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SUMMARY

We propose two generalizations of the three-parameters Zenga distribution obtaining two fam-
ilies of distributions with four and five parameters. The generalizations are done starting from
two different generalized beta functions and using them as mixing distributions in place of the
classical beta. We compare the flexibility of the resulting models with that of the Zenga dis-
tribution observing some improvements.
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1. INTRODUCTION

Recently, Zenga (2010) introduced a new family of distributions for non negative ran-
dom variables built as a beta mixture of Polisicchio’s truncated Pareto distributions
(see Polisicchio, 2008). As it is shown in Zenga (2010) and in Zenga et al. (2011),
the new family is quite flexible since it collects densities of very different shapes. For
example, a Zenga Distribution (ZD) can be zero-modal, uni-modal or bi-modal and the
value of the density near the origin ranges in [0, cc]. Moreover, it has a Paretian right
tail and it is positively skewed. In this paper, we generalize the ZD family building a
mixture of Polisicchio’s truncated Pareto distributions with Gauss Hypergeometric and
Confluent Hypergeometric weights. The Gauss Hypergeometric distribution adopted
in the first generalization was introduced in Armero and Bayarri (1994) and depends
on 4 parameters. Then, the number of parameters which characterizes the first kind
of Generalized Zenga Distribution ( Type-I GZD) increases to five. The Confluent Hy-
pergeometric distribution used in the second generalization was introduced in Gordy
(1998) and depends on 3 parameters. Then, the second kind of Generalized Zenga
Distribution ( Type-1I GZD) has 4 parameters.

As it will be seen in detail, the GZDs are more complex than the ZD from the
analytical point of view. However, the additional parameters should further increase
the flexibility of the ZD family. Then, a natural question follows: is the increase in
the flexibility of the generalized models sufficient to compensate for the increase in the
analytical complexity? We think it is important to give an answer to this question.
In fact, the analytical complexity and a high number of parameters impact on the
practical relevance of the model since they make the estimation procedures difficult
and deteriorate the quality of the estimates.

*Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali- Universita degli
Studi di Milano-Bicocca - via Bicocca degli Arcimboldi, 8 - 20126 MILANO
(e-mails: B lucio.decapitanil@unimib.it; alessandro.zini@unimib.it).
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We first recall the properties of the Polisicchio and Zenga distributions (Section 2)
and, later, we introduce the Type-I and Type-II GZD (Sections 3 and 4, respectively).
In Section 5 the flexibility of the two generalized models is compared with that of the
7D while in Section 6 some applications to income distributions are presented. Section
7 is devoted to the conclusions and to a brief description of the further possible lines
of research.

2. RECALLING THE POLISICCHIO AND THE ZENGA DISTRIBUTION

The Polisicchio truncated Pareto distribution was introduced in Polisicchio (2008) as
the distributional model providing a constant Zenga inequality curve I(p) (see Zenga,
2007). Its density is given by

\/—'Ek%(l — k) laE pk <z <
h(x;p, k) = 2 ) (1)

0 otherwise

==

where > 0 and 0 < k < 1. The cumulative distribution function H(-; u, k) associated
to h(-; u, k) is

0 T <
1
1 T2y
H (i1 k) = ﬂll—(;> k] k<o<t . @
1 otherwise

Let X be a random variable following the density (1). In Polisicchio (2008) it is shown

that " Lo
,LLT -1 — k2r—
EX" = . 3
Xl=o—7 1% 3)
Following Zenga et al. (2011), it is useful to observe that (2) and (3) can be re-expressed
as follows:

0 1 T < [
H(z;p, k) = iki— <§>_§§:k"+% pk <z <k (4)
{:O 0 otherwise
Blxr = 22_:1 T (5)
2r—1

i=1
Zenga (2010) introduced a beta mixture of Polisicchio’s distributions integrating
the density (1) with respect to k and assuming for this parameter the beta density

kl—a(l _ k.)@—l
1
g(k;a,0) = B(a, 0) 0<h< ; (6)
0 otherwise
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where o > 0, § > 0, and B(«, #) denotes the Beta function. As shown in Zenga et al.
(2011), the obtained density f and the corresponding distribution F' are:

o)

1 % (:E 1. >
— = B{—a+=+1i06 O<z<p
Flos b, ) = 2uB(a, 0) (x) ; 1 2 ™
9 Y - 1 ,U % o0 /.L 1 ‘ )
- (E BI(E. -
2uB(a, 0) (33) ; (x’OH_ 2 +Z’9> peZ
1 .
" . B(a,(g);D(az,a—H,Q,u) O<z<p
.T;Oé, nu’ = = &)
1
1 D(x; , 0
+B(a79); (z;0+14,0, 1) p<x

where u > 0, a >, 0 > 0, B(z;a,b) denotes the incomplete beta integral

z

B(z;a,b) = [ w1 —u)"'du 2<1,a>0,b>0,
0
and
B(2:0,0) = (4)* B (a+1,0) O<z<p
D(z;a,0, 1) = - (8
B(%;a—i—l,@)—(%)%B(g;aﬂ—%,@) x>

When 6 > 1, the functions f and F' admit a easier representations (see Zenga, 2010):

