55	0.0094	0.25	0.70	0.0636	30	06	3.55	0.0088	0.25	0.70	0.8609
10	06	6.55	0.0094	0.25	0.75	0.1005	30	06	3.55	0.0088	0.25	0.75	0.9421
10	06	6.55	0.0094	0.30	0.45	0.0280	30	06	3.55	0.0088	0.30	0.45	0.0507
10	8 8	о. о. и о.	0.0094	0.30	0.0 7	0.0282	30	8 8	0.0 0.0 10.0	0.0088	0.30	0.00	0.1114
10	06	6.55	0.0094	0.30	09.0	0.0283	30	06	3.55	0.0088	0.30	0.60	0.3530
10	06	6.55	0.0094	0.30	0.65	0.0286	30	06	3.55	0.0088	0.30	0.65	0.5246
10	06	6.55	0.0094	0.30	0.70	0.0330	30	06	3.55	0.0088	0.30	0.70	0.7008
10	06	6.55	0.0094	0.35	0.50	0.0135	30	06	3.55	0.0088	0.35	0.50	0.0421
10	06	6.55	0.0094	0.35	0.55	0.0135	30	06	3.55	0.0088	0.35	0.55	0.0945
10	06	6.55	0.0094	0.35	0.60	0.0135	30	06	3.55	0.0088	0.35	0.60	0.1851
10	06	6.55	0.0094	0.35	0.65	0.0137	30	06		0.0088	0.35	0.65	0.3234
10	3 8	0.55	0.0094	0.40	0.55	0.0060	30	3 8	3.55	0.0088	0.40	0.55	0.0351
10	3 5	00.0	0.0034	0.40	0.00	0.0001	30	8 5	3.00	0.0088	0.40	0.00	0.0014
10	100	6.86	0.0098	0.05	0.20	0.0009	30	100	3.70	0.0093	0.05	0.20	0.2749
10	100	98.9	0.0098	0.05	0.25	0.0267	30	100	3.70	0.0093	0.05	0.25	0.4548
10	100	98.9	0.0098	0.05	0.30	0.1732	30	100	3.70	0.0093	0.05	0.30	0.6515
10	100	98.9	0.0098	0.05	0.35	0.4174	30	100	3.70	0.0093	0.05	0.35	0.8057
10	100	98.9	0.0098	0.02	0.40	0.5619	30	100	3.70	0.0093	0.02	0.40	0.9082
10	100	98.9	0.0098	0.02	0.45	0.5954	30	100	3.70	0.0093	0.02	0.45	0.9657
10	100	98.9	0.0098	0.10	0.25	0.0155	30	100	3.70	0.0093	0.10	0.25	0.1555
10	100	6.86	0.0098	0.10	0.30	0.1009	30	100	3.70	0.0093	0.10	0.30	0.2889
10	100	98.9	0.0098	0.10	0.35	0.2431	30	100	3.70	0.0093	0.10	0.35	0.4523
10	100	98.9	0.0098	0.10	0.40	0.3272	30	100	3.70	0.0093	0.10	0.40	0.6298
07	007	0.80	0.0098	0.10	0.45	0.3468	30	100	3.70	0.0093	0.10	0.45	0.7888
10	100	00.00	0.0038	0.10	0.00	0.3480	30	100	3.70	0.0093	0.10	0.00	0.8979
10	100	98.9	0.0098	0.10	0.60	0.3487	30	100	3.70	0.0093	0.10	0.60	0.9855
10	100	98.9	0.0098	0.15	0.30	0.0570	30	100	3.70	0.0093	0.15	0.30	0.1014
10	100	98.9	0.0098	0.15	0.35	0.1372	30	100	3.70	0.0093	0.15	0.35	0.1969
10	100	98.9	0.0098	0.15	0.40	0.1848	30	100	3.70	0.0093	0.15	0.40	0.3410
10	100	98.9	0.0098	0.15	0.45	0.1958	30	100	3.70	0.0093	0.15	0.45	0.5173
10	100	98.9	0.0098	0.15	0.50	0.1968	30	100	3.70	0.0093	0.15	0.50	0.6868
10	100	6.86	0.0098	0.15	0.55	0.1969	30	100	3.70	0.0093	0.15	0.52	0.8217
0 1	100	0.00	0.0098	0.To	0.00	0.1969	30	100	3.70	0.0093	0.13	0.00	0.9139
10	100	00.0	0.0038	0.13	0.00	0.1370	30	100	3.70	0.0093	0.1.0	0.00	0.9663
10	100	98.9	0.0098	0.20	0.40	0.1008	30	100	3.70	0.0093	0.20	0.40	0.1500
10	100	98.9	0.0098	0.20	0.45	0.1068	30	100	3.70	0.0093	0.20	0.45	0.2749
10	100	98.9	0.0098	0.20	0.50	0.1074	30	100	3.70	0.0093	0.20	0.50	0.4319
10	100	98.9	0.0098	0.20	0.55	0.1074	30	100	3.70	0.0093	0.20	0.55	0.5988
10	100	98.9	0.0098	0.20	0.60	0.1074	30	100	3.70	0.0093	0.20	0.60	0.7537
10	100	98.9	0.0098	0.20	0.65	0.1075	30	100	3.70	0.0093	0.20	0.65	0.8738
10	100	6.86	0.0098	0.20	0.70	0.1098	30	100	3.70	0.0093	0.20	0.70	0.9471
10	100	6.86	0.0098	0.25	0.40	0.0529	30	100	3.70	0.0093	0.25	0.40	0.0549
10	100	98.9	0.0098	0.25	0.45	0.0560	30	100	3.70	0.0093	0.25	0.45	0.1203
10	001	0.00	0.0098	0.25	0.50	0.0563	30	100	3.70	0.0093	0.25	0.00	0.2238
10	100	0.80	0.0098	0.25	0.55	0.0563	30	100	3.70	0.0093	0.25	0.55	0.3649
ΠT	nnt	05.0	0.0098	0.25	0.00	0.0563	ne	nnt	9.70	0.0093	07.0	0.00	0.5342

page	power	0.7042	0.8409	0.9307	0.0438	0.0963	0.1856	0.3205	0.4909	0.6665	0.0344	0.0788	0.1616	0.2909	0.0279	0.0680	0.2261	0.4491	0.6638	0.8255	0.9255	0.9747	0.9933	0.3053	0.5043	0.7010	0.8494	0.9369	0.9783	0.9940	0.9987	0.2460	0.4295	0.6231	0.7868	0.8990	0.9608	0.9879	0.9971	0.54145	0.0.0	0.000	0.0000	0.0000	0.0400	0.9957	0 1010	0.3453	0.5290	0.7078
-continued from previous page	P2	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.55	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.00	0.40		0.00 8	0.00	0.00	0.00	0.10	0.45	0.50	0.55
from p	$\mathbf{p_1}$	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.02	0.02	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.10	02.0	0.40	0.00	0.20	0.40	0.50	0.50	0.10	0.25	0.25	0.25
inued	pvalue	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0031	0.0091	0.0091	0.0031	0.0091	0.0091	0.0091	0.0091
	$\mathbf{z}_{\mathbf{u}}$	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	00.7	00.70	00.00	00.00 00.00	00.00	00.00	00.00 00.00	00.00	2.50	2.50	2.50	2.50	2.50
B.18:	n ₂	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	200	S 2	00 00) H	3 2	8 2	2 2	3 2	8 2	8 2	20.00	20	20	20
Table	1	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	04.4	7 5	7 5	7	1, 4	7 5	7	40	40	40	40	40
	power	0.0564	0.0580	0.0750	0.0281	0.0282	0.0282	0.0282	0.0283	0.0293	0.0135	0.0135	0.0135	0.0135	0.0060	0.0060	0.0584	0.1645	0.3121	0.4734	0.6254	0.7538	0.8522	0.1391	0.2408	0.3643	0.5002	0.6362	0.7582	0.8552	0.9230	0.1127	0.1930	0.2998	0.4279	0.5654	0.6967	0.8084	0.0920	0.0344	0.1048	0.2028	0.3047	0.3208	0.001	0.8737	0.0835	0.1483	0.2403	0.3583
	P2	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.00	2.0		0.0 0.0 0.0	0.00	0.00	0.00	0.10	0.45	0.50	0.55
	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.1.0	0.1.0	02.0	02.0	02.0	02.0	02.0	0.50	0.50	0.00	0.25	0.25	0.25
	pvalue	8600.0	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0005	0.0083	0.0085	0.0083	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085
	$\mathbf{z}_{\mathbf{n}}$	98.9	98.9	98.9	6.86	6.86	98.9	98.9	98.9	98.9	98.9	98.9	98.9	98.9	98.9	98.9	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	7.7	7 7	1 - 1	1 5	1 7	1 7	1 5	1 7	2.7	2.74	2.74	2.74	2.74
	$^{\mathrm{n}_{2}}$	100	100	100	100	100	001	100	001	100	100	100	100	100	100	100	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	20	900	000	3 6	900	000	000	900	9 6	8 8	300	30	30	30
	$\mathbf{n_1}$	10	10	10	10	10	01	10	01	01	10	10	10	10	10	10	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	707	070	0 0	010	010	04.0	0 0	010	0.00	0.00	0.00	20	20	20

Table B.18: continue on next page

Table B.18: continue on next page

s page	power	0.8482	0.9359	0.9787	0.1777	0.3245	0.5063	0.6884	0.8351	0.9294	0.1694	0.3122	0.4910	0.1636	0.3026	0.2138	0.4534	0.6909	0.8559	0.9443	0.9822	0.3954	0.5309	0.7178	0.8574	0.9417	0.9813	0.9955	0.9992	0.2463	0.4229	0.6185	0.001	0.9667	0.9905	0.9979	0.1994	0.3666	0.5658	0.7482	0.8779	0.9515	0.9040	0.1802	0.3397	0.5304
reviou	p2	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.20	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.10	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50
from p	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.00	0.03	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25
-continued from previous page	pvalue	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0091	0.0096	0.0096	0.0096	0.0036	0.0096	0.0030	0.0030	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.000	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0096	0.0030	0.0096	0.0096	0.0096
	$\mathbf{z}_{\mathbf{u}}$	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	05.50	2.50	2.50	2.62	2.62	2.62	2.62	2.62	20.2	20.2	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	7.62	2.62	20.2	2.62	2.62	2.62	2.62	2.62	2.62	2.62	7.62	7.07	70.7	2.62	2.62	2.62
B.18:	$^{\rm n_2}$	20	20	50	20	20	20	20	20	20	20	02 S	00 20	20	20	09	09	09	09	09	00	8 9	09	8 9	09	09	09	09	09	09	09	09	8 9	09	09	09	09	09	09	09	09	00	00	8 9	09	09
Table	$^{\mathrm{n}_{1}}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	power	0.4944	0.6342	0.7602	0.0770	0.1382	0.2272	0.3435	0.4786	0.6173	0.0731	0.1326	0.2194	0.0707	0.1279	0.0880	0.2093	0.3344	0.4630	0.6054	0.7449	0.0000	0.2143	0.3360	0.4840	0.6329	0.7611	0.8581	0.9236	0.0933	0.1705	0.2807	0.5518	0.6817	0.7922	0.8780	0.0794	0.1471	0.2413	0.3571	0.4855	0.6167	0.7404	0.0700	0.1271	0.2077
	p ₂	09.0	0.65	0.70	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.10	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50
	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.40	0.40	0.02	0.02	0.05	0.05	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.I5	2.0	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.50	0.20	0.20	0.25	0.25	0.25
	pvalue	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0000	0.0085	0.0085	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097
	$\mathbf{z}_{\mathbf{u}}$	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	47.0	2.74	2.74	3.11	3.11	3.11	3.11	3.11	0.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3 11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	9.11	3.11	3.11	3.11
	$^{\rm n_2}$	30	30	080	300	30	30	30	30	30	30	e e	30	8 8	30	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	04.0	04.6	40	40	40
	$^{\mathrm{n}_{1}}$	20	20	0.70	20	20	20	20	20	20	20	50	0.00	20	20	20	20	20	50	0.70	0 2	0.00	20	20	20	20	20	20	20	20	07.0	0 0	0.00	20	20	20	20	20	20	20	07.0	07.0	0 0	20	20	20

0.25 0.66 0.4355 40 60 2.62 0.0096 0.25 0.25 0.60 0.4355 40 60 2.62 0.0096 0.25 0.25 0.70 0.7113 40 60 2.62 0.0096 0.25 0.25 0.75 0.713 40 60 2.62 0.0096 0.25 0.30 0.45 0.0805 40 60 2.62 0.0096 0.25 0.30 0.55 0.1804 40 60 2.62 0.0096 0.30 0.30 0.65 0.1089 40 60 2.62 0.0096 0.33 0.30 0.65 0.1084 40 60 2.62 0.0096 0.33 0.30 0.70 0.553 40 60 2.62 0.0096 0.33 0.31 0.70 0.553 0.0447 40 60 2.62 0.0096 0.33 0.32 0.05 0.0524 </th <th>$_{1}^{n}$</th> <th>$^{\mathrm{n}_{2}}$</th> <th>zn</th> <th>pvalue</th> <th>p1</th> <th>P2</th> <th>power</th> <th>$_{1}$</th> <th>$_{\rm n_2}$</th> <th>zu</th> <th>pvalue</th> <th>p1</th> <th>p2</th> <th>power</th>	$_{1}^{n}$	$^{\mathrm{n}_{2}}$	zn	pvalue	p1	P2	power	$_{1}$	$_{\rm n_2}$	zu	pvalue	p1	p2	power
40 3111 0.0097 0.25 0.66 0.4355 40 60 2.62 0.0096 0.25 40 3111 0.0097 0.25 0.77 0.7133 40 60 2.62 0.0096 0.25 40 3111 0.0097 0.25 0.77 0.7133 40 60 2.62 0.0096 0.25 40 3111 0.0097 0.30 0.55 0.1883 40 60 2.62 0.0096 0.30 40 3111 0.0097 0.30 0.55 0.1884 40 60 2.62 0.0096 0.30 40 3111 0.0097 0.30 0.55 0.1844 40 60 2.62 0.0096 0.30 40 3111 0.0097 0.33 0.50 0.182 0.1844 40 60 2.62 0.0096 0.30 40 3111 0.0097 0.33 0.75 0.182 40 60	١,	40	3.11	0.0097	0.25	0.55	0.3114	40	09	2.62	0.0096	0.25	0.55	0.7118
40 311 0.0097 0.25 0.65 0.573 4.0 6.0 2.62 0.0096 0.25 40 311 0.0097 0.25 0.75 0.8333 40 60 2.62 0.0096 0.25 40 311 0.0097 0.25 0.75 0.188 40 60 2.62 0.0096 0.25 40 311 0.0097 0.33 0.45 0.1089 40 60 2.62 0.0096 0.30 40 311 0.0097 0.33 0.65 0.188 40 60 2.62 0.0096 0.30 40 311 0.0097 0.33 0.65 0.0454 40 60 2.62 0.0096 0.30 40 311 0.0097 0.35 0.65 0.0447 40 60 2.62 0.0096 0.30 40 311 0.0097 0.35 0.65 0.0447 40 60 2.62 0.0096 <td></td> <td>40</td> <td>3.11</td> <td>0.0097</td> <td>0.25</td> <td>09.0</td> <td>0.4355</td> <td>40</td> <td>09</td> <td>2.62</td> <td>0.0096</td> <td>0.25</td> <td>09.0</td> <td>0.8520</td>		40	3.11	0.0097	0.25	09.0	0.4355	40	09	2.62	0.0096	0.25	09.0	0.8520
40 311 0.0097 0.25 0.70 0.7113 4.0 60 2.62 0.0096 0.25 40 311 0.0097 0.25 0.70 0.7113 4.0 60 2.62 0.0096 0.25 40 311 0.0097 0.30 0.55 0.1803 4 6 2.62 0.0096 0.30 40 311 0.0097 0.30 0.55 0.1803 4 6 2.62 0.0096 0.30 40 311 0.0097 0.30 0.60 0.775 0.40 60 2.62 0.0096 0.30 40 311 0.0097 0.30 0.60 0.55 0.0447 40 60 2.62 0.0096 0.30 40 311 0.0097 0.35 0.60 0.65 0.0447 40 60 2.62 0.0096 0.30 40 311 0.0097 0.35 0.60 0.65 0.62 0.60 <td></td> <td>40</td> <td>3.11</td> <td>0.0097</td> <td>0.25</td> <td>0.65</td> <td>0.5733</td> <td>40</td> <td>09</td> <td>2.62</td> <td>0.0096</td> <td>0.25</td> <td>0.65</td> <td>0.9389</td>		40	3.11	0.0097	0.25	0.65	0.5733	40	09	2.62	0.0096	0.25	0.65	0.9389
40 311 0.0097 0.25 0.75 0.0893 40 60 2.62 0.0096 0.25 40 311 0.0097 0.23 0.75 0.1089 40 60 2.62 0.0096 0.30 40 311 0.0097 0.30 0.55 0.11894 40 60 2.62 0.0096 0.30 40 311 0.0097 0.30 0.65 0.1084 40 60 2.62 0.0096 0.30 40 311 0.0097 0.30 0.65 0.0184 40 60 2.62 0.0096 0.30 40 311 0.0097 0.33 0.65 0.0543 40 60 2.62 0.0096 0.30 40 311 0.0097 0.35 0.65 0.0126 40 60 2.62 0.0096 0.30 40 311 0.0097 0.35 0.65 0.0447 40 60 2.62 0.0096<		40	3.11	0.0097	0.25	0.70	0.7113	40	09	2.62	0.0096	0.25	0.70	0.9808
40 311 0.0097 0.30 0.45 0.0065 4 6 2.62 0.0096 0.30 40 311 0.0097 0.30 0.45 0.1065 4 6 2.62 0.0096 0.30 40 311 0.0097 0.30 0.55 0.1844 40 60 2.62 0.0096 0.30 40 311 0.0097 0.30 0.55 0.4064 40 60 2.62 0.0096 0.30 40 311 0.0097 0.33 0.70 0.051 40 60 2.62 0.0096 0.30 40 311 0.0097 0.33 0.65 0.0447 40 60 2.62 0.0096 0.35 40 311 0.0097 0.35 0.65 0.0247 40 60 2.62 0.0096 0.35 40 311 0.0097 0.35 0.55 0.0447 40 60 2.62 0.0096		40	3.11	0.0097	0.25	0.75	0.8303	40	09	2.62	0.0096	0.25	0.75	0.9958
40 3.11 0.0097 0.30 0.50 0.1089 40 2.62 0.0096 0.30 40 3.11 0.0097 0.30 0.55 0.11804 40 2.62 0.0096 0.30 40 3.11 0.0097 0.30 0.50 0.1804 40 60 2.62 0.0096 0.30 40 3.11 0.0097 0.30 0.70 0.6515 40 60 2.62 0.0096 0.33 40 3.11 0.0097 0.35 0.56 0.0515 40 60 2.62 0.0096 0.33 40 3.11 0.0097 0.35 0.56 0.1626 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.66 0.1626 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.0451 40 60 2.62 0.0096 0.35		40	3.11	0.0097	0.30	0.45	0.0605	40	09	2.62	0.0096	0.30	0.45	0.1691
40 3.11 0.0097 0.30 0.55 0.1804 40 2.62 0.0096 0.30 40 3.11 0.0097 0.30 0.65 0.1804 40 60 2.62 0.0096 0.30 40 3.11 0.0097 0.30 0.65 0.4044 40 60 2.62 0.0096 0.30 40 3.11 0.0097 0.35 0.55 0.0945 40 60 2.62 0.0096 0.33 40 3.11 0.0097 0.35 0.65 0.0645 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.65 0.0626 40 60 2.62 0.0096 0.35 50 3.32 0.0087 0.35 0.6497 40 60 2.62 0.0096 0.35 50 3.32 0.0085 0.05 0.15 0.0447 40 60 2.62 0.0096 0.36 <td>_</td> <td>40</td> <td>3.11</td> <td>0.0097</td> <td>0.30</td> <td>0.50</td> <td>0.1089</td> <td>40</td> <td>09</td> <td>2.62</td> <td>0.0096</td> <td>0.30</td> <td>0.50</td> <td>0.3159</td>	_	40	3.11	0.0097	0.30	0.50	0.1089	40	09	2.62	0.0096	0.30	0.50	0.3159
40 3.11 0.0097 0.30 0.66 0.2792 40 60 2.62 0.0096 0.30 40 3.11 0.0097 0.30 0.66 0.2792 40 60 2.62 0.0096 0.33 40 3.11 0.0097 0.35 0.55 0.0451 40 60 2.62 0.0096 0.33 40 3.11 0.0097 0.35 0.55 0.0447 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.65 0.1626 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.40 0.55 0.0447 40 60 2.62 0.0096 0.35 50 3.32 0.0085 0.05 0.140 0.05 2.62 0.0096 0.35 50 3.32 0.0085 0.05 0.147 40 60 2.62 0.0096 0.35 <th< td=""><td>_</td><td>40</td><td>3.11</td><td>0.0097</td><td>0.30</td><td>0.55</td><td>0.1804</td><td>40</td><td>09</td><td>2.62</td><td>0.0096</td><td>0.30</td><td>0.55</td><td>0.4984</td></th<>	_	40	3.11	0.0097	0.30	0.55	0.1804	40	09	2.62	0.0096	0.30	0.55	0.4984
40 3.11 0.0097 0.35 0.465 0.4064 40 60 2.62 0.0096 0.33 40 3.11 0.0097 0.35 0.55 0.4045 40 60 2.62 0.0096 0.33 40 3.11 0.0097 0.35 0.65 0.625 40 60 2.62 0.0096 0.33 40 3.11 0.0097 0.35 0.65 0.2629 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.65 0.2629 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.265 0.2029 40 60 2.62 0.0096 0.35 50 3.32 0.0085 0.05 0.25 0.2044 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.25 0.2049 0.70 2.79 0.0099	_	40	3.11	0.0097	0.30	0.60	0.2792	40	09	2.62	0.0096	0.30	0.60	0.6838
40 3.11 0.0097 0.33 0.70 0.5533 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.56 0.0515 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.66 0.0562 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.43 0.55 0.0447 40 60 2.62 0.0096 0.35 50 3.31 0.0097 0.40 0.55 0.0447 40 60 2.62 0.0096 0.35 50 3.32 0.0085 0.05 0.12 0.0751 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.32 0.4681 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.32 0.4681 40 70 2.79		40	3.11	0.0097	0.30	0.65	0.4064	40	09	2.62	0.0096	0.30	0.65	0.8358
40 3.11 0.0097 0.35 0.50 0.0515 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.50 0.0515 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.65 0.0625 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.40 0.65 0.047 40 60 2.62 0.0096 0.35 50 3.32 0.0085 0.05 0.2049 40 70 2.73 0.0096 0.40 50 3.32 0.0085 0.05 0.2049 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.05 0.2481 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.3217 40 70 2.79 0.0090 0.05 50	_	40	3.11	0.0097	0.30	0.70	0.5533	40	09	2.62	0.0096	0.30	0.70	0.9336
40 3.11 0.0097 0.35 0.55 0.01945 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.35 0.55 0.02629 40 60 2.62 0.0096 0.35 40 3.11 0.0097 0.40 0.55 0.0262 40 60 2.62 0.0096 0.35 50 3.31 0.0087 0.40 0.55 0.0247 40 60 2.62 0.0096 0.40 50 3.32 0.0085 0.05 0.25 0.3744 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.35 0.4681 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.45 0.8471 40 70 2.79 0.0099 0.05 50 3.32 0.0085 0.10 0.25 0.279 0.0099 0.01		40	3.11	0.0097	0.35	0.50	0.0515	40	09	2.62	0.0096	0.35	0.50	0.1565
40 3.11 0.0097 0.35 0.60 0.1626 40 60 2.62 0.0096 0.40 40 3.11 0.0097 0.35 0.0447 40 60 2.62 0.0096 0.40 40 3.11 0.0097 0.40 0.65 0.0447 40 60 2.62 0.0096 0.40 50 3.32 0.0085 0.05 0.20 0.2049 40 70 2.79 0.0096 0.40 50 3.32 0.0085 0.05 0.25 0.2481 40 70 2.79 0.0096 0.40 50 3.32 0.0085 0.05 0.25 0.2481 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.46 0.7424 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.1290 40 70 2.79 0.0090 <t< td=""><td></td><td>40</td><td>3.11</td><td>0.0097</td><td>0.35</td><td>0.55</td><td>0.0945</td><td>40</td><td>09</td><td>2.62</td><td>0.0096</td><td>0.35</td><td>0.55</td><td>0.2957</td></t<>		40	3.11	0.0097	0.35	0.55	0.0945	40	09	2.62	0.0096	0.35	0.55	0.2957
40 3.11 0.0097 0.65 0.28629 40 560 2.652 0.0096 0.34 40 3.11 0.0097 0.040 0.055 0.0457 40 60 2.62 0.0096 0.40 50 3.32 0.0085 0.05 0.15 0.0751 40 70 2.79 0.0096 0.40 50 3.32 0.0085 0.05 0.25 0.0751 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.25 0.3374 40 70 2.79 0.0099 0.05 50 3.32 0.0085 0.05 0.46 0.7424 40 70 2.79 0.0099 0.05 50 3.32 0.0085 0.10 0.35 0.45 0.4744 40 70 2.79 0.0099 0.05 50 3.32 0.0085 0.10 0.35 0.45 0.471 40 70		40	3.11	0.0097	0.35	0.60	0.1626	40	09	7.62	0.0096	0.35	0.60	0.4780
40 3.11 0.0097 0.40 0.55 0.0447 40 60 2.62 0.0096 0.40 40 3.11 0.0097 0.05 0.0751 40 60 2.62 0.0096 0.40 50 3.32 0.0085 0.05 0.15 0.0751 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.23 0.2484 40 70 2.79 0.0096 0.05 50 3.32 0.0085 0.05 0.35 0.2697 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.05 0.35 0.697 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.445 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.445 40 70 2.79 0.0090 0		40	3.11	0.0097	0.35	0.65	0.2629	40	09	7.62	0.0096	0.35	0.65	0.6716
40 3.11 0.0087 0.40 0.085 40 0.085 0.00 50 3.32 0.0085 0.05 0.2049 0.085 0.05 0.009 0.0085 0.05 50 3.32 0.0085 0.05 0.20 0.2049 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.05 0.25 0.2449 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.05 0.40 0.7424 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.294 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.25 0.1294 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.25 0.1294 40 70 2.79 0.0090 0.10 50 <t< td=""><td></td><td>40</td><td>3.11</td><td>0.0097</td><td>0.40</td><td>0.55</td><td>0.0447</td><td>40</td><td>09</td><td>7.62</td><td>0.0096</td><td>0.40</td><td>0.55</td><td>0.1471</td></t<>		40	3.11	0.0097	0.40	0.55	0.0447	40	09	7.62	0.0096	0.40	0.55	0.1471
50 3.32 0.10085 0.0.5 0.175 1 7 2.79 0.00990 0.05 50 3.32 0.0085 0.05 0.25 0.3374 40 70 2.79 0.00990 0.05 50 3.32 0.0085 0.05 0.25 0.3374 40 70 2.79 0.00990 0.05 50 3.32 0.0085 0.05 0.46 0.7424 40 70 2.79 0.00990 0.05 50 3.32 0.0085 0.05 0.46 0.7424 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.36 0.294 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.35 0.255 44 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.36 0.25 0.279 0.0090 0.10 <		40	3.11	0.0097	0.40	0.60	0.0858	40	09	2.62	0.0096	0.40	0.60	0.2856
50 3.32 0.0085 0.05 0.2049 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.05 0.204 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.05 0.35 0.4681 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.05 0.35 0.4681 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.445 0.447 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.1290 40 70 27.9 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.4551 40 70 27.9 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.451 40 70 2.79 0.0090	_	20	3.32	0.0085	0.05	0.15	0.0751	40	2	2.79	0.0000	0.05	0.15	0.2205
50 3.32 0.0085 0.05 0.25 0.3374 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.05 0.25 0.6997 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.05 0.46 0.7424 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.1290 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.25 0.1290 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.5294 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.5256 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.5256 40 70 2.79		20	3.35	0.0085	0.02	0.20	0.2049	40	20	2.79	0.0000	0.02	0.20	0.4410
50 3.32 0.0085 0.0.5 0.3481 40 70 2.79 0.00900 0.05 50 3.32 0.0085 0.05 0.44681 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.05 0.46 0.7424 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.36 0.42 0.7424 40 70 2.79 0.0090 0.05 50 3.32 0.0085 0.10 0.35 0.2094 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.35 0.2556 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.48 0.72 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.7284 40 70 2.79 0.0090 <		20	3.32	0.0085	0.05	0.25	0.3374	40	29	2.79	0.0000	0.05	0.25	0.6674
50 3.32 0.0085 0.05 0.35 0.6097 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.05 0.35 0.6697 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.01 0.25 0.1290 40 70 27.9 0.0090 0.01 50 3.32 0.0085 0.10 0.25 0.1290 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.4551 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.4551 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.4551 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.4551 40 70 2.79	_	20	3.32	0.0085	0.05	0.30	0.4681	40	20	2.79	0.0000	0.02	0.30	0.8415
50 3.32 0.10085 0.0.5 0.440 0.7424 40 70 27.9 0.0090 0.05 50 3.32 0.0085 0.05 0.40 0.7424 40 70 27.9 0.0090 0.005 50 3.32 0.0085 0.10 0.35 0.2394 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.36 0.2294 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.2595 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.2595 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.60 0.9145 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.2596 40 70 2.79	_	20	3.32	0.0085	0.05	0.35	0.6097	40	20	2.79	0.0000	0.05	0.35	0.9407
50 3.32 0.0085 0.0.5 0.45 0.8471 40 70 2.79 0.00900 0.015 50 3.32 0.0085 0.010 0.35 0.2094 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.35 0.2094 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.2094 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.7283 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.50 0.9145 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.36 0.945 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.36 0.944 40 70 2.79 <t< td=""><td></td><td>20</td><td>3.32</td><td>0.0085</td><td>0.05</td><td>0.40</td><td>0.7424</td><td>40</td><td>29</td><td>2.79</td><td>0.0000</td><td>0.05</td><td>0.40</td><td>0.9828</td></t<>		20	3.32	0.0085	0.05	0.40	0.7424	40	29	2.79	0.0000	0.05	0.40	0.9828
90 3.32 0.1085 0.11 0.259 0.1290 4.0 7.0 2.7.9 0.0090 0.11 50 3.32 0.0085 0.10 0.25 0.1250 4.0 7.0 2.7.9 0.0090 0.11 50 3.32 0.0085 0.10 0.45 0.4551 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.458 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.50 0.7283 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.50 0.7283 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.35 0.1519 40 70 2.79 0.0090 0.11 50 3.32 0.0085 0.15 0.35 0.1519 40 70 2.79		50	3.32	0.0085	0.05	0.45	0.8471	40	2 6	2.79	0.0090	0.05	0.45	0.9961
50 3.32 0.1085 0.11 0.3204 40 70 2.75 0.00990 0.11 50 3.32 0.0085 0.10 0.455 1 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.5356 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.45 0.556 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.55 0.8377 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.8377 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.46 0.2452 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.46 0.2452 40 70 2.79 0.0090 0.15		20	3.32	0.0085	0.10	0.25	0.1290	40	2 1	2.79	0.0090	0.10	0.25	0.2920
3.3.2 0.0085 0.10 0.321 40 7.79 0.00990 0.10 50 3.3.2 0.0085 0.10 0.45 0.5956 40 70 2.79 0.00990 0.10 50 3.3.2 0.0085 0.10 0.45 0.5956 40 70 2.79 0.0090 0.10 50 3.3.2 0.0085 0.10 0.56 0.837 40 70 2.79 0.0090 0.10 50 3.3.2 0.0085 0.10 0.60 0.9145 40 70 2.79 0.0090 0.10 50 3.3.2 0.0085 0.15 0.38 0.0844 40 70 2.79 0.0090 0.15 50 3.3.2 0.0085 0.15 0.46 0.2452 40 70 2.79 0.0090 0.15 50 3.3.2 0.0085 0.15 0.46 0.2452 40 70 2.79 0.0090 0.15		200	3.32	0.0085	0.10	0.30	0.2094	40	2 6	2.79	0.0090	0.10	0.30	0.5031
50 3.32 0.0085 0.10 0.445 0.455 40 70 2.75 0.0090 0.10 50 3.32 0.0085 0.10 0.55 0.7283 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.55 0.7283 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.30 0.0864 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.30 0.0864 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.36 0.1519 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.45 0.365 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.46 0.365 40 70 2.79 0.		00.5	25.5	0.0085	0.10	0.00	0.3217	40	9 9	2.73	0.0030	0.10	0.35	0.7093
50 3.32 0.0085 0.10 0.45 0.2939 40 70 2.79 0.0099 0.10 50 3.32 0.0085 0.10 0.55 0.8377 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.55 0.8377 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.36 0.0844 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.35 0.1519 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.45 0.2452 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.50 0.5058 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.50 0.5058 40 70 2.79		00 2	25.5	0.0085	0.10	0.40	0.4551	40	3 9	1.0	0.0030	0.10	0.40	0.8000
3.3.2 0.0085 0.11 0.25 0.1283 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.10 0.66 0.9145 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.11 0.66 0.9145 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.35 0.1845 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.46 0.2452 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.46 0.2452 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.46 0.2452 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.46 0.7047 40 70 2.79 0.0090		00.5	25.5	0.0085	0.10	0.40	0.5956	40	9 9	2.73	0.0030	0.10	0.45	0.9459
50 3.32 0.0085 0.10 0.5371 40 7.0 2.75 0.0099 0.10 50 3.32 0.0085 0.15 0.30 0.0864 40 70 2.79 0.0090 0.10 50 3.32 0.0085 0.15 0.36 0.1519 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.45 0.159 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.45 0.3657 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.45 0.3657 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.6479 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.66479 40 70 2.79 0.0090 0.15		0 5	20.0	0.0085	0.10	0.00	0.7283	40	3 9	0.73	0.0030	0.10	0.00	0.9832
50 3.32 0.0085 0.10 0.009 0.0143 40 70 2.79 0.0090 0.11 50 3.32 0.0085 0.15 0.35 0.1519 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.46 0.2452 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.46 0.2652 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.50 0.5058 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.50 0.5058 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.56 0.6479 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.46 0.0652 40 70 2.79 <td< td=""><td></td><td>00 20</td><td>25.5</td><td>0.0085</td><td>0.10</td><td>0.55</td><td>0.8377</td><td>40</td><td>2 9</td><td>67.7</td><td>0.0080</td><td>0.10</td><td>0.55</td><td>0.9958</td></td<>		00 20	25.5	0.0085	0.10	0.55	0.8377	40	2 9	67.7	0.0080	0.10	0.55	0.9958
50 3.32 0.0085 0.15 0.0087 0.16 0.15 0.0087 0.11 0.0087 0.15 0.0087 0.0087 0.15 0.0087 0.0087 0.15 0.0087 0.0087 0.15 0.0087 0.11 0.0087 0.12 0.0090 0.15 0.0090 0.15 0.0090 0.15 0.0090 0.15 0		00 1	70.0	0.0000	0.10	00.0	0.9145	40	3 9	10	0.0030	0.10	0.00	0.9992
90 3.32 0.0085 0.15 0.45 0.1519 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.45 0.3657 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.45 0.3657 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.50 0.5058 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.66 0.7713 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.66 0.7713 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.35 0.065 0.46 0.70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.45 0.200 40 70 2.79 <t< td=""><td></td><td></td><td>3.32</td><td>0.0085</td><td>0.15</td><td>0.30</td><td>0.0864</td><td>40</td><td>2 6</td><td>67.7</td><td>0.0090</td><td>0.15</td><td>0.30</td><td>0.2266</td></t<>			3.32	0.0085	0.15	0.30	0.0864	40	2 6	67.7	0.0090	0.15	0.30	0.2266
90 3.32 0.1085 0.15 0.440 0.2452 40 70 2.79 0.00990 0.15 50 3.32 0.0085 0.15 0.40 0.2452 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.505 0.6479 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.55 0.6479 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.65 0.6477 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.45 0.0652 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.45 0.2007 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.46 0.2007 40 70 2.79 <		00.	2.32	0.0085	0.1.0	0.35	0.1519	40	2 6	67.73	0.0030	0.1.0	0.35	0.4131
50 3.32 0.1085 0.1.5 0.450 0.1857 4.0 7.19 0.10990 0.1.5 50 3.32 0.0085 0.15 0.55 0.6479 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.65 0.6479 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.65 0.8647 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.65 0.8647 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.35 0.665 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.46 0.1188 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.50 0.4467 40 70 2.79 0.0090			20.0	0.0085	0.1.0	0.40	0.2452	40	9 6	0.7	0.0030	0.1.0	0.40	0.0109
90 3.32 0.1085 0.1.5 0.50 0.1085 0.1.5 0.1085 0.1.5 0.1085 0.1.5 0.0.65 0.1.5 0.0.65 0.1.5 0.0.65 0.1.5 0.0.65 0.0.65 0.0.65 0.0.65 0.0.65 0.0.69 0.1.5 0.0.090 0.1.5 0.0.090 0.1.5 0.0.095 0.0.090 0.0.15 0.0.095 0.0.095 0.0.090 0.0.15 0.0.090 0.0.15 0.0.095 0.0.090 0.0.20 0.0.000		9 2	70.0	0.0085	0.1.0	0.40	0.3037	40	9 6	0.7	0.0030	0.15	0.40	0.7890
90 3.32 0.1085 0.15 0.58 0.7447 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.65 0.7741 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.15 0.65 0.6652 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.35 0.0652 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.45 0.2087 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.45 0.2087 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79	_ ^	00.	2.32	0.0085	0.1.0	0.50	0.5058	40	2 6	67.73	0.0030	0.1.0	0.50	0.9029
50 3.32 0.1085 0.15 0.66 0.8713 40 70 2.79 0.00990 0.15 50 3.32 0.0085 0.15 0.65 0.854 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.40 0.1188 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.40 0.1188 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.50 0.3129 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.50 0.3129 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79	_ ,	20	3.32	0.0085	0.15	0.55	0.6479	40	2 1	2.79	0.0090	0.15	0.55	0.9635
50 3.32 0.0085 0.15 0.65 0.8647 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.35 0.0655 40 70 2.79 0.0090 0.15 50 3.32 0.0085 0.20 0.45 0.2007 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.45 0.2007 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.45 0.2007 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.445 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.70 0.8221 40 70 2.79 0		20	3.32	0.0085	0.15	09.0	0.7713	40	20	2.79	0.0090	0.15	0.60	0.9893
50 3.32 0.0085 0.20 0.35 0.0655 40 70 279 0.0090 0.20 50 3.32 0.0085 0.20 0.45 0.0087 40 70 279 0.0090 0.20 50 3.32 0.0085 0.20 0.45 0.2007 40 70 279 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.78245 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.77 0.8221 40 70 2.79 0.	_	20	3.35	0.0085	0.15	0.65	0.8647	40	20	2.79	0.0000	0.15	0.65	0.9977
50 3.32 0.0085 0.20 0.440 0.1188 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.45 0.2007 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.70 0.8221 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.25 0.70 0.052 40 70 2.79		20	3.32	0.0085	0.20	0.35	0.0652	40	20	2.79	0.0000	0.20	0.35	0.1893
50 3.3.2 0.0085 0.20 0.445 0.2007 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.60 0.5845 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.77 0.622 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.77 0.622 4 70 2.79 0.0090 0.20 50 3.32 0.0085 0.25 0.05 0.05 0.05 0.05 0.05 <td< td=""><td></td><td>20</td><td>3.32</td><td>0.0085</td><td>0.20</td><td>0.40</td><td>0.1188</td><td>40</td><td>20</td><td>2.79</td><td>0.0000</td><td>0.20</td><td>0.40</td><td>0.3537</td></td<>		20	3.32	0.0085	0.20	0.40	0.1188	40	20	2.79	0.0000	0.20	0.40	0.3537
50 3.3.2 0.0085 0.20 0.50 0.3129 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.66 0.5845 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.77 0.622 4 70 2.79 0.0090 0.20 50 3.32 0.0085 0.25 0.77 0.622 4 70 2.79 0.0090 0.25	_	20	3.32	0.0085	0.20	0.45	0.2007	40	20	2.79	0.0000	0.20	0.45	0.5457
50 3.32 0.0085 0.20 0.55 0.4467 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.60 0.5845 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.70 0.8221 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.25 0.40 0.6523 40 70 2.79 0.0090 0.25	_	20	3.32	0.0085	0.20	0.50	0.3129	40	20	2.79	0.0090	0.20	0.50	0.7247
50 3.32 0.0085 0.20 0.60 0.5845 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.70 0.8221 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.25 0.40 0.0523 40 70 2.79 0.0090 0.25		20	3.32	0.0085	0.20	0.55	0.4467	40	20	2.79	0.0090	0.20	0.55	0.8613
50 3.32 0.0085 0.20 0.65 0.7120 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.20 0.70 0.8221 40 70 2.79 0.0090 0.20 50 3.32 0.0085 0.25 0.40 0.0523 40 70 2.79 0.0090 0.25		20	3.32	0.0085	0.20	0.60	0.5845	40	20	2.79	0.0090	0.20	0.60	0.9443
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	20	3.32	0.0085	0.20	0.65	0.7120	40	20	2.79	0.0090	0.20	0.65	0.9830
50 3.32 0.0085 0.25 0.40 0.0523 40 70 2.79 0.0090 0.25		20	3.32	0.0085	0.20	0.70	0.8221	40	20	5.79	0000	0.00	0.70	0 0063
	_	1)	- 1		0.0000	24.5	5	0.9900

Table B.18: continue on next page

Table B.18: continue on next page

us page	power	0.4886	0.6771	0.8326	0.9795	0.9956	0.1397	0.2726	0.4538	0.6514	0.8196	0.9275	0.2553	0.4395	0.6440	0.1193	0.2507	0.2088	0.4353	0.6677	0.8428	0.9420	0.9834	0.9963	0.2820	0.4912	0.0900	0.9318	0.9805	0.9952	0.9991	0.2103	0.3885	0.5868	0.7628	0.0004	0.9882	0.9975	0.1657	0.3154	0.5040	0.6947	0.8457	0.9377	0.9803	0.9954	O.1.0±0
revion	P2	0.50	0.55	0.60	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.00	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.00	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.00	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	O.¥.O
rom p	p1	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.0	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	04.0
-continued from previous page	pvalue	0.0090	0.0090	0.0000	0.0000	0.0000	0.0090	0.0000	0.0000	0.0000	0.0000	0.0080	0.0030	0.0090	0.0000	0.0000	0.0000	0.0079	0.0079	0.0070	0.0070	0.0079	0.0079	0.0079	0.0079	0.0070	0.0070	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0079	0.0018
	$\mathbf{z}_{\mathbf{u}}$	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.73	0.70	2.79	2.79	2.79	2.79	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	66.7	2 99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	0000	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	6.33
B.18:	$^{\mathrm{n}_{2}}$	70	20	2 2	202	20	20	20	20	20	P 6	2 2	2 2	2.02	202	20	20	80	80	80	80	80	80	80	80	080	000	8 8	80	80	80	80	80	80	080	000	8	80	80	80	80	80	80	80	200	080	00
Table	$^{\rm n_1}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	0,4	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	040	7.
	power	0.1739	0.2756	0.3972	0.6711	0.8003	0.0446	0.0870	0.1523	0.2422	0.3587	0.5013	0.0330	0.1326	0.2186	0.0333	0.0649	0.0648	0.1995	0.3261	0.4395	0.5775	0.7177	0.8301	0.1184	0.1851	0.2030	0.5603	0.6936	0.8048	0.8871	0.0725	0.1304	0.2155	0.3264	0.4550	0.7127	0.8200	0.0533	0.0989	0.1684	0.2630	0.3781	0.5075	0.6440	0.7728	0.0410
	p 2	0.50	0.55	0.60	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.0	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.00	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.0	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.0	O.4.O
	p1	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.10	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.40
	pvalue	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0011
	$\mathbf{z}_{\mathbf{u}}$	3.32	3.32	3 3 3 3 3 4 3 6 3 6	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3 2 2 2	3.32	3.32	3.32	3.32	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	00.0	0000	3.68	3.68	3.68	3.68	3.68	3.68	80.0	0 00	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	80.0	80.0	00.0
	$^{\rm n_2}$	20	20	3.00	20	20	20	20	20	20	20.	20	200	20	20	20	20	09	09	09	09	09	09	09	09	09	90	8 6	09	09	09	09	09	09	99	8 9	09	09	09	09	09	09	09	09	99	09	20
	$^{\mathrm{n}_{1}}$	20	20	200	20	20	20	20	20	20	50	07.0	070	20	20	20	20	20	20	20	20	20	20	20	20	50	0 0	20	20	20	20	20	20	20	07.0	0.00	20	20	20	20	20	20	20	50	07.0	07.0	04

pvalue	p1	p2	power	$^{\rm n_1}$	n ₂	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	p2	power
		0.45	0.0778	40	80	2.99	0.0079	0.25	0.45	0.2680
0.0077 0.25		0.50	0.1351	40	S &	2.99	0.0079	0.25	0.50	0.4512
0.25		09:0	0.3219	40	8 8	2.99	0.0079	0.25	09:0	0.8123
0.25		0.65	0.4546	40	80	2.99	0.0079	0.25	0.65	0.9193
		0.70	0.6024	40	80	2.99	0.0079	0.25	0.70	0.9738
0.0077 0.25		0.75	0.7405	40	80	2.99	0.0079	0.25	0.75	0.9941
0.0077 0.30		0.45	0.0323	04	200	2.99	0.0079	0.30	0.45	0.1150
		0.55	0.1096	044	8 8	2.99	0.0079	0.30	0.55	0.4165
0.00 77 0.30		0.60	0.1825	40	8 8	2.99	0.0079	0.30	0.60	0.6127
		0.65	0.2882	40	80	2.99	0.0079	0.30	0.65	0.7869
0.30		0.70	0.4244	40	80	2.99	0.0079	0.30	0.70	0.9087
		0.50	0.0254	40	80	2.99	0.0079	0.35	0.50	0.1036
0.0077 0.35		0.55	0.0498	40	80	2.99	0.0079	0.35	0.55	0.2200
0.35		09.0	0.0926	40	80	2.99	0.0079	0.35	09.0	0.3895
0.35		0.65	0.1638	40	80	2.99	0.0079	0.35	0.65	0.5902
		0.55	0.0201	40	80	2.99	0.0079	0.40	0.55	0.0943
0.0077 0.40		0.60	0.0419	40	08	2.99	0.0079	0.40	0.60	0.2047
0.05		0.15	0.0877	40	06	3.17	0.0073	0.05	0.15	0.1937
0.05		0.20	0.2386	40	06	3.17	0.0073	0.05	0.20	0.4063
0.05		0.25	0.3412	40	06	3.17	0.0073	0.05	0.25	0.6416
0.00 800 800 800		0.30	0.4233	040	9 9	3.17	0.0073	0.00	0.30	0.0251
		0.20	0.6990	4	86	3.17	0.0073	0.00	0.30	0.000
0.05		0.45	0.8173	40	86	3.17	0.0073	0.02	0.45	0.9957
0.10		0.25	0.1200	40	06	3.17	0.0073	0.10	0.25	0.2547
0.10		0.30	0.1700	40	06	3.17	0.0073	0.10	0.30	0.4586
0.10		0.35	0.2672	40	06	3.17	0.0073	0.10	0.35	0.6694
		0.40	0.3964	40	06	3.17	0.0073	0.10	0.40	0.8325
0.0100 0.10		0.45	0.5361	40	06	3.17	0.0073	0.10	0.45	0.9310
0.10		0.50	0.6721	40	90	3.17	0.0073	0.10	0.50	0.9777
0.10		0.55	0.7874	40	90	3.17	0.0073	0.10	0.55	0.9945
0.10		09.0	0.8736	40	06	3.17	0.0073	0.10	09.0	0.9990
0.15		0.30	0.0639	40	06	3.17	0.0073	0.15	0.30	0.1834
0.15		0.35	0.1161	40	06	3.17	0.0073	0.15	0.35	0.3519
0.15		0.40	0.1962	40	06	3.17	0.0073	0.15	0.40	0.5504
0.15		0.45	0.3023	40	06	3.17	0.0073	0.15	0.45	0.7369
0.15		0.50	0.4286	40	06	3.17	0.0073	0.15	0.50	0.8743
0.15		0.55	0.5605	40	96	3.17	0.0073	0.15	0.55	0.9525
		0.60	0.6847	40	06	3.17	0.0073	0.15	0.60	0.9865
0.0100 0.15		0.65	0.7935	40	96	3.17	0.0073	0.15	0.65	0.9972
0.20		0.35	0.0459	40	06	3.17	0.0073	0.20	0.35	0.1404
0.20		0.40	0.0869	40	06	3.17	0.0073	0.20	0.40	0.2805
0.20		0.45	0.1507	40	06	3.17	0.0073	0.20	0.45	0.4676
0.20		0.50	0.2393	40	06	3.17	0.0073	0.20	0.50	0.6643
0.20		0.55	0.3484	40	96	3.17	0.0073	0.20	0.55	0.8268
		0.60	0.4712	40	06	3.17	0.0073	0.20	0.60	0.9299
0.0100 0.20		0.65	0.6020	40	06	3.17	0.0073	0.20	0.65	0.9784
		0.70	0.7308	40	06	3.17	0.0073	0.20	0.70	0.9950

Table B.18: continue on next page

us page	power	0.1121	0.2357	0.4135	0.7944	0.9121	0.9709	0.9931	0.0948	0.2086	0.3821	0.5861	8268.0	0.0850	0.1936	0.3611	0.5620	0.0792	0.1817	0.1832	0.3839	0.6191	0.8145	0.9272	0.9778	0.9951	0.2332	0.4280	0.8145	0.9251	0.9759	0.9938	0.9988	0.1592	0.3182	0.5253	0.8626	0.9454	0.9833	0.9963	0.1211	0.2579	0.4422	0.6366	0.8025	0.9146	0.2120
reviou	P2	0.40	0.45	0.50	09.0	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.40	0.35	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.40	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.00
rom p	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.10	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	04.0
-continued from previous page	pvalue	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0073	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.00.0
	$\mathbf{z}_{\mathbf{n}}$	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17 9.17	3 1 2	3.17	3.17	3.17	3.17	3.17	3.17	3.34	3.34	3.34	3.34	3.34	3.34	3.34	40.0	3.34	3.34	3.34	3.34	3.34	3.34	3.34	2.34	3.54	3.34	3.34	3.34	3.34	3.34	3.34	3.34	3.34	3.34	2.34	٠.٠٠ ٢
B.18:	$^{\mathrm{n}_{2}}$	06	06	6 6	06	06	06	06	06	06	6 8	3 8	8 6	06	06	06	06	06	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	TOO
Table	$^{\mathrm{n}_{1}}$	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	40	40	40	40	7 7	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040) †
,	power	0.0347	0.0672	0.1185	0.2866	0.4063	0.5459	0.6896	0.0268	0.0523	0.0932	0.1547	0.3655	0.0206	0.0403	0.0742	0.1306	0.0154	0.0315	0.0762	0.2348	0.3431	0.4297	0.5675	0.7073	0.8130	0.1200	0.2750	0.3945	0.5193	0.6451	0.7570	0.8520	0.0655	0.1186	0.2829	0.3946	0.5184	0.6499	0.7699	0.0462	0.0818	0.1357	0.2105	0.3095	0.4342	0.0000
	p2	0.40	0.45	0.50	0.60	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.4.0	0.32	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.40	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.00
	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.10	0.10	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	04.0
	pvalue	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0032	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0032	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0034
	$\mathbf{z}_{\mathbf{u}}$	3.92	3.92	3.92 3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3 0 0	3.92	3.92	3.92	3.92	3.92	3.92	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.1.4	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	4.12	21.4	4.12
	$^{\rm n_2}$	70	20	2 2	202	20	70	20	20	20	2 6	2 5	2.5	20.	20	20	20	70	70	80	80	80	80	80	80	08 8	000	8 8	8 8	80	80	80	80	080	08 8	8 8	8 8	8 8	80	80	80	80	80	80	200	8 8	00
	$^{\mathrm{n}_{1}}$	20	20	0 70	20	20	20	20	20	20	50	0.70	0.00	20	20	20	20	20	20	20	20	20	20	20	50	500	0 0	200	20	20	20	20	20	20	0.70	0.00	0.00	20	20	20	20	20	20	20	070	0.70	04

$^{\rm n_1}$	$_{12}$	zn	pvalue	b 1	D 2	power	1	n ₂	zn	pvalue	b1	p 2	power
20	80	4.12	0.0092	0.20	0.70	0.6989	40	100	3.34	0.0070	0.20	0.70	0.9934
20	80	4.12	0.0092	0.25	0.40	0.0316	40	100	3.34	0.0070	0.25	0.40	0.0986
20	80	4.12	0.0092	0.25	0.45	0.0580	40	100	3.34	0.0070	0.25	0.45	0.2124
20	80	4.12	0.0092	0.25	0.50	0.0995	40	100	3.34	0.0070	0.25	0.50	0.3775
20	80	4.12	0.0092	0.25	0.55	0.1633	40	100	3.34	0.0070	0.25	0.55	0.5733
20	80	4.12	0.0092	0.25	0.60	0.2559	40	100	3.34	0.0070	0.25	09.0	0.7579
20	80	4.12	0.0092	0.25	0.65	0.3726	40	100	3.34	0.0070	0.25	0.65	0.8918
20	80	4.12	0.0092	0.25	0.70	0.5053	40	100	3.34	0.0070	0.25	0.70	0.9636
20	80	4.12	0.0092	0.25	0.75	0.6472	40	100	3.34	0.0070	0.25	0.75	0.9913
20	80	4.12	0.0092	0.30	0.45	0.0222	40	100	3.34	0.0070	0.30	0.45	0.0802
20	80	4.12	0.0092	0.30	0.50	0.0419	40	100	3.34	0.0070	0.30	0.50	0.1782
20	80	4.12	0.0092	0.30	0.55	0.0766	40	100	3.34	0.0070	0.30	0.55	0.3345
20	80	4.12	0.0092	0.30	09.0	0.1336	40	100	3.34	0.0070	0.30	09.0	0.5337
20	80	4.12	0.0092	0.30	0.65	0.2160	40	100	3.34	0.0070	0.30	0.65	0.7313
50	80	4.12	0.0092	0.30	0.70	0.3253	40	100	3.34	0.0070	0.30	0.70	0.8782
50	80	4.12	0.0092	0.35	0.50	0.0157	40	100	3.34	0.0070	0.35	0.50	0.0669
50	80	4.12	0.0092	0.35	0.55	0.0319	40	100	3.34	0.0070	0.35	0.55	0.1573
20	80	4.12	0.0092	0.35	09.0	0.0619	40	100	3.34	0.0070	0.35	09.0	0.3103
50	80	4.12	0.0092	0.35	0.65	0.1108	40	100	3.34	0.0070	0.35	0.65	0.5129
20	80	4.12	0.0092	0.40	0.55	0.0118	40	100	3.34	0.0070	0.40	0.55	0.0591
20	80	4.12	0.0092	0.40	09.0	0.0253	40	100	3.34	0.0070	0.40	09.0	0.1462

Table B.19: P-values calculated for the z-pooled statistic in cases of different sample sizes, α = 0.05. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

n_1	n_2	$\mathbf{z}_{\mathbf{p}}$	p	pvalue
10	20	1.88	0.316012	0.031574
10	30	1.83	0.69246	0.043865
10	40	2.03	0.930702	0.041712
10	50	1.74	0.54823	0.047843
10	60	2.08	0.689474	0.024907
10	70	1.79	0.801047	0.048862
10	80	1.83	0.951778	0.04821
10	90	1.97	0.893628	0.041246
10	100	2.04	0.948707	0.04527
20	30	1.69	0.403011	0.048092
20	40	1.78	0.694341	0.041944
20	50	1.76	0.593926	0.041183
20	60	1.73	0.771628	0.049473
20	70	1.75	0.824644	0.045176
20	80	1.74	0.679213	0.045884
20	90	1.83	0.783315	0.040713
20	100	1.71	0.650714	0.047264
30	40	1.68	0.434646	0.048898
30	50	1.7	0.758756	0.048607
30	60	1.69	0.668676	0.049881
30	70	1.76	0.848595	0.047319
30	80	1.69	0.644335	0.048985
30	90	1.71	0.683038	0.048022
30	100	1.72	0.782385	0.046544
40	50	1.68	0.574644	0.047961
40	60	1.72	0.794668	0.047196
40	70	1.67	0.631039	0.049362
40	80	1.69	0.700394	0.049079
40	90	1.7	0.520714	0.046451
40	100	1.72	0.720583	0.047146

Table B.19: concluded from previous page

Table B.20: P-values calculated for the z-pooled statistic in cases of different sample sizes, α = 0.025. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

$\mathbf{n_1}$	n_2	$\mathbf{z}_{\mathbf{p}}$	p	pvalue
10	30	2.17	0.5567	0.0176
10	40	2.16	0.8812	0.0246
10	50	2.39	0.8650	0.0166
10	60	2.08	0.6895	0.0249
10	70	2.67	0.9545	0.0163
10	80	2.24	0.8420	0.0239
10	90	3.02	0.9662	0.0099
10	100	3.18	0.9639	0.0086
20	30	1.97	0.6029	0.0246
20	40	2.06	0.6682	0.0217
20	50	2.00	0.3788	0.0237
20	60	2.21	0.6546	0.0157
20	70	2.10	0.8961	0.0242
20	80	2.04	0.6670	0.0245
20	90	2.16	0.8764	0.0243
20	100	2.24	0.8211	0.0185
30	40	2.10	0.8156	0.0222
30	50	2.02	0.7688	0.0237
30	60	2.01	0.8434	0.0250
30	70	2.10	0.8637	0.0226
30	80	2.12	0.8047	0.0232
30	90	2.08	0.8101	0.0243
30	100	2.10	0.6487	0.0206
40	50	2.00	0.5035	0.0225
40	60	1.98	0.3861	0.0249
40	70	1.99	0.3559	0.0250
40	80	2.07	0.5750	0.0212
40	90	2.03	0.6656	0.0242
40	100	2.02	0.6948	0.0245

Table B.20: concluded from previous page

Table B.21: P-values calculated for the z-pooled statistic in cases of different sample sizes, $\alpha = 0.01$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_p}$: critical value; p: value of the nuisance parameter; p-value: attained size of the test.

$\overline{\mathbf{n_1}}$	n_2	$\mathbf{z_p}$	p	pvalue
10	30	2.56	0.7475	0.0078
10	40	2.66	0.7236	0.0063
10	50	2.72	0.9549	0.0095
10	60	2.66	0.8842	0.0098
10	70	2.90	0.9440	0.0063
10	80	3.12	0.9371	0.0069
10	90	3.02	0.9662	0.0099
10	100	3.18	0.9639	0.0086
20	30	2.51	0.6623	0.0074
20	40	2.40	0.7736	0.0099
20	50	2.65	0.6937	0.0056
20	60	2.59	0.8560	0.0077
20	70	2.68	0.9212	0.0090
20	80	2.86	0.9343	0.0058
20	90	2.77	0.8797	0.0065
20	100	2.66	0.9111	0.0093
30	40	2.39	0.6151	0.0094
30	50	2.39	0.7384	0.0097
30	60	2.41	0.7563	0.0099
30	70	2.51	0.8980	0.0098
30	80	2.49	0.6520	0.0075
30	90	2.49	0.7514	0.0086
30	100	2.56	0.7776	0.0072
40	50	2.35	0.5576	0.0099

Table B.21: concluded from previous page

 $\alpha = 0.05$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in the first sample; p2: fixed value of the probability of success in the second sample. Table B.22: Achieved power and p-values calculated for the z-pooled statistic in cases of different sample sizes,

20 1.88 0.0316 0.05 0.15 0.0407 20 18.8 0.0316 0.05 0.20 0.1242 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.25 0.2422 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.25 0.2422 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.40 0.255 20 90 1.83 0.0407 20 1.88 0.0316 0.01 0.25 0.4405 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.25 0.7484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.25 0.2484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.25 0.2484 20 90 1.83 0.0407	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	$\mathbf{p_1}$	p 2	power	$_{1}^{n}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	P2	power
20 1.88 0.0316 0.05 0.25 0.1204 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.25 0.2152 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.35 0.5285 2 90 1.83 0.0407 20 1.88 0.0316 0.05 0.44 0.6525 2 90 1.83 0.0407 20 1.88 0.0316 0.10 0.25 0.1495 2 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.1495 2 90 1.83 0.0407 20 1.88 0.0316 0.10 0.40 0.475 0.49 1.83 0.0407 20 1.88 0.0316 0.10 0.40 0.425 0.90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.440 0.525 <	10	20	1.88	0.0316	0.05	0.15	0.0407	20	06	1.83	0.0407	0.05	0.15	0.1834
20 1.88 0.0316 0.05 0.25 0.2452 20 0 1.83 0.0407 20 1.88 0.0316 0.05 0.25 0.2452 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.35 0.2452 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.45 0.7552 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.2484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.24729 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8529 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.7829 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0	2 0	200	000	0.0316	0.05	0.50	0.1204	000	06	1 83	0.0407	0.05	0.50	0.4146
20 1.88 0.0316 0.05 0.25 0.24825 2.0 0.0 1.88 0.0407 20 1.88 0.0316 0.05 0.35 0.5282 2.0 90 1.83 0.0407 20 1.88 0.0316 0.05 0.45 0.7553 2.0 90 1.83 0.0407 20 1.88 0.0316 0.10 0.25 0.1495 2.0 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.3284 2.0 90 1.83 0.0407 20 1.88 0.0316 0.10 0.40 0.4729 2.0 90 1.83 0.0407 20 1.88 0.0316 0.10 0.40 0.4729 2.0 90 1.83 0.0407 20 1.88 0.0316 0.10 0.40 0.4284 2.0 90 1.83 0.0407 20 1.88 0.0316 0.10 0.40	0 0	2 6	000	0.0016	000	9 0	0.010	9 6	88	000	0.010.0	20.0	100	0.6499
20 1.88 0.0316 0.05 0.36 0.3855 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.45 0.6553 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.45 0.7602 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.2484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.2484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8529 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8529 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8529 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0	0,	0 0	1.00	0.0310	0.00	0.4.0	0.2424	0 0	90	1.00	10.000	0.0	0.4.0	40.0
20 1.88 0.0316 0.05 0.45 2 0 1.83 0.0407 20 1.88 0.0316 0.05 0.45 0.75602 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.25 0.445 0.7602 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.25 0.7459 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.5829 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.50 0.6845 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.50 0.6845 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.50 0.6845 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.30 0.2	10	70	1.88	0.0316	0.05	0.30	0.3855	7.0	90	1.83	0.0407	0.05	0.30	0.8195
20 1.88 0.0316 0.05 0.40 0.6553 20 90 1.83 0.0407 20 1.88 0.0316 0.05 0.445 0.7662 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.1484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.2484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8529 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.55 0.7711 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.50 0.8529 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2361 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.329 <td< td=""><td>10</td><td>20</td><td>1.88</td><td>0.0316</td><td>0.02</td><td>0.35</td><td>0.5282</td><td>20</td><td>06</td><td>1.83</td><td>0.0407</td><td>0.02</td><td>0.35</td><td>0.9225</td></td<>	10	20	1.88	0.0316	0.02	0.35	0.5282	20	06	1.83	0.0407	0.02	0.35	0.9225
20 1.88 0.0316 0.05 0.45 0.7602 20 1.83 0.0407 20 1.88 0.0316 0.10 0.25 0.1495 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.2484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.5831 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.55 0.6835 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.55 0.6835 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.1557 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2384 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.155 <t< td=""><td>10</td><td>20</td><td>1.88</td><td>0.0316</td><td>0.05</td><td>0.40</td><td>0.6553</td><td>20</td><td>06</td><td>1.83</td><td>0.0407</td><td>0.05</td><td>0.40</td><td>0.9720</td></t<>	10	20	1.88	0.0316	0.05	0.40	0.6553	20	06	1.83	0.0407	0.05	0.40	0.9720
20 1.88 0.0316 0.10 0.25 0.1495 20 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.2484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.3581 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.5829 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.5829 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.55 0.7711 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2361 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2391 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2391 <	10	20	1.88	0.0316	0.05	0.45	0.7602	20	06	1.83	0.0407	0.02	0.45	0.9918
20 1.88 0.0316 0.10 0.3484 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.35 0.2591 20 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8529 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8539 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.55 0.7711 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2484 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.40 0.2591 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2391 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.4894 20 90 1	10	20	1.88	0.0316	0.10	0.25	0.1495	20	06	1.83	0.0407	0.10	0.25	0.3530
20 1.88 0.0316 0.10 0.35 0.3591 20 1.83 0.0407 20 1.88 0.0316 0.10 0.40 0.4729 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.5835 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.50 0.6835 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.36 0.7424 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2567 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2367 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2369 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.42 0.250 <t< td=""><td>10</td><td>20</td><td>1.88</td><td>0.0316</td><td>0.10</td><td>0.30</td><td>0.2484</td><td>20</td><td>06</td><td>1.83</td><td>0.0407</td><td>0.10</td><td>0.30</td><td>0.5488</td></t<>	10	20	1.88	0.0316	0.10	0.30	0.2484	20	06	1.83	0.0407	0.10	0.30	0.5488
20 1.88 0.0316 0.10 0.44 0.4729 20 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8829 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.45 0.8849 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.65 0.7841 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2367 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2391 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2391 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2308 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2308 <	10	20	1.88	0.0316	0.10	0.35	0.3591	20	06	1.83	0.0407	0.10	0.35	0.7234
20 1.88 0.0316 0.10 0.45 0.5829 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.50 0.6835 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.50 0.7440 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2367 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2367 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.40 0.3291 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.40 0.3291 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.870 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.720 0	10	20	1.88	0.0316	0.10	0.40	0.4729	20	06	1.83	0.0407	0.10	0.40	0.8544
20 1.88 0.0316 0.10 0.50 0.6835 20 90 1.83 0.0407 20 1.88 0.0316 0.10 0.55 0.6847 20 90 1.83 0.0407 20 1.88 0.0316 0.11 0.50 0.8440 20 1.83 0.0407 20 1.88 0.0316 0.15 0.40 0.2367 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.40 0.2367 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.50 0.5390 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.50 0.7233 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.55 0.847 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.55 0.65	10	20	1.88	0.0316	0.10	0.45	0.5829	20	06	1.83	0.0407	0.10	0.45	0.9358
20 1.88 0.0316 0.10 0.55 0.7711 20 1.83 0.0407 20 1.88 0.0316 0.10 0.65 0.8440 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.157 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2391 20 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2391 20 1.83 0.0407 20 1.88 0.0316 0.15 0.55 0.5306 20 0.183 0.0407 20 1.88 0.0316 0.15 0.65 0.8070 20 0.183 0.0407 20 1.88 0.0316 0.20 0.45 0.236 0.90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.236 20 90 1.83 0.0407	10	20	1.88	0.0316	0.10	0.50	0.6835	20	06	1.83	0.0407	0.10	0.50	0.9762
20 1.88 0.0316 0.10 0.60 0.8440 20 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2567 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.35 0.2367 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2361 20 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8296 20 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8296 20 0.183 0.0407 20 1.88 0.0316 0.20 0.45 0.2208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3268 20 90 1.83	10	20	1.88	0.0316	0.10	0.55	0.7711	20	06	1.83	0.0407	0.10	0.55	0.9926
20 1.88 0.0316 0.15 0.30 0.1557 20 183 0.0407 20 1.88 0.0316 0.15 0.35 0.1557 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.2367 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.50 0.5390 20 0.83 0.0407 20 1.88 0.0316 0.15 0.65 0.5396 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.5233 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.230 0.1510 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.40 0.2238 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.248	10	20	1.88	0.0316	0.10	09.0	0.8440	20	06	1.83	0.0407	0.10	0.60	0.9981
20 1.88 0.0316 0.15 0.35 0.2367 20 1.83 0.0407 20 1.88 0.0316 0.15 0.40 0.3291 20 1.83 0.0407 20 1.88 0.0316 0.15 0.45 0.4284 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.50 0.5306 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8296 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8070 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3026 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3026 20 <t< td=""><td>10</td><td>20</td><td>1.88</td><td>0.0316</td><td>0.15</td><td>0.30</td><td>0.1557</td><td>20</td><td>06</td><td>1.83</td><td>0.0407</td><td>0.15</td><td>0.30</td><td>0.3175</td></t<>	10	20	1.88	0.0316	0.15	0.30	0.1557	20	06	1.83	0.0407	0.15	0.30	0.3175
20 1.88 0.0316 0.15 0.40 0.2391 20 1.83 0.0407 20 1.88 0.0316 0.15 0.4284 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.450 0.5300 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8296 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8707 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.2208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3268 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.50 0.3942 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.50 0.3942 20 <t< td=""><td>10</td><td>20</td><td>1.88</td><td>0.0316</td><td>0.15</td><td>0.35</td><td>0.2367</td><td>20</td><td>06</td><td>1.83</td><td>0.0407</td><td>0.15</td><td>0.35</td><td>0.4905</td></t<>	10	20	1.88	0.0316	0.15	0.35	0.2367	20	06	1.83	0.0407	0.15	0.35	0.4905
20 1.88 0.0316 0.15 0.4284 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.50 0.5390 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.55 0.5390 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.7233 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.7233 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.392 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.40 0.229 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.40 0.259 20<	10	20	1.88	0.0316	0.15	0.40	0.3291	20	06	1.83	0.0407	0.15	0.40	0.6646
20 1.88 0.0316 0.15 0.50 0.5300 20 1.83 0.0407 20 1.88 0.0316 0.15 0.55 0.6296 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.6296 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8070 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3026 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3026 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.50 0.3402 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.65 0.3456 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2086 <	10	20	1.88	0.0316	0.15	0.45	0.4284	20	06	1.83	0.0407	0.15	0.45	0.8086
20 1.88 0.0316 0.15 0.55 0.6296 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.7233 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8970 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3268 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.50 0.5963 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.472 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.50 0.	10	20	1.88	0.0316	0.15	0.50	0.5300	20	06	1.83	0.0407	0.15	0.50	0.9056
20 1.88 0.0316 0.15 0.60 0.7233 20 90 1.83 0.0407 20 1.88 0.0316 0.15 0.65 0.8070 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.40 0.2208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.5208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.5302 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.50 0.3956 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.60 0.5956 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.7427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0	10	20	1.88	0.0316	0.15	0.55	0.6296	20	06	1.83	0.0407	0.15	0.55	0.9604
20 1.88 0.0316 0.15 0.65 0.870 20 1.83 0.0407 20 1.88 0.0316 0.22 0.35 0.1510 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.2028 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3026 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.50 0.45 0.3942 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.60 0.5956 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.740 0.7427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.256 20 90 1.83 0.0407 20 1.88 0.0316 0.25	10	20	1.88	0.0316	0.15	09.0	0.7233	20	06	1.83	0.0407	0.15	0.60	0.9863
20 1.88 0.0316 0.20 0.35 0.1510 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.46 0.2208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3268 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.50 0.55 0.931 20 1.83 0.0407 20 1.88 0.0316 0.20 0.65 0.8963 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.4747 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2819 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2819 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.50	10	20	1.88	0.0316	0.15	0.65	0.8070	20	06	1.83	0.0407	0.15	0.65	0.9961
20 1.88 0.0316 0.20 0.40 0.2208 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.45 0.3206 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.55 0.4931 20 1.83 0.0407 20 1.88 0.0316 0.20 0.65 0.8963 20 0.183 0.0407 20 1.88 0.0316 0.20 0.65 0.8963 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.1427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.1427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.1427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.1427 20	10	20	1.88	0.0316	0.20	0.35	0.1510	20	06	1.83	0.0407	0.20	0.35	0.2932
20 1.88 0.0316 0.20 0.45 0.3926 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.55 0.4394 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.55 0.4391 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.66 0.5956 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.76 0.7886 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.1427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.256 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.50 0.2473 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.57 0.	10	20	1.88	0.0316	0.20	0.40	0.2208	20	06	1.83	0.0407	0.20	0.40	0.4583
20 1.88 0.0316 0.20 0.50 0.3942 20 1.83 0.0407 20 1.88 0.0316 0.20 0.65 0.4931 20 1.83 0.0407 20 1.88 0.0316 0.20 0.65 0.8963 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.65 0.8963 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.4727 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2819 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.50 0.3713 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.57 0.3713 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.77 0.8644 20 <	10	20	1.88	0.0316	0.20	0.45	0.3026	20	06	1.83	0.0407	0.20	0.45	0.6295
20 1.88 0.0316 0.20 0.55 0.4931 20 1.83 0.0407 20 1.88 0.0316 0.20 0.65 0.6956 20 1.83 0.0407 20 1.88 0.0316 0.20 0.67 0.6986 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.70 0.7886 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.2056 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2056 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2713 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.55 0.5793 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7528 20 <	10	20	1.88	0.0316	0.20	0.50	0.3942	20	90	1.83	0.0407	0.20	0.50	0.7762
20 1.88 0.0316 0.20 0.60 0.9956 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.65 0.6963 20 90 1.83 0.0407 20 1.88 0.0316 0.20 0.76 0.7886 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.1427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2456 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.55 0.3713 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.5793 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.60 0.4720 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 <td< td=""><td>10</td><td>20</td><td>1.88</td><td>0.0316</td><td>0.20</td><td>0.55</td><td>0.4931</td><td>20</td><td>06</td><td>1.83</td><td>0.0407</td><td>0.20</td><td>0.55</td><td>0.8834</td></td<>	10	20	1.88	0.0316	0.20	0.55	0.4931	20	06	1.83	0.0407	0.20	0.55	0.8834
20 1.88 0.0316 0.20 0.65 0.6963 20 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.7786 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.45 0.2819 20 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2819 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.55 0.3713 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.60 0.4720 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.77 0.6864 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858	10	20	1.88	0.0316	0.20	09.0	0.5956	20	06	1.83	0.0407	0.20	0.60	0.9488
20 1.88 0.0316 0.20 0.70 0.7886 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.1427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.40 0.2056 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.50 0.2819 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.55 0.5733 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.50 0.5793 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.70 0.6864 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0	10	20	1.88	0.0316	0.20	0.65	0.6963	20	90	1.83	0.0407	0.20	0.65	0.9811
20 1.88 0.0316 0.25 0.40 0.1427 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.45 0.2056 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.55 0.3713 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.65 0.4720 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.70 0.6864 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.755 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.33 0.45 0.1342 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.	10	20	1.88	0.0316	0.20	0.70	0.7886	20	06	1.83	0.0407	0.20	0.70	0.9943
20 1.88 0.0316 0.25 0.45 0.2056 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.55 0.56 0.2819 20 1.83 0.0407 20 1.88 0.0316 0.25 0.55 0.3713 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.60 0.4720 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7783 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.7859 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 <td< td=""><td>10</td><td>20</td><td>1.88</td><td>0.0316</td><td>0.25</td><td>0.40</td><td>0.1427</td><td>20</td><td>90</td><td>1.83</td><td>0.0407</td><td>0.25</td><td>0.40</td><td>0.2817</td></td<>	10	20	1.88	0.0316	0.25	0.40	0.1427	20	90	1.83	0.0407	0.25	0.40	0.2817
20 1.88 0.0316 0.25 0.50 0.2819 20 1.83 0.0407 20 1.88 0.0316 0.25 0.55 0.5713 20 1.83 0.0407 20 1.88 0.0316 0.25 0.65 0.5793 20 0.83 0.0407 20 1.88 0.0316 0.25 0.70 0.8644 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.1342 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.2690 20 1.83 0.0407 20 1.88 0.0316 0.30 0.60 0.3602 20 90 1.83	10	20	1.88	0.0316	0.25	0.45	0.2056	20	06	1.83	0.0407	0.25	0.45	0.4395
20 1.88 0.0316 0.25 0.55 0.3713 20 1.83 0.0407 20 1.88 0.0316 0.25 0.65 0.4720 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.65 0.753 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.1342 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.1347 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.65 0.3802 <t< td=""><td>10</td><td>20</td><td>1.88</td><td>0.0316</td><td>0.25</td><td>0.50</td><td>0.2819</td><td>20</td><td>06</td><td>1.83</td><td>0.0407</td><td>0.25</td><td>0.50</td><td>0.6058</td></t<>	10	20	1.88	0.0316	0.25	0.50	0.2819	20	06	1.83	0.0407	0.25	0.50	0.6058
20 1.88 0.0316 0.25 0.60 0.4720 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.65 0.5793 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.756 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.755 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.1347 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.60 0.3602 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.66 0.3	10	20	1.88	0.0316	0.25	0.55	0.3713	20	06	1.83	0.0407	0.25	0.55	0.7565
20 1.88 0.0316 0.25 0.65 0.5793 20 1.83 0.0407 20 1.88 0.0316 0.25 0.77 0.6864 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.77 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.1342 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.50 0.1937 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.2890 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.65 0.3602 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.66 0.3602 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.66 0.3602 <	10	20	1.88	0.0316	0.25	09.0	0.4720	20	06	1.83	0.0407	0.25	09.0	0.8703
20 1.88 0.0316 0.25 0.70 0.6864 20 90 1.83 0.0407 20 1.88 0.0316 0.25 0.75 0.7558 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.45 0.1337 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.3602 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.60 0.3802 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.60 0.3802 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.60 0.3802 20 90 1.83 0.0407	10	20	1.88	0.0316	0.25	0.65	0.5793	20	06	1.83	0.0407	0.25	0.65	0.9407
20 1.88 0.0316 0.25 0.75 0.7858 20 90 1.83 0.0407 20 1.88 0.0316 0.35 0.45 0.1342 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.60 0.3802 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.60 0.3802 20 90 1.83 0.0407 20 1.88 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407	10	20	1.88	0.0316	0.25	0.70	0.6864	20	06	1.83	0.0407	0.25	0.70	0.9779
20 1.88 0.0316 0.30 0.45 0.1342 20 90 1.83 0.0407 1.82 0.0316 0.30 0.50 0.1937 20 90 1.83 0.0407 1.82 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 1.82 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 1.83 0.0316 0.30 0.65 0.3602 20 90 1.83 0.0407 1.84 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407 1.84 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407 1.84 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407 1.84 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407 1.84 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407 1.84 0.0316 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	10	20	1.88	0.0316	0.25	0.75	0.7858	20	06	1.83	0.0407	0.25	0.75	0.9938
20 1.88 0.0316 0.30 0.50 0.1937 20 90 1.83 0.0407 0.03 0.03 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 0.03 0.38 0.0316 0.30 0.60 0.3602 20 90 1.83 0.0407 0.03 0.3602 20 90 1.83 0.0407 0.03 0.3602 20 90 1.83 0.0407 0.03 0.38 0.33 0.55 0.3468 20 90 1.83 0.0407 0.03 0.03 0.0407 0.0407 0.0	10	20	1.88	0.0316	0.30	0.45	0.1342	20	06	1.83	0.0407	0.30	0.45	0.2749
20 1.88 0.0316 0.30 0.55 0.2690 20 90 1.83 0.0407 0.20 1.88 0.0316 0.30 0.60 0.3802 20 90 1.83 0.0407 0.00 0.3802 20 90 1.83 0.0407 0.00 1.88 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407	10	20	1.88	0.0316	0.30	0.50	0.1937	20	06	1.83	0.0407	0.30	0.50	0.4274
20 1.88 0.0316 0.30 0.60 0.3602 20 90 1.83 0.0407 0.31 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407	10	20	1.88	0.0316	0.30	0.55	0.2690	20	06	1.83	0.0407	0.30	0.55	0.5945
20 1.88 0.0316 0.30 0.65 0.4648 20 90 1.83 0.0407	10	20	1.88	0.0316	0.30	09.0	0.3602	20	06	1.83	0.0407	0.30	0.60	0.7466
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10	20	88.	0.0316	0.30	0.65	0.4648	20	06	1.83	0.0407	0.30	0.65	0.8622

Table B.22: continue on next page

Table B.22: continue on next page

		ı																																										
is page	power	0.9382	0.2712	0.4243	0.7422	0.2727	0.4240	0.2488	0.4760	0.8524	0.9416	0.9811	0.9950	0.3967	0.7662	0.8852	0.9530	0.9845	0.9959	0.9991	0.3564	0.5401	0.7110	0.0400	0.9745	0.9921	0.9980	0.3348	0.5079	0.8237	0.9163	0.9661	0.9885	0.9969	0.4954	0.6683	0.8094	0.9051	0.9599	0.9863	0.9964	0.4922	0.6599	0.7995
revion	p2	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.20	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	0.60	0.30	0.30	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.7 0.7	0.50	0.55	09.0
rom p	p1	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.00	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30
-continued from previous page	pvalue	0.0407	0.0407	0.0407	0.0407	0.0407	0.0407	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473
: -con	$\mathbf{z}_{\mathbf{u}}$	1.83	1.83	1.83	1.83	1.83	1.83	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.1	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71
B.22:	$^{\mathrm{n}_{2}}$	06	06	S S	06	90	06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$^{\mathrm{n}_{1}}$	20	20	2 70	20	20	20	20	070	20	20	20	20	07.0	0 0	20	20	20	20	20	70	0 0	300	000	20	20	20	50	0 0	20	20	20	20	070	202	20	20	20	20	50	0.00	20	20	20
	power	0.5779	0.1278	0.1872	0.3593	0.1249	0.1863	0.0167	0.0780	0.3675	0.5357	0.6826	0.7996	0.1223	0.2322	0.4985	0.6327	0.7520	0.8465	0.9133	0.1430	0.2375	0.3527	0.4513	0.7286	0.8243	0.8952	0.1516	0.2414	0.4765	0.6009	0.7146	0.8101	0.8840	0.2485	0.3564	0.4751	0.5948	0.7065	0.8036	0.8817	0.2555	0.3599	0.4749
	p 2	0.70	0.50	0.55	0.65	0.55	09.0	0.15	0.20	0.20	0.35	0.40	0.45	0.25	20.00	0.40	0.45	0.50	0.55	09.0	0.30	0.30	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.70 0.70	0.50	0.55	0.60
	p1	0.30	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.00	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.10	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.20	0.30	0.30	0.30
	pvalue	0.0316	0.0316	0.0316	0.0316	0.0316	0.0316	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0459	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439	0.0439
	$\mathbf{z}_{\mathbf{n}}$	1.88	1.88	× ×	1.88	1.88	1.88	1.83	1.83	283	1.83	1.83	1.83	1.83	200.1	1.83	1.83	1.83	1.83	1.83	283	1.03	1.00	1.83	1.83	1.83	1.83	1.83	1.00	1.83	1.83	1.83	1.83	1.83	83.5	1.83	1.83	1.83	1.83	1.83	1.83	28.3	1.83	1.83
	$^{\rm n_2}$	20	50	2 2	20	20	20	30	900	000	30	30	30	30	8 8	300	30	30	30	30	9 8	900	9 %	8 8	30	30	30	30	000	300	30	30	30	200	8 8	30	30	30	30	30	900	900	30	30
	1 u	10	10	010	10	10	10	10	10	100	10	10	10	10	10	10	10	10	10	10	01	10	10	2 -	10	10	10	10	0 1	10	10	10	10	010	10	10	10	10	10	10	10	10	10	10

10 30 10 30 10 30 10 30 10 30	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P2	power	$^{\mathrm{n}_{1}}$	$_{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	p 2	power
	1.83	0.0439	0:30	0.65	0.5928	20	100	1.71	0.0473	0:30	0.65	0.8984
	1.83	0.0439	0.30	0.70	0.7062	20	100	1.71	0.0473	0.30	0.70	0.9578
	1.83	0.0439	0.35	0.50	0.1752	20	100	1.71	0.0473	0.35	0.50	0.3266
	1.83	0.0439	0.35	0.55	0.2607	50	100	1.71	0.0473	0.35	0.55	0.4904
	1.83	0.0439	0.35	0.60	0.3630	07.0	100	1.71	0.0473	0.35	0.60	0.6546
	1.00	0.0439	0.00	0.00	0.4775	070	100	1.7	0.0473	0.33	0.00	0.0959
	1.03	0.0439	0.40	0.00	0.1801	0.00	100	1.71	0.0473	0.40	0.55	0.3280
	1.00 0.03	0.0453	0.40	0.00	0.2630	0 7 6	100	1.71	0.0473	0.40	0.00	0.4690
	0.00	0.0417	0.00	0.10	0.0020	30	Q+ C+	00.1	0.0489	0.00	0.1.0	0.0000
	2.03	0.0417	0.00	0.25	0.0200	30	40	2001	0.0489	0.00	0.20	0.7633
40	2.03	0.0417	0.05	0.30	0.2632	30	40	1.68	0.0489	0.05	0.30	0.8862
	2.03	0.0417	0.02	0.35	0.4498	30	40	1.68	0.0489	0.05	0.35	0.9532
10 40	2.03	0.0417	0.02	0.40	0.6214	30	40	1.68	0.0489	0.05	0.40	0.9837
	2.03	0.0417	0.02	0.45	0.7582	30	40	1.68	0.0489	0.02	0.45	0.9953
,	2.03	0.0417	0.10	0.25	0.0643	30	40	1.68	0.0489	0.10	0.25	0.4711
	2.03	0.0417	0.10	0.30	0.1599	30	40	1.68	0.0489	0.10	0.30	0.6572
•	2.03	0.0417	0.10	0.35	0.2876	30	40	1.68	0.0489	0.10	0.35	0.8070
40	2.03	0.0417	0.10	0.40	0.4282	30	40	1.68	0.0489	0.10	0.40	0.9062
10 40	2.03	0.0417	0.10	0.45	0.5676	30	40	1.68	0.0489	0.10	0.45	0.9607
•	2.03	0.0417	0.10	0.50	0.6927	30	40	1.68	0.0489	0.10	0.50	0.9859
•	2.03	0.0417	0.10	0.55	0.7954	30	40	1.68	0.0489	0.10	0.55	0.9958
•	2.03	0.0417	0.10	0.60	0.8746	30	40	1.68	0.0489	0.10	0.60	0.9990
10 40	2.03	0.0417	0.15	0.30	0.0944	30	40	1.68	0.0489	0.15	0.30	0.4168
	2.03	0.0417	0.1.0	0.00	0.1709	000	04.0	00.1	0.0469	0.1.0	0.30	0.0900
10 40	2.03	0.0417	0.TD	0.40	0.2851	30	040	1.08	0.0489	0.15	0.40	0.7524
	20.0	0.0417	0.1.0	4. T	0.4038	000	Q+ C+	00.1	0.0489	0.1.0	 	0.0000
	0.00	0.0417	0.1.0	0.0 0.0 0.0	0.0290	30	040	00.1	0.0469	0.1.0	0.0 0.0 0.0 0.0	0.3073
10 40	0.00	0.0417	0.0	000	0.0460	000	7	00.1	0.0489		0.00	0.0000
9	0.00	0.0417	0.1.0	0.00	0.7303	000	Q	1.00	0.0489	0.15	0.00	0.9923
10 40	20.2	0.0417	0.50	3.5	0 1078	30	40	200	0.0489	0.20	3.0	0.3837
	2.03	0.0417	0.50	0.50	0.1830	30	40	1 68	0.0489	0.20	0.30	0.5531
	2.03	0.0417	0.20	0.45	0.2777	30	40	1.68	0.0489	0.20	0.45	0.7117
	2.03	0.0417	0.20	0.50	0.3861	30	40	1.68	0.0489	0.20	0.50	0.8382
10 40	2.03	0.0417	0.20	0.55	0.5035	30	40	1.68	0.0489	0.20	0.55	0.9226
,	2.03	0.0417	0.20	09.0	0.6243	30	40	1.68	0.0489	0.20	09.0	0.9688
10 40	2.03	0.0417	0.20	0.65	0.7394	30	40	1.68	0.0489	0.20	0.65	0.9896
7	2.03	0.0417	0.20	0.70	0.8383	30	40	1.68	0.0489	0.20	0.70	0.9972
•	2.03	0.0417	0.25	0.40	0.1130	30	40	1.68	0.0489	0.25	0.40	0.3598
,	2.03	0.0417	0.25	0.45	0.1819	30	40	1.68	0.0489	0.25	0.45	0.5270
7	2.03	0.0417	0.25	0.50	0.2687	30	40	1.68	0.0489	0.25	0.50	0.6902
7	2.03	0.0417	0.25	0.55	0.3731	30	40	1.68	0.0489	0.25	0.55	0.8225
7	2.03	0.0417	0.25	0.60	0.4924	30	40	1.68	0.0489	0.25	0.60	0.9121
7	2.03	0.0417	0.25	0.65	0.6189	30	40	1.68	0.0489	0.25	0.65	0.9631
•	2.03	0.0417	0.25	0.70	0.7409	30	40	1.68	0.0489	0.25	0.70	0.9874
40	2.03	0.0417	0.25	0.75	0.8449	30	40	1.68	0.0489	0.25	0.75	0.9968
•	2.03	0.0417	0.30	0.45	0.1139	30	40	1.68	0.0489	0.30	0.45	0.3500
10 40	2.03	0.0417	0.30	0.50	0.1786	30	40	1.68	0.0489	0.30	0.50	0.5154

Table B.22: continue on next page

Table B.22: continue on next page

us page	power	0.8100	0.9044	0.9606	0.5049	0.6655	0.8042	0.3375	0.4985	0.3886	0.6179	0.9104	0.9658	0.9889	0.9970	0.4959	0.6789	0.8216	0.9157	0.9670	0.9890	0.9995	0.4174	0.5973	0.7595	0.8789	0.9497	0.9829	0.9990	0.3743	0.5567	0.7288	0.8589	0.9379	0.9770	0.9931	0.3603	0.5424	0.7131	0.8438	0.9278	0.9728	0.9921	0.3580	0.5323
revion	p2	09.0	0.65	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.0 0.0 0.0	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50
$\hat{r}om$	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.03	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	2.5	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
-continued from previous page	pvalue	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0480	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0480	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0480	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486
	$\mathbf{z}_{\mathbf{u}}$	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.7	1.7 1	1.7	1.7	1.7	1.7	1.7	1.7	1.7	T.7	- T	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7 1	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	- 1	1.7
B.22:	$^{\mathrm{n}_{2}}$	40	40	044	40	40	40	40	40	200	20.00	. r.	20	20	20	20	20	20	20	200	8 2	3.0	20	20	20	20	20	20	S 75	20	20	20	20	200	00.0	8 2	20	20	20	20	20	50	200	20.5	50
Table	1	30	30	30 8	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	300	30	30	30	30	30	30	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30
	power	0.3714	0.4967	0.6305	0.1782	0.2675	0.3816	0.1144	0.1835	0.0180	0.1117	0.4922	0.6469	0.7726	0.8720	0.1759	0.3043	0.4356	0.5776	0.7154	0.8200	0.9514	0.1831	0.2846	0.4140	0.5568	0.6903	0.8000	0.9346	0.1800	0.2848	0.4132	0.5485	0.6749	0.7816	0.9042	0.1879	0.2928	0.4153	0.5429	0.6639	0.7694	0.8550	0.1980	0.2996
	p2	09.0	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.20	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.0 0.0 0.0	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.75	0.45	0.50
	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.03	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
	pvalue	0.0417	0.0417	0.0417	0.0417	0.0417	0.0417	0.0417	0.0417	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0470	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0478
	$\mathbf{z}_{\mathbf{u}}$	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	1.74	1.74 1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74 1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.77	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74
	$^{\mathrm{n}_{2}}$	40	40	0 4 0	40	40	40	40	40	200	200	20.00	20	20	20	20	20	20	20	200	3 2	20.00	20	20	20	20	50	50	5 Z	20	20	20	20	20	00.00	3 2	20	20	20	20	20	200	200	25.0	20
	1 u	10	10	10	10	10	10	10	10	10	10	100	10	10	10	10	10	10	07	10	2 -	10	10	10	10	10	10	10	2 0	10	10	10	10	10	010	10	10	10	10	10	10	01	10	10	10

s $page$	power	0.6986	0.8332	0.9238	0.9723	0.55230	0.6932	0.8334	0.3499	0.5250	0.3629	0.6068	0.8024	0.9196	0.9737	0.9930	0.9985	0.5001	0.7032	0.8520	0.9384	0.9789	0.9941	0.9996	0.9997	0.4470	0.0420	0.000.0	0.9628	0.9876	0.9967	0.9994	0.4140	0.6012	0.7626	0.8780	0.9477	0.9820	0.9951	0.8880	0.5672	0.7309	0.8582	0.9385	0.9786	0.9943	0.9989	0.3687
reviou	p2	0.55	09.0	0.65	0.70	0.50	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.00	0.00	0.00	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.00	0.00	0.02	0.70	2.40	0.50	0.55	0.60	0.65	0.70	0.75	0.45
from p	p1	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.1.0	0.10	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.45	0.25	0.25	0.25	0.25	0.25	0.25	0.30
-continued from previous page	pvalue	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0486	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499
	$\mathbf{z}_{\mathbf{u}}$	1.7	1.7	1:1	- i-	1.	1.7	1.7	1.7	1.7	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.09	1.09	1.09	1.69	1.09	1.09	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.09	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69
B.22:	$^{\mathrm{n}_{2}}$	20	20	200	200	0.00	20	20	20	20	09	09	09	09	09	09	09	9	09	09	09	00	00	00	00	00	8 9	8 9	09	09	09	09	09	09	09	9 8	00	00	99	00	8 9	9	09	09	09	09	09	09
Table	$^{\rm n_1}$	30	30	30	200	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	200	90	000	30	000	000	000	30	30	30	30	30	30	30	30	90	30	30	30	08.	30	30	30	30	30	30	30
	power	0.4163	0.5386	0.6572	0.7651	0.3037	0.4165	0.5370	0.2102	0.3060	0.0005	0.0132	0.0892	0.2646	0.4701	0.6361	0.7679	0.0520	0.1562	0.2881	0.4231	0.5003	0.7009	0.0030	0.8931	0.0093	0.1710	0.3983	0.5327	0.6624	0.7822	0.8777	0.0993	0.1697	0.2678	0.3846	0.5148	0.6531	0.7789	0.8745	0.1722	0.2646	0.3815	0.5205	0.6620	0.7843	0.8762	0.1056
	p 2	0.55	09.0	0.65	0.70	0.0	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.40	0.0	0.00	0.00	0.00	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.00	0.00	0.02	0.70	0.40	0.50	0.55	0.60	0.65	0.70	0.75	0.45
	p1	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.1.0	0.1.0	2.5	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	20.0	0.25	0.25	0.25	0.25	0.25	0.25	0.30
	pvalue	0.0478	0.0478	0.0478	0.0478	0.0470	0.0478	0.0478	0.0478	0.0478	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249
	$\mathbf{z}_{\mathbf{u}}$	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	80.7	20.0	0.00	00.7	20.0	00.00	00.7	00.0	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	0.00	80.7	80.7	00.0	00.0	80.2	2.08	2.08	2.08	2.08	2.08	2.08
	$^{\mathrm{n}_{2}}$	20	20	200	00 0	20.00	20	20	20	20	09	09	09	09	09	09	09	09	09	09	9 9	00	00	00	00	000	9 9	8 6	09	09	09	09	09	09	09	09	00	00	9 9	00	8 6	8 9	09	09	09	09	09	09
	$^{\rm n_1}$	10	10	10	0 7	2 0	10	10	10	10	10	10	10	10	10	10	10	10	07	01	10	07.	0 0	0 1	10	10	0 0	10	10	10	10	10	10	10	10	10	0 7	10	07.5	10	1 0	2 -	10	10	10	10	10	10

