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e Things should be made as simple as possible but no
simpler.

A. EINSTEIN
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Introduction

The main subject of this thesis is the study of cohomological properties of Hecke
algebras associated to arbitrary Coxeter groups. Hecke algebras occur in several
areas of mathematics: representation theory, which is the main motivation of the
present work, topology and knot theory, harmonic analysis, number theory.

In particular, Iwahori-Hecke algebras (i.e., Hecke algebras attached to Weyl
groups) and their linear representations play a decisive role in the character theory
of finite groups of Lie type (cf. [CR87, Ch. §]).

Motivation

A Hecke algebra H is defined abstractly as an associative R-algebras with a
presentation involving

= a Coxeter system (W, S) and
= a set of parameters g lying in the commutative ring R.

The Coxeter system (W, S) detemines the main properties of H. Indeed, if q is
the constant parameter 1, one has an isomorphism between the Hecke algebra and
the R-group algebra of the Coxeter group; by Tits’ work (cf. [BouO7c, Ch. IV
Ex. 27]), if the ring is the field of complex numbers and the Hecke algebra is of
spherical type (i.e., the associated Coxeter group is finite), this isomorphism is
generic, i.e., it holds for all values of the parameter in an open set around 1 € C. In
this context one may think that a Hecke algebra H(W, S, R, q) is a “deformation”
of the group algebra R[W].

Coxeter groups are finitely generated and have a canonical length function /.
Using this function one defines the Poincaré series of a Coxeter group to be the
formal power series

paws)(t) = Yt e Z[t].
weWw
From this definition, it is not obvious how to compute Poincaré series explicitly.

» If W is finite, a closed formula for p(w,g)(t) involving the degrees is pro-
vided by the Chevalley—Shephard-Todd theorem (cf. [ST54], [Che55]).

» If W is affine (cf. Definition 3.24), then there is another closed formula,
due to R. Bott (cf. [Ste68]).

= Moreover, if W is infinite, there is a well-known recursive formula (cf.
[Ser71], [Bou07c]) for the Poincaré series. That is, the following equality
holds in the ring of formal power series:

) 1 Z(fl)mfmfl#,

paws)(t) pow,.n(t)

where (W7p, I) is the parabolic Coxeter subsystem generated by a proper
subset I of S.

The alternating sum in the recursive expression (f) suggests that pw,s)(t)
might have a suitable interpretation as an Euler characteristic.

1



2 INTRODUCTION

To study cohomological properties, such as Euler characteristic, one needs res-
olutions, that is, acyclic complexes with prescribed homology (in degree 0).

Complexes for Coxeter groups arise in a topological /geometric context, in sev-
eral ways.

= The Coxeter complex X(W, S) associated to the nontrivial poset of para-
bolic cosets of W. It is a W-CW-complex, and it is contractible if, and
only if, W is infinite. Cell stabilizers are identified with conjugates of
parabolic subgroups. In general, parabolic subgroups might happen to be
infinite.

= By Tits’ reflection representation, each Coxeter group (W, S) is a R-linear
group of finite degree, and there is a canonical geometric object, the Tits’
open cone C, on which W acts. The cone C is a model for the universal
space for proper group actions EW, although, in general, the action is
not cocompact.

= The Davis—Moussong complex, which is a model for EW, with cocompact
action (cf. [Mou88], [Dav08]).

For the computation of Euler characteristic, the Coxeter complex would be
quite useful, however, it is only defined for Coxeter groups.

Since Hecke algebras are “deformations” of group algebras of Coxeter groups,
it seems reasonable to try to “deform” the Coxeter complex into a complex suitable
for our problem. During this process the geometry disappears in favour of algebra,
and all we can do is to define a suitable complex of H-modules which, nonetheless,
suffices for our purposes.

The Hecke—Coxeter chain complex C, for a Hecke algebra 7 is a bounded com-
plex of left H-modules, which constitutes a (non necessarily projective) resolution
of the trivial module (cf. Theorem 5.30). Under suitable conditions on the Poincaré
series of the finite parabolic subgroup of the Coxeter system (W,.S), the Hecke al-
gebra H is Euler (cf. Definition 1.23 and Theorem 5.36). This in particular allows
one to define the Euler characteristic x# of the Hecke algebra.

From this viewpoint, in particular, the Euler characteristic allows one to give an
interpretation of the Poincaré series of a Coxeter group in terms of cohomological
data of a Hecke algebra, i.e., the alternating sum formula (4.2) can be written as

(1) pw,s)(@) xn = 1,

(cf. Theorem 5.38). Expressions similar to (i) occur in the context of Koszul
algebras (cf. [PPO5]); it would be interesting to investigate if the two phenomena
are connected in some more general framework.

A second motivation of interest of the present thesis is a result, Theorem 4.16,
in the theory of Coxeter groups. It is essentially a result in the theory of (Coxeter)
graphs which may be applied to give a new proof of a very interesting result.

For Coxeter groups, it provides a characterization in terms of finiteness con-
ditions of group theoretical properties such as amenability and the existence of
free subgroups of rank at least 2 (cf. [dIH87]). This can be thought as a “Tits’
alternative”-like theorem.

Outline

The first chapter establishes the homological algebra which will be useful later.
In particular, the notion of Fuler R-algebra A is given, and for such algebras
the Hattori-Stallings rank is defined. It is an element of the R-module A/[A, A]
which generalizes to the non-commutative case the notion of rank. Moreover, for



OUTLINE 3

Euler algebras a canonical trace function applied to the rank element allows one to
define the Euler characteristic of A.

Chapter 2 recalls the notion of group cohomology and focuses on how projective
resolutions of the constant object Q arise from topology. The universal space for
actions with prescribed stabilizers Ex(_) is introduced: this was of great inspiration
for defining the Hecke—Coxeter chain complex in Chapter 5 §5.

In the second part of this chapter, growth series of finitely generated groups
are discussed as well as amenability.

The subject of Chapter 3 is the class of Coxeter groups. Finite Coxeter groups
play a decisive role in Lie theory and in many other mathematical areas. They have
been subject of intense study from many viewpoints.

Coxeter groups are linear groups with a very strong combinatorial structure,
and they admit a distinguished poset of subgroups (parabolic subgroups) which are
Coxeter groups themselves. If all the maximal parabolic subgroups are finite, the
Coxeter group is of cocompact type.

Thus, one can define the Coxeter complex (W, S), which is, for cocompact
types, a CW-model of the EW, and hence it provides a finite, projective resolution
of the trivial Q[W]-module.

Under mild conditions on the ring R, the R-group algebras of Coxeter groups
are Euler and one might associate an Euler characteristic to them, which coincides
with the usual FEuler characteristics of the group W.

The first part of Chapter 4 deals with Poincaré series of Coxeter groups. In the
second part we describe (cf. Theorem 4.16) the class M of minimal non-spherical,
non-affine, Coxeter systems and, for such, we determine the Poincaré series and the
growth.

As an application, the above two steps let us give another proof of an old result
(cf. [d1H87]): Theorem 4.22. This is a purely group-theoretic fact, which can be
interpreted as a kind of Tits’ alternative for Coxeter groups:

= Coxeter systems with all irreducible subsystems of spherical or affine type
are amenable, of polynomial growth, and do not have subgroups isomor-
phic to the free group F> on two letters.

= Coxeter systems not falling in the previous case are not amenable, have
exponential growth and contain subgroups isomorphic to F5.

Chapter 5 is the final and most important chapter of this thesis and has several
purposes.

= Various contexts where Hecke algebras naturally arise are shown.

= A general definition of a Hecke algebra over a ring R is given.

= Some combinatorics of a Hecke algebra is studied, stressing the importance
of parabolic subalgebras.

= The trivial and sign module are defined and the modules induced from
the trivial module of a parabolic subalgebra are studied: the invertibility
of Poincaré series of the parabolic subalgebras determines the projectivity
and finite generation.

= A complex of left H-modules is defined in a canonical way, which is a
‘H-module theoretic analogue of the Coxeter complex of (W, .5).

= If W is infinite, it is shown that this complex is a resolution of the trivial
module (cf. Theorem 5.30).

= Under suitable conditions on the Poincaré series of all the finite parabolic
subalgebras, projectivity is proved for the algebras of cocompact type and,
in general, the FP-property of # is established.
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= Some further structure of Hecke algebras is shown, so that Hecke algebras
are Euler and admit an Euler characteristic.

= Finally, the Euler characteristic of a Hecke algebra is computed through
the Hecke Coxeter chain complex. For suitable choices of the ring R,
it coincides with the inverse of the Poincaré series of (W,S) (cf. Theo-

rem 5.38).

Several appendices are also included.

Appendix A recalls no(ta)tions of graph theory.

Appendix B contains the lists of Coxeter graphs together with important in-
formations such as the degrees and the convergence radii of the Poincaré series.

Appendix C contains few complementary facts about complex power series
which are needed in the thesis.

Finally, Appendix D contains information about the computations I made,
mainly with GAP and CHEVIE.

A word about notation

Notation should be consistent, light, and possibly self-explanatory, conventions
should be widely accepted. Since this is not a trivial task, in might not be achieved
at the time, and hence a summary of notation follows.

Symbol :

: The set {1,2,3,...}

: The set N U {0}

: The set {k+n |n € Np}, with k € Z

: The power set of a sett X

: =0

: Disjoint union (i.e., coproduct) of sets X and Y

: The property P holds almost everywhere, i. e. for all

P(n) forn>0:

: The set of vertices of a graph
: The set of edges of a graph

Obj(%¥) :

Xe%:

Mor (%) :

% (X,Y) =Homg(X,Y) :

Homa(X,Y) :

X = idx :

0:

0€?(X,Y):
Iso(X) :

G X:
Stabc(X) :

Meaning

but finitely many x’s
The property P holds for large enough n

The class of objects of €

X € Obj(¥)

The class of morphisms of &

The class of @-morphisms between X,Y € Obj(%)
Hom a-mod (X, Y")

Identity morphism in € (X, X)

The zero object of a category %, in particular the
zero module for the category A-Mod

The unique morphism X -0 —Y in @

The group of isometries of a metric space, in partic-
ular of a Riemannian manifold

The left action of a group G on a set X

For G ~» X and Y C X, the subgroup {g € G | g.« €
YvVzeY}

:For G ~ X and z € X, the isotropy subgroup

Stabg({z})

: Virtually P, where P is a property of groups
: The cyclic group of order n

: The dihedral group of order 2n

: The set of conjugacy classes of the group G.



CHAPTER 1

Representation theory and cohomology

¢ Cohomology is representation theory.

J. L. ALPERIN, [Alp87]

The purpose of this chapter is to give the definition of an Euler algebra. The
idea is to “enrich” an R-algebra A with some further structure (cf. Definition 1.23)
so that an Euler characteristic x 4 may be associated to A.

This definition is, essentially, a weakening of the axioms of a Hopf algebra: in
particular, group algebras fit in the picture and the process of defining the Euler
characteristic mimics the usual definition of the R-Euler characteristic of a group
(cf. [Bro82]).

The first three sections of the chapter summarize (and fix the notation for) the
homological algebra and representation theory needed later.

1. R-algebras, modules

In this thesis, rings will be unital and associative. In particular, if R and S are
rings and f: R — S is a morphism of rings, then f(1g) = 1.

1.1. R-algebras. All along this thesis, the symbol R will denote a commmu-
tative “base ring”, and the word “algebra” has to be intended as “algebra over a
commutative base ring”. If A is an algebra the opposite algebra is denotes A°P.

Modules over an R-algebra have the underlying structure of R-modules, and,
for an R-algebra A, the commutator subgroup

[A,A] ={ab—ba|a,be A}
is an R-submodule of A. Then let A = A/[A, A] be the quotient R-module.

1.2. A-modules. If M, N € A-Mod are left A-modules, let Homa (M, N)
be the R-module of A-morphisms and let Hom(M, N) be the R-module of R-
morphisms. Analogous notation will be used for the tensor product: if M € Mod-A
is a right A-module (i.e., a left A°P-module) and N € A-Mod is a left A-module,
then M ® 4 N denotes the tensor product over A, while the unadorned version
M ® N denotes the product over the base ring R. For a left A-module M, set
M* = Homa (M, A).

Let A, B be R-algebras. Let M be a left A-module, let N be an (A, B)-
bimodule and let L be a left B-module. Then Homa (M, N) naturally has the
structure of right B-module via

(f.b)(m) = f(m).b for f € Homa(M,N),be B,me M

and N ®p L is a left A-module via a.(n ® £) = (a.n) ® £.
The notions of free, projective, flat, finitely generated, etc., modules are defined
as usual. The regular left A-module is denoted ™8 A.

5



6 1. REPRESENTATION THEORY AND COHOMOLOGY

1.3. Hom-® adjunction. It follows that the R-modules Hom4(M,N) ®p L
and Hom g (M, N® g L) are defined and there is a canonical morphism of R-modules,
expressing the adjunction between Homa(_, ) and _ ®p _:

ym,n,L: Homa(M,N)®p L — Homa(M,N ®p L),
Y(f ® £)(m) = f(m) ® L.

In particular, if A = B and N = A one deduces that there are morphisms

(1.1)

(12) 'VM,L:M* ®AL—>HOH1A(M,L)
and, if further L = M,
(1.3) v M*®a M — Enda(M).

Finally, the evaluation map is needed:
evy: M*Ra M — A,
evm (f ®m) = f(m) + [A, A].

1.1. REMARK. Note that, since A is not, in general, commutative, one needs to
take the evaluation modulo the commutator submodule. Indeed, one has f.a®@m =
f ® a.m, then must have ev/(f.a ® m) = evy(f ® a.m), while

(fa)m) = f(m)a, and f(a.m) = af(m).

The class of finitely generated, projective left A-modules is denoted proj(A).
The fact that the morphism ~p given in (1.3) is an isomorphism if, and only if,
P € proj(A) will be used repeatedly (cf.[Bou07b, Ch. 2 §4]).

1.4. Restriction and induction. For an R-algebra A with a subalgebra
B < A let
respg(_): A-Mod — B-Mod
and
indg(_) = A®p (_): B-Mod — A-Mod
be, respectively, the restriction and induction functors.

If A is flat as right B-module, then inda(_) is exact and maps projective
(resp. finitely generated, projective) left B-modules to projective (resp. finitely
generated, projective) left A-modules (cf. [Wei94, Prop. 2.3.10]).

A left A-module M is called one-dimensional if, and only if, res‘,% M ~TER,

2. Chain complexes

This section sets the notation for (co)chain complex of modules and related
objects. In particular, sign conventions are established.

Let A be an R-algebra, then a chain complex (M,,d,) is a sequence of left
A-modules M}, and boundary morphisms 0y € Homa (Mg, My_1) for all k € Z,
such that

Or_100,: My, — Mj,_o
is the zero map.

The category consisting of complexes of left A-modules and chain maps is called
the chain complex category of A, and denoted Komg(A).

Other related notions, such as: cochain complexes, chain maps, subcomplex,
quotient, cycle submodules Z4 (M) = ker 9., boundary submodules B (M) = im O,
chain homology H,: Kome(A) — Kom,(A), homotopy equivalence and chain ho-
motopy (both denoted =), quasi-isomorphism, shift operator (denoted _[p]), cone
Cone(f,) and cylinder Cyl(f,) of a chain map will be used exactly as defined in
[BouO7a, Ch. X §2].



2. CHAIN COMPLEXES 7

2.1. Finiteness conditions and other properties. Some further nomen-
clature about chain complexes follows.

1.2. DEFINITION. Let M, be a chain complex in A-Mod. Then

(1) a complex M, is bounded from below (resp. from above) if My = 0 for
k < 0 (resp. k> 0);

(2) M, is called of bounded if M, = 0 for almost every k € Z or, equivalently,
if it is bounded both from below and from above;

(3) a non-zero complex with My, = 0 for all k¥ < 0 complex M, has length
sup{k € Z | My #0};

(4) a complex M, is concentrated at k it My = 0 for all £ # k;

(5) a complex M, is exact in degree k if Hy(M,) = 0;

(6) a complex M, is called exact if Hoe(M,) = 0;

(7) a complex whose homology is concentrated in degree 0 is calles acylic.

Typical nice properties for a module (e.g. freeness, projectivity, finite genera-
tion) extend to complexes in the following way.

1.3. DEFINITION (“Nice properties” for complexes). Suppose M, € Kom,(A) is a
complex of A-modules. Then M, is called

(1) free if My, is a free A-module for all ;
(2) projective if My, is a projective A-module for all k;
(3) finite if it is both bounded and My, is finitely generated for all k.

2.2. Shift, embedding and truncation. For clarity we just recall the fol-
lowing convention about signs. If M, is a chain complex and p an integer, define
the shifted complex M|p|, as follows: M([p|i, = My, and 8,?4[1’} = (=1)po,. I
M,, N, are chain complexes, if fo: My — N, let

flple = Jptk: Mply = Mpik — Nply = Nptk-
There is an obvious embedding functor which is an inclusion of categories
_[0]: A-Mod — Kom,(A),

and identifies modules with complexes concentrated at 0.
On the other hand, one may wish to “truncate” a complex: let M, € Kome(A),
and let p € Z. Then define a new chain complex M,Z? as follows.

M, ifk> o ifk
MgP =S RS and (97 Mg Mgt ) =4 F - P
0 otherwise 0 otherwise.

It is called the above-p truncation of M,. It is a subcomplex of M,, bounded from
below, represented as follows.

Op2 Opt1 9p Op—1
M: e Mp+2 Mp+1 Mp Mpfl Z\/[pfl

Op 2 Op 1

M=zr: My 2 M, 0 0
1.4. LEMMA. Let Mg be a chain complex, then
Hy(Ms) ifk>p
Hy(M,2P) = cokOpy1 ifk=p
0 if k <p.

In particular if Mo is exact in degrees greater than p, the truncation above p of M,
has homology concentrated at p.

My

PROOF. For k # p the statement is obvious, for k = p notice that Z,(M=F) =
ker 97 = M, and B),(M=P) = im 1. |



8 1. REPRESENTATION THEORY AND COHOMOLOGY

2.3. Hom and ® complexes. The definitions given (for modules) in §1.2 can
be extended to chain complexes. In order to fix the notation, the complete details
follow.

1.5. DEFINITION (®-complex). If (M,,0M) is a complex of right A-modules and
(N, 0Y) is a complex of left A-modules, then their tensor product is defined as the
graded R-module (M® ,N), whose component in degree k is

(M&,N)e = [ Mawa N,
a+b=k
together with boundary maps
O (m@m) = (O2m) &+ (<1)*m ® (9)'n)

if m®n is a monomial with m € M, and n € Nj. It is easy to check (cf. [BouO7a,
Ch. X §4.1]) that 8,?{%]\[ o Gly@N = 0, hence the tensor product is actually a chain

complex.

Note that, if N, is concentrated in zero, then the tensor complex is the same
as the complex obtained tensoring degree-wise each module M, with Ny, while if
M, is concentrated in 0, the tensor complex has the same modules but different
boundary morphisms (actually, only a sign (—1)® appears, thus the complexes are
quasi-isomorphic).

1.6. DEFINITION (Hom-complex). Let A, B be R-algebras, and let (M,,9}) be a
complex of left A-modules and (N,,d2) be a complex of (A, B)-bimodules. Then
the Hom-complex is defined as the complex of right B-modules whose component
in degree k is

Hom'y (M, N) = Hom#, (M, N) = [ Homa(Ma, Ny).

a—b=k
If f=(fap: My — Np)a—p=k let the boundary map be defined as
(14) (5k(f))67d = aé\/;k o fc,cfk - (_1)kfcfl,cflfk o 8347

for ¢ —d =k + 1, hence 6*f € Homf‘“(M, N).

One has that HomZ (M, N) is a chain complex (cf. [BouO7a, Ch. X §5.1]).
As in the case of modules, the dual complex is defined, and satisfies analogous
properties.

1.7. DEFINITION (Dual complex). Let M, be a complex of left A-modules, then
the dual complex is the complex of right A-modules

M@ = Hom{ (M., A[0]) = ][ Homa(M_y, A).
k

One checks that, if f: M_g — A, the boundary 0 fi, € Hom#* | (Me, A[0]) is
then given by

S (fu) = (1) fro oM.

As a consequence of the chosen sign conventions, the natural transformation of
bifunctors

(15) lM,N : 71®@A*2 - I—Ic)imA(*h*Q)
carries a non-trivial sign: explicitly, one has

(1.6) A(f @ n)(m) = (=1)* f(m)n,
for (f: M_, — A) € Hom, (M, A[0]), m € M_4, n € Np.
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Moreover one has, for all A-complex M,
(1.7) RAVE M®® M — End 4 (M).

If P, is a finite, projective complex, then P® is finite and projective and Tp defined
in (1.7) is an isomorphism of R-modules.
Moreover there is a morphism of chain complexes, the standard evaluation:

evy: MO®, M — A[0]
m*,(me) +[AA] ifk={

m*,Qmy — ]
k 0 otherwise.

3. Resolutions and cohomology

In order to define (and compute) cohomology, one whishes to associate a com-
plex X, to a module M (e.g., using the embedding functor) such that the homology
of the complex can be identified to the module one started with.

3.1. Resolutions and finiteness conditions. What one usually looks for is
some complex whose modules have “nicer properties”, that is, one pays the price
of passing from a single module to a complex for having the advantage of dealing
with better-behaved modules. Under this point of view, of course, the embedding
functor is non-interesting.

1.8. DEFINITION (Resolution). Let (M,,0M) € KomJ (A) a bounded-below chain
complex of A-modules, then a resolution of M, is 3-tuple (X., X, ¢.) consisting
of a bounded-below complex (X,,9.), and a quasi-isomorphism e,: Xy — M,.

1.9. REMARK. (1) Under the identification of M with M[0], the above Definition
agrees with the usual definition of resolution, namely the truncation X320 of an
exact complex X, of the form

X3 Xy Xo X_1 =M——0.