3
wr () Gz
e Bl=a+=,0-1 O<zxz<p
Jaio, 0. = FBleO) A/ w2 . )
Ly Ly y
2uB(a, 0) \x x 2
D(I,Q,Q—l,ﬂ) 0<'T<N
F(z;a,0,u) = B(a, 0)
T )= 1+D(a;;a,0—1,u) o
B(a,0) 8

The behavior and the properties of the density (7) and (9) are extensively studied in
Zenga (2010) and in Zenga et al. (2011). Here we recall that p is a scale parameter
and it coincides with the expectation of a random variable following the ZD. The
parameters « and 6 play a key role in determining the value assumed by f near the
origin and around the value of u:

O<axl

lim f(z;0,0,p1) = a=1

z—0t

g8

a>1



ON TWO POSSIBLE GENERALIZATIONS OF ZENGA DISTRIBUTION 4

B(a+3,06-1) g1
lim f(z; 00,0, ) = 2uB(a, 0)
g 50 0<6<1

Moreover, denoting with X a random variable with density (7), we recall that

2r—1 R
T Bla—r+1i,0)
1
EIX"| = 2r —1 ; B(a, 0) reat ’
00 otherwise
and
E[lX — pl) = 2p2F (s 0,0, 1) — 1] . (10)

From (10) it follows that the relative mean deviation P due to Pietra (1915) results P =
E[|X — ul]/2u =2F(p; «, 6, 1) — 1. In Zenga (2010) it is also provided the expression
for the point inequality index A(x) proposed in Zenga (2007) for the particular case

T = [

2
m)zl_ﬂXWSMLﬂ_(l—ﬂmm&m> (11)
EX|X >y F(p; e, 0, )
Several interesting applications of the Zenga model in the context of income distribution
are also given in Zenga et al. (2010a); while Zenga et al. (2010b) provides the analytical
expression of the estimators for «, 6§ and p obtained with the method of moments.
Finally, Porro (2011) exploited the stochastic ordering induced by the parameters o and
# on the ZD obtaining that the latter is increasing in o and decreasing in 6 in the sense of
the convex stochastic ordering. He observed that, in the study of concentration this fact
implies that « and 6 are direct and indirect indicators of concentration, respectively.
Finally, we recall that in Zenga et al. (2011) the Lower Partial Moment function of
the ZD is derived in order to obtain the Lorenz curve and the Zenga’s I(p) curve.

3. GAUSS-HYPERGEOMETRIC MIXTURE OF POLISICCHIO’S DISTRIBUTION:
TYPE-I GENERALIZED ZENGA DISTRIBUTION

3.1 Definition of the Type-1 GZD

The procedure described in the previous section can be generalized by substituting to
the beta density (6) the Gauss Hypergeometric distribution introduced in Armero and
Bayarri (1994). It is given by

Cko1(1 — k)7~
g(k;, 8,0,6) = (1= ko) O<k<l (12)

0 otherwise

with > 0,0 >0,0+«a > >0, and |0 < 1. In (12), the constant C' coincides with

1
B(a,0)2Fi (o, 850 + a;0)

C:
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where 5 F] is the Gauss Hypergeometric series defined by

2Fi(a,bopd) = (azzs)h % with  (s)h=s(s+1)...(s+h—1) .

To clearly understand that C' in (12) is a normalizing constant, it is sufficient to re-
member that, when ¢ > a > 0, the Gauss Hypergeometric series admits the following
FEuler’s integral representation:

1 1
QFl(Cl, b, C, d> = m/o Za_l(l — I)C_a_l(l — $d>_b dzr .

Observing that o F1 (o, 8;0+a;0) = 1 and o F1 (v, 0; 0+a; §) = 1 for all the admissible
values of «, 0, B, and ¢, it turns out that the densities (12) and (6) coincide if § = 0
or f=0.

Now, a Gauss Hypergeometric mixture of Polisicchio’s distributions can be intro-
duced (Type-I GZD). In detail, let n = (a, 0, 3,0, u) and let f*(x;n) denote the density
function of the Type-I GZD. We have that:

[xm) = /Oh(x;u,k)g(k;n)dk

C\/ﬁx—% z/p ka—f—%—l(l _ k>9—2
2 ; (1— ko)?

dk O<zxz<p

C\/ﬁx—% wlx ka—f———l(l _ k)9—2

i TEE dk x>

The cumulative distribution function of the Type-I GZD is, then:

C\/_ v gketaTl(1 - k)0
// 1= ko)? dkdy O<z<p

. \/—/ /u/y 3ko‘+’_1(1—k)0_2
(s m) + LY 1= ko)? dkdy T > p

F*(x;m) =

Obviously, a Type-I GZD with either 5 =0 or 6 =0 is a ZD.
In figures 1 and 2, we give some graphs in order to highlight the possible behavior
of the density f* for several parameters settings.

3.2 Series representation of F* and f*

For computational purposes, it is useful to represent f*(-,n) and F*(-,n) as a series.
To do this, as in Zenga et al. (2011), we remember that:

(1—k) = K forall [k<1 . (13)

=0
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FIGURE 1: Behavior of the density of the Type-I GZD for various parameters settings.
The plots highlight the impact of the parameter § on the shape of the density. Note
that the solid line corresponds to a ZD.

