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Abstract

Images are playing a more and more important role in sharing, expressing,
mining and exchanging information in our daily lives. Now we can all easily
capture and share images anywhere and anytime. Since digital images are
subject to a wide variety of distortions during acquisition, processing, com-
pression, storage, transmission and reproduction; it becomes necessary to
assess the Image Quality. In this thesis, starting from an organized overview
of available Image Quality Assessment methods (Chapter 1), some original
contributions in the framework of No-reference image quality metrics are
described.

No-Reference metrics are also called blind as they assume that image
quality can be determined without a direct comparison between the original
and the processed images. To this end, No-Reference metrics are designed
to identify and quantify the presence of specific processing distortions that
may exist in the evaluated image. To estimate the presence of a defect or
artifact, the properties of the artifact as well as the effects that it produces
on the low level components of the image (edges, homogeneous areas, etc)
should be modeled and characterized. For each image artifact, several metrics
and benchmark databases are often available in the literature. There are,
however, some artifacts that have not been studied yet. One of these is due to
demosaicing and it is investigated in Chapter 2. The demosaicing operation
consists of a combination of color interpolation and anti-aliasing algorithms
and converts a raw image acquired with a single sensor array, overlaid with
a color filter array, into a full-color image. The most prominent artifact
generated by demosaicing algorithms is called zipper. The zipper artifact
is characterized by segments (zips) with an On-Off pattern. In this chapter
I describe psycho-visual experiments to analyze the perceived distortions
produced by different demosaicing algorithms. To this end, I have generated
a proper dataset with nine different degrees of distortions, using three color
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interpolation algorithms combined with two anti-aliasing algorithms. In this
thesis I propose a new metric based on measures of blurriness, chromatic
and achromatic distortions that fit the psycho-visual data collected during
the subjective experiments.

Typically, No-Reference metrics are designed to measure specific artifacts
using a distortion model. Some psycho-visual experiments have shown that
the perception of distortions is influenced by the amount of details in the
image’s content, suggesting the need for a content weighting factor. This
dependency is coherent with known masking effects of the human visual
system. In Chapter 3, I focus on the blocking distortion of JPEG compressed
images and show that information about the visual content of the image
(encoded as wavelets descriptors) can be exploited to improve the estimation
of the quality of JPEG compressed images.

In Chapter 4 I focus on No-Reference metrics for sharpness. In the meth-
ods available in the literature, after detecting the edge pixels, the sharpness
measure is defined for each edge pixel. I have observed that in some cases
this global measure is not representative of the real sharpness of the images.
This fact is mainly due to the image noise that interferes with the measure
at pixel-level. Performing the measure on a set of edge pixels can mitigate
this problem. In this chapter, I propose a method that automatically selects
edge segments, and permits to evaluate image sharpness on more reliable
data. Moreover a novel sharpness metric for natural images, inspired by the
slanted edge technique used in case of synthetic images is introduced. This
metric makes it possible to cope with noise influence providing more reliable
estimations.

In Chapter 5 I present a modular No-Reference Image Quality tool. This
tool addresses natural images in general where signal content and distortion
may not be clearly separated. For this scope, the tool gives a structured view
of a large collection of objective metrics that are available for the different
distortions within an integrated framework. The tool permits to apply the
metrics not only globally but also locally to different regions of interest of
the image. I have observed that a criterion to define the ”best metric” for
each distortion does not exist. This ideal metric should therefore take into
account the pictorial content of the image. As this could be a difficult task,
our tool allows the operator to use his prior knowledge to select a region
where the signal content does not affect the measure of the distortion. In
the conclusions the main contributions of this thesis are outlined the future
work discussed.



Chapter 1

Survey on Image Quality
Assessment

Quality, in general, has been defined as the ”totality of characteristics of
a product that bear on its ability to satisfy stated or implied needs” [48];
”fitness for (intended) use” [54]; ”conformance to requirement” [27]; ”user
satisfaction” [130]. These definitions and their numerous variants could fit
digital IQ as suggested by the Technical Advisory Service for Images: ”The
quality of an image can only be considered in terms of the proposed use.
An image that is perfect for one use may well be inappropriate for another”
[109]. According to the International Imaging Industry Association [107], IQ
is the perceptually weighted combination of all visually significant attributes
of an image when considered in its marketplace or application. We must, in
fact, consider the application domain and expected use of the image data.
An image, for example, could be used just as a visual reference to an item
in the digital archive; and although IQ has not been precisely defined, we
can reasonably assume that in this case IQ requirements are low. On the
contrary if the image were to ”replace” the original, IQ requirements would
be high.

Taking into account that images are not necessarily processed by a human
observer, we can consider the quality of an image as the degree of adequacy to
its function/goal within a specific application field. Given a specific domain
and task, there are several factors that may influence the results and there-
fore the perceived IQ. These are: scene geometry and lighting conditions,
imaging device (HW and embedded SW), image processing and transmis-
sion, rendering device (HW and embedded SW), the observer’s adaptation
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6 CHAPTER 1. SURVEY ON IMAGE QUALITY ASSESSMENT

state and viewing conditions, the observers’ previous experiences, preferences
and expectations.

Some attempts have been made in the last decade to develop a gen-
eral, broadly applicable, IQ model that regards images not only as signals
but also as carriers of visual information. Since an image is the result of
the optical imaging process, which maps physical scene properties onto a
two-dimensional luminance distribution, it encodes important and useful in-
formation about the geometry of the scene and the properties of the objects
located within this scene [50, 113, 134].

Janssen and Blommaert [51] regard the visuo-cognitive processing not as
an isolated process but instead as an essential stage in human interaction
with the environment. According to these authors, the quality of an image is
the adequacy of this image as input to visual perception and this adequacy
is given by the discriminability and identifiability of the items depicted in
the image. In Figure 1.1 their schematic overview of the interaction process
is shown. Images are the carriers of information about the environment, and
serve as input to visual perception. The result of visual processing is used as
input to cognition (for tasks requiring interpretation of scene content) or as
input to action (for example in navigation, where the link between perception
and action is mostly direct). Since action will in general result in a changed
status of the environment, the nature of the interaction process is cyclic.

Environment

ActionImage

Perception Cognition

Figure 1.1: Schematic overview of the interaction process by Janssen and
Blommaert 2000.

As above mentioned, the concept of IQ does not always correspond to
image fidelity. The FUN IQ model [29] depicted in Figure 1.2 assumes the
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existence of three major dimensions to determine IQ:

• Fidelity is the degree of apparent match of the acquired/reproduced
images with the original. Ideally, an image having the maximum de-
gree of Fidelity should give the same impression to the viewer as the
original. As an example a painting catalogue require a high fidelity of
the images with respect to the originals. Genuineness and faithfulness
are sometimes used as synonymous of Fidelity [107]. Dozens of books
and thousands of papers have been written about image fidelity and
image reproduction e.g. [98].

• Usefulness is the degree of apparent suitability of the acquired/reproduced
image with respect to a specific task. In many application domains,
such as medical or astronomical imaging, image processing procedures
can be applied to increase the image usefulness [40]. These processing
steps have an obvious impact on Fidelity.

• Naturalness is the degree of apparent match of the acquired/reproduced
images with the viewer’s internal references. This attribute plays a fun-
damental role when we have to evaluate the quality of an image without
having access to the corresponding original. Examples of images requir-
ing a high degree of naturalness are those downloaded from the web,
or seen in journals. Naturalness also plays a fundamental role when
the image to be evaluated does not exist in reality, such as in virtual
reality domains.

It should be noted that, in general, the quality dimensions are not in-
dependent however the overall IQ is usually evaluated as a single number
weighting the individual components. These weights depend on the specific
image data type and on its function/goal within a specific application field.

The goal of the present article is not only to review the state of the art
of the different IQA methods (see for example [8]) but also to guide a non-
expert user in the choice and/or design of a workflow chain that has to make
use of IQ metrics to validate the corresponding output products.

In what follows we review the literature on objective IQ methods and we
analyze how and when these different kind of metrics can be applied to a
generic image workflow chain. In section 1.1 these metrics are classified and
briefly described. In section 1.2 we consider region-of-interest based IQA that
has become nowadays an active topic of research. In section 1.3 the available
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Figure 1.2: Fidelity-Usefulness-Naturalness (FUN) image quality represen-
tation (Ridder and Endrikhovski, 2002.

databases for IQA are summarized. In sections 1.4 and 1.5 a generic image
workflow chain, starting from a real scene to be captured, is shown and the
different IQ metrics that could eventually be applied are analyzed. Finally,
the conclusions are drawn in section 6.

1.1 Image Quality Assessment Approaches

Different criteria can be used in order to classify the IQA approaches. The
first criteria is to divide the methods into two big groups: direct versus
indirect methods. Direct approaches take into account the quality of the
image itself while indirect approaches, consider the quality of the image with
respect to the performances reached by the application that uses the images.
Within each of these macro groups, we can categorize the approaches in
subjective versus objective methods.

1.1.1 Direct Image Quality Approaches

Subjective methods are based on psychological experiments involving human
observers. Different techniques can be used like single or double stimulus and
pair wise comparison among others. Standard psychophysical scaling tools
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for measure subjective IQ are now available and described in some Standards,
such as ITU-R BT.500-11 ([49, 31, 120]). The involvement of real people who
view the images for assessing their quality requires that all the factors that
influence perception should be taken into account and strict protocols have
to be adopted. Notwithstanding effectiveness of subjective approaches, their
efficiency is very low compared to objective ones.

Moreover, subjective quality issues could be discarded if the image usage
does not require the user involvement, or if the observer could be substituted
by a computational model. This has led the research towards the study of
objective IQ measures not requiring human interaction.

Objective methods compute suitable metrics directly from the digital im-
age. Within this group, the methods can be classified according to many
different criteria. According to the availability of the original image the meth-
ods can be Full Reference (FR), No Reference (NR) and Reduced Reference
(RR) [8]. Taking into account the phylosophy followed when constructing
the algorithm, the methods can be classified as bottom-up or top-down. If
we consider the application scope, they can be general purpose or context-
dependent. Engeldrum [32] presented a general taxonomy classifying the
models as detection/recognition versus beauty context and physically vs.
ness-based. In what follows we make a summary of well known methods
belonging to the different categories FR, NR and RR.

• Full-reference (FR) metrics (see Figure 1.3) perform a direct compar-
ison between the image under test and a reference or ”original” in a
properly defined image space.

Figure 1.3: Image quality assessment approaches: Full Reference.

Having access to an original is a requirement of the usability of such
metrics. Among the quality dimensions previously introduced, only
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image fidelity can be assessed. The simplest FR metric is the Mean
Square Error (MSE) or Peak to Signal Noise Ratio (PSNR). Even if it
is the most used, in general does not correlate with subjective results.
Error sensitivity frameworks follow a strategy of modifying the MSE
measure so that errors are penalised in accordance with their visibility.
For example in Figure 1.4 is shown an example of how the perceived
image quality is strongly influenced by the distortion visibility. To
the original image (Figure 1.4a) is applied a Gaussian noise to the
sky/clouds (Figure 1.4b) and to the sand/rocks (Figure 1.4c) region of
the image. When the distortion is applied to the sand/rock region, it is
less noticeable. The noise is masked by the variations in the texture of
the region. When the distortion is applied to almost uniformly regions
as in the case of the sky/clouds region, it stands out prominently.

a b c

Figure 1.4: Example of how the perceptual quality is influenced by the visi-
bility of the distortion. a)The original image. The same distortion (Gaussian
noise) is applied to the top (b) and bottom (c) regions of the image. The
image in (c) is perceived to have higher quality than the image in (b).

The evaluation of the visibility is accomplished by modeling some as-
pects of the Human Visual System (HVS) like the channel decompo-
sition, Contrast Sensitivity and Point Spread functions among others
[28, 110, 68, 93]. Zhang and Wandell [136] proposed an error-visibility
metric, s-CIElab, which is an extension of the CIE color difference
equations to complex stimuli by means of some spatial filters utilized
to model the Contrast sensitivity function. All these techniques are
bottom-up like approaches. Recently, Laparra et al. [60] extended the
divisive normalization metric originally proposed by Teo and Heeger
[110] and that is based on the standard psychophysical and physiolog-
ical model that describes the early visual processing.