(2) A resolution of a module M is a positive, acyclic complex whose homology is
isomorphic to M[0], i.e. the unique (possibly) nonzero is in degree 0 and isomorphic
to M.

In particular, the notions of Definition 1.3 apply to resolutions, e.g. one can
have free, projective, finite, etc., resolutions.

Thus, the projective dimension of a left A-module M is the minimal length of
a bounded projective resolution, or infinity if no bounded projective exists for M:

pd 4 (M) = min ({ lenght(Rs) | Re — M bounded } U {oc}).
Moreover, M is of type FP if, and only if, it admits a finite and projective resolution.
For each module there are many resolutions may exist, but it is well-known

that, upon restricting to the (non-empty) class of projective resolutions, there exist
essentially (i.e., up to homotopy equivalence) just one (cf. [BouO7a, Ch. X §3]).

3.2. Cohomology and Ext(_, ). The functors Ext%(_, ) and Torg(_, ),
and hence (co)homology are defined in the usual way (cf. [Ben98, §2.4] or [Wei94,
§82.5, 2.6]). Hypercohomology is an extension of the notion of Ext- and Tor-functors
for the categories of chain complexes.

Suppose M,, Ny are bounded-below chain complexes of left A-modules and
suppose Py — M, is a resolution of M,. Then define

(1.8) Ext (M, N) = H,(Hom{(P, N))
or, passing to cochain complexes,
(1.8') Ext (M, N) = H*(Hom} (P, N)).
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As one might expect, Ext-functors have a concrete interpretation.

1.10. PROPOSITION. The R-module Ext{ (M, N) represents the homotopy classes
of chain maps from M to N.

1.11. NoTATION. The homotopy class containing the chain map f: M — N will
be denoted [f] € Exty (M, N).

PROOF. Let f =Y fi; € Hom% (M, N), where f; ;: M; — N;. Compute the

boundary in the Hom-complex following (1.4)
(50f)c70—1 = aéfo,c - fc—l,c—laéw-

Then if f € ker 6° one has that, for all ¢ € Z, aé\]fgC = fc,lﬁ,l@éw, i.e. fisa chain
map of degree zero.

Suppose now that f € imdé~!, i.e. f = § g for a suitable g = > g;_1; €
Hom !(M, N). Again by (1.4), one has

Fig=00719)5 = 0195541 + 951,500,

and then {0} = grx+1: My — Nipy1 | k € Z} is a chain homotopy contraction,
and hence f ~ 0. |

It is well-known that the definitions (1.8), (1.8") do not depend on the projective
resolution used to compute them.
Moreover, there is a canonical isomorphism Ext% (M, N) ~ Ext% (M[0], N0]).

4. Traces

For the purposes of this thesis a short compendium of linear algebra over A-
algebras is needed. In particular, an extension of the notion of a “trace” will
be useful in the sequel. The discussion follows [Bas79] and [Sta65] in order to
introduce the Hattori—Stallings trace for endomorphisms of projective modules and,
in general, for modules of type FP.

1.12. DEFINITION (Trace). Let R be a commutative ring, let A be an associative
R-algebra and let © be an R-module.
A ©-valued trace of A-modules is a collection consisting of R-linear morphisms

Tvja: Enda(M) — ©,
for M in some class X’ of left A-modules, such that
(1) if ¢,% € Enda(M), then
m/ale +¥) =Tv/a(e) + Ty a(¥);
(2) if p: M — N and ¢: N — M are morphisms of A-modules, then
T/ A(¥P) = Tnyaled);
(3) if the diagram of A-modules

0 M M M 0
f’i fl f//i
0 M M M" 0

is commutative with exact rows, then 7ap /Ao (f') + 7o/ a(f") = Taya(f)-

Suppose that the class of modules &', on which 7_,4(_) is defined, contains
all finitely generated projective left A-modules, then the trace can be extended
canonically to a broader class of modules, namely to the class FP; thus, the following
lemma is needed.
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1.13. LEMMA. Let P, be a finite, projective complexr of A-modules, and let fo =
ge: Po — P, be chain homotopic chain maps.
Suppose 7_;o: Enda(—) — © is a trace, then

SV p alfi) = (=DFrp, algr)-
kezZ keZ
ProOF. For short, put 7p, /4 = 7%. For a suitable oa, write fr, —gr = O 101+
ok—10k. By Definition 1.12(1) and (2),
Te(fr) = Te(gr) + Tk (Okr10%) + Ti(0k—10k)
= 7k(gk) + Tk (Ok410k) + The1 (OpOk—1).
Then, since

Z(*l)kﬂc(akﬂak) + Tk—1(Ok0k—1) = 0,
k
the alternating sum formula gives

> (=DFrfi) = Z( "7 (gn +Z "7k (Ok410k) + The1(Ok0k—1)
k
Z )ETr(gr),

2
as claimed. ]

4.1. Hattori—Stallings trace and rank. If P € proj(A), then the canonical
map ~vp admits an inverse, and hence evp 07131: Enda(P) — A is defined. One
immediately sees that it is a trace.

1.14. LEMMA. For any P € proj(A) and any f € End4(P), let
trp/a(f) = eve oy (f).
Then tr_;a(—) is an A-valued trace.

PRrROOF. Additivity is immediate. Commutativity can be proved, using matri-
ces: suppose P, @Q € proj(A) and a: P — @, B: Q@ — P are maps. Fix a (projective)
basis {p;}icr of P, with dual basis {p}} and a basis {¢;};cs of @ with dual basis
{g; }-Then one can write uniquely

a=Y ai;pi(e and B=1Bid;()pi
(] Jii
By elementary linear algebra one can write

aB =" ai;Byid;(ay
PR

and

Ba = ZZﬁJ Q7 p@ )pi’a

1,3’

hence,

trg/a(af) = Zamﬁw Zﬁﬂaw +[A, A] = trp/a(fa),

as claimed. For the thlrd condition, just remark that any short exact sequence of
projective modules splits, then M ~ M’ @ M"”, and f can be written in blocks with
f" and f” in the diagonal. [ |

Since projective resolutions are homotopy equivalent and by Lemma 1.13, one
can give the following definition.
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1.15. DEFINITION (Hattori-Stallings trace). Let M be a left A-module of type FP,
and let P, be a projective resolution of M and let f, be a lifting on f along P,
The Hattori—Stallings trace of an endomorphism f € Enda (M) is

trar(f) = Holevp o(v,) (o)) € A.

In particular one has
tr: BExt{ (M, M) — A.

This trace has the properties summarized as follows.

1.16. PROPOSITION. Let P = (P,,0L) be a finite, projective complex of left A-
modules, and let [f],[g] € Extg(P, P), f = > kez [k, be homotopy classes of chain
maps of degree 0. Then
(1) trp([f]) = Xgen(=1)* trp, (fi):
(2) trp([f]olg]) = trp(lg] o [£])-
(3) Let Q = (Q.,@?) be another finite, projective complex of left A-modules
which is homotopy equivalent to P, i.e., there exist chain maps p: P — Q,
P: Q — P, which composites are homotopy equivalent to the respective
identity maps. Let [h] € Exti(Q, Q) such that [¢] o [f] = [h] o [¢]. Then
trp([f]) = trq([h]).
PROOF. Part (1) is a direct consequence of (1.6), and (2) follows from (1) and
Lemma 1.14.
The left hand side quadrangle in the diagram

(1.9) Hom 4 (P, P) <—— P®% , P <> A[0]

wo*ow l \Lw@ =

Hom ,(Q, Q) <—— Q%% ,Q — > A[0]

commutes, and the right hand side quadrangle commutes up to homotopy equiva-
lence. This yields claim (3). |

1.17. DEFINITION (Hattori-Stallings rank). The trace computed on the identity of
M is the Hattori—Stallings rank of the module M.

rvM= tI‘M/A(idM).

Under certain circumstances, the computation of the Hattori Stallings rank is
very easy.

1.18. LEMMA. Let f € Enda(A™) be an endomorphism of the finitely generated,
free, left A-module A™, then

tran/a(f) =tro+[A, Al
where ¢ = ; ; is the matriz representing f over the standard bases {e;} of A™ and
and e} of (A")*.
Let P be a finitely generated, projective left A-module, then it has the form
P = im(x), for some idempotent matriz © = 72 € Mat, (A), and

rp = tr(m) + [A, A].

Proor. One has €](e;) = d;; and
F=Y vii(€(e) =Y van(vije] ® e,
i,J i.J

then tran/a(f) =32, ; i €j(ei)+[A, Al =37, ¢ii+[A, A] = tro+[A, A], which
proves the first statement.
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The existence of 7, as in the second statement, is a well-known characterization
of finitely generated projective modules. Let i: P — A™ be the inclusion, and let
p: A" — P be the multiplication by =« from the left.

Then by Definition 1.12(2) and the previous fact, one has

rp =trpa(idp) =trp,a(poi) =tran a(iop) = tr(m) + [A, A]. |

4.2, The homotopy category. The homotopy and derived categories of a
category of modules are the categories which model the behaviour of resolutions.

Let A be an R-algebra, let Kome(A) be its chain complex category. Define
the associated homotopy category H(A) with objects the chain complexes of left
A-modules and morphisms the homotopy classes of chain maps:

Obj(H(A)) = Obj(Kome(A)) and Mor(H(A)) = Mor(Kome(A))/ = .

Let K(A) denote the additive category the objects of which are finite, projective
chain complexes of left A-modules. Since morphisms are given by the homotopy
classes of chain maps of degree 0, by Proposition 1.10 one has Homga)(P, Q) =
Extg' (P, Q).

A triangle in K(A) is a sequence Ty = (A - A" — A” — A[-1]) of chain
complexes and homotopy classes of chain maps. A morphism of triangles T4, Ty is
a triple of maps (f, f’, f"): T4 — T such that

’

A A d A w A[fl]

f f’i f”i f[l}i

B B B” B[-1]
y yl T

x

is commutative in K(A), i.e. it commutes in Kom4(A) up to homotopy.
In particular, K(A) is a triangulated category (cf. [GM99], [Wei94, Chap. 10])
and distinguished triangles are triangles isomorphic to a triangle of the form

(1.10) A —— Cyl(f) —— Cone(f) — A[-1] ,
for some f: A — B (cf. [Bou07a, Ch. X §2.6]).

Thus, if
(1.11) A B c Afl]

is a distinguished triangle in K(A), one has rg =r4 + r¢.

1.19. PROPOSITION. Let C = (C,,0¢) be a chain complex of left A-modules con-
centrated in non-negative degrees with the following properties:

(1) C is acyclic,

(2) C is bounded,

(3) Cy is of type FP for all k € 7Z.
Then Hy(C) is of type FP, and one has

(1.12) rgc) = Y _(=1)ro, € A.
k>0

PRrROOF. Let ((C) =min{n > 0| Cy,;; =0 for all j > 0} denote the length of
C'. We proceed by induction on £(C). For £(C) = 1, there is nothing to prove. Sup-
pose the claim holds for chain complexes D, {(D) < {—1, satisfying the hypothesis
(a)—(c), and let C be a complex satisfying (a)—(c) with £(C) = {. Let C" be the
chain complex coinciding with C' in all degrees k € Z \ {0} and satisfying C§' = 0.
Then C*[—1] satisfies (a)—(c) and £(C"[—1]) < £ — 1. Then by induction, M =
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H,(C") = Ho(C"[—-1]) is of type FP, and rp; = 7,5, (=1)**1re, . By construc-
tion, one has a short exact sequence of left A-modules 0 — M % Cy — Ho(C) — 0.
Let (P.,0F en) be a finite, projective resolution of M, and let (Q.,@.Q,sco) be
a finite, projective resolution of Cy. By the comparison theorem in homological
algebra, there exists a chain map ae: Ps — @, inducing a. Let Cone(a,) denote

the mapping cone of ae. Then (Cone(as),ds,ex) is a finite, projective resolution
of Ho(C), i.e., Hy(C) is of type FP. Then, there is a distinguished triangle

P, = Qo — Cone(as) = P[—1]e,
hence by the remark following (1.11) one has

(113) T'Ho(C) = TCone(a,) —=TQ — TP =TCy —TM-

This yields the inductive step and the claim. |

5. Euler algebras and Euler characteristic

The purpose of the present section is to introduce some further structure on an
algebra A, so that one might associate to it an Euler characteristics (cf. §5.2).

1.20. DEFINITION (Algebra with antipode). Let A be an associative R-algebra. An
antipode, or antipodal map

A A%P
is an isomorphism of R-algebras satisfying B =idy.

1.21. DEFINITION (Augmented algebra). Let A be an associative R-algebra with
antipode _%. Suppose there exists a linear character \ € Hompg-ag(A, R) which
defines a 1-dimensional left A-module Ry with left A-action a.r = A(a)r, and such
that A\(a?) = A(a) for all a € A.

Then the 3-tuple (A,J, A) is called an augmented R-algebra with antipode.

For arbitrary R-algebras, one may give the following definition.

1.22. DEFINITION (Trace function). For an associative R-algebra A, a morphism
f: A — Ris called a trace function if, and only if, fi(ab) = fi(ba) for all a,b € A.

A trace function i factors through the projection A — A = A/[A, A] and
determines hence a map p € Homp(A, R); by abuse of language p will be called a
trace function as well.

For an augmented R-algebra with antipode (A, _%, \) one may define A to have
some finiteness condition if, and only if, the trivial A-module Ry has that finiteness
condition. In particular, one says that A is of type FP if, and only if, the module
R) is of type FP.

Finally, one may give the following definition, which will be central in the
present thesis.

1.23. DEFINITION (Euler algebras). Assume that (A, _, ) is an augmented algebra
of type FP, with an antipode, and such that A, considered as R-module, is free.
Suppose moreover there exists a free R-basis B C A satisfying

(1) 1€ B

(2) B =

(3) the symmetrlc R-bilinear form

) (,—): AXA— R, (a,b) = dapN(a), a,b € B,

where §, denotes Kronecker’s é-function, satisfies

(1.15) (ab,¢) = (b,a"c) for all a,b,c € A.

(1.14
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Then, let
fir A= R, ji(a) =(1,a)
and let yu: A — R the induced map (cf. Definition 1.22).
The 5-tuple (A, %, \, B, i) is called an Euler R-algebra.

1.24. LeMMA. If A = (A,_% )\, B) is an associative, augmented R-algebra with an
antipode and a distinguished basis, then the map [i defined as in (1.14) is a trace
function.

PROOF. By definition, one has for all a,b € A that (af,b?) = (a,b). Hence
(1.16) fi(ab — ba) = (1,ab) — (1,ba) = (af,b) — (b*,a) = 0.
for all a,b € A. Then p: A — R is the induced trace function. |
5.1. Hattori—Stallings trace and Euler subalgebras. One needs to know
the behaviour of the Hattori-Stallings trace with respect to subalgebras, assuming

some compatibility conditions on the structures of associative, augmented algebras
with antipode.

1.25. NOTATION. If B < A is an inclusion of R-algebras, then [B, B] C [A, A],
hence there is an induced map of R-modules

(1.17) trpja: B— A, b+ [B,B]—b+[A A]
1.26. DEFINITION. Let (A,_% X\ B,u) be an Euler algebra. Let B C A be an

R-subalgebra of A such that

= A is a flat right B-module;
n Bh — B;
= BN B is a free R-basis of B.

Then B will be called an Fuler subalgebra of A.
Then, one has the following elementary fact.

1.27. LEMMA. The 5-tuple B = (B,_f|g,\|B, BN B, u|B) is an Euler algebra.
Call pp its canonical trace pg: B — R, then there is a commutative diagram

trB/A

A.
R

1.28. PROPOSITION. Let M be a left B-module of type FP. Then indg(]W) is of
type FP, and one has

(1.18) B

(1.19) TindB (M) = trB/a(rm).

ProOF. Induction indg = A ®p _ is a covariant additive right-exact functor
mapping finitely generated projective left B-modules to finitely generated projec-
tive left A-modules. Moreover, if A is a flat right B-module, then indg is exact.
Let P be a finitely generated left B-module, and let QQ = indg (P). Then one has a
canonical map ¢t: P — @, ¢(p) = 1®p, which is a homomorphism of left B-modules.
As induction is left adjoint to restriction, every map f € Endg(P) induces a map

to(f) = (Lo f)« € Enda(Q).
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Let P* = Hompg(P, B) and Q* = Homa(Q, A). Then for f € Homg(P, B)
one has an induced map t.(f) = (j o f)« € Q* making the diagram

(1.20) Endp(P) <2— P*®@p P —*> B

Loi J/L*(@L ltrB/A

evg

Enda(Q) < Q" ®4Q —>A
commute. ]
1.29. COROLLARY. One has, for a B-module M of type FP,
ta(rinaavy) = paltreya(rm)) = ps(ru).

5.2. The Euler characteristic. The machinery developed in this chapter
finally allows the definition of the Euler characteristic of an FEuler algebra: this is
the main technical tool we had to introduce in order to prove the main results of
Chapter 5 §8.

1.30. DEFINITION (Euler characteristics). Let A = (A,_% X\, B,u) be a Euler R-
algebra. Then

(1.21) xa = p(re,)-
will be called the Euler characteristic of A.

1.31. ExAMPLE. Later in the discussion, Proposition 2.2 will show that group al-
gebras are actually Euler algebras, and hence Definition 1.30 applies.

Let R be a commutative ring, let G be a group of type FP over R. The
Euler characteristics (as defined above) x rjg) then coincides with the usual R-Euler
characteristics of G (cf. [Bro82] or [Bas76]).



CHAPTER 2

Facts from group theory

Representation theory is, par excellence, representation theory of groups. This
is one of the most fundamental and active areas of research in pure mathematics.

1. Groups and group rings

Group representations are conveniently thought of as modules over group al-
gebras. In the present work, unless otherwise specified, groups are to be intended
discrete groups.

If R is a commutative ring and G is a group, the R-group algebra of G is denoted
R[G].

The following lemma focuses on some features of group algebras which are
shared with Hecke algebras (cf. Chapter 5).

2.1. LEMMA. Let R[G] be a group algebra. Then
(1) any left G-module (M,.) becomes a right G module (M,o) via g om =
-1
m.g~';

(2) for H < G a subgroup, there is an inclusion of R-algebras R[H] < R[G],
the corresponding induction and restriction functors are simply denoted
ind¥: R[H]-Mod — R[G]-Mod and res$;: R[G]-Mod — R[H]-Mod;

(3) the right H-module res$, R[G]™8 is free, and a set of representatives of
the right coset space G/H is a basis.

One immediately has the following result.

2.2. PROPOSITION. Let G be a group and let R be a commutative ring. Then R[G]
is canonically an associative, augmented R-algebra with antipode. Moreover if R[G]
is of type FP, then it is canonically an FEuler algebra.
PROOF. The R-algebra RG] is associative and one canonically puts
(1) the set G as a distinguished free R-basis of R[G] containing 1ziq) = 1rla;
(2) the map _*: R[G]°P — RG] given by 2 gec a9 ™ Dgea reg ! as distin-
guished involution, then G = G and 1! = 1;
(3) A(g) =1 for all g € G, and hence

() i (Zyeare0) = 1.
Thus, all the conditions of Definition 1.23 are fulfilled. |

2.3. REMARK. The above proposition simply restates, from an R-algebra-theoretic
point of view, the condition that G is of type FP over R (cf. [Bro82, Ch. VIII §6]).

2. Cohomology of groups

2.4. REMARK. The import of the involution _% is converting left modules into right
ones and viceversa. In particular the tensor product of left G-modules M and N is
defined as the quotient M @z N/{(g*m @ n —m ® gn).

17
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Let R[G] be the group algebra of a group G and let M be a left R[G]-module
with a resolution Qe — M, then define

Ho(G, M) = Tor 1N (R, M) ~ Hy(R[0]2 y;, Qa)-

In particular, if R is the trivial R[G]-module, i.e., the 1-dimensional module
with action g.r = r for all g € G, and P, is a projective resolution of R over R[G],
then Ho(G, R) = Ho(P).

It follows that any computation related to (co)homology, one needs projective
resolutions. In many cases resolutions are produced using methods from algebraic
topology (cf. [Bro82] or [Geo08, Ch. §]).

Finiteness conditions for group algebras often reduce to the notion of coho-
mological dimension (over R), i.e., cdr(G) = pdpgg(R). When R = 7 one simply
writes cd(G) = c¢dz(G), and this is an upper bound for the cohomological dimension
over any commutative ring R.

2.1. Universal space for proper group actions and resolutions. The
purpose of this section is to give a brief overview of common ways to produce
resolutions of the trivial R[G]-module. The situation, in general (e.g., for any
commutative ring R) is higly non-trivial, but the present methods gave strong
motivation to the work (cf. Chapter 5 §5).

A CW-complex X (cf. [Hat02, Ch. 0 and Ch. 2 §2]), together with a cellular
action G ~ X is called a G-CW-complex.

Let G be a group, and let X be a G-CW-complex such that

= X is non-empty, say xp € X,
» (X, z0) ~ G,
» m,(X,29) =0 for k > 1.
Then X is a model of the Eilenberg-MacLane space K(G, 1) (also denoted B(QG)).

For any group, there is a standard construction of a B(G) starting with a
bouquet of 1-spheres indexed by a system of generators, and adding cells “along
the relations” to kill higher degree homotopy.

The universal cover X of a B(G)-space is a (model of a) classifying space for G
and it is denoted E(G). Tt is contractible and there is a cellular G-action G ~ X
given by the “deck transformations”. The action is free, i.e., point stabilizers are
trivial.

If X and Y are B(G)’s, then the two spaces have the same cellular* homology,
and the cellular complex arising from a E(G)-space is a free Z[G]-resolution of the
trivial module Z.

A group having a B(G) which is a finite G-CW-complex is called a group of
type F. If G is of type F, then the mentioned resolution is a finite, free Z[G]-
resolution of Z. This cannot occurr, e.g., when G has non-trivial torsion or infinite
cohomological dimension.