Table B.22: continue on next page

Table B.22: continue on next page

		l																																											
is page	power	0.5442	0.7148	0.8494	0.9330	0.3578	0.5364	0.7106	0.8493	0.3569	0.5383	0.3434	0.8161	0.9319	0.9795	0.9949	0.9990	0.5156	0.8641	0.9442	0.9810	0.9948	0.9989	0.9998	0.4562	0.0460	0.9087	0.9653	0.9894	0.9974	0.9995	0.4098	0.7621	0.8828	0.9523	0.9842	0.9960	0.9993	0.3791	0.5042	0.8646	0.9428	0.9811	0.9954	0.9992
revion	p2	0.50	0.55	0.60	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.25	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.55	09.0	0.65	0.70	0.75
rom p	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0499	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473
: -con	$\mathbf{z}_{\mathbf{n}}$	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1 76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76
B.22:	$^{\mathrm{n}_{2}}$	09	09	09	9	09	09	09	09	09	9 60	2 2	2.02	20	20	20	2 i	2 5	2.2	2.02	20	20	20	20	9 9	2 6	2 2	202	20	20	29	2 2	2.2	20	20	20	20	29	2 2	9.9	202	20	20	20	7.0
Table	$^{\mathrm{1}}\mathrm{n}$	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	power	0.1735	0.2696	0.3957	0.6757	0.1083	0.1814	0.2866	0.4170	0.1159	0.1972	0.0081	0.2951	0.5051	0.6476	0.7706	0.8732	0.1727	0.335	0.5652	0.7036	0.8118	0.8924	0.9453	0.1777	0.2080	0.5327	0.6613	0.7761	0.8655	0.9283	0.1647	0.3822	0.5101	0.6402	0.7568	0.8524	0.9218	0.1683	0.2000	0.5019	0.6313	0.7521	0.8524	0.9251
	P2	0.50	0.55	0.60	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.25	0.30	0.35	0.40	0.45	0.250	3.00	0.40	0.45	0.50	0.55	09.0	0.30	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.40	0.55	09.0	0.65	0.70	0.75
	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.20	0.25	0.25	0.25	0.25	0.25
	pvalue	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489
	$\mathbf{z}_{\mathbf{u}}$	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	1.79 1.79	1.79	1.79	1.79	1.79	1.79	1.79	1 70	1.79	1.79	1.79	1.79	1.79	1.79	1.70	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79
	$_{\rm n_2}$	09	09	09	8 9	09	09	09	09	9	9 6	2 2	2.2	20	20	20	29	9 9	2.5	2.2	20	20	20	20	2 2	2 2	2 2	202	20	20	2 1	2 2	2.2	20	20	20	20	29	2 2	2.5	2.2	20	20	2	2.0
	^{1}u	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9 -	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

page	power	0.3639	0.5461	0.7191	0.8545	0.9401	0.9811	0.3548	0.0000	0.8568	0.3520	0.5398	0.3660	0.6307	0.8349	0.9417	0.9833	0.9963	0.9994	7367	0.778	0.9547	0.9866	0.9968	0.9994	0.99999	0.4696	0.6721	0.8314	0.9281	0.9747	0.9928	0.9994	0.4353	0.6326	0.7958	0.9047	0.9638	0.9892	0.9975	0.9996	0.4136	0.6026	0.7691	0.8889	0.9569	0.9868	,
-continued from previous page	P2	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.00	0.00	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.40	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	>
from p	\mathbf{p}_1	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.00	0.0	0.40	0.40	0.02	0.02	0.02	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25)
tinued	pvalue	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0430	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0430	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	, , , , ,
- 1	$\mathbf{z}_{\mathbf{n}}$	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.69	1.69	1.69	1.69	1.69	1.69	1.09	1.03	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	
B.22:	$^{\mathrm{n}_{2}}$	20	70	2	2 i	P 1	2 1	2 6	2 6	2 2	20	20	80	80	80	80	80	200	000	000	000	8 8	80	80	80	80	80	80	80	80	08	9 9	00 00	80	80	80	80	80	80	80	80	80	80	08	80	80	200)
Table	$_{1}$	30	30	30	30	30	30	30	30	8 8	30	30	30	30	30	30	30	30	000	000	300	30	30	30	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	30	30	300)
	power	0.1693	0.2603	0.3738	0.5018	0.6357	0.7610	0.1721	0.2043	0.5132	0.1768	0.2722	0.0038	0.0638	0.2643	0.4916	0.6414	0.7695	0.0/00	0.1044	0.4156	0.5628	0.7060	0.8150	0.8961	0.9479	0.1705	0.2614	0.3921	0.5335	0.6638	0.7803	0.0000	0.1591	0.2608	0.3815	0.5115	0.6438	0.7602	0.8552	0.9230	0.1656	0.2593	0.3741	0.5041	0.6337	0.7543	1
	P2	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.00	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.4.0	0.4.0	0.00	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	:
	p1	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.00	3.5	0.40	0.40	0.05	0.02	0.02	0.02	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	1
	pvalue	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0489	0.0463	0.0489	0.0489	0.0489	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0462	0.0462	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	0.0482	1
	$\mathbf{z}_{\mathbf{u}}$	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.70	1.79	1.79	1.79	1.83	1.83	1.83	1.83	1.83	1.83	00.1	1.00	1.05	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.00	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.00 20.00 20.00 20.00)
	$^{\mathrm{n}_{2}}$	70	70	20	29	21	2 1	2 8	2 5	2.5	202	20	80	80	80	80	g 8	200	000	000	8 8	8 8	80	80	80	80	80	80	80	80	80	g 9	8 8	8 8	80	80	80	80	80	80	80	80	80	80	g 8	æ 8	8 8)
	$^{\rm n_1}$	10	10	10	10	10	01	10	101	10	10	10	10	10	10	10	10	10	01	100	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1

Table B.22: continue on next page

Table B.22: continue on next page

power
$0.75 0.9244 30 80 \\ 0.45 0.1675 30 80$
0.2598
0.55 0.3747 30
0.6366
0.7600
0.50 0.1711 30
0.3792
0.55 0.1758 30
0.0003
0.0166
0.1376
0.3799
0.35 0.5739 30
0.0802
0.3533
0.45 0.4501 30 $0.45 0.6473 30$
0.7725
0.55 0.8667 30
0.1272
0.2116
0.40 0.3257 30
0.6081
0.7348
0.8369
0.9108
0.35 0.1228 50
0.4525
0.5890
0.7146
0.8228
0.70 0.9066 30
0.2142
0.3195
0.4475
0.65 0.7116 30

888888888888888	zn	pvalue	p1	p 2	power	$_{1}^{n}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	P2	power
	1.97	0.0412	0.25	0.70	0.8279	30	06	1.71	0.0480	0.25	0.70	0.9975
	1.97	0.0412	0.25	0.75	0.9105	30	06	1.71	0.0480	0.25	0.75	0.9996
	1.97	0.0412	0.30	0.45	0.1337	30	06	1.71	0.0480	0.30	0.45	0.3978
	1.97	0.0412	0.30	00 E	0.2143	30	8 8	1.71	0.0480	0.30	0.00	0.0832
	1.97	0.0412	0.30	090	0.4468	000	G 6	1.71	0.0480	0.30	0.00	0.8825
	1.97	0.0412	0.30	0.65	0.5877	30	8 6	1.71	0.0480	0.30	0.65	0.9561
	1.97	0.0412	0.30	0.70	0.7271	30	06	1.71	0.0480	0.30	0.70	0.9879
	1.97	0.0412	0.35	0.50	0.1363	30	06	1.71	0.0480	0.35	0.50	0.3828
	1.97	0.0412	0.35	0.55	0.2199	30	06	1.71	0.0480	0.35	0.55	0.5722
	1.97	0.0412	0.35	0.60	0.3267	30	06	1.71	0.0480	0.35	0.60	0.7515
	1.97	0.0412	0.35	0.65	0.4624	30	06	1.71	0.0480	0.35	0.65	0.8847
	1.97	0.0412	0.40	0.55	0.1415	30	8 8	1.71	0.0480	0.40	0.55	0.3802
	1.97	0.0412	0.40	0.60	0.2261	30	3 5	1.71	0.0480	0.40	0.60	0.5767
	40.0	0.0453	0.00	0.10	0.0000	30	100	1.72	0.0465	0.00	0.13	0.3070
201	40.0	0.0453	0.00	0.20	0.0036	30	100	1.12	0.0465	0.00	0.20	0.0410
	2.04	0.0453	0.05	0.30	0.2706	30	100	1.72	0.0465	0.05	0.30	0.9523
	2.04	0.0453	0.05	0.35	0.5074	30	100	1.72	0.0465	0.05	0.35	0.9885
	2.04	0.0453	0.05	0.40	0.6587	30	100	1.72	0.0465	0.02	0.40	0.9978
-	2.04	0.0453	0.02	0.45	0.7956	30	100	1.72	0.0465	0.02	0.45	0.9997
	2.04	0.0453	0.10	0.25	0.0362	30	100	1.72	0.0465	0.10	0.25	0.5446
-	2.04	0.0453	0.10	0.30	0.1580	30	100	1.72	0.0465	0.10	0.30	0.7608
	2.04	0.0453	0.10	0.35	0.3034	30	100	1.72	0.0465	0.10	0.35	0.8978
100	40.2	0.0453	0.10	0.40	0.4323	30	100	1.72	0.0465	0.10	0.40	0.9643
	40.0	0.0453	0.10	0.40	0.5858	30	100	1.72	0.0465	0.10	0.45	0.9889
	2.04	0.0453	0.10	0.55	0.8545	30	100	1.72	0.0465	0.10	0.55	0.9996
	2.04	0.0453	0.10	0.60	0.9254	30	100	1.72	0.0465	0.10	0.60	1.0000
-	2.04	0.0453	0.15	0.30	0.0895	30	100	1.72	0.0465	0.15	0.30	0.4929
-	2.04	0.0453	0.15	0.35	0.1764	30	100	1.72	0.0465	0.15	0.35	0.6974
	2.04	0.0453	0.15	0.40	0.2751	30	100	1.72	0.0465	0.15	0.40	0.8481
	2.04	0.0453	0.15	0.45	0.4232	30	100	1.72	0.0465	0.15	0.45	0.9370
	2.04	0.0453	0.15	0.50	0.5779	30	100	1.72	0.0465	0.15	0.50	0.9792
001	40.0	0.0453	0.TO	0.50	0.7171	30	100	1.72	0.0465	0.10	0.00	0.9947
	# C	0.0453	21.0	0.00	0.9028	30	100	1.12	0.0465	0.0	0.00	0 0000
	2.04	0.0453	0.20	0.35	0.0993	30	100	1.72	0.0465	0.20	0.35	0.4524
	2.04	0.0453	0.20	0.40	0.1692	30	100	1.72	0.0465	0.20	0.40	0.6471
	2.04	0.0453	0.20	0.45	0.2862	30	100	1.72	0.0465	0.20	0.45	0.8081
-	2.04	0.0453	0.20	0.50	0.4236	30	100	1.72	0.0465	0.20	0.50	0.9150
-	2.04	0.0453	0.20	0.55	0.5687	30	100	1.72	0.0465	0.20	0.55	0.9701
-	2.04	0.0453	0.20	09.0	0.6984	30	100	1.72	0.0465	0.20	09.0	0.9918
	2.04	0.0453	0.20	0.65	0.8089	30	100	1.72	0.0465	0.20	0.65	0.9983
100	2.04	0.0453	0.20	0.70	0.8969	30	100	1.72	0.0465	0.20	0.70	0.9997
	2.04	0.0453	0.25	0.40	0.1845	30	100	1.72	0.0465	0.25	0.40	0.6131
	2.04	0.0453	0.25	0.50	0.2949	30	100	1.72	0.0465	0.25	0.50	0.7835
	2.04	0.0453	0.25	0.55	0.4273	30	100	1.72	0.0465	0.25	0.55	0.9009

Table B.22: continue on next page

Table B.22: continue on next page

s $page$	power	0.9895	0.9977	0.4016	0.5961	0.7708	0.8932	0.9596	0.3948	0.5900	0.7648	0.8886	0.3949	0.3574	0.6700	0.8527	0.9475	0.9848	0.9964	0.9993	0.2674	0.8896	0.9579	0.9870	0.9969	0.9994	0.99999	0.4967	0.8422	0.9337	0.9774	0.9938	0.9986	0.4557	0.6524	0.8119	0.9145	0.9678	0.9903	0.9978	0.9996	0.4354	0.7860	0.8974
reviou	P2	0.65	0.70	0.45	0.50	0.55	0.60	0.65	0.70	0.55	0.60	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.90	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.50	0.55
from f	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.50	0.35	0.35	0.35	0.40	0.40	0.05	0.02	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25
-continued from previous page	pvalue	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0463	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480
	$\mathbf{z}_{\mathbf{n}}$	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	2.1	1.68	1.68	1.68	1.68	1.68	1.08	1.68	1.68	1.68	1.68	1.68	1.68	1.68	00.1	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.00	89	1.68
B.22:	$^{\rm n_2}$	100	100	100	100	100	100	100	100	100	100	100	100	200	20	20	20	20	200	200		20	20	20	20	20	200	20.00	20	20	20	20		20.02	20	20	20	20	20	200	200	200	25.	20
Table	$_{1}^{n}$	30	30	30	30	30	30	30	30	30	30	30	30	40	40	40	40	40	40	040	044	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	power	0.6925	0.8125	0.9027	0.1950	0.3042	0.4264	0.5651	0.7000	0.2049	0.3074	0.4386	0.1302	0.2095	0.4749	0.6315	0.7605	0.8579	0.9246	0.9650	0.5032	0.6465	0.7740	0.8722	0.9365	0.9724	0.9895	0.3030	0.5976	0.7354	0.8428	0.9159	0.9598	0.2856	0.4269	0.5748	0.7095	0.8187	0.8982	0.9497	0.9788	0.2814	0.5547	0.6874
	p2	0.65	0.70	0.45	0.50	0.55	0.60	0.65	0.70	0.55	0.60	0.65	0.55	0.00	0.20	0.25	0.30	0.35	0.40	0.45 0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.50	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.50	0.55
	p1	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.50	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25
	pvalue	0.0453	0.0453	0.0453	0.0453	0.0453	0.0453	0.0453	0.0453	0.0453	0.0453	0.0453	0.0453	0.0455	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481
	$\mathbf{z}_{\mathbf{u}}$	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69
	$^{\mathrm{n}_{2}}$	100	100	100	100	100	100	100	100	100	100	100	100	30	30	30	30	30	8 8	200	9 %	30	30	30	30	30	30	30 8	30	30	30	30	9 %	30	30	30	30	30	30	900	000	9 %	30	30
	1 u	10	10	10	10	10	10	0 1	10	10	10	10	10	20	20	20	20	20	50	0 0	20	20	20	20	20	20	50	200	20	20	20	20	0 6	20	20	20	20	20	20	20	0.70	200	000	20

page	power	0.9602	0.9880	0.9973	0.9996	0.4163	0.6016	0.7679	0.0000	0.9874	0.4025	0.5908	0.7623	0.8866	0.3998	0.5897	0.4482	0.0990	0.9542	0.9881	0.9977	0.9997	0.5658	0.7744	0.9071	0.9690	0.9915	0.9981	0.9997	1.0000	0.5159	0.8635	0.9445	0.9819	0.9955	0.9992	0.9999	0.4736	0.6671	0.8233	0.9240	0.9930	0.9986	0.9998	0.4359	0.6326	0.8UU1
-continued from previous page	P2	09.0	0.65	0.70	0.75	0.45	0.50	0.55	0.00	0.00	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.33	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.40	0.00	0.60	0.65	0.70	0.40	0.45	0.50
from p	\mathbf{p}_1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.50	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.00	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25
finued.	pvalue	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0400	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472
- 1	$\mathbf{z}_{\mathbf{n}}$	1.68	1.68	1.68	1.68	1.68	20.1	20.1	00.1	1.08	1.68	1.68	1.68	1.68	1.68	1.68	1.72	1.72	172	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.12	1.72	1.72	1.72	1.72	1.72	1.72
B.22:	$^{\mathrm{n}_{2}}$	50	20	20	20	20		20.0	5 2	8 25	20	20	20	20	20	20	9 6	00	8 9	09	09	09	09	09	09	09	09	09	09	99	00	8 9	09	09	09	09	0.9	09	99	00	00	8 9	09	09	09	09	00
Table	1	40	40	40	40	40	40	40	04.0	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	04.0	40	40	40	40	40	40
	power	0.8008	0.8871	0.9442	0.9767	0.2752	0.4014	0.5389	0.07070	0.8824	0.2682	0.3927	0.5313	0.6688	0.2646	0.3894	0.2296	0.4105	0.7505	0.8677	0.9395	0.9761	0.3296	0.4980	0.6634	0.7983	0.8918	0.9485	0.9788	0.9927	0.2980	0.4545	0.7476	0.8536	0.9258	0.9679	0.9883	0.2814	0.4231	0.5732	0.7145	0.9122	0.9608	0.9852	0.2667	0.4026	0.5534
	P2	09.0	0.65	0.70	0.75	0.45	0.50	0.55	0.00	0.00	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.33	0.45	0.50	0.55	0.60	0.65	0.35	0.40	0.45	0.0 0 m	0.60	0.65	0.70	0.40	0.45	0.50
	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.00	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.13	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	02.0	0.20	0.20	0.20	0.25	0.25	0.25
	pvalue	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0401	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0481	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419
	$\mathbf{z}_{\mathbf{n}}$	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.60	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.78	1.70	1.2	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	7.7 1.7 1.0 1.7	1.0	1.78	1.78	1.78	1.78	1.78	1.78	1.78	7.7 1.7 1.0 1.7	1.70	1.70	1.78	1.78	1.78	1.78	1.78	1.78
	$^{\mathrm{n}_{2}}$	30	30	30	30	တ္က ဒ	9 6	9 6	300	8 8	30	30	30	30	30	30	40	04.0	40	40	40	40	40	40	40	40	40	40	40	040	040	40	40	40	40	40	40	40	040	040	040	40	40	40	40	40	40
	$^{\mathrm{n}_{1}}$	20	20	20	20	20	0.70	0.70	0.00	07 0	20	20	20	20	20	20	70	020	0.00	20	20	20	20	20	20	20	20	20	7.0	0.70	070	20	20	20	20	20	50	7.0	0.70	020	0 6	20	20	20	20	20	07

Table B.22: continue on next page

Table B.22: continue on next page

is page	power	0.9105	0.9675	0.9908	0.9998	0.4190	0.6152	0.7836	0.8995	0.9634	0.4083	0.5998	0.7725	0.8967	0.3985	0.5951	0.7576	0.9088	0.9728	0.9936	0.9989	0.9999	0.6284	0.8148	0.9272	0.9947	0.9990	0.9999	1.0000	0.5490	0.7010	0.9602	0.9886	0.9974	0.9996	0.9999	0.5071	0.7086	0.8570	0.9427	0.9957	0.9993	0.9999	0.4767	0.6736
reviou	P2	0.55	0.60	0.70	0.75	0.45	0.50	0.55	0.60	0.05	0.50	0.55	09.0	0.65	0.00	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.00	09.0	0.65	0.70	0.40	0.45
rom p	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25
-continued from previous page	pvalue	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0434	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0494	0.0434	0.0494	0.0494	0.0494	0.0494	0.0494
	$\mathbf{z}_{\mathbf{n}}$	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	7.7	1.72	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.07	1.67	1.67	1.67	1.67	1.67	1.67	1.07	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.07	1.67	1.67	1.67	1.67	1.67
B.22:	$^{\mathrm{n}_{2}}$	09	09	00	09	09	09	09	09	00	9 9	09	09	09	9 9	9 6	2.2	202	20	20	2	2 1	6 5	2 6	2 2	20	20	2	2 i	2 2	2 5	2 2	20	20	2	2 i	2	2 i	2 2	2.5	2 2	20	20	2	70
Table	$^{\rm n_1}$	40	40	40	40	40	40	40	40	040	40	40	40	40	040	040	40	40	40	40	40	40	40	040	40	40	40	40	40	40	04.0	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	power	0.6986	0.8188	0.9043	0.9836	0.2593	0.3952	0.5462	0.6914	0.8127	0.2593	0.3943	0.5438	0.6887	0.2011	0.3949	0.4422	0.6342	0.7956	0.9003	0.9565	0.9834	0.3638	0.5408	0.8212	0.9080	0.9602	0.9857	0.9957	0.3226	0.4749	0.7714	0.8776	0.9432	0.9769	0.9920	0.2895	0.4377	0.5998	0.400	0.9283	0.9693	0.9894	0.2764	0.4259
	p 2	0.55	0.60	0.70	0.75	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.00	0.00	0.20	0.25	0.30	0.35	0.40	0.45	0.25	0.30	0.40	0.45	0.50	0.55	0.60	0.30	0.33	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.0	09.0	0.65	0.70	0.40	0.45
	p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25
	pvalue	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0419	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412	0.0412
	$\mathbf{z}_{\mathbf{u}}$	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	10	1.78	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.70	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76
	$^{\mathrm{n}_{2}}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	04.0	20.00	20	20	20	20	20	02 S	00.	20 20	20	20	20	20	20	00.00	20	20	20	20	20	20	20	20	3 2	20	20	20	20	20
	$^{\mathrm{n}_{1}}$	20	500	20	20	20	20	20	500	0.70	20	20	20	20	070	0 0	20	20	20	20	20	50	50	070	5 70 70	20	20	20	20	07.0	0 0	20	20	20	20	20	50	20	07.0	070	20	20	20	20	50

							Table	B.22:		tinued	from p	-continued from previous page	page
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p 1	P2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p2	power
20	20	1.76	0.0412	0.25	0.50	0.5844	40	70	1.67	0.0494	0.25	0.50	0.8304
20	20	1.76	0.0412	0.25	0.55	0.7267	40	70	1.67	0.0494	0.25	0.55	0.9292
20	20	1.76	0.0412	0.25	09.0	0.8396	40	20	1.67	0.0494	0.25	09.0	0.9772
20	20	1.76	0.0412	0.25	0.65	0.9192	40	20	1.67	0.0494	0.25	0.65	0.9945
20	20	1.76	0.0412	0.25	0.70	0.9663	40	2	1.67	0.0494	0.25	0.70	0.9990
50	20	1.76	0.0412	0.25	0.75	0.9886	40	2 8	1.67	0.0494	0.25	0.75	0.99999
0 0		1.76	0.0412	0.30	0.45	0.2754	40	2 5	1.67	0.0494	0.30	0.45	0.4519
000	8 2	1.76	0.0412	0.50	0.0 0.0 0.0	0.5694	40	2.5	1.07	0.0494	0.30	0.0 2.0 2.0	0.0430
20	20	1.76	0.0412	0.30	0.60	0.7131	40	2.02	1.67	0.0494	0.30	0.60	0.9229
20	20	1.76	0.0412	0.30	0.65	0.8338	40	202	1.67	0.0494	0.30	0.65	0.9750
20	20	1.76	0.0412	0.30	0.70	0.9182	40	20	1.67	0.0494	0.30	0.70	0.9941
20	20	1.76	0.0412	0.35	0.50	0.2721	40	20	1.67	0.0494	0.35	0.50	0.4393
20	20	1.76	0.0412	0.35	0.55	0.4093	40	20	1.67	0.0494	0.35	0.55	0.6413
20	20	1.76	0.0412	0.35	0.60	0.5631	40	70	1.67	0.0494	0.35	09.0	0.8110
20	20	1.76	0.0412	0.35	0.65	0.7139	40	70	1.67	0.0494	0.35	0.65	0.9209
20	20	1.76	0.0412	0.40	0.55	0.2685	40	20	1.67	0.0494	0.40	0.55	0.4379
20	20	1.76	0.0412	0.40	09.0	0.4100	40	20	1.67	0.0494	0.40	0.60	0.6400
20	09	1.73	0.0495	0.02	0.15	0.2213	40	80	1.69	0.0491	0.02	0.15	0.4831
20	09	1.73	0.0495	0.02	0.20	0.4365	40	80	1.69	0.0491	0.05	0.20	0.7495
20	09	1.73	0.0495	0.02	0.25	0.6461	40	80	1.69	0.0491	0.02	0.25	0.9080
20	09	1.73	0.0495	0.05	0.30	0.8110	40	80	1.69	0.0491	0.02	0.30	0.9748
20	09	1.73	0.0495	0.05	0.35	0.9136	40	80	1.69	0.0491	0.05	0.35	0.9949
20	09	1.73	0.0495	0.05	0.40	0.9664	40	80	1.69	0.0491	0.02	0.40	0.9992
20	09	1.73	0.0495	0.05	0.45	0.9891	40	80	1.69	0.0491	0.02	0.45	0.9999
20	09	1.73	0.0495	0.10	0.25	0.3688	40	80	1.69	0.0491	0.10	0.25	0.6256
20	09	1.73	0.0495	0.10	0.30	0.5550	40	80	1.69	0.0491	0.10	0.30	0.8237
50	09	1.73	0.0495	0.10	0.35	0.7228	40	080	1.69	0.0491	0.10	0.35	0.9356
50	09	1.73	0.0495	0.10	0.40	0.8498	40	080	1.69	0.0491	0.10	0.40	0.9818
50	09	1.73	0.0495	0.10	0.45	0.9296	40	08	1.69	0.0491	0.10	0.45	0.9960
20	09	1.73	0.0495	0.10	0.50	0.9712	40	80	1.69	0.0491	0.10	0.50	0.9993
50	09	1.73	0.0495	0.10	0.55	0.9899	40	08	1.69	0.0491	0.10	0.55	0.9999
50	09	1.73	0.0495	0.10	0.60	0.9970	40	080	1.69	0.0491	0.10	0.60	1.0000
50	09	1.73	0.0495	0.15	0.30	0.3337	40	00 S	1.69	0.0491	0.15	0.30	0.5591
070	00	1.73	0.0495	0.TO	0.30	0.5037	040	000	1.09	0.0491	0.10	0.35	0.7003
0.00	8 9	1.73	0.0493	0.10	0.40	0.0099	40	00 00	1.69	0.0491	0.10	0.40	0.0094
016	8 9	1.73	0.0495	0.15	0.50	0.8971	40	8 8	1.69	0.0491	0.15	2.0	0.9911
20	09	1.73	0.0495	0.15	0.55	0.9531	40	80	1.69	0.0491	0.15	0.55	0.9983
20	09	1.73	0.0495	0.15	09.0	0.9821	40	80	1.69	0.0491	0.15	0.60	0.9997
20	09	1.73	0.0495	0.15	0.65	0.9944	40	80	1.69	0.0491	0.15	0.65	1.0000
20	09	1.73	0.0495	0.20	0.35	0.3137	40	80	1.69	0.0491	0.20	0.35	0.5174
20	09	1.73	0.0495	0.20	0.40	0.4734	40	80	1.69	0.0491	0.20	0.40	0.7212
20	09	1.73	0.0495	0.20	0.45	0.6321	40	80	1.69	0.0491	0.20	0.45	0.8699
20	09	1.73	0.0495	0.20	0.50	0.7688	40	80	1.69	0.0491	0.20	0.50	0.9520
20	09	1.73	0.0495	0.20	0.55	0.8728	40	80	1.69	0.0491	0.20	0.55	0.9858
20	09	1.73	0.0495	0.20	0.60	0.9402	40	80	1.69	0.0491	0.20	0.60	0.9967
50	09	1.73	0.0495	0.20	0.65	0.9763	40	080	1.69	0.0491	0.20	0.65	0.9994
200	09	1.73	0.0495	0.20	0.70	0.9923	40	00 00 00 00	1.69	0.0491	0.20	0.70	0.9999
ì	3))	1	3	2	?	3	2	2	1	;)
									,	(

Table B.22: continue on next page

Table B.22: continue on next page

_																																														
is page	power	0.6930	0.8482	0.9381	0.9953	0.9993	0.9999	0.4706	0.6686	0.8255	0.9268	0.9774	0.9992	0.6448	0.8143	0.9266	0.4335	0.6421	0.4740	0.7475	0.9122	0.9772	0.9956	0.9994	0.8889	0.8261	0.9388	0.9839	0.9968	0.9995	0.9999	1.0000	0.5566	0.000	0.9701	0.9926	0.9986	0.9998	1.0000	0.5208	0.7313	0.8783	0.9566	0.9882	2666.0	1.0000
revion	P2	0.45	0.50	0.55	0.00	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.40	0.20	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.00	0.00	0.70
rom p	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0491	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465	0.0465
	$\mathbf{z}_{\mathbf{n}}$	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.7	1.7	1.7	1.7	J.,	- I:-	1 -	1.7	1.7	1.7	1.7	1.7	1.7	1.7	I.7	- 1-	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	- 1	1.7
B.22:	$^{\mathrm{n}_{2}}$	80	80	80	8 8	80	80	80	80	80	80	000	8 8	80	80	80	80	80	06	06	06	6 8	98 8	3 8	9 9	8 6	8 6	06	06	06	06	06	3 8	200	06	06	06	06	06	06	06	06	6 8	8 8	86	06
Table	$^{\rm n_1}$	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	0,4	40	40	40	40	40	40	40	40	40	040	40	40
	power	0.4490	0.6043	0.7472	0.9326	0.9733	0.9917	0.2882	0.4330	0.5909	0.7374	0.8530	0.3303	0.4280	0.5870	0.7361	0.2817	0.4289	0.2415	0.4542	0.6604	0.8221	0.9226	0.9723	0.9910	0.5642	0.7382	0.8651	0.9399	0.9768	0.9923	0.9978	0.3395	0.3188	0.8220	0.9100	0.9601	0.9849	0.9954	0.3244	0.4904	0.6522	0.7868	0.8840	0.9792	0.9939
	p 2	0.45	0.50	0.55	0.00	0.70	0.75	0.45	0.50	0.55	0.60	0.00	0.70	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.4.0	0.20	0.35	0.40	0.45	0.50	0.55	0.60	0.30	0.00	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.45	0.50	0.00	0.00	0.70
	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.50	0.35	0.35	0.35	0.40	0.40	0.02	0.02	0.05	0.05	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.1.0	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0495	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0432	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452	0.0452
	$\mathbf{z}_{\mathbf{u}}$	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.75	1.75	1.75	1.75	1.75	1.75	1.70	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.7	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75
	$^{\rm n_2}$	09	09	09	8 9	09	09	09	09	09	09	00	8 6	09	09	09	09	09	20	20	29	2 6	2 1	2 6	3 9	2.2	202	20	20	70	20	29	2 5	2 2	2 2	202	20	20	70	20	20	2 2	2 1	5 5	2.0	20
	$^{\mathrm{n}_{1}}$	20	20	20	200	20	20	20	20	20	50	0.70	0.00	20	20	20	20	20	20	20	20	50	07.0	070	0 0	20	20	20	20	20	20	20	070	070	20	20	20	20	20	20	20	20	50	200	0.00	20

							Table	B.22:	-con	-continued from previous page	from p	revious	page
$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	P2	power	1	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	P1	P2	power
20	70	1.75	0.0452	0.25	0.40	0.3127	40	06	1.7	0.0465	0.25	0.40	0.4948
20	70	1.75	0.0452	0.25	0.45	0.4667	40	06	1.7	0.0465	0.25	0.45	0.7014
0 20	2 2	1.75	0.0452	0.25	0.50	0.6220	40	3 8	1.7 1	0.0465	0.25	0.50	0.8573
20	2 2	1.75	0.0452	0.25	0.60	0.8666	40	06	1.7	0.0465	0.25	0.60	0.9847
20	202	1.75	0.0452	0.25	0.65	0.9388	40	06	1.7	0.0465	0.25	0.65	0.9968
20	20	1.75	0.0452	0.25	0.70	0.9778	40	06	1.7	0.0465	0.25	0.70	0.9995
20	20	1.75	0.0452	0.25	0.75	0.9937	40	06	1.7	0.0465	0.25	0.75	1.0000
20	20	1.75	0.0452	0.30	0.45	0.3004	40	06	1.7	0.0465	0.30	0.45	0.4756
50	2 6	1.75	0.0452	0.30	0.50	0.4460	40	06 0	1.7	0.0465	0.30	0.50	0.6824
20	2 2	1.75 1.75	0.0452	0.30	0.55	0.6001	04	G 6	- I: -	0.0465	0.30	0.00	0.8442
20	2 2	1.75	0.0452	0.30	0.65	0.8635	40	06	1.7	0.0465	0.30	0.00	0.9826
20	20	1.75	0.0452	0.30	0.70	0.9402	40	06	1.7	0.0465	0.30	0.70	0.9963
20	20	1.75	0.0452	0.35	0.50	0.2885	40	06	1.7	0.0465	0.35	0.50	0.4655
20	20	1.75	0.0452	0.35	0.55	0.4327	40	06	1.7	0.0465	0.35	0.55	0.6722
20	29	1.75	0.0452	0.35	0.60	0.5948	40	06	1.7	0.0465	0.35	0.60	0.8380
50	2 2	1.75	0.0452	0.35	0.65	0.7504	40	06.0	1.7	0.0465	0.35	0.65	0.9373
070	2 6	1.73	0.0452	0.40	0.55	0.2827	40	3 8	- i-	0.0405	0.40	0.55	0.4013
0.00	2 &	1.72	0.0459	0.40	0.00	0.2584	40	100	1.72	0.0403	0.40	0.00	0.0034
20	8 8	1.74	0.0459	0.05	0.20	0.4666	40	100	1.72	0.0471	0.05	0.20	0.7643
20	80	1.74	0.0459	0.05	0.25	0.6700	40	100	1.72	0.0471	0.02	0.25	0.9222
20	80	1.74	0.0459	0.05	0.30	0.8265	40	100	1.72	0.0471	0.02	0.30	0.9821
20	80	1.74	0.0459	0.02	0.35	0.9237	40	100	1.72	0.0471	0.02	0.35	0.9970
20	80	1.74	0.0459	0.05	0.40	0.9729	40	100	1.72	0.0471	0.02	0.40	9666.0
20	80	1.74	0.0459	0.05	0.45	0.9923	40	100	1.72	0.0471	0.02	0.45	1.0000
50	80	1.74	0.0459	0.10	0.25	0.3751	40	100	1.72	0.0471	0.10	0.25	0.6487
0 0	00	1.74	0.0459	0.10	0.00	0.0088	40	100	17.7	0.0471	0.10	0.35	0.0477
200	8 8	1.74	0.0459	0.10	0.50	0.8635	40	100	1.72	0.0471	0.10	0.30	0.9868
20	80	1.74	0.0459	0.10	0.45	0.9410	40	100	1.72	0.0471	0.10	0.45	0.9974
20	80	1.74	0.0459	0.10	0.50	0.9779	40	100	1.72	0.0471	0.10	0.50	0.9996
20	80	1.74	0.0459	0.10	0.55	0.9930	40	100	1.72	0.0471	0.10	0.55	1.0000
20	80	1.74	0.0459	0.10	09.0	0.9982	40	100	1.72	0.0471	0.10	0.60	1.0000
20	200	1.74	0.0459	0.15	0.30	0.3297	40	100	1.72	0.0471	0.15	0.30	0.5829
20	8 8	1.74	0.0459	0.15	0.40	0.6841	40	100	1.72	0.0471	0.15	0.30	0.9125
20	80	1.74	0.0459	0.15	0.45	0.8220	40	100	1.72	0.0471	0.15	0.45	0.9719
20	80	1.74	0.0459	0.15	0.50	0.9120	40	100	1.72	0.0471	0.15	0.50	0.9932
20	80	1.74	0.0459	0.15	0.55	0.9631	40	100	1.72	0.0471	0.15	0.55	0.9988
20	80	1.74	0.0459	0.15	09.0	0.9873	40	100	1.72	0.0471	0.15	09.0	0.9998
20	80	1.74	0.0459	0.15	0.65	0.9965	40	100	1.72	0.0471	0.15	0.65	1.0000
200	200	1.74	0.0459	0.20	0.35	0.3125	40	100	1.72	0.0471	0.20	0.35	0.5315
0 6	00	1.74	0.0459	0.20	0.40	0.4650	40	100	17.7	0.0471	0.20	0.40	0.8800
20	08	1.74	0.0459	0.20	0.50	0.7893	40	100	1.72	0.0471	0.20	0.50	0.9580
20	80	1.74	0.0459	0.20	0.55	0.8910	40	100	1.72	0.0471	0.20	0.55	0.9888
20	80	1.74	0.0459	0.20	09.0	0.9526	40	100	1.72	0.0471	0.20	0.60	0.9978
20	80	1.74	0.0459	0.20	0.65	0.9831	40	100	1.72	0.0471	0.20	0.65	0.9997
										0			

Table B.22: continue on next page

s page	"rom premions page	t_{rom}	papulsuos .66). cor	o B 96	Tabl							
0.6720	09.0	0.40	0.0471	1.72	100	40	0.4533	09.0	0.40	0.0459	1.74	80	20
0.4543	0.55	0.40	0.0471	1.72	100	40	0.2940	0.55	0.40	0.0459	1.74	80	20
0.9419	0.65	0.35	0.0471	1.72	100	40	0.7686	0.65	0.35	0.0459	1.74	80	20
0.8398	09.0	0.35	0.0471	1.72	100	40	0.6147	0.60	0.35	0.0459	1.74	80	20
0.6677	0.55	0.35	0.0471	1.72	100	40	0.4468	0.55	0.35	0.0459	1.74	80	20
0.4568	0.50	0.35	0.0471	1.72	100	40	0.2914	0.50	0.35	0.0459	1.74	80	20
0.9970	0.70	0.30	0.0471	1.72	100	40	0.9480	0.70	0.30	0.0459	1.74	80	20
0.9841	0.65	0.30	0.0471	1.72	100	40	0.8776	0.65	0.30	0.0459	1.74	80	20
0.9414	0.60	0.30	0.0471	1.72	100	40	0.7638	09.0	0.30	0.0459	1.74	80	20
0.8429	0.55	0.30	0.0471	1.72	100	40	0.6144	0.55	0.30	0.0459	1.74	80	20
0.6787	0.50	0.30	0.0471	1.72	100	40	0.4491	0.50	0.30	0.0459	1.74	80	20
0.4700	0.45	0.30	0.0471	1.72	100	40	0.2953	0.45	0.30	0.0459	1.74	80	20
1.0000	0.75	0.25	0.0471	1.72	100	40	0.9950	0.75	0.25	0.0459	1.74	80	20
0.9996	0.70	0.25	0.0471	1.72	100	40	0.9817	0.70	0.25	0.0459	1.74	80	20
0.9971	0.65	0.25	0.0471	1.72	100	40	0.9474	0.65	0.25	0.0459	1.74	80	20
0.9853	0.60	0.25	0.0471	1.72	100	40	0.8796	09.0	0.25	0.0459	1.74	80	20
0.9471	0.55	0.25	0.0471	1.72	100	40	0.7707	0.55	0.25	0.0459	1.74	80	20
0.8578	0.50	0.25	0.0471	1.72	100	40	0.6249	0.50	0.25	0.0459	1.74	80	20
0.7000	0.45	0.25	0.0471	1.72	100	40	0.4621	0.45	0.25	0.0459	1.74	80	20
0.4920	0.40	0.25	0.0471	1.72	100	40	0.3048	0.40	0.25	0.0459	1.74	80	20
1.0000	0.70	0.20	0.0471	1.72	100	40	0.9953	0.70	0.20	0.0459	1.74	80	20
power	p2	p1	pvalue	$\mathbf{z}_{\mathbf{u}}$	$^{\rm n_2}$	$_{1}^{n}$	power	p 2	p1	pvalue	$\mathbf{z}_{\mathbf{n}}$	$^{\rm n_2}$	$^{\mathrm{n}_{1}}$
s $page$	previous		$-continued\ from$		able B.22:	Iable							

 $\alpha = 0.025$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in the first sample; p2: fixed value of the probability of success in the second sample. Table B.23: Achieved power and p-values calculated for the z-pooled statistic in cases of different sample sizes,

$^{\mathrm{1}}$	n2	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	P2	power	1 u	n2	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	P2	power
10	20	2.08	0.0231	0.05	0.15	0.0132	20	06	2.16	0.0243	0.02	0.15	0.0438
10	20	2.08	0.0231	0.02	0.20	0.0527	20	90	2.16	0.0243	0.02	0.20	0.2123
10	20	2.08	0.0231	0.05	0.25	0.1326	20	90	2.16	0.0243	0.05	0.25	0.4385
10	20	2.08	0.0231	0.02	0.30	0.2499	20	90	2.16	0.0243	0.02	0.30	0.6529
10	20	2.08	0.0231	0.02	0.35	0.3881	20	90	2.16	0.0243	0.05	0.35	0.8152
10	20	2.08	0.0231	0.02	0.40	0.5278	20	90	2.16	0.0243	0.05	0.40	0.9196
10	20	2.08	0.0231	0.02	0.45	0.6543	20	90	2.16	0.0243	0.02	0.45	0.9728
10	20	2.08	0.0231	0.10	0.25	0.0801	20	90	2.16	0.0243	0.10	0.25	0.1963
10	20	2.08	0.0231	0.10	0.30	0.1555	20	90	2.16	0.0243	0.10	0.30	0.3590
10	20	2.08	0.0231	0.10	0.35	0.2518	20	90	2.16	0.0243	0.10	0.35	0.5441
10	20	2.08	0.0231	0.10	0.40	0.3607	20	90	2.16	0.0243	0.10	0.40	0.7253
10	20	2.08	0.0231	0.10	0.45	0.4742	20	90	2.16	0.0243	0.10	0.45	0.8620
10	20	2.08	0.0231	0.10	0.50	0.5853	20	90	2.16	0.0243	0.10	0.50	0.9414
10	20	2.08	0.0231	0.10	0.55	0.6885	20	90	2.16	0.0243	0.10	0.55	0.9789
10	20	2.08	0.0231	0.10	09.0	0.7799	20	90	2.16	0.0243	0.10	09.0	0.9937
10	20	2.08	0.0231	0.15	0.30	0.0942	20	90	2.16	0.0243	0.15	0.30	0.1745
10	20	2.08	0.0231	0.15	0.35	0.1590	20	90	2.16	0.0243	0.15	0.35	0.3167
10	20	2.08	0.0231	0.15	0.40	0.2393	20	90	2.16	0.0243	0.15	0.40	0.4992
10	20	2.08	0.0231	0.15	0.45	0.3321	20	90	2.16	0.0243	0.15	0.45	0.6797
10	20	2.08	0.0231	0.15	0.50	0.4339	20	90	2.16	0.0243	0.15	0.50	0.8213
10	20	2.08	0.0231	0.15	0.55	0.5406	20	90	2.16	0.0243	0.15	0.55	0.9137
10	20	2.08	0.0231	0.15	09.0	0.6480	20	90	2.16	0.0243	0.15	09.0	0.9650
10	20	2.08	0.0231	0.15	0.65	0.7503	20	90	2.16	0.0243	0.15	0.65	0.9888
10	20	2.08	0.0231	0.20	0.35	0.0975	20	90	2.16	0.0243	0.20	0.35	0.1647
10	20	2.08	0.0231	0.20	0.40	0.1539	20	90	2.16	0.0243	0.20	0.40	0.3044
10	20	2.08	0.0231	0.20	0.45	0.2251	20	90	2.16	0.0243	0.20	0.45	0.4764
10	20	2.08	0.0231	0.20	0.50	0.3109	20	90	2.16	0.0243	0.20	0.50	0.6473
10	20	2.08	0.0231	0.20	0.55	0.4105	20	90	2.16	0.0243	0.20	0.55	0.7906
10	20	2.08	0.0231	0.20	09.0	0.5214	20	90	2.16	0.0243	0.20	09.0	0.8942
10	20	2.08	0.0231	0.20	0.65	0.6375	20	90	2.16	0.0243	0.20	0.65	0.9567
10	20	2.08	0.0231	0.20	0.70	0.7487	20	90	2.16	0.0243	0.20	0.70	0.9861
10	20	2.08	0.0231	0.25	0.40	0.0957	20	90	2.16	0.0243	0.25	0.40	0.1660
10	20	2.08	0.0231	0.25	0.45	0.1476	20	90	2.16	0.0243	0.25	0.45	0.2978
10	20	2.08	0.0231	0.25	0.50	0.2158	20	90	2.16	0.0243	0.25	0.50	0.4581
10	20	2.08	0.0231	0.25	0.55	0.3023	20	90	2.16	0.0243	0.25	0.55	0.6244
10	20	2.08	0.0231	0.25	09.0	0.4071	20	90	2.16	0.0243	0.25	0.60	0.7745
10	20	2.08	0.0231	0.25	0.65	0.5255	20	90	2.16	0.0243	0.25	0.65	0.8876
10	20	2.08	0.0231	0.25	0.70	0.6473	20	90	2.16	0.0243	0.25	0.70	0.9545
10	20	2.08	0.0231	0.25	0.75	0.7592	20	90	2.16	0.0243	0.25	0.75	0.9854
10	20	2.08	0.0231	0.30	0.45	0.0936	20	90	2.16	0.0243	0.30	0.45	0.1665
10	20	2.08	0.0231	0.30	0.50	0.1451	20	90	2.16	0.0243	0.30	0.50	0.2907
10	20	2.08	0.0231	0.30	0.55	0.2159	20	90	2.16	0.0243	0.30	0.55	0.4466
10	20	2.08	0.0231	0.30	09.0	0.3081	20	90	2.16	0.0243	0.30	0.60	0.6180
10	20	2.08	0.0231	0.30	0.65	0.4193	20	06	2.16	0.0243	0.30	0.65	0.7752

Table B.23: continue on next page

Table B.23: continue on next page

us $page$	power	0.8897	0.1650	0.4498	0.6276	0.1663	0.2960	0.0253	0.3852	0.6101	0.7945	0.9108	0.9687	0.3224	0.5154	0.7011	0.8430	0.9306	0.9930	0.1518	0.2903	0.4665	0.6458	0.7973	0.9033	0.9880	0.1456	0.2735	0.4373	0.6144	0.7729	0.9536	0.9855	0.1429	0.2636	0.4246	0.6020	0.8804	0.9532	0.9862	0.1421	0.2630	0.4236
previo	p2	0.70	0.50	0.60	0.65	0.55	0.60	0.50	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.70	0.40	0.45	0.50	0.00	0.00	0.70	0.75	0.45	0.50	0.55
from j	p1	0.30	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.05	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.7.0	0.25	0.25	0.25	0.30	0.30	0.30
-continued from previous page	pvalue	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185
	$\mathbf{z}_{\mathbf{u}}$	2.16	2.16	2.16	2.16	2.16	2.16	40.0	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	42.2	2.24	2.24	2.24	2.24	2.24	2.24
B.23:	$^{\mathrm{n}_{2}}$	06	G 6	8 6	06	06	9 5	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	$_{1}$	20			20	20			20	20			200	20	20	20	20	07.0	20	20	20	-		20				20	-		0.70	20	20		20			20	-	20	20	20	20
	power	0.5412	0.0944	0.2254	0.3228	0.0995	0.1588	0.0018	0.0642	0.1668	0.3156	0.4811	0.6352	0.1007	0.1978	0.3192	0.4533	0.5894	0.8199	0.0591	0.1208	0.2064	0.3140	0.4387	0.5696	0.7979	0.0717	0.1297	0.2108	0.3146	0.4351	0.6806	0.7840	0.0790	0.1367	0.2173	0.3190	0.5565	0.6731	0.7771	0.0855	0.1442	0.2242
	p2	0.70	0.50	09:0	0.65	0.55	0.60	0.50	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.00	0.30	0.35	0.40	0.45	0.50	0.55	0.65	0.35	0.40	0.45	0.50	0.55	0.00	0.70	0.40	0.45	0.50	0.00	0.00	0.70	0.75	0.45	0.50	0.55
	p1	0.30	0.35	0.35	0.35	0.40	0.40	0.00	0.05	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.70	0.25	0.25	0.25	0.30	0.30	0.30
	pvalue	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.116	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176
	$\mathbf{z}_{\mathbf{u}}$	2.08	2.08	2.08	2.08	2.08	2.08	2 1.7	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.1.2	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.1.0	2.17	2.17	2.17	2.17	2.17	2.17
	$^{\rm n_2}$	20	20.0	8 8	20	50	200	8 8	308	30	30	30	30 80	30	30	30	30	200	9 %	30	30	30	30	30	30 80	8 8	30	30	30	30	30 80	8 8	30	30	30	9 8	900	8 8	30	30	30	98	90
	$_{1}$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0 1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

page	power	0.7633	0.8875	0.1458	0.2679	0.4293	0.1514	0.2771	0.1760	0.3654	0.5758	0.7568	0.0000	0.9505	0.2891	0.4724	0.6549	0.8039	0.9041	0.9598	0.9857	0.9857	0.4187	0.5954	0.7500	0.8639	0.9358	0.9745	0.9918	0.2329	0.3840	0.7047	0.8303	0.9169	0.9664	0.9095	0.3539	0.5143	0.6747	0.8110	0.9074	0.9630	0.9885	0.2008	0.3346 0.4963
revious	P2	0.65	0.70	0.20	0.55	0.00	0.55	0.60	0.15	0.20	0.25	0.30	0.00	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	20.0	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	0.60	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.55
from p	\mathbf{p}_1	0.30	0.30	0.35	0.35	0.00	0.40	0.40	0.02	0.02	0.02	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
-continued from previous page	pvalue	0.0185	0.0185	0.0185	0.0185	0.0105	0.0185	0.0185	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222 0.0222
	$\mathbf{z}_{\mathbf{u}}$	2.24	2.24	2.24	2.24	40.0	2.24	2.24	2.10	2.10	2.10	2.10	01.70	2.10	2.10	2.10	2.10	2.10	2.10	2.10	07.70	2.10	01.0	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
B.23:	$^{\mathrm{n}_{2}}$	100	100	100	100	100	100	100	40	40	40	40	04	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	40	40	40	940	40	40	40	40	40	40	40	40	40
Table	$^{\rm n_1}$	20	20	20	0.70	0.00	20	20	30	30	30	30	000	000	30	30	30	30	30	30	200	30	8 8	30	30	30	30	30	30	30	30	30	30	30	30	300	000	30	30	30	30	30	30	30	30
	power	0.4357	0.5545	0.0916	0.1506	0.3261	0.0964	0.1549	0.0008	0.0116	0.0623	0.1823	0.3309	0.0000	0.0367	0.1092	0.2223	0.3576	0.4991	0.6333	0.7494	0.8431	0.0000	0.2302	0.3448	0.4696	0.5951	0.7154	0.8216	0.0791	0.1434	0.3328	0.4513	0.5807	0.7092	0.0179	0.1460	0.2259	0.3277	0.4518	0.5872	0.7137	0.8168	0.0892	0.1468 0.2280
	p2	0.65	0.70	0.50	0.55	0.00	0.55	09.0	0.15	0.20	0.25	0.30	0.00	0.40	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.00	20.0	0.40	0.45	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50
	p1	0.30	0.30	0.35	0.35	0.00	0.40	0.40	0.05	0.02	0.02	0.05	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
	pvalue	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0176	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246 0.0246
	$\mathbf{z}_{\mathbf{u}}$	2.17	2.17	2.17	2.17	2.17	2.17	2.17	2.16	2.16	2.16	2.16	01.7	2.10	2.16	2.16	2.16	2.16	2.16	2.16	07.70	2.10	2.10	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.10	2.16	2.16	2.16	2.16	01.7	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16
	$^{\mathrm{n}_{2}}$	30	30	30	080	9 8	308	30	40	40	40	40	040	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	04	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	$^{\rm n_1}$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1 0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

Table B.23: continue on next page

Table B.23: continue on next page

page	power	0.6621	0.8044	0.1938	0.3280	0.4920	0.6610	0.1932	0.3289	0.2164	0.4570	0.8260	0.9273	0.9746	0.9925	0.3495	0.5515	0.8581	0.9359	0.9763	0.9931	0.9985	0.3054	0.4805	0.6545	0.0000	0.9635	0.9884	0.9970	0.2686	0.4337	0.6151	0.7754	0.8883	0.9841	0.9958	0.2523	0.4179	0.5977	0.7568	0.8743	0.9462	0.9810	0.2498	0.4090
revious	p ₂	0.60	0.65	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.0	0.60	0.65	0.35	0.40	0.45	0.50	0.00	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.75	0.45	0.50
irom pi	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.00	0.00	0.05	0.05	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.10	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
-continued from previous page	pvalue	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0222	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237	0.0237
	$\mathbf{z}_{\mathbf{u}}$	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.02	20.2	2.02	2.02	2.02	2.02	2.02	20.2	2.02	2.03	2.02	2.03	2.02	2.02	2.02	2.02	20.2	20.2	2.02	2.03	2.02	2.02	2.02	2.02	20.2	2.02	2.02	2.03	2.02	2.02	2.02	2.02	2.02	20.2	20.2	2.02
B.23:	$^{\mathrm{n}_{2}}$	40	40	40	40	40	40	40	940	00 20	0, 2,	20	20	20	20	00.0	20.00	20	20	20	20	20	20	20	200	00.00	2 2	20 20	20	20	20	20	50	20.00	20	20	20	20	20	20	20	50	200	20.00	20
Table	$^{\mathrm{n}_{1}}$	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	power	0.3367	0.4656	0.0913	0.1518	0.2400	0.3527	0.0963	0.1629	0.0000	0.0006	0.0511	0.1670	0.3496	0.5434	0.0049	0.0299	0.2155	0.3583	0.5116	0.6615	0.7898	0.0170	0.0574	0.1293	0.2290	0.5002	0.6459	0.7753	0.0321	0.0752	0.1425	0.2388	0.3024	0.6491	0.7786	0.0423	0.0855	0.1539	0.2512	0.3760	0.5198	0.0045	0.0493	0.0951
	p2	09.0	0.65	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.40 0.70	0.00 0.00 0.00	0.60	0.65	0.35	0.40	0.45	0.50	0.00	0.65	0.70	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.45	0.50
	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.05	0.02	0.02	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.1.0	0.10	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30
	pvalue	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0100	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0100	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166	0.0166
	$\mathbf{z}_{\mathbf{u}}$	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.39	2.39	2.39	2.39	2.39	2.39	62.3	92.59	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.08	08.0	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	239	2.39
	$^{\mathrm{n}_{2}}$	40	40	40	40	40	40	40	40	200	0.02	20	20	20	20	20	2 2	20	20	20	20	20	20	20	50	00 20	8 2	20	20	20	20	20	0° 7	00 Z	20	20	20	20	20	20	20	0° 7	20 20	25.00	20
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

						raose	D.23:		-continued from previous page	from p	revious	s page
n ₁ n	n_2 z_{u}	pvalue	p1	P2	power	$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	P1	P2	power
		_	0.30	0.55	0.1667	30	20	2.03	0.0237	0.30	0.55	0.5835
	50 2.39		0.30	09.0	0.2683	30	20	2.02	0.0237	0.30	09.0	0.7444
-		_	0.30	0.65	0.3981	30	20	2.02	0.0237	0.30	0.65	0.8671
			0.30	0.70	0.5432	30	20	2.02	0.0237	0.30	0.70	0.9432
-			0.35	0.50	0.0561	30	20	2.02	0.0237	0.35	0.50	0.2463
10 5			0.35	0.55	0.1056	30	20	2.02	0.0237	0.35	0.55	0.4017
			0.32	09.0	0.1827	30	20	2.02	0.0237	0.35	0.60	0.5766
		_	0.35	0.65	0.2910	30	20	2.02	0.0237	0.35	0.65	0.7400
10 5			0.40	0.55	0.0636	30	20	2.02	0.0237	0.40	0.55	0.2442
		_	0.40	09.0	0.1184	30	20	2.02	0.0237	0.40	09.0	0.3997
			0.05	0.15	0.0005	30	09	2.01	0.0250	0.05	0.15	0.2183
_			0.02	0.20	0.0132	30	09	2.01	0.0250	0.05	0.20	0.4465
_			0.05	0.25	0.0892	30	09	2.01	0.0250	0.05	0.25	0.6767
_	0 2.08	0.0249	0.05	0.30	0.2646	30	09	2.01	0.0250	0.05	0.30	0.8461
_		0.0249	0.02	0.35	0.4701	30	09	2.01	0.0250	0.05	0.35	0.9409
		0.0249	0.05	0.40	0.6361	30	09	2.01	0.0250	0.02	0.40	0.9818
_			0.02	0.45	0.7679	30	09	2.01	0.0250	0.02	0.45	0.9955
	60 2.08	0.0249	0.10	0.25	0.0520	30	09	2.01	0.0250	0.10	0.25	0.3587
10 6			0.10	0.30	0.1562	30	09	2.01	0.0250	0.10	0.30	0.5708
	60 2.08	0.0249	0.10	0.35	0.2881	30	09	2.01	0.0250	0.10	0.35	0.7573
			0.10	0.40	0.4231	30	09	2.01	0.0250	0.10	0.40	0.8842
			0.10	0.45	0.5663	30	09	2.01	0.0250	0.10	0.45	0.9534
_			0.10	0.50	0.7009	30	09	2.01	0.0250	0.10	0.50	0.9843
_	60 2.08	_	0.10	0.55	0.8098	30	09	2.01	0.0250	0.10	0.55	0.9957
10 6			0.10	09.0	0.8931	30	09	2.01	0.0250	0.10	0.60	0.9991
		_	0.15	0.30	0.0895	30	09	2.01	0.0250	0.15	0.30	0.3187
_			0.15	0.35	0.1718	30	09	2.01	0.0250	0.15	0.35	0.5113
	60 2.08	_	0.15	0.40	0.2727	30	09	2.01	0.0250	0.15	0.40	0.6934
_			0.15	0.45	0.3983	30	09	2.01	0.0250	0.15	0.45	0.8337
10 6			0.15	0.50	0.5327	30	09	2.01	0.0250	0.15	0.50	0.9235
_			0.15	0.55	0.6624	30	09	2.01	0.0250	0.15	0.55	0.9711
_	60 2.08	_	0.15	09.0	0.7822	30	09	2.01	0.0250	0.15	0.60	0.9914
10 6			0.15	0.65	0.8777	30	09	2.01	0.0250	0.15	0.65	0.9981
_			0.20	0.35	0.0993	30	09	2.01	0.0250	0.20	0.35	0.2914
_		_	0.20	0.40	0.1697	30	09	2.01	0.0250	0.20	0.40	0.4657
010			0.20	0.45	0.2678	30	00	2.01	0.0250	0.20	0.45	0.6431
		0.0249	0.20	0.00	0.3040	000	8 8	10.2	0.0250	0.20	0.00	0.7945
	50.2		0.20	0.00	0.5148	30	00 00	2.01	0.0250	0.20	0.00	0.9014
	2.08		0.20	0.00	0.0031	000	00	2.01	0.0250	0.20	0.00	0.9010
	2.08		0.20	0.00	0.7789	30	00	2.01	0.0250	0.20	0.00	0.9883
			0.40	0.70	0.0145	000	00	10.2	0.0250	0.20	0.0	0.0870
			0.70	0.40	0.1010	000	00	10.0	0.0250	0.23	0.40	0.207.0
			0.70	0.4.0	0.2646	000	00	20.0	0.0250	0.40	0.4:0 0.4:0	0.4322
0 0	80.00		0.00	0.0 0.0 0.0	0.2040	30	3 8	20.0	0.0250	0.60	0.0 0.0 0.0	0.7736
			20.0	0.00	0.5205	300	8 9	2.01	0.0250	0.20	0.00	0 8000
			0.25	0.00	0.6620	30	8 6	2.01	0.0250	0.25	0.00	0.9565
		_	0.25	0.70	0.7843	30	9	2.01	0.0250	0.25	0.70	0.9865
_			0.25	0.75	0.8762	30	8 9	2.01	0.0250	0.25	0.75	0.9969
10 6	60 2.08	0.0249	0.30	0.45	0.1056	30	09	2.01	0.0250	0.30	0.45	0.2524

Table B.23: continue on next page

Table B.23: continue on next page

is page	power	0.4165	0.5999	0.8848	0.9548	0.2486	0.4136	0.5968	0.2502	0.4150	0.1894	0.4244	0.6612	0.9398	0.9820	0.9957	0.3339	0.5494	0.7437	0.0070	0.9852	0.9964	0.9993	0.2930	0.4864	0.8303	0.9268	0.9745	0.9929	0.9985	0.2667	0.4403	0.7999	0.9078	0.9653	0.9897	0.9977	0.2520	0.4200	0.7792	0.8944	0.9592	0.9876	
revion	p 2	0.50	0.55	0.65	0.70	0.50	0.55	0.60	0.00	0.60	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.50	0.55	09.0	0.30	0.30	0.40	0.50	0.55	0.60	0.65	0.35	0.40	0.50	0.55	0.60	0.65	0.70	0.40	 	0.55	09.0	0.65	0.70	
rom p	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.02	0.05	0.05	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.10	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.45	0.25	0.25	0.25	0.25	!
-continued from previous page	pvalue	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0220	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
: -con	$\mathbf{z}_{\mathbf{u}}$	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	07.70	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	1
B.23:	$^{\mathrm{n}_{2}}$	09	9 9	8 9	09	09	09	09	8 9	8 9	20	0 1	2 2	2 2	20	20	20	20	2 2	9 9	2.2	202	20	0.1	3 9	2 2	202	20	20	2	2 2	2 2	2.02	20	20	20	29	2 2	2 2	202	20	20	2 2	
Table	$^{\mathrm{n}_{1}}$	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	800	30	30	30	200	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	1
	power	0.1735	0.2696	0.5379	0.6757	0.1083	0.1814	0.2866	0.4170	0.1972	0.0000	0.0000	0.0002	0.0408	0.1631	0.3700	0.0001	0.0028	0.0238	0.0961	0.3787	0.5422	0.6984	0.0016	0.0135	0.0550	0.2407	0.3784	0.5323	0.6828	0.0074	0.0304	0.1481	0.2530	0.3860	0.5384	0.6973	0.0162	0.0443	0.1621	0.2670	0.4050	0.5688	
	p2	0.50	0.55	0.65	0.70	0.50	0.55	0.00	0.00	09.0	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40 740	0.50	0.55	09.0	0.30	0.35	0.40	0.50	0.55	09.0	0.65	0.35	0.40	0.50	0.55	09.0	0.65	0.70	0.40	0.0	0.55	09.0	0.65	0.70	
	P1	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.33	0.40	0.02	0.05	0.05	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	1
	pvalue	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	
	$\mathbf{z}_{\mathbf{u}}$	2.08	20.0	2.08	2.08	2.08	2.08	20.0	20.0	2.08	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.07	2.67	2.67	2.67	2.67	2.07	2.67	2.67	2.67	2.67	2.67	2.67	20.7	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	
	$^{\mathrm{n}_{2}}$	09	9 9	8 09	09	09	09	09	9 9	8 09	70	70	2 2	2 2	70	70	20	20	2 8	9 9	2.2	202	70	29	2 6	2.5	70	70	20	20	2 2	2 5	202	70	70	70	29	2 2	2 2	202	70	20	2 2	
	\mathbf{n}_1	10	0 0	10	10	10	10	0 1	2 0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	2 5	10	10	10	10	10	10	1 0	10	10	10	10	10	10	1 0	10	10	10	010	1

page	power	0.2465	0.4151	0.6006	0.8875	0.9560	0.2429	0.4083	0.5943	0.7626	0.2417	0.4072	0.1939	0.4321	0.6765	200000	0.9452	0.505.0	0.3387	0.000	0.7377	0.8762	0.9538	0.9864	0.9968	0.9994	0.2814	0.4720	0.6712	0.8302	0.9280	0.9754	0.9935	0.9867	0.4361	0.6326	0.7972	0.9081	0.9670	0.9908	0.9981	0.2408	0.4152	0.6070	0.1777	0.8971	0.9893	
revious	p2	0.45	0.50	0.55	0.65	0.70	0.50	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.75	0.30	0.00	0.40	0.40	0.20	3.0	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.00	0.70	
rom pi	p1	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.00	0.00	0.0	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.20	0.70	0.25	
-continued from previous page	pvalue	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0226	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	0.0232	
	$\mathbf{z}_{\mathbf{n}}$	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.12	2.12	2.12	21.7	7.70	01.0	100	21.0	2.1.2	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	7.72	21.2	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	27.7	21.7	2.12	
B.23:	$^{\mathrm{n}_{2}}$	70	0 1	2 2	2 2	20	70	70	70	20	20	20	80	0 0 0 0 0 0	000	000	000	8 8	000	8	8 8	80	80	80	80	80	80	80	80	80	80	80	200	8 8	80	80	80	80	80	80	80	80	08 8	200	200	200	80	
Table	$^{\mathrm{n}_{1}}$	30	30	30	30	30	30	30	30	30	30	30	30	30	30	000	000	30	300	300	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	200	200	30	
	power	0.0225	0.0500	0.0992	0.2908	0.4431	0.0272	0.0578	0.1108	0.1989	0.0319	0.0661	0.0000	0.0008	0.0177	0.3500	0.5290	0.9410	0.0334	0.010.0	0.003	0.3367	0.4846	0.6448	0.7805	0.8777	0.0387	0.1116	0.2038	0.3236	0.4740	0.6231	0.7528	0.0511	0.1197	0.2080	0.3314	0.4711	0.6113	0.7350	0.8412	0.0678	0.1283	0.2208	0.3383	0.4709	0.7369	
	p2	0.45	0.50	0.55	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.00	0.00	0.40	24.0	0.50	20.0	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.45	0.50	0.55	0.00	0.70	
	p1	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.05	0.00	0.00	0.0	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.20	0.70	0.25	
	pvalue	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0163	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0230	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	
	$\mathbf{z}_{\mathbf{u}}$	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.24	2.24	77.7	4 2	4 5	40.0	4 6	4 6	2.5	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	77.0	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	4.2.2	77.7	42.0	2.24	
	$^{\mathrm{n}_{2}}$	20	2 1	2 5	2 2	202	20	20	20	20	20	2	80	0x 8	0 0 0	000	000	8 8	90	8 8	8 8	80	80	80	80	80	80	80	80	80	80	80	200	8 8	80	80	80	80	80	80	80	80	08	200	000	080	80	
	$^{\rm n_1}$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	107	10	10	

Table B.23: continue on next page

Table B.23: continue on next page

n1 n_2 r_n n_2								Table	B.23:		-continued from previous page	from p	reviou	s page
80 2.24 0.0239 0.25 0.75 0.8522 30 80 2.12 80 2.24 0.0239 0.30 0.45 0.07028 30 0.21 80 2.24 0.0239 0.30 0.55 0.0402 30 80 2.12 80 2.24 0.0239 0.30 0.55 0.231 30 80 2.12 80 2.24 0.0239 0.30 0.65 0.4728 30 80 2.12 80 2.24 0.0239 0.30 0.65 0.4186 30 80 2.12 80 2.24 0.0239 0.35 0.65 0.4186 30 80 2.12 80 2.24 0.0239 0.35 0.65 0.1496 30 80 2.12 80 2.24 0.0239 0.45 0.060 0.236 30 80 2.12 80 2.24 0.0239 0.45 0.060 <	$_{1}^{n}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	p1	p2	power	$^{\rm n_1}$	$_{\rm n_2}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	P1	P2	power
80 2.24 0.0239 0.30 0.445 0.0758 30 80 2.18 80 2.24 0.0239 0.30 0.455 0.0758 30 80 2.12 80 2.24 0.0239 0.30 0.65 0.4248 30 80 2.12 80 2.24 0.0239 0.30 0.65 0.4248 30 80 2.12 80 2.24 0.0239 0.30 0.75 0.64180 30 2.12 80 2.24 0.0239 0.35 0.60 0.0344 30 80 2.12 80 2.24 0.0239 0.40 0.55 0.1045 30 2.12 80 2.24 0.0239 0.40 0.55 0.1060 30 2.02 80 2.24 0.0239 0.40 0.55 0.1060 30 2.12 80 2.24 0.0239 0.40 0.55 0.1060 30 2.12	10	80	2.24	0.0239	0.25	0.75	0.8522	30	80	2.12	0.0232	0.25	0.75	0.9979
80 2.24 0.0239 0.30 0.50 0.1402 30 80 2.18 80 2.24 0.0239 0.30 0.65 0.1410 30 80 2.12 80 2.24 0.0239 0.30 0.65 0.3441 30 80 2.12 80 2.24 0.0239 0.30 0.76 0.6485 30 80 2.12 80 2.24 0.0239 0.35 0.65 0.0845 30 80 2.12 80 2.24 0.0239 0.35 0.60 0.2384 30 80 2.12 80 2.24 0.0239 0.35 0.60 0.156 0.156 0.156 30 2.12 80 2.24 0.0239 0.40 0.65 0.156 0.384 30 2.12 80 2.24 0.0239 0.40 0.65 0.156 0.384 30 2.12 80 2.24 0.0239	10	80	2.24	0.0239	0.30	0.45	0.0758	30	80	2.12	0.0232	0.30	0.45	0.2337
80 2.74 0.0239 0.30 0.50 0.4341 30 90 2.12 80 2.74 0.0239 0.30 0.65 0.4728 30 90 2.12 80 2.24 0.0239 0.30 0.65 0.4478 30 80 2.12 80 2.24 0.0239 0.35 0.55 0.1495 30 80 2.12 80 2.24 0.0239 0.35 0.65 0.1495 30 80 2.12 80 2.24 0.0239 0.35 0.65 0.1495 30 80 2.12 80 2.24 0.0239 0.35 0.66 0.3515 30 80 2.12 80 2.24 0.0239 0.40 0.55 0.015 30 2.02 90 3.02 0.0099 0.05 0.15 0.000 30 2.08 2.08 90 3.02 0.0099 0.05 0.025 <	10	080	2.24	0.0239	0.30	0.50	0.1402	30	80	2.12	0.0232	0.30	0.50	0.4033
80 2.24 0.0239 0.30 0.65 0.4738 30 20 2.12 80 2.24 0.0239 0.30 0.65 0.4738 30 80 2.12 80 2.24 0.0239 0.35 0.65 0.1495 30 80 2.12 80 2.24 0.0239 0.35 0.65 0.1495 30 80 2.12 80 2.24 0.0239 0.35 0.66 0.2384 30 80 2.12 80 2.24 0.0239 0.40 0.55 0.0915 30 80 2.12 80 2.24 0.0239 0.40 0.55 0.0915 30 2.02 90 3.02 0.0099 0.05 0.25 0.0001 30 2.08 90 3.02 0.0099 0.01 0.25 0.0001 30 2.08 90 3.02 0.0099 0.10 0.25 0.0001 30	10	2 2	2.24	0.0239	0.30	0.00	0.2310	30	000	2.12	0.0232	0.30	0.55	0.5965
80 2.24 0.0239 0.30 0.70 0.6180 30 80 2.12 80 2.24 0.0239 0.35 0.50 0.0845 30 80 2.12 80 2.24 0.0239 0.35 0.50 0.0845 30 80 2.12 80 2.24 0.0239 0.35 0.60 0.1560 30 80 2.12 80 2.24 0.0239 0.40 0.60 0.1560 30 80 2.12 80 2.24 0.0239 0.40 0.60 0.1560 30 80 2.12 80 2.24 0.0239 0.40 0.60 0.1560 30 20 20 90 3.02 0.0099 0.05 0.25 0.0000 30 2.08 2.08 2.08 90 3.02 0.0099 0.10 0.40 0.00 30 2.08 2.08 90 3.02 0.0099	10	8 8	2.24	0.0239	0.30	0.65	0.4728	30	80	2.12	0.0232	0.30	0.65	0.8922
80 2.24 0.0239 0.35 0.50 0.0445 30 80 2.12 80 2.24 0.0239 0.35 0.55 0.1495 30 80 2.12 80 2.24 0.0239 0.35 0.55 0.1495 30 80 2.12 80 2.24 0.0239 0.40 0.65 0.1515 30 80 2.12 80 2.24 0.0239 0.40 0.65 0.155 0.0915 30 80 2.12 90 3.02 0.0099 0.05 0.15 0.0000 30 2.02 30 2.02 90 3.02 0.0099 0.05 0.25 0.0000 30 2.08 2.08 90 3.02 0.0099 0.05 0.45 0.0000 30 2.08 2.08 90 3.02 0.0099 0.10 0.25 0.0000 30 2.08 2.08 90 3.02	10	80	2.24	0.0239	0.30	0.70	0.6180	30	80	2.12	0.0232	0.30	0.70	0.9613
80 2.24 0.0239 0.35 0.55 0.1495 30 80 2.12 80 2.24 0.0239 0.35 0.65 0.1384 30 80 2.12 80 2.24 0.0239 0.35 0.66 0.1560 30 80 2.12 80 2.24 0.0239 0.40 0.55 0.0156 30 80 2.12 90 3.02 0.0099 0.05 0.15 0.0000 30 2.02 90 3.02 0.0099 0.05 0.25 0.0000 30 2.08 90 3.02 0.0099 0.05 0.25 0.0000 30 2.08 90 3.02 0.0099 0.10 0.25 0.0000 30 2.08 90 3.02 0.0099 0.10 0.35 0.0000 30 2.08 90 3.02 0.0099 0.10 0.35 0.0000 30 2.08	10	80	2.24	0.0239	0.35	0.50	0.0845	30	80	2.12	0.0232	0.35	0.50	0.2319
80 2.24 0.0239 0.35 0.60 0.2384 30 80 2.12 80 2.24 0.0239 0.35 0.60 0.23515 30 80 2.12 80 2.24 0.0239 0.40 0.65 0.0315 30 80 2.12 80 2.24 0.0239 0.40 0.60 0.1560 30 80 2.12 90 3.02 0.0099 0.05 0.25 0.0000 30 90 2.08 90 3.02 0.0099 0.05 0.25 0.0000 30 0.00 2.08 90 3.02 0.0099 0.05 0.25 0.0000 30 0.00 2.08 90 3.02 0.0099 0.10 0.35 0.0004 30 2.08 30 2.08 90 3.02 0.0099 0.10 0.35 0.0004 30 0.008 2.08 90 3.02 0.0099	10	80	2.24	0.0239	0.35	0.55	0.1495	30	80	2.12	0.0232	0.35	0.55	0.4021
80 2.24 0.0239 0.35 0.65 0.3515 30 80 2.12 80 2.24 0.0239 0.40 0.55 0.03515 30 80 2.12 80 2.24 0.0239 0.40 0.65 0.156 30 80 2.12 90 3.02 0.0099 0.05 0.15 0.0000 30 2.02 90 3.02 0.0099 0.05 0.25 0.0000 30 2.08 90 3.02 0.0099 0.05 0.35 0.0007 30 2.08 90 3.02 0.0099 0.05 0.44 0.0128 30 2.08 90 3.02 0.0099 0.05 0.45 0.0007 30 2.08 90 3.02 0.0099 0.10 0.45 0.0007 30 2.08 90 3.02 0.0099 0.10 0.45 0.0007 30 2.08 90	10	80	2.24	0.0239	0.35	09.0	0.2384	30	80	2.12	0.0232	0.35	0.60	0.5943
80 2.24 0.0239 0.40 0.55 0.0915 30 80 2.12 90 3.02 0.0239 0.40 0.55 0.0915 30 2.12 90 3.02 0.0099 0.05 0.15 0.0000 30 2.08 90 3.02 0.0099 0.05 0.25 0.0000 30 2.08 90 3.02 0.0099 0.05 0.35 0.0007 30 2.08 90 3.02 0.0099 0.05 0.35 0.0007 30 2.08 90 3.02 0.0099 0.05 0.35 0.0007 30 2.08 90 3.02 0.0099 0.10 0.25 0.0007 30 2.08 90 3.02 0.0099 0.10 0.45 0.0074 30 0.08 90 3.02 0.0099 0.10 0.45 0.0074 30 0.08 90 3.02 0.0099	10	80	2.24	0.0239	0.35	0.65	0.3515	30	80	2.12	0.0232	0.35	0.65	0.7697
80 2.24 0.0239 0.40 0.60 0.1560 30 80 2.18 90 3.02 0.0099 0.05 0.15 0.0000 30 90 2.18 90 3.02 0.0099 0.05 0.25 0.0000 30 90 2.08 90 3.02 0.0099 0.05 0.25 0.0000 30 90 2.08 90 3.02 0.0099 0.05 0.35 0.0007 30 90 2.08 90 3.02 0.0099 0.05 0.44 0.0128 30 90 2.08 90 3.02 0.0099 0.01 0.25 0.0007 30 2.08 90 3.02 0.0099 0.10 0.35 0.0004 30 2.08 90 3.02 0.0099 0.10 0.45 0.061 30 2.08 90 3.02 0.0099 0.10 0.44 0.071 30	10	80	2.24	0.0239	0.40	0.55	0.0915	30	80	2.12	0.0232	0.40	0.55	0.2349
90 3.02 0.00999 0.05 0.15 0.00000 30 2.08 90 3.02 0.00999 0.05 0.15 0.0000 30 90 2.08 90 3.02 0.00999 0.05 0.25 0.0000 30 90 2.08 90 3.02 0.00999 0.05 0.35 0.0000 30 90 2.08 90 3.02 0.0099 0.05 0.45 0.000 30 2.08 90 3.02 0.0099 0.05 0.45 0.000 30 2.08 90 3.02 0.0099 0.10 0.25 0.000 30 2.08 90 3.02 0.0099 0.10 0.45 0.001 30 2.08 90 3.02 0.0099 0.10 0.45 0.001 30 2.08 90 3.02 0.0099 0.10 0.45 0.001 30 2.08 90	10	80	2.24	0.0239	0.40	09.0	0.1560	30	80	2.12	0.0232	0.40	0.60	0.4050
90 3.02 0.0099 0.02 0.25 0.0000 30 2.08 2.08 90 3.02 0.0099 0.05 0.25 0.0000 30 90 2.08 90 3.02 0.0099 0.05 0.35 0.0007 30 90 2.08 90 3.02 0.0099 0.05 0.45 0.007 30 90 2.08 90 3.02 0.0099 0.05 0.45 0.0007 30 90 2.08 90 3.02 0.0099 0.10 0.35 0.0004 30 2.08 90 3.02 0.0099 0.10 0.35 0.0004 30 2.08 90 3.02 0.0099 0.10 0.45 0.0014 30 2.08 90 3.02 0.0099 0.10 0.45 0.0014 30 2.08 90 3.02 0.0099 0.15 0.32 0.0099 0.15 0.002	10	8	3.02	0.0099	0.05	0.15	0.0000	30	06	2.08	0.0243	0.05	0.15	0.1977
90 3.02 0.0099 0.02 0.25 0.0099 0.02 0.02 0.0099 0.02 0.0000 30 2.08 2.08 90 3.02 0.0099 0.05 0.35 0.0007 30 90 2.08 90 3.02 0.0099 0.05 0.45 0.0007 30 90 2.08 90 3.02 0.0099 0.10 0.25 0.0000 30 2.08 90 3.02 0.0099 0.10 0.35 0.0000 30 2.08 90 3.02 0.0099 0.10 0.45 0.001 30 2.08 90 3.02 0.0099 0.10 0.45 0.001 30 2.08 90 3.02 0.0099 0.10 0.45 0.054 30 2.08 90 3.02 0.0099 0.10 0.45 0.064 30 2.08 90 3.02 0.0099 0.10 0.45 <td>01</td> <td>6 8</td> <td>3.02</td> <td>0.0099</td> <td>0.05</td> <td>0.20</td> <td>0.0000</td> <td>30</td> <td>6 6</td> <td>2.08</td> <td>0.0243</td> <td>0.02</td> <td>0.20</td> <td>0.4396</td>	01	6 8	3.02	0.0099	0.05	0.20	0.0000	30	6 6	2.08	0.0243	0.02	0.20	0.4396
90 3.02 0.0099 0.02 0.430 3.0 2.0 0.0099 0.00 0.430 0.00 <	07.	G 8	3.02	0.0099	0.05	0.25	0.0000	30	06 6	2.08	0.0243	0.05	0.25	0.6996
90 3.02 0.0099 0.02 0.0099 0.02 0.0099 0.02 0.0099 0.02 0.0099 0.02 0.0099 0.02 0.0099 0.02 0.0090 0.02 0.0090 0.02 0.0090 0.02 0.0090 0.02 0.0090 0.0090 0.0090 0.010 0.02 0.0090 0.00	0 1	3 8	3.02	0.0099	0.05	0.30	0.0000	30	G 8	80.7	0.0243	0.05	0.30	0.8755
90 3.02 0.0099 0.02 0.44 0.01 90 3.02 0.0099 0.01 0.25 0.0000 30 2.08 90 3.02 0.0099 0.10 0.25 0.0000 30 2.08 90 3.02 0.0099 0.10 0.35 0.0004 30 2.08 90 3.02 0.0099 0.10 0.45 0.0074 30 90 2.08 90 3.02 0.0099 0.10 0.45 0.0074 30 90 2.08 90 3.02 0.0099 0.10 0.45 0.0511 30 2.08 90 3.02 0.0099 0.15 0.36 0.0002 30 2.08 90 3.02 0.0099 0.15 0.35 0.0002 30 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15	2 5	8 8	20.0	0.0099	0.0	0.00	0.0007	30	200	00.7	0.0243	0.00	0.00	0.809.0
90 3.02 0.0099 0.10 0.25 0.0000 30 2.08 90 3.02 0.0099 0.10 0.35 0.0000 30 2.08 90 3.02 0.0099 0.10 0.35 0.0000 30 2.08 90 3.02 0.0099 0.10 0.45 0.0011 30 2.08 90 3.02 0.0099 0.10 0.45 0.0511 30 2.08 90 3.02 0.0099 0.10 0.55 0.368 30 2.08 90 3.02 0.0099 0.11 0.56 0.35 30 2.08 90 3.02 0.0099 0.15 0.35 0.0002 30 2.08 90 3.02 0.0099 0.15 0.40 0.0042 30 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15	2 -	86	3.02	6600.0	0.05	0.45	0.0872	30	86	80.2	0.0243	0.05	0.45	0.9978
90 3.02 0.0099 0.10 0.30 0.0004 30 2.08 90 3.02 0.0099 0.10 0.35 0.0004 30 2.08 90 3.02 0.0099 0.10 0.35 0.0004 30 2.08 90 3.02 0.0099 0.10 0.45 0.051 30 2.08 90 3.02 0.0099 0.10 0.55 0.1684 30 90 2.08 90 3.02 0.0099 0.10 0.55 0.1684 30 90 2.08 90 3.02 0.0099 0.10 0.50 0.1684 30 90 2.08 90 3.02 0.0099 0.15 0.30 0.00 2.08 90 3.02 0.0099 0.15 0.45 0.009 30 2.08 90 3.02 0.0099 0.15 0.45 0.009 30 2.08 90 3.02	10	6	3.02	0.0099	0.10	0.25	0.0000	30	6	2.08	0.0243	0.10	0.25	0.3653
90 3.02 0.0099 0.10 0.35 0.0044 30 90 2.08 90 3.02 0.0099 0.10 0.46 0.0074 30 90 2.08 90 3.02 0.0099 0.10 0.45 0.0574 30 90 2.08 90 3.02 0.0099 0.10 0.50 0.1684 30 90 2.08 90 3.02 0.0099 0.10 0.50 0.5246 30 90 2.08 90 3.02 0.0099 0.15 0.35 0.0000 30 0.02 0.08 90 3.02 0.0099 0.15 0.40 0.042 30 0.20 2.08 90 3.02 0.0099 0.15 0.40 0.042 30 0.08 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15 0.42	10	06	3.02	0.0099	0.10	0.30	0.0000	30	06	2.08	0.0243	0.10	0.30	0.5927
90 3.02 0.0099 0.10 0.440 0.0074 30 0.208 90 3.02 0.0099 0.10 0.45 0.0511 30 2.08 90 3.02 0.0099 0.10 0.55 0.16541 30 90 2.08 90 3.02 0.0099 0.10 0.55 0.3366 30 90 2.08 90 3.02 0.0099 0.15 0.30 0.0002 30 2.08 90 3.02 0.0099 0.15 0.45 0.0022 30 2.08 90 3.02 0.0099 0.15 0.45 0.0290 30 2.08 90 3.02 0.0099 0.15 0.45 0.0290 30 2.08 90 3.02 0.0099 0.15 0.65 0.290 30 2.08 90 3.02 0.0099 0.15 0.65 0.250 30 2.08 90 3.02	10	90	3.02	0.0099	0.10	0.35	0.0004	30	06	2.08	0.0243	0.10	0.35	0.7817
90 3.02 0.00999 0.10 0.45 0.0511 30 2.08 90 3.02 0.00999 0.10 0.45 0.0511 30 2.08 90 3.02 0.0099 0.10 0.55 0.3366 30 2.08 90 3.02 0.0099 0.11 0.55 0.336 30 2.08 90 3.02 0.0099 0.15 0.35 0.0002 30 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15 0.65 0.564 30 2.08 90 3.02 0.0099 0.15 0.65 0.564 30 2.08 90 3.02 0.0099 0.20	01	90	3.02	0.0099	0.10	0.40	0.0074	30	06	2.08	0.0243	0.10	0.40	0.9045
90 3.02 0.0099 0.11 0.50 0.1684 30 90 2.08 90 3.02 0.0099 0.11 0.55 0.3366 30 90 2.08 90 3.02 0.0099 0.11 0.60 0.5249 30 90 2.08 90 3.02 0.0099 0.15 0.35 0.0000 30 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15 0.45 0.029 30 2.08 90 3.02 0.0099 0.15 0.65 0.2607 30 2.08 90 3.02 0.0099 0.15 0.65 0.0207 30 2.08 90 3.02 0.0099 0.15 0.65 0.0023 30 2.08 90	01	06	3.02	0.0099	0.10	0.45	0.0511	30	06	2.08	0.0243	0.10	0.45	0.9667
90 3.02 0.0099 0.11 0.53 0.0099 0.01 0.53 0.0099 0.01 0.53 0.0099 0.01 0.53 0.00	01	G 8	3.02	0.0099	0.10	0.50	0.1684	30	G 8	2.08	0.0243	0.10	0.50	0.9908
90 3.02 0.0099 0.015 0.020 3.0 0.0099 0.015 0.30 0.0002 3.0 0.0099 0.015 0.35 0.0002 3.0 0.0099 0.015 0.35 0.0002 3.0 0.0089 0.015 0.04 0.00402 3.0 0.0089 0.015 0.04 0.00402 3.0 0.0089 0.015 0.05 0.0089 0.015 0.05 0.0089 0.015 0.05 0.0089 0.015 0.05 0.0089 0.015 0.05 0.0089 0.015 0.05 0.0089 0.008 0.008 0.0089 0.008	2 9	8 8	3.02	0.0099	0.10	0.00	0.3300	30	8 8	0.00	0.0243	0.10	0.00	0.9981
90 3.02 0.0099 0.15 0.35 0.0002 30 90 2.08 90 3.02 0.0099 0.15 0.46 0.0042 30 90 2.08 90 3.02 0.0099 0.15 0.46 0.0990 30 2.08 90 3.02 0.0099 0.15 0.55 0.2095 30 90 2.08 90 3.02 0.0099 0.15 0.65 0.2047 30 90 2.08 90 3.02 0.0099 0.15 0.65 0.567 30 2.08 90 3.02 0.0099 0.15 0.65 0.5001 30 2.08 90 3.02 0.0099 0.20 0.40 0.0023 30 2.08 90 3.02 0.0099 0.20 0.50 0.0552 30 2.08 90 3.02 0.0099 0.20 0.50 0.1264 30 2.08	0	06	3.02	0.0099	0.15	0.30	0.0000	30	06	2.08	0.0243	0.15	0.30	0.3196
90 3.02 0.0099 0.15 0.40 0.0042 30 90 2.08 90 3.02 0.0099 0.15 0.45 0.0290 30 20.8 90 3.02 0.0099 0.15 0.45 0.0295 30 90 2.08 90 3.02 0.0099 0.15 0.55 0.2095 30 90 2.08 90 3.02 0.0099 0.15 0.65 0.554 30 90 2.08 90 3.02 0.0099 0.20 0.45 0.0023 30 2.08 90 3.02 0.0099 0.20 0.45 0.0023 30 2.08 90 3.02 0.0099 0.20 0.45 0.0154 30 2.08 90 3.02 0.0099 0.20 0.45 0.0154 30 2.08 90 3.02 0.0099 0.20 0.46 0.0154 30 2.08	10	06	3.02	0.0099	0.15	0.35	0.0002	30	06	2.08	0.0243	0.15	0.35	0.5217
90 3.02 0.0099 0.15 0.45 0.0290 30 2.08 90 3.02 0.0099 0.15 0.55 0.0095 30 90 2.08 90 3.02 0.0099 0.15 0.55 0.2085 30 90 2.08 90 3.02 0.0099 0.15 0.65 0.5507 30 90 2.08 90 3.02 0.0099 0.20 0.45 0.0013 30 2.08 90 3.02 0.0099 0.20 0.45 0.0160 30 2.08 90 3.02 0.0099 0.20 0.45 0.0160 30 2.08 90 3.02 0.0099 0.20 0.45 0.0124 30 90 2.08 90 3.02 0.0099 0.20 0.55 0.1244 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.4448 30 90	01	06	3.02	0.0099	0.15	0.40	0.0042	30	06	2.08	0.0243	0.15	0.40	0.7157
90 3.02 0.00999 0.15 0.50 0.0980 30 2.08 90 3.02 0.00999 0.15 0.55 0.2995 30 2.08 90 3.02 0.0099 0.15 0.65 0.2507 30 90 2.08 90 3.02 0.0099 0.15 0.65 0.3542 30 90 2.08 90 3.02 0.0099 0.20 0.45 0.0023 30 2.08 90 3.02 0.0099 0.20 0.45 0.0160 30 2.08 90 3.02 0.0099 0.20 0.45 0.0160 30 2.08 90 3.02 0.0099 0.20 0.45 0.1264 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.448 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.448 30 90 2.08	01	06	3.02	0.0099	0.15	0.45	0.0290	30	06	2.08	0.0243	0.15	0.45	0.8599
90 3.02 0.0099 0.15 0.55 0.2095 3.0 2.08 90 3.02 0.0099 0.15 0.65 0.2409 30 2.08 90 3.02 0.0099 0.15 0.65 0.5507 30 90 2.08 90 3.02 0.0099 0.20 0.45 0.001 30 2.08 90 3.02 0.0099 0.20 0.45 0.001 30 2.08 90 3.02 0.0099 0.20 0.45 0.0652 30 90 2.08 90 3.02 0.0099 0.20 0.50 0.1264 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.14048 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.4048 30 90 2.08 90 3.02 0.0099 0.25 0.40 0.0084 30 2.08	01	06	3.02	0.0099	0.15	0.50	0.0980	30	06	2.08	0.0243	0.15	0.50	0.9439
90 3.02 0.0099 0.13 0.00 <th< td=""><td>2 9</td><td>3 8</td><td>3.02</td><td>0.0099</td><td>0.15</td><td>0.55</td><td>0.2095</td><td>30</td><td>3 8</td><td>80.0</td><td>0.0243</td><td>0.15</td><td>0.55</td><td>0.9825</td></th<>	2 9	3 8	3.02	0.0099	0.15	0.55	0.2095	30	3 8	80.0	0.0243	0.15	0.55	0.9825
90 3.02 0.0099 0.02 0.029 0.02 0.02 0.0099 0.00	2 9	3 8	3.02	0.0089	0.15	0.00	0.3542	30	3 6	20.0	0.0243	0.15	0.00	0.9959
90 3.02 0.0999 0.20 0.40 0.0023 30 0.08 0.08 0.09 0.20 0.45 0.0160 30 0.08 <td< td=""><td>2 0</td><td>8 6</td><td>3 0.0</td><td>6600.0</td><td>0.20</td><td>3.50</td><td>0.000</td><td>30</td><td>8 6</td><td>00.0</td><td>0.0243</td><td>0.20</td><td>0.00</td><td>0.2884</td></td<>	2 0	8 6	3 0.0	6600.0	0.20	3.50	0.000	30	8 6	00.0	0.0243	0.20	0.00	0.2884
90 3.02 0.0099 0.20 0.45 0.0160 30 20.8 90 3.02 0.0099 0.20 0.45 0.0552 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.2429 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.448 30 90 2.08 90 3.02 0.0099 0.25 0.40 0.0012 30 2.08 90 3.02 0.0099 0.25 0.45 0.0084 30 2.08 90 3.02 0.0099 0.25 0.45 0.0084 30 2.08 90 3.02 0.0099 0.25 0.50 0.030 30 2.08 90 3.02 0.0099 0.25 0.50 0.030 30 2.08 90 3.02 0.0099 0.25 0.65 0.043 30 2.08 90 <	10	06	3.02	0.0099	0.20	0.40	0.0023	30	06	2.08	0.0243	0.20	0.40	0.4789
90 3.02 0.0099 0.20 0.50 0.0552 30 90 2.08 90 3.02 0.0099 0.20 0.55 0.1264 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.4048 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.4048 30 90 2.08 90 3.02 0.0099 0.25 0.45 0.0012 30 2.08 90 3.02 0.0099 0.25 0.45 0.0084 30 2.08 90 3.02 0.0099 0.25 0.45 0.030 30 2.08 90 3.02 0.0099 0.25 0.50 0.030 30 2.08 90 3.02 0.0099 0.25 0.65 0.073 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.1544 30 2.08 <td>10</td> <td>90</td> <td>3.02</td> <td>0.0099</td> <td>0.20</td> <td>0.45</td> <td>0.0160</td> <td>30</td> <td>06</td> <td>2.08</td> <td>0.0243</td> <td>0.20</td> <td>0.45</td> <td>0.6719</td>	10	90	3.02	0.0099	0.20	0.45	0.0160	30	06	2.08	0.0243	0.20	0.45	0.6719
90 3.02 0.0099 0.20 0.55 0.1264 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.4249 30 90 2.08 90 3.02 0.0099 0.20 0.65 0.4048 30 90 2.08 90 3.02 0.0099 0.20 0.70 0.5225 30 90 2.08 90 3.02 0.0099 0.25 0.45 0.084 90 2.08 90 3.02 0.0099 0.25 0.45 0.039 30 2.08 90 3.02 0.0099 0.25 0.50 0.039 30 2.08 90 3.02 0.0099 0.25 0.55 0.0737 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.1544 90 2.08 90 3.02 0.0099 0.25 0.65 0.2836 30 90 <	10	06	3.02	0.0099	0.20	0.50	0.0552	30	06	2.08	0.0243	0.20	0.50	0.8280
90 3.02 0.0099 0.22 0.60 0.2429 30 90 2.08 90 3.02 0.00999 0.20 0.65 0.4428 30 90 2.08 90 3.02 0.0099 0.20 0.70 0.5825 30 90 2.08 90 3.02 0.0099 0.25 0.45 0.0034 30 2.08 90 3.02 0.0099 0.25 0.50 0.030 30 2.08 90 3.02 0.0099 0.25 0.50 0.073 30 2.08 90 3.02 0.0099 0.25 0.56 0.073 30 2.08 90 3.02 0.0099 0.25 0.65 0.1544 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.2836 30 90 2.08	10	06	3.02	0.0099	0.20	0.55	0.1264	30	06	2.08	0.0243	0.20	0.55	0.9277
90 3.02 0.0099 0.20 0.65 0.4048 30 90 2.08 90 3.02 0.0099 0.25 0.77 0.5825 90 90 2.08 90 3.02 0.0099 0.25 0.47 0.0094 30 90 2.28 0.0099 0.25 0.45 0.0084 30 90 2.08 90 3.02 0.0099 0.25 0.45 0.0084 30 90 2.08 90 3.02 0.0099 0.25 0.55 0.0737 30 90 2.08 90 3.02 0.0099 0.25 0.55 0.0737 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.2836 30 90 2.08	10	90	3.02	0.0099	0.20	09.0	0.2429	30	06	2.08	0.0243	0.20	0.60	0.9760
90 3.02 0.0099 0.20 0.70 9.0 2.08 90 3.02 0.0099 0.25 0.40 0.0012 30 90 2.08 90 3.02 0.0099 0.25 0.45 0.0084 30 90 2.08 90 3.02 0.0099 0.25 0.55 0.0300 30 90 2.08 90 3.02 0.0099 0.25 0.55 0.0737 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.1554 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.2836 30 90 2.08	01	6 8	3.02	0.0099	0.20	0.65	0.4048	30	06	2.08	0.0243	0.20	0.65	0.9938
90 3.02 0.0099 0.25 0.45 0.0014 30 90 2.08 90 3.02 0.0099 0.25 0.50 0.030 30 90 2.08 90 3.02 0.0099 0.25 0.50 0.030 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.154 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.2836 30 90 2.08	0 0	3 8	3.02	0.0099	0.20	00	0.5825	30	3 8	20.0	0.0243	0.20	0.0	0.9988
90 3.02 0.0099 0.25 0.50 0.0300 30 90 2.08 90 3.02 0.0099 0.25 0.55 0.67 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.154 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.2836 30 90 2.08		06	3.02	0.0099	0.25	0.45	0.0012	30	8 6	20.2	0.0243	0.25	0.45	0.4522
90 3.02 0.0099 0.25 0.55 0.0737 30 90 2.08 90 3.02 0.0099 0.25 0.60 0.1554 30 90 2.08 90 3.02 0.0099 0.25 0.65 0.2836 30 90 2.08	01	06	3.02	0.0099	0.25	0.50	0.0300	30	8 6	2.08	0.0243	0.25	0.50	0.6470
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	06	3.02	0.0099	0.25	0.55	0.0737	30	06	2.08	0.0243	0.25	0.55	0.8113
90 3.02 0.0099 0.25 0.65 0.2836 30 90 2.08	10	06	3.02	0.0099	0.25	09.0	0.1554	30	06	2.08	0.0243	0.25	09.0	0.9179
	10	90	3.02	0.0099	0.25	0.65	0.2836	30	06	2.08	0.0243	0.25	0.65	0.9714

page	power	0.9924	0.9986	0.2605	0.4416	0.6375	0.8025	0.9119	0.9694	0.2001	0.6332	0.7987	0.2626	0.4404	0.1778	0.4241	0.6862	0.8696	0.9571	0.9887	0.9978	0.3403	0.5762	100000	0.9655	0.9912	0.9983	0.9998	0.3011	0.5012	0.7019	0.8568	0.9456	0.9962	0.9993	0.2689	0.4625	0.6677	0.8306	0.9296	0.9768	0.9943	0.9990	0.2575	0.4470	0.0470	0.9189
-continued from previous page	P2	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.60	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.20	0.30	0.33	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.60	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.40	0.00	0.60
from p	\mathbf{p}_1	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.00	0.00	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.13	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.70	0.70	0.25
tinued	pvalue	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0200	0.0206	0.020.0	0.0200	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0200	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0206	0.0200	0.0206
- 1	$\mathbf{z}_{\mathbf{n}}$	2.08	2.08	2.08	2.08	2.08	2.08	2.08	00.7	00.7	80.5	2.08	2.08	2.08	2.10	2.10	2.10	2.10	2.10	2.10	2.10	07.70	2.10	01.70	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	07.70	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	01.70	2.10
B.23:	$^{\mathrm{n}_{2}}$	06	06	90	06	06	06 8	98	8 8	8 8	06	06	06	90	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table	1	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	30	300	30	30	30	30	30	30	30	30	30	30	300	30	30	30	30	30	30	30	30	30	30	30	30	00	30
	power	0.4452	0.6174	0.0043	0.0157	0.0413	0.0952	0.1894	0.5255	0.0078	0.0556	0.1203	0.0113	0.0308	0.0000	0.000.0	0.0000	0.0000	0.0001	0.0035	0.0397	0.0000	0.0000	0.0000	0.0232	0.1100	0.2670	0.4482	0.000.0	0.0000	0.0011	0.0131	0.0029	0.2950	0.4749	0.0000	0.0006	0.0072	0.0348	0.0921	0.1874	0.3341	0.5166	0.0003	0.0038	0.0100	$0.0515 \\ 0.1145$
	P2	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.00	0.60	0.65	0.55	0.60	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.20	0.30	0.50	0.45	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.00	0.00	0.65	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.45	0.00	0.60
	p1	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.00	0.35	0.35	0.40	0.40	0.02	0.02	0.02	0.02	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.10	0.10	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.2.0	0.40	0.25
	pvalue	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0039	6600.0	0.0099	0.0099	0.0099	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0080	0.0080	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0000	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0000	0.0086
	$\mathbf{z}_{\mathbf{u}}$	3.02	3.02	3.02	3.02	3.02	3.02	3.02	20.0	20.0	3.02	3.02	3.02	3.02	3.18	3.18	3.18	3.18	3.18	87.T8	3.18 2.18	3.18 0.10	2.18 2.18	3 18	3.5	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18 0.10	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	8.T8	87.18	3.18 0.10	0.10	3.18
	$^{\mathrm{n}_{2}}$	06	90	90	06	06	G 6	98 8	8 8	8 8	86	06	06	06	100	100	100	100	001	100	991	100	8 1	100	100	100	100	100	100	100	100	100	100	90	100	100	100	100	100	100	100	100	100	3 5	001	100	100
	$^{\rm n_1}$	10	10	10	10	10	10	10	101	10	101	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