Moreover, we recall that
(1—ko) 7= (~1) (‘f) 5k forall |k|<1 and BeR , (14)
i=0
with generalized binomial coefficient

(—B) :ﬁ—ﬂ—jﬂz—ﬂ<—6—1>~-~<—6—z‘+1>_

l J i!

J=1

Observing that (77°) = (—1)("*/""), expression (14) can be re-expressed as follows:

(1—k6)#=>" (5 o 1)&'1& forall |k|<1 and BER. (15)

2
=0

Thanks to (13) and (15) we obtain that:
OVIi s & B+j—1 T o1
- 5 — E_OJE_O ( ; B ;,a+z+g+§,9 O<z<up
S (sn) = ‘s 750
Cyu s 5+]—1 7 oo 1
25 E 5 B =; —,0
T ( x,a+z+]+ T >N

2 )
=0 j5=0

(16)
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FIGURE 2: Behavior of the density of the Type-I GZD for various parameters settings.
The plots highlight the impact of the parameter 5 on the shape of the density. Note
that the solid line corresponds to a ZD.

In order to obtain a series representation of F*(-;n) we observe that:

/ H(z; p, k)g(k) dk O<z<p
Fr(xn) = 1
/ H(z;p, k) (k)dk+/ glk)dk = >p
w/z
/ H(z; p, k)g(k) dk O<z<p
1—/ dk—l—/ H(z; p, k)g(k) dk x>
\ 0

Thanks to the expression for H(-; u, k) provided in (4) and to formula (15), the above
expression can be rewritten as

CZZ(6+] )(5jD(x;oz+i+j,9,,u) 0<z<p
=0 j=0

F*(x,n) =

CZZ<B+‘7 >53D(x;oz+i+j,9,u) x>

§ =0 j=0

(17)



ON TWO POSSIBLE GENERALIZATIONS OF ZENGA DISTRIBUTION 8

As aforementioned, the series representation (16) and (17) are particularly useful from
the computational point of view since they avoid the extensive use of numerical integra-
tion. However, they involve a double summation and, consequently, the computational
time required to obtain a sufficiently precise value of f* of F™* is high. From a practical
point of view, the latter problem can be avoided observing that it is usually reasonable
to assume that the value of the density in p is finite and, then, 8 > 1. In particular, if
6 > 1, thanks to (15), we obtain the following “single series” representation of f*:

C = -
;/ﬂx_gz(;g(ﬁﬂ 1>B<§;a+j+%,9—1) O<z<u
j=0

;

J
[ (@sm) =

C = i —1 1
—\/ﬁx_%Z& B+‘7. B ﬁ;a+i+j+—,9—1 x>
2 = 7 T 2

\

(18)
Moreover, from expressions (2) and (15), following a procedure similar to that applied
to derive (17), it results that, if 6 > 1:

( o0 .
CZ(ﬁ+j_1>5jD(a:;a+j,9—1,u) O<z<yp
=0
F*(z,n) = (19)
) 1 '
1+CZ<6+j >59D(x;a+j,9—1,,u) x>
\ Jj=0

3.3 Some properties of the Type-I GZD

The Type-1I GZD shares several properties with the ZD. For example, as for the ZD,
i is a scale parameter and it coincides with the expectation of a random variable
following the Type-I GZD. Moreover, also now, the parameters o and 6 play a key role
in determining the value f* assumes for z — 0" and x — u, respectively:

00 a<l1
0
; * (e ) — -1 -
J F e = 3 AL B0 1) T
0 a>1

B(a+35,0-1)oF (a+ 3500 +a—39) 051
lim f*(z;n) = 2uB (e, 0) 2 Fy (e, 350 4 ; 0)
" 50 0<b<1

The maximum order of the existing moments is determined by the parameter a. In
fact, remembering that the r-th moment of a Polisicchio’s distribution can be expressed
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as in (5), denoting with X a random variable following the Type [-GZD, we have that:

. 1 Cur 2r—1 . ka—l(l —k>9_1
BIX = AQ%& Z;k (1—k6)8 dk

C r 2r—1
5 N1ZB(OK—T+i,9)2F1(Oé—T+i,ﬁ;9+a—r+i;5) r<a-4+1
— r—
i=1
o0 otherwise

It is worthwhile to note that the parameters 5 and ¢ added to the ZD do not have impact
on the maximum order of the existing moments and on the finiteness/infiniteness of f*
around g and in 0.

In order to obtain the MAD of X it is useful to note that, for a Polisicchio random
variable Y, it can be easily expressed in terms of H(u;u, k) as follows:

w/k
BIY —ull = 2 [ 1= Hizp )y
I
= 2ul2H(p;p, k) — 1] . (20)
Consequently, it results that

! a—1(1 _ 1)0-1

= 2u2F"(wym) — 1] . (21)

The Pietra relative mean deviation of a Type-I GZD is then given by P = (2F*(u;n) —
1). The evident resemblance of expressions (10) and (21) stems from expression (20)
and it emphasizes that the MAD of any mixture of Polisicchio random variables with
common parameter i can be expressed in terms of the mixture distribution function
as in formula (21). A similar result holds also for the point inequality measure A(u).
In detail, note that, for a general positive random variable Z, with expectation p and
distribution function M, it results that

_2uM(p) = B[Z — pl] (1—wum>
2p(1 = M(p)) + E[|Z — pl] \ M(p)

dk

Alp) =1

From the above expression, thanks to (21), we obtain that the index A(u) for a Type-I

