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Abstract

In order to evaluate the quality of the scienti�c research, we introduce
a new family of scienti�c performance measures, called Scienti�c Research
Measures (SRM). Our proposal originates from the more recent develop-
ments in the theory of risk measures and is an attempt to resolve the
many problems of the existing bibliometric indices.

The SRM that we introduce are: �exible to �t peculiarities of di¤er-
ent areas and seniorities; inclusive, as they comprehend several popular
indices; coherent, as they share the same structural properties; calibrated
to the particular scienti�c community; granular, as they allow a more pre-
cise comparison between scientists and are based on the whole scientist�s
citation curve.

Keywords: Bibliometric Indices, Citations, Risk Measures, Scienti�c Im-
pact Measures

1 Introduction

In the recent years the evaluation of the scientist�s performance has become
increasingly important. In fact, most crucial decisions regarding faculty re-
cruitment, accepting research projects, research time, academic positions, travel
money, award of grants and promotions depend on great extent upon the scien-
ti�c merits of the involved researchers.

The scope of the valuation of the scienti�c research is mainly twofold:

� Provide an updated picture of the existing research activity, in order to
allocate �nancial resources in relation to the scienti�c quality and scienti�c
production;

� Determine an increase in the quality of the scienti�c research (of the struc-
tures).

�Università degli Studi di Milano.
yUniversità degli Studi di Milano Bicocca.
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The methodologies for the valuation can be divided into two categories:

� content valuation, based on:

� internal judgments committee;

� external reviews of peer panels.

� context valuation, based on:

� bibliometrics (i.e. statistics derived from citation data);

� characteristics of the Journals associated to the publications.

Economic considerations strongly depone of using the context method on a
systematic (yearly) base, while peer review is more plausible on a multiple year
base and should also be �nalized to check, harmonize, and tune the outcomes
based on bibliometric indices.
So in order to have a simple and cheaper assessment method and thank to

the major availability of the online database (i.e. Google Scholar, ISI Web of
Science, MathSciNet and Scopus) several di¤erent bibliometric measures have
been introduced.
There are several critics, as those clearly underlined by the Citation Statistics

Report of the International Mathematical Union (2008) [CIT], to the use of
the citations as a key factor in the assessment of the quality of the research.
However, many of these critics can be satisfactorily addressed and our proposal
is one reasonable way to achieve this task. We emphasize that the output of
the valuation is the classi�cation of authors (and structures) into few classes of
homogeneous research quality: it is not intended to provide a �ne ranking.

Many indices were developed to quantify the production of researchers, e.g.
the total number of published papers in a period of time; or the impact of their
publications, e.g. the total number of citations, the average number of citations
per paper, the number and percentage of signi�cant papers (with more than a
certain amount of citations).
In 2005 Hirsch [H05] proposed the h-index, that is now the most popular

and used citation-based metric. A scientist has index h if h of his n papers have
at least h citations each and the other (n� h) papers have at most h citations
each. The h-index is an attempt measures at the same time the productivity in
terms of number of publications and the research quality in terms of citations
per publication.
After its introduction, the h-index received wide attention from the scienti�c

community and it has been extended by many authors who have proposed other
indices (for an overview see Alonso et al., 2009 [ACHH]) in order to overcome
some of the drawbacks of it (see Bornmann and Daniel, 2007 [BD07]).

Di¤erently from any existing approach, our formulation is clearly germinated
from the Theory of Risk Measures. The axiomatic approach developed in the
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seminal paper by Artzner et al.[ADEH99] turned out to be, in this last decade,
very in�uential for the theory of risk measures: instead of focusing on some
particular measurement of the risk carried by �nancial positions (the variance,
the V@R, etc. etc.), [ADEH99] proposed a class of measures satisfying some
reasonable properties (the �coherent� axioms). Ideally, each institution could
select its own risk measure, provided it obeyed the structural coherent proper-
ties. This approach added �exibility in the selection of the risk measure and, at
the same time, established a uni�ed framework. We propose the same approach
in order to determine a good class of scienti�c performance measures, that we
call Scienti�c Research Measures (SRM).

The theory of coherent risk measures was later extended to the class of con-
vex risk measures (Follmer and Schied [FS02], Frittelli and Rosazza [FR02]).
The origin of our proposal can be traced in the more recent development of
this theory, leading to the notion of quasi-convex risk measures introduced by
Cerreia-Vioglio et al. [CMMM] and further developed in the dynamic frame
work by Frittelli and Maggis [FM11]. Additional papers in this area include:
Cherny and Madan [CM09], that introduced the concept of an Acceptability
Index having the property of quasi-concavity; Drapeau and Kupper [DK10],
where the correspondence between a quasi-convex risk measure and the associ-
ated family of acceptance sets - already present in [CM09] - is fully analyzed.
The representation of quasi-concave monotone maps in terms of family of ac-
ceptance sets, as well as their dual formulations, are the key ideas underlying
our de�nition of SRM.
We propose a family of SRMs that are:

� �exible in order to �t peculiarities of di¤erent areas and ages;

� inclusive, as they comprehends several popular indices;

� calibrated to the particular scienti�c community;

� coherent, as they share the same structural properties - based on an ax-
iomatic approach;

� granular, as they allow a more precise comparison between scientists and
are based on the whole citation curve of a scientist.