Table B.23: continue on next page

Table B.23: continue on next page

3.1.8 3.1.8		0	7	power	$^{\rm n_1}$	112	zn	pvalue	ы	1	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.0086	0.70	0.65	0.2244	30	100	2.10	0.0206	0.25	0.65	0.9735
	0.0086	0.25	0.70	0.3835	30	100	2.10	0.0206	0.25	0.70	0.9937
3.1.8 3.1.8 3.1.8 3.1.8 3.1.8 3.1.8 3.1.8 3.1.8 3.1.8	0.0086	0.25	0.75	0.5814	30	100	2.10	0.0206	0.25	0.75	0.9989
3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18	0.0086	0.30	0.50	0.0019	30	100	2.10	0.0206	0.30	0.45	0.4387
3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18	0.0086	0.30	0.55	0.0276	30	100	2.10	0.0206	0.30	0.55	0.6346
3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18	0.0086	0.30	09.0	0.0671	30	100	2.10	0.0206	0.30	0.60	0.8036
3.18 3.18 3.18 3.18 3.18 3.18 3.18	0.0086	0.30	0.65	0.1438	30	100	2.10	0.0206	0.30	0.65	0.9174
3.18 3.18 3.18 3.18 3.18 3.18	0.0086	0.30	0.70	0.2714	30	100	2.10	0.0206	0.30	0.70	0.9737
3.18 3.18 3.18 3.18 3.18 1.97	0.0086	0.35	0.50	0.0046	30	100	2.10	0.0206	0.35	0.50	0.2548
3.18 3.18 3.18 3.18	0.0086	0.35	0.55	0.0142	30	100	2.10	0.0206	0.35	0.55	0.4343
3.18 3.18 1.97	0.0086	0.35	0.60	0.0375	30	100	2.10	0.0206	0.35	0.60	0.6348
3.18	0.0086	0.35	0.0 5 1	0.0877	30	100	2.10	0.0206	0.35	0.65	0.8089
1.97	0.0086	0.40	0.00	0.0009	30	100	2.10	0.0206	0.40	0.00	0.2564
- 1	0.0246	0.10	0.00	0.1148	40	202	00.5	0.0205	0.10	0.00	0.3152
1.97	0.0246	0.05	0.20	0.2588	40	20	2.00	0.0225	0.05	0.20	0.5644
1.97	0.0246	0.02	0.25	0.4303	40	20	2.00	0.0225	0.02	0.25	0.7726
1.97	0.0246	0.05	0.30	0.6017	40	20	2.00	0.0225	0.05	0.30	0.9020
1.97	0.0246	0.05	0.35	0.7496	40	20	2.00	0.0225	0.02	0.35	0.9653
1.97	0.0246	0.02	0.40	0.8597	40	20	2.00	0.0225	0.02	0.40	0.9901
1.97	0.0246	0.02	0.45	0.9303	40	20	2.00	0.0225	0.02	0.45	0.9978
1.97	0.0246	0.10	0.25	0.2197	40	20	2.00	0.0225	0.10	0.25	0.4345
1.97	0.0246	0.10	0.00	0.3003	040	00 M	00.2	0.0225	0.10	0.30	0.0428
1.97	0.0246	0.10	0.40	0.6669	40	20.00	2.00	0.0225	0.10	0.40	0.9184
1.97	0.0246	0.10	0.45	0.7916	40	20	2.00	0.0225	0.10	0.45	0.9713
1.97	0.0246	0.10	0.50	0.8831	40	20	2.00	0.0225	0.10	0.50	0.9918
1.97	0.0246	0.10	0.55	0.9422	40	20	2.00	0.0225	0.10	0.55	0.9982
1.97	0.0246	0.10	09.0	0.9753	40	20	2.00	0.0225	0.10	0.60	0.9997
1.97	0.0246	0.15	0.30	0.1997	40	20	2.00	0.0225	0.15	0.30	0.3671
1.97	0.0246	0.15	0.35	0.3254	40	20	2.00	0.0225	0.15	0.35	0.5704
1.97	0.0246	0.15	0.40	0.4703	40	200	2.00	0.0225	0.15	0.40	0.7519
1.97	0.0246	0.10	0.4:0 E	0.0171	40	0 H	00.2	0.0225	0.To	0.40 E0	0.8795
1.97	0.0246	0.15	0.0	0.8522	40	S 75	2.00	0.0225	0.15	0.00	0.9841
1.97	0.0246	0.15	0.60	0.9230	40	20	2.00	0.0225	0.15	0.60	0.9959
1.97	0.0246	0.15	0.65	0.9647	40	20	2.00	0.0225	0.15	0.65	0.9992
1.97	0.0246	0.20	0.35	0.1885	40	20	2.00	0.0225	0.20	0.35	0.3333
1.97	0.0246	0.20	0.40	0.3050	40	20	2.00	0.0225	0.20	0.40	0.5251
1.97	0.0246	0.20	0.45	0.4439	40	20	2.00	0.0225	0.20	0.45	0.7070
1.97	0.0246	0.20	0.50	0.5896	40	200	2.00	0.0225	0.20	0.50	0.8466
1.9	0.0240	0.20	00.00	0.1233	0.4	00.00	00.00	0.0223	0.20	0.00	0.9555
1.97	0.0246	0.20	0.00	0.9078	40	5 E	2.00	0.0225	0.20	0.00	0.9938
1.97	0.0246	0.20	0.70	0.9561	40	20	2.00	0.0225	0.20	0.70	0.9988
1.97	0.0246	0.25	0.40	0.1830	40	20	2.00	0.0225	0.25	0.40	0.3089
1.97	0.0246	0.25	0.45	0.2954	40	20	2.00	0.0225	0.25	0.45	0.4907
1.97	0.0246	0.25	0.50	0.4301	40	20	2.00	0.0225	0.25	0.50	0.6737

30 1.97 0.0246 0.25 0.66 0.7044 40 50 2.00 0.0225 0.25 0.66 30 1.97 0.0246 0.25 0.65 0.848 40 50 2.00 0.0225 0.25 0.65 30 1.97 0.0246 0.25 0.75 0.9583 40 50 2.00 0.0225 0.25 0.75 30 1.97 0.0246 0.25 0.75 0.95 40 50 2.00 0.0225 0.30 0.75 30 1.97 0.0246 0.30 0.65 0.5544 40 50 2.00 0.0225 0.30 0.75 30 1.97 0.0246 0.30 0.65 0.5544 40 50 2.00 0.025 0.30 0.75 0.75 0.00 0.0225 0.30 0.75 0.00 0.0225 0.30 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00	$_{1}^{n}$	n2	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p ₂	power	n ₁	n2	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p2	power
30 197 0.0246 0.25 0.65 0.8483 40 50 200 0.0225 0.25 0.75 30 1.97 0.0246 0.25 0.77 0.8983 40 50 200 0.0225 0.25 0.75 0.8983 40 50 200 0.025 0.75 0.8983 40 50 200 0.025 0.75 0.8983 40 50 200 0.0225 0.25 0.75 0.025 0.75 0.025 0.75 0.025 0.02 <td></td> <td>30</td> <td>1.97</td> <td>0.0246</td> <td>0.25</td> <td>09.0</td> <td>0.7040</td> <td>40</td> <td>20</td> <td>2.00</td> <td>0.0225</td> <td>0.25</td> <td>09.0</td> <td>0.9214</td>		30	1.97	0.0246	0.25	09.0	0.7040	40	20	2.00	0.0225	0.25	09.0	0.9214
30 1.97 0.0246 0.25 0.77 0.8883 40 50 2.00 0.0225 0.25 0.77 30 1.97 0.0246 0.25 0.77 0.8883 40 50 2.00 0.0225 0.30 0.45 30 1.97 0.0246 0.30 0.45 0.184 40 50 2.00 0.0225 0.30 0.45 30 1.97 0.0246 0.30 0.55 0.4184 40 50 2.00 0.0225 0.30 0.55 30 1.97 0.0246 0.30 0.55 0.4184 40 50 2.00 0.0225 0.30 0.55 30 1.97 0.0246 0.35 0.55 0.283 40 50 2.00 0.0225 0.30 0.60 0.483 40 2.00 0.0225 0.30 0.65 0.75 0.75 0.75 0.75 0.75 0.20 0.00 0.0225 0.30 0.00		30	1.97	0.0246	0.25	0.65	0.8148	40	20	2.00	0.0225	0.25	0.65	0.9723
30 1.97 0.0246 0.25 0.75 0.88 40 50 2.00 0.0225 0.35 0.75 30 1.97 0.0246 0.25 0.45 0.1818 40 50 2.00 0.0225 0.30 0.55 30 1.97 0.0246 0.30 0.55 0.45 0.1818 40 50 2.00 0.0225 0.30 0.55 30 1.97 0.0246 0.30 0.65 0.544 40 50 2.00 0.0225 0.30 0.65 30 1.97 0.0246 0.35 0.65 0.583 40 50 2.00 0.0225 0.30 0.65 30 1.97 0.0246 0.35 0.65 0.4583 40 50 2.00 0.0225 0.30 0.65 0.458 0.80 0.00 0.0225 0.30 0.65 0.458 0.80 0.00 0.025 0.30 0.00 0.025 0.00 0.025		30	1.97	0.0246	0.25	0.70	0.8983	40	20	2.00	0.0225	0.25	0.70	0.9926
30 1.97 0.0246 0.30 0.45 0.85 30 1.97 0.0246 0.30 0.45 0.1886 40 50 2.00 0.0225 0.30 0.45 30 1.97 0.0246 0.30 0.55 0.4184 40 50 2.00 0.0225 0.30 0.65 30 1.97 0.0246 0.30 0.55 0.4184 40 50 2.00 0.0225 0.30 0.65 30 1.97 0.0246 0.35 0.55 0.283 40 50 2.00 0.0225 0.35 0.55 30 1.97 0.0246 0.35 0.55 0.283 40 50 2.00 0.0225 0.39 0.55 30 1.97 0.0246 0.35 0.55 0.583 40 50 2.00 0.025 0.35 0.65 0.583 40 50 2.00 0.025 0.35 0.65 0.586 40 50		30	1.97	0.0246	0.25	0.75	0.9532	40	20	2.00	0.0225	0.25	0.75	0.9986
30 1.97 0.0246 0.30 0.550 0.4246 0.30 0.550 0.4248 40 50 2.00 0.0225 0.30 0.50 30 1.97 0.0246 0.30 0.55 0.4544 40 50 2.00 0.0225 0.30 0.56 30 1.97 0.0246 0.30 0.70 0.8804 40 50 2.00 0.0225 0.30 0.56 30 1.97 0.0246 0.35 0.55 0.2823 40 50 2.00 0.0225 0.30 0.56 30 1.97 0.0246 0.35 0.56 0.5283 40 50 2.00 0.0225 0.30 0.56 30 1.97 0.0246 0.35 0.56 0.5283 40 50 2.00 0.0225 0.39 0.56 0.556 0.5283 0.00 0.00 0.025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td <td></td> <td>30</td> <td>1.97</td> <td>0.0246</td> <td>0.30</td> <td>0.45</td> <td>0.1816</td> <td>40</td> <td>20</td> <td>2.00</td> <td>0.0225</td> <td>0.30</td> <td>0.45</td> <td>0.2909</td>		30	1.97	0.0246	0.30	0.45	0.1816	40	20	2.00	0.0225	0.30	0.45	0.2909
30 1.97 0.0246 0.39 0.55 0.4184 40 50 2.00 0.0225 0.30 0.65 30 1.97 0.0246 0.39 0.55 0.4184 40 50 2.00 0.0225 0.30 0.65 30 1.97 0.0246 0.39 0.65 0.6911 40 50 2.00 0.0225 0.39 0.65 30 1.97 0.0246 0.38 0.55 0.2823 40 50 2.00 0.0225 0.39 0.65 30 1.97 0.0246 0.38 0.55 0.2823 40 50 2.00 0.0225 0.39 0.65 30 1.97 0.0246 0.38 0.55 0.2823 40 50 0.00 0.0225 0.33 0.65 0.556 40 50 2.00 0.0225 0.33 0.65 0.556 40 50 2.00 0.0225 0.33 0.65 40 50 <t< td=""><td></td><td>30</td><td>1.97</td><td>0.0246</td><td>0.30</td><td>0.50</td><td>0.2896</td><td>40</td><td>20</td><td>2.00</td><td>0.0225</td><td>0.30</td><td>0.50</td><td>0.4687</td></t<>		30	1.97	0.0246	0.30	0.50	0.2896	40	20	2.00	0.0225	0.30	0.50	0.4687
30 1.97 0.0246 0.30 0.65 of 6.0 40 50 2.00 0.0225 0.30 0.66 30 1.97 0.0246 0.30 0.65 of 6.0 40 50 2.00 0.0225 0.33 0.66 30 1.97 0.0246 0.30 0.75 0.8994 40 50 2.00 0.0225 0.33 0.67 30 1.97 0.0246 0.35 0.65 0.4087 40 50 2.00 0.0225 0.35 0.65 30 1.97 0.0246 0.35 0.65 0.1752 40 50 2.00 0.0225 0.35 0.65 30 1.97 0.0246 0.35 0.4087 40 50 2.00 0.0225 0.35 0.65 40 2.06 0.0217 0.05 0.25 0.1278 40 50 2.00 0.0225 0.35 0.65 40 2.06 0.0217 0.0246 0.35 <td></td> <td>30</td> <td>1.97</td> <td>0.0246</td> <td>0.30</td> <td>0.55</td> <td>0.4184</td> <td>40</td> <td>20</td> <td>2.00</td> <td>0.0225</td> <td>0.30</td> <td>0.55</td> <td>0.6544</td>		30	1.97	0.0246	0.30	0.55	0.4184	40	20	2.00	0.0225	0.30	0.55	0.6544
30 1.97 0.0246 0.33 0.65 0.6911 40 50 2.00 0.0225 0.33 0.65 30 1.97 0.0246 0.33 0.65 0.6911 40 50 2.00 0.0225 0.33 0.65 30 1.97 0.0246 0.35 0.55 0.1772 40 50 2.00 0.0225 0.35 0.65 30 1.97 0.0246 0.35 0.65 0.1782 40 50 2.00 0.0225 0.45 0.65 30 1.97 0.0246 0.40 0.65 0.1783 40 50 2.00 0.0225 0.35 0.65 30 1.97 0.0246 0.40 0.65 0.2783 40 50 2.00 0.0225 0.35 0.65 0.2783 40 50 1.00 0.0225 0.05 0.05 1.00 0.0225 0.05 0.05 0.00 0.05 0.00 0.00 0.0225		30	1.97	0.0246	0.30	0.60	0.5564	40	20	2.00	0.0225	0.30	0.60	0.8108
30 1.97 0.0246 0.30 0.70 0.8804 4 5 2.00 0.0255 0.33 0.70 30 1.97 0.0246 0.35 0.55 0.750 0.1782 40 50 0.0025 0.35 0.50 30 1.97 0.0246 0.35 0.56 0.7508 40 50 2.00 0.0225 0.35 0.50 30 1.97 0.0246 0.35 0.56 0.750 40 50 2.00 0.0225 0.40 0.55 0.50 0.00 0.0225 0.40 0.025 0.00 0.025 0.00 0.025 0.00 0.025 0.00 0.025 0.00 0.025 0.00 0.025 0.00 0.025 0.00 0.025 0.00 0.00 0.024 0.00 0.025 0.00 0.024 0.00 0.024 0.00 0.024 0.00 0.024 0.00 0.024 0.00 0.024 0.00 0.024 0.00		30	1.97	0.0246	0.30	0.65	0.6911	40	20	2.00	0.0225	0.30	0.65	0.9158
30 1.97 0.0246 0.35 0.50 0.17025 0.025 0.25 0.50 30 1.97 0.0246 0.35 0.50 0.17025 0.025 0.025 0.05 30 1.97 0.0246 0.35 0.65 0.1487 40 50 2.00 0.0225 0.35 0.65 30 1.97 0.0246 0.40 0.65 0.1783 40 50 2.00 0.0225 0.43 0.65 30 1.97 0.0246 0.40 0.65 0.1783 40 50 2.00 0.0225 0.43 0.65 0.178 40 50 2.00 0.0225 0.40 0.05 0.0		30	1.97	0.0246	0.30	0.70	0.8094	40	20	2.00	0.0225	0.30	0.70	0.9708
30 1.97 0.0246 0.35 0.55 0.283 40 50 2.00 0.0225 0.35 0.56 30 1.97 0.0246 0.35 0.65 0.4087 40 50 2.00 0.0225 0.35 0.55 30 1.97 0.0246 0.35 0.65 0.550 40 50 2.00 0.0225 0.40 0.55 30 1.97 0.0246 0.40 0.55 2.00 0.0225 0.40 0.05 40 2.06 0.0217 0.05 0.15 0.023 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.35 0.4209 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.35 0.4209 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.35 0.4205 40 60 1		30	1.97	0.0246	0.35	0.50	0.1792	40	20	2.00	0.0225	0.35	0.50	0.2812
30 1.97 0.0246 0.35 0.66 0.4087 40 50 2.00 0.0225 0.65 30 1.97 0.0246 0.35 0.65 0.5506 40 50 2.00 0.0225 0.40 30 1.97 0.0246 0.40 0.55 0.1752 40 50 2.00 0.0225 0.40 0.55 40 2.06 0.0217 0.05 0.20 0.2285 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.35 0.2885 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.35 0.2885 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.35 0.2828 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.10 0.35 0.2828 40 60		30	1.97	0.0246	0.35	0.55	0.2823	40	20	2.00	0.0225	0.35	0.55	0.4581
30 1.97 0.0246 0.35 0.65 0.5506 40 50 2.00 0.0225 0.35 0.65 30 1.97 0.0246 0.40 0.65 0.755 40 50 2.00 0.0225 0.40 0.65 40 2.06 0.0217 0.05 0.15 0.0283 40 60 1.98 0.0249 0.05 0.0217 0.05 0.25 0.4209 40 60 1.98 0.0249 0.05 0.021 0.05 0.25 0.4209 40 60 1.98 0.0249 0.05 0.05 0.25 0.4209 40 60 1.98 0.0249 0.05 0.0		30	1.97	0.0246	0.35	0.00	0.4087	40	20	2.00	0.0225	0.35	0.60	0.6465
30 1.97 0.0246 0.40 0.55 0.1752 40 50 2.00 0.0225 0.40 0.55 30 1.97 0.0246 0.40 0.66 0.2783 40 50 2.00 0.0225 0.40 0.66 40 2.06 0.0217 0.05 0.12 0.2285 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.22 0.209 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.25 0.2852 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.42 0.699 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.10 0.35 0.2828 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.10 0.25 0.2828 40		30	1.97	0.0246	0.35	0.65	0.5506	40	20	2.00	0.0225	0.35	0.65	0.8071
30 1.97 0.0246 0.40 0.60 0.2783 40 50 2.00 0.0225 0.40 0.60 40 2.06 0.0217 0.05 0.15 0.0233 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.25 0.4209 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.35 0.4209 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.35 0.4724 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.05 0.44 0.8858 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.10 0.25 0.2822 40 60 1.98 0.0249 0.05 40 2.06 0.0217 0.10 0.35 0.3524 40 60		30	1.97	0.0246	0.40	0.55	0.1752	40	20	2.00	0.0225	0.40	0.55	0.2779
40 2.06 0.0217 0.05 0.15 0.0223 40 60 1.98 0.0249 0.05 0.15 40 2.06 0.0217 0.05 0.2385 40 60 1.98 0.0249 0.05 0.20 40 2.06 0.0217 0.05 0.23 0.4209 40 60 1.98 0.0249 0.05 0.20 40 2.06 0.0217 0.05 0.35 0.4209 40 60 1.98 0.0249 0.05 0.35 40 2.06 0.0217 0.05 0.45 0.40 60 1.98 0.0249 0.05 0.40 40 2.06 0.0217 0.05 0.45 0.40 60 1.98 0.024 0.05 0.40 40 2.06 0.0217 0.10 0.35 0.282 40 60 1.98 0.024 0.05 0.40 40 2.06 0.0217 0.10 0.35 0		30	1.97	0.0246	0.40	0.60	0.2783	40	20	2.00	0.0225	0.40	09.0	0.4557
40 2.06 0.0217 0.05 0.2385 40 60 1.98 0.0249 0.05 0.25 40 2.06 0.0217 0.05 0.23 0.4299 40 60 1.98 0.0249 0.05 0.25 40 2.06 0.0217 0.05 0.25 0.4299 40 60 1.98 0.0249 0.05 0.30 40 2.06 0.0217 0.05 0.40 0.85528 40 60 1.98 0.0249 0.05 0.34 40 2.06 0.0217 0.05 0.40 0.85528 40 60 1.98 0.0249 0.05 0.40 40 2.06 0.0217 0.10 0.25 0.2682 40 60 1.98 0.0249 0.05 0.40 40 2.06 0.0217 0.10 0.25 0.2682 40 60 1.98 0.0249 0.05 0.40 40 2.06 0.0217		40	2.06	0.0217	0.05	0.15	0.0923	40	09	1.98	0.0249	0.05	0.15	0.3284
40 2.06 0.0217 0.05 0.25 0.4209 40 60 1.98 0.0249 0.05 0.25 40 2.06 0.0217 0.05 0.35 0.42097 40 60 1.98 0.0249 0.05 0.35 40 2.06 0.0217 0.05 0.35 0.7724 40 60 1.98 0.0249 0.05 0.35 40 2.06 0.0217 0.05 0.46 0.8858 40 60 1.98 0.0249 0.05 0.35 40 2.06 0.0217 0.10 0.36 0.3640 40 60 1.98 0.0249 0.05 0.45 40 2.06 0.0217 0.10 0.35 0.3640 40 60 1.98 0.0249 0.05 0.45 40 2.06 0.0217 0.10 0.35 0.3640 40 60 1.98 0.0249 0.05 0.45 40 2.06 <td< td=""><td></td><td>40</td><td>2.06</td><td>0.0217</td><td>0.05</td><td>0.20</td><td>0.2385</td><td>40</td><td>09</td><td>1.98</td><td>0.0249</td><td>0.02</td><td>0.20</td><td>0.5862</td></td<>		40	2.06	0.0217	0.05	0.20	0.2385	40	09	1.98	0.0249	0.02	0.20	0.5862
40 2.06 0.0217 0.05 0.30 0.6097 40 60 1.98 0.0249 0.05 0.30 40 2.06 0.0217 0.05 0.35 0.7724 40 60 1.98 0.0249 0.05 0.35 40 2.06 0.0217 0.05 0.35 0.7724 40 60 1.98 0.0249 0.05 0.35 40 2.06 0.0217 0.05 0.45 0.9852 40 60 1.98 0.0249 0.05 0.45 40 2.06 0.0217 0.10 0.25 0.2882 40 60 1.98 0.0249 0.10 0.25 40 2.06 0.0217 0.10 0.45 0.8924 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.45 0.8234 40 60 1.98 0.0249 0.10 0.35 40 2.06		40	2.06	0.0217	0.05	0.25	0.4209	40	09	1.98	0.0249	0.05	0.25	0.8006
40 2.06 0.0217 0.05 0.35 0.7724 40 60 1.98 0.0249 0.05 0.34 40 2.06 0.0217 0.05 0.44 0.8858 40 60 1.98 0.0249 0.05 0.44 40 2.06 0.0217 0.05 0.40 0.8858 40 60 1.98 0.0249 0.05 0.40 40 2.06 0.0217 0.10 0.25 0.2082 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.35 0.2840 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.40 0.8932 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.45 0.8932 40 60 1.98 0.0249 0.10 0.10 0.25 0.9832 40		40	2.06	0.0217	0.0	0.30	0.6097	40	09	1.98	0.0249	0.05	0.30	0.9254
40 2.06 0.0217 0.05 0.40 0.8858 40 60 1.98 0.0249 0.05 0.45 40 2.06 0.0217 0.05 0.45 0.8858 40 60 1.98 0.0249 0.05 0.45 40 2.06 0.0217 0.10 0.25 0.2862 40 60 1.98 0.0249 0.10 0.25 40 2.06 0.0217 0.10 0.35 0.3842 40 60 1.98 0.0249 0.10 0.25 40 2.06 0.0217 0.10 0.35 0.3842 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.45 0.8929 40 60 1.98 0.0249 0.10 0.30 40 2.06 0.0217 0.10 0.45 0.8239 40 60 1.98 0.0249 0.10 0.00 0.00 0.00 0.00		40	2.06	0.0217	0.05	0.35	0.7724	40	09	1.98	0.0249	0.05	0.35	0.9781
40 2.06 0.0217 0.05 0.45 0.9502 40 60 1.98 0.0249 0.05 0.45 40 2.06 0.0217 0.10 0.26 0.2882 40 60 1.98 0.0249 0.10 0.25 40 2.06 0.0217 0.10 0.28 0.2892 40 60 1.98 0.0249 0.10 0.30 40 2.06 0.0217 0.10 0.45 0.8292 40 60 1.98 0.0249 0.10 0.30 40 2.06 0.0217 0.10 0.45 0.8292 40 60 1.98 0.0249 0.10 0.45 40 2.06 0.0217 0.10 0.45 0.8272 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.45 0.8272 40 60 1.98 0.0249 0.10 0.35 40 2.06		40	2.06	0.0217	0.02	0.40	0.8858	40	09	1.98	0.0249	0.02	0.40	0.9949
40 2.06 0.0217 0.10 0.25 0.2082 40 60 1.98 0.0249 0.10 0.25 40 2.06 0.0217 0.10 0.35 0.3640 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.35 0.3654 40 60 1.98 0.0249 0.10 0.30 40 2.06 0.0217 0.10 0.45 0.8953 40 60 1.98 0.0249 0.10 0.40 40 2.06 0.0217 0.10 0.45 0.8953 40 60 1.98 0.0249 0.10 0.40 40 2.06 0.0217 0.10 0.45 0.8952 40 60 1.98 0.0249 0.10 0.45 40 2.06 0.0217 0.10 0.45 0.8854 40 60 1.98 0.0249 0.10 0.00 0.00 0.0249 0.10		40	2.06	0.0217	0.05	0.45	0.9502	40	09	1.98	0.0249	0.05	0.45	0.9991
40 2.06 0.0217 0.10 0.33 0.3440 40 60 1.98 0.0249 0.10 0.33 40 2.06 0.0217 0.10 0.35 0.3322 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.45 0.8935 40 60 1.98 0.0249 0.10 0.45 40 2.06 0.0217 0.10 0.45 0.8972 40 60 1.98 0.0249 0.10 0.40 40 2.06 0.0217 0.10 0.55 0.9972 40 60 1.98 0.0249 0.10 0.40 40 2.06 0.0217 0.10 0.55 0.9826 40 60 1.98 0.0249 0.10 0.50 40 2.06 0.0217 0.15 0.40 0.9826 40 60 1.98 0.0249 0.10 0.50 0.99 0.10 0.90		40	2.06	0.0217	0.10	0.25	0.2082	40	09	1.98	0.0249	0.10	0.25	0.4712
40 2.06 0.0217 0.10 0.35 0.5995 40 60 1.98 0.0249 0.10 0.35 40 2.06 0.0217 0.10 0.46 0.6395 40 60 1.98 0.0249 0.10 0.40 40 2.06 0.0217 0.10 0.45 0.8339 40 60 1.98 0.0249 0.10 0.40 40 2.06 0.0217 0.10 0.50 0.9857 40 60 1.98 0.0249 0.10 0.40 40 2.06 0.0217 0.10 0.50 0.9857 40 60 1.98 0.0249 0.10 0.50 40 2.06 0.0217 0.10 0.50 0.9857 40 60 1.98 0.0249 0.10 0.50 40 2.06 0.0217 0.15 0.35 0.1394 40 60 1.98 0.0249 0.10 0.50 40 2.06		40	2.06	0.0217	0.10	0.30	0.3640	40	09	1.98	0.0249	0.10	0.30	0.6915
40 2.06 0.0217 0.10 0.40 0.6995 40 60 1.98 0.0249 0.10 0.40 40 2.06 0.0217 0.10 0.45 0.8239 40 60 1.98 0.0249 0.10 0.45 40 2.06 0.0217 0.10 0.45 0.8739 40 60 1.98 0.0249 0.10 0.45 40 2.06 0.0217 0.10 0.55 0.9572 40 60 1.98 0.0249 0.10 0.50 40 2.06 0.0217 0.10 0.60 0.9828 40 60 1.98 0.0249 0.10 0.50 40 2.06 0.0217 0.15 0.40 0.440 40 60 1.98 0.0249 0.10 0.50 40 2.06 0.0217 0.15 0.45 0.440 40 60 1.98 0.0249 0.15 0.36 40 2.06 0.		40	2.06	0.0217	0.10	0.35	0.5392	40	09	1.98	0.0249	0.10	0.35	0.8514
40 2.06 0.0217 0.10 0.45 0.833 40 60 1.98 0.0249 0.10 0.45 40 2.06 0.0217 0.10 0.55 0.9572 40 60 1.98 0.0249 0.10 0.55 40 2.06 0.0217 0.10 0.55 0.9572 40 60 1.98 0.0249 0.10 0.55 40 2.06 0.0217 0.10 0.60 0.9826 40 60 1.98 0.0249 0.10 0.55 40 2.06 0.0217 0.15 0.33 0.1994 40 60 1.98 0.0249 0.10 0.55 40 2.06 0.0217 0.15 0.40 0.49 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.0217 0.15 0.40 0.49 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.021		40	2.06	0.0217	0.10	0.40	0.6995	40	09	1.98	0.0249	0.10	0.40	0.9415
40 2.06 0.0217 0.10 0.50 0.9979 40 60 1.98 0.0249 0.10 0.50 40 2.06 0.0217 0.10 0.55 0.9827 40 60 1.98 0.0249 0.10 0.55 40 2.06 0.0217 0.10 0.60 0.9827 40 60 1.98 0.0249 0.10 0.55 40 2.06 0.0217 0.15 0.32 0.1994 40 60 1.98 0.0249 0.10 0.60 40 2.06 0.0217 0.15 0.404 40 60 1.98 0.0249 0.15 0.30 40 2.06 0.0217 0.15 0.40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.44 40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.45 0.44 4		40	2.06	0.0217	0.10	0.45	0.8239	40	09	1.98	0.0249	0.10	0.45	0.9816
40 2.06 0.0217 0.10 0.55 0.9572 40 60 1.98 0.0249 0.10 0.55 40 2.06 0.0217 0.10 0.56 0.9826 40 60 1.98 0.0249 0.10 0.56 40 2.06 0.0217 0.15 0.33 0.3379 40 60 1.98 0.0249 0.15 0.30 40 2.06 0.0217 0.15 0.45 0.4546 40 60 1.98 0.0249 0.15 0.30 40 2.06 0.0217 0.15 0.45 0.40 60 1.98 0.0249 0.15 0.30 40 2.06 0.0217 0.15 0.45 40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.50 0.740 40 60 1.98 0.0249 0.15 0.50 40 2.06 0.0217 0.15 0		40	2.06	0.0217	0.10	0.50	0.9079	40	09	1.98	0.0249	0.10	0.50	0.9955
40 2.06 0.0277 0.10 0.60 0.9826 40 60 1.98 0.0249 0.10 0.60 40 2.06 0.0217 0.15 0.30 0.3379 40 60 1.98 0.0249 0.15 0.30 40 2.06 0.0217 0.15 0.36 0.3379 40 60 1.98 0.0249 0.15 0.30 40 2.06 0.0217 0.15 0.44 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.0217 0.15 0.45 0.455 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.0217 0.15 0.45 0.465 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.0217 0.15 0.45 0.44 40 60 1.98 0.0249 0.15 0.50 40 2.06 0.0217 0.15		40	2.06	0.0217	0.10	0.55	0.9572	40	09	1.98	0.0249	0.10	0.55	0.9992
40 2.06 0.0217 0.15 0.330 0.1994 40 60 1.98 0.0249 0.15 0.30 40 2.06 0.0217 0.15 0.35 0.3799 40 60 1.98 0.0249 0.15 0.35 40 2.06 0.0217 0.15 0.40 0.4940 40 60 1.98 0.0249 0.15 0.35 40 2.06 0.0217 0.15 0.45 0.6456 40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.45 0.6456 40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.65 0.8935 40 60 1.98 0.0249 0.15 0.55 40 2.06 0.0217 0.20 0.45 0.47 40 60 1.98 0.0249 0.15 0.55 40 2.06 0		40	2.06	0.0217	0.10	09.0	0.9826	40	09	1.98	0.0249	0.10	0.60	0.9999
40 2.06 0.0217 0.15 0.3379 40 60 1.98 0.0249 0.15 0.35 40 2.06 0.0217 0.15 0.44 0.440 40 60 1.98 0.0249 0.15 0.34 40 2.06 0.0217 0.15 0.46 0.4540 40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.50 0.7440 40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.50 0.740 40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.55 0.8988 40 60 1.98 0.0249 0.15 0.55 40 2.06 0.0217 0.15 0.55 0.8703 40 60 1.98 0.0249 0.15 0.65 40 2.06 0.0217		40	2.06	0.0217	0.15	0.30	0.1994	40	09	1.98	0.0249	0.15	0.30	0.4059
40 2.06 0.0217 0.15 0.440 0.4940 40 60 1.98 0.0249 0.15 0.40 40 2.06 0.0217 0.15 0.45 0.6456 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.0217 0.15 0.50 0.7740 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.0217 0.15 0.55 0.8988 40 60 1.98 0.0249 0.15 0.55 40 2.06 0.0217 0.15 0.65 0.8988 40 60 1.98 0.0249 0.15 0.50 40 2.06 0.0217 0.15 0.65 0.8983 40 60 1.98 0.0249 0.15 0.60 40 2.06 0.0217 0.20 0.35 0.1920 40 60 1.98 0.0249 0.15 0.65 40 2.06 <td< td=""><td></td><td>40</td><td>2.06</td><td>0.0217</td><td>0.15</td><td>0.35</td><td>0.3379</td><td>40</td><td>09</td><td>1.98</td><td>0.0249</td><td>0.15</td><td>0.35</td><td>0.6143</td></td<>		40	2.06	0.0217	0.15	0.35	0.3379	40	09	1.98	0.0249	0.15	0.35	0.6143
40 2.06 0.0217 0.15 0.45 0.6456 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.0217 0.15 0.56 0.7740 40 60 1.98 0.0249 0.15 0.45 40 2.06 0.0217 0.15 0.56 0.8983 40 60 1.98 0.0249 0.15 0.55 40 2.06 0.0217 0.15 0.65 0.9335 40 60 1.98 0.0249 0.15 0.65 40 2.06 0.0217 0.20 0.45 0.1820 40 60 1.98 0.0249 0.15 0.65 40 2.06 0.0217 0.20 0.40 0.3152 40 60 1.98 0.0249 0.15 0.65 40 2.06 0.0217 0.20 0.45 0.45 40 60 1.98 0.0249 0.20 0.45 40 2.06 0.		40	2.06	0.0217	0.15	0.40	0.4940	40	09	1.98	0.0249	0.15	0.40	0.7908
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40	2.06	0.0217	0.15	0.45	0.6456	40	09	1.98	0.0249	0.15	0.45	0.9076
40 2.06 0.0217 0.15 0.55 0.8989 40 60 1.98 0.0249 0.15 0.55 40 2.06 0.0217 0.15 0.65 0.9709 40 60 1.98 0.0249 0.15 0.65 40 2.06 0.0217 0.15 0.65 0.9709 40 60 1.98 0.0249 0.15 0.65 40 2.06 0.0217 0.20 0.3709 40 60 1.98 0.0249 0.15 0.65 40 2.06 0.0217 0.20 0.45 0.4778 40 60 1.98 0.0249 0.20 0.40 40 2.06 0.0217 0.20 0.45 0.4778 40 60 1.98 0.0249 0.20 0.40 40 2.06 0.0217 0.20 0.50 0.625 40 60 1.98 0.0249 0.20 0.40 40 2.06 0.0217 <td< td=""><td></td><td>40</td><td>2.06</td><td>0.0217</td><td>0.15</td><td>0.50</td><td>0.7740</td><td>40</td><td>09</td><td>1.98</td><td>0.0249</td><td>0.15</td><td>0.50</td><td>0.9674</td></td<>		40	2.06	0.0217	0.15	0.50	0.7740	40	09	1.98	0.0249	0.15	0.50	0.9674
40 2.06 0.0237 40 0.0247 0.15 0.66 0.9335 40 60 1.98 0.0249 0.15 0.66 40 2.06 0.0217 0.15 0.65 0.9709 40 60 1.98 0.0249 0.15 0.66 40 2.06 0.0217 0.20 0.35 0.1920 40 60 1.98 0.0249 0.15 0.65 40 2.06 0.0217 0.20 0.40 0.3152 40 60 1.98 0.0249 0.20 0.40 40 2.06 0.0217 0.20 0.45 0.45 40 60 1.98 0.0249 0.20 0.45 40 2.06 0.0217 0.20 0.50 0.7334 40 60 1.98 0.0249 0.20 0.55 40 2.06 0.0217 0.20 0.55 0.7334 40 60 1.98 0.0249 0.20 0.55		40	2.06	0.0217	0.15	0.55	0.8698	40	09	1.98	0.0249	0.15	0.55	0.9909
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40	2.06	0.0217	0.15	09.0	0.9335	40	09	1.98	0.0249	0.15	09.0	0.9980
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40	2.06	0.0217	0.15	0.65	0.9709	40	09	1.98	0.0249	0.15	0.65	0.9997
40 2.06 0.0217 0.20 0.40 0.3152 40 60 1:98 0.0249 0.20 0.40 40 2.06 0.0217 0.20 0.45 0.4578 40 60 1:98 0.0249 0.20 0.45 40 2.06 0.0217 0.20 0.50 0.6252 40 60 1:98 0.0249 0.20 0.50 40 2.06 0.0217 0.20 0.55 0.7334 40 60 1:98 0.0249 0.20 0.55 40 2.06 0.0217 0.20 0.55 0.7334 40 60 1:98 0.0249 0.20 0.55 40 2.06 0.0217 0.20 0.57 0.941 40 60 1:98 0.0249 0.20 0.56 40 2.06 0.0217 0.20 0.70 0.941 40 60 1:98 0.0249 0.20 0.70 40 2.06 0.		40	2.06	0.0217	0.20	0.35	0.1920	40	09	1.98	0.0249	0.20	0.35	0.3633
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40	2.06	0.0217	0.20	0.40	0.3152	40	09	1.98	0.0249	0.20	0.40	0.5668
40 2.06 0.0217 0.20 0.50 0.625 40 60 1.98 0.0249 0.20 0.55 40 2.06 0.0217 0.20 0.55 0.7334 40 60 1.98 0.0249 0.20 0.55 40 2.06 0.0217 0.20 0.65 0.9117 40 60 1.98 0.0249 0.20 0.65 40 2.06 0.0217 0.20 0.70 0.9641 40 60 1.98 0.0249 0.20 0.65 40 2.06 0.0217 0.20 0.70 0.9641 40 60 1.98 0.0249 0.20 0.70 40 2.06 0.0217 0.25 0.45 0.2944 40 60 1.98 0.0249 0.20 0.70 40 2.06 0.0217 0.25 0.45 0.2944 40 60 1.98 0.0249 0.25 0.45		40	2.06	0.0217	0.20	0.45	0.4578	40	09	1.98	0.0249	0.20	0.45	0.7518
40 2.06 0.0217 0.20 0.55 0.7334 40 60 1.98 0.0249 0.20 0.55 40 2.06 0.0217 0.20 0.65 0.8401 40 60 1.98 0.0249 0.20 0.56 40 2.06 0.0217 0.20 0.65 0.9170 40 60 1.98 0.0249 0.20 0.65 40 2.06 0.0217 0.20 0.70 0.941 40 60 1.98 0.0249 0.20 0.70 40 2.06 0.0217 0.25 0.40 0.186 40 1.98 0.0249 0.20 0.70 40 2.06 0.0217 0.25 0.45 0.2944 40 60 1.98 0.0249 0.25 0.45		40	2.06	0.0217	0.20	0.50	0.6025	40	09	1.98	0.0249	0.20	0.50	0.8823
40 2.06 0.0217 0.20 0.60 0.8401 40 60 1.98 0.0249 0.20 0.60 40 2.06 0.0217 0.20 0.65 0.9170 40 60 1.98 0.0249 0.20 0.65 40 2.06 0.0217 0.20 0.40 0.9841 40 60 1.98 0.0249 0.20 0.70 40 2.06 0.0217 0.25 0.45 0.2844 40 60 1.98 0.0249 0.20 0.40 40 2.06 0.0217 0.25 0.45 0.2944 40 60 1.98 0.0249 0.25 0.40		40	2.06	0.0217	0.20	0.55	0.7334	40	09	1.98	0.0249	0.20	0.55	0.9545
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40	2.06	0.0217	0.20	09.0	0.8401	40	09	1.98	0.0249	0.20	09.0	0.9860
40 2.06 0.0217 0.25 0.70 0.9941 40 60 1.98 0.0249 0.20 0.70 40 2.06 0.0217 0.25 0.45 0.2944 40 60 1.98 0.0249 0.25 0.45 40 2.06 0.0217 0.25 0.45 0.2944 40 60 1.98 0.0349 0.25 0.45		40	2.06	0.0217	0.20	0.65	0.9170	40	09	1.98	0.0249	0.20	0.65	0.9967
40 2.06 0.0217 0.25 0.40 0.1826 40 60 1.98 0.0249 0.25 0.40 40 2.06 0.0217 0.25 0.45 0.2944 40 60 1.98 0.0249 0.25 0.45		40	2.06	0.0217	0.20	0.70	0.9641	40	09	1.98	0.0249	0.20	0.70	0.9994
40 2.06 0.0217 0.25 0.45 0.2944 40 60 1.98 0.0249 0.25 0.45		40	2.06	0.0217	0.25	0.40	0.1826	40	09	1.98	0.0249	0.25	0.40	0.3416
		40	0	1										

Table B.23: continue on next page

Table B.23: continue on next page

							Table	B.23:		-continued from previous page	from p	reviou	s page
\mathbf{n}_1	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p2	power	$^{\mathrm{n}_{1}}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p2	power
20	40	2.06	0.0217	0.25	0.55	0.5697	40	09	1.98	0.0249	0.25	0.55	0.8612
20	40	2.06	0.0217	0.25	09.0	0.7077	40	09	1.98	0.0249	0.25	09.0	0.9432
20	40	2.06	0.0217	0.25	0.65	0.8256	40	09	1.98	0.0249	0.25	0.65	0.9818
20	04	2.06	0.0217	0.25	0.75	0.9119	0 4 0	9 9	1.98	0.0249	0.25	0.75	0.9993
20	40	2.06	0.0217	0.30	0.45	0.1720	40	09	1.98	0.0249	0.30	0.45	0.3266
20	40	2.06	0.0217	0.30	0.50	0.2762	40	09	1.98	0.0249	0.30	0.50	0.5155
20	40	2.06	0.0217	0.30	0.55	0.4067	40	09	1.98	0.0249	0.30	0.55	0.7000
20	40	2.06	0.0217	0.30	0.60	0.5541	40	09	1.98	0.0249	0.30	09.0	0.8453
20	40	2.06	0.0217	0.30	0.65	0.7012	40	09	1.98	0.0249	0.30	0.65	0.9364
20	40	2.06	0.0217	0.30	0.70	0.8274	40	09	1.98	0.0249	0.30	0.70	0.9803
20	40	2.06	0.0217	0.35	0.50	0.1628	40	09	1.98	0.0249	0.35	0.50	0.3126
0 70	040	2.06	0.0217	0.35	0.55	0.2664	40	09	200	0.0249	0.35	0.55	0.4974
20	0 1 4	2.06	0.0217	0.00	0.00	0.5574	40	8 9	1.98	0.0249	0.33	0.00	0.8396
20	40	2.06	0.0217	0.40	0.55	0.1597	40	09	1.98	0.0249	0.40	0.55	0.3026
20	40	2.06	0.0217	0.40	09.0	0.2683	40	09	1.98	0.0249	0.40	09.0	0.4900
20	20	2.00	0.0237	0.02	0.15	0.1241	40	20	1.99	0.0250	0.02	0.15	0.3271
20	20	2.00	0.0237	0.02	0.20	0.2928	40	70	1.99	0.0250	0.02	0.20	0.61111
20	20	2.00	0.0237	0.02	0.25	0.4820	40	20	1.99	0.0250	0.02	0.25	0.8212
20	20	2.00	0.0237	0.02	0.30	0.6704	40	20	1.99	0.0250	0.02	0.30	0.9344
50	20	2.00	0.0237	0.05	0.35	0.8236	40	29	1.99	0.0250	0.05	0.35	0.9816
700	50	2.00	0.0237	0.05	0.40	0.9207	40	2 8	1.99	0.0250	0.05	0.40	0.9962
07.0		2.00	0.0237	0.05	0.45	0.9697	40	2 8	1.99	0.0250	0.05	0.45	0.9994
07.0	500	2.00	0.0237	0.10	0.25	0.2393	40	2 2	1.99	0.0250	0.10	0.25	0.4743
070	00 2	00.2	0.0237	0.10	0.30	0.4083	40	2 6	1.99 00.1	0.0250	0.10	0.30	0.0983
200	20.00	2.00	0.0237	0.10	0.35	0.5930	40	2 2	1.99	0.0250	0.10	0.35	0.8644
20	2.5	2.00	0.0237	0.10	0.45	0.8676	40	2.2	1.99	0.0250	0.10	0.45	0.9872
20	20	2.00	0.0237	0.10	0.50	0.9374	40	2.02	1.99	0.0250	0.10	0.50	0.9973
20	20	2.00	0.0237	0.10	0.55	0.9741	40	20	1.99	0.0250	0.10	0.55	0.9996
20	20	2.00	0.0237	0.10	09.0	0.9908	40	20	1.99	0.0250	0.10	09.0	0.99999
20	20	2.00	0.0237	0.15	0.30	0.2254	40	20	1.99	0.0250	0.15	0.30	0.4117
20	20	2.00	0.0237	0.15	0.35	0.3801	40	2	1.99	0.0250	0.15	0.35	0.6371
50	00 g	2.00	0.0237	0.15	0.40	0.5486	40	6 5	1.99	0.0250	0.15	0.40	0.8176
020	00 20	2.00	0.0237	0.To	0.45	0.7025	40	2 5	1.99 1.00	0.0250	0.10	0.45	0.9259
20	20	2.00	0.0237	0.15	0.55	0.9073	40	2.2	1.99	0.0250	0.15	0.55	0.9938
20	20	2.00	0.0237	0.15	0.60	0.9577	40	20	1.99	0.0250	0.15	09.0	0.9988
20	20	2.00	0.0237	0.15	0.65	0.9838	40	20	1.99	0.0250	0.15	0.65	0.9998
20	20	2.00	0.0237	0.20	0.35	0.2196	40	70	1.99	0.0250	0.20	0.35	0.3841
20	20	2.00	0.0237	0.20	0.40	0.3587	40	20	1.99	0.0250	0.20	0.40	0.5972
20	20	2.00	0.0237	0.20	0.45	0.5133	40	20	1.99	0.0250	0.20	0.45	0.7793
20	20	2.00	0.0237	0.20	0.50	0.6625	40	29	1.99	0.0250	0.20	0.50	0.9003
07.0		2.00	0.0237	0.20	0.55	0.7895	40	2 8	1.99	0.0250	0.20	0.55	0.9636
0.70	200	2.00	0.0237	0.20	0.60	0.8847	40	2 2	1.99	0.0250	0.20	0.60	0.9895
200	0.00	2.00	0.0237	0.20	0.00	0.9401	40	2.5	1.99	0.0250	0.20	0.00	0.9970
000	8 20	00.0	0.0237	0.00	0.10	0.5130	40	2 5	1 99	0.0250	0.00	0.10	0.3699
20	3.5	2.00	0.0237	0.25	0.45	0.3389	40	2.5	1.99	0.0250	0.25	0.45	0.5634
1	3	2	0.01	9	O.F.	0.000	2	2	T.00	0.040.0	9) - -	1

-	$_{ m n_2}$ $_{ m z_n}$	5	pvalue	p1	P2	power	$_{1}^{n}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	P 2	power
-		00	0.0237	0.25	0.50	0.4850	40	70	1.99	0.0250	0.25	0.50	0.7461
	-	00	0.0237	0.25	0.55	0.6342	40	70	1.99	0.0250	0.25	0.55	0.8777
	50 2.00	00	0.0237	0.25	0.60	0.7684	40	2 2	1.99	0.0250	0.25	0.60	0.9531
	50 2.00	2 2	0.0237	0.25	0.00	0.0723	40	2 2	1.99	0.0250	0.25	0.00	0.9905
		2 0	0.0237	0.25	0.75	0.9772	40	2.2	1.99	0.0250	0.25	0.75	0.9996
		00	0.0237	0.30	0.45	0.2024	40	20	1.99	0.0250	0.30	0.45	0.3412
		00	0.0237	0.30	0.50	0.3227	40	70	1.99	0.0250	0.30	0.50	0.5343
	50 2.00	00	0.0237	0.30	0.55	0.4673	40	20	1.99	0.0250	0.30	0.55	0.7204
		00 :	0.0237	0.30	0.60	0.6203	40	20	1.99	0.0250	0.30	0.60	0.8637
	50 2.00	2 2	0.0237	0.30	0.65	0.7596	40	2 2	1.99	0.0250	0.30	0.65	0.9488
		2 2	0.0237	0.00	0.70	0.8084	40	2.5	1.99	0.0250	0.00	0.70	0.3931
	50 2.00	2 0	0.0237	0.35	0.55	0.3145	40	2 2	1.99	0.0250	0.35	0.55	0.5160
		00	0.0237	0.35	09.0	0.4612	40	70	1.99	0.0250	0.35	09.0	0.7108
		00	0.0237	0.35	0.65	0.6171	40	20	1.99	0.0250	0.35	0.65	0.8624
		00	0.0237	0.40	0.55	0.1923	40	20	1.99	0.0250	0.40	0.55	0.3156
		00	0.0237	0.40	09.0	0.3135	40	20	1.99	0.0250	0.40	0.60	0.5151
-		21	0.0157	0.02	0.15	0.0390	40	80	2.07	0.0212	0.02	0.15	0.3106
- •		21	0.0157	0.05	0.20	0.1683	40	08 8	2.07	0.0212	0.05	0.20	0.5731
		1 7	0.0157	0.05	0.25	0.3000	04.0	000	20.0	0.0212	0.05	0.20	0.0971
_		2.1	0.0157	0.05	0.35	0.7580	40	80	2.07	0.0212	0.05	0.35	0.9812
_		21	0.0157	0.05	0.40	0.8823	40	80	2.07	0.0212	0.02	0.40	0.9964
_		21	0.0157	0.05	0.45	0.9514	40	80	2.07	0.0212	0.02	0.45	0.9995
-	60 2.21	21	0.0157	0.10	0.25	0.1629	40	80	2.07	0.0212	0.10	0.25	0.4407
- `		7.7	0.0157	0.10	0.30	0.3129	40	000	2.07	0.0212	0.10	0.30	0.6795
_ •		17.	0.0157	0.10	0.35	0.4935	040	200	2.0.0	0.0212	0.10	0.35	0.8548
•		1 1	0.0157	0.10	0.40	0.0003	40	8 8	0.07	0.0212	0.10	0.40	0.9401
. •		1 1	0.0157	0.10	0.50	0.9071	40	80	2.07	0.0212	0.10	0.50	0.9970
_		21	0.0157	0.10	0.55	0.9607	40	80	2.07	0.0212	0.10	0.55	0.9996
_	60 2.2	21	0.0157	0.10	09.0	0.9859	40	80	2.07	0.0212	0.10	0.60	1.0000
_		21	0.0157	0.15	0.30	0.1539	40	80	2.07	0.0212	0.15	0.30	0.3826
_		21	0.0157	0.15	0.35	0.2844	40	80	2.07	0.0212	0.15	0.35	0.6070
-		21	0.0157	0.15	0.40	0.4468	40	80	2.07	0.0212	0.15	0.40	0.7948
- `	60 2.2	17.	0.0157	0.15	0.45	0.6164	40	200	2.07	0.0212	0.15	0.45	0.9152
_ •		17.	0.0157	0.10	0.00	0.7039	040	200	0.07	0.0212	0.10	0.00	0.9734
_		1 2 -	0.0157	0.15	0.00	0.8717	04.4	000	20.0	0.0212	0.15	0.00	0.8958
	60 2.2	21	0.0157	0.15	0.65	0.9778	40	8 8	2.07	0.0212	0.15	0.65	0.9999
_		21	0.0157	0.20	0.35	0.1479	40	80	2.07	0.0212	0.20	0.35	0.3440
_		21	0.0157	0.20	0.40	0.2674	40	80	2.07	0.0212	0.20	0.40	0.5574
_		21	0.0157	0.20	0.45	0.4198	40	80	2.07	0.0212	0.20	0.45	0.7563
_		21	0.0157	0.20	0.50	0.5816	40	80	2.07	0.0212	0.20	0.50	0.8943
-		21	0.0157	0.20	0.55	0.7296	40	80	2.07	0.0212	0.20	0.55	0.9640
- •	60 2.2	21	0.0157	0.20	0.60	0.8495	40	08 8	2.07	0.0212	0.20	0.60	0.9903
_ •		7.7	0.015/	0.20	0.00	0.9315	4	×					×
	0	į	0.0	0	1	01	9	2 6	1 0	0.0212	0.20	0.00	0.9901

Table B.23: continue on next page

Table B.23: continue on next page

1	ı																																												
s page	power	0.5355	0.7367	0.8778	0.9877	0.9978	0.9997	0.3178	0.5228	0.7176	0.8654	0.9520	0.9077	0.5086	0.2220	0.8677	0.3059	0.5129	0.3118	0.6167	0.8385	0.9465	0.9869	0.9978	0.9997	0.7140	0.8798	0.9614	0.9905	0.9982	0.9998	1.0000	0.6467	0.8281	0.9341	0.9805	0.9957	0.0000	0.3793	0.5988	0.7883	0.9111	0.9711	0.9950	0.9999
reviou	P2	0.45	0.50	0.55	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.0	0.0 0.0 0.0	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.40 0.40	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55	0.00	0.70
from p	P1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.00	20.00	32.0	0.35	0.40	0.40	0.02	0.05	0.02	0.05	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.1.0	0.20	0.20	0.20	0.20	0.20	0.20	0.20
-continued from previous page	pvalue	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0212	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242
	$\mathbf{z}_{\mathbf{n}}$	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	0.00	20.0	2.07	2.07	2.07	2.07	2.03	2.03	2.03	2.03	2.03	2.03	20.0	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	0.00	2.03	2.03	2.03	2.03	2.03	20.7	2.03
B.23:	n ₂	80	80	2 ×	808	80	80	80	80	80	80	200	000	000	8 8	80	80	80	06	90	06	06	06	200	8 8	G 6	06	06	90	90	06	3 8	06	06	90	06	6 8	8 8	6 6	06	06	90	06	8 8	8 6
Table	$^{\rm n_1}$	40	40	40	40	40	40	40	40	40	40	40	040	70	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40
	power	0.2573	0.3999	0.5590	0.8469	0.9311	0.9744	0.1422	0.2487	0.3913	0.5599	0.7241	0.6510	0.1333	0.4022	0.5752	0.1449	0.2636	0.0587	0.2319	0.4653	0.6793	0.8329	0.9241	0.9705	0.3966	0.5760	0.7340	0.8546	0.9327	0.9742	0.9920	0.3460	0.5084	0.6709	0.8083	0.9050	0.9606	0.3866	0.3126	0.4706	0.6364	0.7824	0.9535	0.9829
	p2	0.45	0.50	0.55	0.65	0.70	0.75	0.45	0.50	0.55	0.60	0.65	0.70		090	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.40	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.00	0.00	0.40	0.45	0.50	0.55	0.00	0.70
	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.0	3.5	0.35	0.40	0.40	0.02	0.02	0.02	0.05	0.05	0.05	0.03	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.1.0	0.15	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242
	$\mathbf{z}_{\mathbf{n}}$	2.21	2.21	2.21	2.21	2.21	2.21	2.21	2.21	2.21	2.21	2.21	12.0	2.21	2.2	2.21	2.21	2.21	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	01.70	2.10	2.10	2.10	2.10	2.10	2.10	2.10
	n ₂	09	09	9 9	09	09	09	09	09	09	09	09	00	8 9	9	09	09	09	20	20	20	20	26	2 8	2 2	2 2	202	70	20	20	20	2 5	2 2	20	20	20	9 2	2 9	2 2	202	20	20	2 2	2.5	2.2
	$^{\mathrm{n}_{1}}$	20	20	02.0	20	20	20	20	20	20	20	070	0 0	0 0	0.00	20	20	20	20	20	20	20	50	070	0.00	20	20	20	20	20	20	0.70	20	20	20	20	50	0 0	20	20	20	20	50	070	20

0.0242 0.25 0.46 0.1724 40 0.0242 0.25 0.45 0.2965 40 0.0242 0.25 0.50 0.4536 40 0.0242 0.25 0.50 0.4536 40 0.0242 0.25 0.65 0.8790 40 0.0242 0.25 0.65 0.8790 40 0.0242 0.25 0.70 0.9477 40 0.0242 0.30 0.45 0.1683 40 0.0242 0.30 0.50 0.4977 40 0.0242 0.30 0.50 0.4977 40 0.0242 0.30 0.50 0.4977 40 0.0242 0.30 0.60 0.6156 40 0.0242 0.30 0.65 0.1747 40 0.0242 0.30 0.65 0.1747 40 0.0242 0.30 0.65 0.1747 40 0.0242 0.30 0.65		pvalue	p1	p ₂	power
2.10 0.0242 0.25 0.45 0.2965 40 2.10 0.0242 0.25 0.45 0.4586 40 2.10 0.0242 0.25 0.50 0.4586 40 2.10 0.0242 0.25 0.65 0.8790 40 2.10 0.0242 0.25 0.65 0.8790 40 2.10 0.0242 0.25 0.65 0.8790 40 2.10 0.0242 0.25 0.65 0.8790 40 2.10 0.0242 0.25 0.76 0.837 40 2.10 0.0242 0.30 0.75 0.745 40 2.10 0.0242 0.30 0.75 0.744 40 2.10 0.0242 0.30 0.65 0.4497 40 2.10 0.0242 0.30 0.75 0.744 40 2.10 0.0242 0.30 0.65 0.4497 40 2.10 0.0242	'	0.0242	0.25	0.40	0.3543
2.10 0.0242 0.25 0.4536 40 2.10 0.0242 0.25 0.65 0.6213 40 2.10 0.0242 0.25 0.60 0.7695 40 2.10 0.0242 0.25 0.60 0.7695 40 2.10 0.0242 0.25 0.70 0.9477 40 2.10 0.0242 0.30 0.45 0.1683 40 2.10 0.0242 0.30 0.45 0.1683 40 2.10 0.0242 0.30 0.50 0.2924 40 2.10 0.0242 0.30 0.65 0.497 40 2.10 0.0242 0.30 0.65 0.494 40 2.10 0.0242 0.30 0.65 0.450 40 2.10 0.0242 0.35 0.55 0.296 40 2.10 0.0242 0.35 0.65 0.749 40 2.10 0.0242 0.35		0.0242	0.25	0.45	0.5670
2.10 0.0242 0.25 0.65 0.6213 40 2.10 0.0242 0.25 0.65 0.60 0.7595 40 2.10 0.0242 0.25 0.60 0.7599 40 2.10 0.0242 0.25 0.76 0.9477 40 2.10 0.0242 0.30 0.75 0.1683 40 2.10 0.0242 0.30 0.50 0.2244 40 2.10 0.0242 0.30 0.55 0.497 40 2.10 0.0242 0.30 0.55 0.497 40 2.10 0.0242 0.30 0.65 0.4497 40 2.10 0.0242 0.30 0.65 0.7447 40 2.10 0.0242 0.35 0.65 0.7447 40 2.10 0.0242 0.35 0.65 0.7447 40 2.10 0.0242 0.35 0.65 0.7447 40 2.10	-	0.0242	0.25	0.50	0.7604
2.10 0.0242 0.25 0.60 0.7695 40 2.10 0.0242 0.25 0.65 0.765 40 2.10 0.0242 0.25 0.75 0.8790 40 2.10 0.0242 0.25 0.75 0.8791 40 2.10 0.0242 0.30 0.55 0.4497 40 2.10 0.0242 0.30 0.55 0.4497 40 2.10 0.0242 0.30 0.60 0.7647 40 2.10 0.0242 0.30 0.60 0.7647 40 2.10 0.0242 0.30 0.60 0.7647 40 2.10 0.0242 0.30 0.60 0.7647 40 2.10 0.0242 0.35 0.60 0.4544 40 2.10 0.0242 0.35 0.60 0.4544 40 2.10 0.0242 0.35 0.60 0.4544 40 2.10 0.0242		0.0242	0.25	0.55	0.8944
2.10 0.0242 0.25 0.65 0.8790 40 2.10 0.0242 0.25 0.76 0.8790 40 2.10 0.0242 0.25 0.75 0.9825 40 2.10 0.0242 0.30 0.45 0.1683 40 2.10 0.0242 0.30 0.50 0.2924 40 2.10 0.0242 0.30 0.60 0.6156 40 2.10 0.0242 0.30 0.60 0.6156 40 2.10 0.0242 0.30 0.60 0.6156 40 2.10 0.0242 0.30 0.60 0.6156 40 2.10 0.0242 0.35 0.65 0.454 40 2.10 0.0242 0.35 0.65 0.454 40 2.10 0.0242 0.35 0.65 0.454 40 2.10 0.0242 0.35 0.65 0.454 40 2.10 0.0242	-	0.0242	0.25	0.60	0.9641
2.10 0.0242 0.25 0.70 0.9477 40 2.10 0.0242 0.25 0.75 0.9477 40 2.10 0.0242 0.30 0.45 0.1683 40 2.10 0.0242 0.30 0.55 0.497 40 2.10 0.0242 0.30 0.65 0.4497 40 2.10 0.0242 0.30 0.65 0.4497 40 2.10 0.0242 0.30 0.65 0.7747 40 2.10 0.0242 0.35 0.65 0.7702 40 2.10 0.0242 0.35 0.65 0.7702 40 2.10 0.0242 0.35 0.66 0.4504 40 2.10 0.0242 0.35 0.66 0.4504 40 2.10 0.0242 0.05 0.60 0.4504 40 2.10 0.0242 0.05 0.60 0.4504 40 2.10 0.0242		0.0242	0.25	0.65	0.9910
2.10 0.0242 0.25 0.75 0.9825 40 2.10 0.0242 0.30 0.45 0.183 40 2.10 0.0242 0.30 0.45 0.183 40 2.10 0.0242 0.30 0.55 0.4497 40 2.10 0.0242 0.30 0.60 0.5457 40 2.10 0.0242 0.30 0.60 0.7447 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.40 0.65 0.1743 40 2.04 0.0245 0.05 0.1710 40 2.04 0.0245 0.05 0.1710 40 2.04 0.0245 0.05 0.25		0.0242	0.25	0.70	0.9985
2.10 0.0242 0.30 0.45 0.1683 40 2.10 0.0242 0.30 0.56 0.156 40 2.10 0.0242 0.30 0.50 0.2924 40 2.10 0.0242 0.30 0.65 0.497 40 2.10 0.0242 0.30 0.60 0.4156 40 2.10 0.0242 0.30 0.70 0.7747 40 2.10 0.0242 0.35 0.60 0.4564 40 2.10 0.0242 0.35 0.65 0.4504 40 2.10 0.0242 0.35 0.65 0.4581 40 2.10 0.0242 0.35 0.65 0.4581 40 2.10 0.0242 0.05 0.15 0.710 40 2.04 0.0245 0.05 0.15 0.784 40 2.04 0.0245 0.05 0.25 0.2462 40 2.04 0.0245		0.0242	0.25	0.75	0.9998
2.10 0.0242 0.30 0.50 0.2224 40 2.10 0.0242 0.30 0.55 0.2224 40 2.10 0.0242 0.30 0.65 0.4497 40 2.10 0.0242 0.30 0.65 0.7447 40 2.10 0.0242 0.35 0.65 0.7647 40 2.10 0.0242 0.35 0.65 0.760 40 2.10 0.0242 0.35 0.60 0.1702 40 2.10 0.0242 0.35 0.65 0.1702 40 2.10 0.0242 0.35 0.65 0.1743 40 2.10 0.0242 0.40 0.65 0.1743 40 2.04 0.0245 0.05 0.1713 40 2.04 0.0245 0.05 0.25 0.1714 40 2.04 0.0245 0.05 0.25 0.1714 40 2.04 0.0245 0.05		0.0242	0.30	0.45	0.3385
2.10 0.0242 0.35 0.4497 40 2.10 0.0242 0.30 0.55 0.4497 40 2.10 0.0242 0.30 0.65 0.7447 40 2.10 0.0242 0.30 0.70 0.8794 40 2.10 0.0242 0.35 0.56 0.4504 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.40 0.55 0.1743 40 2.04 0.0242 0.40 0.56 0.2991 40 2.04 0.0245 0.05 0.1710 40 2.04 0.0245 0.05 0.25 0.7110 40 2.04 0.0245 0.05 0.35 0.7110 40 2.04 0.0245 0.05 0.35 0.710 40 2.04 0.0245 0.05 0.35		0.0242	0.30	0.50	0.5468
2.10 0.0242 0.30 0.60 0.6156 40 2.10 0.0242 0.30 0.65 0.6156 40 2.10 0.0242 0.30 0.75 0.7547 40 2.10 0.0242 0.35 0.56 0.1702 40 2.10 0.0242 0.35 0.65 0.4544 40 2.10 0.0242 0.35 0.65 0.4584 40 2.10 0.0242 0.35 0.65 0.4581 40 2.10 0.0242 0.05 0.15 0.4584 40 2.04 0.0245 0.05 0.15 0.714 40 2.04 0.0245 0.05 0.15 0.771 40 2.04 0.0245 0.05 0.26 0.571 40 2.04 0.0245 0.05 0.26 0.571 40 2.04 0.0245 0.05 0.35 0.868 40 2.04 0.0245		0.0242	0.30	0.55	0.7437
2.10 0.0242 0.35 0.765 0.7647 40 2.10 0.0242 0.35 0.76 0.77647 40 2.10 0.0242 0.35 0.55 0.2950 40 2.10 0.0242 0.35 0.55 0.2950 40 2.10 0.0242 0.35 0.65 0.1702 40 2.10 0.0242 0.40 0.55 0.1743 40 2.10 0.0242 0.40 0.55 0.1743 40 2.04 0.0245 0.05 0.20 0.2751 40 2.04 0.0245 0.05 0.20 0.2751 40 2.04 0.0245 0.05 0.25 0.2462 40 2.04 0.0245 0.05 0.25 0.2462 40 2.04 0.0245 0.05 0.25 0.2462 40 2.04 0.0245 0.05 0.25 0.2462 40 2.04 0.0245 <td></td> <td>0.0242</td> <td>0.30</td> <td>0.60</td> <td>0.8846</td>		0.0242	0.30	0.60	0.8846
2.10 0.0242 0.30 0.70 0.8794 40 2.10 0.0242 0.35 0.70 0.8794 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.40 0.65 0.1743 40 2.10 0.0242 0.40 0.60 0.2991 40 2.04 0.0245 0.05 0.17 40 2.04 0.0245 0.05 0.20 0.710 40 2.04 0.0245 0.05 0.20 0.271 40 2.04 0.0245 0.05 0.20 0.271 40 2.04 0.0245 0.05 0.35 0.8541 40 2.04 0.0245 0.10 0.35 0.8541 40 2.04 0.0245 0.10 0.35 0.40 0.710 40 2.04 0.0245		0.0242	0.30	0.65	0.9610
2.10 0.0242 0.35 0.1702 40 2.10 0.0242 0.35 0.50 0.1702 40 2.10 0.0242 0.35 0.65 0.658 40 2.10 0.0242 0.35 0.65 0.1743 40 2.10 0.0242 0.40 0.65 0.1743 40 2.10 0.0245 0.05 0.15 0.786 40 2.04 0.0245 0.05 0.20 0.2771 40 2.04 0.0245 0.05 0.20 0.2771 40 2.04 0.0245 0.05 0.30 0.7710 40 2.04 0.0245 0.05 0.35 0.8541 40 2.04 0.0245 0.05 0.35 0.8541 40 2.04 0.0245 0.05 0.35 0.2482 40 2.04 0.0245 0.10 0.35 0.2482 40 2.04 0.0245 0.10		0.0242	0.30	0.70	0.9908
2.10 0.0242 0.35 0.255 0.2950 40 2.10 0.0242 0.35 0.55 0.2950 40 2.10 0.0242 0.40 0.55 0.1743 40 2.10 0.0242 0.40 0.55 0.1743 40 2.04 0.0245 0.05 0.15 0.0786 40 2.04 0.0245 0.05 0.20 0.2751 40 2.04 0.0245 0.05 0.25 0.5077 40 2.04 0.0245 0.05 0.25 0.5077 40 2.04 0.0245 0.05 0.35 0.841 40 2.04 0.0245 0.05 0.35 0.841 40 2.04 0.0245 0.10 0.35 0.362 40 2.04 0.0245 0.10 0.35 0.362 40 2.04 0.0245 0.10 0.35 0.383 40 2.04 0.0245		0.0242	0.35	0.50	0.3298
2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.35 0.60 0.4504 40 2.10 0.0242 0.40 0.55 0.1743 40 2.04 0.0245 0.05 0.05 0.2931 40 2.04 0.0245 0.05 0.25 0.1731 40 2.04 0.0245 0.05 0.25 0.5077 40 2.04 0.0245 0.05 0.35 0.8541 40 2.04 0.0245 0.05 0.40 0.838 40 2.04 0.0245 0.05 0.40 0.838 40 2.04 0.0245 0.10 0.30 0.4208 40 2.04 0.0245 0.10 0.35 0.8869 40 2.04 0.0245 0.10 0.45 0.8869 40 2.04 0.0245 0.10 0.45 0.8869 40 2.04 0.0245		0.0242	0.35	0.55	0.5366
2.10 0.0242 0.35 0.65 0.6181 40 2.10 0.0242 0.40 0.65 0.1743 40 2.10 0.0245 0.05 0.15 0.0786 40 2.04 0.0245 0.05 0.15 0.0786 40 2.04 0.0245 0.05 0.20 0.2771 40 2.04 0.0245 0.05 0.30 0.7110 40 2.04 0.0245 0.05 0.35 0.3711 40 2.04 0.0245 0.05 0.35 0.2462 40 2.04 0.0245 0.05 0.35 0.2462 40 2.04 0.0245 0.10 0.35 0.2462 40 2.04 0.0245 0.10 0.35 0.2462 40 2.04 0.0245 0.10 0.40 40 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245		0.0242	0.35	0.60	0.7366
2.10 0.0242 0.40 0.55 0.1743 40 2.10 0.0242 0.40 0.55 0.1743 40 2.04 0.0245 0.05 0.25 0.175 40 2.04 0.0245 0.05 0.25 0.5077 40 2.04 0.0245 0.05 0.25 0.5077 40 2.04 0.0245 0.05 0.35 0.841 40 2.04 0.0245 0.05 0.40 0.988 40 2.04 0.0245 0.10 0.36 0.366 40 2.04 0.0245 0.10 0.36 0.4268 40 2.04 0.0245 0.10 0.36 0.4268 40 2.04 0.0245 0.10 0.36 0.4268 40 2.04 0.0245 0.10 0.45 0.889 40 2.04 0.0245 0.10 0.45 0.883 40 2.04 0.0245		0.0242	0.35	0.65	0.8846
2.10 0.0242 0.40 0.60 0.2991 40 2.04 0.0245 0.05 0.15 0.786 40 2.04 0.0245 0.05 0.25 0.571 40 2.04 0.0245 0.05 0.25 0.5717 40 2.04 0.0245 0.05 0.35 0.5711 40 2.04 0.0245 0.05 0.40 0.9388 40 2.04 0.0245 0.10 0.25 0.2462 40 2.04 0.0245 0.10 0.30 0.4208 40 2.04 0.0245 0.10 0.35 0.4208 40 2.04 0.0245 0.10 0.30 0.4208 40 2.04 0.0245 0.10 0.50 0.9830 40 2.04 0.0245 0.10 0.50 0.9830 40 2.04 0.0245 0.10 0.50 0.2886 40 2.04 0.0245		0.0242	0.40	0.55	0.3265
2.04 0.0245 0.015 0.015 0.0786 40 2.04 0.0245 0.05 0.25 0.2751 40 2.04 0.0245 0.05 0.30 0.7110 40 2.04 0.0245 0.05 0.35 0.5777 40 2.04 0.0245 0.05 0.45 0.9388 40 2.04 0.0245 0.05 0.45 0.9388 40 2.04 0.0245 0.10 0.25 0.2462 40 2.04 0.0245 0.10 0.25 0.2463 40 2.04 0.0245 0.10 0.25 0.265 40 2.04 0.0245 0.10 0.40 0.7694 40 2.04 0.0245 0.10 0.55 0.9830 40 2.04 0.0245 0.10 0.55 0.9831 40 2.04 0.0245 0.10 0.55 0.9883 40 2.04 0.0245		0.0242	0.40	0.60	0.5370
2.04 0.0243 0.05 0.27 1.01 2.04 0.0245 0.05 0.25 0.27 40 2.04 0.0245 0.05 0.35 0.577 40 2.04 0.0245 0.05 0.35 0.8541 40 2.04 0.0245 0.05 0.45 0.9794 40 2.04 0.0245 0.10 0.25 0.2462 40 2.04 0.0245 0.10 0.35 0.6051 40 2.04 0.0245 0.10 0.40 0.7884 40 2.04 0.0245 0.10 0.40 0.7894 40 2.04 0.0245 0.10 0.40 0.7894 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.15		0.0245	0.05	0.15	0.3210
2.04 0.0243 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0710 40 2.04 0.0245 0.05 0.40 0.9388 40 2.04 0.0245 0.10 0.25 0.2462 40 2.04 0.0245 0.10 0.35 0.4262 40 2.04 0.0245 0.10 0.45 0.853 40 2.04 0.0245 0.10 0.45 0.836 40 2.04 0.0245 0.10 0.45 0.889 40 2.04 0.0245 0.10 0.55 0.933 40 2.04 0.0245 0.10 0.56 0.933 40 2.04 0.0245 0.15 0.36 0.2189 40 2.04 0.0245 0.15 0.35 0.2189 40 2.04	2.02	0.0245	0.00	0.20	0.0208
2.04 0.0245 0.05 <		0.0245	0.00	0.70	0.8518
2.04 0.0245 0.05 0.45 0.9388 40 2.04 0.0245 0.05 0.45 0.9388 40 2.04 0.0245 0.05 0.45 0.948 40 2.04 0.0245 0.10 0.25 0.2462 40 2.04 0.0245 0.10 0.35 0.651 40 2.04 0.0245 0.10 0.40 0.7694 40 2.04 0.0245 0.10 0.40 0.7694 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.15 0.30 0.2189 40 2.04 0.0245 0.15 0.35 0.3832 40 2.04 0.0245 0.15 0.40 0.534 40 2.04 0.0245 0.15 0.50 0.8885 40 2.04 0.0245		0.0245	0.00	0.00	0 9906
2.04 0.0245 0.05 0.45 0.9794 40 2.04 0.0245 0.10 0.25 0.2462 40 2.04 0.0245 0.10 0.35 0.2462 40 2.04 0.0245 0.10 0.35 0.6051 40 2.04 0.0245 0.10 0.45 0.6051 40 2.04 0.0245 0.10 0.45 0.889 40 2.04 0.0245 0.10 0.55 0.9530 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.15 0.36 0.2189 40 2.04 0.0245 0.15 0.35 0.2189 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.55 0.9885 40 2.04 0.0245		0.0245	0.00	0.30	0.9986
2.04 0.0245 0.10 0.25 0.2462 40 2.04 0.0245 0.10 0.30 0.4208 40 2.04 0.0245 0.10 0.35 0.4208 40 2.04 0.0245 0.10 0.45 0.8869 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.10 0.50 0.9831 40 2.04 0.0245 0.10 0.50 0.9831 40 2.04 0.0245 0.15 0.36 0.2189 40 2.04 0.0245 0.15 0.36 0.2189 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.50 0.8485 40 2.04 0.0245 0.15 0.55 0.9913 40 2.04 0.0245 0.15 0.60 0.9913 40 2.04 0.0245		0.0245	0.05	0.45	0.9998
2.04 0.0245 0.10 0.30 0.4208 40 2.04 0.0245 0.10 0.35 0.6051 40 2.04 0.0245 0.10 0.45 0.8869 40 2.04 0.0245 0.10 0.50 0.9530 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.10 0.60 0.9931 40 2.04 0.0245 0.15 0.30 0.2189 40 2.04 0.0245 0.15 0.40 0.537 40 2.04 0.0245 0.15 0.40 0.537 40 2.04 0.0245 0.15 0.45 0.7226 40 2.04 0.0245 0.15 0.50 0.8485 40 2.04 0.0245 0.15 0.65 0.9248 40 2.04 0.0245 0.15 0.65 0.9281 40 2.04 0.0245		0.0245	0.10	0.25	0.5060
2.04 0.0245 0.10 0.35 0.6651 40 2.04 0.0245 0.10 0.40 0.7694 40 2.04 0.0245 0.10 0.40 0.7694 40 2.04 0.0245 0.10 0.55 0.9830 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.15 0.30 0.2189 40 2.04 0.0245 0.15 0.35 0.3732 40 2.04 0.0245 0.15 0.40 0.5372 40 2.04 0.0245 0.15 0.50 0.8885 40 2.04 0.0245 0.15 0.50 0.8885 40 2.04 0.0245 0.15 0.55 0.9288 40 2.04 0.0245 0.15 0.60 0.9718 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245		0.0245	0.10	0.30	0.7417
2.04 0.0245 0.10 0.40 0.7594 40 2.04 0.0245 0.10 0.45 0.8869 40 2.04 0.0245 0.10 0.55 0.8869 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.10 0.60 0.9951 40 2.04 0.0245 0.15 0.35 0.2189 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.55 0.9285 40 2.04 0.0245 0.15 0.55 0.9282 40 2.04 0.0245 0.15 0.60 0.913 40 2.04 0.0245 0.15 0.65 0.9013 40 2.04 0.0245	-	0.0245	0.10	0.35	0.8972
2.04 0.0245 0.10 0.45 0.8869 40 2.04 0.0245 0.10 0.50 0.9530 40 2.04 0.0245 0.10 0.50 0.9530 40 2.04 0.0245 0.10 0.60 0.9951 40 2.04 0.0245 0.15 0.30 0.2189 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.45 0.7226 40 2.04 0.0245 0.15 0.60 0.98485 40 2.04 0.0245 0.15 0.60 0.9718 40 2.04 0.0245 0.15 0.60 0.9718 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.20 0.355 0.2052 40 2.04 0.0245 <td></td> <td>0.0245</td> <td>0.10</td> <td>0.40</td> <td>0.9687</td>		0.0245	0.10	0.40	0.9687
2.04 0.0245 0.10 0.50 0.9530 40 2.04 0.0245 0.10 0.55 0.9832 40 2.04 0.0245 0.10 0.65 0.9832 40 2.04 0.0245 0.15 0.35 0.2189 40 2.04 0.0245 0.15 0.35 0.3732 40 2.04 0.0245 0.15 0.40 0.537 40 2.04 0.0245 0.15 0.50 0.8485 40 2.04 0.0245 0.15 0.65 0.9285 40 2.04 0.0245 0.15 0.65 0.9284 40 2.04 0.0245 0.15 0.65 0.9283 40 2.04 0.0245 0.15 0.65 0.9718 40 2.04 0.0245 0.20 0.35 0.2052 40 2.04 0.0245 0.20 0.40 0.345 40 2.04 0.0245		0.0245	0.10	0.45	0.9927
2.04 0.0245 0.10 0.55 0.9882 40 2.04 0.0245 0.10 0.65 0.9882 40 2.04 0.0245 0.15 0.35 0.2189 40 2.04 0.0245 0.15 0.35 0.3732 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.50 0.8485 40 2.04 0.0245 0.15 0.55 0.9285 40 2.04 0.0245 0.15 0.60 0.8485 40 2.04 0.0245 0.15 0.65 0.9282 40 2.04 0.0245 0.15 0.65 0.913 40 2.04 0.0245 0.15 0.65 0.913 40 2.04 0.0245 0.20 0.40 0.342 40 2.04 0.0245 0.20 0.45 0.5263 40 2.04 0.0245		0.0245	0.10	0.50	0.9987
2.04 0.0245 0.10 0.60 0.9951 40 2.04 0.0245 0.15 0.36 0.2189 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.50 0.8485 40 2.04 0.0245 0.15 0.55 0.9282 40 2.04 0.0245 0.15 0.60 0.918 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.20 0.35 0.2652 4 2.04 0.0245 0.20 0.40 0.3442 40 2.04 0.0245 0.20 0.45 0.5263 40		0.0245	0.10	0.55	0.9998
2.04 0.0245 0.15 0.30 0.21889 40 2.04 0.0245 0.15 0.35 0.3732 40 2.04 0.0245 0.15 0.45 0.7226 40 2.04 0.0245 0.15 0.50 0.8485 40 2.04 0.0245 0.15 0.50 0.9882 40 2.04 0.0245 0.15 0.60 0.9718 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.20 0.35 0.2052 40 2.04 0.0245 0.20 0.40 0.342 40 2.04 0.0245 0.20 0.40 0.342 40 2.04 0.0245 0.20 0.45 0.5263 40	2.02	0.0245	0.10	0.60	1.0000
2.04 0.0243 0.15 0.35 0.3762 40 2.04 0.0245 0.15 0.40 0.5537 40 2.04 0.0245 0.15 0.45 0.7226 40 2.04 0.0245 0.15 0.50 0.8485 40 2.04 0.0245 0.15 0.65 0.9283 40 2.04 0.0245 0.15 0.65 0.9718 40 2.04 0.0245 0.15 0.65 0.913 40 2.04 0.0245 0.20 0.35 0.2052 40 2.04 0.0245 0.20 0.35 0.2052 40 2.04 0.0245 0.20 0.40 0.345 40 2.04 0.0245 0.20 0.40 0.3542 40 2.04 0.0245 0.20 0.45 0.5263 40		0.0245	0.15	0.30	0.4594
2.04 0.0245 0.15 0.45 0.7226 40 0.0245 0.15 0.45 0.45 0.7226 40 0.0245 0.15 0.55 0.9282 40 0.0245 0.15 0.65 0.93885 40 0.0245 0.15 0.65 0.9282 40 0.0245 0.15 0.65 0.913 40 0.0245 0.15 0.65 0.913 40 0.0245 0.20 0.35 0.2052 40 0.0245 0.20 0.40 0.345 0.20 0.40 0.345 0.20 0.40 0.345 0.20 0.45 0.5263 40		0.0245	0.1.0	0.00	0.0710
2.04 0.0245 0.15 0.45 0.15 0.45 2.04 0.0245 0.15 0.55 0.9282 40 2.04 0.0245 0.15 0.65 0.9918 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.20 0.35 0.2052 40 2.04 0.0245 0.20 0.40 0.3542 40 2.04 0.0245 0.20 0.45 0.5263 40		0.0245	0.10	0.40	0.0400
2.04 0.0245 0.15 0.55 0.982 40 2.04 0.0245 0.15 0.60 0.9718 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.20 0.35 0.2052 40 2.04 0.0245 0.20 0.40 0.3542 40 2.04 0.0245 0.20 0.40 0.3542 40		0.0245	0.15	0.10	0.0422
2.04 0.0245 0.15 0.60 0.9718 40 2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.20 0.35 0.2052 40 2.04 0.0245 0.20 0.40 0.3542 40 2.04 0.0245 0.20 0.40 0.3342 40 2.04 0.0245 0.20 0.45 0.5263 40		0.0245	0.15	0.55	0.9966
2.04 0.0245 0.15 0.65 0.9913 40 2.04 0.0245 0.20 0.35 0.2652 40 2.04 0.0245 0.20 0.40 0.3342 40 2.04 0.0245 0.20 0.40 0.3542 40 2.04 0.0245 0.20 0.45 0.5263 40		0.0245	0.15	0.60	0.9995
2.04 0.0245 0.20 0.35 0.2052 40 2.04 0.0245 0.20 0.40 0.3542 40 2.04 0.0245 0.20 0.45 0.5263 40		0.0245	0.15	0.65	1.0000
2.04 0.0245 0.20 0.40 0.3542 40 2.04 0.0245 0.20 0.45 0.5263 40	0 2.02	0.0245	0.20	0.35	0.3986
2.04 0.0245 0.20 0.45 0.5263 40		0.0245	0.20	0.40	0.6175
	-	0.0245	0.20	0.45	0.8010
2.04 0.0245 0.20 0.50 0.6877 40		0.0245	0.20	0.50	0.9192
2.04 0.0245 0.20 0.55 0.8193 40		0.0245	0.20	0.55	0.9755
2.04 0.0245 0.20	0 2.02	0.0245	0.00	000	0,000

Table B.23: continue on next page

s $page$	power	0.9999	0.3657	0.5789	0.7743	0.9062	0.9704	0.9932	0.9989	0.99999	0.3465	0.5630	0.7632	0.8993	0.9678	0.9927	0.3433	0.5591	0.7590	0.8980	0.3451	0.5604	anna s
previous	P2	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	Tom promine name
	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	from
$-continued\ from$	pvalue	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	bapulanos .86
	$\mathbf{z}_{\mathbf{u}}$	2.02	2.03	2.02	2.02	2.02	2.02	2.03	2.02	2.03	2.02	2.02	2.03	2.02	2.03	2.03	2.02	2.03	2.02	2.02	2.02	2.02	3. con
B.23:	$^{\mathrm{n}_{2}}$	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	R 9
Table B.23:	$^{\rm n_1}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	Table
	power	0.9893	0.2029	0.3429	0.5033	0.6653	0.8063	0.9072	0.9640	0.9889	0.2001	0.3318	0.4925	0.6617	0.8086	0.9099	0.1966	0.3306	0.4987	0.6730	0.2000	0.3420	
	p2	0.70	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.55	09.0	0.65	0.55	09.0	
	p1	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	
	pvalue	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	0.0245	
	$\mathbf{z}_{\mathbf{u}}$	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	
	$^{\mathrm{n}_{2}}$	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	
	$^{\mathrm{n}_{1}}$	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	

 $\alpha = 0.01$. $\mathbf{n_1}$: size of sample 1; $\mathbf{n_2}$: size of sample 2; $\mathbf{z_u}$: critical value; p1: fixed value of the probability of success in the first sample; p2: fixed value of the probability of success in the second sample. Table B.24: Achieved power and p-values calculated for the z-pooled statistic in cases of different sample sizes,