The problem of having a non-bounded resolution can be avoided using a more
general construction (cf. [tD87, Ch. T §6] or [Mis03, §2]) of a G-CW-complex
allowing point stabilizers to be in some predefined class of groups.

Loosely speaking, and under suitable conditions, the situation is the following:

+ the G-CW-complex is finite-dimensional, thus the cellular complex it de-
termines is a bounded resolution of the trivial module;

— it there are non-trivial stabilizers the G-action is not free, and in particular
the cellular complex is no more a free resolution of the trivial module;

*Cellular homology is the homology functor suitable for CW-complexes, and it is isomorphic to
singular homology.
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+ under further conditions on the class of point stabilizers, it may happen
that the resolution is projective (and bounded) nonetheless.

If G is a group, a collection X of subgroups of G such that.
» {1} € X,
»if H< H' <G and H € X, then H € X,
w if H € X and g € G, then HY € X.

is called a class of subgroups of G.

The “trivial” collection ¥ containing only the trivial subgroups is a class of
groups. The collection § consisting of all finite subgroups of G is a class of sub-
groups.

With respect to a class X of subgroups of G, one may define (cf. [t{D87, Ch. T
§6]) a classifying space Ex(G) for the family X.

A G-CW-complex X which is a model for Ex(G) is characterized, up to G-
homotopy equivalence, by the following properties:

s GoeXforallz e X
» The fixed point subspace X% is contractible for all 2 € X.

A model X of Fz(G) is called a universal space for proper group actions and
it is denoted E(G). One may have a finite-dimensional E(G) also when G has
non-trivial torsion.

Finally, the cellular complex (with rational coefficient) of a E(G)-space is a
projective resolution of the trivial Q[G]-module Q (cf. [Mis01]).

In particular, if there is a finite-dimensional model of E(G), then there is a
bounded, projective Q[G]-resulution of Q.

2.5. REMARK. In Chapter 3 §5 it will be shown that, for a class of Coxeter systems
(W, S), there is a canonical, finite-dimensional model 3(W, S) of the EW.

The associated chain complex will constitute a projective resolution of the
trivial module, consisting of permutation modules.

3. Finitely generated groups: growth series

Let Cay(G, X) be the Cayley graph of the finitely generated group G with
respect to the finite generating set X and let £ be the associated length function
(cf. Appendix A §1).

For all n € Ng let a,, = |S(n)| = |{g € G | {(g) = n}|, then a,, < oo for all n
and one may define the classical growth series (cf. [GAIH97]) as follows

Pe.x)(t) =Y ant™ € C[1].

n>0

To simplify the discussion define moreover b, = [{g € G | {(g) < n}| =Y 1 gk
and
Pia,x) () = D but™ € C[t];
n>0

it is the cumulative series of p(, x)(t) (cf. Appendix C) and the coefficients b,,’s of
this series satisfy

(1) bp =1 and by = | X| +1,

(2) by >byq foralln>1,

(3) bpaem < bpby, for all n,m € Ny, since any product of two words of length

not exceeding, respectively, n and m has length not exceeding n + m.

By Lemma C.3 the sequence 3/b,, admits a limit, hence the convergence radius p
of p(t) is computed by

M= g, Von
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By (3) one checks that |X|+ 1 = by > {/b,, hence p > 1/(]X| + 1) > 0 and the
series P(g, X)(t) converges in a non-empty open disk. By Lemma C.1 one further
has that the series p g, x)(t) converges in an open disk of radius p > 1/(] X[+ 1) to
a complex analytic function ¢ (g, x).

The Poincaré series of a finitely generated group is a power series with non-
negative integer coefficients. Thus, Lemma C.2 reads:

2.6. PROPOSITION. Let G be a finitely generated group with a finite generating set
X. Let pic,x)(t) be its Poincaré series.
(1) If G is finite, then p(c x)(t) is a polynomial;
(2) if G is infinite, then p x)(t) converges in an open disk of C of radius
p € (0,1] to a complex analytic function.

For a finitely generated group there is a well-defined notion of growth.

2.7. DEFINITION. Let (G, X) be a finitely generated group with finite generating
set X, and cumulative growth function

p(t) =P, x)(t) = Z bit®.
keNg
(1) If there exists a polynomial B(k) € Z[t] such that S(k) > by, for all k, then
(G, X) is of polynomial growth.
(2) Tf there exist a constants c,b > 1 such that by > cb* for all k, then (G, X)
is of exponential growth.

It is well-known that being of polynomial growth (resp., of exponential growth)
is independent of the chosen (finite) generating system.

2.8. REMARK. An active area of research in years 1970-’80 was to determine whether
there could possibly exist finitely generated groups of intermediate growth. R. Grig-
orchuk gave a positive answer in [Gri84].

On the other hand, it was known that no linear group could have intermediate
growth (cf. [Tit72, Corollary 5]).

2.9. LEMMA. Let G be a finitely generated linear group. For any finite generating set
X let E(GX)(t) be the cumulative growth function and let p(c x) be its convergence
radius. Then

(1) p>11if, and only if, G has polynomial growth;

(2) p <1if, and only if, G has exponential growth.

PROOF. In view of the previous Remark 2.8, it suffices to compute the conver-
gence radius of a group of polynomial growth with bounding (from above) polyno-
mial S(k):

1
— = limsup v/bx < limsup ¥/S(k) = 1,
k k

P
and the convergence radius of a group of exponential growth with bounding (from
below) exponential function cb*

1
= = limsup /by, > limsup Veb* =b > 1.
P k k
This proves the claim. |

One further elementary fact will be needed in the sequel.

2.10. LEMMA. Let G be a finitely generated group with finite generating set X and
Poincaré series pc x)(t) with convergence radius pg. Any quotient G' = G/N s
finitely generated with a finite generating set X' = {xN |z € X }; thus denote the
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canonical length function by {'. If the Poincaré series p(r x)(t) of the quotient
has convergence radius pg, then

pe < par-

PROOF. If G is finite, every quotient is finite and both convergence radii are
infinite. If G is infinite and G’ is finite, then one has pe < 1 < 00 = pgr, as claimed.

Then suppose G and G’ are infinite groups: by Lemma C.2(2) one can compute
convergence radii through the cumulative growth function.

Let b, = [(72({0,...,n})| and b/, = |(¢)~1({0,...,n})|.

Let gN € G’ be such that ¢/(¢gN) < n, then there is a reduced expression
gN = (z1N)(z2N) ... (2:N) = z125... 24N, for t < n, x; € X. Consider another
hN € G', l/(hN) <n and hN = (4 N)(y4N) ... (y.N) a reduced expression; then
hN # gN implies Y192 .. .Y, # T1Z2 ... Ty.

Moreover £(zqxs ... x:) < n. Thus, for every gN € G, fix a reduced expression
gN = (1 N)(z2N) ... (z;N), and define the map

@)71({0....,n}) = 7H({0,....n})

gN — T1Xo ... Ty ’

it is an injective map of finite sets, hence o], < b, for all n > 0.
Then the statement follows from Lemma C.2(3). |

An extremely important result about groups of polynomial growth is the fol-
lowing; it will be fundamental in Chapter 4 to prove the amenability (cf. §4) of
some Coxeter groups.

2.11. THEOREM ([Gro81]). Let G be a finitely generated group of polynomial growth.
Then G is virtually nilpotent, i.e., it has a finite-index nilpotent subgroup.

4. Amenability

Amenable groups are a very significant class of groups which play a decisive
role in harmonic analysis, measure theory, geometric group theory, as well as in
abstract group theory.

This section has the only purpose of collecting a few results about amenabil-
ity, growth and lattices which will be useful later. They are available, e.g., in
[BAIHVO08, App. G] or [CSC10, Ch. 4]

2.12. DEFINITION (Amenable group). Let G be a locally compact topological group,
with Haar measure p. A linear function m: £°(G, ) — R is called a left-invariant
mean if, and only if, the following hold:

= the operator norm ||m|| =1,

= m(f) > 0if f(g) >0forall g e G,

» m(lg) = 1 where 1¢ is the constant function on G with value 1 € R.

= m(foAg) =m(f) for all g € G, where Aj(x) = gz is the left translation

operator on G.
Then, G is called amenable if, and only if, it admits a left-invariant mean m.

2.13. REMARK. If the group G is discrete, the above definition takes a much simpler
form. A discrete group G is amenable if, and only if, there is a function m: 2¢ — R
such that the following conditions hold.
» m(G) =1,
(X UXo U -UXE) = m(Xy)+m(Xa)+- - -+m(Xy) for disjoint subsets
Xi C Ga
» m(gX)=m(X) for all g € G and all X C G.

2.14. PROPOSITION. The following facts are well-known.
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(1) Finite, abelian, nilpotent, or soluble groups are amenable.

(2) The free group on 2 generators is not amenable.

(3) A subgroup of an amenable group is amenable.

(4) If G is virtually amenable, then G is amenable.

(5) Let G be a locally compact group, with a lattice H < G (i.e., H is a
discrete subgroup of G such that the fundamental domain H\G of the
action H ~ G has finite Haar measure). Then G is amenable if, and
only if H is amenable.

(6) If G is a group of polynomial growth, then G is amenable.

(7) If G is a semisimple, non compact Lie group, then G is not amenable.
In particular, the indefinite orthogonal group O(p,q), p,q > 0 is not
amenable.

PROOF. Finite and soluble groups are amenable by [CSC10, Prop. 4.4.6, and
Thm. 4.6.3], thus (1) follows.
Statement (2) is [CSC10, Thm. 4.4.7], while (3) is [CSC10, Prop. 4.5.1]
Part (4) is [CSC10, Prop. 4.5.8] and statement (5) is [BAIHVO08, Cor. G.3.8].
By Gromov’s Theorem 2.11, if G has polynomial growth, then it is virtually
nilpotent, thus virtually amenable by (1) and hence amenable by (4). This proves
(6).
Finally, (7) is [BAIHV08, Ex. G.3.6(ii)). [

2.15. COROLLARY. Let G be a linear group. Then the following are equivalent.

(1) G is amenable
(2) G does not contain a subgroup isomorphic to the free group on two gener-
ators.

PROOF. One only needs to prove that (2) implies (1): thus assume G is linear
without free non abelian subgroups. By Tits’ alternative [Tit72, Thm. 1], then G
is virtually soluble and, hence, amenable. |



CHAPTER 3

Coxeter groups

e Pochi sanno che, ascoltando all’incontrario il
death metal, scopriranno dei messaggi che, ascoltati
all’incontrar, sono uguali al death metal che avevi primi
di girarli.

EL1IO E LE STORIE TESE

Coxeter groups are an ubiquitous class of groups appearing in Lie theory, geom-
etry, topology, arithmetic and several other areas of pure and applied mathematics.

The basic idea behind Coxeter groups is to capture the behaviour of mirror
reflections of the space. The first section is a fast survey of various situations where
groups generated by “reflections” appear. The main goal is to provide a geometric
insight for Coxeter groups, which are the subject of §2 ff.

1. Examples of Coxeter groups

1.1. Geometric reflection groups. For each n > 1 there is (up to isometry)
exactly one n-dimensional, connected and simply connected, Riemannian manifold
with constant sectional curvature k: it is any of an n-sphere, an n-affine plane or
an n-hyperbolic plane.

They have, respectively, positive, zero and negative curvature; up to rescaling
the metric, suppose « € {1,0,—1}. It is well known that S”, E" and H" admit the
following embeddings:

n+1
Sn:{IERn+1 fo:l}gR”Jd,

1
En:{IGRn+1’In+1:1}an+l,

n
H" = {xeR”“ S owl—al =1 ann >0} C R™?,
1

where R" ! has the standard scalar product (_, ) and R™! is again R" ! as vector
space, but is given the “Minkowski product” defined by (z,y)n1 = >y iy —
Tn+1Yn+1.

These manifolds, any of which will be denoted X", admit closed, totally geo-
desic submanifolds of codimension 1, that is, hyperplanes, which are given by the
intersection of X™ with a linear hyperplane in R™*+1,

A hyperplane H C X" separates X" in two connected components, and a
reflection across H is a non-trivial isometry of X" into itself fixing H pointwise.
Explicitly one has the following characterizations.

23
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= [f X” =8S", then a hyperplane H is a great (n — 1)-sphere determined by
the linear hyperplane H, and a reflection across H is given by

pu(z) = —2(z,v)v,

where v is a unit normal vector to H.
» I[f X" = E", then a hyperplane H is an affine subspace determined by the
linear hyperplane H, and a reflection across H is given by

pr(z) =z —2(x — h,v)y,

where v is a unit normal vector to H and h € H.
» If X" = H", a hyperplane is determined by a “timelike” linear hyperplane
H, and a reflection across H is given by

pu(z) =2 —2(v,z)n 17,
where v is a “spacelike”, unit, normal vector to H.

It is easy to show that pg is independent of both v and h, hence it only depends
on the hyperplane.

In all cases H is the fixed-point submanifold of the isometry psr (this a fortiori
proves that H is closed, totally geodesic), and it is isometric to X" 1. The subspace
H separates X™ and the closure of each connected component of X"\ H is called a
half space or root.

Suppose L ={L; | i € {1,...,k} } is a finite collection of half-spaces of X" such
that their intersection Py = ﬁleLi has non-empty interior. Then P, is the convex
polytope determined by L; it is spherical, affine or hyperbolic according to whether
X" is S", E™ or H", respectively. We further assume that, for all i € {1,...,k}, one
has L; 2 Njx;L;: under this mild hypothesis, the polytope P and the collection £
determine each other uniquely.

In X", if L1 and Ly are half-spaces bounded by hyperplanes H; = bdr L,; and
Hy = bdr Le, such that H; N Hy # (), with normal vectors v and vy (either both
pointing inwards or both outwards), one says that the dihedral angle they determine
is 9(Hy, Hy) = m — arccos((v1, v2)).

Associated to a polytope P = P, there is a geometric reflection group Wp.
It is the subgroup of Iso(X™) generated by the reflections across the hyperplanes
bounding P, i.e.

We = (pg |H=bdrL, L € L) < Iso(X"),

with the fixed action W, ~ X".
A particular place in the theory of geometric reflection group is played by the
groups associated to polytopes with angles which are integral submultiples of 7.
Under mild hypotheses, one has the following (cf. [Dav08, Ch. 6]) characteri-
zation.
Let n > 1 and let £ be a collection of half-spaces in X", with bounding hyper-
planes {Hy, ..., H}. Suppose that
(1) L= {Ll ,Lk} and, for 4 #], Lz g Lj,
(2) if H; N H; # 0, the dihedral angle they form is ¥(H;, H;) = w/m; j, for
m;,; € ZZQ.
Let Pr be the corresponding convex polytope and W, be the group of isometries

generated by the reflection across the hyperplanes bounding Pp.
Then

(1) The action W, ~ X" is properly discontinuous,
(2) the polytope P, is a fundamental domain for the action,
(3) W, is a discrete subgroup of Iso(X™),
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(4) the group Wy is isomorphic to the Coxeter group with Coxeter matrix
(mi,;), cf. Definition 3.19.

1.2. Weyl groups in Lie theory. This section is purely motivational and
aimed to present one of the most relevant contexts where Coxeter groups appear
(cf. [Hum78J).

Let £ be a finite dimensional semisimple Lie algebra over the complex field.
One has the Cartan (or root space) decomposition

g=Ho @ L,

acd

where H is a maximal toral subalgebra (i.e., an algebra of semisimple elements)

and the L, are nonzero generalized eigenspaces for « € ® C H* = Hom(H, C). The
(non-degenerate) Killing form provides the duality H «» H* and the identification
between ® and a finite subset of a euclidean space V.

Thus, to any pair (£, H) as above, one associates a pair (V, ®). One proves that
the pair (V,®) is a root system (cf. [BouO7c, Ch. VIJ), and the latter determine
Weyl groups.

Weyl groups are Coxeter groups satisfying finiteness and integrality conditions
and are easily classified through their Coxeter graphs. They are the groups associ-
ated to the graphs of types A, to Go, cf. Table B.1.

Finally, the classification is sharp, in the sense that to each root system &
one may associate a complex, semisimple Lie algebra £(®), £(®) % £(®’) for all
DA P,

1.3. Disclaimer: complex reflection groups. The case of complex reflec-
tion groups (cf. [BMR95], [BMR98|, [Ari95]) is outside (and quite transversal
to) the scope of this thesis.

For V a finite-dimensional complex vector space, an element p € GL(V) is a
(pseudo-)reflection if

= the fixed point subspace ker(p —idy ) is a hyperplane (i.e. its codimension
is 1),
= p" =1 for some m € N.

A complex reflection group is a finite subgroup of GL(V'), generated by pseu-
doreflections.

Any Coxeter group is a group of reflection of a finite-dimensional real vector
space W and hence of a complex vector space C ® W. Then any finite Coxeter
group is a complex reflection group.

The converse statement is easily seen to be false. The minimal counterexample
is the complex reflection group Cs ~ ({) < GL;(C) ~ C*, where ( is any primitive
3rd root of 1, which is not a Coxeter group by Proposition 3.11(3).

1.4. Interplay. The above situations can be treated under the unifying frame-
work of Cozeter groups.

Many mathematicians worked on (or used) the theory and, from different per-
spectives, much information is known about these objects, which has often taken
the book form, e.g. [Bou07c|, [Hum90], and, more recently, [BB05] and [DavO08].

Lie theory: The basic and fundamental reference is [Bou07c]: finite-dimensional
complex semisimple Lie algebras are classified. In this context also see
[Hum?78| and [Car89].

Representation theory: Coxeter groups are the fundamental ingredient of the
theory of buildings, which were invented by Tits (cf. [Tit74]) to describe
algebraic groups over local fields.
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Combinatorics: Kazhdan and Lusztig defined (cf. [KL79]) a “cell representa-
tion” for Hecke algebras and Coxeter groups, through the so-called KL-
polynomials. The study of the geometry and combinatorics (cf. [BB05])
of such polynomials is one major field of investigation.

Group theory: One section of [Ser71] is devoted to Coxeter groups, since in this
class of groups computations are feasible and extremely interesting.

Geometric group theory: A quite recent (i.e., written much after [Gro87]) book
[Dav08] considers a variety of aspects of Coxeter groups, with emphasis
on infinite ones, including the condition for Gromov hyperbolicity of a
Coxeter group [Mou88].

Arithmetic: In the study of the arithetic properties (e.g. the covolume) of lat-
tices in hyperbolic spaces, Coxeter subgroups of the group of hyperbolic
isometries play a fundamental role (cf. [JRKT99]).

3.1. REMARK. Since the sources are extremely diverse, different authors have differ-
ences of language, which are sometimes mutually incompatible. This in particular
happens for the word “hyperbolic”, for which at least three different usages are
present in the literature.

In this thesis the word “hyperbolic” (cf. Definition 3.24) is used accordingly to
[Bou07c, Ex.s 12-14, Ch. V], but it is worth pointing out the following.

= Authors working mainly in group theory, geometric group theory and
arithmetic call hyperbolic Cozeter group any subgroup W < Iso(H"), with
the property that W is a Coxeter groups (for some set of “generating
reflections, cf. §1.1).

For instance, let W be the group generated by the four reflections
51,89, 53,84 of H? across the sides of a hyperbolic quadrangle @ as de-
picted in Figure 3.1. The angle between any two incident hyperplanes is
27 /m, with m > 5. Then W is a group of isometries of H? and moreover
(W, {s1, $2, 83, S4}), is the Coxeter group with diagram

m m

g oy,

o

which is not hyperbolic (for the Definition 3.24).

H2

S1

FiGure 3.1. A hyperbolic quadrangle in (the conformal Poincaré
disk model of) H2. The angles between incident hyperplanes is
27 /m, m > 5 and the volume of the shaded fundamental domain
Qism (1 — %), by Gau~Bonnet Theorem.
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m
o0

Another closely related example is e.g. o, for m > 3

(cf. [ABOS, §10.3.3]).
= Other authors use the wording “hyperbolic Coxeter group” to indicate
that a Coxeter group is Gromov-hyperbolic.
The two notions do not agree; indeed Moussong’s Theorem (cf. [Mou88,
Th. 17.1]) implies that there exist hyperbolic (non-cocompact) Coxeter
groups which are not Gromov-hyperbolic, e.g. the Coxeter group with
Coxeter diagram HNC1, cf. Table B.4.

All these incoherences in terminology obviously have a deep impact in the read-
ability of the various classification results available (cf. [Vin81], [Lan50], [Vin67],
[Vin85]).

2. Abstract Coxeter groups

This section contains no essentially new results, it has the purpose of fixing
notation and conveniently state the facts which will be needed later.

2.1. Definition. All the information about a Coxeter group is encoded in a
particular kind of graph.

3.2. DEFINITION (Coxeter graph). A Coxeter graph is a finite* combinatorial graph
(cf. Appendix A) T = (S, €, m), with labelling function
m: € — N>g U {oc}.

Several connected Coxeter graphs are depicted in Appendix B §2.
To a Coxeter graph is associated a Coxeter system or, by an abuse of language,
a Coxeter group.

3.3. DEFINITION (Coxeter system). Let I' = (S, &, m) be a Coxeter graph. Let
W = W(T) be the group with the following presentation:

52 for all s € S
(3.1) W= <5 (sr)ymUsrd) - for {s,r} € €, with m({s,r}) < oo >
STSr for {s,r} & &

The pair (W, S) is the Coxeter system associated to I'.
If the Coxeter graph I' is connected, the corresponding Coxeter system W (T")
is called irreducible.

2 are called quadratic

3.4. REMARK. The relations appearing in (3.1) of the form s
relations.

For x,y elements of any monoid, for m € Ny, let m,,,(z,y) be the m-term product,

defined as follows:
| (zy)m/? if 2| m

Once assumed the quadratic relations hold, one can replace the relations of the
form (sr)™ with relations of the form 7, (s, r) = 7y, (r, s), and the latter are called
braid relations. This is related to the fact that Coxeter groups of type A, are
homomorphic images of the braid group on n + 1 strands (cf. [K'T08]).