On the other hand, the Structural Similarity Measure (SSIM) [123]
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uses a different concept of IQ. Starting from the assumption that nat-
ural image signals are highly structured, a measurement of structural
dissimilarity (or distortion) should provide a good approximation to
perceived IQ. This is a top-down approach as it assumes that find-
ing the structure is the goal for the cognitive process. The structural
information in an image is define as those attributes that represent
the structure of objects in the scene, independently of the average lu-
minance and contrast. Their system separates the task of similarity
measurement into three comparisons: local luminance, local contrast
and local structure.

The IQ has also been addressed within the information-theoretic ap-
proach. Sheikh and Bovik [102] proposed the Visual Information Fi-
delity Index (VIF). This model uses natural scene statistics and the
index quantifies loss of information due to the distortions present in
the image. A brief summary of these FR methods is presented in table
1.1.

• No-reference (NR) metrics (see Figure 1.5) are also called blind metrics
and assume that IQ can be determined without a direct comparison
between the original and the processed images.

Figure 1.5: Image quality assessment approaches: No-Reference.

Theoretically, it is possible to measure the quality of any visual con-
tents. In practice, some information about the application domain,
requirements and users’ preferences are required to contextualize the
quality measures. NR metrics are designed to identify and quantify the
presence of specific processing distortions that may exist in the evalu-
ated image. To estimate the presence of a defect or artifact produced
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by some imaging processing on the image, we need to characterize the
properties of the artifact as well as the effects that it produces on the
low level components of the image (edges, homogeneous areas, etc).
Different types of artifacts can be considered like blurriness, graininess,
blocking, lack of contrast and lack of saturation or colorfulness among
others [43]. Blind methods can be classified as application-dependent
since they are defined to handle with one or few specific artifact types.

Some of the blind methods are carried out in the frequency domain
(like [22] for example) and make use of the common statistical charac-
teristics of the power spectra of natural images [114] in order to define
the corresponding quality metrics. A variety of statistical properties
of natural images (intensity, color, spatial correlation and higher order
statistics) and their relationship to visual processing has been exten-
sively studied by [105].A brief summary of different NR methods is
presented in table 1.2.

• Reduced-reference (RR) metrics (see Figure 1.6) lie between FR and
NR metrics.

Figure 1.6: Image quality assessment approaches: Reduced Reference.

They are designed to predict perceptual IQ with only partial infor-
mation about the reference images. The methods extract a number
of features from both the reference and the image under test. These
features are used as a surrogate of all the information of images and
image comparison is based only on the correspondence of these fea-
tures [119, 131, 126, 58, 94, 64, 14]. Therefore, only image fidelity
can be assessed. RR metrics are useful to track the degree of visual
degradation of video data that are transmitted through communication
networks. Compared with FR and NR, few RR methods are available
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MSE = 28.5721
SSIM = 0.9204

∆E94(c1)=3.47
∆E94(c2)=2.82
∆E94(c3)=1.04

. . .

Figure 1.7: An example of quality assessment outputs. Top row: the orig-
inal image (left); a JPEG-compressed version of the original image (right).
Bottom row: the SSIM error map (left) where darker values indicate higher
errors; two quality indexes (center); errors in the reproduction of some refer-
ence colors (right). In the example a color chart is acquired with the original
subject and used as color fidelity reference.

in the literature. For the reduced description of the image, the methods
in general use features describing the image content or distortion-based
features. These features must be then coded and transmitted with the
compressed image data produced by the coder using a side channel with
low transmission error. In table 1.3 a brief summary of RR methods is
presented.

The output of the assessment procedure can be a number, a set of numbers
or an image error map (Figure 1.7). The map can then be used to precisely
locate where the imaging processing procedures degrade the image.

To validate the objective methods, the metrics are evaluated on a database
and subjective tests are carried out simultaneously using standard psychophys-
ical scaling tools. Both objective and subjective results are then compared
through different performance metrics such as correlation coefficients and
Spearman rank order correlation coefficient [120]. It should be noted that,
since the subjective quality score is a single numerical value also the objective
quality measure must be expressed using a single value.
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1.1.2 Indirect quality evaluation

The aforementioned IQ approaches assess the quality by taking into account
the properties of the images themselves in the form of their pixel or feature
values. Image quality can also be indirectly assessed by:

• Quantifying the performance of an image-based task. This can be done
manually by domain experts and/or automatically by a computational
system. For example, in a biometrics system an image of a face is
of good quality if the person can be reliably recognized. This can be
done by manually inspecting each image acquired and evaluating if
the pose satisfies the application constraints (e.g. non-occluded face)
or enforced by law requirements (e.g. open eyes). Image distortions
that are irrelevant for the task can therefore go unnoticed or simply
ignored by the observer. We can consider these as irrelevant. The
quality evaluation could be done by a face recognition algorithm that
automatically processes each images and assesses the fulfillment of the
constraints and requirements [69].

• Assessing the performance of the imaging/rendering devices. Using
suitable sets of images and one or more direct methods (both objective
and subjective) it is possible to assess the quality of the imaging and
rendering procedures. In this case IQ is related to some measurable
features of imaging/rendering devices, such as spatial resolution, color
depth, etc. These features can be quantitatively assessed using stan-
dard targets and ad-hoc designed software tools (e.g. [45]), but these
measures alone are not sufficient to fully assess IQ. The Camera Phone
Image Quality (CPIQ) Initiative of the International Imaging Industry
Association (I3A) suggests both objective and subjective characteriza-
tions procedures [107].

1.2 Visual Perception and Quality Assessment

The HVS is specialized and tuned to recognize the features that are most im-
portant for human evolution and survival. On the other hand, there are other
image features that humans cannot distinguish or that are easily overlooked.
There are some intrinsic limitations of the HVS relevant to IQA like lumi-
nance sensitivity, contrast sensitivity, and texture masking [129, 81]. These
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limitations make quality assessment highly dependent on the image contents.
Moreover, subjective experiences and preferences may influence the human
assessment of IQ; for example, it has been shown that the perceived distor-
tions are dependent on how familiar the test person is with the observed
image. IQA is also affected by the user’s task, (see for e.g [69] and [30]):
passive observation can be reasonably assumed when the observer views a
vacation image, but not x-rays for medical diagnosis.

The cognitive understanding and interactive visual processing, like eye
movements, influence the perceived quality of images in a top-down way [123].
If the observer is provided with different instructions when evaluating a given
image, he will give different scores to the same image depending on those
instructions. Prior information regarding the image contents or fixation, may
therefore affect the evaluation of the IQ. It is also well known that one of
the objects attracting most of our attention are people and especially human
faces. If there are faces of people in a scene, we will look at them immediately
and, because of our familiarity with peoples faces, we are very sensitive to
distortions or artifacts occurring in them. In eye-tracking experiments, it
has been found that the eye positions recorded under the free-task condition
are different from the regions recorded when people fixate while judging IQ
[121]. For example it has been observed that in the case of blurring and white
noise, the fixations while rating IQ do not change with respect to the task-
free condition but in the case of compression artifacts, these can influence
fixations, depending on the amount of distortion. Therefore, visual attention
and gaze direction appear as two important factors that may influence human
perception of IQ.

Besides the error sensitivity frameworks mentioned in section 1.1 that
model some aspects of the HVS ( [28, 110, 68, 93]), region-of-interest based
IQA has become nowadays an active topic of research. In order to investigate
if artifacts are likely more annoying in salient regions than in other areas,
many different IQA experiments where done during which eye movements
were also recorded and the corresponding databases have been generated
(see following section). Up to date, controversial results exist for including
saliency maps in FR methods. The basic idea is to assign visual importance
weights to the MSE, PSNR, SSIM or VIF metrics, giving more importance to
the degradation appearing on the salient areas. Some authors ([61, 112, 70,
71, 74]) showed that better agreement with subjective scores can be produced
for IQA metrics when saliency maps are taken into account in the metrics’
evaluation. In a similar way, image regions can be weighted in the IQ FR
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metrics according to some visual properties like edge regions vs. texture
regions vs. plain regions as in [63, 115].

On the other hand, others claim that for example, MSE and SSIM do not
show a clear improvement [76, 135]. In particular, the results from Ninassi
et al. suggest that the way to take into account the visual attention cannot
be limited to a simple spatial pooling. Another reason might be that the
viewers had enough time to look at all parts of the image when evaluating
its quality, such that the influence of attention regions on the overall quality
of whole image would not be great.

With respect to the integration of saliency maps and RR or NR methods,
few research has been done up to date. A no-reference perceptual sharpness
quality metric was proposed by Sadaka et al. [92] that integrates saliency
maps with a blur distortion metric, giving more weight to salient edges and
penalizing those edges appearing in non-attended regions. Their simulation
results showed an increased correlation with the MOS of the subjective mea-
sures.

Therefore, taking into account the cognitive behavior presents a challenge
to the quality assessment comunity that will certainly continue to be a focus
of research for the next years.

1.3 Dataset for Image Quality Estimation

In order to validate the different algorithms’ results with human subjective
judgments of quality, different database are available to test the algorithms’
performance. Among the most frequently used we can cite: LIVE [104],
MICT [95], IVC [13] and TID2008 [84]. Even though it is a rather small
dataset, the A57 [15] database is also available. The Visual Attention for
Image Quality database (VAIQ) [33] facilitates the incorporation of visual
attention models into IQ metrics that are designed based on the IVC, LIVE,
and MICT databases.

There exist also other kind of databases like the Database Of Visual Eye
movementS (DOVES) [116], that is a collection of eye movements from hu-
man observers as they view natural calibrated images. Using the DOVES
database, [86] evaluated the contributions of four foveated low-level image
features (luminance, contrast and bandpass outputs of both luminance and
contrast) in drawing fixations of observers. They discovered that image
patches around human fixations had, on average, higher values of each of
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these features than image patches selected at random. Using these mea-
surements, they developed an algorithm that selects image regions as likely
candidates for fixation called GAFFE for Gaze-Attentive Fixation Finding
Engine [86].

Where eye tracking devices are not available, models of saliency can be
used to predict fixation locations. Most saliency approaches are based on
bottom-up computation that do not consider top-down image semantics and
often do not match actual eye movements. To address this problem, Judd
et al. (2009) collected eye tracking data and used this database as training
and testing examples to learn a model of saliency based on low, middle and
high-level image features.

In table 1.4 we present a brief description of the above cited databases.

1.4 Image Production Workflow

In Figure 1.8 a generic image workflow chain is shown. It starts with a real
scene to be captured by a digital image. The scene is acquired by a proper
device (e.g. digital camera or scanner) that performs all the processing steps
aimed to produce a digital representation of the scene. Examples of these
processing steps are geometric transformation, gamma correction, color ad-
justments, etc. Imaging metadata can be automatically embedded in the
image header (e.g. EXIF) by the imaging device and may include some
information such as maker and model of the camera, device settings and pre-
processing, date and time, Time Zone offset, and GPS Information. Other
metadata are usually added both for catalogue and retrieval purposes. These
metadata can include both textual annotations inserted by cataloguers in the
context of the application or automatically computed image representations
(numerical or alphanumerical features) of some attributes of the digital im-
ages. These features are usually related to visual characteristics or be related
to symbolic, semantic, or emotional image interpretation, and can be used
to derive other information about the image contents [21, 19]. The metadata
schema is usually set at the beginning of the digitalization stage and is based
on application needs and the workflow requirements. Once the image is ac-
quired, a validation procedure can be applied. This procedure is aimed to
have an initial assessment of the suitability and/or quality of the image with
respect to the application needs. For example, a manual inspection can be
performed in order to check if the whole scene has been correctly acquired
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or satisfies some constraints. In some cases, the validation step can be au-
tomatically performed using suitable algorithms borrowed from the pattern
recognition field.

Images passing through the validation step may have extra ancillary in-
formation added to them (e.g. identity of a subject). If required, the image
can be further processed in order to increase its usefulness for the task at
hand (e.g. contrast enhancement or binarization) or in order to allow more
efficient transmission and storage. Again, extra information can be added.
The image thus obtained can be finally rendered taking into account both
the user’s device characteristics and the viewing conditions. These charac-
teristics will not be considered if the images are automatically processed by a
computational system. Every element in the workflow chain affects the qual-
ity of the resulting images. IQ can be assessed in the different processing
stages using one of the approaches discussed in the previous section.

