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Abstract

In order to evaluate the quality of the scientific research, we introduce
a new family of scientific performance measures, called Scientific Research
Measures (SRM). Our proposal originates from the more recent develop-
ments in the theory of risk measures and is an attempt to resolve the
many problems of the existing bibliometric indices.

The SRM that we introduce are: flexible to fit peculiarities of differ-
ent areas and seniorities; inclusive, as they comprehend several popular
indices; coherent, as they share the same structural properties; calibrated
to the particular scientific community; granular, as they allow a more pre-
cise comparison between scientists and are based on the whole scientist’s
citation curve.

Keywords: Bibliometric Indices, Citations, Risk Measures, Scientific Im-
pact Measures

1 Introduction

In the recent years the evaluation of the scientist’s performance has become
increasingly important. In fact, most crucial decisions regarding faculty re-
cruitment, accepting research projects, research time, academic positions, travel
money, award of grants and promotions depend on great extent upon the scien-
tific merits of the involved researchers.

The scope of the valuation of the scientific research is mainly twofold:

e Provide an updated picture of the existing research activity, in order to
allocate financial resources in relation to the scientific quality and scientific
production;

e Determine an increase in the quality of the scientific research (of the struc-
tures).
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The methodologies for the valuation can be divided into two categories:
e content valuation, based on:

— internal judgments committee;

— external reviews of peer panels.
e context valuation, based on:

— bibliometrics (i.e. statistics derived from citation data);

— characteristics of the Journals associated to the publications.

Economic considerations strongly depone of using the context method on a
systematic (yearly) base, while peer review is more plausible on a multiple year
base and should also be finalized to check, harmonize, and tune the outcomes
based on bibliometric indices.

So in order to have a simple and cheaper assessment method and thank to
the major availability of the online database (i.e. Google Scholar, IST Web of
Science, MathSciNet and Scopus) several different bibliometric measures have
been introduced.

There are several critics, as those clearly underlined by the Citation Statistics
Report of the International Mathematical Union (2008) [CIT], to the use of
the citations as a key factor in the assessment of the quality of the research.
However, many of these critics can be satisfactorily addressed and our proposal
is one reasonable way to achieve this task. We emphasize that the output of
the valuation is the classification of authors (and structures) into few classes of
homogeneous research quality: it is not intended to provide a fine ranking.

Many indices were developed to quantify the production of researchers, e.g.
the total number of published papers in a period of time; or the impact of their
publications, e.g. the total number of citations, the average number of citations
per paper, the number and percentage of significant papers (with more than a
certain amount of citations).

In 2005 Hirsch [HO5] proposed the h-index, that is now the most popular
and used citation-based metric. A scientist has index h if h of his n papers have
at least h citations each and the other (n — h) papers have at most h citations
each. The h-index is an attempt measures at the same time the productivity in
terms of number of publications and the research quality in terms of citations
per publication.

After its introduction, the h-index received wide attention from the scientific
community and it has been extended by many authors who have proposed other
indices (for an overview see Alonso et al., 2009 [ACHH]) in order to overcome
some of the drawbacks of it (see Bornmann and Daniel, 2007 [BDOT]).

Differently from any existing approach, our formulation is clearly germinated
from the Theory of Risk Measures. The axiomatic approach developed in the



seminal paper by Artzner et al.[ADEH99] turned out to be, in this last decade,
very influential for the theory of risk measures: instead of focusing on some
particular measurement of the risk carried by financial positions (the variance,
the VQR, etc. etc.), [ADEH99] proposed a class of measures satisfying some
reasonable properties (the “coherent” axioms). Ideally, each institution could
select its own risk measure, provided it obeyed the structural coherent proper-
ties. This approach added flexibility in the selection of the risk measure and, at
the same time, established a unified framework. We propose the same approach
in order to determine a good class of scientific performance measures, that we
call Scientific Research Measures (SRM).

The theory of coherent risk measures was later extended to the class of con-
vex risk measures (Follmer and Schied [FS02], Frittelli and Rosazza [FR02]).
The origin of our proposal can be traced in the more recent development of
this theory, leading to the notion of quasi-convex risk measures introduced by
Cerreia-Vioglio et al. [CMMM] and further developed in the dynamic frame
work by Frittelli and Maggis [FM11]. Additional papers in this area include:
Cherny and Madan [CMO09], that introduced the concept of an Acceptability
Index having the property of quasi-concavity; Drapeau and Kupper [DK10],
where the correspondence between a quasi-convex risk measure and the associ-
ated family of acceptance sets - already present in [CMO09] - is fully analyzed.
The representation of quasi-concave monotone maps in terms of family of ac-
ceptance sets, as well as their dual formulations, are the key ideas underlying
our definition of SRM.

We propose a family of SRMs that are:

e flexible in order to fit peculiarities of different areas and ages;
e inclusive, as they comprehends several popular indices;
e calibrated to the particular scientific community;

e coherent, as they share the same structural properties - based on an ax-
iomatic approach;

e granular, as they allow a more precise comparison between scientists and
are based on the whole citation curve of a scientist.

The definition of the SRM, the relative properties and some examples are
given in Section 2. A new interesting approach to the whole area of bibliometric
indices is provided by the dual representation of a SRM discussed in Section 3.
We also show the method to compute a particular SRM, called ¢-index, and we
report some empirical results obtained by calibrating the performance curves
to a specific data set (built using Google Scholar).