*In principle, the finiteness assumption on the set S could be dropped at the level of the definition
of a Coxeter group. Yet, doing so would make necessary to suppose, in most statements, that
|S| < oo (cf. Lemma 3.22).
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3.5. REMARK. Let I'yo(n) be the complete graph on n vertices with mg ¢ = oo for
all vertices s # t. It is a Coxeter graph and the associated Coxeter group

Weo(n) = W(Too(n)) = (81,...,8n | 87, foralli € {1,...,n})

is the free product of n copies of Cs.
Moreover, every Coxeter group (W, .S) with S| = n is a quotient of W (n).

3.6. REMARK. Later in the discussion it is possible that the phrase “(W,S) is a
Coxeter system” will be shortened to “W is a Coxeter group”. It is then essential
to remark that a Coxeter group always comes equipped with a chosen generating
set S.

Indeed, it is possible that two different Coxeter systems (with generating sets
of different cardinalities) give rise to isomorphic abstract groups. This is the case,
e.g., of the dihedral group of order 12: it is both given by the type G5 and by
A2 X Al-

3.7. REMARK. In few occasions, we will need a neat distinction between the words
in S, which are elements w € F(S) of the free group on the set S, and the elements
of W, which are the corresponding images w € W under the projection modulo the
relation subgroup.

3.8. DEFINITION. Let (W, S) be a Coxeter system and let w = s7's;> ... s;" € F(S)
be a word in S, then its length is length(w) = > |&;].

The Coxeter length of W € W is defined as ¢(w) = min{length(u) | v €
F(S), u=w}, and thus there is a function

l: W — Ng.

If u € F(S) is such that length(u) = ¢(@), then u is called a reduced word (or
reduced expression) for u.

Reduced expressions exist but are, in general, not unique. The word problem
for Coxeter group was solved as follows.

3.9. THEOREM. For w € F(S) a word in S, two kinds of elementary M-operations
are defined:

(M1) delete a subword of type ss for s € S;

(M2) for {s,r} € € and m = m({s,r}), replace a subword of type m,,(s,r) with

a subword of type wpy(r, s).
One says that w is M-reduced if, and only if, for all elementary M-operation p one
has length(p(w)) > length(w).
Then a word w is M-reduced if, and only if, it is a reduced word in the sense

of Definition 3.8.

Proor. Cf. Tits’ [Tit69]. |

3.10. PROPOSITION. Let (W, S) be a Cozeter system with length function £: W —
No. Then, for w,u € W and s € S, one has

(1) L(w) =0 if, and only if, w = 1, and L(w) = 1 if, and only if, w € S,

(2) t(w) = L(w™1),

(3) [t(w) = £(u)] < Lwu) < £(w) + L(u),

(4) L(ws),(sw) € {{(w) +1,(w) —1},

(5) The function £ is bounded if, and only if, W is finite.

3.11. PROPOSITION. Let (W,S) be a finite Cozeter system, with length function
{. Then there exists an element wyg € W of maximal length with the following
properties.
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(1) For allu € W, L(wou) = {(uwg) = £(wo) —£(u), and in particular (wg)? =
1.

(2) If (W, S) is a Weyl group (cf. §1.2), then {(wg) = |®T|

(3) If S # 0, the map of sets w — wow is an involution without fized points,
hence every finite nontrivial Cozxeter group has even cardinality.

Moreover, an element wqy satisfying any of the conditions (1) or (2) is a longest
element in W. In particular, wg is unique.

3.12. PROPOSITION. Let I'y and I's be Cozeter graphs, then the sum I'y LT is a
Cozeter graph and there is a canonical isomorphism

@Y: W(Fl) X W(FQ) l) W(Fl (] Fz)
Moreover, for wy € W(T'1) and wy € W(T'3), one has
Up(wr,w2)) = L(wr) + L(ws).

3.13. PROPOSITION. Let (W,S) be the Coxeter system associated to T', and let
s,t € S. Then s and t are conjugate in W if, and only if, they lie in the same
connected component of I'sqq.

Proor. Cf. [BB05, Ch. 1, Ex. 16]. |

2.2. Parabolic structure. Coxeter groups have the remarkable property of
having a distinguished poset of subgroups, in correspondence with the subgraphs of
the Coxeter graph. Moreover, each such a subgroup is a Coxeter group, as follows
from the simple observation that any subgraph of a Coxeter graph is a Coxeter
graph.

Let T' = (S, € m) be a Coxeter graph and let 7r: 25 — P(I') be the functor
defined in (A.1). Then any subgraph in the image of 71 is a Coxeter graph.

By Matsumoto’s theorem (cf. [GPO00, Thm. 1.2.2]) and since Monoids is a
full subcategory of Grp, there is a morphism of groups W (I'') — W (I'”") whenever
I <T". Then there is a functor

(3.2) W(_): P(I") — Grp.

3.14. LEMMA. Let I' = (S, €,m) be a Coxeter graph and let I C S. The Cozeter
group W (mr(I)) and the subgroup of (I) < W(T') are both defined, and there is a
canonical isomorphism

(3-3) (I) =~ W(mr (1)),

through which we identify the two groups, both denoted W;. Subgroups of the form
Wi for some I C S are named standard parabolic subgroups.

The parabolic structure of the Coxeter pair (W, S) is the functor
W_=W(_)onr: 2% — Grp.
In particular Wg = W.

3.15. ProPosSITION. If (W,S) is a Cozeter system and I C S, let £ and {; be,
respectively, the length function of W and Wy, then

0 =llw,.

3.16. LEMMA. Let (W, S) be the Coxeter system associated to T, and let I C S be
a connected component. Then W ~ Wi x Wg\ ;.
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3.17. DEFINITION. Let (W, S) be a Coxeter system, let I C S and w € W. Then
define the following sets

(3.4) Wl ={weW|lws)>t(w)Vsc I} W,
(3.5) "W ={weW|l(sw)>l(w)Vs €T} CW,
(3.6) AP(w)={s eS| l(ws) >Ll(w)} CS.

3.18. PROPOSITION. Let (W, S) be a Cozeter system, let w € W and let T C S.

(1) There exist a unique element w; € W; and a unique element w! € W1
such that w = wlw;. Moreover, {(w) = {(w!) + £(wy).

(2) There exist a unique element jw € W and a unique element 'w € TW
such that w = jwlw. Moreover, £(w) = {(;w) + L(fw).

(3) W and W are sets of coset representatives, distinguished in the sense
that the decomposition is length-additive.

(4) The element w' € W1 is the unique shortest element in wWj.

(5) Let y € W! and w € Wr. Then (yu)! = vy, (yu); = u, and {(yu) =
U(y) + L(u).

(6) For s € S one has W = W U s(1tW), where U denotes disjoint union.

(7) Let 1 CJ CS. Then W’ C W!. In particular, W* = {1} and wo =w.

(8) AP(w) = Uypew: I = max{I|we W!}.

(9) The element w is contained in W if, and only if, I C AP(w). In partic-
ular, ((w!) < L(w) if, and only if I  AP(w).

PrOOF. A proof of (1) to (4) can be found e.g., in [GP0O, §2.1]. Staments (5)
to (9) are immediate consequences of the previous facts and definitions. ]

2.3. Tits’ representation theorem. The present section recalls one of the
most important results about Coxeter groups. Essentially, what Tits proved is that
every Coxeter group is a Errata: lattice Corrige: discrete subgroup in a real
orthogonal group O(R‘S |,B) with respect to a scalar product defined by a suitabe
matrix B.

3.19. DEFINITION (Cartan and Coxeter matrices). Let I' = (S, €, m) be a Coxeter
graph, then let C' be the matrix with rows and columns indexed by S and with
entries

m({s,r}) if {s,r}e¢€
Csr =142 if {s,r} &€ & s#mr,
1 ifs=r.

Moreover let B be the matrix with entries

B — {—cos (CLT) if Cs,, # o0,
R B if C,, = oo.

The matrix C' is the Coxeter matrix and B is the Cartan matrix of (W, S). If I C S
and (Wp,I) is a sub-Coxeter system, then C; and Bj are defined in the obvious
way.

The condition of irreducibility of the Coxeter system (cf. Definition 3.3) has
a linear-algebra counterpart. Le., (W, S) is irreducible if, and only if, the Cartan
matrix is indecomposable, that is, there is no non-trivial partition I; LI I = .S of S
such that Bs; =0 for all s € I} and t € Is.

For a Coxeter system (W, S) with Cartan matrix B, one has the following facts
(cf. [Hum90, §2.7]).

(1) B is symmetric with 1’s on the diagonal.
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(2) By the Perron—Frobenius theorem for non-negative matrices one deduces
that the smallest eigenvalue of B (cosidered as B € Endg(R!®!)) is simple.

(3) In particular, if B is indecomposable and positive semidefinite, then the
Cartan matrix By of every proper Coxeter subsystem (W7, I) is positive-
definite.

3.20. THEOREM (Tits’ reflection representation). Let (W, S) be the Coxeter system

with Cartan matriz B. Let V.= R be an euclidean space of dimension n = |S|

with basis { es | s € S'} and scalar product (_, _) g defined by the Cartan matriz B.
Then let p: W — GL(V) be the morphism defined by

<.’177 es>B
<esa es>B
and py = pPs, © Ps, © -+ 0 ps, , where w = 152 ...5y, is a reduced expression. Then

ps(x) =a—2 es, SESI,

(1) the representation p is well-defined and it is a monomorphism;

(2) imp is discrete in GL(V);

(3) one has {pw(x), puw(y))B = (x,y)B for allw € W and all x,y € V, hence
there is a corestriction p: W — O(R?, B) to the orthogonal group leaving
the symmetric, bilinear form (_,_)p invariant.

ProOF. Cf. [BouO7c, Ch. V §4] |

3.21. COROLLARY. For a Cozeter group (W,S) the following hold.

(1) The groups W is linear and finitely generated.

(2) The group W is virtually torsion free.

(3) The scalar product defined by B is positive definite if, and only if, W is
finite.

(4) If s,r € S then the order of sr € W is exzactly m(s,r). Moreover, every
generator s € S has non-trivial image s € W.

(5) The Coxeter length function £ agrees with the usual length function defined
for finitely and symmetrically generated groups.

(6) The growth of (W,S) is either polynomial or exponential.

PRrROOF. Tits’ representation implies (1), thus (2) follows by Selberg’s lemma
(cf. [Sel60, Lemma 8]). The third statement is the core of the classification of
finite Coxeter groups and is proved, e.g, in [BouO7c, Ch.V §4.8]. The solution
(Theorem 3.9) of the word problem for Coxeter groups implies (4). Statement (5)
is trivial (cf. [GAIH97, §1]). Moreover, (6) follows from [Tit72, Corollary 5]. W

Tits’ theorem in particular implies the following result.

3.22. LEMMA. Let T' = (S, &, m) be a combinatorial, possibly infinite, graph with
labelling function m: € — N>g and let (W, S) consist of the group W with presen-
tation (3.1), and the set S. The following facts hold.
(1) If |S| < oo, then (W, S) is actually a Cozeter system as in Definition 3.3
and W is finitely generated as abstract group.
(2) If |S| = o0, i.e., the “Coxeter-type” presentation is infinitely generated,
then W is not finitely generated as abstract group. Thus, one may call
such a group an infinitely-generated Coxeter group without ambiguity.

PROOF OF (2). Suppose S is infinite, and suppose that there exists a finite
subset R C W such that (R) = W. Then, for each r € R choose an S-word

L(r)

H sp(r)=r.
k=1

Let T" be the finite union T' = U,.c g Ugeq1,. 1.y {86(r)} Then
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= 1" C S the inclusion being proper since 7' is finite and S is infinite,

» R C (T) and hence (T) = W.
On the other hand, a proper subset T" of S cannot generate the whole W, by
Corollary 3.21(4), a contradiction. |

3. Euler-ness of the group algebra

The purpose of the present section is to prove that the parabolic structure of
the R-group algebra of a Coxeter group is Euler (cf. Chapter 1 §5).

3.23. PROPOSITION. Let (W, S) be a Cozxeter system, and let R be a commutative
ring. Then, if W is of type FP over R (e.g., by Maschke’s Theorem, this happens
when W is finite and |W|.1gp € R*) the group algebra R[W] is Euler, and the
parabolic subgalgebras R[W7] are Euler subalgebras.

PROOF. By Proposition 2.2, group algebras are canonically Euler whenever
they are of type FP. Thus, one just has to prove the statement about parabolic
subalgebras: let I C S. One has _? defined by w? = w~?!, the restriction of the
antipode of R[W]. The linear character is the canonical augmentation ¢ given by
e(w) = 1 for all w € W;. The basis is By = W; = W N R[W;]" for all parabolic
subgroup. The R-module R[W] is the free R-module having as basis the set of
conjugacy classes [w] of W. The canonical trace function p: R[W;] — R is given

by p (ZCGCI(W) ’"Cc) =T u

4. Finiteness of Coxeter groups: a hierarchy

In this section, some combinatorial finiteness conditions are recalled, together
with a geometric interpretation given essentially by Tits’ geometric representation
Theorem 3.20.

3.24. DEFINITION. Let (W,S) be a Coxeter system, with Cartan matrix B (cf.
Definition 3.19).
Then (W, S) is called

= spherical if B is a positive-definite matrix;

= affine if B is positive-semidefinite but not positive-definite;

= hyperbolic cocompact if B is non-degenerate but not positive-definite, and
each proper Cartan submatrix B is positive-definite.

= hyperbolic if B is non-degenerate but not positive-definite, and each proper
Cartan submatrix By is positive-semidefinite.

The following facts are well-known.

3.25. LEMMA. Let (W, S) be a Cozeter system with Coxeter graph T'. Then

(1) (W, S) is spherical if, and only if, W is finite.

(2) (W, S) is spherical if, and only if, T is a finite sum of connected graphs of
spherical type, cf. Table B.1;

(3) if (W,S) is affine, then T is connected and it is one of the graphs of
Table B.2;

(4) if (W, S) has the property that every proper parabolic subsystem (Wyp,T) is
spherical, then (W, S) is spherical, affine or hyperbolic cocompact;

(5) if (W,S) is hyperbolic or hyperbolic cocompact, then T is connected.

*Normally, one would use the Hopf algebra structure to detect a copy of W inside its group algebra,
(cf. [Ben98, §3.1]), but this is not the case, since for the purposes of this work one does not need
the multiplicative structure of the basis elements.
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PRrROOF. Statements (1), (2) and (3) follow from [BouO7c, Ch. V, §4]. The
Perron—Frobenius Theorem (cf. [LT85, §15.3]) implies (4) and, in turn, (5). |

Moreover, in the spirit of Kropholler’s ideas (cf. [Kro93]), a notion of hierarchy
of Coxeter groups may be given as follows.
s Let Cox_; = ) and let Coxg be the class of finite Coxeter groups.
» For k£ > 1, let (W,S) € Cox;, if, and only if, every proper parabolic
subgroup is in Coxj_1.
= Cox;, 2 Coxy—; for all k, and |J,, Coxy, is the whole class of Coxeter
groups.
= The complexity T(W, S) is defined to be the unique k for which (W, S) €
Coxy, \ Coxy_1.
3.26. LEMMA. Let (W, S) be a Cozeter system with Cozeter graph T.
(1) The complexity Y(W,S) = 0 if, and only if, (W, S) is spherical.
(2) The complexity Y (W, S) =1 if, and only if, (W, S) is affine or hyperbolic
cocompact.
(3) If (W, S) is hyperbolic non-cocompact, then T(W,S) = 2.
(4) If Y(W, S) =2, exactly one of the following must occurr:
(a) T is of hyperbolic non cocompact type (and hence connected);
(b) T is connected but not hyperbolic;
(¢) T =T"U Ay, with I of affine or hyperbolic cocompact type.
(5) If |S| =n > 0, then T(W,S) <n—1.

PROOF. Statements (1) to (4a) are reformulations of well-known facts. Suppose
then that T(W,S) = 2 but (W, S) is not hyperbolic. Suppose further that the
associated Coxeter diagram I' is not connected. Then write I' = I'y LI 'y U ', for
k > 2 and I'; connected non-empty.

Since the sum of spherical diagrams is spherical, then there must exist a I';
of infinite type, suppose I'y. If T'y U --- U 'y has at least two vertices, then one
might remove two vertices from I' and obtain a graph having I'y as subgraph, a
contradiction with Y (W, S) = 2. Thus k = 2 and I'y is A;. Finally, I'; must be of
complexity 1 and hence it is either affine or hyperbolic cocompact.

The statement (5) is easily proved by induction. |

3.27. PROBLEM. The class described in (4b) is non-empty: it contains, e.g. the

diagram
¢.<I .

It would be very interesting to completely classify the connected graphs of com-
plexity 2 which are not hyperbolic.

5. The Coxeter complex

Let (W, S) be a Coxeter system and let ¥ = (3, <) be the poset of proper

parabolic left cosets
Y={wW;|IC SSweW},

partially ordered by reversed inclusion, i.e., wW; < uWj if, and only if, wW; DO
uWy or, equivalently, if J C I and v 'w € W;. Thus, maximal cells are cosets of
the form {w}, for some w € W.

The group W acts on ¥ from the left in the obvious way w.uW; = (wu)Wr,
and hence

(37) StabW (wW[) = wW[.

Then, one has the following:
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3.28. LEMMA. For an irreducible Cozeter system (W, S) which is of hyperbolic co-
compact, affine or spherical type, the Cozeter complex (W, S) is a model of a
E(W). Thus, in particular, there is a projective Q[W]-resolution of the trivial
module Q of length |S| — 1.

PRrROOF. Every proper subsystem (Wy,I), I C S, and hence any point stabi-
lizer, by (3.7), is in the class § of finite subgroups of W. Then the statement follows
from the discussion in Chapter 2 §2.1. |

More detailed information can be found in [ABO08, Ch. 3].

The Coxeter complex provided a fundamental source of inspiration for [TW]:
indeed the chain complex of Q[W]-modules associated to the Coxeter complex
Y(W, S) can be written in the form

P aw/wi] P aw/wi] P aw/w]
T

where the modules Q[W/W;| are permutation modules and, by (3.7),

(3.8)
P ind} P indj Q P indiQ
ICS = [Ccs e = Ics >1nd§ Q,
[I]=1 [I]=2 [I|=]S|—1

where ind; (_) denotes the induction functor from Q[W;]-Mod to Q[W]-Mod.

It is well-known that, for an irreducible Coxeter system (W,.S), the complex
X(W, S) is contractible if, and only if, W is infinite.

Then, one deduces that the complex (3.8) has trivial homology when W is
infinite, and has homology isomorphic to sgn[n — 1], where sgn is the sign repre-
sentation and n = |S|, when W is finite.

Thus, for non-spherical Coxeter systems, the Coxeter complex provides a reso-
lution of the trivial Q[W]-module Q: it is enough to consider the truncation above
0 of the chain complex (3.8).

5.1. Examples. In this section some (geometric realizations) of Coxeter com-
plexes are shown.

3.29. ExaMPLE. Consider the Coxeter system of type Ay, with Coxeter group
W= <Ta S | 523T2a (ST)B >

There are three proper parabolic subgroups, namely U = (r) ~ Ca, V = (s) ~ Cos,
and the trivial one {1}.

The left cosets of the trivial subgroup being the singletons of the elements, one
has that the left V-cosets are V, rV = {r,rs} and srV = {sr, srs}; similarly, the
left U-cosets are U, sU = {s, sr}, rsU = {rs,rsr}.

Since the (unique) braid relation implies that srs = rsr, one obtains the com-
plex appearing in Figure 3.2. Its geometric realization is homomorphic to a 1-
sphere.

3.30. EXAMPLE. Similarly, one can consider the type 112 with diagramA. The

Coxeter group is infinite and the Coxeter complex (cf. Figure 3.3) is an affine 2-
space, hence it is contractible and it has the same homology of a point.
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{L S} — {1} {17 r}
e AN
{s} {r}

e AN
{s.r} {r,s}
{srs} )
{rsr}

{rs,rsr}

FIGURE 3.2. The Coxeter complex of type As.

sr trsr strs

tsr ST trs
stsr sr TS mtrs

srtr mt st 15ts

tsrt rsnt trst

FIGURE 3.3. The Coxeter complex of type A;. A maximal cell
{w} is labelled with the element w.

3.31. EXAMPLE. Let W be the Coxeter group generated by the three reflections
81, 52, 53 of H? across the sides of a maximal hyperbolic triangle, T as depicted in
Figure 3.4. Then W is a group of isometries of H? and moreover (W, {s1, s2,53}),
is the Coxeter group with diagram I'o,(3).
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FIGURE 3.4. A hyperbolic triangle in (the conformal Poincaré

disk model of) H? with vertices on the sphere at infinity.



CHAPTER 4

Poincaré series and an alternative for Coxeter
groups

The main result of this chapter, Theorem 4.16, classifies the minimal non-
spherical, non-affine Coxeter systems. This, together with the computations de-
scribed in Appendix D and further results (cf. Lemma 4.19), allows one to know
the convergence radii of their growth series, thus one may determine the exponential
growth.

As an application, a new proof of a result (cf. Theorem 4.22) of P. De La Harpe
is given. This result is analogous to Tits’ alternative (cf. [Tit72]).

1. Poincaré series

Poincaré series are a central object of this chapter. It is important to remark
that |S] < oc.

4.1. DEFINITION (Poincaré series). Let (W, S) be a Coxeter system and let £: W —
Ny be its length function. Then let

(4.1) paw.s)(t) = >t e Z[1].
weW
If (W, S) has Coxeter graph I, it will be useful to introduce the notation pr(t) =
pw,s)(t) and pr = pay,s)-

The following facts are well-known.

4.2. PROPOSITION. For a Coxeter pair (W, S) one has the following.

(1) The Poincaré series is a rational function.

(2) Let pw,s)(t) € C[t], and let  be the complex rational function the series
converges to. If D = {z € C| |z| < r} is an open disk centered in zero,
and if no poles of ¢ is contained in D, then puw,s)(t) converges pointwise
to .