In the IQ literature little attention is given to the scene contents. The
scene is composed of the contents itself (a face, for example), and the view-
ing/acquisition environment: geometry, lighting and surrounding. We call
scene gap the lack of coincidence between the acquired and the desired scene.
The scene gap should be quantified either at the end of the acquisition stage
or during the validation stage (if any). The scene gap can be considered re-
coverable if subsequent processing steps can correct or limit the information
loss or corruption in the acquired scene. It is unrecoverable if no suitable
procedure exists to recover or restore it. The recoverability of the scene gap
is affected by the image domain. When narrow image domains are considered
(e.g. medical X-Rays images), to have limited and predictable variability of
the relevant aspects of image appearance, it is easier to devise procedures
aimed to automatically detect or reduce the scene gap. When broad image
domains are considered, it is very difficult and in many cases impossible to
automatically detect, quantify and recover the scene gap.

The characteristics of the imaging devices have an obvious impact on
the quality of the acquired images. The hardware (sensors and optics) and
software components (processing algorithms) of the device may be very ar-
ticulated and complex. Their roles can be to keep image fidelity as much as
possible, improve image usefulness, naturalness, or suitable combinations of
these quality dimensions. We call device gap the lack of coincidence between
the acquired image and the image as acquired by an ideal device properly de-
fined, or chosen and used. The characteristics of the devices to be used must
be carefully evaluated in order to make the best cost-performance choice in
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accordance to what it is needed for the application at hand and to how the
image must be accessed, processed and used. Figure 1.9 shows the generic
image workflow chain with the indication of where the different IQA ap-
proaches are applied. The FR quality assessment metrics can be applied
only when two digital images are available.
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1.5 Image Reproduction Workflow

For the rendering devices it is important to evaluate the artifacts that their
processing pipelines eventually introduce. We call rendering gap the lack of
coincidence between the actually rendered image and the image as rendered
by an ideal (perfect) device properly defined, or chosen and used, for the
application at hand. The viewing conditions have a significant influence on
the appearance of a rendered image because they can amplify or diminish
the visibility of artifacts. This is why all the standards for subjective IQA
pay particular attention to this issue. Finally, the observers’ previous experi-
ences, preferences and expectations clearly vary and are nearly impossible to
standardize. We call observer gap the lack of coincidence between the actual
observer and the observer the image creator had in mind for a given scope
and application. Proper screening and selection of the panel of the observers
to be used in the IQA is thus required.

As an example, let us consider the following task: given an input image
we would like to predict the overall IQ of the final output print document.
The IQA of the image has to be evaluated before printing the document,
so that the final product reaches the desired quality level. A generic image
reproduction workflow is shown in Figure 1.10. In this reproduction scenario,
we assume that the conditions of the image acquisition are unknown so with
respect to the scenario in Figure 1.8 no reduce reference metrics can be
initially used. The validation phase has been split into a semantic and a
quality validation modules. In the first module, image semantic is taken into
account by a human operator to ensure that the image content is coherent
with the final task. For example, the image should not be upside down, the
subject should be clearly visible and not occluded or that some colors should
be in agreement with ideal color classes (like skin, vegetation, sky, etc).
As another example, if the image is a photo identification to be printed and
included in a passport, the image should satisfy several legal constraints such
as: front shot, eyes open, no shadows on the face, etc. These constraints can
be ensured by a human analysis or, in very specific cases, by computational
algorithms. The second validation module refers to the perceptual quality
of the image. In this case NR metrics have to be applied (e.g. bluriness,
noise, colorfulness, etc). After the image pass the validation steps, it may
undergo a processing phase to make it more suitable for specific task such as
enhancement, scaling, compression (e.g. the image must be embedded into a
PDF document), etc. Since in these cases we have a source and a processed
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image, FR and RR metrics can be used to evaluate the image quality. NR
metrics or subjective judgment (either on the processed image only or by
comparing the processed and pre-processed images) can be also used. To
ensure that the task constraints still hold after the processing, the image
should undergo another validation phase. This IQ analysis can be used to
give proper feedback in order to improve the IQ of the input before sending
it to the printer.

Once the processed image is obtained, it can be sent directly to the printer
or, if it is available, to a printer emulator software that taking into account
all the characteristics of the HW/SW of the real printer, inks and paper, is
able to generate an image of what the print will look like (soft proofing). This
soft printed image can be used to estimate the quality of the final printed
document using FR, RR, NR metrics or subjective judgements. Finally, the
quality of the actual printed image can be assessed according to the specific
task. In this case, the evaluation is mainly subjective since it must take
into account the print usage (fliers, brochures, art catalogue, high fidelity
reproduction, etc.) and possibly the creator intents and preferences. To
assess the quality, care should be taken to set up properly viewing condition
(light, background, etc).

A similar approach can be used when printing composite documents with
several images on a single page. In this scenario, quality can be independently
assessed on each image using the above workflow, then a ”coherence analysis”
could be performed to ensure that, for example, the color features of similar
images are in agreement among each other or that all the images belong to
a similar semantic class (e.g. indoor, outdoor, landscape, etc).
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Chapter 2

No-Reference Zipper Metric

The present work concerns the analysis of how demosaicing artifacts affect
image quality and proposes a novel no reference metric for their quantification
[88]. This metric that fits the psycho-visual data obtained by an experiment
analyzes the perceived distortions produced by demosaicing algorithms. The
demosaicing operation consists of a combination of color interpolation and
anti-aliasing algorithms and converts a raw image acquired with a single
sensor array, overlaid with a color filter array, into a full-color image. The
most prominent artifact generated by demosaicing algorithms is called zip-
per. The zipper artifact is characterized by segments (zips) with an On-Off
pattern. We perform psycho-visual experiments on a dataset of images that
covers nine different degrees of distortions, obtained using three color inter-
polation algorithms combined with two anti-aliasing algorithms. We then
propose our no-reference metric based on measures of blurriness, chromatic
and achromatic distortions to fit the psycho-visual data. With this metric
demosaicing algorithms could be evaluated and compared.

This chapter is organized as follows. In section 2.1 we briefly describe the
demosaicing process, while in section 2.2 we describe how we have generated
the dataset utilized during our tests and the psycho-visual experiments that
we have conducted to rank the chosen algorithms. From the analysis of the
experimental data detailed in section 2.3, we propose our novel no-reference
metric described in section 2.4, based on measures of blurriness, chromatic
and achromatic distortions. Finally, we report details of the regression we
have proposed to fit the subjective data.

29
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2.1 Demosaicing

To produce a color image there should be at least three color samples at each
pixel location. The more expensive solution consists in using a color filter in
front of each sensor, generating three full-channel color images. Thus, many
modern cameras use a color filter array (CFA) in front of the sensor so that
only one color is measured at each pixel. This means that to reconstruct the
full-resolution image, the missing two color values at each pixel should be
estimated. This process, known as demosaicing [55] is generally composed of
a color interpolation algorithm followed by an anti-aliasing algorithm to re-
duce possible artifacts. Among various CFA patterns, the Bayer pattern was
the most popular choice [7]. The Bayer array measures the green image on
a quincunx grid and the red and blue images on rectangular grids, obtaining
1/2 of the pixels for the green channel, and 1/4 for both the blue and the
red channels, as depicted in Figure 2.1.

Figure 2.1: The array of filters of the Bayer Pattern.

The most prominent artifact generated by demosaicing algorithms is
called zipper. The zipper effect refers to abrupt or unnatural changes of
color differences between neighboring pixels, manifested as an ”On-Off” pat-
tern [67]. In Figure 2.2 an example of an original image and two different
demosaiced versions is reported. As can be seen from Figure 2.2b, the zipper
artifacts produced by most of the algorithms are both chromatic and achro-
matic. On the other hand, demosaicing algorithms that try to mitigate this
On-Off pattern, significantly blur the image (Figure 2.2c).

Several algorithms for demosaicing were developed in the literature ([23],[57],
[36], [10]), and some of them are proprietary. A survey of these methods was
presented by Li et al. [65]. We have here considered nine different demosaic-
ing algorithms obtained combining three color interpolation (CI) algorithms
with two anti aliasing (AA) algorithms.
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Figure 2.2: a. Original image before demosaicing. b. Demosaiced image
(the algorithm adopted here is a combination of the bilinear interpolation
and the anti aliasing algorithm porposed by Freeman [36]). The artifacts
introduced can be distinguished into achromatic and chromatic zipper. c.
Demosaiced image, visibly blurred, obtained by applying an algorithm that
tries to mitigate the On-Off pattern (combination of bilinear interpolation
and the anti aliasing algorithm proposed by Lu [67]).

The three CI algorithms adopted here are:

• Bilinear interpolation [65]: it is the simplest demosaicing algorithm
and acts as a benchmark; the missing values on the three channels are
computed by linear interpolation independently.

• ST1: proposed by Smith [106], it performs an isotropic interpolation
that includes a non-linear step that minimizes the energy of aliasing
artifacts.

• ST2: proposed by Guarnera et al. [41], it uses an elliptic shaped Gaus-
sian kernel to interpolate data, according to the gradient information
to better exploit spatial correlation. The authors also included an en-
hancement step to restore the lost high frequencies.

For what concerns the AA algorithms, we have here considered:

• an algorithm authored by Freeman [36] that suppresses demosaicing
artifacts by applying a median filtering to the chrominance channels
(R-G) and (B-G) to support the reconstruction of the R and B channels.
The red and blue values estimated from the median filtered are used
only at pixels where there is no R or B sensor value directly available.
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• an algorithm authored by Lu [67] that proposes an anti-aliasing step
to extend Freeman’s median filtering method by lifting the constraint
of keeping the original CFA-sampled values intact.

The nine combinations of these algorithms (summarized in Table 2.1)
produce different levels of the typical demosaicing distortions. The choice of
these algorithms does not affect the effectiveness of the proposed methodol-
ogy.

Table 2.1: The nine demosaicing algorithms adopted to obtain the dataset
of distorted images.

Algorithm Color Interpolation (CI) Anti-Aliasing (AA)

1 bi Bilinear none
2 bifree Bilinear Freeman
3 bilu Bilinear Lu
4 ST1 ST1 none
5 ST1free ST1 Freeman
6 ST1lu ST1 Lu
7 ST2 ST2 none
8 ST2free ST2 Freeman
9 ST2Lu ST2 Lu

2.2 Psycho-Visual Setup

2.2.1 Testing Dataset

To perform the subjective data analysis described in this work we have gen-
erated a data set of distorted images (which we have called Zipper database)
starting from the 24 images of the Kodak photoCD pcd0992 database avail-
able at http://r0k.us/graphics/kodak/. We have created the mosaiced
images by deleting two of the three RGB values at each pixel of the full-
color images, and then we have demosaiced them with the nine algorithms
of Table 2.1. The database is therefore formed by a total of (24 images x 9
demosaicing methods =) 231 images. The image testing database has been
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created to satisfy a good compromise between the number of distortions and
the number of different visual contents, keeping in mind that psycho-visual
sessions should be limited in time to be reliable. In our work we evaluate the
visual impact of the artifacts generated by demosaicing methods, and do not
perform a quality evaluation of the algorithms themselves.

2.2.2 Testing Methodologies

For the quality analysis of the images we adopted two different test methods:
Single Stimulus method (1S), and Double Stimulus method (2S) [1]. Our
goal was to evaluate the perceived quality of the rendered images; for this
reason we have chosen to set up a single-stimulus test as our primary source
of psycho-visual data, but we were also interested in gathering as much data
as possible from the viewers, so we have also conducted a double-stimulus
test. We followed Sheikh et al. [103] in setting up our tests by including
the original images in both tests and calculating the Difference Score (DS)
as the difference between the scores of the original and the distorted image.
This way we have obtained different data from different setups with the same
unit of measure. In the case of the Single Stimulus method, all the images
(rendered images and the original one) are individually shown. While in
the Double Stimulus method, the reference image (original image) is shown
together with each of its rendered versions. The 1S method can thus be con-
sidered as an approximation of the 2S one, as the original image is evaluated
only once. The fundamental difference between these two methods is that
the Double Stimulus one uses an explicit reference, while the Single Stimulus
one does not use any explicit reference.

To perform the psycho-visual tests, the images that have to be judged
to obtain a quality rank were shown on a web-based interface (Figure 2.3).
A Javascript slider assigning a quality score was used. The workstations
adopted were placed in an office environment with normal indoor illumination
levels ([103] [5]).

We used five 19-inches CRT COMPAQ S9500 display monitors:

• All the monitors were calibrated with a colorimeter (D65, gamma 2.2).