The de�nition of the SRM, the relative properties and some examples are
given in Section 2. A new interesting approach to the whole area of bibliometric
indices is provided by the dual representation of a SRM discussed in Section 3.
We also show the method to compute a particular SRM, called �-index, and we
report some empirical results obtained by calibrating the performance curves
to a speci�c data set (built using Google Scholar).
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2 On a class of Scienti�c Research Measure

We represent each author by a vectorX of citations, where the i-th component of
X represents the number of citations of the i-th publication and the components
of X are ranked in decreasing order. We consider the whole citation curve of
an author as a decreasing bounded step functions X (see Fig.1) in the convex
cone:

X+ =

�
X : R! R+ j X is bounded, with only a �nite numbers of values,

decreasing on R+ and such that X(x) = 0 for x < 0:

�

Fig. 1. Author�s Citation Curve

We compare the citation curve X of an author with a theoretical citation curve
fq representing the desiderata citations at a �x performance level q. For this
purpose we introduce the following class of curves. Let I � R be the index set
of the performance level. For any q 2 I we de�ne the theoretical performance
curve of level q as a function fq : R ! R+ that associates to each publication
x 2 R the corresponding number of citations fq(x) 2 R+.

De�nition 1 (Performance curves) Given a index set I � R of perfor-
mance levels q 2 I, a class F := ffqgq2I of functions fq : R ! R+ is a
family of performance curves if
i) ffqg is increasing in q, i.e. if q � p then fq(x) � fp(x) for all x;
ii) for each q, fq(x) is left continuous in x;
iii) fq(x) = 0 for all x < 0 and all q:

The main feature of these curves is that a higher performance level implies
a higher number of citations. This family of curves is crucial for our objective
to build a SRM able to comprehend many of the popular indices and calibrated
to the scienti�c area and the seniority of the authors.
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De�nition 2 (Performance sets and SRM) Given a family of performance
curves F = ffqgq, we de�ne the family of performance sets AF := fAqgq by

Aq :=
�
X 2 X+ j X(x) � fq(x) for all x 2 R

	
:

The Scienti�c Research Measure (SRM) is the map �F : X+ ! [0;1] associated
to F and AF given by

�F(X) : = sup fq 2 I j X 2 Aqg
= sup fq 2 I j X(x) � fq(x) for all x 2 Rg : (1)

The SRM �F is obtained by the comparison between the real citation curve
of an author X (the red line in Fig.2) and the family F of performance curves
(the blue line in Fig.2): the �F(X) is the greatest level q of the performance
curve fq below the author�s citation curve X:

Fig. 2. Determination of a particular SRM, the h-index
(that in this example is equal to 4).

2.1 Some examples of existing SRMs

The previous de�nition points out the importance of the family of theoretical
performance curves for the determination of the SRM. It is clear that di¤erent
choices of F := ffqgq lead to di¤erent SRM �F. The following examples show
that some well known indices of scienti�c performance are particular cases of
our SRM. In the following examples, if X has p � 1 publications that received
at least one citation, we set: X =

Pp
i=1 xi1(i�1;i] , with xi � xi+1 for all i.
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Example 3 (max # of citations) The maximum number of citations of the
most cited author�s paper is the SRM �Fcmax de�ned by (1), where the family
Fcmax of performance curves is:

fq(x) =

�
q 0 < x � 1
0 x > 1

for all x 2 R+. (2)

(3)

Example 4 (total number of publications) The total number of publica-
tions with at least one citation is the SRM �Fp de�ned by (1), where the family
Fp of performance curves is:

fq(x) =

�
1 0 < x � q
0 x > q

for all x 2 R+. (4)

(5)

Example 5 (h-index) According to the de�nition given by Hirsch, 2005 [H05]:
"A scientist has index h if h of his or her Np papers have at least h citations
each and the other (Np � h) papers have � h citations each�. The h-index is
the SRM �Fh de�ned by (1), where the family Fh of performance curves is:

fq(x) =

�
q 0 < x � q
0 x > q

: for x 2 R+: (6)

(7)
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Example 6 (h2-index) Kosmulski, 2006 [K06] de�ned a scientist�s h2-index
"as the highest natural number such that his h2 most cited papers received each
at least [h2]2 citations". This index is the SRM �Fh2de�ned by (1), where the
family Fh2 of performance curves is:

fq(x) =

�
q2 0 < x � q
0 x > q

for x 2 R+:

Example 7 (h�-index) Eck and Waltman, 2008 [EW06] proposed the h�-
index as a generalization of the h-index so de�ned: "a scientist has h�-index
h� if h� of his n papers have at least ��h� citations each and the other n�h�
papers have fewer than � ��h� citations each". Hence, h�-index is the SRM
�Fh� de�ned by (1),where the family Fh� of performance curves is:

fq(x) =

�
�q 0 < x � q
0 x > q

for x 2 R+ and � 2 (0;1):

Example 8 (w-index) Woeginger, 2008 [W0308] introduced the w-index de-
�ned as: "a w-index of at least k means that there are k distinct publications
that have at least 1, 2, 3, 4,..., k citations, respectively". It is the SRM �Fw
de�ned by (1), where the family Fw of performance curves is:

fq(x) =

�
q � x+ 1 0 < x � q

0 x > q
for all x 2 R+: (8)

Example 9 (hrat-index & hr-index) The rational and the real h-index, hrat-
index and hr-index, introduced respectively by Ruane and Tol, 2008 [RT08] and
Guns and Rousseau, 2009 [GR09] are SRMs, indeed they could be de�ned as the
h-index but taking respectively q 2 I �Q and q 2 I �R.