(3) The Poincaré series is a polynomial if, and only if, W is finite.

(4) If (W,S) is spherical, and evy is the map “evaluation of a polynomial
at 17, then

evi(paw,s)(t)) = [W].
(5) If W = Wy x Wa, i.e., the graph of (W, S) can be decomposed as the sum
I'=T,UT5, then
pr(t) =pr,(t)pr.(t) and  pr =min{pr,, pr, }.
(6) If I C S, then pow,.1y(t) | pw,s)(t) and pew,sy < pew;.,1)-

PROOF. Statements (1) to (4) are proven, e.g., in [Bou07c, Ch. IV]. The first
part of (5) follows from Proposition 3.12, and the statement about the convergence
radii is an consequence of, e.g., Lemma 2.10.

37
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Finally, by Proposition 3.18(1), one has

pw,s)(t) = < > tz(w)) Pw.1)(#);

weW!

which proves (6). |

4.3. REMARK. The example of Remark 3.6 shows that the Poincaré series depends

on the Coxeter system, but, in general, it is not invariant under group isomorphism:
indeed

1—t% 1—¢2 1—¢3 1—¢t2 1—1¢2
1—¢t 1—t¢ 1—t 1—t 1—t

PG, (1) = = pa, (1) pa, (1) = pa,xa, (1)

For spherical Coxeter systems, the Poincaré series is actually a polynomial,
which is computed with the aid of Proposition 4.2(5) and the following fundamental
result of factorization.

4.4. PROPOSITION (Chevalley—Shephard-Todd). If (W, S) is spherical and |S| = n,
then there exist natural numbers dy,...,d, (the degrees, cf. Table B.1) such that

L .
pow,s)(®) = [ [ T

i=1

Proor. Cf. [Hum90, Ch. 3]. [

For infinite Coxeter groups, it is not immediate from the very definition (4.1),
how to compute the Poincaré series concretely.

In this direction, the Bott’s Theorem 4.5 provides a closed expression for affine
Coxeter systems, while a recursive formula is well-known for any infinite Coxeter
group (cf. Proposition 4.6).

4.5. PROPOSITION (Bott). Let T' be a finite, crystallographic Cozeter diagram with
degrees d;, and let T be the associated affine Cozxeter diagram (cf. Table B.2).
Then,

pet) =pet) ] #

d; degrees

Proor. Cf. [Ste68, §3]. |

4.6. PROPOSITION. Let (W, S) be an infinite Cozeter system. Then

(4.2) . N o R —

pw,s)(t) = w0 (1)
Proor. Cf. [BouO7¢, Ex. 26 f), Ch. IV §1]. |

In the case of Coxeter systems, one may give results about the convergence
radius of the Poincaré series which are much sharper than Proposition 2.6.

4.7. PROPOSITION. Let (W, S) be a Cozeter system with Poincaré series pw,s)(t)
and convergence radius pw = pw,s) (cf. Chapter 2 §3).

(1) If W is finite, then puy,s)(t) is a polynomial, hence it converges every-
where and pw = o0.

(2) If W is infinite, then |S| > 2 and ‘5‘171 <pw < 1.

Moreover, the bounds in (2) are sharp.
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PROOF. The statement (1) is trivial. For (2), let |S| = n > 2. Since p(w,s)(t) —
|W| as t — 1, the point 1 € C is a pole when W is infinite.

In view of Remark 3.5 and Lemma 2.10, it suffices to prove that the convergence
radius p,, of Wy (n) is 1.

The Poincaré series p,,(t) of the groups of type Wy, (n) can be easily computed.
Indeed, any element w of length k is obtained uniquely as the concatenation w = usy
of a word u = $153...5s,_1 of length £ —1 with a single generator sy, different from
the last letter sy_;. Thus, for k& > 0, there exist n(n — 1)1 elements in W of

length k£ and hence

= 1+t
() =1 ) e
pa(t) =1+ n(n—1) e
k=1
which is a rational function, holomorphic in a disk of radius 1/(n — 1), as claimed.
The bounds are attained, on one side by the groups W, (n) and on the other
side, by the affine Coxeter systems (cf. Proposition 4.5). |

2. Minimal non-spherical, non-affine Coxeter systems

The purpose of the present section is to provide the list M of minimal (irre-
ducible) non-spherical, non-affine Coxeter systems.

This list will turn out to coincide with Lannér’s list (cf. [Lan50]) of hyperbolic
Coxeter groups with simplicial fundamental domain, and it will be used to give an
alternative proof to a Theorem by P. De La Harpe (cf. [dIH87, Corollaire]).

The class of all Coxeter graphs is partially ordered by the relation IV < T' (cf.
Definition A.4). One may define the following notions in order to identify graphs
which only differ by a bijection of the vertices.

4.8. DEFINITION (Type of Coxeter graph). Let I' = (S, €, m) and I = (5, &', m/)
be Coxeter graphs. One defines I' ~ I if, and only if, there exists a map f: S — S’
such that

= f is a bijection;

w if ¢ € €, then f(e) € ¢

= the induced map f?: € — &, f2({v,u}) = {f(v), f(u)} is a bijection;

= m/(f(e)) = mf(e) for all e € €.

Then ~ is an equivalence relation such that, if I" is connected and T is not con-

nected, then T' ¢ T”. Thus, let X be the set of the equivalence classes of connected
Coxeter graphs. Any such equivalence class [I'] is called a type.

Define on X the partial order relation [IV] < [I'] if, and only if, there exist
representatives I” € [I'] and ' € [I] such that IV <T.

4.9. NOTATION. By an abuse of notation, the class [[']. € X will be written as
I € X, and moreover [['] <[I'] will be written as I" <T.

4.10. DEFINITION (The classes S, 4, He, Hnc and M). Let S (resp. A) be the
set of all types [I'] of Coxeter graphs such that I" is spherical and connected (resp.
affine).

The class M is defined to be the set of the elements in X which are minimal
with respect to the property of being neither spherical nor affine:

M =min(X \ (SUAQ)).

Moreover, let He (resp. Hnc) be the set of all types [['] of Coxeter graphs such that
T" is hyperbolic cocompact (resp. hyperbolic non cocompact).
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2.1. Some classification lemmas. This section contains four technical lem-
mas (they are basically a lengthy case-by-case analysis of Coxeter graphs) which
will be useful to split (and, hence, to improve the readability of) the proof of The-
orem 4.16.

4.11. LEMMA. IfT is hyperbolic, then T is in M, i.e.,
He Ul Hne € M.

Proor. A graph I' is in M if, and only if, I' € S U A4, and for all connected
component I of a maximal proper subgraph IV < T', one has ' € SUA. From the
very definition of hyperbolic and hyperbolic cocompact one immediately has that
every proper parabolic is either of spherical of affine type, hence the claim. |

4.12. NOTATION. Along the proof of the following lemmas, the symbols

?
*—e

‘T". , oe—e .o—e _ etc.,
will denote arbitrarily labelled circuits and linear graphs. A branching point is a
vertex contained in at least 3 edges. An edge ¢ has a large label if m(e) > 3. A
vertex is called terminal if, and only if, it is contained in at most one edge.
The type with diagram

(43) mi mo mE—1
1 2 3 k-1 k&
will be identified with the (k — 1)-tuple in square brackets [my, ma, ..., mp_1].
The type with diagram
1 my 2
my mo
(4.4) k 3
ME—1 ms3
k—1 4
will be identified with the k-tuple in angled braces (m1,ma, ..., my).
The above identifications are obviously not unique: [my,...,mg_1] and [mg_1, ...
denote the same type, as well as (mq,...,my) and (Myic1,..., Mptek), for n € Z

and ¢ € {1, —1}, where the subscript are taken modulo k.
Moreover, one has

[ma,...,mp—2] < (m1,...,mp_1,myg).
The first lemma deals with the case of string graphs.

4.13. LEMMA. Let T' € M be a Cozeter graph consisting of a string (4.3). Then T
is in the following list (cf. Tables B.3, B.4).
Rank 3: HCI,
Rank 4: HC3, HC4, HC5,
HNC13, HNC14, HNC15, HNC16, HNC17, HNC18, HNC19,
Rank 5: HC12, HC13, HC14,
HNC24
Rank 6: HNC33, HNC34, HNC35.

PRrROOF. For k € {0,1,2}, all graphs are finite or affine.

Assume k = 3. The type [a, b] is finite or affine if, and only if, a =t +b"1 > 1/2,
by direct computation. On the other hand [a,b], with a = 4+ b~ < 1/2 has every
proper subgraph of finite or affine type (the label oo is allowed and the convention
L =0 is adopted).

o
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Let now k = 4. The type [a, b, ¢] has subdiagrams [a, b] and [b, ] which must
lie in S U A4, thus
[a, 0] [b, c] € {[3,3], [3, 4], [4,3], [3,5], [5, 3], [4, 4], [3, 6], [6, 3]},

hence the possibilities are

=~
e~
w
ot
ot
ot
ot
=~
=~
w
D
D
D
w

a

o o
=W W
ot Ww W
D W W
W o= W
= W
W W =
= O
ot W
o W
w ot
w w
= W
ot W
D W
LW o
=
w o
w w
= W
or W
D W

NC17

™
—
QO
Z
an

Type
HC3
HNC15
HC4
HC3
HC5
HNC16
HNC13
HNC14
HNC18
HNC17
HNC15
HNC16
HNC19

SPNIN )

v 9 I

The same strategy works for k = 5, i.e., the diagram [a, b, ¢, d] has subdiagrams
[a,b,c], [b, c,d] € {[3,3,3],[4,3,3],[3,3,4],[3,4,3],[3,3,5], [5,3, 3] },

thus the possibilities are the following

al3 3 4 4 4 3 3 3 3 5 5 5 4
b3 3 3 3 3 3 44 3 3 3 3 3
cl3 3 3 3 3 43 3 5 3 3 3 4
d{4 5 3 45 3 3 4 n 3 4 5 3

= <
HAZT AR IR T zzo @O

For k = 6 one checks that the diagram [a, b, ¢, d, e] must have the subdiagrams

[a,b,c,d],[b,c,d,e] € {[3,3,3,3],[4,3,3,3],[3,3,3,4],[4,3,3,4],[3,3,4, 3], [3,4, 3, 3]},

hence

al3 4 3 4 3 3 3
b3 3 3 3 3 4 4
c|l3 3 3 3 4 3 3
d}{3 3 4 4 3 3 3
eld4d 4 3 3 3 3 4

M 0 <Ff M 0

N MmN N M
g OO OO O
> Z Z Z Z Z
HlwRoZzZzzT T

Finally, suppose k& > 7, hence T' identifies with [mi,ma,...,m;_1]. The only

linear graphs of rank & — 1 which are finite or affine are the ones of type Ap_1,
Bi_1, Crp_1 or Ci_o, thus

[mi,...,mE_z],[ma,...,me_1] € {[3,...,3],[43,...,3],[3,...,3,4],[4,3,...,3,4]}.

Then m; = 3 foralli € {2,...,k—2} and my, mp_1 € {3,4}. In any case I" Errata:
Corrige: is either finite or affine. |

The second lemma classifies the graphs which have no circuits and at least one
branching point.
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4.14. LEMMA. Suppose that ' € M, T contains no circuit and ' has at least one
branching point. Then T is one of the following types (cf. Tables B.3, B.4).
Rank 4: HCS6,
HNC20, HNC21, HNC22,
Rank 5:  HCI5,
HNC25, HNC26, HNC27, HNC30,
Rank 6:  HNC36, HNC37, HNC38, HNC39, HNC40, HNC41,
Rank 7: HNC45, HNC46,
Rank 8: HNC48, HNC49, HNC50,
Rank 9:  HNC52, HNC53, HNC54,
Rank 10: HNC56, HNC57, HNC58.

PROOF. Let t be the number of branching points, ¢ > 1. If ¢ > 3, then T' has
a (non-necessarily proper) subgraph of type

? ? ?
? 27 7 ?
? ?

which, in turn, has a proper subgraph of type
? ? ? ? ? ? ?
\;. ._I_. : ._.<: ZsuAa,
?

thus ¢ € {1,2}.

Case t = 2: in this case I" has one vertex v contained in a+1 edges and another
vertex w contained in b + 1 edges, a,b > 2. If a > 3, then removing a — 3 edges
incident to v and b — 1 > 0 edges incident to w: then one has a proper subgraph

Thus a = 2, and a similar argument shows that b = 2. Then, since no circuits can
exist, the graph has the form

ng Ps

*o—eo ... e @—@
no
0 by Po
mo /v w )
qo0
—eo .. e @—@
Ma e

for suitable «, 3,7, d,e € Ny and labelling functions m, n, ¢, p, q.

If o« =p =+~ =¢ = 0, then at least one label must be large. Removing
any terminal vertex, one obtains a proper subgraph with a ramification: thus,
ly = --- =L, = 3. Moreover, at most one large label can occurr, and it must be
4. Without loss of generality, suppose mg = 4 and all other labels are equal to 3.
Then, removing any teminal vertex containing w, leads to a contradiction.

Thus, assume max{a, 8,7,¢} > 1, and suppose without loss of generality that
«a > 1. Then, there is a proper subgraph

ng ps
*—e —e
no
Lo Ly Po
mq ’
qo
qE‘
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whichisin SUAonlyif =0 =ec=0and o =+ =4, =mp =np =po = qo = 3.
Thus if a > 1, by minimality one may suppose o = 1, and the graph is

then remove (v + 2)nd vertex and obtain a proper subgraph, say IV. Then one
has m = 3 and TV must be one among Eg, E7, Eg, Eg, and hence T" is one among
HNC46, HNC49, HNC54, HNC58.

Case t = 1: Suppose the branching point v lies in exactly a edges, a > 3, i.e.,
its valency is a.

Since any graph in S U A4 has branching point of valency at most 4, then a < 5.

Subcase a = 5: in this case I must have a subgraph I' of type

</
X?A ¢Zsua,
thus T' = IV. Moreover removing any terminal vertex, one has that no large label

can occurr, and hence one has HNC41.
Subcase a = 4: T has a subgraph of the type

(4.5)

If the graph I coincides with (4.5), then at least one label must be large, say a > 3.
Thus, removing one terminal vertex at a time, one has subgraphs which only can
be of type Dy or ]§3. Thus one has HNC30

If T contains (4.5) as a proper subgraph, then by minimality there can be at
most 6 vertices. Moreover, the labels of the edges containing v cannot be large,
since the only spherical or affine type having a vertex of valency 4 is 153. Since
there are no circuits, the graph is

Then, removing any terminal vertex (not contained in the edge with the label m)
one has m € {3,4}, i.e., I' is either HNC39 or HNC40.

Subcase a = 3: in this case there is a unique branching point with valency 3
and no circuits, then the general shape of I is

(8+1)" B8’ 1’
ng no[ ,
(4.6) ‘e . .o—_o ,
mo /0 17 4" (v+D)”
m
= 1
at+l «

for suitable a, 8, and labelling functions m,n,{. Without loss of generality,
suppose 0 < a < 8 <.
Few simple observations give a bound to the list of cases to be analysed.

= When v > 2 consider the proper subgraph with vertices {0,1,1’,1”,2"},
which must be in S U A4: thus mg = ng = £o = 3.
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= When (o, 8,7) = (1,1, 3), the graph contains a proper subgraph which is
neither of spherical nor affine type, thus if T' € M is of type (4.6), with
v > 3, then o = 0.

= When v > 4, the graph obtained removing the vertex 5” is in SUA4 (being
one of Eg, ES) only if 8 < 1.

= The very same consideration implies that if ¥ > 4 and 8 = 1, then v < 5.

*» Finally, for a = 8 = 0 and v > 3 the only possible graphs are of types
D,y+4 €S or B’Y+3 e 4.

Ouly the following case can thus occurr for (a, £,7):

(0,0,0)

(0,0,1):

(0,1,1):

(1,1,1):

(0,0,2):

(0,1,2):
(1,1,2):
(0,2,2):
(1,2,2):
(2,2,2):

(0,1,3):

(0,2,3):
(0,1,4):

(0,1,5):

: Suppose that there are at least two large labels, without loss of generality
let mg, ng > 3. Removing 1” one has mg = ng = 4, and hence the graphs
HNC21, HNC22 arise.

Suppose, on the other hand, thfa\’g there is exactly one large label, say
mg > 3. If mg = 4 one has type Bs € 4. Thus, removing 1”, one has
mg € {5,6}, i.e., T is HC6 or HNC20.

Removing the vertex 2”7 one has that there is at most one large label
among mg, N, {o, and it is equal to 4. Removing the vertex 1 one has that
{1 € {3,4,5}. Thus one has the types HC15, HNC25, HNC26, HNC27.
Remove the vertex 2’ and obtain mg = ng = {p = 3 and ¢; € {3,4}.
Remove the vertex 2” and further obtain n; € {3,4}. Since at least one
large label must exist one has the types HNC37 and HNC38.

Removing the vertex 2, one has that mg = ng = £y = n; = ¢, = 3, and
removing 2’ one further has m; = 3, but this is a graph of affine type.
The only large labels can be ¢; or /5, and removing 1 one has that at
most one of the two is actually large, and it is a 4. Thus one has the affine
Bs ¢ M or HNC36.

Removing 3” one has that there is exactly one large label, /5 > 3. Re-
moving 1 one has that /5 = 4, and one has HNC45.

Removing 3” one has that there is at most one large label, f2. Removing
1 one has that also ¢5 = 3, and one has HNC50.

Removing 3” (resp. 3') one has the unique large label is possibly £ (resp.
ny). Thus there are no large labels and T is of the affine type E7 ZM.
No graphs in the class Moccurr in this case, as one deduces removing,
e.g., the vertex 3”.

No graphs in the class Moccurr in this case, as one deduces removing,
e.g., the vertex 3.

Removing 2’ one has mg = ng = £y = {1 = {5 = 3, and {3 € {3,4}.
Removing 4” one has n; = 3. Thus the only possible cases are Eg & M
or HNC48.

Removing the vertices 3’ and 4” one-by-one, one deduces that there are
no large labels, and one has HNC52.

Removing the vertex 5” one has that there is at most one large label,
Ly € {3,4}. The case £y = 3 is affine, the case {4 = 4 is HNC53.
Removing the vertex 6” one has that there is at most one large label,
U5 € {3,4}. This gives HNC56, HNC57.

Thus, no other cases can exist, and the proof is complete. |

The third lemma classifies the types containg a circuit.

4.15. LEMMA. Let ' € M and suppose that T contains a circuit (4.4) of k vertices,

k> 3.

Then T is one of the following types (cf. Tables B.3, B.4).
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Rank 3: HC2,
I (3),
Rank 4: HCT7, HCS8, HC9, HC10, HC11,
HNC1, HNC2, HNC3, HNC4, HNC5, HNC6, HNC?7,
HNCS8, HNC9, HNC10, HNC11, HNC12, HNC23,
Rank 5: HCI16,
HNC28, HNC29, HNC31, HNC32,
Rank 6: HNC42, HNC43, HNC44,
Rank 7: HNCA47
Rank 8: HNC51,
Rank 9: HNC55.

PROOF. Part 1: Suppose there is an edge ¢ of the circuit with m(e) > 3.

If there is more than one vertex not lying on the circuit, there would be a proper
subdiagram consisting of a circuit with a label greater than 3, which is neither finite
nor affine. Thus, |S| <k + 1. Suppose I" has branching point, then either

These cases can be both excluded since they contain a proper subgraph (the “top
half”) which is circuit with a label m > 3, which is not affine.

Thus, a circuit with a large label m > 3 cannot branch. Removing a vertex
then removes exactly two edges, and since in §U A4 every graph has at most 2 large
labels, then T" has at most 4 large labels, say ¢ their number. Moreover, if { = 4
then any vertex must be contained in two edges with large labels, while if ¢ = 3,
then any vertex lies in at least one edge with large label.

Then, only the following possibilities can occurr (the labels a,...,d are large):
¢=4 (a) (a,b,c,d)

£=3 (b) {a,b,c), (c) {(a,b,c,3), (d) {a,b,3,¢,3), (e) {(a,3,b,3,¢,3),
k=3 (f) (a,b,3), with a= + b~ < 2/3, otherwise in SU 4
k=4 (g) (a,0,3,3), (h) (a,3,b,3),

k 5 (1) <a’b:37373>5 (J) <a737b7373>5

k 6 (k) <aa ba 37 35 35 3)7 (1) <a7 35 ba 3: 37 3>7 (m) <aa 37 37 ba 33 3>

k > 7 If the large labels are adjacent, then there is a subdiagram of type [a, b, 3],
which is not in S U 4. If the large labels are not adjacent, since k > 7,
then there is a subdiagram of type [a, 3,...,3,b, 3], which is not in SU 4.
Thus, there are no possiblities in this case.

(n) (a,3,3),

Then one has to discuss the values of the large labels for each case (a) to (q).

(a) There are subdiagrams [a,b] and [¢,d], thus a = b = ¢ = d = 4 and one
has HNC3.

(b) Since labels are large, this is HC2 or T'(3).

(¢) There are subdiagrams [a,b] and [b,¢], thus a = b = ¢ = 4 and one has
HNC2.

(d) There is a proper subdiagram [a,b,3] & S U 4.

(e) There is a proper subdiagram [a,3,b,3] € S U 4.
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(f) Since a,b > 3, this is HC2.
(g) There is a subdiagram [a, b], thus a = b = 4 and one has HNC1.
(h) There are subdiagrams [a, 3], [b, 3], thus a,b € {4,5,6} and one has types
HCS, HC9, HNC5, HC11, HNC6, HNCT.
(i) There is a proper subdiagram [a,b,3] ¢ S U 4.
(j) There is a proper subdiagram [a, 3, b], thus a = b = 4 and one has HNC32.
(k) There is a proper subdiagram [a,b,3,3] &€ S U 4.
1) There is a proper subdiagram [a,3,b,3] € S U 4.
) There is a proper subdiagram [a,3,3,b], then a = b = 4 and one has
HNC43.
(n) This is HC2, since a > 3.
(o) There is a proper subdiagram [a, 3], then a € {4,5,6} and one has HC7,
HC10, HNCA.
(p) There is a proper subdiagram [a, 3, 3], then a = 4 and one has HC16.
(q) There is a proper subdiagram [3, a, 3, 3], then a = 4 and one has HNC42.

