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Introduction

One of the greatest advances in theoretical physics over the last years has been the
conjectured AdS/CFT correspondence [1]. It states that the strongly coupled regime of a
conformal field theory (CFT) in d dimensions can be described by a dual theory of gravity
in a weakly curved d+ 1 dimensional anti de–Sitter AdS spacetime.
This offers a tool for investigating field theories at strong coupling, which is notoriously
a hard task.
The original realization of the correspondence involves the maximally supersymmetric
extension of Yang–Mills theory in four dimensions (N = 4 SYM).
At strong coupling its dual is provided by the supergravity limit of type IIB string theory
compactified on AdS5 × S5.
For almost ten years very little had been known on the AdS/CFT correspondence away
from four dimensional field theories, until an explicit realization of the AdS4/CFT3 case
was first carried out by Aharony, Bergman, Jafferis and Maldacena (ABJM) in 2008 [2].
More precisely, the authors proved that an N = 6 supersymmetric Chern–Simons quiver
gauge theory with bifundamental matter enjoying SO(4) flavor symmetry is dual to M–
theory compactified on AdS4 × S7/Zk, and describes the low energy dynamics of a stack
of M2 branes probing an orbifold singularity.
This discovery has triggered a renewed interest in three dimensional Chern–Simons–
matter (CSM) theories.

My PhD thesis is mainly devoted to the weak coupling study of such models, restrict-
ing to N = 2 theories, and particularly focusing on the famous ABJM CFT.
In the weak coupling regime, such theories can be analyzed perturbatively. A manifestly
supersymmetric approach is available to perform computations, greatly simplifying their
complexity. This is provided by three dimensional N = 2 superspace techniques.
In the introduction of my thesis I review how Chern–Simons matter theories are imple-
mented in such a formalism. Then I perform a manifestly supersymmetric quantization
of the theory, which is the starting point for all the subsequent perturbative calculations.
These are addressed to two main problems: the determination of exactly marginal defor-
mations and the computation of scattering amplitudes in three dimensional theories.
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When dealing with a conformal field theory a natural question is whether it is possi-
ble to deform it, by adding operators to the Lagrangian, in such a way that conformal
invariance is preserved. If this occurs the operators are dubbed exactly marginal and the
space of parameters they span is called the conformal manifold.
Its determination goes through deforming the CFT by the most general set of opera-
tors and analyzing the flow under the renormalization group (RG) [3]. This requires the
knowledge of anomalous dimensions and beta–functions, which have to be computed per-
turbatively. However in four dimensional supersymmetric theories, some properties of the
conformal manifold, like its dimension, can be more efficiently inferred from the global
symmetries (and their breaking) of the CFT, as recent papers by Green, Komargodski,
Seiberg, Tachikawa and Wecht [4], and by Kol [5] pointed out.
The first section of my thesis is aimed at determining the conformal manifold for the
ABJM theory. By the explicit two–loop computation of the RG functions, I find the com-
plete spectrum of exactly marginal deformations of the ABJM theory. The main result is
that its conformal manifold has complex dimension 3 and is a compact surface, isomorphic
to CP3 at two–loop order.
Pursuing the alternative method based on global symmetries, I reproduce the correct di-
mension of the conformal manifold, giving evidence that this procedure also applies to
N = 2 supersymmetric theories in three dimensions.
More generally I also analyze the renormalization group flow for a wider class of (flavored)
N = 2 supersymmetric Chern–Simons matter (CSM) theories, covering some examples
already described in literature and discovering a plethora of new conformal field theories,
suitable for having an AdS/CFT gravity dual.
In all cases I ascertain that the CFT’s are infrared stable fixed points of the RG, confirm-
ing a prediction coming from the AdS/CFT correspondence.

The second part of my thesis addresses the problem of computing scattering ampli-
tudes in supersymmetric gauge theories.
The traditional way of evaluating amplitudes in field theory, by means of Feynman dia-
grams is well-established, but may prove impractical for high loop order and large number
of external particles. This motivated the search for new methods for calculating ampli-
tudes efficiently. This novel techniques include unitarity based methods, twistorial for-
mulation, recursive relations and so on. These are of phenomenological interest for their
application to QCD, but have also allowed great progress for maximally supersymmetric
N = 4 SYM and N = 8 supergravity in four dimensions.
In particular, for N = 4 SYM, where a dual method for computing amplitudes at strong
coupling has been provided by the AdS/CFT correspondence, an impressive amount of
indications hints at believing that scattering amplitudes may display a hidden simplicity.
In particular, by explicit computation, they revealed an underlying dual superconformal
and Yangian symmetry, which points towards an integrable structure. Moreover evidence
suggests that a net of dualities links amplitudes, Wilson loops (WL) and correlation func-
tions of protected operators. This hidden simplicity also shows up in the conjecture by
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Bern, Dixon and Smirnov (BDS) that amplitudes may exponentiate, uncovering an iter-
ative pattern. The origin of such a beautiful structure is far from well–understood, and
exploring its existence in theories other than N = 4 SYM is certainly fruitful.

In my thesis I investigate the existence of a Wilson loop / scattering amplitude / corre-
lator duality in N = 2 CSM theories. In particular I explicitly spell out the computation
of

• the lightlike Wilson loop to one–loop order for any number of cusps, for any CSM
theory;

• the lightlike limit of the one–loop correlator for an arbitrary (even) number of half–
BPS operators, for any N = 2 CSM theory;

• the complete set of one–loop four–point amplitudes, for any N = 2 CSM theory;

• the two–loop four–point amplitude, for the ABJM model and a simple generalization
thereof;

The bosonic Wilson loop is evaluated in components, whereas correlators and amplitudes
are calculated by a direct, manifestly supersymmetric, Feynman diagram approach.

The outcome of the one–loop computation is that the expressions for correlation func-
tions in the light–like limit and Wilson loops match at the level of the Feynman integrals.
In particular I prove analytically that both eventually vanish for any N = 2 CSM theory.
This leaves open the possibility for a correlator/WL duality to hold for a wide set of
theories.

Four point amplitudes at one–loop order actually vanish only for the ABJ(M) case.
This restricts the possibility of a WL/amplitude duality to the latter models only.

The first non–trivial correction to the four–point amplitude for the ABJ(M) then
comes at two loops. The remarkable result of such a computation is that the amplitude
exhibits dual conformal invariance and matches the expression of the four–cusped Wilson
loop, hinting at a possible extension of the WL/amplitude duality in three dimensional
models. Furthermore the expression for the two–loop amplitude notably resembles its
four dimensional one–loop analogue in N = 4 SYM, and I give evidence supporting that
it can be thought of as the first order expansion of a BDS–like exponentiation ansatz.
This leads to the intriguing possibility that some of the marvelous properties of amplitudes
in N = 4 SYM might be shared by its three dimensional cousin, a perspective which
deserves further investigation.

The thesis is arranged over five chapters. The first is devoted to introducing the basics
of the ABJM theory, to explaining its N = 2 superspace quantization and to presenting
generalizations of the model. In the second chapter I deal with deformations of the
ABJM theory. After a brief introductory review on the generalities of exactly marginal
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deformations in supersymmetric theories, I focus on the three dimensional case provided
by the ABJM model and detail the perturbative computation of its exactly marginal
deformations, leading to the conformal manifold of the theory. In the third chapter I
outline a survey of scattering amplitudes in N = 4 SYM, highlighting their striking
features uncovered in recent literature. Finally in the last two chapters I investigate
some aspects of scattering amplitudes in the ABJM. Starting with an overview on known
results on tree level scattering amplitudes, I then spell out some new advances at one and
two loops and comment on their relevance for getting hints on the symmetries and the
structure of amplitudes in ABJM.







Chapter 1

ABJM

1.1 The field theory.

The ABJM theory is a conformal field theory in three dimensional space–time. Its
basic features are as follows

• a gauge sector consisting of two Chern–Simons actions for A and Â gauge vectors in
the adjoint representations of two unitary gauge groups U(N)K × U(N)−K , having
equal ranks and opposite Chern–Simons levels K and −K;

• a matter field content given by four complex scalars Ai and Bi (i = 1, 2) transform-
ing in the bifundamental representations of the gauge groups and coupled to the
gauge fields;

• the fermionic superpartners of the aforementioned bosonic fields, composing N = 2
supermultiplets;

• a superpotential interaction for matter fields, preserving a SU(2) × SU(2) global
symmetry, which enhances supersymmetry to N = 6.

We briefly examine such points in more detail.

Gauge sector. The gauge sector of the theory is given by a Chern–Simons CS action,
which is power counting renormalizable in three dimensions, in contrast to YM which
would give rise to a superrenormalizable theory. This fact is obviously essential in getting
a conformal field theory. The action of pure Chern–Simons is topological. In the language
of forms it reads

iK

4π

∫

M

Tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

(1.1.1)

2
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whereas in components, and conveniently rescaling the gauge fields so that they are real,
one gets

−iK
4π

∫

M

Tr ǫµνρ

(

Aµ∂νAρ +
2

3
i AµAνAρ

)

(1.1.2)

The equations of motion simply imply that the gauge connection is flat F = dA+A∧A = 0,
therefore the gauge field is pure gauge and does not possess any physical propagating de-
grees of freedom, in that there is no quadratic term in derivatives.
In the non–abelian case invariance of the generating functional under large gauge transfor-
mations requires the CS level K to be integer–valued. Indeed, the CS action is invariant
under gauge transformations

A −→ A′ = U−1 (A + d) U (1.1.3)

only up to a term proportional to a topological number classifying the (third) homotopy
class of the gauge transformation. This is an integral multiple of 2π, so that whenever
K ∈ Z, exp(S ′

CS) = exp(SCS) gauge invariance of the functional integral is guaranteed.

The CS term can be made N = 2 supersymmetric easily, by adding auxiliary fields to
the CS action

SN=2
CS =

K

4π

∫

Tr

(

A ∧ dA+
2

3
A ∧A ∧A− χ χ̄− 2 σD

)

(1.1.4)

where χ are the gaugini, D is the auxiliary scalar and σ is an additional scalar field which
may be thought of as the fourth component of the Aµ vector when reducing from 4d to
3d. None of the fields above display any kinetic term in the action, therefore they are all
auxiliary and they might be integrated out using their algebraic equations of motion.

The ABJM theory features two such supersymmetric CS actions with U(N) gauge
groups and opposite CS levels K and −K. Hereafter we will denote the fields in the
vector multiplet transforming in the adjoint of the second U(N) gauge group by hats, e.g.
Â, χ̂, D̂ and so on.

S = SN=2
CS − ŜN=2

CS

K

4π
Tr

∫

d3x d4θ
[

− i ǫµνρ

(

Aµ∂νAρ +
2

3
i AµAνAρ − Âµ∂νÂρ −

2

3
i ÂµÂνÂρ

)

+

−χ χ̄− 2 σD + χ̂ ¯̂χ + 2 σ̂ D̂
]

(1.1.5)

Matter. The physical degrees of freedom are introduced by adding matter fields to the
content of the model, and coupling them to the gauge sector. These are four complex scalar
fields which are dubbed A1, A2, B1 and B2. The A fields are taken to transform in the
bifundamental representation of the gauge groups (N, N̄), whereas B fields transform in
the complex conjugate representation (N̄,N). In order to add matter in a supersymmetric
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fashion we also introduce the fermionic partners of each field, namely two component
complex fermions ψAi/Bi

and auxiliary complex scalars F ’s.

The kinetic terms for scalars and fermions include the coupling to the gauge vectors

Lkinetic = − (DµA)∗i DµA
i − (DµB)∗ i Dµ Bi + i ψ̄Ai γµDµ ψAi + i ψ̄Bi

γµDµ ψBi
(1.1.6)

encoded in the gauge covariant derivatives acting on A and B scalars as DµA
i = ∂µ A

i +

i AµA
i − i Ai Âµ and DµBi = ∂µ Bi + i BiAµ − i Âµ Bi. Here the flavor index i runs over

1, 2 and the star denotes complex conjugation.
Moreover Yukawa couplings are there

LY ukawa = −ψ̄Ai χ̄ Ai − A∗
i χψAi + ψ̄Ai Ai ¯̂χ+ A∗

i ψAi χ̂

−ψ̄Bi
¯̂χBi −B∗ i χ̂ ψBi

+ ψ̄Bi
Bi χ̄+B∗ i ψBi

χ̄ (1.1.7)

as well as interactions between scalars and fermions with the σ gauge scalar, together
with the usual D–terms

Laux = A∗
i DAi − Ai D̄ A∗

i − BiDB∗ i +B∗ i D̄ Bi

−A∗
i σ

2Ai − Ai σ̄2A∗
i − Bi σ

2B∗ i −B∗ i σ̄2Bi + 2A∗
i σ A

i σ̂ + 2B∗ i σ Bi σ̂

+ψ̄Ai σ ψAi − ψ̄Ai ψAi σ̂ + ψ̄Bi
σ̂ ψBi

− ψ̄Bi
ψBi

σ (1.1.8)

Finally the ordinary F–terms FF̄ appear in the action, which we do not write down here
explicitly. Matter fields are conveniently collected into chiral superfields A and B, whose
precise definition in terms of N = 2 superspace is reviewed in Appendix A.1. Hereafter
A and B will always refer to superfields rather than their lowest components, unless
otherwise stated.

N = 3 supersymmetric CSM. So far the model enjoys N = 2 supersymmetry. One
may increase supersymmetry to N = 3 by adding chiral multiplets in the adjoint represen-
tation of each gauge group φ1 and φ2. The scalar and fermionic components of the latter
combine with the scalar σ and the two gaugini, to make up a triplet and a singlet plus a
triplet of the SU(2)R symmetry of N = 3. Then one also couples pairs (Ai, Bi) (which
transform in complex conjugates representations) into hypermultiplets. Their scalar com-
ponents form doublets of the SU(2)R R–symmetry, for each index i = 1 , 2 separately:
(A1, B∗ 1) and (A2, B∗ 2). Moreover the two pairs of superfields (Ai, Bi) are related by
an additional SU(2) symmetry for the two flavors i = 1 and i = 2. This does not com-
mute with the SU(2)R and enhances R–symmetry to SO(4)R, showing that the matter
sector alone is N = 4 supersymmetric. Hypermultiplets interact with the adjoint chiral
superfields φ through a marginal superpotential

W1 = Tr
(

Bi φ1A
i
)

+ Tr
(

Bi φ2A
i
)

+ h.c. (1.1.9)

in which gauge indices are suppressed but gauge invariance is clear recalling the represen-
tations in which the fields transform. A relevant mass term for the adjoint fields may be
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added as well, reading

W2 =
K

8π
Tr
(

φ2
2 − φ2

1

)

+ h.c. (1.1.10)

where the mass is fixed by supersymmetry. This relevant coupling induces a flow in the
infrared to an effective theory obtained by integrating out φ fields, which do not possess
any kinetic term and are therefore auxiliary.

N = 6 supersymmetric CSM. This procedure yields the superpotential

W =
4π

K
Tr
(

A1B1A
2B2 − A1B2A

2B1

)

+ h.c. (1.1.11)

which may also be rewritten as

W =
2π

K
ǫij ǫ

kl Tr
(

AiBkA
jBl

)

+ h.c. (1.1.12)

This last form exposes manifestly a SU(2)× SU(2) global symmetry. Again this symme-
try does not commute with the SU(2)R R–symmetry of the N = 3 theory. Together they
generate a SU(4)R ≃ SO(6)R R–symmetry, which indicates enhancement of supersym-
metry to N = 6. This can be verified in components looking into the scalar potential,
derived by integrating out the auxiliary gauge fields D and σ in (1.1.8) and the F–terms
from the superpotential. The former contribution gives

VD =
4π2

K2
Tr
[(

AiA∗
i +B∗ iBi

) (

Aj A∗
j − B∗ j Bj

) (

Ak A∗
k − B∗ k Bk

)

+
(

BiB
∗ i + A∗

i A
i
) (

Bj B
∗ j −A∗

j A
j
) (

Bk B
∗ k −A∗

k A
k
)

+2Ai
(

Bj B
∗ j − A∗

j A
j
)

A∗
i

(

Bk B
∗ k − A∗

k A
k
)

+2Bi

(

Aj A∗
j − B∗ j Bj

)

B∗ i
(

Ak A∗
k − B∗ k Bk

)]

(1.1.13)

whereas the latter

VF =
16π2

K2
Tr
(

A∗
i B

∗ j A∗
k A

k Bj A
i − A∗

i B∗ j A
∗
k A

iBj A
k

+B∗ iA∗
j B

∗ k Bk A
j Bi −B∗ iA∗

j B
∗ k BiA

j Bk

)

(1.1.14)

It is then easy to rewrite this in a manifestly SU(4)R invariant fashion, by embedding
the four complex scalars into multiplets CI = (A1, A2, B∗

1 , B
∗
2) and C̄I = (A∗

1, A
∗
2, B1, B2)

(where I = 1, . . . , 4) in the 4 and 4̄ of the R–symmetry group, leading to the scalar
potential

VD+F =
4π2

K2
Tr

[

CI C̄[I C
J C̄K]C

K C̄J − 1

3
CI C̄[I C

J C̄J C
K C̄K]

]

(1.1.15)

To summarize, in N = 2 the global symmetry of the theory is SU(2) × SU(2), along
with a U(1)b baryonic symmetry under which the A fields have charge 1 and B fields
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charge −1. This symmetry is gauged into the U(N) ×U(N) gauge group. Before adding
the superpotential, an axial U(1)a is there, under which A and B fields all have charge
1. This is explicitly broken by the superpotential (1.1.12). We remark that these global
symmetries will be widely used in Section 2.3, to extract information on the exactly
marginal deformations of the ABJM.

In the ABJM model supersymmetry allows for one coupling only, namely 1
K

. This
measures the strength of both gauge and matter interactions. A weak coupling regime is
therefore available whenever K ≫ 1. Then, although the CS level is quantized, its inverse
may be considered a continuous variable and treated as a usual coupling constant.

The ABJM theory arises in the context of the AdS/CFT correspondence. Therefore
we will be usually interested in its large N limit. The relevant effective coupling will then
be the ’t Hooft parameter

λ ≡ N

K
(1.1.16)

and the corresponding weak coupling regime, where the field theoretical description is
more suitable, holds forN ≪ K. Whenever N ≫ K the dual description in the AdS/CFT
sense, which is reviewed in the next Section, is more adequate.

1.2 The gravity dual.

The strongly coupled regime of the ABJM field theory is described by a dual gravity
theory, through the AdS/CFT correspondence, which was explicitly determined in [2]. In
close connection to this, the ABJM model arises as the low energy field theory describing
the dynamics of a stack of M2 branes in M–theory, probing the conical singularity of the
orbifold C4/ZK .
Indeed the main features of ABJM outlined in the previous Section are designed to fulfill
the basic requirements for engineering such a theory:

• conformality (implying the emergence of the CS action in three dimensions)∗;

• four complex scalars, representing the transverse directions in which the branes
fluctuate;

• SO(6) R–symmetry matching the SU(4) isometry symmetry of the transverse space
C4/ZK

†;

• (C4/ZK)
N
/SN

‡ moduli space, precisely matching that of N BPS objects free to
move in the C4/ZK conical background.

∗In particular the conformal group SO(3, 2) matches the isometry of the AdS4 spacetime resulting as
the near horizon geometry of the brane, corresponding to the low energy limit.

†The ZK quotient acts on the four complex coordinates of C4 as xi → e
2πi

K xi

‡SN stems for the permutation group of N objects.
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Figure 1.1: A cartoon of M2 branes in C4/Zk geometry.

This M–theory setting may be viewed as the up–lift from a type IIB brane configuration.
Indeed the ABJM theory describes the low energy limit field theory on N D3 branes
wound around a compact direction and breaking on a transverse NS5 brane and a (1, k)–
fivebrane, properly extended so as to preserve N = 3 supersymmetry.

The near horizon limit of the M–theoretical configuration sketched above produces the
background metric for the AdS/CFT dual of the ABJM. We will not be concerned too
much with the dual description of ABJM, however we report here some basic aspects for
completeness. Moreover a few elementary facts about the stringy dual description will be
employed in Section 5.3.5, where we sketch the computation of a four particle scattering
amplitude in ABJM at strong coupling.

Since C/ZK can be viewed as a cone over S7/ZK , the dual description is in terms of
M–theory on AdS4×S7/ZK . More precisely one considers a solution of eleven dimensional
supergravity on such a background, with N units of four–form F4 flux sourced by theM2’s
turned on.

In order to determine such a solution one may consider the flat space case first, origi-
nating from N M2 branes in C4. We use the following general solution for the metric [6],
applying to p brane solutions in D = 11 supergravity

ds2 = H−2D−p−3
∆

(

−dt2 +
∑

i

dy2
i

)

+H2 p+1
∆

(

dr2 + r2 dΩD−p−2

)

(1.2.1)
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where the harmonic (in the transverse space) function H(r) is

H = 1 +
1

D − p− 3

√

∆

2(D − 2)

Q

rD−p−3
, ∆ = (p+ 1)(D − p− 3) (1.2.2)

The factor Q, measures the charge of the solution and its explicit form is

Q =
N (2 π)D−p−3 lD−p−3

p

ΩD−p−2
(1.2.3)

where N is the number of branes and ΩD−p−2 = 2 π
D−p−1

2

Γ(D−p−1
2 )

is the volume of a (D− p− 2)–

sphere. In particular, for an M2 brane we have

ds2
M2 = H− 2

3

(

−dt2 + dy2
1 + dy2

2

)

+H
1
3

(

dr2 + r2 dΩD−p−2

)

(1.2.4)

where

H = 1 +
1

6
N (2 π)6 l6p Γ (4)

2 π4

r6
= 1 +

N 25 π2 l6p
r6

(1.2.5)

The near horizon limit of such a solution gives the desired AdS4 × S7 11d supergravity
background. In such a limit

H ∼ N 25 π2 l6p
r6

(1.2.6)

Plugging this into the metric (in Planck units, i.e. setting lp = 1) yields

ds2 =
r4

(N 25 π2 )
2
3

(

−dt2 +
∑

i

dy2
i

)

+
(N 25 π2)

1
3

r2

(

dr2 + r2 dΩD−p−2

)

Performing the change of variables r → r
1
2 casts the metric into the AdS4 form, after

rescaling t and y coordinates

ds2 =
r2

(N 25 π2 )
1
3

(

−dt2 +
∑

i

dy2
i

)

+
(N 25 π2)

1
3

r2

(

1

4
dr2 + r2 dΩD−p−2

)

from this we read that the AdS4 radius in Planck units R2
AdS4

= 1
4
R2 = 1

4
(N 25 π2)

1
3 is

half that of the sevensphere.

The desired solution looks synthetically

ds2 =
R2

4
ds2

AdS4
+R2 ds2

S7

F4 ∼ N ǫ4 (1.2.7)

where ǫ4 stems for the volume form of AdS4.
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Now the Zk quotient on this solution has to be carried out. To do this it proves
convenient to write S7 as a Hopf fibration over CP3

ds2
S7 = (dα+ ω)2 + ds2

CP
3 (1.2.8)

where α ∈ [0, 2π] and the Fubini–Study metric in homogeneous coordinates for CP3 reads

ds2
CP

3 =
dzi dz̄i

ρ2
− |zi dz̄i|

ρ4
(1.2.9)

where ρ2 =
∑ |zi|2 and

dα + ω =
i

2 ρ2
(zi dz̄i − z̄i dzi) (1.2.10)

From (1.2.10) it follows that dω is the Kaehler form of CP3

dω = J = i d

(

zi

ρ

)

∧
(

z̄i

ρ

)

(1.2.11)

Then the ZK quotient is performed sending α → α/K (keeping α ∈ [0, 2π]) giving the
metric

ds2
S7/ZK

=
1

K2
(dα+K ω)2 + ds2

CP
3 (1.2.12)

making the volume of the internal space smaller by a factor K, which also means that N
has to be sent to KN , so that the F4 flux is quantized in N units in the orbifolded space.
Therefore also the radii of AdS4 and CP3 change to R2 = (25 π2KN)1/3.

This supergravity description is reliable only when the radius of curvature of the
background is large. The radius of CP3, R2 = (25 π2KN)1/3, is large for NK ≫ 1.
However the radius of the circle S1 is smaller by a factor ofK: R2

S1 = R2/K2 ∼ (N/K5)1/3,
meaning that the M–theoretical description is actually suitable for N ≫ K5. As this circle
shrinks the theory is pushed into the realm of type IIA string theory. The reduction is
performed as in [7]

ds2
11 = e

4
3

φ (dx11 + A)2 + e−
2
3

φ ds2
10 (1.2.13)

in terms of the type IIA dilaton φ and the RR field A. Comparing to the 11d equations
one identifies A = K ω and e

4
3

φ = R2

K2 . This gives the string frame metric

ds2 =
R3

K

(

1

4
ds2

AdS4
+ ds2

CP
3

)

(1.2.14)

with dilaton

e2φ =
R3

K3
(1.2.15)

and fluxes

F4 =
3

8
R3 ǫ4

F2 = KJ (1.2.16)



10 Chapter 1. ABJM

In particular the AdS4 radius is related to the solution above by

R2
AdS4

=
R3

4K
=

√
25 π2KN

4K
=

√
2π

√

N

K
(1.2.17)

This formulation is valid until the radius of curvature is large compared to the string
length. One therefore requires

R2
AdS4

= 2
5
2 π

√
λ≫ 1 (1.2.18)

where λ = N
K

is the ’t Hooft coupling, which entails N ≫ K.

Summarizing, three regimes of the parameters N and K are available:

• for λ≪ 1, i.e. N ≪ K, the field theoretical description is weakly coupled;

• for K ≪ N ≪ K5 the type IIA supergravity approximation is valid;

• for N ≫ K5 the eleven dimensional supergravity description is reliable.

1.2.1 Moduli space.

To check that the conjectured duality is reasonable, one may look at the moduli space
of vacua of the ABJM field theory and check if it matches the transverse space in its dual
description.

It is easier to consider the Abelian case first, and then generalize to the non–Abelian
theories.
For U(1)×U(1) gauge groups there is no cubic term in the CS action and no superpotential
in the matter sector. Minimizing the scalar potential implies setting σ = σ̂ = 2π

K
(|Ai|2 −

|Bi|2). One then has to mod by the gauge group, in order not to overcount gauge equivalent
vacua. One may use gauge transformations to set the gauge fields A, Â to zero and the
moduli space is then naively C4, since it is parameterized by the four complex free fields
Ai and Bi. This gauge fixing does not fix residual gauge transformations where Λ and Λ̂
are constant. In this special case the CS action is not invariant since under

A → A+ dΛ Â → Â+ dΛ̂ (1.2.19)

the abelian CS term transforms as

δSCS = i
K

2π

∫

dΛ ∧ dA− dΛ̂ ∧ dÂ (1.2.20)

This is a total derivative

δSCS = i
K

2π

∫

d
(

Λ ∧ dA
)

− d
(

Λ̂ ∧ dÂ
)

(1.2.21)
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that is usually dropped, but not here since the Λ are constant at the boundary. By Stokes’
theorem the integral becomes

δSCS = i
K

2π

∫

B2

Λ ∧ F − Λ̂ ∧ F̂ (1.2.22)

where B2 stems for some closed manifold of dimension 2 and F = dA and F̂ = dÂ are
the 2–form Abelian field strengths. By flux quantization the boundary integral evaluates
in general

δSCS = i
K

2π

(

Λ 2πn− Λ̂ 2πm
)

= iK
(

Λn− Λ̂m
)

(1.2.23)

where n and m are integer numbers. Therefore gauge invariance of the functional integral
may be rescued for Λ and Λ̂ integral multiples of 2π/K. This ZK discrete group is the
only true residual gauge transformation by which modding out. Since the scalars Ai and
B∗ i all transform by e

2πi
K under the action of ZK , the resulting moduli space is C4/ZK .

The generalization to the non–Abelian case is done by taking the symmetric product
of N abelian moduli spaces by diagonalizing N ×N matrices. The resulting moduli space
is therefore (C4/ZK)

N
/SN . This moduli space matches the one for N M2 branes probing

the geometry C4/ZK , providing support for the conjecture.

1.2.2 Chiral primaries.

Another check on the conjectured duality concerns the spectrum of protected opera-
tors. In this Section we will briefly sketch the spectrum of scalar chiral primary operators.
We anticipate that the dimension two operators made up of four fields will be relevant in
Section 2.2, when inspecting the exactly marginal deformations of ABJM. Furthermore,
chiral primary operators of generic dimension will be also encountered in Section 4.6,
where we shall compute the one–loop correction to their n–point correlation functions in
the light–like limit.

In principle a chiral primary in ABJM may be easily obtained by traced strings of A
and B chiral superfields, producing chiral objects by construction. In order to achieve
gauge invariance, the bilinear (AiBj) has to be considered as the fundamental building

block, actually: O = Tr
(

(AiBj)
L
)

, for L = 1, 2, . . . . The corresponding canonical di-

mension of the operator is ∆ = L. Not all operators built up this way are primaries, a
requirement that may be jeopardized by the equations of motions. Indeed, if any com-
bination of antisymmetric indices appears, for instance (AB)L1ǫij ǫ

kl AiBk A
j Bl (AB)L2,

the F–term condition D̄2Āi = −4π
K
ǫij ǫ

klBk A
j Bl implies that on–shell the operator is

equivalent to (AB)L1 Ai D̄2Āi (AB)L2, which is a descendant. Therefore one concludes
that chiral primary operators are obtained by products of (AB) bilinears, symmetrized on
their SU(2)×SU(2) indices. In components, where the SU(4)R R–symmetry is manifest,
one may think of the scalar part of such operators as products Tr

(

(CI C̄J)L
)

, where the
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C fields transform in the 4 and the C̄ fields in the 4̄ of SU(4). Symmetrizing separately
on the tensor product of L 4’s and L 4̄’s gives the representations identified by Dynkin
labels [L, 0, 0] and [0, 0, L], respectively. One takes then the tensor product of these two
representations, keeping only pieces with no contractions between 4’s and 4̄, which gives

[0, 0, L] ⊗ [L, 0, 0] = [L, 0, L] ⊕ . . . (1.2.24)

where . . . indicate other terms, neglected for the reason above. Hence such chiral primary
operators belong to the [L, 0, L] representation of SU(4). These operators are all neutral
under the U(1)b baryonic symmetry of the ABJM.

As reviewed in Section 2.1.3, superconformal invariance and unitarity imply that these
operators do not receive quantum corrections to their dimension, which is then fixed to its
naive value ∆ = L. Therefore their spectrum is suitable for comparison to the spectrum
of supergravity fields in the dual description on the background AdS4 × S7/ZK . The
spectrum of 11d supergravity KK modes on AdS4 × S7 was computed in [7], expanding
excitations on the harmonics of the internal space. These states are classified by the
representations of the SO(8) isometry group of S7 they belong. To get the spectrum
on the orbifolded background a projection on ZK invariant states has to be performed.
This may be achieved decomposing the SO(8) representations under its SU(4) × U(1)
subgroup. This corresponds to reducing to KK states on CP3 and was also performed in
[7]. Considering U(1) invariant states, it is actually found that the lowest components of
supergravity multiplets lie in the same [L, 0, L] representations, as the chiral primaries in
field theory. In particular the N = 6 SU(4) massless supermultiplet contains scalars in
the 15 representation, which has Dynkin labels [1, 0, 1].

1.3 Superspace formulation of the ABJM model.

In this Section we give a survey of the N = 2 superspace formulation of the ABJM
theory.

In three dimensional euclidean space–time, we consider an N = 2 supersymmetric
U(N) × U(N) Chern–Simons theory for vector multiplets (V, V̂ ) coupled to chiral super-
fields Ai and Bi, i = 1, 2, in the (N, N̄) and (N̄,N) bifundamental representations of the
gauge groups, respectively. This setting is described pictorially by the quiver diagram
in Fig. 1.2. The vector multiplets V, V̂ transform in the adjoint representation of the
gauge groups U(N) and U(N) respectively. Therefore they are valued in the Lie algebra

of U(N) groups and we can write V b
a ≡ V A(TA)b

a and V̂ b̂
â ≡ V̂ A(T̂A)b̂

â, where TA and
T̂A (A = 0, 1 . . . N2 − 1) are the U(N) generators, whose conventions are in Appendix
A.1. Bifundamental matter carries global SU(2)A × SU(2)B indices Ai, Āi, Bi, B̄

i and
local U(N) × U(N) indices Aa

â, Ā
â
a, B

â
a, B̄

a
â

In N = 2 superspace the action reads [8, 9] (for superspace conventions see Appendix
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N N

A1, A2

B1, B2

Figure 1.2: Quiver diagram representing the field content of the ABJM theory.

A.1)
S = SCS + Smat + Spot (1.3.1)

Gauge sector. We start with the gauge sector. The expression for the CS actions (for
the two gauge groups) in N = 2 superspace [10] is

SCS =

∫

d3x d4θ

∫ 1

0

dt
{K

4π
Tr
[

V D̄α
(

e−tVDαe
tV
)

]

− K

4π
Tr
[

V̂ D̄α
(

e−tV̂Dαe
tV̂
) ]}

(1.3.2)

By integrating fermionic coordinates we can verify that the above action reproduces the
bosonic CS action, along with its N = 2 partners, as in (1.1.5). As recalled in the
introductory section, none of these fields has physical, propagating degrees of freedom
and they are all auxiliary.

The superspace action is invariant under superspace gauge transformations

eV → eiΛ̄1 eV e−iΛ1 eV̂ → eiΛ̄2 eV̂ e−iΛ2 (1.3.3)

where Λ1 and Λ2 are chiral superfields which play the role of the parameters of gauge
transformations for the U(M) and U(N) gauge groups, respectively. The invariance is
ascertained explicitly in Appendix A.2.

Matter sector. Now we turn to the matter sector. Here we consider the kinetic terms
for A and B fields, reading

Smat =

∫

d3x d4θ Tr
(

Āie
VAie−V̂ + B̄ieV̂Bie

−V
)

(1.3.4)

Finally we include the interaction superpotential (1.1.12)

Spot =
1

K

∫

d3x d2θ
1

2
ǫij ǫ

kl Tr
(

AiBk A
j Bl

)

+ h.c. (1.3.5)
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where the coupling of the superpotential is exactly tuned to the value 1/K, which guaran-
tees N = 6 supersymmetry enhancement. The appearance of ǫ tensors makes the global
SU(2) × SU(2) symmetry manifest.

Gauge invariance of the action above under the gauge transformations

Ai → eiΛ1 Ai e−iΛ2 Bi → eiΛ2 Bi e
−iΛ1 (1.3.6)

which are the proper ones for bifundamental fields, follows immediately from the cyclicity
of the trace over gauge indices.

The component expansion of this action reproduces the usual CS action and the matter
content and interaction of the ABJM theory (1.1.5–1.1.12).

1.4 Superspace quantization.

After we reviewed the superspace formulation of ABJM, we now proceed to the
quantization of the theory in a manifestly N = 2 supersymmetric setting. Following
the conventions of [11], we work in the Euclidean and consider the the path integral
Z =

∫

Dφ exp (S[φ]).
We begin our analysis with the gauge sector. In each N = 2 supersymmetric Chern–
Simons action we choose gauge-fixing functions F̄ = D2 V , F = D̄2 V and insert into the
functional integral Z =

∫

DV exp (SCS[V ]) the factor

∫

Df Df̄ ∆(V ) ∆−1(V ) exp
{

− K

2α

∫

d3x d2θTr (ff) − K

2α

∫

d3x d2θ̄Tr (f̄ f̄)
}

(1.4.1)

where ∆(V ) =
∫

dΛ dΛ̄ δ(F (V,Λ, Λ̄) − f) δ(F̄ (V,Λ, Λ̄) − f̄) and the weighting function
has been chosen in order to have a dimensionless gauge parameter α. We note that the
choice of the weighting function is slightly different from the four dimensional case [11]

where one usually employs
∫

Df Df̄ exp
{

− 1
g2α

∫

d4x d4θTr (f f̄)
}

. Averaging over the

weighting functions gives the gauge fixing action

Z =
∫

DV DcDc̄Dc′Dc̄′ exp

(

SCS[V ] − K

2α

∫

d3x d2θTr (D2 V D2 V )

−K

2α

∫

d3x d2θ̄Tr (D̄2 V D̄2 V ) + SFP [c, c′, c̄, c̄′]

)

(1.4.2)

where we have adopted the usual Faddev–Popov trick to write ∆−1 as an integral over
anticommuting ghosts c, c′, c̄, c̄′.
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After using D2 and D̄2 derivatives to complete the superspace measures in the gauge
fixing term, the quadratic part of the gauge–fixed action for the two gauge sectors reads

SCS + Sgf → 1

2
K

∫

d3xd4θ TrV

(

D̄αDα +
1

α
D2 +

1

α
D̄2

)

V

−1

2
K

∫

d3xd4θ Tr V̂

(

D̄αDα +
1

α
D2 +

1

α
D̄2

)

V̂ (1.4.3)

The operators acting on V and V̂ may be inverted, leading to the gauge propagators

〈V A(1)V B(2)〉 = − 1

K

1

�

(

D̄αDα + αD2 + αD̄2
)

δ4(θ1 − θ2) δ
AB (1.4.4)

〈V̂ A(1) V̂ B(2)〉 = +
1

K

1

�

(

D̄αDα + αD2 + αD̄2
)

δ4(θ1 − θ2) δ
AB (1.4.5)

In our calculations we will use the analogue of the Landau gauge, α = 0.

Expanding SCS + SGF at higher orders in V, V̂ we obtain the interaction vertices. For
our two–loop calculations we only need the cubic one

SCS + SGF → i

6
K fABC

∫

d3xd4θ
(

D̄αV A V B DαV
C
)

− 1

24
K fABE fECD

∫

d3xd4θ
(

D̄αV A V B DαV
C V D

)

− i

6
K fABC

∫

d3xd4θ
(

D̄αV̂ A V̂ B DαV̂
C
)

+
1

24
K fABE fECD

∫

d3xd4θ
(

D̄αV̂ A V̂ B DαV̂
C V̂ D

)

(1.4.6)

We now turn to the ghost action, which is the same as in the four dimensional N = 1
case [11]. Focusing on one gauge field V , it arises when evaluating the gauge variation

of the gauge fixing functions Λ′ ( δF
δΛ

Λ + δF
δΛ̄

Λ̄
)

and Λ̄′
(

δF̄
δΛ

Λ + δF̄
δΛ̄

Λ̄
)

, after identifying Λ

and Λ′ with c and c′

SFP = iTr

∫

d4x d2θ c′ D̄2 (δV ) + iTr

∫

d4x d2θ̄ c̄′ ∆2 (δV ) (1.4.7)

Using the non–linear gauge variation for the vector superfield [11] (already in terms of
ghosts)

δV = −1

2
i LV

[

(c+ c̄) + cothL 1
2
V (c− c̄)

]

(1.4.8)

where LVX = [V,X] and using D2 and D̄2 in (1.4.7) to complete the fermionic measure

SFP = iTr

∫

d4x d4θ (c′ + c̄′) L 1
2
V

[

(c+ c̄) + cothL 1
2
V (c− c̄)

]

(1.4.9)
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Expanding up to linear order in V yields

Sgh = Tr

∫

d4x d4θ

{

c′c− c′c+
1

2
(c′ + c′)[V, (c+ c)]

}

+ O(V 2) (1.4.10)

and gives ghost propagators

〈 c′(1) c(2) 〉 = 〈 c′(1) c(2) 〉 = − 1

�
δ4(θ1 − θ2) (1.4.11)

and cubic interaction vertices

i

2
fABC

∫

d4x d4θ
(

c′A V B cC + c′A V B cC + c′A V B cC + c′A V B cC
)

(1.4.12)

When considering the second gauge field V̂ an equal contribution arises.