2 On a class of Scientific Research Measure

We represent each author by a vector X of citations, where the i-th component of
X represents the number of citations of the i-th publication and the components
of X are ranked in decreasing order. We consider the whole citation curve of
an author as a decreasing bounded step functions X (see Fig.1) in the convex
cone:

y+o— X :R — R, | X is bounded, with only a finite numbers of values,
B decreasing on R, and such that X (z) =0 for z < 0.
12
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Fig. 1. Author’s Citation Curve

We compare the citation curve X of an author with a theoretical citation curve
fq representing the desiderata citations at a fix performance level ¢. For this
purpose we introduce the following class of curves. Let Z C R be the index set
of the performance level. For any ¢ € 7 we define the theoretical performance
curve of level q as a function f, : R — R, that associates to each publication
z € R the corresponding number of citations f,(z) € Ry.

Definition 1 (Performance curves) Given a index set T C R of perfor-
mance levels ¢ € I, a class F = {f,} of functions f;, : R — Ry is a
family of performance curves if

i) {fq} is increasing in q, i.e. if ¢ > p then fyo(x) > fp(x) for all z;

ii) for each q, fq(x) is left continuous in x;

iii) fq(x) =0 for all x < 0 and all q.

qeT

The main feature of these curves is that a higher performance level implies
a higher number of citations. This family of curves is crucial for our objective
to build a SRM able to comprehend many of the popular indices and calibrated
to the scientific area and the seniority of the authors.



Definition 2 (Performance sets and SRM) Given a family of performance
curves F ={f,},, we define the family of performance sets A := {A4}, by

Ay ={X € X" | X(2) > fy(x) for allz e R} .

The Scientific Research Measure (SRM) is the map ¢ : X+ — [0, 00| associated
to F and Ap given by

op(X) : =sup{gel|X e A}
= sup{geZ|X(x)> fo(x) for allz € R}. (1)

The SRM ¢y is obtained by the comparison between the real citation curve
of an author X (the red line in Fig.2) and the family F of performance curves
(the blue line in Fig.2): the ¢p(X) is the greatest level ¢ of the performance
curve f, below the author’s citation curve X.

Citations

[

Publications

Fig. 2. Determination of a particular SRM, the h-index
(that in this example is equal to 4).

2.1 Some examples of existing SRMs

The previous definition points out the importance of the family of theoretical
performance curves for the determination of the SRM. It is clear that different
choices of F := {f¢}, lead to different SRM ¢p. The following examples show
that some well known indices of scientific performance are particular cases of
our SRM. In the following examples, if X has p > 1 publications that received
at least one citation, we set: X = Zle Til(i—1,q) , With z; > ;1 for all 7.



Example 3 (max # of citations) The maximum number of citations of the
most cited author’s paper is the SRM ¢y, ) defined by (1), where the family

F

Cmax

fq(z)

{

Example 4 (total number

Citations

of performance curves is:

g O0<z<1

0 > for allx € Ry

(2)

3 4 & & 7 8
Publications

3)

of publications) The total number of publica-

tions with at least one citation is the SRM O, defined by (1), where the family

F, of performance curves is:

fw = |

Citations

1 O0<zx<gq

0 z>q forallx e Ry.

(4)

Publications

()

Example 5 (h-index) According to the definition given by Hirsch, 2005 [HO5]:
"A scientist has index h if h of his or her N, papers have at least h citations

each and the other (N, — h)
the SRM ¢y, defined by (1),

fq()

papers have < h citations each”. The h-index is
where the family ¥y, of performance curves is:

{

g 0<z<g

0 z>q forx e R,y

(6)

Citations
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Example 6 (h%-index) Kosmulski, 2006 [K06] defined a scientist’s h%-index
"as the highest natural number such that his h® most cited papers received each
at least [h?)? citations". This index is the SRM g, , defined by (1), where the
family Fr2 of performance curves is:

2
fq(:c)z{qo O;iiq forz e Ry.
Example 7 (h,-index) Eck and Waltman, 2008 [EW06] proposed the h,-
index as a generalization of the h-index so defined: "a scientist has h,-index
h, if h, of his n papers have at least a-h,, citations each and the other n—h,
papers have fewer than < a-h, citations each”. Hence, hy-index is the SRM
ngha defined by (1),where the family Fy,_ of performance curves is:

_J ag O<x<q
fq(:c)—{ 0 z>q forz € Ry and a € (0,00).
Example 8 (w-index) Woeginger, 2008 [W0308] introduced the w-index de-
fined as: "a w-index of at least k means that there are k distinct publications
that have at least 1, 2, 3, 4,..., k citations, respectively”. It is the SRM ¢p
defined by (1), where the family F., of performance curves is:

_Jg—z+1 0<xz<gq
fq(:r)—{ 0 z>q forallx e Ry. (8)

Example 9 (h,,-index & h,-index) The rational and the real h-index, hyqt-
index and h,-index, introduced respectively by Ruane and Tol, 2008 [RT08] and
Guns and Rousseau, 2009 [GR09] are SRMs, indeed they could be defined as the
h-index but taking respectively ¢ € T CQ and ¢ € T CR.