(m

Part 2: Suppose I' has a circuit with k vertices and, for all edge ¢ contained
in the circuit, m(e) = 3.

One immediately knows that I" has at most k+1 vertices, otherwise there would
exist a proper subgraph not in § U 4. In particular, all the circuits contained in
I must have the same number of vertices and no edge contained in any circuit can
have a large label.

Thus, the possible cases are the following.

(a) ,ﬂ.<} then removing a vertex not contained in the labelled edge one

has a subgraph [3,m], hence m € {3,4,5,6} and one has HNC9, HNC10,
HNC11, HNC12.

(b) , which is HNCS.
(c) A which is HNC23.
(d) , which is HNC31.

(e) ,L.<>. which has a subgraph.ﬂ.<:7 thus m € {3,4}, and one

has HNC28, HN(C29.
2

, for £ > 5. In this case one first considers the subgraph

k—1 k

obtained removing the (k — 1)st vertex, and thus m = 3.
Then, remove the (k — 2)nd vertex and obtain a proper subgraph of

type ._,_I_. e , thus k € {5,6,7,8,9}.

k—
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Finally, remove the (k — 3)rd vertex and obtain a proper subgraph
k+1

of type e , thus k& # 9. This gives the types
k=2 k=1 k 1 2 k—4

HNC44, HNC47, HNC51, HNC55.
This completes the proof of the lemma. |

2.2. The class M.
4.16. THEOREM. The class M consists of the graphs listed in Table B.3 and B./.

PROOF. The following cases exaust all the possibilities:
= ['is a tree
— without branching points,
— with at least one branching point,
= [ is not a tree, and hence I' contains a circuit.
Let T € M: the three cases are discussed, respectively in Lemma 4.13, Lemma 4.14,
Lemma 4.15.
Thus, every graph in M appears in either Table B.3 or B.4. Moreover, a direct

verification shows that every graph appearing in Table B.3 or B.4 is actually in the
class M. |

4.17. COROLLARY (Lannér, [Lan50]). The class Hc consists of the graph listed in
Table B.3 and the class Hnc consists of the ones listed in Table B.J.

Proor. By Lemma 4.11, one only has to check that every graph in M is
actually hyperbolic, and Theorem 4.16 provides the list of the diagrams to inspect.
|

4.18. COROLLARY. If (W,S) is an irreducible Coxeter system, with (connected)
Cozeter graph T, then exactly one of the following conditions hold.

» (W, S) is either of spherical or affine type.
= (W,S) has a parabolic subsystem of hyperbolic cocompact or hyperbolic
type.

3. An application

As an application of Theorem 4.16, one recovers a result by De La Harpe about
Coxeter groups.
Before stating it, the following lemmas are needed.

4.19. LEMMA. Under the conventions stated in Notation B.2, the diagrams of types
HC1 and HC2 (c¢f. Table B.3) can be both considered as diagrams

c/\Pb 1 1 1
I'(a,b,c) = A ,  with —+ -4 -<1.
a c

b

Let (W, S) be a Coxeter system with Cozeter diagram T, and let pow,s)(t) be its
Poincaré series, with convergence radius piw,sy. Then

1
5 S Pw.s) < L.

ProoF. Using the recursive formula (4.2), one has

oo (14+)(1 — ) (1 —t*) (1 — t°)
pr(t) = 1 — 9t 4 tat1 4 b+l | getl _ patb _ jatc _ gbte 4 opatbte _ gatbretl’
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Thus, by Lemma C.2(2), the convergence radius is the first positive real root of the
denominator

Ft) =1 =2t 401 gbH1 get? —gatb _gate _gbre 4 gpatbie _qatbietd

. _ : _d
One has that f(0) = 1 and, denoting ()" = §;,

f()=f'(1)=f"(1)=0, while f”(1)=6(abc— ab— bc— ac).

Then, the condition 2 + § + 1 < 1 forces f/(1) > 0, and hence by Lemma C.4,
there is a positive number ¢ such that f(y) < 0if 1 —e <y < 1. Thus, since f is
continuous, it has at least one root in the interval {t e R| 0 < ¢ <1 —e}. Hence
p <1, and p > 1/2 follows from Proposition 4.7(2). |

4.20. LEMMA. Let (W,S) be a Cozeter system which is hyperbolic cocompact or
hyperbolic, and suppose is is neither HC1 nor HC2. Then, if pw = pw,s) is the
convergence radius, one has

pw < L.

PROOF. One has to check a finite number of cases. With GAP3 [ST97] and the
package CHEVIE [GHL'96] one may compute the Poincaré series of (W, S) with
(4.2). Then, by Lemma C.2(2), one finds the value of p.

The convergence radii are listed in Tables B.3 and B.4.

Further details about the computations are collected in Appendix D. |

4.21. PROPOSITION. Let (W,S) be a Coxeter system which is neither finite nor

affine.

If pow,s) is the convergence radius of the Poincaré series pw,s)(t), then
pw,s) < 1.

Proor. By Theorem 4.16, (W, S) has a parabolic subsystem (W7, I) of hyper-
bolic cocompact or hyperbolic type. Thus, by Proposition 4.2(6),

pw,s) < pewr,n < 1
where the last inequality follows from Lemmas 4.19 and 4.20. |

Thus, one may give an alternative proof of the following result.

4.22. THEOREM ([dIH87]). Let (W,S) be an irreducible Coxeter system with con-
nected Cozeter graph T' and convergence radius p = pww,s)- Then the following
conditions are equivalent:

FA0 (W,S) is of finite or affine type;

FA1 p>1;

FA2 W is a group of polynomial growth;

FA8 W does not contain a copy of a non-abelian free group;

FA4 W is an amenable group.

Moreover, the following conditions are equivalent:

HO (W, S) has a (non-necessarily proper) parabolic subsystem (Wy,I) of hy-
perbolic type;

HI p<1;

H2 W is a group of exponential growth;

H3 W contains a copy of a non-abelian free group;

Hj W is not amenable;

In particular, an irreducible Cozeter system satisfies exactly one of the two
blocks of conditions FA or H.
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PROOF. The scheme of the proof is the following.
Cor. 4.18

FAQ <————— -H0 HO
Prop. 4.5, 4.7 Prop. 4.21H
FAl <— —-H1 H1

Lemma 2.9 (a)

Prop. 2.14(6)

FA4 <——— -H4 H4

Cor. 3.21(1), 2.15

FA3 <———= —-H3

Thus, it suffices to prove (a): assume W contains a parabolic subgroup of hy-
perbolic cocompact or hyperbolic type, say W;. Thus, by Theorem 3.20(3), and
Definition 3.24, W; is a discrete subgroup in the orthogonal group O(n — 1,1)
with respect to a non-degenerate bilinear form with 1 negative and n — 1 positive
eigenvalues, where n = |S].

Moreover, it is well-known Errata: (cf. [BouO7c, Ch. 5 §4, Ex. 12]) Corrige:
(cf. [BouO7¢, Ch. V §4, Ex. 12]) that hyperbolic cocompact and hyperbolic
Coxeter groups have finite covolume in O(n — 1,1), thus W is a lattice in the
indefinite orthogonal group.

Thus, by Proposition 2.14(7) and 2.14(5), Wr is not amenable.

Finally, one deduces the non-amenability of W from 2.14(3). |

4.23. COROLLARY. Let (W, S) be a (possibly non-irreducible) Cozeter system, with
Cozeter graph
I'=rulsu--- Uy, I'; connected.
Then
w If T'; is either spherical or affine for all i € {1,...,k}, then FA1, FA2,
FA3 and FA4 hold true.
= Otherwise HO, H1, H2, H3 and H/ hold.

Theorem 4.22 has another consequence, namely:

4.24. COROLLARY. Let (W, S) be an irreducible Cozeter system. Then it is possible
to determine wheter (W, S) is spherical, affine or it has a parabolic subgroup of
hyperbolic or hyperbolic cocompact type, only considering the abstract group W.

This result might be compared to Lemma 3.22, which tells that it is possible to
determine if a group with a presentation a la Coxeter is actually a Coxeter group,
only by looking at the abstract group.






CHAPTER 5

Hecke algebras

This chapter introduces Hecke algebras starting with the following datum:

= a Coxeter system (W, S),
= a commutative ring R,
= a set g of parameters in R.

Hecke algebras appear frequently in diverse contexts of mathematics, hence there
exist many (slightly different) definitions of this kind of algebras.
The definition given in §2 comprehends

= the classical case of the double coset algebra of a finite group with a Tits’
system (or (B, N)-pair);
= the algebra of averaging operators on a building.

What is not covered by the present definition is the Hecke algebra of a complex
(pseudo-)reflection group (cf. Chapter 3 §1.3 and references therein), which is
outside the scope of this thesis.

1. Some examples

1.1. Finite or algebraic group theory. In the theory of finite groups of
Lie type, or in general in the context of groups with a Tits’ system (cf. [BouO7c,
Ch. IV §2]), Hecke algebras arise as (B, B)-double coset algebras. The most im-
portant feature is that the character theory of the Hecke algebra determines most
of the character theory of the group (cf. [CR81, §11D]).

Given a finite group of Lie type G with a fixed Tits system (G, B, N, S) and
with Weyl group W, let e = ﬁ > e b be the idempotent associated to B. The
Hecke algebra 2 (G, B) is defined to be eCGe, and it is well-known that the Bruhat
decomposition

G= ][ BB
weWw

implies that a C-basis of 7 is in 1-1 correspondence with W. Moreover, .2 (G, B)
has a presentation of the form

T,T,, = {Tsw if L(sw) > L(w) ,s€Swe W> ,

H(G,B)=(Ty, weW ‘
( ) < b QSTSU} + (QS - 1)Tu if E(S’LU) < E(w)

where £: W — Ny is the canonical length function of (W, .S) and the parameters ¢
are “intersection multiplicities”:

¢s =[B:BN°B].

The Hecke algebras arising in this way are very particular: they are C-algebras
of finite type and crystallographic i.e., W is a Weyl group.

51
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1.2. Knot theory. One of the most surprising and important application of
Hecke algebras appears in [Jon87].

To each (tame) knot one may associate a braid, and a Hecke algebra H of type
A, is a quotient of the braid algebra.

The fundamental result of Jones is that, using a suitably defined trace on the
Hecke algebra, the HOMFLY-PT polynomial can be recovered from a representation
of H.

Further generalizations of the algebraic side of the problem (in particular, the
classification of the suitable traces) were made for the type B,, by Geck and Lam-
bropoulou (cf. [GLIT]).

1.3. Harmonic analysis. Hecke algebras were studied in the context of har-
monic analysis and buildings by Parkinson (cf. [Par06]).

A building A is a geometric/combinatorial structure constituted by a cell com-
plex with a distinguished class of subcomplexes isomorphic to a fixed Coxeter com-
plex of type W, and satisfying several axioms. The cells of maximal dimension are
called chambers, and the set of all chambers is denoted C(A).

In particular, the building A of type W can be given a W-valued metric space
structure (cf. [ABO8, Ch. 5]) via

0:CxC—W.

Under a geometric regularity condition on the size of the §-spheres, one may define
an algebra Z(A) of averaging operators.
For f e C — C, w e W and c € C, one puts

1
Bw(f)(c): ‘{dEC|(5(C,d)

f(d),

= w}| (decls(e,d)=w}

and 4 is the algebra generated by the averaging operators B,,, w € W.
Then, one has the following.

5.1. THEOREM ([Par06, Thm. 3.10]). Let A be a regular building of type W.
Then, the algebra A is isomorphic to the C-Hecke algebra H(W, S, C, q) (cf. Defi-
nition 5.2), where

_ 1

- Hdec]écd) = s}

The Hecke algebras which are defined in this context are very general, e.g., one
may start with any Coxeter group. However, one obvious necessary condition to
perform Parkinson’s construction, is the existence of A, but it is well-known that
the existence of a building of type W with prescribed q is in general not guaranteed
(cf. [FH64] or [KST73]).

for all s € S.

q(s)

2. Definition and first properties

5.2. DEFINITION. Let I' = (S, €&,m) be a Coxeter graph and let (W,S) be the
corresponding Coxeter system (cf. Chapter 3 §2 and Appendix A). Let R be a
commutative ring with unit 1z € R.

Let q: S — R be a function constant on the connected components of I',qq; it
is called the parameter function.

Let H = H(W, S, R, q) be the associative R-algebra consisting of the free R-
module RW) with basis { 7, | w € W}, and the associative multiplication defined
by the relations

51) - {Tsw if ((sw) > ((w)

q(8)Tsw + (q(s) — 1)T,  if {(sw) < L(w),
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for s€ S and w e W.
The algebra H = H(W, S, R, q) is called the R-Hecke algebra of type (W,S)
with parameters q.

5.3. REMARK. (a) The parameter function g can be identified with a list (gs |
s € S) of elements in R, such that ¢; = ¢; if s and ¢ are conjugate in W (cf.
Proposition 3.13).

(b) If q is constant g(s) = ¢ for all s € S, then the corresponding Hecke algebra is
called one-parameter Hecke algebra.

(¢) For a commutative ring Ry, the Ry-generic Hecke algebra is defined as follows.
If T'ygqq has k connected components I,..., I let R = Rg[qu, ..., qx] for indetermi-
nates g;. Moreover let the parameter g be defined by q(s) = ¢; for the unique j
such that s € I;. Then let H = H(W, S, R, q).

(d) Interesting phenomena happen when R is the ring Ry[q] of power series (in one
indeterminate ¢) over a commutative ring Ro and q(s) = ¢ for all s € S. These
phenomena are the subject of Theorem 5.38.

From the above definition, it is not immediate to see that a R-Hecke algebra
exists and is unique, which is actually the case.

5.4. THEOREM. For a Cozeter system (W, S), a commutative ring R and parameters
q satisfying the conditions of Definition 5.2, there exists an associative algebra
structure H on the free R-module RW) such that (5.1) holds and Ty is the unit.

Moreover if H and H' are such algebras, then there is an isomorphism of asso-
ciative, unital R-algebras H ~ H'.

Proor. Cf. [Hum90, §§7.1-7.3]. |

5.5. PROPOSITION. Let H = H(W, S, R, q) be a Hecke algebra. Then the following
hold.

(1) The algebra H is generated, as associative, unital R-algebra by {Ts | s €

S} together with the relations
(5 1/) {’/Tm(Ts; Tt) = 7Tm(Tt, Ts), where m = m(s, t)

T? =q(s)Ty + (a(s) = 1)Ts,  ifs€S.

(2) The elements Ty, w € W are invertible in H.
(3) If w,w' € W and £(ww') = l(w) + L(w), then Ty Ty = Ty -
(4) If 1(s) = 1g is the constant function equal to the identity, then

H(W,S,R,1) ~ R[W].
Proor. Cf. [GP0O, §4.4]. |
Since (5.1") is right-left symmetric, one has the following.

5.6. COROLLARY. If H = H(W, S, R,q) is a Hecke algebra, then a “right-handed”
analogue of (5.1), holds:

(5.1//) T T, — Tws Zfﬁ(ws) > E(w)
e q(8)Tws + (a(s) — DTy if L(ws) < L(w),
forse S andweW.
One more fact is needed in the sequel.

5.7. LEMMA. Let (W, S) be a Coxeter group and let R be a commutative ring.
Lett = {ts € R| s € S} a set of elements of R such that ts = t, if s and r are
conjugate in W,
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By Matsumoto’s Theorem (c¢f. [GP00, Thm. 1.2.2]) there is a well-defined
map induced by the map Ts — ts: let €, be defined by
er: B={T,|lweW} — R
T, = TLY ts
where w = 8182 ... Sp(w) 15 a reduced word.

2.1. Basis, augmentation, antipode, and canonical trace. The purpose
of this paragraph is to give a canonical structure (H,J,Eq,B, p) of associative,
augmented R-algebra with antipode to each Hecke algebra H(W, S, R, q).

The free R-basis B is taken to be

B={Ty,|weW},
while the antipodal map is defined as
CBH S HOP, (Ty) =Ty
Since {(sw) = L(w s 1) forallw € W, s € S, one easily sees that _* is a morphism
of R-algebras, satisfying _* = idy.

Then, take for augmentation the map ¢,: H — R defined in Lemma 5.7. It is
immediate to check that

eq(Tw) = q(T4),
since R is a commutative ring.
The trace function u is determined as follows.

5.8. PROPOSITION. Let H be a R-Hecke algebra associated to (W, S), and, by the
above discussion, let ('H,J‘,Eq,B) be the 4-tuple consisting of the augmented R-
Hecke algebra with distinguished basis and antipode.

Then the R-bilinear map (—, _): H x H — R defined by (1.14) satisfies (1.15).
In particular, ip = (T1,_) is a trace function.

Proor. By Lemma 1.24, one has to show that
(5.2) (T Ty, T ) =(Ty, Ty—1Ty ) for all u,v,w € W.

Using induction one easily concludes that it suffices to show (5.2) in the case that
u = s € S. In this case one has:

(5.3)

A= (11, T, ) = | rowfaTeo) it () > ((0),
(g5 = 1)6vweq(To) + qs0s0weq(Tsw) if 0(sv) < £(v),
and
(5.4)

Ov,sweq(Ty) if (sw) > L(w),
(gs — 1)0pwq(To) + 4500 sweq(Ty) if £(sw) < £(w).

We proceed by a case-by-case analysis.

Case 1: {(sv) > {(v) and {(sw) > ¢(w). Suppose that A # 0. Then sv = w,
but {(w) = {(sv) > ((v) = {(sw), a contradiction. Hence A = 0. Reversing the
roles of v and w yields A = p = 0 and thus the claim.

Case 2: {(sv) > {(v) and {(sw) < {(w). Then, v # w. If X\ # 0, then sv = w.
Hence {(w) = £(sv) = L(v)+1, and A = 4(T%) = €4(Ts)eq(T,). On the other hand,
p=(q—=1)0yweq(Ty) + ¢y sweq(Ty) = qeq(Ty) = A. If A =0, then sv # w. Hence
p=(q—1)0y weq(Ty) + Gy sweq(Ty) = 0= A

Case 3: /(sv) < £(v) and {(sw) > £(w). Reversing the réles of v and w one
can transfer the proof for Case 2 verbatim.

p= <Tv;TsTw> :{
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Case 4: {(sv) < {(v) and {(sw) < {(w). Suppose that sv = w, or, equivalently,
v = sw. Then {(sv) < {(v) = {(sw) < L(w), a contradiction. Hence sv # w and
v # sw. Thus A = p. This completes the proof. |

5.9. REMARK. The trace function fi: H — R can be seen as the canonical trace
function on H. It is straight forward to verify that for Hecke algebras of type A,,,
B, or D, this trace function coincides with the Jones—Ocneanu trace evaluated in
0 (cf. [Gec98]).

3. Parabolic Hecke subalgebras

Let (W,S) be a Coxeter system and let H = H(W, S, R, q) be the R-Hecke
algebra with parameters q. The functor

H_ 25 — R—A|g, Hr = H(Wlala Raq|1)

is called the Hecke algebra parabolic structure. By Propositions 3.15 and 5.5(1) one
has that, for all I C S, there is a canonical isomorphism H; ~ (Ts | s € T) of
R-algebras. In particular Hs ~ H and Hy ~ R.

5.10. DEFINITION (Parabolic Hecke subalgebra). Any subalgebra (Ts | s € T) is
called parabolic Hecke subalgebra.

In the case of Coxeter group algebras, there exists a distinguished set W' of
left Wr-coset representatives; for Hecke algebras the situation is very similar.

5.11. PROPOSITION. Let H = H(W, S, R, q) be a Hecke algebra and let I C S. Let
HT be the free R-module over the set W!. Then the map of right H-modules

mp: Hl @r Hr — H,

induced by multiplication in H, is an isomorphism for all I C S. Thus, H is a free,
right Hy-module.

ProoF. It suffices to say that {(vu) = £(v) + £(u) for v € W!, u € Wy (cf.
Proposition 3.18(5)), hence T, T,, = T\, by Proposition 5.5(3). |

4. Modules

4.1. One-dimensional modules. In the present work a central place is oc-
cupied by one-dimensional H-modules, i.e. module which are isomorphic —as R-
modules— to the free R-module R. It turns out that their structure is particularly
easy.

Morphisms of R-algebras ¢ € Homp-aig(#, R) (i.e. linear characters) and 1-
dimensional modules determine each other by the formula h.r = e(h)r, where h € H
and r € R.

Let H = H(W,S, R,q), and let T" be the Coxeter graph of (W,S). Any such
e € Homp-ag(H, R), by (5.1"), must satisfy

(5.5) Tm(e(Ts),e(Ty)) = mm(e(Ty),e(Ts))  for all s,t € S
and
(5.6) e(Ts)? = qs + (gs — 1)e(Ts)  for all s € S.

Condition (5.6) forces e(Ts) € { —1,¢s }. Condition (5.5) is trivial when 2 | m,
and it is satisfied for m odd, e.g. when e(Ty) = e(1}) if s and ¢ are connected in
I'oqa —since q is locally constant on I'gqq.

The analogue of the trivial module and the sign module for group algebras are
given by the following definition.



56 5. HECKE ALGEBRAS

5.12. DEFINITION (Trivial and sign #-modules). The one dimensional module R,
determined by €4(1s) = ¢, for all s € S is the trivial H-module. The one dimensional
module R_; determined by e _1(T5) = —1 for all s € S is the sign H-module.

5.13. REMARK. In the case of a Hecke algebra with g(s) # 1 for all s € S, then
there exist exactly 2¥ pairwise non-isomorphic 1-dimensional #-modules, where k
is the number of connected components of I'gqq.