20 2.45 0.0083 0.05 0.15 0.0089 20 2.45 0.0083 0.05 0.20 0.0069 20 2.45 0.0083 0.05 0.20 0.0069 20 2.45 0.0083 0.05 0.30 0.06695 20 2.45 0.0083 0.05 0.35 0.1486 20 2.45 0.0083 0.05 0.45 0.336 0.0466 20 2.45 0.0083 0.10 0.25 0.0146 20 2.45 0.0083 0.10 0.25 0.0146 20 2.45 0.0083 0.10 0.40 0.1642 20 2.45 0.0083 0.10 0.40 0.1642 20 2.45 0.0083 0.15 0.45 0.1669 20 2.45 0.0083 0.15 0.46 0.1669 20 2.45 0.0083 0.15 0.46 0.1669 20	n = 7	ı pvalue	1.1	P2	power	$^{\rm n_1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	D1	D2	power
20 2.45 0.0083 0.05 0.20 0.0060 20 2.45 0.0083 0.05 0.25 0.0069 20 2.45 0.0083 0.05 0.25 0.020 20 2.45 0.0083 0.05 0.25 0.020 20 2.45 0.0083 0.05 0.45 0.3694 20 2.45 0.0083 0.05 0.45 0.3694 20 2.45 0.0083 0.10 0.26 0.0146 20 2.45 0.0083 0.10 0.35 0.0146 20 2.45 0.0083 0.10 0.40 0.1642 20 2.45 0.0083 0.10 0.40 0.1642 20 2.45 0.0083 0.10 0.55 0.4899 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1014 20 2.45			0.02	0.15	0.0008	20	06	2.77	0.0065	0.05	0.15	0.0001
20 2.45 0.0083 0.05 0.25 0.0248 20 2.45 0.0083 0.05 0.35 0.0248 20 2.45 0.0083 0.05 0.35 0.0496 20 2.45 0.0083 0.05 0.35 0.0466 20 2.45 0.0083 0.05 0.40 0.2604 20 2.45 0.0083 0.10 0.35 0.0416 20 2.45 0.0083 0.10 0.35 0.0416 20 2.45 0.0083 0.10 0.35 0.0416 20 2.45 0.0083 0.10 0.35 0.0412 20 2.45 0.0083 0.10 0.50 0.410 20 2.45 0.0083 0.15 0.40 0.011 20 2.45 0.0083 0.15 0.40 0.014 20 2.45 0.0083 0.15 0.40 0.016 20 2.45			0.05	0.20	0.0060	20	06	2.77	0.0065	0.05	0.20	0.0057
20 2.45 0.0083 0.05 0.03 0.0095 20 2.45 0.0083 0.05 0.30 0.0095 20 2.45 0.0083 0.05 0.39 0.0095 20 2.45 0.0083 0.05 0.35 0.0146 20 2.45 0.0083 0.10 0.25 0.0146 20 2.45 0.0083 0.10 0.35 0.0146 20 2.45 0.0083 0.10 0.45 0.2591 20 2.45 0.0083 0.10 0.45 0.2491 20 2.45 0.0083 0.10 0.45 0.2491 20 2.45 0.0083 0.10 0.50 0.3401 20 2.45 0.0083 0.15 0.35 0.0469 20 2.45 0.0083 0.15 0.46 0.1669 20 2.45 0.0083 0.15 0.30 0.0169 20 2.45			0.0	0.25	0.0248	50	06	2.77	0.0065	0.05	0.25	0.0626
20 2.45 0.0083 0.05 0.35 0.1486 20 2.45 0.0083 0.05 0.45 0.1486 20 2.45 0.0083 0.05 0.45 0.1486 20 2.45 0.0083 0.05 0.45 0.0146 20 2.45 0.0083 0.10 0.25 0.0146 20 2.45 0.0083 0.10 0.35 0.0146 20 2.45 0.0083 0.10 0.40 0.1642 20 2.45 0.0083 0.10 0.40 0.1642 20 2.45 0.0083 0.10 0.40 0.11442 20 2.45 0.0083 0.10 0.40 0.11442 20 2.45 0.0083 0.10 0.55 0.4399 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.10148 20 2.45			0.05	0.30	0.0695	00	06	2 77	0.0065	0.05	0.30	0.9338
20 2.45 0.0083 0.05 0.041 0.0041 0.0041 0.0041 0.0041 0.0041 0.00			0.05	0.35	0 1486	000	00	2 7 2	0.0065	0.05	0.35	0.4767
20 2.45 0.0083 0.05 0.45 0.335 20 2.45 0.0083 0.01 0.25 0.0416 20 2.45 0.0083 0.10 0.35 0.0416 20 2.45 0.0083 0.10 0.35 0.0416 20 2.45 0.0083 0.10 0.45 0.2591 20 2.45 0.0083 0.10 0.45 0.2591 20 2.45 0.0083 0.10 0.50 0.410 20 2.45 0.0083 0.10 0.50 0.6112 20 2.45 0.0083 0.15 0.36 0.0242 20 2.45 0.0083 0.15 0.35 0.011 20 2.45 0.0083 0.15 0.55 0.358 20 2.45 0.0083 0.15 0.65 0.468 20 2.45 0.0083 0.15 0.65 0.468 20 2.45 <t< td=""><td></td><td></td><td>0.05</td><td>0.40</td><td>0.2604</td><td>20</td><td>06</td><td>2.77</td><td>0.0065</td><td>0.05</td><td>0.40</td><td>0.7022</td></t<>			0.05	0.40	0.2604	20	06	2.77	0.0065	0.05	0.40	0.7022
20 2.45 0.0083 0.10 0.25 0.0146 20 2.45 0.0083 0.10 0.35 0.0146 20 2.45 0.0083 0.10 0.35 0.0416 20 2.45 0.0083 0.10 0.40 0.1642 20 2.45 0.0083 0.10 0.40 0.1642 20 2.45 0.0083 0.10 0.55 0.8999 20 2.45 0.0083 0.10 0.50 0.6112 20 2.45 0.0083 0.15 0.35 0.0412 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.65 0.5900 20 2.45 0.0083 0.20 0.40 0.10148 20 2.45 0.0083 0.15 0.65 0.5800 20 2.45			0.05	0.45	0.3935	000	06	2.77	0.0065	0.05	0.45	0.8600
2.45 0.0083 0.10 0.30 0.0416 2.0 2.45 0.0083 0.10 0.35 0.0416 2.0 2.45 0.0083 0.10 0.35 0.0416 2.0 2.45 0.0083 0.10 0.45 0.2591 2.0 2.45 0.0083 0.10 0.55 0.3700 2.0 2.45 0.0083 0.10 0.50 0.4310 2.0 2.45 0.0083 0.15 0.35 0.0242 2.0 2.45 0.0083 0.15 0.40 0.1011 2.0 2.45 0.0083 0.15 0.40 0.1011 2.0 2.45 0.0083 0.15 0.40 0.1063 2.0 2.45 0.0083 0.15 0.55 0.3536 2.0 2.45 0.0083 0.20 0.40 0.0606 2.0 2.45 0.0083 0.20 0.40 0.0606 2.0 2.45 <td< td=""><td></td><td>_</td><td>0.10</td><td>0.25</td><td>0.0146</td><td>20</td><td>06</td><td>2.77</td><td>0.0065</td><td>0.10</td><td>0.25</td><td>0.0226</td></td<>		_	0.10	0.25	0.0146	20	06	2.77	0.0065	0.10	0.25	0.0226
20 2.45 0.0083 0.10 0.35 0.0907 20 2.45 0.0083 0.10 0.45 0.0907 20 2.45 0.0083 0.10 0.45 0.2591 20 2.45 0.0083 0.10 0.50 0.3700 20 2.45 0.0083 0.10 0.50 0.6112 20 2.45 0.0083 0.10 0.50 0.0242 20 2.45 0.0083 0.15 0.30 0.0242 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.45 0.1669 20 2.45 0.0083 0.15 0.45 0.1669 20 2.45 0.0083 0.15 0.60 0.4689 20 2.45 0.0083 0.20 0.40 0.0668 20 2.45 0.0083 0.20 0.40 0.0668 20 2.45			0.10	0.30	0.0416	20	06	2.77	0.0065	0.10	0.30	0.0953
245 0.0083 0.10 0.45 0.1642 20 2.45 0.0083 0.10 0.45 0.1642 20 2.45 0.0083 0.10 0.45 0.2591 20 2.45 0.0083 0.10 0.55 0.4899 20 2.45 0.0083 0.10 0.56 0.6112 20 2.45 0.0083 0.15 0.35 0.0540 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.50 0.2515 20 2.45 0.0083 0.20 0.45 0.1018 20 2.45 0.0083 0.20 0.45 0.1068 20 2.45 0.0083 0.20 0.45 0.1068 20 2.45 0.0083			0.10	0.35	0.0907	20	06	2.77	0.0065	0.10	0.35	0.2344
20 2.45 0.0083 0.10 0.45 0.2591 20 2.45 0.0083 0.10 0.50 0.3700 20 2.45 0.0083 0.10 0.55 0.3700 20 2.45 0.0083 0.10 0.55 0.4899 20 2.45 0.0083 0.15 0.35 0.0242 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1016 20 2.45 0.0083 0.15 0.55 0.283 20 2.45 0.0083 0.20 0.40 0.066 20 2.45 0.0083 0.20 0.40 0.064 20 2.45 0.0083 0.20 0.40 0.064 20 2.45			0.10	0.40	0.1642	20	06	2.77	0.0065	0.10	0.40	0.4226
20 2.45 0.0083 0.10 0.50 0.3700 20 2.45 0.0083 0.10 0.55 0.4899 20 2.45 0.0083 0.10 0.56 0.6112 20 2.45 0.0083 0.15 0.30 0.0242 20 2.45 0.0083 0.15 0.30 0.0242 20 2.45 0.0083 0.15 0.45 0.1069 20 2.45 0.0083 0.15 0.45 0.1069 20 2.45 0.0083 0.15 0.55 0.3516 20 2.45 0.0083 0.15 0.60 0.4689 20 2.45 0.0083 0.15 0.50 0.3516 20 2.45 0.0083 0.20 0.40 0.0066 20 2.45 0.0083 0.20 0.50 0.1484 20 2.45 0.0083 0.20 0.50 0.1484 20 2.45			0.10	0.45	0.2591	20	06	2.77	0.0065	0.10	0.45	0.6227
20 2.45 0.0083 0.10 0.55 0.4899 20 2.45 0.0083 0.10 0.60 0.6112 20 2.45 0.0083 0.15 0.39 0.0242 20 2.45 0.0083 0.15 0.35 0.0540 20 2.45 0.0083 0.15 0.45 0.1011 20 2.45 0.0083 0.15 0.50 0.2515 20 2.45 0.0083 0.15 0.50 0.2516 20 2.45 0.0083 0.15 0.55 0.2516 20 2.45 0.0083 0.15 0.65 0.5900 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.0483 20 2.45			0.10	0.50	0.3700	20	06	2.77	0.0065	0.10	0.50	0.7921
20 2.45 0.0083 0.10 0.60 0.6112 20 2.45 0.0083 0.15 0.35 0.0242 20 2.45 0.0083 0.15 0.35 0.0540 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.50 0.2515 20 2.45 0.0083 0.15 0.65 0.3536 20 2.45 0.0083 0.15 0.65 0.3689 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.55 0.4863 20 2.45 0.0083 0.20 0.65 0.4633 20 2.45		_	0.10	0.55	0.4899	20	06	2.77	0.0065	0.10	0.55	0.9040
20 2.45 0.0083 0.15 0.30 0.0242 20 2.45 0.0083 0.15 0.35 0.0242 20 2.45 0.0083 0.15 0.45 0.1011 20 2.45 0.0083 0.15 0.45 0.1069 20 2.45 0.0083 0.15 0.55 0.3536 20 2.45 0.0083 0.15 0.60 0.4689 20 2.45 0.0083 0.15 0.60 0.4689 20 2.45 0.0083 0.20 0.40 0.0060 20 2.45 0.0083 0.20 0.40 0.0606 20 2.45 0.0083 0.20 0.50 0.1666 20 2.45 0.0083 0.20 0.50 0.1666 20 2.45 0.0083 0.20 0.65 0.4836 20 2.45 0.0083 0.20 0.65 0.4635 20 2.45			0.10	09.0	0.6112	20	06	2.77	0.0065	0.10	09.0	0.9632
20 2.45 0.0083 0.15 0.35 0.0540 20 2.45 0.0083 0.15 0.45 0.011 20 2.45 0.0083 0.15 0.45 0.1669 20 2.45 0.0083 0.15 0.50 0.2515 20 2.45 0.0083 0.15 0.55 0.3536 20 2.45 0.0083 0.15 0.65 0.9900 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.60 0.3559 20 2.45 0.0083 0.25 0.45 0.0640 20 2.45 0.0083 0.25 0.45 0.0640 20 2.45			0.15	0.30	0.0242	20	90	2.77	0.0065	0.15	0.30	0.0364
20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.40 0.1011 20 2.45 0.0083 0.15 0.50 0.2515 20 2.45 0.0083 0.15 0.55 0.3536 20 2.45 0.0083 0.15 0.65 0.3590 20 2.45 0.0083 0.15 0.65 0.3500 20 2.45 0.0083 0.20 0.45 0.066 20 2.45 0.0083 0.20 0.45 0.1068 20 2.45 0.0083 0.20 0.45 0.1666 20 2.45 0.0083 0.20 0.50 0.1866 20 2.45 0.0083 0.20 0.50 0.1663 20 2.45 0.0083 0.25 0.45 0.1073 20 2.45 0.0083 0.25 0.45 0.1073 20 2.45		_	0.15	0.35	0.0540	20	06	2.77	0.0065	0.15	0.35	0.1049
20 2.45 0.0083 0.15 0.45 0.1669 20 2.45 0.0083 0.15 0.55 0.1669 20 2.45 0.0083 0.15 0.55 0.253 20 2.45 0.0083 0.15 0.65 0.353 20 2.45 0.0083 0.20 0.46 0.0603 20 2.45 0.0083 0.20 0.40 0.0606 20 2.45 0.0083 0.20 0.45 0.0606 20 2.45 0.0083 0.20 0.45 0.1666 20 2.45 0.0083 0.20 0.55 0.2480 20 2.45 0.0083 0.20 0.65 0.4831 20 2.45 0.0083 0.20 0.70 0.7832 20 2.45 0.0083 0.25 0.40 0.0640 20 2.45 0.0083 0.25 0.50 0.1073 20 2.45			0.15	0.40	0.1011	20	90	2.77	0.0065	0.15	0.40	0.2250
20 2.45 0.0083 0.15 0.50 0.2515 20 2.45 0.0083 0.15 0.55 0.3536 20 2.45 0.0083 0.15 0.55 0.536 20 2.45 0.0083 0.15 0.65 0.5900 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.50 0.166 20 2.45 0.0083 0.20 0.50 0.168 20 2.45 0.0083 0.20 0.50 0.463 20 2.45 0.0083 0.20 0.55 0.463 20 2.45 0.0083 0.25 0.45 0.044 20 2.45 0.0083 0.25 0.45 0.044 20 2.45 0.0083 0.25 0.45 0.044 20 2.45		_	0.15	0.45	0.1669	20	06	2.77	0.0065	0.15	0.45	0.3937
20 2.45 0.0083 0.15 0.55 0.3536 20 2.45 0.0083 0.15 0.65 0.4689 20 2.45 0.0083 0.15 0.65 0.5900 20 2.45 0.0083 0.20 0.40 0.0081 20 2.45 0.0083 0.20 0.40 0.0066 20 2.45 0.0083 0.20 0.40 0.1048 20 2.45 0.0083 0.20 0.55 0.2480 20 2.45 0.0083 0.20 0.55 0.4834 20 2.45 0.0083 0.20 0.55 0.4834 20 2.45 0.0083 0.20 0.65 0.4834 20 2.45 0.0083 0.25 0.70 0.585 20 2.45 0.0083 0.25 0.60 0.1073 20 2.45 0.0083 0.25 0.60 0.2504 20 2.45		Ī	0.15	0.50	0.2515	20	06	2.77	0.0065	0.15	0.50	0.5822
20 2.45 0.0083 0.15 0.60 0.4689 20 2.45 0.0083 0.15 0.65 0.5600 20 2.45 0.0083 0.20 0.35 0.0301 20 2.45 0.0083 0.20 0.40 0.0606 20 2.45 0.0083 0.20 0.45 0.1666 20 2.45 0.0083 0.20 0.55 0.2480 20 2.45 0.0083 0.20 0.65 0.4884 20 2.45 0.0083 0.20 0.65 0.4863 20 2.45 0.0083 0.20 0.67 0.585 20 2.45 0.0083 0.25 0.40 0.0640 20 2.45 0.0083 0.25 0.45 0.1073 20 2.45 0.0083 0.25 0.55 0.1640 20 2.45 0.0083 0.25 0.55 0.1642 20 2.45			0.15	0.55	0.3536	20	06	2.77	0.0065	0.15	0.55	0.7497
20 2.45 0.0083 0.15 0.65 0.5900 20 2.45 0.0083 0.15 0.65 0.5900 20 2.45 0.0083 0.20 0.40 0.0606 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.55 0.1048 20 2.45 0.0083 0.20 0.60 0.384 20 2.45 0.0083 0.20 0.60 0.385 20 2.45 0.0083 0.20 0.60 0.355 20 2.45 0.0083 0.25 0.40 0.0353 20 2.45 0.0083 0.25 0.40 0.0353 20 2.45 0.0083 0.25 0.50 0.1083 20 2.45 0.0083 0.25 0.65 0.1689 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45		Ī	0.15	09.0	0.4689	20	06	2.77	0.0065	0.15	09.0	0.8723
20 2.45 0.0083 0.20 0.35 0.0312 20 2.45 0.0083 0.20 0.45 0.0066 20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.55 0.1666 20 2.45 0.0083 0.20 0.55 0.2480 20 2.45 0.0083 0.20 0.65 0.4635 20 2.45 0.0083 0.20 0.70 0.5859 20 2.45 0.0083 0.25 0.45 0.0403 20 2.45 0.0083 0.25 0.45 0.040 20 2.45 0.0083 0.25 0.50 0.1073 20 2.45 0.0083 0.25 0.50 0.1073 20 2.45 0.0083 0.25 0.50 0.351 20 2.45 0.0083 0.25 0.75 0.587 20 2.45		_	0.15	0.65	0.5900	20	06	2.77	0.0065	0.15	0.65	0.9472
20 2.45 0.0083 0.20 0.46 0.0606 20 2.45 0.0083 0.20 0.46 0.0608 20 2.45 0.0083 0.20 0.55 0.1666 20 2.45 0.0083 0.20 0.55 0.2480 20 2.45 0.0083 0.20 0.65 0.4635 20 2.45 0.0083 0.20 0.70 0.5859 20 2.45 0.0083 0.25 0.45 0.640 20 2.45 0.0083 0.25 0.45 0.0640 20 2.45 0.0083 0.25 0.45 0.1073 20 2.45 0.0083 0.25 0.56 0.1073 20 2.45 0.0083 0.25 0.55 0.168 20 2.45 0.0083 0.25 0.70 0.45 20 2.45 0.0083 0.25 0.70 0.65 20 2.45 <t< td=""><td></td><td></td><td>0.20</td><td>0.35</td><td>0.0312</td><td>20</td><td>06</td><td>2.77</td><td>0.0065</td><td>0.20</td><td>0.35</td><td>0.0431</td></t<>			0.20	0.35	0.0312	20	06	2.77	0.0065	0.20	0.35	0.0431
20 2.45 0.0083 0.20 0.45 0.1048 20 2.45 0.0083 0.20 0.55 0.1048 20 2.45 0.0083 0.20 0.55 0.2480 20 2.45 0.0083 0.20 0.60 0.3484 20 2.45 0.0083 0.20 0.60 0.3484 20 2.45 0.0083 0.20 0.70 0.5859 20 2.45 0.0083 0.25 0.40 0.0353 20 2.45 0.0083 0.25 0.40 0.0353 20 2.45 0.0083 0.25 0.50 0.1688 20 2.45 0.0083 0.25 0.65 0.188 20 2.45 0.0083 0.25 0.65 0.188 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.30 0.45 0.065 20 2.45		Ī	0.20	0.40	0.0606	20	06	2.77	0.0065	0.20	0.40	0.1081
20 2.45 0.0083 0.20 0.50 0.1666 20 2.45 0.0083 0.20 0.55 0.2480 20 2.45 0.0083 0.20 0.65 0.4635 20 2.45 0.0083 0.20 0.65 0.4635 20 2.45 0.0083 0.25 0.45 0.6435 20 2.45 0.0083 0.25 0.45 0.640 20 2.45 0.0083 0.25 0.45 0.1073 20 2.45 0.0083 0.25 0.50 0.1073 20 2.45 0.0083 0.25 0.50 0.1073 20 2.45 0.0083 0.25 0.65 0.318 20 2.45 0.0083 0.25 0.65 0.351 20 2.45 0.0083 0.30 0.45 0.037 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45		_	0.20	0.45	0.1048	20	06	2.77	0.0065	0.20	0.45	0.2216
20 2.45 0.0083 0.20 0.55 0.2480 20 2.45 0.0083 0.20 0.65 0.4884 20 2.45 0.0083 0.20 0.65 0.4635 20 2.45 0.0083 0.20 0.70 0.5859 20 2.45 0.0083 0.25 0.45 0.0640 20 2.45 0.0083 0.25 0.45 0.1073 20 2.45 0.0083 0.25 0.50 0.1073 20 2.45 0.0083 0.25 0.50 0.2504 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45		Ī	0.20	0.50	0.1666	20	06	2.77	0.0065	0.20	0.50	0.3794
20 2.45 0.0083 0.20 0.66 0.3484 20 2.45 0.0083 0.20 0.65 0.4635 20 2.45 0.0083 0.20 0.70 0.75 20 2.45 0.0083 0.25 0.40 0.0353 20 2.45 0.0083 0.25 0.45 0.0640 20 2.45 0.0083 0.25 0.55 0.1688 20 2.45 0.0083 0.25 0.60 0.2504 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.60 0.2504 20 2.45 0.0083 0.25 0.75 0.652 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.1111 20 2.45			0.20	0.55	0.2480	20	06	2.77	0.0065	0.20	0.55	0.5566
20 2.45 0.0083 0.20 0.65 0.4635 20 2.45 0.0083 0.20 0.70 0.5859 20 2.45 0.0083 0.25 0.40 0.5859 20 2.45 0.0083 0.25 0.45 0.0640 20 2.45 0.0083 0.25 0.50 0.1073 20 2.45 0.0083 0.25 0.60 0.2504 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.75 0.5697 20 2.45 0.0083 0.25 0.75 0.5697 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.1111 20 2.45			0.20	09.0	0.3484	20	06	2.77	0.0065	0.20	09.0	0.7240
20 2.45 0.0083 0.20 0.70 0.5859 20 2.45 0.0083 0.25 0.47 0.5859 20 2.45 0.0083 0.25 0.45 0.0403 20 2.45 0.0083 0.25 0.55 0.1073 20 2.45 0.0083 0.25 0.55 0.1073 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.1111 20 2.45 0.0083 0.30 0.50 0.1740		Ī	0.20	0.65	0.4635	20	06	2.77	0.0065	0.20	0.65	0.8572
20 2.45 0.0083 0.25 0.40 0.0353 20 2.45 0.0083 0.25 0.40 0.0353 20 2.45 0.0083 0.25 0.45 0.1688 20 2.45 0.0083 0.25 0.55 0.1688 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.45 0.0669 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.60 0.1740			0.20	0.70	0.5859	20	06	2.77	0.0065	0.20	0.70	0.9410
20 2.45 0.0083 0.25 0.45 0.0640 20 2.45 0.0083 0.25 0.45 0.0401 20 2.45 0.0083 0.25 0.55 0.1073 20 2.45 0.0083 0.25 0.65 0.3504 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.75 0.692 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.1111 20 2.45 0.0083 0.30 0.50 0.1740 20 2.45 0.0083 0.30 0.50 0.1740		Ī	0.25	0.40	0.0353	20	06	2.77	0.0065	0.25	0.40	0.0471
20 2.45 0.0083 0.25 0.50 0.1073 20 2.45 0.0083 0.25 0.50 0.1073 20 2.45 0.0083 0.25 0.65 0.2504 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.75 0.597 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.60 0.1740			0.25	0.45	0.0640	20	06	2.77	0.0065	0.25	0.45	0.1121
20 2.45 0.0083 0.25 0.55 0.1688 20 2.45 0.0083 0.25 0.60 0.2504 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.25 0.75 0.5957 20 2.45 0.0083 0.25 0.75 0.5957 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.56 0.1111 20 2.45 0.0083 0.30 0.56 0.1740 20 2.45 0.0083 0.30 0.50 0.1740			0.25	0.50	0.1073	20	06	2.77	0.0065	0.25	0.50	0.2208
20 2.45 0.0083 0.25 0.60 0.2504 20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.75 0.597 20 2.45 0.0083 0.25 0.75 0.597 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.1111 20 2.45 0.0083 0.30 0.60 0.1740			0.25	0.55	0.1688	20	06	2.77	0.0065	0.25	0.55	0.3700
20 2.45 0.0083 0.25 0.65 0.3518 20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.25 0.75 0.557 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.50 0.1111 20 2.45 0.0083 0.30 0.60 0.1740		_	0.25	09.0	0.2504	20	06	2.77	0.0065	0.25	09.0	0.5454
20 2.45 0.0083 0.25 0.70 0.4692 20 2.45 0.0083 0.25 0.75 0.5957 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.56 0.0669 20 2.45 0.0083 0.30 0.55 0.1111 20 2.45 0.0083 0.30 0.56 0.1740	-	Ī	0.25	0.65	0.3518	20	06	2.77	0.0065	0.25	0.65	0.7194
20 2.45 0.0083 0.25 0.75 0.5957 20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.55 0.1111 20 2.45 0.0083 0.30 0.60 0.1740		_	0.25	0.70	0.4692	20	06	2.77	0.0065	0.25	0.70	0.8571
20 2.45 0.0083 0.30 0.45 0.0378 20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.55 0.1111 20 2.45 0.0083 0.30 0.60 0.1740	-	Ī	0.25	0.75	0.5957	20	06	2.77	0.0065	0.25	0.75	0.9431
20 2.45 0.0083 0.30 0.50 0.0669 20 2.45 0.0083 0.30 0.55 0.1111 20 2.45 0.0083 0.30 0.60 0.1740		Ī	0.30	0.45	0.0378	20	06	2.77	0.0065	0.30	0.45	0.0510
20 2.45 0.0083 0.30 0.55 0.1111 20 2.45 0.0083 0.30 0.60 0.1740		_	0.30	0.50	0.0669	20	90	2.77	0.0065	0.30	0.50	0.1151
20 2.45 0.0083 0.30 0.60 0.1740		Ī	0.30	0.55	0.1111	20	06	2.77	0.0065	0.30	0.55	0.2207
		Ī	0.30	09.0	0.1740	20	90	2.77	0.0065	0.30	09.0	0.3713
2.45 0.0083 0.30 0.65 0.2579			0.30	0.65	0.2579	20	06	2.77	0.0065	0.30	0.65	0.5532

Table B.24: continue on next page

Table B.24: continue on next page

. p1
0.0083 0.30 0.70
0.35
0.0083 0.35 0.65
0.40
0.05
0.05
0.05
0.0078 0.05 0.30
0.05
0.05
0.0078 0.10 0.25
0.10
0.10
0.10
0.10
0.10
0.0078 0.10 0.50
0.15
0.15
0.15
0.0078 0.15 0.55
0.15
0.15
0.20
0.0078 0.20 0.40
0.20
0.20
0.20
0.20
0.0078 0.20 0.70
0.20
0.25
0.25
0.25
0.25
0.25
0.25
0.30
0.30
0.0078 0.30 0.55
0.50

2. 5. A. 1. Porticus P. 1. Porticus </th <th></th> <th>Š</th> <th>t</th> <th>onland.</th> <th>ŝ</th> <th>į</th> <th></th> <th>ş</th> <th>,</th> <th></th> <th>2</th> <th>ءُ ا</th> <th>,</th> <th></th>		Š	t	onland.	ŝ	į		ş	,		2	ءُ ا	,	
30 2.56 0.0078 0.30 0.65 0.2040 20 100 266 0.0038 0.30 0.70 30 2.56 0.00778 0.30 0.70 0.4003 2.0 100 266 0.0038 0.35 0.70 30 2.56 0.00778 0.35 0.50 0.0171 2.0 100 266 0.0038 0.35 0.70 30 2.56 0.00778 0.35 0.60 0.1282 2.0 100 266 0.0038 0.35 0.05 30 2.56 0.0078 0.40 0.50 0.0044 0.0 2.0 0.00 2.0 0.00 2.0 0.00 0.0		211	n,	byana	FI	7.7	Dower Dower	III	717	n,	pvaide	Ы	22	Toword Toword
30 2.56 0.0078 0.30 0.70 0.4013 2 2 0.0078 0.30 0.70 0.4011 2 100 2.66 0.0093 0.35 0.55 30 2.56 0.0078 0.35 0.55 0.4011 2 100 2.66 0.0093 0.35 0.55 30 2.56 0.0078 0.35 0.65 0.0447 2 100 2.66 0.0033 0.35 0.55 30 2.56 0.0078 0.40 0.55 0.0041 2 0.003 0.004 0.00 0.00 0.004 0.00 0.00 0.004 0.00 <td>_</td> <td>30</td> <td>2.56</td> <td>0.0078</td> <td>0.30</td> <td>0.65</td> <td>0.2901</td> <td>20</td> <td>100</td> <td>2.66</td> <td>0.0093</td> <td>0.30</td> <td></td> <td>0.6177</td>	_	30	2.56	0.0078	0.30	0.65	0.2901	20	100	2.66	0.0093	0.30		0.6177
30 2.56 0.0078 0.35 0.50 0.0401 2.0 0.0401 2.0 0.0401 2.0 0.0401 2.0 0.0078 0.35 0.50 0.0401 2.0 0.0078 0.0078 0.35 0.50 0.0078 0.0078 0.05 0.0078	_	30	2.56	0.0078	0.30	0.70	0.4063	20	100	2.66	0.0093	0.30		0.7896
30 2.56 0.0078 0.35 0.55 0.00751 20 0.0093 0.35 0.55 30 2.56 0.0078 0.35 0.65 0.0079 2 0.00078 0.35 0.65 0.0079 2 0.0009 0.003 0.05 0.0009 2 0.0009 0.009	_	30	2.56	0.0078	0.35	0.50	0.0401	20	100	2.66	0.0093	0.35		0.0663
30 2.56 0.0078 0.35 0.66 0.1282 20 100 2.66 0.0093 0.35 0.66 30 2.56 0.0078 0.35 0.65 0.0147 20 100 2.66 0.0093 0.35 0.66 40 2.56 0.0078 0.40 0.55 0.0047 20 100 2.66 0.0093 0.40 0.004 40 2.89 0.0094 0.05 0.00 0.004 0.00 0.004 0.00 0.00 0.004 0.00 <t< td=""><td>_</td><td>30</td><td>2.56</td><td>0.0078</td><td>0.35</td><td>0.55</td><td>0.0751</td><td>20</td><td>100</td><td>2.66</td><td>0.0093</td><td>0.35</td><td></td><td>0.1457</td></t<>	_	30	2.56	0.0078	0.35	0.55	0.0751	20	100	2.66	0.0093	0.35		0.1457
30 2.56 0.0078 0.43 0.65 0.0293 20 0.0093 0.43 0.65 30 2.56 0.0078 0.43 0.65 0.0294 20 100 2.66 0.0093 0.40 0.65 40 2.56 0.0078 0.40 0.65 0.0001 30 40 2.89 0.0093 0.40 0.00 40 2.66 0.0063 0.02 0.20 0.0001 30 40 2.39 0.0094 0.05 0.00<	_	30	2.56	0.0078	0.35	0.60	0.1282	20	100	5.66	0.0093	0.35		0.2738
30 2.56 0.0078 0.40 0.55 0.0447 2.0 100 2.66 0.0093 0.40 0.55 40 2.56 0.0078 0.40 0.55 0.0447 2.0 100 2.66 0.0093 0.40 0.05 40 2.66 0.0063 0.05 0.05 0.000 30 40 2.39 0.0094 0.05 0.05 40 2.66 0.0063 0.05 0.05 0.009 30 40 2.39 0.0094 0.05 0.05 40 2.66 0.0063 0.05 0.005 0.009 30 40 2.39 0.0094 0.05 0.00 40 2.66 0.0063 0.05 0.007 0.003 0.00 0.009		30	2.56	0.0078	0.35	0.65	0.2029	20	100	2.66	0.0093	0.35		0.4504
30 2.56 0.0078 0.40 0.60 0.0806 20 100 2.56 0.0093 0.40 0.0094 0.0094 0.00 0.0094 0.0094 0.00		30	2.56	0.0078	0.40	0.55	0.0447	20	100	2.66	0.0093	0.40		0.0723
40 2.66 0.0063 0.05 0.010 3.0 0.0094 0.0094 0.005 0.01 40 2.66 0.0063 0.05 0.020 0.00004 3.0 4.0 2.39 0.0094 0.05 0.20 40 2.66 0.0063 0.05 0.02 0.00004 3.0 4.0 2.39 0.0094 0.05 0.20 40 2.66 0.0063 0.05 0.03 0.0084 0.0 2.39 0.0094 0.05 0.30 40 2.66 0.0063 0.05 0.03 0.0084 0.0094 0.009 0.0094 0.0094 0.00 0.0094 0.0094 0.00 0.0094 0.0094 0.00 0.0094 0.0094 0.00 0.0094 0.0094 0.00 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0		30	2.56	0.0078	0.40	0.60	0.0806	20	100	2.66	0.0093	0.40		0.1568
40 2.66 0.0063 0.05 0.20 0.0001 3.0 0.0001 0.0003 0.0003 0.0001 0.0003	_	40	2.66	0.0063	0.05	0.15	0.0000	30	40	2.39	0.0094	0.05		0.1105
40 2.66 0.0063 0.02 0.0010 3.0 0.0010 3.0 0.0010 3.0 0.0010 3.0 0.0010 3.0 0.0010 4.0 2.39 0.00104 0.05 0.001 0.001 0.001 0.002 0.003 <td>_</td> <td>40</td> <td>2.66</td> <td>0.0063</td> <td>0.02</td> <td>0.20</td> <td>0.0001</td> <td>30</td> <td>40</td> <td>2.39</td> <td>0.0094</td> <td>0.05</td> <td></td> <td>0.2694</td>	_	40	2.66	0.0063	0.02	0.20	0.0001	30	40	2.39	0.0094	0.05		0.2694
40 2.66 0.0063 0.05 0.38 0.0089 30 40 2.39 0.0094 0.05 40 2.66 0.0063 0.05 0.428 30 40 2.39 0.0094 0.05 40 2.66 0.0063 0.05 0.45 0.428 30 40 2.39 0.0094 0.05 40 2.66 0.0063 0.10 0.35 0.0255 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.10 0.35 0.0255 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.10 0.45 0.1324 30 40 2.39 0.0094 0.10 0.40 40 2.66 0.0063 0.10 0.45 0.1324 30 40 2.39 0.0094 0.10 0.13 40 2.66 0.0063 0.10 0.1323 30	_	40	2.66	0.0063	0.02	0.25	0.0010	30	40	2.39	0.0094	0.05		0.4720
40 2.66 0.0063 0.05 0.35 0.0428 30 40 2.39 0.0094 0.05 0.35 40 2.66 0.0063 0.05 0.45 0.0428 30 40 2.39 0.0094 0.05 0.45 40 2.66 0.0063 0.10 0.25 0.45 0.0065 30 40 2.39 0.0094 0.10 0.30 40 2.66 0.0063 0.10 0.35 0.0055 30 40 2.39 0.0094 0.10 0.30 40 2.66 0.0063 0.10 0.35 0.0053 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.10 0.42 0.0053 0.10 0.42 0.0053 0.10 0.44 0.0053 0.10 0.44 0.0053 0.10 0.44 0.0053 0.0094 0.10 0.40 40 2.66 0.0063 0.10 0.42<	_	40	2.66	0.0063	0.02	0.30	0.0089	30	40	2.39	0.0094	0.05		0.6700
40 2.66 0.0063 0.05 0.44 0.1311 30 40 2.39 0.0094 0.05 0.44 4.0 2.66 0.0063 0.05 0.45 0.1311 30 40 2.39 0.0094 0.05 0.44 4.0 2.66 0.0063 0.10 0.35 0.0053 30 40 2.39 0.0094 0.10 0.25 4.0 2.66 0.0063 0.10 0.35 0.0053 30 40 2.39 0.0094 0.10 0.25 4.0 2.66 0.0063 0.10 0.45 0.0553 30 40 2.39 0.0094 0.10 0.45 4.0 2.66 0.0063 0.10 0.45 0.053 30 40 2.39 0.0094 0.10 0.45 4.0 2.66 0.0063 0.15 0.45 0.048 30 40 2.39 0.0094 0.10 0.45 4.0 2.66	_	40	2.66	0.0063	0.02	0.35	0.0428	30	40	2.39	0.0094	0.02		0.8228
40 266 0.0063 0.05 0.45 0.2848 30 40 2.39 0.0094 0.05 0.45 40 2.66 0.0063 0.10 0.25 0.0066 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.10 0.35 0.0253 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.10 0.45 0.1820 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.10 0.45 0.1820 30 40 2.39 0.0094 0.10 0.45 40 2.66 0.0063 0.10 0.45 0.1824 30 40 2.39 0.0094 0.10 0.45 40 2.66 0.0063 0.15 0.32 0.043 30 40 2.39 0.0094 0.10 0.10 40 2.66 0.	_	40	2.66	0.0063	0.02	0.40	0.1311	30	40	2.39	0.0094	0.02		0.9181
40 266 0.0063 0.10 0.25 0.00064 30 40 2.39 0.00944 0.10 0.25 40 2.66 0.0063 0.10 0.35 0.0053 0.10 0.35 0.0054 0.10 0.30 40 2.66 0.0063 0.10 0.35 0.0253 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.10 0.45 0.0283 0.10 0.0094 0.10 0.45 40 2.66 0.0063 0.10 0.46 0.023 0.0094 0.10 0.0094 0.10 0.45 40 2.66 0.0063 0.15 0.03 0.048 30 40 2.39 0.0094 0.10 0.45 40 2.66 0.0063 0.15 0.03 0.048 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.15 0.464 30	_	40	2.66	0.0063	0.02	0.45	0.2848	30	40	2.39	0.0094	0.05		0.9675
40 2.66 0.0063 0.10 0.33 0.0053 3.0 4.0 2.39 0.0094 0.10 0.35 4.0 2.66 0.0063 0.10 0.45 0.0255 3.0 4.0 2.39 0.0094 0.10 0.45 4.0 2.66 0.0063 0.10 0.45 0.1824 3.0 4.0 2.39 0.0094 0.10 0.45 4.0 2.66 0.0063 0.10 0.55 0.4873 3.0 4.0 2.39 0.0094 0.10 0.40 4.0 2.66 0.0063 0.10 0.55 0.4873 3.0 4.0 2.39 0.0094 0.10 0.45 4.0 2.66 0.0063 0.15 0.4873 3.0 4.0 2.39 0.0094 0.10 0.45 4.0 2.66 0.0063 0.15 0.4873 3.0 4.0 2.39 0.0094 0.10 0.35 4.0 2.66 0.0063 <td< td=""><td>_</td><td>40</td><td>2.66</td><td>0.0063</td><td>0.10</td><td>0.25</td><td>0.0006</td><td>30</td><td>40</td><td>2.39</td><td>0.0094</td><td>0.10</td><td></td><td>0.2119</td></td<>	_	40	2.66	0.0063	0.10	0.25	0.0006	30	40	2.39	0.0094	0.10		0.2119
40 2.66 0.0063 0.10 0.35 0.0255 30 40 2.39 0.0094 0.10 0.35 40 2.66 0.0063 0.10 0.45 0.1820 30 40 2.39 0.0094 0.10 0.45 40 2.66 0.0063 0.10 0.45 0.1820 30 40 2.39 0.0094 0.10 0.45 40 2.66 0.0063 0.10 0.50 0.347 30 40 2.39 0.0094 0.10 0.45 40 2.66 0.0063 0.10 0.50 0.034 30 40 2.39 0.0094 0.10 0.50 40 2.66 0.0063 0.15 0.45 0.034 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.45 0.0148 30 40 2.39 0.0094 0.15 0.00 40 2.66 0.0	_	40	5.66	0.0063	0.10	0.30	0.0053	30	40	2.39	0.0094	0.10		0.3764
40 2.66 0.0063 0.10 0.40 0.08203 30 40 2.39 0.0094 0.10 0.40 40 2.66 0.0063 0.10 0.45 0.18203 30 40 2.39 0.0094 0.10 0.45 40 2.66 0.0063 0.10 0.50 0.3478 30 40 2.39 0.0094 0.10 0.50 40 2.66 0.0063 0.10 0.50 0.0447 30 40 2.39 0.0094 0.10 0.50 40 2.66 0.0063 0.15 0.30 0.0034 0.10 0.50 0.30 0.0094 0.10 0.50 0.60 0.6447 30 40 2.39 0.0094 0.10 0.50 0.30 0.003 0.00 0.003 0.003 0.01 0.0141 30 40 2.39 0.0094 0.10 0.50 0.30 0.014 0.13 0.0094 0.10 0.00 0.00 <td< td=""><td>_</td><td>40</td><td>2.66</td><td>0.0063</td><td>0.10</td><td>0.35</td><td>0.0255</td><td>30</td><td>40</td><td>2.39</td><td>0.0094</td><td>0.10</td><td></td><td>0.5561</td></td<>	_	40	2.66	0.0063	0.10	0.35	0.0255	30	40	2.39	0.0094	0.10		0.5561
40 2.66 0.0063 0.10 0.45 0.1820 30 40 2.39 0.0094 0.10 0.45 40 2.66 0.0063 0.10 0.55 0.38734 30 40 2.39 0.0094 0.10 0.55 40 2.66 0.0063 0.10 0.55 0.447 30 40 2.39 0.0094 0.10 0.50 40 2.66 0.0063 0.15 0.50 0.6447 30 40 2.39 0.0094 0.15 0.60 40 2.66 0.0063 0.15 0.40 0.0478 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.40 0.0478 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.413 0.0148 30 40 2.39 0.0094 0.15 0.40 40 2.66 <td< td=""><td>_</td><td>40</td><td>2.66</td><td>0.0063</td><td>0.10</td><td>0.40</td><td>0.0803</td><td>30</td><td>40</td><td>2.39</td><td>0.0094</td><td>0.10</td><td></td><td>0.7178</td></td<>	_	40	2.66	0.0063	0.10	0.40	0.0803	30	40	2.39	0.0094	0.10		0.7178
40 2.66 0.0063 0.10 0.50 0.3248 30 40 2.39 0.0094 0.10 0.50 40 2.66 0.0063 0.10 0.55 0.4873 30 40 2.39 0.0094 0.10 0.55 40 2.66 0.0063 0.10 0.55 0.4873 30 40 2.39 0.0094 0.10 0.55 40 2.66 0.0063 0.15 0.30 0.0378 30 40 2.39 0.0094 0.15 0.30 40 2.66 0.0063 0.15 0.45 0.0148 30 40 2.39 0.0094 0.15 0.30 40 2.66 0.0063 0.15 0.45 0.1348 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.45 0.134 30 40 2.39 0.0094 0.15 0.45 40 2.66 0	_	40	2.66	0.0063	0.10	0.45	0.1820	30	40	2.39	0.0094	0.10		0.8411
40 2.66 0.0063 0.10 0.55 0.4873 30 40 2.39 0.0094 0.10 0.55 40 2.66 0.0063 0.10 0.56 0.6447 30 40 2.39 0.0094 0.10 0.66 40 2.66 0.0063 0.15 0.30 0.0048 30 0.0094 0.15 0.30 40 2.66 0.0063 0.15 0.36 0.0148 30 40 2.39 0.0094 0.15 0.30 40 2.66 0.0063 0.15 0.45 0.044 30 40 2.39 0.0094 0.15 0.30 40 2.66 0.0063 0.15 0.52 0.2414 30 40 2.39 0.0094 0.15 0.46 40 2.66 0.0063 0.15 0.52 0.2414 30 40 2.39 0.0094 0.15 0.46 40 2.66 0.0063 0.15 <	_	40	2.66	0.0063	0.10	0.50	0.3248	30	40	2.39	0.0094	0.10		0.9219
40 2.66 0.0063 0.10 0.60 0.6447 30 40 2.39 0.0094 0.10 0.60 40 2.66 0.0063 0.15 0.36 0.0478 30 40 2.39 0.0094 0.15 0.03 40 2.66 0.0063 0.15 0.40 0.0478 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.45 0.0148 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.45 0.0148 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.52 0.2444 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.2413 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 <t< td=""><td>_</td><td>40</td><td>2.66</td><td>0.0063</td><td>0.10</td><td>0.55</td><td>0.4873</td><td>30</td><td>40</td><td>2.39</td><td>0.0094</td><td>0.10</td><td></td><td>0.9673</td></t<>	_	40	2.66	0.0063	0.10	0.55	0.4873	30	40	2.39	0.0094	0.10		0.9673
40 2.66 0.0063 0.15 0.30 0.0030 30 40 2.39 0.0094 0.15 0.30 40 2.66 0.0063 0.15 0.35 0.0478 30 40 2.39 0.0094 0.15 0.35 40 2.66 0.0063 0.15 0.45 0.1132 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.45 0.1132 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.52 0.2144 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.60 0.4913 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.6083 0.20 0.40 0.029 0.0094 0.15 0.60 40 2.66 0.0063	_	40	2.66	0.0063	0.10	09.0	0.6447	30	40	2.39	0.0094	0.10		0.9888
40 2.66 0.0063 0.15 0.35 0.0148 30 40 2.39 0.0094 0.15 0.35 40 2.66 0.0063 0.15 0.45 0.0148 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.45 0.2144 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.52 0.2414 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.65 0.4414 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.62 0.4314 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.45 0.46 0.49 2.39 0.0094 0.15 0.45 40 2.66 0.0063	_	40	2.66	0.0063	0.15	0.30	0.0030	30	40	2.39	0.0094	0.15		0.1787
40 2.66 0.0063 0.15 0.40 0.0478 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.15 0.45 0.1132 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.50 0.2144 30 40 2.39 0.0094 0.15 0.50 40 2.66 0.0063 0.15 0.55 0.2444 30 40 2.39 0.0094 0.15 0.50 40 2.66 0.0063 0.15 0.65 0.2471 30 40 2.39 0.0094 0.15 0.50 40 2.66 0.0063 0.15 0.083 30 40 2.39 0.0094 0.15 0.50 40 2.66 0.0063 0.20 0.45 0.083 30 40 2.39 0.0094 0.15 0.50 40 2.66 0.0063	_	40	2.66	0.0063	0.15	0.35	0.0148	30	40	2.39	0.0094	0.15		0.3143
40 2.66 0.0063 0.15 0.45 0.1132 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.45 0.1132 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.15 0.55 0.3449 30 40 2.39 0.0094 0.15 0.55 40 2.66 0.0063 0.15 0.65 0.3577 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.20 0.40 0.0276 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.20 0.40 0.0276 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.20 0.40 0.025 0.40 0.39 0.0094 0.15 0.65 40 2.66 0.0063	_	40	2.66	0.0063	0.15	0.40	0.0478	30	40	2.39	0.0094	0.15		0.4741
40 2.66 0.0063 0.15 0.50 0.2144 30 40 2.39 0.0094 0.15 0.50 40 2.66 0.0063 0.15 0.55 0.3444 30 40 2.39 0.0094 0.15 0.50 40 2.66 0.0063 0.15 0.65 0.4913 30 40 2.39 0.0094 0.15 0.55 40 2.66 0.0063 0.15 0.663 0.0276 30 40 2.39 0.0094 0.15 0.60 40 2.66 0.0063 0.20 0.40 0.0276 30 40 2.39 0.0094 0.15 0.60 40 2.66 0.0063 0.20 0.40 0.0278 30 40 2.39 0.0094 0.15 0.40 40 2.66 0.0063 0.20 0.40 0.023 30 40 2.39 0.0094 0.15 0.40 40 2.66	_	40	2.66	0.0063	0.15	0.45	0.1132	30	40	2.39	0.0094	0.15		0.6356
40 2.66 0.0063 0.15 0.55 0.3419 30 40 2.39 0.0094 0.15 0.55 40 2.66 0.0063 0.15 0.55 0.3413 30 40 2.39 0.0094 0.15 0.56 40 2.66 0.0063 0.15 0.65 0.6377 30 40 2.39 0.0094 0.15 0.56 40 2.66 0.0063 0.20 0.35 0.0078 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.20 0.45 0.0083 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.20 0.45 0.0583 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.65 0.2350 30 40 2.39 0.0094 0.20 0.45 40 2.66	_	40	2.66	0.0063	0.15	0.50	0.2144	30	40	2.39	0.0094	0.15		0.7766
40 2.66 0.0063 0.15 0.60 0.4913 30 40 2.39 0.0094 0.15 0.60 40 2.66 0.0063 0.15 0.65 0.6377 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.20 0.40 0.037 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.20 0.40 0.0276 30 40 2.39 0.0094 0.15 0.45 40 2.66 0.0063 0.20 0.45 0.083 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.50 0.239 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.40 0.39 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0	_	40	2.66	0.0063	0.15	0.55	0.3449	30	40	2.39	0.0094	0.15		0.8819
40 2.66 0.0063 0.15 0.65 0.637 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.15 0.65 0.683 30 40 2.39 0.0094 0.15 0.65 40 2.66 0.0063 0.20 0.45 0.0276 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.45 0.0883 30 40 2.39 0.0094 0.20 0.40 40 2.66 0.0063 0.20 0.45 0.2381 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.67 0.239 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.67 0.3590 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0	_	40	2.66	0.0063	0.15	0.60	0.4913	30	40	2.39	0.0094	0.15		0.9477
40 2.66 0.0063 0.20 0.375 0.00783 30 40 2.39 0.0094 0.20 0.35 40 2.66 0.0063 0.20 0.45 0.0076 30 40 2.39 0.0094 0.20 0.35 40 2.66 0.0063 0.20 0.45 0.0683 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.50 0.1359 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.60 0.3590 30 40 2.39 0.0094 0.20 0.40 40 2.66 0.0063 0.20 0.65 0.5004 30 40 2.39 0.0094 0.20 0.65 40 2.66 0.0063 0.25 0.40 0.0154 30 40 2.39 0.0094 0.20 0.40 40 2.66 <t< td=""><td>_</td><td>40</td><td>2.66</td><td>0.0063</td><td>0.15</td><td>0.65</td><td>0.6377</td><td>30</td><td>40</td><td>2.39</td><td>0.0094</td><td>0.15</td><td></td><td>0.9813</td></t<>	_	40	2.66	0.0063	0.15	0.65	0.6377	30	40	2.39	0.0094	0.15		0.9813
40 2.66 0.0063 0.20 0.40 0.0276 30 40 2.39 0.0094 0.20 0.40 40 2.66 0.0063 0.20 0.45 0.083 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.45 0.1389 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.50 0.250 30 40 2.39 0.0094 0.20 0.55 40 2.66 0.0063 0.20 0.55 0.2504 30 40 2.39 0.0094 0.20 0.56 40 2.66 0.0063 0.20 0.70 0.6466 30 40 2.39 0.0094 0.20 0.70 40 2.66 0.0063 0.25 0.45 0.0154 30 40 2.39 0.0094 0.20 0.70 40 2.66 0.	_	40	2.66	0.0063	0.20	0.35	0.0083	30	40	2.39	0.0094	0.20		0.1520
40 2.66 0.0063 0.20 0.45 0.0683 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.45 0.0683 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.55 0.2331 30 40 2.39 0.0094 0.20 0.45 40 2.66 0.0063 0.20 0.65 0.5890 30 40 2.39 0.0094 0.20 0.65 40 2.66 0.0063 0.20 0.6466 30 40 2.39 0.0094 0.20 0.65 40 2.66 0.0063 0.25 0.40 0.0154 30 40 2.39 0.0094 0.20 0.70 40 2.66 0.0063 0.25 0.45 0.0544 30 40 2.39 0.0094 0.25 0.45 40 2.66 0.0063 <t< td=""><td>_</td><td>40</td><td>2.66</td><td>0.0063</td><td>0.20</td><td>0.40</td><td>0.0276</td><td>30</td><td>40</td><td>2.39</td><td>0.0094</td><td>0.20</td><td></td><td>0.2689</td></t<>	_	40	2.66	0.0063	0.20	0.40	0.0276	30	40	2.39	0.0094	0.20		0.2689
40 2.66 0.0063 0.20 0.55 0.1356 30 40 2.39 0.0094 0.20 0.50 40 2.66 0.0063 0.20 0.55 0.2351 30 40 2.39 0.0094 0.20 0.55 40 2.66 0.0063 0.20 0.60 0.3590 30 40 2.39 0.0094 0.20 0.55 40 2.66 0.0063 0.20 0.65 0.6466 30 40 2.39 0.0094 0.20 0.65 40 2.66 0.0063 0.20 0.65 0.6466 30 40 2.39 0.0094 0.20 0.65 40 2.66 0.0063 0.25 0.40 0.0154 30 40 2.39 0.0094 0.25 0.40 40 2.66 0.0063 0.25 0.45 0.034 40 2.39 0.0094 0.25 0.40 40 2.66 0.0063 <	_	40	5.66	0.0063	0.20	0.45	0.0683	30	40	2.39	0.0094	0.20		0.4183
40 2.66 0.0063 0.20 0.55 0.2351 30 40 2.39 0.0094 0.20 0.55 40 2.66 0.0063 0.20 0.55 0.230 30 40 2.39 0.0094 0.20 0.55 40 2.66 0.0063 0.20 0.50 0.5004 30 40 2.39 0.0094 0.20 0.50 40 2.66 0.0063 0.20 0.70 0.6466 30 40 2.39 0.0094 0.20 0.70 40 2.66 0.0063 0.25 0.45 0.01399 30 40 2.39 0.0094 0.20 0.70 40 2.66 0.0063 0.25 0.45 0.0399 30 40 2.39 0.0094 0.25 0.40 40 2.66 0.0063 0.25 0.50 0.0143 30 40 2.39 0.0094 0.25 0.55 40 2.66	_	40	2.66	0.0063	0.20	0.50	0.1369	30	40	2.39	0.0094	0.20		0.5828
40 2.66 0.0063 0.20 0.66 0.3590 30 40 2.39 0.0094 0.20 0.60 40 2.66 0.0063 0.20 0.66 0.3590 30 40 2.39 0.0094 0.20 0.65 40 2.66 0.0063 0.20 0.70 0.6466 30 40 2.39 0.0094 0.20 0.70 40 2.66 0.0063 0.25 0.40 0.0154 30 40 2.39 0.0094 0.25 0.40 40 2.66 0.0063 0.25 0.45 0.0844 30 40 2.39 0.0094 0.25 0.45 40 2.66 0.0063 0.25 0.50 0.1543 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 0.51 0.144 30 40 2.39 0.0094 0.25 0.55 40 2.66 0	_	40	5.66	0.0063	0.50	0.55	0.2351	30	40	2.39	0.0094	0.20		0.7371
40 2.66 0.0063 0.20 0.65 0.5004 30 40 2.39 0.0094 0.20 0.65 40 2.66 0.0063 0.20 0.76 0.0154 30 40 2.39 0.0094 0.20 0.05 40 2.66 0.0063 0.25 0.40 0.0154 30 40 2.39 0.0094 0.25 0.40 40 2.66 0.0063 0.25 0.45 0.0343 30 40 2.39 0.0094 0.25 0.40 40 2.66 0.0063 0.25 0.50 0.1543 30 40 2.39 0.0094 0.25 0.50 40 2.66 0.0063 0.25 0.55 0.1543 30 40 2.39 0.0094 0.25 0.50 40 2.66 0.0063 0.25 0.60 0.2515 30 40 2.39 0.0094 0.25 0.55 40 2.66	_	40	5.66	0.0063	0.20	0.60	0.3590	30	40	2.39	0.0094	0.20		0.8583
40 2.66 0.0063 0.20 0.770 0.6466 30 40 2.39 0.0094 0.20 0.70 40 2.66 0.0063 0.25 0.45 0.0154 30 40 2.39 0.0094 0.25 0.40 40 2.66 0.0063 0.25 0.45 0.0399 30 40 2.39 0.0094 0.25 0.45 40 2.66 0.0063 0.25 0.50 0.0844 30 40 2.39 0.0094 0.25 0.45 40 2.66 0.0063 0.25 0.5134 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 0.5143 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 0.77 0.515 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 <t< td=""><td>_</td><td>40</td><td>5.66</td><td>0.0063</td><td>0.20</td><td>0.65</td><td>0.5004</td><td>30</td><td>40</td><td>2.39</td><td>0.0094</td><td>0.20</td><td></td><td>0.9366</td></t<>	_	40	5.66	0.0063	0.20	0.65	0.5004	30	40	2.39	0.0094	0.20		0.9366
40 2.66 0.0063 0.25 0.44 0.0154 30 40 2.39 0.0094 0.25 0.40 40 2.66 0.0063 0.25 0.45 0.0394 30 40 2.39 0.0094 0.25 0.45 40 2.66 0.0063 0.25 0.50 0.0844 30 40 2.39 0.0094 0.25 0.50 40 2.66 0.0063 0.25 0.50 0.1543 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 0.76 0.3767 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 0.77 0.515 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.27 0.75 0.651 30 40 2.39 0.0094 0.25 0.75 40 2.66 0.	_	40	2.66	0.0063	0.20	0.70	0.6466	30	40	2.39	0.0094	0.20		0.9773
40 2.66 0.0063 0.25 0.45 0.0343 30 40 2.39 0.0094 0.25 0.45 40 2.66 0.0063 0.25 0.50 0.0344 30 40 2.39 0.0094 0.25 0.50 40 2.66 0.0063 0.25 0.50 0.1543 30 40 2.39 0.0094 0.25 0.50 40 2.66 0.0063 0.25 0.60 0.2519 30 40 2.39 0.0094 0.25 0.50 40 2.66 0.0063 0.25 0.70 0.5151 30 40 2.39 0.0094 0.25 0.65 40 2.66 0.0063 0.25 0.70 0.5215 30 40 2.39 0.0094 0.25 0.75 40 2.66 0.0063 0.25 0.75 0.683 30 40 2.39 0.0094 0.25 0.75 40 2.66 0	_	40	5.66	0.0063	0.25	0.40	0.0154	30	40	2.39	0.0094	0.25		0.1332
40 2.66 0.0063 0.25 0.50 0.0844 30 40 2.39 0.0094 0.25 0.50 40 2.66 0.0063 0.25 0.50 0.2143 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 0.67 0.2143 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 0.76 0.3767 30 40 2.39 0.0094 0.25 0.65 40 2.66 0.0063 0.25 0.77 0.5215 30 40 2.39 0.0094 0.25 0.70 40 2.66 0.0063 0.25 0.77 0.6693 30 40 2.39 0.0094 0.25 0.77 40 2.66 0.0063 0.30 0.45 0.0224 30 40 2.39 0.0094 0.25 0.75 40 2.66	_	40	5.66	0.0063	0.52	0.45	0.0399	30	40	2.39	0.0094	0.25		0.2423
40 2.66 0.0063 0.25 0.55 0.1543 30 40 2.39 0.0094 0.25 0.55 40 2.66 0.0063 0.25 0.55 0.0094 0.25 0.55 0.60 40 2.66 0.0063 0.25 0.67 0.515 30 40 2.39 0.0094 0.25 0.60 40 2.66 0.0063 0.25 0.77 0.515 30 40 2.39 0.0094 0.25 0.77 40 2.66 0.0063 0.27 0.75 0.6633 30 40 2.39 0.0094 0.25 0.77 40 2.66 0.0063 0.30 0.45 0.0224 30 40 2.39 0.0094 0.25 0.75 40 2.66 0.0063 0.30 0.50 0.0501 30 40 2.39 0.0094 0.30 0.45	_	40	5.66	0.0063	0.25	0.50	0.0844	30	40	2.39	0.0094	0.25		0.3894
40 2.66 0.0063 0.25 0.66 0.25519 30 40 2.39 0.0094 0.25 0.60 0.0064 0.25 0.60 0.0063 0.25 0.65 0.25 0.65 0.25 0.65 0.0063 0.25 0.70 0.5215 30 40 2.39 0.0094 0.25 0.65 0.65 0.0063 0.25 0.70 0.5215 30 40 2.39 0.0094 0.25 0.70 0.65 0.0063 0.25 0.75 0.6693 30 40 2.39 0.0094 0.25 0.75 0.69 0.0063 0.30 0.25 0.75 0.693 30 40 2.39 0.0094 0.25 0.75 0.45 0.25 0.75 0.0094 0.20 0.0094 0.30 0.45 0.25 0.75 0.0094 0.30 0.0094 0.30 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	_	40	5.66	0.0063	0.72	0.55	0.1543	30	40	2.39	0.0094	0.75		0.5578
40 2.66 0.00053 0.25 0.55 0.576 30 40 2.39 0.0094 0.25 0.05 40 2.66 0.0063 0.25 0.77 0.5215 30 40 2.39 0.0094 0.25 0.77 40 2.66 0.0063 0.25 0.77 0.6693 30 0.09 0.009 0.25 0.77 40 2.66 0.0063 0.30 0.45 0.0224 30 40 2.39 0.0094 0.35 0.45 40 2.66 0.0063 0.30 0.50 0.0501 30 0.05 0.0501 30 0.50		40	7.66	0.0063	0.25	0.60	0.2519	30	40	2.39	0.0094	0.25		0.7197
40 2.66 0.0063 0.25 0.70 0.5215 30 40 2.39 0.0094 0.25 0.70 40 2.66 0.0063 0.30 0.45 0.0224 30 40 2.89 0.0094 0.35 0.75 0.693 30 40 2.89 0.0094 0.35 0.75 40 2.66 0.0063 0.30 0.45 0.0224 33 40 2.89 0.0094 0.30 0.45 40 2.66 0.0063 0.30 0.50 0.0501 30 40 2.39 0.0094 0.30 0.50		40	2.66	0.0063	0.25	0.00	0.3767	30	40	2.39	0.0094	0.25		0.8486
40 2.66 0.0063 0.30 0.75 0.5691 30 40 2.39 0.0094 0.25 0.75 40 2.66 0.0063 0.30 0.45 0.0501 30 40 2.39 0.0094 0.30 0.45 40 2.66 0.0063 0.30 0.50 0.0501 30 40 2.39 0.0094 0.30 0.50		40	2.66	0.0063	0.25	0.70	0.5215	30	40	2.39	0.0094	0.25		0.9326
40 2.06 0.0063 0.30 0.75 0.0501 30 40 2.39 0.0094 0.30 0.45 40 2.66 0.0063 0.30 0.50 0.0501 30 40 2.39 0.0094 0.30 0.50		40	2.66	0.0063	0.25	0.75	0.6693	30	40	2.39	0.0094	0.25		0.9765
40 2.66 0.0063 0.30 0.50 0.0501 30 40 2.39 0.0094 0.30 0.50		04	7.00	0.0063	0.30	0.45	0.0224	30	40	2.39	0.0094	0.30		0.1244
The second secon	10	40	2.66	2300	-		0 0 0	0		000	. 000	0		0000

Table B.24: continue on next page

Table B.24: continue on next page

page	power	0.5506	0.7155	0.1231	0.2313	0.3800	0.5529	0.1251	0.2347	0.0940	0.2643	0.6899	0.8431	0.9330	0.9758	0.2092	0.3817	0.5700	0.000	0.9388	0.9778	0.9936	0.1760	0.3186	0.4899	0.6630	0.8082	0.9081	0.9890	0.1512	0.2780	0.4422	0.6185	0.7753	0.8894	0.9558	0.1367	0.2569	0.4180	0.5972	0.7606	0.8809	0.9520	0.9851	0.1307 0.2492
revious	p2	0.60	0.65	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.30	 	0.50	0.55	0.60	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.05	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.45 0.50
rom p	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.03	0.05	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	2.0	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30
-continued from previous page	pvalue	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0037	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097
: -con	$\mathbf{z}_{\mathbf{u}}$	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.00	0.30	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	00.0	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39
B.24:	$^{\mathrm{n}_{2}}$	40	040	40	40	40	40	40	40	20 20 20	0 Z	20	20	20	20	200	20 20	00 00	3 2	20.00	20	20	20	20	20	20	20 10	00.00	S 15.	20	20	20	20	20	00.5		S 25	20	20	20	20	20	50	20 10	20
Table	$_{1}^{n}$	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	power	0.1696	0.2719	0.0284	0.0586	0.1093	0.1879	0.0337	0.0672	0.0000	0.0000	0.0074	0.0427	0.1425	0.3123	0.0004	0.0043	0.0250	0.0845	0.3289	0.4809	0.6337	0.0024	0.0142	0.0487	0.1137	0.2077	0.3290	0.6188	0.0078	0.0272	0.0657	0.1272	0.2169	0.3354	0.4751	0.0146	0.0366	0.0752	0.1376	0.2286	0.3487	0.4937	0.6503	$0.0196 \\ 0.0428$
	p2	09.0	0.65	0.50	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.30	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.50	0.55	09.0	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.45 0.50
	p1	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.40	0.05	0.00	0.05	0.05	0.02	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	2.5	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.30
	pvalue	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095	0.0095
	$\mathbf{z}_{\mathbf{u}}$	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	7.7.7	27.7	2.72	2.72	2.72	2.72	2.72	2.72	2 6	0 1.0	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.7.2	2.75	100	2.72	2.72	2.72	2.72	2.72	27.7.7	2.5	2.72	2.72	2.72	2.72	2.72	2.72	2.72	27.7	2.72
	$^{\mathrm{n}_{2}}$	40	040	40	40	40	40	40	40	20 20 20	0 Z	20	20	20	20	200	20 20	00 00	3 2	20.00	20	20	20	20	20	20	20 10	00.00	S 15.	20	20	20	20	20	00.5		S 25	20	20	20	20	20	50	20 10	20
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	01	10	10	10	10	10	10	10	10	01	10	101	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	01	10

10 50 2.72 0.00095 0.30 0.55 0.0087 30 0.50 0.1491 30 2.23 0.00097 0.30 0.65 0.1491 30 2.23 0.0097 0.30 0.65 0.1491 30 2.23 0.0097 0.30 0.65 0.1491 30 2.23 0.0097 0.33 0.65 0.1491 30 2.23 0.0097 0.33 0.65 0.1491 30 0.00	$_{\rm n_1}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p ₂	power	$_{1}^{n_{1}}$	$_{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p 2	power
50 27.72 0.0095 0.30 0.66 0.1491 3.0 5.0 2.39 0.0097 0.30 0.66 50 2.7.2 0.0095 0.30 0.67 0.2447 3.0 5.0 2.39 0.0097 0.30 0.67 0.73 0.75 0.0095 0.35 0.67 0.0233 3.0 5.0 2.39 0.0097 0.35 0.67 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0097 0.0097 0.0097 0.0095 0.0095 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0099 0.0097 0.		50	2.72	0.0095	0.30	0.55	0.0837	30	50	2.39	0.0097	0.30	0.55	0.4107
50 2.7.2 0.0095 0.30 0.65 0.2347 30 50 2.39 0.0094 0.30 0.65 50 2.7.2 0.0095 0.33 0.65 0.2477 30 50 2.39 0.0097 0.39 0.00	0	20	2.72	0.0095	0.30	09.0	0.1491	30	20	2.39	0.0097	0.30	09.0	0.5910
50 2.7.2 0.0095 0.33 0.7.0 0.373 30 2.0 2.39 0.0097 0.35 50 2.7.2 0.0095 0.35 0.55 0.0488 30 5.0 2.39 0.0097 0.35 0.55 50 2.7.2 0.0095 0.35 0.55 0.0488 30 5.0 2.39 0.0097 0.35 0.65 50 2.7.2 0.0095 0.40 0.60 0.0268 30 5.0 2.39 0.0097 0.35 0.65 60 2.66 0.0098 0.05 0.10 30 60 2.41 0.0099 0.05 0.15 0.0000 30 60 2.41 0.0099 0.05 0.15 0.0000 30 60 2.41 0.0099 0.05 0.05 0.0000 30 60 2.41 0.0099 0.05 0.05 0.0090 0.05 0.009 0.009 0.05 0.009 0.009 0.009 0.009 <	_	20	2.75	0.0095	0.30	0.65	0.2447	30	20	2.39	0.0097	0.30	0.65	0.7558
50 2.7.2 0.0095 0.35 0.55 0.0283 3.9 5.0 2.39 0.0097 0.35 0.50 50 2.7.2 0.0095 0.35 0.55 0.0098 3.9 5.0 2.39 0.0097 0.35 0.55 50 2.7.2 0.0095 0.35 0.65 0.0098 3.0 5.0 2.39 0.0097 0.35 0.65 50 2.7.2 0.0095 0.40 0.60 0.0097 3.0 0.0097 0.0097 0.35 0.66 60 2.66 0.0098 0.015 0.100 0.0009 0.0097 0.009 0.0097 0.00 0.009 0.0097 0.00 0.0097 0.00 0.0097 0.00 0.0097 0.00 0.0099 0.00 <t< td=""><td></td><td>20</td><td>2.72</td><td>0.0095</td><td>0.30</td><td>0.70</td><td>0.3737</td><td>30</td><td>20</td><td>2.39</td><td>0.0097</td><td>0.30</td><td>0.70</td><td>0.8790</td></t<>		20	2.72	0.0095	0.30	0.70	0.3737	30	20	2.39	0.0097	0.30	0.70	0.8790
50 27.2 0.0095 0.35 0.55 0.0488 30 50 2.39 0.0097 0.35 0.55 50 27.72 0.0095 0.35 0.65 0.0638 30 50 2.39 0.0097 0.35 0.65 50 27.72 0.0095 0.35 0.65 0.0069 30 50 2.39 0.0097 0.40 0.65 0.0069 30 0.0097 0.40 0.65 0.0099 0.009 <	_	20	2.72	0.0095	0.35	0.50	0.0233	30	20	2.39	0.0097	0.35	0.50	0.1308
50 2.77 0.0095 0.35 0.60 0.0928 30 50 2.39 0.0097 0.35 0.60 50 2.77 0.0095 0.35 0.026 0.0288 30 50 2.39 0.0097 0.40 0.65 0.0288 30 50 2.39 0.0097 0.40 0.65 0.0288 0.00 0.00 0.0099 0.009 0.00		20	2.72	0.0095	0.35	0.55	0.0486	30	20	2.39	0.0097	0.35	0.55	0.2500
50 2.72 0.0095 0.03 0.65 0.1639 30 50 2.39 0.0097 0.04 0.65 50 2.72 0.0095 0.40 0.65 0.1639 30 50 2.39 0.0097 0.40 0.55 60 2.66 0.0098 0.05 0.15 0.0000 30 60 2.41 0.0099 0.05 0.00 0.009 <	_	20	2.72	0.0095	0.35	0.60	0.0928	30	20	2.39	0.0097	0.35	09.0	0.4110
50 2.77 0.0095 0.40 0.55 0.0286 3.0 2.39 0.0097 0.40 0.55 50 2.77 0.0095 0.40 0.55 0.0286 3.0 2.39 0.0097 0.40 0.55 60 2.66 0.0098 0.05 0.10 0.0009 3.0 2.41 0.0099 0.05 0.20 60 2.66 0.0098 0.05 0.20 0.0009 0.009 0.00 0.009 0.009 0.00 0.00 0.009 0.009 0.009 0.009 0.009 0.00 0.00 0.009 0.00 0.009 0.009 0.00 0.00 0.009 0.00 <td>_</td> <td>20</td> <td>2.72</td> <td>0.0095</td> <td>0.35</td> <td>0.65</td> <td>0.1639</td> <td>30</td> <td>20</td> <td>2.39</td> <td>0.0097</td> <td>0.35</td> <td>0.65</td> <td>0.5916</td>	_	20	2.72	0.0095	0.35	0.65	0.1639	30	20	2.39	0.0097	0.35	0.65	0.5916
50 2.57 0.0095 0.40 0.66 0.6549 30 50 2.39 0.0097 0.40 0.60 0.0549 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.05 0.0098 0.0098 0.05 0.0099 0.009 0.0098 0.05 0.0099 0.009 0.0098 0.009 0.009 0.0098 0.010 0.0099 0.009		20	2.72	0.0095	0.40	0.55	0.0268	30	20	2.39	0.0097	0.40	0.55	0.1335
60 2.66 0.0098 0.05 0.15 0.0009 0.05 0.15 0.0009 0.05 0.15 0.0009 0.05 0.15 0.0009 0.05 0.01 0.00	_	20	2.73	0.0095	0.40	09.0	0.0549	30	20	2.39	0.0097	0.40	09.0	0.2529
60 2.66 0.0098 0.05 0.20 0.0000 0.0	_	09	2.66	8600.0	0.05	0.15	0.0000	30	09	2.41	0.0099	0.05	0.15	0.0714
60 2.66 0.0098 0.05 0.0004 30 60 2.41 0.0099 0.05 60 2.66 0.0098 0.05 0.35 0.0421 30 60 2.41 0.0099 0.05 60 2.66 0.0098 0.05 0.35 0.04 0.1539 30 60 2.41 0.0099 0.05 0.04 0.1539 30 60 2.41 0.0099 0.05 0.04 0.1539 30 60 2.41 0.0099 0.05 0.04 0.1539 30 60 2.41 0.0099 0.10 0.35 0.025 0.00	_	09	2.66	0.0098	0.05	0.20	0.0000	30	09	2.41	0.0099	0.02	0.20	0.2269
60 2.66 0.0098 0.05 0.30 0.0060 30 60 2.41 0.0099 0.05 0.35 0.04 1 0.0099 0.05 0.04 0.045 0.05 0.04 0.045 0.045 0.04 0.04 0.05 0.04 0.045 0.04 0.045 0.04 0.044 0.05 0.04 0.045 0.04 0.044 0.05 0.04 0.05 0.04 0.05 0.04 0.00 0.05 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.05		09	2.66	0.0098	0.05	0.25	0.0004	30	09	2.41	0.0099	0.05	0.25	0.4481
60 266 0.0098 0.05 0.0421 30 60 2.41 0.0099 0.05 0.45 60 2.66 0.0098 0.05 0.44 0.1539 30 60 2.41 0.0099 0.05 0.40 60 2.66 0.0098 0.10 0.25 0.0005 30 60 2.41 0.0099 0.10 0.25 0.0035 0.10 0.25 0.0036 0.10 0.35 0.024 0.0099 0.10 0.25 0.0036 0.10 0.0039 0.10 0.035 0.01 0.0039 0.10 0.025 0.0240 0.0039 0.10 0.025 0.0039 0.10 0.02 2.41 0.0099 0.10 0.02 2.41 0.0099 0.10 0.0039 0.10 0.05 2.41 0.0099 0.10 0.0039 0.10 0.003 0.003 0.10 0.003 0.10 0.003 0.10 0.003 0.10 0.003 0.10 0.003 0.10	_	09	2.66	0.0098	0.02	0.30	0.0060	30	09	2.41	0.0099	0.02	0.30	0.6727
60 266 0.0038 0.05 0.40 0.1539 30 60 241 0.0099 0.05 0.45 60 2.66 0.0038 0.045 0.45 0.4323 30 60 2.41 0.0099 0.05 0.45 0.45 0.45 0.45 0.0099 0.00 0	_	09	2.66	0.0098	0.02	0.35	0.0421	30	09	2.41	0.0099	0.02	0.35	0.8415
60 2.66 0.0098 0.05 0.45 0.3439 30 60 2.41 0.0099 0.05 0.45 0.43 0.04 2.41 0.0099 0.01 0.25 0.0035 0.0035 0.0038 0.00 0.0038 0.00 0.0038 0.00 0.0038 0.00 0.0039 0.00<		09	2.66	0.0098	0.05	0.40	0.1539	30	09	2.41	0.0099	0.02	0.40	0.9383
60 2.66 0.0098 0.10 0.25 0.0002 30 60 2.41 0.0099 0.10 0.25 60 2.66 0.0098 0.10 0.35 0.00355 30 60 2.41 0.0099 0.10 0.35 60 2.66 0.0098 0.10 0.35 0.0246 30 60 2.41 0.0099 0.10 0.35 60 2.66 0.0098 0.10 0.45 0.2099 30 60 2.41 0.0099 0.10 0.45 60 2.66 0.0098 0.10 0.45 0.2218 30 60 2.41 0.0099 0.10 0.45 60 2.66 0.0098 0.15 0.40 0.022 30 0.0099 0.10 0.45 60 2.66 0.0098 0.15 0.40 0.022 31 0.0099 0.15 0.35 60 2.66 0.0098 0.15 0.41 0.0099	_	09	2.66	0.0098	0.02	0.45	0.3439	30	09	2.41	0.0099	0.02	0.45	0.9809
60 2.66 0.0098 0.10 0.30 0.0035 30 60 2.41 0.0099 0.10 0.33 60 2.66 0.0098 0.10 0.43 0.0244 30 60 2.41 0.0099 0.10 0.35 60 2.66 0.0098 0.10 0.45 0.2999 30 60 2.41 0.0099 0.10 0.45 60 2.66 0.0098 0.10 0.55 0.5384 30 60 2.41 0.0099 0.10 0.45 60 2.66 0.0098 0.10 0.55 0.5218 30 60 2.41 0.0099 0.10 0.55 60 2.66 0.0098 0.15 0.40 0.0522 30 60 2.41 0.0099 0.15 0.40 0.0528 30 60 2.41 0.0099 0.10 0.50 0.45 0.14 0.0099 0.15 0.45 0.14 0.0099 0.10 0.10	_	09	2.66	0.0098	0.10	0.25	0.0002	30	09	2.41	0.0099	0.10	0.25	0.1832
60 2.66 0.0098 0.10 0.35 0.0246 30 60 241 0.0099 0.10 0.35 60 2.66 0.0098 0.10 0.45 0.02910 30 60 241 0.0099 0.10 0.45 60 2.66 0.0098 0.10 0.45 0.3584 30 60 241 0.0099 0.10 0.45 60 2.66 0.0098 0.10 0.50 0.3584 30 60 241 0.0099 0.10 0.55 60 2.66 0.0098 0.15 0.022 30 60 241 0.0099 0.10 0.55 60 2.66 0.0098 0.15 0.36 0.0282 30 60 241 0.0099 0.15 0.36 60 2.66 0.0098 0.15 0.45 0.144 30 60 241 0.0099 0.15 0.36 60 2.66 0.0098 0.15 </td <td>_</td> <td>09</td> <td>2.66</td> <td>0.0098</td> <td>0.10</td> <td>0.30</td> <td>0.0035</td> <td>30</td> <td>09</td> <td>2.41</td> <td>0.0099</td> <td>0.10</td> <td>0.30</td> <td>0.3619</td>	_	09	2.66	0.0098	0.10	0.30	0.0035	30	09	2.41	0.0099	0.10	0.30	0.3619
60 2.66 0.0098 0.10 0.40 0.0910 30 60 2.41 0.0099 0.10 0.40 60 2.66 0.0098 0.10 0.45 0.2099 30 60 2.41 0.0099 0.10 0.45 60 2.66 0.0098 0.10 0.55 0.5218 30 60 2.41 0.0099 0.10 0.55 60 2.66 0.0098 0.15 0.5866 30 60 2.41 0.0099 0.10 0.50 60 2.66 0.0098 0.15 0.35 0.0140 30 60 2.41 0.0099 0.15 0.35 60 2.66 0.0098 0.15 0.40 0.0222 30 60 2.41 0.0099 0.15 0.35 60 2.66 0.0098 0.15 0.40 0.0222 30 60 2.41 0.0099 0.15 0.35 60 2.66 0.0098 <t< td=""><td>_</td><td>09</td><td>2.66</td><td>0.0098</td><td>0.10</td><td>0.35</td><td>0.0246</td><td>30</td><td>09</td><td>2.41</td><td>0.0099</td><td>0.10</td><td>0.35</td><td>0.5701</td></t<>	_	09	2.66	0.0098	0.10	0.35	0.0246	30	09	2.41	0.0099	0.10	0.35	0.5701
60 2.66 0.0098 0.10 0.45 0.2999 30 60 241 0.0099 0.10 0.45 60 2.66 0.0098 0.10 0.55 0.3584 30 60 2.41 0.0099 0.10 0.55 60 2.66 0.0098 0.10 0.50 0.6866 30 60 2.41 0.0099 0.10 0.50 60 2.66 0.0098 0.15 0.35 0.0020 30 0.10 0.009 0.11 0.009 0.11 0.009 0.15 0.009 0.11 0.009 0.15 0.009 0.10 0.50 0.6866 30 60 2.41 0.0099 0.15 0.40 0.686 30 60 2.41 0.0099 0.15 0.40 0.686 30 60 2.41 0.0099 0.15 0.40 0.628 30 60 2.41 0.0099 0.15 0.40 0.628 0.41 0.0099 0.15 0.4	_	09	2.66	0.0098	0.10	0.40	0.0910	30	09	2.41	0.0099	0.10	0.40	0.7554
60 2.66 0.0098 0.10 0.50 0.3584 30 60 2.41 0.0099 0.10 0.50 60 2.66 0.0098 0.10 0.55 0.5218 30 60 2.41 0.0099 0.10 0.55 60 2.66 0.0098 0.15 0.35 0.0026 30 60 2.41 0.0099 0.10 0.55 60 2.66 0.0098 0.15 0.40 0.0522 30 60 2.41 0.0099 0.15 0.35 60 2.66 0.0098 0.15 0.40 0.0522 30 60 2.41 0.0099 0.15 0.35 60 2.66 0.0098 0.15 0.45 0.1247 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.42 0.1247 30 60 2.41 0.0099 0.15 0.40 60 2.66	_	09	2.66	0.0098	0.10	0.45	0.2099	30	09	2.41	0.0099	0.10	0.45	0.8839
60 2.66 0.0098 0.10 0.55 0.5218 30 60 2.41 0.0099 0.10 0.55 60 2.66 0.0098 0.10 0.66 0.0866 30 60 2.41 0.0099 0.10 0.66 60 2.66 0.0098 0.15 0.30 0.0122 30 60 2.41 0.0099 0.15 0.30 60 2.66 0.0098 0.15 0.42 0.0282 30 60 2.41 0.0099 0.15 0.30 60 2.66 0.0098 0.15 0.52 0.044 0.0282 30 60 2.41 0.0099 0.15 0.35 60 2.66 0.0098 0.15 0.528 30 60 2.41 0.0099 0.15 0.55 60 2.66 0.0098 0.15 0.5286 30 60 2.41 0.0099 0.15 0.50 60 2.66 0.0098 <t< td=""><td>_</td><td>09</td><td>2.66</td><td>0.0098</td><td>0.10</td><td>0.50</td><td>0.3584</td><td>30</td><td>09</td><td>2.41</td><td>0.0099</td><td>0.10</td><td>0.50</td><td>0.9547</td></t<>	_	09	2.66	0.0098	0.10	0.50	0.3584	30	09	2.41	0.0099	0.10	0.50	0.9547
60 2.66 0.0098 0.10 0.60 0.6866 30 60 2.41 0.0099 0.15 0.60 60 2.66 0.0098 0.15 0.30 0.00220 30 60 2.41 0.0099 0.15 0.36 60 2.66 0.0098 0.15 0.40 0.0528 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.40 0.0528 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.45 0.282 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.285 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.40 0.6288 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 <td< td=""><td>_</td><td>09</td><td>2.66</td><td>0.0098</td><td>0.10</td><td>0.55</td><td>0.5218</td><td>30</td><td>09</td><td>2.41</td><td>0.0099</td><td>0.10</td><td>0.55</td><td>0.9857</td></td<>	_	09	2.66	0.0098	0.10	0.55	0.5218	30	09	2.41	0.0099	0.10	0.55	0.9857
60 2.66 0.0098 0.15 0.30 0.0020 30 60 2.41 0.0099 0.15 0.33 60 2.66 0.0098 0.15 0.35 0.0144 30 60 2.41 0.0099 0.15 0.35 60 2.66 0.0098 0.15 0.45 0.1247 30 60 2.41 0.0099 0.15 0.45 60 2.66 0.0098 0.15 0.45 0.282 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.65 0.658 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.65 0.687 30 60 2.41 0.0099 0.15 0.50 60 2.66 0.0098 0.20 0.45 0.071 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.00	_	09	2.66	0.0098	0.10	0.60	0.6866	30	09	2.41	0.0099	0.10	09.0	0.9964
60 2.66 0.0098 0.15 0.35 0.0140 30 60 2.41 0.0099 0.15 0.36 60 2.66 0.0098 0.15 0.46 0.0522 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.40 0.2824 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.58 0.328 30 60 2.41 0.0099 0.15 0.50 60 2.66 0.0098 0.15 0.5887 30 60 2.41 0.0099 0.15 0.50 60 2.66 0.0098 0.12 0.65 0.6887 30 60 2.41 0.0099 0.15 0.50 60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 <td< td=""><td>_</td><td>09</td><td>2.66</td><td>0.0098</td><td>0.15</td><td>0.30</td><td>0.0020</td><td>30</td><td>09</td><td>2.41</td><td>0.0099</td><td>0.15</td><td>0.30</td><td>0.1641</td></td<>	_	09	2.66	0.0098	0.15	0.30	0.0020	30	09	2.41	0.0099	0.15	0.30	0.1641
60 2.66 0.0098 0.15 0.40 0.0522 30 60 2.41 0.0099 0.15 0.40 60 2.66 0.0098 0.15 0.45 0.12847 30 60 2.41 0.0099 0.15 0.45 60 2.66 0.0098 0.15 0.56 0.2282 30 60 2.41 0.0099 0.15 0.55 60 2.66 0.0098 0.15 0.65 0.6887 30 60 2.41 0.0099 0.15 0.56 60 2.66 0.0098 0.15 0.6787 30 60 2.41 0.0099 0.15 0.56 60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.15 0.56 60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.15 0.46 60 2.66 0.0098 <	_	09	2.66	0.0098	0.15	0.35	0.0140	30	09	2.41	0.0099	0.15	0.35	0.3218
60 2.66 0.0098 0.15 0.45 0.1247 30 60 2.41 0.0099 0.15 0.45 60 2.66 0.0098 0.15 0.55 0.3654 30 60 2.41 0.0099 0.15 0.55 60 2.66 0.0098 0.15 0.65 0.3854 30 60 2.41 0.0099 0.15 0.55 60 2.66 0.0098 0.15 0.65 0.6887 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.20 0.40 0.029 0.21 0.009 0.15 0.65 60 2.66 0.0098 0.20 0.40 0.029 30 60 2.41 0.0099 0.15 0.45 60 2.66 0.0098 0.20 0.45 0.1410 30 60 2.41 0.0099 0.15 0.45 60 2.66 0.0098 0.20 <	_	09	2.66	0.0098	0.15	0.40	0.0522	30	09	2.41	0.0099	0.15	0.40	0.5139
60 2.66 0.0098 0.15 0.508 0.0288 30 60 2.41 0.0099 0.15 0.50 60 2.66 0.0098 0.15 0.5286 3 60 2.41 0.0099 0.15 0.55 60 2.66 0.0098 0.15 0.65 0.5286 3 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.20 0.35 0.0077 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.20 0.35 0.0719 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.45 0.0417 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 <td< td=""><td>_</td><td>09</td><td>2.66</td><td>0.0098</td><td>0.15</td><td>0.45</td><td>0.1247</td><td>30</td><td>09</td><td>2.41</td><td>0.0099</td><td>0.15</td><td>0.45</td><td>0.6989</td></td<>	_	09	2.66	0.0098	0.15	0.45	0.1247	30	09	2.41	0.0099	0.15	0.45	0.6989
60 2.66 0.0098 0.15 0.55 0.3554 30 60 2.41 0.0099 0.15 0.55 60 2.66 0.0098 0.15 0.6887 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.15 0.65 0.6887 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.20 0.40 0.0719 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.45 0.7119 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.45 0.7119 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.70 0.7110 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 <t< td=""><td></td><td>09</td><td>2.66</td><td>0.0098</td><td>0.15</td><td>0.50</td><td>0.2282</td><td>30</td><td>09</td><td>2.41</td><td>0.0099</td><td>0.15</td><td>0.50</td><td>0.8417</td></t<>		09	2.66	0.0098	0.15	0.50	0.2282	30	09	2.41	0.0099	0.15	0.50	0.8417
60 2.66 0.0098 0.15 0.60 0.586 30 60 2.41 0.0099 0.15 0.60 60 2.66 0.0098 0.15 0.65 0.6887 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.20 0.40 0.0290 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.20 0.40 0.0290 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.45 0.1410 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.54 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.70 0.702 0.702 0.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 <		09	2.66	0.0098	0.15	0.55	0.3654	30	09	2.41	0.0099	0.15	0.55	0.9300
60 2.66 0.0098 0.15 0.65 0.6887 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.20 0.43 0.0290 3 0.071 30 60 2.41 0.0099 0.15 0.65 60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.20 0.40 60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.20 0.40 60 2.66 0.0098 0.20 0.45 3 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.60 0.3891 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.65 0.4847 30 60 2.41 0.0099 0.20 0.55 60 2.66<	_	09	2.66	0.0098	0.15	0.60	0.5286	30	09	2.41	0.0099	0.15	09.0	0.9742
60 2.66 0.0098 0.20 0.35 0.0077 30 60 2.41 0.0099 0.20 0.35 60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.55 0.2467 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.55 0.2467 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.56 0.5487 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.70 0.702 30 60 2.41 0.0099 0.20 0.55 60 2.66 0	_	09	2.66	0.0098	0.15	0.65	0.6887	30	09	2.41	0.0099	0.15	0.65	0.9925
60 2.66 0.0098 0.20 0.44 0.0299 30 60 2.41 0.0099 0.20 0.40 60 2.66 0.0098 0.20 0.44 0.0299 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.55 0.1410 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.55 0.2467 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.76 0.7487 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.77 0.7002 30 60 2.41 0.0099 0.20 0.70 60 2.66 0.0098 0.25 0.45 0.4102 30 60 2.41 0.0099 0.20 0.45 60 2.66	_	09	2.66	0.0098	0.20	0.35	0.0077	30	09	2.41	0.0099	0.20	0.35	0.1547
60 2.66 0.0098 0.20 0.45 0.0719 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.54 0.1410 30 60 2.41 0.0099 0.20 0.45 60 2.66 0.0098 0.20 0.56 0.2467 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.60 0.3891 30 60 2.41 0.0099 0.20 0.60 60 2.66 0.0098 0.20 0.65 0.5487 30 60 2.41 0.0099 0.20 0.65 60 2.66 0.0098 0.25 0.40 0.0153 30 60 2.41 0.0099 0.20 0.40 60 2.66 0.0098 0.25 0.45 0.040 30 60 2.41 0.0099 0.25 0.40 60 2.66 0	_	09	2.66	0.0098	0.20	0.40	0.0290	30	09	2.41	0.0099	0.20	0.40	0.2978
60 2.66 0.0098 0.20 0.50 0.1410 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.55 0.2467 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.65 0.5487 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.67 0.7702 30 60 2.41 0.0099 0.20 0.65 60 2.66 0.0098 0.25 0.45 0.045 30 60 2.41 0.0099 0.20 0.65 60 2.66 0.0098 0.25 0.45 0.0400 30 60 2.41 0.0099 0.25 0.40 60 2.66 0.0098 0.25 0.45 0.0403 30 60 2.41 0.0099 0.25 0.45 60 2.66 0		09	2.66	0.0098	0.20	0.45	0.0719	30	09	2.41	0.0099	0.20	0.45	0.4778
60 2.66 0.0098 0.20 0.55 0.2467 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.5487 30 60 2.41 0.0099 0.20 0.55 60 2.66 0.0098 0.20 0.70 0.7002 30 60 2.41 0.0099 0.20 0.70 60 2.66 0.0098 0.20 0.70 0.70155 30 60 2.41 0.0099 0.20 0.70 60 2.66 0.0098 0.25 0.45 0.400 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.50 0.049 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.50 0.044 30 60 2.41 0.0099 0.25 0.55 60 2.66 0.0098		09	2.66	0.0098	0.20	0.50	0.1410	30	09	2.41	0.0099	0.20	0.50	0.6590
60 2.66 0.0098 0.20 0.60 0.3891 30 60 2.41 0.0099 0.20 0.65 60 2.66 0.0098 0.20 0.65 0.5487 30 60 2.41 0.0099 0.20 0.65 60 2.66 0.0098 0.25 0.40 0.0155 30 60 2.41 0.0099 0.20 0.70 60 2.66 0.0098 0.25 0.40 0.0155 30 60 2.41 0.0099 0.25 0.40 60 2.66 0.0098 0.25 0.45 0.040 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.45 0.040 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.55 0.1602 30 60 2.41 0.0099 0.25 0.55 60 2.66 0.		09	2.66	0.0098	0.20	0.55	0.2467	30	09	2.41	0.0099	0.20	0.55	0.8068
60 2.66 0.0098 0.20 0.65 0.5487 30 60 2.41 0.0099 0.20 0.65 60 2.66 0.0098 0.20 0.70 0.7002 30 60 2.41 0.0099 0.20 0.70 60 2.66 0.0098 0.25 0.45 0.0400 30 60 2.41 0.0099 0.25 0.40 60 2.66 0.0098 0.25 0.45 0.0400 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.50 0.0843 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.65 60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.65 60 2.66	_	09	2.66	0.0098	0.20	0.60	0.3891	30	09	2.41	0.0099	0.20	09.0	0.9077
60 2.66 0.0098 0.20 0.770 0.7002 30 60 2.41 0.0099 0.20 0.70 60 2.66 0.0098 0.25 0.45 0.0155 30 60 2.41 0.0099 0.25 0.40 60 2.66 0.0098 0.25 0.50 0.040 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.50 0.0843 30 60 2.41 0.0099 0.25 0.50 60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.55 60 2.66 0.0098 0.25 0.65 0.471 30 60 2.41 0.0099 0.25 0.55 60 2.66 0.0098 0.25 0.65 0.471 3 60 2.41 0.0099 0.25 0.65 60 2.66 0.0	_	09	2.66	0.0098	0.20	0.65	0.5487	30	09	2.41	0.0099	0.20	0.65	0.9648
60 2.66 0.0098 0.25 0.40 0.0155 30 60 2.41 0.0099 0.25 0.40 60 2.66 0.0098 0.25 0.45 0.0400 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.50 0.1602 30 60 2.41 0.0099 0.25 0.50 60 2.66 0.0098 0.25 0.50 0.1602 30 60 2.41 0.0099 0.25 0.50 60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.60 60 2.66 0.0098 0.25 0.67 0.4171 30 60 2.41 0.0099 0.25 0.65 60 2.66 0.0098 0.25 0.67 0.7223 30 60 2.41 0.0099 0.25 0.75 60 2.66		09	2.66	0.0098	0.20	0.70	0.7002	30	09	2.41	0.0099	0.20	0.70	0.9901
60 2.66 0.0098 0.25 0.45 0.04400 30 60 2.41 0.0099 0.25 0.45 60 2.66 0.0098 0.25 0.50 0.1602 30 60 2.41 0.0099 0.25 0.50 60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.55 60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.60 60 2.66 0.0098 0.25 0.65 0.4171 30 60 2.41 0.0099 0.25 0.65 60 2.66 0.0098 0.25 0.65 0.4171 30 60 2.41 0.0099 0.25 0.65 60 2.66 0.0098 0.25 0.77 0.7223 30 60 2.41 0.0099 0.25 0.75 60 2.66 <td< td=""><td>_</td><td>09</td><td>2.66</td><td>0.0098</td><td>0.25</td><td>0.40</td><td>0.0155</td><td>30</td><td>09</td><td>2.41</td><td>0.0099</td><td>0.25</td><td>0.40</td><td>0.1485</td></td<>	_	09	2.66	0.0098	0.25	0.40	0.0155	30	09	2.41	0.0099	0.25	0.40	0.1485
60 2.66 0.0098 0.25 0.50 0.0843 30 60 2.41 0.0099 0.25 0.50 60 2.66 0.0098 0.25 0.55 0.1602 30 60 2.41 0.0099 0.25 0.55 0.50 60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.60 60 2.66 0.0098 0.25 0.65 0.4171 30 60 2.41 0.0099 0.25 0.65 0.60 60 2.66 0.0098 0.25 0.65 0.470 0.572 30 60 2.41 0.0099 0.25 0.65 0.60 60 2.66 0.0098 0.25 0.75 33 30 60 2.41 0.0099 0.25 0.70	_	09	2.66	0.0098	0.25	0.45	0.0400	30	09	2.41	0.0099	0.25	0.45	0.2816
60 2.66 0.0098 0.25 0.55 0.1602 30 60 2.41 0.0099 0.25 0.55 60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.60 60 2.66 0.0098 0.25 0.65 0.4171 30 60 2.41 0.0099 0.25 0.65 60 2.66 0.0098 0.25 0.70 0.5722 30 60 2.41 0.0099 0.25 0.70 60 2.66 0.0098 0.25 0.75 0.723 30 60 2.41 0.0099 0.25 0.70		09	2.66	0.0098	0.25	0.50	0.0843	30	09	2.41	0.0099	0.25	0.50	0.4498
60 2.66 0.0098 0.25 0.60 0.2740 30 60 2.41 0.0099 0.25 0.60 60 2.66 0.0098 0.25 0.65 0.4171 30 60 2.41 0.0099 0.25 0.65 60 2.66 0.0098 0.25 0.77 0.722 30 60 2.41 0.0099 0.25 0.70 60 2.66 0.0098 0.25 0.75 0.7223 30 60 2.41 0.0099 0.25 0.75	_	09	2.66	0.0098	0.25	0.55	0.1602	30	09	2.41	0.0099	0.25	0.55	0.6257
60 2.66 0.0098 0.25 0.65 0.4171 30 60 2.41 0.0099 0.25 0.65 60 2.66 0.0098 0.25 0.70 0.5722 30 60 2.41 0.0099 0.25 0.70 60 2.66 0.0098 0.25 0.75 0.7223 30 60 2.41 0.0099 0.25 0.75	_	09	2.66	0.0098	0.25	0.60	0.2740	30	09	2.41	0.0099	0.25	09.0	0.7822
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		09	2.66	0.0098	0.25	0.65	0.4171	30	09	2.41	0.0099	0.25	0.65	0.8974
60 2.66 0.0098 0.25 0.75 0.7223 30 60 2.41 0.0099 0.25 0.75		09	2.66	0.0098	0.25	0.70	0.5722	30	09	2.41	0.0099	0.25	0.70	0.9633
		9	000											