We now quantize the matter sector. From the quadratic part of the action (1.3.4) we
read the propagators

〈 Āâ
a(1)Ab

b̂
(2) 〉 = − 1

�
δ4(θ1 − θ2) δ

â
b̂
δ b
a (1.4.13)

〈 B̄a
â(1)B b̂

b(2) 〉 = − 1

�
δ4(θ1 − θ2) δ

a
b δ

b̂
â (1.4.14)

From the expansion of (1.3.4) mixed gauge/matter vertices entering two–loop calculations
are

Smat →
∫

d3xd4θ Tr
(

ĀV A− ĀAV̂ + B̄V̂ B − B̄BV
)

(1.4.15)

+

∫

d3xd4θ Tr

(

1

2
ĀV V A +

1

2
ĀAV̂ V̂ − ĀV AV̂ +

1

2
B̄V̂ V̂ B +

1

2
B̄BV V − B̄V̂ BV

)

Pure matter vertices can be read from the superpotential (1.3.5).

In the computation of correlation functions we will use propagators in configuration
space. We list here these superspace propagators for the gauge sector (in Landau gauge)

〈 V A(1)V B(2) 〉 =
1

K

Γ(1/2 − ǫ)

π1/2−ǫ
D̄αDα

δ4(θ1 − θ2)

|x1 − x2|1−2ǫ
δAB

〈 V̂ A(1) V̂ B(2) 〉 = − 1

K

Γ(1/2 − ǫ)

π1/2−ǫ
D̄αDα

δ4(θ1 − θ2)

|x1 − x2|1−2ǫ
δAB

(1.4.16)

and for matter fields

〈 Āâ
a(1)Ab

b̂
(2) 〉 =

Γ(1/2 − ǫ)

4π3/2−ǫ

δ4(θ1 − θ2)

|x1 − x2|1−2ǫ
δâ

b̂
δ b
a

〈 B̄a
â(1)B b̂

b(2) 〉 =
Γ(1/2 − ǫ)

4π3/2−ǫ

δ4(θ1 − θ2)

|x1 − x2|1−2ǫ
δa

b δ
b̂

â

(1.4.17)

which can be obtained Fourier transforming (1.4.5) and (1.4.13), with the help of (A.5.8).
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1.5 Generalizations.

Since the formulation of the ABJM theory, a number of generalizations was developed
for which a dual description is (or might be) available. Here we want to focus on N = 2
supersymmetric models only, in such a way that their Lagrangian could be cooked up by
enlarging the field content, allowing for more interaction terms and/or by taking more
generic values for the data of the theory, namely the ranks of the gauge groups and the
CS levels.

In this Section we sketch these extensions, pointing out their Lagrangian description
and outlining the AdS/CFT dual, when available.

1.5.1 ABJ.

The simplest generalization we analyze accounts for allowing different ranks of the
gauge groups which are taken to be generically U(M) × U(N). The resulting model is
then a Chern–Simons theory for vector multiplets (V, V̂ ) are in the adjoint representations
of the gauge groups U(M) and U(N) respectively, coupled to chiral multiplets Ai and Bi,
i = 1, 2, in the (M, N̄) and (M̄,N) bifundamental representations of the gauge groups,
respectively.

This deformation preserves N = 6 supersymmetry and can be simply implemented
at weak coupling, using the same Lagrangian as for the ABJM. However we notice that
it explicitly breaks the Z2 parity invariance under K → −K of the ABJM model, ex-
changing the gauge groups. This apparently innocuous fact may on the contrary entail
relevant consequences on the properties of the theory. For instance it poses doubts on the
possibility that the theory is integrable. A few more remarks on that are given in Section
5.3.4.

The perturbative series in such models is properly organized in terms of two ’t Hooft
couplings λ and λ̂

λ ≡ M

K
λ̂ ≡ N

K
(1.5.1)

along with the parity breaking parameter σ

σ ≡ λ− λ̂

λ̄
λ̄ ≡

√

λλ̂ (1.5.2)

These variables prove very convenient when dealing with the ABJ theory and will be
extensively used in Chapters 4 and 5.

At strong coupling the gravity dual was pointed out in [12]. It is basically a perturba-
tion of the ABJM setting, where l = |M −N | units of a torsion flux are introduced. This
is deduced by considering the near horizon geometry of a brane configuration where l D3
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branes are suspended (but not wrapped) between the NS5 and the (1, k) fivebranes of
the ABJM type IIB brane construction. This changes the rank of one of the gauge groups
only, therefore implementing the desired shift. The M–theory lift of such a configuration
is in terms of the usual N M2 branes probing the C4/ZK singularity, along with l frac-
tional M2 branes, which are M5, wrapping the vanishing three cycle at the apex of the
orbifold, and are therefore stuck to this point, hence not modifying the moduli space of
vacua. They source l units of flux, taking values in ZK , (i.e. l +K branes are equivalent
to l) for the three form potential C3 of M–theory, on the cycle mentioned above.

The near horizon geometry arising from this configuration gives the AdS/CFT dual
of the ABJ theory. The M–theoretical dual, which is the proper description whenever
N ≫ k5 is the same AdS4 ×S7/ZK background with N units of F4 flux as for the ABJM,
with additional l units for C3 on the three cycle S3/ZK inside S7.

Reducing to type IIA, which is the most suitable description in the regime K ≪ N ≪
K5, one is led to the background metric of AdS4×CP3 with F4 and F2 flux turned on. The
three form potential of M–theory reduces the B–field, which then acquires a non–trivial
holonomy on a CP1 cycle inside CP3.

In [12] it is argued that the model is meaningful only for parameters satisfying the
bound l < K. Therefore at strong coupling, where K is supposed to be very small
compared to M,N , the difference between λ and λ̄ is less than

|λ− λ̄|
λ̄

≤ 1

λ̄
≪ 1 (1.5.3)

Therefore the large λ̄ limit ensures that the ’t Hooft coupling can be approximated by
N/K and the ABJ deformation can be considered as a probe approximation where one
neglects the backreaction of the background.

1.5.2 Romans mass deformation.

The ABJ(M) models feature opposite Chern–Simons levels. One could deform the
theory by considering non–opposite values [13]. At the level of the Lagrangian description
this is easily performed by considering the CS action

SCS =

∫

d3x d4θ

∫ 1

0

dt
{K1

4π
Tr
[

V D̄α
(

e−tV Dα e
tV
)

]

+
K2

4π
Tr
[

V̂ D̄α
(

e−tV̂ Dα e
tV̂
) ]}

(1.5.4)
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which straightforwardly determines the following gauge propagators in x and momentum
space

〈 V A(1)V B(2) 〉 =
1

K1

Γ(1/2 − ǫ)

π1/2−ǫ
D̄αDα

δ4(θ1 − θ2)

|x1 − x2|1−2ǫ
δAB

−→ 4π

K1

1

p2
D̄αDα δ

4(θ1 − θ2) δ
AB

〈 V̂ A(1) V̂ B(2) 〉 =
1

K2

Γ(1/2 − ǫ)

π1/2−ǫ
D̄αDα

δ4(θ1 − θ2)

|x1 − x2|1−2ǫ
δAB

−→ 4π

K2

1

p2
D̄αDα δ

4(θ1 − θ2) δ
AB (1.5.5)

This generalization entails deep consequences on the symmetries of the theory. In par-
ticular it breaks supersymmetry to N = 3 at most, covering a range of theories up to
non–supersymmetric models. In [13] it was proven that CFT’s always exist in any of
these differently supersymmetric deformations, corresponding to some (unknown) dual
background in AdS4. Since we are willing to adopt an N = 2 description, here we will
only deal with at least N = 2 models and disregard the lower supersymmetric ones.

As mentioned above there exist conformal theories with N = 3 and N = 2.

The N = 3 model is pretty unique, given a set of K1 and K2 levels.

W =
1

K1
Tr (AiBi)

2 +
1

K2
Tr (BiA

i)2 (1.5.6)

Here all couplings are quantized, preventing them from running, and therefore scale in-
variance follows naturally. This theory possesses manifest SO(3)R R–symmetry (naturally
built–in in our N = 2 description) as well as an SU(2) global symmetry simultaneously
rotating A and B fields. This is a surviving remnant of the original SU(2)A × SU(2)B of
the ABJM theory, which is broken explicitly by the introduction of the operators (A1B1)

2

and (A2B2)
2, contained in (1.5.6).

As concerns N = 2 models, the existence of a CFT with SU(2) × SU(2) global
symmetry was argued in [13]. Again this symmetry is inherited from the ABJM theory,
which displays the same superpotential

W = λ ǫij ǫ
kl Tr

(

AiBk A
j Bl

)

(1.5.7)

The new coupling λ, which is now a mixture of K1 and K2, has to be properly tuned,
so as to achieve the vanishing of the corresponding β–function. Moreover this model was
conjectured to be connected to the N = 3 one by a line of fixed points. Indeed, starting
from the superpotential

W = Tr
[

c1 (AiBi)
2 + c2 (BiA

i)2
]

(1.5.8)
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one can recover SU(2)×SU(2) global symmetry whenever c1 = −c2 and N = 3 supersym-
metry fixing c1 = 1

K1
and c2 = 1

K2
. Then, null β–functions for c1 and c2 can be assured by

imposing the anomalous dimensions of A and B fields to be opposite: γA + γB = 0. This
is one constraint on two variables, hence the conjectured line of fixed points. However
this one parameter family of CFT’s was not worked out explicitly.

The precise determination of the coupling λ∗ ensuring scale invariance in the super-
potential (1.5.7), and of the exactly marginal operator encompassing the latter and the
N = 3 (1.5.6), constitute the main subjects of Section 2.7.

On the dual side of the correspondence, the deformation of the Chern–Simons levels
has a physical meaning. It corresponds to the introduction of a Romans mass [14], namely
the appearance of non–zero F0 flux. Therefore whenever the Chern–Simons levels of the
given conformal field theory do not sum up to zero, one generally expects

∑

iKi quanta
of F0 flux to be present in its dual background. Nevertheless the solution of type IIA
supergravity deformed with F0 flux, which is dual to the N = 2 and N = 3 conformal
field theories sketched above was derived in [15] just as a first order perturbation of the
N = 6 AdS4 × CP3 background.

1.5.3 Generic N = 2 deformation with bifundamental fields.

In the case M 6= N and K1 + K2 6= 0 one obtains a generic class of Chern–Simons
matter theories with bifundamental superfields. Giving up the global symmetries of the
models mentioned above, one may add to the action the most general N = 2 superpoten-
tial. The study of such models is the main topic of Section 2.2. Actually there exist ten
gauge invariant quartic supersymmetric operators which may serve as superpotential

W = Tr
[

h1 (A1B1A
2B2 − A1B2A

2B1) + h2 (A1B1A
2B2 + A1B2A

2B1) (1.5.9)

+ h3A
1B1A

1B1 + h4 A
2B2A

2B2 + h5A
1B2A

1B2 + h6 A
2B1A

2B1

+ h7 A
1B1A

1B2 + h8A
1B1A

2B1 + h9 A
2B2A

2B1 + h10 A
2B2A

1B2

]

+ h.c.

This class of theories contains many conformal fixed points of the RG flow, describing a
surface in the space of couplings. This includes all special models reviewed above as sub-
cases, obtained properly tuning the parameters. The basic properties of such a manifold
of conformal field theories are analyzed in Section 2.2, whereas some specific examples
are given in Section 2.6. We will carry out this program by means of perturbation theory.
This implies imposing hi ≪ 1, which can be safely assumed. As concerns the Chern–
Simons levels, we recall that they are quantized, however, in the weak coupling regime we
consider the gauge couplings 1

K1
and 1

K1
to be very small. In such a K1, K2 ≫ 1 limit, the

Chern–Simons levels are large enough to pretend that their inverse behave as continuously
varying parameters and to allow one to apply ordinary perturbative techniques.

On the strong coupling side, the low amount of symmetries and the large number
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of superpotential operators and parameters significantly hamper the determination of a
gravity dual for these generic set of N = 2 CFT’s, which is not known.

1.5.4 Adding flavors.

We introduce flavor fields Q1 (Q̃1), Q2 (Q̃2), transforming in the (anti)fundamental
of each gauge group. Flavor matter carries (anti)fundamental gauge and global U(Mf )×
U(Nf )×U(M̃f )×U(Ñf ) indices, (Qr

1)
a, (Q̃1,r̃)a, (Q

s
2)

â, (Q̃2,s̃)â, with r(r̃) = 1, · · ·Mf (M̃f ),
s(s̃) = 1, · · ·Nf (Ñf). This is represented in Table 1.1.

gauge flavor

U(M) U(N) U(Mf ) U(M̃f ) U(Nf ) U(Ñf )

Q1 M 1 Mf 1 1 1

Q̃1 M̄ 1 1 M̃f 1 1
Q2 1 N 1 1 Nf 1

Q̃2 1 N̄ 1 1 1 Ñf

Table 1.1: The representations of the gauge and global symmetries under which flavor
fields transform.

At weak coupling this addition is accounted for by introducing kinetic terms in the
Lagrangian

∫

d3x d4θ
(

Q̄1
r e

V Qr
1 + Q̃1,r̃ e

−V ¯̃Q1,r̃ + Q̄2
s e

V̂ Qs
2 + Q̃2,s̃ e

−V̂ ¯̃Q2,s̃
)

(1.5.10)

which is invariant under ordinary super gauge transformations for (anti)fundamental fields

Q1 → eiΛ1 Q1 Q̃1 → Q̃1 e
−iΛ1

Q2 → eiΛ2 Q2 Q̃2 → Q̃2 e
−iΛ2 (1.5.11)

Quantization with flavors. In order to perform computations we need the propagators
and the interaction vertices for fundamental matter fields, which can be derived in a
completely analogous manner as the bifundamental degrees of freedom. From the general
action (2.6.1,2.6.2) we read the propagators

〈 (Q̄1
r)a(1) (Qq

1)
b(2) 〉 = − 1

�
δ4(θ1 − θ2) δ

b
a δ

q
r

〈 (Q̃1,r)a(1) ( ¯̃Q1,q)b(2) 〉 = − 1

�
δ4(θ1 − θ2) δ

b
a δ

q
r r, q = 1, · · · , Nf

〈 (Q̄2
s)â(1) (Qq′

2 )b̂(2) 〉 = − 1

�
δ4(θ1 − θ2) δ

b̂
â δ

q′

s

〈 (Q̃2,s)â(1) ( ¯̃Q2,q′)b̂(2) 〉 = − 1

�
δ4(θ1 − θ2) δ

b̂
â δ

q′

s s, q′ = 1, · · · , N ′
f
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and mixed gauge/matter vertices entering two–loop calculations are (besides those in
(1.4.15))

+

∫

d3xd4θ Tr
(

Q̄1
r V Q

r
1 − ¯̃Q1,r Q̃1,r V + Q̄2

s V̂ Q
s
2 − ¯̃Q2,s Q̃2,s V̂

)

+

∫

d3xd4θ Tr

(

1

2
Q̄1

r V V Q
r
1 +

1

2
¯̃Q1,r Q̃1,r V V +

1

2
Q̄2

s V̂ V̂ Q
s
2 +

1

2
¯̃Q2,s Q̃2,s V̂ V̂

)

Superpotential. Moreover one could prescribe superpotential interactions for these
new degrees of freedom, which lie into two categories: interactions among fundamental
fields alone, or mixed interactions with bifundamental matter

(FA,B)ik
jl Q̃A, iQ

j
A Q̃B, k Q

l
B , A,B = 1, 2 (not summed) (1.5.12)

M b,i
a,j Q̃1 iA

a BbQ
j
1 + M̃ b,i

a,j Q̃2 iBbA
a Qj

2 (1.5.13)

The presence of these new fields and interactions enlarges the number of conformal field
theories which can be realized at special values of the parameters. The dimension of
the manifold spanned by these theories is computed in Section 2.5 on general grounds.
Some explicit cases are analyzed also in Section 2.6, where a restriction of the general
superpotential (1.5.12) is considered, preserving enough symmetries so as to make direct
computations feasible.

In particular we stress that there exists a very peculiar choice of flavors, allowing for
an enhancement of supersymmetry from N = 2 to N = 3. Such a situation is described
by the following superpotential,

W =
1

K1

Tr (AiBi +Q1 Q̃1)
2 +

1

K2

Tr (BiA
i +Q2 Q̃2)

2

in which Mf and M̃f have been set equal and a global SU(2)× SU(Mf )× SU(Nf ) com-
bination of the naive U(2)2 ×U(Mf )

2×U(Nf )
2 symmetry groups is manifestly preserved.

Even if one chooses K1 + K2 = 0, supersymmetry cannot be enhanced further and this
situation corresponds to introducing flavors in the ABJM model.

At strong coupling a dual description is available for addition of flavors in such a
N = 3 preserving manner. This is done in [16] where it is argued that fundamental
degrees of freedom are accounted for by D5 branes in the type IIB brane construction of
the ABJM model, which become D6 branes wrapping three–cycles of CP3 in the type IIA
dual description of the ABJM.
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Deformations.

When dealing with a conformal field theory, a natural question is whether there exist
any deformations of the latter preserving conformal invariance. Once the theory is spec-
ified by fixing the gauge symmetry and the field content, one can deform it by adding
interactions and tuning their strength. In practice this is done by introducing new oper-
ators O in the Lagrangian, parameterized by some coupling constants. Deformations can
be roughly classified according to the naive dimension of the operators they are triggered
by. Thus we can distinguish:

• relevant deformations, when dim (O) < D;

• irrelevant deformations, when dim (O) > D

• and marginal deformations, when dim (O) = D

Accordingly, the corresponding coefficients must have positive, negative and vanishing
mass dimension. These kind of operators have different influence on the dynamics de-
pending on the energy scale at which the theory is probed. In the ultraviolet the theory
is sensitive to irrelevant deformations, whereas the relevant are suppressed by negative
powers of the scale, by dimensional analysis. The converse is true in the infrared. The
usual way of thinking is to consider a CFT as the low energy effective theory of some
more fundamental microscopic theory defined in the ultraviolet. In other words the CFT
is the infrared fixed point of a renormalization group flow. From this point of view it
is quite meaningless to perturb the UV Lagrangian by irrelevant operators, which would
require changing the definition of the microscopic theory, since they strongly affect it in
such a regime. Rather, if we deform the model by a relevant operator, the theory would
probably flow to some other conformal fixed point, different from the original one. If one
adds to the Lagrangian of a given CFT either relevant or irrelevant operators, conformal
invariance gets explicitly broken by the appearance of dimensionful parameters. Hence,
in order to preserve conformality, one has to restrict deformations to the marginal ones.

24
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UV

IR

ABJM

RG

M

Figure 2.1: A cartoon of a CFT (the ABJM model) arising as a low energy effective
theory. It is reached as a fixed point of the RG flow, after the introduction of a relevant
operator in the Lagrangian of the UV theory.

Even though the corresponding operators have dimension D classically, they may well
acquire an anomalous dimension quantum mechanically, which would spoil scale invari-
ance as well. Depending on the sign of the anomalous dimension marginal deformations
are named marginally relevant or marginally irrelevant. The latter are attractive in the
infrared, the former are repulsive, causing an instability of the RG flow driving the the-
ory away from the original fixed point when perturbed. Finally, a marginal deformation
may remain so even quantum mechanically. These perturbations are suggestively called
exactly marginal. They manifestly preserve conformal invariance and thus they determine
a family of CFT’s. A set of n exactly marginal operators, weighted in the Lagrangian by
n real parameters spans a manifold of CFT’s, which is locally isomorphic to Rn. This
manifold is dubbed the conformal manifold and its existence is rather non–generic. If a
conformal manifold exists one should be interested in determining its properties such as
its dimension, its local geometry as well as global issues, for instance (non)compactness
or singularities∗.

In what follows, we will mainly deal with supersymmetric CFT’s. Furthermore, if
we just focus on superpotential deformations, the corresponding coupling constants are
holomorphic coordinates on an n complex dimensional manifold, by construction.

∗It is worth mentioning that the subject is also interesting from the point of view of the AdS/CFT
correspondence, the conformal manifold mapping to a space of AdS vacua.
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CFT

M

Figure 2.2: A cartoon of the conformal manifold of a given CFT.

2.1 Conformal manifolds in supersymmetric gauge

theories.

For a generic CFT the existence of exactly marginal deformations is a highly non–
trivial occurrence. However, in the presence of supersymmetry, conformal manifolds ap-
pear quite commonly. This phenomenon was first observed and explained in a paper [3]
by Leigh and Strassler, for N = 1 theories in four dimensions. We now briefly review
their argument and then account for further developments.

2.1.1 Leigh–Strassler analysis

The first issue concerning the conformal manifold of a CFT, namely its existence, was
addressed by Leigh and Strassler, who showed that in 4d N = 1 supersymmetric theories
exactly marginal deformations arise quite commonly.

Their analysis lies on the direct inspection of the β–functions of the theory. The
requirement that the theory is conformal amounts to asking for the β–functions to vanish.
If this constraint can be satisfied imposing fewer conditions than the number of couplings,
one has a non–trivial manifold of conformal field theories.

The full power of this argument reveals when coping with superconformal theories.
In this situation one is usually interested in deformations which preserve supersymmetry.
Therefore one should analyze the β–functions of the gauge coupling and of the superpo-
tential interactions. The striking feature of N = 1 theories in four dimensions is that
both are exactly determined in terms of the anomalous dimensions of the fields.

This is true thanks to the NSVZ formula for the gauge couplings and because of
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the non–renormalization theorem for the superpotential. For definiteness let us consider
a theory with a gauge group being generically the product L = Πj Lj (L stands for
”local”), whose interactions are measured by couplings gj. The matter content is given
by superfields φA,a, transforming in representations RAj

of the group Gj (Aj = 1, . . . nAj
),

with an index a labeling their multiplicity and running over a = 1, . . .NA. They are
supposed to interact through a cubic (in four dimensions) superpotential W (φA,a), which
we suppose to be polynomial W =

∑

i hiW
i (φA,a) and parameterized by couplings hi.

Here we will only deal with chiral deformations, meaning those triggered by holomor-
phic operators in the Lagrangian. These include both the gauge deformations (by op-
erators

∫

d2θW 2) and superpotential deformations, but not deformations of the Kaehler
potential (whose role will be discussed below in Section 2.1.3). The operators consid-
ered are furthermore gauge invariant and classically marginal (in order not to break scale
invariance explicitly), and will be dubbed ”supermarginals” throughout this Section.

Now we analyze the RG properties of the deformed N = 1 theory. It is possible to
define a regularization scheme where the gauge β–function is exactly given by its one–loop
expression

βgj
= f(g)Agj

= −f(g)



3C2(Lj) −
∑

Aj ,a

T (RAj
)
(

1 − γAj ,a

)





= −f(g)



b0 +
∑

Aj ,a

T (RA,j) γA,a



 (2.1.1)

where f(g) is a scheme–dependent unimportant function of the couplings gj, which is
smooth and positive and may eventually hit a pole at strong coupling; C2(Lj) is the
quadratic Casimir of the adjoint representation for the gauge group Lj, T (RAj

) that of the
representation RAj

of the fields φAj ,a and finally γAj ,a stems for the anomalous dimension
of the fields φAj ,a. Therefore the last sum runs over all representations of the given gauge
group Lj and all fields transforming in them. The anomalous dimensions of such fields are
weighted by the quadratic indices TrRA

(

T a T b
)

= T (RA) δab of the representations RA. In
case of mixing (which is allowed only among fields transforming in the same representation
under the gauge group) one should diagonalize the anomalous dimensions γA, which are
then NA × NA matrices. The non–trivial dependence on the field content of the theory,
inside the parentheses in (2.1.1) is connected to the anomaly of the U(1)R R–symmetry
of the N = 1 supersymmetric theory. Indeed the factor 1− γA,a is precisely the quantum
corrected dimension of the field φA,a, which for a superconformal theory is linked to its
R–charge by the relation ∆A,a = 3

2
RA,a. Moreover supersymmetry relates the conformal

anomaly for the stress–energy tensor Tµν conservation (which produces a non–vanishing
β–function and signals departure from a CFT) to that of the other components in the
multiplet of currents, in particular the U(1) charge of R–symmetry. Being an anomaly,
this quantity is one–loop exact and scheme independent.
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Holomorphicity prevents the superpotential from getting perturbatively renormalized
[17]. This is because the superpotential coupling may be regarded as a chiral superfield,
ensuring holomorphicity of the whole superpotential. The non–renormalization theorem is
then derived by inspecting the properties of the effective superpotential at weak coupling,
which forbid any coupling renormalization.
Nevertheless the physical superpotential coupling hi gets renormalized because of the
anomalous dimensions of the superfields

βhi
= hiAhi

= hi

[

−dim(W i) +
∑

A,a

(

dim(φA,a) +
1

2
γA,a

)

]

(2.1.2)

where the sum is understood to extend over all fields appearing in the given superpotential
W i.
In many cases one starts from a CFT where the fields have canonical dimension 1 and
the superpotential has dimension 3. In this situation the equation above simplifies

βhi
= hi

1

2

∑

A,a

γA,a (2.1.3)

This always occurs whenever the set of deformations is restricted to classically marginal
operators, which is the situation we are interested in.

The requirement that both Agj
and Ahi

in (2.1.1) and (2.1.2) vanish can be derived
[3] from imposing that the anomaly for the supercurrent multiplet Jαα̇ is zero, which we
want to be satisfied at a superconformal point

D̄α̇ Jαα̇ ∝ Wβ W
β

32π2
Ag +

∑

i

hiAhi
= 0 (2.1.4)

The bottom–line of the discussion is that the only conditions to be applied for conformality
are on the anomalous dimensions of the fields. Then the problem of finding exactly
marginal deformations boils down to counting anomalous dimensions and couplings.

In particular there will be generically nγ independent conditions to be imposed on
anomalous dimensions.

Usually, due to some symmetries and in the presence of a large number of couplings,
the set of independent anomalous dimensions is less plentiful than that of couplings. At
worst all constraints coming from setting Agj

= Ahi
= 0 can be satisfied by vanishing

anomalous dimensions, as in any homogeneous system of linear equations. In the situation
the theory is even finite. However this is just a sufficient but not a necessary condition
for conformality.

In any case, whenever nγ exceeds the number of couplings, or equivalently of β–
functions nβ, there will exist exactly marginal deformations. In particular one expects
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them to be nβ − nγ . However one has to keep in mind two remarks. The first is that
couplings are complex, but constraints are usually real. The second is that this apparent
mismatch can be compensated by the possibility of removing phases in the couplings, by
a redefinition of the fields. Through a case by case analysis it turns out that the number
of independent phase removals is always nγ , as the number of constraints.

Altogether this implies that the conformal manifold will have complex dimension given
by the number of β’s minus the number of γ’s

dimC (Mc) = nβ − nγ (2.1.5)

Therefore in general the dimension has the form of an index given by the number of
classically marginal gauge invariant and supersymmetric operators and a number of ob-
structions, here represented by constraints on anomalous dimensions. In [3] the reasoning
described above was applied and successfully tested to a plethora of examples, for which
we refer to the original paper.

We finally comment on the efficiency of the procedure outlined so far. Although well
defined in principle, this method can become increasingly impractical if the number of
couplings grows large. In these situations one may at best restrict to a subset of marginal
deformation and check whether some combinations thereof are exactly marginal. However
a thorough description of the whole conformal manifold may be out of reach. Moreover
the reasoning above applies only to field theories allowing for a direct evaluation of the
β–functions, which is not possible at all if the theory is inherently strongly coupled or
even if it lacks a Lagrangian description.

2.1.2 Exactly marginal deformations and symmetries.

A second approach to the study of conformal manifolds of CFT’s is based on the study
of the global symmetries of the theory and their breaking.

This has been recently derived for N = 1 theories in four dimensions [4, 5]. The main
result, which we anticipate, is that the conformal manifold can be determined as the quo-
tient M = {λ}/GC of the set of supermarginal operators of the theory by its complexified
(continuous, non R–symmetry) global symmetry group. This method is very powerful
since it does not require the evaluation of β–functions and allows for the determination
of local properties of the conformal manifold even for supersymmetric theories without
a Lagrangian description. For several four dimensional examples it has been successfully
checked that the two methods agree [4, 5].

The conformal manifold and global symmetries.

Let us suppose that the theory under exam is invariant under a group of global trans-
formations G. The classical global group at zero couplings, for the theory described above
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is G = ΠnA
A=1 U(NA), where NA is the multiplicity of fields in the representation RA of the

gauge group.

The classically supermarginal operators are of course invariant under local symmetries,
but may not be so under the global ones. In other words the marginal operators may be
charged under the global group G.

The matrices of anomalous dimensions γA for fields φA transforming in the represen-
tation RA are NA ×NA hermitian matrices, thus in the adjoint of U(NA). Therefore the
number of fields φA,a in the superpotential W i may be regarded as the charge under the
Abelian U(1)A factor of U(NA) of the coupling hi, which we shall name qA,i. By analogy,
one assigns U(1)A charges to gauge couplings, given by −T (RA). Finally for the non–
abelian part of the global symmetry group, the charge matrices can be simply identified
as the non–abelian generators of the global group G, i.e. of SU(N1), . . . SU(NnA

).

With these definitions the condition for conformality derived from equations (2.1.3)
and (2.1.1) (having set b0 = 0, to start with a conformal field theory at zero coupling)
may be restated

βλi
∝
∑

A

qA,i γA (2.1.6)

where λ collects gauge and superpotential couplings λi = (gj, hi), the sum runs over the
different representations of the gauge groups, and it is understood that the equation is
valued in the adjoint representation of U(NA), so that there is one different equation for
each generator.

Having done this one can recast the conditions for conformal invariance into a sugges-
tive fashion [5]

DlA =
∑

i

λ̄i T lA λi = 0 ∀A = 1, . . . nA (2.1.7)

where lA = 0 . . . N2
A−1 is an index in the adjoint of U(NA) and T lA is its lA–th generator.

This equation has the structure of a D–term for the ”fields” λ = (g, h). This can be solved
thanks to the minus sign in the charges of the gauge couplings under U(1)’s, making (2.1.7)
not positive definite.

Actually only generators of the global symmetry group, which are not unbroken, pro-
duce independent D–term equations. Unbroken symmetries do not contribute, having
null charges. The dimension of the conformal manifold will be then indexed by

dimC (Mc) = # supermarginals at W = 0

− # broken generators of global symmetries (2.1.8)

This matches the counting in the Leigh–Strassler prescription, where the independent
constraints on γ–functions are just reinterpreted as the breaking of global symmetries. To
be more precise, starting from the global symmetry group at zero coupling, the breaking of
some generators thereof can be certainly caused classically by turning on superpotential
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operators, however may be also produced quantum mechanically by anomalies in the
gauge sector. No matter the origin of the breaking, (2.1.8) provides the correct counting
of exactly marginal operators. Moreover it can be shown that (2.1.7) reproduces the
Leigh–Strassler constraints on anomalous dimensions at first order in perturbation theory.

The dimension of the conformal manifold (2.1.8) suggests that the latter may be locally
described by the holomorphic quotient

Mc =
{λ,D = 0}

G
(2.1.9)

where {λ} indicates the vector space of supermarginal operators, and {λ,D = 0} that
after the imposition of the D–term constraints. This construction is also known to be
equivalent to modding out by the complexified global symmetry group [18]

Mc =
{λ}
GC

(2.1.10)

This claim may be justified as follows. In N = 1 supersymmetric theories any parameter
may be regarded as the expectation value of some background chiral superfield. Hence
the space of parameters is naturally a manifold endowed with a complex structure. This
must be true both for the set of supermarginals and for the conformal manifold of exactly
marginal deformations.

In going from the former to the latter one has to mod out by deformations which
are equivalent under a global transformation. This operation has to be performed in a
holomorphic manner, by the imposition of the D–terms. Stated another way, the super-
symmetric theory is invariant under the full complexified group of global transformations,
so that the quotient in (2.1.10) is meaningful and the imposition of D–terms just corre-
sponds to modding out by the real part of the complexified transformations.

More precisely, the action of the Lie algebra G over the space of couplings M preserves
supersymmetry and hence holomorphicity. Therefore it leaves the Kaehler (or symplectic)
form defined over it invariant. In particular, every element ζ of the Lie algebra induces
a vector field Xζ on M, corresponding to its infinitesimal action, in such a way that its
contraction with the Kaehler form J form is closed d(ιXζ

J) = 0. The action of G on M
is also Hamiltonian, i.e., ιXζ

J is exact and equal to the differential of some differentiable
Hamiltonian function ιXζ

J = dHζ , H : M → R. This Hamiltonian function may be
thought of as the pairing between the moment map µ : M → G∗ from the manifold to
the dual algebra and the element ζ of the Lie algebra Hζ = 〈µ , ζ 〉. The D–term (2.1.7)
is precisely the moment map for the global symmetry group.

The kernel of the moment map µ−1(0) (i.e. the locus where the D–terms vanish)
is invariant under the action of G. Then if one quotients this kernel by the group G
(supposing it is compact), a theorem in symplectic geometry ensures that one obtains a
well defined symplectic manifold, which inherits the symplectic structure of M. Then the
conformal manifold is expected to be Kaehler, which was indeed proven in [19].
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2.1.3 Superconformal algebra and constraints imposed.

Using purely field theoretical arguments, based on the superconformal algebra, the
result of the previous Section was proven last year by the authors of [4]. We briefly review
their argument here. Starting with a supersymmetric conformal field theory we can use
superconformal algebra to classify operators. In particular we divide deformations into two
sets: the chiral or superpotential deformations, which are implemented through operators
integrated over half superspace, and operators integrated over the whole superspace, which
can be dubbed Kaehler deformations. In order to retain conformality at the classical level,
superpotential deformations are required to be chiral operators of dimension 3 and Kaehler
deformations to be implemented by real primary operators of weight 2.

We review some basic aspects of the highest weight unitary representations of the
superconformal group SU(2, 2|1) of N = 1 superCFT’s in four dimensions. These are
given by a direct sum of unitary highest weight representations of the bosonic subalgebra
SU(2, 2)×U(1). Its maximal compact subalgebra is SU(2)×SU(2)×U(1)×U(1), where
the SU(2) factors accounts for the SO(4) part inside SO(2, 4) ≃ SU(2, 2). Therefore
highest weight representations may be classified by the four quantum numbers of these
factors: two spins j1 and j2 for each SU(2) factor and two real numbers corresponding to
the two U(1) factors, which may be regarded as the dimension ∆ and the R–charge R.
Unitarity (positivity of the norm of all descendants, which are the operators obtained by
acting with supercharges Q and Q̄) imposes severe constraints on these quantum numbers:
in particular the following conditions have to be met

• ∆ ≥ 3
2
R + 2 for j1 = 0

• ∆ ≥ −3
2
R + 2 for j2 = 0

• ∆ ≥ 3
2
R + 2 + j1 for j1 > 0

• ∆ ≥ −3
2
R + 2 + j2 for j2 > 0

The first two bounds are dictated by the positivity of the norm of the first two descen-
dants, obtained by (anti)commutators with Q̄ (or Q) supercharges: e.g. [Q̄,O} and
[Q̄, [Q̄,O}} (further application of Q̄ identically vanishes). In the most general case these
constraints define all long unitary highest weight representations of the superconformal
group. However there are special cases when shortening may occur. This happens when
some descendants vanish. In these cases the corresponding bounds get saturated. More-
over, in the cases where either j1 or j2 are zero, the bounds themselves may become
milder.

In particular the constraint ∆ ≥ 3
2
R + 2 comes from requiring that the norm of

the first two descendants [Q̄,O} and [Q̄, [Q̄,O}} are positive. If the former vanishes
the unitarity bound implies ∆ = 3

2
R. This is called a chiral primary operator. If the
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similar mechanism shows up for [Q,O}, the corresponding operator is dubbed antichiral.
Similarly, non–chiral short multiplets may be obtained when j1 = j2 = j, ∆ = 2j + 1 and
R = 0. These are called conserved.

Having classified highest weight representations of the superconformal algebra, we can
consider all possible operators with which deforming the Lagrangian, which are subject to
further constraints. By Lorentz invariance these must be obtained by primary operators,
applying Q and Q̄ operators and contracting indices until the total spin is 0. Since we
want to keep only chiral operators of dimension 3 or non–chiral ones of dimension 2, it is
easy to see that the total spin j1 + j2 of the starting primary operator must not exceed 2,
and, separately, j1 ≤ 1, j2 ≤ 1.

These are

1. the spin j1 = j2 = 0 operator O0;

2. the spin j1 = 1
2

contracted with Q: {Q,O 1
2
};

3. the spin j1 = 1 contracted with Q2: {Q, [Q,O1]};

4. the spin j1 = j2 = 1
2

contracted with QQ̄: {Q, [Q̄,O( 1
2
, 1
2)

]};

5. the spin j1 = j2 = 1 contracted with Q2Q̄2: {Q, [Q̄, {Q, [Q̄,O2]}]};

and their complex conjugates. Then one imposes that such operators be supersymmetric,
namely that they are annihilated by both Q and Q̄. These constraints impose that

• O0 is a constant operator, which we can neglect;

• O1 must be a chiral operator ;

• O2 is not constrained by supersymmetry and corresponds to a Kaehler deformation,
however for the operator added to the Lagrangian not to vanish, this operator must
not have null descendants, therefore it holds strictly d > 3

2
R + 2, meaning that the

operator is irrelevant;

• all other operators listed above must vanish to be supersymmetric;

To summarize, classifying all possible perturbations, only two kinds of operators are
compatible with Lorentz invariance, supersymmetry and unitarity: deformations of the
superpotential and of the Kaehler potential. The letter are either irrelevant, and are
therefore discarded, or conserved currents (having a null descendant), which do not deform
the Lagrangian because of the equations of motion. This explains why in the previous
analysis of Sections 2.1.2 and 2.1.3 it is possible to neglect Kaehler deformations and why
we are left with the space of deformations being that of chiral marginal operators.
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Now we report a parallel proof of the prescription outlined above for computing the
conformal manifold locally, which highlights some new aspects. The space of super-
marginals is naturally endowed with the Zamolodchikov metric, determined by two point
functions

〈W i(x) W̄ j̄(0) 〉 =
gi j̄

|x|6 (2.1.11)

It is also possible to define a metric in the space of conserved currents, choosing a suitable
basis for two–point functions

〈 Ja(x) Jb(0) 〉 =
γa b

|x|4 (2.1.12)

This last metric will be useful in what follows to raise, lower and contract indices relating
currents.