4.2. Generalized Poincaré series. Let H = H(W, S, R, q) be the R-Hecke
algebra associated to (W, S) with parameters q.
Let ¢, be the map defined in Lemma 5.7.

5.14. DEFINITION (Generalized Poincaré series). The generalized Poincaré series
of H =H(W,S,R,q) is defined to be the formal sum

pr(@) = Y &o(Tw) € Z[q].
weWw
For evident reasons, the generalized Poincaré series py (q) is also denoted p(y,5)(q).

4.3. Induced e restricted modules. Let I C S, then applying the machin-
ery of Chapter 1 §1.4 one defines the induction

ind} (_) = ind}} (_): #;-Mod — #-Mod
and the restriction
res](_) = resit’(_): H-Mod — H;-Mod.
Induction behaves well on projective modules, indeed the folowing holds.

5.15. COROLLARY (of Proposition 5.11). The induction functor ind7 (_) is exact
and takes projective left Hi-modules to projective left H-modules.

5.16. NOTATION. Let ny =T1 ®, 1 € H ®, R,. Then the elements appearing in
(5.7) will be rewritten as T,,n;.

As already mentioned (cf. §2.1), the trivial module occupies a special place in
the present thesis, and modules induced from R, satisfy the following lemma.

5.17. LEMMA. Let H = H(W, S, R, q) be a Hecke algebra, let I C S and let R,(I)
the trivial Hr-module. Then the induced module indf R,(I) is a free R-module with
basis

(5.7) (T, @9, 1 |we W}

The canonical map cy: H' — indf R, given by c;(Tyw) = Tyny, where w €
W1, is an isomorphism of R-modules. Moreover, for w € W, one has Tynr =
€q(Tw)Twinr-

PROOF. The elements of the module ind7 R, ~ H ®4, R, can be written as
finite R-linear combinations of monomials of the type T;,®1, for w € W. Moreover,
using the decomposition of Proposition 3.18(1), write w = w!w;: then

Ty ®1= TwITw[ X1 =T, ®Tw1-1 =Tyt ®5q(Tw1) = Eq(TwI)TwI’I]]. |

Under suitable conditions of finiteness a invertibility of the Poincaré series, the
modules ind}g R4 and R_; admit the following characterizations.

5.18. PROPOSITION. Let I be a subset of S such that Wy is finite. Put 11 =
ZweW; T.,. Then one has the following:

(1) 7'12 :p(W,,I)(Q)TI-
Moreover if pow, .1y (q) € R* is invertible in R, let e; = (pow,,1)(q)) " *71. Then:
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(2) the element ey is a central idempotent in Hy satisfying el} =ey;

(3) the left ideal Hey is a finitely generated, projective, left H-module isomor-
phic to indf Ry;

(4) Twer = eq(Tw,)Tyrer.

Proor. For s € I put X5 = >°, cisr ) Tw- Then 71 = (Ty + T5) X, (cf.
Prop. 3.18(6)) and therefore
Tstr = TS(TI + Ts)Xs = [Ts + qTh + (QS - 1)Ts] X5 = QS(TI + Ts)Xs = 5q<Ts)Tl-
This shows (1). Part (2) is an immediate consequence of (1), and the first part of
(3) follows from the decomposition of the regular module "8H = He; @ H(T1 —ey).
The canonical map w: H — ind}q Ry, n(Tyw) = Twnr, is a surjective morphism of

H-modules with ker(w) = H(T7 — e;). This yields the second part of (3). Part (4)
follows from part (2) and Proposition 3.18(1). |

5.19. PROPOSITION. Let W be finite with longest element wy. Assume further that
pw.s)(q) € R* and let

z= (p(WVS)(q)) - Z Efl(Tw)gq(Twow)Tw €EH.

Then one has the following.
(1) For w € W one has Tyyz = e_1(Tw)z, i.e., Hz is isomorphic to R_1 as
H-module.
(2) The element z € H is a central idempotent satisfying 2=z,
(3) The left ideal Hz is a finitely generated, projective, left H-module.

PRrROOF. Let a(w) = (pw,sy(@)) *e—1(Tw)eq(Twow). Then
Tsz = Z a(w)TsTy = Z a(w)Tsy + Z a(w)(gsTsw + (s — 1)Ty)

weW welstw wgistWw
= Z o(w)Tsy + Z —a(v)T, + Z a(w)(gs — 1)Ty -
welsIw velstw wg{sIW
A B c
Here we used the fact that for w ¢ {¥}W it follows that £(sw) < ¢(w). Hence for
v = sw, one has £(v) = {(w) — 1 and therefore ¢;a(w) = —a(v).

For w € {$}W and y = sw ¢ *}W one has £(y) = £(w) + 1. Hence a(w) =
—gsa(y) and A can be rewritten as 3, .y —¢s@(v)T,. Then

A+C= > al@) |-+ (¢: =V Te == > a(@)T,.
{L‘Q{S}W wg{s}w
This yields (1).
It is casy to check that 2% = 2. Thus, by (1), one has z € Z(#). Moreover,

2 = (p(W,S)(q))il Z Efl(Tw)Eq(TWOW)TwZ = (p(W,S)(q))i1 Z Eq(Twow)Z =z

This shows (2), and (3) is a direct consequence of (2). |

Finally, there are canonical maps between induced modules, that will turn out
to be useful for the purposes of this thesis.

For I C S, let R,(I) be the trivial H;-module. It is equal (not just isomor-
phic) to the restriction res?(R,). Then, for I C .J C S the natural isomorphism,
expressing the adjunction resy - ind{,

7 Homy, (Ry(I),res](Ry(.J))) — Homs, (ind{ (Ry(I)), Rq(J))
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can be simply written as
(5.8) o1 : Homy, (Ry, Ry) — Homyy, (indf (Ry), R,
and one has

¢i(a)(h@r) = ha(r)

for o € Homyy, (Ry, Ry), h € ind] R, and r € R,. These ¢’s allow the definition of
canonical maps as follows, which will turn out to be useful in the subsequent §5.

5.20. DEFINITION. For I C J C S, let d{ be the map of left H-modules
d{ = indj (¢ (idg,)): ind] R, — indj R,

5.21. LEMMA. The maps d{ can be written in coordinates over R as

(5.9) d{(Twm) = €q(Tw, ) Towin,

forwe W',

ProOOF. Up to identifying naturally isomorphic functors ind§ ind{ ~ ind}q7
one has
df (Twni) = ind5 (9] (idr,))(Twnr) = (H @, ¢f (idr,)) (Tw @, 1)
=Ty ®’HJ1:TwJTwJ ®HJ1:EQ(TwJ)TwJ'I7J. |

5. The Hecke—Coxeter chain complex of a Hecke algebra

As described in §2.1, a Hecke algebra H = H(W, S, R, q) has the properties
described in Chapter 1 §5, in particular one may consider the 4-tuple (H, %, ¢4, B),
i.e., the Hecke algebra as an associative, augmented, R-Hecke algebra with a dis-
tinguished basis and an antipode.

Thus, if one had a “nice” complex, quasi-isomorphic to R,[0], it would be
possible to define the Euler characteristic x% = x(#,_1.c,,) (cf. Chapter 1 §5.2).
The purpose of the present section is exactly to provide such a resolution.

Some preliminary definitions and considerations are needed.

5.22. REMARK. The complex that will be defined is canonical up to a fixed total
ordering “<” on the finite set .S, which determines a sign map appearing in the
boundary maps.

5.23. DEFINITION (Degree). For I C S define deg(I) = |S| — |I| — 1.
5.24. DEFINITION (Sign map). Let the sign map be defined by

(5.10) sgn: S x P(S) — {£1}, sgn(s, I) = (—1)HteNIt<s il
where P(S) denotes the set of subsets of S.

The following identities are elementary.

(5.11) sgn(s, I U{t}) = sgu(s,I) for ¢ > s,
(5.12) sgn(s, I LI {t}) = —sgn(s, ) for t < s,
(5.13) sgn(s, I\ {t}) = sgn(s,I) for t > s,
(5.14) sgn(s, I\ {t}) = —sgn(s,I) for t < s.

Moreover, the following holds.
5.25. LEMMA. If I C S and s,t ¢ I, s # t, then
(5.15) sgn(t, I)sgn(s, I U {t}) 4+ sgn(s,I)sgn(t, I U {s}) = 0.
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PrOOF. Note that either s < t or ¢t < s. By (5.11) and (5.12), the left-hand
side of (5.15) reduces in the first case to

sgn(t, I)sgn(s, I) + sgn(s, I)(—sgn(¢t, I)) = 0;
while in the second case one has
sgn(t, I)(—sgn(s, I)) +sgn(s, I)sgn(t,I) = 0. |

Finally, the definition of the Hecke—Coxeter chain complex of a Hecke algebra
can be given.

5.26. DEFINITION. Let (W, S) be a Coxeter system, and suppose the finite set (S, <)
has a fixed total ordering. Let R be a commutative ring and let g: S — R be a
parameter function. Let H = H(W, S, R, q) the Hecke algebra and let R, be its
trivial module.

For k € Z let
(5.16) Cv= ]| ind/R,
ICS
deg(I)=k

Moreover, let 5k 6’k — 616,1 be defined to be the map

(5.17) = > 0w,
1,JCS
deg(I)=k,
deg(J)=k—1

where

nNd] itJ=1IU
(518) 6[ g = Sgn(57 ) 1 1 J {S}
’ 0 if J 21,
and df is given as in (5.9) and the sgn(_,_) is given in Definition 5.24.
Few remarks about the definition are needed

5.27. REMARK. (1) The H-modules Cy, are zero for k & {—1,...,|S| =1}, by
Definition 5.23.
(2) The maps Jj, are maps of left H-modules.
(3) C_y =ind$ R, ~ R, and C|g|_; = indjj R, ~ "*H.
(4) The module Cy, considered as R-module, is free with basis
{Tynr | TC S, deg(l) =k, we W'}
5.28. LEMMA. The sequence of H-modules (6’.,5.) is a chain complex.

ProoF. By Remark 5.27(2) and (2), it suffices to prove that if I C S and
degI = k one has 019, (nr) = 0. Indeed,

Oe—10k(n1) = Op—1 Z sgn(s, 1)nrigs)

seS\I

= > seu(s, 1) Y seu(t. I U{sHmuen

seS\I teS\(IU{s})
= Z Sgn(sa I) Sgn(ta Iy {5})nlu{s,t}

s,teS\1

t#s

= Z [Sgn(s, I) Sgn(ta Iy {S}) + Sgn(ta I) Sgn(sv Iy {t})] Nru{s,t}>

s,te€S\T

t<s
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which vanishes by Lemma 5.25. |

5.29. DEFINITION (Hecke-Coxeter chain complex of a Hecke algebra). Under the
conditions of Definition 5.26, one says that the Hecke—Coxeter chain complex of H
is

C = (C,,8,) = (Cs,84)>°.

Le., the Hecke—Coxeter chain complex is

9|s)-1 Opt1 O

2]
0%0‘5‘71 Ch !

Ch Co 0.

The import of the Hecke Coxeter chain complex for a Hecke algebra is deter-
mined by the following Theorem.

5.30. THEOREM ([TW]). Let (W, S) be a Cozeter group with |S| > 2. Let C be the
Hecke—Cozeter chain complez of the associated R-Hecke algebra H = H(W,S, R, q).
(1) If (W,S) is spherical then Hp(C) = 0 unless k = 0 or k = |S| — 1.
Moreover, Hy(C) ~ R, and Hjs|_1(C) ~ R_;.
(2) If (W, S) is non-spherical then C' is acyclic with Hy(C') ~ R,.

The cases of small rank are almost trivial:

5.31. REMARK. (1) If |S| = 1 then Hi(C) = 0 for all k # 0 and Hy(C) ~
R, ® R_q.
Indeed, W = C5 and the Hecke—Coxeter chain complex is concen-
trated at zero with Cy ~ *&H; moreover p(w,s)(q) = 1+ ¢ and
T1 + Ts and = é‘q(Ts)Tl — Ts7
1+¢ 1+g¢
(cf. Propositions 5.18 and 5.19) hence egyy + 2z = Ty and eg,)z = 0, then
"¢ ~ R, ® R_y, which proves the statement.
(2) If S = 0, there is an isomorphism H =~ R of R-algebras and an iso-
morphism of H-modules R, ~ "8R. Then (R[0],0,idr) is a finite, free
resolution™ of R,.

€{sy =

6. Proof of Theorem 5.30

The cases with |S| > 2 are more interesting, and the following property will be
useful to prove acyclicity of the Hecke Coxeter chain complex C,.

5.32. PROPOSITION. Let h =3 e0r)=p 2owewr &(w,)Tynr € Cy, k =0, and
ohy="> > B, J)Tuns.
deg(J)=k—1 veW/

Then one has, for J C S, deg(J) =k —1 and v € W7,
(5.19) Blo, )= > sen(t, I\ {t}) a(ve, T\ {t}) ey(T2).

ted pew M

In particular, if (w,1) is such that W € wi, a(,I) # 0 and a(w,I) = 0 for all
w € W with £(w) > {(w) and deg(I) = k, then

(5.20) Baw, J) =" sen(t,J\ {t}) a(@,J\ {t}).

teJ

*This complex is not a Hecke—Coxeter chain complex, the latter being the zero complex when
S =10.
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Proor. For I ¢ J C S one has W; = W}Wl. As W7 c W, one concludes
that W! = W/W! (cf. Proposition 3.18). Hence

Ox(h) =" > alwl) Y sea(t,I) Tunmy

deg(l)=k weWl! teS\I

S Y Y sea(t, I\ {tha(w, I\ {1)Tuns

deg(J)=k—1 teJ weWI\{t}

and thus by the previous remark

= Z Z Z sgn(t, J \ {t}) Z a(vx, J\ {t}) Toans

deg(J)=k—1 veWJ teJ erJJ\{i}

Thus by Lemma 5.17 one concludes that
= Y Y s\ Y ale I\ {0 (T) T
deg(J)=k—1 veW’ teJ cew M

This yields (5.19), and (5.20) is a direct consequence of (5.19). |

In order to prove statements (1) and (2), one needs the following fact.

5.33. PROPOSITION. If (W,S) is a Cozeter system with |S| > 2. If W is infinite,
then O)g|_1 is injective; while for W finite and pow,sy(q) € R* one has ker(d;g/—1) =
Hz~R_; (cf. Prop. 5.19).

PROOF. Put 0 = Jjg/—1. Let ( =3, .y B(w)Tyny € kerd C C|g/_;. Proposi-
tion 3.18(6) yields

= Z ﬁ(w) Z sgn(S, @)Twn{s}

weWw seS

= sen(s,0) | D B)Tun+ Y Bs)TuTing

seS weWw {s}t vew {s}
= Z sgn(s, ) Z (B(x) + B(xs)qs) Tengsy-
s€S zew s}

Hence one must have
(5.21) B(z) 4+ ¢.B(zs) =0 forall s€ S and x e W,

Suppose W is infinite and that there exists g € W such that 8(z¢) # 0. Then
—because W is infinite— there exists a sequence of elements (xy)ren, ¢ € W such
that zgy1 = xgsk, sp € W and £(zy41) = (k) + 1. In particular z;, € Wisk}, By
induction and (5.21), one concludes that 8(zy) # 0 for all k& € N, a contradiction,
and this shows that d)g_; is injective in this case.

Let W be finite with longest element wg. Then by (5.21) and induction, one
concludes that 5(z) = e—1(Twyax)eq(Twez)B(wo) for all x € W. In particular, for
b= e_1(Tw,)Pw,s)(q)B(wo) € R one verifies easily that ¢ = bzng. This yields the
claim. |

PROOF OF THEOREM 5.30. By hypothesis, |S| > 2.
Let “<” be the lexicographic order on Ny x Ny, i.e., (Ngx Ny, =) is a well-ordered
set. For k € {—1,...,|S| —2} and h € C \ {0} put

h = Z ami, ar = Z oz(w,])TwE"HI,

deg(I)=k weW!
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where a(w,I) € R (cf. Lemma 5.17). Then the following are well-defined:

supp(h) = { (w,I) | I C S, deg(I) =k, w € W', a(w, T) # 0},
A(h) = max{ £(w) | (w, 1) € supp(h) } € No,
v(h) = [{ (w,I) € supp(h) | {(w) = A(h) }| € No.
Obviously, for h,h' € Cy, h # h’, and r € R with rh # 0, one has
(5:22) ()b — 1) < max{(\,w)(h), (\v)(W)}F and (A, v)(rh) < (A, v)(h).
For short we put Q) = ker 9, \ im 0y 1, and define
A = (M), Q% — Ng x Np.

Obviously, 50: 60 — C_ is surjective and, by Lemma 1.4, one has HyCy =
C,l >~ Rq.

On the other hand, Proposition 5.33 determines the top-dimensional homology,
i.e.,

0 if |W] =00

His| 1(Co) = '
15]-1(Ce) {Rl if [W] < oo and pw,s)(q) € R*

Thus, in order to prove (1) and (2), one only has to check that Hy(C) = 0 for
all k € {1,...,]S] —2}.

Assumption: Suppose that k € {1,...,]|S| — 2} and that the set Q = Q is
non-empty, and put A = Ag.

As (Np x Ny, <) is well-ordered, there exists a unique minimal element min A €
im(A) € Ng x Ng. Let h € © be such that A(h) = minA. As § does not contain
zero, h # 0. Hence there exists a pair (w, I) € supp(h) such that £(w) = A(h). Let
A = Ar(w) (cf. (3.6)). By Proposition 3.18(8), one has to distinguish two cases.

Case 1: I = A. By the hypothesis on k, I # (). Choose any element 5 € I,
and let J = I\ {8}. Then one has deg(J) = k + 1, and by Proposition 3.18(7),

w € WY. Hence Twn7 is an element of the standard basis of C41, and

O1(Tany) = D sen(s, Deg(Taw, ) Tgrni-
deg(I)=k
I=Ju{s}
Since T = J U {3} and w! = w, one has

X

sg(3, /)1 (Teny) = Tang + Y sen(s,J) sgn(s, J)eq(Tw, ) Taroi Mgs)
s€S\T

For s € S\ T, one has J U {s} € T = A. Thus the elements w’"{*} are of shorter
length than @ (cf. Proposition 3.18(9)). Hence, if X # 0, then A(X) < (@) = A(h).
Put

(5.23) h' = h— a(w,I)sgn(s, J)Oyi1(Twny) € ker().

As h ¢ im(Ok41), one has also ' ¢ im(0kr1). Hence ' € Q. Moreover, by
(5.22), A(h') = A(h). Thus the minimality of A(h) implies that A(h') = A(h). In
particular, A(h") = A(h). However, by construction,

{ (w, 1) € supp(') | {(w) = Mh') } = {(w, ) € supp(h) | £(w) = (k) }\ { (@, 1) },

and thus v(h’) < v(h), a contradiction, showing that Case 1 is impossible.
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Case 2: I C A. For the chosen (0, I) define the disjoint sets
A={(w,I)| I C A, deg(I) =k},
B={(w1I)| t(w)=Xh), w#w, I CAP(w), deg(l) =k},
C={(w, 1) | l(w) £ Ah), I € A?(w). deg(I) =k }.
Then supp(h) C AUBUC. Let h = ha + hg + he be the corresponding additive
decomposition of h (cf. Lemma 5.17). Then h 4 # 0, A(ha) = A(h), AM(hg) < A(h),
and A(he) < A(h).
If I € J C A with deg(J) = k — 1, the element Ty is an element of the

standard R-basis of Cj_1. By hypothesis, the coefficient of 0y (h) on Tzny equals
0. Thus by the maximality of £(w) and Proposition 5.32, one has

(5.24) > sen(t, J\ {t}) a(w, T\ {t}) = 0.
teJ
Let
(525) Y = Z O‘(wa I)n];
ICA
deg(I)=k

i.e., Tizp = hy. Define Dy, k > —1, to be the R-submodule
Dy =spanp({nr | I C A, deg(I) = k}) C Cy,
and let dy: Dy, — Dy_1, k > 0, be the R-linear map given by

d.(nr) = Z sgn(t, I)nrogey;
teANT

one easily sees that didi11 = 0 for all k£ (cf. Lemma 5.25). Hence (D,,d,) is a
chain complex. Moreover, for I C A, deg(I) = k, one has

(5.26) Ok — di)(nr) = > sgnlt, 1) nygey-
tes\A

The chain complex of R-modules (D,,ds) concentrated in degrees k > —1 is con-
tractible (as (Dy, dy)k>0 coincides with the singular chain complex of an (|A| — 1)-
dimensional simplex with coefficients in R). Thus there exist homomorphisms of
R-modules oy: Dy, = Dy, k > —1, satisfying dy10y + op—1dy, = idp,. Hence
for ¢ € ker dy, one has di11(or (%)) = . Moreover, by (5.24),

di(p) = Z sgn(t, I) a(w, I) niugy

teA\I
(5.27) = > Ssent. I\ {tha@ J\{t})n =0
deg({%fk*1 <

CLAM. For all (w,I) € supp(ha — TgOk+1(ok(p))) one has L(w) < £(wW).

PRrROOF OF CLAIM. Note that hq = Tizp. Since di(¢) = 0 (cf. (5.27)), one
has dp11(ok(¢)) = ¢. Thus, by the previous remark,

ha = Tw(Ok11(0k(9))) = Talp — Oks1(ok(p))) = Twldit1 — Oky1)(ok(0))-

By (5.26), (dg+1 — Ok+1)(0k(¢)) is an R-linear combination of elements n; with
I¢Z A deg(I)=k. AsI € A, one has wr # 1 (cf. Prop. 3.18(9)), and therefore,
((w!) < (). This yields the claim. |
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Note that hg = h — TgOp+1(ok(p)) € Q. As
(5.28) AUBUC = {(w,I) | {(w) < (W), deg(I) =k, we W'},
one concludes from the Claim that
(5.29) h1 = ha — Tg(Ok+1(0k(v))) € spang{ Tynr | (w,I) € C}.