Example 10 (h,,-index) Schreiber, 2008 [S08] proposed a new index called
h,,-index that keeps into account the influence of the number of co-authors for a
researcher’s publication, counting the papers fractionally according to the number
of authors. The hp,-index is the SRM ¢y, ~ defined by (1), where the family Fp,,
of performance curves is:

q
Eﬁ O<ax<g
j=1

0 T >q

folz) =

forx e Ry,

where a(j) is the number of authors for the paper j.

2.2 Key properties of the SRM

Now we point out some relevant properties of the family Ap = {.Aq}q of perfor-
mance sets and of the SRM ¢y.

Proposition 11 Let X;, Xy, € X7,



1. If Ap = {Ag}, is a family of performance sets then:

i) {Aq} is decreasing monotone: Ay C A, for any level ¢ > p;
if) A, is monotone for any q: X1 € Ay and Xo > Xy implies Xo € Ay;

iii) A, is convex for any q: if X1,Xo € Ay then AX1 + (1 — X)X € A,
for A€ [0,1];

2. If ¢ is a SRM then it is:

i) increasing monotone: if X1 < Xo = ¢p(X1) < ¢p(X2);

ii) quasi-concave: ¢p(AX1 + (1 — A\)X2) > min(¢p(X1), ¢p(X2)) for all
A€ [0,1].

Proof.

1) The proof of the monotonicity and convexity of Ay follows from the defini-
tion.

2.i) It is sufficient to show that
(GeT| X > f}ClaeT|Xa> 1},
As X1 < Xy, Xy > f7 implies Xy > fz.

2.ii) Let ¢p(X1) > m and ¢p(X2) > m. By definition of ¢p, Ve > 0 Jg; s.t.
X; > fqi and ¢; > ¢IE‘(X1) —&2>m—e¢. Then X; > fqi > fm—e, as {fq}q
is an increasing family, and therefore AX; + (1 — A\) X2 > f,—e. As this
holds for any € > 0, we conclude that ¢p(AX7 + (1 — A)X3) > m and ¢p
is quasi-concave.

]

It is obviously reasonable that a SRM should be increasing: if the citations
of a researcher X5 dominate the citations of another researcher X7 publication
by publication, then X5 has a performance greater than Xj.

Now, we introduce a counterexample in order to show that a SRM is not
in general quasi-convex, that is ¢p(AX1 + (1 — X)X2) < max(¢p(X1), ¢r(X2))
for all A € [0,1]. We consider two researchers, X; = [8 6 4 2] and Xy =
[4 2 2 2 2], where X, has more publications than X7 but less cited. If we
compute for example the w-index we obtain that ¢p (X1) = 4 and ¢y (X2) = 3,
while taking A = % the SRM ¢ ~of the combined citation curve X = %Xl +
1Xo=106 4 3 2 1]is¢g (X)=5.

2.3 Additional properties of SRMs

We have seen that all the SRMs ¢p share the same structural properties of
monotonicity and quasiconcavity. We start this section classifying the SRMs on
the basis of the addition of citations to the old papers.



Definition 12 (Additional citation properties) A SRM ¢y : Xt — [0, 0]
18

a) C-superadditive if opp(X +m) > ¢p(X) +m for allm € Ry ;
b) C-subadditive if pp(X +m) < ¢pp(X) +m for allm € Ry ;
c) C-additive if pp(X +m) = ¢pp(X) +m for allm € R,.

A SRM is C-superadditive (C-subadditive) if the additional citations to the
old papers lead an increase of the measure more (less) than linear. In other
terms, a C-superadditive SRM gives more weight than the C-subadditive SRM
to the additional citations to the oldest papers.

We have seen that the SRM ¢ depends on the family of performance curves
F := {fq}, under consideration. The main feature of this family of curves is
that is increasing monotone over g. We provide a characterization of this family
in terms of the speed in the increase of the performance curves.

Definition 13 Let F a family of performance curve. We say that:
a) F is slowly increasing in q if foym — fg < m for allm € Ry ;
b) F is fast increasing in q if fo4rm — fq > m for allm € Ry ;

c) F is linear increasing in q if fy1m — fg = m for allm € Ry.

These properties of the family of performance curves can be express in terms
of corresponding properties of the family Ay of performance sets.

Lemma 14 Let F a family of performance curve.
1. F is slowly increasing in q, if and only if
Ag+m C Ay, 9)
for allm € Ry and q € T;
2. F is fast increasing in q, if and only if
Agtm CAg+m (10)
for allm € Ry and q € T;
8. T is linear increasing in q, if and only if
Agrm = Ag+m

for allm e Ry and q € T;



Proof. (1) In order to show that A, +m C A, ., we observe that:

Agtm = {Xex+|X2fq+m}
Ag+m={XeXt | X>f}+m
— (X |X [, +m)

As fy+m > fyim, if X is such that X > f, +m then X > f,1,,. This means
that X € A, +m implies that X € A, .

Regarding the other implication, we know that if X € A, +m then X €
Agim, that is X > f, +m implies X > fq1.,. This implies that fo+m > foirm.

(2) By hypothesis we know that f,i,, > f, + m. Hence, if X is such
that X > fq+m then X > fq +m. This means that X € Ag4+m implies that
X e A, +m.