GZD is : ) )
1 —F*(u;n
Mm:1_<-“@m)>

The most widespread and important tools to describe the inequality implicit in a
distribution are undoubtedly the Lorenz curve and the Zenga I(p) curve. These curves
can be easily obtained from the Lower Partial Moment function (LPM) which can be
derived using Lemma 4 and Lemma 5 on page 9 in Zenga et al. (2011). Also here, the
LPM function is derived only for the particular case p = 1 since p is a scale parameter

(22)
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and, then, it does not influence the shape of the Lorenz and I(p) curves. Using the
aforementioned lemmas together with the series representation (16) we have that

o X

CZZ(B—’_] >5jD(x;a+i+j,9) 0<z<l1

=0 j=0

LPM(x;c,0,8,0,1) =

o o) _1
CZZ(B—'_‘] )(VD(:L" a+i+760) x>1
j=

\ 1=0
(23)
where
\/EB(x;a+%,0>—B(a:;a+1,9) 0<zr<l1
D(z;a,0) = . (24)

B(i ) \/_B<—a+—9> z>1

It is worthwhile to note that if # > 1, the “single series” representation (18) leads to
the following easier expression for the LPM:

4 00 1 o
CZ<B+; >53D(av;oz+j,9—1) 0<z<l1

LPM(x;c,0,8,0,1) =

00 1 o
1+CZ(6+]‘ )5]D(93;a+j,9—1) x>1
=0

\ J
(25)
Thus, the Lorenz curve L(p;n) of a Type-I GZD of parameters 7 is given by
L(p;n) = LPM(Q*(pin); ,0,8,6,1)  0<p<1; (26)

where Q*(-;n) denotes the quantile function of the Type-I GZD. Now, the Zenga’s
inequality curve can be obtained using its relationship with the Lorenz curve (see
Zenga, 2007, formula 5.15 on page 17):

p— L(p;n)
p[1 — L(p;n)]

A further interesting feature would be to investigate the stochastic ordering in-
duced by the parameters of the Type-I GZD. This topic is particularly relevant for the
meaning of the parameters, especially in applications related to income distribution.
In order to study the role of the parameters «, 3, 8, and 9, we introduce the following
theorem, inspired by Theorem 1.A.6 on page 7 in Shaked and Shanthikumar (2007).

I(p;n) = 0<p<l1. (27)

THEOREM 1 Consider a family of distribution functions {H.,~v € x} where x is a
subset of the real line and let Y (y) denote a random variable with distribution H.. Let
Ki and K5 be two random variables with supports in x and distribution functions G4
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and Gy, respectively. Let X1 and Xy be two random variables with distributions Fy and
E5, where:

Fi(y) = /Hw(y)dGi(v), yeR, i=12.

IfY(f)/) an: Y(f)/) whenever 9 S '7/ and Zf Kl Sst K?; then Xl zcx XQ'

PROOF

The theorem can be proved following the scheme of proof of Theorem 4.A.18 on page
191 in Shaked and Shanthikumar (2007): we show that F[¢(X;)] > FElp(Xy)] for
all the convex functions ¢ : R — R for which the last expectations exist (see the
definition of convex stochastic order in Shaked and Shanthikumar, 2007, p. 109). Let
¢ be such a function and let us introduce the function (v) = E[¢(Y (7))]. Note that
Elo(X;)] = E[Y(K;)], i = 1,2. Moreover, the function () is decreasing in v since,
by hypotheses, Y (v) >.. Y (7') whenever v < 4/ (see, again, the definition of convex
stochastic order). Since ) is increasing, the definition of the classical stochastic ordering
(see Shaked and Shathikumar, 2007, page 4) assures that E[¢(K;)] > E[¢(K3)] and
the thesis then follows. ©

Now, we introduce the following proposition which describes a criterion very useful
in order to establish the existence of the usual stochastic ordering between two random
variables.

PROPOSITION 1 Let Y; and Yy be two random wvariables with common support S
and with continuous, strictly positive density g, and gs, respectively. If g1(y)/go(y) is
strictly decreasing iny for all y € S, then Y7 <4 Y.

PROOF
First, observe that if g1(y)/g2(y) is strictly decreasing in y for all y € S then there
is one (and only one) point y* € S such that ¢;(y*)/g2(y*) = 1. Then we have that:

91(y) > g2(y) for all y <y*, y € S; g1(y) = g2(y) i y = y*; g(y) < f(y) for all y > o7,
y € S§. The proposition now follows from Theorem 1.A.12 on page 10 in Shaked and
Shanthikumar (2007). ©

As aforementioned, Theorem 1 is useful in order to interpret the role of the pa-
rameters «, 3, # and 0 in determining the shape of the Type-I GZD distribution. In
particular we can state the following corollary.

COROLLARY 1 Let X(u,«, 3,60,0) be a random variable following the Type-I GZD
with parameters u, o, B, 0, and 6. We have that:

1. keeping fized the values of w, 0, and B the random variable X is stochastically
decreasing in o and d in the sense of the convex stochastic ordering:

X(p,a,B,0,0) >ce X(p,0/,3,0,0") whenever a <o, 6 <4§'.