Example 10 (hm-index) Schreiber, 2008 [S08] proposed a new index called
hm-index that keeps into account the in�uence of the number of co-authors for a
researcher�s publication, counting the papers fractionally according to the number
of authors. The hm-index is the SRM �Fhm de�ned by (1),where the family Fhm
of performance curves is:

fq(x) =

8<:
qP
j=1

1
a(j) 0 < x � q

0 x > q
for x 2 R+;

where a(j) is the number of authors for the paper j.

2.2 Key properties of the SRM

Now we point out some relevant properties of the family AF = fAqgq of perfor-
mance sets and of the SRM �F.

Proposition 11 Let X1; X2 2 X+.
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1. If AF = fAqgq is a family of performance sets then:

i) fAqg is decreasing monotone: Aq � Ap for any level q � p;
ii) Aq is monotone for any q: X1 2 Aq and X2 � X1 implies X2 2 Aq;
iii) Aq is convex for any q: if X1; X2 2 Aq then �X1 + (1 � �)X2 2 Aq

for � 2 [0; 1];

2. If �F is a SRM then it is:

i) increasing monotone: if X1 � X2 ) �F(X1) � �F(X2);
ii) quasi-concave: �F(�X1 + (1 � �)X2) � min(�F(X1); �F(X2)) for all

� 2 [0; 1].

Proof.

1) The proof of the monotonicity and convexity of AF follows from the de�ni-
tion.

2.i) It is su¢ cient to show that

fq 2 I j X1 � fqg � fq 2 I j X2 � fqg :

As X1 � X2, X1 � fq implies X2 � fq:

2.ii) Let �F(X1) � m and �F(X2) � m. By de�nition of �F, 8" > 0 9qi s.t.
Xi � fqi and qi > �F(Xi)� " � m� ". Then Xi � fqi � fm�", as ffqgq
is an increasing family, and therefore �X1 + (1 � �)X2 � fm�". As this
holds for any " > 0, we conclude that �F(�X1 + (1 � �)X2) � m and �F
is quasi-concave.

It is obviously reasonable that a SRM should be increasing: if the citations
of a researcher X2 dominate the citations of another researcher X1 publication
by publication, then X2 has a performance greater than X1.
Now, we introduce a counterexample in order to show that a SRM is not

in general quasi-convex, that is �F(�X1 + (1 � �)X2) � max(�F(X1); �F(X2))
for all � 2 [0; 1]: We consider two researchers, X1 = [8 6 4 2] and X2 =
[4 2 2 2 2], where X2 has more publications than X1 but less cited. If we
compute for example the w-index we obtain that �Fw(X1) = 4 and �Fw(X2) = 3,
while taking � = 1

2 the SRM �Fw of the combined citation curve X = 1
2X1 +

1
2X2 = [6 4 3 2 1] is �Fw(X) = 5.

2.3 Additional properties of SRMs

We have seen that all the SRMs �F share the same structural properties of
monotonicity and quasiconcavity. We start this section classifying the SRMs on
the basis of the addition of citations to the old papers.
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De�nition 12 (Additional citation properties) A SRM �F : X+ ! [0;1]
is

a) C-superadditive if �F(X +m) � �F(X) +m for all m 2 R+;

b) C-subadditive if �F(X +m) � �F(X) +m for all m 2 R+;

c) C-additive if �F(X +m) = �F(X) +m for all m 2 R+.

A SRM is C-superadditive (C-subadditive) if the additional citations to the
old papers lead an increase of the measure more (less) than linear. In other
terms, a C-superadditive SRM gives more weight than the C-subadditive SRM
to the additional citations to the oldest papers.
We have seen that the SRM �F depends on the family of performance curves

F := ffqgq under consideration. The main feature of this family of curves is
that is increasing monotone over q:We provide a characterization of this family
in terms of the speed in the increase of the performance curves.

De�nition 13 Let F a family of performance curve. We say that:

a) F is slowly increasing in q if fq+m � fq � m for all m 2 R+;

b) F is fast increasing in q if fq+m � fq � m for all m 2 R+;

c) F is linear increasing in q if fq+m � fq = m for all m 2 R+.

These properties of the family of performance curves can be express in terms
of corresponding properties of the family AF of performance sets.

Lemma 14 Let F a family of performance curve.

1. F is slowly increasing in q; if and only if

Aq +m � Aq+m (9)

for all m 2 R+ and q 2 I;

2. F is fast increasing in q, if and only if

Aq+m � Aq +m (10)

for all m 2 R+ and q 2 I;

3. F is linear increasing in q, if and only if

Aq+m = Aq +m

for all m 2 R+ and q 2 I;
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Proof. (1) In order to show that Aq +m � Aq+m we observe that:

Aq+m :=
�
X 2 X+ j X � fq+m

	
Aq +m =

�
X 2 X+ j X � fq

	
+m

= fX j X � fq +mg

As fq +m � fq+m, if X is such that X � fq +m then X � fq+m. This means
that X 2 Aq +m implies that X 2 Aq+m:
Regarding the other implication, we know that if X 2 Aq + m then X 2

Aq+m, that is X � fq+m implies X � fq+m. This implies that fq+m � fq+m.
(2) By hypothesis we know that fq+m � fq + m. Hence, if X is such

that X � fq+m then X � fq + m. This means that X 2 Aq+m implies that
X 2 Aq +m.
Regarding the other side, we know that if X 2 Aq+m then X 2 Aq + m;

that is X � fq+m implies X � fq +m. This implies that fq+m � fq +m.
(3) The proof of this point follows directly from the previous ones, observing

that F is linear increasing in q if and only if F is slowly and fast increasing in q
and Aq+m = Aq +m if both of the inclusions (9) and (10) hold.