Table B.24: continue on next page

Table B.24: continue on next page

s page	power	0.2658	0.4278	0.7803	0.9022	0.1357	0.2566	0.4207	0.0216	0.2645	0.0574	0.2007	0.4200	0.6559	0.0339	0.9796	0.1622	0.3342	0.5388	0.7330	0.8757	0.9550	0.9860	0.3907	0.2868	0.4832	0.6820	0.8349	0.9288	0.9754	0.9935	0.2706	0.4548	0.6440	0.8026	0.9104	0.9683	0.9918	0.1295	0.4311	0.6188	0.7855	0.9037	0.9675	0.9922
revious	p2	0.50	0.55	0.65	0.70	0.50	0.55	0.00	0.00	0.60	0.15	0.20	0.25	0.30	0.30	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.00 0 0 E	0.33	0.45	0.50	0.55	0.60	0.65	0.70	0.40	 	0.55	09.0	0.65	0.70	0.75
rom p	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.33	0.40	0.02	0.02	0.05	0.05	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.40	0.25	0.25	0.25	0.25	0.75
-continued from previous page	pvalue	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.000	6600.0	0.0099	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0038	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0030	0.0098	0.0098	0.0098	0.0098	0.0098
: $-con$	$\mathbf{z}_{\mathbf{u}}$	2.41	2.41	2.41	2.41	2.41	2.41	14.0	2.41	2.41	2.51	2.51	2.51	2.51	2.5	2.51	2.51	2.51	2.51	2.51	2.51	2.5	2.51	2.0 1.0 1.0	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.5	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.5	2.51	2.51	2.51	2.51	7.51
B.24:	$^{\rm n_2}$	09	90	09	09	09	09	00	8 9	09	70	20	0 1	2 2	2.2	20	70	20	20	20	2 2	2 6	2 2	2 2	2 2	20	20	20	20	2 8	2 2	2 2	2.02	20	70	20	29	2 1	2 2	2.5	2.2	70	20	20	0/2
Table .	$^{\mathrm{n}_{1}}$	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	30	30	200	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	power	0.0485	0.0999	0.3024	0.4467	0.0267	0.0595	0.0000	0.0337	0.0721	0.0000	0.000.0	0.0000	6000.0	0.0533	0.1909	0.000	0.0003	0.0046	0.0318	0.1129	0.2405	0.4029	0.0729	0.0026	0.0180	0.0648	0.1471	0.2603	0.4096	0.5799	0.0014	0.0360	0.0851	0.1628	0.2809	0.4348	0.6044	0.0052	0.0133	0.0983	0.1847	0.3114	0.4709	0.6403
	p2	0.50	0.55	0.65	0.70	0.50	0.55	0.00	0.00	0.60	0.15	0.20	0.25	0.30	0.30	0.45	0.25	0.30	0.35	0.40	0.45	0.00	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	U.65	0.33	0.45	0.50	0.55	0.60	0.65	0.70	0.40	0.45	0.55	09.0	0.65	0.70	0.75
	p1	0.30	0.30	0.30	0.30	0.35	0.35	0.00	0.33	0.40	0.02	0.02	0.05	0.05	0.00	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.40	0.25	0.25	0.25	0.25	0.75
	pvalue	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0003	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063
	$\mathbf{z}_{\mathbf{u}}$	2.66	2.66	2.66	2.66	2.66	2.66	00.7	2.66	2.66	2.90	2.90	2.90	2.90	06.2	2.90	2.90	2.90	2.90	2.90	2.90	06.7	2.90	06.7	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90
	$^{\rm n_2}$	09	09	8 9	09	09	0.9	00	8 9	09	70	20	29	2 6	2.5	20	70	70	70	2	6 8	2 6	2 6	2 5	2.0	20	20	20	20	2 8	2 6	2.5	2 2	70	70	20	2 i	2 1	2 2	2.5	2 2	70	20	20	0.2
	\mathbf{n}_1	10	10	10	10	10	10	0 -	10	10	10	10	10	10	2 -	10	10	10	10	10	10	10	10	9 -	10	10	10	10	10	10	10	10	10	10	10	10	10	01	01	10	10	10	10	10	10

$_{1}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	P1	p 2	power	$_{1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	p 2	power
10	70	2.90	0.0063	0.30	0.45	0.0099	30	20	2.51	8600.0	0.30	0.45	0.1264
10	2	2.90	0.0063	0.30	0.50	0.0256	30	20	2.51	0.0098	0.30	0.50	0.2494
010	2 9	2.90	0.0063	0.30	0.55	0.0570	30	2 2	2.51	0.0098	0.30	0.55	0.4194
2 0	2.5	2.90	0.0063	0.30	0.00	0.2129	30	2.2	2.5	0.0098	0.30	0.00	0.7872
	2.2	2.90	0.0063	0.30	0.70	0.3500	30	2.2	2.51	0.0098	0.30	0.70	0.9089
10	20	2.90	0.0063	0.35	0.50	0.0132	30	20	2.51	0.0098	0.35	0.50	0.1244
	20	2.90	0.0063	0.35	0.55	0.0316	30	20	2.51	0.0098	0.35	0.55	0.2480
10	20	2.90	0.0063	0.35	09.0	0.0698	30	20	2.51	0.0098	0.35	0.60	0.4243
10	20	2.90	0.0063	0.35	0.65	0.1387	30	20	2.51	0.0098	0.35	0.65	0.6257
9 :	29	2.90	0.0063	0.40	0.55	0.0167	30	29	2.51	0.0098	0.40	0.55	0.1273
01	2 8	2.90	0.0063	0.40	0.60	0.0398	30	2.0	2.51	0.0098	0.40	0.60	0.2588
0.0	000	0.12 0.13	0.0069	0.00	0.10	0.0000	000	000	24.2	0.0075	0.00	0.10	0.0002
	000	0.12	0.0069	0.0	0.40	0.0000	000	000	2.4.0 0.4.0	0.0075	0.0	0.40	0.4969
2 9	8 8	3 1.5	0.000	0.00	0.20	0.0000	000	8 8	9.49	0.0075	0.00	0.43	0.4505
2 0	8 8	3 1 2	0 0069	0.05	33.0	0.000	30	8 8	2.49	0.0075	0.00	3.0	0.8617
01	8 8	3.12	0.0069	0.05	0.40	0.0095	30	8 8	2.49	0.0075	0.05	0.40	0.9526
10	80	3.12	0.0069	0.02	0.45	0.0653	30	80	2.49	0.0075	0.05	0.45	0.9871
10	80	3.12	0.0069	0.10	0.25	0.0000	30	80	2.49	0.0075	0.10	0.25	0.1700
10	80	3.12	0.0069	0.10	0.30	0.0000	30	80	2.49	0.0075	0.10	0.30	0.3625
10	80	3.12	0.0069	0.10	0.35	0.0003	30	80	2.49	0.0075	0.10	0.35	0.5852
10	80	3.12	0.0069	0.10	0.40	0.0055	30	80	2.49	0.0075	0.10	0.40	0.7742
10	80	3.12	0.0069	0.10	0.45	0.0383	30	80	2.49	0.0075	0.10	0.45	0.8999
10	80	3.12	0.0069	0.10	0.50	0.1350	30	80	2.49	0.0075	0.10	0.50	0.9649
10	200	3.12	0.0069	0.10	0.55	0.2910	30	200	2.49	0.0075	0.10	0.55	0.9903
	000	0.17	0.0069	0.10	00.0	0.4719	000	000	24.0	0.0073	0.10	0.00	0.9979
0 1	200	0.12	0.0069	0.To	0.30	0.0000	200	200	24.0	0.0075	0.1.0	0.30	0.1080
0 1	000	0.12	0.0069	0.1.0	0.00	0.0002	000	000	2.4.0 0.4.0	0.0075	 	0.00	0.0210
2 0	8 8	3 1.5	0.000	0.10	0.40	0.0031	000	8 8	9.49	0.0075	0.15	0.40	0.3220
10	8	3.12	0.0069	0.15	0.50	0.0784	30	8	2.49	0.0075	0.15	0.50	0.8601
10	80	3.12	0.0069	0.15	0.55	0.1785	30	80	2.49	0.0075	0.15	0.55	0.9439
10	80	3.12	0.0069	0.15	0.60	0.3181	30	80	2.49	0.0075	0.15	09.0	0.9822
10	80	3.12	0.0069	0.15	0.65	0.4883	30	80	2.49	0.0075	0.15	0.65	0.9958
10	80	3.12	0.0069	0.20	0.35	0.0001	30	80	2.49	0.0075	0.20	0.35	0.1478
10	80	3.12	0.0069	0.20	0.40	0.0017	30	80	2.49	0.0075	0.20	0.40	0.2953
10	80	3.12	0.0069	0.20	0.45	0.0120	30	80	2.49	0.0075	0.20	0.45	0.4862
01	80	3.12	0.0069	0.20	0.50	0.0441	30	80	2.49	0.0075	0.20	0.50	0.6780
10	80	3.12	0.0069	0.20	0.55	0.1062	30	80	2.49	0.0075	0.20	0.55	0.8307
10	80	3.12	0.0069	0.20	09.0	0.2064	30	80	2.49	0.0075	0.20	09.0	0.9282
10	80	3.12	0.0069	0.20	0.65	0.3469	30	80	2.49	0.0075	0.20	0.65	0.9767
01	80	3.12	0.0069	0.20	0.70	0.5162	30	08	2.49	0.0075	0.20	0.70	0.9944
0 9	200	3.12	0.0069	0.25	0.40	0.0009	30	000	2.49	0.0075	0.25	0.40	0.1418
01	000	3.12	0.0069	0.25	0.45	0.0063	30	0 0 0	2.49	0.0075	0.25	0.45	0.2815
01	200	3.12	0.0069	0.25	0.50	0.0239	30	200	2.49	0.0075	0.25	0.50	0.4632
010	200	2.12	0.0069	0.70	0.55	0.0010	30	200	24.2	0.0075	0.70	0.55	0.0558
10	00	9.14	0.000%	0.7.0	20.0	1.1401	7		× 1 ×				
	C	2 1 2	09000	30.0	900	72000	000	000	2 0	0.0010	0.40	0.00	0.0100

Table B.24: continue on next page

Table B.24: continue on next page

s page	power	0.9940	0.1390	0.2724	0.6476	0.8139	0.9221	0.1374 0.9716	0.4558	0.6540	0.1408	0.2799	0.0443	0.4627	0.7107	0.8747	0.9579	0.9894	0.1826	0.5948	0.7858	0.9075	0.9676	0.9914	0.9984	0.1605	0.5200	0.7213	0.8636	0.9479	0.9849	0.9907	0.2977	0.4857	0.6810	0.8394	0.9357	0.9799	0.1398	0.2773	0.4656	0.6655	0.8272	0.9284
reviou	P2	0.75	0.45	0.55	09.0	0.65	0.70	0.00 8 8 8	0.60	0.65	0.55	09.0	0.15	0.25	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	0.60	0.30	0.33	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	0.60	0.65	0.40	0.45	0.50	0.55	0.60	0.65
$^{from p}$	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.05	0.05	0.02	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25
-continued from previous page	pvalue	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0080	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0080	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086
: -cor	$\mathbf{z}_{\mathbf{n}}$	2.49	2.49	2.49	2.49	2.49	2.49	24.2 04.0	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.43 2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.43 0.40	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49
B.24:	$_{\rm n_2}$	80	08	8 8	80	80	08	8 8	8 8	80	80	80	06 8	06	06	06	06	06	3 8	8 6	06	06	90	06	06	98	G G	06	90	90	06	8 8	06	90	90	90	06	3 8	86	06	90	06	06	90
Table	$^{\mathrm{n}_{1}}$	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	000	30	30	30	30	30	30	30	30	30	30	30	900	30	30	30	30	30	30	800	30	30	30	30	30
	power	0.5689	0.0032	0.0337	0.0768	0.1525	0.2731	0.0062	0.0437	0.0942	0.0089	0.0236	0.0000	0.0000	0.0000	0.0007	0.0128	0.0872	0.0000	0.0000	0.0074	0.0511	0.1684	0.3366	0.5249	0.0000	0.0002	0.0290	0.0980	0.2095	0.3642	0.000	0.0023	0.0160	0.0552	0.1264	0.2429	0.4048	0.0012	0.0084	0.0300	0.0737	0.1554	0.2836
	p ₂	0.75	0.45	0.55	09.0	0.65	0.70	0.00	0.60	0.65	0.55	0.60	0.15	0.25	0.30	0.35	0.40	0.45	0.25	0.00	0.40	0.45	0.50	0.55	0.60	0.30	0.35	0.45	0.50	0.55	0.60	0.00	0.40	0.45	0.50	0.55	0.60	0.65	0.10	0.45	0.50	0.55	0.60	0.65
	p1	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.40	0.40	0.05	0.05	0.05	0.02	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.10	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25
	pvalue	0.0069	0.0069	0.0069	0.0069	0.0069	0.0069	0.0069	0.0069	0.0069	0.0069	0.0069	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.009	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	6600.0	0.0099	0.0099	0.0099	0.0099	0.009	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099
	$\mathbf{z}_{\mathbf{u}}$	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3 0.0	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02	30.0	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.02
	$_{\rm n_2}$	80	08	8 8	80	80	08	8 8	8 8	80	80	80	06 8	06	06	06	06	06	3 8	8 6	06	06	90	06	06	98	G G	06	90	90	06	8 8	06	90	90	90	06	3 8	86	06	90	06	06	90
	$^{\mathrm{n}_{1}}$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0 1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0 1	10	10	10	10	10	10

8 8 8	$\mathbf{z}_{\mathbf{u}}$	pvalue	\mathbf{p}_1	p 2	power	$_{1}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p ₁	P2	power
06	3.02	0.0099	0.25	0.70	0.4452	30	06	2.49	0.0086	0.25	0.70	0.9777
90	3.02	0.0099	0.25	0.75	0.6174	30	06	2.49	0.0086	0.25	0.75	0.9952
0	3.02	0.0099	0.30	0.45	0.0043	30	06	2.49	0.0086	0.30	0.45	0.1350
3 8	3.02	0.0099	0.30	0.00 m	0.0157	30	G 6	2.49	0.0086	0.30	0.00	0.2740
G G	3.02	0.0039	0.30	0.60	0.0415	30	G G	2.49	0.0086	0.30	0.00	0.4596
06	3.02	0.0099	0.30	0.65	0.1894	30	06	2.49	0.0086	0.30	0.65	0.8229
06	3.02	0.0099	0.30	0.70	0.3235	30	06	2.49	0.0086	0.30	0.70	0.9290
06	3.02	0.0099	0.35	0.50	0.0078	30	06	2.49	0.0086	0.35	0.50	0.1381
90	3.02	0.0099	0.35	0.55	0.0222	30	06	2.49	0.0086	0.35	0.55	0.2776
06	3.02	0.0099	0.35	0.60	0.0556	30	06	2.49	0.0086	0.35	0.60	0.4639
06 8	3.02	0.0099	0.35	0.65	0.1203	30	6 6	2.49	0.0086	0.35	0.65	0.6634
8 6	3.02	0.0099	0.40	0.00	0.0308	30	06 0	2.43	0.0080	0.40	0.00	0.1420
100	3 2	0.0086	0.05	0.15	0.0000	30	100	2.56	0.0072	0.05	0.15	0.0370
100	3.18	0.0086	0.05	0.20	0.0000	30	100	2.56	0.0072	0.05	0.20	0.1844
100	3.18	0.0086	0.05	0.25	0.0000	30	100	2.56	0.0072	0.02	0.25	0.4244
100	3.18	0.0086	0.02	0.30	0.0000	30	100	2.56	0.0072	0.02	0.30	0.6754
100	3.18	0.0086	0.05	0.35	0.0001	30	100	2.56	0.0072	0.02	0.35	0.85555
100	3.18	0.0086	0.05	0.40	0.0035	30	100	2.56	0.0072	0.05	0.40	0.9506
991	8.18 8.18	0.0086	0.05	0.45	0.0397	30	100	2.56	0.0072	0.05	0.45	0.9874
100	2.50	0.0086	0.10	0.30	0.0000	30	100	2.56	0.0072	0.10	0.30	0.3347
100	3.18	0.0086	0.10	0.35	0.0001	30	100	2.56	0.0072	0.10	0.35	0.5557
100	3.18	0.0086	0.10	0.40	0.0020	30	100	2.56	0.0072	0.10	0.40	0.7586
100	3.18	0.0086	0.10	0.45	0.0232	30	100	2.56	0.0072	0.10	0.45	0.8959
100	2.1x	0.0086	0.10	0.50	0.1100	30	100	2.56	0.0072	0.10	0.50	0.9651
100	2.TX	0.0086	0.10	0.00	0.2070	30	100	0.20 5.50	0.0072	0.10	0.00	0.9912
100	3.18	0.0086	0.15	0.30	0.0000	30	100	2.56	0.0072	0.15	0.30	0.1344
100	3.18	0.0086	0.15	0.35	0.0000	30	100	2.56	0.0072	0.15	0.35	0.2887
100	3.18	0.0086	0.15	0.40	0.0011	30	100	2.56	0.0072	0.15	0.40	0.4948
100	3.18	0.0086	0.15	0.45	0.0131	30	100	2.56	0.0072	0.15	0.45	0.7002
100	2.1x	0.0086	0.15	0.50	0.0629	30	100	2.56	0.0072	0.15	0.50	0.8564
9 1	0.10 0.10	0.0086	0.TO	0.00	0.1593	900	100	00.7	0.0072	0.TO	0.00	0.9401
100	3.5	0.0086	0.15	0.65	0.4749	30	100	2.56	0.0072	0.15	0.02	0.9967
100	3.18	0.0086	0.20	0.35	0.0000	30	100	2.56	0.0072	0.20	0.35	0.1247
100	3.18	0.0086	0.20	0.40	0.0006	30	100	2.56	0.0072	0.20	0.40	0.2673
100	3.18	0.0086	0.20	0.45	0.0072	30	100	2.56	0.0072	0.20	0.45	0.4624
100	3.18	0.0086	0.20	0.50	0.0348	30	100	2.56	0.0072	0.20	0.50	0.6680
100	3.18	0.0086	0.20	0.55	0.0921	30	100	2.56	0.0072	0.20	0.55	0.8327
100	3.18	0.0086	0.20	0.60	0.1874	30	100	2.56	0.0072	0.20	0.60	0.9332
991	8.18 2.18	0.0086	0.20	0.65	0.3341	30	100	2.56	0.0072	0.20	0.65	0.9792
100	3.10	0.0086	0.25	0.40	0.0003	30	100	2.56	0.0072	0.25	0.40	0.1215
100	3.18	0.0086	0.25	0.45	0.0038	30	100	2.56	0.0072	0.25	0.45	0.2584
100	3.18	0.0086	0.25	0.50	0.0185	30	100	2.56	0.0072	0.25	0.50	0.4488
100	3.18	0.0086	0.25	0.55	0.0515	30	100	2.56	0.0072	0.25	0.55	0.6525

Table B.24: continue on next page

Table B.24: continue on next page

s page	power	0.9247	0.9759	0.1225	0.2579	0.4457	0.6467	0.0120	0.1262	0.2619	0.4465	0.6449	0.1310	0.1587	0.3698	0.6096	0.8026	0.9193	0.9736	0.9951	0.4942	0.6981	0.8488	0.9368	0.9783	0.9940	0.9987	0.2450	0.4230	0.7868	0.8990	0.9609	0.9880	0.9972	0.2760	0.5667	0.7401	0.8697	0.9474	0.9836	0.9963	0.1920	0.5459	0.5511 0.7123
reviou	p2	0.65	0.70	0.45	0.50	0.55	0.60	0.00	0.50	0.55	0.60	0.65	0.55	0.15	0.20	0.25	0.30	0.35	0.40	0.40 76	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.00	0.33	0.45	0.50	0.55	0.60	0.65	0.00	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.40 0.40	0.55
rom	p1	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.05	0.02	0.05	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.70	0.25
-continued from previous page	pvalue	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0039	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0000	00000	0.0099	0.0099	0.0099	0.0099	0.0099	0.0039	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0039	0.0099
	$\mathbf{z}_{\mathbf{u}}$	2.56	2.56 2.56	2.56	2.56	2.56	2.56	0.20	2.56	2.56	2.56	2.56	2.50 5.50	2.35	2.35	2.35	2.35	2.35	2.35	0.0 0.0 0.0 0.0	2.35	2.35	2.35	2.35	2.35	2.35	2.35	0.00 200 200 200	9.0	2.35	2.35	2.35	2.35	2.35	0.0 0.0 0.0	2.35	2.35	2.35	2.35	2.35	2.35	2.35	0.0 0.0 0.0	2.35
B.24:	$^{\mathrm{n}_{2}}$	100	100	100	100	100	100	100	100	100	100	100	100	50	20	20	20	020	200	00.00	20	20	20	20	20	20	20	20.02	3 2	20	20	20	20	200	00 00	20	20	20	20	20	20	200	00 00	20
Table	$^{\rm n_1}$	30	30	30	30	30	30	30	30	30	30	30	30	40	40	40	40	40	040	04.0	40	40	40	40	40	40	40	40	40	40	40	40	40	040	04.0	40	40	40	40	40	40	40	04.4	40
	power	0.2244	0.3835	0.0019	0.0095	0.0276	0.0671	0.1436	0.0046	0.0142	0.0375	0.0877	0.0069	0.0262	0.0960	0.2183	0.3763	0.5454	0.7009	0.0245	0.1877	0.3158	0.4659	0.6174	0.7504	0.8528	0.9225	0.0000	0.27.00	0.4186	0.5615	0.6955	0.8083	0.8931	0.0000	0.2590	0.3831	0.5204	0.6576	0.7805	0.8771	0.0810	0.1469	0.3587
	p ₂	0.65	0.70	0.45	0.50	0.55	0.60	0.00	0.50	0.55	09.0	0.65	0.55	0.15	0.20	0.25	0.30	0.35	0.40	0.4.0 0.4.0	0.30	0.35	0.40	0.45	0.20	0.55	0.60	0.00	0.33	0.45	0.50	0.55	09.0	0.65	0.00	0.45	0.50	0.55	09.0	0.65	0.70	0.40	0.40	0.55
	p1	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35	0.35	0.35	0.35	0.40	0.05	0.02	0.02	0.05	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.13	0.10	0.15	0.15	0.15	0.15	0.15	02.0	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.70	0.25
	pvalue	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0080	0.0086	0.0086	0.0086	0.0086	0.0086	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074	0.0074
	$\mathbf{z}_{\mathbf{u}}$	3.18	20 cm	3.18	3.18	3.18	3.18	3.10	3.18	3.18	3.18	3.18	2. c	2.51	2.51	2.51	2.51	2.51	2.51	2.01	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.01	2.5	2.51	2.51	2.51	2.51	2.51	10.2	2.51	2.51	2.51	2.51	2.51	2.51	2.51	10.2	2.51
	$^{\mathrm{n}_{2}}$	100	81	100	100	100	100	8 5	100	100	100	100	3 5	30	30	30	30	30	30	300	8 8	30	30	30	30	30	30	300	8 8	30	30	30	30	30	000	300	30	30	30	30	30	900	000	30
	$^{\rm n_1}$	10	10	10	10	10	10	10	10	10	10	10	10	20	20	20	20	20	07.0	0.00	20	20	20	20	20	20	20	0.00	0.00	20	20	20	20	07.0	0.00	20	20	20	20	20	20	50	0 0	20

30 2.51 0.0074 0.25 0.65 0.4963 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.65 0.683 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.770 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.775 0.874 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.2474 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.05 0.4888 4	30 2.51 0.0074 0.25 0.66 0.4963 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.65 0.683 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.77 0.874 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.75 0.874 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.1383 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.33 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.33 0.65 0.48	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	pvalue p1	P 2	power	$^{\rm n_1}$	$^{\rm n_2}$	$\mathbf{z}_{\mathbf{n}}$	pvalue	\mathbf{p}_{1}	P2	power
30 2.51 0.0074 0.25 0.65 0.6393 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.770 0.7703 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.770 0.7766 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.2283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.2283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.2283 40 50 2.35 0.0099 30 2.51 0.0074 0.33 0.55 0.073 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.132 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0	30 2.51 0.0074 0.25 0.65 0.6393 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.770 0.7703 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.770 0.7766 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.2483 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.2488 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.2488 40 50 2.35 0.0099 30 2.51 0.0074 0.33 0.65 0.773 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.172 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		09.0	0.4963	40	20	2.35	0.0099	0.25	09.0	0.8544
30 2.51 0.0074 0.25 0.770 0.7705 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.776 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.45 0.0766 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.60 0.3488 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.60 0.3488 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.60 0.253 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.0728 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.0728 4	30 2.51 0.0074 0.25 0.77 0.7703 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.77 0.7743 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.45 0.1788 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.50 0.1888 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.2488 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.1342 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.1342 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.1347 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.65	0.6393	40	20	2.35	0.0099	0.25	0.65	0.9413
30 2.51 0.0074 0.25 0.775 0.8766 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.775 0.8766 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.50 0.1383 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.50 0.1383 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.50 0.4373 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.2253 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.135 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.135 40 50 2.35 0.0099 30 2.51 0.0079 0.15 0.137	30 2.51 0.0074 0.25 0.775 0.8764 40 50 2.35 0.0099 30 2.51 0.0074 0.25 0.775 0.8764 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.50 0.1383 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.4874 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.2888 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0.2733 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.2733 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0.2723 40 50 2.35 0.0099 30 2.51 0.0099 0.05 0.275 <t< td=""><td>38 38 38 38 38 38 38 38 38 38 38 38 38 3</td><td></td><td>0.70</td><td>0.7703</td><td>40</td><td>20</td><td>2.35</td><td>0.0099</td><td>0.25</td><td>0.70</td><td>0.9818</td></t<>	38 38 38 38 38 38 38 38 38 38 38 38 38 3		0.70	0.7703	40	20	2.35	0.0099	0.25	0.70	0.9818
30 2.51 0.0074 0.30 0.45 0.0766 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.2283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.2283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.70 0.6588 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.70 0.6381 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.60 0.3478 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.0728 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.240 0.073 0.132 0.0099 40 2.40 0.0099 0.05 0.245 40 50 <th< td=""><td>30 2.51 0.0074 0.30 0.45 0.0766 40.5 0.0769 40.9 0.0099 0.0099 30 2.51 0.0074 0.30 0.45 0.0766 40.9 0.0099 0.0099 30 2.51 0.0074 0.30 0.55 0.2283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.70 0.65881 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.0728 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.2479 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.2479 40 50 2.35 0.0099 40 2.40 0.0074 0.40 0.55 0.0728 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.242<td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td></td><td>0.75</td><td>0.8746</td><td>40</td><td>20</td><td>2.35</td><td>0.0099</td><td>0.25</td><td>0.75</td><td>0.9960</td></td></th<>	30 2.51 0.0074 0.30 0.45 0.0766 40.5 0.0769 40.9 0.0099 0.0099 30 2.51 0.0074 0.30 0.45 0.0766 40.9 0.0099 0.0099 30 2.51 0.0074 0.30 0.55 0.2283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.70 0.65881 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.0728 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.2479 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.2479 40 50 2.35 0.0099 40 2.40 0.0074 0.40 0.55 0.0728 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.242 <td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td> <td></td> <td>0.75</td> <td>0.8746</td> <td>40</td> <td>20</td> <td>2.35</td> <td>0.0099</td> <td>0.25</td> <td>0.75</td> <td>0.9960</td>	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.75	0.8746	40	20	2.35	0.0099	0.25	0.75	0.9960
30 2.51 0.0074 0.30 0.56 0.1383 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.56 0.1383 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.66 0.2834 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0.0738 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.56 0.7283 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.56 0.7283 40 50 2.35 0.0099 40 2.51 0.0074 0.35 0.56 0.7478 40 50 2.35 0.0099 40 2.40 0.0079 0.05 0.21 0.1374 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.21 0	30 2.51 0.0074 0.30 0.56 0.1283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.56 0.1383 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.66 0.2474 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0.6738 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0.0728 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.2472 40 50 2.35 0.0099 40 2.40 0.0074 0.35 0.65 0.2422 40 50 2.35 0.0099 40 2.40 0.0074 0.40 0.60 0.137 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.45	0.0766	40	20	2.35	0.0099	0.30	0.45	0.1790
30 2.51 0.0074 0.30 0.55 0.2283 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.2883 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.1342 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.1342 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.60 0.1342 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.60 0.1352 40 50 2.35 0.0099 40 2.40 0.0074 0.35 0.60 0.137 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.137 4	30 2.51 0.0074 0.30 0.55 0.2273 4.0 50 2.35 0.0099 30 2.51 0.0074 0.30 0.55 0.2474 4 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0.1735 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.1372 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.2479 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.0246 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.13 0.135 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.13 0.	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.50	0.1383	40	20	2.35	0.0099	0.30	0.50	0.3290
30 2.51 0.0074 0.30 0.65 0.3474 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.6881 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.0734 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.0735 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.2253 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.3479 40 50 2.35 0.0099 40 2.40 0.0074 0.35 0.65 0.3479 40 60 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.2422 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0	30 2.51 0.0074 0.30 0.66 0.3474 40 50 2.35 0.0099 30 2.51 0.0074 0.30 0.65 0.683 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0.0735 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.07253 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.7783 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.7783 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.135 0.137 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.135 0.137 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.375	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.55	0.2283	40	20	2.35	0.0099	0.30	0.55	0.5164
30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.33 0.70 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.1342 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.3479 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.3479 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.3479 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.0246 40 60 2.35 0.0099 40 2.40 0.0099 0.05 0.13 0.137 40 60 2.35 0.0099 40 2.40 0.0099 0.05 0.13 0.	30 2.51 0.0074 0.30 0.65 0.4888 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.70 0.7738 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.1342 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.13473 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.3473 40 50 2.35 0.0099 30 2.51 0.0074 0.40 0.55 0.0728 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.0246 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.0246 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.00	0.3474	40	20	2.35	0.0099	0.30	0.60	0.7032
30 2.5.1 0.0074 0.30 0.77 0.6381 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.50 0.0735 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.50 0.1342 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.60 0.2253 40 50 2.35 0.0099 30 2.5.1 0.0074 0.40 0.60 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.1350 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.2425 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25	30 2.51 0.0074 0.30 0.77 0.6381 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.55 0.1345 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.60 0.2253 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.60 0.2253 40 50 2.35 0.0099 30 2.51 0.0074 0.40 0.65 0.1326 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.1037 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.137 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.137 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.2	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.65	0.4888	40	20	2.35	0.0099	0.30	0.65	0.8499
30 2.51 0.0074 0.35 0.50 0.07735 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.50 0.0773 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.2473 40 50 2.35 0.0099 30 2.51 0.0074 0.35 0.65 0.3479 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.123 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.132 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.2403 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.2403 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.	30 2.5.1 0.0074 0.35 0.50 0.0735 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.50 0.13473 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.65 0.1379 40 50 2.35 0.0099 30 2.5.1 0.0074 0.40 0.65 0.2478 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.127 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.15 0.242 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.10 0.44 0.44 0.60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.242 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.70	0.6381	40	20	2.35	0.0099	0.30	0.70	0.9400
30 2.5.1 0.0074 0.35 0.55 0.1342 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.65 0.2479 40 50 2.35 0.0099 30 2.5.1 0.0074 0.40 0.55 0.0778 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.0246 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.12 0.1337 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.2437 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.3590 40 0.0099 40 2.40 0.0099 0.10 0.45 0.8677 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.8677 40	30 2.5.1 0.0074 0.35 0.55 0.1342 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.55 0.13479 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.65 0.3479 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.1350 40 50 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.1372 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.1372 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.359 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.8890 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 <t< td=""><td>3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td></td><td>0.50</td><td>0.0735</td><td>40</td><td>20</td><td>2.35</td><td>0.0099</td><td>0.35</td><td>0.50</td><td>0.1754</td></t<>	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.50	0.0735	40	20	2.35	0.0099	0.35	0.50	0.1754
30 2.5.1 0.0074 0.35 0.60 0.2253 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.65 0.2478 40 50 2.35 0.0099 30 2.5.1 0.0074 0.40 0.65 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.12 0.1351 40 50 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.7431 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.5891 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.8997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.8997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.30 <t< td=""><td>30 2.5.1 0.0074 0.35 0.66 0.2253 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.65 0.2253 40 50 2.35 0.0099 30 2.5.1 0.0074 0.40 0.60 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.1242 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.1337 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.5891 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.987 40 0.0099 40 2.40 0.0099 0.10 0.35 0.987 40 <td< td=""><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td></td><td>0.55</td><td>0.1342</td><td>40</td><td>20</td><td>2.35</td><td>0.0099</td><td>0.35</td><td>0.55</td><td>0.3263</td></td<></td></t<>	30 2.5.1 0.0074 0.35 0.66 0.2253 40 50 2.35 0.0099 30 2.5.1 0.0074 0.35 0.65 0.2253 40 50 2.35 0.0099 30 2.5.1 0.0074 0.40 0.60 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.1242 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.1337 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.5891 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.987 40 0.0099 40 2.40 0.0099 0.10 0.35 0.987 40 <td< td=""><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td></td><td>0.55</td><td>0.1342</td><td>40</td><td>20</td><td>2.35</td><td>0.0099</td><td>0.35</td><td>0.55</td><td>0.3263</td></td<>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.55	0.1342	40	20	2.35	0.0099	0.35	0.55	0.3263
30 2.5.1 0.0074 0.35 0.65 0.3479 40 50 2.35 0.0099 30 2.5.1 0.0074 0.40 0.65 0.0378 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.127 40 50 2.36 0.0099 40 2.40 0.0099 0.05 0.15 0.123 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.243 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.435 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.8840 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.3574 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.8	30 2.51 0.0074 0.35 0.65 0.3479 40 50 2.35 0.0099 30 2.51 0.0074 0.40 0.65 0.03479 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.1037 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.15 0.1237 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.238 0.0099 40 2.40 0.0099 0.05 0.35 0.435 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.240 0.0099 0.10 0.25 0.236 0.0099 40 2.40 0.0099 0.10 0.25 0.236 40 0.0099 40 2.40 0.0099 0.10 0.25 0.236 40 0.0099	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		09.0	0.2253	40	20	2.35	0.0099	0.35	09.0	0.5147
30 2.5.1 0.0074 0.40 0.55 0.0728 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.13 0.0246 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.12 0.1337 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.240 0.0099 0.05 0.35 0.4131 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.431 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.8997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8687 40 60 2.36 0.0099 40	30 2.51 0.0074 0.40 0.55 0.0728 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.135 0.024 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.12 0.0137 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.240 0.0099 0.05 0.35 0.431 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.431 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.8997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.8977 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.40 0.8077 40 60 2.36 0.0099 40 2.	3 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0.65	0.3479	40	20	2.32	0.0099	0.35	0.65	0.7028
30 2.51 0.0074 0.40 0.60 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.1246 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.2412 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.2432 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.850 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1990 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1990 40 0.236 0.0099 40 2.40 0.0099 0.10 0.35 0.8970 40 0.0099 40 2.40 0.0099 0.10 0.45 0.6687 40 60 <th< td=""><td>30 2.5.1 0.0074 0.40 0.60 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.2413 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.2425 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.445 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1997 40 0.0099 40 2.40 0.0099 0.10 0.45 0.848 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.924 40 0</td><td>2</td><td></td><td>0.55</td><td>0.0728</td><td>40</td><td>20</td><td>2.35</td><td>0.0099</td><td>0.40</td><td>0.55</td><td>0.1771</td></th<>	30 2.5.1 0.0074 0.40 0.60 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.15 0.1350 40 50 2.35 0.0099 40 2.40 0.0099 0.05 0.25 0.2413 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.2425 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.445 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1997 40 0.0099 40 2.40 0.0099 0.10 0.45 0.848 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.924 40 0	2		0.55	0.0728	40	20	2.35	0.0099	0.40	0.55	0.1771
40 2.40 0.0099 0.05 0.15 0.0246 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.15 0.2242 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.2422 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.4131 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.840 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.1997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.8374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.8374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.	40 2.40 0.0099 0.05 0.12 0.0246 40 2.36 0.0099 40 2.40 0.0099 0.05 0.12 0.1037 40 0.0099 40 2.40 0.0099 0.05 0.25 0.2425 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.4131 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.440 0.7455 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.397 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.3574 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.3574 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.357 40 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td>0.00</td><td>0.1350</td><td>40</td><td>20</td><td>2.35</td><td>0.0099</td><td>0.40</td><td>09.0</td><td>0.3284</td></t<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.00	0.1350	40	20	2.35	0.0099	0.40	09.0	0.3284
40 2.40 0.0099 0.05 0.240 0.1037 40 2.36 0.0099 40 2.40 0.0099 0.05 0.243 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.5890 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.8840 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.40 0.556 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.40 0.556 40 0.0099 40 2.40 0.0099 0.15 0.8071 40 60 2.36 0.0099	40 2.40 0.0099 0.05 0.240 0.1037 40 2.36 0.0099 40 2.40 0.0099 0.05 0.25 0.1432 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.5890 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.5890 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.40 0.5687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8677 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8677	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.15	0.0246	40	09	2.36	0.0099	0.02	0.15	0.1849
40 2.40 0.0099 0.05 0.225 0.2422 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.8340 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.8540 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.8540 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1990 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.8974 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6887 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6887 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45	40 2.40 0.0099 0.05 0.242 40 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.5431 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.5840 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.40 0.7455 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.3374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.3374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6877 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8687 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.925 40 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.20	0.1037	40	09	2.36	0.0099	0.02	0.20	0.4160
40 2.40 0.0099 0.05 0.30 0.4131 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.4131 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.840 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.45 0.8840 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1390 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8524 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.50 0.8075 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.9903 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.	40 2.40 0.0099 0.05 0.33 0.4131 40 2.36 0.0099 40 2.40 0.0099 0.05 0.35 0.4131 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.840 0.7455 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.45 0.8640 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.3574 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6877 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.50 0.8070 40 0.236 0.0099 40 2.40 0.0099 0.15 0.55 0.8070 40 0.236 0.0099 40 2.40 0.0099 0.15 0.55 0.8070	4 4 <td></td> <td>0.25</td> <td>0.2422</td> <td>40</td> <td>09</td> <td>2.36</td> <td>0.0099</td> <td>0.02</td> <td>0.25</td> <td>0.6616</td>		0.25	0.2422	40	09	2.36	0.0099	0.02	0.25	0.6616
40 2.40 0.0099 0.05 0.35 0.8890 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.8890 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.8890 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.40 0.8077 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.40 0.8077 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.40 0.8077 40 60 2.36 0.0099 40 2.40 0.0099 0.11 0.55 0.9071 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0	40 2.40 0.0099 0.05 0.35 0.8890 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.8890 40 60 2.36 0.0099 40 2.40 0.0099 0.01 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9021 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0.30	0.4131	40	09	2.36	0.0099	0.05	0.30	0.8446
40 2.40 0.0099 0.05 0.44 0.7455 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.8440 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.0997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.37 0.1990 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6887 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.50 0.8070 40 0.236 0.0099 40 2.40 0.0099 0.11 0.55 0.8071 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794	40 2.40 0.0099 0.05 0.40 0.7455 40 60 2.36 0.0099 40 2.40 0.0099 0.05 0.45 0.45 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.0397 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.0374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.50 0.9873 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.313	6 6		0.35	0.5890	40	09	2.36	0.0099	0.05	0.35	0.9429
40 2.40 0.0099 0.05 0.45 0.8840 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.1397 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6877 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6877 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.50 0.8073 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.9033 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.9033 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0	40 2.40 0.0099 0.05 0.45 0.8840 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.0897 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.25 0.1397 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8502 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.50 0.8077 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.50 0.8070 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.9033 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.870 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.	4 4 <td></td> <td>0.40</td> <td>0.7455</td> <td>40</td> <td>09</td> <td>2.36</td> <td>0.0099</td> <td>0.05</td> <td>0.40</td> <td>0.9832</td>		0.40	0.7455	40	09	2.36	0.0099	0.05	0.40	0.9832
40 2.40 0.0099 0.10 0.25 0.0997 40 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.0374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.3374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.40 0.556 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9021 40 60 2.36 0.0099 40 2.40 0.0099 0.11 0.55 0.9021 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.475 40 6	40 2.40 0.0099 0.10 0.25 0.0997 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.3374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.3374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8070 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.8070 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.45	0.8640	40	09	2.36	0.0099	0.02	0.45	0.9961
40 2.40 0.0099 0.10 0.33 0.1990 40 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1390 40 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6887 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6887 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9217 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.60 0.9565 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.7798 40 <	40 2.40 0.0099 0.10 0.33 0.1990 40 2.36 0.0099 40 2.40 0.0099 0.10 0.35 0.1397 40 0.0099 40 2.40 0.0099 0.10 0.45 0.6887 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6887 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9071 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.9073 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 <th< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td>0.25</td><td>0.0997</td><td>40</td><td>09</td><td>2.36</td><td>0.0099</td><td>0.10</td><td>0.25</td><td>0.3146</td></th<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.25	0.0997	40	09	2.36	0.0099	0.10	0.25	0.3146
40 2.40 0.0099 0.10 0.35 0.3374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6876 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6877 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.8973 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0	40 2.40 0.0099 0.10 0.35 0.3374 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6877 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6877 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.50 0.8973 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.9033 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.30	0.1990	40	09	2.36	0.0099	0.10	0.30	0.5327
40 2.40 0.0099 0.10 0.40 0.5526 40 0.0099 40 2.40 0.0099 0.10 0.45 0.6526 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9921 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9921 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.9033 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.475 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.475 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 2.36 <th< td=""><td>40 2.40 0.0099 0.10 0.40 0.5526 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6526 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9921 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.9921 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.8704 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td>0.35</td><td>0.3374</td><td>40</td><td>09</td><td>2.36</td><td>0.0099</td><td>0.10</td><td>0.35</td><td>0.7328</td></th<>	40 2.40 0.0099 0.10 0.40 0.5526 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.6526 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9921 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.9921 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.8704 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.35	0.3374	40	09	2.36	0.0099	0.10	0.35	0.7328
40 2.40 0.0099 0.10 0.45 0.6687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9021 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9021 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.40 0.3103 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0	40 2.40 0.0099 0.10 0.45 0.6687 40 2.36 0.0099 40 2.40 0.0099 0.10 0.45 0.8687 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.9021 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.60 0.9365 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7598 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.75 <th< td=""><td>00 00 00 00 00 00 00 00 00 00 00 00 00</td><td></td><td>0.40</td><td>0.5026</td><td>40</td><td>09</td><td>2.36</td><td>0.0099</td><td>0.10</td><td>0.40</td><td>0.8755</td></th<>	00 00 00 00 00 00 00 00 00 00 00 00 00		0.40	0.5026	40	09	2.36	0.0099	0.10	0.40	0.8755
40 2.40 0.0099 0.10 0.50 0.8870 40 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.8870 40 60 2.36 0.0099 40 2.40 0.0099 0.11 0.55 0.9903 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.7825 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.60 0.8720 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.60 0.8720 <	40 2.40 0.0099 0.10 0.50 0.8970 40 60 2.36 0.0099 40 2.40 0.0099 0.10 0.55 0.8973 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.9053 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.30 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.755 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.759 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.750 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.85	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.45	0.6687	40	09	2.36	0.0099	0.10	0.45	0.9536
40 2.40 0.0099 0.10 0.55 0.9921 40 2.36 0.0099 40 2.40 0.0099 0.15 0.9921 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.470 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.7890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.0890 40 60 2.	40 2.40 0.0099 0.10 0.55 0.9921 40 2.36 0.0099 40 2.40 0.0099 0.15 0.9921 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.8704 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.8704 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.8890 40 <th< td=""><td>6</td><td></td><td>0.50</td><td>0.8070</td><td>40</td><td>09</td><td>2.36</td><td>0.0099</td><td>0.10</td><td>0.20</td><td>0.9862</td></th<>	6		0.50	0.8070	40	09	2.36	0.0099	0.10	0.20	0.9862
40 2.40 0.0099 0.10 0.60 0.9565 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.40 0.3103 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.3870 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.40 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.40 0	40 2.40 0.0099 0.10 0.60 0.9565 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4755 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7759 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7759 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8872 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.376 40 0.0099 40 2.40 0.0099 0.20 0.45 0.320 40 0	6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		0.55	0.9021	40	09	2.36	0.0099	0.10	0.55	0.9967
40 2.40 0.0099 0.15 0.30 0.0903 40 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.835 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.40 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.40 0.1767 <t< td=""><td>40 2.40 0.0099 0.15 0.30 0.0903 40 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.6705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.769 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.780 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.780 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504</td><td>6 6</td></t<> <td></td> <td>0.00</td> <td>0.9565</td> <td>40</td> <td>09</td> <td>2.36</td> <td>0.0099</td> <td>0.10</td> <td>0.60</td> <td>0.9994</td>	40 2.40 0.0099 0.15 0.30 0.0903 40 2.36 0.0099 40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.6705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.769 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.780 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.780 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504	6 6		0.00	0.9565	40	09	2.36	0.0099	0.10	0.60	0.9994
40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.47 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.47 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.6525 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8709 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8709 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.870 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.450 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.450 40 60 2.36 0.0099 <td>40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.8709 40 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8709 40 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.376 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.3020 40</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td></td> <td>0.30</td> <td>0.0903</td> <td>40</td> <td>09</td> <td>2.36</td> <td>0.0099</td> <td>0.15</td> <td>0.30</td> <td>0.2599</td>	40 2.40 0.0099 0.15 0.35 0.1794 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.50 0.8709 40 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8709 40 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.376 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.3020 40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.30	0.0903	40	09	2.36	0.0099	0.15	0.30	0.2599
40 2.40 0.0099 0.15 0.40 0.3103 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4705 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.659 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.0890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.6003 40 0.36 0.36 0.0099 40 2.40 0.0099 0.20 0.45 0	40 2.40 0.0099 0.15 0.40 0.3103 40 2.36 0.0099 40 2.40 0.0099 0.15 0.45 0.4755 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7598 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8570 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.9852 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.7577 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.46 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.324 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6503 <t< td=""><td>6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td></td><td>0.35</td><td>0.1794</td><td>40</td><td>09</td><td>2.36</td><td>0.0099</td><td>0.15</td><td>0.35</td><td>0.4564</td></t<>	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0.35	0.1794	40	09	2.36	0.0099	0.15	0.35	0.4564
40 2.40 0.0099 0.15 0.4705 40 0.0099 0.15 0.4705 40 0.0099 40 2.40 0.0099 0.15 0.55 0.7898 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.60 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.60 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.40 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.40 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4544 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.603 40 60 2.36 0.0099 40 2.40 0.0099 0.20 <t< td=""><td>40 2.40 0.0099 0.15 0.4705 40 0.0099 0.15 0.4705 40 0.0099 40 2.40 0.0099 0.15 0.55 0.7898 40 0.0099 40 2.40 0.0099 0.15 0.55 0.7898 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.7898 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8952 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.40 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.56 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.56 0.4504</td><td>00 00 00 00 00 00 00 00 00 00 00 00 00</td><td></td><td>0.40</td><td>0.3103</td><td>40</td><td>09</td><td>2.36</td><td>0.0099</td><td>0.15</td><td>0.40</td><td>0.6604</td></t<>	40 2.40 0.0099 0.15 0.4705 40 0.0099 0.15 0.4705 40 0.0099 40 2.40 0.0099 0.15 0.55 0.7898 40 0.0099 40 2.40 0.0099 0.15 0.55 0.7898 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.7898 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8952 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.40 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.56 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.56 0.4504	00 00 00 00 00 00 00 00 00 00 00 00 00		0.40	0.3103	40	09	2.36	0.0099	0.15	0.40	0.6604
40 2.40 0.0099 0.15 0.50 0.6325 40 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.870 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8952 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.8704 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.50 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.50 0.650 0.7349 40 <td< td=""><td>40 2.40 0.0099 0.15 0.50 0.6325 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.376 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.376 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.46 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.6033 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.633</td><td>04 04 04 04 04 04 04 04 04 04 04 04 04 0</td><td></td><td>0.45</td><td>0.4705</td><td>40</td><td>09</td><td>2.36</td><td>0.0099</td><td>0.15</td><td>0.45</td><td>0.8218</td></td<>	40 2.40 0.0099 0.15 0.50 0.6325 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.55 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.376 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.376 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.46 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.6033 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.633	04 04 04 04 04 04 04 04 04 04 04 04 04 0		0.45	0.4705	40	09	2.36	0.0099	0.15	0.45	0.8218
40 2.40 0.0099 0.15 0.55 0.7698 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8322 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.3720 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6034 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6033 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0	40 2.40 0.0099 0.15 0.55 0.7698 40 2.36 0.0099 40 2.40 0.0099 0.15 0.60 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.9352 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.320 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6503 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.65	0		0.50	0.6325	40	09	2.36	0.0099	0.15	0.50	0.9225
40 2.40 0.0099 0.15 0.60 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.0852 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.832 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.45 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.45 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.454 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.4839 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.4839 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.40 0.092 0.20 0.45 0.40 0.0099 0.20 0.45 0.40 0.0099 0.20 0.45 0.40 0.0099 0.20 0.45 0.40 0.0099 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.40 0.0099 0.20 0.20 0.20 0.20 0.20 0.20 0	40 2.40 0.0099 0.15 0.60 0.8700 40 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8700 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.6033 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.60 0.7349 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 <	0		0.52	0.7698	40	09	2.36	0.0099	0.15	0.55	0.9730
40 2.40 0.0099 0.15 0.65 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.15 0.65 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.35 0.8890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6033 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.60 0.7346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.60 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.60 0.6339 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.47 0.9255 40 60 2.36 0.0099 60 0.20 0.47 0.9255 40 60 2.36 0.0099 60 0.20 0.40 0.927 40 60 2.36 0.0099	40 2.40 0.0099 0.15 0.65 0.8352 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.0890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.6033 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.633 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.470 0.9325	04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		09.0	0.8700	40	09	2.36	0.0099	0.15	09.0	0.9929
40 2.40 0.0099 0.20 0.35 0.0890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.350 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.6346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.833 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.927 40 60 2.36 0.0099	40 2.40 0.0099 0.20 0.35 0.0890 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.46 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.350 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6503 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.47 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.47 0.0327 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.45 0.	40 40 40 40 40 40 40 40 40 40		0.65	0.9352	40	09	2.36	0.0099	0.15	0.65	0.9986
40 2.40 0.0099 0.20 0.40 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.3020 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.67346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8349 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8339 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.9927 40 60 2.36 0.0099	40 2.40 0.0099 0.20 0.40 0.1767 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.3020 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.60 0.7346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.60 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099	40 2.40 40 2.40 40 2.40 40 2.40 40 2.40 40 2.40 60 60 60 60 60 60 60 60 60 60 60 60 60 6		0.35	0.0890	40	09	2.36	0.0099	0.20	0.35	0.2305
40 2.40 0.0099 0.20 0.45 0.3020 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.60 0.7346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.60 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.9927 40 60 2.36 0.0099	40 2.40 0.0099 0.20 0.45 0.3020 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.45 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.6346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.67 0.6336 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.67 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 0.25 0.40 0.0099 0.25 0.000 0.009 0.25 0.000 0.000 0.000 0.20 0.000 0.000 0.20 0.000 0.000 0.20 0.000 0.000 0.20 0.000 0.000 0.000 0.20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0	40 2.40 40 2.40 40 2.40 40 2.40 40 2.40 40 2.40		0.40	0.1767	40	09	2.36	0.0099	0.20	0.40	0.4098
40 2.40 0.0099 0.20 0.50 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.839 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.9927 40 60 2.36 0.0099	40 2.40 0.0099 0.20 0.50 0.4504 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.76 0.73 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0925 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.093 40 60 2.36 0.0099	40 2.40 40 2.40 40 2.40 40 2.40 40 2.40		0.45	0.3020	40	09	2.36	0.0099	0.20	0.45	0.6051
40 2.40 0.0099 0.20 0.55 0.6003 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.6038 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 0.20 0.70 0.9227 40 60 2.36 0.0099 0.20 0.20 0.70 0.9227 40 60 2.36 0.0099	40 2.40 0.0099 0.20 0.55 0.6003 40 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.7346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.9277 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.45 0.1768 40 60 2.36 0.0099	40 2.40 40 2.40 40 2.40 40 2.40		0.50	0.4504	40	09	2.36	0.0099	0.20	0.50	0.7765
40 2.40 0.0099 0.20 0.60 0.7346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099	40 2.40 0.0099 0.20 0.60 0.7346 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 0.20 0.65 0.8439 40 60 2.36 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 0.25 0.45 0.07768 40 60 2.36 0.0099	40 2.40 40 2.40 40 2.40		0.55	0.6003	40	09	2.36	0.0099	0.20	0.55	0.8973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 2.40 0.0099 0.20 0.65 0.8439 40 60 2.36 0.0099 40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.037 40 60 2.36 0.0099 0.25 0.45 0.0768 40 60 2.36 0.0099	40 2.40		0.60	0.7346	40	09	2.36	0.0099	0.20	0.60	0.9633
40 2.40 0.0099 0.20 0.70 0.9225 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 2.40		0.65	0.8439	40	09	2.36	0.0099	0.20	0.65	0.9901
40 - 2.40 - 0.0099 - 0.25 - 0.40 - 0.0927 - 40 - 60 - 2.36 - 0.0099	40 2.40 0.0099 0.25 0.40 0.0927 40 60 2.36 0.0099 40 2.40 0.0099 0.25 0.45 0.1768 40 60 2.36 0.0099 40 2.40 0.0000 0.25 0.45 0.0768	010		0.70	0.9225	40	09	2.36	0.0099	0.20	0.70	0.9981
	$40 ext{ } 2.40 ext{ } 0.0099 ext{ } 0.25 ext{ } 0.45 ext{ } 0.1768 ext{ } 40 ext{ } 60 ext{ } 2.36 ext{ } 0.0099$	40 2.40		0.40	0.0927	40	09	2.36	0.0099	0.25	0.40	0.2083
40 2.40 0.0099 0.25 0.45 0.1768 40 60 2.36 0.0099	40 340 0,0000 0.9E 0.EO 0,3019 40 EO 3.9E 0,0000	40 2.40		0.45	0.1768	40	09	2.36	0.0099	0.25	0.45	0.3737

Table B.24: continue on next page

Table B.24: continue on next page

ı																																												
power	0.7525	0.8853	0.9887	0.9978	0.1937	0.3579	0.5569	0.7442	0.8805	0.9566	0.1913	0.5500	0.7421	0.1933	0.3572	0.1615	0.4057	0.6627	0.8497	0.9480	0.9861	0.9972	0.5301	0.7386	0.8838	0.9599	0.9894	0.9979	0.9897	0.4548	0.6686	0.8366	0.9355	0.9799	0.9951	0.2252	0.4164	0.6260	0.8004	0.9131	0.9700	0.9986	0.2127	0.3911
P2	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.50	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.00	0.70	0.40	0.45
p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.35	0.00	0.35	0.40	0.40	0.05	0.02	0.02	0.02	0.05	0.05	0.03	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.TO	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.05
pvalue	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0033	0.0099	0.0099	0.0099	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094
zn	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.30	00.7	2.36	2.36	2.36	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	9.39
n ₂	09	09	8 9	09	09	09	09	09	09	09	09	8 9	8 9	09	09	20	70	20	20	20	2 6	2 2	202	70	20	70	20	2 2	9 9	2 2	20	20	20	2 6	2 2	2 2	20	20	20	2 9	2 5	202	70	20
n1	40	40	4 4	40	40	40	40	40	40	40	040	4 4	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	040	40	40	40	40	40	404	40	40	40
power	0.4267	0.5721	0.8368	0.9240	0.0942	0.1710	0.2766	0.4103	0.5643	0.7189	0.0911	0.1038	0.4143	0.0885	0.1646	0.0019	0.0227	0.1017	0.2562	0.4576	0.6581	0.8171	0.1128	0.2389	0.4087	0.5914	0.7514	0.8676	0.9392	0.1159	0.2300	0.3821	0.5491	0.7046	0.8298	0.0521	0.1182	0.2228	0.3611	0.5183	0.6754	0.9113	0.0556	0.1180
P2	0.55	0.60	0.70	0.75	0.45	0.50	0.55	09.0	0.65	0.70	0.50	0.00	0.65	0.55	09.0	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45	0.50	0.55	0.00	0.35	0.40	0.45	0.50	0.55	0.60	0.35	0.40	0.45	0.50	0.55	0.65	0.70	0.40	0.45
p1	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.00	0.0	0.35	0.40	0.40	0.02	0.05	0.02	0.05	0.05	0.05	0.03	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.I.O	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.05
pvalue	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0039	0.0099	0.0099	0.0099	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056
zn	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	04.2	2.40	2.40	2.40	2.40	2.65	2.65	2.65	2.65	2.65	2.65	2.00 2.00 2.000	2.65	2.65	2.65	2.65	2.65	2.65	2.00 8.00 7.000	2.65	2.65	2.65	2.65	2.65	2.65 5.65	2.65	2.65	2.65	2.65	2.65	2.05 0.65	2.65	2.65	2.65
n ₂	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	20	20	20	20	20	02.	200	20	20	20	20	20	50	00 70	20	20	20	20	200	20 10 10 10 10 10 10 10 10 10 10 10 10 10	20	20	20	20	50	20.00	20	20	025
n ₁	20	500	20	20	20	20	20	20	20	20	0.20	000	20	20	20	20	20	20	20	20	70	20	20	20	20	20	20	50	0 20	202	20	20	20	200	0.70	20	20	20	20	50	0.00	20	20	20

page	power	0.5922	0.7704	0.8955	0006.0	0.9985	0.2017	0.3692	0.5669	0.7532	268870	0.9020	0.3558	0.5588	0.7530	0.1880	0.3570	0.1582	0.4113	0.0020	0.9564	0.9888	0.9978	0.3153	0.5433	0.7483	0.8898	0.9632	0.9908	0.9983	0.2522	0.4539	0.6698	0.8398	0.9385	0.9820	0.9962	0.9994	0.2100	0.6234	0.8035	0.9199	0.9754	0.9945	0.9991 0.2034	
revious	p2	0.50	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	0.65	0.0	0.55	0.60	0.65	0.55	0.60	0.15	0.20	0.20	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.33	0.45	0.50	0.55	0.60	0.65	0.70 0.40	
rom pr	p1	0.25	0.25	0.25	0.75	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.35	0.40	0.40	0.03	0.00	0.00	0.05	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
-continued from previous page	pvalue	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	
-cont	$\mathbf{z}_{\mathbf{n}}$	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	2.39	92.59	2.39	2.39	2.39	2.39	2.39	24.2	24.2	24.2	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	24.2	2.42	2.42	2.42	2.42	2.42	2.42	2.42	24.2	2.42	2.42	2.42	2.42	2.42	2.42 2.42	
B.24:	$^{\mathrm{n}_{2}}$	20	20	2.5	2 2	202	70	70	20	28	2 2	2 5	2.02	70	20	20	20	200	200	8 8	8 8	80	80	80	80	80	80	0 0 0 0 0	000	200	8 8	80	80	80	80	80	80	200	8 8	8 8	80	80	80	80	8 8	
Table	$^{\mathrm{n}_{1}}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	040	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40 40	
	power	0.2150	0.3465	0.5051	0.0710	0.9184	0.0568	0.1163	0.2113	0.3472	0.5162	0.0909	0.1177	0.2192	0.3665	0.0598	0.1267	0.0022	0.0295	0.1559	0.5597	0.7517	0.8801	0.0546	0.1550	0.3098	0.4923	0.6680	0.8107	0.9078	0.0669	0.1549	0.2856	0.4473	0.6170	0.7663	0.8769	0.9464	0.0700	0.2687	0.4215	0.5868	0.7405	0.8626	0.9405 0.0711	
	P2	0.50	0.55	0.60	0.00	0.75	0.45	0.50	0.55	0.60	0.65	0.70	0.55	09.0	0.65	0.55	0.60	0.15	0.20	0.20	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.90	0.35	0.40	0.45	0.50	0.52	0.60	0.65	0.33	0.45	0.50	0.55	09.0	0.65	0.70	
	p1	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.00	0.35	0.35	0.35	0.40	0.40	0.00	0.00	0.00	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
	pvalue	0.0056	0.0056	0.0056	0.0030	0.0056	0.0056	0.0056	0.0056	0.0056	0.0056	0.0036	0.0056	0.0056	0.0056	0.0056	0.0056	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	
	$\mathbf{z}_{\mathbf{n}}$	2.65	2.65	2.65	0.00	2.65	2.65	2.65	2.65	2.65	2.65	0.00	2.65	2.65	2.65	2.65	2.65	0.00 0.00	2.03 E E	0.00	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59 0 n	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	0.00	2.59	2.59	2.59	2.59	2.59	2.59 2.59	
	$_{\rm n_2}$	20	20	20	5 E	20	20	20	20	200	200	00.00	20	20	20	20	20	00	00	8 9	8 9	09	09	09	09	09	09	09 8	09	00	9 9	09	09	09	09	09	09	09	8 8	9	09	09	09	09	8 8	
	$^{\rm n_1}$	20	20	50	200	20	20	20	20	50	07.0	0.00	20	20	20	20	20	020	0 0	0.00	20	20	20	20	20	20	20	20	50	07.0	20	20	20	20	20	20	20	07.0	0.00	20	20	20	20	20	70 70 70	

Table B.24: continue on next page

Table B.24: continue on next page

is page	power	0.3838	0.5955	0.9102	0.9714	0.9933	0.9989	0.1343	0.5863	0.7769	0.9049	0.9694	0.1951	0.5836	0.7736	0.1981	0.3741	0.1350	0.3795	0.6590	0.9591	0.9909	0.9985	0.2951	0.5412	0.7604	0.9015	0.9930	0.9987	8666.0	0.2529	0.4664	0.6856	0.9319	0.9845	0.9968	9666.0	0.2237	0.4202	0.6353	0.0120	0.9776	0.9952	0.9993
revion	p2	0.45	0.00	09.0	0.65	0.70	0.75	0.45	0.55	09.0	0.65	0.70	0.00	09.0	0.65	0.55	0.60	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.40	0.55	09.0	0.30	0.35	0.40	0.450	0.55	09.0	0.65	0.35	0.40	0.45	0.00	0.60	0.65	0.70
irom p	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35 0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.00 0.05	0.00	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	02.0	0.20	0.20	0.20
B.24: -continued from previous page	pvalue	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0000	0.0000	0.0030	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0030	0.0000	0.0000	0.0000	0.0000	0.0090	0.0030	0.0000	0.0000	0.0000	0.0090	0.0000	0.0090	0.0030	0.0000	0.0000	0.0090
: $-con$	$\mathbf{z}_{\mathbf{n}}$	2.42	24.2	2.42	2.42	2.42	2.42	24.2	2.42	2.42	2.42	2.42	24.2	2.42	2.42	2.42	2.42	2.44	2.44	2.44	24.4 44.4	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44 4.44	2.44	2.44	2.44	2.44	2.44	2.44	4.0	2.44	2.44	2.44
B.24	$_{\rm n_2}$	80	8 8	80	80	80	08 8	8 8	80	80	80	80	8 8	8 8	80	80	80	06	06	3 8	G 6	06	06	06	06	06	0 0	6.6	06	06	06	06	06	G 6	06	06	06	06	06	06	8 8	06	06	06
Table	$^{\mathrm{n}_{1}}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	707	40	40	40
	power	0.1459	0.4075	0.5749	0.7361	0.8615	0.9405	0.0710	0.2570	0.4087	0.5815	0.7428	0.0730	0.2649	0.4216	0.0763	0.1557	0.0010	0.0198	0.1085	0.2003	0.6991	0.8561	0.0393	0.1159	0.2490	0.4353	0.7954	0.9023	0.9606	0.0454	0.1167	0.2430	0.4150	0.7526	0.8705	0.9445	0.0506	0.1229	0.2410	0.3930	0.7269	0.8563	0.9395
	p2	0.45	0.00	09.0	0.65	0.70	0.75	24.0	0.55	09.0	0.65	0.70	0.00 7.00 7.00	09.0	0.65	0.55	09.0	0.15	0.20	0.25	0.35	0.40	0.45	0.25	0.30	0.35	0.40	0.50	0.55	09.0	0.30	0.35	0.40	0.450	0.55	09.0	0.65	0.35	0.40	0.45	0.0 0.0 0.0	09.0	0.65	0.70
	p1	0.25	0.25	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30	0.30	0.35 0.35	0.35	0.35	0.40	0.40	0.02	0.05	0.0 0.0 0.0 0.0	0.0	0.05	0.02	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	pvalue	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0000	0.0090	0.0030	0.0030	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0030	0.0000	0.0000	0.0000	0.0090	0.0090	0.0030	0.0000	0.0000	0.0000	0.0090	0.0000	0.0090	0.0090	0.0000	0.0000	0.0090
	$\mathbf{z}_{\mathbf{n}}$	2.59	2.59	2.59	2.59	2.59	2.59	2.73	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.68	2.68	2.00	00.7	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	00.7	2.68	2.68	2.68	2.68	2.68	2.68	00.7	2.68	2.68	2.68
	$^{\mathrm{n}_{2}}$	09	9	09	09	09	09	8 9	09	09	09	09	09	8 9	09	09	09	20	2 2	9 9	2 2	202	20	20	20	20	2 2	2 2	202	70	20	29	2 2	2 2	202	20	20	70	20	2 2	2 2	2.0	70	20
	$^{\mathrm{n}_{1}}$	20	20	20	20	20	50	0.00	20	20	20	20	0 70	20	20	20	20	20	50	0 70	0.00	20	20	20	20	20	50	20	20	20	20	20	50	200	20	20	20	20	20	50	000	20	20	20

z _u pvalue 2.68 0.0090 2.68 0.0098 2.86 0.0058	P1 P1 P2	P2 0.45 0.45 0.55 0.65 0.65 0.70 0.75 0.75 0.45 0.55	0.0566 0.1267 0.2367 0.3838 0.5549	n ₁ 40	n2	z	pvalue	p1	p2	power
	0.00 0.02 0.02 0.02 0.02 0.03 0.03 0.03	0.40 0.45 0.50 0.55 0.60 0.75 0.75 0.75 0.50	0.0566 0.1267 0.2367 0.3838 0.5549	40			0 0			
	0.00 2.25 2.25 2.25 2.25 2.25 2.25 2.25	0.45 0.50 0.50 0.60 0.65 0.70 0.75 0.50 0.50	0.1267 0.2367 0.3838 0.5549	40	06	2.44	0.0000	0.25	0.40	0.2066
	0.0055	0.50 0.65 0.70 0.75 0.75 0.50	0.2367 0.3838 0.5549		06	2.44	0.0000	0.25	0.45	0.3892
	0.005555555555555555555555555555555555	0.60 0.65 0.75 0.75 0.50	0.5549	40	G 6	2.44	0.0030	0.25	0.50	0.6015
	0.025 0.025 0.035 0.030 0.030 0.030 0.035 0.035 0.040 0.040 0.055 0.055	0.65 0.70 0.75 0.45 0.50		40	06	2.44	0.0000	0.25	0.60	0.9138
	0.025 0.025 0.030 0.030 0.030 0.030 0.035 0.005 0.005 0.005	0.70 0.75 0.45 0.50 0.55	0.7240	40	06	2.44	0.0000	0.25	0.65	0.9742
	0.25 0.33 0.33 0.33 0.33 0.33 0.03 0.03 0.0	0.75 0.45 0.50 0.55	0.8582	40	06	2.44	0.0000	0.25	0.70	0.9948
	0.30 0.30 0.30 0.30 0.33 0.03 0.04 0.05 0.05 0.05	0.45 0.50 0.55	0.9411	40	06	2.44	0.0000	0.25	0.75	0.9993
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.55	0.0601	40	06	2.44	0.0090	0.30	0.45	0.1944
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	0.1276 0.9251	040	G 6	44.0	0.0030	0.30	0.50 88	0.3727
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.2331	04.5	200	4.7	0.0030	0.00	0.00	0.3808
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	0.5649	40	06	4.44	0.0030	0.30	0.00	0.7610
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70	0.7365	40	06	2.44	0.0000	0.30	0.70	0.9752
	0.35 0.05 0.05 0.05 0.05 0.05	0.50	0.0619	40	06	2.44	0.0000	0.35	0.50	0.1907
	0.35 0.40 0.040 0.05 0.05 0.05	0.55	0.1301	40	06	2.44	0.0000	0.35	0.55	0.3691
	0.35 0.40 0.05 0.05 0.05	09.0	0.2437	40	06	2.44	0.0000	0.35	0.60	0.5880
	0.40 0.40 0.05 0.05 0.05	0.65	0.4034	40	06	2.44	0.0090	0.35	0.65	0.7886
	0.40 0.05 0.05 0.05	0.55	0.0649	40	06	2.44	0.0090	0.40	0.55	0.1933
	0.05 0.05 0.05 0.05	09.0	0.1392	40	06	2.44	0.0090	0.40	0.60	0.3792
	0.05 0.05 0.05 0.05	0.15	0.0001	40	100	2.60	0.0083	0.05	0.15	0.0877
_	0.05 0.05 0.05	0.20	0.0041	40	100	2.60	0.0083	0.05	0.20	0.3172
	0.03	0.25	0.0461	40	100	7.60	0.0083	0.05	0.25	0.6036
2.86 0.0038 2.86 0.0058		0.50	0.1024	40	100	0.20	0.0003	0.05	0.00	0.0220
	0.05	0.40	0.6233	40	100	2.60	0.0083	0.05	0.40	0.9858
_	0.05	0.45	0.8058	40	100	2.60	0.0083	0.05	0.45	0.9977
_	0.10	0.25	0.0163	40	100	2.60	0.0083	0.10	0.25	0.2362
	0.10	0.30	0.0709	40	100	2.60	0.0083	0.10	0.30	0.4612
_	0.10	0.35	0.1832	40	100	2.60	0.0083	0.10	0.35	0.6975
	0.10	0.40	0.3527	40	100	2.60	0.0083	0.10	0.40	0.8707
	0.10	0.45	0.5493	40	001	2.60	0.0083	0.10	0.45	0.9583
2.86 0.0058	0.10	0.50	0.7293	40	100	2.60	0.0083	0.10	0.50	0.9898
	0.10	0.00	0.0039	04.0	100	00.7	0.0083	0.10	0.00	0.9992
_	0.15	0.30	0.0260	40	100	2.60	0.0083	0.15	0.30	0.1909
_	0.15	0.35	0.0785	40	100	2.60	0.0083	0.15	0.35	0.3938
	0.15	0.40	0.1790	40	100	2.60	0.0083	0.15	0.40	0.6269
_	0.15	0.45	0.3285	40	100	2.60	0.0083	0.15	0.45	0.8159
_	0.15	0.50	0.5089	40	100	2.60	0.0083	0.15	0.50	0.9290
	0.15	0.55	0.6893	40	100	2.60	0.0083	0.15	0.55	0.9797
_	0.15	0.60	0.8346	40	100	2.60	0.0083	0.15	0.60	0.9959
_	0.15	0.65	0.9275	40	100	2.60	0.0083	0.15	0.65	0.9994
_	0.20	0.35	0.0311	40	100	2.60	0.0083	0.20	0.35	0.1730
_	0.20	0.40	0.0825	40	100	2.60	0.0083	0.20	0.40	0.3572
_	0.20	0.45	0.1760	40	100	2.60	0.0083	0.20	0.45	0.5770
	0.20	0.50	0.3167	40	100	2.60	0.0083	0.20	0.50	0.7748
2.86 0.0058	0.20	0.55	0.4933	40	100	2.60	0.0083	0.20	0.55	0.9081
2.86 0.0058	0.20	0.60	0.6729	40	100	2.60	0.0083	0.20	0.60	0.9723

Table B.24: continue on next page

							Table	B.24:	con	B.24: -continued from previous	$from \ j$	reviou	s $page$
$^{\mathrm{n}_{1}}$	$^{\mathrm{n}_{2}}$	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p 2	power	$^{\mathrm{n}_{1}}$	2 u	$\mathbf{z}_{\mathbf{u}}$	pvalue	p1	p2	power
20	80	2.86	0.0058	0.20	0.70	0.9220	40	100	2.60	0.0083	0.20	0.70	0.9991
20	80	2.86	0.0058	0.25	0.40	0.0347	40	100	2.60	0.0083	0.25	0.40	0.1614
20	80	2.86	0.0058	0.25	0.45	0.0852	40	100	2.60	0.0083	0.25	0.45	0.3311
20	80	2.86	0.0058	0.25	0.50	0.1774	40	100	2.60	0.0083	0.25	0.50	0.5481
20	80	2.86	0.0058	0.25	0.55	0.3177	40	100	2.60	0.0083	0.25	0.55	0.7550
20	80	2.86	0.0058	0.25	0.60	0.4920	40	100	2.60	0.0083	0.25	0.60	0.8972
20	80	2.86	0.0058	0.25	0.65	0.6719	40	100	2.60	0.0083	0.25	0.65	0.9676
20	80	2.86	0.0058	0.25	0.70	0.8265	40	100	2.60	0.0083	0.25	0.70	0.9928
20	80	2.86	0.0058	0.25	0.75	0.9298	40	100	2.60	0.0083	0.25	0.75	0.9990
20	80	2.86	0.0058	0.30	0.45	0.0374	40	100	2.60	0.0083	0.30	0.45	0.1538
20	80	2.86	0.0058	0.30	0.50	0.0897	40	100	2.60	0.0083	0.30	0.50	0.3215
20	80	2.86	0.0058	0.30	0.55	0.1843	40	100	2.60	0.0083	0.30	0.55	0.5397
20	80	2.86	0.0058	0.30	09.0	0.3254	40	100	2.60	0.0083	0.30	09.0	0.7469
20	80	2.86	0.0058	0.30	0.65	0.5037	40	100	2.60	0.0083	0.30	0.65	0.8921
20	80	2.86	0.0058	0.30	0.70	0.6925	40	100	2.60	0.0083	0.30	0.70	0.9670
20	80	2.86	0.0058	0.35	0.50	0.0409	40	100	2.60	0.0083	0.35	0.50	0.1545
20	80	2.86	0.0058	0.35	0.55	0.0962	40	100	2.60	0.0083	0.35	0.55	0.3226
20	80	2.86	0.0058	0.35	09.0	0.1943	40	100	2.60	0.0083	0.35	09.0	0.5385
20	80	2.86	0.0058	0.35	0.65	0.3441	40	100	2.60	0.0083	0.35	0.65	0.7472
20	80	2.86	0.0058	0.40	0.55	0.0450	40	100	2.60	0.0083	0.40	0.55	0.1582
20	80	2.86	0.0058	0.40	09.0	0.1044	40	100	2.60	0.0083	0.40	0.60	0.3263
							Table	3 B.24	con	Table B.24: concluded from previous page	from p	reviou	s page

Appendix C Figures

Figure C.1: Comparison of the p-values for the Z exact test for the unpooled and pooled statistics in case of equal sample size, $\alpha = 0.05$.

		Z	<u>.</u>	ŗ)	p-va	alue
n1	n2	S-U	S-P	S-U	S-P	S-U	S-P
10	10	1.96	1.79	0.7007	0.7007	0.0474	0.0474
11	11	1.92	1.78	0.8034	0.8034	0.0454	0.0454
12	12	1.86	1.74	0.8154	0.8154	0.0468	0.0468
13	13	1.81	1.70	0.8258	0.8258	0.0480	0.0480
14	14	1.77	1.68	0.8349	0.8349	0.0491	0.0491
15	15	1.74	1.66	0.5000	0.5000	0.0495	0.0495
16	16	1.92	1.82	0.1181	0.3212	0.0416	0.0361
17	17	1.90	1.80	0.8880	0.8880	0.0420	0.0420
18	18	1.88	1.79	0.1065	0.1065	0.0424	0.0424
19	19	1.86	1.78	0.7183	0.7183	0.0415	0.0415
20	20	1.85	1.78	0.5000	0.5000	0.0404	0.0404
21	21	1.83	1.76	0.5000	0.5000	0.0442	0.0442
22	22	1.81	1.75	0.5000	0.5000	0.0481	0.0481
23	23	1.84	1.78	0.6151	0.6151	0.0438	0.0438
24	24	1.80	1.74	0.3670	0.3670	0.0455	0.0455
25	25	1.77	1.71	0.3546	0.3546	0.0472	0.0472
26	26	1.75	1.70	0.3439	0.3439	0.0489	0.0489
27	27	1.79	1.74	0.2580	0.2580	0.0413	0.0413
28	28	1.78	1.73	0.7464	0.7464	0.0423	0.0423
29	29	1.78	1.73	0.7508	0.7508	0.0432	0.0432
30	30	1.77	1.73	0.7550	0.7550	0.0440	0.0440
31	31	1.72	1.68	0.5000	0.5000	0.0490	0.0490
32	32	1.80	1.76	0.5966	0.6279	0.0458	0.0432
33	33	1.77	1.73	0.6118	0.6118	0.0471	0.0471
34	34	1.75	1.71	0.6289	0.6289	0.0488	0.0488
35	35	1.75	1.71	0.3468	0.3468	0.0470	0.0470
36	36	1.75	1.71	0.1520	0.1520	0.0435	0.0435
37	37	1.70	1.67	0.2186	0.2186	0.0492	0.0492
38	38	1.71	1.68	0.7884	0.7884	0.0497	0.0497
39	39	1.74	1.70	0.8539	0.8539	0.0445	0.0445
40	40	1.73	1.70	0.8556	0.8556	0.0448	0.0448
50	50	1.71	1.69	0.1289	0.8711	0.0476	0.0476
60	60	1.70	1.68	0.1608	0.1608	0.0500	0.0500
70	70	1.72	1.70	0.6132	0.6020	0.0476	0.0486
80	80	1.68	1.67	0.6877	0.6877	0.0494	0.0494
90	90	1.69	1.67	0.3616	0.3616	0.0494	0.0494
100	100	1.68	1.67	0.8758	0.8758	0.0495	0.0495
150	150	1.67	1.66	0.3544	0.3544	0.0498	0.0498

z: critical value; p: nuisance parameter point of maximum; p-value: attained size of the test; n1: sample size 1; n2: sample size 2; S-U: Suissa Unpooled; S-P: Suissa Pooled. Green cell: larger p-value; Orange cell: lower p-value.

Figure C.2: Comparison of the p-values for the Z exact test for the unpooled and pooled statistics in case of equal sample size, $\alpha = 0.05$.

		Z	<u> </u>	ŗ)	p-va	alue
n1	n2	S-U	S-P	S-U	S-P	S-U	S-P
10	10	2.17	1.96	0.5000	0.5000	0.0211	0.0211
11	11	2.40	2.14	0.6449	0.6449	0.0207	0.0207
12	12	2.26	2.05	0.3184	0.3184	0.0225	0.0225
13	13	2.16	1.99	0.3038	0.3038	0.0243	0.0243
14	14	2.19	2.03	0.7879	0.7879	0.0208	0.0208
15	15	2.14	2.00	0.7962	0.7962	0.0216	0.0216
16	16	2.29	2.13	0.8033	0.8033	0.0224	0.0224
17	17	2.21	2.07	0.1910	0.1910	0.0231	0.0231
18	18	2.14	2.02	0.3308	0.3308	0.0239	0.0239
19	19	2.14	2.02	0.1776	0.1776	0.0243	0.0243
20	20	2.10	1.99	0.1736	0.1736	0.0249	0.0249
21	21	2.17	2.05	0.8465	0.8465	0.0248	0.0248
22	22	2.14	2.04	0.5000	0.5000	0.0244	0.0244
23	23	2.17	2.07	0.5585	0.5585	0.0237	0.0237
24	24	2.12	2.03	0.6050	0.6050	0.0245	0.0245
25	25	2.10	2.01	0.3416	0.3416	0.0232	0.0232
26	26	2.06	1.98	0.3330	0.3330	0.0243	0.0243
27	27	2.11	2.03	0.2867	0.2867	0.0223	0.0223
28	28	2.10	2.03	0.7180	0.7180	0.0231	0.0231
29	29	2.09	2.02	0.7224	0.5000	0.0238	0.0240
30	30	2.15	2.07	0.7875	0.4471	0.0216	0.0235
31	31	2.11	2.04	0.5936	0.5936	0.0240	0.0240
32	32	2.09	2.02	0.3606	0.3606	0.0233	0.0233
33	33	2.06	2.00	0.3530	0.3530	0.0243	0.0243
34	34	2.06	2.00	0.1975	0.1975	0.0233	0.0233
35	35	2.06	2.00	0.3043	0.3043	0.0240	0.0240
36	36	2.05	1.99	0.3002	0.3002	0.0247	0.0247
37	37	2.05	1.99	0.8105	0.8105	0.0244	0.0244
38	38	2.04	1.99	0.8114	0.8114	0.0247	0.0247
39	39	2.10	2.04	0.5987	0.4543	0.0230	0.0248
40	40	2.08	2.02	0.6084	0.6084	0.0238	0.0238
50	50	2.05	2.01	0.6056	0.6056	0.0244	0.0244
60	60	2.05	2.02	0.5875	0.6023	0.0245	0.0238
70	70	2.00	1.98	0.8245	0.8245	0.0249	0.0249
80	80	2.01	1.98	0.3210	0.3210	0.0245	0.0245
90	90	2.00	1.98	0.3654	0.3654	0.0250	0.0250
100	100	2.01	1.99	0.5967	0.5967	0.0248	0.0248
150	150	2.00	1.99	0.6112	0.6112	0.0244	0.0244

z: critical value; p: nuisance parameter point of maximum; p-value: attained size of the test; n1: sample size 1; n2: sample size 2; S-U: Suissa Unpooled; S-P: Suissa Pooled. Green cell: larger p-value; Orange cell: lower p-value.

Figure C.3: Comparison of the p-values for the Z exact test for the unpooled and pooled statistics in case of equal sample size, $\alpha = 0.05$.

		Z	<u> </u>	ŗ)	p-va	alue
n1	n2	S-U	S-P	S-U	S-P	S-U	S-P
10	10	2.76	2.4	0.5000	0.5000	0.0064	0.0064
11	11	2.63	2.3	0.5000	0.5000	0.0087	0.0087
12	12	2.83	2.5	0.6114	0.6114	0.0087	0.0087
13	13	2.67	2.4	0.6577	0.6577	0.0096	0.0096
14	14	2.65	2.4	0.2519	0.2519	0.0083	0.0083
15	15	2.57	2.3	0.7560	0.7560	0.0088	0.0088
16	16	2.51	2.3	0.7612	0.7612	0.0094	0.0094
17	17	2.66	2.4	0.7714	0.7714	0.0099	0.0099
18	18	2.63	2.4	0.6552	0.3519	0.0084	0.0083
19	19	2.59	2.4	0.3353	0.3353	0.0091	0.0091
20	20	2.56	2.4	0.5000	0.5000	0.0084	0.0084
21	21	2.54	2.4	0.5000	0.5000	0.0098	0.0098
22	22	2.59	2.4	0.5519	0.5519	0.0097	0.0097
23	23	2.55	2.4	0.3287	0.3287	0.0091	0.0091
24	24	2.49	2.4	0.3236	0.3236	0.0097	0.0097
25	25	2.51	2.4	0.7387	0.7387	0.0093	0.0093
26	26	2.47	2.3	0.7534	0.7534	0.0098	0.0098
27	27	2.50	2.4	0.5000	0.5000	0.0100	0.0100
28	28	2.55	2.4	0.5908	0.5908	0.0091	0.0091
29	29	2.50	2.4	0.6087	0.6087	0.0096	0.0096
30	30	2.48	2.4	0.3498	0.3498	0.0092	0.0092
31	31	2.44	2.3	0.3434	0.3434	0.0097	0.0097
32	32	2.46	2.4	0.7043	0.7043	0.0091	0.0091
33	33	2.43	2.3	0.7063	0.7063	0.0094	0.0094
34	34	2.54	2.4	0.4659	0.6136	0.0093	0.0084
35	35	2.50	2.4	0.5821	0.6215	0.0095	0.0089
36	36	2.48	2.4	0.7760	0.7760	0.0094	0.0094
37	37	2.44	2.4	0.3649	0.3649	0.0098	0.0098
38	38	2.44	2.4	0.2197	0.2197	0.0098	0.0098
39	39	2.45	2.4	0.7277	0.7277	0.0093	0.0093
40	40	2.44	2.4	0.7304	0.7304	0.0096	0.0096
50	50	2.48	2.4	0.5818	0.6033	0.0091	0.0086
60	60	2.44	2.4	0.5839	0.5839	0.0096	0.0096
70	70	2.42	2.4	0.5838	0.5684	0.0097	0.0100
80	80	2.39	2.4	0.7375	0.7375	0.0097	0.0097
90	90	2.38	2.3	0.7609	0.7609	0.0097	0.0097
100	100	2.37	2.3	0.1185	0.1185	0.0099	0.0099
150	150	2.37	2.3	0.6167	0.6121	0.0097	0.0099

z: critical value; p: nuisance parameter point of maximum; p-value: attained size of the test; n1: sample size 1; n2: sample size 2; S-U: Suissa Unpooled; S-P: Suissa Pooled. Green cell: larger p-value; Orange cell: lower p-value.

Figure C.4: Comparison of the p-values for the Z exact test for the unpooled and pooled statistics for different sample sizes, $\alpha = 0.05$.

		2	Z	ŗ)	p-va	alue
n1	n2	S-U	S-P	S-U	S-P	S-U	S-P
10	20	2.24	1.88	0.2119	0.3160	0.0427	0.0316
10	30	2.74	1.83	0.2087	0.6925	0.0427	0.0439
10	40	3.17	2.03	0.2132	0.9307	0.0445	0.0417
10	50	3.54	1.74	0.2171	0.5482	0.0463	0.0478
10	60	3.88	2.08	0.2197	0.6895	0.0479	0.0249
10	70	4.19	1.79	0.2214	0.8010	0.0494	0.0489
10	80	4.65	1.83	0.2338	0.9518	0.0430	0.0482
10	90	4.91	1.97	0.2335	0.8936	0.0448	0.0412
10	100	5.16	2.04	0.2332	0.9487	0.0464	0.0453
20	30	1.87	1.69	0.4135	0.4030	0.0412	0.0481
20	40	2.14	1.78	0.1048	0.6943	0.0467	0.0419
20	50	2.36	1.76	0.1069	0.5939	0.0480	0.0412
20	60	2.59	1.73	0.1067	0.7716	0.0486	0.0495
20	70	2.79	1.75	0.1079	0.8246	0.0498	0.0452
20	80	3.19	1.74	0.1194	0.6792	0.0385	0.0459
20	90	3.36	1.83	0.1194	0.7833	0.0405	0.0407
20	100	3.52	1.71	0.1194	0.6507	0.0423	0.0473
30	40	1.79	1.68	0.2770	0.4346	0.0459	0.0489
30	50	1.84	1.70	0.2094	0.7588	0.0468	0.0486
30	60	2.08	1.69	0.0714	0.6687	0.0489	0.0499
30	70	2.33	1.76	0.0750	0.8486	0.0427	0.0473
30	80	2.55	1.69	0.0782	0.6443	0.0387	0.0490
30	90	2.76	1.71	0.0810	0.6830	0.0359	0.0480
30	100	2.75	1.72	0.0748	0.7824	0.0462	0.0465
40	50	1.78	1.68	0.2003	0.5746	0.0442	0.0480
40	60	1.86	1.72	0.3169	0.7947	0.0381	0.0472
40	70	1.79	1.67	0.3262	0.6310	0.0473	0.0494
40	80	2.10	1.69	0.0540	0.7004	0.0500	0.0491
40	90	2.31	1.70	0.0577	0.5207	0.0402	0.0465
40	100	2.52	1.72	0.0526	0.7206	0.0498	0.0471

z: critical value; p: nuisance parameter point of maximum; p-value: attained size of the test; n1: sample size 1; n2: sample size 2; S-U: Suissa Unpooled; S-P: Suissa Pooled. Green cell: larger p-value; Orange cell: lower p-value.

Figure C.5: Comparison of the p-values for the Z exact test for the unpooled and pooled statistics for different sample sizes, $\alpha = 0.025$.

		7	<u> </u>	ŗ)	p-va	alue
n1	n2	S-U	S-P	S-U	S-P	S-U	S-P
10	20	2.59	2.08	0.2478	0.6055	0.0242	0.0231
10	30	3.31	2.17	0.2569	0.5567	0.0185	0.0176
10	40	3.66	2.16	0.2529	0.8812	0.0235	0.0246
10	50	4.20	2.39	0.2668	0.8650	0.0211	0.0166
10	60	4.48	2.08	0.2624	0.6895	0.0247	0.0249
10	70	4.93	2.67	0.2713	0.9545	0.0230	0.0163
10	80	5.34	2.24	0.2781	0.8420	0.0218	0.0239
10	90	5.56	3.02	0.2735	0.9662	0.0245	0.0099
10	100	5.93	3.18	0.2787	0.9639	0.0234	0.0086
20	30	2.30	1.97	0.3053	0.6029	0.0209	0.0246
20	40	2.66	2.06	0.1430	0.6682	0.0171	0.0217
20	50	2.86	2.00	0.1388	0.3788	0.0208	0.0237
20	60	3.04	2.21	0.1331	0.6546	0.0236	0.0157
20	70	3.42	2.10	0.1419	0.8961	0.0191	0.0242
20	80	3.58	2.04	0.1397	0.6670	0.0219	0.0245
20	90	3.73	2.16	0.1380	0.8764	0.0244	0.0243
20	100	4.04	2.24	0.1450	0.8211	0.0212	0.0185
30	40	2.21	2.10	0.1329	0.8156	0.0236	0.0222
30	50	2.36	2.02	0.1012	0.7688	0.0200	0.0237
30	60	2.59	2.01	0.0980	0.8434	0.0188	0.0250
30	70	2.79	2.10	0.0977	0.8637	0.0183	0.0226
30	80	2.99	2.12	0.0982	0.8047	0.0180	0.0232
30	90	3.17	2.08	0.0977	0.8101	0.0177	0.0243
30	100	3.15	2.10	0.0909	0.6487	0.0245	0.0206
40	50	2.05	2.00	0.3855	0.5035	0.0245	0.0225
40	60	2.06	1.98	0.3861	0.3861	0.0249	0.0249
40	70	2.33	1.99	0.0802	0.3559	0.0246	0.0250
40	80	2.55	2.07	0.0749	0.5750	0.0198	0.0212
40	90	2.76	2.03	0.0754	0.6656	0.0171	0.0242
40	100	2.75	2.02	0.0690	0.6948	0.0227	0.0245

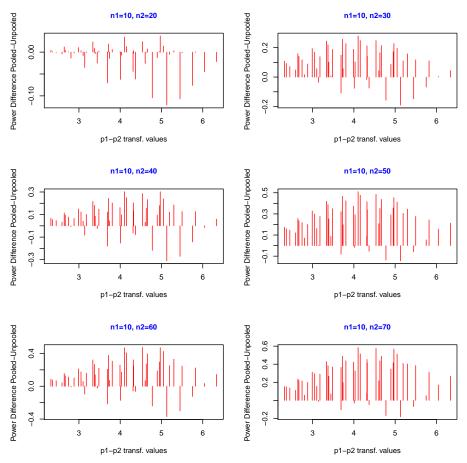
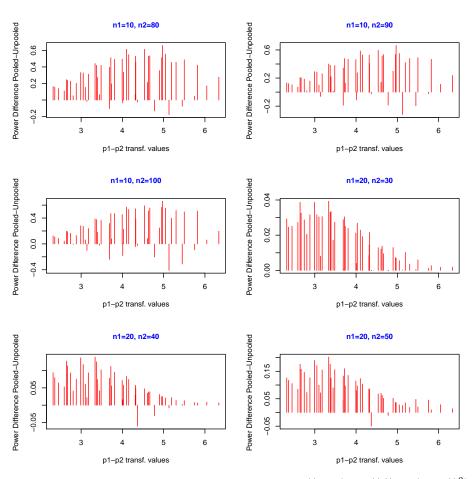
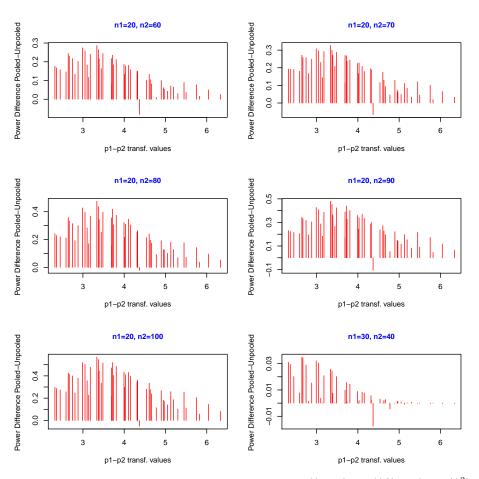
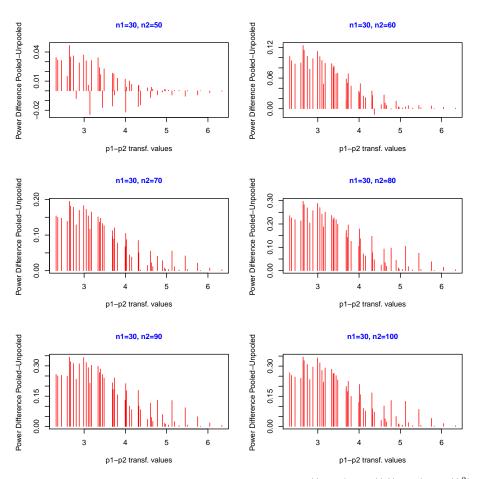

z: critical value; p: nuisance parameter point of maximum; p-value: attained size of the test; n1: sample size 1; n2: sample size 2; S-U: Suissa Unpooled; S-P: Suissa Pooled. Green cell: larger p-value; Orange cell: lower p-value.

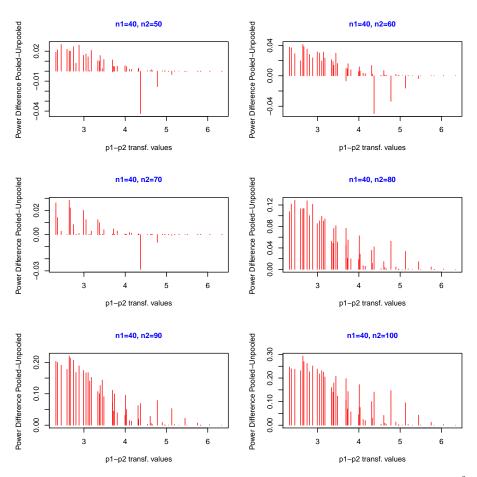
Figure C.6: Comparison of the p-values for the Z exact test for the unpooled and pooled statistics for different sample sizes, $\alpha = 0.01$.