• Their resolution is 1600X1200 pixels, which corresponds to 110 dpi
(using 18 inches as the physical diagonal of the screen as indicated by
the manufacturer of the monitors)
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Figure 2.3: The web interface used during the Double Stimuls tests.

• The ambient light levels (a typical office illumination) were maintained
constant between the different sessions. There were no reflections on
the screens.

• The distance between the observer and the monitors was about 60 cm
(corresponding to about 46 pixels per degree of visual angle).

• The refresh rate of the monitors was 75Hz.

In all our experiments distorted images are shown in random order, differ-
ent for each subject. In the case of the Double Stimulus method the relative
position of the original with respect to its distorted version is random in the
pair shown.

The panel of subjects involved in this study was recruited from the Psy-
chology Department. The subject pool consisted of students inexperienced
with image quality assessment and image impairments. The total number of
subjects involved in our experiments is 39, divided into 3 groups as follows: 9
subjects involved in tuning experiments, and 30 subjects involved in 1S and
2S experiments, 15 for each test group.

2.2.3 Psycho-Visual Experiments

In our experiments for the collection of subjective data, we performed three
main sessions: a tuning session (where we verified the test efficacy and the
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best way to perform the experiment), a preliminary session (where we trained
the observers about the nature and the range of the distortion) and a final
test session.

The total number of subjects involved in our experiments is 39, divided
into 3 groups:

• 9 subjects involved in tuning experiments;

• 15 subjects involved in the single stimulus experiments (both prelimi-
nary and test sessions);

• 15 subjects involved in the double stimulus experiments (both prelim-
inary and test sessions).

Note that each subject only belongs to one group. Each subject has been
individually briefed about the modality of the experiment in which he has
been involved.

All the images utilized for the psycho-visual tests were cropped to fit the
dimension of the screen. In particular, to avoid the undersampling of the
images used in the Double Stimulus tests, we have cropped all the images
to fit a 600 x 600 box, producing respectively images of 600x512 or 512x600.
The remaining part of the box has the same color of the background (Figure
3b and c and Figure 4b). Each image has been cropped manually to keep
the relevant part of the scene centered, to avoid interferences in the user’s
judgment, due to a non significant cropping.

Tuning Session

Before starting the preliminary and test sessions, an initial analysis of the
test structure and organization was performed to better tune the successive
experiments. The 9 subjects participating in this session were not involved
in other experiments. During this tuning session we verified the test efficacy
and the best way to perform the experiments. In particular, we defined the
best visualization time for each image or pair of images on the screen, and
the maximum duration of the whole experiment for each participant. We
have also collected the following considerations:

• The subjects assume and maintain the correct position and distance
from the monitor for the duration of the experiment.
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• 30 minutes is the maximum duration of the test for each subject. For
longer periods attention decreases and subjects tend to get tired.

• In the case of Double Stimulus test, where the two images are compared,
the sliders and the quality scales must appear contemporarily on the
screen.

Regarding comments and considerations of the subjects involved in this
tuning session, we have determined the minimum time of image visualization
that permits an appropriate quality evaluation.

Preliminary Session

During a preliminary test, each subject was implicitly trained about the
nature of the distortion he was going to evaluate. In particular, he was
trained about the range of the distortion intensity. These preliminary sessions
were necessary to avoid this training phase during the effective test, thus
conditioning the experimental results. We had preliminary sessions for all
the subjects involved (except for 9 subjects involved in the tuning phase) and
for each of the experiments (1S and 2S). Thus we had preliminary sessions for
all the subjects involved and for each of the experiments: Double Stimulus
and Single Stimulus. Four images were chosen from the entire database. The
demosaicing algorithms applied to these images where the Bilinear and the
ST proprietary. We have decided to apply these two algorithms because they
were supposed to be the worst and the best ones. In this way the subjects
experience the entire distortion range before starting the effective test.

For the test session we used 10 images from the 24 of the original database,
together with their corresponding 9 distorted versions, (for a total of 100 im-
ages). The 10 images chosen for this session are shown in Figure 2.4. Note
that we had to keep the number of analyzed images limited to 100, since
subjects can pay attention only for up to 30 minutes. After this time their
judgments are no longer reliable [1]). The number of test images is however
aligned with what is done in the literature. In the work of Nyman et al.
[77] for example, 9 image processing pipes applied to 8 image contents (for a
total of 9x8=72 test images) were evaluated with a psycho-visual experiment
involving 14 test subjects. In other works that involve psycho-visual exper-
iments, the number of original images considered is even lower, four images
each printed on 15 different papers [62], or five images each with 15 different
levels of sharpness [85]. The greater the number of algorithms/processing to
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be evaluated, the lower the number of original images that can be considered
to keep the time of the experiment reasonable.

image 1

image 2

image 3

image 4

image 5image 6

image 7

image 8

image 9

image 10

Figure 2.4: The 10 original images utilized during the test session.

2.2.4 Data Processing

As the different algorithms considered produce different levels of the typical
demosaicing defects (chromatic and achromatic zipper, blur) we analyzed
the subjective evaluation of these defects through the subjective rank of the
algorithms. The data processing here described is applied for both the test
methods (1S, 2S) adopted for collecting the experimental data. For each
subject j-th and distorted image i-th we evaluated the perceptual distance
between original and distorted images in terms of difference of assigned scores
(Difference Score, DS):



38 CHAPTER 2. NO-REFERENCE ZIPPER METRIC

DSij = Soij − Sdij (2.1)

where Sdij represents the score assigned by the j-th subject to the i-th
distorted image, while Soij the score of the reference image corresponding
to the i-th distorted image; j = 1, . . . , J , denotes subjects belonging to the
group of J individuals, and i = 1, . . . , S×T denotes the distorted image, with
S number of reference images, and T number of algorithms to be evaluated.
For each subject we evaluated the standard-DSij (zDSij), a DS distribution
normalized with respect to the subject [103], as:

zDSij =
(DSij −Mj)√

Vj
(2.2)

where Mj = 1
S×T

∑S×T
i DSij, Vj = 1

S×T
∑S×T

i (DSij −Mj)
2 are respectively

the mean and variance of DSij with respect to the j-th subject. For each
algorithm t ∈ T , we evaluated the final score Rt by summing zDSij of equa-
tion 2.2 over the subjects j ∈ J , and on the reference images i ∈ S.

Rt =
1

J × S
∑
j∈J

∑
i∈S

zDSij (2.3)

The rank of the algorithms is then obtained sorting these final scores. We
also calculated the rank of the algorithms starting from the median with
respect to subject j ∈ J and reference images i ∈ S.

MRt = median(zDSij) (2.4)

2.3 Data Analysis

In analyzing distorted images supposed to be worse than the original, we
expect all the DS values (distance between the scores of the original image
and the rendered image) to be positive. It happened sometimes in our ex-
periments that distorted images were judged better than the corresponding
original. This phenomenon is called inversion. We have decided to maintain
all the inversions.
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2.3.1 Inversions

We define Just Noticeable Difference Threshold (JND) the threshold under
which differences between distorted images and their original are not notice-
able. Assuming that this threshold exists, the inversions can be classified
into three categories:

JND Inversions The subject is not able to distinguish between the original
and the distorted image. The inversion is unintentional.

Preferential Inversions The subject prefers the elaborated image.

Error Inversions The subject does not properly use the interface and in
particular, assigns a wrong value in the quality scale.

As reported in [1], the inversions are usually handled, following a standard
procedure:

1. The JND threshold is estimated with a Pairwise Comparison (PC) test
[111];

2. Inversions that produce values under the JND threshold (JND Inver-
sions) are taken into account in the final analysis;

3. Inversions that produce values over the JND threshold are considered
as Error Inversions. Their absolute values are taken into account in the
final analysis.

Preferential Inversions

In [66], the authors report interesting considerations about Preferential In-
versions in case the of images processed by demosaicing algorithms. They
analyze the results of a Pairwise Comparison test of images processed by dif-
ferent demosaicing algorithms. This psycho-visual experiment demonstrates
that certain algorithms produce distorted images judged better that the orig-
inal. This preference is due to the apparent sharpness introduced by these
algorithms. It is well known that sharpness plays an important role in the
evaluation of apparent quality of digital images, [52] [56]. Using a Double
Stimulus method as the PC test, the original image appears blurred in com-
parison with the elaborated one. Not all the demosaicing algorithms analyzed



40 CHAPTER 2. NO-REFERENCE ZIPPER METRIC

in our experiment show the same sharpening behavior. As a consequence, the
collected data are non-homogeneous with respect to algorithms that present
different levels of Preferential Inversions. Applying the standard procedure,
Preferential Inversions are not explicitly considered. These Inversions fall
both in the Error inversions and in the JND Inversions. For this reason
we have decided to maintain all the inversions. This decision requires the
solution to two different problems:

• How to treat the Error Inversions?

The Error inversions cannot be common to different subjects. They
are anomalous values with respect to the score distribution of each
algorithm. We are not interested in finding the Error Inversions; we
just would like to verify that they do not alter the data analysis. To
this end we have validated the final rank of the algorithms with the
analysis of the median of the Difference Score, which is a more robust
measure with respect to noise.

• How to treat the Preferential Inversions?

Maintaining the Preferential Inversions, the DS measure cannot be fur-
ther considered as a distance between the reference image and the dis-
torted one with respect to the analyzed artifact (zipper artifact), as we
have previously discussed. The influence of these inversions appears to
be different in the case of Single Stimulus and Double Stimulus tests.
In fact, the effect of the introduced sharpness is lower in the case of
the 1S test because there is not a simultaneous comparison with the
original image. Thus, the analysis of the 1S test results with respect
to the 2S ones can be useful for evaluating this phenomenon.

2.3.2 Features Identification

We want to emphasize that with this data analysis we are not evaluating the
performance of the algorithms, but instead we are interested in highlighting
the major effects that influence the subjective evaluations of the perceived
quality of demosaiced images. The final goal is to identify the significant
features to be used in a proper metric so that it can be able to reproduce
the experimental data. In Figure 2.5, the rank of the nine demosaicing
algorithms obtained combining the three color interpolation (CI) algorithms
with the two anti-aliasing (AA) algorithms listed in Table 2.1 are reported
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for both the 1S and the 2S experiments. Figure 2.5(a) and Figure 2.5(b)
show the ranks of the 2S experiment using respectively the mean Rt and
the median MRt as a central tendency indicator. The coherence between
these two ranks confirms the stability of the results. In Figure 2.5(c) and
Figure 2.5(d), the same data are reported for the 1S experiment. In Figure 2.6
a comparison of the two experiments is reported. The solid line refers to the
Single Stimulus (1S) experiment, while the dotted line refers to the Double
Stimulus (2S) experiment. As a preliminary step, we have grouped the 9
demosaicing methods into triplets, with respect to the CI algorithm applied.
As a general consideration, CI algorithms alone (i.e. bilinear, ST1 and ST2)
were judged worse than their corresponding versions coupled with any of
the AA algorithms considered. With respect to the CI approach, the ST2
method (coupled with any AA algorithm) is always preferred as it produces
sharper images. This behavior is due to the explicit boosting introduced by
the authors to restore the lost high frequencies. These results confirm that
sharpness plays an important role in influencing image quality judgments, [56]
and [52]. 1S tests are less precise than 2S tests because the reference image is
shown only once, and the comparison between distorted images and reference
ones is more difficult. Were this the only difference between the two tests, we
would not expect significant changes in the algorithm ranks. This assumption
was not fully verified in our experiments. This discrepancy is also due to the
effect of the perceived sharpness on image quality, which is more evident
in 2S tests due to the direct comparison with the reference images. The
AA algorithms considered have influenced the image sharpness at different
degrees. In particular the Freeman algorithm produces a sharper image, while
the Lu algorithm makes the images more blurred. This phenomenon is more
evident when these anti-aliasing algorithms are coupled with the basic color
interpolation method (bilinear interpolation) as shown in Figure 2.7. As a
consequence, the rank positions of the algorithms labeled as bifree (algorithm
2) and st2free (algorithm 8) are swapped from the 2S to the 1S experiment
with respect to the corresponding bilu (algorithm 3) and st2lu (algorithm 9)
as shown in Figure 2.7.