Regarding the other side, we know that if X € A4, then X € A, + m,
that is X > fo4, implies X > f, +m. This implies that f, ., > f; +m.

(3) The proof of this point follows directly from the previous ones, observing
that F is linear increasing in ¢ if and only if F is slowly and fast increasing in ¢
and Agym = Ag + m if both of the inclusions (9) and (10) hold. =

The following lemma shows that the additional citation properties of the
SRM ¢y can be built in from the corresponding properties of the family F of
the performance curves or Ap of performance sets.

Lemma 15 Let F a family of performance curves.
1. If F is slowly increasing in q, then ¢p is C-superadditive;
2. IfF is fast increasing in q, then ¢p is C-subadditive;
3. If I is linear increasing in q, then ¢y is C-additive.

Proof. (1) In order to show that ¢p(X +m) —m > ¢p(X) for all m € Ry
we use the definition in (1) and we observe that

p(X +m)—m = sup{gel|X+m=>f}-—m
= sup{g—meI|X>f,—m}
= sup{q €T [X > form —m} (11)

Hence it’s sufficient to show that {¢ | X > fy} € {¢| X > fg+m — m} and this
is true since f; > form —m;

(2) In order to show that ¢p(X +m) —m < ¢p(X) for all m € RT we use
the definition in (1) and the relation (11). Hence it’s sufficient to show that
{g| X > fom —m} C{q| X > f,} and this is true since foi1m —m > fy;

(3) It follows directly from the previous points observing that F is linear
increasing in ¢ if and only if it is slowly and fast increasing in ¢ and that ¢p is
C-additive if and only if it is C-superadditive and C-subadditive. m

Now we give some examples using some popular SRMs.

10



Example 16 The h-index in the example (5) is a C-subadditive SRM, but the
associated family F of performance curves defined in (6) is fast increasing in
q. Indeed the property is true only on [0,q + m] for any m € Ry since the
performance curves are equal to zero outside. Hence, the performance curves of
the h-index are fast increasing only in the Hirsch core.

The same considerations hold for the h?- and hy- index (see examples (6)

and (7)).

Example 17 The family F defined in 8 of the w-index (see example 8) is slowly
increasing in q. This condition is sufficient to say that the w-index is a C-
superadditive SRM.

Example 18 The mazimum number of citations of an article (see example 3) is
a C-additive SRM, even if the family F of performance curves defined in 2 is not
linear increasing in q. This property holds only on [0, 1], since the performance
curves are equal to zero outside.

Example 19 The total number of publications (see example /) is a C-superadditive
SRM since the family F of performance curves defined in 4 is slowly increasing
m q.

‘We now define further properties linked to the addition of a single publication
to the author’s citation curve.

Definition 20 (Additional paper properties) Letp := max {z : X (x) > 0}
the mazximum number of publications with at least one citation of the author X.
A SRM ¢y : Xt — R, is

a) P-superadditive if ¢pp(X + 1(p413) > op(X) +1;
b) P-subadditive if ¢pp(X + 1pi1y) < dp(X) +1;
c) P-additive if pp(X + 1(p41y) = op(X) +1;

c) P-invariance if op(X + 1{p113) = op(X).

A SRM is P-superadditive if the addition of one citation to a new publication
leads to an increase of the measure more than linear. Someway if we use a P-
superadditive SRM in our evaluation we are giving more weight to the additional
publication than in case of P-subadditive SRM. Many known SRMs are P-
invariance (i.e. the cpax, h-, h?- and h,-index in the examples (3) (5), (6)
and (7)) as the addition of one citation to a new publication leaves the SRM
invariant. The w-index (in the example (8)) is P-subadditive as the addition of
one citation to a new publication makes it greater at most of 1 unit. While the
total number of publications p with at least one citation (in the example (4)) is
clearly P-additive.

11



3 On the Dual Representation of the SRM

The goal of this section is to provide a dual representation of the SRM. To this
scope, we need some topological structure. Let (R, B(R),u) be a probability
space, where B(R) is the o-algebra of the Borel sets, u is a probability measure
on B(R). Since the citation curve of an author X is a bounded function, it
appears natural to take X € L>® (R, B(R), 1), where L>(R, B(R), i) is the space
of B(R)-measurable functions that are u almost surely bounded. If we endow L*°
with the weak topology o(L>°, L') then L' = (L*°, o (L%, L'))’ is its topological
dual. In the dual pairing (L*°, L', (-,-)) the bilinear form (-,-) : L= x L' — R
is given by (X,Z) = E[ZX], the linear function X — E[ZX], with Z € L',
is o(L>, L') continuous and (L, o (L, L)) is a locally convex topological
vector space.

We have seen in the Section 1 that the SRM is a quasi-concave and monotone
map. Under appropriate continuity assumptions, the dual representation of
these type of maps can be found in [PV90],[Vo98], [CMMM].

Definition 21 A map ¢ : L>°(R) — R is o(L>°, L')—upper-semicontinuous if
the upper level sets
{X e L™R) [ ¢(X) = q}

are o(L>, L')—closed for all ¢ € R.

Lemma 22 If Ar = { Ay}, is a family of performance sets then Aq is o (L, LY-
closed for any q.