		7	<u>z</u>	ķ)	p-va	alue
n1	n2	S-U	S-P	S-U	S-P	S-U	S-P
10	20	3.29	2.45	0.3138	0.6813	0.0071	0.0083
10	30	3.88	2.56	0.3056	0.7475	0.0077	0.0078
10	40	4.39	2.66	0.3116	0.7236	0.0085	0.0063
10	50	4.86	2.72	0.3159	0.9549	0.0092	0.0095
10	60	5.28	2.66	0.3187	0.8842	0.0097	0.0098
10	70	5.86	2.90	0.3328	0.9440	0.0083	0.0063
10	80	6.21	3.12	0.3328	0.9371	0.0089	0.0069
10	90	6.55	3.02	0.3327	0.9662	0.0094	0.0099
10	100	6.86	3.18	0.3326	0.9639	0.0098	0.0086
20	30	2.74	2.51	0.2031	0.6623	0.0085	0.0074
20	40	3.11	2.40	0.1540	0.7736	0.0097	0.0099
20	50	3.32	2.65	0.1644	0.6937	0.0085	0.0056
20	60	3.68	2.59	0.1703	0.8560	0.0077	0.0077
20	70	3.92	2.68	0.1642	0.9212	0.0100	0.0090
20	80	4.12	2.86	0.1701	0.9343	0.0092	0.0058
20	90	4.42	2.77	0.1747	0.8797	0.0087	0.0065
20	100	4.69	2.66	0.1786	0.9111	0.0083	0.0093
30	40	2.50	2.39	0.4129	0.6151	0.0097	0.0094
30	50	2.86	2.39	0.1391	0.7384	0.0068	0.0097
30	60	3.04	2.41	0.1253	0.7563	0.0072	0.0099
30	70	3.22	2.51	0.1207	0.8980	0.0078	0.0098
30	80	3.39	2.49	0.1154	0.6520	0.0081	0.0075
30	90	3.55	2.49	0.1151	0.7514	0.0088	0.0086
30	100	3.70	2.56	0.1144	0.7776	0.0093	0.0072
40	50	2.50	2.35	0.2674	0.5576	0.0091	0.0099
40	60	2.62	2.36	0.1579	0.5247	0.0096	0.0099
40	70	2.79	2.39	0.1016	0.6716	0.0090	0.0094
40	80	2.99	2.42	0.0969	0.8112	0.0079	0.0097
40	90	3.17	2.44	0.0934	0.6478	0.0073	0.0090
40	100	3.34	2.60	0.0928	0.9206	0.0070	0.0083

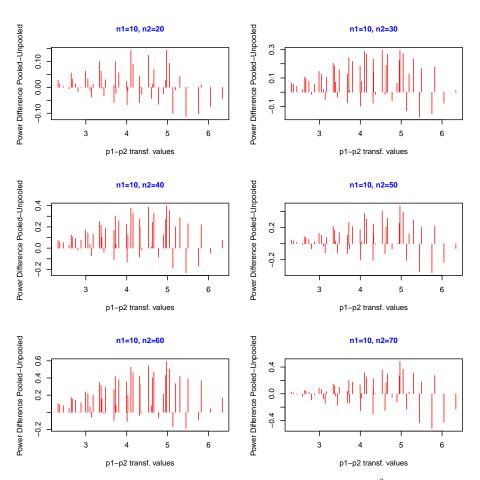
z: critical value; p: nuisance parameter point of maximum; p-value: attained size of the test; n1: sample size 1; n2: sample size 2; S-U: Suissa Unpooled; S-P: Suissa Pooled. Green cell: larger p-value; Orange cell: lower p-value.


Figure C.7: Comparison of power between the unpooled and the pooled Z Exact Tests for different sample sizes, $\alpha = 0.05$.

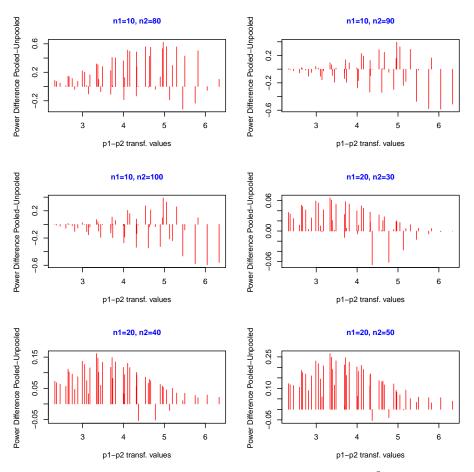

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.

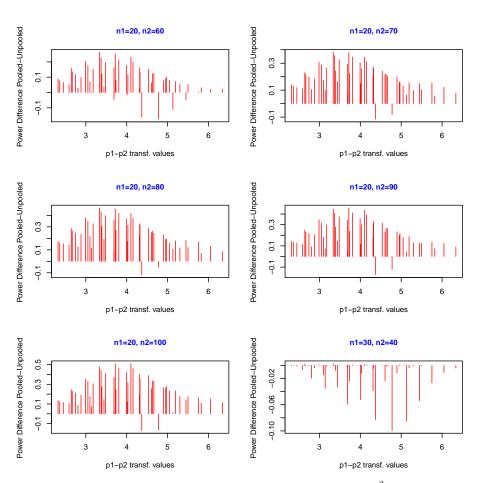
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.

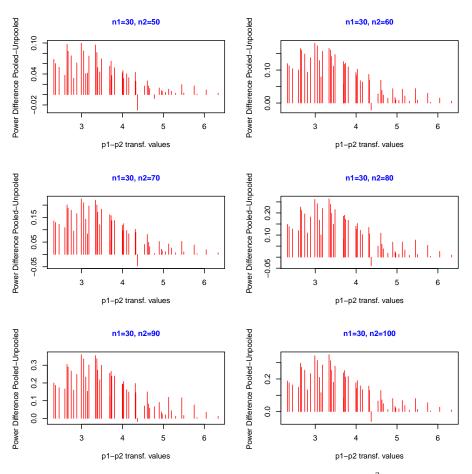


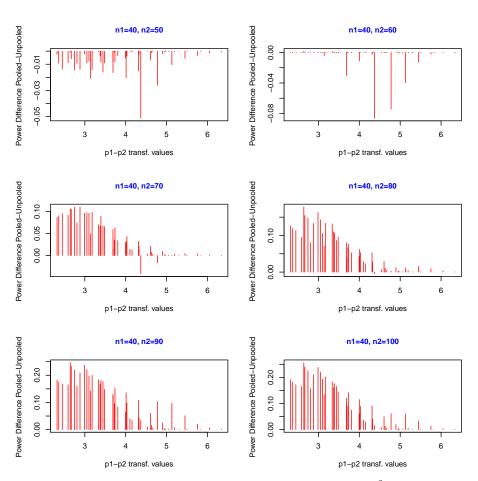
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.



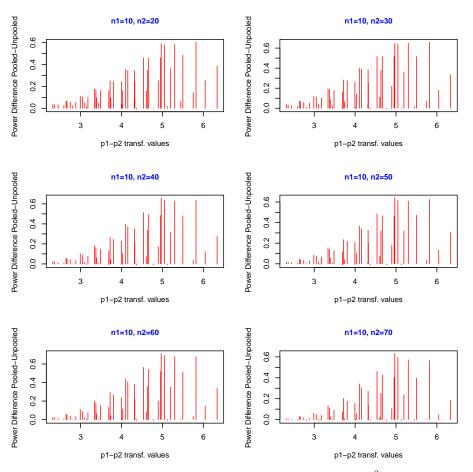
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.


Figure C.8: Comparison of power between unpooled and pooled Z Exact Tests for different sample sizes, $\alpha = 0.025$.

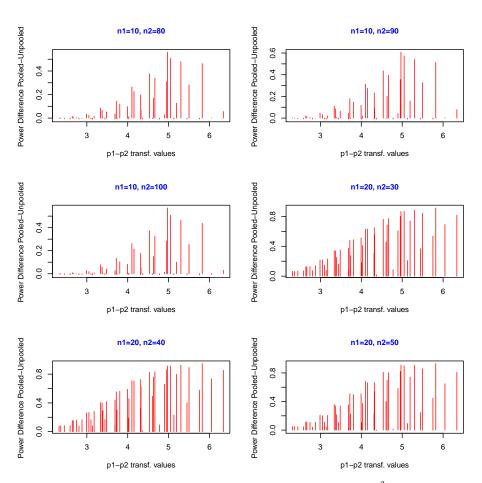

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.

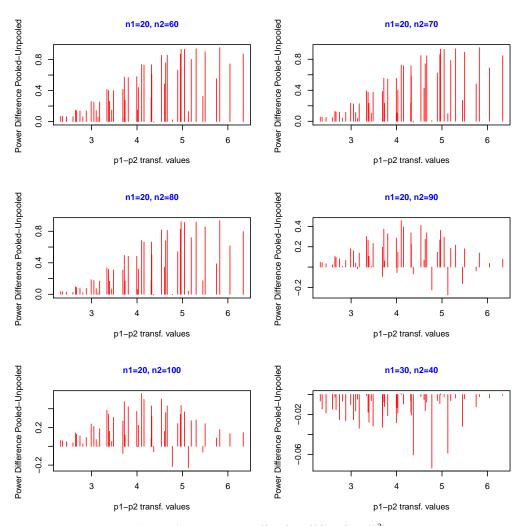
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.

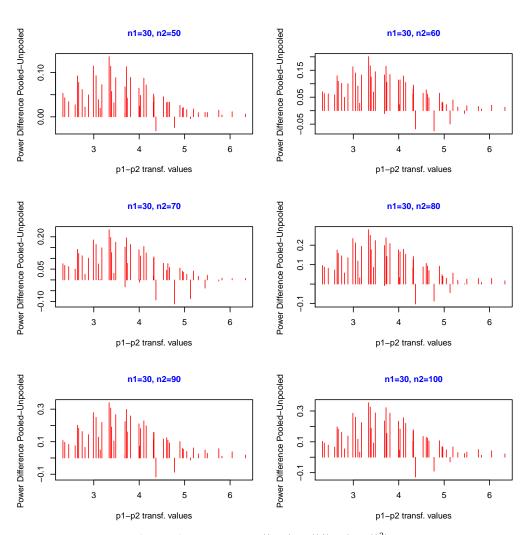


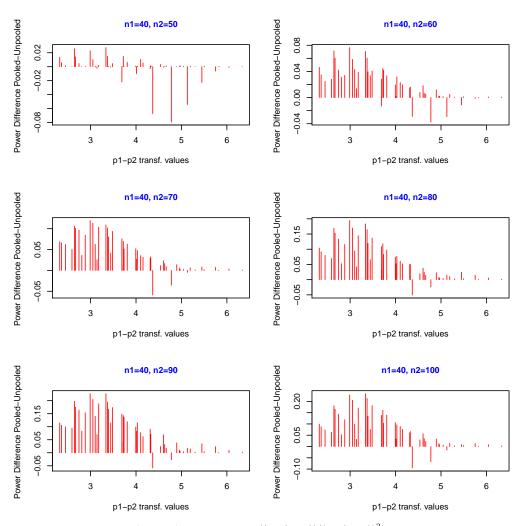
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.



X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.


Figure C.9: Comparison of power between unpooled and pooled Z Exact Tests for different sample sizes, $\alpha = 0.01$.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the pooled test and the unpooled test.

Figure C.10: Comparison of p-values for the unpoooled Z test calculated with both the classical Lehmann (1959) procedure and the Berger and Boos (1994) procedure for $\alpha = 0.05$.

	B-U-00001	0.0180	0.0300	0.0404	0.0494	0.0309	0.0365	0.0419	0.0469	0.0312	0.0451	0.0467	0.0480	0.0486	0.0496	0.0354	0.0370	0.0383	0.0424	0.0430	0.0438	0.0450	0.0496	0.0496	0.0490	0.0480	0.0410	0.0495	0.0417	0.0479	0.0494
		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	O	0	0	0	0
p-value	B-U-0001	0.0177	0.0295	0.0398	0.0485	0.0302	0.0358	0.0411	0.0461	0.0305	0.0452	0.0468	0.0481	0.0486	0.0496	0.0353	0.0369	0.0381	0.0425	0.0428	0.0437	0.0447	0.0493	0.0494	0.0487	0.0480	0.0411	0.0495	0.0417	0.0478	0.0493
<u>a</u>	B-U-001	0.0182	0.0298	0.0398	0.0485	0.0304	0.0359	0.0410	0.0460	0.0306	0.0461	0.0477	0.0489	0.0495	0.0343	0980.0	0.0375	0.0387	0.0434	0.0434	0.0444	0.0452	0.0498	0.0499	0.0491	0.0488	0.0419	0.0406	0.0426	0.0485	0.0497
	S-U	0.0427	0.0427	0.0445	0.0463	0.0479	0.0494	0.0430	0.0448	0.0464	0.0412	0.0467	0.0480	0.0486	0.0498	0.0385	0.0405	0.0423	0.0459	0.0468	0.0489	0.0427	0.0387	0.0359	0.0462	0.0442	0.0381	0.0473	0.0500	0.0402	0.0498
	B-U-00001	0.1072	0.1063	0.1055	0.1051	0.1048	0.1044	0.1042	0.1041	0.1039	0.1016	0.1048	0.1046	0.1044	0.1041	0.1040	0.1039	0.1037	0.0970	0.0953	0.0956	0.0958	0960.0	0.0963	0.0964	0.0955	0.0958	0.0959	0.0961	0.0964	0.0965
ď	B-U-0001	0.1063	0.1055	0.1048	0.1044	0.1042	0.1039	0.1037	0.1036	0.1034	0.1016	0.1043	0.1040	0.1039	0.1036	0.1035	0.1034	0.1032	0.0970	0.0958	0.0961	0.0963	0.0965	0.0967	0.0968	0960.0	0.0963	0.0964	0.0966	0.0968	0.0969
	B-U-001	0.1053	0.1045	0.1040	0.1037	0.1035	0.1033	0.1031	0.1031	0.1029	0.1015	0.1036	0.1034	0.1033	0.1030	0.1029	0.1029	0.1027	0.0970	0.0964	0.0967	0.0969	0.0971	0.0973	0.0973	0.0966	0.0968	0.0970	0.0971	0.0973	0.0974
	S-U	0.2119	0.2087	0.2132	0.2171	0.2197	0.2214	0.2338	0.2335	0.2332	0.4135	0.1048	0.1069	0.1067	0.1079	0.1194	0.1194	0.1194	0.2770	0.2094	0.0714	0.0750	0.0782	0.0810	0.0748	0.2003	0.3169	0.3262	0.0540	0.0577	0.0526
	B-U-00001	2.24	2.45	5.66	2.86	3.26	3.42	3.58	3.73	4.04	2.01	2.14	2.36	2.59	2.79	3.19	3.36	3.52	1.81	2.07	2.08	2.28	2.26	2.31	2.41	1.79	1.91	1.94	2.04	5.06	2.02
n_z	B-U-0001	2.24	2.45	5.66	2.86	3.26	3.42	3.58	3.73	4.04	2.01	2.14	2.36	2.59	2.79	3.19	3.36	3.52	1.81	2.07	2.08	2.28	2.26	2.31	2.41	1.79	1.91	1.94	2.04	5.06	2.02
	B-U-001	2.24	2.45	5.66	2.86	3.26	3.42	3.58	3.73	4.04	2.01	2.14	2.36	2.59	3.01	3.19	3.36	3.52	1.81	2.07	2.08	2.28	2.26	2.31	2.41	1.79	1.91	1.97	2.04	2.06	2.05
	S-U	2.24	2.74	3.17	3.54	3.88	4.19	4.65	4.91	5.16	1.87	2.14	2.36	2.59	2.79	3.19	3.36	3.52	1.79	1.84	2.08	2.33	2.55	2.76	2.75	1.78	1.86	1.79	2.1	2.31	2.52
	P_Pop	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

z_u: Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; P_{pop}: theoretical value of the parameter for the Monte Carlo simulations; S-U: Suisas Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.00001: Berger Unpooled test at confidence level 0.00001: Berger Unpooled test at confidence level 0.00001. Berger Unpooled test at confidence level 0.00001. Serger Unpooled test

	B-U-00001	0.0418	0.0400	0.0498	0.0436	0.0452	0.0467	0.0478	0.0489	0.0499	0.0486	0.0469	0.0464	0.0480	0.0470	0.0492	0.0479	0.0500	0.0458	0.0466	0.0466	0.0454	0.0469	0.0492	0.0499	0.0495	0.0497	0.0493	0.0497	0.0495	0.0480
p-value	B-U-0001	0.0418	0.0497	0.0495	0.0435	0.0451	0.0466	0.0477	0.0488	0.0497	0.0486	0.0469	0.0464	0.0479	0.0469	0.0491	0.0480	0.0500	0.0459	0.0466	0.0467	0.0454	0.0469	0.0492	0.0499	0.0495	0.0498	0.0493	0.0497	0.0496	0.0480
<u>a</u>	B-U-001	0.0426	0.0406	0.0500	0.0442	0.0458	0.0473	0.0484	0.0495	0.0463	0.0494	0.0478	0.0472	0.0487	0.0477	0.0499	0.0488	0.0453	0.0467	0.0474	0.0475	0.0462	0.0478	0.0495	0.0462	0.0500	0.0497	0.0499	0.0453	0.0491	0.0489
	S-U	0.0427	0.0427	0.0445	0.0463	0.0479	0.0494	0.0430	0.0448	0.0464	0.0412	0.0467	0.0480	0.0486	0.0498	0.0385	0.0405	0.0423	0.0459	0.0468	0.0489	0.0427	0.0387	0.0359	0.0462	0.0442	0.0381	0.0473	0.0500	0.0402	0.0498
	B-U-00001	0.2380	0.2400	0.2410	0.2413	0.2423	0.2426	0.2433	0.2437	0.2440	0.2416	0.2422	0.2423	0.2431	0.2433	0.2439	0.2442	0.2444	0.2572	0.2429	0.2436	0.2437	0.2443	0.2445	0.2447	0.2433	0.2439	0.2440	0.2444	0.2447	0.2448
۵	B-U-0001	0.2393	0.2412	0.2420	0.2422	0.2432	0.2434	0.2441	0.2445	0.2447	0.2426	0.2431	0.2432	0.2439	0.2441	0.2446	0.2449	0.2451	0.2563	0.2437	0.2443	0.2445	0.2449	0.2452	0.2454	0.2440	0.2446	0.2447	0.2451	0.2454	0.2455
	B-U-001	0.2408	0.2425	0.2432	0.2433	0.2441	0.2443	0.2450	0.2453	0.2455	0.2438	0.2442	0.2442	0.2448	0.2450	0.2455	0.2457	0.2459	0.2554	0.2446	0.2452	0.2453	0.2457	0.2460	0.2461	0.2449	0.2454	0.2455	0.2459	0.2461	0.2462
	S-U	0.2119	0.2087	0.2132	0.2171	0.2197	0.2214	0.2338	0.2335	0.2332	0.4135	0.1048	0.1069	0.1067	0.1079	0.1194	0.1194	0.1194	0.2770	0.2094	0.0714	0.0750	0.0782	0.0810	0.0748	0.2003	0.3169	0.3262	0.0540	0.0577	0.0526
	B-U-00001	2.24	2.74	2.92	3.54	3.88	4.19	4.48	4.75	5.01	1.84	1.88	1.95	1.99	2.01	2.09	2.05	2.10	1.75	1.82	1.83	1.86	1.90	1.86	1.89	1.73	1.70	1.74	1.76	1.76	1.81
n_z	B-U-0001	2.24	2.55	2.92	3.54	3.88	4.19	4.48	4.75	5.01	1.84	1.88	1.95	1.99	2.01	2.09	2.05	2.10	1.75	1.82	1.83	1.86	1.90	1.86	1.89	1.73	1.70	1.74	1.76	1.76	1.81
	B-U-001	2.24	2.74	2.92	3.54	3.88	4.19	4.48	4.75	5.16	1.84	1.88	1.95	1.99	2.01	2.09	2.05	2.12	1.75	1.82	1.83	1.86	1.90	1.88	1.92	1.74	1.74	1.78	1.82	1.80	1.81
	S-U	2.24	2.74	3.17	3.54	3.88	4.19	4.65	4.91	5.16	1.87	2.14	2.36	2.59	2.79	3.19	3.36	3.52	1.79	1.84	2.08	2.33	2.55	2.76	2.75	1.78	1.86	1.79	2.1	2.31	2.52
	P_Pop	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
	n2	20	30	40	20	09	20	80	90	100	30	40	20	09	20	80	90	100	40	20	09	20	80	90	100	20	09	20	80	90	100
	n 1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	70	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; \$\frac{3}{2}\$U: Suisas Unpooled test; \$\frac{1}{2}\$U-1001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; Prof. Suisas at confidence level 0.00001; Berger Unpooled test at confidence level 0.00001 are values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0477	0.0499	0.0459	0.0485	0.0491	0.0486	0.0484	0.0466	0.0486	0.0477	0.0488	0.0495	0.0467	0.0499	0.0495	0.0481	0.0474	0.0483	0.0492	0.0486	0.0500	0.0497	0.0484	0.0473	0.0489	0.0477	0.0492	0.0472	0.0494	0.0475
p-value	B-U-0001	0.0478	0.0499	0.0459	0.0484	0.0491	0.0485	0.0484	0.0466	0.0486	0.0478	0.0488	0.0495	0.0467	0.0500	0.0495	0.0481	0.0475	0.0483	0.0492	0.0486	0.0499	0.0498	0.0484	0.0474	0.0490	0.0478	0.0493	0.0473	0.0495	0.0476
0	B-U-001	0.0487	0.0497	0.0467	0.0491	0.0500	0.0492	0.0492	0.0474	0.0494	0.0487	0.0495	0.0458	0.0475	0.0493	0.0470	0.0490	0.0483	0.0492	0.0460	0.0494	0.0479	0.0490	0.0492	0.0482	0.0499	0.0487	0.0480	0.0481	0.0478	0.0485
	N-S	0.0427	0.0427	0.0445	0.0463	0.0479	0.0494	0.0430	0.0448	0.0464	0.0412	0.0467	0.0480	0.0486	0.0498	0.0385	0.0405	0.0423	0.0459	0.0468	0.0489	0.0427	0.0387	0.0359	0.0462	0.0442	0.0381	0.0473	0.0500	0.0402	0.0498
	B-U-00001	0.4873	0.4889	0.4900	0.4907	0.4911	0.4908	0.4923	0.4927	0.4926	0.4899	0.4907	0.4913	0.4913	0.4911	0.4924	0.4928	0.4928	0.4917	0.4922	0.4916	0.4913	0.4925	0.4928	0.4929	0.4924	0.4919	0.4916	0.4927	0.4930	0.4931
۵	B-U-0001	0.4888	0.4902	0.4912	0.4918	0.4922	0.4917	0.4931	0.4935	0.4934	0.4911	0.4918	0.4923	0.4923	0.4919	0.4932	0.4936	0.4936	0.4927	0.4931	0.4925	0.4921	0.4932	0.4936	0.4937	0.4933	0.4927	0.4924	0.4935	0.4937	0.4938
	B-U-001	0.4905	0.4917	0.4925	0.4930	0.4933	0.4928	0.4941	0.4945	0.4943	0.4925	0.4931	0.5058	0.4933	0.4929	0.4941	0.4945	0.4945	0.4939	0.4941	0.4935	0.4930	0.4942	0.4945	0.4945	0.4943	0.4937	0.5031	0.4944	0.4946	0.4947
	S-U	0.2119	0.2087	0.2132	0.2171	0.2197	0.2214	0.2338	0.2335	0.2332	0.4135	0.1048	0.1069	0.1067	0.1079	0.1194	0.1194	0.1194	0.2770	0.2094	0.0714	0.0750	0.0782	0.0810	0.0748	0.2003	0.3169	0.3262	0.0540	0.0577	0.0526
	B-U-00001	1.78	1.83	1.85	1.87	1.88	1.92	1.90	1.95	1.92	1.71	1.71	1.76	1.75	1.70	1.74	1.74	1.76	1.70	1.71	1.69	1.69	1.70	1.72	1.72	1.68	1.68	1.69	1.71	1.69	1.70
n_z	B-U-0001	1.78	1.83	1.85	1.87	1.88	1.92	1.90	1.95	1.92	1.71	1.71	1.76	1.75	1.70	1.74	1.74	1.76	1.70	1.71	1.69	1.72	1.70	1.72	1.72	1.68	1.68	1.69	1.71	1.69	1.70
	B-U-001	1.78	1.91	1.85	1.87	1.88	1.92	1.90	1.95	1.92	1.71	1.71	1.77	1.75	1.73	1.77	1.74	1.76	1.70	1.72	1.69	1.73	1.74	1.72	1.72	1.68	1.68	1.71	1.71	1.71	1.70
	S-U	2.24	2.74	3.17	3.54	3.88	4.19	4.65	4.91	5.16	1.87	2.14	2.36	2.59	2.79	3.19	3.36	3.52	1.79	1.84	2.08	2.33	2.55	2.76	2.75	1.78	1.86	1.79	2.1	2.31	2.52
	P_Pop	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
																				20											
																				30											

zu.: Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. nl: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; \$\frac{5}{2}\$. U: Suissa Unpooled test; \$\frac{1}{2}\$. U: Oscillate at a confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-00001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0409	0.0441	0.0414	0.0486	0.0494	0.0465	0.0498	0.0458	0.0488	0.0485	0.0484	0.0486	0.0495	0.0491	0.0498	0.0496	0.0486	0.0488	0.0493	0.0492	0.0499	0.0496	0.0463	0.0438	0.0474	0.0466	0.0492	0.0490	0.0499	0.0497
p-value	B-U-0001	0.0409	0.0441	0.0414	0.0486	0.0494	0.0465	0.0498	0.0458	0.0488	0.0486	0.0485	0.0486	0.0495	0.0491	0.0498	0.0497	0.0486	0.0489	0.0494	0.0493	0.0500	0.0497	0.0463	0.0439	0.0474	0.0466	0.0493	0.0490	0.0500	0.0497
<u>a</u>	B-U-001	0.0418	0.0448	0.0423	0.0494	0.0431	0.0473	0.0492	0.0466	0.0496	0.0494	0.0493	0.0494	0.0492	0.0499	0.0458	0.0496	0.0494	0.0498	0.0472	0.0455	0.0431	0.0474	0.0472	0.0448	0.0483	0.0475	0.0488	0.0499	0.0463	0.0500
	S-U	0.0427	0.0427	0.0445	0.0463	0.0479	0.0494	0.0430	0.0448	0.0464	0.0412	0.0467	0.0480	0.0486	0.0498	0.0385	0.0405	0.0423	0.0459	0.0468	0.0489	0.0427	0.0387	0.0359	0.0462	0.0442	0.0381	0.0473	0.0500	0.0402	0.0498
	B-U-00001	0.7400	0.7409	0.7420	0.7432	0.7434	0.7440	0.7440	0.7443	0.7446	0.7584	0.7423	0.7434	0.7435	0.7441	0.7441	0.7443	0.7446	0.7571	0.7437	0.7438	0.7443	0.7443	0.7445	0.7448	0.7441	0.7561	0.7446	0.7446	0.7448	0.7450
۵	B-U-0001	0.7413	0.7421	0.7430	0.7442	0.7442	0.7448	0.7448	0.7450	0.7453	0.7574	0.7432	0.7442	0.7443	0.7448	0.7448	0.7450	0.7453	0.7563	0.7445	0.7445	0.7450	0.7450	0.7452	0.7454	0.7448	0.7554	0.7453	0.7453	0.7454	0.7457
	B-U-001	0.7428	0.7434	0.7442	0.7452	0.7452	0.7457	0.7457	0.7458	0.7461	0.7562	0.7443	0.7452	0.7452	0.7457	0.7457	0.7458	0.7461	0.7553	0.7454	0.7454	0.7458	0.7458	0.7459	0.7462	0.7457	0.7546	0.7461	0.7460	0.7462	0.7463
	S-U	0.2119	0.2087	0.2132	0.2171	0.2197	0.2214	0.2338	0.2335	0.2332	0.4135	0.1048	0.1069	0.1067	0.1079	0.1194	0.1194	0.1194	0.2770	0.2094	0.0714	0.0750	0.0782	0.0810	0.0748	0.2003	0.3169	0.3262	0.0540	0.0577	0.0526
	B-U-00001	1.66	1.60	1.61	1.54	1.55	1.55	1.53	1.56	1.53	1.72	1.59	1.61	1.57	1.55	1.55	1.52	1.54	1.62	1.60	1.60	1.55	1.60	1.59	1.62	1.61	1.65	1.60	1.60	1.60	1.60
n_z	B-U-0001	1.66	1.60	1.61	1.54	1.55	1.55	1.53	1.56	1.53	1.72	1.59	1.61	1.57	1.55	1.55	1.52	1.54	1.62	1.60	1.60	1.55	1.60	1.59	1.62	1.61	1.65	1.60	1.60	1.60	1.60
	B-U-001	1.66	1.60	1.61	1.54	1.60	1.55	1.57	1.56	1.53	1.72	1.59	1.61	1.59	1.55	1.58	1.55	1.54	1.62	1.65	1.64	1.67	1.61	1.59	1.62	1.61	1.65	1.62	1.60	1.61	1.61
	S-U	2.24	2.74	3.17	3.54	3.88	4.19	4.65	4.91	5.16	1.87	2.14	2.36	2.59	2.79	3.19	3.36	3.52	1.79	1.84	2.08	2.33	2.55	2.76	2.75	1.78	1.86	1.79	2.1	2.31	2.52
	P_Pop	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	n2	20	30	40	20	09	20	80	90	100	30	40	20	09	20	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n 1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	70	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; \$\frac{3}{2}\$U: Suisas Unpooled test; \$\frac{1}{2}\$U-1001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; Prof. Suisas at confidence level 0.00001; Berger Unpooled test at confidence level 0.00001 are values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0346	0.0458	0.0406	0.0449	0.0414	0.0403	0.0411	0.0490	0.0489	0.0470	0.0473	0.0412	0.0465	0.0497	0.0483	0.0480	0.0497	0.0499	0.0499	0.0481	0.0448	0.0481	0.0493	0.0495	0.0485	0.0476	0.0446	0.0484	0.0498	0.0466
p-value	B-U-0001	0.0343	0.0457	0.0405	0.0448	0.0413	0.0402	0.0411	0.0489	0.0489	0.0469	0.0472	0.0412	0.0464	0.0496	0.0482	0.0480	0.0497	0.0500	0.0499	0.0480	0.0448	0.0482	0.0493	0.0495	0.0486	0.0477	0.0446	0.0484	0.0498	0.0466
0	B-U-001	0.0348	0.0463	0.0411	0.0456	0.0421	0.0409	0.0419	0.0496	0.0496	0.0476	0.0478	0.0420	0.0470	0.0495	0.0490	0.0488	0.0429	0.0394	0.0497	0.0488	0.0456	0.0490	0.0474	0.0499	0.0495	0.0485	0.0454	0.0493	0.0450	0.0475
	S-U	0.0427	0.0427	0.0445	0.0463	0.0479	0.0494	0.0430	0.0448	0.0464	0.0412	0.0467	0.0480	0.0486	0.0498	0.0385	0.0405	0.0423	0.0459	0.0468	0.0489	0.0427	0.0387	0.0359	0.0462	0.0442	0.0381	0.0473	0.0500	0.0402	0.0498
	B-U-00001	0.8928	0.8937	0.8945	0.8949	0.8952	0.8956	0.8958	0.8959	0.8961	0.8945	0.8950	0.8954	0.8956	0.8959	0.8960	0.8961	0.8963	0.9051	0.8955	0.8957	0.8959	0.8961	0.8962	0.8964	0.8976	0.8960	0.8962	0.8963	0.8964	0.8965
۵	B-U-0001	0.8937	0.8945	0.8952	0.8956	0.8958	0.8961	0.8963	0.8964	0.8966	0.8952	0.8957	0.8960	0.8961	0.8964	0.8965	0.8966	0.8968	0.9045	0.8961	0.8962	0.8964	0.8966	0.8966	0.8968	0.8976	0.8965	0.8967	0.8968	0.8968	0.8970
	B-U-001	0.8947	0.8955	0.8960	0.8963	0.8965	0.8967	0.8969	0.8969	0.8971	0.8960	0.8964	0.8966	0.8967	0.8970	0.8971	0.8971	0.8973	0.8965	0.8967	0.8968	0.8970	0.8971	0.8972	0.8973	0.8976	0.8970	0.8972	0.8973	0.8973	0.8975
	S-U	0.2119	0.2087	0.2132	0.2171	0.2197	0.2214	0.2338	0.2335	0.2332	0.4135	0.1048	0.1069	0.1067	0.1079	0.1194	0.1194	0.1194	0.2770	0.2094	0.0714	0.0750	0.0782	0.0810	0.0748	0.2003	0.3169	0.3262	0.0540	0.0577	0.0526
	B-U-00001	1.59	1.30	1.36	1.33	1.34	1.34	1.35	1.31	1.29	1.50	1.50	1.47	1.41	1.36	1.37	1.43	1.39	1.53	1.46	1.51	1.50	1.43	1.41	1.44	1.63	1.59	1.54	1.51	1.51	1.47
n_z	B-U-0001	1.59	1.30	1.36	1.33	1.34	1.34	1.35	1.31	1.29	1.50	1.50	1.47	1.41	1.36	1.37	1.43	1.39	1.53	1.46	1.51	1.50	1.43	1.41	1.44	1.63	1.59	1.54	1.51	1.51	1.47
	B-U-001	1.59	1.30	1.36	1.33	1.34	1.34	1.35	1.31	1.29	1.50	1.50	1.47	1.41	1.42	1.37	1.43	1.40	1.63	1.47	1.51	1.50	1.43	1.46	1.45	1.63	1.59	1.54	1.51	1.54	1.47
	S-U	2.24	2.74	3.17	3.54	3.88	4.19	4.65	4.91	5.16	1.87	2.14	2.36	2.59	2.79	3.19	3.36	3.52	1.79	1.84	2.08	2.33	2.55	2.76	2.75	1.78	1.86	1.79	2.1	2.31	2.52
	P_Pop	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	06:0
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-00001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

Figure C.11: Comparison of p-values for the unpoooled Z test calculated with both the classical Lehmann (1959) procedure and the Berger and Boos (1994) procedure for α = 0.025.

	B-U-00001	0.0180	0.0113	0.0180	0.0245	0.0152	0.0192	0.0234	0.0150	0.0178	0.0248	0.0133	0.0163	0.0188	0.0210	0.0230	0.0248	0.0170	0.0232	0.0200	0.0188	0.0183	0.0180	0.0245	0.0241	0.0208	0.0231	0.0243	0.0213	0.0228	0.0239
p-value	∞ ■	0.0177	0.0111	0.0176	0.0240	0.0148	0.0188	0.0229	0.0147	0.0174	0.0247	0.0133	0.0162	0.0187	0.0209	0.0229	0.0247	0.0169	0.0233	0.0201	0.0189	0.0184	0.0181	0.0245	0.0242	0.0208	0.0232	0.0243	0.0213	0.0227	0.0239
Ċ	B-U-001	0.0182	0.0116	0.0180	0.0243	0.0152	0.0192	0.0231	0.0151	0.0177	0.0236	0.0140		0.0194	0.0216	0.0235	0.0160	0.0175		0.0210	0.0198	0.0193	0.0190	0.0187	0.0250	0.0217	0.0240	0.0238	0.0221	0.0235	0.0246
	S-U	0.0242	0.0185	0.0235	0.0211	0.0247	0.0230	0.0218	0.0245	0.0234	0.0209	0.0171	0.0208	0.0236	0.0191	0.0219	0.0244	0.0212	0.0236	0.0200	0.0188	0.0183	0.0180	0.0177	0.0245	0.0245	0.0249	0.0246	0.0198	0.0171	0.0227
	B-U-00001	0.1072	0.1063	0.1055	0.1051	0.1048	0.1044	0.1042	0.1041	0.1039	0.1055	0.1050	0.1046	0.1044	0.1041	0.1040	0.1039	0.1037	0.1048	0.1012	0.0980	0.0977	0.0982	0.0963	0.0964	0.1041	0.0958	0.0959	0.0961	0.0964	0.0965
<u>م</u>	B-U-0001	0.1063	0.1055	0.1048	0.1044	0.1042	0.1039	0.1037	0.1036	0.1034	0.1048	0.1043	0.1040	0.1039	0.1036	0.1035	0.1034	0.1032	0.1042	0.1012	0.0980	0.0977	0.0982	0.0967	0.0968	0.1036	0.0963	0.0964	0.0966	0.0968	0.0969
;	B-U-001	0.1053	0.1045	0.1040	0.1037	0.1035	0.1033	0.1031	0.1031	0.1029	0.1040	0.1036	0.1034	0.1033	0.1030	0.1029	0.1029	0.1027	0.1035	0.1012	0.0980	0.0977	0.0982	0.0977	0.0973	0.1030	0.0968	0.0970	0.0971	0.0973	0.0974
	S-U	0.2478	0.2569	0.2529	0.2668	0.2624	0.2713	0.2781	0.2735	0.2787	0.3053	0.143	0.1388	0.1331	0.1419	0.1397	0.138	0.145	0.1329	0.1012	0.098	0.0977	0.0982	0.0977	0.0909	0.3855	0.3861	0.0802	0.0749	0.0754	0.069
	B-U-00001	2.24	2.74	2.92	3.09	3.47	3.62	3.76	4.08	4.21	2.15	5.66	2.86	3.04	3.22	3.39	3.55	3.87	2.11	2.36	2.59	2.79	2.99	2.97	3.15	2.10	2.20	2.33	2.46	2.49	2.52
n_z	B-U-0001	2.24	2.74	2.92	3.09	3.47	3.62	3.76	4.08	4.21	2.15	5.66	2.86	3.04	3.22	3.39	3.55	3.87	2.11	2.36	2.59	2.79	2.99	2.97	3.15	2.10	2.20	2.33	2.46	2.49	2.52
	B-U-001	2.24	2.74	2.92	3.09	3.47	3.62	3.76	4.08	4.21	2.30	5.66	2.86	3.04	3.22	3.39	3.73	3.87	2.11	2.36	2.59	2.79	2.99	3.17	3.15	2.10	2.20	2.35	2.46	2.49	2.52
	os S	2.59	3.31	3.66	4.2	4.48	4.93	5.34	5.56	5.93	2.3	2.66	2.86	3.04	3.42	3.58	3.73	4.04	2.21	2.36	2.59	2.79	2.99	3.17	3.15	2.05	2.06	2.33	2.55	2.76	2.75
	Pop	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	n2	20	30	40	20	09	8	80	90	100	30	40	20	09	20	80	8	100	40	20	09	2	80	90	100	20	09	2	80	90	100
	<u>1</u>	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

z_u: Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; P_{pop}: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-0001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0242	0.0185	0.0235	0.0209	0.0247	0.0223	0.0202	0.0233	0.0213	0.0244	0.0244	0.0245	0.0247	0.0250	0.0228	0.0232	0.0235	0.0244	0.0240	0.0243	0.0230	0.0238	0.0226	0.0245	0.0241	0.0247	0.0234	0.0248	0.0234	0.0235
p-value	B-U-0001	0.0243	0.0186	0.0236	0.0209	0.0247	0.0223	0.0202	0.0232	0.0212	0.0244	0.0244	0.0245	0.0247	0.0250	0.0228	0.0232	0.0236	0.0244	0.0241	0.0243	0.0231	0.0238	0.0226	0.0246	0.0241	0.0248	0.0234	0.0249	0.0234	0.0235
ġ	B-U-001	0.0236	0.0195	0.0245	0.0218	0.0196	0.0231	0.0210	0.0240	0.0220	0.0250	0.0216	0.0222	0.0227	0.0232	0.0237	0.0240	0.0244	0.0221	0.0249	0.0250	0.0240	0.0247	0.0235	0.0244	0.0226	0.0248	0.0243	0.0248	0.0243	0.0244
	S-U	0.0242	0.0185	0.0235	0.0211	0.0247	0.0230	0.0218	0.0245	0.0234	0.0209	0.0171	0.0208	0.0236	0.0191	0.0219	0.0244	0.0212	0.0236	0.0200	0.0188	0.0183	0.0180	0.0177	0.0245	0.0245	0.0249	0.0246	0.0198	0.0171	0.0227
	B-U-00001	0.2478	0.2568	0.2529	0.2568	0.2566	0.2560	0.2560	0.2557	0.2554	0.2416	0.2422	0.2423	0.2431	0.2433	0.2439	0.2442	0.2444	0.2429	0.2563	0.2436	0.2437	0.2443	0.2445	0.2447	0.2433	0.2558	0.2440	0.2444	0.2447	0.2448
۵	B-U-0001	0.2478	0.2568	0.2529	0.2558	0.2558	0.2552	0.2552	0.2550	0.2547	0.2426	0.2431	0.2432	0.2439	0.2441	0.2446	0.2449	0.2451	0.2437	0.2555	0.2443	0.2445	0.2449	0.2452	0.2454	0.2440	0.2551	0.2447	0.2451	0.2454	0.2455
	B-U-001	0.2408	0.2566	0.2529	0.2548	0.2548	0.2543	0.2543	0.2542	0.2539	0.2438	0.2442	0.2442	0.2448	0.2450	0.2455	0.2457	0.2459	0.2447	0.2546	0.2452	0.2453	0.2457	0.2460	0.2461	0.2543	0.2454	0.2455	0.2459	0.2461	0.2462
	S-U	0.2478	0.2569	0.2529	0.2668	0.2624	0.2713	0.2781	0.2735	0.2787	0.3053	0.143	0.1388	0.1331	0.1419	0.1397	0.138	0.145	0.1329	0.1012	0.098	0.0977	0.0982	0.0977	0.0909	0.3855	0.3861	0.0802	0.0749	0.0754	0.069
	B-U-00001	2.59	3.31	3.66	4.20	4.48	4.93	5.34	5.56	5.93	2.14	2.26	2.37	2.46	2.53	2.60	2.63	2.66	2.11	2.15	2.17	2.25	2.26	2.32	2.29	2.02	2.02	2.14	2.13	2.17	2.20
n_z	B-U-0001	2.59	3.31	3.66	4.20	4.48	4.93	5.34	5.56	5.93	2.14	2.26	2.37	2.46	2.53	2.60	2.63	2.66	2.11	2.15	2.17	2.25	2.26	2.32	2.29	2.02	2.05	2.14	2.13	2.17	2.20
	B-U-001	2.73	3.31	3.66	4.20	4.68	4.93	5.34	5.56	5.93	2.15	2.38	2.45	2.51	2.56	2.60	2.63	2.66	2.21	2.17	2.24	2.25	2.26	2.32	2.35	2.11	2.06	2.14	2.18	2.17	2.20
	S-U	2.59	3.31	3.66	4.2	4.48	4.93	5.34	5.56	5.93	2.3	2.66	2.86	3.04	3.42	3.58	3.73	4.04	2.21	2.36	2.59	2.79	2.99	3.17	3.15	2.05	2.06	2.33	2.55	2.76	2.75
	P_Pop	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-00001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0230	0.0199	0.0212	0.0225	0.0230	0.0236	0.0239	0.0243	0.0246	0.0248	0.0234	0.0234	0.0250	0.0248	0.0244	0.0235	0.0242	0.0235	0.0233	0.0243	0.0250	0.0244	0.0238	0.0247	0.0228	0.0234	0.0248	0.0244	0.0243	0.0240
p-value	B-U-0001	0.0230	0.0200	0.0212	0.0225	0.0230	0.0236	0.0239	0.0243	0.0246	0.0248	0.0235	0.0234	0.0243	0.0248	0.0244	0.0235	0.0242	0.0235	0.0234	0.0243	0.0250	0.0244	0.0239	0.0248	0.0229	0.0235	0.0249	0.0245	0.0244	0.0241
0	B-U-001	0.0238	0.0208	0.0220	0.0233	0.0239	0.0245	0.0248	0.0221	0.0225	0.0248	0.0243	0.0243	0.0234	0.0219	0.0229	0.0244	0.0244	0.0244	0.0243	0.0237	0.0242	0.0220	0.0247	0.0235	0.0238	0.0244	0.0239	0.0243	0.0242	0.0249
	S-U	0.0242	0.0185	0.0235	0.0211	0.0247	0.0230	0.0218	0.0245	0.0234	0.0209	0.0171	0.0208	0.0236	0.0191	0.0219	0.0244	0.0212	0.0236	0.0200	0.0188	0.0183	0.0180	0.0177	0.0245	0.0245	0.0249	0.0246	0.0198	0.0171	0.0227
	B-U-00001	0.4873	0.4889	0.4900	0.4907	0.4911	0.4908	0.4923	0.4927	0.4926	0.4899	0.4907	0.4913	0.4913	0.4911	0.4924	0.4928	0.4928	0.4917	0.4922	0.4916	0.4913	0.4925	0.4928	0.4929	0.4924	0.4919	0.5048	0.4927	0.4930	0.4931
۵	B-U-0001	0.4888	0.4902	0.4912	0.4918	0.4922	0.4917	0.4931	0.4935	0.4934	0.4911	0.4918	0.4923	0.4923	0.4919	0.4932	0.4936	0.4936	0.4927	0.4931	0.4925	0.4921	0.4932	0.4936	0.4937	0.4933	0.4927	0.5040	0.4935	0.4937	0.4938
	B-U-001	0.4905	0.4917	0.4925	0.4930	0.4933	0.4928	0.4941	0.4945	0.4943	0.4925	0.4931	0.4934	0.4933	0.4929	0.4941	0.4945	0.4945	0.4939	0.4941	0.4935	0.4930	0.4942	0.4945	0.4945	0.4943	0.4937	0.4933	0.4944	0.4946	0.4947
	S-U	0.2478	0.2569	0.2529	0.2668	0.2624	0.2713	0.2781	0.2735	0.2787	0.3053	0.143	0.1388	0.1331	0.1419	0.1397	0.138	0.145	0.1329	0.1012	0.098	0.0977	0.0982	0.0977	0.0909	0.3855	0.3861	0.0802	0.0749	0.0754	0.069
	B-U-00001	2.26	2.36	2.35	2.35	2.35	2.35	2.36	2.36	2.36	2.07	2.10	2.10	2.07	2.08	2.13	2.13	2.12	2.07	2.02	2.03	2.04	2.03	2.07	2.06	2.04	2.03	2.01	2.00	2.03	2.03
n_z	B-U-0001	2.26	2.36	2.35	2.35	2.35	2.35	2.36	2.36	2.36	2.07	2.10	2.10	2.13	2.08	2.13	2.13	2.12	2.07	2.05	2.02	2.06	2.03	2.07	2.06	2.04	2.02	2.01	2.00	2.03	2.03
	B-U-001	2.26	2.36	2.35	2.35	2.35	2.35	2.36	2.44	2.43	2.09	2.10	2.10	2.15	2.18	2.15	2.13	2.14	2.07	2.05	2.06	2.07	2.12	2.07	2.08	2.04	2.02	2.04	2.03	2.05	2.03
	S-U	2.59	3.31	3.66	4.2	4.48	4.93	5.34	5.56	5.93	2.3	2.66	2.86	3.04	3.42	3.58	3.73	4.04	2.21	2.36	2.59	2.79	2.99	3.17	3.15	2.05	2.06	2.33	2.55	2.76	2.75
	P_Pop	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	n2	20	30	40	20	9	70	80	90	100	30	40	20	9	70	80	90	100	40	20	9	70	80	90	100	20	9	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; \$\frac{3}{2}\$U: Suisas Unpooled test; \$\frac{1}{2}\$U-1001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; Prof. Suisas at confidence level 0.00001; Berger Unpooled test at confidence level 0.00001 are values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0196	0.0196	0.0247	0.0200	0.0221	0.0249	0.0245	0.0241	0.0246	0.0242	0.0245	0.0240	0.0221	0.0242	0.0233	0.0245	0.0235	0.0234	0.0234	0.0248	0.0246	0.0246	0.0249	0.0248	0.0208	0.0241	0.0240	0.0240	0.0244	0.0247
p-value	B-U-0001	0.0196	0.0197	0.0247	0.0200	0.0221	0.0249	0.0245	0.0241	0.0246	0.0243	0.0246	0.0240	0.0221	0.0243	0.0234	0.0245	0.0235	0.0235	0.0234	0.0248	0.0246	0.0246	0.0249	0.0248	0.0209	0.0242	0.0241	0.0241	0.0245	0.0247
<u>a</u>	B-U-001	0.0205	0.0205	0.0207	0.0209	0.0229	0.0228	0.0227	0.0249	0.0245	0.0248	0.0219	0.0249	0.0230	0.0249	0.0242	0.0213	0.0244	0.0243	0.0242	0.0232	0.0196	0.0235	0.0250	0.0248	0.0218	0.0239	0.0250	0.0249	0.0240	0.0238
	S-U	0.0242	0.0185	0.0235	0.0211	0.0247	0.0230	0.0218	0.0245	0.0234	0.0209	0.0171	0.0208	0.0236	0.0191	0.0219	0.0244	0.0212	0.0236	0.0200	0.0188	0.0183	0.0180	0.0177	0.0245	0.0245	0.0249	0.0246	0.0198	0.0171	0.0227
	B-U-00001	0.7400	0.7409	0.7420	0.7432	0.7434	0.7440	0.7440	0.7443	0.7446	0.7584	0.7423	0.7434	0.7435	0.7441	0.7441	0.7443	0.7446	0.7428	0.7437	0.7438	0.7443	0.7443	0.7445	0.7448	0.7441	0.7561	0.7446	0.7446	0.7553	0.7450
ď	B-U-0001	0.7413	0.7421	0.7430	0.7442	0.7442	0.7448	0.7448	0.7450	0.7453	0.7574	0.7432	0.7442	0.7443	0.7448	0.7448	0.7450	0.7453	0.7437	0.7445	0.7445	0.7450	0.7450	0.7452	0.7454	0.7448	0.7554	0.7453	0.7453	0.7546	0.7457
	B-U-001	0.7428	0.7434	0.7442	0.7452	0.7452	0.7457	0.7457	0.7458	0.7461	0.7562	0.7443	0.7452	0.7452	0.7457	0.7457	0.7458	0.7461	0.7446	0.7454	0.7454	0.7458	0.7458	0.7459	0.7462	0.7457	0.7457	0.7461	0.7460	0.7462	0.7463
	S-U	0.2478	0.2569	0.2529	0.2668	0.2624	0.2713	0.2781	0.2735	0.2787	0.3053	0.143	0.1388	0.1331	0.1419	0.1397	0.138	0.145	0.1329	0.1012	0.098	0.0977	0.0982	0.0977	0.0909	0.3855	0.3861	0.0802	0.0749	0.0754	0.069
	B-U-00001	1.98	1.94	1.91	1.92	1.91	1.89	1.84	1.85	1.84	1.97	1.91	1.88	1.90	1.85	1.87	1.84	1.85	2.07	1.96	1.90	1.86	1.87	1.87	1.84	2.08	1.96	1.94	1.92	1.88	1.89
$\mathbf{n}^{-}\mathbf{z}$	B-U-0001	1.98	1.94	1.91	1.92	1.91	1.89	1.84	1.85	1.84	1.97	1.91	1.88	1.90	1.85	1.87	1.84	1.85	2.07	1.96	1.90	1.86	1.87	1.87	1.84	2.08	1.96	1.94	1.92	1.88	1.89
	B-U-001	1.98	1.94	1.93	1.92	1.91	1.91	1.91	1.85	1.86	2.07	1.96	1.88	1.90	1.90	1.87		1.85	2.07	1.96	1.94	1.98	1.92	1.89	1.86	2.08		1.94	1.92		1.91
	S-U	2.59	3.31	3.66	4.2	4.48	4.93	5.34	5.56	5.93	2.3	2.66	2.86	3.04	3.42	3.58	3.73	4.04	2.21	2.36	2.59	2.79	2.99	3.17	3.15	2.05	2.06	2.33	2.55	2.76	2.75
	Pop_Pop	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-00001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0180	0.0232	0.0246	0.0176	0.0203	0.0219	0.0232	0.0242	0.0247	0.0236	0.0231	0.0205	0.0237	0.0197	0.0226	0.0246	0.0227	0.0226	0.0248	0.0249	0.0219	0.0233	0.0222	0.0230	0.0241	0.0213	0.0242	0.0234	0.0227	0.0239
p-value	B-U-0001	0.0178	0.0230	0.0245	0.0175	0.0203	0.0219	0.0232	0.0242	0.0247	0.0237	0.0232	0.0205	0.0236	0.0197	0.0226	0.0246	0.0227	0.0227	0.0248	0.0249	0.0219	0.0234	0.0222	0.0230	0.0241	0.0214	0.0242	0.0235	0.0228	0.0239
<u>a</u>	B-U-001	0.0185	0.0237	0.0170	0.0183	0.0211	0.0227	0.0240	0.0246	0.0206	0.0245	0.0240	0.0213	0.0244	0.0205	0.0234	0.0242	0.0235	0.0236	0.0219	0.0239	0.0228	0.0243	0.0230	0.0238	0.0250	0.0223	0.0248	0.0244	0.0236	0.0248
	S-U	0.0242	0.0185	0.0235	0.0211	0.0247	0.0230	0.0218	0.0245	0.0234	0.0209	0.0171	0.0208	0.0236	0.0191	0.0219	0.0244	0.0212	0.0236	0.0200	0.0188	0.0183	0.0180	0.0177	0.0245	0.0245	0.0249	0.0246	0.0198	0.0171	0.0227
	B-U-00001	0.8928	0.8937	0.8945	0.8949	0.8952	0.8956	0.8958	0.8959	0.8961	0.8945	0.8950	0.8954	0.8956	0.8959	0.8960	0.8961	0.8963	0.8952	0.8955	0.9044	0.8959	0.8961	0.8962	0.8964	0.8959	0.9042	0.8962	0.8963	0.8964	0.8965
ď	B-U-0001	0.8937	0.8945	0.8952	0.8956	0.8958	0.8961	0.8963	0.8964	0.8966	0.8952	0.8957	0.8960	0.8961	0.8964	0.8965	0.8966	0.8968	0.8958	0.8961	0.9039	0.8964	0.8966	0.8966	0.8968	0.8964	0.9037	0.8967	0.8968	0.8968	0.8970
	B-U-001	0.8947	0.8955	0.8960	0.8963	0.8965	0.8967	0.8969	0.8969	0.8971	0.8960	0.8964	0.8966	0.8967	0.8970	0.8971	0.8971	0.8973	0.8965	0.8967	0.8968	0.8970	0.8971	0.8972	0.8973	0.8970	0.9032	0.8972	0.8973	0.8973	0.8975
	S-U	0.2478	0.2569	0.2529	0.2668	0.2624	0.2713	0.2781	0.2735	0.2787	0.3053	0.143	0.1388	0.1331	0.1419	0.1397	0.138	0.145	0.1329	0.1012	0.098	0.0977	0.0982	0.0977	0.0909	0.3855	0.3861	0.0802	0.0749	0.0754	0.069
	B-U-00001	1.64	1.59	1.59	1.62	1.58	1.55	1.53	1.51	1.51	1.75	1.78	1.71	1.64	1.70	1.62	1.59	1.63	1.86	1.75	1.77	1.76	1.75	1.72	1.69	1.90	1.89	1.79	1.80	1.77	1.75
n_z	B-U-0001	1.64	1.59	1.59	1.62	1.58	1.55	1.53	1.51	1.51	1.75	1.78	1.71	1.64	1.70	1.62	1.59	1.63	1.86	1.75	1.77	1.76	1.75	1.72	1.69	1.90	1.89	1.79	1.80	1.77	1.75
	B-U-001	1.64	1.59	1.68	1.62	1.58	1.55	1.53	1.54	1.57	1.75	1.78	1.71	1.64	1.70	1.62	1.65	1.63	1.86	1.78	1.82	1.76	1.75	1.72	1.69	1.90	1.89	1.81	1.80	1.77	1.75
	S-U	2.59	3.31	3.66	4.2	4.48	4.93	5.34	5.56	5.93	2.3	2.66	2.86	3.04	3.42	3.58	3.73	4.04	2.21	2.36	2.59	2.79	2.99	3.17	3.15	2.05	2.06	2.33	2.55	2.76	2.75
	P_Pop	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	0.90	06.0	06.0	0.90
	n2	20	30	40	20	9	70	80	90	100	30	40	20	9	70	80	90	100	40	20	9	70	80	90	100	20	9	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

z_u: Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. nl: sample size 1; n2: sample size 2; P_{pop}: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.0001; B-U-00001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

Figure C.12: Comparison of p-values for the unpoooled Z test calculated with both the classical Lehmann (1959) procedure and the Berger and Boos (1994) procedure for $\alpha = 0.01$.

	B-U-00001	0.0050	0.0036	0.0070	0.0044	0.0068	0.0093	0.0058	0.0077	0.0096	0.0099	0.0059	0.0080	0.0049	0.0063	0.0077	0.0091	0.0059	0.0096	0.0060	0.0066	0.0072	0.0077	0.0083	0.0088	0.0080	0.0000	0.0000	0.0079	0.0097	0.0098
p-value	B-U-0001	0.0050	0.0036	0.0069	0.0043	9900.0	0.0091	0.0057	0.0075	0.0093	0.0098	0.0058	0.0080	0.0049	0.0063	0.0076	0.0000	0.0059	0.0097	0900.0	0.0067	0.0073	0.0078	0.0084	0.0089	0.0080	0.0091	0.0091	0.0080	0.0097	0.0099
<u> </u>	B-U-001	0.0057	0.0044	0.0075	0.0051	0.0073	0.0097	0.0064	0.0081		0.0046	0.0066				0.0084				0.0069	0.0075				0.0097		0.0100	0.0085		0.0083	0.0079
	S-U	0.0071	0.0077	0.0085	0.0092	0.0097	0.0083	0.0089	0.0094	0.0098	0.0085	0.0097	0.0085	0.0077	0.0100	0.0092	0.0087	0.0083	0.0097	0.0068	0.0072	0.0078	0.0081	0.0088	0.0093	0.0091	9600.0	0.0090	0.0079	0.0073	0.0070
	B-U-00001	0.1072	0.1063	0.1055	0.1051	0.1048	0.1044	0.1042	0.1041	0.1039	0.1055	0.1050	0.1046	0.1044	0.1041	0.1040	0.1039	0.1037	0.1048	0.1045	0.1043	0.1041	0.1039	0.1038	0.1036	0.0955	0.1040	0.1016	0.0969	0.0964	0.0965
ď	B-U-0001	0.1063	0.1055	0.1048	0.1044	0.1042	0.1039	0.1037	0.1036	0.1034	0.1048	0.1043	0.1040	0.1039	0.1036	0.1035	0.1034	0.1032	0.1042	0.1039	0.1038	0.1036	0.1034	0.1034	0.1032	0.0960	0.1035	0.1016	0.0969	0.0968	0.0969
	B-U-001	0.1053	0.1045	0.1040																0.1033								O	O	0.0973	0.0974
	S-U	0.3138	0.3056	0.3116	0.3159	0.3187	0.3328	0.3328	0.3327	0.3326	0.2031	0.1540	0.1644	0.1703	0.1642	0.1701	0.1747	0.1786	0.4129	0.1391	0.1253	0.1207	0.1154	0.1151	0.1144	0.2674	0.1579	0.1016	0.0969	0.0934	0.0928
	B-U-00001	2.59	3.03	3.17	3.54	3.68	3.81	4.12	4.25	4.37	2.59	2.92	3.09	3.47	3.62	3.76	3.90	4.21	2.61	2.86	3.04	3.22	3.39	3.55	3.70	2.60	2.62	2.79	2.99	3.06	3.15
n_z	B-U-0001	2.59	3.03	3.17	3.54	3.68	3.81	4.12	4.25	4.37	2.59	2.92	3.09	3.47	3.62	3.76	3.90	4.21	2.61	2.86	3.04	3.22	3.39	3.55	3.70	2.60	2.62	2.79	2.99	3.06	3.15
	B-U-001	2.59	3.03	3.17	3.54	3.68	3.81	4.12	4.25	4.37	2.74	2.92	3.09	3.47	3.62	3.76	3.90	4.21	5.66	2.86	3.04	3.22	3.39	3.55	3.70	2.60	2.62	2.86	2.99	3.17	3.34
	S-U	3.29	3.88	4.39	4.86	5.28	5.86	6.21	6.55	98.9	2.74	3.11	3.32	3.68	3.92	4.12	4.42	4.69	2.50	2.86	3.04	3.22	3.39	3.55	3.70	2.50	2.62	2.79	2.99	3.17	3.34
	P. Pop	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

z_u: Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; P_{pop}: theoretical value of the parameter for the Monte Carlo simulations; S-U: Suisas Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.00001: Berger Unpooled test at confidence level 0.00001: Berger Unpooled test at confidence level 0.00001. Berger Unpooled test at confidence level 0.00001. Berger Unpooled test at confidence level 0.00001. Serger Unpooled test

	B-U-00001	0.0063	0.0065	0.0064	0.0099	0.0092	0.0085	0.0079	0.0073	0.0095	0.0088	0.0089	0.0097	0.0092	0.0098	0.0091	0.0084	0.0094	0.0098	0.0098	0.0095	0.0087	0.0098	0.0100	0.0100	0.0091	0.0099	0.0097	0.0094	0.0099	0.0095
p-value	B-U-0001	0.0063	0.0065	0.0064	0.0099	0.0092	0.0085	0.0079	0.0073	0.0095	0.0089	0.0089	0.0098	0.0092	0.0099	0.0092	0.0085	0.0095	0.0099	0.0098	0.0095	0.0087	0.0099	0.0000	0.0100	0.0092	0.0100	0.0098	0.0095	0.0100	0.0095
φ	B-U-001	0.0072	0.0073	0.0072	0.0070	0.0100	0.0092	0.0086	0.0080	0.0075	0.0097	0.0098	0.0085	9600.0	0.0089	0.0099	0.0094	0.0088	0.0099	9600.0	0.0000	9600.0	9600.0	0.0099	0.0099	0.0088	0.0099	0.0097	0.0084	0.0099	0.0092
	N-S	0.0071	0.0077	0.0085	0.0092	0.0097	0.0083	0.0089	0.0094	0.0098	0.0085	0.0097	0.0085	0.0077	0.0100	0.0092	0.0087	0.0083	0.0097	0.0068	0.0072	0.0078	0.0081	0.0088	0.0093	0.0091	9600.0	0.0000	0.0079	0.0073	0.0070
	B-U-00001	0.2600	0.2591	0.2580	0.2568	0.2566	0.2560	0.2560	0.2557	0.2554	0.2416	0.2422	0.2423	0.2431	0.2433	0.2439	0.2442	0.2444	0.2572	0.2429	0.2436	0.2437	0.2443	0.2445	0.2447	0.2559	0.2558	0.2440	0.2444	0.2447	0.2448
<u>a</u>	B-U-0001	0.2587	0.2579	0.2570	0.2558	0.2558	0.2552	0.2552	0.2550	0.2547	0.2426	0.2431	0.2432	0.2439	0.2441	0.2446	0.2449	0.2451	0.2563	0.2437	0.2443	0.2445	0.2449	0.2452	0.2454	0.2552	0.2551	0.2447	0.2451	0.2454	0.2455
	B-U-001	0.2572	0.2566	0.2558	0.2548	0.2548	0.2543	0.2543	0.2542	0.2539	0.2438	0.2442	0.2442	0.2448	0.2450	0.2455	0.2457	0.2459	0.2447	0.2446	0.2452	0.2453	0.2457	0.2460	0.2461	0.2543	0.2454	0.2455	0.2459	0.2461	0.2462
	S-U	0.3138	0.3056	0.3116	0.3159	0.3187	0.3328	0.3328	0.3327	0.3326	0.2031	0.1540	0.1644	0.1703	0.1642	0.1701	0.1747	0.1786	0.4129	0.1391	0.1253	0.1207	0.1154	0.1151	0.1144	0.2674	0.1579	0.1016	0.0969	0.0934	0.0928
	B-U-00001	3.29	3.88	4.39	4.63	2.08	5.48	5.86	6.22	6.40	2.69	2.87	2.92	3.08	3.22	3.23	3.36	3.34	2.48	2.57	2.67	2.75	2.80	2.79	2.89	2.50	2.52	2.58	2.58	2.61	2.66
$\mathbf{n}^{-}\mathbf{z}$	B-U-0001	3.29	3.88	4.39	4.63	2.08	5.48	5.86	6.22	6.40	2.69	2.87	2.92	3.08	3.22	3.23	3.36	3.34	2.48	2.57	2.67	2.75	2.80	2.88	2.91	2.50	2.52	2.58	2.58	2.61	2.66
	B-U-001	3.29	3.88	4.39	4.86	5.08	5.48	5.86	6.22	6.55	2.69	2.87	3.09	3.09	3.25	3.33	3.36	3.48	2.56	2.67	2.74	2.75	2.82	2.88	2.92	2.53	2.58	2.59	2.71	2.66	2.76
	S-U	3.29	3.88	4.39	4.86	5.28	5.86	6.21	6.55	98.9	2.74	3.11	3.32	3.68	3.92	4.12	4.42	4.69	2.50	2.86	3.04	3.22	3.39	3.55	3.70	2.50	2.62	2.79	2.99	3.17	3.34
	P_Pop	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	9	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; \$\frac{3}{2}\$U: Suisas Unpooled test; \$\frac{1}{2}\$U-1001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; Prof. Suisas at confidence level 0.00001; Berger Unpooled test at confidence level 0.00001 are values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0085	0.0095	0.0100	0.0093	0.0099	0.0089	0.0095	0.0099	0.0097	0.0096	0.0087	0.0081	0.0098	0.0000	0.0099	9600.0	0.0097	0.0093	0.0098	9600.0	0.0096	0.0091	0.0095	0.0097	0.0100	0.0099	0.0097	0.0098	0.0099	0.0099
p-value	B-U-0001	0.0086	0.0095	0.0086	0.0094	0.0099	0.0000	0.0095	0.0099	0.0097	0.0097	0.0088	0.0082	0.0099	0.0000	0.0100	0.0097	0.0098	0.0094	0.0099	0.0097	0.0097	0.0092	9600.0	0.0098	0.0091	0.0098	0.0098	0.0099	0.0100	0.0100
q	B-U-001	0.0094	0.0086	0.0095	9600.0	0.0000	0.0098	0.0094	0.0100	0.0098	0.0097	0.0097	0.0091	9600.0	0.0099	0.0097	0.0100	0.0099	0.0095	0.0100	0.0095	0.0093	0.0092	0.0100	0.0099	9600'0	0.0100	0.0100	9600.0	0.0091	0.0098
	S-U	0.0071	0.0077	0.0085	0.0092	0.0097	0.0083	0.0089	0.0094	0.0098	0.0085	0.0097	0.0085	0.0077	0.0100	0.0092	0.0087	0.0083	0.0097	0.0068	0.0072	0.0078	0.0081	0.0088	0.0093	0.0091	0.0096	0.0000	0.0079	0.0073	0.0070
	B-U-00001	0.4873	0.4889	0.4900	0.4907	0.4911	0.4908	0.4923	0.4927	0.4926	0.4899	0.4907	0.4913	0.4913	0.4911	0.4924	0.4928	0.4928	0.4917	0.4922	0.4916	0.4913	0.4925	0.4928	0.4929	0.4924	0.4919	0.4916	0.4927	0.4930	0.4931
۵	B-U-0001	0.4888	0.4902	0.4912	0.4918	0.4922	0.4917	0.4931	0.4935	0.4934	0.4911	0.4918	0.4923	0.4923	0.4919	0.4932	0.4936	0.4936	0.4927	0.4931	0.4925	0.4921	0.4932	0.4936	0.4937	0.4933	0.4927	0.4924	0.4935	0.4937	0.4938
	B-U-001	0.4905	0.4917	0.4925	0.4930	0.4933	0.4928	0.4941	0.4945	0.4943	0.4925	0.4931	0.4934	0.4933	0.4929	0.4941	0.4945	0.4945	0.4939	0.4941	0.4935	0.4930	0.4942	0.4945	0.4945	0.4943	0.4937	0.4960	0.4944	0.4946	0.4947
	S-U	0.3138	0.3056	0.3116	0.3159	0.3187	0.3328	0.3328	0.3327	0.3326	0.2031	0.1540	0.1644	0.1703	0.1642	0.1701	0.1747	0.1786	0.4129	0.1391	0.1253	0.1207	0.1154	0.1151	0.1144	0.2674	0.1579	0.1016	0.0969	0.0934	0.0928
	B-U-00001	2.73	2.82	2.99	3.05	3.06	3.19	3.19	3.18	3.27	2.47	2.55	2.60	2.58	2.58	2.58	2.58	2.58	2.45	2.42	2.48	2.47	2.49	2.48	2.47	2.42	2.41	2.44	2.41	2.42	2.41
n_z	B-U-0001	2.73	2.82	3.04	3.05	3.06	3.19	3.19	3.18	3.27	2.47	2.55	2.60	2.58	2.58	2.58	2.58	2.58	2.45	2.42	2.48	2.47	2.49	2.48	2.47	2.45	2.44	2.44	2.41	2.42	2.41
	B-U-001	2.73	3.04	3.04	3.07	3.20	3.19	3.30	3.35	3.36	2.59	2.55	2.60	2.59	2.58	2.61	2.63	2.65	2.52	2.49	2.50	2.51	2.51	2.52	2.53	2.46	2.45	2.45	2.46	2.49	2.48
	S-U	3.29	3.88	4.39	4.86	5.28	5.86	6.21	6.55	98.9	2.74	3.11	3.32	3.68	3.92	4.12	4.42	4.69	2.50	2.86	3.04	3.22	3.39	3.55	3.70	2.50	2.62	2.79	2.99	3.17	3.34
	P_Pop	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	n2	20	30	40	20	09	70	80	90	100	30	40	20	9	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-00001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

																									· ·						
	B-U-00001	0.0083	0.0087	0.0095	0.0089	0.0097	0.0088	0.0098	0.0000	0.0099	0.0077	0.0095	0.0095	9600'0	0.0091	0.0097	0.0099	0.0093	0.0100	0.0087	0.0098	0.0083	0.0095	0.0095	0.0088	0.0094	0.0094	0.0091	0.0000	0.0093	0.0095
p-value	B-U-0001	0.0083	0.0088	0.0095	0.0089	0.0097	0.0088	0.0099	0.0091	0.0100	0.0078	9600.0	9600.0	9600.0	0.0092	0.0097	0.0099	0.0094	0.0079	0.0088	0.0099	0.0083	9600'0	0.0096	0.0089	0.0095	0.0095	0.0092	0.0091	0.0093	0.0095
φ	B-U-001	0.0092	9600.0	0.0081	0.0098	0.0084	0.0097	0.0000	0.0099	0.0093	0.0087	0.0091	0.0100	0.0089	0.0100	0.0089	0.0098	0.0100	0.0088	9600.0	9600.0	0.0092	0.0095	9600.0	0.0098	0.0091	0.0093	0.0099	0.0100	0.0093	0.0097
	N-S	0.0071	0.0077	0.0085	0.0092	0.0097	0.0083	0.0089	0.0094	0.0098	0.0085	0.0097	0.0085	0.0077	0.0100	0.0092	0.0087	0.0083	0.0097	0.0068	0.0072	0.0078	0.0081	0.0088	0.0093	0.0091	9600.0	0.0000	0.0079	0.0073	0.0070
	B-U-00001	0.7400	0.7409	0.7420	0.7432	0.7434	0.7440	0.7440	0.7443	0.7446	0.7414	0.7423	0.7434	0.7435	0.7441	0.7441	0.7443	0.7446	0.7428	0.7437	0.7438	0.7443	0.7443	0.7445	0.7448	0.7567	0.7442	0.7446	0.7446	0.7448	0.7450
<u>a</u>	B-U-0001	0.7413	0.7421	0.7430	0.7442	0.7442	0.7448	0.7448	0.7450	0.7453	0.7425	0.7432	0.7442	0.7443	0.7448	0.7448	0.7450	0.7453	0.7437	0.7445	0.7445	0.7450	0.7450	0.7452	0.7454	0.7560	0.7449	0.7453	0.7453	0.7454	0.7457
	B-U-001	0.7428	0.7434	0.7442	0.7452	0.7452	0.7457	0.7457	0.7458	0.7461	0.7436	0.7443	0.7452	0.7452	0.7457	0.7457	0.7458	0.7461	0.7446	0.7454	0.7454	0.7458	0.7458	0.7459	0.7462	0.7551	0.7457	0.7461	0.7460	0.7462	0.7463
	S-U	0.3138	0.3056	0.3116	0.3159	0.3187	0.3328	0.3328	0.3327	0.3326	0.2031	0.1540	0.1644	0.1703	0.1642	0.1701	0.1747	0.1786	0.4129	0.1391	0.1253	0.1207	0.1154	0.1151	0.1144	0.2674	0.1579	0.1016	0.0969	0.0934	0.0928
	B-U-00001	2.33	2.34	2.26	2.30	2.24	2.29	2.24	2.28	2.25	2.45	2.30	2.22	2.26	2.22	2.20	2.21	2.21	2.37	2.33	2.27	2.29	2.25	2.22	2.26	2.34	2.31	2.30	2.29	2.27	2.27
$\mathbf{n}^{-}\mathbf{z}$	B-U-0001	2.33	2.34	2.26	2.30	2.24	2.29	2.24	2.28	2.25	2.45	2.30	2.22	2.26	2.22	2.20	2.21	2.21	2.38	2.33	2.27	2.29	2.25	2.22	2.26	2.34	2.31	2.30	2.29	2.27	2.27
	B-U-001	2.33	2.34	2.40	2.30	2.35	2.29	2.32	2.28	2.31	2.45	2.34	2.28	2.29	2.23	2.27	2.22	2.26	2.38	2.33	2.30	2.29	2.28	2.27	2.26	2.36	2.36	2.31	2.29	2.28	2.28
	S-U																														3.34
	P_Pop	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	9	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

z_u: Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. nl: sample size 1; n2: sample size 2; P_{pop}: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.0001; B-U-00001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-U-00001	0.0064	0.0093	0.0078	0.0088	0.0099	0.0093	0.0094	0.0000	0.0000	0.0081	0.0100	0.0082	0.0092	0.0093	0.0094	0.0083	0.0086	0.0093	0.0093	0.0097	0.0000	0.0097	0.0076	0.0097	0.0093	0.0096	0.0085	0.0093	0.0093	0.0098
p-value	B-U-0001	0.0064	0.0093	0.0078	0.0088	0.0099	0.0093	0.0095	0.0000	0.0091	0.0082	0.0100	0.0082	0.0092	0.0093	0.0095	0.0083	0.0086	0.0094	0.0094	0.0098	0.0000	0.0097	0.0077	0.0098	0.0093	0.0097	0.0085	0.0094	0.0094	0.0099
q	B-U-001	0.0072	0.0099	0.0086	9600.0	0.0086	0.0082	0.0098	0.0099	0.0099	0.0000	0.0087	0.0091	0.0084	0.0099	0.0089	0.0092	0.0094	0.0071	0.0000	0.0093	0.0099	0.0094	0.0085	0.0088	0.0081	0.0081	0.0094	0.0082	0.0085	0.0092
	S-U	0.0071	0.0077	0.0085	0.0092	0.0097	0.0083	0.0089	0.0094	0.0098	0.0085	0.0097	0.0085	0.0077	0.0100	0.0092	0.0087	0.0083	0.0097	0.0068	0.0072	0.0078	0.0081	0.0088	0.0093	0.0091	0.0096	0.0000	0.0079	0.0073	0.0070
	B-U-00001	0.8928	0.8937	0.8945	0.8949	0.8952	0.8956	0.8958	0.8959	0.8961	0.8945	0.8950	0.8954	0.8956	0.8959	0.8960	0.8961	0.8963	0.8952	0.8955	0.8957	0.8959	0.8961	0.8962	0.8964	0.8959	0.8960	0.8962	0.8963	0.8964	0.8965
۵	B-U-0001	0.8937	0.8945	0.8952	0.8956	0.8958	0.8961	0.8963	0.8964	0.8966	0.8952	0.8957	0.8960	0.8961	0.8964	0.8965	0.8966	0.8968	0.8958	0.8961	0.8962	0.8964	0.8966	0.8966	0.8968	0.8964	0.8965	0.8967	0.8968	0.8968	0.8970
	B-U-001	0.8947	0.8955	0.8960	0.8963	0.8965	0.8967	0.8969	0.8969	0.8971	0.8960	0.8964	0.8966	0.8967	0.8970	0.8971	0.8971	0.8973	0.8965	0.8967	0.8968	0.8970	0.8971	0.8972	0.8973	0.8970	0.8970	0.8972	0.8973	0.8973	0.8975
	S-U	0.3138	0.3056	0.3116	0.3159	0.3187	0.3328	0.3328	0.3327	0.3326	0.2031	0.1540	0.1644	0.1703	0.1642	0.1701	0.1747	0.1786	0.4129	0.1391	0.1253	0.1207	0.1154	0.1151	0.1144	0.2674	0.1579	0.1016	0.0969	0.0934	0.0928
	B-U-00001	2.08	1.83	1.88	1.87	1.82	1.86	1.81	1.83	1.84	2.12	1.95	2.02	1.99	1.92	1.93	1.95	1.91	2.17	2.07	2.08	2.02	2.02	2.02	1.97	2.23	2.17	2.11	2.12	2.06	2.04
n_z	B-U-0001	2.08	1.83	1.88	1.87	1.82	1.86	1.81	1.83	1.84	2.12	1.95	2.02	1.99	1.92	1.93	1.95	1.91	2.17	2.07	2.08	2.02	2.02	2.02	1.97	2.23	2.17	2.11	2.12	2.06	2.04
	B-U-001	2.08	1.94	1.88	1.87	1.88	1.89	1.89	1.83	1.84	2.12	2.04	2.02	2.00	1.95	1.99	1.95	1.91	2.28	2.09	2.15	2.05	2.07	2.05	2.01	2.32	2.21	2.11	2.16	2.14	2.08
	S-U	3.29	3.88	4.39	4.86	5.28	5.86	6.21	6.55	98.9	2.74	3.11	3.32	3.68	3.92	4.12	4.42	4.69	2.50	2.86	3.04	3.22	3.39	3.55	3.70	2.50	2.62	2.79	2.99	3.17	3.34
	P_Pop	0.90	0.90	0.90	0.90	0.90	0.90	06.0	0.90	0.90	0.90	06.0	0.90	0.90	06.0	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	06.0	0.90	0.90
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zu. Z unpooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-00001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

Figure C.13: Comparison of p-values for the poooled Z test calculated with both the classical Lehmann (1959) procedure and the Berger and Boos (1994) procedure for $\alpha = 0.05$.

	B-P-00001	0.0182	0.0303	0.0405	0.0494	0.0309	0.0365	0.0419	0.0469	0.0312	0.0307	0.0315	0.0325	0.0338	0.0350	0.0374	0.0382	0.0390	0.0425	0.0482	0.0485	0.0449	0.0452	0.0476	0.0483	0.0371	0.0432	0.0448	0.0493	0.0433	0.0446
p-value	B-P-0001	0.0179	0.0298	0.0399	0.0486	0.0303	0.0358	0.0411	0.0461	0.0305	0.0305	0.0313	0.0323	0.0336	0.0349	0.0372	0.0381	0.0389	0.0426	0.0482	0.0485	0.0450	0.0453	0.0476	0.0483	0.0372	0.0433	0.0448	0.0494	0.0433	0.0446
Ġ	B-P-001	0.0184	0.0300	0.0399	0.0485	0.0304	0.0359	0.0410	0.0460	0.0306	0.0311	0.0319	0.0329	0.0343	0.0355	0.0378	0.0386	0.0394	0.0435	0.0490	0.0492	0.0458	0.0462	0.0484	0.0490	0.0381	0.0441	0.0456	0.0491	0.0441	0.0454
	S-P	0.0316	0.0439	0.0417	0.0478	0.0249	0.0489	0.0482	0.0412	0.0453	0.0481	0.0419	0.0412	0.0495	0.0452	0.0459	0.0407	0.0473	0.0489	0.0486	0.0499	0.0473	0.0490	0.0480	0.0465	0.0480	0.0472	0.0494	0.0491	0.0465	0.0471
	B-P-00001	0.1072	0.1063	0.1055	0.1051	0.1048	0.1044	0.1042	0.1041	0.1039	0.1055	0.1050	0.1046	0.1044	0.1041	0.1040	0.1039	0.1037	0.1048	0.1045	0.1043	0.0958	0.1039	0.1038	0.1036	0.1041	0.1040	0.1038	0.0961	0.1036	0.1035
d	B-P-0001	0.1063	0.1055	0.1048	0.1044	0.1042	0.1039	0.1037	0.1036	0.1034	0.1048	0.1043	0.1040	0.1039	0.1036	0.1035	0.1034	0.1032	0.1042	0.1039	0.1038	0.0963	0.1034	0.1034	0.1032	0.1036	0.1035	0.1033	9960.0	0.1032	0.1030
	B-P-001	0.1053	0.1045	0.1040	0.1037	0.1035	0.1033	0.1031	0.1031	0.1029	0.1040	0.1036	0.1034	0.1033	0.1030	0.1029	0.1029	0.1027	0.1035	0.1033	0.1032	0.0969	0.1029	0.1028	0.1027	0.1030	0.1030	0.1028	0.0971	0.1027	0.1025
	S-P	0.3160	0.6925	0.9307	0.5482	0.6895	0.8010	0.9518	0.8936	0.9487	0.4030	0.6943	0.5939	0.7716	0.8246	0.6792	0.7833	0.6507	0.4346	0.7588	0.6687	0.8486	0.6443	0.6830	0.7824	0.5746	0.7947	0.6310	0.7004	0.5207	0.7206
	B-P-00001	1.52	1.39	1.31	1.26	1.32	1.28	1.26	1.24	1.27	1.71	1.66	1.63	1.60	1.59	1.58	1.57	1.56	1.62	1.59	1.63	1.61	1.57	1.58	1.60	1.68	1.66	1.65	1.62	1.63	1.63
ď⁻z	B-P-0001	1.52	1.39	1.31	1.26	1.32	1.28	1.26	1.24	1.27	1.71	1.66	1.63	1.60	1.59	1.58	1.57	1.56	1.62	1.59	1.63	1.61	1.57	1.58	1.60	1.68	1.66	1.65	1.62	1.63	1.63
	B-P-001	1.52	1.39	1.31	1.26	1.32	1.28	1.26	1.24	1.27	1.71	1.66	1.63	1.60	1.59	1.58	1.57	1.56	1.62	1.59	1.63	1.61	1.57	1.58	1.60	1.68	1.66	1.65	1.63	1.63	1.63
	S-P	1.88	1.83	2.03	1.74	2.08	1.79	1.83	1.97	2.04	1.69	1.78	1.76	1.73	1.75	1.74	1.83	1.71	1.68	1.70	1.69	1.76	1.69	1.71	1.72	1.68	1.72	1.67	1.69	1.70	1.72
	P_Pop	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	n2	70	30	40	20	9	20	80	90	100	30	40	20	9	2	80	90	100	40	20	9	20	80	90	100	20	9	20	80	8	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. nl: sample size 1; n2: sample size 2; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test at confidence level 0.001; B-U-0001: Berger Unpooled test at confidence level 0.0001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-0001: Berger Unpooled test at confidence level 0.00001; B-U-0001: Berger Unpooled test at confidence level 0.00001 is D-U-0001: Berger Unpooled test at confidence level 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0424	0.0471	0.0498	0.0477	0.0495	0.0428	0.0447	0.0464	0.0468	0.0416	0.0470	0.0444	0.0500	0.0473	0.0420	0.0498	0.0490	0.0473	0.0460	0.0496	0.0471	0.0497	0.0491	0.0454	0.0494	0.0496	0.0490	0.0500	0.0494	0.0469
p-value	B-P-0001	0.0424	0.0472	0.0499	0.0477	0.0495	0.0429	0.0448	0.0465	0.0468	0.0417	0.0470	0.0444	0.0499	0.0473	0.0421	0.0498	0.0491	0.0473	0.0460	0.0497	0.0471	0.0497	0.0491	0.0454	0.0495	0.0497	0.0490	0.0455	0.0495	0.0469
Ġ	B-P-001	0.0433	0.0481	0.0438	0.0486	0.0443	0.0438	0.0457	0.0473	0.0477	0.0426	0.0479	0.0453	0.0498	0.0481	0.0430	0.0494	0.0448	0.0481	0.0469	0.0466	0.0479	0.0473	0.0500	0.0463	0.0451	0.0497	0.0499	0.0464	0.0480	0.0478
	S-P	0.0316	0.0439	0.0417	0.0478	0.0249	0.0489	0.0482	0.0412	0.0453	0.0481	0.0419	0.0412	0.0495	0.0452	0.0459	0.0407	0.0473	0.0489	0.0486	0.0499	0.0473	0.0490	0.0480	0.0465	0.0480	0.0472	0.0494	0.0491	0.0465	0.0471
	B-P-00001	0.2380	0.2400	0.2520	0.2413	0.2423	0.2447	0.2435	0.2437	0.2440	0.2586	0.2422	0.2566	0.2565	0.2559	0.2559	0.2557	0.2554	0.2572	0.2429	0.2562	0.2557	0.2557	0.2555	0.2447	0.2433	0.2439	0.2440	0.2554	0.2447	0.2550
ď	B-P-0001	0.2393	0.2412	0.2520	0.2422	0.2432	0.2447	0.2441	0.2445	0.2447	0.2575	0.2431	0.2558	0.2557	0.2552	0.2552	0.2550	0.2547	0.2563	0.2437	0.2555	0.2550	0.2550	0.2548	0.2454	0.2440	0.2446	0.2447	0.2451	0.2454	0.2543
	B-P-001	0.2408	0.2425	0.2558	0.2433	0.2548	0.2447	0.2450	0.2453	0.2455	0.2564	0.2442	0.2548	0.2548	0.2543	0.2543	0.2542	0.2539	0.2554	0.2446	0.2452	0.2542	0.2457	0.2541	0.2461	0.2543	0.2454	0.2455	0.2459	0.2461	0.2537
	S-P	0.3160	0.6925	0.9307	0.5482	0.6895	0.8010	0.9518	0.8936	0.9487	0.4030	0.6943	0.5939	0.7716	0.8246	0.6792	0.7833	0.6507	0.4346	0.7588	0.6687	0.8486	0.6443	0.6830	0.7824	0.5746	0.7947	0.6310	0.7004	0.5207	0.7206
	B-P-00001	1.70	1.60	1.58	1.62	1.58	1.63	1.62	1.62	1.62	1.68	1.63	1.63	1.58	1.60	1.64	1.59	1.62	1.65	1.69	1.65	1.64	1.63	1.61	1.64	1.67	1.62	1.62	1.63	1.62	1.63
d_z	B-P-0001	1.70	1.60	1.58	1.62	1.58	1.63	1.62	1.62	1.62	1.68	1.63	1.63	1.59	1.60	1.64	1.59	1.62	1.65	1.69	1.65	1.64	1.63	1.61	1.64	1.67	1.62	1.62	1.66	1.62	1.63
	B-P-001	1.70	1.60	1.66	1.62	1.64	1.63	1.62	1.62	1.62	1.68	1.63	1.63	1.63	1.60	1.64	1.61	1.63	1.65	1.69	1.67	1.64	1.65	1.61	1.64	1.68	1.67	1.62	1.66	1.66	1.63
	S-P	1.88	1.83	2.03	1.74	2.08	1.79	1.83	1.97	2.04	1.69	1.78	1.76	1.73	1.75	1.74	1.83	1.71	1.68	1.70	1.69	1.76	1.69	1.71	1.72	1.68	1.72	1.67	1.69	1.70	1.72
	P_Pop	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zp.: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0490	0.0456	0.0404	0.0488	0.0447	0.0421	0.0474	0.0450	0.0491	0.0487	0.0457	0.0487	0.0489	0.0500	0.0497	0.0472	0.0496	0.0483	0.0464	0.0487	0.0486	0.0493	0.0482	0.0498	0.0489	0.0481	0.0471	0.0480	0.0498	0.0493
p-value	B-P-0001	0.0490	0.0456	0.0405	0.0488	0.0448	0.0421	0.0475	0.0451	0.0492	0.0488	0.0458	0.0487	0.0490	0.0491	0.0498	0.0473	0.0496	0.0483	0.0465	0.0488	0.0486	0.0493	0.0483	0.0499	0.0490	0.0482	0.0472	0.0481	0.0499	0.0494
•	B-P-001	0.0499	0.0464	0.0413	0.0497	0.0456	0.0430	0.0483	0.0460	0.0442	0.0497	0.0466	0.0495	0.0499	0.0499	0.0439	0.0482	0.0491	0.0492	0.0474	0.0496	0.0495	0.0480	0.0492	0.0478	0.0499	0.0491	0.0481	0.0490	0.0480	0.0484
	S-P	0.0316	0.0439	0.0417	0.0478	0.0249	0.0489	0.0482	0.0412	0.0453	0.0481	0.0419	0.0412	0.0495	0.0452	0.0459	0.0407	0.0473	0.0489	0.0486	0.0499	0.0473	0.0490	0.0480	0.0465	0.0480	0.0472	0.0494	0.0491	0.0465	0.0471
	B-P-00001	0.5126	0.5109	0.5096	0.5086	0.5077	0.5063	0.5068	0.5066	0.5058	0.5096	0.5087	0.5079	0.4913	0.5056	0.5062	0.4928	0.5054	0.4917	0.5076	0.5062	0.5051	0.5056	0.5055	0.5051	0.4924	0.5057	0.5048	0.5053	0.4930	0.5048
٥	B-P-0001	0.5111	0.5096	0.5085	0.5075	0.5067	0.5053	0.5060	0.5057	0.5050	0.5084	0.5076	0.5069	0.4923	0.5048	0.5054	0.4936	0.5047	0.4927	0.5067	0.5053	0.5043	0.5049	0.5047	0.5043	0.4933	0.5049	0.5040	0.5046	0.4937	0.5041
	B-P-001	0.5094	0.5081	0.5071	0.5063	0.5056	0.5043	0.5050	0.5048	0.5041	0.5070	0.5063	0.5058	0.4933	0.5038	0.5045	0.4945	0.4945	0.4939	0.5057	0.5044	0.5033	0.5039	0.5038	0.5035	0.4943	0.5040	0.5031	0.5037	0.5036	0.4947
	S-P	0.3160	0.6925	0.9307	0.5482	0.6895	0.8010	0.9518	0.8936	0.9487	0.4030	0.6943	0.5939	0.7716	0.8246	0.6792	0.7833	0.6507	0.4346	0.7588	0.6687	0.8486	0.6443	0.6830	0.7824	0.5746	0.7947	0.6310	0.7004	0.5207	0.7206
	B-P-00001	1.59	1.67	1.71	1.64	1.67	1.70	1.65	1.68	1.64	1.63	1.66	1.67	1.68	1.65	1.65	1.67	1.64	1.66	1.68	1.65	1.67	1.66	1.69	1.65	1.66	1.65	1.67	1.68	1.64	1.66
d_s	B-P-0001	1.59	1.67	1.71	1.64	1.67	1.70	1.65	1.68	1.64	1.63	1.66	1.67	1.68	1.67	1.65	1.67	1.64	1.66	1.68	1.65	1.67	1.66	1.69	1.65	1.66	1.65	1.67	1.68	1.64	1.66
	B-P-001	1.59	1.67	1.71	1.64	1.67	1.70	1.65	1.68	1.70	1.63	1.66	1.67	1.68	1.67	1.71	1.67	1.65	1.66	1.68	1.65	1.67	1.68	1.69	1.67	1.66	1.65	1.67	1.68	1.67	1.67
	S-P	1.88	1.83	2.03	1.74	2.08	1.79	1.83	1.97	2.04	1.69	1.78	1.76	1.73	1.75	1.74	1.83	1.71	1.68	1.70	1.69	1.76	1.69	1.71	1.72	1.68	1.72	1.67	1.69	1.70	1.72
	P_Pop	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	n2	20	30	40	20	9	70	80	90	100	30	40	20	9	70	80	90	100	40	20	9	70	80	90	100	20	9	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	70	70	30	30	30	30	30	30	30	40	40	40	40	40	40

zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-0001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0477	0.0431	0.0403	0.0466	0.0440	0.0487	0.0461	0.0493	0.0492	0.0452	0.0485	0.0491	0.0494	0.0495	0.0499	0.0484	0.0459	0.0488	0.0493	0.0494	0.0493	0.0500	0.0470	0.0486	0.0480	0.0471	0.0487	0.0482	0.0483	0.0465
p-value	B-P-0001	0.0477	0.0431	0.0404	0.0467	0.0441	0.0488	0.0461	0.0494	0.0493	0.0453	0.0486	0.0492	0.0494	0.0495	0.0499	0.0484	0.0460	0.0489	0.0494	0.0495	0.0494	0.0471	0.0471	0.0487	0.0480	0.0472	0.0488	0.0483	0.0483	0.0465
ġ	B-P-001	0.0484	0.0440	0.0412	0.0476	0.0449	0.0496	0.0470	0.0499	0.0446	0.0461	0.0494	0.0469	0.0455	0.0459	0.0451	0.0493	0.0469	0.0498	0.0496	0.0500	0.0460	0.0480	0.0480	0.0496	0.0488	0.0481	0.0496	0.0492	0.0491	0.0474
	S-P	0.0316	0.0439	0.0417	0.0478	0.0249	0.0489	0.0482	0.0412	0.0453	0.0481	0.0419	0.0412	0.0495	0.0452	0.0459	0.0407	0.0473	0.0489	0.0486	0.0499	0.0473	0.0490	0.0480	0.0465	0.0480	0.0472	0.0494	0.0491	0.0465	0.0471
	B-P-00001	0.7620	0.7409	0.7590	0.7432	0.7577	0.7574	0.7567	0.7563	0.7446	0.7584	0.7423	0.7577	0.7569	0.7567	0.7561	0.7443	0.7556	0.7571	0.7437	0.7438	0.7443	0.7443	0.7445	0.7478	0.7441	0.7561	0.7560	0.7446	0.7553	0.7450
ď	B-P-0001	0.7607	0.7421	0.7580	0.7442	0.7568	0.7566	0.7559	0.7555	0.7453	0.7574	0.7432	0.7568	0.7561	0.7559	0.7554	0.7450	0.7549	0.7563	0.7445	0.7445	0.7450	0.7551	0.7452	0.7478	0.7448	0.7554	0.7553	0.7453	0.7546	0.7457
	B-P-001	0.7592	0.7434	0.7568	0.7452	0.7559	0.7557	0.7550	0.7547	0.7545	0.7562	0.7443	0.7558	0.7452	0.7457	0.7457	0.7458	0.7541	0.7553	0.7554	0.7454	0.7547	0.7543	0.7459	0.7478	0.7457	0.7546	0.7545	0.7460	0.7539	0.7463
	S-P	0.3160	0.6925	0.9307	0.5482	0.6895	0.8010	0.9518	0.8936	0.9487	0.4030	0.6943	0.5939	0.7716	0.8246	0.6792	0.7833	0.6507	0.4346	0.7588	0.6687	0.8486	0.6443	0.6830	0.7824	0.5746	0.7947	0.6310	0.7004	0.5207	0.7206
	B-P-00001	1.70	1.83	1.77	1.74	1.76	1.71	1.77	1.73	1.77	1.81	1.66	1.73	1.70	1.68	1.72	1.72	1.71	1.62	1.68	1.68	1.69	1.66	1.71	1.71	1.62	1.68	1.66	1.68	1.68	1.72
d_z	B-P-0001	1.70	1.83	1.77	1.74	1.76	1.71	1.77	1.73	1.77	1.81	1.66	1.73	1.70	1.68	1.72	1.72	1.71	1.62	1.68	1.68	1.69	1.69	1.71	1.71	1.62	1.68	1.66	1.68	1.68	1.72
	B-P-001	1.70	1.83	1.77	1.74	1.76	1.71	1.77	1.75	1.78	1.81	1.66	1.74	1.74	1.73	1.74	1.72	1.71	1.62	1.70	1.70	1.75	1.69	1.71	1.71	1.62	1.68	1.66	1.68	1.68	1.72
	S-P	1.88	1.83	2.03	1.74	2.08	1.79	1.83	1.97	2.04	1.69	1.78	1.76	1.73	1.75	1.74	1.83	1.71	1.68	1.70	1.69	1.76	1.69	1.71	1.72	1.68	1.72	1.67	1.69	1.70	1.72
	P_Pop	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
		20																													
		10																													

zp.: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0396	0.0442	0.0472	0.0448	0.0484	0.0423	0.0450	0.0485	0.0434	0.0469	0.0358	0.0410	0.0472	0.0499	0.0481	0.0451	0.0439	0.0499	0.0499	0.0473	0.0440	0.0475	0.0468	0.0499	0.0485	0.0425	0.0446	0.0473	0.0499	0.0465
p-value	B-P-0001	0.0397	0.0441	0.0470	0.0449	0.0485	0.0424	0.0450	0.0484	0.0435	0.0469	0.0358	0.0410	0.0472	0.0500	0.0481	0.0451	0.0440	0.0500	0.0498	0.0473	0.0440	0.0475	0.0468	0.0499	0.0486	0.0425	0.0446	0.0472	0.0499	0.0466
<u>a</u>	B-P-001	0.0406	0.0447	0.0475	0.0458	0.0493	0.0433	0.0459	0.0492	0.0443	0.0475	0.0366	0.0419	0.0479	0.0458	0.0488	0.0460	0.0449	0.0394	0.0468	0.0482	0.0449	0.0484	0.0477	0.0439	0.0495	0.0433	0.0454	0.0480	0.0494	0.0474
	S-P	0.0316	0.0439	0.0417	0.0478	0.0249	0.0489	0.0482	0.0412	0.0453	0.0481	0.0419	0.0412	0.0495	0.0452	0.0459	0.0407	0.0473	0.0489	0.0486	0.0499	0.0473	0.0490	0.0480	0.0465	0.0480	0.0472	0.0494	0.0491	0.0465	0.0471
	B-P-00001	0.9049	0.8937	0.9062	0.8949	0.9051	0.8956	0.9045	0.9041	0.9040	0.8945	0.8950	0.8954	0.9048	0.8959	0.9043	0.9040	0.8963	0.9051	0.8955	0.9044	0.8959	0.9040	0.9037	0.9036	0.8976	0.9042	0.8962	0.9039	0.8964	0.8965
Q	B-P-0001	0.9049	0.8945	0.9055	0.8956	0.9045	0.8961	0.9039	0.9036	0.9035	0.8952	0.8957	0.8960	0.9042	0.8964	0.9038	0.9035	0.8968	0.9045	0.8961	0.9039	0.8964	0.9035	0.9033	0.9032	0.8976	0.9037	0.8967	0.9034	0.8968	0.8970
	B-P-001	0.9049	0.8955	0.9047	0.8963	0.9038	0.8967	0.9034	0.9031	0.9029	0.8960	0.8964	0.8966	0.9036	0.9034	0.9032	0.9029	0.8973	0.8965	0.8967	0.9033	0.8970	0.9029	0.9027	0.9027	0.8976	0.9032	0.8972	0.9029	0.9027	0.8975
	S-P	0.3160	0.6925	0.9307	0.5482	0.6895	0.8010	0.9518	0.8936	0.9487	0.4030	0.6943	0.5939	0.7716	0.8246	0.6792	0.7833	0.6507	0.4346	0.7588	0.6687	0.8486	0.6443	0.6830	0.7824	0.5746	0.7947	0.6310	0.7004	0.5207	0.7206
	B-P-00001	1.90	1.76	1.96	1.86	1.75	1.93	1.83	1.85	1.87	1.77	1.83	1.77	1.73	1.70	1.79	1.83	1.84	1.66	1.59	1.80	1.76	1.70	1.70	1.72	1.67	1.72	1.68	1.76	1.67	1.72
d_z	B-P-0001	1.90	1.76	1.96	1.86	1.75	1.93	1.83	1.85	1.87	1.77	1.83	1.77	1.73	1.70	1.79	1.83	1.84	1.66	1.59	1.80	1.76	1.70	1.70	1.72	1.67	1.72	1.68	1.76	1.67	1.72
	B-P-001	1.90	1.76	1.96	1.86	1.75	1.93	1.83	1.85	1.87	1.77	1.83	1.77	1.73	1.75	1.79	1.83	1.84	1.75	1.62	1.80	1.76	1.70	1.70	1.85	1.67	1.72	1.68	1.76	1.70	1.72
	S-P	1.88	1.83	2.03	1.74	2.08	1.79	1.83	1.97	2.04	1.69	1.78	1.76	1.73	1.75	1.74	1.83	1.71	1.68	1.70	1.69	1.76	1.69	1.71	1.72	1.68	1.72	1.67	1.69	1.70	1.72
	P_Pop	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	0.90
	n2	20	30	40	20	9	70	80	90	100	30	40	20	9	70	80	90	100	40	20	9	70	80	90	100	20	9	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-0001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

Figure C.14: Comparison of p-values for the Pooled Z test calculated with both the classical Lehmann (1959) procedure and the Berger and Boos (1994) procedure for $\alpha = 0.025$.