2.3.3 Image Frequency Content

We have analyzed the experimental data with respect to the image frequency
content to investigate the cross-talks between the zipper artifacts introduced
by the color interpolation process and the image frequencies.
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Figure 2.5: (a) Algorithm ranks in terms of final score Rt in the 2S exper-
iment. (b) The 2S rank resulting from using the median MRt as a central
tendency indicator [103]. (c) Algorithm ranks in terms of Rt in the 1S ex-
periment. (d) The 1S rank resulting using the median MRt as a central
tendency indicator

In Figure 2.4, the 10 images used in our tests are roughly separated so
that: the first column reports images with few details, Low-Frequency (LF)
set; the second column shows images with fine details, Middle-Frequency
(MF) set; while in the third column two images of High Frequency (HF) are
depicted.

To better understand how the frequency content influences the psycho-
visual data, we have collected the subjective score (Scorei) for each of the
(S = 10) test images and for each of the (T = 9) demosaicing algorithms.
Summing the zDSij of equation 2.3 over the subjects j ∈ J we obtain:
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Figure 2.6: Comparison between Rt values of the 1S experiment (red solid
line) and the Rt values of the 2S experiment (blue dotted line).

Scorei =
1

J

∑
j∈J

zDSij (2.5)

with i = 1, ....S×T . The Scorei are reported for both 2S and 1S experiment
in Figure 2.9, where the layout of Figure 2.4 is maintained. In particular,
the first column corresponds to the LF set, the second column to the MF
set, while the last column corresponds to the HF set. Each subplot reports
the experimental Scorei corresponding to the 9 distortions applied to each
image. These scores are grouped into triplets with respect to the CI method
(bilinear + three AA, ST1 + three AA, and ST2 + three AA).

In the following analysis we have decided to eliminate the two images
of the HF set. These images are characterized by a texture with a near-
Nyquist frequency as shown in Figure 2.8, where the distortions due to the
aliasing are evident. Images belonging to this HF set have suffered from
very strong distortion after the color interpolation process and thus their
subjective scores could have been influenced by the near-Nyquist artifacts,
which are not object of our study.

We can notice that images with a comparable level of details share com-
mon patterns in their scores. In particular, when the achromatic zipper
(mainly produced by the Freeman AA algorithm) is combined with middle-
high frequency content, not only the contrast of the zipper highlights the
edges, but also the middle-high frequency content masks the On-Off pattern.
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(a) (b) (c)

Figure 2.7: Detail of an image rendered with different algorithms (a) Bilinear
(CI) (b) Bilinear (CI) + Freeman (AA) (c) Bilinear (CI) + Lu (AA)

This combined effect results in a sharper appearance of the image; this is
more evident when the images are directly compared with the reference, as
in the 2S test. This behavior is related to the texture masking effect of the
human visual system [80]. From the point of view of the algorithm ranks
(Figure 2.9), these considerations are confirmed by the good performance on
the MF set obtained using the Freeman AA with respect to each triplets of
CI algorithms (algorithms number 2, 5, 8). On the other hand, when the
algorithms that produce this achromatic distortion are applied to images of
the LF set, the high contrast of the zipper pattern and its On-Off structure
remain visible. In fact, the evaluation of the CI algorithms coupled with
the Freeman AA in the case of LF set is worse than in the case of the MF
set, especially in the case of the 1S experiment where the sharpness is less
perceived.

For what concerns the chromatic zipper, the behavior is simpler. This
artifact is more visible as the number of edge pixels in the image increases,
and it seems to be immune to masking effects. For this reason we chose to
discriminate between chromatic and achromatic distortion.

2.4 No-Reference Metric for Demosaicing

The data analysis confirms that the perceptual quality of demosaiced images
depends on sharpness, and on chromatic and achromatic zipper. For this
reason we have decided to define our no-reference metric considering the
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following three aspects separately:

Blur as index of lack of sharpness. The corresponding measure is indicated
as B in what follows.

Chromatic zipper distortion (measure indicated as CD)

Achromatic zipper distortion (measure indicated as AcD)

Thus, the demosaicing metric DM that we have developed is composed
of three properly scaled terms, corresponding to these three aspects:

DM = B + CD + AcD (2.6)

We chose a sum expression because when one of these terms is significantly
high, the others are less significant. This consideration arises from the ex-
perimental evidence of the behavior of different demosaicing algorithms. A
strong low pass filtering adopted to reduce the zips produces a blurred image,
and thus in this case the blur measure B is dominant with respect to the oth-
ers. In case of more conservative filtering, the image sharpness is preserved,
but the zips still remain as a defect. Different color interpolation algorithms
produce zips with different levels of saturation, ranging from achromatic to
highly saturated zips.

2.4.1 Blur

The blur in an image is due to the attenuation of the high spatial frequencies.
Blur is the typical artifact in out-of-focus shots, but it may also be caused by
the relative movement between camera and subject (motion blur), and by the
encoder (compression blur). In the context of color interpolation artifacts,
blurriness is due to an excessive low pass filtering of the anti-aliasing algo-
rithm. Marziliano et al. [72] present a blind (no-reference) blur metric that
is based on measuring the average spread of the vertical edges. They define
the edge spread as the distance between the local minima (p1) and the local
maxima (p2) nearest to the edge along the gradient direction(Figure 2.10).
The edge spread was used to predict the quality of jpeg2000 compressed im-
ages and has shown to be consistent with the observers’ ratings obtained in
subjective experiments. We use as blur indicator, the average edge spread of
the image Es, evaluated as follows:
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Es =
1

NEdge

∑
e∈Edge

dist4(p1, p2) (2.7)

where Edge is the set of edge pixels of the image and NEdges is the num-
ber of these edge pixels. We chose to estimate the edge spread by searching
around the edge in four directions (indicated with dist4 in 2.7) horizontal,
vertical, +45 and -45 degrees.

2.4.2 Chromatic and Achromatic Zipper

The zipper pattern detection was carried out as follows. On the gray-scale
image, we computed the gradient magnitude in both directions with the
following convolution kernels:

V =
[
−1 1

]
(2.8)

H =
[
−1 1

]T
The two gradient maps, Gx and Gy (horizontal and vertical), are treated

separately to detect zipper segments. Working on the horizontal direction,
we first compute the gradient sign map by quantizing the gradient magnitude
as follows (the same process is extended to the vertical direction):

SignMapx(x, y) =


2 if Gx(x, y) < 0
1 if Gx(x, y) > 0
0 if Gx(x, y) = 0

(2.9)

Thus, a zipper segment (which is an On-Off pattern) is characterized in
the sign map by a sequence of alternating 2s and 1s (see Figure 2.11 (b)). The
number and the extension of zips is not sufficient to quantify the perceived
quality of a color interpolation algorithm. In fact, some zipper pixels are
more visible than others (see Figure 2.11 (c)).

To evaluate the visibility of the pixels belonging to the zipper segments,
we compute DL(x, y) and DC(x, y) distances between adjacent pixels in
zipper segments, starting from the CIE-94 definitions [97]:
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DL(x, y) = ((∆L∗(x, y))2)
1
2 (2.10)

DC(x, y) = ((∆C∗(x, y)/Sc)
2 + (∆H∗(x, y)/SH)2)

1
2

where 1

∆L∗(x, y) = L∗(x, y)− L∗(x, y − 1) (2.11)

∆C∗(x, y) = ((a∗(x, y))2 + (b∗(x, y))2)
1
2 − ((a∗(x, y − 1))2 + (b∗(x, y − 1))2)

1
2

∆H∗(x, y) = ((∆E76(x, y))2 − (∆L∗(x, y))2 − (∆C∗(x, y))2).

We calculated the median of DL(x, y) with respect to the whole set of
zipper segments in both directions and averaged them. We performed the
same calculations for DC(x, y), obtaining two indicators labeled as DL and
DC in what follows. These two indicators, together with the average edge
spread (Es) and the percentage of zipper pixel in the image (ZpA), were used
to calculate the overall metric.

2.4.3 Metric Parameter Estimation

Starting from the the blur and zipper pattern analysis described in the two
previous subsections, our demosaicing metric (2.6) can be rewritten as:

DM = wB × Es×+wC ×DC + wL × eDL−DC × ZpA (2.12)

Algorithms that reduce aliasing tend also to desaturate the zips, increas-
ing the coherence between channels. This effect produces achromatic zips,
where DL exceeds DC. wB, wC and wL are weights to be chosen so that
our metric can predict the algorithms’ rank produced by the psycho-visual
experiments. To this end, we have applied the proposed metric to the images
in the Zipper Database, and then we have calculated the average scores of

1The equations are reported only for the horizontal case. In the calculation of the
differences we excluded the non-zipper pixels. ∆E76 is the standard Euclidean distance
between the L∗a∗b∗ coordinate of the adjacent pixels.
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the nine algorithms. We have found the regression functions that permit the
best fit between the average values given by our measure and the average
subjective responses for both the 2S and 1S data. These fittings are reported
in Figure 2.12.

The contribution of each feature adopted in our metric, can be investi-
gated by looking at the different values assumed by the weights wB, wC and
wL in Equation 2.12. These values are reported in Table 2.2. The main
difference between 2S and 1S is in the contribution of the sharpness. In fact,
in the case of 2S when a reference image is shown, the difference in sharpness
is more evident, thus the corresponding weight wB is higher than in the 1S.

Table 2.2: Weights for the 1S and 2S test data.

Weights 2S 1S
wB 5.0 2.0
wL 5.0 5.0
wC 1.5 1.2
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Figure 2.8: Details of the images of Figure 2.4 with near-Nyquist frequency
content.
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Figure 2.9: Subjective test data. Each subplot refers to the corresponding
image of Figure 2.4. The scores are grouped in triplets, corresponding to each
of the three color interpolation methods coupled with the three different anti-
aliasing strategies. For instance, the first triplet corresponds to algorithms
1,2 and 3, i.e. bilinear interpolation with no anti-aliasing, Freeman anti-
aliasing and Lu anti-aliasing respectively.
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Figure 2.10: Edge spread defined as the distance between the local minima
(p1) and the local maxima (p2) nearest to the edge.

(a) (b) (c)

Figure 2.11: (a) Detail of an image rendered with bilinear interpolation. (b)
Horizontal zipper map. (c) The original image masked with the horizontal
zipper map.
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Figure 2.12: Average values of the color interpolation algorithms. Metric
versus average subjective algorithm rating. (a) Double Stimulus test data.
(b) Single Stimulus test data.



Chapter 3

No-Reference JPEG Metric

No-reference quality metrics estimate the perceived quality exploiting only
the image itself. Typically, no-reference metrics are designed to measure
specific artifacts using a distortion model. Some psycho-visual experiments
have shown that the perception of distortions is influenced by the amount of
details in the image’s content, suggesting the need for a “content weighting
factor.” This dependency is coherent with known masking effects of the hu-
man visual system. In order to explore this phenomenon, we setup a series of
experiments applying regression trees to the problem of no-reference quality
assessment [89]. In particular, we have focused on the blocking distortion of
JPEG compressed images. Experimental results show that information about
the visual content of the image can be exploited to improve the estimation
of the quality of JPEG compressed images.

3.1 Overview

Image quality metrics are designed to estimate the perceived quality of im-
ages. A perfect metric (e.g. a metric that takes into account the HVS
sensibility to the distortion) would be linearly related to the Mean Opinion
Score (MOS). However, it is likely that the parameters of the linear model
would depend on the content of the images. In fact, some images are more
“suitable” for the distortion to be seen: the same amount of distortion will be
perceived differently on different categories of images (e.g. clouds in the sky
and a shot of a building). Our approach is based on the assumption that the
content of the image alters the parameters of the model. A regression tree

53
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is used to partition the images into clusters characterized by similar content.
Then, for each cluster a specific model is fitted to map the metric to the
MOS.

3.2 Classification Methodology

The tree growing algorithm is inspired by the Classification And Regression
Trees [12] (CART) methodology.

These are binary trees produced by recursively partitioning the predictor
space, each split being formed by conditions related to the predictor values.
Each subset corresponds to a node of the tree: the whole predictor space
corresponds to the root node, the subsets of the final partition correspond to
the terminal nodes. Once a tree has been constructed, a class is assigned to
each of the terminal nodes, and it is this that makes the tree a classifier: when
a new case is processed by the tree, the class associated with the terminal
node in which the case ends up on the basis of its predictor values is its
predicted class.