We deform a given CFT by a supermarginal operator L → L + hiW
i, and see what

happens locally, in the vicinity of the CFT. It is possible to choose a renormalization
scheme in which, thanks to the non–renormalization theorem for the superpotential, these
deformations may only affect the Kaehler potential, inducing a correction proportional to
a conserved current operator,

L L +

∫

d4θ Za Ja (2.1.13)

This may potentially entail a renormalization scale dependence, through some logarithmic
divergence arising in the correction Za = Za(µ). However if no conserved current Ja is
available in the theory to couple with, this mechanism is not possible and all deformations
automatically preserve conformality. In any case, the general condition for conformal
invariance to be preserved is that the deformations in the Kaehler potential be scale
invariant, or

Da ≡ d

d log µ
Za = 0 (2.1.14)

Therefore, close to the CFT, the conformal manifold will be given by the space of couplings
{λ} where the vanishing of the D–terms in (2.1.14) has been imposed and where equivalent
deformations are identified, modding out by the global symmetry group. In formulae this
means

Mc ≃
{λ, D = 0}

G
(2.1.15)

and we therefore recover (2.1.9). However we have not yet determined in this formalism the
precise relation between the D–terms in (2.1.14) and the global symmetries of the theory.
To do this, we look into the constraints (2.1.14), which can be determined explicitly by
conformal perturbation theory from the OPE’s of the operators. In particular the lowest
order in the OPE of two supermarginals is

W i(x)W
j̄
(0) =

gij̄

|x|6 +
(T a)ij̄

|x|4 Ja(0) + . . . (2.1.16)
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The first non–trivial term determines a logarithmic divergence. Indeed, using (A.5.8) for
Fourier transforming 1

|x|4
1

|x|4 → π2Γ (−ǫ) + . . . (2.1.17)

signaling the typical logarithmic divergence in dimensional regularization. This means
that after renormalization these two operators induce in the Lagrangian the scale depen-
dent piece

∫

d4x d2θ λiW
i(x)

∫

d2θ̄ λ̄j̄W̄
j̄(0) ∼

∫

d4x d4θ Z(µ, λ, λ̄)a Ja(0) (2.1.18)

and comparing this to the OPE, one concludes that to first order in perturbation theory†

Da = 2π2 d

d logµ
Z(µ, λ, λ̄)a = λi (T a)ij λ̄j̄ (2.1.19)

This has the typical form of a D–term, or equivalently of the moment map for the action of

a global symmetry acting on the space of couplings by the representation (T a)ij , showing
that indeed the obstruction to conformality is proportional to the D–term for the global
symmetry current to which the divergent contribution in the effective action couples:
precisely the same as we had found in the previous Section.

Moreover, this formalism offers an explicit first order expression for the non–conservation
of the currents:

D̄2Ja = λj (T a)i
j W

j + . . . (2.1.20)

This allows to fix the structure of the associated β–function as follows. The deformation
by the operator hiW

i produces a change in the Kaehler potential which may be absorbed
into a redefinition of the coupling

λi −→ λi −
1

2
λj T

a j
i Za (2.1.21)

to do this we have to give up the renormalization scheme where the superpotential does
not renormalize, since the change (2.1.21) is not holomorphic. Then, deriving the coupling
with respect to the renormalization scale, one gets the corresponding β–function, which
reads

βλi
=

∂ λi

∂ logµ
= −1

2
λj T

a j
i Da

= −π2
(

λj T
a j
i

)

(

λk T
kl̄
a λ̄l̄

)

+ . . .

∝ −gij ∂

∂λ
j

(

γabD
aDb

)

+ . . . (2.1.22)

†The numerical factor 2π2 in front of (2.1.19) can be explained as follows: in dimensional regularization
the coefficient of the 1

ǫ
pole is −π2, from (2.1.17). As explained more thoroughly in Section 2.2.2, the

procedure for computing the scale dependence in dimensional regularization accounts for a sign reversal
and a factor of 2, naturally coming from the divergent contribution being quadratic in |λ|. This finally
produces the coefficient 2π2.
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This last expression is enlightening because the positivity of the metric gij implies that
γabD

aDb is non–negative around the fixed point. In the case where the bound is saturated
we get another CFT, so that we are moving in a tangent direction with respect to the
conformal manifold.
When the β–function is strictly positive, slightly off the original CFT, the situation can
be described pictorially by Fig. 2.3

(a)

CFT

(b)

CFT

(c)

Figure 2.3: A line of fixed points is depicted in the space of Da’s (a). The fixed line lies on
the locus where DaDa vanishes. In (b) the pictorial representation of DaDa in the vicinity
of the CFT, in the transverse direction to the conformal line. In (c) the corresponding
β–function as the derivative with respect to λ̄. Arrows indicate the IR flow, which points
back towards the CFT, meaning that the point is stable.

Here we realize that the behavior of the β–function is such that the flow towards the
IR drives the theory back to the fixed point. This entails that all transverse directions to
the conformal manifold are marginally irrelevant and hence attractive, namely that this
surface is stable in the IR.

Summarizing, we have a simple algorithm to compute the dimension and local geom-
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etry of the conformal manifold, which is based on

1. finding the space of all supermarginals,

2. identifying the group of continuous symmetries,

3. selecting the subgroup under which no supermarginal is charged.

The conclusion is that the conformal manifold of some CFT is locally given by the quo-
tient of its classically marginal deformations by the complexified global symmetry group.
Moreover all classically marginal deformations must be either marginal or irrelevant, but
never relevant.
The power of this argument is its simplicity and its validity beyond perturbation theory.
Indeed the prescription holds also nonperturbatively and if the theory is strongly coupled
(since it does not make use of the NSVZ formula) or even if it lacks a UV Lagrangian
description.

A 4d example: the conformal manifold of N = 4 SYM.

We give here just one simple example for the sake of clarity, namely we derive the
dimension of the conformal manifold for N = 4 SYM. In N = 1 language this is a gauge
theory with three chiral superfields in the adjoint representation of the gauge group.
The global symmetry of the theory is U(1)R × SU(3). We consider the theory at zero
couplings. The number of superpotential couplings can be enumerated as follows: let
us choose the gauge group SU(N), then there exists the following cubic invariants: the
antisymmetric Tr

(

[TA, TB]TC
)

, which is the superpotential of N = 4 SYM, and the
symmetric combinations Tr

(

[{TA, TB} TC
)

. The former is unique, the latter are 10 =
(3+2)(3+1)3

3!
, as a symmetric tensor with three indices running from 1 to 3. In addition

there exists the gauge term 1
g2

∫

d2θW 2, which is supermarginal as well. At zero couplings

the classical global symmetry group is U(3) = U(1) × SU(3). Any coupling is charged
under the U(1) factor, in particular so is the gauge coupling g, due to instantonic effects.
Therefore (as often occurs with U(1) factors) we can discard the U(1) global symmetry,
canceled against the gauge coupling, in the computation of supermarginals and global
symmetries. Then we are left with the N = 4 superpotential, which is a singlet under the
global SU(3) and the ten symmetric operators that are charged. Altogether, the U(3)
global symmetry is broken completely by the supermarginal. According to the prescription
above, the dimension of the conformal manifold evaluates

dimC (Mc) = (1 + 1 + 10) − (1 + 8) = 3 (2.1.23)

and locally it can be described by

Mc ≃ 1C +
10

SU(3)C

= 1C +
10

Sl(3,C)
(2.1.24)
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2.2 The conformal manifold for the ABJM theory.

The only known examples of exactly marginal deformations were carried out for four
dimensional supersymmetric theories. As discussed in [4], nothing prevents the new ap-
proach from being applied to N = 2 supersymmetric theories in three dimensions, which
have a superspace description very similar to N = 1 models in four dimensions. There-
fore we want to extend this analysis to the three dimensional case, where of course our
preferred example will concern the ABJM theory. Thanks to the power of the superspace
approach in computing anomalous dimensions perturbatively, we will be able to provide a
complete analysis of the exactly marginal deformations of the ABJM theory, to two-loop
order. We will then check that the study of the conformal manifolds addressed from sym-
metry arguments leads to the same conclusions as in the perturbative computation, thus
providing an explicit test. Then, restricting to certain classes of deformations, we will re-
produce some extension of the ABJM theory which appeared in literature before, such as
beta deformed, Romans mass perturbed and flavored models. Stability of the fixed points
on the conformal manifold is also studied, leading to the conclusion that the conformal
surface is always stable, hence confirming the expectations from general arguments in [4].
The following discussion in mainly taken from [20].

2.2.1 Exactly marginal deformations of Chern–Simons matter
theories from perturbation theory.

In this Section we determine the structure of the conformal manifold of the ABJM the-
ory by a direct a perturbative calculation. As a byproduct, we find the explicit expression
of the exactly marginal superpotential (formula (2.3.7)).

To do this we have to start by considering the most general action (1.3.1) with super-
potential

W = Tr
[

h1 (A1B1A
2B2 − A1B2A

2B1) + h2 (A1B1A
2B2 + A1B2A

2B1) (2.2.1)

+ h3A
1B1A

1B1 + h4 A
2B2A

2B2 + h5A
1B2A

1B2 + h6 A
2B1A

2B1

+ h7 A
1B1A

1B2 + h8A
1B1A

2B1 + h9 A
2B2A

2B1 + h10 A
2B2A

1B2

]

+ h.c.

which includes all classically supermarginal deformations, which are those of canonical
dimension 2, i.e. quartic in the chiral superfields. This can be thought of as the most
general marginal perturbation of any of the N = 2 CSM CFT’s under exam.

In order to determine perturbatively the conformal manifold of the theory we need to
evaluate its renormalization group functions.
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2.2.2 Two–loop renormalization and β–functions

It is well known that even in the presence of matter chiral superfields the CS actions
cannot receive loop divergent corrections [21, 22, 23]. In fact, gauge invariance requires
K1, K2 to be integers, so preventing any renormalization except for a finite shift. In
particular, for the N = 2 case it has been proved [23] that even finite renormalization is
absent.

Divergent contributions are then expected only in the matter sector. Since a non–
renormalization theorem still holds for the superpotential (in N = 2 superspace per-
turbative calculations one can never produce local and chiral divergent contributions)
divergences arise only in the Kaehler sector and lead to field functions renormalization.

In odd space–time dimensions there are no UV divergences at odd loops. Therefore,
the first non trivial tests for the perturbative quantum properties of the theory arise at
two loops.

We therefore perform the calculation at the first non–trivial order, that is two loops
[21, 22, 23], using the N = 2 superspace quantization [10] described in [24] and reviewed
in Section 1.4.

We now carry out this program explicitly, starting from a power counting proof of the
perturbative non–renormalization theorem for the superpotential in superspace Feynman
diagrams, then computing the one–loop effective action and finally the two–loop divergent
contributions at two loops.

Non–renormalization theorem via power counting.

We consider a superdiagram with E chiral external lines, V vertices, I internal prop-
agators and L loops. The following relation relating these features of the graph is always
true:

L = I − V + 1 (2.2.2)

In the CSM theory under exam there appear several interaction vertices which we can
divide into three categories:

• quartic superpotential (anti)chiral vertices Vc (V̂c);

• mixed gauge/matter vertices Vc/g =
∑

n Vc/g,n, where Vc/g,n is the number of mixed
vertices between a pair of matter fields and n gluons;

• pure gauge vertices Vg =
∑

n Vg,n, where Vg,n is the number of interaction vertices
with n gluons.
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so that V = Vc + V̂c + Vc/g + Vg.
If we want a loop diagram to have chiral external lines, as in the correction to the super-
potential, it should at least employ one chiral vertex. Since vertices with gauge fields do
not change the chirality of a line in the diagram, the number of external chiral legs will
be always given by the number of chiral lines leaving chiral vertices, which do not end
onto an antichiral vertex, i.e.

E = 4 Vc − 4 V̄c (2.2.3)

The same holds true for an antichiral vertex, with reversed roles for Vc and V̄c.
This sets E to be an integral multiple of 4.
The number of internal lines for such diagrams can be obtained as follows.
A diagram without gauge vertices has a number of chiral propagators Iα given by the
total amount of (anti)chiral vertices multiplied by 4, minus the number of external legs

Ic

∣

∣

∣

no gauge
=

1

2
(4 Vc + 4 V̄c −E)

Now we can insert interactions with gauge fields. Since there are no gauge external fields,
the number of gauge propagators Ig is given by half the total number of gauge lines leaving
all vertices

2 Ig =
∑

n

nVg,n (2.2.4)

Moreover, each mixed vertex increases the number of chiral lines by 1, since it splits them
into two propagators. Therefore, the number of chiral lines ought to be

Ic =
1

2
(4 Vc + 4 V̂c − E) +

∑

Vc/g

Now the degree of divergence of a diagram can be computed as

ω(G) = dL− 2 I +M (2.2.5)

where M is the number of loop momenta arising in the graph and d the dimension of
space–time.
In supergraphs such momenta may be generated by anticommutation of covariant deriva-
tives, so that the power of momenta can be overestimated by counting the number of
spinorial derivatives. In order to compute such a quantity we recall that,

• each gauge propagator carries a factor D̄D;

• each chiral propagator introduces D̄2D2;

• each pure gauge vertex a factor D̄D (independently of n);

• each (anti)chiral vertex absorbs a term D̄2 (D2);

• each loop in θ–space requires one further D̄2D2 to perform D-algebra.



2.2 The conformal manifold for the ABJM theory. 41

Figure 2.4: One–loop diagrams for scalar propagators.

Thus the number of internal momenta can be at most

M = 2Ic + Ig − 2L− 2 Max(Vc, V̂c) + Vg

Hereafter we will assume that the number of chiral vertices is greater than that of an-
tichiral. Plugging this into (2.2.5) leads to

ω(G) = (d− 2)L− Ig − 2Vc + Vg (2.2.6)

By use of (2.2.2) to substitute for L

ω(G) = (d− 2)(I − V + 1) − Ig − 2Vc + Vg (2.2.7)

which in d = 3 and expanding I = Ig + Ic and V = Vc + V̂c + Vg + Vc/g

ω(G) = Ic − Vc/g − 2 Vc − V̂c + 1 (2.2.8)

Recalling the expression for the number of internal chiral lines (2.2.5) and inserting it in
the latter equation the dependence on mixed vertices drops and we are left with

ω(G) = 1 − 1

2
E − V̂c (2.2.9)

In the case of the superpotential we may set E = 4, yielding ω(G) ≤ −1. All other
holomorphic diagrams have even better UV behavior. This concludes the power counting
proof that the holomorphic operators do not suffer from renormalization.

One loop results

We first compute the finite quantum corrections to the scalar and gauge propagators
which then enter two–loop computations.

The only diagrams contributing to the matter field propagators are those given in Fig.
2.4. It is easy to verify that they vanish because the one–loop integral they give rise to
are trivially zero for symmetry reasons.

We then move to the gauge propagator. Gauge one-loop self–energy contributions
come from diagrams in Fig. 2.5 where chiral, gauge and ghost loops are present.
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(a) (b) (c)

Figure 2.5: One–loop diagrams for gauge propagators.

Performing the calculation in d = 3 − 2ǫ momentum space and using the superspace
projectors [11]

Π0 ≡ − 1

k2
{D2, D̄2}(k) , Π1/2 ≡

1

k2
D̄αD2D̄α(k) Π0 + Π1/2 = 1 (2.2.10)

we find the following finite contributions to the quadratic action for the gauge fields,
separating contributions from diagrams in Fig. 2.5

Π(1)
gauge(a) = N δAA′

∫

d3k

(2π)3
d4θ B0(k) k

2 V A(k) Π1/2 V
A′

(−k)

Π(1)
gauge(b) = −1

8
fABCfA′BC

∫

d3k

(2π)3
d4θ B0(k) k

2 V A(k)
(

Π0 + Π1/2

)

V A′
(−k)

Π(1)
gauge(c) =

1

8
fABCfA′BC

∫

d3k

(2π)3
d4θ B0(k) k

2 V A(k) Π0 V
A′

(−k)

(2.2.11)

Summing them up one obtains the one–loop V gluon self–energy

Π(1) =

[

−1

8
fABCfA′BC +MδAA′

]
∫

d3p

(2π)3
d4θ B0(p)V

A(p) D̄αD2D̄α V
A′

(−p) (2.2.12)

Analogously, for the V̂ gauge boson

Π̂(1) =

[

−1

8
f̂ABC f̂A′BC +NδAA′

]
∫

d3p

(2π)3
d4θ B0(p) V̂

A(p) D̄αD2D̄α V̂
A′

(−p) (2.2.13)

Finally a mixed V –V̂ two–point function arises at one loop from diagram (c) only, when
the Abelian U(1) photons couple to bifundamental matter fields running in the loop

Π̃(1) = −2
√
NM δA0 δA′0

∫

d3p

(2π)3
d4θ B0(p)V

A(p) D̄αD2D̄α V̂
A′

(−p) (2.2.14)

where

B0(p) =
1

8 (p2)
1
2
+ǫ
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Aa Aa

Ba Ba

(a)

Aa Aa

Ba Ba

(b)

Aa Ab

Ba Bb

(c)

Figure 2.6: Two–loop divergent diagrams contributing to the matter propagators.

is the three dimensional bubble scalar integral (see (A.5.9)).

Summing all the contributions we see that the gauge loop cancels against part of the
ghost loop as in the 4D N = 1 case [25] and we find the known results [25, 26]

Γ(1)
gauge = G[1, 1]

(

N − M

4

)
∫

d3p

(2π)3
d4θ Tr

(

V (p)
D̄αD2D̄α

|p|1+2ǫ
V (−p)

)

Γ̂(1)
gauge = G[1, 1]

(

M − N

4

)
∫

d3p

(2π)3
d4θ Tr

(

V̂ (p)
D̄αD2D̄α

|p|1+2ǫ
V̂ (−p)

)

(2.2.15)

and Π̃
(1)
gauge (2.2.14) which mixes the two U(1) gauge vectors.

Two-loop results for the effective action.

We are now ready to evaluate the matter self–energy contributions

The only divergent graphs are self-energy diagrams for the bifundamental fields at two
loops, which then contribute to their anomalous dimensions. They are given in Fig. 2.6
where the blob in the first diagram indicates the finite one–loop correction to the gauge
vectors propagators 2.2.15. The computation of each diagram proceeds in the standard
way by first performing D–algebra in order to reduce supergraphs to ordinary Feynman
graphs and evaluate them in momentum space and dimensional regularization (d = 3−2ǫ).
The first diagram in Fig. 2.6 gives

Π(2)(a) = −
[

(4π)2

K2
1

(

2MN − 1

2

(

M2 − 1
)

)

+

+
(4π)2

K2
2

(

2MN − 1

2

(

N2 − 1
)

)

+
4(4π)2

K1K2

]

F(0) Tr
(

ĀiA
i + B̄iBi

)

(2.2.16)

in terms of the two-loop F(0) tadpole like diagram, which we shall compute in a few lines.
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The second contribution non–trivially depends on the nature of the external fields and
the interaction vertices involved. In contrast to the previous and the following diagram,
it allows for mixing between A and B fields separately.

In particular, we may distinguish for A fields

Π(2)(b)A
11 = F(p) Tr

(

Ā1A
1
) {

2MN
(

|h1|2 + |h2|2
)

+ 2
(

|h2|2 − |h1|2
)

+

(MN + 1)
[

4
(

|h3|2 + |h5|2
)

+ 2|h7|2 + |h8|2 + |h10|2
]}

Π(2)(b)A
11 = F(p) Tr

(

Ā2A
2
) {

2MN
(

|h1|2 + |h2|2
)

+ 2
(

|h2|2 − |h1|2
)

+

(MN + 1)
[

4
(

|h4|2 + |h6|2
)

+ 2|h9|2 + |h8|2 + |h10|2
]}

Π(2)(b)A
21 = Π(2)(b)A

12

= F(p) Tr
(

Ā2A
1
)

2
{

h2 h9 + h7 h2 + h3 h8 + h5 h10 + h8 h6 + h10 h4

}

(2.2.17)

where the divergent part comes from the double bubble integral F(p), which is written
down explicitly below.
Finally diagram (c), correcting the diagonal part of the kinetic term, evaluates

Π(2)(c) = −8π2

[

M2 + 1

K2
1

+
N2 + 1

K2
2

+
4MN

K1K2

]

F (p) Tr
(

ĀiA
i + B̄iBi

)

(2.2.18)

where again F(p) is the two–loop self–energy integral, which we now compute.

The integral F(p) involved for p 6= 0 is ultraviolet divergent and needs to be regularized
by analytically continue its dimension to d = 3 − 2ǫ, yielding

F(p) ≡
∫

d3−2ǫk

(2π)3−2ǫ

d3−2ǫq

(2π)3−2ǫ

1

k2 q2 (p− k − q)2

= G[1, 1]

∫

d3−2ǫk

(2π)3−2ǫ

1

k2 [(p− k)2]
1
2
+ǫ

= G[1, 1]G[1, 1/2 + ǫ] p−2ǫ

=
Γ
(

1
2
− ǫ
)3

Γ (2ǫ)

(4π)3−2ǫ Γ
(

3
2
− 3ǫ

)

ǫ→0−−→ 1

64π2

1

ǫ
(2.2.19)

where G is the bubble function defined in (A.5.1). In the case where p = 0, after per-
forming the first integration, we get a one–loop tadpole integral which is both UV and IR
divergent and as a whole evaluates to 0 in dimensional regularization. However, since we
are interested here in ultraviolet divergences, we separate the former from the IR one and
take its contribution to be again 1

64π2
1
ǫ

in (2.2.16), therefore concurring to the balance of
UV divergences.

Two–loop divergent contributions for B fields are completely analogous to those for A
and may be derived from (2.2.17), by the simple exchanges h5 ↔ h6, h7 ↔ h8, h9 ↔ h10.
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The entire divergent contributions to the effective action can be collected as follows

Γ2loops →
(

1 +
1

ǫ
dA

11

)

A1A
1 +

(

1 +
1

ǫ
dA

22

)

A2A
2 (2.2.20)

+

(

1 +
1

ǫ
dB

11

)

B
1
B1 +

(

1 +
1

ǫ
dB

22

)

B
2
B2

+
1

ǫ
dA

12 A1A
2 +

1

ǫ
dA

21 A2A
1 +

1

ǫ
dB

12 B
1
B2 +

1

ǫ
dB

21 B
2
B1

where, calling

C ≡ 2MN
(

|h1|2 + |h2|2
)

+ 2
(

|h2|2 − |h1|2
)

−(4π)2 (2MN + 1)

(

1

K2
1

+
1

K2
2

)

− 2 (4π)2 MN + 2

K1K2

the coefficients of the ǫ–poles in the A sector are given by

dA
11 =

1

64 π2

{

C + (MN + 1)
[

4
(

|h3|2 + |h5|2
)

+ 2|h7|2 + |h8|2 + |h10|2
]}

dA
21 = dA

12 =
1

32 π2

{

h2 h9 + h7 h2 + h3 h8 + h5 h10 + h8 h6 + h10 h4

}

dA
22 =

1

64 π2

{

C + (MN + 1)
[

4
(

|h4|2 + |h6|2
)

+ 2|h9|2 + |h8|2 + |h10|2
]}

(2.2.21)

while the ones in the B sector are obtained again by replacing h5 ↔ h6, h7 ↔ h8, h9 ↔
h10. We stress that the interactions h7 – h10 produce mixing both in the A and B sectors
due to non–vanishing dA

21 and dB
21 contributions.

Renormalization.

In this Paragraph we spell out the procedure of renormalization in dimensional regular-
ization we will employ. We develop the subject in full generality and apply this procedure
to the case under exam in the next Section.

In dimensional regularization D = d − 2ǫ, we consider a theory with a set of fields
Φa and couplings λi. We begin with the simplest situation where no mixing occurs at
quantum level for the fields Φa.

In case of UV divergences we renormalize the effective action by adding suitable coun-
terterms. These may be absorbed into a redefinition of couplings and fields, as follows.
We define a renormalized coupling, multiplying by a renormalization function Zλi

for the
coupling, and allowing for a renormalization scale µ, which takes care of leaving the action
dimensionless

λB
i = µ2ǫ

(

λi +

∞
∑

r=1

ar
i (λ)

ǫr

)

= µ2ǫ λi Zλi
(2.2.22)
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We also renormalize the field wavefunctions by defining

ΦB
a Φ

B

a = Φa Φa

(

1 + 2

∞
∑

r=1

bra(λ)

ǫr

)

= Φa Φa Za (2.2.23)

which at first order is the same as

ΦB
a = Φa

(

1 +

∞
∑

r=1

bra(λ)

ǫr

)

= Φa Z
1
2
a (2.2.24)

We define the renormalization group functions β and γ as

βλi
= µ

∂ λi

∂ µ
(2.2.25)

and

γΦa =
1

2
µ
∂ logZa

∂ µ
(2.2.26)

In order to evaluate them in dimensional regularization we start from the identity

1

µ2ǫ−1

∂ λB
i

∂ µ
= 0 (2.2.27)

and from (2.2.22) we obtain

βλi
+ 2 ǫ λi + 2 a1

i +

∞
∑

r=1

1

ǫr

[

µ
∂ λj

∂ µ

∂ ar
i

∂ λj
+ 2 ar+1

i

]

= 0 (2.2.28)

The function βλi
may be series expanded in ǫ

βλi
= d0

i + ǫ d1
i + . . . (2.2.29)

which yields

ǫ
(

2 λi + d1
i

)

+

(

d0
i + 2 a1

i + d1
j

∂ a1
i

∂ λj

)

+

∞
∑

r=1

1

ǫr

[

d0
j

∂ ar
i

∂ λj
+ d1

j

∂ ar+1
i

∂ λj
+ 2 ar+1

i

]

= 0 (2.2.30)

The solution of the equation above, order by order in ǫ entails

d1
i = −2 λi d0

i = −2 a1
i + 2 λj

∂ a1
i

∂ λj
(2.2.31)

from which it is straightforward to read an explicit expression for the β–function

βλi
= −2 λiǫ− 2 a1

i + 2 λj
∂ a1

i

∂ λj
(2.2.32)
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Similarly for the anomalous dimensions γ one finds

γΦa =
1

2
µ
∂ logZa

∂ µ

=
1

2
µ
∂

∂ µ
log

(

1 +
∞
∑

r=1

2
bra(λ)

ǫr

)

∼ µ
∂

∂ µ

b1a(λ)

ǫ

= µ
∂ λj

∂ µ

∂ b1a(λ)

∂ λj

1

ǫ

= −2 λj
∂ b1a(λ)

∂ λj

(2.2.33)

where in the last step (2.2.32) was used to replace µ
∂ λj

∂ µ
, up to subleading in ǫ remainders.

We can easily generalize the diagonal case to a situation were mixing occurs at quantum
level between the kinetic terms of the fields Πa. The only difference from the previous
case is that counterterms and the wavefunction renormalization are now matrices

λB
i = µ2ǫ

(

λi +
∞
∑

r=1

ar
i (λ)

ǫr

)

= µ2ǫ λi Zλi
(2.2.34)

Φ
B

a ΦB
b = Φa

(

1ab + 2
∞
∑

r=1

brab(λ)

ǫr

)

Φb = Zab Φa Φb (2.2.35)

βλi
= µ

∂ λi

∂ µ
(2.2.36)

Here

Zab ∼ δab +
2 b1ab(λ)

ǫ
(2.2.37)

The β–function computation is precisely as above, as for anomalous dimensions their
definition is generalized to

γab =
1

2
µ
∂ logZab

∂ µ
(2.2.38)

where the logarithm of the matrix Z is handled by expanding it to first order log(1+ 2
ǫ
b) ∼

2
ǫ
b, which gives

γab = µ
∂ b1ab(λ)

∂ µ
= −2 λj

∂ b1ab(λ)

∂ λj
(2.2.39)

In order to make contact with our calculation, b1’s here are related to the divergent
contribution to the effective action d’s in (2.2.20) by b1 = −1

2
d. We also note that the
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eigenvalues of the operator λj
∂

∂ λj
just count the degrees of the powers of the couplings

appearing in the counterterms. This basically means that the anomalous dimensions are
proportional to the coefficients of the divergences in the effective action.

For instance, since in our situation divergences are quadratic in the couplings, it follows
that anomalous dimensions are just the coefficients of divergences multiplied by 2.

Supersymmetry severely constrains β–functions. Indeed it ensures that superpotential
couplings are not renormalized by divergent contributions to the superpotential itself: its
bare and renormalized expressions coincide λB

i

∏

a ΦB
a = λi

∏

a Φa. Since the RHS has

to be equal to λiZλi

∏

a ΦaZ
1/2
a , it holds that the couplings renormalization functions Zλi

only get contributions form the wavefunction renormalization of the fields

λi Zλi
= λi

∏

a

Z
− 1

2
a

λi +

∞
∑

r=1

ar
i (λ)

ǫr
= λi

∏

a

(

1 −
∞
∑

r=1

bra(λ)

ǫr

)

a1
i = −λi

∑

a

b1a (2.2.40)

Hence the expression for the β–function turns out to be simply proportional to the sum
over the anomalous dimensions of the fields appearing in the superpotential

βλi
= −2 a1

i + 2 λj
∂ a1

i

∂ λj

= −2 λi λj
∂
∑

a b
1
a

∂ λj

= λi

∑

a

γΦa (2.2.41)

where in the last equation we used (2.2.40) and (2.2.39).

2.2.3 Renormalization for N = 2 CSM theories.

We now apply the general procedure detailed above to our case. We renormalize the
effective action (2.2.20) by adding suitable counterterms and defining (the label B stands
for bare fields)

Aa =
(

ZA
ab

)− 1
2 Ab

B , Ba =
(

ZB
ab

)− 1
2 Bb B (2.2.42)

in such a way that the bare quadratic action goes back being diagonal

L(2) + Lct =

(

1 − 1

ǫ
dA

11

)

A1A
1 +

(

1 − 1

ǫ
dA

22

)

A2A
2 − 1

ǫ
dA

12 A1A
2 − 1

ǫ
dA

21 A2A
1

+

(

1 − 1

ǫ
dB

11

)

B
1
B1 +

(

1 − 1

ǫ
dB

22

)

B
2
B2 −

1

ǫ
dB

12 B
1
B2 −

1

ǫ
dB

21 B
2
B1

= A1 B A
1
B + A2 B A

2
B +B

1

B B1 B +B
2

B B2 B (2.2.43)
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This requires the matrices Z to be

ZA = 12×2 −
1

ǫ

(

dA
11 dA

12

dA
12 dA

22

)

ZB = 12×2 −
1

ǫ

(

dB
11 dB

12

dB
12 dB

22

)

(2.2.44)

The matrices of anomalous dimensions are defined as

γA
ab ≡

1

2

d logZA
ab

d log µ
γB

ab ≡
1

2

d logZB
ab

d log µ
(2.2.45)

and can be evaluated explicitly by

γA
ab =

∑

k

hk
∂dA

ab

∂hk
γB

ab =
∑

k

hk
∂dB

ab

∂hk
(2.2.46)

Since the divergences are all quadratic in the couplings, this yields

γA
11 =

1

32 π2

{

C + (MN + 1)
[

4
(

|h3|2 + |h5|2
)

+ 2|h7|2 + |h8|2 + |h10|2
]}

γA
21 = γA

12 =
1

16 π2

{

h2 h9 + h7 h2 + h3 h8 + h5 h10 + h8 h6 + h10 h4

}

γA
22 =

1

32 π2

{

C + (MN + 1)
[

4
(

|h4|2 + |h6|2
)

+ 2|h9|2 + |h8|2 + |h10|2
]}

γB
11 =

1

32 π2

{

C + (MN + 1)
[

4
(

|h3|2 + |h6|2
)

+ 2|h8|2 + |h7|2 + |h9|2
]}

γB
21 = γB

12 =
1

16 π2

{

h2 h10 + h8 h2 + h3 h7 + h6 h9 + h7 h5 + h9 h4

}

γB
22 =

1

32 π2

{

C + (MN + 1)
[

4
(

|h4|2 + |h5|2
)

+ 2|h10|2 + |h7|2 + |h9|2
]}

(2.2.47)

The non–renormalization theorem for N = 2 supersymmetric CS theories in three dimen-
sions [27] prevents the appearance of divergent corrections to the superpotential which
then gets modified only by field function renormalization. Therefore, we renormalize the
couplings as

hi = µ−2ǫ Z−1
hi
hi B with Zhi

=
∏

Φi

Z
− 1

2
Φi

(2.2.48)

where Φi ≡ (A, B). As a consequence, the β–functions βi = µ d hi

d µ
turn out to be expressed

directly in terms of the coefficients of the anomalous dimensions matrices. The calculation
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is straightforward and we find

βh1 = h1

(

γA
11 + γB

11 + γA
22 + γB

22

)

βh2 = h2

(

γA
11 + γB

11 + γA
22 + γB

22

)

+
(

h7 γA
12 + h8 γB

12 + h9 γ
A
12 + h10 γ

B
12

)

βh3 = 2 h3

(

γA
11 + γB

11

)

+ h7 γ
B
12 + h8 γ

A
12

βh4 = 2 h4

(

γA
22 + γB

22

)

+ h9 γB
12 + h10 γA

12

βh5 = 2 h5

(

γA
11 + γB

22

)

+ h7 γB
12 + h10 γ

A
12

βh6 = 2 h6

(

γA
22 + γB

11

)

+ h8 γ
A
12 + h9 γ

B
12

βh7 = h7

(

2γA
11 + γB

11 + γB
22

)

+ 2
(

h3 γB
12 + h2 γ

A
12 + h5 γ

B
12

)

βh8 = h8

(

γA
11 + γA

22 + 2γB
11

)

+ 2
(

h3 γA
12 + h2 γ

B
12 + h6 γ

A
12

)

βh9 = h9

(

2γA
22 + γB

11 + γB
22

)

+ 2
(

h4 γ
B
12 + h2 γ

A
12 + h6 γ

B
12

)

βh10 = h10

(

γA
11 + γA

22 + 2γB
22

)

+ 2
(

h4 γ
A
12 + h2 γB

12 + h5 γA
12

)

(2.2.49)

We see that due to the mixing of the anomalous dimensions, the β–functions are not
diagonal in the coupling constants.

The set of fixed points of the theory, that is its conformal manifold, is determined by
setting βhi

= 0. In order to work out these constraints, it is convenient to diagonalize
the β–functions (2.2.49). In terms of the eigenvectors h′i the diagonal β–functions read
β ′

hi
= λi h

′
i, where the eigenvalues λi are

λ1 = λ2 ≡ λ

λ3,4 = λ±√
µA

λ5,6 = λ±√
µB

λ7,8,9,10 = λ±
√

µA + µB ± 2
√
µAµB

where

λ = γA
11 + γA

22 + γB
11 + γB

22 (2.2.50)

µA = (γA
11 − γA

22)
2 + 4 γA

12 γ
A
12 , µB = (γB

11 − γB
22)

2 + 4 γB
12 γ

B
12

Therefore, the set of conditions βhi
= 0 is equivalent to the set λi = 0 which implies

γA
11 = γA

22 , γB
11 = γB

22 , γA
12 = γB

12 = 0 , γA
11 + γB

11 = 0 (2.2.51)

Since the diagonal coefficients of the anomalous dimensions matrices are real, while the
off-diagonal ones are complex (see eq. (2.2.47)), we have obtained seven real conditions.
In addition, it is easy to see that by a field redefinition we can remove the phases of seven
couplings, as will be detailed more thoroughly below in an explicit example. All together



2.2 The conformal manifold for the ABJM theory. 51

there are seven complex constraints to be imposed on ten complex coupling constants.
According to [3], this means that the conformal manifold of N = 2 Chern–Simons matter
theories has complex dimension three. In particular, for K1 = −K2 in (2.6.1) this is the
manifold of conformal fixed points connected to the ABJ(M) model by exactly marginal
deformations.
In Section 2.3 we shall check this prediction against the dimension of the quotient {λ}/GC,
computed from symmetry arguments.

We look for explicit solutions of the constraints (2.2.51) in the space of the coupling
constants in order to determine the expression of the exactly marginal perturbations.

The simplest case is obtained by setting hi = 0 ∀i > 6. This corresponds to the class
of models investigated in [24]. At this locus the off–diagonal elements of the anomalous
dimensions matrices vanish. The explicit solution to (2.2.51) in terms of the remaining
coupling constants reads

|h3| = |h4|, |h5| = |h6|,
(MN + 1)

[

|h2|2 + 2 |h3|2 + 2 |h5|2
]

+ (MN − 1) |h1|2 = X (2.2.52)

where X is coupling independent and given by

X = (4π)2

[

MN + 2

K1K2
+

2MN + 1

2

(

1

K2
1

+
1

K2
2

)]

By a field redefinition we can fix three phases: Setting hi = |hi|eiφi , we can for instance
choose φ1 = 0, φ3 = φ4 and φ5 = φ6. This may be achieved, for example, by rotating the
phases of the fields A1 and B1, by

φA1 →
1

4
(−φh3 + φh4 − φh5 + φh6 + 4φA2)

φB1 →
1

4
(−φh3 + φh4 + φh5 − φh6 + 4φB2) (2.2.53)

This shift may be reabsorbed into a redefinition of the couplings’ phases

φ′
h1

= φh1 −
1

2
φh3 +

1

2
φh4 + 2φA2 + 2φB2

φ′
h2

= φh2 −
1

2
φh3 +

1

2
φh4 + 2φA2 + 2φB2

φ′
h3

= φh4 + 2φA2 + 2φB2

φ′
h4

= φh4 + 2φA2 + 2φB2

φ′
h5

= −1

2
(φh5 + φh6 − φh3 + φh4) + 2φA2 + 2φB2

φ′
h6

=
1

2
(φh5 + φh6 − φh3 + φh4) + 2φA2 + 2φB2 (2.2.54)
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This shift sets the phases of h3 and h4 equal to each other, as well as those of h5 and h6,
as desired. The remaining freedom in redefining phases can be used e.g. to shift either
that of h1 or that of h2 to zero, by poperly tuning the phase of A2 or B2. Note that since
the combination 2φA2 + 2φB2 is common to all the new phases in (2.2.54) this last shift
amounts to modding out all of them by a common angle.

It follows that the conformal manifold is parameterized by three complex parameters,
for instance h2, h3 and h5. Its parametric equations may be written as

h2 = t, h3 = h4 = u, h5 = h6 = v,

|h1|2 =
1

MN − 1

{

X − (MN + 1)
[

|t|2 + 2 |u|2 + 2 |v|2
]}

h7 = h8 = h9 = h10 = 0 (2.2.55)

The precise geometry of the conformal manifold (up to second order in perturbation
theory) is as follows: the algebraic equation in (2.2.55) produces a seven–dimensional
ellipsoid embedded in C4 = {h1, h2, h3, h5}. This is isomorphic to an S7. When we fix
the last free phase setting h1 to zero, we are actually taking a convenient representative
in the orbit of a U(1) symmetry which rotates all phases of h1, h2, h3 and h5 by the same
amount. This is equivalent to taking the quotient

Mc =
S7

U(1)
= CP3 (2.2.56)

Therefore we conclude that at two–loop order, the conformal manifold is globally isomor-
phic to CP3. Some comments on this result are in order

1. The reality of the solution for h1 requires the (t, u, v) moduli not to be arbitrarily
large, being subject to the condition

[

|t|2 + 2 |u|2 + 2 |v|2
]

≤ (4π)2

[

MN + 2

MN + 1

1

K1K2
+

2MN + 1

2(MN + 1)

(

1

K2
1

+
1

K2
2

)]

Since the limiting value is of order 1/K1,2, this condition also guarantees that in the
large K1,2 limit the results are within the range of the perturbative analysis. This
is a self–consistency check on the validity of our approach.