2. keeping fixed the values of u, o, B, and 9, the random variable X is stochastically
increasing in 0 in the sense of the convex stochastic ordering:

X(p,a,B3,0,0) <co X(p, a0, 8,0,0) whenever 6 < 6'.
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3. keeping fixed the values of u, o, 8, and & the random variable X is stochastically
increasing (decreasing) in 3 if § > 0 (6 < 0) in the sense of the convex stochastic
ordering:

X(py @, 8,0,0) 2o X (1,0, f',0,0)  whenever < and 06 >0;
X(p,a,B,0,0) <cp X(p,a,5',0,0) whenever < and & <O0.

PROOF

Applying Theorem 3.A.44 on page 133 in Shaked and Shanthikumar (2007), it turns
out that the Polisicchio random variables with the same value of y are decreasing in k
with respect to the convex stochastic order. Now, applying Proposition 1, we obtain
that a Gauss Hypegeometric random variable is stochastically increasing in o and o
with respect to the usual stochastic ordering. To the contrary, a Gauss Hypegeometric
random variable is stochastically decreasing in 6 with respect to the usual stochastic
ordering. Finally, we obtain that a Gauss Hypegeometric random variable is stochas-
tically decreasing (increasing) in 3 if 6 < 0 (6 > 0). Now, the thesis follows directly
from Theorem 1. ¢

Thanks to Corollary 1 we can assert that, for the Type-I GZD, the parameters «
and ¢ are indirect inequality indicators while 0 is a direct inequality indicator. The
parameter [ is a direct (indirect) inequality indicator if § < 0 (6 > 0). Obviously the
interpretation provided for the parameters a and 6 is coherent with the one provided
in Porro (2011) for the ZD.

4. CONFLUENT-HYPERGEOMETRIC MIXTURE OF POLISICCHIO’S
DISTRIBUTION: GENERALIZED ZENGA DISTRIBUTION OF THE SECOND KIND

4.1 Definition of the Type-II GZD

A further generalization of the Zenga distribution can be obtained adopting the Confluent-
Hypergemometric distribution (see Gordy, 1198) in place of the classical beta (6) or
the Gauss Hypergeometric (12). The Confluent-hypergeometric distribution is given
by:
C'ke Y1 — k)0 tek 0<k<l1
g(k;,0,7) = { 0 otherwise

with @ > 0, # > 0, and v € R. In (28), the constant C” coincides with:

(28)

1

' = ,
B(a, 0)1Fi(c; 0 + a; —)

where | F} is the Confluent Hypergeometric series defined by:

00 aln ‘
1Fi(aybyc) = Z(b—h— with (s)h=s(s+1)...(s+h—=1) .

h=0
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Also in this case, to clearly see that C” in (28) is a normalizing constant, it is sufficient
to remember the Fuler’s integral representation of the Confluent Hypergeometric series:

1 1
1Fi(a;bye) = ) / 2771 — z)Pme e dy where b>a>0.
0

B(a,b—a
Observing that 1 Fi(a; 0 + a;0) = 1 for a > 0 and 6 > 0 it turns out that the densities
(28) and (6) coincide if v = 0.

The Confluent Hypergeometric mixture of Polisicchio’s distributions ( Type-1I GZD)

can, now, be introduced. Let n' = (a, 0, v, ) and let f.(z;n') denote the density ot the
Type-1I GZD. We have that:

Je(z;n) = /Oh(x;u,k‘)g(k;n’)dk

o4 z/p
SRV/Ip kot (1 — k)P 2e " dk 0O<z<p
0

C/
—\/ﬁx_% k:a“L“l(l k)=2ek dk T>pu
0

The cumulative distribution function of the Type-II GZD is, then, obtained:

o4 y/p .
\F / / SRRt — k)% dkdy 0<z<p
By
Fu: \F / / SRt N S B2 dkdy @ >

Obviously, a Type-II GZD with v = 0 is a ZD.
In Figure 3 we give some graphs in order to highlight the possible behavior of the
density f* for several parameters settings.

Fo(z;n') =

4.2 Series representation of F, and f.

For computational purposes, it is useful to represent also the density f.(-,n') and the
distribution F,(-,n’) as a series. Taking the series expansion of the exponential function
and following the same procedure as in Section 3.2 we obtain that:

VI s = JVJ 1
- 0 <
xzzz (ua—l—z—kj—l—z > O<z<upu
folwsn') = "< 5 ; . :
\/ﬁx%ZZ 37 (Ea+z+j+29> T >
1=0 j5=0
(29)
' —1Y=D(x;a+i+70,u O<z<up
| ;;( P D )
Fo(z,n) = s ", (30)
1+C’ZZ(—1)J7D(:C a+i+7,0,p) T >

|
i=0 j=0 J:
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FIGURE 3: Behavior of the density of the Type-II GZD for various parameters settings.
The plots highlight the impact of the parameter v on the shape of the density. Note
that the solid line correspond to a ZD.