The following lemma shows that the additional citation properties of the
SRM �F can be built in from the corresponding properties of the family F of
the performance curves or AF of performance sets.

Lemma 15 Let F a family of performance curves.

1. If F is slowly increasing in q; then �F is C-superadditive;

2. If F is fast increasing in q; then �F is C-subadditive;

3. If F is linear increasing in q; then �F is C-additive.

Proof. (1) In order to show that �F(X +m)�m � �F(X) for all m 2 R+
we use the de�nition in (1) and we observe that

�F(X +m)�m = sup fq 2 I j X +m � fqg �m
= sup fq �m 2 I j X � fq �mg
= sup fq 2 I j X � fq+m �mg (11)

Hence it�s su¢ cient to show that fq j X � fqg � fq j X � fq+m �mg and this
is true since fq � fq+m �m;
(2) In order to show that �F(X +m) �m � �F(X) for all m 2 R+ we use

the de�nition in (1) and the relation (11). Hence it�s su¢ cient to show that
fq j X � fq+m �mg � fq j X � fqg and this is true since fq+m �m � fq;
(3) It follows directly from the previous points observing that F is linear

increasing in q if and only if it is slowly and fast increasing in q and that �F is
C-additive if and only if it is C-superadditive and C-subadditive.

Now we give some examples using some popular SRMs.
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Example 16 The h-index in the example (5) is a C-subadditive SRM, but the
associated family F of performance curves de�ned in (6) is fast increasing in
q. Indeed the property is true only on [0; q + m] for any m 2 R+ since the
performance curves are equal to zero outside. Hence, the performance curves of
the h-index are fast increasing only in the Hirsch core.
The same considerations hold for the h2- and h�- index (see examples (6)

and (7)).

Example 17 The family F de�ned in 8 of the w-index (see example 8) is slowly
increasing in q. This condition is su¢ cient to say that the w-index is a C-
superadditive SRM.

Example 18 The maximum number of citations of an article (see example 3) is
a C-additive SRM, even if the family F of performance curves de�ned in 2 is not
linear increasing in q. This property holds only on [0; 1], since the performance
curves are equal to zero outside.

Example 19 The total number of publications (see example 4) is a C-superadditive
SRM since the family F of performance curves de�ned in 4 is slowly increasing
in q.

We now de�ne further properties linked to the addition of a single publication
to the author�s citation curve.

De�nition 20 (Additional paper properties) Let p := max fx : X(x) > 0g
the maximum number of publications with at least one citation of the author X.
A SRM �F : X+ ! R+ is

a) P-superadditive if �F(X + 1fp+1g) � �F(X) + 1;

b) P-subadditive if �F(X + 1fp+1g) � �F(X) + 1;

c) P-additive if �F(X + 1fp+1g) = �F(X) + 1;

c) P-invariance if �F(X + 1fp+1g) = �F(X).

A SRM is P-superadditive if the addition of one citation to a new publication
leads to an increase of the measure more than linear. Someway if we use a P-
superadditive SRM in our evaluation we are giving more weight to the additional
publication than in case of P-subadditive SRM. Many known SRMs are P-
invariance (i.e. the cmax, h-, h2- and h�-index in the examples (3) (5), (6)
and (7)) as the addition of one citation to a new publication leaves the SRM
invariant. The w-index (in the example (8)) is P-subadditive as the addition of
one citation to a new publication makes it greater at most of 1 unit. While the
total number of publications p with at least one citation (in the example (4)) is
clearly P-additive.

11



3 On the Dual Representation of the SRM

The goal of this section is to provide a dual representation of the SRM. To this
scope, we need some topological structure. Let (R;B(R); �) be a probability
space, where B(R) is the �-algebra of the Borel sets, � is a probability measure
on B(R). Since the citation curve of an author X is a bounded function, it
appears natural to take X 2 L1(R;B(R); �), where L1(R;B(R); �) is the space
of B(R)-measurable functions that are � almost surely bounded. If we endow L1
with the weak topology �(L1; L1) then L1 = (L1; �(L1; L1))0 is its topological
dual. In the dual pairing (L1; L1; h�; �i) the bilinear form h�; �i : L1 � L1 ! R
is given by hX;Zi = E[ZX], the linear function X 7! E[ZX], with Z 2 L1,
is �(L1; L1) continuous and (L1; �(L1; L1)) is a locally convex topological
vector space.
We have seen in the Section 1 that the SRM is a quasi-concave and monotone

map. Under appropriate continuity assumptions, the dual representation of
these type of maps can be found in [PV90],[Vo98], [CMMM].

De�nition 21 A map � : L1(R) ! R is �(L1; L1)�upper-semicontinuous if
the upper level sets

fX 2 L1(R) j �(X) � qg

are �(L1; L1)�closed for all q 2 R.