2. We have found that the conformal manifold is a compact surface for any N = 2 CS
matter theory in three dimensions. In particular, it is true for the ABJ(M) theory
and for SU(2) invariant models, including the N = 3 theory.
This renders the three dimensional models strikingly different from analogous models
in four dimensions, where the exactly marginal couplings are not usually constrained
[3].

3. The conformal manifold is Kaehler, confirming expectations on general grounds,
sketched at the end of Section 2.1.2.
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4. The solution (2.2.55) leads to an exactly marginal superpotential explicitly deter-
mined at two loops as

Wex mar = Tr
[

t
(

A1B1A
2 B2 + A1B2 A

2B1

)

+ u
(

A1 B1A
1B1 + A2B2A

2B2

)

+

√

X − (MN + 1) (|t|2 + 2 |v|2 + 2 |u|2)√
MN − 1

(

A1B1 A
2B2 − A1B2A

2 B1

)

+v
(

A1B2A
1B2 + A2B1A

2 B1

)]

+ h.c. (2.2.57)

Exactly marginal operators for the ABJ(M) from perturbation theory. We
focus on the ABJ(M) model and look for its exactly marginal deformations.

We start from the parametric equations (2.2.55). Locally, at the ABJ(M) fixed point
the exactly marginal directions are given by a basis of operators on the tangent space
with respect to the conformal surface (∂t,u,vhi)

0

B

@
1, 1, 0,−

“

2
√

2K1K2(1 + MN)|h2|
”

/
p

(−1 + MN)
q

2K1K2(2 + MN) + (1 + 2MN)(K2
1 + K2

2) − 2K2
1K2

2 (MN + 1) (2|h2|2 + 2|h6|2 + |y1|2)
, 0, 0

1

C

A

0

B

@
0, 0, 1,−

“√
2K1K2(1 + MN)|y1|

”

/
p

(−1 + MN)
q

2K1K2(2 + MN) + (1 + 2MN)(K2
1 + K2

2) − 2K2
1K2

2 (MN + 1) (2|h2|2 + 2|h6|2 + |y1|2)
, 0, 0

1

C

A

0

B

@
0, 0, 0,−

“

2
√

2K1K2(1 + MN)|h6|
”

/
p

(−1 + MN)
q

2K1K2(2 + MN) + (1 + 2MN)(K2
1 + K2

2 ) − 2K2
1K2

2 (MN + 1) (2|h2|2 + 2|h6|2 + |y1|2)
, 1, 1

1

C

A

Plugging in the data of the ABJ(M) fixed point we find the following basis of vectors

(1, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 1)

which corresponds to the operators

Tr
(

A1B1A
1B1 + A2B2A

2B2

)

Tr
(

A1B1A
2B2 + A1B2A

2B1

)

Tr
(

A1B2A
1B2 + A2B1A

2B1

)

(2.2.58)

whereas the ABJM operator, which is transverse to the surface, is an irrelevant perturba-
tion, matching the statement [4] that marginal deformations of such superCFT’s can be
either exactly marginal or marginally irrelevant, but never relevant. The same holds true
for all points belonging to the conformal manifold, which are therefore IR attractors.

Remarks. As mentioned before, different solutions to the equations (2.2.51) may be
found, corresponding to different conformal manifolds. For instance, we can find another
set of solutions by setting h3 = h4 = h5 = h6 = 0. It is easy to see that, again, we obtain a
complex three dimensional manifold. It is related to the previous one by a SO(4) rotation
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of the superpotential. Since this is in general the case, the exactly marginal deformations
(2.3.6) are to be regarded as representatives of the equivalence classes of the quotient.

Finally, we prove that all the theories belonging to the conformal manifold are two–
loop finite, having vanishing anomalous dimensions. Indeed, from (2.2.51) we read that
on the conformal manifold γA

11 = γA
22 and γB

11 = γB
22. Using the explicit expressions for the

anomalous dimensions given in (2.2.47), these constraints give

4
(

|h3|2 − |h4|2
)

= |h9|2 + |h10|2 − |h7|2 − |h8|2
4
(

|h5|2 − |h6|2
)

= |h8|2 + |h9|2 − |h7|2 − |h10|2

Plugging these constraints into the two–loop anomalous dimensions (2.2.47) we obtain
that not only the matrices of anomalous dimensions are proportional to the identity, but
also γA

11 = γA
22 = γB

11 = γB
22 = γ. On the other hand, the last condition in (2.2.51) states

that their sum γA
11+γ

A
22+γ

B
11+γ

B
22 = 4γ should be zero, meaning that all anomalous dimen-

sions are vanishing. We conclude that all theories belonging to the conformal manifold
are two–loop finite. A special case is the theory obtained by turning off the superpoten-
tial. This model is trivially scale invariant since there are no running couplings. However
the anomalous dimensions are non–vanishing, because the bifundamental fields have to
be renormalized due to divergent contributions to the effective action coming from gauge
interactions. This theory is the UV fixed point of the RG flow. In particular the anoma-
lous dimensions are strictly negative at this fixed point, as can be inferred from (2.2.47).
This means that adding a small superpotential deformation hO the operator O is relevant
and will drive the theory to an IR fixed point, which is precisely what happens for the
ABJ(M) model and the other N = 2 CFT’s in general.

2.3 Exactly marginal deformations of Chern–Simons

matter theories from global symmetry breaking.

In this Section we aim at re–deriving the results from our perturbative analysis, by
the general procedure based on global symmetries, explained above. We stress that this
method was developed for N = 1 theories in four dimensions. Its extension to three
dimensional N = 2 models looks straightforward, but no explicit example has been of-
fered to validate this belief. Here we successfully test it for the ABJM and its N = 2
generalizations.

Sticking to the algorithm outlined in Section 2.1.3 we want to detect the spectrum of
supermarginal operators and identify the broken generators of the global symmetry group
they break.

For λ = 0 the classical global symmetry of the theory is U(2)A ×U(2)B where the two
groups act independently on the A and B doublets. The diagonal U(1) is the baryonic
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symmetry under which the bifundamentals (A1, A2, B1, B2) have charges (1, 1, −1, −1).
It is gauged into the U(M) × U(N) gauge group, and therefore it is conserved by any
gauge invariant superpotential. The axial U(1) acts on the bifundamental matter with
charges (1, 1, 1, 1).

SU(2) SU(2) U(1)b U(1)a

A1 2 1 1 1
A2 2 1 1 1
B1 1 2 -1 1
B2 1 2 -1 1

Table 2.1: The behavior of bifundamental fields under the naive global symmetry group.

The addition of the marginal perturbation ǫab ǫ
cd Tr

(

AaBcA
bBd

)

breaks the axial U(1)
and leads the theory to the infrared fixed point given by [24]

λ =

√

2MN + 1

2(MN − 1)

(

1

K2
1

+
1

K2
2

)

+
MN + 2

MN − 1

1

K1K2
(2.3.1)

where only the SU(2)A × SU(2)B global symmetry survives. For K1 = −K2 ≡ K it
reduces to the ABJ(M) fixed point λ = 1/K [2, 12] where supersymmetry gets enhanced
to N = 6.

In order to determine the structure of the exactly marginal deformations we have to
find the class of gauge invariant supermarginal operators. For N = 2 supersymmetric the-
ories in three dimensions classical marginal perturbations are quartic in the bifundamental
fields and constrained by gauge symmetry to have the form λcd

ab Tr(AaBcA
bBd), where λcd

ab

is a tensor of SU(2) × SU(2). For λcd
ab = 1/2 ǫab ǫ

cd we find the ABJ(M) superpotential
which preserves the SU(2) × SU(2) global symmetry. In addition, there are 9 operators
transforming in the (3, 3) representation of SU(2) × SU(2) which have symmetric upper
and lower indices, separately. Explicitly, they are

Tr
(

A1B1A
2 B2 + A1B2 A

2B1

)

, (2.3.2)

Tr
(

A1B1A
1 B1

)

, Tr
(

A2B2 A
2B2

)

,

Tr
(

A1B2A
1 B2

)

, Tr
(

A2B1 A
2B1

)

,

Tr
(

A1B1A
1 B2

)

, Tr
(

A1B1 A
2B1

)

, Tr
(

A1B2 A
2B2

)

, Tr
(

A2 B1A
2B2

)

All together they break SU(2) × SU(2) × U(1)axial completely.

The gauge sector has no marginal operators since the Chern–Simons term is not gauge
invariant. On the other hand, Yang–Mills contributions cannot be added, being them
dimensionful.
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In order to investigate the structure of the conformal manifold for this kind of theories,
we perturb the action (2.6.1) at its conformal ABJ(M) point by adding the marginal chiral
operators (2.3.2). In the class of marginal perturbations we do not include the ABJM
superpotential ǫab ǫ

cd Tr(AaBcA
bBd) since at the IR fixed point it is irrelevant. In fact,

since this operator leads the theory from the UV fixed point (free theory) to the non–
trivial IR point, it is marginal but not exactly marginal. As discussed in [4], it becomes
irrelevant by pairing with the short current multiplet associated to the axial U(1) global
symmetry broken by the operator itself. This will be checked perturbatively in Section
2.4.

According to the general prescription of [4, 5], the conformal manifold is given locally
by the symplectic quotient {λ}/GC, where {λ} is the set of all marginal perturbations of
the CFT and GC is the complexified global (continuous) symmetry group.

In our case {λ} is given by the set (2.3.2), whereas the global symmetry group at the
IR fixed point is SU(2) × SU(2). We can thus write

Mc =
(3, 3)

(SU(2) × SU(2))C

(2.3.3)

and the complex dimension of the conformal manifold is 9−6 = 3. This means that there
are 3 exactly marginal operators which we now identify.

First of all, the most general linear combination of marginal chirals (2.3.2) can be
written as the matrix product [28]

W = Mij wi wj (2.3.4)

where the vectors w are defined as

w1 =
1

2
(A1B1 + A2B2)

w2 =
i

2
(A1B1 −A2B2)

w3 =
i

2
(A1B2 + A2B1)

w4 =
1

2
(A1B2 −A2B1) (2.3.5)

and M is a symmetric traceless 4×4 matrix. The combinations which survive the quotient
(2.3.3) are obviously the diagonal ones. Out of them we can find three independent chiral
primary operators

Tr
(

A1B1A
1B1 + A2B2A

2B2

)

Tr
(

A1B1A
2B2 + A1B2A

2B1

)

Tr
(

A1B2A
1B2 + A2B1A

2B1

)

(2.3.6)
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Therefore, including the original ABJM superpotential term, we conclude that the exactly
marginal superpotential should have the form

uTr
(

A1B1A
1B1 + A2B2A

2B2

)

+ f(t, u, v) Tr
(

A1 B1A
2B2 −A1B2 A

2B1

)

tTr
(

A1 B1A
2B2 + A1B2A

2B1

)

+ vTr
(

A1 B2A
1B2 + A2B1A

2B1

)

(2.3.7)

where f is a solution of the D–term conditions [4]. The explicit form of the function
f(t, u, v) which describes the conformal manifold has been determined at two–loops in
the Section 2.2.1, equation (2.2.57).

The same analysis can be applied to other remarkable fixed points introduced in [13]
and perturbatively determined in [29, 24].

We consider a N = 2 theory described by the action (2.6.1) with superpotential

W =

∫

d3x d2θ Tr
[

c1 (Aa Ba)
2 + c2 (BaA

a)2
]

+ h.c. (2.3.8)

For real couplings, the equation

c21 + c22 + 2
MN + 2

2MN + 1
c1 c2 = (4π)2

[

1

4K2
1

+
1

4K2
2

+
MN + 2

2K1K2 (2MN + 1)

]

(2.3.9)

describes a line of fixed points [24]. For particular values c1 = 2π
K1

and c2 = 2π
K2

supersym-
metry gets enhanced to N = 3 [13].

We focus on a given point on this line and study the conformal manifold perturbing
around it with all classical marginal operators. This time the superpotential preserves
a diagonal global SU(2) subgroup, out of the original SU(2) × SU(2) × U(1)axial global
symmetry of the free theory. Therefore, four classically marginal operators have become
irrelevant at the IR fixed point by coupling to the broken currents of the four broken
generators. The set of supermarginals is thus reduced to six operators. The dimension of
the conformal manifold is then given by

dim

({6 operators}
SU(2)C

)

= 6 − 3 = 3 (2.3.10)

2.4 Currents and OPE

In this Section we study the OPE algebra of marginal chiral operators and global
currents at the first non–trivial perturbative order. We show that the constraints for
vanishing β–functions previously found are in one to one correspondence with those for
the vanishing of the D–terms for global symmetries [4, 5].
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Given the set of marginal chiral primary operators {Oi} as appearing in the super-
potential (2.2.1) (Oi is the operator associated to hi) the OPE algebra has the general
structure

Oi(x)Oj(0) =
gij

|x|4 +
T a

ij

|x|3 Ja + . . . (2.4.1)

where gij is the Zamolodchikov metric and Ja the global symmetry currents. Using the
chiral propagators in coordinate space

〈Aa(x) Āb(0) 〉 =
1

4 π

1

|x| δ
a
b , 〈Ba(x) B̄

b(0) 〉 =
1

4 π

1

|x| δ
b
a (2.4.2)

it is easy to determine the metric on the couplings space at the lowest perturbative order

gij =
MN(MN + 1)

(4π)4
diag

(

2
1 −MN

MN + 1
, 2, 2, 2, 2, 2, 1, 1, 1, 1

)

(2.4.3)

We note that it turns out to be diagonal, thanks to the particular choice of Oi in (2.2.1).

Performing three contractions we obtain the contributions of order 1/|x|3. They turn
out to be expressed in terms of the global symmetries currents

JU(1) = A1A
1 + A2 A

2 +B
1
B1 +B

2
B2

JA
+ = A1A

2 , JA
− = A2A

1 , JA
3 = A1A

1 − A2A
2

JB
+ = B

1
B2 , JB

− = B
2
B1 , JB

3 = B
1
B1 − B

2
B2 (2.4.4)

where JU(1) is the current of the global axial U(1) under which all chiral superfields have
unit charge, whereas JA

i and JB
i are the currents associated to the generators of SU(2)A

and SU(2)B, where in particular J± = J1 ± i J2.

By direct inspection it is easy to obtain the T a
ij

coefficients in (2.4.1). Up to an overall

1/(4π)3, they are given by

T
U(1)
11 = (1 −MN) T

U(1)
22 = 2 (MN + 1)

T
U(1)
33 = T

JA
3

33 = T
JB
3

33 = 2 (MN + 1) T
U(1)
44 = −T JA

3
44 = −T JB

3
44 = 2 (MN + 1)

T
U(1)
55 = T

JA
3

55 = −T JB
3

55 = 2 (MN + 1) T
U(1)
66 = −T JA

3
66 = T

JB
3

66 = 2 (MN + 1)

T
U(1)
77 = T

JA
3

77 = (MN + 1) T
U(1)
88 = T

JB
3

88 = (MN + 1)

T
U(1)
99 = −T JA

3
99 = (MN + 1) T

U(1)
10 10 = −T JB

3
10 10 = (MN + 1)

T
JA
+

27 = T
JA
+

4 10 = T
JA
+

68 = T
JA
+

83 = T
JA
+

92 = T
JA
+

10 5 = 2 (MN + 1)

T
JB
+

28 = T
JB
+

49 = T
JB
+

57 = T
JB
+

73 = T
JB
+

96 = T
JB
+

10 2 = 2 (MN + 1)

T
JA
−

ij = T
JA
+

ji T
JB
−

ij = T
JB
+

ji (2.4.5)

Analogously, we can compute the OPE between two gauge currents. It has the general
structure

JM(x) JN(0) ∼ 1

|x|3 ΓMN k
a Ja + · · · (2.4.6)
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where Ja are global currents.

In the present case, taking the two gauge currents JA = Āa e
V Aa e−V̂ and JB =

B̄a eV Ba e
−V̂ , the only non–trivial contribution at order 1/|x|3 is proportional to JU(1)

with coefficient

kU(1) = −(4π)2 (2MN + 1)

(

1

K2
1

+
1

K2
2

)

− 2
MN + 2

K1K2
(2.4.7)

This comes from two different contributions: The first one corresponds to expanding JA

and JB at second order in the gauge prepotentials and contracting one chiral and two
gauge superfields. The second contribution comes from normal–ordering the currents and
corresponds to contracting two gauge superfields inside a single current with a one–loop
corrected propagator.

Since the contraction of two gauge currents as well as of two chiral supermarginals give
a logarithmically singular contribution to the Kaehler potential of the form

∫

d4θZa(µ)Ja,
the D–terms for the global symmetries have the general form [4]

Da ≡ µ
∂

∂ µ
Za(µ) ∼ hi T a

ij
hj + ka (2.4.8)

Vanishing D-term conditions insure independence of the effective action of the energy
scale and then its superconformal invariance.

In the present case, using the explicit results (2.4.5, 2.4.7) we find

DU(1) ∼ (MN + 1)
(

2 |h2|2 + 2 |h3|2 + 2 |h4|2 + 2 |h5|2 + 2 |h6|2 + |h7|2+
|h8|2 + |h9|2 + |h10|2

)

− 2 (MN − 1) |h1|2 + kU(1)

DA
+ ∼ 2 (MN + 1)

(

h2 h7 + h4 h10 + h9 h2 + h8 h3 + h6 h8 + h10h5

)

DA
− ∼ 2 (MN + 1)

(

h2 h9 + h3 h8 + h5 h10 + h7 h2 + h8 h6 + h10h4

)

DA
3 ∼ (MN + 1)

(

2 |h3|2 − 2 |h4|2 + 2 |h5|2 − 2 |h6|2 + |h7|2 − |h9|2
)

DB
+ ∼ 2 (MN + 1)

(

h2 h8 + h4 h9 + h5 h7 + h7 h3 + h9 h6 + h10 h2

)

DB
− ∼ 2 (MN + 1)

(

h2 h10 + h3 h7 + h6 h9 + h7 h5 + h8 h2 + h9 h4

)

DB
3 ∼ (MN + 1)

(

2 |h3|2 − 2 |h4|2 − 2 |h5|2 + 2 |h6|2 + |h8|2 − |h10|2
)

(2.4.9)

We recognize the D± = 0 conditions to be the same as (2.2.51) for the vanishing of
the off–diagonal part of the anomalous dimensions (2.2.47), whereas the combinations
DU(1) ±DA

3 = 0 and DU(1) ±DB
3 = 0 precisely match the conditions for the vanishing of

the diagonal part of the anomalous dimensions, as derived above. This proves the complete
equivalence of the two methods for finding the conformal manifold of the theory.

By using the nonconservation equation for the currents,

D̄2Ja = hi T a j
i Oj + . . . (2.4.10)
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one can also check which operators are responsible for breaking the various symmetries
of the free theory.
For example at the ABJ(M) fixed point, we see that the ABJM superpotential operator
couples to the global axial U(1) and thus becomes irrelevant, as we argued above.
At the N = 3 fixed point, lying on the SU(2) invariant subset of the conformal manifold,
we see that indeed the conservation equations for JA

+ − JB
− , JA

− − JB
+ and JA

3 − JB
3 are

satisfied, corresponding to the preserved diagonal SU(2)D subgroup of SU(2) × SU(2).
Instead, from the nonconservation of the currents of (SU(2) × SU(2))/SU(2)D, we see
that the operators parameterized by h3 −h4, h7 + h10 and h8 + h9 have become irrelevant
by coupling to the broken currents.

2.5 Conformal manifold for flavored theories

Finally, we study the conformal manifold for N = 2 CS-matter theories when addi-
tional flavor degrees of freedom are included.

Flavor chiral superfields in the (anti)fundamental representation of the gauge groups
can be safely added to the theories described above, without affecting superconformal
invariance [30, 16, 31, 24]. For instance, given the model (2.6.1, 1.3.5) we can add Mf

fundamental and M̃f antifundamental chiral superfields (Qr
1, Q̃1, r̃), charged under the first

gauge group and Nf fundamentals and Ñf antifundamentals (Qs
2, Q̃2, s̃), charged under the

second gauge group. In the literature only the cases Nf = Ñf and Mf = M̃f are discussed.
However, as long as we are not concerned with surviving non–abelian global symmetries,
nothing prevents us from considering a more general case with Nf 6= Ñf , Mf 6= M̃f .

For W = 0, the classical global symmetry of the flavor sector is U(Nf ) × U(Ñf ) ×
U(Mf )×U(M̃f ) in addition to the U(2)×U(2) group of the bifundamental sector already
discussed.

The set of classical supermarginals is given by the operators belonging to the bifun-
damental sector (eqs. (1.3.5, 2.3.2)) plus pure flavor operators (1.5.12)

(FA,B)ik
jl Q̃A, iQ

j
A Q̃B, k Q

l
B , A,B = 1, 2 (not summed) (2.5.1)

with (FA,B)ik
jl = (FB,A)ki

lj , and mixed marginals (1.5.13) whose form is constrained by
gauge invariance to be

M b,i
a,j Q̃1 iA

aBbQ
j
1 , M̃ b,i

a,j Q̃2 iBbA
aQj

2 (2.5.2)

Counting the number of independent M and M̃ couplings we have 4(NfÑf + MfM̃f)
operators of the form (2.5.2).

For operators of the form (2.5.1), we have three different countings according to the
values of the A,B labels. For A,B = 1, taking into account the symmetry of the trace, we
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have multiplicity 1
2
Nf Ñf(Nf Ñf +1). Analogously, for A,B = 2 we have 1

2
MfM̃f (MfM̃f +

1) operators, whereas for A = 1 and B = 2 we find NfÑfMfM̃f supermarginals.

All together, there are 1
2
(NfÑf +MfM̃f )(NfÑf +MfM̃f + 9) marginal operators in

addition to the ten supermarginals of the unflavored case. These operators break all the
global symmetries except two diagonal U(1)’s among U(Nf )×U(Ñf ) and U(Mf )×U(M̃f )
which are part of the gauge symmetry. The number of broken global generators is then

(N2
f + Ñf

2
+M2

f + M̃f
2 − 2).

Using the arguments of [4, 5], we find that in the presence of flavor degrees of freedom
the dimension of the conformal manifold is

dimMc = 5+
1

2
(NfÑf +MfM̃f )(NfÑf +MfM̃f +5)− (Nf −Ñf )

2− (Mf −M̃f )2 (2.5.3)

Setting Nf = Ñf and Mf = M̃f we obtain the dimension of the conformal manifold for
the N = 3 theory introduced in [16] and studied in [24].
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2.6 Explicit examples of conformal fixed points and

exactly marginal deformations.

The discussion in the previous Section is rather general and abstract. It is mainly
focused on figuring out the overall properties of the conformal manifold of the ABJ(M)
theory.

In this Section we focus our attention on less symmetric theories and extend the RG
flow analysis to a more general set of models. In doing this we get a better insight on the
spectrum of N = 2 CFT’s, however we have to sacrifice generality and consider particular
cases of deformations, to make explicit computation feasible. The results which follow are
mainly taken from [29] and [24].

In particular we are interested in recovering some of the models proposed in literature
to extend the ABJM theory, ascertaining whether and how these may be connected by
exactly marginal deformations.

Indeed, since the original formulation of the AdS4/CFT3 correspondence, many efforts
have been devoted to the its generalization. These were reviewed in Section 1.5 and we
just list some of them here for convenience:

• different gauge groups [12, 32];

• less (super)symmetric backgrounds [33]-[34];

• inclusion of flavor degrees of freedom [30, 16, 31, 35, 36];

• non–opposite CS levels (K1, K2) [37, 13].

CS matter theories involved in the AdS4/CFT3 correspondence are of course at their
superconformal fixed point ‡. Compactification of type IIA supergravity on AdS4 × CP3

does not contain scalar tachyons [7]. Since these states are dual to relevant operators in
the corresponding field theory, AdS4/CFT3 correspondence leads to the prediction that
in the far IR fixed points should be stable.

As a non–trivial check of the correspondence, it is then interesting to investigate the
properties of these fixed points in the quantum field theory in order to establish whether
they are isolated fixed points or they belong to a continuum surface of fixed points,
whether they are IR stable and which are the RG trajectories which intersect them. Since
for K ≫ N the CS theory is weakly coupled, a perturbative approach is available.

With these motivations in mind, we consider a N = 2 supersymmetric two–level CS
theory for gauge group U(M) × U(N) with matter in the bifundamental representation

‡A classification of a huge landscape of superconformal Chern–Simons matter theories in terms of
matter representations of global symmetries has been given in [38].
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and flavor degrees of freedom in the fundamental, perturbed by a rather general matter
superpotential compatible with N = 2 supersymmetry and capable of encompassing all
models cited above. The action we refer to reads

S = SCS + Smat + Spot (2.6.1)

with SCS, the standard N = 2 CS action already given in (1.3.1), Smat the complete matter
action (including flavors), and the superpotential Spot, featuring pure bifundamental, pure
fundamental and mixed interactions

Smat =

∫

d3x d4θ Tr
(

Āi e
V Ai e−V̂ + B̄i eV̂ Bi e

−V
)

+

∫

d3xd4θ
(

Q̄1
r e

V Qr
1 + Q̃1,r e

−V ¯̃Q1,r + Q̄2
s e

V̂ Qs
2 + Q̃2,s e

−V̂ ¯̃Q2,s
)

Spot =

∫

d3x d2θ
{

Tr
[

(h1 + h2) (A1B1A
2B2) + (h2 − h1) (A2B1A

1B2)

+h3 (A1B1)
2 + h4 (A2B2)

2
]

+

+λ1 (Q̃1Q1)
2 + λ2 (Q̃2 Q2)

2 + λ3 Q̃1Q1 Q̃2 Q2

+α1 Q̃1A
1 B1Q1 + α2 Q̃1A

2B2Q1 + α3 Q̃2B1 A
1Q2 + α4 Q̃2B2A

2Q2

}

+ h.c.

(2.6.2)

As recalled several times, 4πK1, 4πK2 are two independent integers, as required by gauge
invariance of the effective action. In the perturbative regime we take K1, K2 ≫ N,M .
The superpotential (2.6.2) is the most general classically marginal perturbation which
respects N = 2 supersymmetry but allows only for a diagonal U(Mf ) × U(Nf ) global
symmetry (under which Q and Q̃ transform in conjugates representations, Table 2.2)
in addition to a global U(1) under which the bifundamentals have for example charges
(1, 0,−1, 0).

gauge flavor
U(M) U(N) U(Mf ) U(Nf )

Q1 M 1 Mf 1

Q̃1 M̄ 1 M̄f 1
Q2 1 N 1 Nf

Q̃2 1 N̄ 1 N̄f

Table 2.2: The representations of the gauge and global symmetries under which flavor
fields transform.

As anticipated this is a restriction, in the bifundamental sector, with respect to the
most general interaction in (2.2.1), since only four couplings out of the ten possible are
retained. This entails great simplification in that as we will see this model does not cause
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mixing in the anomalous dimensions of the fields. However we in some sense generalize
(2.2.1) in that we also introduce interacting flavor degrees of freedom explicitly. Still we
select a very small subset of supermarginal operators restricting to a global symmetry
preserving superpotential.

For generic values of the couplings, the action (1.3.1) is invariant under the following
gauge transformations

eV → eiΛ̄1 eV e−iΛ1 eV̂ → eiΛ̄2 eV̂ e−iΛ2 (2.6.3)

Ai → eiΛ1 Ai e−iΛ2 Bi → eiΛ2 Bi e
−iΛ1

Q1 → eiΛ1 Q1 Q̃1 → Q̃1 e
−iΛ1

Q2 → eiΛ2 Q2 Q̃2 → Q̃2 e
−iΛ2 (2.6.4)

where Λ1,Λ2 are two chiral superfields parameterizing U(M) and U(N) gauge transforma-
tions, respectively. Antichiral superfields transform according to the conjugate of (2.6.4).

For special values of the couplings we can have enhancement of global symmetries
and/or R–symmetry with consequent enhancement of supersymmetry. In particular
choosing the couplings properly the model reduces to the N = 6 ABJ/ABJM super-
conformal theories [2, 12] (N = 8 BLG theory [39, 40] for N = M = 2) or to the
superconformal N = 2, 3 theories with different CS levels studied in [13], in all cases with
and without flavors. More generally, it describes marginal (but not necessarily exactly
marginal) perturbations which can drive the theory away from the superconformal points.
We list the most important cases we will be interested in, dividing theories with flavors
from flavored ones.

Theories without flavors. Turning off flavor matter (Mf = Nf = 0, αj = λj = 0)
and setting

K1 = −K2 ≡ K , h3 = h4 = 0 (2.6.5)

we have N = 2 ABJM/ABJ–like theories already studied in [29]. In this case the theory
is invariant under two global U(1)’s in addition to U(1)R. The transformations are

U(1)A : A1 → eiαA1 , U(1)B : B1 → eiβ B1

A2 → e−iαA2 , B2 → e−iβ B2 (2.6.6)

When h3 = −h4 ≡ h, the global symmetry becomes U(1)R × SU(2)A × SU(2)B and gets
enhanced to SU(4)R for h = 4π/K [2, 33]. For this particular values of the couplings we
recover the N = 6 superconformal ABJ theory [12] and for N = M the ABJM theory [2].

More generally, we can select theories corresponding to complex couplings

h1 + h2 = h ei π β , h2 − h1 = −h e−i π β (2.6.7)
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These are N = 2 β–deformations of the ABJ–like theories. For particular values of h and
β we find a superconformal invariant theory.

Going back to real couplings, we now consider the more general case K1 6= −K2.
Setting

h3 = h4 = h2 (2.6.8)

the corresponding superpotential reads

Spot =
1

2

∫

d3x d2θ Tr
[

(h1 + h2) (AiBi)
2 + (h2 − h1) (BiA

i)2
]

+ h.c. (2.6.9)

This is the class of N = 2 theories studied in [13] with SU(2) invariant superpotential,
where SU(2) rotates simultaneously Ai and Bi.

When h2 = 0, that is h3 = h4 = 0, we have the particular set of N = 2 theories with
global SU(2)A × SU(2)B symmetry [13]. This is the generalization of ABJ/ABJM–like
theories to K1 6= −K2. According to AdS/CFT , for particular values of h2 = 0 we should
find a superconformal invariant theory.

Another interesting fixed point should correspond to h1 + h2 = 4π
K1

and h2 − h1 = 4π
K2

.
The U(1)R R–symmetry is enhanced to SU(2)R and the theory is N = 3 superconformal
[13].

Theories with flavors. Setting the following identifications for the couplings

K1 = −K2 ≡ K , h3 = h4 = 0 , h2 = 0, h1 =
1

K

λ1 = 4π
a2

1

2K
, λ2 = −4π

a2
2

2K
, λ3 = 0

α1 = α2 = 4π
a1

K
, α3 = α4 = 4π

a2

K
(2.6.10)

with arbitrary parameters a1, a2, our model reduces to the class of N = 2 theories studied
in [30]. Choosing in particular the values a1 = −a2 = 1 there is an enhancement of
R–symmetry and the theory exhibits N = 3 supersymmetry. This set of couplings should
correspond to a superconformal fixed point [30, 16, 31].

In the more general case of K1 6= −K2, in analogy with the unflavored case we consider
the class of theories with

h3 = h4 = h2 ; α1 = α2 , α3 = α4 (2.6.11)

For generic couplings these are N = 2 theories with a SU(2) symmetry in the bifun-
damental sector which rotates simultaneously Ai and Bi. When h2 = 0 this symmetry



66 Chapter 2. Exactly marginal deformations

is enhanced to SU(2)A × SU(2)B. The flavor sector has only U(Mf ) × U(Nf ) flavor
symmetry.

Within this class of theories we can select the one corresponding to

λ1 =
h1 + h2

2
, λ2 =

h2 − h1

2
, λ3 = 0

α1 = α2 = h1 + h2 , α3 = α4 = h2 − h1

(2.6.12)

The values h1 +h2 = 4π
K1
, h2 −h1 = 4π

K2
give the N = 3 superconformal theory with flavors

mentioned in [16]. It corresponds to flavoring the N = 3 theory of [13].

2.6.1 RG properties.

Having introduced the main ingredients, we now turn to the explicit determination of
the RG flow of the theories described by (2.6.2).

We compute the anomalous dimensions and β–functions with this superpotential. Its
great advantage with respect to the general case described above, is that the reduced set
of interactions prevents matter fields from undergoing mixing, making all the computation
more handable.

One–loop results.

We list the results for the RG functions of this class of theories and then use them for
analyzing the details of the RG flows.

We can recycle the perturbative computations from the previous Section, just adding
new contributions for and from flavor fields. For instance the gauge one-loop self–energy
contributions coming from diagrams in Fig. 2.5 where also flavor loops are present deter-
mine the following finite contributions to the quadratic action for the V gauge fields

Π(1)
gauge(a) =

(

N +
Mf

2

)

δAA′

∫

d3k

(2π)3
d4θ B0(k) k

2 V A(k) Π1/2 V
A′

(−k)

Π(1)
gauge(b) = −1

8
fABCfA′BC

∫

d3k

(2π)3
d4θ B0(k) k

2 V A(k)
(

Π0 + Π1/2

)

V A′
(−k)

Π(1)
gauge(2c) =

1

8
fABCfA′BC

∫

d3k

(2π)3
d4θ B0(k) k

2 V A(k) Π0 V
A′

(−k)

(2.6.13)
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and for V̂ gauge fields

Π̂
(1)
gauge(a) =

(

N +
Nf

2

)

δAA′

∫

d3p

(2π)3
d4θ B0(p) p

2 V̂ A(p) Π1/2 V̂
A′

(−p)

Π̂
(1)
gauge(b) = −1

8
f̂ABC f̂A′BC

∫

d3p

(2π)3
d4θ B0(p) p

2 V̂ A(p)
(

Π0 + Π1/2

)

V̂ A′
(−p)

Π̂
(1)
gauge(2c) =

1

8
f̂ABC f̂A′BC

∫

d3p

(2π)3
d4θ B0(p) p

2 V̂ A(p) Π0 V̂
A′

(−p)

(2.6.14)

In addition diagram (a) also allows for mixing of the abelian propagators of V and V̂
kind, but flavor fields loop do not contribute to such a term, since they couple with one
type of gauge vector boson only

Π̃(1)
gauge(a) = −2

√
MNδA0δA′0

∫

d3p

(2π)3
d4θ B0(p) p

2 V A(p) Π1/2 V̂
A′

(−p) (2.6.15)

Summing all the contributions we find the one–loop corrected gauge propagators

Π(1)
gauge =

[

−1

8
fABCfA′BC +

(

N +
Mf

2

)

δAA′

]
∫

d3p

(2π)3
d4θ B0(p) p

2 V A(p) Π1/2 V
A′

(−p)

Π̂(1)
gauge =

[

−1

8
fABCfA′BC +

(

M +
Nf

2

)

δAA′

]
∫

d3p

(2π)3
d4θ B0(p) p

2 V̂ A(p) Π1/2 V̂
A′

(−p)

(2.6.16)

together with Π̃
(1)
gauge in (2.6.15) which mixes the two U(1) gauge sectors.

Two-loop results

We are now ready to evaluate the matter self–energy contributions at two loops, both
for the bifundamental and the flavor matter fields. The divergent diagrams are again given
in Fig. 2.6, taking into account the contribution to the one–loop effective propagator from
flavor degrees of freedom, and considering similar self–energy diagrams for fundamental
fields.

Separating the contributions of each diagram, the results for bifundamental matter
read (see also 2.2.17)

Π
(2)
bif(3a) = −

[

(4π)2

K2
1

(

2MN +MMf − 1

2

(

M2 − 1
)

)

+

+
(4π)2

K2
2

(

2MN +NNf − 1

2

(

N2 − 1
)

)

+
4(4π)2

K1K2

]

F(0) Tr
(

ĀiA
i + B̄iBi

)
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Π
(2)
bif (3b) =

[

4 |h3|2 (MN + 1) + 2 (|h1|2 + |h2|2)MN + 2 (|h2|2 − |h1|2)

+ (|α1|2MMf + |α3|2NNf )
]

F(p) Tr
(

Ā1A
1 + B̄1B1

)

+
[

4 |h4|2 (MN + 1) + 2 (|h1|2 + |h2|2)MN + 2 (|h2|2 − |h1|2)

+ (|α2|2MMf + |α4|2NNf )
]

F(p) Tr
(

Ā2A
2 + B̄2B2

)

Π
(2)
bif (3c) = −8π2

[

M2 + 1

K2
1

+
N2 + 1

K2
2

+
4MN

K1K2

]

F(p) Tr
(

ĀiA
i + B̄iBi

)

(2.6.17)

where F(p) is again the two–loop self–energy integral given in (2.2.19).

Analogously, for fundamental matter we find

Π
(2)
fund1(3a) = −(4π)2

K2
1

(

2MN +MMf − 1

2

(

M2 − 1
)

)

F (0) Tr
(

Q̄1Q1 + ¯̃Q1Q̃1

)

Π
(2)
fund2(3a) = −(4π)2

K2
2

(

2MN +NNf − 1

2

(

N2 − 1
)

)

F (0) Tr
(

Q̄2Q2 + ¯̃Q2Q̃2

)

Π
(2)
fund1(3b) =

[

4 |λ1|2 (MMf + 1) + |λ3|2NNf

+
(

|α1|2 + |α2|2
)

MN
]

F (p) Tr
(

Q̄1Q1 + ¯̃Q1Q̃1

)

Π
(2)
fund2(3b) =

[

4 |λ2|2 (NNf + 1) + |λ3|2MMf

+
(

|α3|2 + |α4|2
)

MN
]

F (p) Tr
(

Q̄2Q2 + ¯̃Q2Q̃2

)

Π
(2)
fund1(3c) = −8π2 M

2 + 1

K2
1

F (p) Tr
(

Q̄1Q1 + ¯̃Q1Q̃1

)

Π
(2)
fund2(3c) = −8π2 N

2 + 1

K2
2

F (p) Tr
(

Q̄2Q2 + ¯̃Q2Q̃2

)

(2.6.18)

where F(p) is still given in (2.2.19).