If # > 1, the function f, and F, admit the following “single-series” representation:

x_%z 77 —Of-i-j-l——,@—l 0<z<up
/ 7=0 K 2
fe(zn') = C’ = ; ) ;
VI s J’V M ,
— 2 —a+7+-=,0—-1 x>
T 2
]:0
(31)
© A~
' (—1)J%D(x;a+j,9—1,,u) O<z<p
Fe<xv77,): =0 0o . ; . (32)
' Y .
— J!
J_

4.3 Some properties of the Type-1I GZD

In analogy with the results remembered for the Zenga distribution and obtained for
the Type-I GZD, we observe that u is again a scale parameter and it coincides with
the expectation of a random variable following the Type-II GZD. Moreover, as in the
previous cases, the parameters a and 6 play a key role in determining the value f,



ON TWO POSSIBLE GENERALIZATIONS OF ZENGA DISTRIBUTION 15

assumes for x — 07 and = — u, respectively:

o0 a<l1
)
lim f, R
Jim Jelw) = S Rme 1) )
0 a>1

B(a—i—%,@—l) 1F1(Oé+%;9+04—%;—’)/)

‘ 0>1
tim /,(a11/) = 20B(c,0) 1 Fy (30 + ;=) g
" 50 0<6<1

Denoting with X a random variable following the Type-II GZD, it results that

y op 2r—1
Cu ZBa—r+z9)1F1(a—r+29+a—7) r<a+l
P 2r—1
BX'] =
00 otherwise

Note that the parameter v added to the ZD does not impact on the maximum order of
the existing moments and on the finiteness/infiniteness of f, around p and 0. Moreover,
from the observation made in Section 3.3 we deduce that

BIX —pll =2u2F(psn) =11, P=(2F(un)—-1),  and (33)
Alp) =1 — (%) | (34)

Using again Lemma 4 and Lemma 5 on page 9 in Zenga et al. (2011) along with the
series representation (29) we obtain that

C’ZZ 1)/ = D(x;a 4 i+ 74,0) 0<z<l1
i=0

j=0

<.

LPM(x;c,0,7,1) =
L+ Yy (-1 7—' (z;0+ i+ 4,6) z>1

L i=0 j=0
(35)
In addition, when 6 > 1, the “single series” representation (31) leads to:
S a0 ere
i o+ 7, x
§=0
LPM(x;c,0,7,1) = . (36)
ad RV
1+ (-1 LD a+ 5,6 - 1) z>1
— J!
\ J=
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Thus, the Lorenz and Zenga’s inequality curves of a Type-II GZD with parameters 7/
are given by

p— L(p;n')
p[1 — L(p;n')]

where Q.(+;7') denotes the quantile function of the Type-1I GZD.

Theorem 1 presented in Section 3.3 is also useful to investigate the stochastic or-
dering induced by the parameters of the Type-II GZD. In detail, it is easy to prove the
following corollary.

L(p;n') = LPM(Qc(p;n');,0,7,1)  and  I(p;n') = 0<p<l;

(37)

COROLLARY 2 Let X(u,,0,v) be a random variable following the Type-1I GZD
distribution with parameters u, o, 0, and ~v. We have that:

1. keeping fized the values of u, 0, and ~ the random variable X is stochastically
decreasing in « in the sense of the convex stochastic ordering:

X(p,,0,7) >ee X(u, ', 0,7) whenever a < o'

2. keeping fixed the values of p and o the random variable X is stochastically in-
creasing in 0 and 7y in the sense of the convex stochastic ordering:

X(p,a,0,7) <ex X(p,,0',7) whenever § <60, v <.

Thanks to Corollary 2 we can assert that, for the Type-II GZD, the parameters « is
an indirect inequality indicator while 6 and ~ are direct inequality indicators. Obvi-

ously the interpretations provided for the parameters o and 0 are coherent with those
provided in Porro (2011).

5. COMPARING THE FLEXIBILITY OF THE ZD AND THE GZDs

As mentioned in the introduction, it is now necessary to study the real flexibility im-
provement provided by the Type-I and Type-II GZD. So, we evaluate in a numerical
exercise how dense the family of the ZDs is in the families of Type-I and Type-II GZDs.
We consider the following values for the parameters: p = 2; a € {0.25,0.75,1,2.5,5};

6 € {0.25,0.75,2.5,5}; & € {~0.9,-0.5,0.5,0.9}; 3 € {(9”), w*“,?"w*“}; v e

1 2 1
{—10,—5,5,10}. Then, we take into consideration the Type-I GZDs obtained from
all the 5 x 4 x 4 x 3 = 240 possible combinations of the aforementioned values of «,
0, B, and 0. For each possible parameters combination, we search for the ZD which
is “less distant” to the particular Type-I GZD. Analogously, we consider the Type-II
GZDs obtained from all the 5 x 4 x 4 = 60 possible combinations of a, 6, and ~
and we search for the ZD which is “less distant” to the particular Type-II GZD. The
“distances” taken into consideration are:

o [, distance

di(f. [ =71 (x)|dz  or  di(f, fo) = [, |f (z)|dx



ON TWO POSSIBLE GENERALIZATIONS OF ZENGA DISTRIBUTION 17

e Pearson’s type “distance”:

ity = [THOZLE o gy g = [T LR,

The desired values of the parameters of the ZD are the (numerical) solutions of the
following optimization problems