In problems where it is feasible to assume that the cost of misclassifying
a class j case as a class i case is the same for all i 6= j, i, j = 1, · · · , J ,
the class assigned to each terminal node t is the class i for which p(i|t) =
maxj p(j|t), where p(j|t) is the resubstitution estimate of the conditional
probability of class j in node t, that is, the probability that a case found in
node t is a class j case. With this rule the resubstitution estimate of the
accuracy inside the node, given by p(i|t), is maximized or, equivalently, the
resubstitution estimate of the misclassification probability inside the node,
given by 1 − p(i|t), is minimized. If the prior probabilities of the classes
are estimated from the data, p(i|t) is simply the proportion of class i cases
inside node t and the resubstitution estime of the accuracy inside the node
is reduced to the relative proportion of cases in the node that belong to class
i.

When it is not realistic to assume equal misclassification costs, the class
assigned to each terminal node of the tree is the class for which the estimated
misclassification cost inside the node is minimized. In our study we have
assumed equal misclassification costs.

The critical problems of the splitting process are essentially two: how
to identify candidate splits, and how to define the goodness of the splits.
Candidate splits are generated by a set of admissible questions regarding the
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values of the predictors, which differ according to the nature of the predictors
themselves. At each step of the process, all the predictors are searched one by
one, and the best split, in the sense defined below, is found for each predictor.
The best splits are then compared, and the best of these selected.

The idea central to the goodness of splits is that of selecting the splits so
that the data in the descendant nodes are purer than the data in the original
ones. To do so, a function of impurity of the nodes, i(t), is introduced, and
the decrease in its value produced by a split is taken as a measure of the
goodness of the split itself.

The function of node impurity we have used is the Gini diversity index

i(t) =
∑
i 6=j

p(i|t)p(j|t) = 1−
∑
j

p2(j|t), (3.1)

which has a clear interpretation in terms of variances of Bernoulli variables.
If, for each class j, we consider the random variable Yj , which is 1 (success)
if a case of t belongs in class j and 0 (failure) otherwise, it can be modeled as
a Bernoulli variable whose probability of success is estimated by p(j|t), and
the quantity

1−
∑
j

p2(j|t) (3.2)

is the sum of the estimated variances of such variables.
In CART methodology the size of a tree is treated as a tuning parameter,

and the optimal size is adaptively chosen from the data. A very large tree is
grown and then pruned, using a cost-complexity criterion which governs the
tradeoff between size and accuracy, or cost. This eliminates both the risk
of large trees which overfit the training data, as well as that of small trees
that do not capture important information. The pruning process generates
a sequence {Tl}l∈{1,···,L} of subtrees decreasing in size; these are evaluated
in terms of their accuracy, or misclassification cost, and the best subtree is
then selected. When large sets of data are available, as is the case here, the
accuracy, or misclassification cost, of the subtrees are usually estimated on
the basis of a test set. Otherwise, cross-validation must be applied.

Although the pruning process prevents the danger of trees too tailored to
the training data, there is still overfitting due to instability, a phenomenon
inherent in the hierarchical nature of the construction process of trees. Even
a small change in data may result in a very different series of splits, and this
clearly affects both the structure of the trees, and the consequent classifica-
tion results.
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3.3 Content Descriptors

Information about the textures and structures within the image can be
obtained using a wavelet decomposition. This technique is often used in
content-based retrieval for similarity retrieval,target search, compression,
texture analysis,biometrics, etc. [44, 96]. In multi-resolution wavelet anal-
ysis, at each level of resolution (i.e.at each application of the wavelet de-
composition) we have four bands containing different information obtained
by applying a combination of a low-pass filter(L) and a high pass filter(H).
Specifically, the information corresponds to a low-pass filtered version of the
processed image (LLband), and three bands of details that roughly corre-
spond to the horizontal edges (LHband) of the original images, the vertical
edges (HLband) and the diagonal edges (HHband). Each band is a matrix
of values, one fourth the size of the original image. Wavelet decomposition is
applied recursively to the LL band. The resultant decomposition will contain
information, i.e.details, at the lower resolution. The process can be repeated
until the LL sub-band cannot be further processed or until a given number of
wavelet decomposition applications is reached. Different filters can be used
to produce the bands of the wavelet analysis [73] e.g. Harr, Daubechies,
Symlet, Biort, etc. For our purposes the wavelet statistics features are ex-
tracted from the luminance image using a three-iteration Daubechies wavelet
decomposition, producing a total of 10 bands. The mean and variance of the
absolute values in each band are then computed as band statistics. These
feature values represent the energy i.e. the amount of information within
each band and provide a concise description of the image’s content. This
feature thus composed of 20(two energy values for each of the 10 bands)
components.

3.4 Proposed approach

The tree is produced by recursively partitioning the set of images, repre-
sented by the feature vectors T = {f1, . . . , fN}, fi ∈ RD labeled with the
corresponding MOS µ1, . . . , µN , µi ∈ R, and the values of the quality metric
considered {y1, . . . , yN}, yj ∈ R. The partitioning is driven by an impurity
function which measures how well, given a set of images, the relationship
between the metric and MOS can be described by a function chosen from a
given parametric model Mθ. The impurity I(S) of a non-empty set of images
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S ⊆ {1, . . . , N} is defined as:

I(S) =
1

|S|
∑
i∈S

(Mθ̂(yi)− µi)
2, (3.3)

where Mθ̂ is the function (defined by the parameters θ̂) obtained by fitting
the metric to the MOS by a least squares regression.

The recursive tree growing procedure starts to consider the whole set
of images. To partition the set P (the parent node, in tree terminology)
into two subsets L and R (children nodes) the algorithms consider all the
possible splits defined by thresholding the values of the components of the
feature vectors. Among all the components and the threshold values, the
pair (j∗, τ ∗) which maximizes the decrease in impurity is selected:

∆I(j, τ) = I(P )− |L|
|P |

I(L)− |R|
|P |

I(R), (3.4)

where L and R are defined according to the split (j, τ): L = {i ∈ P : fij ≤ τ},
R = P \L. The optimal pair (j∗, τ ∗) is found by an exhaustive search on all
possible values of j and τ . To avoid inaccurate estimation of the parameters
of the model, the growing process is not applied to small nodes (less than
five images in the current setup). Finally, each terminal node is labeled with
the parameters θ computed by the least squares regression.

Given a new image the tree determines in which terminal node it falls
in on the basis of the values of the feature vector. Then, the corresponding
parameters θ are used together with the value of the metric y to estimate
the MOS as Mθ(y).

Each tree has been pruned using the Minimal Cost Complexity Pruning
Algorithm [12]. We adopted a k-fold strategy to build the test sets and the
training sets. In each of the 29 training sets used, all the versions of one of
the 29 original images have been excluded to avoid data snooping.

As content descriptor we chose the mean and the variance of a 3 level
wavelet transform, for a total of 20 features (2 indices × 10 bands) [20].
These features are quite stable with respect to the introduction of JPEG
compression. In order to verify this stability, we have tagged each of the
original images with a class label. Then we trained a classification tree
(with the CART algorithm) using the wavelet features to predict the class
of each of the 175 image used. The error (in the non-pruned tree) is zero,
which means that the wavelet features are able to discriminate between the
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Figure 3.1: Compression invariance of the wavelet features. For the 6 versions
of the “womanhat” image we plotted the magnitude of the 20 components
of the features (one for each line).

different contents independently of their level of compression. As shown in
Figure 3.1 for the “womanhat” image, the wavelet features are robust with
respect to different levels of compression.

For MOS estimation, we empirically chose a logarithmic model. This
model has the advantage of being monotone and is able to catch the log-like
relation between metrics and MOS that we observed in different metrics. This
behavior can be explained by assuming that the higher levels of distortion
proposed to the subjects are beyond their level of “saturation”.

µ̂ = θ1 log(y + θ22) + θ3, (3.5)

where µ̂ is the estimated MOS and y is the value of the metric. To simplify
the non-linear regression in each node we normalized the metric values as
follows:

y′ =
y − (ymin − ε)
ymax − ymin

, (3.6)

where ymin and ymax are respectively the minimum and the maximum of
the metric on the whole database (also using the undistorted images), and
ε = e−36 is a constant that prevents the application of the logarithm to
non-positive arguments.

The proposed method is summarized in Figure 3.2.
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Figure 3.2: The proposed method to embed content information in image
quality metrics.

3.5 Experimental Results

For the experimentation we used the JPEG subset of the LIVE database[99].
The database is derived from a set of 29 different color images which have
been distorted by JPEG compression. The level of the distortion has been
modulated to produce images at a broad range of quality, from imperceptible
levels to high levels of impairment. The database contains a total of 175
images with bit-rates ranging from 0.15 bpp to 3.34 bpp. Each image has
been evaluated by a mean of 22 human subjects, utilizing a single-stimulus
test methodology [1] in which the original images were included; this way it
was possible to derive a quality difference score for each image. The authors
have made the Difference Mean Opinion Score (MOS) available for each
image included in the database. For details, see [101].

We applied our method to four different blocking metrics (Table 3.1).
For each metric the method has been evaluated by comparing the esti-

mated MOS with the correct one. The average mean square error (MSE) has
been computed as a measure of error.

For the sake of comparison, for each metric we also computed a global
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Table 3.1: The metrics analyzed during our tests with their main character-
istics. For further details, see the references.

Name Application Method Other aspects considered
WBE [122] JPEG Magnitude of the blocking signal

in the frequency domain
WSB [124] JPEG Magnitude of the blocking signal

in the spatial domain
Signal activity correction

PAN [79] JPEG Magnitude of the blocking signal
in the spatial domain

Flat area correction (for a
very low Q-factor)

VLA [118] MPEG Ratio between intra-block simi-
larity and inter-block similarity

Table 3.2: Mean Square Error (MSE) obtained by a global regression (using
the log model) and the proposed method.The number of leaves refers to the
pruned trees trained for each metrics.

MSE
Metric Global regression Proposed method Number of leaves
PAN 89.74 26.90 8
VLA 90.86 50.40 6
WSB 60.48 23.71 7
WBE 47.00 18.41 7

regression on the whole dataset using the same logarithmic model. The
results obtained are reported in Table 3.2. Figure 3.3 reports the results
obtained for the PAN metric. The first plot is the global regression result;
the second one is the result with the proposed method. The third plot shows
the different instances of the model that were used. The two bottom maps
show the distribution of the images in the different leaves of the pruned tree
(the entire distribution on the left map and the mode on the right). In the
same way Figures 3.4, 3.5, and 3.6 report the results obtained with the VLA,
WBE and WSB metrics.

The best results have been obtained with the WBE metrics. This metric
shows some regularities that make it easy to identify a good regression model.
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It is also one of the simplest metrics: it is designed to measure the blocking
effect (discontinuities at block boundaries) ignoring other aspects (e.g. flat
blocks at a high level of compression, or the activity of the signal). Good
predictions were also obtained with the WSB metric.
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Figure 3.3: (a) scatter plot of the global regression between the PAN metric
and the MOS scores; (b) scatter plot of the proposed method; (c) the cloud
of points with the different instances of the model used; (d) the tree resulting
from the pruning procedures; (e) the map of the distribution of the original
images in the different leaves, represented by the background color. The
colors have the same meaning in (c), (d) and (e).
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Figure 3.4: (a) scatter plot of the global regression between the VLA metric
and the MOS scores; (b) scatter plot of the proposed method; (c) the cloud
of points with the different instances of the model used; (d) the tree resulting
from the pruning procedures; (e) the map of the distribution of the original
images in the different leaves, represented by the background color. The
colors have the same meaning in (c), (d) and (e).
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Figure 3.5: (a) scatter plot of the global regression between the WSB metric
and the MOS scores; (b) scatter plot of the proposed method; (c) the cloud
of points with the different instances of the model used; (d) the tree resulting
from the pruning procedures; (e) the map of the distribution of the original
images in the different leaves, represented by the background color. The
colors have the same meaning in (c), (d) and (e).
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Figure 3.6: (a) scatter plot of the global regression between the WBE metric
and the MOS scores; (b) scatter plot of the proposed method; (c) the cloud
of points with the different instances of the model used; (d) the tree resulting
from the pruning procedures; (e) the map of the distribution of the original
images in the different leaves, represented by the background color. The
colors have the same meaning in (c), (d) and (e).
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Chapter 4