Lemma 22 If AF = fAqgq is a family of performance sets then Aq is �(L1; L1)-
closed for any q.

Proof. To prove thatAq is �(L1; L1)-closed let Yn 2 Aq := fX 2 L1 j X � fqg
satisfy Yn

�(L1;L1)! Y . By contradiction, suppose that �(A) > 0 where A :=
fx 2 R j Y (x) < fq(x)g 2 B(R). Taking as a continuous linear functional Z =
1A 2 L1, from Yn

�(L1;L1)! Y we deduce: E[1Afq] � E[1AYn] ! E[1AY ] <
E[1Afq].

The following lemma shows the relation between the continuity property of
the family F of performance curves, those of the family AF of performance sets
and those of the SRM �F:

Lemma 23 Let F be a family of performance curves. If F is left continuous in
q, that is

fq�"(x) " fq(x) for " # 0; for all x,

then:

1. AF is left-continuous in q, that is

Aq =
\
�>0

Aq�";
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2.
Aq = fX 2 L1 j �F(X) � qg , for all q 2 I: (12)

3. �F is �(L
1; L1)-upper-semicontinuous.

Proof.

1. By assumption we have that fq�"(x) " fq(x) for "! 0, for all x 2 R. We
have proved in Proposition (11) that fAqg is decreasing monotone, hence
we know that Aq �

T
">0

Aq�". By contradiction we suppose that

\
">0

Aq�" % Aq;

so that there will exist X 2 L1 such that X � fq�" for every " > 0 but
X(A) < fq(A) for some A 2 B(R) such that �(A) > 0. Then there exists
� > 0 such that fq(x)�X(x) � � for any x in B � A such that �(B) > 0.
Then fq(x)�X(x) > �

2 for any x 2 B. Since fq�" " fq we may �nd " > 0
such that fq(x)�fq�"(x) < �

2 for x 2 B. ThusX(x) � fq�"(x) > fq(x)�
�
2

for x 2 B and this is a contradiction

2. Now let
Bq := fX 2 L1 j �F(X) � qg :

Aq � Bq follows directly from the de�nition of �F: We have to show
that Bq � Aq: Let X 2 Bq. Hence �F(X) � q and for all " > 0 there
exists q such that q + " � q and X(x) � fq(x) for all x 2 R: Since
fq are increasing in q we have that X(x) � fq�"(x) for all x 2 R and
" > 0, therefore X 2 Aq�". By the left continuity in q of the family F we
have know that fAqg is left-continuous in q for the previous item and so:
X 2

T
�>0

Aq�" = Aq.

3. By Lemma (22) we know that Aq is �(L1; L1)�closed for any q and
therefore the upper level sets Bq = Aq are �(L1; L1)�closed and �F is
�(L1; L1) upper semicontinuous.

Notice that �(L1; L1)-upper semicontinuity is equal to the continuity from
above of a SRM. This fact can be proved in a way similar to the convex case
(see for example [FS04]).

Lemma 24 Let �F : L
1 ! R+ be a SRM. Then the following are equivalent:

�F is �(L
1; L1)-upper semicontinuous;

�F is continuous from above: Xn; X 2 L1 and Xn # X imply �F(Xn) # �F(X)

Proof. Let �F be �(L
1; L1)-upper semicontinuous and suppose that Xn #

X. As the elements in L1 are order continuous, we also have: Xn
�(L1;L1)�! X.

13



The monotonicity of �F implies �F(Xn) # and q := limn �F(Xn) � �F(X).
Hence �F(Xn) � q and Xn 2 Bq := fY 2 L1 j �F(Y ) � qg which is closed
by assumption. Hence X 2 Bq; which implies that �F(X) = q and that �F is
continuous from above.
Conversely, suppose that �F is continuous from above. We have to show

that the convex set Bq is �(L1; L1)-closed for any q. By the Krein Smulian
Theorem it is su¢ cient to prove that C := Bq \ fX 2 L1 j k X k1< rg is
�(L1; L1)-closed for any �xed r > 0 and q 2 R. As C � L1 � L1 and as the
embedding

(L1; �(L1; L1)) ,! (L1; �(L1; L1))

is continuous it is su¢ cient to show that C is �(L1; L1)-closed. Since the
�(L1; L1) topology and the L1 norm topology are compatible, and C is convex,
it is su¢ cient to prove that C is closed in L1. Take Xn 2 C such that Xn ! X
in L1. Then there exists a subsequence fYngn � fXngn such that Yn ! X
a.s. and �F(Yn) � q for all n. Set Zm := supn�m Yn _ X. Then Zm 2 L1,
since fYngn is uniformly bounded; and Zm � Ym, �F(Zm) � �F(Ym) and Zm #
X. From the continuity from above we conclude: �F(X) = limm �F(Zm) �
lim supm �F(Ym) � q. Thus X 2 Bq and consequently X 2 C:

When the family of performance curves F is left continuous, Lemma (23)
shows that the SRM is �(L1; L1)-upper semicontinuous. Hence we can provide
a dual representation for the SRM in the same spirit of [Vo98] and [DK10].
Denote

P := fQ� Pg and Z :=
�
Z =

dQ

dP
j Q 2 P

�
=
�
Z 2 L1+ j E[Z] = 1

	
Theorem 25 Suppose that the family of performance curves F is left contin-
uous. Each SRM �F : L