The renormalization of the theory proceeds as in the previous Section. In order to
cancel the divergences in (2.6.17) and (2.6.18) we choose

ZA1 = ZĀ1
= ZB1 = ZB̄1 = 1 −

1

64π2

[

− (4π)2

(

2MN +MMf + 1

K2
1

+
2NM +NNf + 1

K2
2

+
2MN + 4

K1K2

)

+ 4 |h3|2 (MN + 1) + 2 (|h1|2 + |h2|2)MN + 2(|h2|2 − |h1|2)
+ (|α1|2MMf + |α3|2NNf )

]1

ǫ
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ZA2 = ZĀ2
= ZB2 = ZB̄2 = 1 −

1

64π2

[

−(4π)2

(

2MN +MMf + 1

K2
1

+
2MN +NNf + 1

K2
2

+
2MN + 4

K1K2

)

+ 4 |h4|2 (MN + 1) + 2 (|h1|2 + |h2|2)MN + 2 (|h2|2 − |h1|2)
+ (|α2|2MMf + |α4|2NNf )

] 1

ǫ
ZQ1 = ZQ̄1 = ZQ̃1

= Z ¯̃Q1 = 1 −
1

64π2

[

−(4π)2 2MN +MMf + 1

K2
1

+ 4|λ1|2 (MMf + 1)+

|λ3|2NNf + (|α1|2 + |α2|2)MN
] 1

ǫ
ZQ2 = ZQ̄2 = ZQ̃2

= Z ¯̃Q2 = 1 −
1

64π2

[

−(4π)2 2MN +NNf + 1

K2
2

+ 4 |λ2|2 (NNf + 1)+

|λ3|2MMf + (|α3|2 + |α4|2)MN
] 1

ǫ
(2.6.19)

Reading the single pole coefficients Z
(1)
Φj

in eqs. (2.6.19) we obtain the anomalous dimen-
sions of all fields

γA1 = γB1 =
1

32π2

[

− (4π)2

(

2MN +MMf + 1

K2
1

− 2MN +NNf + 1

K2
2

− 2MN + 4

K1K2

)

+ 4 |h3|2 (MN + 1) + 2 (|h1|2 + |h2|2)MN + 2 (|h2|2 − |h1|2)
+ (|α1|2MMf + |α3|2NNf )

]

γA2 = γB2 =
1

32π2

[

− (4π)2

(

2MN +MMf + 1

K2
1

− 2MN +NNf + 1

K2
2

− 2MN + 4

K1K2

)

+ 4 |h4|2 (MN + 1) + 2 (|h1|2 + |h2|2)MN + 2 (|h2|2 − |h1|2)
+ (|α2|2MMf + |α4|2NNf )

]

γQ1 = γQ̃1
=

1

32π2

[

− (4π)2 2MN +MMf + 1

K2
1

+ 4 |λ1|2 (MMf + 1) + |λ3|2NNf + (|α1|2 + |α2|2)MN
]

γQ2 = γQ̃2
=

1

32π2

[

− (4π)22MN +NNf + 1

K2
2

+ 4 |λ2|2 (NNf + 1) + |λ3|2MMf + (|α3|2 + |α4|2)MN
]

(2.6.20)
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and the corresponding β–functions are finally obtained by

βh3 = 4 h3 γA1 βh4 = 4 h4 γA2

βh1 = 2 h1 (γA1 + γA2) βh2 = 2 h2 (γA1 + γA2)

βλ1 = 4 λ1 γQ1 βλ2 = 4 λ2 γQ2

βλ3 = 2 λ3 (γQ1 + γQ2)

βα1 = 2α1 (γA1 + γQ1) βα2 = 2α2 (γA2 + γQ1)

βα3 = 2α3 (γA1 + γQ2) βα4 = 2α4 (γA2 + γQ2) (2.6.21)

2.7 The spectrum of fixed points

In this Section we study solutions to the equations βνj
= 0 where the β–functions are

given in (2.6.21). We consider separately the cases with and without flavor matter.

2.7.1 Theories without flavors

We begin by considering the class of theories without flavors. In eqs. (2.6.20) we set
Mf = Nf = 0, λj = αj = 0 and solve the equations

βh3 = 4 h3 γA1 = 0 βh4 = 4 h4 γA2 = 0

βh1 = 2 h1 (γA1 + γA2) = 0 βh2 = 2 h2 (γA1 + γA2) = 0 (2.7.1)

When hj 6= 0 for any j the conditions (2.7.1) are equivalent to γA1 = γA2 = 0, that is no
UV divergences appear at two–loops.

On the other hand, if we restrict to the surface h3 = h4 = 0, the β–functions are zero
when γA1 + γA2 = 0, which in principle would not require the anomalous dimensions to
vanish. However, it is easy to see from (2.6.20) that for h3 = h4 = 0 we have γA1 = γA2

and again βh1 = βh2 = 0 imply the vanishing of all the anomalous dimensions. Therefore,
at two loops the request for vanishing β–functions is equivalent to the request of finiteness.

We first study the class of theories with h3 = h4 = 0. In this case it is easy to see that
h2 is associated to a SU(2)A × SU(2)B breaking perturbation, whereas h1 is symmetry
preserving.

For real couplings, the anomalous dimensions vanish when

h2
2 (MN + 1) + h2

1 (MN − 1) = 4π2

[

2 (2MN + 1)

(

1

K2
1

+
1

K2
2

)

+ 2
2MN + 4

K1K2

]

(2.7.2)

This describes an ellipse in the parameter space (h1, h2), which is drawn in Fig. 2.7. For
K1,2 sufficiently large it is very close to the origin and solutions fall in the perturbative
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regime. The ellipse degenerates to a circle in the large M,N limit. Fixed points corre-
sponding to h2 6= 0 describe N = 2 superconformal theories with U(1)A × U(1)B global
symmetry (2.6.6).

free theory

ABJ

-0.02 -0.01 0.00 0.01 0.02 0.03
y2

-0.02

-0.01

0.00

0.01

0.02

0.03

y1

Figure 2.7: The ellipse of fixed points in the y1 = h1/2, y2 = h2/2 space. For large M,N
its eccentricity is very small.

A more symmetric conformal point is obtained by solving (2.7.2) under the condition
h2 = 0. The solution

h2 = 0, h1 = 4π

√

2MN + 1

2(MN − 1)

(

1

K2
1

+
1

K2
2

)

+
MN + 2

MN − 1

1

K1K2
(2.7.3)

corresponds to a superconformal theory with SU(2)A ×SU(2)B global symmetry. This is
the theory conjectured in [13]. When K1 = −K2 ≡ K it reduces to h2 = 0, h1 = 4π/K
and we recover the N = 6 ABJ model [12] and, for N = M , the ABJM one [2].

More generally, we study fixed points with hj 6= 0 for any j. In this case we have two
equations, γA1 = γA2 = 0, for four unknowns. The spectrum of fixed points then spans a
two dimensional surface which for real couplings is given by

h2
3 = h2

4 =
8π2

MN + 1

[

(

MN +
1

2

)(

1

K2
1

+
1

K2
2

)

+
MN + 2

K1K2
−MN(h2

1 + h2
2) − (h2

2 − h2
1)
]

(2.7.4)
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This equation describes an ellipsoid in the four dimensional h–space as depicted in Fig.
2.8, localized in the subspace h3 = h4 (or equivalently h3 = −h4). A particular point on
this surface corresponds to h1 + h2 = 4π/K1 and h2 − h1 = 4π/K2 with, consequently,
h3 = h4 = 2π( 1

K1
+ 1

K2
). This is the N = 3 superconformal theory discussed in [13] §.

The locus h3 = h4 = 0, h2 = 0 of this surface is the N = 2, SU(2)A×SU(2)B invariant
superconformal theory (2.7.3). Therefore, the N = 3 and the N = 2, SU(2)A × SU(2)B

superconformal points are continuously connected by the surface (2.7.4).

We can select a particular line of fixed points interpolating between the two theories,
by setting

h3 = h4 = h2 (2.7.5)

and, consequently

h2
1 + h2

2 +
MN + 2

2MN + 1
(h2

2 − h2
1) = 8 π2

[

1

K2
1

+
1

K2
2

+ 2
MN + 2

K1K2 (2MN + 1)

]

(2.7.6)

These are SU(2) invariant, N = 2 superconformal theories with superpotential (2.6.9).
The existence of a line of SU(2) invariant fixed points interpolating between the two
theories was already conjectured in [13]. So far we have considered real solutions to the
equations βνj

= 0. We now discuss the case of complex couplings focusing in particular
on the so–called β–deformations.

In the class of theories with h3 = h4 = 0 we look for solutions of the form

h1 + h2 = hei π β , h2 − h1 = −he−i π β (2.7.7)

which implies h2 = −i 2 h sin π β, h1 = 2 h cosπ β. The condition for vanishing β–
functions then reads

h2 MN − h2 cos 2π β = 2 π2 (2MN + 1)

(

1

K2
1

+
1

K2
2

)

+
MN + 2

K1K2
(2.7.8)

This describes a line of fixed points which correspond to superconformal β–deformations
of the SU(2)A×SU(2)B invariant theory (2.7.3). For β 6= 0 the global symmetry is broken
to U(1)A × U(1)B in (2.6.6) and the deformed theory is only N = 2 supersymmetric. In
particular, setting K1 = −K2 we obtain the β–deformed ABJM/ABJ theories studied in
[41].

In the large M,N limit the β–dependence of equation (2.7.8) disappears, consistently
with the fact that in planar Feynman diagrams the effects of the deformation are invisible
[42]. In this limit the condition for superconformal invariance reads

h2 = (4π)2

(

1

K2
1

+
1

K2
2

+
1

K1K2

)

(2.7.9)

§Finiteness properties of N = 3 CS–matter theories have also been discussed in [34] within the N = 3
harmonic superspace setup.
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ABJ

N=3

h1

h2

h3=0

Figure 2.8: The exactly marginal surface of fixed points in the space of hi couplings,
restricted to the subspace h3 = h4, to make a pictorial representation possible. The
parameters have been chosen so that the CS levels are opposite and M = 43, N = 30.
The dots denote the N = 3 (red) and the N = 6 ABJ (blue) fixed points belonging to the
ellipsoid. The plane h3 = 0 represents the class of theories (2.6.9) with SU(2)A ×SU(2)B

global symmetry and its intersection with the ellipsoid is the line described by (2.7.6).
The ABJ theory belongs to such a line as well. The N = 3 model does not, since a
nonvanishing value for h3 is required to cook it up. The same picture presents also in the
case of non–opposite CS levels, where however the would be ABJ point is no longer N = 6
supersymmetric, but just N = 2. It still belongs to a line of CFT’s with SU(2)A×SU(2)B

global symmetry, which must be thought of as arising when slicing the ellipsoid with the
h3 = 0 plane. An N = 3 model will be present as well, though with some new values
2π
K1

+ 2π
K2

for h3.
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which reduces to h = 4π/K for opposite CS levels.

The analysis of β–deformations can be extended to theories with h3, h4 6= 0. Since
they enter the anomalous dimensions only through |h3|2 and |h4|2 we can take them to
be arbitrarily complex and still make the ansatz (2.7.7) for h1, h2. The surface of fixed
points is then given by

|h3|2 = |h4|2 =
1

4 (MN + 1)

[

(4π)2 (2MN + 1)

(

1

K2
1

+
1

K2
2

)

+ 2 (4π)2MN + 2

K1K2

−2 h2MN + 2 h2 cos 2 π β
]

(2.7.10)

and describes superconformal β–deformations of N = 2 invariant theories.

The results of this Section agree with the ones in [26] obtained by using the three–
algebra formalism.

2.7.2 Theories with flavors

As in the previous case, when all the couplings are non-vanishing, the request for zero
β–functions implies the finiteness conditions γΦi

= 0. These provide four constraints on
a set of eleven unknowns (see eqs. (2.6.20)). Therefore, in the space of the coupling
constants the spectrum of fixed points spans a seven dimensional hypersurface given by
the equations

|α2|2 =
1

MMfK
2
1K

2
2

{

K2
2 (2MN +MMf + 1) +K2

1 (2MN +NNf + 1)

+2K1K2 (MN + 2) − 4|h4|2K2
1K

2
2 (MN + 1)

−K2
1K

2
2

[

2(|h1|2 + |h2|2)MN + 2(|h2|2 − |h1|2) + |α4|2NNf

]

}

|α3|2 =
1

NNfK2
1K

2
2

{

K2
2 (2MN +MMf + 1) +K2

1 (2MN +NNf + 1)

+2K1K2 (MN + 2) − 4|h3|2K2
1K

2
2 (MN + 1)

−K2
1K

2
2

[

2(|h1|2 + |h2|2)MN + 2(|h2|2 − |h1|2) + |α1|2MMf

]

}

|λ1|2 =
1

4(MMf + 1)K2
1

{

2MN +MMf + 1 −K2
1

[

|λ3|2NNf + (|α1|2 + |α2|2)MN
]

}

|λ2|2 =
1

4(NNf + 1)K2
2

{

2MN +NNf + 1 −K2
2

[

|λ3|2MMf + (|α3|2 + |α4|2)MN
]

}

(2.7.11)
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When K1 = −K2 ≡ K a particular point on this surface corresponds to

h3 = h4 = 0 , h2 = 0, h1 =
4π

K

λ1 = −λ2 =
2π

K
, λ3 = 0

α1 = α2 =
4π

K
, α3 = α4 = −4π

K
(2.7.12)

and describes the N = 3 ABJ/ABJM models with flavor matter [30, 16, 31].

More generally, allowing K2 6= −K1 we find the fixed point

h3 = h4 = 2π

(

1

K1

+
1

K2

)

, h1 + h2 =
4π

K1

, h2 − h1 =
4π

K2

λ1 =
2π

K1
, λ2 =

2π

K2
, λ3 = 0

α1 = α2 =
4π

K1
, α3 = α4 =

4π

K2
(2.7.13)

which corresponds to a superconformal theory obtained from the N = 3 theory of [13] by
the addition of flavor matter [16]. The superpotential

Spot =

∫

d3x d2θ Tr

{

2π

(

1

K1

+
1

K2

)

[

(A1B1)
2 + (A2B2)

2
]

(2.7.14)

+
4π

K1
(A1B1A

2B2) +
4π

K2
(A2B1A

1B2) +
2π

K1
(Q1Q̃1)

2 +
2π

K2
(Q2Q̃2)

2

+
4π

K1

[

Q̃1A
iBiQ1

]

+
4π

K2

[

Q̃2BiA
iQ2

]

}

+ h.c.

=

∫

d3x d2θ Tr

{

2π

K1

(

AiBi +Q1 Q̃1

)2

+
2π

K2

(

BiA
i +Q2 Q̃2

)2
}

+ h.c.

can be thought of as arising from the action

S = SCS + Smat

+

∫

d3x d2θ

[

−K1

8π
Tr(Φ2

1) + Tr(BiΦ1A
i) + Tr(Q̃1Φ1Q1)

]

+

∫

d3x d2θ

[

−K2

8π
Tr(Φ2

2) + Tr(AiΦ2Bi) + Tr(Q̃2Φ2Q2)

]

+ h.c. (2.7.15)

after integration on the Φ1,Φ2 chiral superfields belonging to the adjoint representations of
the two gauge groups and giving the N = 4 completion of the vector multiplet. Therefore,
as in the unflavored case, the theory exhibits N = 3 supersymmetry with the couples
(A,B†)i, (Q, Q̃†)r

1 and (Q, Q̃†)s
2 realizing (2 +Mf +Nf) N = 4 hypermultiplets (The CS

terms break N = 4 to N = 3).
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As already discussed, in the absence of flavors the N = 3 superconformal theory is
connected by the line of fixed points (2.7.6) to a N = 2, SU(2)A×SU(2)B invariant theory.
We now investigate whether a similar pattern arises even when flavors are present.

To this end, we first choose

h3 = h4 = h2 , α1 = α2 , α3 = α4 (2.7.16)

with λj arbitrary. This describes a set of N = 2 theories with global SU(2) invariance in
the bifundamental sector.

Solving the equations βνj
= 0 for real couplings we find a whole line of SU(2)A ×

SU(2)B invariant fixed points parameterized e.g. by the unconstrained coupling λ3

α1 = α3 = 0, h2 = 0,

h1 =

√

(2MM +NNf + 1)K2
1 + 2(MN + 2)K1K2 + (2MN +MMf + 1)K2

2

2(MN − 1)K2
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2
2

λ2
1 =

2MN +MMf + 1 −K2
1NNfλ

2
3

4K2
1(MMf + 1)

λ2
2 =

2MN +NNf + 1 −K2
2MMfλ

2
3

4K2
2(NNf + 1)

(2.7.17)

A four dimensional hypersurface of N = 2 fixed points given by

α2
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2MNK2
1
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− 4K2
1(MMf + 1)λ2

1 +MMf + 2MN + 1 −NNfλ
2
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2
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]

(2.7.18)

α2
3 =
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{

(MN + 2)(h2 − h1) ±
[

(2MN + 1)

(

NNf

(

−α2
3 + 4λ2

2 + λ2
3

)

+ 2MN(α2
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3 + 1) +MMf

(

−α2
1 + 4λ2

1 + λ2
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)

+ 4
(

λ2
1 + λ2

2

)

+
4(4π)2

K1K2

)

− 3(h2 − h1)
2
(

N2M2 − 1
)

]1/2}

connects the line of N = 2, SU(2)A × SU(2)B invariant theories (2.7.17) to the N = 3
theory (2.7.13). This surface is the analogue of the fixed line (2.7.6) found in the unflavored
theories.

Before closing this Section we address the question of superconformal invariance versus
finiteness for theories with flavor matter. In the bifundamental sector, the only possibility
to have vanishing β–functions without vanishing anomalous dimensions is by setting h3 =
h4 = 0. When flavor matter is present, this does not necessarily imply γA1 = γA2, so we
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can solve for βh1,h2 = γA1 + γA2 = 0 without requiring the two γ’s to vanish separately.
Once these equations have been solved in the bifundamental sector, in the flavor sector
we choose λ1 = λ2 = 0 and α1 = α4 = 0 (or equivalently, α2 = α3 = 0) in order to
avoid γQ1 = γQ2 = 0. We are then left with five couplings subject to the three equations
γA1 + γA2 = 0, γA1 + γQ2 = 0 and γA2 + γQ1 = 0. Solutions correspond to superconformal
but not finite theories. We note that this is true as long as we work withM,N finite. In the
large M,N limit with Mf , Nf ≪ M,N we are back to γA1 = γA2, as flavor contributions
are subleading. In this case superconformal invariance requires finiteness.

2.8 Infrared stability

We now study the RG flows around the fixed points of main interest in order to
establish whether they are IR attractors or repulsors. In particular, we concentrate on
the ABJ/ABJM theories, N = 3 and SU(2)A ×SU(2)B N = 2 superconformal points, in
all cases with and without flavors.

The behavior of the system around a given fixed point ν0 is determined by studying
the stability matrix

Mij ≡
dβi

dνj
(ν0) (2.8.1)

Diagonalizing M, positive eigenvalues correspond to directions of increasing β–functions,
whereas negative eigenvalues give decreasing βs. It follows that the fixed point is IR stable
if M has all positive eigenvalues, whereas negative eigenvalues represent directions where
a classically marginal operator becomes relevant.

Whenever null eigenvalues are present we need in principle to compute derivatives of
the stability matrix along the directions individuated by the corresponding eigenvectors.
A null eigenvalue whose eigenvector is tangent to the conformal manifold then signals
an exactly marginal deformation. Then a fixed point is locally unstable under such a
perturbation, but the theory flows back to the conformal surface, even though on another
point. Therefore such operators precisely trigger motion around the conformal manifold.

We apply these criteria to the two–loop β–functions (2.6.21).

2.8.1 Theories without flavors

We begin with the N = 2 theories without flavor discussed in Section 4.1. As shown,
the non–trivial fixed points lie on a two dimensional ellipsoid and particular points on it
are the N = 3 and the N = 2 SU(2)A × SU(2)B invariant theories. Since the ellipsoid is
localized in the subspaces h3 = ±h4 we restrict our discussion to the h3 = h4 case.
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When K1 = −K2 ≡ K, the set of theories with h3 = h4 = 0 has been already studied
in [29]. In this case the ellipsoid reduces to an ellipse in the (h1, h2) plane. It has been
shown that at the order we are working the RG trajectories are straight lines passing
through the origin and intersecting the ellipse. Infrared flows point towards the ellipse so
proving that the whole line of fixed points is IR stable. Every single point has only one
direction of stability which corresponds to the RG trajectory passing through it. When
perturbed along any other direction the system flows to a different fixed point on the
curve. In the ABJ/ABJM case the direction of stability is described by SU(2)A×SU(2)B

preserving perturbations.

This can be understood by computing the stability matrix at h3 = h4 = 0, h2 =
0, h1 = 4π/K and diagonalizing it. We find that mutual orthogonal directions are (h3 =
h4, h1, h2) and the corresponding eigenvalues are

M = diag
{

0, 16
MN − 1

K2
, 0
}

(2.8.2)

For M,N > 1 the third eigenvalue is positive, so the ABJ/ABJM theory is an attractor
along the h1–direction.

Solving the degeneracy of null eigenvalues requires computing the matrix of second
derivatives. In particular, looking at the h2–direction we find

∂2βh1

∂h2
1

= 16
1 −MN

K2
(2.8.3)

Since it is non–vanishing, the h1 coordinate is a line of instability. Therefore, when
perturbed by a SU(2)A ×SU(2)B violating operator the system leaves the ABJ CFT and
flows to a less symmetric fixed point along a RG trajectory. The coupling h2 has a null
eigenvalue and represents an exactly marginal direction.

This result states that in the class of scalar, dimension–two composite operators of
the form

O = (h1 + h2) Tr(A1B1A
2B2) + (h2 − h1) Tr(A2B1A

1B2) (2.8.4)

there is only one exactly marginal operator. This is the operator which allows the system
to move away from the ABJ point along the fixed line. At the ABJ(M) fixed point this
is the deformation Tr(A1B1A

2B2) + Tr(A2B1A
1B2) parameterized by the coupling h2,

whereas that labeled by h1 is irrelevant. The former is therefore tangent to the ellipse,
while the second is transverse, as depicted in Fig. 2.10

We now generalize the analysis to the inclusion of the interactions parameterized by h3

and h4 couplings. In this case we refer to the surface of fixed points in Fig. 2.11 where for
clearness only half of the ellipsoid has been drawn and opposite CS levels were assumed.
Moreover h3 = h4 is understood in the picture, in order to draw the surface in a three
dimensional space. The blue spot correspondes to the ABJ mnodel, at h2 = h3 = h4 = 0.
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Figure 2.9: In figure (a) the trajectories of the RG flow are depicted. In (b) arrows
indicate the IR flow, showing that the fixed line of CFT’s is IR stable.

(a) (b)

Figure 2.10: The picture shows a detail of the eigenvectors of the stability matrix at
the ABJ point: one is the normal vector to the ellipse, which represents an irrelevant
perturbation, the other is tangent to the curve, signaling an exactly marginal deformation.

The red point is instead the N = 3 superconformal theory. A completely analogous
pattern arises when considering non–opposite CS levels, where, however, the ABJ point
is replaced by an N = 2 CFT with SU(2)A × SU(2)B global symmetry.

From eq. (2.6.20) we see that in the h3 = h4 subsector we have γA1 = γA2. As a
consequence, all the β–functions are equal and the RG flow equations simplify to

dhi

dhj
=
hi

hj
(2.8.5)

In the three dimensional parameter space (h3 = h4, h1 + h2, h2 − h1), solutions are all the
straight lines passing through the origin and intersecting the ellipsoid.

Infrared flows can be easily studied by plotting the vector (−βh3 ,−βh1+h2,−βh2−h1)
in each point. The result is given in Fig. 2.11 where it is clear that the entire surface is
globally IR stable.
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ABJ

h1

h2

Figure 2.11: The ellipsoid of fixed points and the RG flows for N = 2 theories in the
space of couplings (h3 = h4, h1, h2). Arrows point towards the direction of the IR flow.
Here the figure is obtained with opposite CS levels.

In order to study the local behavior of the system in proximity of a given fixed point,
we compute the stability matrix at the point (2.7.4) and diagonalize it. Surprisingly, the
eigenvalues turn out to be independent of the particular point on the surface

M = diag

{

0, 0,
K2

1 + 4K1K2 +K2
2 + 2 (K2

1 +K1K2 +K2
2 )MN

4K2
1K

2
2π

2

}

(2.8.6)

The two null eigenvalues characterize exactly marginal directions. In fact, the correspond-
ing eigenvectors span the tangent space with respect to the surface, at a given point.

For example, at the N = 2, SU(2)A × SU(2)B invariant fixed point at h3 = 0, on
the line in Fig. 2.8, these eigenvectors are {1, 1, 0} and {0, 0, 1}, which are precisely the
directions h1 = 0 and h3, tangent to the surface at that point. It is clear from Fig. 5 that
if we perturb the system along these directions it will intercept a RG trajectory which
leads it to another fixed point.

The stability properties of the β–deformed theories are easily inferred from the previous
discussion. In fact, performing the following rotation of the couplings

h cos(πβ) =
x

2
, h sin(πβ) =

y

2
(2.8.7)
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the condition (2.7.8) for vanishing β–functions becomes

1

4
(MN − 1)x2 +

1

4
(MN + 1)y2 = 2π2(2MN + 1)

(

1

K2
1

+
1

K2
2

)

+ (4π)2MN + 2

K1K2

(2.8.8)

This is exactly the ellipse (2.7.2) of the undeformed case. Therefore, the infrared stability
properties of this curve are precisely the ones discussed before.

2.8.2 Theories with flavors

We now turn to flavored theories introduced in Section 2.7.2. The form of the stability
matrix is quite cumbersome, but we can analyze the effects of the interactions with flavor
multiplets by studying particular examples.

As the simplest case we consider the class of theories described by the superpotential
(2.6.2) where only λi couplings have been turned on. The β-functions of the theory
split into two completely decoupled sectors: The former is the four dimensional space of
couplings h3, h4, h1, h2, whose stability was addressed in the previous Section; the latter
is the three dimensional space of λi couplings.

Looking at the λi sector, non–trivial solutions to βi = 0 describe a curve of fixed points
given by expressing λ1 and λ2 as functions of λ3 (see eqs. (2.7.11)). It is the two–branch
curve of Fig. 6. The most general solution includes also isolated points where either λ1

or λ2 vanish.

Drawing the vector (−βλ1 ,−βλ2 ,−βλ3) in each point of the parameter space we obtain
the RG flow configurations as given in Fig. 2.12. It is then easy to see that the isolated
fixed points are always unstable since the RG flows drive the theory to one of the two
branches in the IR.

This behavior can be also inferred from the structure of the stability matrix. In fact,
one can check that when evaluated on the curve the matrix has two positive eigenvalues,
whereas when evaluated at the isolated solutions it has negative eigenvalues. As before,
theories living on the curve have directions of local instability signaled by the presence of
a null eigenvalue which can be solved at second order in the derivatives. This direction is
tangent to the curve and leads the system to a different fixed point corresponding to the
addition of an exactly marginal perturbation.

Finally, we consider the more complicated case of theories with superpotential (2.6.2)
where only the αi couplings are non–vanishing. This time the β–functions for the hi

sector do not decouple from the β–functions of the αi sector and the analysis of fixed
points becomes quite complicated.

In order to perform the calculation we restrict to the class of U(N) × U(N) theories
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Figure 2.12: A sketch of the RG flow for the λi couplings only. A curve of fixed points with
two branches is shown, which is IR stable. The red dot represents an isolated IR unstable
fixed point, located at λi = 0. Here, the parameters are K1 = K2 = 20, M = N = 10,
Mf = Nf = 1.

(therefore Mf = Nf) with |K1| = |K2|. This allows to choose αi all equal to α. Moreover,
we set h3 = h4 and h2 = 0. The spectrum of fixed points and the RG trajectories are
then studied in the three-dimensional space of parameters (α, h1, h3).

The β–functions are zero for vanishing couplings (free theory) and for γA1 = γQ1 = 0.
non–trivial solutions for α are obtained from γQ1 = 0. Using eqs. (2.6.20), for real
couplings we find

α = ± 4π

√

2N2 +NNf + 1

2N2K2
1

(2.8.9)

Fixing α to be one of the three critical values (zero or one of these two values) we can
solve γA1 = 0. As in the previous cases this describes an ellipse on the (h1, h3) plane
localized at α = const. For theories with K1 = K2 the configuration of fixed points lying
on the three ellipses is given in Fig. 2.13.

Renormalization group flows are obtained by plotting the vector (−βα,−βh1 ,−βh3).
The stability of fixed points is better understood by projecting RG trajectories on orthog-
onal planes. Looking for instance at the h3 = 0 plane we obtain the configurations in Fig.
2.14 where the red dots indicate the origin and the intersections of the three ellipses with
the plane.

From this picture we immediately infer that the free theory is an IR unstable fixed
point since the system is always driven towards non–trivial fixed points. Among them,
the ones corresponding to α 6= 0 are attractors, whereas α = 0 does not seem to be a
preferable point for the theory. In fact, it is reached flowing along the α = 0 trajectory,
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Figure 2.13: The three ellipses of fixed points on (h1, h3) planes and the RG flows for
N = 2 theories with α couplings (on the vertical axis) turned on. Arrows point towards
the IR flow, showing that the green ellipses at α 6= 0 are attractive, whereas the red one
at α = 0 is repulsive. The parameters are K1 = K2 = 20, M = N = 10, Mf = Nf = 1.
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Figure 2.14: RG trajectories on the h3 = 0 plane for N = 2 theories with α couplings
turned on. The α coupling spans the vertical axis, whereas h1 is on the horizontal one.
Arrows point towards IR directions. Red dots indicate unstable fixed points at α = 0,
whereas green ones are at stable CFT’s with α 6= 0. This picture is obtained from Fig.
2.13, by slicing it on the h2 = 0 plane. Dots are points where the three ellipses intersect
such a plane. The parameters are K1 = K2 = 20, M = N = 10, Mf = Nf = 1.
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but as soon as we perturb the system with a marginal operator corresponding to α 6= 0 it
will flow to one of the two non–trivial points. We conclude that if we add flavor degrees of
freedom the system requires a non–trivial interaction with bifundamental matter in order
to reach a stable superconformal configuration in the infrared region.

In the absence of flavors the condition of vanishing β–functions necessarily implies the
vanishing of anomalous dimensions for all the elementary fields of the theory. Therefore,
the set of superconformal fixed points coincides with the set of superconformal finite
theories. When flavors are present this is no longer true and in the space of the couplings
we determine a surface of fixed points where the theory is superconformal but not two–
loop finite.

Concluding remarks. We conclude this section on explicit examples of N = 2 (fla-
vored) CSM conformal fixed points of the RG flow and on the exactly marginal deforma-
tions connecting them by a summary of the results highlighted.

When flavors are turned off we have determined a continuum surface of fixed points
which contains as non–isolated fixed points the BLG, the ABJ and ABJM theories. The
case of theories with equal CS levels and U(1)A × U(1)B symmetry preserving perturba-
tions was investigated in [29] and is a simple subcase of the more general treatment offered
here, covering a larger set of models. Beyond extending the analysis to non–opposite CS
levels, we have provided details for a class of theories generalizing the results to the case
of less symmetric perturbations breaking U(1)A×U(1)B . When the CS levels are different
the surface contains as somewhat special points an N = 2, SU(2)A × SU(2)B invariant
and an N = 3 superconformal theories. This result confirms the existence of such super-
conformal points, which was conjectured in [13]. Moreover, we have proved that these two
theories are connected by a line of N = 2 fixed points, as proposed in the same paper.

We have extended our analysis to the case of complex couplings, so including fixed
points corresponding to β–deformed theories [41].

In the presence of flavor matter the spectrum of fixed points spans a seven dimensional
hypersurface in the space of the couplings which contains the CFT’s corresponding to the
ABJM/ABJ models with flavors studied in [30, 16, 31]. More generally, we find a fixed
point which describes a N = 3 theory with non–opposite CS levels with the addition of
flavor degrees of freedom [16]. As a generalization of the pattern arising in the unflavored
case, we find that it is connected by a four real dimensional hypersurface of N = 2
fixed points to a line of N = 2 fixed points with SU(2)A × SU(2)B invariance in the
bifundamental sector. This is a submanifold of the three complex dimensional one derived
in Section 2.2.

We have then studied the RG trajectories around these fixed points in order to inves-
tigate their IR stability. The pattern which arises is common to all these theories, flavors
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included or not, and can be summarized as follows.

• Infrared stable fixed points always exist and we have determined the RG trajectories
which connect them to the UV stable fixed point (free theory).

• In general these fixed points belong to a continuum surface. The surface is globally
stable since RG flows always point towards it.
Locally, each single fixed point has only one direction of stability which corresponds
to perturbations along the RG trajectory which intersect the surface at that point
and are normal to it. In the ABJ/ABJM case this direction coincides with the
maximal global symmetry preserving perturbation [29]. Along transverse directions,
perturbations drive the system away from the original point towards a different one
on the surface. This corresponds to deforming the original system with an exactly
marginal operator.

• When flavors are added, stability is guaranteed by the presence of non–trivial inter-
actions between flavors and bifundamental matter. The fixed point corresponding
to setting these couplings to zero is in fact unstable.







Chapter 3

Scattering amplitudes

The main power of quantum field theory consists in being able to predict expecta-
tion values of observables, which could be eventually measured in experiments. Among
observables cross sections of scattering events and decay rates are the most widely mea-
sured. These quantities depend on the quantitative features of the experiment, but the
non–trivial contribution arises from the scattering amplitude, which computes the quan-
tum mechanical probability of a transition between an initial and a final state. Formally
these are matrix elements of the so–called S–matrix. In the regime where the interaction
between particles is weak, perturbation theory may be employed to compute these matrix
elements to the desired precision. This perturbative expansion may be represented dia-
grammatically in terms of the Feynman graphs. Although well established and defined in
principle, this approach turns out to be increasingly cumbersome as the loop order and
the number of external particles grow large. In particular, gluon amplitudes in QCD are
the hardest. This hurdle motivated the quest for novel and more efficient methods for
computing scattering amplitudes in gauge theories, and huge progress has been achieved
in this subject over the last decade.
Stringy inspired techniques and the advent of the AdS/CFT correspondence have un-
covered fascinating properties of amplitudes in supersymmetric theories, hinting at their
hidden simplicity. The most astonishing results apply to N = 4 SYM in the planar sector,
for which a huge amount of amplitudes has been computed, allowing to discover duali-
ties between apparently unrelated objects such as amplitudes and Wilson loops [43]-[44],
and to realize the emergence of an underlying superconformal symmetry [45, 46] which
highly constrains their form. Furthermore a prescription has been found to compute am-
plitudes at strong coupling [47], which has offered a different and fruitful perspective from
which gaining deeper understanding of such field theoretical phenomena. Interestingly,
the emergent dual superconformal symmetry combined with the original superconformal
invariance of the theory generates a Yangian symmetry [48], which has been recently ex-
ploited to propose a generating function for all scattering amplitudes in N = 4 SYM [49].

88
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In order to get a deeper insight into the subject of scattering amplitudes it would
be certainly desirable to extend the realm of these recent achievements to theories other
than N = 4 SYM. One opportunity is offered by Chern–Simons matter theories in three
dimensions, which display a large spectrum of interesting models where techniques bor-
rowed from the four dimensional case can be tested. Among these the ABJM model,
being conformal and enjoying a high amount of supersymmetry, is the best candidate to
look for analogies with maximally supersymmetric Yang-Mills in four dimensions.
In this chapter we want to give an overview of the remarkable properties of N = 4 SYM
scattering amplitudes.

3.1 Amplitudes in N=4 SYM

This Section is aimed at providing some basic features of amplitudes in N = 4 SYM,
making it very special with respect to less symmetric theories. This would be far from
exhaustive and I will put more emphasis on some aspects which I will address in what
follows, concerning amplitudes in ABJM. In particular we will introduce and briefly sketch
the following topics:

• color ordering and spinor helicity formalism;

• tree level: from Parke–Taylor to superamplitudes;

• BCFW recursion relations;

• unitarity methods;

• amplitudes at strong coupling;

• BDS ansatz;

• dual superconformal and Yangian invariance;

• MHV amplitudes / WL / correlators triality.

3.2 Color ordering.

Color decomposition carries both the advantages of reducing the number of graphs to
be computed, and to strip the amplitudes off their group structure, separating the color
part from the kinematics. We will here briefly introduce its principle for a gauge theory
with unitary SU(N) or U(N) gauge group.
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The generators in the fundamental representation of SU(N) are N × N hermitian
matrices, normalized according to Tr (TATB) = δAB , obeying the group algebra, that is
their commutators are fixed by the algebra structure constants. The latter are defined
through

[TA, TB] = i fABC TC (3.2.1)

Therefore

fABC = −iTr
(

[TA, TB]TC

)

(3.2.2)

Moreover the following group theory identity holds for SU(N)

(TA)i1 jj
(TA)i2 j2 = δi1 j2 δj1 i2 −

1

N
δi1 j1 δi2 j2 (3.2.3)

While evaluating a diagram containing particles in the adjoint representation of the
gauge group (such as gluons in QCD or all particles in N = 4 SYM) with ordinary
Feynman rules, one encounters interaction vertices whose color data are usually encoded
in the structure constants.

If every structure constant in such vertices is replaced with (3.2.1), one is left with
products of traces of generators, with some color indices contracted by propagators, which
contain δ’s of group indices. These contractions can be easily solved using (3.2.3), which
sews multiplied traces into one. This can be made very simple if one refers to the group
U(N), adding a U(1) factor to SU(N). This is a generator, which commutes with every
other generator of SU(N), thus it is proportional to the identity: T a

U(1) = 1√
N
δij . This

factor is also called the photon. Considering the U(N) gauge group, the structure con-
stants are as above and vanish whenever a 0 index is present, whereas (3.2.3) simplifies in
that the last term cancels out. Hence U(N) can be also regarded as the large N , leading
color approximation of SU(N).

If external particles in other representations than the adjoint are present (such as fun-
damental fields) strings of generators (TA1 . . . TAn)i1 jn for external particles are produced.

It turns out that for a tree diagram containing only gluons the corresponding amplitude
can be decomposed into the sum over permutations of the product of a single trace of color
operators, which encodes color information, times a gauge invariant coefficient accounting
for the kinematics, called the partial amplitude

Atree
n (1 . . . n) =

∑

σ∈Sn/Zn

Tr
(

TAσ(1) . . . TAσ(n)
)

Atree
n (σ(1) . . . σ(n)) (3.2.4)

The sum is over inequivalent permutations, that is the (n− 1)! which cannot be realized
as a cyclic permutation of indices, under which the trace is invariant. This is the group
of permutations of n indices Sn, where cyclic permutations Zn are identified.
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The importance of this decomposition lies in the fact that partial amplitudes are
color ordered, that is they receive contributions only by diagrams sharing the same color
structure of the trace. This greatly reduces the amount of diagrams to be taken into
account, especially as the number of external particles grows.

By virtue of color decomposition the fundamental constituents, from which construct-
ing an amplitude, are the partial, color ordered, amplitudes, that are of simpler evaluation.
Henceforth color decomposition will be always applied in what follows.