No-Reference Blur Metric

In this chapter we focus on No-Reference metrics for sharpness. Among the
available methods found in the literature, after detecting the edge pixels, the
sharpness measure is defined for each edge pixel. The final metric value is
obtained averaging all these values [72, 6]. However, we have observed that in
some cases this global measure is not representative of the real sharpness of
the images. This fact is mainly due to the image noise that interferes with the
measure at pixel-level. Pixel-level measures offer a poor signal-to-noise ratio
that limit the accuracy of the local measurements. Performing the measure
on a set of edge pixel can mitigate this problem. In the field of evaluation of
digital imaging systems, the technique of slanted edge [2] cope the problem
by integrating the measure along the edge of an properly designed pattern
(Figure 4.1). In his PhD dissertation, Pham [83] proposed the extension of
slanted edge measure to natural images by finding the straight line in the
image through the use of an adaptive Hough transform. In our work [91]
we further extend this approach by applying the measure to all the lines
in the image (Figure 4.2). To implement our system we need to face the
problem of identifying segments (groups of edge pixels) as support of our
measures. In the Hough transform approach the property shared by edge
pixels that belong to a certain segment is collinearity. In our system we
need to define segments differently. Identifying a shared property between
the edge pixels of a segment using a direct inspection of the edge map is
problematic: while assuming that the pixels have to be spatially adjacent is
straightforward, defining the starting point and the end point is difficult; so
we choose a somehow complementary approach. In our work we segment the
original image and extract all the boundaries between two different regions as

67
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distinct segments. This solution guarantees the spatial adjacency property
and produces segments bounded by two end points. Moreover, the pixels
of the so defined boundaries, share the property of separating two coherent
(with respect to the segmentation criteria) region of the image (Figure 4.3).
In this chapter, we present an automatic method that allows to automatically
select edge segments and permits to evaluate blurriness of the whole image
on more reliable data.
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Figure 4.1: Slanted edge. All the profiles (red lines) extracted from the
slanted edge pattern contribute to the estimate of the imaging system reso-
lution.
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Figure 4.2: Our extension applied to a curved line.
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Figure 4.3: A segmented image with one of the segment highlighted (red
dotted line)

4.1 Mean Shift Segmentation

In our proposal, the automatic selection of the more representative edge
segments starts from a region-based segmentation algorithm. Once these
segments have been identified, an edge spread measure is defined to evalu-
ate the image sharpness. An image segmentation is a partition of an image
into contiguous regions of pixels that are similar in appearance. A large
class of image segmentation algorithms is based on feature space analysis.
In this paradigm the pixels are mapped into a color space and clustered,
with each cluster delineating a homogeneous region in the image. Mean shift
is a general nonparametric technique for the analysis of a complex multi-
modal feature space and the delineation of arbitrarily shaped clusters [24].
Mean Shift algorithm models a color image as a probability density function
underlying a 5-dimensional space (three color channels and two lattice coor-
dinates). The algorithm estimates the local density gradient using the offset
of the mean vector computed in a window, from the center of that window.
When the mean shift procedure is applied to every point in the feature space,
the points of convergence aggregate in groups which can be merged. These
are the detected modes (local maxima), and the associated data points de-
fine their basin of attraction. The clusters are delineated by the boundaries
of the basins, and thus can have arbitrary shapes. The quality of segmen-
tation is controlled by the spatial radius which determine the resolution in
the 2D coordinate lattice domain, and the color radius which determine the
resolution in 3D color space domain. The mean shift based color image seg-
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mentation is already popular in the computer vision community and several
implementations exist [17].

4.2 Profiles extraction

In our experiments we have used the Mean Shift algorithm to segment natural
images. From the segmented image, we extract and collect all the boundaries
between two adjacent regions as distinct segments. Given an edge segment
of N edge pixels, we extract the N profiles along the direction of the gradient
of each edge pixel, (see Figures 4.4a and 4.4c). We estimate the derivative
of each profile using finite-differences, (see Figures 4.4b and 4.4d). After an
alignment step (Section 4.3), we fit all the profiles with a Gaussian function
(red line in Figures 4.4b and 4.4d). The standard deviation of this Gaussian
is the blur estimation (spread) of the considered segment. The length of the
profiles depends on the maximum edge spread we want to measure. In this
work we have considered profiles of 21 pixels that permit a reliable estimation
of sigma less than 5. This length was chosen with respect to the limited
dimension of the images considered in our experiments (768 X 512 pixels).

To select the segment on which evaluating the overall blurriness of the
image, we consider the following features:

• The length of the segment;

• The average contrast of the segment;

• The fitting error between the profiles and the Gaussian model.

In Figures 4.4a and 4.4c the selected segments are highlighted. Given a
reliable segment, we have a redundant information about the edge spread
over the N collected profiles. Therefore, we expect the estimation of this
spread to be more stable with respect to noise.

4.3 Segment Spread Metric

All the profiles extracted with our method require a registration step before
the fitting procedure (Figure 4.5). The registration is performed by identi-
fying the zero-crossing point of the profile’s derivative to identify the peak
of the Gaussian. We then calculate the distance between the center of the
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Figure 4.4: Our method applied to an images with and without noise

window and the zero-crossing point. Once the offset has been estimated, we
translate the profile to the center of the window.

Our Segment Spread Metric (SSM) works as follows: We select the seg-
ments with contrast greater than 0.3, fitting error smaller than 0.03 and
length greater than 30 pixels. We then extract the median of the sigmas of
the selected segments. The threshold values 0.3,0.03 and 30 have been found
empirically.

4.4 Results

We have performed our experiments on three datasets defined starting from
the LIVE database [99]. The LIVE database contains a set of 145 images with
different levels of blurriness. Our three datasets are composed as follows:

• N0 is the original LIVE dataset of 145 images;

• N1 consists of the 145 images of N0 plus the N0 dataset corrupted by
a Gaussian noise with 16 gray levels of standard deviation (16 GLSTD)
on the three channels, for a total of 290 images;



72 CHAPTER 4. NO-REFERENCE BLUR METRIC

Figure 4.5: Top left, A segmented image with one of the segment highlighted.
Top right, The extracted profiles. Bottom right, The extracted profiles after
the registration procedure. Bottom Left, The plot of the registered profiles
and the fitted model.

• N2 consists of the 290 images of N1 plus the N0 dataset corrupted by
a Gaussian noise with 32 gray levels of standard deviation (32 GLSTD)
on the three channels, for a total of 290+145=435 images.

We were interested in recovering from these images the sigma applied
in the original LIVE database to generate the different level of blurriness.
We have extended the LiVE sets introducing different levels of noise to test
the stability of our SSM metric. SSM was compared with the Edge Spread
Metric (ESM) proposed in [72]. In the presence of only blurriness among
other available metrics, the ESM has proved to be more reliable metric [34].
Instead, ESM strongly suffers the presence of noise. Applying ESM to N1
and N2 datasets, we have obtained a constant value for all the images. This
is due to its intrinsic procedure adopted to estimate the edge spread, which
measures the distance between minimum and maximum values nearest to
the edge point, along the gradient direction. High noise levels introduce false
peaks which reduce this distance up to a constant value equal to one. Thus,
to permit the metric comparison on the N1 and N2 datasets, we have modified
the ESM introducing a pre-processing step, which consists in a convolution
with a Gaussian filter. This filter was optimized for each of the N0, N1 and
N2 datasets to reduce the MSE error between the ESM and the know applied
sigma. Our method, instead, is not affected by the presence of noise and thus
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Table 4.1: Regression parameters for SSM and EES. A: slope, B: Intercept

SSM ESM
Name A B A B
N0 1.04 -0.10 0.29 -0.45
N1 1.10 -0.10 0.32 -0.77
N2 1.13 -0.03 0.34 -0.82

it does not need this pre-processing.
We have performed a first order polynomial regression on the estimated

values of both the ESM and SSM. In Table 4.1 the slopes and intercepts
obtained for the two metrics and for each of the three datasets are reported.
Note that in the case of our measure the polynomials for all the datasets are
the diagonal line.

As expected (section 4.3), our metric was unable to estimate the blurriness
of all the images with blur greater than 7 (for a total of 21 images). While for
images with sigma of 5.83 the metric does not provide a measure for 5 images
on 6. In Table 4.2 we have reported the number of images were our metric
was not able to provide a measure with respect to the level of blurriness and
to the total of images with the same blurriness. From this Table we obtain
that the total of images with no SSM response are 8, 17, 26 for the N0, N1
and N2 datasets respectively.

We have thus decided to remove all the images with no response to eval-
uate the performance of the ESM and SSM. In Figure 4.6 we have reported
the scatter plots of the estimated sigmas, versus the applied sigmas for both
ESM and SSM. Our predictions are less spread with respect to the diagonal
line than those obtained with ESM. Finally the results obtained in terms
of MSE between the estimated sigmas and the known applied blurriness are
reported in Table 4.3 for both ESM and SSM and with respect to the three
datasets. Our metric outperforms the ESM on all the datasets, as clearly
indicated by the percentage of improvements.

4.4.1 Considerations on Depth of field

The overall image score can be influenced by the depth of field. Depth of field
is the area in front of and behind the focus plane that is also “acceptably
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Table 4.2: The number of images were our metric was not able to provide
a measure, with respect to the level of blurriness and to the total of images
with the same blurriness.

No response
Applied Sigma N0 N1 N2

5.8333 1/2 3/4 5/6
7.6666 4/4 8/8 12/12
11.3333 2/2 4/4 6/6
15.0000 1/1 2/2 3/3

Table 4.3: Results: Gray level of standard deviation (glstd)

MSE
Name Dataset Cardinality SSM ESM Improvements
N0 No noise 145 1.7 2.7 37%
N1 N0 + 16 glstd 145× 2 3.6 5.7 36%
N2 N1 + 32 glstd 145× 3 7.7 9.2 16%
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sharp”. 1 The extent of this area changes depending on the focal length,
the focusing distance, and the aperture used. An example of image with
low depth of field, where sharp edges and blurred edges are both present, is
reported in Figure 4.7. In our test datasets there were few images with low
depth of field; this explains why the median of the sigma is able to estimate
correctly the applied blurriness. In a more general setup a better estimation
could be obtained by using the minimum sigma.

1The depth of field change from sharp to unsharp as a gradual transition. Everything
immediately in front of or in back of the focusing distance begins to lose sharpness, even
if this is not perceived by the resolution of the camera. Since there is no a definite point
of transition, a more rigorous term called the circle of confusion is used to define how
much a point needs to be blurred in order to be perceived as blurred. When the circle of
confusion becomes perceptible to the sensor, this region is said to be outside the depth of
field and thus no longer “acceptably sharp”.



76 CHAPTER 4. NO-REFERENCE BLUR METRIC

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Edge Spread

A
pp

lie
d 

S
ig

m
a

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Proposed Metric

A
pp

lie
d 

S
ig

m
a

(a) (b)

Figure 4.6: Scatter plots of the estimated sigmas, versus the applied sigmas
for both ESM (a) and SSM (b)

Figure 4.7: The image is from imageCLEF database [75]. The median score
1.60 is not representative of the perceived sharpness.



Chapter 5

IQLab: Image Quality
Assessment Tool

In this chapter we propose an image quality assessment tool. The tool is
composed of different modules that implement several No-Reference metrics
(i.e. where the original or ideal image is not available). Different types
of image quality attributes can be taken into account by the No-Reference
methods, like blurriness, graininess, blockiness, lack of contrast and lack
of saturation or colorfulness among others. Our tool [90] aims to give a
structured view of a collection of objective metrics that are available for
the different distortions within an integrated framework. As each metric
corresponds to a single module, our tool can be easily extended to include
new metrics or to substitute some of them. The software permits to apply
the metrics not only globally but also locally to different regions of interest
of the image.

5.1 Tool Motivation

As cited by Sheik et al. [100] All images are perfect, regardless of content,
until distorted by acquisition, processing or reproduction. In this way, we are
implicitly assuming the presence of two signals: the content signal and the
distortion signal. This philosophy assigns equal quality to all natural visual
stimuli, and the task of NR Quality Assessment (QA) is reduced to blindly
measuring the distortion.

Because a general model of the ideal image is not feasible, we have to

77
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design a model for the different distortions. However, once we have properly
designed such distortion model, the content can still influence the metric
estimation.

For example, let us consider the image shown in figure 5.1a. The object
in the foreground is visually sharped as desired by the photographer. The
background, instead, is blurred on purpose (the camera settings were chosen
to emphasize the depth of field). Probalbly, applying a NR metric to meaure
the bluriness, a low quality score would be obtained while a subjective eval-
uation would give a higher score. This is because the metric is blind to the
content of the image and can not distinguish between content signal and dis-
tortion signal. In this particular case, an ideal bluriness measure should be
aware of the depth of field used in the photo.