1(R;B(R); �) ! R de�ned in (1) can be represented
as

�F(X) = inf
Z2Z

H(Z;E[ZX]) = inf
Z2Z

H+(Z;E[ZX]) (13)

= inf
Q2P

H+(Q;EQ[X]) for all X 2 L1

where H : L1 � R! R is de�ned by

H(Z; t) := sup
�2L1

f�F(�) j E[�Z] � tg ;

H+(Z; �) is its right continuous version:

H+(Z; t) := inf
s>t
H(Z; s) = sup fq 2 R j t � 
(Z; q)g ; (14)

and 
 : L1 � R! R is de�ned by:


(Z; q) := inf
X2L1

fE[ZX] j �F(X) � qg : (15)
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Proof. Step 1: �F(X) = infZ2Z H(Z;E[ZX]):
Fix X 2 L1. As X 2 f� 2 L1 j E[Z�] � E[ZX]g, by the de�nition of

H(Z; t) we deduce that, for all Z 2 L1;

H(Z;E[ZX]) � �F(X)

hence
inf
Z2L1

H(Z;E[ZX]) � �F(X):

We prove the opposite inequality. Let " > 0 and de�ne the set

C" := f� 2 L1 j �F(�) � �F(X) + "g

As �F is quasi-concave and �(L
1; L1)-upper semicontinuous, C is convex and

�(L1; L1)�closed. Since X =2 C", the Hahn Banach theorem implies the exis-
tence of a continuous linear functional that strongly separates X and C"; that
is there exist k 2 R and Z" 2 L1 such that

E[�Z"] > k > E[XZ"] for all � 2 C":

Hence

f� 2 L1 j E[�Z"] � E[XZ"]g � Cc" := f� 2 L1 j �F(�) < �F(X) + "g

and

�F(X) � inf
Z2L1

H(Z;E[ZX]) � H(Z"; E[XZ"])

= sup f�F(�) j � 2 L1 and E[�Z"] � E[XZ"]g
� sup f�F(�) j � 2 L1 and �F(�) < �F(X) + "g � �F(X) + ":

Therefore, �F(X) = infZ2L1 H(Z;E[ZX]). To show that the inf can be taken
over the positive cone L1+, it is su¢ cient to prove that Z" � L1+. Let Y 2 L1+
and � 2 C": Given that �F is monotone increasing, �+nY 2 C" for every n 2 N
and we have:

E[(� + nY )Z"] > k > E[XZ"]) E[Y Z"] >
E[Z"(X � �)]

n
! 0; as n!1:

As this holds for any Y 2 L1+ we deduce that Z" � L1+. Therefore, �F(X) =
infZ2L1+ H(Z;E[ZX]).
By de�nition of H(Z; t),

H(Z;E[ZX]) = H(�Z;E[X(�Z)]) 8Z 2 L1 and Z 6= 0:

Hence we deduce

�F(X) = inf
Z2L1+(R)

H(Z;E[ZX]) = inf
Z2Z

H(Z;E[ZX]) = inf
Q2P

H(Q;EQ[X]):
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Step 2: �F(X) = infZ2Z H
+(Z;E[ZX]):

Since H(Z; �) is increasing and Z 2 L1+ we obtain

H+(Z;E[ZX]) := inf
s>E[ZX]

H(Z; s) � lim
Xm#X

H(Z;E[XmZ]);

�F(X) = inf
Z2L1+

H(Z;E[ZX]) � inf
Z2L1+

H+(Z;E[ZX]) � inf
Z2L1+

lim
Xm#X

H(Z;E[XmZ])

= lim
Xm#X

inf
Z2L1+

H(Z;E[XmZ]) = lim
Xm#X

�F(Xm)
(CFA)
= �F(X):

Step 3: H+(Z; t) := infs>tH(Z; s) = sup fq 2 R j t � 
(Z; q)g :
Now let the RHS of equation (14) be denoted by

S(Z; t) := sup fq 2 R j 
(Z; q) � tg ; (Z; t) 2 L1 � R; (16)

and note that S(Z; �) is the right inverse of the increasing function 
(Z; �) and
therefore S(Z; �) is right continuous.
To prove that H+(Z; t) � S(Z; t) it is su¢ cient to show that for all p > t we
have:

H(Z; p) � S(Z; p); (17)

Indeed, if (17) is true

H+(Z; t) = inf
p>t

H(Z; p) � inf
p>t

S(Z; p) = S(Z; t);

as both H+ and S are right continuous in the second argument.
Writing explicitly the inequality (17)

sup
�2L1

f�F(�) j E[�Z] � pg � sup fq 2 R j 
(Z; q) � pg

and letting � 2 L1 satisfying E[�Z] � p, we see that it is su¢ cient to show the
existence of q 2 R such that 
(Z; q) � p and q � �F(�). If �F(�) = 1 then

(Z; q) � p for any q and therefore S(Z; p) = H(Z; p) =1.
Suppose now that 1 > �F(�) > �1 and de�ne q := �F(�): As E[�Z] � p

we have:

(Z; q) := inf fE[�Z] j �F(�) � qg � p:

Then q 2 R satis�es the required conditions.
To obtain H+(Z; t) := infp>tH(Z; p) � S(Z; t) it is su¢ cient to prove that,

for all p > t; H(Z; p) � S(Z; t), that is :

sup
�2L1

f�F(�) j E[�Z] � pg � sup fq 2 R j 
(Z; q) � tg : (18)