	B-P-00001	0.0182	0.0113	0.0180	0.0245	0.0152	0.0192	0.0234	0.0150	0.0178	0.0249	0.0150	0.0173	0.0196	0.0215	0.0238	0.0157	0.0172	0.0232	0.0207	0.0224	0.0249	0.0218	0.0231	0.0212	0.0210	0.0243	0.0246	0.0240	0.0204	0.0200
o-value	B-P-0001	0.0179	0.0111	0.0176	0.0240	0.0148	0.0188	0.0229	0.0147	0.0174	0.0249	0.0149	0.0172	0.0194	0.0214	0.0237	0.0249	0.0170	0.0233	0.0207	0.0225	0.0249	0.0218	0.0231	0.0212	0.0210	0.0243	0.0247	0.0240	0.0205	0.0200
•	B-P-001	0.0184	0.0117	0.0180	0.0243			0.0231		0.0177	0.0130		0.0179	0.0201	0.0220	0.0243	0.0162		0.0241	0.0216	0.0233	0.0214		0.0239	0.0221	0.0219	0.0243	0.0231	0.0249	0.0213	0.0209
	S-P	0.0231	0.0176	0.0246	0.0166	0.0249	0.0163	0.0239	0.0099	0.0086	0.0246	0.0217	0.0237	0.0157	0.0242	0.0245	0.0243	0.0185	0.0222	0.0237	0.0250	0.0226	0.0232	0.0243	0.0206	0.0225	0.0249	0.0250	0.0212	0.0242	0.0245
	B-P-00001	0.107	0.106	0.106	0.105	0.105	0.104	0.104	0.104	0.104	0.106	0.105	0.105	0.104	0.104	0.104	0.104	0.104	0.105	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	960.0	0.104	0.103
٥	B-P-0001	0.106	0.105	0.105	0.104	0.104	0.104	0.104	0.104	0.103	0.105	0.104	0.104	0.104	0.104	0.103	0.103	0.103	0.104	0.104	0.104	0.104	0.103	0.103	0.103	0.104	0.104	0.103	0.097	0.103	0.103
	B-P-001	0.105	0.105	0.104	0.104	0.104	0.103	0.103	0.103	0.103	0.104	0.104	0.103	0.103	0.103	0.103	0.103	0.103	0.104	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.097	0.103	0.103
	S-P	909.0	0.557	0.881	0.865	0.689	0.955	0.842	996.0	0.964	0.603	0.668	0.379	0.655	968.0	0.667	0.876	0.821	0.816	0.769	0.843	0.864	0.805	0.810	0.649	0.503	0.386	0.356	0.575	999.0	0.695
	B-P-00001	1.52	1.54	1.43	1.36	1.40	1.35	1.32	1.35	1.32	1.74	1.83	1.77	1.73	1.70	1.67	1.74	1.71	1.85	1.93	1.83	1.80	1.82	1.81	1.81	1.91	1.88	1.84	1.90	1.91	1.88
d⁻z	B-P-0001	1.52	1.54	1.43	1.36	1.40	1.35	1.32	1.35	1.32	1.74	1.83	1.77	1.73	1.70	1.67	1.69	1.71	1.85	1.93	1.83	1.80	1.82	1.81	1.81	1.91	1.88	1.84	1.90	1.91	1.88
	B-P-001	1.52	1.54	1.43	1.36	1.40	1.35	1.32	1.35	1.32	1.93	1.83	1.77	1.73	1.70	1.67	1.74	1.71	1.85	1.93	1.83	1.89	1.82	1.81	1.81	1.91	1.90	1.91	1.90	1.91	1.88
	S-P	2.08	2.17	2.16	2.39	2.08	2.67	2.24	3.02	3.18	1.97	2.06	2.00	2.21	2.10	2.04	2.16	2.24	2.10	2.02	2.01	2.10	2.12	2.08	2.10	2.00	1.98	1.99	2.07	2.03	2.02
	P_Pop	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	n2	20	30	40	20	09	20	80	90	100	30	40	20	09	20	80	90	100	40	20	09	20	80	90	100	20	09	20	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U. Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0011; B-U-0001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0244	0.0238	0.0193	0.0224	0.0197	0.0233	0.0205	0.0236	0.0215	0.0250	0.0228	0.0220	0.0231	0.0240	0.0245	0.0248	0.0243	0.0244	0.0241	0.0247	0.0249	0.0245	0.0227	0.0230	0.0241	0.0245	0.0231	0.0248	0.0230	0.0234
p-value	B-P-0001	0.0245	0.0237	0.0193	0.0224	0.0196	0.0233	0.0205	0.0236	0.0214	0.0238	0.0228	0.0220	0.0232	0.0241	0.0245	0.0249	0.0244	0.0244	0.0241	0.0248	0.0249	0.0246	0.0228	0.0231	0.0241	0.0245	0.0232	0.0249	0.0231	0.0235
•	B-P-001	0.0165	0.0245	0.0200	0.0232	0.0204	0.0240	0.0213	0.0243	0.0222	0.0246	0.0237	0.0229	0.0241	0.0249	0.0217	0.0250	0.0231	0.0212	0.0249	0.0240	0.0242	0.0247	0.0237	0.0240	0.0226	0.0243	0.0241	0.0248	0.0240	0.0244
	S-P	0.0231	0.0176	0.0246	0.0166	0.0249	0.0163	0.0239	0.0099	0.0086	0.0246	0.0217	0.0237	0.0157	0.0242	0.0245	0.0243	0.0185	0.0222	0.0237	0.0250	0.0226	0.0232	0.0243	0.0206	0.0225	0.0249	0.0250	0.0212	0.0242	0.0245
	B-P-00001	0.253	0.259	0.258	0.257	0.257	0.256	0.256	0.256	0.255	0.242	0.258	0.257	0.257	0.256	0.256	0.256	0.255	0.243	0.256	0.256	0.256	0.244	0.255	0.248	0.243	0.256	0.255	0.255	0.255	0.245
ď	B-P-0001	0.253	0.258	0.257	0.256	0.256	0.255	0.255	0.255	0.255	0.243	0.257	0.256	0.256	0.255	0.255	0.255	0.255	0.244	0.256	0.255	0.255	0.245	0.255	0.248	0.244	0.255	0.255	0.255	0.255	0.245
	B-P-001	0.257	0.257	0.256	0.255	0.255	0.254	0.254	0.254	0.254	0.244	0.256	0.255	0.255	0.254	0.254	0.254	0.254	0.255	0.255	0.249	0.254	0.254	0.254	0.248	0.254	0.254	0.254	0.254	0.254	0.246
	S-P	909.0	0.557	0.881	0.865	0.689	0.955	0.842	0.966	0.964	0.603	0.668	0.379	0.655	968.0	0.667	0.876	0.821	0.816	0.769	0.843	0.864	0.805	0.810	0.649	0.503	0.386	0.356	0.575	0.666	0.695
	B-P-00001	1.92	1.83	1.88	1.83	1.86	1.83	1.86	1.83	1.85	1.90	1.90	1.91	1.91	1.91	1.88	1.86	1.85	1.99	1.91	1.95	1.90	1.90	1.91	1.92	1.95	1.91	1.94	1.92	1.93	1.94
d_s	B-P-0001	1.92	1.83	1.88	1.83	1.86	1.83	1.86	1.83	1.85	1.93	1.90	1.91	1.91	1.91	1.88	1.86	1.85	1.99	1.91	1.95	1.90	1.90	1.91	1.92	1.95	1.91	1.94	1.92	1.93	1.94
	B-P-001	1.94	1.83	1.88	1.83	1.86	1.83	1.86	1.83	1.85	1.93	1.90	1.91	1.91	1.91	1.92	1.89	1.91	2.02	1.93	1.96	1.91	1.92	1.91	1.92	1.99	1.95	1.94	1.94	1.93	1.94
	S-P	2.08	2.17	2.16	2.39	2.08	2.67	2.24	3.02	3.18	1.97	2.06	2.00	2.21	2.10	2.04	2.16	2.24	2.10	2.02	2.01	2.10	2.12	2.08	2.10	2.00	1.98	1.99	2.07	2.03	2.02
	P_Pop	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. B-U-00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0209	0.0227	0.0235	0.0240	0.0245	0.0247	0.0239	0.0244	0.0248	0.0245	0.0245	0.0241	0.0239	0.0240	0.0232	0.0230	0.0229	0.0245	0.0246	0.0237	0.0235	0.0247	0.0213	0.0247	0.0236	0.0241	0.0248	0.0238	0.0242	0.0240
p-value	B-P-0001	0.0210	0.0227	0.0235	0.0241	0.0245	0.0248	0.0240	0.0245	0.0248	0.0246	0.0246	0.0241	0.0240	0.0241	0.0233	0.0231	0.0229	0.0246	0.0247	0.0238	0.0236	0.0247	0.0214	0.0248	0.0237	0.0242	0.0249	0.0239	0.0243	0.0241
<u>.</u>	B-P-001	0.0218	0.0235	0.0244	0.0249	0.0237	0.0244	0.0249	0.0221	0.0226	0.0236	0.0226	0.0250	0.0249	0.0236	0.0241	0.0240	0.0238	0.0234	0.0243	0.0247	0.0245	0.0235	0.0223	0.0238	0.0245	0.0244	0.0241	0.0248	0.0240	0.0242
	S-P	0.0231	0.0176	0.0246	0.0166	0.0249	0.0163	0.0239	0.0099	0.0086	0.0246	0.0217	0.0237	0.0157	0.0242	0.0245	0.0243	0.0185	0.0222	0.0237	0.0250	0.0226	0.0232	0.0243	0.0206	0.0225	0.0249	0.0250	0.0212	0.0242	0.0245
	B-P-00001	0.513	0.511	0.510	0.509	0.508	0.506	0.507	0.507	0.506	0.490	0.509	0.508	0.507	0.491	0.506	0.506	0.505	0.505	0.508	0.506	0.505	0.506	0.505	0.493	0.507	0.506	0.505	0.505	0.505	0.505
۵	B-P-0001	0.511	0.510	0.508	0.508	0.507	0.505	0.506	0.506	0.505	0.491	0.508	0.507	0.506	0.492	0.505	0.505	0.505	0.505	0.507	0.505	0.504	0.505	0.505	0.494	0.506	0.505	0.504	0.505	0.504	0.504
	B-P-001	0.509	0.508	0.507	0.506	0.506	0.504	0.505	0.505	0.504	0.507	0.506	0.506	0.505	0.504	0.504	0.504	0.504	0.506	0.494	0.504	0.503	0.504	0.504	0.503	0.505	0.494	0.503	0.504	0.495	0.503
	S-P	909.0	0.557	0.881	0.865	0.689	0.955	0.842	0.966	0.964	0.603	0.668	0.379	0.655	968.0	0.667	0.876	0.821	0.816	0.769	0.843	0.864	0.805	0.810	0.649	0.503	0.386	0.356	0.575	0.666	0.695
	B-P-00001	2.08	2.02	1.99	1.97	1.96	1.95	1.97	1.97	1.97	1.97	2.01	1.97	1.96	1.98	2.01	1.98	1.97	1.98	1.97	1.95	1.98	1.98	2.01	1.96	1.99	1.97	1.97	1.95	1.98	1.98
d_s	B-P-0001	2.08	2.02	1.99	1.97	1.96	1.95	1.97	1.97	1.97	1.97	2.01	1.97	1.96	1.98	2.01	1.98	1.97	1.98	1.97	1.95	1.98	1.98	2.01	1.96	1.99	1.97	1.97	1.95	1.98	1.98
	B-P-001	2.08	2.02	1.99	1.97	1.99	1.98	1.97	2.00	1.99	1.99	2.02	1.97	1.96	1.99	2.01	1.98	1.97	2.01	1.99	1.95	1.98	2.00	2.01	1.99	1.99	1.98	1.99	1.95	2.00	1.99
	S-P	2.08	2.17	2.16	2.39	2.08	2.67	2.24	3.02	3.18	1.97	2.06	2.00	2.21	2.10	2.04	2.16	2.24	2.10	2.02	2.01	2.10	2.12	2.08	2.10	2.00	1.98	1.99	2.07	2.03	2.02
	P_Pop	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	n1 n2	10 20							10 90																						

zp.: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0202	0.0233	0.0239	0.0247	0.0245	0.0244	0.0220	0.0220	0.0245	0.0243	0.0243	0.0245	0.0235	0.0243	0.0248	0.0247	0.0230	0.0205	0.0236	0.0250	0.0250	0.0245	0.0248	0.0245	0.0231	0.0241	0.0232	0.0245	0.0245	0.0234
p-value	B-P-0001	0.0203	0.0233	0.0239	0.0248	0.0246	0.0244	0.0221	0.0221	0.0245	0.0243	0.0244	0.0245	0.0236	0.0243	0.0248	0.0248	0.0231	0.0205	0.0237	0.0224	0.0244	0.0246	0.0248	0.0246	0.0231	0.0242	0.0233	0.0245	0.0245	0.0235
<u> </u>	B-P-001	0.0212	0.0242	0.0248	0.0234	0.0237	0.0240	0.0230	0.0230	0.0224	0.0248	0.0220	0.0246	0.0245	0.0236	0.0243	0.0248	0.0240	0.0214	0.0246	0.0233	0.0244	0.0239	0.0237	0.0240	0.0240	0.0244	0.0242	0.0233	0.0239	0.0244
	S-P	0.0231	0.0176	0.0246	0.0166	0.0249	0.0163	0.0239	0.0099	0.0086	0.0246	0.0217	0.0237	0.0157	0.0242	0.0245	0.0243	0.0185	0.0222	0.0237	0.0250	0.0226	0.0232	0.0243	0.0206	0.0225	0.0249	0.0250	0.0212	0.0242	0.0245
	B-P-00001	0.740	0.760	0.759	0.759	0.743	0.757	0.757	0.756	0.756	0.758	0.758	0.758	0.757	0.757	0.756	0.744	0.756	0.757	0.757	0.744	0.744	0.744	0.755	0.745	0.757	0.756	0.756	0.756	0.755	0.745
٩	B-P-0001	0.741	0.759	0.758	0.758	0.744	0.757	0.756	0.756	0.755	0.757	0.757	0.757	0.756	0.756	0.755	0.745	0.755	0.756	0.756	0.756	0.745	0.745	0.755	0.745	0.756	0.755	0.755	0.755	0.755	0.746
	B-P-001	0.743	0.757	0.757	0.757	0.756	0.756	0.755	0.755	0.746	0.756	0.744	0.745	0.755	0.755	0.746	0.754	0.754	0.755	0.755	0.755	0.747	0.754	0.754	0.754	0.755	0.755	0.755	0.746	0.746	0.746
	S-P	909.0	0.557	0.881	0.865	0.689	0.955	0.842	996.0	0.964	0.603	0.668	0.379	0.655	0.896	0.667	0.876	0.821	0.816	0.769	0.843	0.864	0.805	0.810	0.649	0.503	0.386	0.356	0.575	0.666	0.695
	B-P-00001	2.05	2.11	2.13	2.11	2.08	2.09	2.12	2.14	2.12	1.96	2.03	1.99	2.03	2.07	2.03	2.04	2.06	2.10	2.02	2.01	2.02	1.99	2.04	2.02	2.08	2.02	2.01	2.01	1.99	2.02
d_s	B-P-0001	2.05	2.11	2.13	2.11	2.08	2.09	2.12	2.14	2.12	1.96	2.03	1.99	2.03	2.07	2.03	2.04	2.06	2.10	2.02	2.03	2.05	1.99	2.04	2.02	2.08	2.02	2.01	2.01	1.99	2.02
	B-P-001	2.05	2.11	2.13	2.17	2.11	2.10	2.12	2.14	2.16	2.03	2.06	2.08	2.03	2.09	2.04	2.05	2.06	2.10	2.02	2.03	2.06	2.02	2.05	2.06	2.08	2.04	2.01	2.04	2.03	2.02
	S-P	2.08	2.17	2.16	2.39	2.08	2.67	2.24	3.02	3.18	1.97	2.06	2.00	2.21	2.10	2.04	2.16	2.24	2.10	2.02	2.01	2.10	2.12	2.08	2.10	2.00	1.98	1.99	2.07	2.03	2.02
	P_Pop	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	n2	20	30	40	20	09	70	80	90	100	30	40	20	9	70	80	90	100	40	20	9	70	80	90	100	20	09	70	80	90	100
	1 1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. B-U-00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0134	0.0170	0.0245	0.0222	0.0203	0.0247	0.0234	0.0228	0.0244	0.0230	0.0231	0.0193	0.0241	0.0242	0.0222	0.0240	0.0249	0.0226	0.0194	0.0248	0.0217	0.0211	0.0217	0.0212	0.0241	0.0212	0.0248	0.0239	0.0220	0.0248
p-value	B-P-0001	0.0134	0.0170	0.0246	0.0222	0.0203	0.0247	0.0234	0.0228	0.0244	0.0231	0.0231	0.0194	0.0242	0.0243	0.0223	0.0241	0.0249	0.0227	0.0194	0.0249	0.0218	0.0212	0.0218	0.0213	0.0241	0.0213	0.0248	0.0240	0.0221	0.0248
<u>a</u>	B-P-001	0.0141	0.0178	0.0230	0.0230	0.0211	0.0213	0.0243	0.0237	0.0243	0.0240	0.0240	0.0203	0.0249	0.0200	0.0232	0.0249	0.0222	0.0236	0.0203	0.0248	0.0226	0.0220	0.0226	0.0222	0.0250	0.0221	0.0221	0.0249	0.0229	0.0217
	S-P	0.0231	0.0176	0.0246	0.0166	0.0249	0.0163	0.0239	0.0099	0.0086	0.0246	0.0217	0.0237	0.0157	0.0242	0.0245	0.0243	0.0185	0.0222	0.0237	0.0250	0.0226	0.0232	0.0243	0.0206	0.0225	0.0249	0.0250	0.0212	0.0242	0.0245
	B-P-00001	0.893	0.907	0.894	906.0	0.905	0.905	0.904	0.904	0.904	0.894	0.895	0.895	968.0	968.0	0.904	968.0	0.904	0.895	968.0	0.904	968.0	0.904	0.904	0.904	968.0	0.904	968.0	0.904	968.0	0.904
۵	B-P-0001	0.894	906.0	0.895	0.905	0.904	0.904	0.904	0.904	0.904	0.895	0.896	968.0	968.0	968.0	0.904	0.897	0.903	0.896	968.0	0.904	968.0	0.904	0.903	0.903	968.0	0.904	0.897	0.903	0.897	0.903
	B-P-001	0.895	0.905	0.905	0.904	0.904	0.904	0.903	0.903	0.903	968.0	968.0	0.897	0.904	0.903	0.903	0.897	0.903	968.0	0.897	0.903	0.897	0.903	0.903	0.903	0.897	0.903	0.897	0.903	0.897	0.903
	S-P	909.0	0.557	0.881	0.865	0.689	0.955	0.842	996.0	0.964	0.603	0.668	0.379	0.655	0.896	0.667	0.876	0.821	0.816	0.769	0.843	0.864	0.805	0.810	0.649	0.503	0.386	0.356	0.575	999.0	0.695
	B-P-00001	2.08	2.44	2.09	2.31	2.28	2.26	2.24	2.30	2.26	1.93	2.04	2.17	2.06	2.10	2.22	2.14	2.23	2.05	2.03	2.03	2.10	2.15	2.11	2.11	1.99	2.05	2.00	2.02	5.09	2.10
d_s	B-P-0001	2.08	2.44	2.09	2.31	2.28	2.26	2.24	2.30	2.26	1.93	2.04	2.17	2.06	2.10	2.22	2.14	2.23	2.05	2.03	2.03	2.10	2.15	2.11	2.11	1.99	2.05	2.00	2.02	2.09	2.10
	B-P-001	2.08	2.44	2.32	2.31	2.28	2.33	2.24	2.30	2.40	1.93	2.04	2.17	2.15	2.25	2.22	2.14	2.24	2.05	2.03	2.15	2.10	2.15	2.11	2.11	1.99	2.05	2.01	2.02	5.09	2.12
	S-P	2.08	2.17	2.16	2.39	2.08	2.67	2.24	3.02	3.18	1.97	2.06	2.00	2.21	2.10	2.04	2.16	2.24	2.10	2.02	2.01	2.10	2.12	2.08	2.10	2.00	1.98	1.99	2.07	2.03	2.02
	P_Pop	0.90	06.0	06.0	0.90	0.90	06.0	06.0	0.90	0.90	0.90	0.90	0.90	0.90	06.0	06.0	0.90	0.90	0.90	06.0	0.90	06.0	06.0	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
				40																											
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U; Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-0001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

Figure C.15: Comparison of p-values for the Poooled Z test calculated with both the classical Lehmann (1959) procedure and the Berger and Boos (1994) procedure for $\alpha = 0.01$.

0000	D-P-00001	0.0036	0500.0	0.0000	0.0044	0.0068	0.0093	0.0058	0.0077	9600.0	0.0044	0.0064	0.0084	0.0050	0.0065	0.0078	0.0091	0.0059	0.0071	0.0071	0.0088	0.0086	0.0099	0.0097	0.0097	0.0092	0.0091	0.0095	0.0083	0.0089	2000
p-value	D-P-0001	0.000.0	0.00.0	0.0003	0.0043	0.0066	0.0091	0.0057	0.0075	0.0093	0.0044	0.0064	0.0083	0.0050	0.0065	0.0078	0.0091	0.0059	0.0071	0.0071	0.0089	0.0086	0.0099	0.0097	0.0097	0.0093	0.0092	0.0096	0.0084	0.0090	70000
g 5	D-P-001	0.0037	0.0044	2,000,0	0.0051	0.0073	0.0097	0.0064	0.0081	0.0099	0.0052	0.0071	0.0091	0.0058	0.0072	0.0085	0.0098	9900'0	0.0079	0.0079	0.0097	0.0095	0.0095	0.0098	0.0069	0.0091	0.0100	0.0086	0.0092	0.0099	98000
G	3-P	0.0003	0.0070	2000.0	0.0095	0.0098	0.0063	6900.0	0.0099	0.0086	0.0074	0.0099	0.0056	0.0077	0.0000	0.0058	0.0065	0.0093	0.0094	0.0097	0.0099	0.0098	0.0075	0.0086	0.0072	0.0099	0.0099	0.0094	0.0097	0.0000	0.0002
20000	D-F-00001	0.1072	0.1055	0.1000	0.1051	0.1048	0.1044	0.1042	0.1041	0.1039	0.1055	0.1050	0.1046	0.1044	0.1041	0.1040	0.1039	0.1037	0.1048	0.1045	0.1043	0.1041	0.1039	0.1038	0.1036	0.1041	0.1040	0.1038	0.1037	0.1036	0.1035
д	D-F-0001	0.1055	0.1010	0.1046	0.1044	0.1042	0.1039	0.1037	0.1036	0.1034	0.1048	0.1043	0.1040	0.1039	0.1036	0.1035	0.1034	0.1032	0.1042	0.1039	0.1038	0.1036	0.1034	0.1034	0.1032	0.1036	0.1035	0.1033	0.1032	0.1032	0.1030
200	D-Y-001	0.1035	0.1040	0.10	0.1037	0.1035	0.1033	0.1031	0.1031	0.1029	0.1040	0.1036	0.1034	0.1033	0.1030	0.1029	0.1029	0.1027	0.1035	0.1033	0.1032	0.1030	0.1029	0.1028	0.1027	0.1030	0.1030	0.1028	0.1027	0.1027	0.1025
6	3-F	0.7475	0.726	0.470	0.9549	0.8842	0.9440	0.9371	0.9662	0.9639	0.6623	0.7736	0.6937	0.8560	0.9212	0.9343	0.8797	0.9111	0.6151	0.7384	0.7563	0.8980	0.6520	0.7514	0.7776	0.5576	0.5247	0.6716	0.8112	0.6478	0 9206
10000	D-F-00001	1.74	1.03 1.03		1.55	1.48	1.43	1.44	1.41	1.37	2.14	2.00	1.91	1.96	1.90	1.85	1.81	1.86	2.22	2.15	2.10	5.06	2.04	2.01	2.00	2.27	2.22	2.15	2.21	2.16	2 11
2_p	D-F-0001	1.74	1 55) i	1.55	1.48	1.43	1.44	1.41	1.37	2.14	2.00	1.91	1.96	1.90	1.85	1.81	1.86	2.22	2.15	2.10	5.06	2.04	2.01	2.00	2.27	2.22	2.15	2.21	2.16	2 11
200	D-F-001	1.74 1.60	1.03 1.55		1.55	1.48	1.43	1.44	1.41	1.37	2.14	2.00	1.91	1.96	1.90	1.85	1.81	1.86	2.22	2.15	2.10	2.06	2.05	2.07	2.09	2.28	2.24	2.23	2.21	2.16	2 19
6	7 7	2.43	2.30	7.00	7.17	2.66	2.90	3.12	3.02	3.18	2.51	2.40	2.65	2.59	2.68	2.86	2.77	2.66	2.39	2.39	2.41	2.51	2.49	2.49	2.56	2.35	2.36	2.39	2.42	2.44	2 60
9	קר קי	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	010
ç	ב כ ב	2 6	3 5		20	9	2	80	8	100	30	40	20	09	20	80	90	100	40	20	09	2	8	90	100	20	09	2	80	8	100
7	בן נ	2 5	1 5	9 6	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

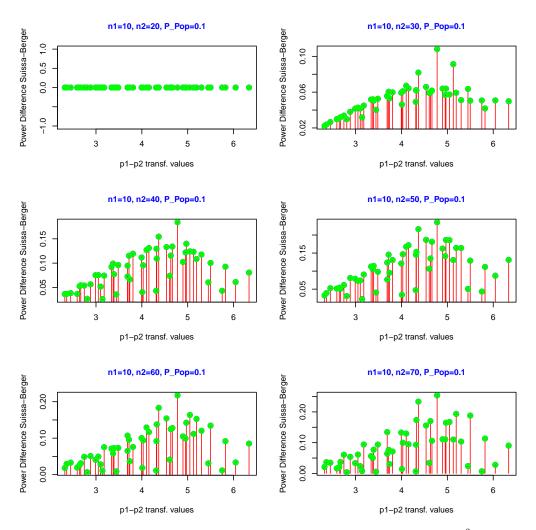
zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0011; B-U-0001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The cells containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0093	0.0072	0.0069	0.0064	0.0094	0.0086	0.0079	0.0073	0.0095	0.0083	0.0087	0.0083	9600.0	0.0092	0.0093	0.0000	0.0085	0.0099	0.0099	0.0092	0.0086	0.0093	0.0096	0.0096	0.0000	0.0100	0.0098	0.0000	0.0098	0.0091
p-value	B-P-0001	0.0093	0.0072	0.0069	0.0064	0.0093	0.0086	0.0079	0.0073	0.0095	0.0084	0.0088	0.0084	0.0097	0.0092	0.0094	0.0091	0.0085	0.0100	0.0099	0.0093	0.0087	0.0094	9600.0	0.0097	0.0091	0.0099	0.0099	0.0000	0.0099	0.0092
Ġ.	B-P-001	0.0079	0.0080	0.0077	0.0072	0.0069	0.0093	0.0087	0.0081	0.0075	0.0093	0.0096	0.0092	0.0095	0.0091	0.0087	0.0100	0.0094	0.0098	0.0098	0.0100	9600'0	0.0000	0.0092	0.0099	0.0100	0.0098	0.0095	0.0099	0.0098	0.0093
	S-P	0.0083	0.0078	0.0063	0.0095	0.0098	0.0063	0.0069	0.0099	0.0086	0.0074	0.0099	0.0056	0.0077	0.0000	0.0058	0.0065	0.0093	0.0094	0.0097	0.0099	0.0098	0.0075	0.0086	0.0072	0.0099	0.0099	0.0094	0.0097	0.0000	0.0083
	B-P-00001	0.2600	0.2591	0.2580	0.2568	0.2566	0.2560	0.2560	0.2557	0.2554	0.2416	0.2577	0.2566	0.2565	0.2559	0.2559	0.2557	0.2554	0.2572	0.2563	0.2562	0.2557	0.2557	0.2555	0.2552	0.2559	0.2558	0.2554	0.2554	0.2552	0.2550
ď	B-P-0001	0.2587	0.2579	0.2570	0.2558	0.2558	0.2552	0.2552	0.2550	0.2547	0.2426	0.2568	0.2558	0.2557	0.2552	0.2552	0.2550	0.2547	0.2563	0.2555	0.2555	0.2550	0.2550	0.2548	0.2546	0.2552	0.2551	0.2547	0.2547	0.2546	0.2543
	B-P-001	0.2572	0.2566	0.2558	0.2548	0.2548	0.2543	0.2543	0.2542	0.2539	0.2438	0.2557	0.2548	0.2548	0.2543	0.2543	0.2542	0.2539	0.2554	0.2546	0.2546	0.2542	0.2542	0.2541	0.2538	0.2543	0.2543	0.2455	0.2540	0.2538	0.2537
	S-P	0.6813	0.7475	0.7236	0.9549	0.8842	0.9440	0.9371	0.9662	0.9639	0.6623	0.7736	0.6937	0.8560	0.9212	0.9343	0.8797	0.9111	0.6151	0.7384	0.7563	0.8980	0.6520	0.7514	0.7776	0.5576	0.5247	0.6716	0.8112	0.6478	0.9206
	B-P-00001	2.14	2.11	2.10	2.09	2.01	2.02	2.03	2.03	1.99	2.32	2.23	2.26	2.17	2.20	2.19	2.17	2.20	2.26	2.24	2.26	2.27	2.25	2.21	2.21	2.32	2.26	2.29	2.30	2.26	2.27
d_z	B-P-0001	2.14	2.11	2.10	2.09	2.01	2.02	2.03	2.03	1.99	2.32	2.23	2.26	2.17	2.20	2.19	2.17	2.20	2.26	2.24	2.26	2.27	2.25	2.21	2.21	2.32	2.30	2.29	2.30	2.26	2.27
	B-P-001	2.15	2.11	2.10	2.09	2.09	2.02	2.03	2.03	2.04	2.32	2.23	2.26	2.26	2.22	2.23	2.17	2.20	2.31	2.31	2.27	2.27	2.28	2.29	2.26	2.35	2.36	2.33	2.30	2.27	2.30
	S-P	2.45	2.56	2.66	2.72	2.66	2.90	3.12	3.02	3.18	2.51	2.40	2.65	2.59	2.68	2.86	2.77	2.66	2.39	2.39	2.41	2.51	2.49	2.49	2.56	2.35	2.36	2.39	2.42	2.44	2.60
	P_Pop	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	20	80	90	100	40	20	9	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

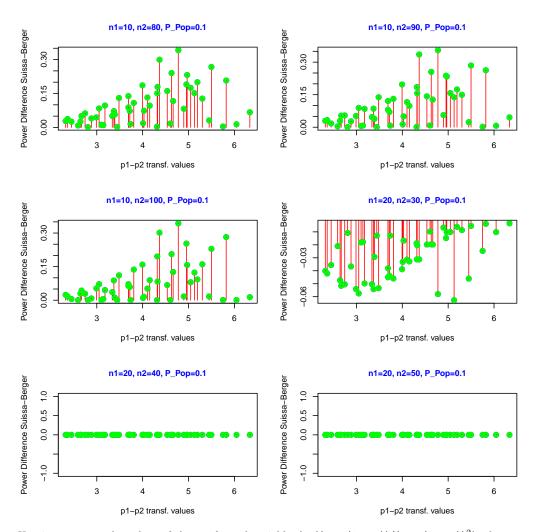
zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U; Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-0001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

	B-P-00001	0.0069	0.0084	0.0100	0.0095	0.0077	0.0092	0.0094	0.0098	0.0091	0.0087	0.0084	0.0092	0.0093	0.0100	0.0098	0.0100	0.0099	0.0093	0.0100	0.0085	0.0099	0.0094	0.0099	0.0099	0.0098	0.0099	0.0100	0.0097	0.0099	0.0099
p-value	B-P-0001	0.0070	0.0085	0.0099	0.0095	0.0078	0.0093	0.0095	0.0098	0.0092	0.0088	0.0085	0.0093	0.0094	0.0100	0.0099	0.0093	0.0100	0.0094	9600.0	0.0086	0.0099	0.0094	0.0091	0.0100	0.0099	0.0100	0.0094	0.0098	0.0097	0.0100
Ġ	B-P-001	0.0078	0.0094	0.0084	0.0094	0.0086	0.0081	0.0095	0.0000	0.0086	0.0097	0.0094	0.0094	0.0093	0.0095	0.0100	0.0098	0.0097	0.0096	0.0097	0.0095	0.0099	0.0093	0.0100	0.0094	0.0099	0.0095	0.0093	0.0098	0.0097	0.0096
	S-P	0.0083	0.0078	0.0063	0.0095	0.0098	0.0063	0.0069	0.0099	0.0086	0.0074	0.0099	0.0056	0.0077	0.0000	0.0058	0.0065	0.0093	0.0094	0.0097	0.0099	0.0098	0.0075	0.0086	0.0072	0.0099	0.0099	0.0094	0.0097	0.0000	0.0083
	B-P-00001	0.5126	0.5109	0.5096	0.5086	0.5077	0.5063	0.5068	0.5066	0.5058	0.5096	0.5087	0.5079	0.5068	0.5056	0.5062	0.5060	0.5054	0.4917	0.5076	0.5062	0.5051	0.5056	0.5055	0.5051	0.5070	0.5057	0.5048	0.5053	0.5052	0.5048
٥	B-P-0001	0.5111	0.5096	0.5085	0.5075	0.5067	0.5053	0.5060	0.5057	0.5050	0.5084	0.5076	0.5069	0.5059	0.5048	0.5054	0.4936	0.5047	0.4927	0.5067	0.5053	0.5043	0.5049	0.5047	0.5043	0.5062	0.5049	0.5040	0.5046	0.5044	0.5041
	B-P-001	0.5094	0.5081	0.5071	0.5063	0.5056	0.5043	0.5050	0.5048	0.5041	0.5070	0.5063	0.5058	0.5048	0.4929	0.5045	0.5043	0.5038	0.5062	0.4941	0.5044	0.5033	0.5039	0.5038	0.5035	0.5052	0.5040	0.5031	0.5037	0.4946	0.5033
	S-P	0.6813	0.7475	0.7236	0.9549	0.8842	0.9440	0.9371	0.9662	0.9639	0.6623	0.7736	0.6937	0.8560	0.9212	0.9343	0.8797	0.9111	0.6151	0.7384	0.7563	0.8980	0.6520	0.7514	0.7776	0.5576	0.5247	0.6716	0.8112	0.6478	0.9206
	B-P-00001	2.38	2.38	2.30	2.32	2.36	2.30	2.32	2.29	2.31	2.36	2.38	2.35	2.33	2.32	2.31	2.33	2.31	2.36	2.35	2.39	2.32	2.34	2.33	2.34	2.35	2.33	2.33	2.33	2.34	2.33
d_s	B-P-0001	2.38	2.38	2.32	2.32	2.36	2.30	2.32	2.29	2.31	2.36	2.38	2.35	2.33	2.33	2.31	2.35	2.31	2.36	2.36	2.39	2.32	2.34	2.34	2.34	2.35	2.35	2.35	2.33	2.35	2.33
	B-P-001	2.38	2.38	2.42	2.34	2.36	2.38	2.33	2.35	2.37	2.36	2.38	2.37	2.36	2.38	2.39	2.36	2.37	2.38	2.38	2.39	2.36	2.38	2.34	2.38	2.36	2.38	2.38	2.34	2.38	2.37
	S-P	2.45	2.56	2.66	2.72	2.66	2.90	3.12	3.02	3.18	2.51	2.40	2.65	2.59	2.68	2.86	2.77	2.66	2.39	2.39	2.41	2.51	2.49	2.49	2.56	2.35	2.36	2.39	2.42	2.44	2.60
	P_Pop	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	06	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	70	30	30	30	30	30	30	30	40	40	40	40	40	40

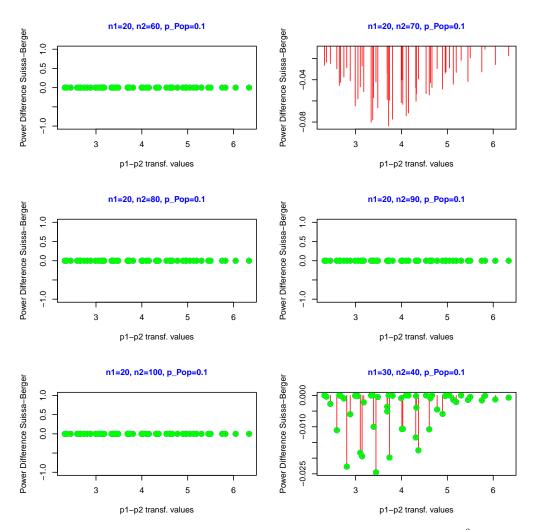
zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-0001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

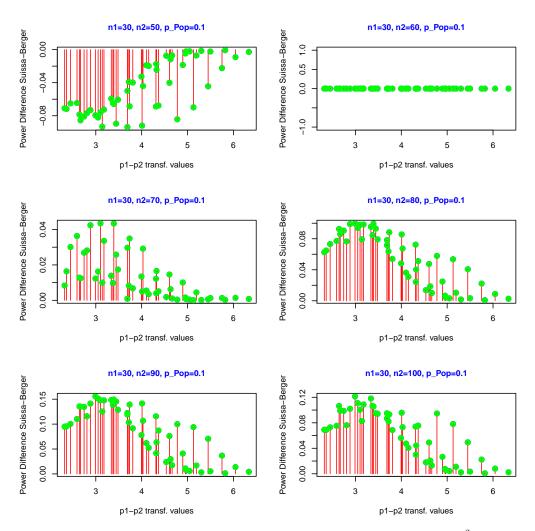

	B-P-00001	0.0080	0.0098	0.0087	0.0099	0.0096	0.0093	0.0088	0.0097	0.0093	0.0069	0.0099	0.0095	0.0100	0.0098	0.0091	0.0098	0.0092	0.0098	0.0097	0.0099	0.0092	0.0083	0.0097	0.0087	0.0000	0.0093	0.0092	0.0091	0.0093	0.0087
p-value	B-P-0001	0.0081	0.0098	0.0088	0.0099	0.0097	0.0094	0.0088	0.0098	0.0094	0.0070	0.0099	0.0095	0.0091	0.0098	0.0092	0.0099	0.0093	0.0098	0.0098	0.0088	0.0093	0.0084	0.0098	0.0088	0.0091	0.0093	0.0092	0.0092	0.0094	0.0088
ď	B-P-001	0.0000	0.0088	0.0096	0.0091	0.0087	0.0084	0.0097	0.0093	0.0094	0.0079	0.0092	0.0085	0.0100	0.0100	0.0098	0.0096	0.0092	0.0092	0.0093	0.0097	0.0091	0.0093	9600.0	0.0097	0.0100	0.0092	0.0099	0.0097	0.0095	0.0097
	S-P	0.0083	0.0078	0.0063	0.0095	0.0098	0.0063	0.0069	0.0099	0.0086	0.0074	0.0099	0.0056	0.0077	0.0000	0.0058	0.0065	0.0093	0.0094	0.0097	0.0099	0.0098	0.0075	0.0086	0.0072	0.0099	0.0099	0.0094	0.0097	0.0000	0.0083
	B-P-00001	0.7400	0.7600	0.7590	0.7587	0.7577	0.7574	0.7567	0.7563	0.7560	0.7414	0.7578	0.7577	0.7435	0.7567	0.7561	0.7558	0.7556	0.7571	0.7437	0.7563	0.7563	0.7557	0.7555	0.7553	0.7567	0.7442	0.7560	0.7556	0.7553	0.7552
۵	B-P-0001	0.7413	0.7588	0.7580	0.7578	0.7568	0.7566	0.7559	0.7555	0.7553	0.7425	0.7569	0.7568	0.7561	0.7559	0.7554	0.7551	0.7549	0.7563	0.7445	0.7445	0.7555	0.7551	0.7548	0.7546	0.7560	0.7449	0.7553	0.7549	0.7546	0.7545
	B-P-001	0.7428	0.7475	0.7568	0.7567	0.7559	0.7557	0.7550	0.7547	0.7545	0.7436	0.7443	0.7558	0.7552	0.7550	0.7545	0.7543	0.7541	0.7553	0.7454	0.7454	0.7547	0.7543	0.7539	0.7539	0.7551	0.7457	0.7545	0.7460	0.7539	0.7538
	S-P	0.6813	0.7475	0.7236	0.9549	0.8842	0.9440	0.9371	0.9662	0.9639	0.6623	0.7736	0.6937	0.8560	0.9212	0.9343	0.8797	0.9111	0.6151	0.7384	0.7563	0.8980	0.6520	0.7514	0.7776	0.5576	0.5247	0.6716	0.8112	0.6478	0.9206
	B-P-00001	2.45	2.44	2.52	2.55	2.53	2.54	2.53	2.51	2.54	2.51	2.40	2.40	2.41	2.43	2.46	2.48	2.47	2.38	2.39	2.41	2.41	2.48	2.44	2.45	2.35	2.36	2.39	2.42	2.40	2.45
d_z	B-P-0001	2.45	2.44	2.52	2.55	2.53	2.54	2.53	2.51	2.54	2.51	2.40	2.40	2.43	2.43	2.46	2.48	2.47	2.38	2.39	2.43	2.41	2.48	2.44	2.45	2.35	2.36	2.39	2.42	2.40	2.45
	B-P-001	2.45	2.56	2.52	2.60	2.57	2.60	2.53	2.59	2.61	2.51	2.44	2.51	2.43	2.50	2.47	2.49	2.51	2.39	2.41	2.43	2.46	2.48	2.47	2.45	2.35	2.40	2.42	2.43	2.44	2.45
	S-P	2.45	2.56	2.66	2.72	2.66	2.90	3.12	3.02	3.18	2.51	2.40	2.65	2.59	2.68	2.86	2.77	2.66	2.39	2.39	2.41	2.51	2.49	2.49	2.56	2.35	2.36	2.39	2.42	2.44	2.60
	P_Pop	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	20	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

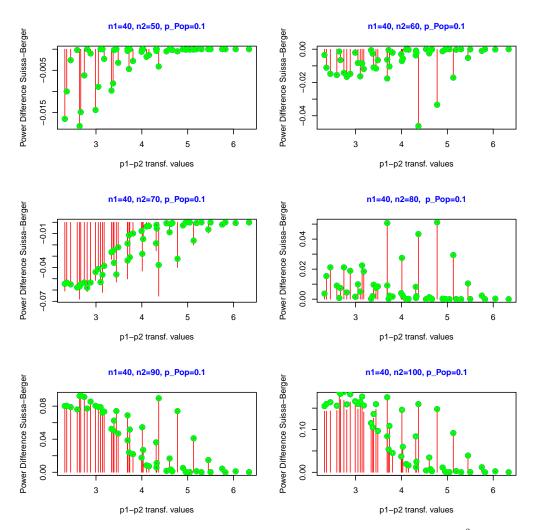
zp.: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

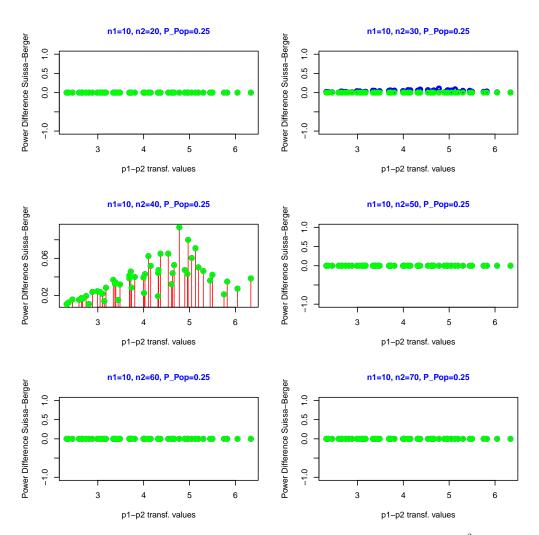

	B-P-00001	0.0099	0.0087	0.0077	0.0072	0.0097	0.0074	0.0091	0.0095	0.0088	0.0081	0.0072	0.0059	0.0100	0.0000	0.0088	0.0097	0.0096	0.0093	0.0076	0.0099	0.0098	0.0095	0.0094	0.0094	0.0093	0.0099	0.0086	0.0099	0.0085	0.0085
p-value	B-P-0001	0.0099	0.0087	0.0077	0.0073	0.0098	0.0074	0.0092	9600.0	0.0088	0.0081	0.0073	0900'0	0.0073	0.0091	0.0089	0.0098	0.0097	0.0094	0.0077	0.0099	0.0099	9600.0	0.0095	0.0095	0.0093	0.0100	0.0087	0.0099	0.0086	0.0086
ο.	B-P-001	0.0032	0.0095	0.0086	0.0082	0.0088	0.0083	0.0100	0.0000	0.0097	0.0000	0.0081	0.0069	0.0082	0.0100	0.0098	0.0086	0.0082	0.0070	0.0086	0.0088	0.0086	0.0089	0.0088	0.0086	0.0081	0.0085	9600.0	0.0092	0.0095	0.0095
	S-P	0.0083	0.0078	0.0063	0.0095	0.0098	0.0063	0.0069	0.0099	0.0086	0.0074	0.0099	0.0056	0.0077	0.0000	0.0058	0.0065	0.0093	0.0094	0.0097	0.0099	0.0098	0.0075	0.0086	0.0072	0.0099	0.0099	0.0094	0.0097	0.0000	0.0083
	B-P-00001	0.8928	0.8937	0.9062	0.9056	0.8952	0.9048	0.9045	0.9041	0.9040	0.8945	0.8950	0.8954	0.8956	0.9045	0.9043	0.9040	0.9038	0.8952	0.8955	0.9044	0.8980	0.9040	0.8962	0.9036	0.8959	0.9042	0.9041	0.9039	0.8964	0.9035
ď	B-P-0001	0.8937	0.8945	0.9055	0.9050	0.8958	0.9042	0.9039	0.9036	0.9035	0.8952	0.8957	0.8960	0.8961	0.9040	0.9038	0.9035	0.9034	0.8958	0.8961	0.9039	0.8980	0.9035	0.8966	0.9032	0.8964	0.9037	0.9036	0.9034	0.8968	0.9031
	B-P-001	0.8947	0.8955	0.9047	0.9042	0.9038	0.9036	0.9034	0.9031	0.9029	0.8960	0.8964	0.8966	0.8967	0.9034	0.9032	0.9029	0.8973	0.8965	0.8967	0.9033	0.8970	0.9029	0.9027	0.9027	0.8970	0.9032	0.9030	0.9029	0.8973	0.9026
	S-P	0.6813	0.7475	0.7236	0.9549	0.8842	0.9440	0.9371	0.9662	0.9639	0.6623	0.7736	0.6937	0.8560	0.9212	0.9343	0.8797	0.9111	0.6151	0.7384	0.7563	0.8980	0.6520	0.7514	0.7776	0.5576	0.5247	0.6716	0.8112	0.6478	0.9206
	B-P-00001	2.43	2.52	2.87	2.72	5.66	2.89	2.79	2.73	2.90	2.31	2.52	2.65	2.49	2.60	2.55	2.57	2.62	2.38	2.42	2.41	2.51	2.44	2.54	2.54	2.29	2.35	2.36	2.41	2.47	2.50
d_2	B-P-0001	2.43	2.52	2.87	2.72	2.66	2.89	2.79	2.73	2.90	2.31	2.52	2.65	2.59	2.60	2.55	2.57	2.62	2.38	2.42	2.41	2.51	2.44	2.54	2.54	2.29	2.35	2.36	2.48	2.47	2.50
	B-P-001	2.59	2.52	2.87	2.72	2.77	2.89	2.83	2.88	2.90	2.31	2.52	2.65	2.59	2.60	2.55	2.74	2.69	2.42	2.42	2.61	2.52	2.56	2.55	2.59	2.40	2.43	2.36	2.57	2.47	2.50
	S-P	2.45	2.56	2.66	2.72	2.66	2.90	3.12	3.02	3.18	2.51	2.40	2.65	2.59	2.68	2.86	2.77	2.66	2.39	2.39	2.41	2.51	2.49	2.49	2.56	2.35	2.36	2.39	2.42	2.44	2.60
	P_Pop	06.0	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	06.0
	n2	20	30	40	20	09	70	80	90	100	30	40	20	09	70	80	90	100	40	20	09	70	80	90	100	20	09	70	80	90	100
	n1	10	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	40	40	40	40	40	40

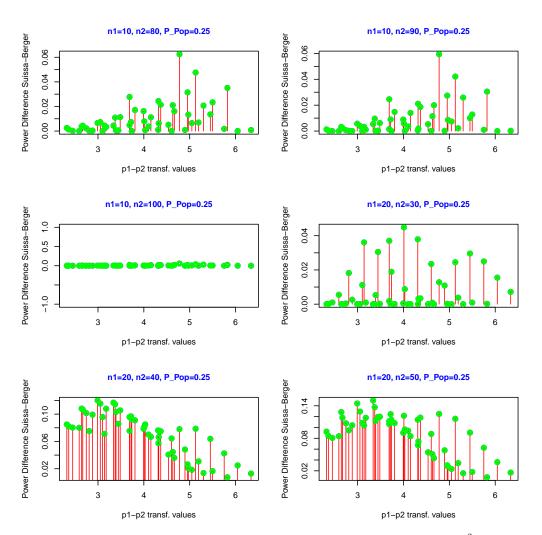
zp: Z pooled critical value; p: point of maximum for the nuisance parameter; p-value: attained size of the test. n1: first sample size; n2: second sample size; Ppop: theoretical value of the parameter P in the population used for the Monte Carlo simulations; S-U: Suissa Unpooled test; B-U-001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.0001; B-U-00001: Berger Unpooled test when γ, confidence level for the nuisance parameter is fixed at 0.00001. B-U-00001. The calls containing the p-values have been painted according to the different degree of conservatorism, ranging from green (less conservative), yellow, orange, and to pink (most conservative).

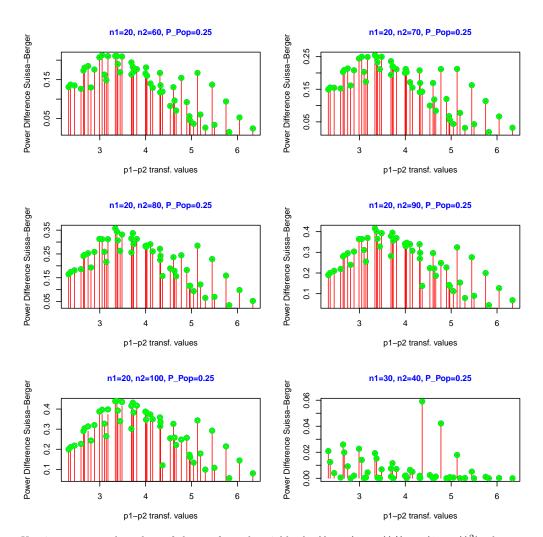

Figure C.16: Comparison of power between the Suissa unpooled test and the Berger unpooled test for different sample sizes, $\alpha = 0.05$.

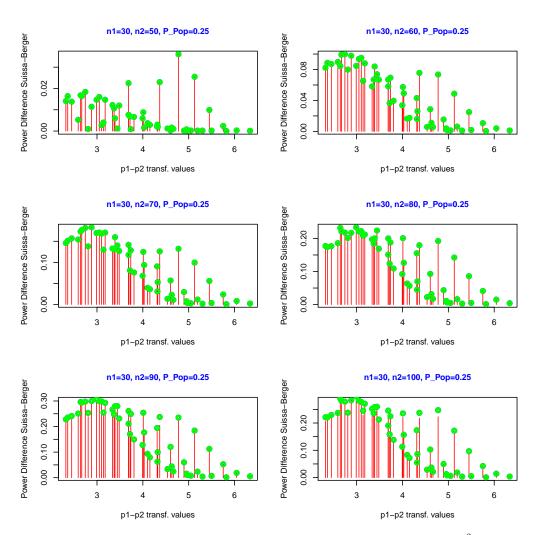

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

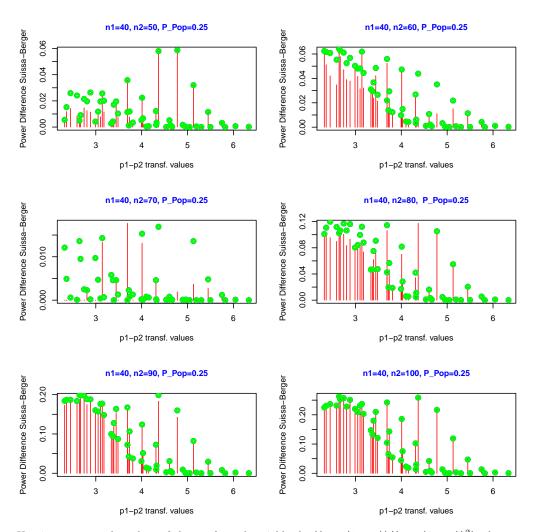

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

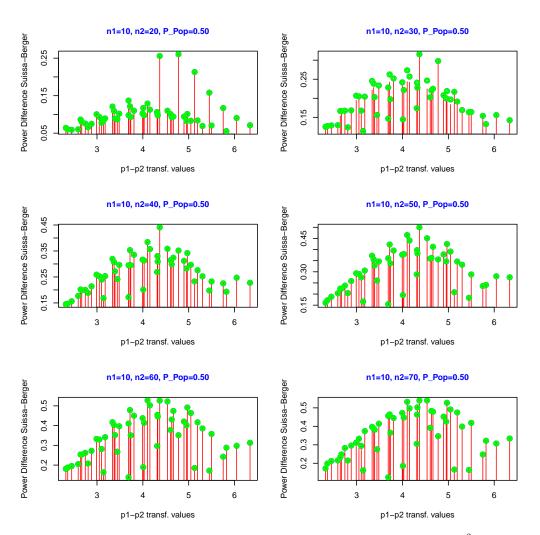

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

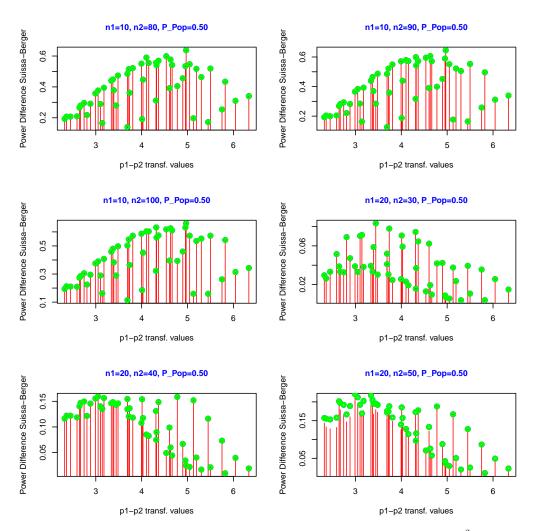

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

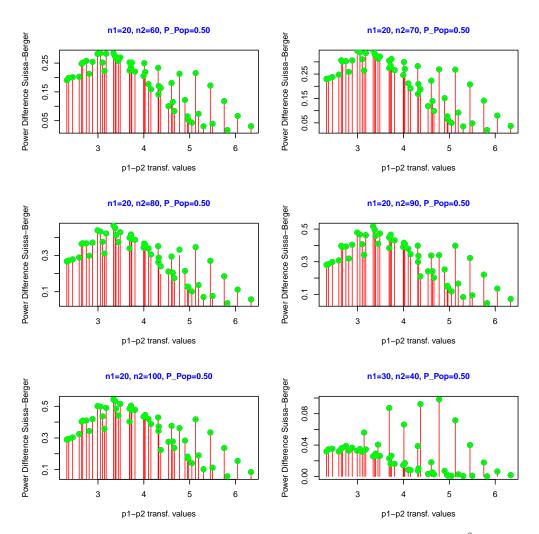

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

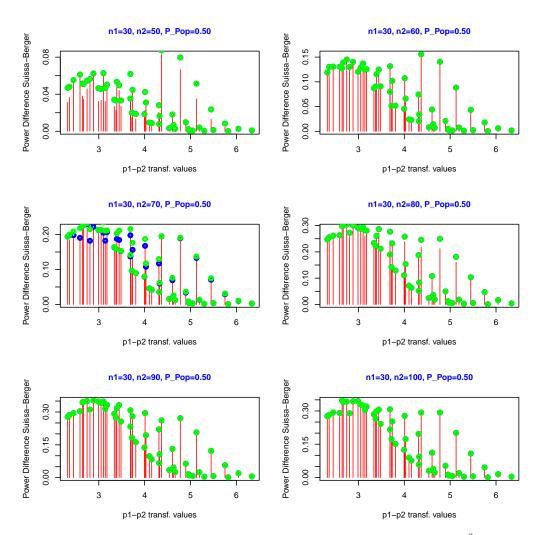

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

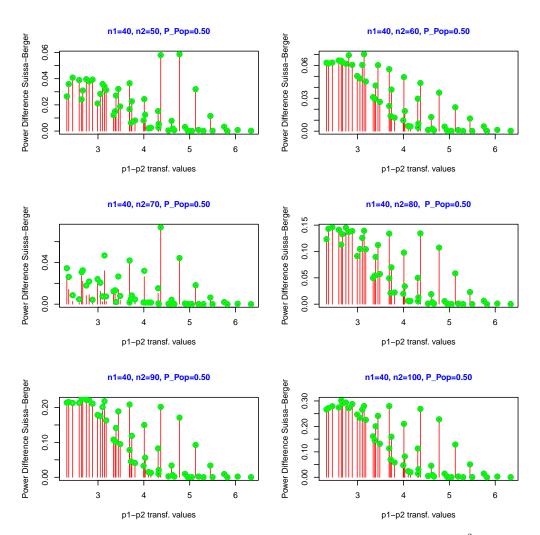

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

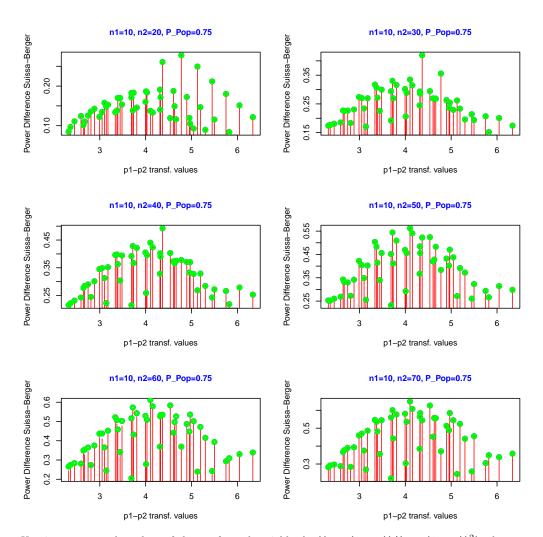

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

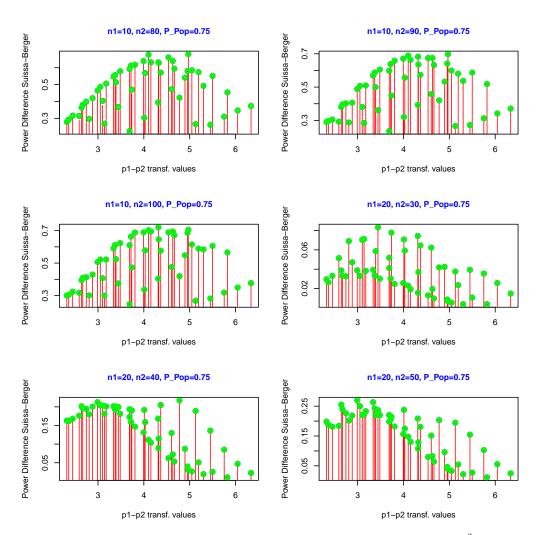

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

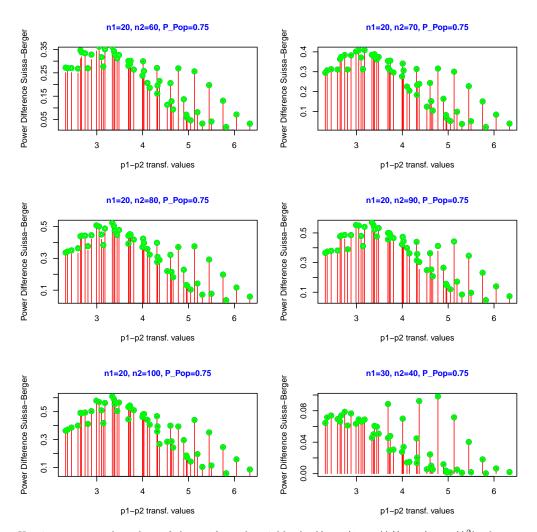

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

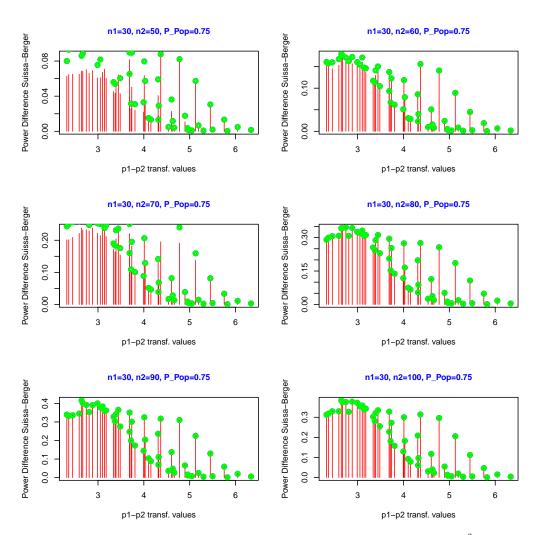

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

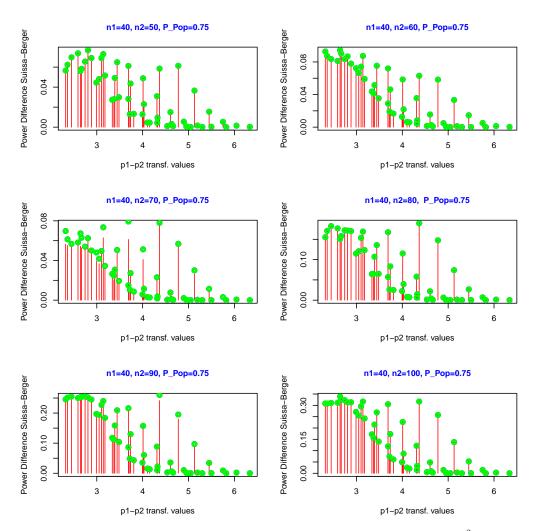

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

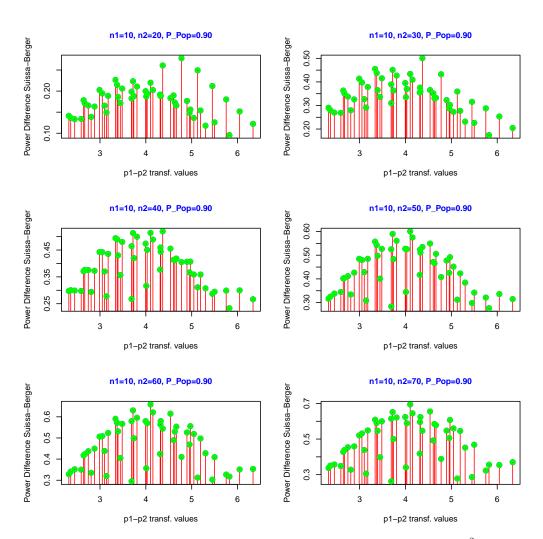

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

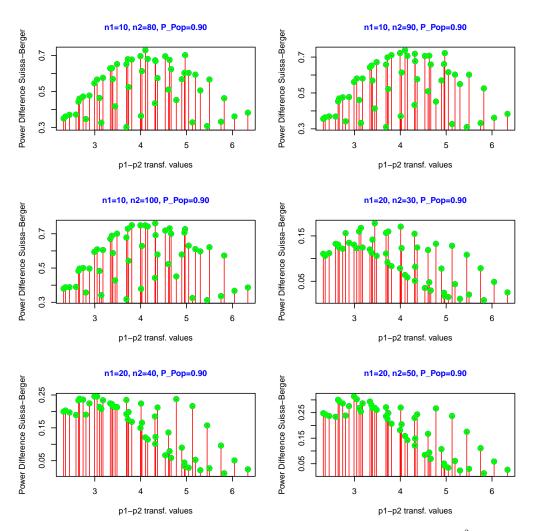

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

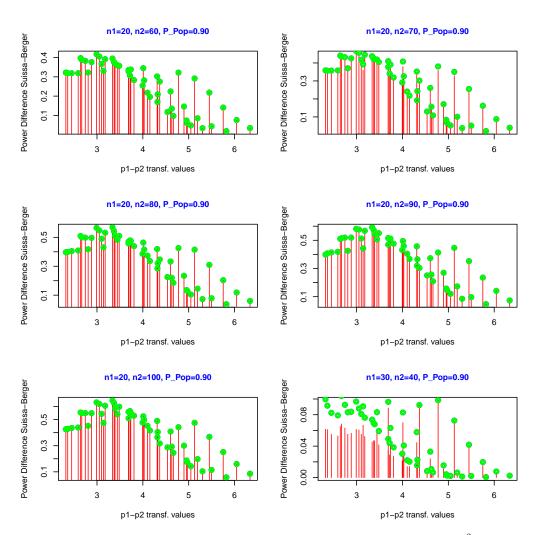

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

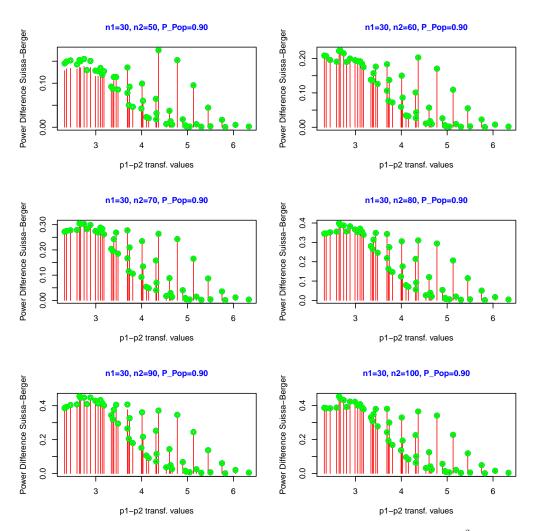

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

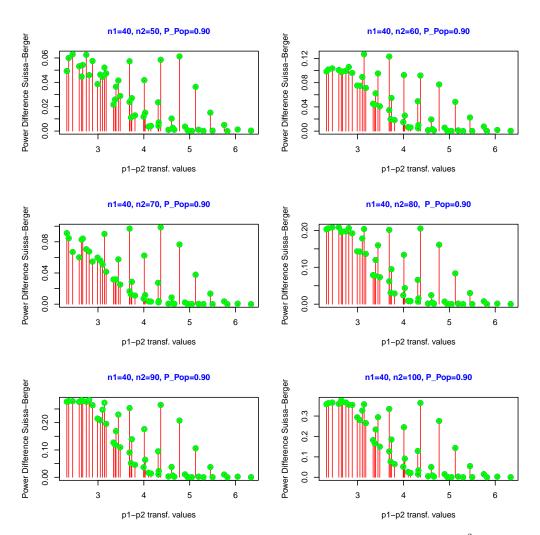

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

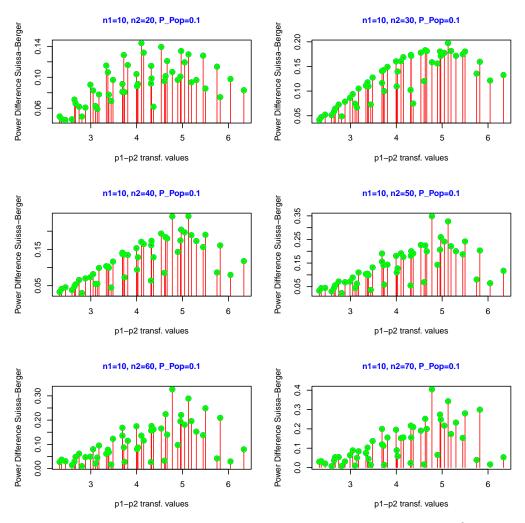

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

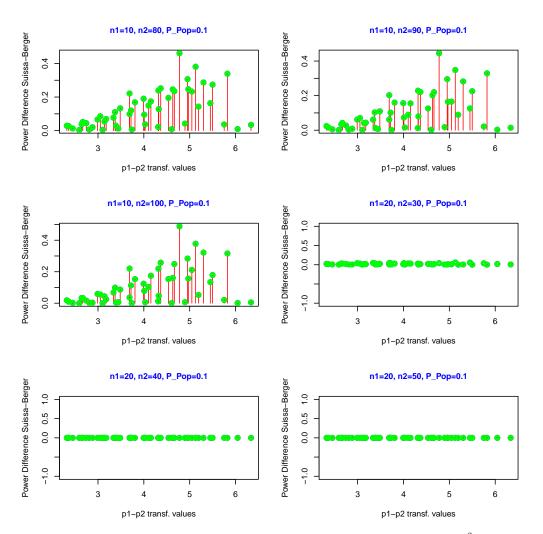

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

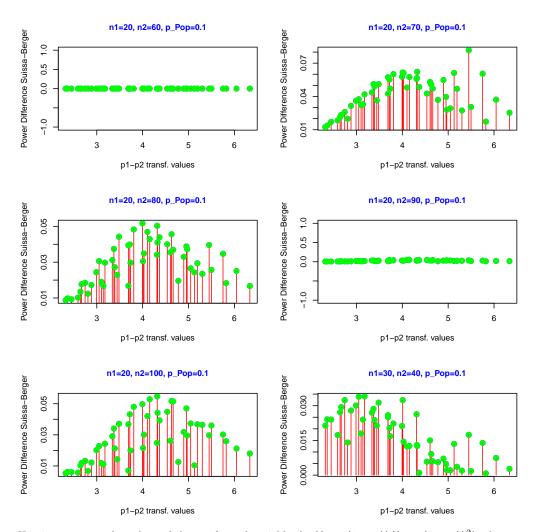
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

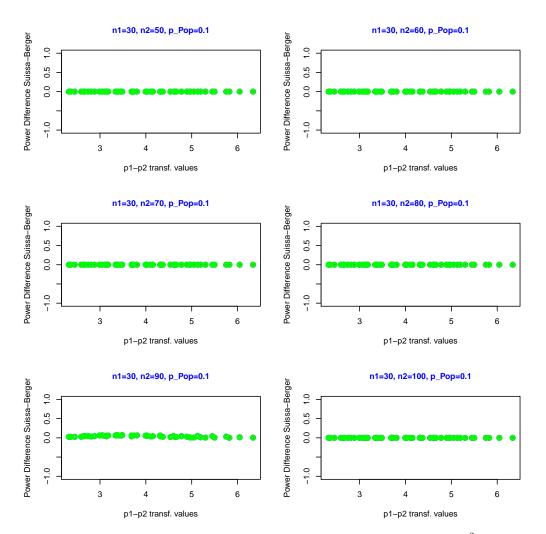


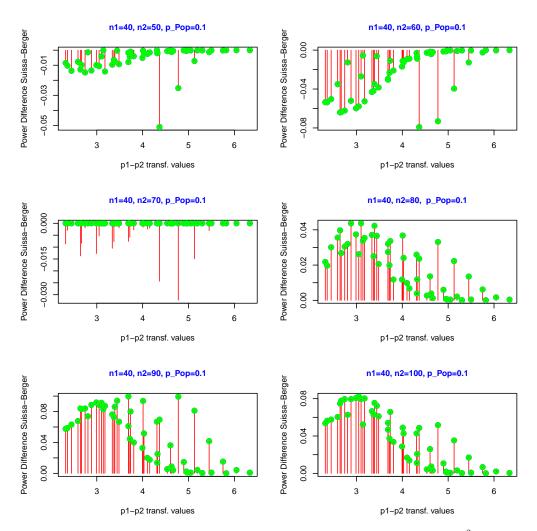
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

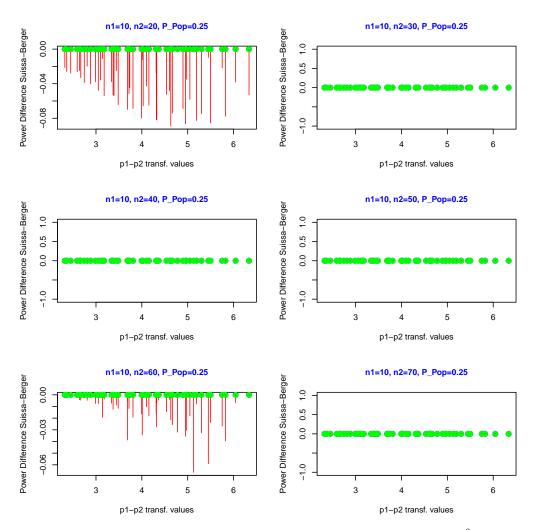


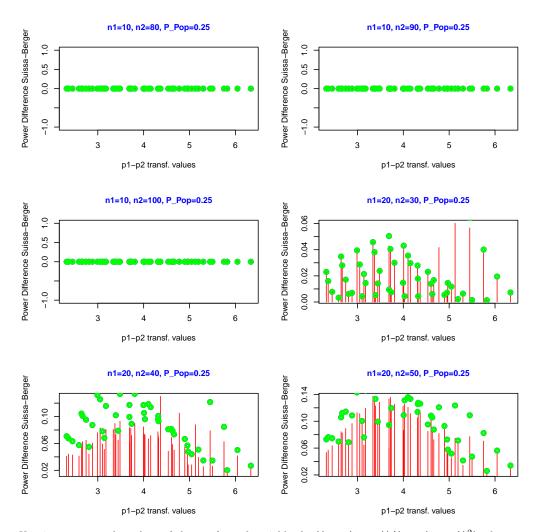
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

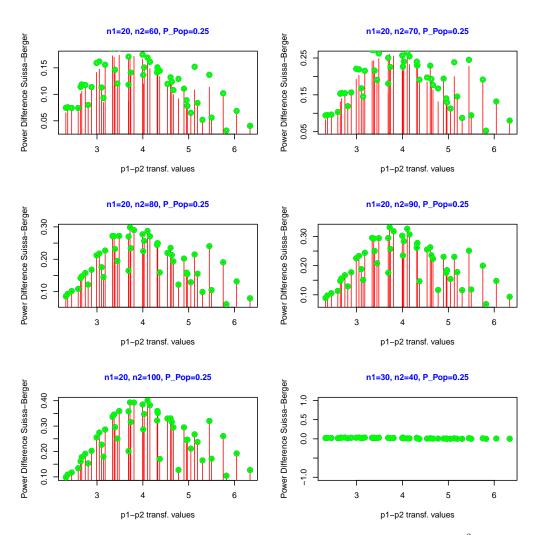

Figure C.17: Comparison of power between the Suissa unpooled test and the Berger unpooled test for different sample sizes, $\alpha = 0.025$.

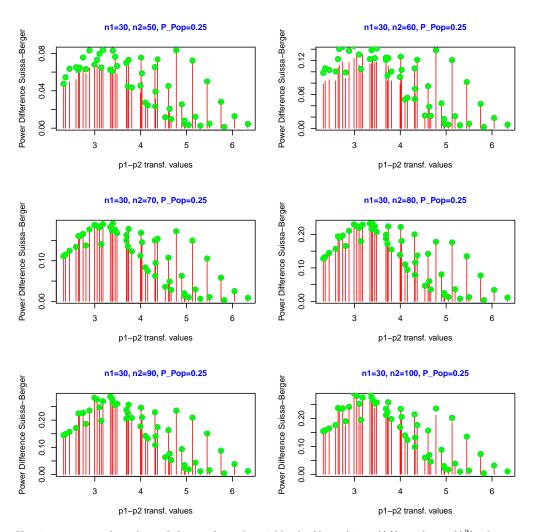

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

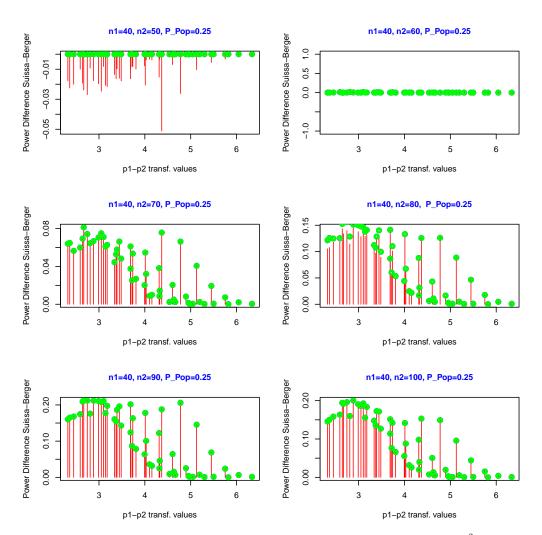

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

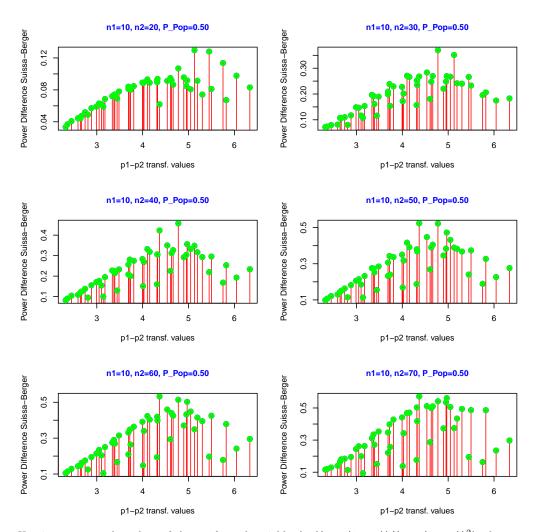

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

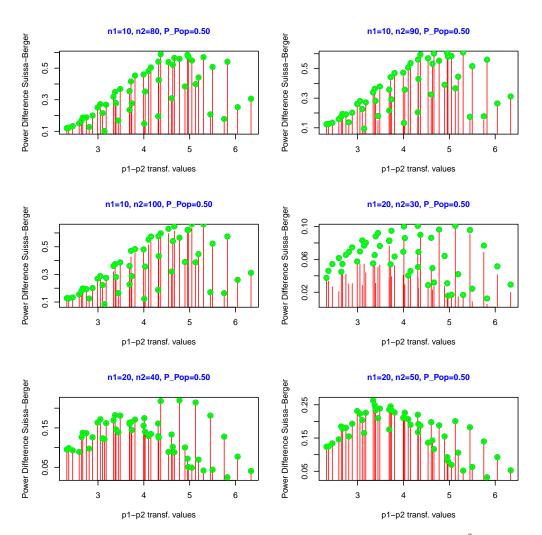

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

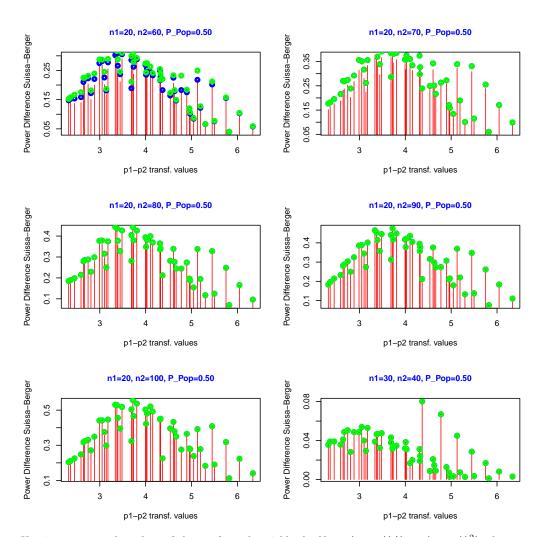

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

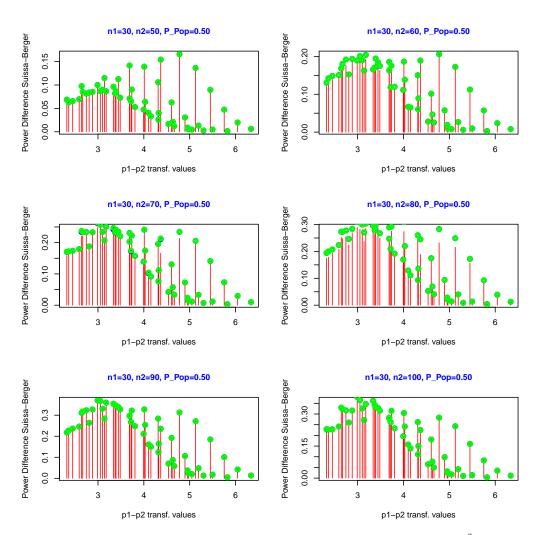

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

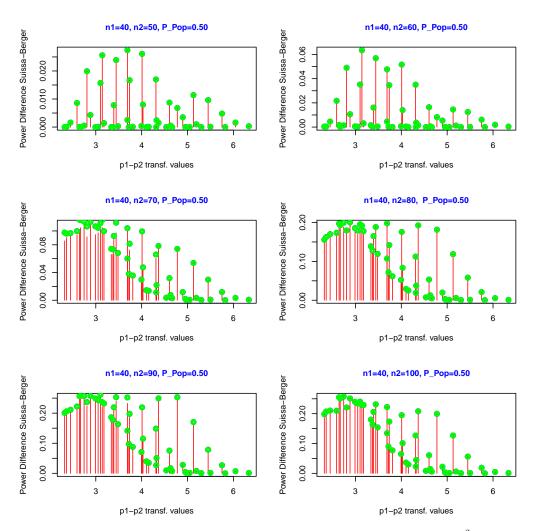

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

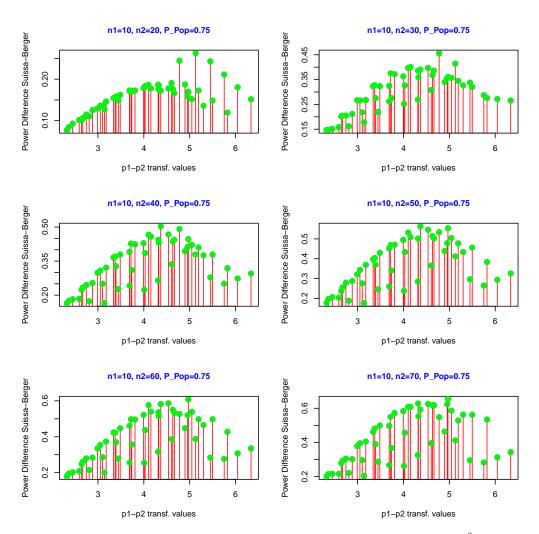

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

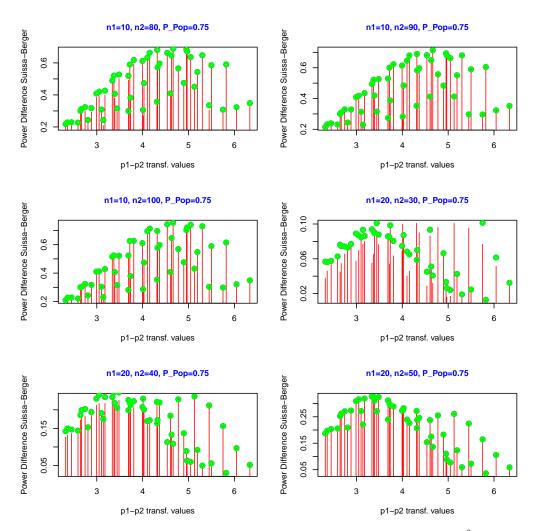

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

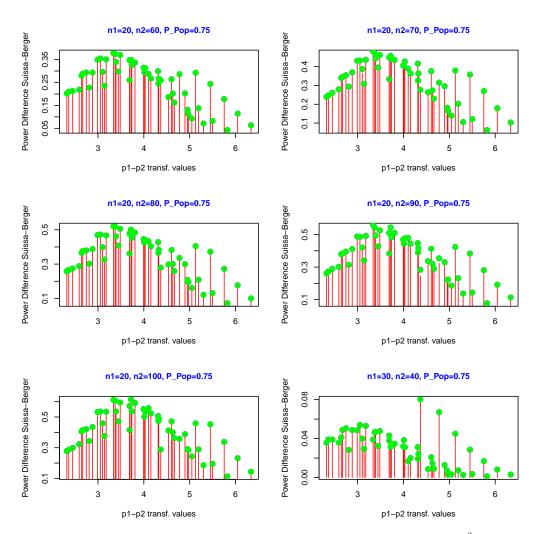

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

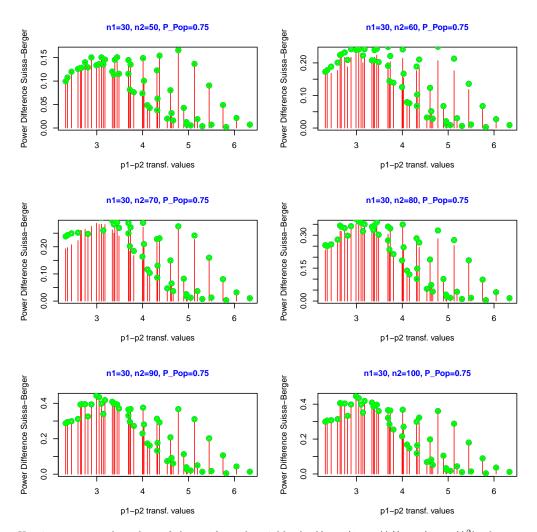

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

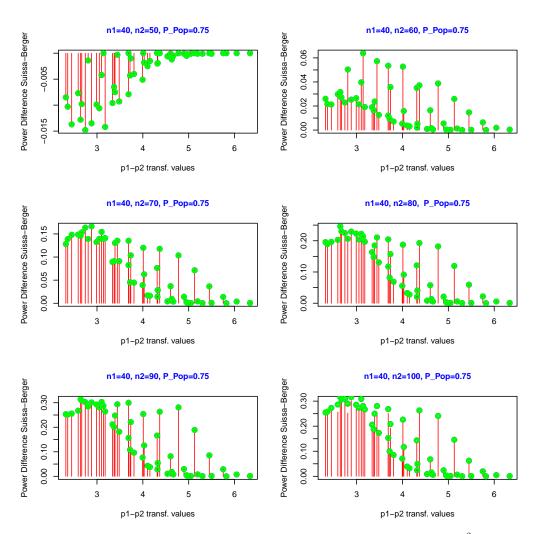

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

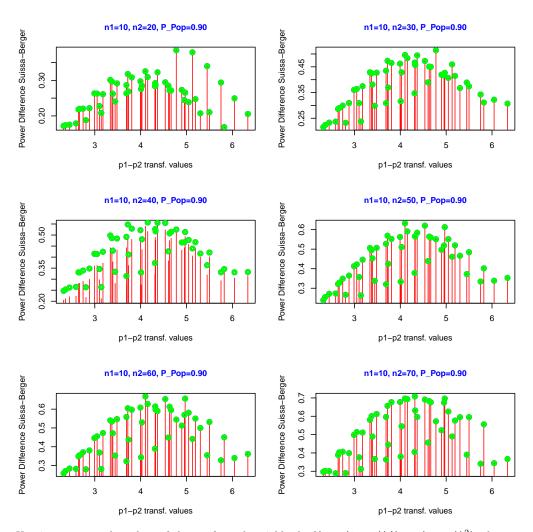

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

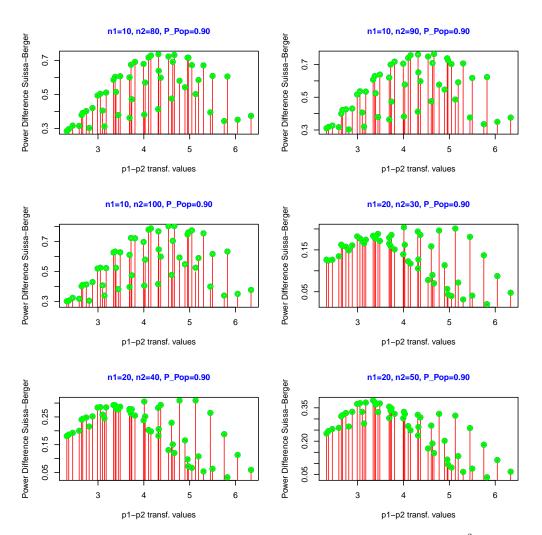

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

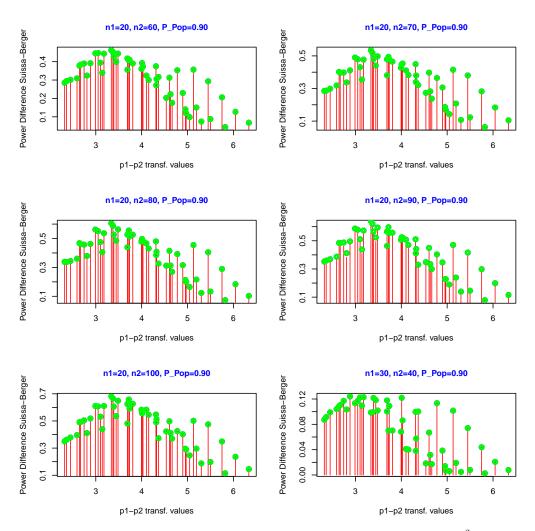

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

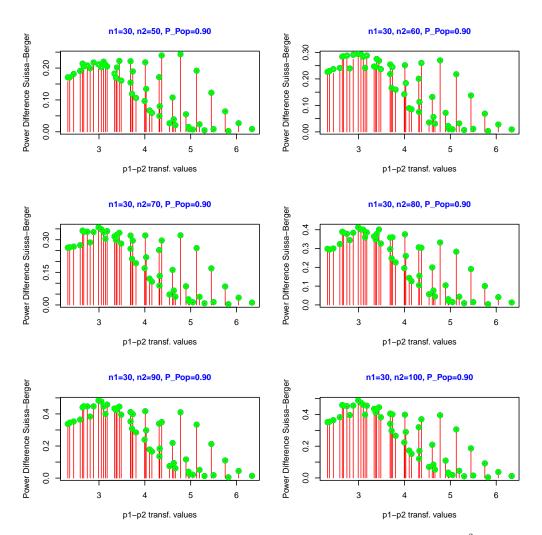

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

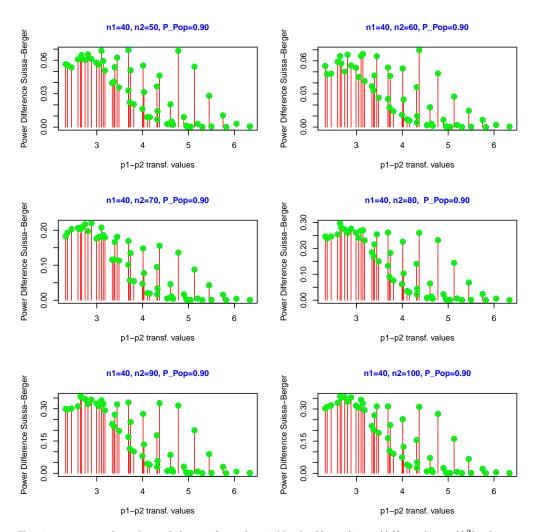

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

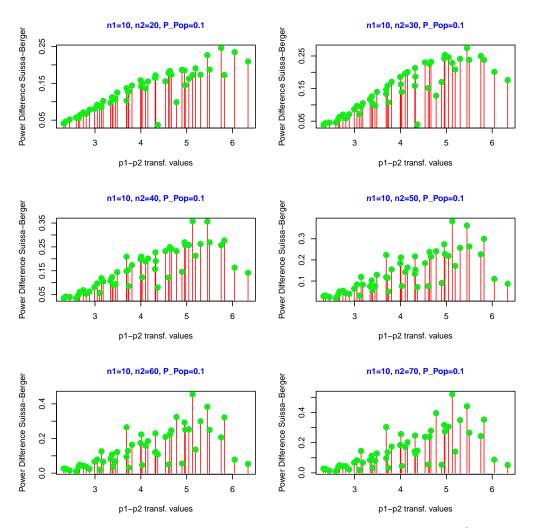

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

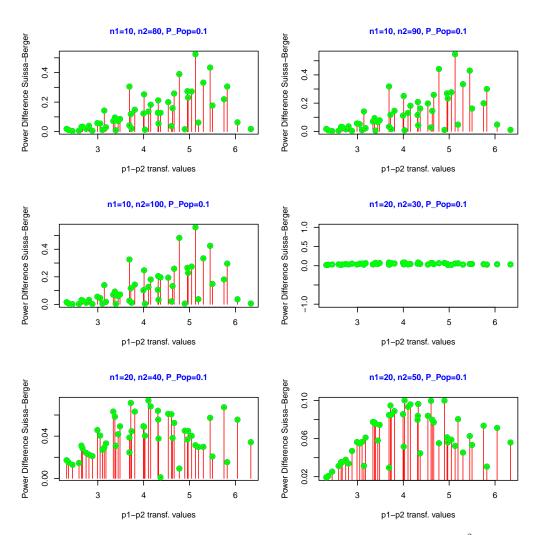

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

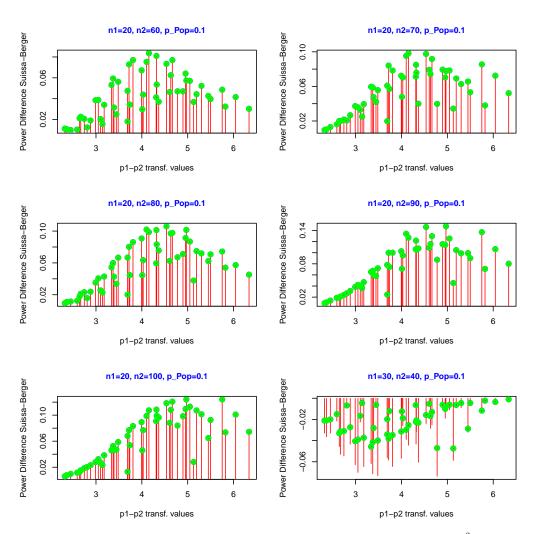
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

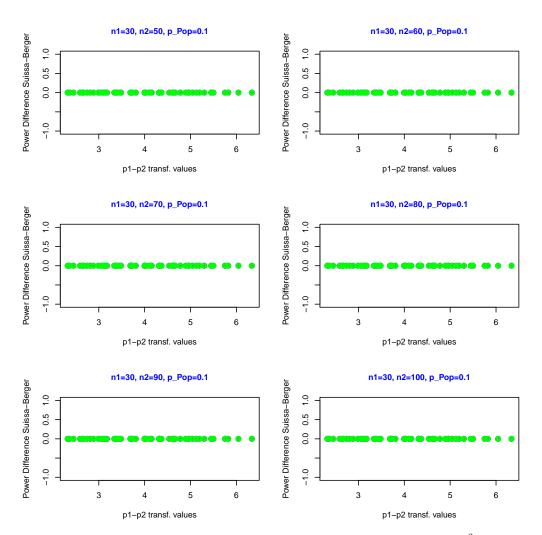


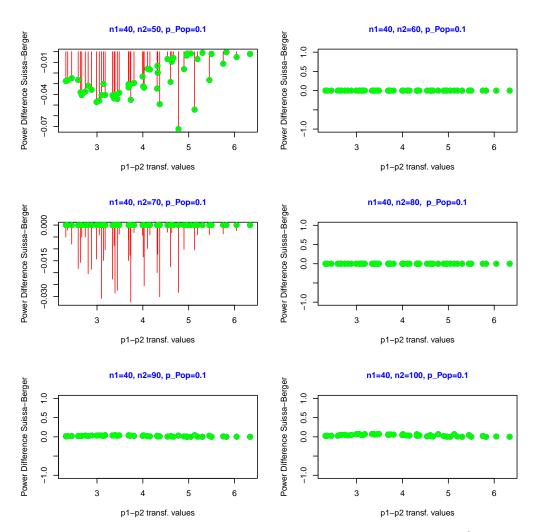
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

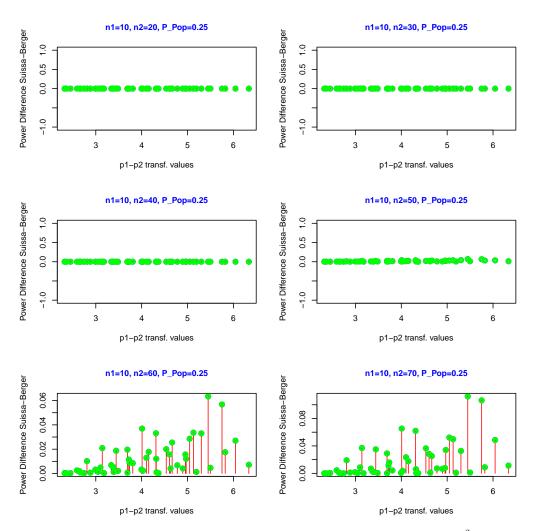


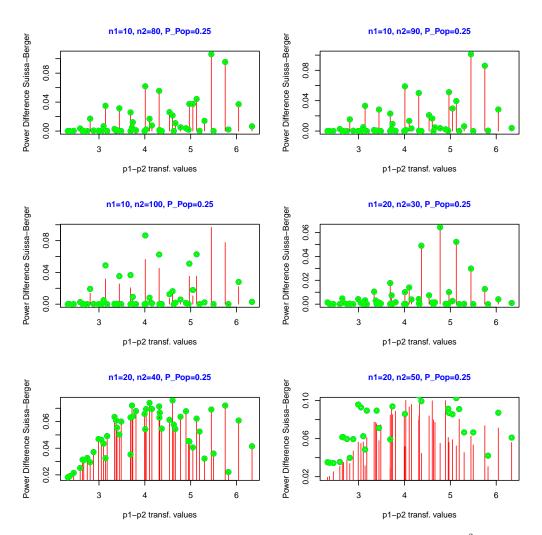
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

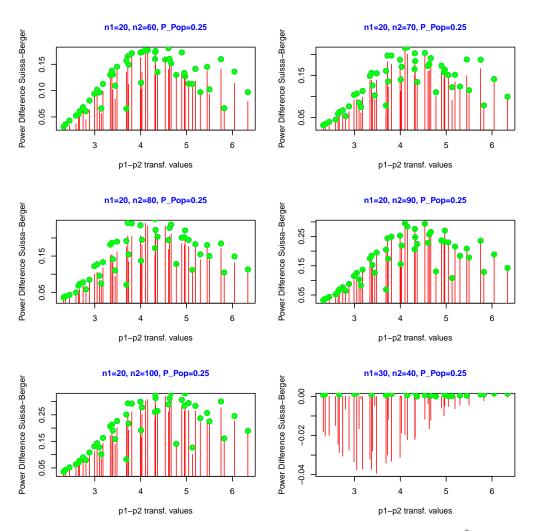

Figure C.18: Comparison of power between the Suissa unpooled test and the Berger unpooled test for different sample sizes, $\alpha = 0.01$.