As concerns loop amplitudes, color decomposition is derived in the same manner as
for tree level. At one loop this leads to up to two traces over color generators, and a sum
must be performed over the different spins J of the particles circulating in the loop. If
all the particles are in the adjoint representation of the gauge group, color decomposition
reads

A1−loop
n (1 . . . n) =

∑

spin J

nJ

⌊n
2
+1⌋
∑

c=1

∑

σ∈Sn/Sn;c

Tr
(

TAσ(1) . . . TAσ(c−1)
)

Tr
(

TAσ(c) . . . TAσ(n)
)

AJ
n;c(σ(1) . . . σ(n)) (3.2.5)

where nJ means the number of spin J particles, and Sn;c denotes the group of permu-
tations leaving the product of traces invariant. The first coefficient (c = 1) in the sum
is made of the trace over the n generators, multiplied by a factor N , coming from the
trace of the identity; the corresponding partial amplitude is thus called the leading color
amplitude AJ

n;1(σ(1) . . . σ(n)). For higher loops there appear more and more complicated
trace structures, so that performing the planar limit N → ∞ leads to great simplifica-
tions, restricting the whole amplitude to the sum over single trace contributions. Namely
in this limit only leading color partial amplitudes appear. This is the setting in which
we will mainly work, so that the amplitudes we will analyze are always understood to be
color ordered.

3.3 Spinor helicity formalism.

Helicity formalism consists in a compact way of representing spinors of different chi-
rality. It was developed to deal with external massless fermions and helicity vectors,
required in the presence of external gauge bosons (gluons). This machinery provides a
very compact way of expressing spinor products and momentum invariants, which the
amplitude is supposed to depend on. Moreover it makes manifest a lot of identities which
prove very useful in carrying out the evaluation of diagrams.

The key point is to consider a convenient basis for polarization vectors, which appear in
the evaluation of amplitudes with external gluons. It is worth expressing these polarization
vectors, of positive or negative helicity in terms of massless spinors. Let us introduce



92 Chapter 3. Scattering amplitudes

first a compact notation (customary in QCD literature) for the massless solutions to the
Dirac equation (being massless, those for fermions and antifermions are equal) of definite
chirality

u±(ki) ≡
1

2
(1 ± γ5)u(ki) = v∓(ki) ≡ 1(1 ± γ5)v(ki) = |i±〉

u±(ki) ≡ u(ki)
1

2
(1 ∓ γ5) = v∓(ki) ≡ u(ki)

1

2
(1 ∓ γ5) = 〈i±| (3.3.1)

Amplitudes are Lorentz symmetric, so that they are expected to consist of kinematic
invariants constructed from these spinors. Therefore a convenient way of representing
Lorentz vectors and invariants thereof should be of great help. Expressing such quantities
in terms of spinors provides such a shorthand notation.

〈i j〉 ≡ 〈i− j+〉 = u−(ki)u+(kj) = v+(ki) v−(ki)

[i j] ≡ 〈i+ j−〉 = u+(ki) u−(kj) = v−(ki) v+(ki) (3.3.2)

These spinor products are naturally antisymmetric and vanish whenever the same spinor
is self contracted

〈i j〉 = −〈j i〉 [i j] = −[j i] 〈i i〉 = [i i] = 0 (3.3.3)

It is worth pointing out that spinor invariants behave simply under parity which acts
like 〈i j〉 → [j i]. This turns convenient when deriving an amplitude from one with the
opposite choice of external helicities. Then these amplitudes are clearly related by a parity
reversal, and the simple substitution mentioned above implements this operation on the
amplitude. There are many identities which can be employed to simplify amplitudes, here
we list a few of them:

• Fierz rearrangement

〈i+|γµ|j+〉〈k+|γµ|l+〉 = 2[i k]〈l j〉 (3.3.4)

• Charge conjugation of current

〈i+|γµ|j+〉 = 〈j−|γµ|i−〉 (3.3.5)

• Schouten identity

〈i j〉〈k l〉 = 〈i k〉〈j l〉 + 〈i l〉〈k j〉 (3.3.6)

• Trace

〈i j〉[j i] = Tr

(

1

2
(1 − γ5) /ki /kj

)

= 2ki · kj = (ki + kj)2 ≡ sij (3.3.7)

where the last step follows from the on-shell condition for massless momenta.
This generalizes to:

〈i1 i2〉[i2 i3] . . . 〈in−1 in〉[in i1] = Tr

(

1

2
(1 − γ5) /ki1 . . . /kin

)

(3.3.8)
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• If momentum is conserved:
∑n

i=1 ki = 0, then another identity holds

n
∑

i=1

〈k i〉[i j] = 0 (3.3.9)

This formalism allows to represent polarization vectors for gluons in a very convenient
fashion, i.e. in terms of spinor products. We won’t give details of that here, which could
be found for instance in [50].

In many applications to scattering amplitude these tools derived in QCD for polariza-
tion vectors are used more generally to represent momenta. A direct application of this
will be outlined in Section 3.4.2. This procedure is based on the decomposition of the
(euclideanized) Lorentz group SO(4) into SU(2)×SU(2), such that vectors are expressed
as bispinors. More precisely, taking the complexified Lorentz space SO(3, 1; C): it is lo-
cally isomorphic to Sl(2; C) × Sl(2; C), hence its representations are labeled by a pair of
half–integer or integer numbers (p, q). The simplest representations are spinors:

(

1
2
, 0
)

is the representation of a negative chirality spinor λa,
(

0, 1
2

)

that of a positive chirality

spinor, denoted by λ̃ȧ, where indices a and ȧ run in the range 1, 2.

Indices a and ȧ are raised and lowered by the antisymmetric tensors ǫab and ǫȧḃ and
their inverse, such that contractions between spinors of the same chirality are easily per-
formed (the minus sign in the definition of the square spinor product is introduced some-
what ad hoc, in order to keep the notation uniform with the previously reviewed, which
is the standard in QCD literature)

ǫab λ
a λb ≡ 〈λ1, λ2〉 , −ǫȧḃ λ̃

ȧ λ̃ḃ ≡ [λ1, λ2] (3.3.10)

The vector representation of SO(3, 1; C) is (1
2
, 1

2
). Hence a four dimensional momentum

vector pµ (µ = 0, . . . 3) can be naturally rewritten as a bispinor paȧ, with indices belonging
to different chirality. This can be done by contracting it with the four dimensional vector
of Pauli matrices

σµ
aȧ = (1, σ)aȧ , paȧ = pµ σ

µ
aȧ (3.3.11)

It follows that the squared momentum equals the determinant of the bispinor over spinor
indices, due to the ǫ symbols:

pµ pµ = paȧ paȧ = paȧ ǫ
ab ǫaḃ pbḃ ≡ 2 det paȧ (3.3.12)

The light–cone condition p2 = 0 corresponds to the vanishing of this determinant, then if
pµ is light–like, the bispinor can be factorized into the product of two spinors of opposite
chirality

paȧ = λa λ̃ȧ (3.3.13)

This ensures the vanishing of the determinant, because spinor products are antisymmetric
and the determinant would equal det paȧ = 〈λ λ〉[λ λ]. The spinors λ and λ̃ are determined
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by p up to a rescaling (tλ, t−1λ̃) with t ∈ C∗, so that their product remains constant. The
inner product between two light–like vectors is given by

2 p · q = paȧ ǫ
ab ǫaḃ qbḃ = +〈p q〉[q p] (3.3.14)

in agreement with (3.3.7). If momenta are supposed to be real (as in a real Minkowski
space), then the reality condition reads λ̃ = ±λ̄, but it is often useful to extend the
analysis and work with complexified momenta, thus keeping λ and λ̃ independent. We
refer also to the former (negative chirality) as the holomorphic spinor and to the lat-
ter (positive chirality) as the antiholomorphic. All this applies when working with the
Lorentzian signature + − −−; considering the signature + + −−, which may be useful,
spinor representations are real, so that λ and λ̃ are real and independent.
Finally, the following strings of spinor products can be synthesized in compact form by:

∑

a

〈i a〉[aj] ≡ 〈i|
∑

ka|j]
∑

a

∑

b

∑

a

〈i a〉[a b]〈b j〉 ≡ 〈i|
∑

a

∑

b

ka kb|j] (3.3.15)

and so on. This is a generalization of (3.3.8), where slashes are dropped to avoid clutter.

3.4 Tree level amplitudes.

Poincaré invariance. All amplitudes in field theory must satisfy invariance under the
Poincaré group. Lorentz symmetry is automatically built–in, when expressing the ampli-
tude in terms of spinor products, which are manifestly Lorentz invariant. It is well–known
that translations determine conservation of total momentum

∑n
i=1 p

µ
i = 0. Stated another

way, the generator of translations pαα̇ has to annihilate the amplitude

pαα̇ An(p) = 0 , pαα̇ =

n
∑

i=1

pαα̇
i (3.4.1)

a condition which is fulfilled by writing the amplitude as a distribution and exposing a
δ–function explicitly enforcing the constraint

An(p) ∝ δ(4)
(

n
∑

i=1

pi

)

(3.4.2)

Equivalently, using spinor notation

pαα̇ An(p) = 0 =⇒ An

(

λ, λ̃
)

∝ δ(4)
(

n
∑

i=1

λ̃i λi

)

, pαα̇ =
n
∑

i=1

λ̃α
i λ

α̇
i

(3.4.3)

At tree level gluonic amplitudes are the same in QCD and in N = 4. Form now on
we will consider only the latter.
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Conformal invariance. Given that N = 4 SYM is invariant under the conformal group
SO(2, 4), amplitudes should be constrained by this symmetry as well. At tree level, where
infrared divergences are absent, the amplitudes must be annihilated by the generators of
the conformal algebra. At loop level dilatations and special conformal transformations are
anomalously broken by the emergence of divergences. In such a situation the SO(2, 4) may
still play a role in constraining amplitudes, in the form of anomalous Ward identities, in
principle. In practice, however, the conformal group acts linearly on configuration space,
whereas its action on particles momenta is complicated and it is not efficient to exploit
this symmetry∗.
For instance the conformal boost generator kαα̇ acts on the amplitude in terms of a second
order differential operator

kαα̇
i =

n
∑

i=1

∂2

∂λα
i ∂λ̃

α̇
i

, kαα̇ =

n
∑

i=1

kαα̇
i (3.4.4)

The dilatation operator reads in this formalism

di =
1

2
λα

i

∂

∂λα
i

+
1

2
λ̃α̇

i

∂

∂λ̃α̇
i

+ 1 , d =

n
∑

i=1

di (3.4.5)

The coefficients 1/2 are natural since dim[p] = dim[λλ̃] = 1, whereas the constant piece
is fixed by closure of the SO(2, 4) algebra, reviewed in Appendix A.4.

Supersymmetry. Supersymmetry allows to connect amplitudes with different kinds of
external particles (scalars, fermions) to gluonic ones. These relations are called supersym-
metric Ward identities SWI. They are derived from the fact that any supercharge must
annihilate the vacuum Q|0〉 = 0 and from the supersymmetric transformation rules

[Qa(η), g±(k)] = ∓Γ±(k, η)λa±(k)

[Qa(η), λb±(k)] = ∓Γ±(k, η) g±(k) δab ∓ iΓ±(k, η)φab
± (3.4.6)

Γ(k, η)+ = θ [η, k] , Γ(k, η)− = θ 〈η, k〉

where g labels gluons, Λ denote gluinos and φ scalars. The action of Q turns gluons into
gluinos and viceversa, up to a function Γ which depends on the helicity of the particle and
can be chosen to be the product of a spinor contraction times an anticommuting Grass-
mann parameter θ. The reference spinor η is arbitrary and may be chosen conveniently so
as to simplify computations. Besides their utility in relating amplitudes, these SWI may
also be employed to show the vanishing of some gluonic amplitudes, as follows. For in-
stance one may start from the amplitude 〈0|[Λ+g+g+ . . . g+]|0〉, which vanishes identically
because fermions can be only created from the vacuum in pairs with opposite helicities

∗The situation may be improved by transforming to twistor space, where the conformal group acts
linearly on twistor variables and its constraints are manifest [51].
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(differently from gluons, fermion interactions are always helicity preserving), and act with
Q

0 = 〈0|[Q(η(q)),Λ+g+g+ . . . g+]|0〉
= −Γ+(q, k1)A(g+g+ . . . g+) −

∑

i

Γ−(q, ki)A(Λ+g+ . . .Λ+
i g

+) (3.4.7)

which entails that gluonic amplitudes with all the same helicities vanish, since all terms
in the sum do so. Similarly, acting on 〈0|[Q(η(q),Λ+g−g+ . . . g+]|0〉 gives

0 = 〈0|[Q(η(q)),Λ+g−g+ . . . g+]|0〉
= −Γ+(q, k1)A(g+g− . . . g+) + Γ−(q, k2)A(Λ+Λ−g+ . . . g+)

−
∑

i

Γ+(q, ki)A(Λ+g−g+ . . .Λ+
i g

+) (3.4.8)

Then a clever choice for the reference spinor q = k2, implies the vanishing of the amplitude
with one negative helicity gluon as well. Therefore one concludes that

Atree(g+ . . . g+) = 0 , Atree(g−g+ . . . g+) = 0 (3.4.9)

Classifying gluonic amplitudes by the number of minus helicity gluons, the first non–
vanishing, with an arbitrary number of external particles, has the property of showing
only two negative helicity gluons and the other positive (mostly plus). We refer to these
amplitudes as maximally helicity violating, shortened MHV, because if less negative legs
are present the amplitude vanishes identically. These amplitudes play an important role
in that they seem to possess the highest degree of simplicity, at tree as well as at loop
level, and exhibit many remarkable properties.

Increasing the number of negative helicity gluons the corresponding amplitudes are
usually dubbed as NkMHV, until the mostly minus amplitude is reached which is some-
times called MHV. For n external gluons there are n− 4 non–vanishing helicity configu-
rations, ranging from the MHV at k = 0 to the MHV at k = n− 4.

3.4.1 MHV amplitudes.

The first indication that MHV amplitudes are somewhat special comes from their tree
level structure, for which an all multiplicity formula exists, which is called the Parke–
Taylor amplitude. This looks very simple in the spinor helicity formalism

Atree
MHV (1+ . . . i− . . . j− . . . n) = δ4

(

n
∑

i=1

ki

)

〈ij〉4
∏n

k=1〈k, k + 1〉 (3.4.10)

where k is understood to be cyclic and i and j label the negative helicity gluons, and
we have made explicit the momentum δ–function in front. The case of a mostly minus
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amplitude with two positive legs is related to the conventional mostly minus MHV by a
parity transformation and are therefore obtained from the former by replacing angular
spinor products 〈 〉 by square ones [ ].

It proves convenient to organize the whole perturbative series of MHV amplitudes
factoring out the tree level result, which naturally pops out in loop calculations, by writing

AMHV
n = Atree

n

(

1 +

∞
∑

l=1

al M(l)
n

)

(3.4.11)

where a denotes the effective coupling g2N
8π

, which is customary for loop computations in
N = 4 SYM.

MHV amplitudes are also taken as a benchmark for NkMHV ones, which may conve-
niently be organized as

⌊(n−4)/2⌋
∑

k=0

ANkMHV
n = AMHV

n



1 +

⌊(n−4)/2⌋
∑

k=1

P (k)
n



 (3.4.12)

where only the half of mostly plus amplitudes has been displayed.

Remarkably, MHV amplitudes exhibit rather special properties under the conformal
group SO(2, 4) of N = 4 SYM. Indeed formula (3.4.10) shows that they are holomorphic
objects, in that only spinors of definite chirality λα appear. In particular this means that
they are explicitly annihilated by the conformal boost generator (whose form can be read
from A.4.5)

kαα̇A
tree
MHV (1+ . . . i− . . . j− . . . n) = 0 (3.4.13)

By explicit computation [51] it is found that the momentum δ–function is invariant under
the action of k as well, so that the whole amplitude is so. As concerns invariance under
dilatation d (3.4.5), the numerator of the MHV amplitude has weight 4 under the action of
∑n

i=1
1
2
λα

i
∂

∂λα
i

+ 1
2
λ̃α̇

i
∂

∂λ̃α̇
i

. The δ–function has weight −4, canceling that of the numerator.

The denominator in (3.4.10) has uniform degree −1 for each i and cancels out with the
+1 in the definition (3.4.5) of the generator.

3.4.2 Recursion relations.

At tree level and for pure glue amplitudes, a recurrence relation was introduced by
Britto, Cachazo and Feng [52] and later demonstrated by the same authors and Witten
(BCFW) [53]. The relation is very simple and allows to derive tree amplitudes from lower
points ones, which are supposed to be already known, and the result turns out to be
expressed in a very compact form. The starting point is to extend the amplitude An to
a complex function An(z), where z is a complex variable. This can be achieved picking
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up two external momenta i and j and shifting them by a complex term, preserving their
on-shell condition and momentum conservation:

λ̃i → λ̃i − z λ̃j , λj → λj + z λi (3.4.14)

while keeping λi and λj untouched. Momentum conservation is preserved because

ki + kj = λi λ̃i + λj λ̃j → λi λ̃i − z λi λ̃j + λj λ̃j + z λi λ̃j = λi λ̃i + λj λ̃j (3.4.15)

On–shellness follows from
k2

i = 〈λi λi〉 [λ̃i λ̃i] = 0 (3.4.16)

because the product 〈λi λi〉 vanishes, being unaffected by the shift†.

It is worth noting that An(z) is thus a physical on–shell amplitude for any z. It follows
that An(z) is a rational function of z, because the original tree amplitude was so. Indeed
every tree amplitude possesses only single poles arising from internal propagators, whose
momenta are always a sum over external adjacent momenta, which we can denote by
Krs = kr + · · ·+ks. If such a sum contains both or neither ki and kj it is not z–dependent
and no poles arise in z. If instead it contains only one of the two, say j, the propagator
momentum Krs does depend on z and is therefore shifted by Krs(z) = Krs + zλiλ̃j . A
single pole in z does arise because the shifted inverse propagator K2

rs(z) = K2
rs+z〈i|Krs|j]

vanishes at zrs = −K2
rs/〈i|Krs|j]. These are the only poles for An(z). The physical

quantity we are interested in is An(0). This can be achieved considering Cauchy’s theorem
for the contour integral

1

2πi

∮

dz

z
An(z) (3.4.17)

In general this integral is given by two contributions: the residues at poles, one of which
is just An(0), because a pole in z was created by 1/z, and the contribution from the circle
at infinity C∞. These must give zero:

An(0) = −C∞ −
∑

r,s

Resz=zrs

An(z)

z
(3.4.18)

At tree level the odd contribution from C∞ drops out, because it can always be made
vanishing with a proper choice of the helicities of the reference momenta i and j, as
demonstrated in [53]. This means

An(0) = −
∑

r,s

Resz=zrs

An(z)

z
(3.4.19)

†As pointed out in [53] this deformation by a complex amount does not actually make sense in real
Minkowski space, because it violates the reality condition for momenta: λ̃ = ±λ̄. It is valid only in
complex Minkowski space or in a real, after Wick rotating to the signature + +−−. Once the amplitude
has been computed, it is expressed by spinor products, which are invariant, and thus one can restore the
Lorentz signature.
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In order to evaluate the residues it is useful to remember that such single poles occur in
tree amplitudes multiparticle factorization, that is splitting them into two amplitudes AL

and AR joined by a scalar propagator i/K2
rs(0), which determines the singularity going

on-shell. This observation leads to the final form of the BCFW recurrence formula:

An(0) =
∑

r,s

∑

h=±
Ah

L(z = zrs)
1

K2
rs

A−h
R (z = zrs) (3.4.20)

where the sum runs over poles and over the two possible choices for the helicity of the
internal propagator.

The recurrence relation actually trades the evaluation of a tree amplitude with the
sum over products of simpler lower points amplitudes, shifted by a certain amount. A
clever choice of the reference momenta can reduce the contributions to be summed. It
turns out, that a good choice is often to take them adjacent. This way these momenta
are held fixed and the sum is over all possible distributions of the external legs between
the left and right amplitudes, as depicted in Figure 3.1.

nk

1

n−1k+1

k−1

i

j

i−1

j+1
n

1

n−1k

k−1

Figure 3.1: Pictorial representation of the BCFW recursive relation.

Some of the combinations may vanish, e.g. those with all the same helicities or one
different. The best choice for the helicities of the reference momenta may vary and depends
on the particular amplitude one is facing.

The demonstration of formula (3.4.20) lies also on the assumption that the shifted
amplitude vanishes at infinity, in order to discard the contribution of the circle C∞ in
(3.4.18). It was pointed out that this is always possible. However if one takes the shift
(3.4.14), that is shifting the positive chirality spinor of the first λ̃i and the negative
chirality spinor of the second λj , it turns out [53] that the only helicity configurations of the
reference momenta (hi, hj) for the shifted amplitude to vanish at infinity are (−,−), (+,+)
and (−,+). Otherwise one has to exchange the roles of i and j to use the helicities (+,−).
It is important to point out that at intermediate stages one works with complexified
momenta and this means that three point amplitudes do not vanish and must be evaluated
like mostly minus (+ +−) or mostly plus (−−+) MHV amplitudes. To each diagram in
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the sum is associated a different shift given by:

λî = λi , λ̃î = λ̃i +
K2

rs

〈i|Krs|j]
λ̃j

λ̃ĵ = λ̃j , λĵ = λj −
K2

rs

〈i|Krs|j]
λ̃i (3.4.21)

Amplitudes are to be evaluated taking into account this shift. No difficulty occurs when
the shift is due to a spinor product containing a reference momentum. Nevertheless the
shifts in the amplitudes are given also by the presence of a leg corresponding to the
internal propagator, which we will call P̂ . This is also shifted. Two cases can arise: 〈aP̂ 〉
and [P̂ b], where a and b are generic external momenta. These can be handled as follows:

〈a P̂ 〉 =
〈a P̂ 〉[P̂ j]

[P̂ j]
=

〈a|P̂ |j]
[P̂ j]

(3.4.22)

where the last equality descends from (3.3.15). Analogously

[P̂ b] =
〈i P̂ 〉[P̂ b]
〈i P̂ 〉

=
〈i|P̂ |b]
〈i P̂ 〉

(3.4.23)

Since the momentum P has opposite helicities on the two side amplitudes, the factors in
the denominators of (3.4.22) and (3.4.23) are always paired and can be easily evaluated
thanks to (3.3.15):

〈i P̂ 〉[P̂ j] = 〈i|P̂ |j] (3.4.24)

It is worth mentioning [52] that applying the recursive relation many times on the same
amplitude, one can in principle reduce it to the combination of only trivalent vertices
(++−) or (+−−), suggesting that the theory might be encoded by an effective Lagrangian
describing a scalar field with cubic interactions.

3.4.3 On–shell supersymmetry.

N = 4 SYM is superconformal invariant. As mentioned in Section 3.4, supersymmetry
is a powerful tool for scattering amplitudes. Indeed, instead of using SWI’s it proves very
convenient to introduce the notion of on–shell superspace, in terms of which amplitudes
in N = 4 SYM may be compactly rearranged in terms of superamplitudes.

The on–shell particle content of the theory is in terms of gluons G± of plus and minus
helicity, eight fermionic gluinos ΓA and Γ̄A, and six complex scalars SAB. The indices
A,B = 1 . . . 4 are in the fundamental 4 representation of the R–symmetry group SU(4):
fermions transform in the 4 and 4̄, respectively, whereas scalars are in the vector of SO(6),
which is the 6 and they are antisymmetric in their indices SAB = −SBA.
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These states are accounted for by the introduction of on–shell superspace. The super-
symmetry algebra is

{

qA
α , q̄B ȧ

}

= δA
B pαȧ (3.4.25)

where the supercharges qA
α and qα̇ A are in the (anti)fundamental representation of SU(4).

On shell, where p2 = 0, one may project the supercharge onto light–cone ones, in terms of
which the algebra turns out to be simply of a Clifford type. However this procedure breaks
Lorentz symmetry explicitly. A Lorentz covariant manner of performing the projection
may be derived, which splits the supercharges into parallel λα q

A (λ̃α̇ q̄A) and orthogonal
λαqA

α (λ̃α̇ q̄α̇ A) components with respect to the spinors λ and λ̃, respectively. Then,
the orthogonal part decouples, anticommuting with everything, and the algebra becomes
simply

{qA, q̄B} = δA
B (3.4.26)

These Clifford anticommutation relations can be solved by introducing Grassmann vari-
ables η

qA = ηA , q̄A =
∂

∂ηA
, {ηA, ηB} = 0 (3.4.27)

and identifying the supergharges as

qA
α = λα η

A , q̄A α̇ = λ̃α̇
∂

∂ηA
(3.4.28)

Then the content of the N = 4 SYM supermultiplet is encoded in a super wavefunction

Φ(p, η) = G+(p) + ηA ΓA(p) +
1

2
ηA ηB SAB(p) +

1

3!
ηA ηB ηC ǫABCD Γ̄D(p)

+
1

4!
ηA ηB ηC ηD ǫABCD G

−(p) (3.4.29)

Thanks to maximal supersymmetry and, consequently, the self–CPT conjugacy property
of the supermultiple, a single wave–function is sufficient to span all the content and
moreover allows for a completely holomorphic (i.e. η̄ independent) description, making
on–shell N = 4 superspace chiral.

Given this powerful formalism of super wavefunctions, it is natural to consider ampli-
tudes for such objects

An(λ, λ̃, η) = A(Φ(1) Φ(2) . . .Φ(n)) (3.4.30)

which are referred to as the on–shell superamplitudes. Invariance of the latter under su-
persymmetry generators qA

α =
∑n

i=1 q
A
i α =

∑n
i=1 η

A
i λi α implies that the superamplitude,

as a distribution, contains a further Grassmann δ–function

pαα̇ An(λ, λ̃, η) = qA
α An(λ, λ̃, η) = 0 ⇒ An(λ, λ̃, η) = δ(4)(pαα̇) δ(8)(qA

α ) Rn(λ, λ̃, η)
(3.4.31)

where Rn is some polynomial in the Grassmann variables ηA
i . Actually the superamplitude

has to be a singlet under the R–symmetry SU(4), so that the η’s have to appear in quartic
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invariants ǫABCD η
A
i η

B
j η

C
k η

D
l (independently of the particle to which they refer), meaning

that R is a polynomial of degree 4. This allows to expand (3.4.31) in pieces of the same
Grassmann degree 4k, corresponding to the k–th degree on non–MHVness of the given
part of the superamplitude

An(λ, λ̃, η) = i(2π)4 δ(4)(

n
∑

i=1

λα
i λ̃

α̇
i ) δ(8)(

n
∑

i=1

λα
i η

A
i )
[

R(0)
n +R(4)

n +R(8)
n + . . .+R(4n−16)

n

]

(3.4.32)
where the first component yields the MHV amplitude and the last the MHV one. It is
also customary to rewrite the result above, factoring out the MHV amplitude as

A(Φ1, . . . ,Φn) = An =
δ4(p)δ8(q)

〈12〉 . . . 〈n1〉Pn(λi, λ̃i, ηi) = AMHV
n Pn (3.4.33)

where P is again a polynomial in Grassmann variables (just as R, but more conveniently
normalized)

Pn = 1 + PNMHV
n + PNNMHV

n + . . . + PMHV
n . (3.4.34)

This is a generating function for amplitudes: a given choice of the external particle cor-
responds to a certain polynomial in the ηi variables, with suitable degree for each point
i. Expanding the Grassmann δ–function and the P polynomial and selecting the desired
combination of η’s is an algorithmic procedure to find out the amplitude. The Grassmann
δ–function making the degree starting from 8, automatically and consistently enforces the
vanishing of all–plus and all–but–one–plus amplitudes.

The remaining generators q̄A,α̇ =
∑n

i=1 λ̃i α̇
∂

∂ηA
i

do annihilate the MHV part, since

when acting on the fermionic δ–function they turn it into the momentum conservation
one. For other component in the expansion (3.4.33) invariance poses further constraints.
In particular the entire superamplitude (at tree level) must be annihilated by all of the
superconformal generators, whose form is reviewed in Appendix A.4.

The formalism just introduces proves very useful also when dealing with sums over
N = 4 SYM states such as those encountered when adopting the BCFW recursion rela-
tions. Indeed they may be completely re–expressed in terms of superamplitudes and the
sum over helicities of the internal line joining the factorized amplitudes replaced by an
integral over the Grassmann η variables associated to it.

3.5 Unitarity based methods.

3.5.1 Unitarity cuts.

Unitarity of the S–matrix provides an efficient tool for constructing loop amplitudes
at order L, from amplitudes (with more external legs) at previous orders, if known. The
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ultimate goal is to use only on–shell information to recover the loop amplitude. Such a
procedure was developed by Bern, Dixon, Dunbar and Kosower, and is usually referred to
as the unitarity cuts [54, 55]. This method is based on the Cutkoski rules, which relate the
imaginary part of a Feynman diagram to its branch cuts. When considering the S–matrix
one usually separates its interacting part T as

S = 1 + i T (3.5.1)

Unitarity of the S–matrix then implies

i (T † − T ) = 2 Im (T ) = T T † (3.5.2)

The naive physical interpretation of such an equation is that the imaginary part of T , at
some order in perturbation theory, may be detected from the product of two (on–shell!)
lower order amplitudes. The cutting rules provide a systematic way of evaluating this
quantity. They consist in considering all possible cuts of a diagram in which the cut
propagators can be put simultaneously on–shell. Putting them on–shell means replacing
1/p2 by δ(p2)–functions (i.e. removing the principal value part of the propagator) and
evaluating the resulting loop integral. More precisely, one replaces

1

k2 + iǫ
−→ −2πi δ(k2) (3.5.3)

In the end a sum is performed over all possible cuts. This offers a simple algorithm to get
the imaginary part of the amplitude.

From the LHS of (3.5.2) T † − T , the imaginary part of the amplitude is understood
to be connected to the branch cut discontinuities of the amplitude. More precisely the
discontinuity is for the amplitude as a complex function of the Lorentz invariant associated
to the squared sum of the cut momenta (pi1 + · · ·+ pik)

2, which is also referred to as the
channel of the cut. The bottom–line is that such a discontinuity may be easily determined
from products of lower order amplitudes.

Applying the method outlined above, the loop integral transforms into a Lorentz
invariant phase space integral of the product of two lower order amplitudes, corresponding
to the two sides of the cut.

We consider as an example the one–loop four–gluon color–ordered amplitude, and look
at the s–channel cut in Fig. 3.2,

−iDiscA1−loop
4 (1, 2, 3, 4)=2 Im

(

A1−loop
4

)

=

∫

d4−2ǫp

(2π)4−2ǫ
(2π)2δ(l21)Atree

4 (1, l2,−l1, 2) δ(l22)Atree
4 (−l2, 3, 4, l1)

(3.5.4)
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Figure 3.2: Cuts for the one–loop four–point amplitude, s–channel, singlet cut.

Figure 3.3: Cuts for the one–loop four–point amplitude, t–channel, non–singlet cut.

where l2 and l1 are the cut momenta, and Disc stems for the discontinuity across the
branch cut. Momenta p, l2 and l1 are connected by momentum conservation. For example,
choosing p = l2, momentum conservation yields l2 = l1 + k3 + k4 and l2 = l1 − k1 − k2.
Some remarks are in order.

• First note that the presence of the δ-functions turns the loop integral into a Lorentz
invariant phase space one, whose measure is

d4−2ǫp

(2π)2−2ǫ
δ(l21) δ(l

2
2) (3.5.5)

• These amplitudes may contain both ultraviolet and infrared divergences, which have
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been regulated through dimensional regularization, from four dimensions to d =
4 − 2ǫ. This point is tricky since one should perform all computations (including
cuts) in non–integer dimension, which brings much more effort. We will come back
to this later.

• For an L–loop amplitude each channel entails cutting L + 1 internal propagators,
separating the amplitude into two disconnected pieces Al−loop and A(L−l)−loop such
that the sum of their loop orders gives L.

• Each cut could be singlet Fig. 3.2 or non–singlet Fig. 3.3, meaning that many parti-
cles can in principle run in the loop of the cut propagators. One has to take this into
account by summing over all particle species which can contribute. Alternatively,
working conveniently with superamplitudes the sum may be substituted by an inte-
gral over the Grassmann variables ηi corresponding to the cut lines. Therefore the
unitarity method can be very efficiently performed directly on the superamplitude.

The advantages of this procedure arise since the lower order amplitudes in (3.5.4) can
be simplified before evaluating the cut integral and are usually easier to compute: in the
case of a one–loop calculation they are just tree level amplitudes. Moreover the on–shell
condition for the cut momenta can be employed to simplify expressions in the numerators
of the resulting integrals.

The drawback is that in trying to derive the whole amplitude, i.e. the real part, one
has to exploit dispersion relations. For any complex function which is analytic in the
upper half plane it holds

Re (f(s)) = P
∫ +∞

−∞

dz

π

Im (f(z))

z − s
− C∞ (3.5.6)

that in principle allows to get the real part of the amplitude by a Hilbert transform of
the cut. However this is true only up to a rational (cut–free) additive piece, which is
related to the circle at infinity and cannot be detected by the cut. If this term does
not vanish, an ambiguity is there, spoiling the completeness of the result. Instead of
working out the imaginary part and then using the Kramers–Kronig relation (3.5.6), one
can follow a different route. We said that cutting a propagator means replacing it by a δ–
function, which amounts to discarding its principal value part, according to the Feynman
prescription on its regularization:

1

k2 + iǫ
= P

(

1

k2

)

− 2πi δ(k2) (3.5.7)

The whole singular part of the amplitude, sensible to a given cut, must come from the
entire cut loop integral (not just that over the (3.5.5) measure). This is obtained by
reinstating the principal value part as well, thus replacing back propagators 1/k2 instead
of δ–functions, however keeping the amplitudes in the integrand still on–shell. This allows
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to evaluate the cut part of the amplitude, both real and imaginary, in a given channel as an
unrestricted (not phase space) integral over loop momentum substituting the δ–functions
by propagators, but still keeping using on–shell conditions in the numerator [55, 54]:

A1−loop
4 (1, 2, 3, 4)

∣

∣

∣

s−cut
=

∫

d4−2ǫp

(2π)4−2ǫ

i

l22
Atree

4 (1, l2,−l1, 2)
i

l21
Atree

4 (−l2, 3, 4, l1) (3.5.8)

Then, by analyzing every channel, one can reconstruct the piece of the amplitude con-
taining logarithms and polylogarithms, which have branch cuts in some regions of the
kinematic invariants. On the other hand, the procedure is still unable to determine the
rational parts of the amplitude, which are cut free: there is a rational ambiguity.

Integral basis.

The basic idea underlying the unitarity method is to reconstruct a loop amplitude from
its branch cuts in some particular kinematic region. The singular functions containing
such branch cuts are expected to come from loop integrations. Indeed, one can always
imagine a n–point loop amplitude as given by the sum over some loop integrals I weighted
by rational coefficients cm, plus some extra rational remainders R

Aloop
n =

∑

m≤n

cm Im[P (pµ)] + R (3.5.9)

where the sum is over all possible loop integrals of the general form

Im[P (pµ)] = (−1)n+1 i

∫

d4−2ǫp

(2π)4−2ǫ

P (pµ)

p2(p−K1)2(p−K1 −K2)2 . . . (p+Kn)2
(3.5.10)

where P (pµ) stands for some polynomial of loop momenta.

Given this expansion in terms of integrals one may try to directly read their coefficients,
by taking a cut and comparing the integrand of the cut amplitude on the LHS to those
of the momentum integrals contributing in the given channel.

Since the coefficients and the remainders R are rational functions, they do not have
branch cuts, hence one expects the singularity to come entirely from loop integrals, giving
functions like logarithms or polylogarithms of the kinematic variables, that do possess
branch cuts. The computation of a particular cut, as described above, i.e. replacing two
propagators with δ–functions, is equivalent to selecting the singular part of the amplitude
in some kinematic region. The complete discontinuity must be given by the sum of the
contributions from all the loop integrals that have a branch cut singularity in this same
channel. Therefore the evaluation of the cut actually gives a combination of overlapping
loop integrals that share the same singularity. In other words, the computation of the cut
yields an expression containing pieces from entangled loop integrals. In order to pick up
all the singular contributions one has to compute all possible cuts. At the end one should
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combine the various results. However, this combination cannot just be a simple sum,
because of integrals sharing the same singularity as mentioned above, so care is needed
to avoid overcounting.

Of course if the amplitude contains a cut–free part, this cannot be detected by this
procedure, unless it comes entirely from loop integrals. In such a situation it is conceivable
that all possible integrals occurring when computing an amplitude possess some peculiar,
unique, singularities distinguishing them. If this is the case, each cut selects a single
integral and it cannot happen that a weighted sum of more integrals concurs to yield a
rational part

∑

ci Ii 6= rational (3.5.11)

In such a situation the given amplitude is said to be cut–constructible and the method
of unitarity cuts exhausts it entirely, including rational terms. One–loop amplitudes of
N = 4 have been proved to be so, for instance.

If this does not occur the rational remainder has to be found by other means.

Cuts in d dimensions.

The rational remainders of an amplitude cannot be worked out by unitarity cuts
because this amounts to computing the singular part of the amplitude, but these pieces
do not possess discontinuities, so that they are discarded. However the statement that they
are cut–free is only partially true. It holds only through O(ǫ0) order, to which amplitudes
are usually evaluated. This is equivalent to considering them in four dimensions, setting
the regularization parameter to zero.

The key observation is that, by dimensional analysis of the loop integral, it turns out
that every amplitude must be proportional to terms of momentum dimensions (k2)−ǫ,
that must have the form (−t)−ǫ, t being a general momentum invariant. Thus each
amplitude contains explicitly branch cuts at order O(ǫ), due to the expansion (−t)−ǫ ∼
(1−ǫ log(−t)), which exhibits a logarithmic singularity, though suppressed by an ǫ factor,
and previously neglected. Therefore, by working at O(ǫ) order one can in principle detect
the rational parts from the cuts too (in [27] this is carried out, using generalized unitarity,
though). It is worth mentioning that the evaluation at order O(ǫ) can be performed
just modifying the on–shell condition for the cut momenta, in order to account for the
2ǫ–dimensional part µ of the loop momentum: q2 = µ2, namely loop particles acquire a
fictitious or effective mass µ2. Summarizing, dimensional regularization can in principle
be actually employed as a means of constructing amplitudes from d–dimensional cuts.
However this requires the knowledge of tree amplitudes with two (4 − 2ǫ)–dimensional
legs, which is not so easy. Indeed there are not as many amplitudes performed this way,
as with four–dimensional cuts.



108 Chapter 3. Scattering amplitudes

3.5.2 Generalized unitarity.

The original unitarity cuts method described above is well–defined, but may still
become cumbersome at high loop level. A more efficient evolution of it is the so–called
generalized unitarity. It is based on the following observation: the RHS of (3.5.2) includes
by definition the part of the L–loop amplitude containing the propagators which have
been cut in all possible channels. The point is that these pieces may be reorganized
as a sum on the number l of cut loop propagators running from 2 to L − 1. Each of
these may be considered as a product of l lower order amplitudes. Indeed when a cut of
l propagators is performed, in a such away that this removal tears it in l disconnected
pieces, since the whole amplitude is a sum over Feynman diagrams with the original
external particles along with loop propagators, this sum can be partitioned according to
which internal propagators are present. Suppose for instance that one of the pieces in
which the amplitude is divided has external momenta pi and loop momenta kj . Then
the sum over all possible Feynman diagrams with the same pi and kj is by definition the
amplitude A(pi, kj), by virtue of the on–shell conditions for cut momenta.