i 47 0 ), ) i 40 0, L))
sub and sub , o (38)
o >0,0>0u >0 o >0,0 >0 >0

with ¢ = 1,2. The most interesting results obtained in the numerical exercise are
reported in Table 1 and in Figures 4 and 5. We chose the distribution reported in these
figures in order to cover all the relevant qualitative behaviors of the Type-I and Type-1I
GZDs. Observing Figures 4 it appears that the Type-I GZD assumes particular shapes
that the ZD cannot reach. However, it emerges that the increase in flexibility is evident
only when f* assumes non-conventional shapes. On the contrary, as shown in Figure
4(h)-4(n), the densities of the Type-I GZD and the nearest ZDs become quite similar
when analyzing the distributional shapes usually encountered in real applications (such
as in the analysis of income distributions). In these cases, it emerges that the increase
in flexibility provided by the two additional parameters is evident mainly around the
mode of the distribution and near the origin. Similar observations can be made in the
case of the Type-II GZD. However, we remark that this distribution shows a qualitative
increase in flexibility (with respect to the ZD) very similar to that of the Type-I GZD,
even if it is more parsimonious (4 parameters instead of 5).
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FIGURE 4: Plot of some of the Type-I GZD considered
(solid line) with the corresponding plots of the ZDs obtained solving the optimization
problem on the left of (38) with i = 1 (dashed line) and i = 2 (dotted line). The values
of the parameters of the Type-I GZD and those of the ZDs can be found in Table 1.

in the numerical example

6. APPLICATION TO REAL DATA: FITTING THE ITALY INCOME DISTRIBUTION
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FIGURE 5: Plot of some of the Type-II GZD considered in the numerical example
(solid line) with the corresponding plots of the ZDs obtained solving the optimization
problem on the right of (38) with i@ = 1 (dashed line) and i = 2 (dotted line). The
values of the parameters of the Type-II GZD and of the ZDs can be found in Table 1.

In this section we consider some income distributions in order to evaluate the increase
in the goodness-of-fit obtained passing from the ZD to the generalized models. This
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analysis is performed to understand what is, in practice, the real improvement provided
by the Type-I and Type-II GZDs. The real distributions taken into account are:

1. Ttaly 2006 Household Income Distribution: 7762 observations
2. Italy 2006 Individual Income Distribution: 13419 observations
3. Italy 2008 Household Income Distribution: 7958 observations
4. Ttaly 2008 Individual Income Distribution: 13616 observations

All these data are available on-line (see Banca d’Italia, 2008, 2010). The ZD and the
GZD are fitted to the real distribution using the minimum Chi-square method and,
as in Zenga et al. (2010a) the “minimum Mortara method”. As it is well known, the
minimum Chi-square estimates are obtained minimizing with respect to n (or 1) the
quantity:

Lo (g =)\
Ap(m) = | =) =]
e
where n denotes the sample size, s the number of intervals in which data are grouped,
n; and n;(n) are the observed and the theoretical frequencies associated to the j-
th interval, respectively. Similarly, the “minimum Mortara” estimates are obtained
minimizing with respect to n (or n') the quantity:

S

) == 3 Iy =y (n)]
Jj=1

The s class in which data are grouped and the theoretical frequencies n,(n) are defined
following a methodology similar to that adopted in Zenga et al. (2010a). In more
detail, the data are grouped in 25 class. The end-points of each class coincide with
the ¢;-quantiles of the empirical distribution where ¢; = ¢» = 0.01, g3 = g4 = 0.015,
s = ... = (9 = 005, dio = ... = (13 = O]_, dqa4 = ... = Q17 = 005, qigs = 002,
d19 = (20 = 0015, and 21 = (25 = 0.01.

In addition to the minimum Chi Square and Mortara methods, we adopt, following
Zenga et al. (2010a), also the “constrained” minimum Chi-square and Mortara methods
obtained imposing the restriction u =  where Z denotes the sample mean.

The estimated parameters of the ZD and GZDs obtained in the applications are
provided in Table 2. In Table 3 we also provide the values of the Zenga inequality
index I (see Zenga, 2007) and Gini concentration ratio R associated to the estimated
and observed distributions (the observed values are given in bold at the top of the
table). In Figure 6 we report the plots of the empirical and estimated distributions
related to the 2008-Individual incomes along with the representations of the empirical
and estimated Lorenz concentration curves and Zenga’s inequality curves.

As it can be observed form Table 2, the GZDs provide some improvement in the
goodness-of-fit. The improvement is more or less evident in relation to the features
of the empirical distribution and to the estimation method adopted; it is higher when
analyzing the Individual Income Distributions (which show a fatter left tail) and when
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the minimum Chi Square method is adopted. It is worthwhile to note that, the ZD and
the GZDs provide an identical fitting when the Household Income Distribution related
to 2008 is analyzed. The most evident difference is observed in the case of the 2008-
Individual Income when the constrained minimum Chi-Square method is adopted (see
Figure 6). Another interesting observation is that the GZD seems to have a goodness-
of-fit which is more stable with respect to changes in the estimation method. It is
important to note that the improvement in the goodness-of-fit of the Type-I GZD
is almost the same of that of the Type-II even if the latter is more parsimonious.
This fact confirms what observed in the numerical exercise performed in the previous
section. From Table 3 it can be also observed that, in most cases, the values of the
inequality indexes R and I provided by the GZDs tend to be slightly more adherent
to the observed values with respect to those obtained from the ZD.
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Zenga’s inequality index ([) Gini concentration ratio (R)
Data HH-2006 HH-2008 Per-2006 Per-2008 HH-2006 HH-2008 Per-2006 Per-2008
Observed values 0.6843 0.6784 0.7160 0.7119 0.3442  0.3397 0.3653  0.3599
Est. Method — Model