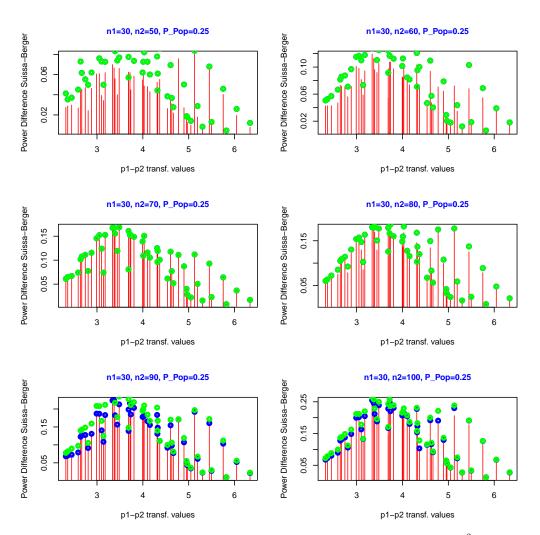

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

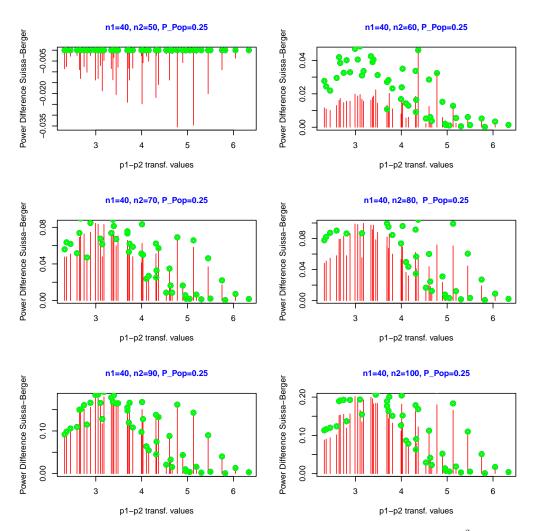

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

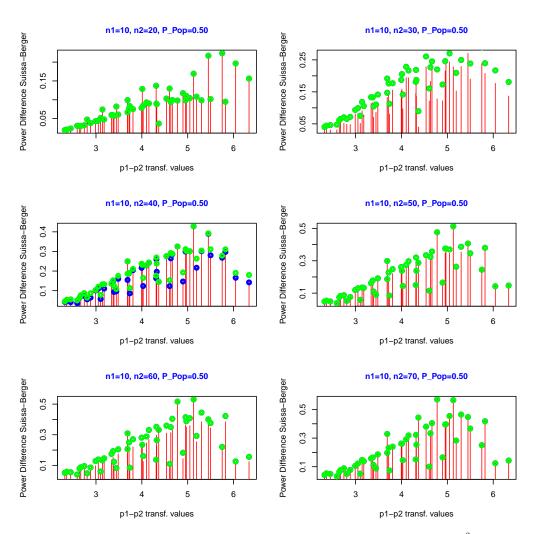

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

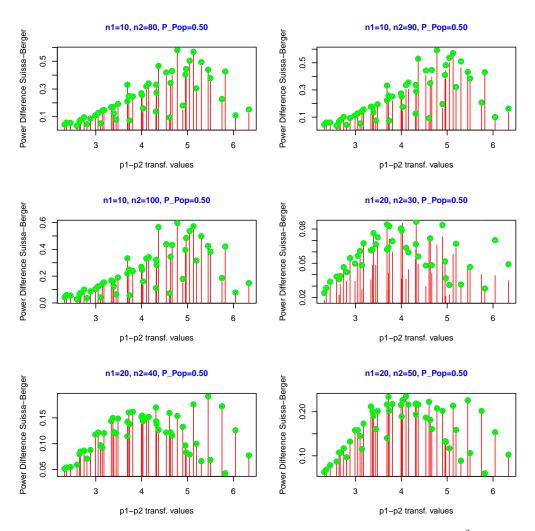

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

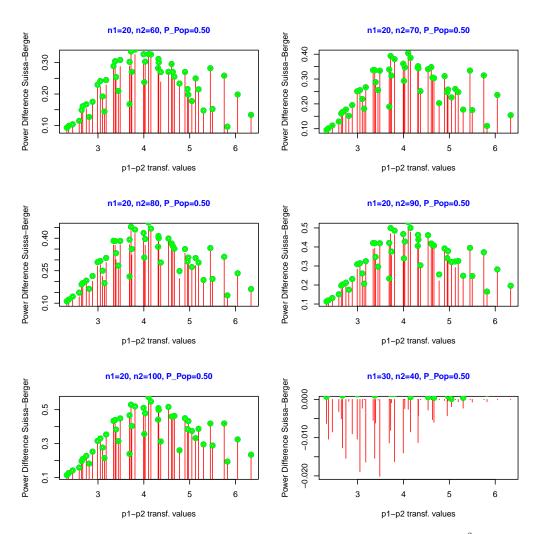

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

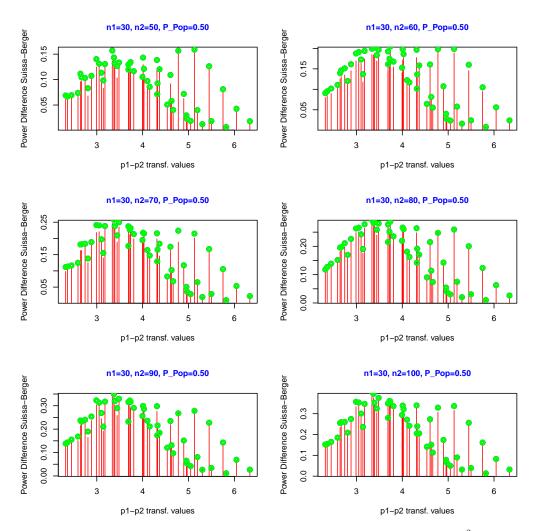

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

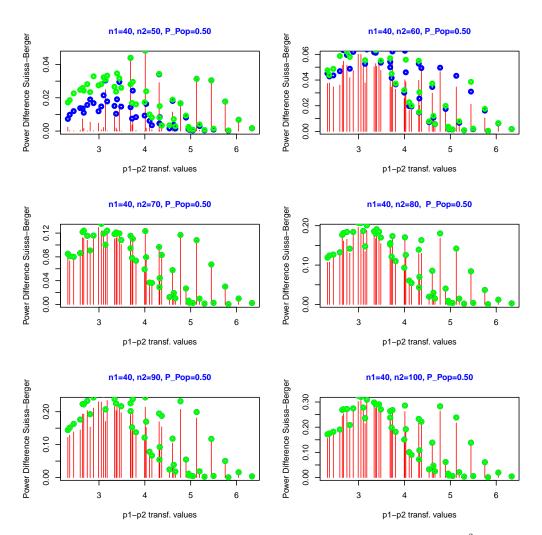

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

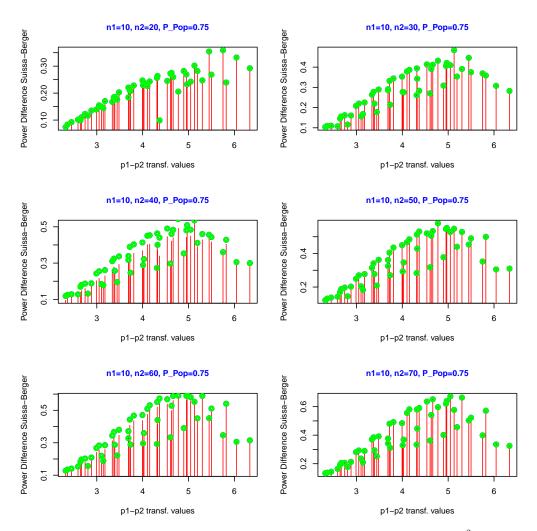

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

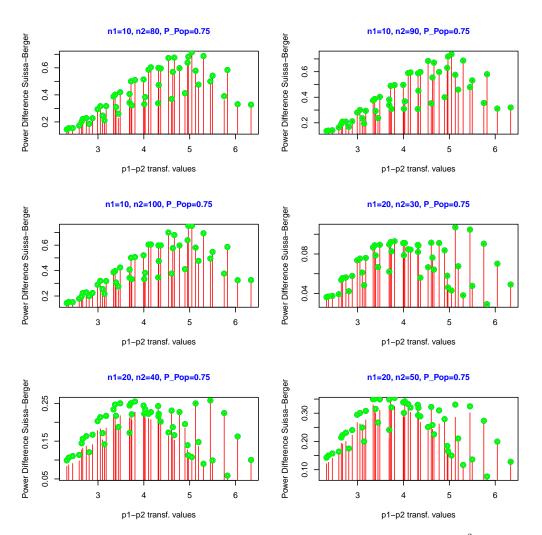

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

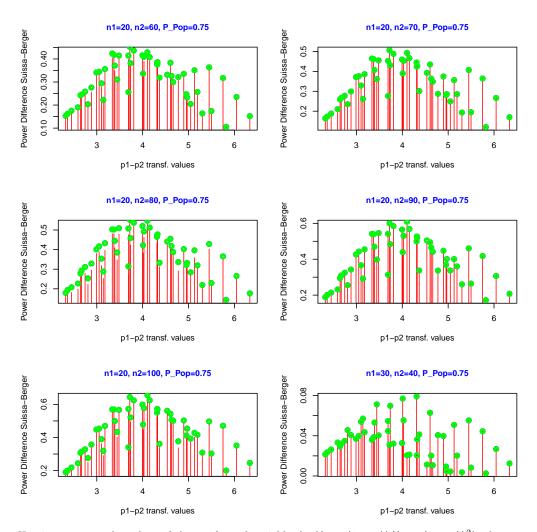

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

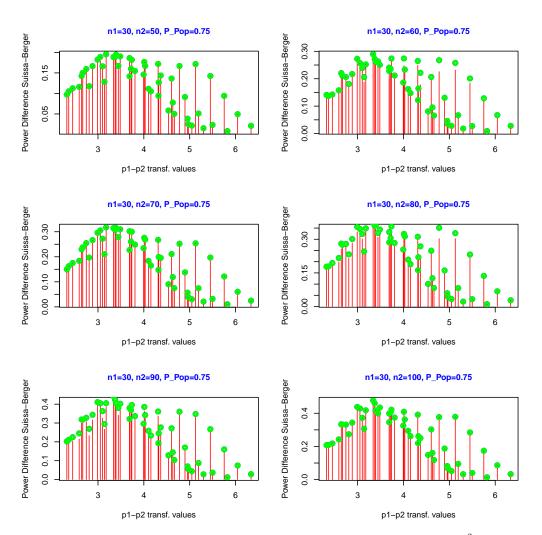

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

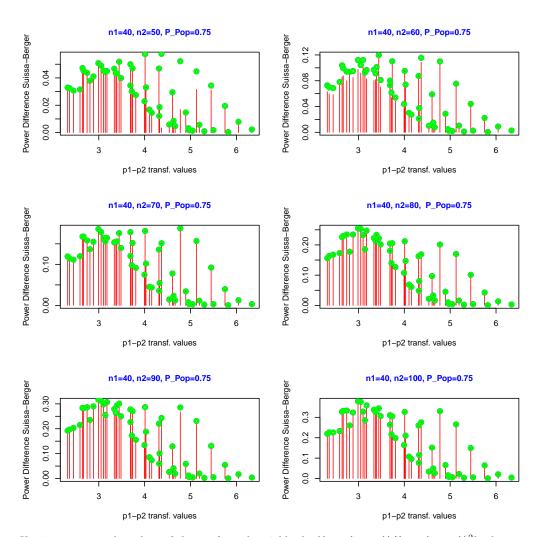

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

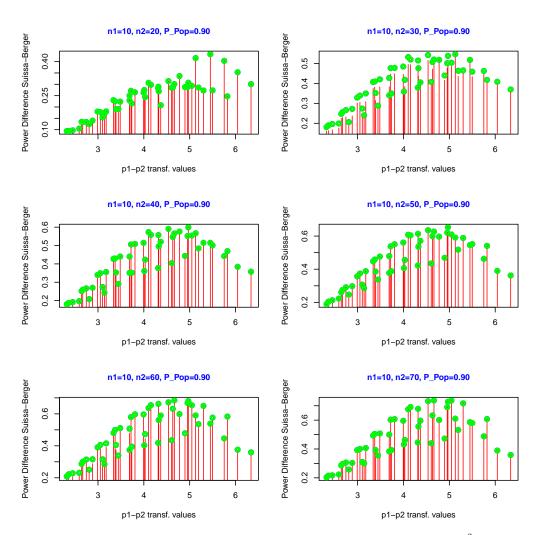

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

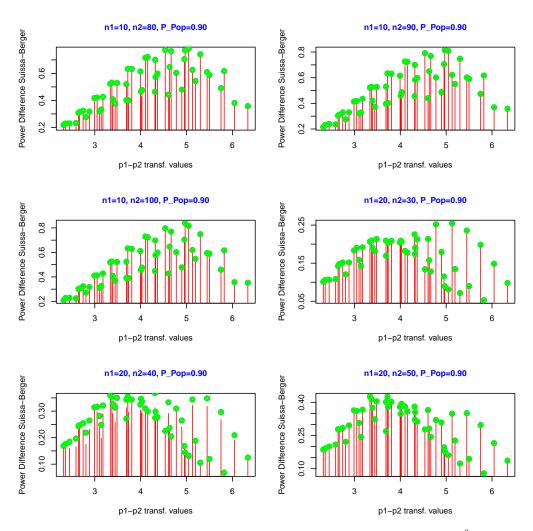

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

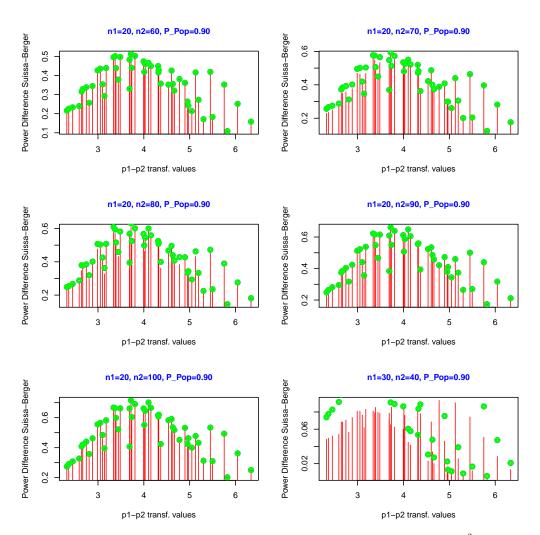

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

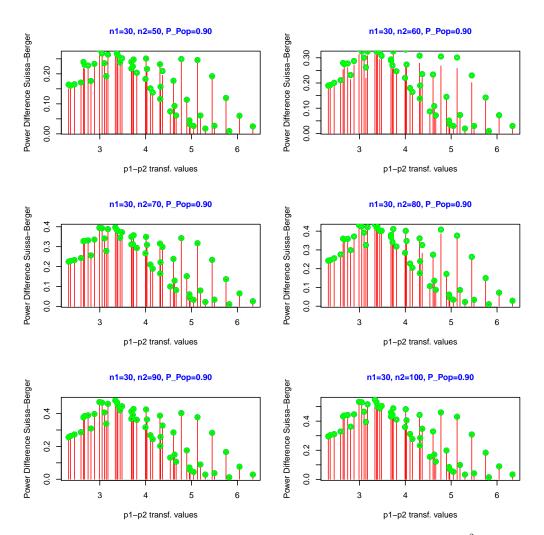

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

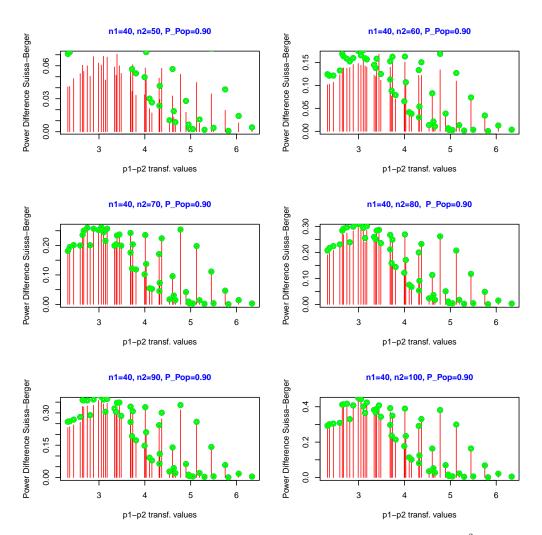

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

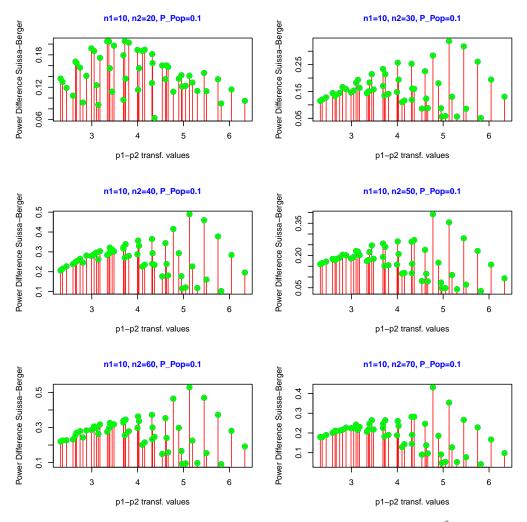

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.00001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

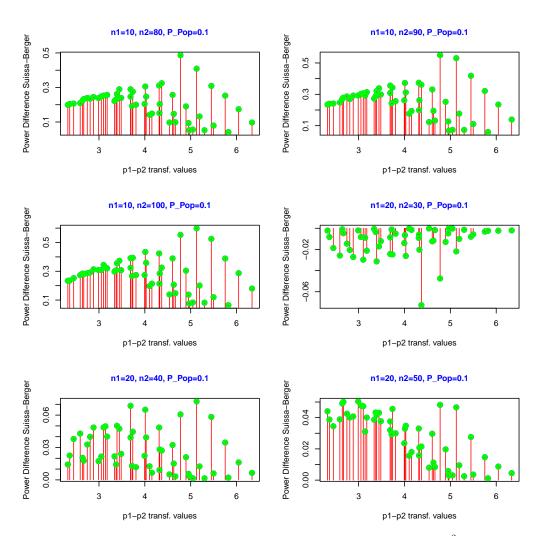

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

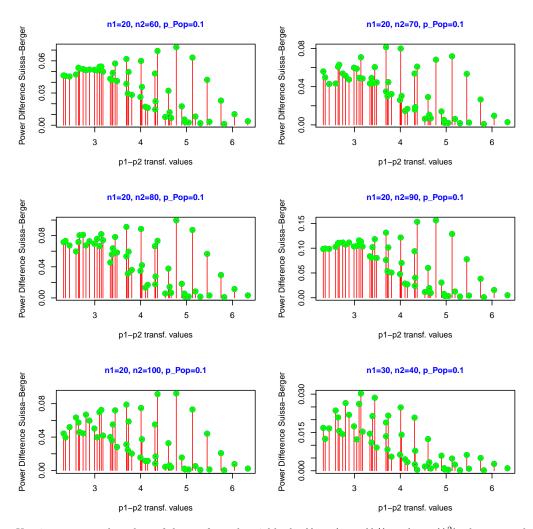
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

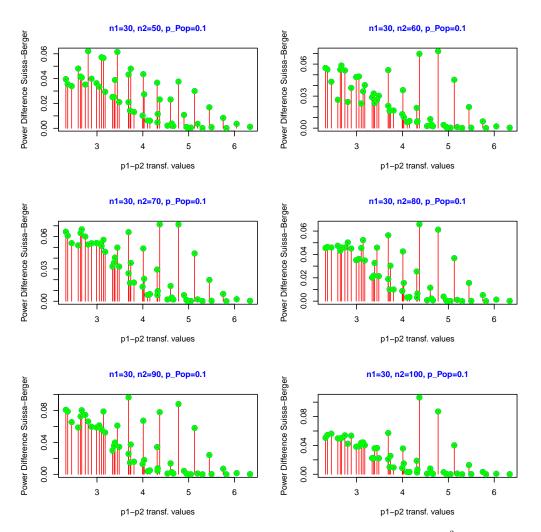


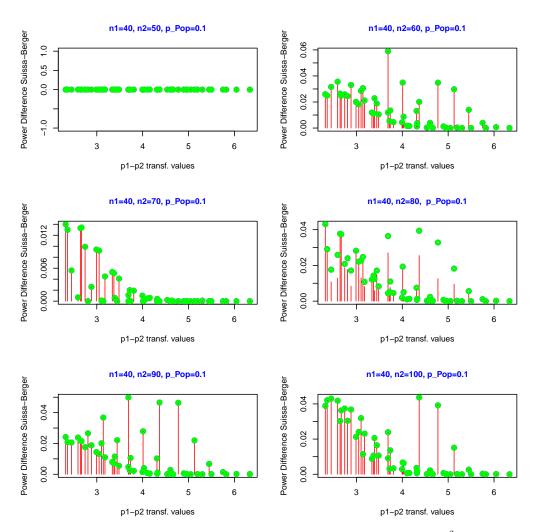
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.

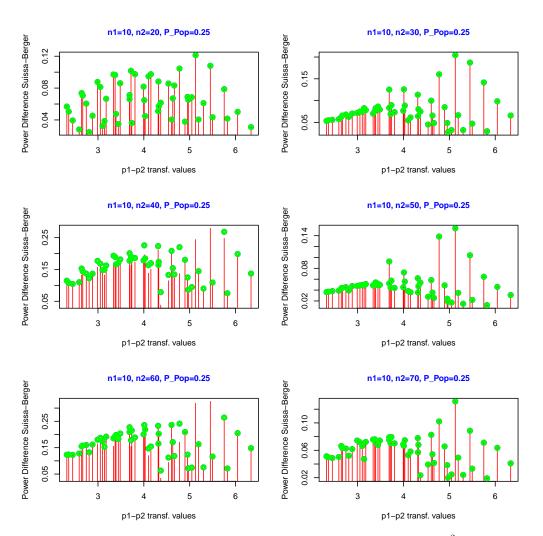


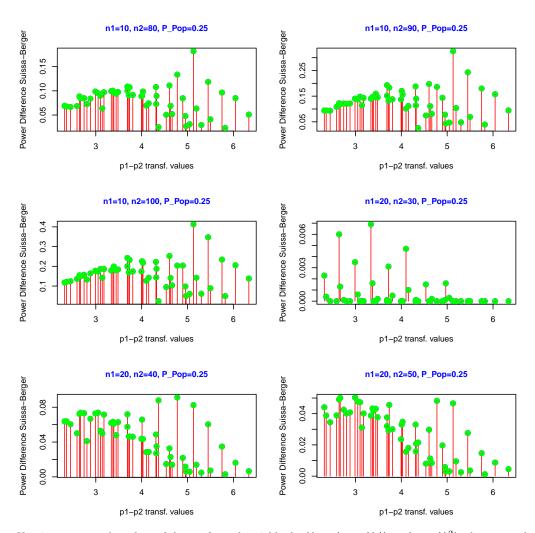
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger unpooled test $(\gamma=0.001)$ and the Suissa unpooled test (red bars). Power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by green dots whereas power difference between the Berger unpooled test $(\gamma=0.0001)$ and the Suissa unpooled test is represented by blue dots. In case the Berger unpooled test $(\gamma=0.0001)$ and the Berger unpooled test $(\gamma=0.0001)$ achieve the same level of power, only the green dots are drawn.


Figure C.19: Comparison of power between the Suissa pooled test and the Berger pooled test for different sample sizes, $\alpha = 0.05$.

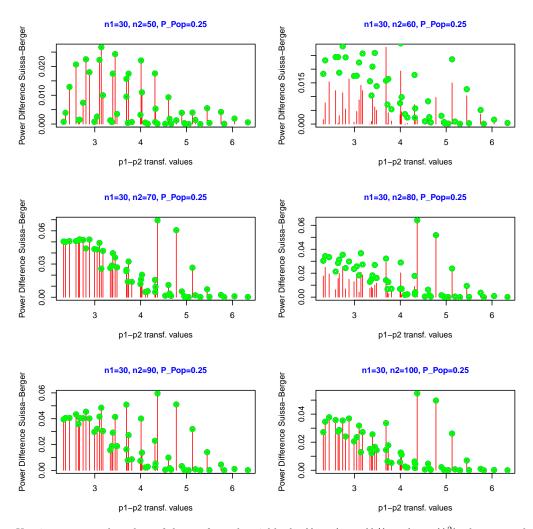

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

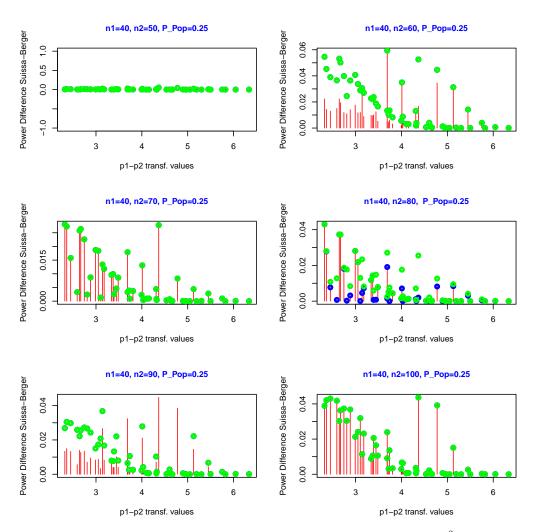

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

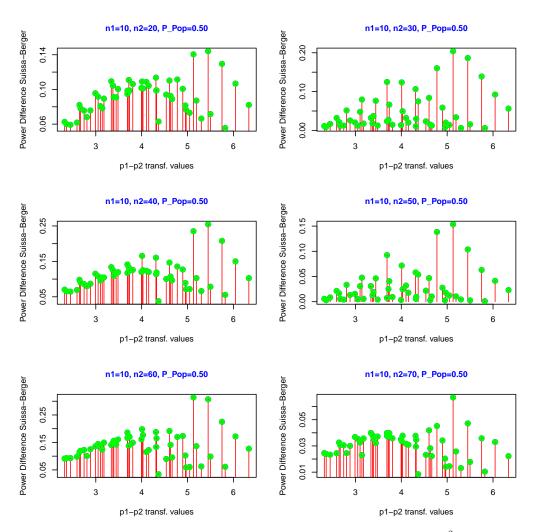

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

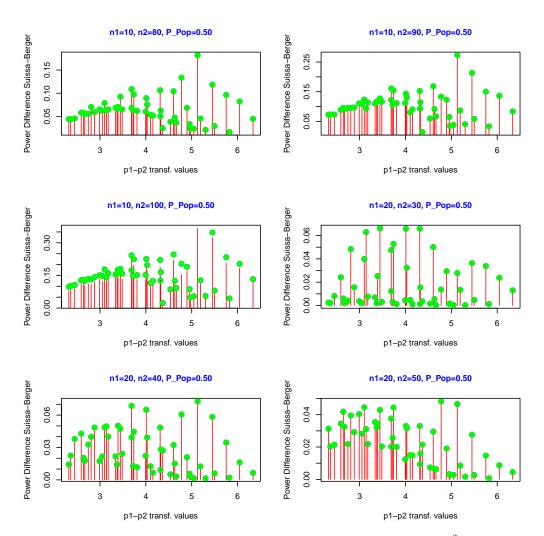

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

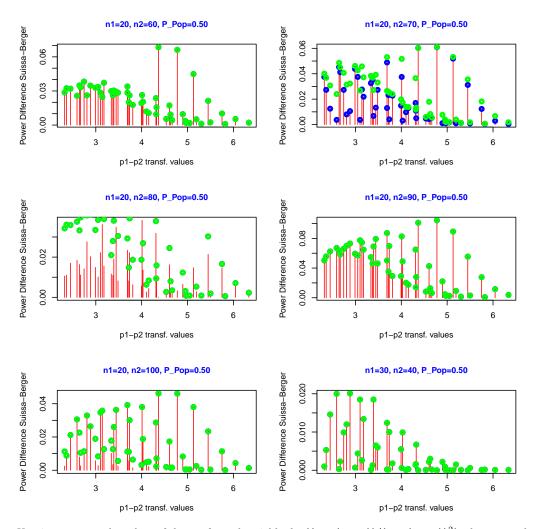
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

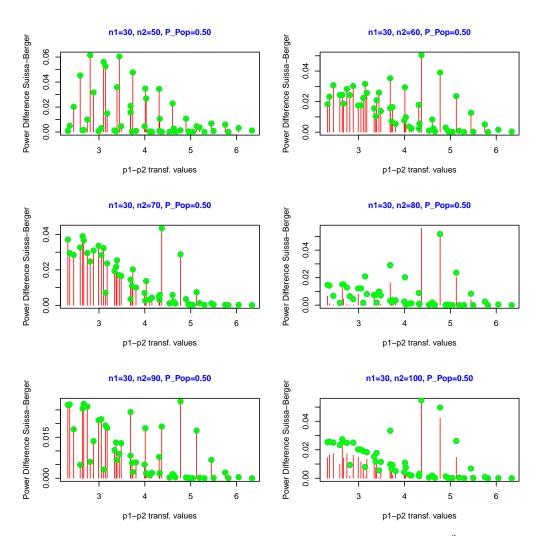

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

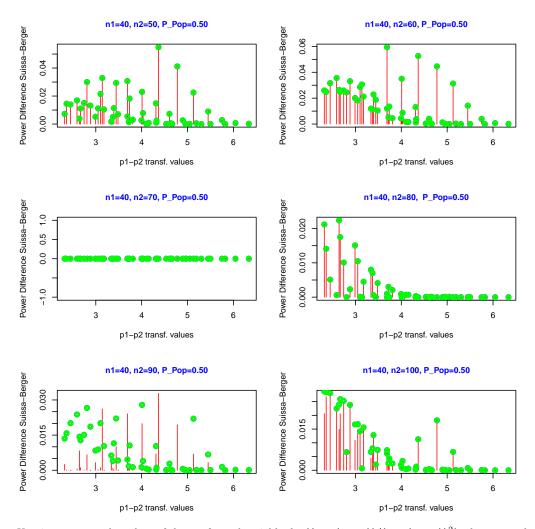

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

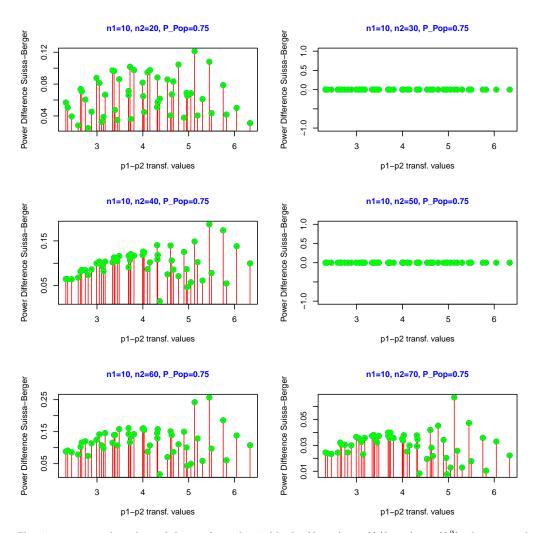

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

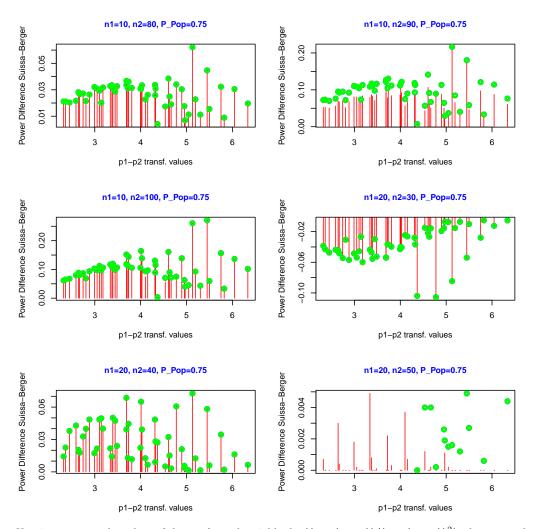

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

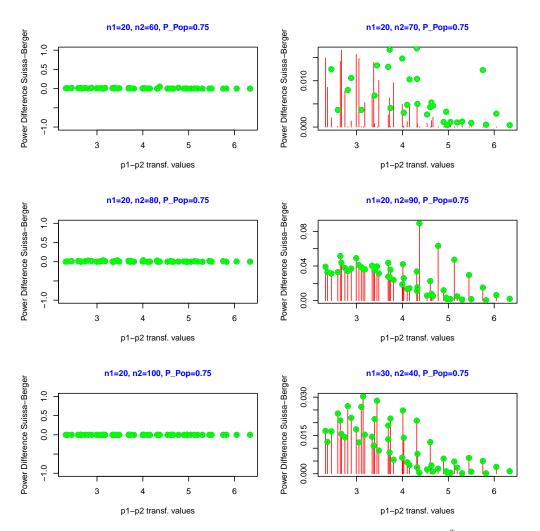

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

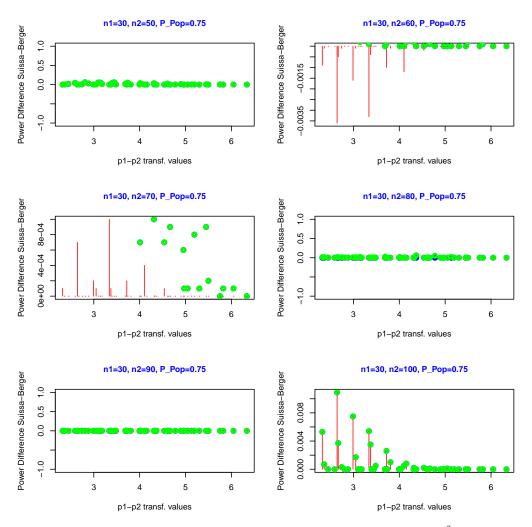

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

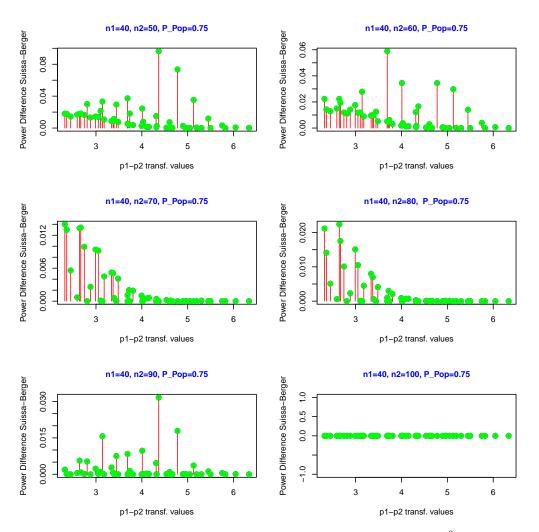

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma = 0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma = 0.0001)$ and the Berger pooled test $(\gamma = 0.00001)$ achieve the same level of power, only the green dots are drawn.

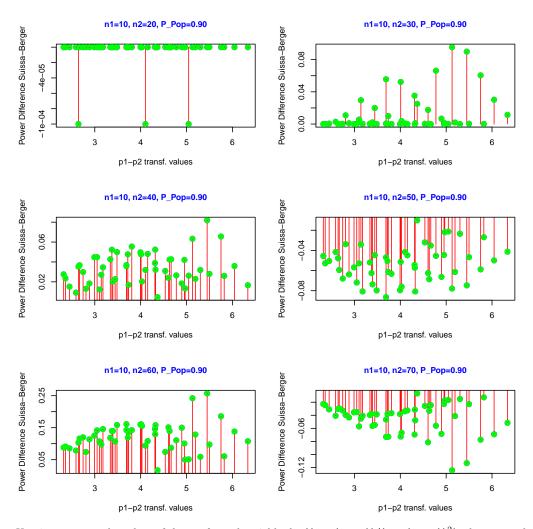

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

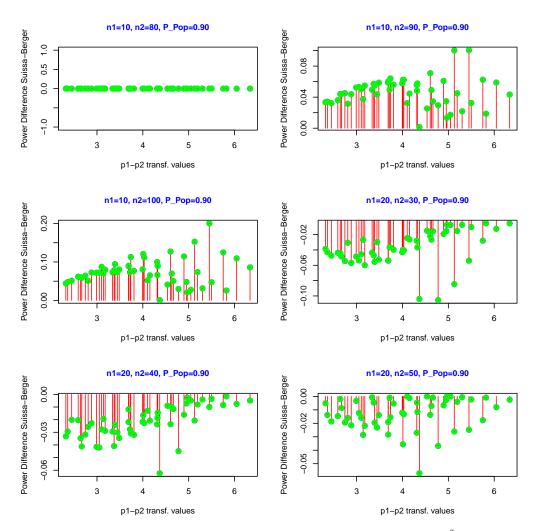

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

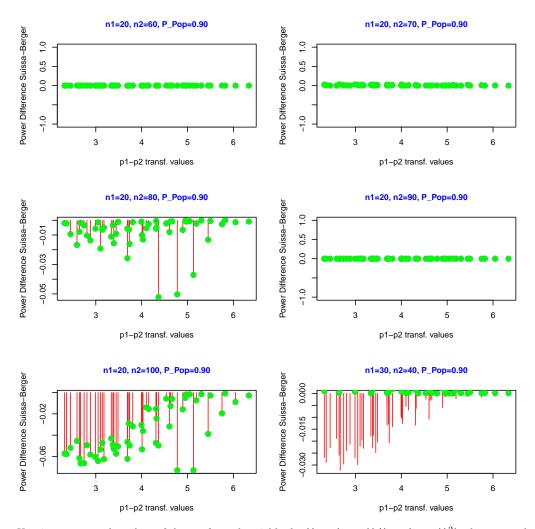

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

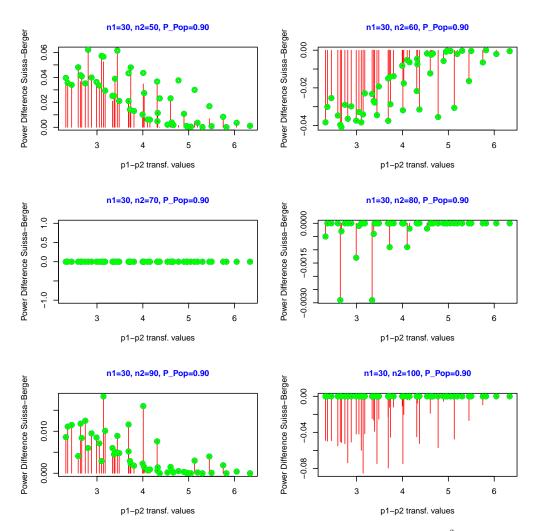

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

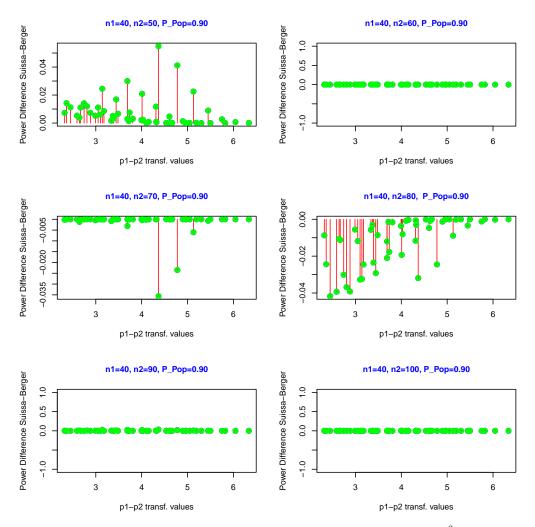

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

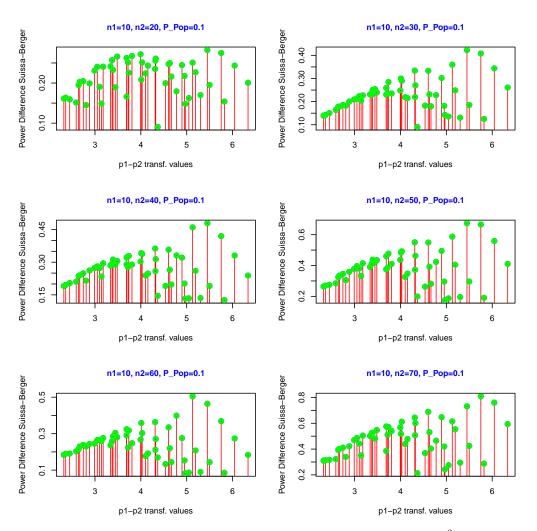

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

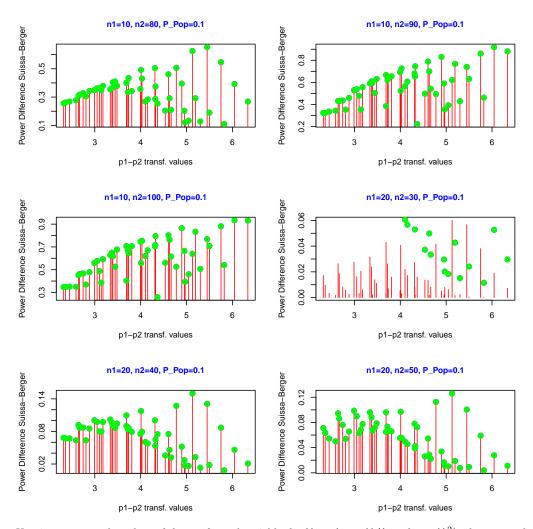

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

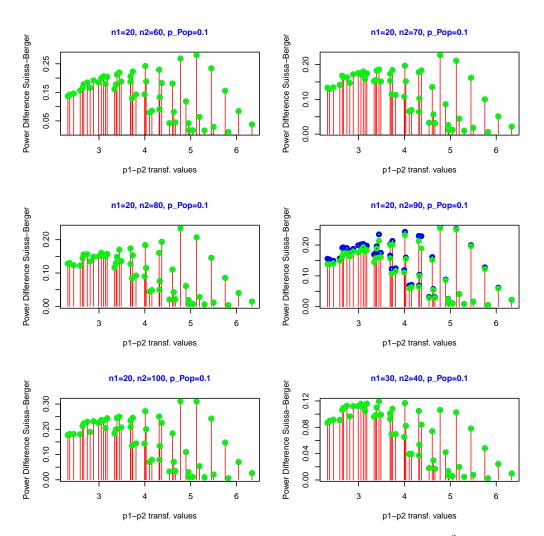
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

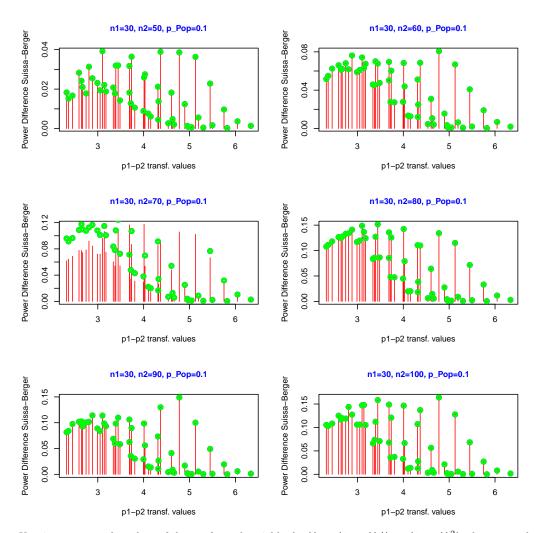


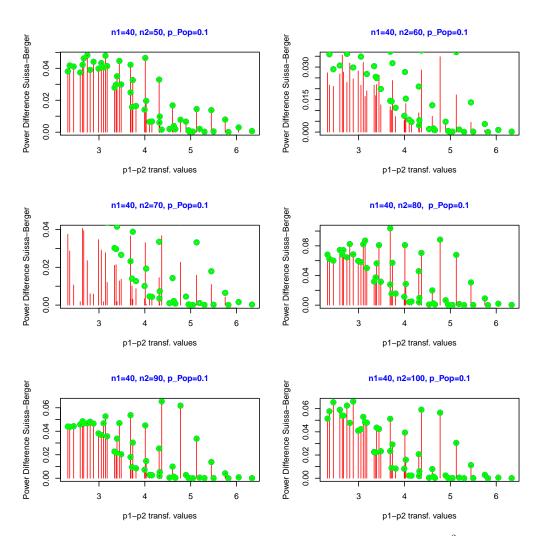
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

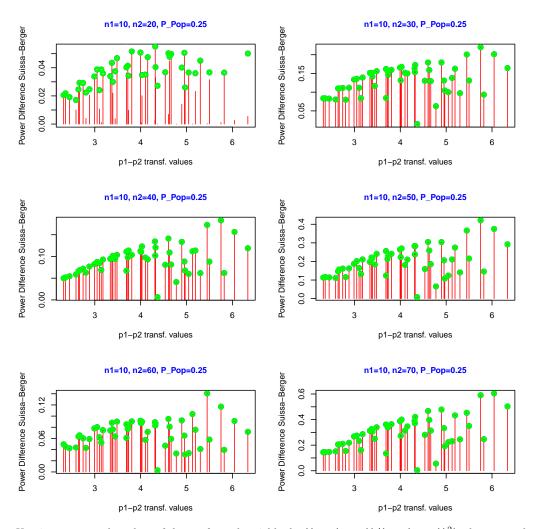


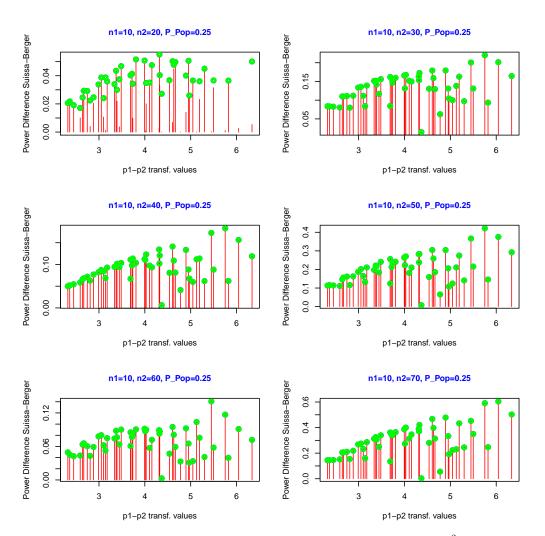
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

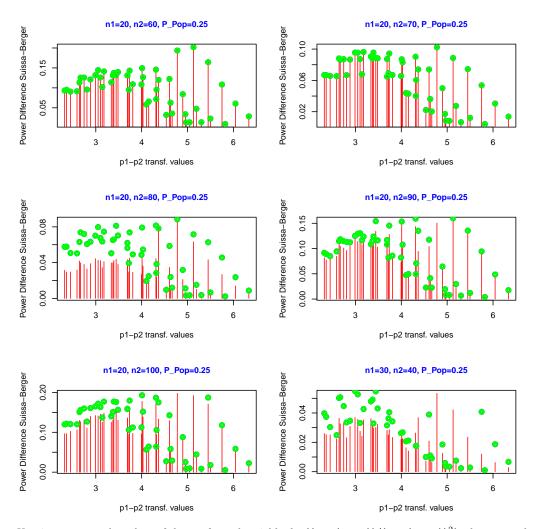

Figure C.20: Comparison of power between the Suissa pooled test and the Berger pooled test for different sample sizes, $\alpha = 0.025$.

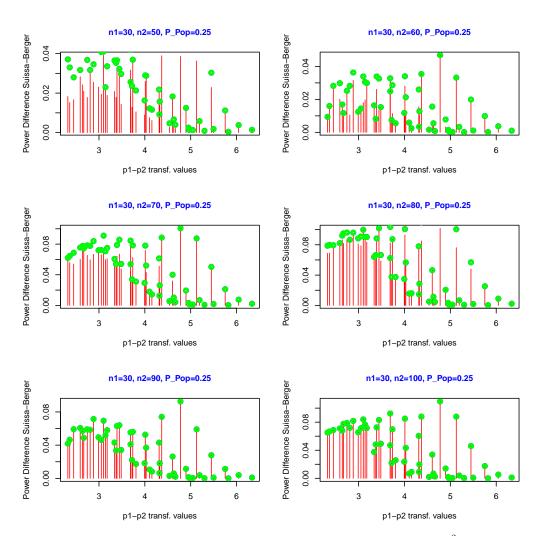

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

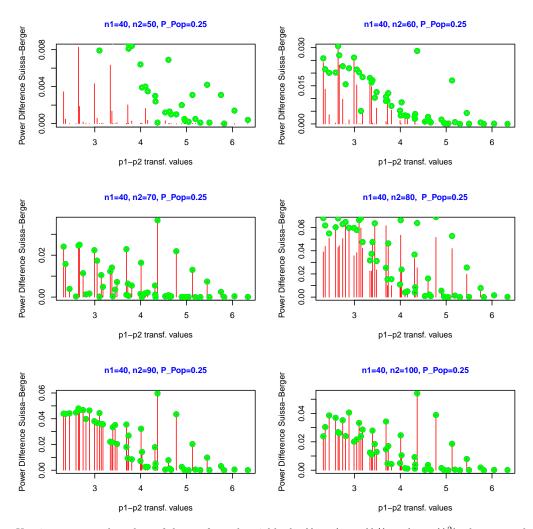

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

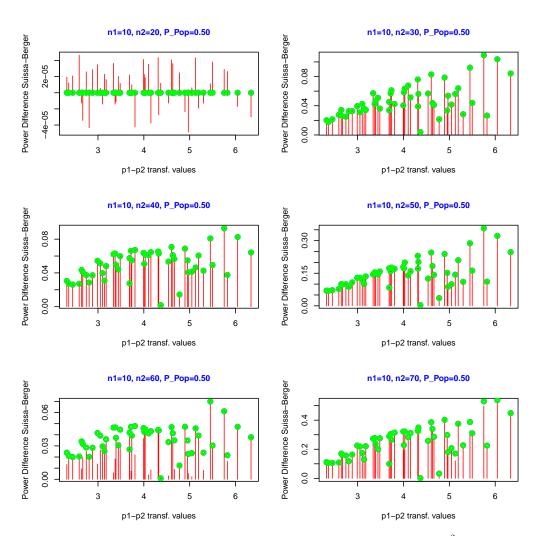

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

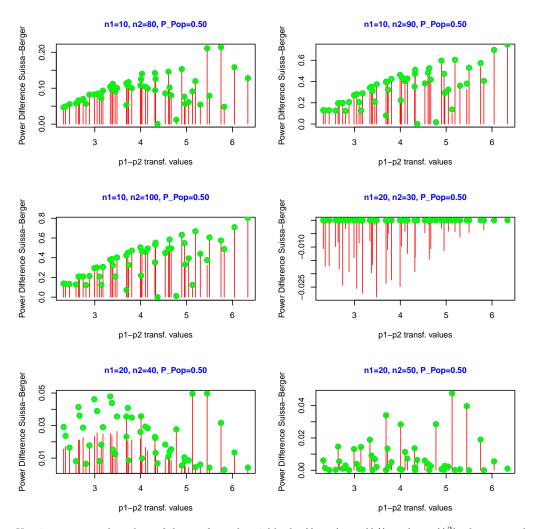

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

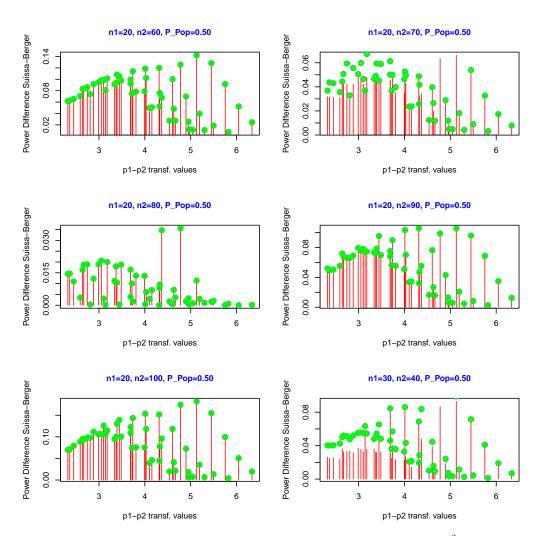

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

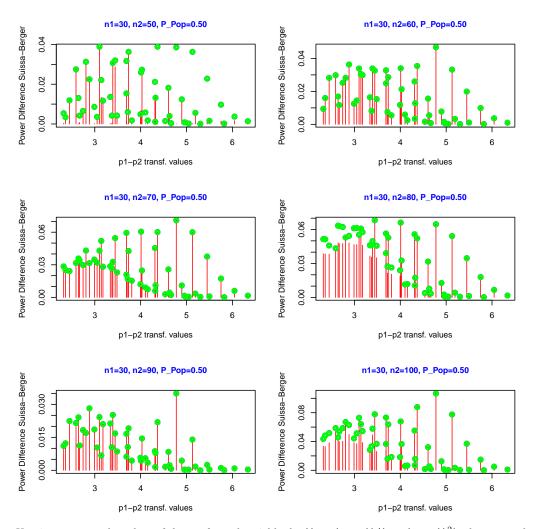

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

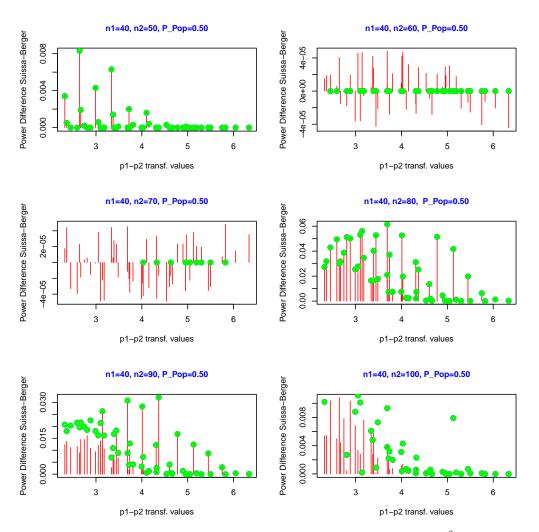

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

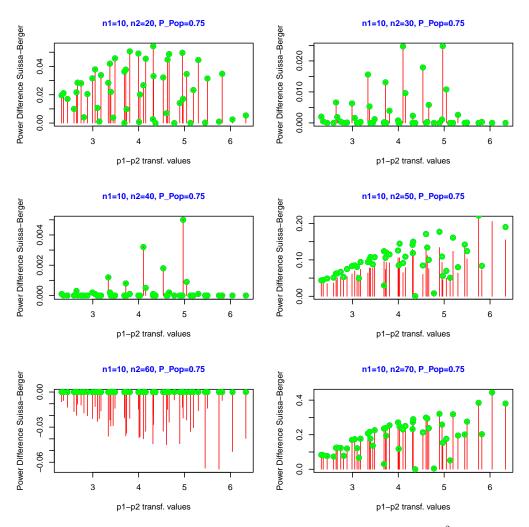

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

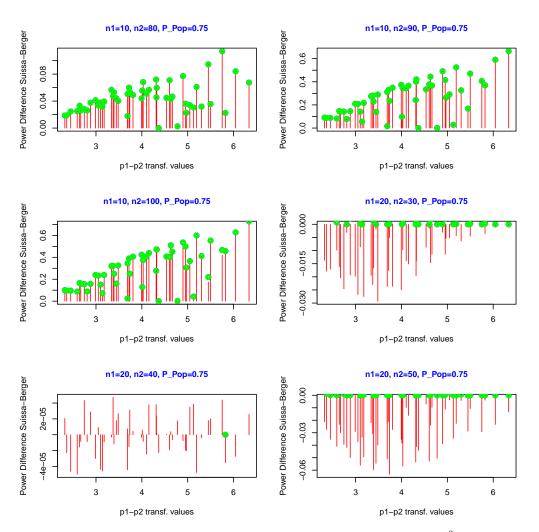

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

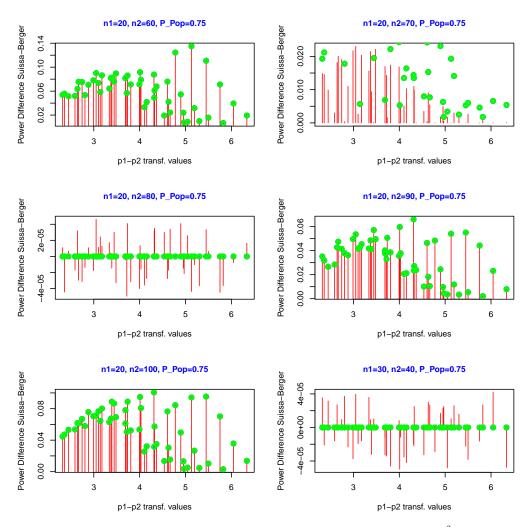

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

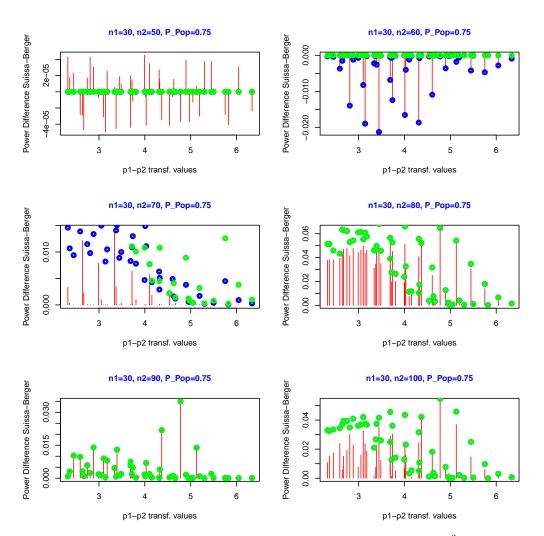

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

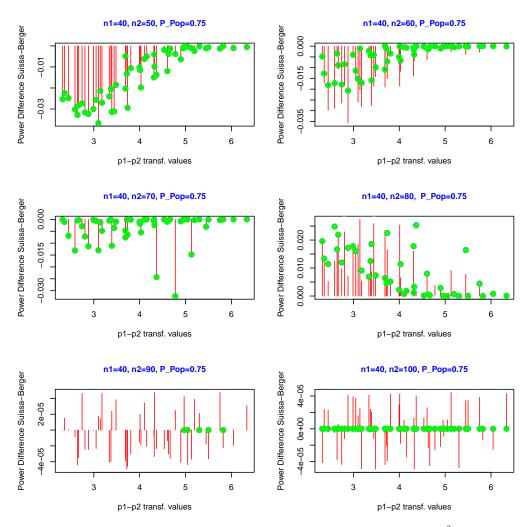

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

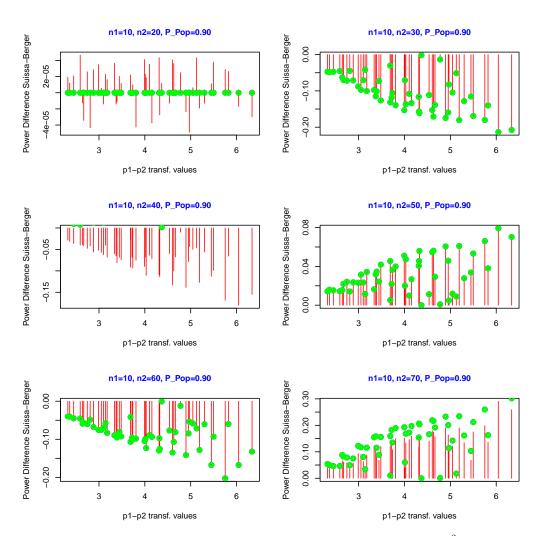

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

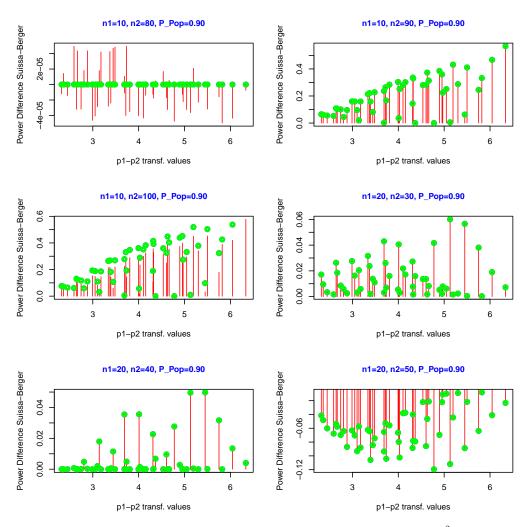

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

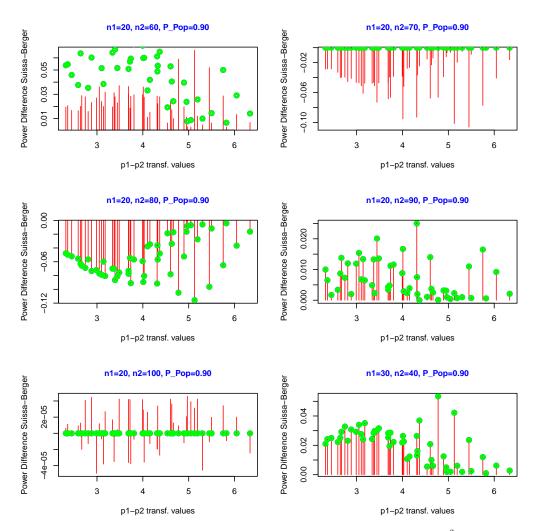

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

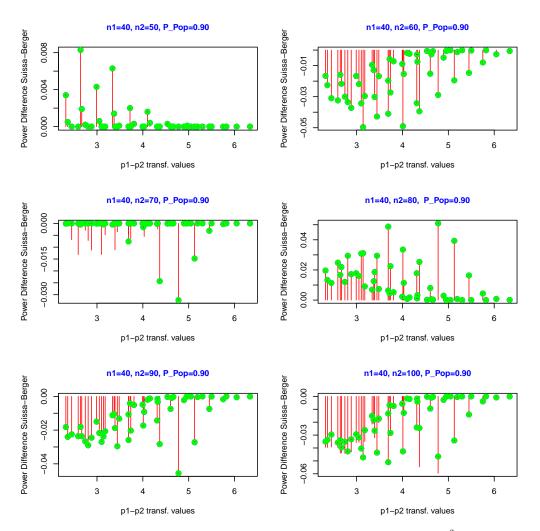

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma = 0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma = 0.0001)$ and the Berger pooled test $(\gamma = 0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

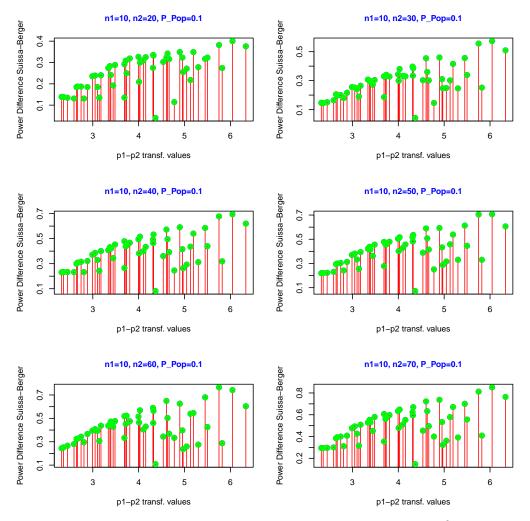

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

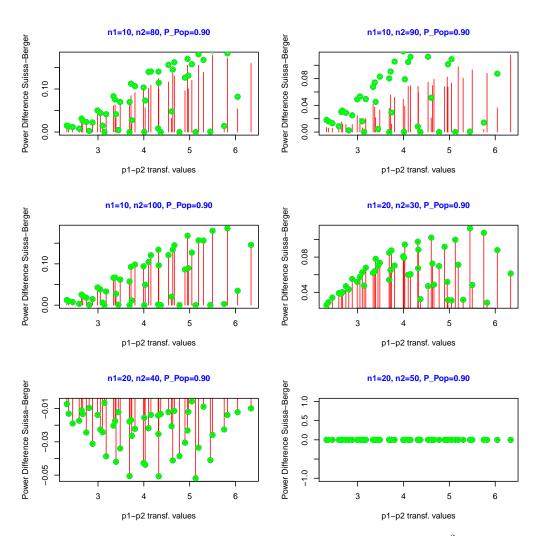
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

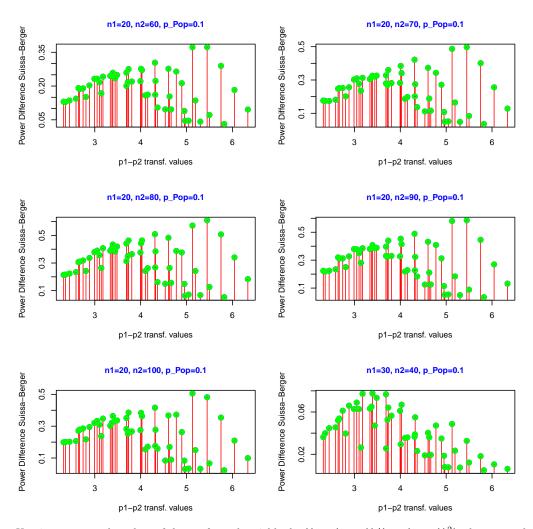
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

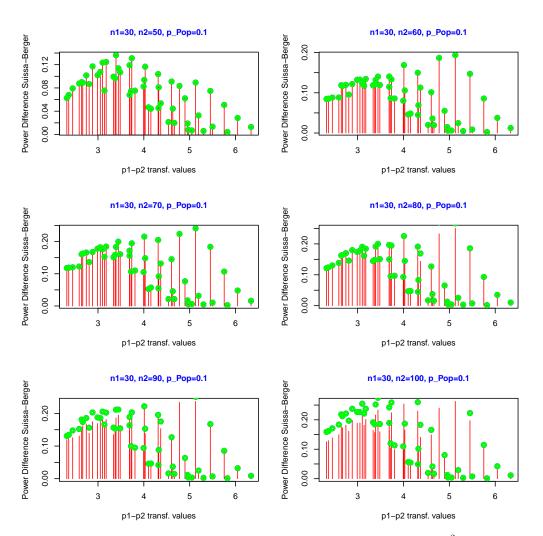


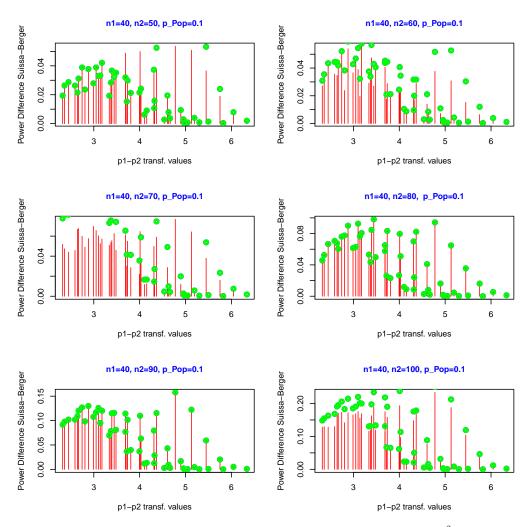
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

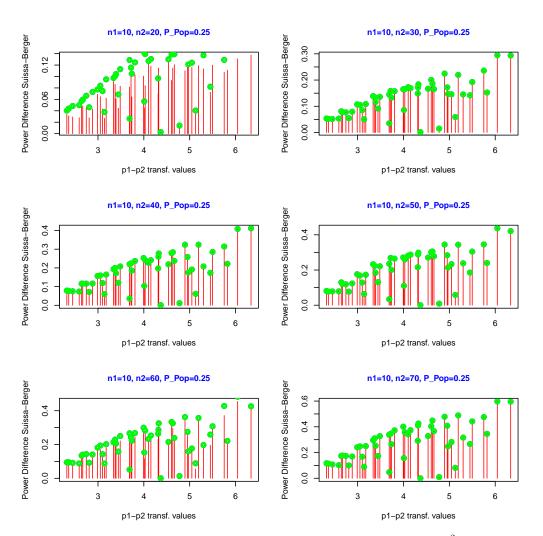


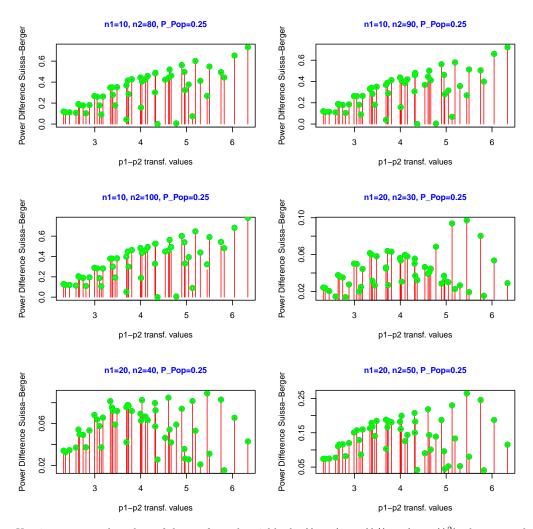
X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

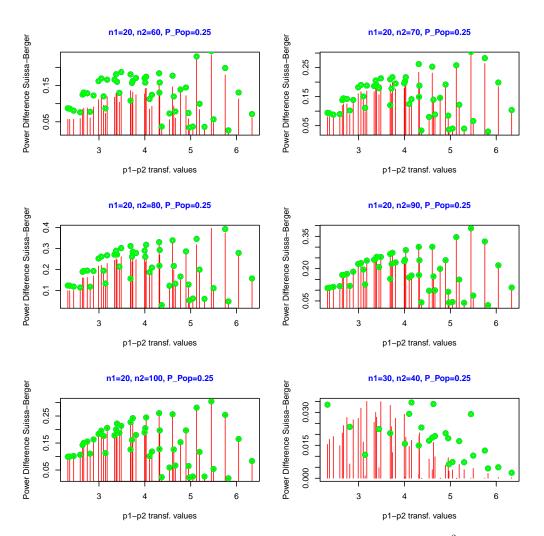

Figure C.21: Comparison of power between the Suissa pooled test and the Berger pooled test for different sample sizes, $\alpha = 0.01$.

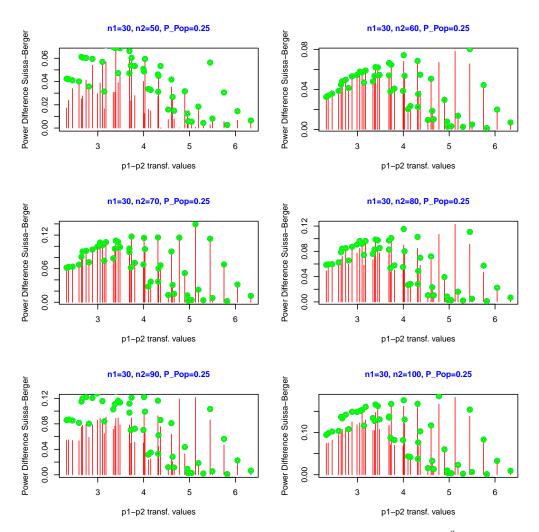

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

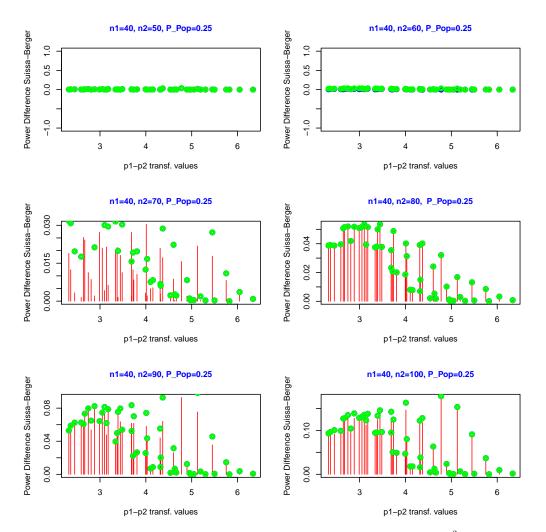

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

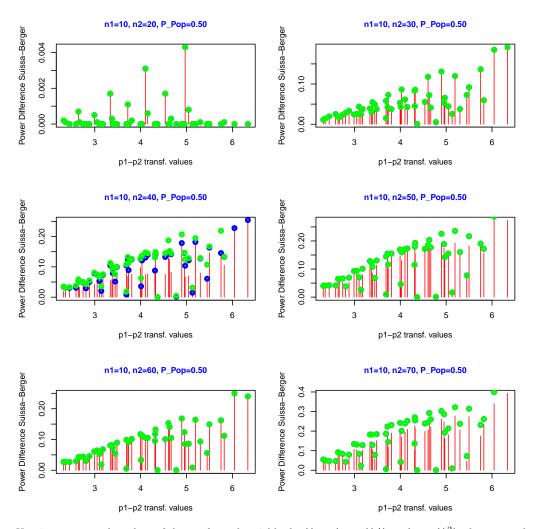

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

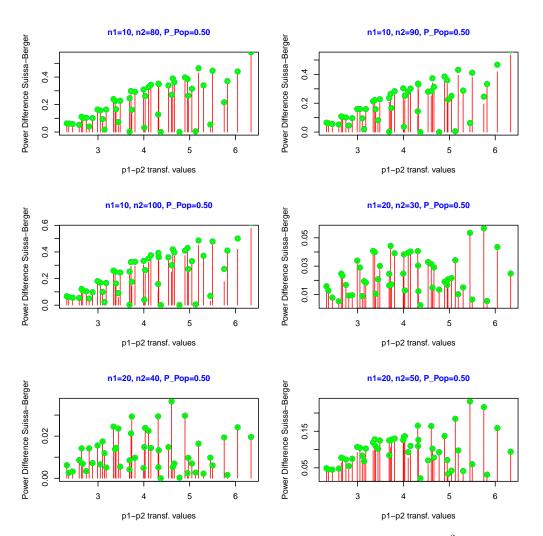

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

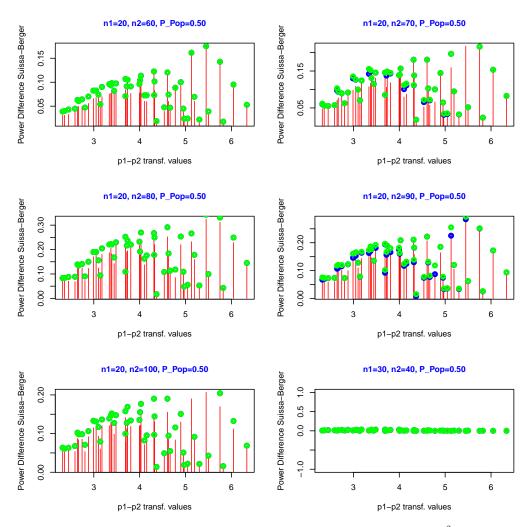

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

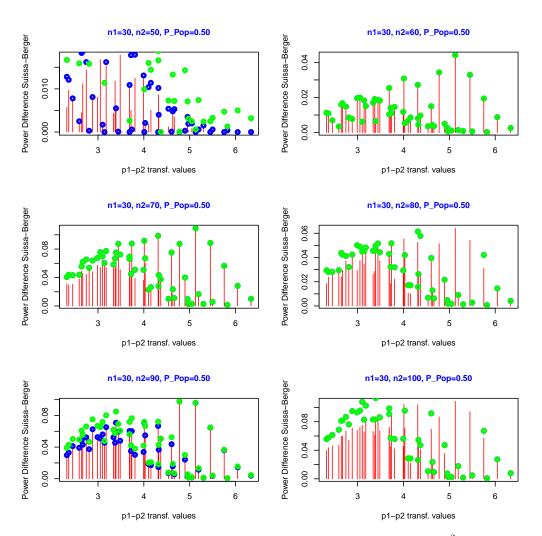

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

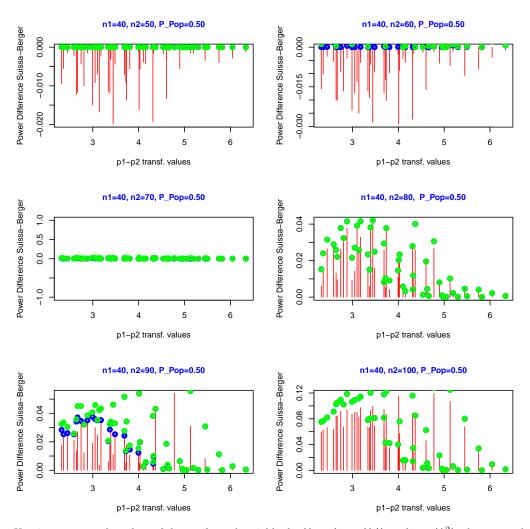

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

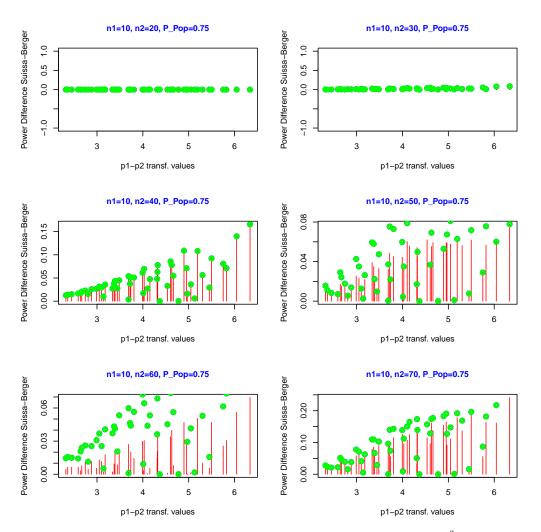

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma = 0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma = 0.0001)$ and the Berger pooled test $(\gamma = 0.00001)$ achieve the same level of power, only the green dots are drawn.

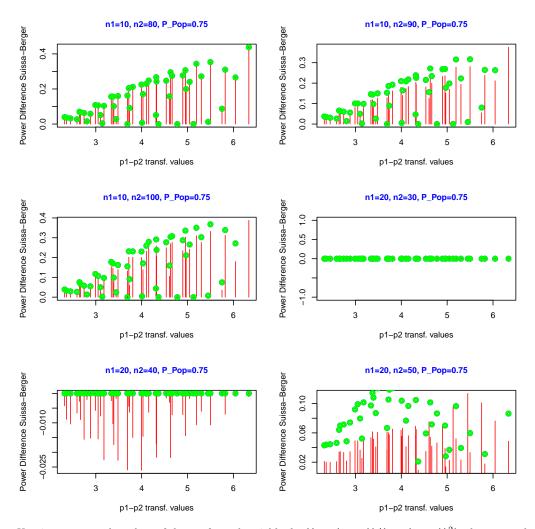

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

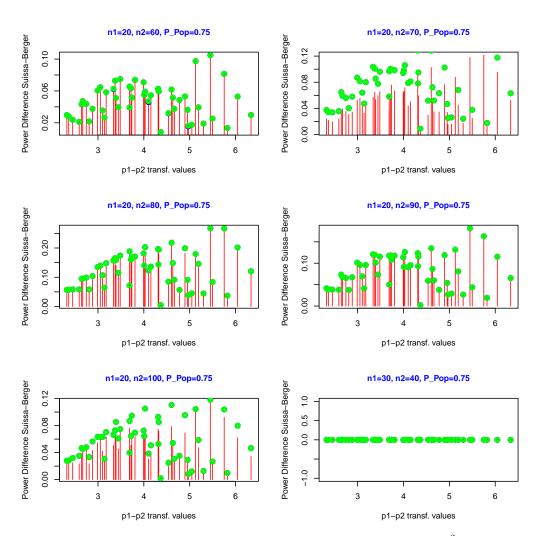

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

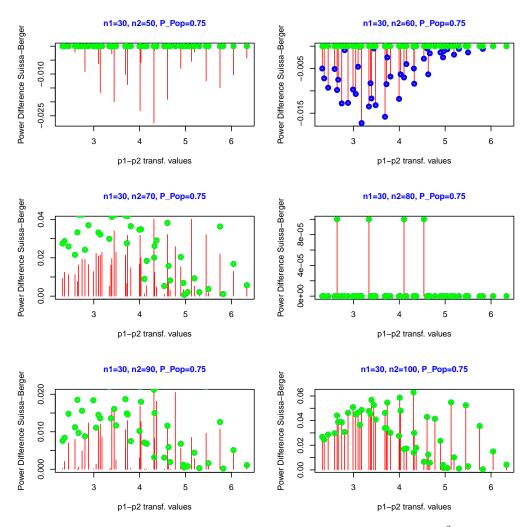

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

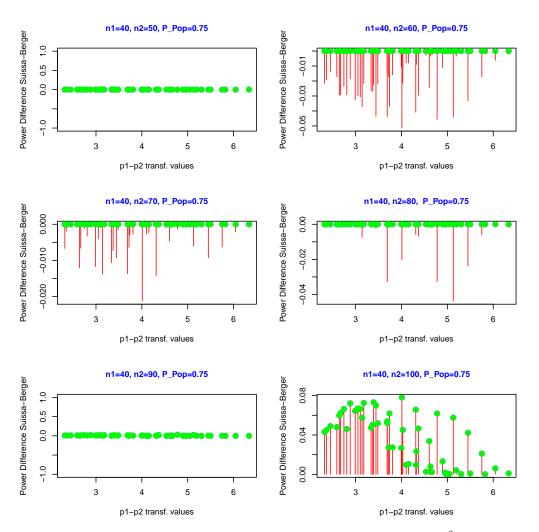

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma = 0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma = 0.0001)$ and the Berger pooled test $(\gamma = 0.00001)$ achieve the same level of power, only the green dots are drawn.

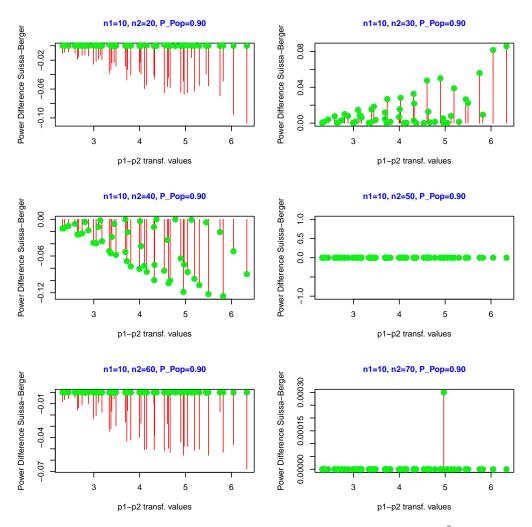

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

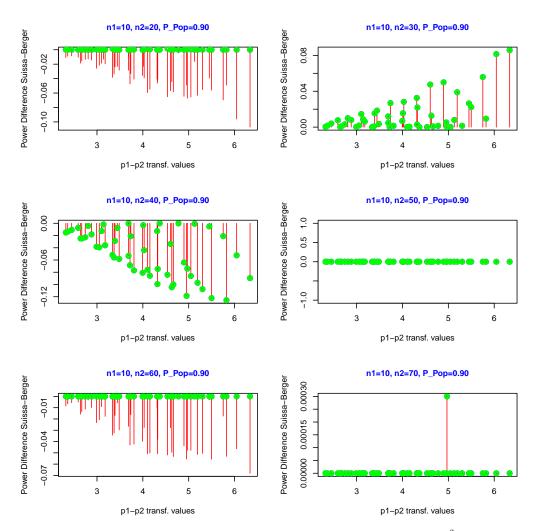

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma = 0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma = 0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma = 0.0001)$ and the Berger pooled test $(\gamma = 0.00001)$ achieve the same level of power, only the green dots are drawn.

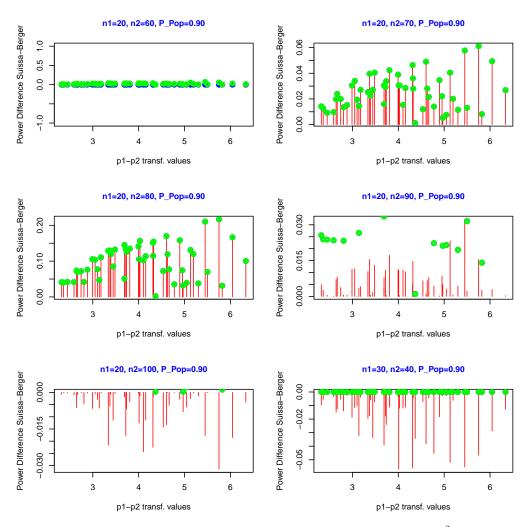

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

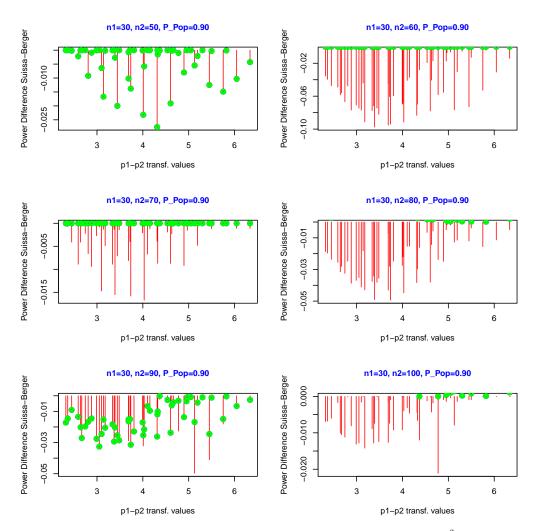

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

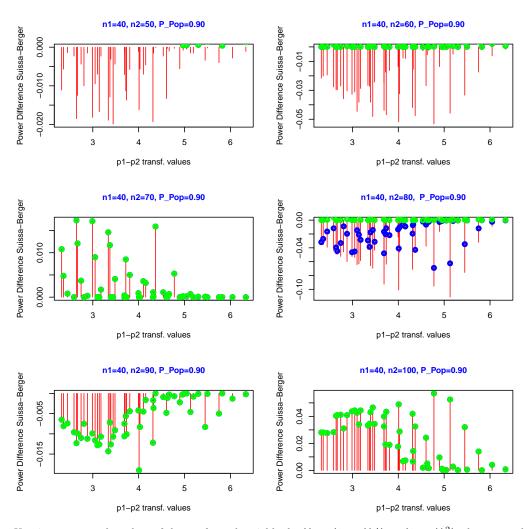

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.


X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.

X-axis represents the values of the trasformed variable: $log((p_2*(1-p_1))/(p_1*(1-p_2))^2)$ whereas on the y-axis is indicated the power difference between the Berger pooled test $(\gamma=0.001)$ and the Suissa pooled test (red bars). Power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by green dots whereas power difference between the Berger pooled test $(\gamma=0.0001)$ and the Suissa pooled test is represented by blue dots. In case the Berger pooled test $(\gamma=0.0001)$ and the Berger pooled test $(\gamma=0.00001)$ achieve the same level of power, only the green dots are drawn.