In particular, A(hg) < A(h). Thus by the minimality of min A one must have
A(hp) = A(h). But in this case one has by construction that v(hg) < v(h), a
contradiction, showing that Case 2 is impossible. From this one concludes that
Q = 0 and hence ker 9y = im 941 for all k € {1,...,]|S| —2}. Thus, Hg(Cs) =0
for ke {1,...,|S| — 2}, and the proof is complete. |

7. Projectivity and FP-property

When W is finite, i.e., in the cases (1), of Theorem 5.30 and (1) and (2) of
Remark 5.31, if p(w,sy(q) € R*, then the trivial H-module R, is finitely generated
and projective, by Proposition 5.18(3).

If W is infinite of cocompact type (cf. Definition 3.24), all the proper parabolic
subgroups are finite, hence Cy, k > 0 is a finite sum of modules indf for I C S.
Thus, Propositions 5.18(3) and 5.33 imply that the Hecke—Coxeter chain complex
is a finite, projective resolution of R, as soon as the Poincaré series pw, 1 (q) € R*
for all proper parabolic subsystem (W7, I).

5.34. PROPOSITION. Let (W, S) be a finitely generated Cozeter group, which is either
affine, or compact hyperbolic and let q: S — R be such that pow, 1(q) € R* for
any proper parabolic subgroup (Wi,I). Then the Hecke Coxeter chain complex
(Ce, 0, €) is a finite projective resolution of R,,.

In the general case, i.e., for W infinite, but not of cocompact type, one has the
following FP-property.

5.35. PROPOSITION ([TW, Prop. 5.4]). Let (W,S) be a finitely generated Cozeter
group, and let q: S — R be such that pow,,1)(q) € R* for any finite parabolic
subgroup (Wi, I). Then (Cs,0a) is a chain complex of left H-modules of type FP;
in particular, Ry is a left H-module of type FP.

PRrROOF. By hypothesis and the previously mentioned remark, ind%l (Ry) is a
finitely generated projective H-module for any finite parabolic subgroup (Wi, T).
We proceed by induction on d = |S|. For |S| < 2, there is nothing to prove. Assume
that the claim holds for all Coxeter groups (W, J) with |J| < d, and that |S| = d.
By induction, for K C S, R, is a left H x-module of type FP. Hence inde (Ry)isa
left H-module of type FP. Thus CY is a left H-module of type FP for 0 < k < d—1.
If (W, S) is spherical, then R, is a finitely generated, projective, left H-module by
the first remark. If (W, S) is non-spherical, (C,, 0,) is acyclic. Hence R, is a left
‘H-module of type FP by Proposition 1.19. This completes the proof. |

The above proposition, together with the discussion in §2.1, imply the generic
Euler-ness (cf. Chapter 1 §5) of Hecke algebras.

5.36. THEOREM. Let H = H(W, S, R, q) be a Hecke algebra. If the Poincaré series
of all the finite parabolic subgroups are invertible in R, then H is an Fuler algebra.
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8. Euler characteristics

Proposition 5.35 has the following consequence.

5.37. PROPOSITION. Let (W, S) be a finitely generated, non-spherical Coxeter group,
and let q be a parameter function such that pow, 1(q) € R* for any finite parabolic
subgroup (Wy,I). Then

(5.30) TR, = Z(fl)‘S\Ililrindf(Rq)'
ICS
PrOOF. By (1.12) and (1.19), one has
(5.31) TR, = Z (—1)fre, = Z(_l)‘S\I‘_lrindf(Rq)'
0<k<|S]| 1cS

This yields the claim. |
5.38. THEOREM ([TW, Thm. C]). Let (W,S) be any Cozeter system, and let
R = Ry[q] be the ring of formal power series in one indeterminate q, over the

commutative ring Ry. Let H = H(W, S, R, q) be the associated R-Hecke algebra.
Then pw,s)y(q) is an invertible element of R and

pw,s)(@) xn = 1.

PROOF. The invertibility descends from this general fact: an element
Z arq® € Ro[q]
k>0

is invertible in the ring of power series if, and only if, ag is invertible in Ry.
In the case of Poincaré series, ag = 1 by Proposition 3.10(1).

If (W, S) is spherical, R, ~ Heg where eg is given as in Proposition 5.18. By
Lemma 1.18 one has rp, = es + [H,H], and hence xy = u(rr,) = pow,s)(q) *.

If (W,S) is non-spherical, we proceed by induction on |S|. Proposition 1.28,
Corollary 1.29 and Proposition 5.37 imply that

XH = pn(rr,) = Z(_l)ls\l‘ilﬂ?{(rindf(Rq))

1CS
=Y (D) (Ry)
Ics
and thus by induction
(5.32) = > ()N, (@)
ICS
which is equal to piw,s)(q) * by Proposition 4.6. |

5.39. REMARK. The motivation for defining the notion of Euler algebra came es-
sentially from [Sta65], [Hat65] and the discussion of the Hattori-Stallings rank in
[Bro82, Ch. IX]. Both group rings CG and Hecke algebras H fit it the framework
of Euler algebras, but they have somehow “opposite” behaviour.

Consider now finite groups G and Hecke algebras H of spherical type.

» By Swan’s Theorem (cf. [Swa60]) the Hattori-Stallings rank element of
ZG is only supported over the conjugacy class [1], while for Hecke algebras
this is not the case.
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= Hattori-Stallings element r can be computed through idempotents, (cf.
Lemma 1.18), and a result of A. Zalesskii (cf. [Zal72] and [BV98]) implies
that the trace of r can only take rational values (or, in general, in the prime
field of the base field).
On the other hand, Theorem 5.38 says that the trace of the Hattori
Stallings rank of a Hecke algebra can assume “almost” any value.
The differences pointed out might be interpreted as phenomena of “rigidity” (resp.
“genericity”) of group algebras (resp. Hecke algebras).



APPENDIX A

Graphs

The purpose of this appendix is to establish several notions about graphs (cf.
[Bou07¢, Annexe au Ch. IV]).

A.1. DEFINITION ((Labelled) combinatorial graph). A graph T is a triple T' =
(0, €, m) consisting of
(1) a (possibly empty) set of vertices U,
(2) aset € consisting of subsets of U of cardinality 2; an element ¢ = {s,r} € &
is called an edge (joining s and r),
(3) a labelling function m: & — A, where A is some set of labels.

A.2. DEFINITION (Q-restricted combinatorial graphs). Let I' = (U, &, m: € — A)
be a labelled combinatorial graph, and let 2 C A.
Let

F={eec€|me) e},
and then define the Q-restricted graph of I' as the graph

FQ = (%,S,mh: %'—) Q)
In particular, if A C Z one denotes I'oqq = I'p\22-

There exist situations where the labelling is irrelevant: then just think m: & —
{0} or completely forget about m.

A combinatorial graph is locally finite if, for all s € 0, the set &, = {{s,r} €
¢ | r €Y} is finite; it is finite if U is a finite set.

Forgetting about the labelling, a locally finite combinatorial graph is a simplicial
set, then it admits a geometric realization (cf. [Mil57]) and hence, a topology.

A path in T is a finite sequence of edges (e;)? ; such that ¢; Ne;4q1 # 0 for all
1€{l,...,n—1}. If s # r € U are vertices, one says that r is joined to s if there
exists, for a suitable n, a path (e;)?_; in I" such that s € ¢; and r € ¢,,. A vertex is
connected to itself by the empty path.

One can prove that two vertices lie in the same connected component if, and
only if, they are joined. By an abuse of language one says that U’ is a connected
component of T' if, and only if, U’ consists of the vertices lying in a connected
component of the geometric realization of T'.

A.3. DEFINITION (Sum of graphs). Let I'y = (581, Qfl,ml) and I'ys = (‘132, Qfg,’fﬂg)
be combinatorial graph. Then define the sum

Fl L FQ = (Qh [N mQa 61 U eQam)a

ml(e) if e € &
mg(e) ife € & ’

For hystorical reasons, if I" is of type 77 and I's is of type T2, one writes that
the type of I'1 U’y is 77 X Ts.

where m: €1 LI € — Aj U Ay, is given by m(e) =

In particular, a graph I' is the sum of its connected components.
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The only notion of subgraph of interest in this thesis is the following*.
A.4. DEFINITION (Subgraph). If I = (U, €,m) and IV = (U, ¢, m’) are combina-
torial graphs and if

(1) there is an inclusion U’ C 9,
(2) one has & = {{s,r} € € |s,r €Y'},
(3) m = m|¢/.

In this case write IV < I'.

For a given graph I, a subgraph I' is completely determined by the subset of
vertices it contains.

A.5. DEFINITION (Graph category). Let I' = (U, €, m) be a combinatorial graph,
and let P(I") be the poset of subgraphs of I', ordered with <. Then P(I") can be
viewed as a small category with

Obj(P(I')) ={T"|I" < T}
and
if IV <1V

/ ny {S}
Hompry (I, T") = { 0 otherwise

Note that T" is a terminal object in P(I')  actually, the unique one.
Let 2% denote the small category with objects the subsets of X and with arrows
their inclusions. For a fixed graph I let

(A1) mr: 2¥ = P(T)

be the functor associating to a subset U’ of U the subgraph IV of T' having U’ as
vertex set, and to an inclusion B’ C U” the arrow 7 (V') < 7 (V”).

1. Cayley graphs

A.6. DEFINITION (Cayley graph). Let G be a finitely generated group and let
X C G be a finite generating set such that 1 ¢ X and X = X~!. Then define the
Cayley graph Cay(G, X) as the (non-labelled) combinatorial graph with vertex set
G and edges {g, gz} for g € G and z € X.

One immediately verifies the following.
(1) The edges are non-oriented, since X = X ! and {g, gz} = {9z, (gz)z~'}.
(2) Since 1 ¢ X, one has g # gz for all g € G and z € X, hence there are no
loops.
(3) Cay(@G, X) is connected.
(4) There is a discrete metric §: G x G — Ny on G defined by

0(g1,92) = min{n | (e;)7; is a path joining ¢g; and g2 }.

(5) The length function £: G — Ny is defined as £(g) = (1, g).
(6) For all n € Ny the set S(n) = £71(n) is finite.
(7) The group G is finite if, and only if, the length function is bounded above.

*It is worth remarking that, in general, the Q-restriction of a graph I is not a subgraph of T’



APPENDIX B

Data about Coxeter groups

1. Classification results
The following statement is a collection of several classification results.

B.1. THEOREM. Let (W,S) be an irreducible Cozeter system, with Coxeter graph
I'. Then

spherical

Table B.1.
Table B.2.
(W, S) is affine _ <= I appears in e
hyperbolic cocompact Table B.3.
hyperbolic Table B.4.

2. Lists of Coxeter graphs

This section contains lists of Coxeter graphs referred to along the thesis.
As a general rule for drawing Coxeter graphs, labels equal to 3 are omitted.

For finite and affine Coxeter systems there are established naming conventions
(types), listed in the first column of the tables.

B.2. NOTATION. In some cases it is convenient to draw Coxeter graphs using pa-
rameters to label some edge ¢. Then the following conventions hold:
(1) m(e) S 2227

(2) edges labelled (in the picture) by m(e) = 2 are not edges in the graph,
e.g.

o' o hastobe interpreted as o o for k=2,
i.e. the type I5(2), is Ay x Aj.
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Name (conditions) Coxeter Graph Degrees
A, n>0 . o o o o o 23...n+1
B,=C, n>2 oo o.0o o o 2,4,...,2n

D, n>4 .- o o E< 2,4,...,2(n—1),n

Es o o I o o 2,5,6,8,9,12

E; -~ o I . o o 2.6,810,12,14,18

ES ¢—0—I—0—>—o—~ 258; 12; 147 18720724730

Fy o ot e o 2,6,8,12
Go o’ o 2,6

Hs o o " o 2,6,10

H, . o o4 2,12, 20, 30
Io(m) m € Z>s5 \ {6} " o 2,m

Table B.1: The finite, irreducible Coxeter systems (W,S), with
|S| = n. Moreover, the types A, to Gy are crystallographic, i.e.,
they determine Weyl groups.

The degrees (cf. Proposition 4.4) are printed in the last column.



2. LISTS OF COXETER GRAPHS

Name (conditions) Coxeter Graph
A, e

Xn n>2 P :: e
]§2 = é2 oioio

EG ‘—O—<::

Er »—o—o—I—o—o—~
Es »—o—I—o—o—o—o—o
F, oo ole o

Go L

Table B.2: The affine, irreducible Coxeter systems (W,S), with
S| =n+1.
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B. DATA ABOUT COXETER GROUPS

Name (conditions) Coxeter Graph paw,s)
Rank 3
a<b,
HC1 171 1 e’ o o cf. Lemma 4.19
2T <3
3 S a S b S C, c b
HC2 % + % + % <1, 4 T " cf. Lemma 4.19
a < 0
Rank 4
HC3 et o o’ o 0.735294 . ..
HC4 o o’ o o 0.740203...
HC5 e’ o o’ o 0.668132...
HC6 ’L.<: 0.690406.. . .
HC7 4 0.642661 ...
4
HCS8 4 0.561279...
5
HC9 4 0.53101. ..
HC10 5 0.583648. ..
5
HC11 5 0.509281 ...
Rank 5
HC12 et o o o2 o 0.720106...
HC13 e’ o o o o 0.833415...
HC14 e’ o o o o 0.659358...

HC15 ‘i‘_.<: 0.689797 ...

HC16 W 0.61621. ..

Table B.3: The irreducible hyperbolic cocompact Coxeter systems
(W, 5).
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Name Coxeter Graph P(W,S)
Rank 3
T'w(3) A %, cf. Prop. 4.7
Rank 4
4
HNC1 ot e 0.551753...
4 4
HNC2 4 0.504138...
4
4 4
HNC3 0.469396. . .

HNC4 0.561856. ..

HNC5H 0.51879...

HNC6 0.500245. ..

HNC7 0.492432...

HNC8 0.51879...

HNC9 0.682328. ..

HNC10 0.588985...

4
6
4
6
5
6
6
6
.L<I
HNC11 .L<I 0.552531...
6 I
*—o—0o—9o
*—o—0—90

HNC12 0.537613...
HNC13 0.639243 ...
HNC14 0.636883 ...
HNC15 e’ e oo 0.552965. ..
HNC16 e’ o o5 o 0.708134...
HNC17 e o oo 0.618034...
HNC18 e o' e o 0.682328...
HNC19 e’ e o5 o 0.639025...
HNC20 .L.<: 0.771327 ...
4
HNC21 ’_< 0.667961 ...
4
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B. DATA ABOUT COXETER GROUPS

<
Name Coxeter Graph P(W,S)
4
HN(C22 ’L.<: 0.618034. ..
4
HNC23 A 0.434259.. ..
Rank 5
HN(C24 o ote ot 0.698956 . ..
4
HNC25 ._._.<: 0.72899. ...
HNC26 ._¢L.<: 0.654741 ...
4
HNC27 oo o 0.627864. ..
HNC28 ._<> 0.662566. ..
HNC29 .i.<:>. 0.55887 ...
HNC30 ,+ 0.579431 ...
HNC31 0.491695. ..
HNC32 w 0.537456.. ..
Rank 6
HNC33 e ole o o o 0.801198...
HNC34 e o ole o o 0.741226.. ..
HNC35 o ole o ot 0.697036.. ..
HNC36 ._.L‘_.<: 0.667522. ..
HNC37 oo I - o 0.744209. ..
HNC38 ’L._I_.i. 0.634641 . ..
HNC39 - o } . 0.702245. ..




2. LISTS OF COXETER GRAPHS

F
Name Coxeter Graph P(W,S)
HNC40 L_{,, 0.59287 . ..
HNC41 * 0.542596. . .
4

HNC42 <:::>' 0.604368 . ..

4

4
HNC43 <::>' 0.533802.. ..
HNC44 ,_.<::' 0.657119. ..
]

Rank 7
HNC45 ._¢_I_¢_‘i. 0.755431 . ..
HNC46 ,_I_I_¢_. 0.726032.. ..
HNC4T ._<:::>. 0.636509....

Rank 8
HNC48 ‘_._I_._¢_.i. 0.763804. ..
HNC49 ._I_¢_I_¢_. 0.741982. ..
HNC50 ._._._.<: 0.77866. ..

D
HNC51 ._<:: 0.657583. ..
]

Rank 9
HNC52 ._._._I_._._,_. 0.826149. ..
HNC53 ._._I_,_._¢_¢i. 0.770075 . ..
HNC54 ._I_._‘_I_‘_. 0.753304. ..
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B. DATA ABOUT COXETER GROUPS

<_
Name Coxeter Graph P(W,S)
HNC55 ,_.<::::>. 0.659124 ...

Rank 10

HNC56 ._._I_,_._._,_,_. 0.878674. ..

HNC57 ._¢_I_._,_,_¢_.i. 0.774744 . ..

HNC58 ._I_o_._o_l_o_. 0.761587 ...

Table B.4: The irreducible hyperbolic non-cocompact Coxeter sys-
tems (W, S).



APPENDIX C

Complex power series

Denote by C[z] the ring of complex power series in one indeterminate z.
Let a, € C, for n € Ny, be the coefficients of the power series

(C.1) p(z) = Z anz" € C[z].
n&ENp
The convergence radius of p(z) is
—1
p= (lim sup v/ |an|> .
n—oo
Thus, the power series converges to a complex analytic function which is holo-
morphic in an open ball of radius p.
To a series p(z) as in (C.1) one may associate another series (the cumula-

tive series) as follows: let @, = Y.,_;ar and denote the associated power series
B(z) > anz™ € C[z] and its convergence radius by p.
C.1. LEMMA. Letp(z) =5
Then,

(1) in the ring C[z] one has (1 — 2)p(z) = p(z),

(2) if B(z) converges to a complex analytic function @(z) with convergence

radius p, then p(z) converges to o(x) = ?(fzg at least in an open disk of

neN, Anz" and let p(z) the associated cumulative series.

radius min{1,p},

PRrROOF. Then the nth coefficient of (1 — 2)p(z) is 1- @y, + (—1)G@p—1 = an,
proving (1). Then (2) is immediate. |

If the coefficients of the power series are non-negative integers, then one has
the following obvious facts.

C.2. LEMMA. Let an € Z>o and let p(z) = 3, o,
(1) If a, = 0 for n > ng, then p(z) is a polynomial and p = co. In this case
_ . — —1 . —\ -1
p= (hm SUD,, o0 {‘/an) = (limsup,,_, o Yan,) =1.
(2) If, for all n € N, there exists m > n with a,, # 0, then p < 1. By
Lemma C.1(1), in this case p = p.
Moreover, if the power series converges to a rational function, then
p € C is the minimal non-negative real pole of the limit function.
(8) Ifal, € Z>q is another sequence of coefficients with a,, < ay, for alln € Ny,
and if p'(2) is the associated power series with convergence radius p, then
p<p.

Moreover, the following result will be useful to compute convergence radii.

anpz".

C.3. LEMMA. Let b: Ny — N be a sequence such that by m < byby, for all n,m €
Np.
Then the limit lim,_,oc Vb, exists and

lim sup T\”/E: lim T\”/Ez inf ’\”/E
n—00 n€Ng

n—oQ

T
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PROOF. One only needs to prove that the sequence converges to its (non-
negative) infimum, say 8 > 0. Let ¢ > 0, there exists then some v € N such
that 3 < /b, < 8+ ¢/2, furthermore let M = max{b, | r € {0,...,v — 1} }.

There exists some N € N, N > r such that

(B+¢e/2)MYN < B +e,
(B+e/2) /N MYN < B+ ¢,

and hence, for n > N, one has (B+¢/2)'""/"MY" < 4 forallr € {0,...,v—1}.
Now choose any n > N and write n = qv + r, with r € {0,...,v — 1}.
Using the submultiplicativity hypothesis, on has

Vb < R/b5b, = (by)# /or = (V bu)qV/(QV-H") i

= (% bu)l_r/" Vb < (B+¢/2)' MMV < B e,
yielding the claim. |
Denote (_) = 4 the derivative and let f(*) = (f(*=1) for k > 0 and f© = f.
C.4. LEMMA. Let f: R = R be a polynomial function and suppose that
P (zo)=0Vk <n and ™ (x0) > 0.
Then there is a neighborhood U of xq such that
sgn(f(y)) = sgn((y — z0)") Yy € U\ {zo}.

PROOF. One writes the truncated Taylor series

f) (z .
£ = T2 )+ at),
with lim,_,4, (Jz(gg‘)n = 0. Since sgn: R* — {1,—1} is a map of multiplicative

groups,

F™M (o) _ lay)l

n! (y — xo

senl /(1)) = sen ( = ) sently o))

and, up to choosing y close enough to xg,

(™ (o
—son (L8 Y sy - o)) = sy - ).



APPENDIX D

Computations

e I wish to God these calculations had been executed
by steam.

C. BABBAGE

Some explicit computations were done with the aid of a computer and GAP.

1. GAP and CHEVIE

I used GAP, [ST97], in the prepackaged version available at J. Michel’s web
page http://www.math. jussieu.fr/~jmichel/gap3/, which in particular auto-
loads CHEVIE [GHL196] and Vkcurve.

2. Source code

At URI http://goo.gl/GZKpG you may find all the source code I wrote.

= The file functions. gap contains the definitions of the GAP-functions used
to compute the Poincaré series of any Coxeter systems.

= The file hyp-1ist.gap contains the definition of the Coxeter matrices of
the exceptional (i.e., not in the series HC1, HC2) hyperbolic cocompact
and hyperbolic types.

= Finally, the file run. gap is the main file to be run by GAP to compute the
Poincaré series. The computation lasted few days on a 4core, 2.67GHz
computer.

= At the end, one obtains a file readable by Mathematica® 8.0, which, in
turn, computes the convergence radii of the Poincaré series, and writes a
ETEX table.
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