This observation allows to cut more than L + 1 propagators as in the regular cuts.
The underlying logic is quite different: instead of reconstructing the amplitude from its
discontinuity, employing dispersion relation, rather one tries to isolate the contributions to
the amplitudes featuring given sets of propagators. By properly combining a sufficiently
large sample of such contributions one is legitimated to believe that the full Feynman
diagrammatic expansion has been encompassed. However one has to pay care not to
overcount contributions, by checking cross consistency between several cuts. There is no
general rule on how to perform the generalized cuts, however reiteration of two–particle
cuts seems to be a very efficient strategy.

Again, the discussion above refers to d–dimensional cuts. Four dimensional ones are
not generally sufficient, especially at higher order. Indeed, when considering generalized
cuts for higher than one–loop amplitudes, O(ǫ) terms may mix with poles from other loops
to give subleading poles or finite pieces, which have to be taken into account. Moreover, in
the presence of numerators, such contributions may also come from d–dimensional algebra
of on–shell momenta. These integrals contribute with the (−2ǫ)–dimensional part of the
vectors and are dubbed µ–integrals.

As in the regular cuts, generalized unitarity can be applied to determine the amplitude
constructively, namely computing the cut and assembling tree level amplitude so as to
make momentum integrals pop out and directly identify their rational coefficients. Rather,
knowing in advance a convenient basis of integrals one may perform multiple cuts on the
amplitude on the LHS and on the integral expansion on the RHS of (3.5.9). This way
one may derive a system of independent equations so as to fix the unknown coefficients.
Progress in this direction has been triggered by the discovery of dual conformal invariance
(reviewed in Section 3.9) which poses stringent constraints on the structure of integrals
which may appear in the basis for amplitudes in N = 4 SYM.



3.6 Amplitudes at strong coupling. 109

3.6 Amplitudes at strong coupling.

Most of the beautiful properties of scattering amplitudes in N = 4 SYM manifest
themselves in the planar limit. This is suggestive of a deep connection to the AdS/CFT
correspondence, which may shed more light on their origin.

Indeed, the AdS/CFT correspondence has allowed important advances in the field
of computing scattering amplitudes. For the best studied case of maximally supersym-
metric Yang–Mills theory, scattering amplitudes have been computed explicitly at strong
coupling, enabling interesting comparison to the weakly coupled results from field theory.

As pointed out in [47], the problem of evaluating scattering amplitudes at strong
coupling, amounts to minimizing the area of the string worldsheet surface, ending on
a light–like contour at the boundary of AdS, parametrized by the scattered particles
momenta. In the N = 4 SYM case one starts whith the metric af AdS5 written in T–dual
coordinates

ds̃2 = R2

[

dyµdy
µ + dr2

r2

]

, r =
R2

z
(3.6.1)

where R is the AdS radius, containing the dependence on the ’t Hooft parameter R2
AdS5

=
√

g2N ≡ √
λSY M). At leading order, one then considers the Nambu–Goto action, which

equals the string worldsheet area

A =

∫

dσ dτ
√

− det ∂α xµ ∂β xν gµν(x) (3.6.2)

where σ and τ are the worldsheet coordinates and the area is given by the integral of
the induced metric. One then solves the corresponding Euler–Lagrange equations, which
amounts to minimizing the worldsheet area A with the constraint that the surface should
end at the boundary of AdS5 an a sequence of light–like segments. In the end the leading
behaviour of the amplitude at strong coupling is given by

A = e−
R2

2π
A + O

(

1√
λ

)

(3.6.3)

having set ls = 1. In the case of a four cusped light–like contour, corresponding to four
particle scattering, a general solutions has been found in [47]. Choosing conformal gauge
coordinates u1, u2 for the worldsheet, this reads

r =
a

coshu1 coshu2 + b sinhu1 sinhu2
, y0 =

a
√

1 + b2 sinhu1 sinhu2

coshu1 coshu2 + b sinhu1 sinhu2

y1 =
a sinhu1 coshu2

coshu1 coshu2 + b sinhu1 sinhu2
, y2 =

a coshu1 sinhu2

coshu1 coshu2 + b sinhu1 sinhu2

(3.6.4)

The fifth coordinate y3 does not enter the solution and may be set to 0. Then the
amplitude is given by eiS evaluated on this solution.
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Actually the amplitude is affected by IR divergences, which in the gravity context map
to the worldsheet area being infinite. This divergence may be regularized for instance by
considering an IR cutoff, represented by a brane set at a small radius rc, which imposes
new boundary conditions for the solution and prevents the integral on the worldsheet
from diverging. Rather, it can be handled by introducing a dual analogue of dimensional
regularization in field theory. If we consider a CFT in p + 1 dimensions which describes
the dynamics on a p-brane in the low energy limit, then in the AdS/CFT correspondence
the AdS metric is given by the near horizon geometry of the black p-brane solution of
supergravity, corresponding to the brane where the CFT lives on. Therefore the suitable
regularization amounts to extending the solution from a p-brane to a p− 2ǫ.

Taking into account this subtlety and rescaling the ’t Hooft coupling constant by
an infrared regulator to keep the coupling dimensionless in the p + 1 − 2ǫ dimensional
Lagrangian, it has been shown that the prescription amounts to evaluating the solution
in a modified action

S =

√
λD cD
2π

∫ Lǫ=0

rǫ
(3.6.5)

where cD is an ǫ dependent constant which can be read from the brane solution for the
D(3 − 2ǫ)–brane. The final result for the ǫ expanded action evaluated on the solution of
the modified equation of motion reads

i S = −Bǫ

(

πΓ[− ǫ
2
]2

Γ[1−ǫ
2

]2
2F1

(

1

2
,− ǫ

2
,
1 − ǫ

2
; b2
)

+ 1/2

)

(3.6.6)

in terms of the dimensionally regulated AdS radius Bǫ =
√

λD cD

2π
.

It can be noticed that the structure of such an amplitude may be interpreted in the
following manner

A = exp (i S) = exp

(

Div +

√
λ

8π
log2

(s

t

)

+ C

)

(3.6.7)

where C is a constant, Div corresponds to the divergence developed in dimensional reg-
ularization because of factors Γ

(

− ǫ
2

)

, which has the explicit form

Div =
√
λ

(

− 1

2πǫ2
− 1

4πǫ
(1 − log 2)

)(

µ2

s

)ǫ

+ (s↔ t) (3.6.8)

and the non–trivial kinematic dependent piece log
(

s
t

)

is the same as in the one–loop
four–point amplitude of N = 4 SYM at weak coupling.

This form is very suggestive because it implies that the amplitude in some sense
exponentiates, an idea which had been already pointed out at weak coupling [56] and
goes under the name of the BDS ansatz. We will review this conjecture in a few lines, in
Section 3.7.
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The computation of the amplitude at strong coupling has also suggested a connection
between it and light–like Wilson loops. Indeed the evaluation of the amplitude as a
minimal area surface in AdS strikingly parallels that of a Wilson loop [57]. In this case,
since the surface ends on a light–like polygon defined by the on–shell gluon momenta, in
dual space, the corresponding Wilson loop is a polygonal light–like one. This topic is to
be sketched in a forthcoming Section 3.8.

3.7 The BDS ansatz.

In paper [56] the interesting observation that amplitudes in the planar limit of N =
4 SYM could present an iterative structure was pointed out. In particular, by direct
insight into the structure of four–point loop amplitudes evidence supports that their
whole perturbative series may be thought of as the expansion of an exponential. The
exponentiation of infrared divergences is a phenomenon already observed before, the novel
non–trivial statement is that the finite part of the amplitude may exponentiate as well.

In practice [56] suggests that an all–loop n–point amplitude in N = 4 SYM, expanded
in a series of powers of the perturbative coupling λ as

An = Atree
n

(

1 +

∞
∑

l=1

M(l)
n

)

= Atree
n Mn (3.7.1)

can be expressed as

Mn = exp

[ ∞
∑

l=1

al
(

f (l)(ǫ)M(1)
n (lǫ) + C(l) + E(l)

n (ǫ)
)

]

(3.7.2)

where M(1)
n is the n–point one–loop amplitude to all orders in ǫ, C(l) are constants which

do not depend on the number of external gluons and E
(l)
n (ǫ) are order O(ǫ) terms. These

do not iterate, but being of order ǫ do not invalidate the exponentiation property of the
amplitue (to order ǫ). However they do contribute when the whole amplitude, i.e. the
expansion of the exponential is condsidered, because non–trivial contributions will arise
when they multiply ǫ poles. Here the perturbative expansion parameter is a ≡ λ

8π2 , where
λ is the N = 4 SYM ’t Hooft coupling λ = g2N . The functions f (l)(ǫ) have an expansion
in ǫ,

f (l)(ǫ) = f
(l)
0 + f

(l)
1 ǫ+ f

(l)
2 ǫ2 (3.7.3)

whose zero order in ǫ term coincides with one quarter of the coefficients in the λ expansion
of the cusp anomalous dimension fY M(a) of N = 4 SYM

f
(l)
0 =

1

4
f

(l)
Y M fY M(a) =

∞
∑

l=1

al f
(l)
Y M (3.7.4)
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We recall the leading behaviour of fY M , as a function of the ’t Hooft coupling λ, rather
than of the effective a, at weak and strong coupling‡

fY M(λ) =

{ λ
2π2

(

1 − λ
48

+ . . .
)

λ≪ 1√
λ

π
+ . . . λ≫ 1

(3.7.5)

This quantity controls the leading IR divergencies of n–point amplitudes (and UV of the
light–like Wilson loops) which in dimensional regularization exponentiate as

exp Divn

Divn = −
n
∑

i=1

[

1

4ǫ2
f (−2)

(

λµ2ǫ
IR

(−si,i+1)ǫ

)

+
1

2ǫ
g(−1)

(

λµ2ǫ
IR

(−si,i+1)ǫ

)

]

(3.7.6)

where si, i+1 = (pi + pi+1)
2 and f (−2) and g(−1) are functions satisfying the relations

(

λ
d

dλ

)2

f
(−2)
Y M (λ) = fY M(λ) , λ

d

dλ
g

(−1)
Y M (λ) = gY M(λ) (3.7.7)

The subleading ǫ−1 pole is thus governed by the function gY M , which is scheme dependent,
in contrast to the cusp anomalous dimension.

The ansatz is also often re–expressed more compactly as,

logMn = Divn +
fY M(λ)

4
F (1)

n (0) + nk(λ) + C(λ) + O(ǫ) (3.7.8)

by collecting the divergent part into eDiv and up to O(ǫ) terms and exposing the one–loop

finite remainder F
(1)
n .

In particular for the four point amplitude the finite remainder in (3.7.8) is simply

F
(1)
4 (0) =

1

2
log2

(s

t

)

+ 4ζ2 (3.7.9)

giving the full one–loop four point amplitude to order O(ǫ)

M(1)
4 = − 1

ǫ2

[(

µ2

s

)ǫ

+

(

µ2

t

)ǫ]

+
1

2
log2

(s

t

)

+ 4ζ2 + O(ǫ) (3.7.10)

All the ǫ dependence in the ansatz is captured by M4(lǫ), i.e. there is no need for a
non–trivial E4(ǫ): E4(ǫ) = 0. At list this is what occurs up to three–loop level. Such
terms may well appear at higher n order, though.

Expressions for the iterating finite remainders of higher n multiplicity amplitudes
F

(1)
n (0), though more complicated, are available from direct loop computations and are

reported in Appendix A.3.

‡The coefficients f
(l)
0 are readed from those of (3.7.5), multiplying by 1

4 (8π2)l.
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The BDS formula was checked up to the three–loop four–point amplitude in [56] and
up to two loops for the five–point. Interestingly enough the computation of amplitudes at
strong coupling, which was performed two years later by Alday and Maldacena, shows that
precisely the same structure occurs in the strongly coupled regime, where the amplitude
looks like an exponential of the first order result, and the leading part of divergencies
is controlled by the scaling function fY M(λ) at strong coupling as well. However an
argument from strong coupling poses some bounds on the validity of the ansatz [58]:
indeed it was shown that in the limit where the number of external gluons is large, the
strong coupling amplitude is not compatible with the BDS result. Taking n → ∞, both
the strong coupling prediction and the BDS guess may be approximated by a rectangular
space–like Wilson loop, where the edges are actually a thick light–like zigzag trajectory.
Then the two predictions disagree, which is the first indication that the ansatz may fail
at large n.

Indeed it has been proposed that a finite remainder should correct the BDS ansatz,
which is a function of conformal cross–ratios, so that the result satisfies conformal in-
variance in dual space, which is suggested by the strong coupling computation (more
details on that will follow in the next Section). Since at n = 4 and n = 5 such conformal
cross–ratios are not availbale, the BDS ansatz should be correct as it has originally been
formulated. Nevertheless one may expect such non–trivial remainders to show up begin-
ning from six points, as was veified by explicit two–loop computations of both the Wilson
loop and the amplitude [59].

3.8 WL/amplitude duality.

The recipe [47] for computing scattering amplitudes at strong coupling provides a very
important side observation. This consists in noting that the prescription for evaluating
amplitudes closely resembles that for Wilson loops using the AdS/CFT . In particular the
computation of an amplitude coincides with evaluating a light–like Wilson loop with a
polygonal contour. More precisely the edges of the polygon are displacement vectors equal
to the momenta of the scattered particles, written in dual space variables pµ

i = xµ
i+1 − xµ

i .

This points towards a duality relating MHV amplitudes and light–like Wilson loops.
Compelling evidence for this to hold was adduced by direct comparisons at weak coupling
[60, 44, 61, 62], leading to the proposal

log

(

1 +

∞
∑

l=1

al M(l)
n

)

= log

(

1 +

∞
∑

l=1

al W (l)
n

)

+ O(ǫ) (3.8.1)

which identifies Wilson loops and MHV amplitudes. More precisely here M(l)
n represents

the l–loop contribution to the amplitude divided by its tree level expression (as in (3.7.2))

and W
(l)
n is the l–loop correction to the expectation value of the ligh–like Wilson loop.
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Cn is the Wilson loop contour of integration, which is defined in terms of the momenta of
the particles scattered in the amplitude, by representing the latter in dual space notation
pi = xi+1 − xi: Cn =

⋃n
i=1 [xi,i+1], for n–cusped Wilson loop, where i is cyclic. Therefore

the Wilson loop under consideration is a light–like polygonal one (closure of the polygon
sides is determined by momentum conservation in dual variables). In some sense the
Wilson loop considered here is to be intended as defined in dual momentum space rather
than usual configuration space. The relation (3.8.1) holds when carefully identifying
the kinematic variables and regularization scales. Indeed the two objects are divergent
and are dealt with dimensional regularization. The light–like Wilson loops possesses
UV divergences associated to the cusps of its contour and strenghtened by light–like
edges, whereas the amplitude exhibits infrared singularities. Actually, pursuing the idea
of considering the Wilson loop in momentum space, its UV divergences associated to
the short distance behavior x2 = 0 in original space are to be interpreted as low energy
effects, pretending x2

i,i+1 = p2, and hence could be identified with the IR divergences
of the amplitude. This re–definition, however, entails transforming the mass scales of
dimensional regularization, which differ between that for the amplitude µIR and that of
the Wilson loop µUV , as well as the sign in the regularization parameters ǫ. The correct
prescription to relate the two objects is to trade

x2
ij µ

2
UV −→ sij

µ2
IR

(3.8.2)

and ǫUV = −ǫIR. After these caveats are taken into consideration, relation (3.8.1) is
sensible and well–defined.

We give an explicit example of such a relation for the four cusp Wilson loop at one–
loop.

In the weak coupling regime the expectation value of the Wilson loop operator

〈WCn〉 =
1

N
〈 0 |TrP exp

(

i g

∫

Cn

dτAµ(x(τ)) ẋµ(τ)

)

| 0 〉 (3.8.3)

may be calculated perturbatively.

To perform the computation, the two point function of gluons in configuration space
is needed, which in Feynman gauge reads

Gµν(x) = −ηµν
Γ(1 − ǫUV )

4π2

(πµ2)ǫUV

(−x2 + i0)1−ǫUV
(3.8.4)

which has been already evaluated in dimensional regularization d = 4−2ǫUV with ǫUV > 0
(this makes the regulator appear in the scaling of the propagator, because the Fourier
transform from momentum space has been carried out in non–integer dimension) in view
of ultraviolet divergences.
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Employing this two-point function (3.8.4), the lowest order correction to the expecta-
tion value of the Wilson loop is given by

〈WCn〉 = 1 +
1

2
(ig)2CF

∫

Cn

dτ

∫

Cn

dτ̃ ẋµ(τ)ẋν(τ̃)Gµν(x(τ) − x(τ̃ )) + O(g4) (3.8.5)

where CF denotes the quadratic Casimir of the adjoint of the gauge group, which we will
assume to be SU(N), meaning CF = N2−1

2N
, which we will soon approximate to N

2
in the

planar limit.

Skipping the details of the computation, which may be found in [43], the complete
one–loop contribution to the four–cusped Wilson loop evaluates to

logW4 = a

(

Div4 +
1

2
log2 s

t
+ 2ζ2 + O(ǫUV )

)

+ O(g4) (3.8.6)

where the effective coupling a = Ng2

8π2 is the same as in (3.7.2). The explicit expression for
the divergent part Div

Div4 = − 1

ǫ2UV

((

µ2
UV (−x2

13)
)ǫUV +

(

µ2
UV (−x2

24)
)ǫUV

)

(3.8.7)

where this compact form is achieved by a change of scheme re–defining µ2
UV = µ2πeγ

Then identifying

ǫUV = −ǫIR ≡ −ǫ , x3
13 µ

2
UV =

s

µ2
IR

, x3
24 µ

2
UV =

t

µ2
IR

(3.8.8)

one appreciates the matching with the one loop amplitude (3.7.10) up to a constant. In
particular the UV divergences of the Wilson loop are mapped to the infrared singularities
of the MHV amplitude and the finite remainders are exactly the same.

The correspondence has been significantly sharpened by direct evaluation of two–
loop contributions for four [44] and five cusps [61], and by computation of higher n
polygons. Remarkably, the conjectured duality passed all tests. When in [63] departures
were observed in the two–loop six–cusps Wilson loop with respect to the predicted six–
gluon amplitude from the original BDS ansatz, it was soon proved that the correct six–
point MHV amplitude indeed is only partially determined by the BDS ansatz and has
to be complemented by a remainder function (of conformal cross–ratios). Notably, these
pieces were exactly the same as in the Wilson loop calculation [62, 59].

3.9 Dual conformal invariance.

Dual conformal invariance is an emergent symmetry exhibited by amplitudes, even
though it is not a symmetry of the Lagrangian of the theory.
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Its formulation lays the basis in an empirical observation on the structure of mo-
mentum integrals appearing in loop calculations of ampliudes. We recall that in general
every correction to the amplitude is given by a sum over integrals weighted by rational
coefficients: M(l)

n =
∑

i ci Ii. By direct inspection into the integrals appearing in up to
three–loop order four–point amplitudes, it turns out that they are unexpectedly invari-
ant under many transformations, which are not symmetries of the Lagrangian. To make
these symmetries manifest it is convenient to switch from momentum to dual space and
express integrals in terms of dual variables xi,i+1 ≡ pi. Moreover the new symmetries to
be described are broken by IR divergences of integrals. These require dimensional regular-
ization, spoiling forthcoming arguments which hold for integer d only. Therefore integrals
will be considered evaluated off–shell, where (usually, but not always§) IR divergences
disappear.

Momentum integrals are translation and Lorentz invariant by construction. Then
one might easily make them scale invariant by properly adjusting their dimension with
momentum invariants of external momenta (which could be eventually absorbed into the
coefficients ci). For instance, starting from the usual massless box in four dimensions
depicted in Fig. 3.4

p1

p2 p3

p4

x1

x2

x3

x4

x5

Figure 3.4: Box integral in dual space.

I =

∫

d4x5
1

x2
51 x

2
52 x

2
53 x

2
54

(3.9.1)

can be made to be annihilated by the dilatation operator by inserting a (for the moment

§In case an integral persists diverging even off–shell it is removed from the basis. A different situation
appears for instance in three dimensions where it is possible to include off–shell divergent integral in the
basis, provided that they always combine in such a way to cancel this singularity.
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unspecified) numerator of weight 4

I4 =

∫

d4x5
x4

x2
51 x

2
52 x

2
53 x

2
54

(3.9.2)

A more stringent requirement is that the integral be invariant under inversion I =
∑5

i=1 Ii,
acting on dual variables as

Ii : xµ
i → xµ

i

x2
i

, x2
ij →

x2
ij

x2
ix

2
j

, ddxi →
ddxi

(x2
i )

d
(3.9.3)

Neglecting momentarily the numerator, the box integral transforms as

I →
∫

d4x5

(x2
5)

4

(x2
5 x

2
1)(x

2
5 x

2
2)(x

2
5 x

2
3)(x

2
5 x

2
4)

x2
51 x

2
52 x

2
53 x

2
54

(3.9.4)

The important thing to notice is that the variation of the loop variable x5 cancels, so that
at least the integral transforms covariantly, that is up to invariants of external momenta
of weight 4. Then it may be easily made invariant suitably chosing the numerator x2

13 x
2
24,

which adjusts factors of x2
i (i = 1 . . . 4). This is the only possible choice since x2

12 = x2
34 =

0, by on–shell conditions, and even though the whole discussion was understood to hold
when considering the integral off–shell, one will eventually put invariants on the ligh–cone
to recover the amplitude.

Invariance under inversions I and translations P guarantees that the integral is also
symmetric under special conformal transformations

Ki : xµ
i → xµ

i + aµ x2
i

1 + aν x
ν
i + a2 x2

i

(3.9.5)

because conformal boosts are generated by a IPI combination.

Along with Lorentz and dilatation invariance this closes a conformal algebra in four
dimensions SO(2, 4). This is not the ordinary conformal invariance of the N = 4 action,
which would naturally show up in amplitudes, if IR divercences were not be there, breaking
it anomalously. Rather, this is a symmetry exhibited by integrals (and consequently
amplitudes) only, in particular when embedding them into dual space. Therefore such an
emergent symmetry goes under the name of dual conformal invariance.

In practice, assuming this symmetry to hold true, highly constrains the form of an
amplitude. In particular it may be used as a very powerful criterion for choosing a suitable
basis of integrals on which expanding an amplitude at loop level. The requirement that
all integrals appearing in such a basis are invariant under conformal transformations in
dual space, dramatically reduces the possibilities. Roughly, it excludes triangles and bub-
bles, not only from the one–loop basis, but also as possible subintegrals. This exclusion
descends from the relative scaling of the integration measure and the propagators under
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inversion: in a d–dimensional integral over xL containing n propagators, the transforma-
tion under IxL

would give (x2
L)−d+n. In four dimensions it means that the first structure

which can arise to compensate the variation of the measure is four propagators, which
is a box. Lower order integrals such as triangles and bubbles are excluded, since they
will never be able to make the integral invariant. Higher n integrals, such as pentagons
and hexagons are allowed, provided that aditional numerators compensate an excess of
x2

L from propagators. These do indeed participate into higher point amplitudes.

Assuming invariance under dual conformal symmetry leads to a decisive simplification
of computations and represents a valuable tool for carrying out calculations by (general-
ized) unitarity methods, which allow to determine the coefficient of the linear combination
of integrals reproducing the amplitude.

3.9.1 Dual conformal invariance and Wilson loops.

The WL/amplitude duality is perfectly compatible with the notion of dual conformal
invariance. Indeed the Wilson loop is invariant under conformal transformations, in some
sense specified below. Were it not divergent, one would be able to write down a Ward
identity for the Wilson loop where the generators of dilatations and conformal trans-
formations would annihilate the Wilson loop. However ultraviolet singularities occur,
which require regularization. Employing for instance dimensional regularization, explic-
itly breaks conformal invariance. Therefore the best one can do is to derive an anomalous
Ward identity for the Wilson loop. Remarkably, this identity constrains the result in such
a way that the finite part can only depend on a fixed set of functions and its only freedom
is in the possible addition of functions of conformal cross ratios, moreover its coefficient
is connected to the cusp anomalous dimension.

Some basic properties of Wilson loops are as follows:

• Wilson loops are not invariant under genral coordinate transformations, since they
are defined on contours which change under such operations. Whenever a theory is
described by a Lagrangian enjoying invariance under a general coordinate transfor-
mation the expectation value of the Wilson loop inherits this symmetry, provided
the contour be suitably redefined

〈W (C̃)〉 = 〈W (C)〉 (3.9.6)

In particular let us consider the four dimensional conformal group SO(2, 4), under
which the N = 4 Lagrangian is invariant. Wilson loops are dimensionless operators,
however the variation of their contours under the action of the group prevents them
from being manifestly symmetric. Light–like contours have the special property
of being closed under conformal transformations and in particular under inversion.
The expectation value ensures invariance under translations, Lorentz and special
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conformal transformations, so that since the Lagrangian is conformally invariant
too, one concludes that the Wilson loop is so, provided a redefinition of the contour

〈W (C̃n)〉 = 〈W (Cn)〉 (3.9.7)

and Ward identities for dilatations and special conformal transformations follow

〈DWn〉 = 0 , 〈Kµ Wn〉 = 0 (3.9.8)

• This conclusion is however too naive, because the presence of ultraviolet divergences
spoils it. In particular these are associated to cusps in the contour and worsened by
the light–likeness of the edges of the contour. A remarkable property of the Wilson
loop divergences is that they exhibit exponentiation. In particular, if one splits the
contributions to the Wilson loop into divergent and finite

Wn = Zn Fn (3.9.9)

the singular piece has a well–defined all–loop structure

logZn = −1

8

∑

l≥1

al
n
∑

i=1

(−x2
i−1,i+1µ

2)lǫ

(

f
(l)
Y M

l2ǫ2
+

2Γ(l)

lǫ

)

(3.9.10)

where f
(l)
Y M are again the coefficients in the perturbative expansion of the cusp

anomalous dimension of N = 4 SYM and the subleading divergence is controlled
by the function Γ(l), which we won’t be much interested in.

The expectation value of the Wilson loop operator may be expressed as usual as a
path integral

〈WCn〉 =
1

N

∫

DADλDφ eiSǫ TrP exp

(

i g

∮

Cn

A(x)

)

(3.9.11)

in terms of the N = 4 SYM action S. In order to deal with divergences dimensional
regularization is employed, making the spacetime measure of integration d = 4 − 2ǫ
dimensional and the explicit appearance of the ultraviolet scale µ.

Sǫ =
1

g2µ2ǫ

∫

dDxL(x), (3.9.12)

In particular we absorbed all 2ǫ–dimensional dependence in the coupling g and rescaled
every field so that their dimension is canonical. Therefore the Lagrangian has the same
integral weight four under dilatations as before (the action was scale invariant in d = 4),
whereas the measure has scaling 4 − 2ǫ. This mismatch is detected by applying the
dilatation operator, under which the action tranforms non–trivially as

δDSǫ =
2ǫ

g2µ2ǫ

∫

dDxL(x) (3.9.13)
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This induces an anomalous term in the Ward identity for the expectation value of the
dilatation generator D acting on the Wilson loop

D〈Wn〉 =

n
∑

i=1

(xi · ∂i)〈W (Cn)〉 = 〈δDSǫWn〉 =
2iǫ

g2µ2ǫ

∫

dDx 〈L(x)Wn〉 (3.9.14)

Analogously, application of conformal boosts determines a second anomalous Ward iden-
tity

Kµ〈Wn〉 = (2 xµ xν ∂ν − x2 ∂µ) 〈Wn〉 =
4iǫ

g2µ2ǫ

∫

dDx xµ〈L(x)Wn〉 (3.9.15)

Differently from chiral anomalies, these are not one–loop exhausted and have in principle
to be computed order by order in perturbation theory, by considering the expectation
value of the Wilson loop operator with the insertion of a Lagrangian. More conveniently
on may consider the application of conformal transformations on the logarithm of the
Wilson loop

D log〈Wn〉 =
2iǫ

g2µ2ǫ

∫

dDx
〈L(x)Wn〉

〈Wn〉
(3.9.16)

Kµ log〈Wn〉 =
4iǫ

g2µ2ǫ

∫

dDxxµ 〈L(x)Wn〉
〈Wn〉

(3.9.17)

This has been evaluated at one–loop in [61] and generalized at all–loop (by exploiting the
known all–order behavior of the divergent part). Indeed, due to the explicit ǫ factor in
(3.9.14,3.9.15), the anomaly is determined by the divergent part of

∫

dDx xµ〈L(x)Wn〉
only. This behaves similarly to the original Wilson loop divergences, allowing to conclude
that to all–loop orders

D log〈Wn〉 = −1

4

∑

l=1

αl

n
∑

i=1

(−x2
i−1,i+1µ

2)lǫ

(

f
(l)
Y M

lǫ
+ 2Γ(l)

)

(3.9.18)

Kµ log〈Wn〉 = −1

2

∑

l=1

αl

n
∑

i=1

xµ
i (−x2

i−1,i+1µ
2)lǫ

(

f
(l)
Y M

lǫ
+ 2Γ(l)

)

(3.9.19)

Splitting the Wilson loop into the divergent and the finite part, it is also possible to
derive conformal Ward identities for its finite remainder. Applying D on the divergent
piece logZn one gets

Di logZn = −1

8

∑

l≥1

al
n
∑

i=1

(

f
(l)
Y M

(lǫ)2
+

2Γ(l)

lǫ

)

lǫ(µ2)lǫ(−2) xi · xi,i+2 (−x2
i,i+2)

lǫ−1 (3.9.20)

Summing over Di’s and pairing adjacent contributions xi · xi,i+2 − xi+2 · xi,i+2 = x2
i,i+2

yields

D logZn = −1

4

∑

l≥1

al
n
∑

i=1

(

f
(l)
Y M

lǫ
+ 2Γ(l)

)

(µ2)lǫ(−x2
i,i+2)

lǫ (3.9.21)
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which exactly matches the anomaly (3.9.18). One concludes that no anomalous terms are
generated in the dilatation Ward identity for the finite remainder. Turning to the special
conformal transformations one applies the same manouver. In particulr the action of K

µ
i

on the divergent part is found by looking at

n
∑

i=1

(2xµ
i xi · ∂i − x2

i ∂
µ
i )

n
∑

j=1

(−x2
j−1,j+1µ

2)lǫ =

n
∑

i=1

2lǫ (xi + xi+1)
µ (−x2

i,i+1)
lǫ (3.9.22)

When subtracting the result obtained by substituting this into (3.9.10) to the RHS of
(3.9.19), in order to extract the Ward identity for the finite remainder, one encounters
terms of the form

n
∑

i=1

xµ
i (−x2

i−1,i+1)
lǫ −

n
∑

i=1

(xi + xi+1)
µ (−x2

i,i+1)
lǫ (3.9.23)

Reshuffling terms in the sum one gets a contribution

n
∑

i=1

(xi − xi+1)
µ (−x2

i−1,i+1)
lǫ − (xi − xi+1)

µ (−x2
i,i+2)

lǫ (3.9.24)

which expanding in ǫ gives only O(ǫ) terms, as expected, since the poles have to cancel
out in the finite part

−
n
∑

i=1

(xi − xi+1)
µ log

(

x2
i,i+2

x2
i−1,i+1

)

(3.9.25)

Reinstating this into the whole expression gives an anomalous contribution to the Ward
identity for the special conformal transformations

D logFn =
n
∑

i=1

(xi · ∂i)Fn = 0 (3.9.26)

Kµ logFn =

n
∑

i=1

(2 xµ
i xi · ∂i − x2

i ∂
µ
i ) logFn =

1

4
fY M(a)

n
∑

i=1

xµ
i,i+1 log

x2
i,i+2

x2
i−1,i+1

(3.9.27)

The consequences of such constraints on the structure of the Wilson loop are

• from (3.9.26) it follows that the finite remainder is a function of dimensionless, scale

invariant ratios f
(

x2
ij

x2
kl

)

;

• (3.9.27) implies that the coefficient of the finite part is the same as that of the
leading singularity, namely the cusp anomaolus dimension;
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• the solution to equation (3.9.27) is the sum of a solution to its inhomogeneous
version and one to the homogeneous. The former can be detected by a one–loop
calculation, whereas the latter is a function which by definition is annhiliated by the
special conformal transformations. Recalling that in any Lorentz invaviant of the
problem x2

ij invariance under translations is already granted, the desired function
should just be invariant under inversion. As in the previous section this determines
that it depends on conformal cross–ratios

uijkl =
x2

ijx
2
kl

x2
ikx

2
jl

(3.9.28)

For four and five cusps these are not available and the conformal Ward identity ex-
hausts the Wilson loop completely. For n ≥ 6 non–trivial functions of the conformal
cross–ratios may appear and do appear.

It is worth mentioning that in [61] it has been veified that the BDS ansatz is indeed
a solution of such identities. Therefore, reasoning the other way around and assuming
WL/amplitude duality, offers an explanation of the emergence of dual conformal symmetry
in the perturbative expansion of amplitudes.

Dual conformal invariance at strong coupling. As for the WL/amplitude duality,
dual conformal invariance has a strong coupling explanation.

This was spelled out in [64], where it is explained as the self–duality of the string
σ–model in the AdS5 × S5 background, which is dual to N = 4 SYM, under a proper
combination of bosonic and fermionic T–transformations. This transformation maps the
standard conformal invariance of Wilson loops into dual conformal invariance of scattering
amplitudes and viceversa, and therefore provides a strong coupling explanation of the
duality between scattering amplitudes and Wilson loops observed at weak coupling. Here
we are mainly interested in the perturbative, weak coupling regime, and do not attempt
to review this remarkable findings.

3.9.2 Dual superconformal and Yangian invariance.

By considering superamplitudes one can extend the dual conformal group acting on
dual variables xi to a dual superconformal group SU(2, 2|4) acting on dual supervariables
(xi, θi). The fermionic dual variables are obtained in a similar fashion with respect to
the bosonic. In particular the latter were derived by solving the momentum conservation
constraint

n
∑

i=1

λα
i λ̃

α̇
i = 0 =⇒ xαα̇

i − xαα̇
i+1 = λ̃α̇

i λ
α
i (3.9.29)
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Then by analogy, supercharge conservation may be solved introducing a dual variable θ
by the defining relation

n
∑

i=1

λα
i η

A
i = 0 =⇒ θA α

i − θA a
i+1 = λα

i η
A
i (3.9.30)

Since these relations define xi and θi up to the choice of the reference ”initial” values x1,
θ1, it follows that the amplitude is naturally invariant under dual translations and dual
supersymmetry transformations

Pαα̇ An = 0 , QA α An = 0 (3.9.31)

defined by

Pαα̇ =
n
∑

i=1

∂

∂xαα̇
i

, QA α =
n
∑

i=1

∂

∂θA α
i

(3.9.32)

The defining equations may be used to eliminate λ̃ and η in terms of x and θ and have
therefore a description of amplitudes in terms of a chiral dual superspace. Rather, one
may keep the whole superspace (λi, λ̃i, xi, ηi, θi) as the space of all varibles of the problem
and consider the amplitude as living on a surface in it, parameterized by the equations
(3.9.29,3.9.30). The form of the dual superconformal generators is constructed on this
space, by starting from their action on dual (x, θ) variables, which is canonical and ex-
tending them to the remaining (λ, λ̃, η) triplet, in such a way that they preserve the
constraints (3.9.29,3.9.30). For instance let us make this explicit with the generator of
dual conformal boosts Kαα̇. In the dual (x, θ) space its canonical infinitesimal action is

Kαα̇ =
n
∑

i=1

[

xαβ̇
i xαβ̇

i

∂

∂xββ̇
i

+ xα̇β
i θαB

i

∂

∂θβB
i

]

. (3.9.33)

Then if one acts on both sides of (3.9.29) as

[

Kαα̇ , x
ββ̇
i,i+1

]

=
[

Kαα̇ , λ̃
β̇
i λ

β
i

]

(3.9.34)

some dependence of Kαȧ on the new variables is needed to preserve the constraint. It
turns out that the correct additional generator is

xαβ̇
i λα

i

∂

∂λβ
i

+ xαβ̇
i+1 λ̃

α̇
i

∂

∂λ̃β̇
i

(3.9.35)

Indeed from (3.9.34)

xαḃ
i xαβ̇

i − xαḃ
i+1 x

αβ̇
i+1 = xαḃ

i λ̃β̇
i λ

α
i + xαḃ

i+1 λ̃
β̇
i+1λ

α
i+1

= xαḃ
i xαβ̇

i+1 + xαḃ
i+1 x

αβ̇
i

= xαḃ
i xαβ̇

i − xαḃ
i+1 x

αβ̇
i+1 (3.9.36)
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where the constraint (3.9.29) has been employed. In a very similar manner, acting with
Kαα̇ on both sides of (3.9.30)

[

Kαα̇ , θAβ
i,i+1

]

=
[

Kαα̇ , λβ
i η

A
i

]

(3.9.37)

requires complementing the operator with

λ̃α̇
i θ

αB
i+1

∂

∂ ηB
i

(3.9.38)

so that

xαγ̇
i θA α

i − xαγ̇
i+1 θ

A α
i+1 = λ̃α̇

i λ
γ
i θ

A α
i+1 + xαγ̇

i λα
i ηi

= xαγ̇
i,i+1 θ

A α
i+1 + xαγ̇

i θA α
i,i+1

= xαγ̇
i θA α

i − xαγ̇
i+1 θ

A α
i+1 (3.9.39)

again by use of the constraint (3.9.30). Then finally its full form reads

Kαα̇ =
n
∑

i=1

[

xαβ̇
i xαβ̇

i

∂

∂xββ̇
i

+xαβ̇
i θαB

i

∂

∂θβB
i

+xαβ̇
i λα

i

∂

∂λβ
i

+xαβ̇
i+1λ̃

α̇
i

∂

∂λ̃β̇
i

+ λ̃α̇
i θ

αB
i+1

∂

∂ηB
i

]

(3.9.40)

The same reasoning may be applied on the superconformal charge S, leading to

SA
α =

n
∑

i=1

[

−θB
iαθ

βA
i

∂

∂θβB
i

+ xiα
β̇θβA

i

∂

∂xββ̇
i

+ λiαθ
γA
i

∂

∂λγ
i

+ xi+1 α
β̇ηA

i

∂

∂λ̃β̇
i

− θB
i+1 αη

A
i

∂

∂ηB
i

]

(3.9.41)
The bottom–line of all this is that at tree level the whole superamplitude is annihilated
by the original superconformal generators, whereas transforms covariantly under the gen-
erators of dual superconformal invariance. In particular the polynomial P in (3.4.33) is
invariant, so is the combination of δ–functions, while the denominator from the MHV
factor in front makes the complete superamplitude transform covariantly as

DAn = nAn , CAn = nAn

Kαα̇ An = −
n
∑

i=1

xαα̇
i An , SA

α An = −
n
∑

i=1

θA
iα An (3.9.42)

where the action under dilatations D and the helicity central charge C has also been
explicited. Then, the generators which actually annihilate the superamplitude are

D̃ = D − n , C̃ = 0

K̃αα̇ = Kαα̇ +

n
∑

i=1

xαα̇
i , S̃A

α = SA
α +

n
∑

i=1

θA
iα (3.9.43)
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These, together with the other dual generators

j(1)
a ∈

{

Pαα̇, QαA, Q̄
A
α̇ , Mαβ , M α̇ḃ, R

A
B, D̃, S̃

A
α , S

α̇

A, K̃
αα̇
}

(3.9.44)

produce a dual copy of the ja PSU(2, 2|4) superconformal algebra annihilating tree level
amplitudes

ja Atree
n = 0 (3.9.45)

It is interesting to combine the dual generators, together with the original superconformal
ones

ja ∈
{

pαα̇, qαA, q̄α̇
A, mαβ , m̄α̇ḃ, r

A
B, d, s

α
A, s̄

A
α̇ , kαα̇

}

(3.9.46)

satisfying

[ja, jb] = f c
ab jc (3.9.47)

where fab
c are the PSU(2, 2|4) structure constants. This forms a set of charges conserved

for tree level N = 4 SYM amplitudes.