Proof. To prove that A, is 0(L>°, L')-closed let V,, € A, :={X € L™ | X > f,}

L*>,L*
satisfy Y, L)y By contradiction, suppose that p(A) > 0 where A :=

{zr eR|Y(z) < fy(x)} € B(R). Taking as a continuous linear functional Z =

o oo 1
14 € L', from Y, CZE) Y we deduce: E[laf,] < E[14Y,] — E[14Y] <

E[lqu]. ]

The following lemma shows the relation between the continuity property of
the family F of performance curves, those of the family Ap of performance sets
and those of the SRM ¢y.

Lemma 23 Let F be a family of performance curves. If F is left continuous in
q, that s

fo—e(@) 1 folx) fore | 0, for all z,
then:

1. Ay is left-continuous in q, that is

Ag =) Ag—e.

e>0

12



A, ={X € L | ¢pp(X) > q}, for allge T. (12)
3. ¢g is (L™, LY)-upper-semicontinuous.
Proof.

1. By assumption we have that f,_.(z) T fy(x) for ¢ — 0, for all x € R. We
have proved in Proposition (11) that {A,} is decreasing monotone, hence

we know that A; C () Ag4—.. By contradiction we suppose that
e>0

() As-c 2 A,

e>0

so that there will exist X € L such that X > f,_. for every ¢ > 0 but
X(A) < fy(A) for some A € B(R) such that p(A) > 0. Then there exists
d > 0 such that f,(x) — X (x) > ¢ for any = in B C A such that p(B) > 0.
Then f,(z) — X(z) > 3 for any = € B. Since f,_. 1 f, we may find ¢ > 0
such that f,(z)— f,—-(z) < § forz € B. Thus X (z) > fy_-(z) > fy(z)—3
for x € B and this is a contradiction

2. Now let
By i={X €L | ¢p(X) > q}.

A, C B, follows directly from the definition of ¢p. We have to show
that B, C A,. Let X € B,. Hence ¢p(X) > ¢ and for all € > 0 there
exists ¢ such that ¢ + ¢ > ¢ and X(z) > fz(z) for all z € R. Since
f, are increasing in ¢ we have that X(z) > f,—.(z) for all z € R and
e > 0, therefore X € A,_.. By the left continuity in ¢ of the family F we
have know that {A,} is left-continuous in ¢ for the previous item and so:

Xe N A=A,

>0

3. By Lemma (22) we know that A, is o(L°°, L')—closed for any ¢ and
therefore the upper level sets B, = A, are o(L>, L')—closed and ¢y is
o(L>, L') upper semicontinuous.

]

Notice that o(L°°, L')-upper semicontinuity is equal to the continuity from
above of a SRM. This fact can be proved in a way similar to the convex case
(see for example [FS04]).

Lemma 24 Let ¢p : L — Ry be a SRM. Then the following are equivalent:
¢ is o(L>°, LY)-upper semicontinuous;
op is continuous from above: X,,, X € L*® and X,, | X imply ¢p(X,) | op(X)
Proof. Let ¢y be o(L>, L')-upper semicontinuous and suppose that X,, |
o oo 1
X. As the elements in L' are order continuous, we also have: X, (L=.L7) X.

13



The monotonicity of ¢p implies ¢p(X,) | and ¢ = lim, ¢p(X,) > op(X).
Hence ¢p(X,) > q and X,, € B, :={Y € L | ¢p(Y) > ¢} which is closed
by assumption. Hence X € By, which implies that ¢p(X) = ¢ and that ¢j is
continuous from above.

Conversely, suppose that ¢y is continuous from above. We have to show
that the convex set B, is o(L>, L')-closed for any g. By the Krein Smulian
Theorem it is sufficient to prove that C := B, N{X € L | | X |lco< 7} is
o (L, L')-closed for any fixed 7 > 0 and ¢ € R. As C C L> C L! and as the
embedding

(L%, (L%, 1) = (L}, o (L, L%))

is continuous it is sufficient to show that C is o(L', L°°)-closed. Since the
o(L*, L>) topology and the L! norm topology are compatible, and C' is convex,
it is sufficient to prove that C is closed in L'. Take X,, € C such that X,, — X
in L'. Then there exists a subsequence {Y,}, C {X,}, such that ¥, — X
a.s. and ¢p(Y,) > ¢ for all n. Set Z,, := sup,>,, Yn V X. Then Z,, € L,
since {Y},},, is uniformly bounded, and Z,, > Yy, ¢p(Z) > ¢p(Ym) and Zy, |
X. From the continuity from above we conclude: ¢(X) = lim,, ¢pp(Z,,) >
limsup,,, ¢r(Ys,) > ¢. Thus X € B, and consequently X € C. =

When the family of performance curves F is left continuous, Lemma (23)
shows that the SRM is o(L>°, L!)-upper semicontinuous. Hence we can provide
a dual representation for the SRM in the same spirit of [Vo98] and [DK10].