Fix any p > t and consider any q 2 R such that 
(Z; q) � t. By the de�nition
of 
, for all " > 0 there exists �" 2 L1 such that �F(�") � q and E[�"Z] � t+ ":
Take " such that 0 < " < p � t. Then E[�"Z] � p and �F(�") � q and (18)
follows.
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Remark 26 This dual representation provides an interesting interpretation of
the SRM. Let Q be the �weight�that we can assign to the author�s publications
(for example, the impact factor of the Journal where the article is published).
For a �xed Q; the term 
(Q; q) := inf fEQ[�] j �F(�) � qg represents the smallest
Q-average of citations that a generic author needs in order to have the SRM at
least of q. We observe that this term is independent from the citations of the
author X:
On the light of these considerations we can interpret the term H+(Q;EQ[X]) :=

sup fq 2 R j EQ[X] � 
(Q; q)g as the greatest performance level that the author
X can reach, in the case that we attribute the weight Q to the publications.
Namely, we compare the Q-average of the author X, EQ[X], with the minimum
Q-average necessary to reach each level q, that is 
(Q; q).
Finally, the SRM of the author X; �F(X) = infQ2P H

+(Q;EQ[X]), corre-
sponds to the smallest performance level obtained changing the weight attributed
to the journals.
The theorem exhibits the relationship between the performance curve ap-

proach and this average approach.

In the following examples we �nd the dual representation of some existing in-
dices. In all these examples the family F of performance curves is left continuous
hence, by Lemma (23), the associated SRM �F is �(L

1; L1)-upper semicontin-
uous and X satis�es: �F(X) � q i¤ X 2 Aq i¤ X � fq: Therefore, we �nd the
dual representation computing 
; H+ and �F applying the formulas: (15),(14)
and (13). Recall that X =

Pp
i=1 xi1(i�1;i] , with xi � xi+1 for all i.

Example 27 (max # of citations) Consider the example (3). For Z 2 L1+;
we compute 
(Z; q)


(Z; q) := inf
�Fcmax

(X)�q
E[ZX] = inf

X(x)�q1(0;1](x)
E[ZX] = qE[1(0;1]Z]

where the �rst equality is due to (12). We obtain

H+(Z;E[ZX]) := sup
�
q 2 R j E[ZX] � qE[1(0;1]Z]

	
=

E[ZX]

E[1(0;1]Z]
:

In our application, any non zero citation vector X always satis�es X � x11(0;1]
and, since E[X1(0;1]] = x1E[1(0;1]]; we also have:

1(0;1]
E[1(0;1]]

� X
E[X1(0;1]]

. There-
fore,

E

�
Z

1(0;1]

E[1(0;1]]

�
� E

�
Z

X

E[X1(0;1]]

�
8Z 2 L1+(R)

and
E [ZX]

E
�
Z1(0;1]

� � E[1(0;1]X]

E[1(0;1]]
8Z 2 L1+(R):
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Hence:

�Fcmax
(X) = inf

Z2L1+(R)
H+(Z;E[ZX]) = inf

Z2L1+(R)

E[ZX]

E[Z1(0;1]]

=
E[1(0;1]X]

E[1(0;1]1(0;1]]
;

i.e. the in�mum is attained at Z = 1(0;1] 2 L1+, which is of course natural as
this SRM weights only to the �rst publication.

Example 28 (total # of publications) Consider the example (4). For Z 2
L1+; we compute 
(Z; q) as in the previous example:


(Z; q) = inf
X�1(0;q]

E[ZX] = E[1(0;q]Z]

We obtain

H+(Z;E[ZX]) := sup
�
q 2 R j E[ZX] � E[1(0;q]Z]

	
Hence the dual representation of the total number of publications p with at least
one citation is

�Fp(X) = inf
Z2L1+(R)

sup
E[ZX]�E[1[0;q]Z]

q

We show indeed that �Fp(X) = p, where p is such that X = X1(0;p] 2 L1+ . First
we check that �Fp(X) � p. For all Z 2 L

1
+; and q � p we have

E[ZX] = E[ZX1(0;p]] � E[1(0;q]Z]

and therefore
sup

E[ZX]�E[1(0;q]Z]
q � p 8Z 2 L1+;

and �Fp(X) � p. Regarding the � inequality, it is enough to take Z = 1(p;p+�],
with � > 0; for X = X1(0;p]. In this case, the condition E[ZX] � E[1(0;q]Z]
becomes

0 = E[1(p;p+�]X] � E[1(0;q]1(p;p+�]]

that holds only for q � p, hence

sup
E[X1(p;p+�]]�E[1(0;q]1(p;p+�]]

q = p

and �Fp(X) � p.