Figure 5.1: Two example images where a manual selection of the region
of interest permits to reduce the content-distortion signal interference and
makes the application of distortion metrics more reliable. Images are from
the ImageClef database [75].

Psycho-visual experiments have shown that the perception of distortions
is influenced by the amount of details in the images content [5]. This depen-



5.1. TOOL MOTIVATION 79

dency is coherent with the masking effects of the human visual system [80]
specifically the texture masking effect.

If the goal is to obtain a reliable value when measuring a given distortion,
we should validate the considered metric on a proper database that includes
images representing all the possible contents that can interfere with the dis-
tortion to be measured. This is of course not feasible and the confidence of
the result will diminish. Therefore, in order to obtain an objective score from
the metric, this result should be interpreted as a function of the correlation
between content and distortion in the particular image under study.

Instead of focusing on generating more representative databases, we choose
an alternative way: we propose an interactive tool that permits the manual
selection of the region of interest with respect to a given distortion. For ex-
ample, if we have to measure the noise in figure 5.1b, the sky region should be
selected; while for measuring the sharpness of the image, the object present
in the scene (tower) should be the region of interest. To reduce the content-
distortion signal interference, we propose here an interactive tool. The user
can decide to apply a certain metric locally (the region of interest is manually
selected) because the global one is not in correspondence with his subjective
judgment. Moreover, he can also choose another NR method in case he was
not satisfied with the previous result. This computer-aid process can be
iteratively applied for each of the images.

Another purpose of our tool is to collect a dataset of images (and/or
portions of them) with the corresponding numerical values of the different
metrics considered. This dataset should be used in the validation process of
these metrics to be correlated with psychophysical tests. In addition, this
could give the hint to find a common scale to normalize the different metrics
associated to a given distortion.

As above mentioned, images consist of the combining of two signals: con-
tent and distortion. As the distorsion increases, the visibility of the content
decreases. We can thus represent images within a two dimensional space
where the amount of ”content” and ”distortion” are taken into account.
This image space is represented in figure 5.2a. High quality images (like
for example those acquired by professional cameras, see figure 5.2b) occupy
the left portion of this space. Their content is dominant with respect to the
distortions. In the right portion of the space, we locate the images where
the distortions are so significant that the content is recognized with difficulty
(like for example figure 5.2d) and when applying a metric, we reasonably
measure the distortion itself. With our tool we aim to evaluate the Quality
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Assessment (QA) of the subset of images in the ”intermediate range” where
both content and distortion are significantly present and consequently, not
easily decorrelated to be measured (like for example figure 5.2c). We note
that the most of the natural images are located within this region.

Figure 5.2: Images within the two dimensional space: content-distortion.
High quality images ocupy the left portion of the space (b). In the opposite
site, we find images where the distorsions are very high (d). The subset of
images we address (c) belong to the region indicated within the dashed-line.
Images (b) and (d) belong to the databases ImageClef [75] and LIVE [99]
respectively.

5.2 Tool Description

For each browsed image, our tool permits to:

• apply each of the single metrics to the global image

• select a region of interest and apply locally each of the metrics

• visualize and collect in a table all the metrics applied to the image
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• represent the different contributions of the artifacts, illustrating them
in a pie chart

Up to now, the following metrics have been implemented within our tool:

• Bluriness:

– Marziliano et al. [72] metric: it consists essentially of an edge
detector. For pixels corresponding to an edge location, the start
and end positions of the edge are defined as the local extrema
locations closest to the edge. Therefore, the edge width is mea-
sured and identified as the local blur measure. Finally, global
blur is obtained by averaging the local blur values over all edge
locations.

– Crete et al. [26] metric: it is based on the discrimination between
different levels of blur perceptible on the same image.

• Blocking artifacts:

– Wang et al. [122] metric: it is defined in the frequency domain.
The blocky image is modelled as a non-blocky image interfered
with a pure blocky signal. The task of this algorithm is to detect
and evaluate the power of the blocky signal.

– Wang et al. [124] metric: it is a feature extraction method defined
in the spatial domain. It measures the differences across block
boundaries and zero-crossings.

– Pan [79] method: it measures the horizontal and vertical inter-
block differences. It takes into account the blocking artifacts for
high bit rate images and the flatness for the very low bit rate
images.

– Vlachos [118] metric: designed in the frequency domain, where
the blockiness measure is defined as the ratio between intra- and
inter-block similarity.

• Noise:
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– Immerkaer [46] metric: the variance of additive zero mean Gaus-
sian noise in an image is estimated. Different masks are considered
: standard shifted differences, cascaded horizontal-vertical shifted
differences, wavelet domain estimation, wavelet domain estima-
tion with boundary removal, Immerkaer’s method, Immerkaer’s
method with Daubechies-based Laplacian, Blockwise Immerkaer’s
method with Daubechies-based Laplacian.

– Zhu and Milanfar [137] metric: it detects both blur and noise.
The metric is based on the local gradients of the image and does
not require any edge detection. Its value drops either when the
test image becomes blurred or corrupted by random noise. It can
be thought of as an indicator of the signal to noise ratio of the
image.

• Global contrast:

– Measure of enhancement EME [3]: it approximates an average
contrast in the image by dividing the image into nonoverlapping
blocks, defining a measure based on minimum and maximum in-
tensity values in each block and averaging them.

– Entropy: it indicates the occupation of intensity levels.

• White balance:

– Gray world-based metric: The gray world algorithm [37] assumes
that given an image of sufficiently varied colors, the average sur-
face color in a scene is gray. This means that the shift from gray
of the measured averages on the three channels corresponds to the
color of the illuminant.

– White Point-based metric: Assuming that there is always some
white in the scene, the white point algorithm [59] looks for it
in the image; its chromaticity will then be the chromaticity of
the illuminant. The white point algorithm determines this white
as the maximum R, maximum G and maximum B found in the
image.

• Colorfulness:
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– Hasler and Susstrunk [42] metric: the distribution of the image
pixels in the CIELab colour space is considered, assuming that
the colourfulness can be represented by a linear combination of a
subset of different quantities (standard deviation and mean of sat-
uration and/or chroma). The parameters are found by maximising
the correlation between experimental data and the metric.

As the tool is modular, other metrics can be easily added or used to
substitute some of the above mentioned metrics.

In what follows, two examples are reported. In the first example (see
figure 5.3) we are interested in evaluating the noise. The global measure
produces a value that could not be representative of the real noise of the
image. For this reason, we permit the user to manually select the region
where the metric has to be applied. The values obtained globally and locally
could be significantly different. In figure 5.3 we apply the tool to two images
where the same noise (equal to 4 Gray Level of Standard Deviation (GL
STD)) was added. While the global values are significantly different (4.488
GL STD for figure 5.3a and 11.067 GL STD for figure 5.3b, noise measured
with the method of Immerkaer [46] for the intensity channel), the local values
are similar (4.335 and 4.870 GL STD). Therefore, the image quality of the
two images could be better compared using the metrics locally.

The manually selected regions can be seen in detail in our interactive
tool. The distribution of chromatic noise with respect to the ab-plane in the
CIELab color space is also reported.

In the second case we are interested in measuring the sharpness. Again,
after manually selecting the region of interest, the metric is locally applied.
In the example of figure 5.4, the metric of Marziliano et al. [72] is applied. A
new window permits to visualize the pixels considered to evaluate the edge
spread within the selected region. On the main interface we can see how the
edge spread is fit with a proper gaussian function.
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Figure 5.3: Example of the tool interface. In this case we compare the results
of the global and local metrics to evaluate the noise. The same synthetic noise
(4 GL STD) is added to both original images (a and b). While the global
values differ significantly, the local ones are similar and representative of the
added noise. The regions of interest, manually selected, are highlighted.
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Figure 5.4: Example of the tool interface. In this case it is applied to evaluate
the sharpness. The global and local edge spreads are reported. A new window
(shown in foreground) shows the pixels used to calculate the edge spread.
On the main interface (shown in background) the gaussian function used to
approximate the edge spread is plotted.
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Chapter 6

Conclusions

Objective visual quality assessment is a multi-dimensional research problem
and an active and evolving research area. In Chapter 1, I have presented
the state of the art of the different IQA methods and a guide for non-expert
users in the choice and/or design of a workflow chain that has to make use
of IQ metrics. In Chapter 2, I have addressed the problem of assessing the
quality of demosaiced images. To this end I set up psycho-visual experiments
to analyze the subjective evaluation of the artifacts introduced by the demo-
saicing process. The experiments were based on a dataset of distorted images
generated starting from three color interpolation algorithms combined with
two anti aliasing algorithms for a total of nine different methods. From the
data analysis, it emerges that the perceptual quality of demosaiced images
mainly depends on perceived sharpness, and on chromatic and achromatic
zipper. The perception of the defects is more evident when the rendered
images are compared with the reference one, while they may be unnoticed
when images are evaluated alone. I have thus defined a new No-Reference
metric for demosaicing artifacts based on measures of blurriness, chromatic
and achromatic distortions that is able to fit these psycho-visual data. My
metric can be applied to evaluate other demosaicing methods.

The perception of distortions is greatly influenced by the two signals that
compose an image: the content and the distortion. As the distortion in-
creases, the visibility of the content decreases and, for the case of natural
images, these two signals may not be clearly separated. This poses a prob-
lem when designing a No-Reference metric. Even if the metric was properly
designed to identify a given artifact, the content of the image can still in-
fluence the metric estimation because the metric is blind to the pictorial
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content of the image and thus can not distinguish between content signal
and distortion signal. In Chapter 3, I proposed a new method to embed
content information in image quality metrics. My assumption was that the
content of the images alter the parameters of the regression model used to
tune the objective metric. I tested this approach by extending four blocking
metrics with image content information. My preliminary results show that
this method outperforms the global regression obtained with the same model.
Furthermore my approach suggests a separation between the design of the
metric and its normalization/scaling with respect to the image content. .
The relationship between model and metric should be further investigated
to find some general properties required by the metric to be extended with
my method. I strongly believe that this methodology can be extended in a
straightforward manner to other kind of distortions.

A criteria to define the ”best metric” for each distortion does not exist
but this ideal metric should take into account the semantic and pictorial
content of the image. Moreover the artifacts are intrinsically correlated as
in the case of noise and blur. Trying to reduce the influence of one artifact
could make the other more visible. This dependence requires designing Im-
age Quality metrics that take into account different artifacts simultaneously.
The great part of the Image Quality metrics is designed to measure only a
single artifact while few consider two artifacts simultaneously. In Chapter 4,
I have proposed a sharpness metric that measure image’s blur by performing
measurements on edge segments. Exploiting the information redundancy of
these segment, my metric has shown to be robust against noise, and to be
able to measure blur and noise independently of one another. This property
can be used to face the problem of quality evaluation in case of multiple dis-
tortions. However, before considering different combination strategies, the
normalization problem of the single metrics should be addressed. There-
fore, both the normalization and combining of multiple metrics are still open
problems within the Image Quality community.

Finally, the perception of distortions can be influenced by the local prop-
erties of the image signal. An Image Quality measure computed on the
overall image may not be representative of the actual perceived quality. A
more reliable way could be to compute the Image Quality measure on se-
lected regions chosen on the basis of their properties and taking into account
the application task. To investigate this aspect I have designed a modular
No-Reference Image Quality Tool. The tool gives a structured view of a
collection of objective metrics that are available for the different distortions
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within an integrated framework. The Tool permits to apply the metrics
not only globally but also locally to different regions of interest of the im-
age. It also permits the collection of images and/or portions of them with
the associated values of the different metrics. This collection may be used
in psycho-visual experiments to correlate metrics and perceived distortions.
Moreover, the tool permits to collect data useful to identify which of the
different available metrics of a given distortion is more appropriate depend-
ing on the pictorial image content. For example, blur metrics that measure
edge spread in the spatial domain are appropriate for isolated edges, while
metrics in the frequency domain could be more suitable for the case of tex-
tured images. Another possible use of the above mentioned tool is to collect
data to train a system that learns how to automatically select the region of
interest for each distortion as we have shown in case blurriness. The choice
of these regions of interest could be simplified applying a region annotation
method.
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