Denote

P:={Q < P} andzzz{zzjg|Q6P}={Z€LiIE[Z]=1}

Theorem 25 Suppose that the family of performance curves F is left contin-
uwous. Each SRM ¢p : L= (R, B(R), ) — R defined in (1) can be represented
as

0:(X) = jnf H(Z,B[ZX]) = int H*(Z,E[ZX)) (13)

—  inf HT(Q,EolX X e L™
Jnf, (Q,Eq[X]) foral X €

where H : L' x R — R is defined by

H(Z,t) := i {or(§) | ElEZ] <t}

H™(Z,-) is its right continuous version:

H*(Z,t) = inf H(Z,s) =sup{g € R [t >(Z,q)}, (14)

and v : L' x R — R is defined by:

WZ.aq) = inf {EZX] | 6s(X) > a}. (15)
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Proof. Step 1: ¢p(X) = infzcz H(Z, E[ZX]).
Fix X € L*. As X € {( € L~ | E[Z{ < E[ZX]}, by the definition of
H(Z,t) we deduce that, for all Z € L!,

H(Z,E[ZX]) = ¢5(X)

hence
inf H(Z, E[ZX]) > ¢p(X).
Zel?

We prove the opposite inequality. Let € > 0 and define the set

Ce:={§ € L7 | ¢p(§) > ¢p(X) + ¢}

As ¢y is quasi-concave and o (L%, L!)-upper semicontinuous, C' is convex and
o(L>®, L')—closed. Since X ¢ C., the Hahn Banach theorem implies the exis-
tence of a continuous linear functional that strongly separates X and C¢, that
is there exist k € R and Z. € L' such that

El§Z.] >k > E[XZ,] for all £ € C..
Hence
{€e L™ | EEZ] < E[XZ]} CCli={£ € L™ | ¢p(§) < ¢p(X) +¢}
and

#s(X) < inf H(Z,E|ZX]) < H(Z, B[XZ])

=sup{¢p(¢) | £ € L™ and E[(Z:] < E[X Z]}
<sup{¢p(£) | £ € L™ and ¢x(§) < ¢p(X) + e} < ¢p(X) +&.

Therefore, ¢pp(X) = infzcp1 H(Z, E[ZX]). To show that the inf can be taken
over the positive cone L, it is sufficient to prove that Z. C L}. Let Y € LY
and & € C.. Given that ¢y is monotone increasing, £ +nY € C; for every n € N
and we have:

ElZ(X = ¢)]

n

El(+nY)Z.] >k > E[XZ.] = E[YZ.] >

— 0, asn — oo.

As this holds for any Y € LY we deduce that Z. C L. Therefore, ¢p(X) =
inf e ;1 H(Z, E[ZX]).
By definition of H(Z,t),

H(Z,E[ZX])=H(\Z,E[X(\Z)]) VZ¢€ L' and Z #0.
Hence we deduce

Pp(X) = Zeiglf(R)H(ZyE[ZX}) = jof H(Z E[ZX]) = inf H(Q, Eq[X]).
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Step 2: ¢p(X) =infzez HT(Z, E[ZX]).
Since H(Z,-) is increasing and Z € Ll+ we obtain

HY(Z,E|ZX]) = inf H(Zs)< lim H(Z E[XnZ)),
s>E[ZX] XmlX

op(X) = inf H(Z,E[ZX]) < inf HY(Z E[ZX]) < inf lim H(Z,E[X,.Z])

ZeLl ZeLl ZeLl XmlX
CFA
=1 f HZ E[X,Z]) = li Xm
i, uf, H(ZED2) = Jim 6:(0) = 6c()

Step 3: HT(Z,t) :=infssy H(Z,s) =sup{q e R |t > ~v(Z,q)}.
Now let the RHS of equation (14) be denoted by

S(Z,t):==sup{g € R|v(Z,q) <t}, (Z,t) € L' xR, (16)

and note that S(Z,-) is the right inverse of the increasing function v(Z,-) and
therefore S(Z,-) is right continuous.

To prove that H*(Z,t) < S(Z,t) it is sufficient to show that for all p > t we
have:

H(Z,p) < 5(Z,p), (17)
Indeed, if (17) is true

H(2,6) = it H(Z,p) < inf S(Z,p) = S(Z,1),

as both HT and S are right continuous in the second argument.
Writing explicitly the inequality (17)

Sup {or(§) | E[£Z] < p} <sup{q € R|~(Z,q) < p}

and letting £ € L™ satisfying E[£Z] < p, we see that it is sufficient to show the
existence of ¢ € R such that v(Z,q) < p and g > ¢p(§). If ¢p(§) = oo then
v(Z,q) < p for any ¢ and therefore S(Z,p) = H(Z,p) = oo

Suppose now that co > ¢p(§) > —oo and define g := ¢p(§). As E[§Z] < p
we have:

V(Z,q) == inf {E[Z] | ¢p(§) = q} <.

Then ¢ € R satisfies the required conditions.

To obtain H*(Z,t) := inf,~; H(Z,p) > S(Z,t) it is sufficient to prove that,
for all p > t, H(Z,p) > S(Z,t), that is :

Sup {ox(&) | El§Z] < p} =2 sup{q e R|~(Z,q) <t}. (18)
cL

Fix any p > t and consider any ¢ € R such that v(Z, ¢) < t. By the definition
of 7, for all € > 0 there exists {, € L™ such that ¢z(§,) > g a nd El(.Z] <t+e.
p and ¢p

Take ¢ such that 0 < ¢ < p—¢. Then E[{.Z] < (&.) > q and (18)
follows. m
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Remark 26 This dual representation provides an interesting interpretation of
the SRM. Let Q be the "weight’ that we can assign to the author’s publications
(for example, the impact factor of the Journal where the article is published).
For a fizred Q, the term v(Q, q) := inf {EQ[€] | ¢p(&) > ¢} represents the smallest
Q-average of citations that a generic author needs in order to have the SRM at
least of q. We observe that this term is independent from the citations of the
author X.