Example 29 (h-index) Consider the example (5). For Z 2 L1+;


(Z; q) = inf
X(x)�q1(0;q](x)

E[ZX] = E[Zq1(0;q]]
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We obtain

H+(Z;E[ZX]) := sup
�
q 2 R j E[ZX] � E[Zq1(0;q]]

	
Hence the dual representation of the h-index is

�Fh(X) = inf
Z2L1+(R+)

sup
E[ZX]�E[Zq1(0;q]]

q

We indeed show that �Fh(X) = h, where h is such that X1(0;h] � h1(0;h] and
X1(h;+1) � h1(h;+1). First we check that �Fh(X) � h. For all Z 2 L1+; and
q � h we have

E[ZX] � E[ZX1(0;h]] � E[Zq1(0;q]];

hence
sup

E[ZX]�E[q1(0;q]Z]
q � h 8Z 2 L1+

and �Fh(X) � h.
Regarding the � side, take Z = 1(h;h+�] with � > 0. For any q � h the

condition
E[X1(h;h+�]] � E[q1(0;q]1(h;h+�]] = 0

holds. Instead, 8q > h there exists � > 0 such that h+ � < q and then

E[X1(h;h+�]] � E[h1(h;h+�]] < E[q1(0;q]1(h;h+�]]

hence
sup

E[X1(h;h+�]]�E[q1(0;q]1(h;h+�]]
q � h

and �Fh(X) � h.

3.1 On an alternative approach to SRMs

The dual representation suggests us another approach for the de�nition of a
generic class of SRMs. This approach is based on the assumption that we can
represent the author�s citation as a function X(w) de�ned on the events w 2 
,
where each event now corresponds to the journal in which the paper appeared.
We start �xing a plausible family P � fQ� Pg where each Q(w) represents

the �value� attributed to the journal w 2 
. It is clear that the valuation
criterion for journals (i.e. the selection of the family P) has to be determined a
priori and could be based on the �impact factor� or other criterion. A speci�c
Q could attribute more importance to the journals with a large number of
citations (a large impact factor); another particular Q to the journals having a
high quality.
As suggested from the dual representation results and in particular from the

equations (13) and (14) we consider, independently to the particular scientist
X, a family

�

�
	
�2R of functions 
� : P ! R that associate to each Q the
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value 
�(Q), that should represent the smallest Q-average of citations in order
to reach a quality index at least of �.
So given a particular value Q(wi) for each ith-journal and the average cita-

tions 
�(Q) necessary to have an index level greater than �, we build the SRM
in the following way. We de�ne the function H+ : P � R ! R that associates
to each pair (Q;EQ(X)) the number

H+(Q;EQ(X)) := sup
�
� 2 R j EQ(X) � 
�(Q)

	
;

which represents the greatest quality index that the author X can reach when
Q is �xed, and we build the SRM as follows:

�(X) := inf
Q2P

H+(Q;EQ(X))

which represents a prudential and robust approach with respect to P, the plau-
sible di¤erent selections of the evaluation of the Journals: This SRM is by con-
struction quasi-concave and monotone increasing.

4 Empirical results

Since the SRM introduced in Section 2 depend on the particular family F of
performance curves, in this section we provide a procedure to calibrate the
family F from the historic data available for one particular scienti�c area and
seniority. In this way, each SRM will �t appropriately the characteristics of
the research �eld and seniority under consideration. The SRM should be used
only in relative terms (to compare the author quality with respect to the other
researchers in the same area) in order to classify the authors (and structures)
into few classes of homogeneous research quality.

4.1 Sample setting

The �rst step consists in the selection of a representative sample of M authors
in the same scienti�c area and with the same seniority.
If p is the total number of the author�s publications with at least one citation,

then X =
Pp

i=1 xi1(i�1;i], with xi � xi+1 for all i, where the �rst component x1
corresponds to the number of citations received by the most cited article and
similarly for x1 � x2 � ::: � xp.
The citation data of each author are downloaded from Google Scholar by a

procedure implemented in Pyton. This procedure performs a �lter on the name
of the author and on the scienti�c area we are analyzing.

4.2 Determination of the family ffqgq and of the SRM
First of all we need to determine the family of curves ffqgq that better represents
the citation curve of the sample of the selected scientists. By the analysis of
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the data we found that the theoretical model is the following hyperbole-type
equation:

y = fq(x) =
q

x�
(19)

with q; � 2 R+. Setting ln y = Y , ln(q) = q̂; lnx = X, � = �̂ we obtain the
linearized model

Y = q̂ � �̂X. (20)

For each i-th author of the sample we determine �̂i that minimizes the sum
of the square distances of the points from the line (20). Fixing the parameter
��, we obtain the �-index of each author X as

�(X) = sup

�
q 2 R j X(x) � q

x��
8x
�

(21)

4.3 Our Results

We have chosen a group of 20 well established researchers in the mathematical
�nance area. The analysis of the citation vectors of each author (see Fig.4.3)
brings out that the theoretical model is the in the formula (19). We have
computed the �̂i for each author and we have found that �� = 1; 62.

Fig.4.3. Citation curves of 20 senior authors in Math
Finance area.

In the following table (Fig.4.3.a) we report the results and the respective
ranking obtained calculating the �-index as in (21) and the h-index for each
author. Fig.4.3.b shows that the hyperbole-type curve (red line) corresponding
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to the author�s �-index is always below his citation curve (blue line).

Fig. 4.3.a. Comparison of the
values and the ranking obtained

with the �- and h-index. Fig. 4.3.b

We note that the �-index is more granular, allowing a more precise compar-
ison between scientists. For example, the author F increases his index, moving
from the position 14 of h-index to 5 of �-index. If we compare this author
with the author I, we note that they have almost the same h-index but the
F�s �-index is de�nitely greater than the I�s �-index. Analyzing their citation
curves we observed that they have the same number of publications, but F has
in general many more citations for any publication than I, especially those in
the Hirsh-core. The same reasons can be provide for the comparison between
the author H and the author D, in this case we noticed also that D has also
more publications.
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