minimum A; ZD 0.6608 0.6772 0.7058 0.6882 0.3237 0.3371 0.3595 0.3426
Type-T 0.6775 0.6771 0.7027 0.7037 0.3383 0.3370 0.3561 0.3568
Type-II ~ 0.6767 0.6771 0.7022 0.7012 0.3373 0.3370 0.3556 0.3540
“constrained”  ZD 0.6639 0.6768 0.7039 0.7010 0.3256 0.3370 0.3576 0.3554
minimum A;  Type-I 0.6726 0.6801 0.7051 0.7027 0.3327 0.3401 0.3588 0.3558
Type-II ~ 0.6729 0.6800 0.7052 0.7013 0.3331 0.3400 0.3588 0.3542
minimum A,  ZD 0.6728 0.6735 0.7283 0.7229 0.3331 0.3338 0.3822 0.3760
Type-1 0.6725 0.6735 0.7231 0.7171 0.3328 0.3338 0.3760 0.3690
Type-IT ~ 0.6726 0.6735 0.7218 0.7154 0.3328 0.3338 0.3744 0.3670
“constrained” ZD 0.6751 0.6743 0.7272 0.7228 0.3352 0.3345 0.3810 0.3758
minimum Ay Type-1 0.6751 0.6743 0.7224 0.7160 0.3352 0.3345 0.3753 0.3679
Type-IT ~ 0.6752 0.6743 0.7212 0.7146 0.3352 0.3345 0.3738 0.3661

TABLE 3: Values of the Gini concentration ratio (R) and of the Zenga inequality index
(I) associated to the observed distributions (in bold on the top of the table) and to
the estimated distributions.

7. CONCLUSION

In this paper we propose two new distributional models generalizing the one recently
proposed in Zenga (2010). The latter is defined as a Beta-mixture of Polisicchio’s distri-
butions and it has been extensively studied also in Zenga et al. (2011) and Zenga et al.
(2010a, 2010b). The first new distribution (Type-I GZD) is characterized by 5 param-
eters and it is obtained considering a Gauss-Hypergeometric mixture of Polisicchio’s
distributions. The second new model (Type-II GZD) is a Confluent-hypergeometric
mixture of Polisicchio’s distributions and it has 4 parameters. The Type-I and Type-1I
GZDs shares several properties with the ZD. For example the parameter o regulates
the maximum order of the existing moments and it influences the value assumed by
the density near the origin of all the three distributions. The parameter 0 regulates
the finiteness/infiniteness of the density near the expected value p. The additional
parameters characterizing the GZDs are interpretable as inequality indicators (direct
or indirect), and they provide an increase in the flexibility with respect to the ZD. We
evaluate the flexibility increase both by a numerical exercise and by some applications.
We observe that the ZD cannot assume some of the possible “qualitative” shapes of the
GZDs. This fact is particularly evident when the Type-II GZD is considered even if
the shapes the ZD cannot assume are, in general, “non-conventional”. The numerical
exercise points out that the flexibility improvement obtained with the Type-I GZD is
almost the same as that obtained with the Type-II GZD, which is, indeed, more parsi-
monious. The applications corroborates the last observation since, in most cases, the
Type-1I GZD provides the best goodness-of-fit. From the applications it turns also out
that the GZDs have a improved flexibility around the mode and near the origin. This
is the reason why the goodness-of-fit of the generalized model is quite better than those
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provided by the ZD mainly when the individual income distributions are analyzed. In
fact, these distributions exhibit a very fat left tail together with a very peaked mode.
It is worthwhile to note that the analytical complexity of the GZDs is quite higher than
that of the ZD, especially when the Type-I GZD is considered. In particular, we recall
that if # > 1 (which is, indeed, the only case of practical interest) the density and the
distribution function of the ZD coincide (roughly speaking) with the difference of two
incomplete beta functions which can be immediately computed using , for example, R.
On the contrary, in order to avoid the extensive use of numerical integration, the den-
sities and the distribution functions of the Type-I and Type-II GZDs can be computed
using the series representation provided in section 3.2 and 4.2. From a practical point
of view, the use of these series representation requires a high computational time since,
in order to reach a good approximation of the true densities and distribution functions,
the series should be truncated at a high order (we consider the first 170 terms). For
example, the procedure we write (in R code) in order to estimate the parameters takes
a few seconds in the case of the ZD, a few minutes for the Type-II GZD and about 20
minutes for the Type-I GZD. For all the aforementioned reasons we advise using the
Type-1I GZD which, in some situations, provides a sensible improvement with respect
to the ZD with (only) one additional parameter and with an acceptable increase in the
analytical and computational complexity.

In further research, we want to fit the GZDs to several other income distributions
in order to accumulate further evidence supporting the results outlined in the present
paper. Moreover, we want to compare the results provided by these two new distribu-
tions with those provided by the ZD and by some other models usually employed in
modeling incomes such as: the Dagum distribution, the Generalized Gamma and the
recently introduced Beta-Dagum distribution (see Domma and Condino, 2010).
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