On the light of these considerations we can interpret the term H(Q, Eg[X]) :=
sup{q € R| Eg[X] > v(Q,q)} as the greatest performance level that the author
X can reach, in the case that we attribute the weight Q) to the publications.
Namely, we compare the Q-average of the author X, Eq[X], with the minimum
Q-average necessary to reach each level q, that is v(Q, q).

Finally, the SRM of the author X, ¢p(X) = infoep HT(Q, Eg[X]), corre-
sponds to the smallest performance level obtained changing the weight attributed
to the journals.

The theorem exhibits the relationship between the performance curve ap-
proach and this average approach.

In the following examples we find the dual representation of some existing in-
dices. In all these examples the family F of performance curves is left continuous
hence, by Lemma (23), the associated SRM ¢y is o(L>°, L!)-upper semicontin-
uous and X satisfies: ¢p(X) > ¢ iff X € A, iff X > f,. Therefore, we find the
dual representation computing v, H™ and ¢y applying the formulas: (15),(14)
and (13). Recall that X = >"" | @;1(;_1 4 , with 2; > x4, for all i.

Example 27 (max # of citations) Consider the ezample (3). For Z € L,
we compute Y(Z,q)

Zq):= inf  E[ZX]=  inf  E[ZX]=qE[loyZ
nea):=, T2 ZXI= st oy PN = 0Bl 0 7]

Cma

where the first equality is due to (12). We obtain

FElZX
HY(Z,E[ZX]) :=sup{q € R| E[ZX] > qE[l(o1)Z]} = #
Ell1Z]
In our application, any non zero citation vector X always satisfies X > x11 1
and, since E[X1(o1)] = z1E[1(o,1)], we also have: EH?OUI]] < E[X)l((o,u]' There-
fore,

Lo, } [ X ] 1
Elz—YY \«cplz—= | vZzeI'R
{ E10,1] E[X10,1] +®)

E[ZX] _ EllonX]
E[Z10y] ~— Elloy]

and
VZ € L1 (R).

17



Hence:

F\ZX

b (X)= inf HYZEZX]) = inf —ZX

emax ZeLl (R) ZeLl (R) E[Z1(071]]
_ EllyX]
Ella110,1]’

i.e. the infimum is attained at Z = 1) € L}s_, which is of course natural as
this SRM weights only to the first publication.

Example 28 (total # of publications) Consider the example (4). For Z €
LY, we compute v(Z,q) as in the previous example:

Y(Z,q) = lerf(fo,q] EB[ZX] = E[l,q97]

We obtain
H*(Z,E[ZX]) = sup {q eER|E[ZX] > E[l(qu]Z}}

Hence the dual representation of the total number of publications p with at least
one citation is

op (X)= inf sup q
=, (%) ZeL}(R) E[ZX]>E[1),q 2]

We show indeed that ¢, (X) = p, where p is such that X = X1, € LY. First
we check that ¢y (X)>p. Forall Z € LY, and q¢ < p we have
ElZX] = E[ZX1(0,] 2 E[1(0,7]

and therefore

sup q>0p VZ € Ll+7
E[ZX]>E[1(0,q Z]

and ¢, (X) > p. Regarding the < inequality, it is enough to take Z = 1, 14,
with 0 > 0, for X = X1, In this case, the condition E[ZX] > E[lqZ]
becomes

0=Elpp+aX] 2 Ell0,q 1+l
that holds only for q < p, hence

sup q=p
E[Xl(p¢p+5]]2E[1(0,q] 1(P7P+5]]

and 6y, (X) < p.
Example 29 (h-index) Consider the example (5). For Z € LY,
WZ2q = inf E[ZX]=E[Zql(,q)]

(2)>q1(0,q(x)
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We obtain
HY(Z,E[ZX]) :=sup{q € R | E[ZX] > E[Zql(0,4]}
Hence the dual representation of the h-index is

op (X)= inf sup q
Fh( ) ZELY (RY) E[ZX]|>E[Zql(0,q)]

We indeed show that ¢y, (X) = h, where h is such that X1 > hlp and
X1(h4o0) < hl(hto0)- First we check that ¢y, (X) > h. For all Z € LY, and
q < h we have

E[ZX] 2 E[ZXl(O’h}] Z E[qu(o,q]L

hence

sup q>h VZ € L}‘_
E[ZX]>E[q1(0,q1Z]

and ¢g, (X) > h.
Regarding the < side, take Z = 1}, 15 with 6 > 0. For any q < h the
condition
EXT(nn16)] = Elgl0.gL(nnta)] =0

holds. Instead, Yq > h there exists § > 0 such that h+ 0 < q and then

E[X1(nn+s)] < EhL(nnve)] < Elqlo,q1n,n+4)]

hence

sup q<h
E[X1(h,nt61>2Elal(0,q11(h,nt5)]

and ¢g, (X) < h.

3.1 On an alternative approach to SRMs

The dual representation suggests us another approach for the definition of a
generic class of SRMs. This approach is based on the assumption that we can
represent the author’s citation as a function X (w) defined on the events w € €,
where each event now corresponds to the journal in which the paper appeared.

We start fixing a plausible family P C {Q < P} where each Q(w) represents
the “walue’ attributed to the journal w € €. It is clear that the valuation
criterion for journals (i.e. the selection of the family P) has to be determined a
priori and could be based on the Tmpact factor’ or other criterion. A specific
Q@ could attribute more importance to the journals with a large number of
citations (a large impact factor); another particular @ to the journals having a
high quality.

As suggested from the dual representation results and in particular from the
equations (13) and (14) we consider, independently to the particular scientist
X, a family {’yﬁ}ﬁeR of functions v5 : P — R that associate to each @ the
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value v4(Q), that should represent the smallest Q-average of citations in order
to reach a quality index at least of 3.

So given a particular value Q(w;) for each i*"-journal and the average cita-
tions 74(Q) necessary to have an index level greater than 3, we build the SRM
in the following way. We define the function H* : P x R — R that associates
to each pair (Q, Eg(X)) the number

HY(Q,Eq(X)) =sup{B € R| Eo(X) = 75(Q)},

which represents the greatest quality index that the author X can reach when
@ is fixed, and we build the SRM as follows:

X):= inf HY(Q, Eo(X
¢(X) := i H™(Q, Eq(X))
which represents a prudential and robust approach with respect to P, the plau-
sible different selections of the evaluation of the Journals. This SRM is by con-
struction quasi-concave and monotone increasing.

4 Empirical results

Since the SRM introduced in Section 2 depend on the particular family F of
performance curves, in this section we provide a procedure to calibrate the
family F from the historic data available for one particular scientific area and
seniority. In this way, each SRM will fit appropriately the characteristics of
the research field and seniority under consideration. The SRM should be used
only in relative terms (to compare the author quality with respect to the other
researchers in the same area) in order to classify the authors (and structures)
into few classes of homogeneous research quality.

4.1 Sample setting

The first step consists in the selection of a representative sample of M authors
in the same scientific area and with the same seniority.

If p is the total number of the author’s publications with at least one citation,
then X =37 | wil(i—1,q, with z; > x;11 for all 7, where the first component z;
corresponds to the number of citations received by the most cited article and
similarly for x; > x2 > ... > z).

The citation data of each author are downloaded from Google Scholar by a
procedure implemented in Pyton. This procedure performs a filter on the name
of the author and on the scientific area we are analyzing.

4.2 Determination of the family {f,;} 6 and of the SRM

First of all we need to determine the family of curves { fq}q that better represents
the citation curve of the sample of the selected scientists. By the analysis of
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the data we found that the theoretical model is the following hyperbole-type

equation:
_ _9q
y—fq(m)— 2B (19)

with ¢,5 € Ry. Setting Iny =Y, In(g) = ¢, nz = X, g = B we obtain the

linearized model .
Y =¢-pX. (20)

For each i-th author of the sample we determine Bi that minimizes the sum
of the square distances of the points from the line (20). Fixing the parameter
B, we obtain the ¢-index of each author X as

H(X) = sup{q ER| X(z) > Va } (21)

%l

4.3 Our Results

We have chosen a group of 20 well established researchers in the mathematical
finance area. The analysis of the citation vectors of each author (see Fig.4.3)
brings out that the theoretical model is the in the formula (19). We have
computed the BZ for each author and we have found that 8 = 1, 62.

Citations per publication

Fig.4.3. Citation curves of 20 senior authors in Math
Finance area.

In the following table (Fig.4.3.a) we report the results and the respective
ranking obtained calculating the ¢-index as in (21) and the h-index for each
author. Fig.4.3.b shows that the hyperbole-type curve (red line) corresponding
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to the author’s ¢-index is always below his citation curve (blue line).

Author | g-index r-ank(a- h-index r_ankh-
index index

Author & | 4423 1 53 2
Author8 | 2985 2 60 1 400 . .
AuthorD | 1235 3 35 3
Author E 1136 4 35 4 J
Author F 550 5 25 14 3500 1
Author C 508 6 28 7
Author R 875 7 28 8 3000 1
Author T 800 g 29 6
Author P 780 9 28 9 2500 H i
Author H 723 10 33 5
Author G 511 11 26 11 o0l |
Author L 451 12 24 15
AuthorQ | 449 13 20 17
Author M| 417 14 27 10 1500 .
Author J 318 15 26 12
AuthorN | 304 16 17 13 1000 1
Author | 240 17 26 13
AuthorQ | 221 18 15 20 st J
Author K 186 19 23 16
Author § 127 20 18 18 0 ‘ ‘ ‘ ‘

Fig. 4.3.a. Comparison of the L L

values and the ranking obtained
with the ¢- and h-index. Fig. 4.3.b

We note that the ¢-index is more granular, allowing a more precise compar-
ison between scientists. For example, the author F' increases his index, moving
from the position 14 of h-index to 5 of ¢-index. If we compare this author
with the author I, we note that they have almost the same h-index but the
F’s ¢-index is definitely greater than the I’s ¢-index. Analyzing their citation
curves we observed that they have the same number of publications, but F' has
in general many more citations for any publication than I, especially those in
the Hirsh-core. The same reasons can be provide for the comparison between
the author H and the author D, in this case we noticed also that D has also
more publications.
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