To perform such a combination the dual superconformal generators have to be put
in such a form where they act only on the original variables (λ, λ̃, η). Doing this the
generators of dual translations and supersymmetry are trivial, whereas all other dual
generators but K̃ and S̃ may be paired to the generators of the original superconformal
algebra. Identifying the latter as level zero generators ja, one defines level one operators
j
(1)
b by the relation

ja
(1) = fa

cb
∑

k<l

jkb jl c (3.9.48)

In particular, while level zero generators may be determined by summing over the single
particle ones

ja =
n
∑

k=1

jk a (3.9.49)

level one generators are bilocal in particles. Moreover they transform in the adjoint with
respect to the level zero

[

j(1)
a , jb

}

= fab
c j(1)

c (3.9.50)

where fab
c are the PSU(2, 2|4) structure constants. The point is that level one generators

may be identified as the dual superconformal ones and their higher commutators with j,
generating an infinite set of charges, are constrained by the Serre relation [48], which is a
sufficient condition for defining the Yangian of the superconformal algebra. Therefore tree
level amplitudes of N = 4 SYM are invariant under the action of a Yangian symmetry

yAtree
n = 0 (3.9.51)

for any y ∈ Y (PSU(2, 2|4)).
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3.10 Dualities involving correlators.

The conjectured duality between Wilson loops and amplitudes is an important achieve-
ment in the study of scattering. If true, it would allow to use a notoriously simpler calcu-
lation, the Wilson loop one, to determine or at least constrain, MHV amplitudes, which
are harder to compute.

Dualities in the subject of scattering amplitudes were extended last year to a a new set
of field theoretical objects: correlation functions [65, 66]. More precisely, a correspondence
was suggested between Wilson loops and correlation functions of half BPS operators in
N = 4 SYM. The statement is that an n–point correlation function Cn in the limit where
adjacent points become light–like separated should be equal to a light–like n–polygonal
Wilson loop in the adjoint representation of the gauge group. The precise identification
reads

lim
x2

i,i+1→0

Cn

C tree
n

= 〈Tradj P exp

(

ig

∫

Cn

dzµAµ(z)

)

〉 (3.10.1)

As for amplitudes, this novel duality can either be used to compute Wilson loops from
the light–like limit of correlation functions, if known, or the other way around, to place
constraints on correlation functions, since their behaviour in the light–like limit should
match that of a Wilson loop.

In field theory a physical explanation for this identification to occur can be given in
terms of an infinitely fast moving scalar particle interacting with a low energy gluon.

In the light–like limit, in fact, the scalar particle flowing around the loop becomes
infinitely energetic compared to the gluon it interacts with.

As a consequence, its propagator becomes an almost free propagator, except for an

eikonal phase P exp
(

ig
∫

Cn
dzµAµ(z)

)

which arises as the result of a path integral saddle

point approximation.

We give a more detailed explanation of this, focusing on the simplest case of scalar
bilinear operators φφ in a generic theory, transforming in the adjoint representation of
a SU(N) gauge group. At tree level, a correlator of n such operators inserted at points
{xi} (i = 1, . . . n) is given by the product of n scalar propagators

Ctree
n = N2

∑

σ∈Sn/Zn

S(xσ(i1),σ(i2))S(xσ(i2),σ(i3)) . . . S(xσ(in),σ(i1)) (3.10.2)

where a sum is performed over all non–cyclic permutations of {xi}. These include all
contributions, both connected and disconnected. Taking the light–like limit x2

i,i+1 → 0
obvioulsy selects as the most singular part the unique connected term with cyclic order
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in joining operators

Ctree
n

x2
i,i+1→0

−−−−−→ N2 S(x12)S(x23) . . . S(xn1) =
(2π)−2nN2

x2
12 x

2
23 . . . x

2
n1

(3.10.3)

All other terms are subleading in this limit.

In an interacting theory, such as N = 4 SYM, the charged scalars exchange gluons
and the correlator develops loop corrections. These corrections are finite, however the
light–like limit jeopardizes such finiteness and new singularities are expected, beyond
the trivial 1/x2. These divergent corrections have to be regularized, with dimensional
regularization in d = 4− 2ǫ, for instance. This introduces a UV mass scale µ, to define a
dimensionless action. We then consider propagation of a scalar between two operators at
xi and xi+1 positions. Then a second scale is there in the problem, which is the squared
separation between adjacent operator insertions x2

i,i+1. In the light–like limit, we have to
choose a hierarchy between these two scales. In particular we consider the limit where
x2

i,i+1 µ
2 → 0, namely we are probing the dynamics in the deep UV (at length scales much

smaller than µ−1). Since the x2
i,i+1 scale refers to scalars, whereas µ to gluon dynamics, it

follows that these two sectors are somewhat separated: the corresponding picture is that
of very fast particles interacting in a slowly varying gauge background. In such a setting
it is reasonable to approximate the correlator to the product of scalar propagators in a
background field

S(xi, xi+1;A) = Stree(xi,i+1)P exp

(

i g

∫ xi+1

xi

dz · A(z)

)

G(xi, xi+1;A) (3.10.4)

which are a solution of the Green function equation

iDµDµ S(xi, xi+1;A) = δ(4−2ǫ)(xi,i+1) (3.10.5)

Such a solution can be determined from the ansatz (3.10.4), evaluating the function G in
the light–like limit by an operator product expansion, whose local operators are weighted
by powers of x2

i,i+1: G(x, 0;A) =
∑

N,∆ (x2)∆ C∆,N(x2µ2) xµ1 . . . xµN
Oµ1...µN

∆ (0). Such
powers are determined by the twists τ of the operators by n = τ/2, so that the only
operator surviving the light–cone limit is that of twist 0, namely the identity. Therefore
one concludes that the proper propagator to be employed in the computation of the
correlator in the light–like limit is

S(xi, xi+1;A) → Stree(xi,i+1)P exp

(

i g

∫ xi+1

xi

dz · A(z)

)

(3.10.6)

Then assembling the propagator as in (3.10.3), one naturally factorizes the tree level
contribution from the free part S0, times the product of n consecutive Wilson lines, that
traced make naturally a Wilson loop in the adjoint representation of the gauge group

Cn −→ Ctree
n W adj[Cn] (3.10.7)



128 Chapter 3. Scattering amplitudes

where the contour of integration is Cn =
⋃n

i=1[xi, xi+1]. In the planar limit the Wilson loop
in the adjoint representation may be regarded as the square of that in the fundamental
one, so that finally one obtains the relation

W adj[Cn] =
(

W [Cn]
)2

+ O
(

1

N2

)

(3.10.8)

In particular the UV divergences of the Wilson loop, which are known to be there
because of the cusps in the contour of integration, arise from the spurious singularities of
the correlation functions, which are an artifact of the light–like limit.

In [65] this considerations have been applied to projections of bilinear half–BPS oper-
ators φφ, φ̄ φ̄ in N = 4 SYM, in such a configuration that the correlator is non–vanishing.
However the relation above is expected to hold generally in any theory. The only require-
ment is that the limit x2

i,i+1 → 0 still probes a regime where the perturbative analysis on
which the argument is based is reliable and therefore the particles move with 1/x2 prop-
agators, without corrections. This is the theory has to exhibit UV asymptotic freedom.
In particular any CFT in any dimension should display this WL/correlator duality.

Since Wilson loops are dual to planar scattering amplitudes, a direct duality between
n–point correlation functions in the light–like limit and n–point scattering amplitudes
must exist. This relation was defined in [66] by stating

lim
x2

i,i+1→0
log

Cn

C0
n

= 2 log
An

A0
n

(3.10.9)

While this new dualities are still lacking a proof in the string theory regime, they have
been checked perturbatively up to two loops in a number of cases [65]. In particular, the
above conjecture was successfully tested at one–loop for generic n and proved at two loops
for n = 4, 5, 6, by using the Lagrangian insertion technique in a harmonic N = 2 setting.

This result closes a new triality WL/amplitudes/correlators in the light–like limit.

We stress again that, according to the explanation above, the connection between
correlators and polygonal Wilson loops should be true not only for N = 4 SYM but also
for general conformal gauge theories in any dimensions [65].





Chapter 4

Amplitudes in ABJM: one–loop
computations

4.1 Introduction

Recently, new interest has been devoted to the study of the S–matrix for the non–
trivial sector of three dimensional Chern–Simons–matter theories which allow for a string
theory dual description. These are the well–known N = 6 superconformal ABJM model
[2] for U(N)K ×U(N)−K gauge group and the more general ABJ model [12] for U(M)K ×
U(N)−K , where K is the Chern–Simons level. In the large M,N limit their strongly
coupled dual description is given in terms of M–theory on AdS4 × S7/ZK background
and, for K ≪ N ≪ K5, by type IIA string theory on AdS4 × CP3.

The main motivation is to understand whether these theories, even if distinguished in
nature, being them non–maximally supersymmetric, share fundamental properties of the
four dimensional N = 4 SYM theory, like integrability [67], Yangian symmetry [48] of the
planar physical sector and scattering amplitudes / WL / correlation functions dualities
[61]–[68], [65]–[69]. While going deep into the nature of three dimensional theories, the
investigation of these properties should help to understand their actual origin and the role
of the AdS/CFT in their determination.

For the ABJM model, preliminary results can be already found in literature, concern-
ing integrability [70]–[71], the related Yangian symmetry [72, 73] and dualities at tree
level.

At classical level, scattering amplitudes have been shown to be invariant under dual
superconformal symmetry [74, 75] whose generators are the level–one generators of a
Yangian symmetry [72]. At strong coupling this symmetry should rely on self–duality
properties of type IIA string on AdS4 ×CP3 under a suitable combination of bosonic and
fermionic T–dualities [47, 64], even if the situation is complicated by the emergence of
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singularities in the fermionic T–transformations [76]–[77]. Recent progress in this direction
has been done in [78].

The results we report here are mainly focused on the perturbative sector of the theory.
In this regime the state of the art on loop amplitudes was quite poor until recently. The
aim of this chapter is to review our results at quantum level, trying to begin filling in this
gap.

In particular we produce evidence supporting the existence of similar dualities with
respect to N = 4 SYM and the persistence of dual conformal invariance in three dimen-
sions, by describing recent findings on scattering amplitudes, light–like Wilson loops and
correlators of half–BPS operators at one and two loops.

In this introduction we present a survey of the main topics, we are going to elucidate
more thoroughly in this chapter:

• Using N = 2 superspace description and a direct Feynman diagrammatic approach,
at one loop we compute the whole spectrum of four–point superamplitudes for N =
2, 3, 6, 8 Chern–Simons matter conformal field theories with U(M) × U(N) gauge
group. The result is generically different from zero, except for the N = 6 ABJ(M)
and N = 8 BLG∗ cases where they all vanish. Suitably generalizing the definition of
the Wilson loop to the ABJ theory, we easily argue that it also vanishes at one loop.
Therefore, we conclude that a scattering amplitude / WL duality may work only
for the N ≥ 6 case, independently of the fact that conformal symmetry is present
in all the theories we analyze.

• For N = 2, 3, 6, 8 Chern–Simons–matter theories, correlation functions of 2n BPS
operators are computed [79].
It is proved that the one–loop result for the correlator, divided by the corresponding
tree level expression, coincides with the one–loop light–like 2n–polygon Wilson loop
[80]. The identification is at the level of the integrands, independently of the fact
that both of them eventually vanish. This provides the first preliminary hints of
remarkable properties of N = 4 translating to three dimensions. The one loop
computation of scattering amplitudes in Section 4.5.1, that of the Wilson loop is
carried out in Section 4.5.2 and the calculation of correlation functions of half–BPS
operators and their light–like limit is done in Section 4.6.

• Less trivial evidence for a scattering amplitude / WL duality arises at two loops
where these quantities are not supposed to vanish. Focusing on ABJ models, still
using a direct Feynman diagram approach, we evaluate the two–loop planar scat-
tering superamplitude of four chiral superfields, two of them in the bifundamental

∗The mentioned results hold also for the N = 8 BLG theory [39, 40] described by SU(2)K ×SU(2)−K

Chern–Simons–matter theory in the large K limit. Enhancement to maximal supersymmetry could also
be obtained for Chern–Simons levels K = 1, 2. However, these values are out of the perturbative regime
and will not be considered.
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and two in the antibifundamental representation of the U(M)×U(N) gauge group.

The result for the ratio M(2)
4 ≡ A(2 loops)

4 /Atree
4 is

M(2)
4 = λλ̂

[

−(s/µ′2)−2ǫ

(2 ǫ)2
− (t/µ′2)−2ǫ

(2 ǫ)2
+

1

2
ln2
(s

t

)

+ CA(M,N) + O(ǫ)

]

(4.1.1)

where λ = M/K, λ̂ = N/K, µ′ is the mass scale and CA(M,N) is a constant
depending on the ranks of the groups. For M = N we are back to the result for the
ABJM theory [81, 82]. This is spelled out in Section 5.2.

• In Section 5.3.1 it is proved that for the ABJM theory, at this order the four–point
scattering amplitude [81, 82] divided by its tree–level counterpart coincides with
the second order expansion of a light–like four–polygon Wilson loop [80] (whose
calculation is reviewed in Subsection 5.1).

• The issue of dual conformal invariance in three dimensions is analyzed in Section
5.3.2. This hinges mainly on the results of [81], where the two–loop four–point am-
plitude has been computed by generalized unitarity, using a basis of dual conformally
invariant integrals. The matching occurring between this and our Feynman diagram
computation proves that the amplitude does satisfy dual conformal symmetry.

• Finally in Section 5.3.4 we give evidence supporting a BDS–like ansatz in three
dimensions.

We start with a brief introduction on amplitudes in Chern–Simons–matter theories,
pointing out the differences with respect to N = 4 SYM in four dimensions.

4.2 Scattering amplitudes in CSM

4.2.1 On–shell momenta.

In three space–time dimensions the Lorentz group SO(1, 2) is isomorphic to Sl(2,R).

As in the four dimensional case, it is convenient to adopt spinor notation to represent
on–shell momenta. Here there are not different spinor representations of the Lorentz
group, so that only λ spinors (and not λ̃) exist. Therefore momenta of massless particles
may be represented as

pαβ = λα λβ (4.2.1)

This identification holds up to a sign ambiguity, connected to the discrete little group Z2

for massless representations. Invariants may be translated into spinor products†

2 p1 · p2 = 〈1 2〉2 = (λα
1 λ

β
2 Cβα)2 (4.2.2)

†The sign of the invariant is different from other papers in literature ([72]), due to different conventions
in the metric and contraction with the antisymmetric symbol. Our notations are listed in Appendix A.1.
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Since momentum is real it follows that λ must be either purely real or purely imaginary.
The former choice yields p0 > 0, stemming for positive energy momenta, whereas the
latter produces negative energy p0 < 0 ones.

4.2.2 External particles.

In Chern–Simons matter theories the only non–trivial scattering amplitudes are mat-
ter amplitudes of scalars and fermions, as the vector fields are not propagating. Even
though the theory might be interacting, yielding non–trivial equations of motion for the
gauge field, considering an amplitude with external gauge vectors is meaningless, since as
asymptotic states they obey free equations of motions. These are of the form dA = 0,
implying that the gauge field is just a flat connection. Therefore one restricts the compu-
tation of amplitudes to the physical matter sector.

The on–shell matter content of ABJM is in terms of a multiplet of four scalars, and one
of their N = 2 fermionic superpartners, transforming in the fundamental representation
of the R–symmetry group SU(4) and in the bifundamental (N, N̄) of the gauge group. In
addition their complex conjugate fields, transforming in the conjugates representations are
there. The former are referred to as the particles, whereas the latter as the antiparticles

φA(λ) , φ̄A(λ) , ψA(λ) , ψ̄A(λ) , A ∈ {1, 2, 3, 4} (4.2.3)

Although we shall not adopt it here, we review how the on–shell superspace formalism of
N = 4 SYM translates to the ABJM case. In contrast to the maximally supersymmetric
four dimensional case, all physical particles transform in the same representation of the
R–symmetry group SU(4). Therefore they cannot be multiplied by different amounts of
SU(4) Grassmann variables. In order to embed the fields (4.2.3) in such multiplets it
is necessary to break SU(4) into a U(3) symmetry, manifestly realized on the spectrum
as well as some remainder. By doing this, fields can be recovered from the expansion
of a scalar Φ and a fermionic Ψ multiplet in powers of ηA Grassmann spinors in the
fundamental of SU(3)

Φ(Λ) = φ4(λ) + ηA ψA(λ) +
1

2
ǫABC η

A ηB φC(λ) +
1

3!
ǫABC η

A ηB ηC ψ4(λ)

Ψ(Λ) = ψ̄4(λ) + ηA φ̄A(λ) +
1

2
ǫABC η

A ηB ψ̄C(λ) +
1

3!
ǫABC η

A ηB ηC φ̄4(λ) (4.2.4)

The former contains the particles, whilst the second the antiparticles of the spectrum.
Using these superfields, superamplitudes may be computed

An = An (Φ1, Φ̄2, Φ3, . . . , Φ̄n) (4.2.5)

where the components are reproduced expanding in η and retaining the proper pieces.

As mentioned above we will not use the on–shell superspace formalism, rather we
want to address the problem of computing amplitudes in CSM theories (and especially
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in the ABJ(M) models) in manifestly N = 2 supersymmetric (off–shell) superspace lan-
guage. This entails considering A, B superfields and their complex conjugates as external
particles. The corresponding superamplitude contains all components in its θ expansion.

Given the structure of the vertices and the fact that we discard amplitudes with
external gauge fields, it is straightforward to realize that only those involving an even
number of external legs are non–vanishing. This is consistent with the requirement for
the amplitudes to be invariant under gauge and Lorentz transformations and under the
SU(3) linearly realized R–symmetry in on–shell superspace [74, 72].

In our language each external scalar particle A, B carries an on–shell momentum
pαβ (p2 = 0), an SU(2) flavor index and color indices corresponding to the two gauge
groups. In the more general situation of U(M) × U(N) gauge groups we classify as
particles the ones carrying (M, N̄) indices and antiparticles the ones carrying (M̄,N)
indices. Therefore, (Ai, B̄j) superfields fall into the former set, whereas (Bi, Āj) into the
latter.

4.2.3 Color ordering.

The representation of the gauge groups in which (both on and off–shell) superfields
transform is the (anti)bifundamental. This means that gauge invariance is ensured in
amplitudes whenever each particle has its two indices contracted with two antiparticles
and viceversa, so on up to building up a trace of fields. Of course multiple trace configura-
tions are allowed. We will mostly neglect them (only in Section 4.5.1 all trace structures
of one–loop four–point amplitudes are taken into account) by restricting to the planar
limit, which conveniently simplifies computations and is also the main framework where
amplitudes are worked out in N = 4 SYM as well.

Therefore amplitudes may be expanded into sums of color ordered pieces, as in (3.2.4)

An

(

Φ1
A1

Ā1
, Φ̄2

B̄2
B2
,Φ3

A3

Ā3
, . . . , Φ̄n

B̄n
Bn

)

=
∑

σ ∈
`

Sn/2 × Sn/2/Cn/2

´

An (Λσ1 , . . . ,Λσn) δ
Aσ1
Bσ2

. . . δ
B̄σn

Āσ1

(4.2.6)
where the sum runs over permutations of even and odd sites separately (in order not to
spoil gauge invariance) and cyclic permutations are neglected, being symmetries of the
trace. Hereafter color ordering will be always understood and the objects studied will be
partial amplitudes.

4.2.4 Tree level results.

Before heading the loop computation of amplitudes in superspace we mention some of
the properties highlighted in literature on scattering in ABJM. The language used in this
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context is mostly in component or in on–shell superspace and the main results concern
tree level amplitudes.

• In [72, 83] the tree level superamplitudes for four and six external particles have
been computed in ABJM.

• In [72] the constraints from the ordinary OSp(6|4) superconformal group on tree
level amplitudes has been analyzed. Moreover it has been shown that four and
six–point amplitudes possess Yangian invariance. To do this it has not actually
been necessary to determine dual conformal generators, in that the Yangian can
be constructed from the superconformal level zero generators alone. This is done
by composing the latter into bilocal level one operators (as in Section 3.9.2) and
checking that they obey the desired commutation relations with level zero ones
(3.9.50) and the Serre relations, ensuring the Yangian structure Y (OSp(6|4)).

• In [74] the dual superconformal generators under which tree–level amplitudes are
invariant have been identified. Dual space is constructed as in [48] by defining

xαβ
i,i+1 = xαβ

i − xαβ
i+1 = pαβ

i = λα
i λ

β
i

θAα
i,i+1 = θAα

i − θAα
i+1 = qαA

i = λα
i η

A
i (4.2.7)

Dual SO(2, 2) conformal invariance of tree level amplitudes follows quite straight-
forwardly, constructing the dual conformal boost generator from the canonical one
and adding terms so that it commutes with the defining relations 4.2.7.

When trying to extend to the whole superconformal OSp(6|4), a problem arises since
only the U(3) part of the R–symmetry, linearly realized on the on–shell spectrum
(4.2.4) commutes with the constraints (4.2.7), whereas the other 6 generators do
not. This problem can be remedied by introducing additional dual coordinates y,
in terms of which the R–generators act canonically

yAB
i,i+1 = yAB

i − yAB
i+1 = ηA

i η
B
i (4.2.8)

Then dual generators are deformed in such a way to commute with the latter
constraint as well. After doing this it turns out that level one generators of the
Y (OSp(6|4)) Yangian symmetry can be found to be equivalent to the dual su-
perconformal generators, restricted to on–shell space using the defining equations
(4.2.7) and (4.2.8).

• In [75] recursion relations have been determined for ABJM tree–level amplitudes.
The main hurdle in deriving them in a parallel manner with respect to the BCFW
relations is that no complex shift of momenta is allowed which preserves momentum
conservation and the on–shell conditions. This may be circumvented by considering
a non–linear shift, which allows to deform momenta consistently and write down a
recursion relation as arising from a Cauchy residue theorem. The recursion relation
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derived in [75] preserves dual conformal invariance, meaning that all tree level am-
plitudes which may be constructed from it are invariant under dual superconformal
symmetry.

4.3 Superspace computation of amplitudes.

Now we come back to loop amplitudes in superspace, for which we set up the compu-
tation.

We are interested in the simplest non–trivial amplitudes, that is four–point ampli-
tudes. These are chiral superamplitudes (AiBj A

k Bl) and non–chiral superamplitudes
(Ai Āj A

k Āl), (Bi B̄
j Bk B̄

l), (Ai Āj B̄
k Bl) plus possible permutations. While for the

ABJ(M) theories they can all be obtained from (ABAB) by SU(4) R–symmetry trans-
formations [87], for more general N = 2 models they are independent objects and need
to be computed separately.

As outlined above, the color indices can be stripped out, as we can write

A4

(

Xa1
ā1
Y b̄2

b2
Za3

ā3
W b̄4

b4

)

=
∑

σ

A4(σ(1), · · · , σ(4)) δ
aσ(1)

bσ(2)
δ

b̄σ(2)

āσ(3)
δ

aσ(3)

bσ(4)
δ

b̄σ(4)

āσ(1)
(4.3.1)

where (X,Z) stay generically for A or B̄, (Y,W ) for B or Ā superfields and the sum
is over exchanges of even and odd sites between themselves. We can then restrict to
color–ordered amplitudes A4(σ(1), · · · , σ(4)) with a fixed order of the external momenta.

Our strategy is to compute amplitudes perturbatively, by a direct superspace Feynman
diagrammatic approach. Precisely, for four–point amplitudes, we evaluate the effective
action quartic in the scalar matter superfields. Since in a scattering process the external
fields are on–shell, it is sufficient to evaluate the on–shell effective action. This amounts
to requiring the external superfields to satisfy the equations of motion (EOM) ‡

D2Ai = D2Bi = 0 , D̄2 Āi = D̄2 B̄i = 0 (4.3.2)

from which further useful equations follow

i ∂αβ Dβ A
i = i ∂αβ Dβ Bi = 0 , i ∂αβ D̄β Āi = i ∂αβ D̄β B̄

i = 0 (4.3.3)

In principle, setting the external superfields on–shell might cause problems when IR diver-
gences appear in loop integrals. We dimensionally regularize these divergences working in
D = 3−2ǫ dimensions, while keeping spinors and ǫijk tensors strictly in three dimensions.
We then use the prescription to set the external superfields on–shell at finite ǫ.

‡The actual EOM as derived from the action (1.3.1) would be D2 A1 = −h̄1 B̄2 Ā2 B̄1 − h̄2 B̄1 Ā2 B̄2,
D2 A2 = −h̄1 B̄1 Ā1 B̄2 − h̄2 B̄2 Ā1 B̄1 plus their hermitian conjugates, and similarly for the B fields.
However, being us interested in the quartic terms of the effective action, we can safely approximate the
EOM as in (4.3.2).
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To summarize, the general strategy is the following: For a given process and at a given
order in loops we draw all super–Feynman diagrams with four external scalar superfields.
The corresponding contribution will be the product of a color/combinatorial factor times
a function of the kinematic variables. We work in the large M,N limit and perturba-
tively in λ = M/K1 and λ̂ = N/K2. To determine the kinematic function, we perform
D–algebra to reduce superdiagrams to a linear combination of ordinary momentum inte-
grals. This is achieved by integrating by parts spinorial derivatives coming from vertices
and propagators and using the algebra (A.1.16) up to the stage where only one factor
D2D̄2 for each loop is left. This procedure is highly simplified by the on–shell conditions
(4.3.2, 4.3.3) on the external superfields. We then evaluate momentum integrals in di-
mensional regularization by using standard techniques (Feynman parameterization and
Mellin–Barnes representation).

In momentum space the external superfields carry outgoing momenta (p1, p2, p3, p4),
with p2

i = 0 and
∑

i pi = 0. At the level of the effective action we are allowed to
conveniently rename the external momenta, since the pi’s are integrated. When evaluating
the amplitude, the total contribution from every single graph will be given by the sum
over all possible permutations of the external legs accounting for the different scattering
channels.

Mandelstam variables are defined as s = (p1 + p2)
2, t = (p1 + p4)

2, u = (p1 + p3)
2.

4.4 Light–like Wilson loops for CSM theories.

The definition of the Wilson loop for CSM theories was proposed in [84, 80] for the
U(N) × U(N) gauge group, namely for the ABJM case

〈W4〉ABJM =
1

2N

{

TrP e i
R

Cn
Aµ d zµ

+ TrP e i
R

Cn
Âµ d zµ

}

(4.4.1)

In the situation we are interested in Cn is a light–like polygonal closed path. It is given
by n points xi (i = 1 . . . n) in three dimensional spacetime. The edges xµ

i − xµ
i+1 are

parameterized by the parameters αi ∈ [0, 1] in the following manner

zµ
i = xµ

i + (xi+1 − xi)
µ αi (4.4.2)

For later convenience we refer to the displacement vectors xµ
i −xµ

j as xµ
ij and to the edges

xµ
i+1,i as pµ

i . In the light–like Wilson loop p2
i = 0 for all i, where the invariants are taken

by contraction with the Minkowskian metric (g = diag (+1,−1,−1))§.

§All computations with Wilson loops are performed here in Lorentzian signature, so as to stick to
the mainstream in literature. In order to match computations for amplitudes and correlators which are
carried out in the Euclidean, it is then straightforward to Wick rotate the final results to this signature.
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We want to restrict to real Wilson loops, for which imposing all non–vanishing dis-
placements −x2

ij > 0 is required. This is possible only for an even number n of sides,
which will be understood hereafter.

Up to two loops the precise CSM theory where we set the computation of the Wil-
son loop does not really matter, since there are no contribution involving superpotential
interactions. The only information entering the computation is the field content of the
theory, which is the same for all the models with bifundamental matter we deal with.

We can sensibly deform the Wilson loop away from the ABJM, by changing the ranks
of the gauge groups (ABJ), or taking non–opposite CS levels, in addition. In what follows
we will be mainly interested in the extension to ABJ, henceforth we will generalize the
definition of the Wilson loop, taking into account different ranks for the gauge groups,
which we hereafter take to be U(M) × U(N), but leaving opposite CS levels. In doing
this, we change the normalizations of the two contributions from A and Â gauge fields.
We suggest the following definition for the Wilson loop

〈W4〉(1)ABJ =
1

M +N

{

TrU(M) P e
i

R

Aµ d zµ

+ TrU(N) P e
i

R

Âµ d zµ
}

(4.4.3)

This should be the natural generalization of the Wilson loop for a unitary gauge group,
just considering U(M) × U(N) as the whole gauge group and taking its gauge field A =
diag(A, Â) to be a block diagonal (N +M) × (N +M) square matrix)

〈W4〉(1)ABJ =
1

M +N
TrP ei

R

Aµ d zµ

=
1

M +N
TrP e

i
R

0

@

A 0

0 Â

1

A d zµ

=
1

M +N

{

TrU(M) P e
i

R

Aµ d zµ

+ TrU(N) P e
i

R

Âµ d zµ
}

(4.4.4)

We can arbitrarily propose a slightly modified candidate

〈W4〉(2)ABJ =
1

2M
TrU(M) P e

i
R

Aµ d zµ

+
1

2N
TrU(N) P e

i
R

Âµ d zµ

(4.4.5)

which differs from the previous one by the different choice of relative normalization of the
two contributions.

Both (4.4.3) and (4.4.5) reproduce the ABJM Wilson loop if the parity violating
parameter σ is set to zero, or, said another way, when we set M = N .

In the computations we will perform, up to two loops we will see that the two defini-
tions are pretty indistinguishable and we do not have a favorite one in that both will be
able to match the four point amplitude, up to an unobservable change of regularization
scale. We include (4.4.5) in the discussion because we will show that its dependence on
M and N in loop computations seems to be slightly more similar to that for amplitudes
than (4.4.3).
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4.5 One loop computations.

In this section we address the computation of scattering amplitudes in general N = 2
CSM theories to one–loop order in perturbation theory.

The aim of this calculation is to study the properties of loop amplitudes in three
dimensions and ascertain whether they share some of the marvelous features of the N = 4
SYM ones.

For instance we are interested in investigating whether the WL/amplitude/correlator
triality may hold in CSM theories. In particular here we want to test if this conjecture
passes the tests at one–loop and eventually selects subclasses of theories for which the
triality or some corner thereof is valid. To do this we also review how to compute light–
like Wilson loops, and correlation functions of half–BPS operators, detailing the steps
and quoting the main results.

We start by spelling out the evaluation of the scattering amplitude of four scalar fields.
We embed the problem into superspace language by suitably rearranging the scalar into
supermultiplets and then considering the corresponding superamplitude. As explained in
more detailed in Section 4.2, in the most symmetric theories supersymmetry constrains
amplitudes in such a way that only one component is independent and all others can
be obtained by multiplication by a simple kinematic factor. In less symmetric theories
any N = 2 superamplitude is pretty independent. Working in a generic N = 2 entails
therefore the calculation of many possible configurations of external superfields. We are
able to accomplish such a task and we list the final expression for all amplitudes. The
main outcome is that four–point amplitudes vanish at one loop for the ABJ(M) case,
whereas are generically non–zero for all other theories. These results are contained in
[85].

In Section 4.5.2 we deal with the computation of a light–like polygonal bosonic Wilson
loop, whose definition in CSM theories was outlined in the last Section. Their perturbative
calculation is performed directly in components, by expanding the Wilson loop exponential
and employing the gauge vectors propagators. We show how to generalize the result from
the simplest four cusped Wilson loop to an arbitrary even number n of cusps and we
derive a closed expression for it, in terms of an integral over the affine parameters of the
Wilson loop, which we work out later on. The bulk of the computation is taken from [80],
whereas the extension to any n can be found in [79].

The last part of this Chapter is devoted to the one–loop computation of the light–like
limit of correlation functions of half–BPS operators. Setting this calculation in N = 2
superspace it amounts to considering the prototype of a one–loop correction, given by the
exchange of a vector superfield and sum over all channels. The main hurdle is due to a
quite involved Feynman integral which we handle in a very non–trivial way. At the end
of the day we are able to show that the final expression for the correlator of an arbitrary



140 Chapter 4. Amplitudes in ABJM: one–loop computations

even number of such operators reproduces the same expression as the Wilson loop, in the
light–like limit. This is again given as a sum over different contributions and in terms of
a still unresolved integral.

Finally we face the problem of evaluating this integral. After a lengthy calculation
we manage to prove that summing over all possible exchange channels yields a vanishing
outcome for any even number of insertions. Since the expression is formally the same as
for a polygonal light–like Wilson loop, we conclude that both evaluate to zero at one loop.
These section is inspired by [79].

4.5.1 Scattering at one–loop

For a generic N = 2 model described by the action (2.6.1), we first concentrate on the
chiral amplitudes (AiBj A

k Bl).

At tree level and one loop the corresponding contributions are depicted in Fig. 4.1
where the four–point interaction comes from the superpotential term in (1.3.5).

(a) (b)

Figure 4.1: Diagrams contributing to the tree level and one–loop four–point chiral scat-
tering amplitude.

The tree–level amplitudes as coming from Fig. 4.1(a) are simply given by

Atree
4 (A1(p1), B1(p2), A

2(p3), B2(p4)) = h1

Atree
4 (A1(p1), B2(p2), A

2(p3), B1(p4)) = h2 (4.5.1)

At one loop, we need evaluate diagram 4.1(b). Performing on–shell D–algebra and go-
ing to momentum space, the corresponding term in the effective action turns out to be
proportional to

∫

d4θ Tr (Ai(p1)Bj(p2)D
αAk(p3)D

β Bl(p4)) ×
∫

d3−2ǫk

(2π)3−2ǫ

(k + p4)αβ

k2(k − p3)2(k + p4)2

ǫ→0−−→ 1

8

∫

d4θ Tr (Ai(p1)Bj(p2)D
αAk(p3)D

β Bl(p4))
(p4 − p3)αβ

|p3 + p4|3
(4.5.2)

where in the second line we have used the results (A.5.11, A.5.12) for the scalar and
vector–like triangles in dimensional regularization.
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Now, using the on–shellness conditions (4.3.3), which in the case under exam read
pαβ

3 DαA
k(p3) = 0 and pαβ

4 Dβ Bl(p4) = 0, it is easy to see that the final result is zero.
Since the same pattern occurs for all the permutations of the external momenta, we
conclude that the chiral four–point amplitude is one–loop vanishing. This occurs not only
in the planar limit, but also for any finite value of M,N .

Notably, the one–loop vanishing of the effective action, quartic in the chiral superfields,
can be proved to be true even off–shell [86]. Indeed diagram 4.1(b) (where momenta are
labeled starting from p1 upperleft following counterclockwise order) yields the following
contribution

∫

d3−2ǫk

(2π)3−2ǫ

kαβ

k2(k − p3)2(k − p3 − p4)2

∫

d4θ A(p1)B(p2)D
αA(p3)D

β B(p4) (4.5.3)

where k stems for loop momentum. Performing the spinorial integration over θ̄ to recover
the chiral measure gives

∫

d3−2ǫk

(2π)3−2ǫ

kαβ(p4)
βγ(p3)

α
g

k2(k − p3)2(k − p3 − p4)2

∫

d2θ A(p1)B(p2)A(p3)B(p4)

=

∫

d3−2ǫk

(2π)3−2ǫ

ǫ(k p4 p3)

k2(k − p3)2(k − p3 − p4)2

∫

d2θ A(p1)B(p2)A(p3)B(p4) (4.5.4)

where the notation ǫ(k p4 p3) = ǫµνρ k
µ pν

4 p
ρ
3 is understood. By a Passarino–Veltman

decomposition of the vector integral, we can realize that this contribution is proportional
to ǫ(p4 p4 p3) and ǫ(p3 p4 p3), which are identically zero due to the antisymmetry of the ǫ
tensor.

We now go through non–chiral amplitudes of the form (Ai Āj A
k Āl). For theories with

low supersymmetry, such as the generic N = 2 CSM, these are not connected to the chiral
one by super Ward identities. Thus we do not expect them to vanish in general.

These amplitudes get contributions from several supergraphs, which we depict in Fig.
4.2.

For each graph we compute the corresponding color/combinatorial factor and perform
on–shell D–algebra. We list the results valid for M,N finite (for the time being, no large
M,N limit is taken). Since we work at the level of the effective action, an overall integral
over pi momenta is understood. For convenience we also neglect an overall (4π)2 coming
from the gauge propagators (1.4.5).

Diagram 4.2(a) : This is the only diagram involving the chiral interaction vertices pro-
portional to h1, h2. In this case D–algebra is trivial and the resulting color structure
gives only double traces. Exploiting the possibility to relabel the integrated momenta,
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Ā
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Ā

Figure 4.2: One–loop diagrams contributing to non–chiral amplitudes (Ai Āj A
k Āl).
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the result can be written in a quite compact form

2(a) =
1

32π2

∫

d4θ
{

(|h1|2 + |h2|2) Tr (Ai(p1)Āi(p2)) Tr (Aj(p4)Āj(p3)) (4.5.5)

+(h1h̄2 + h2h̄1) Tr (Ai(p1)Āj(p3)) Tr (Aj(p4)Āi(p2))

−|h1 + h2|2 Tr (Ai(p1)Āi(p2)) Tr (Ai(p4)Āi(p3))
}

B(p1 + p4)

where B(p1 + p4) is the bubble integral defined in (A.5.9). Repeated flavor indices are
understood to be summed.

Diagram 4.2(b) : In this case the result is a linear combination of single and double traces.
Single traces are associated with planar graphs and are leading in the large M,N limit.
D–algebra is easily performed and leads to

2(b) =

∫

d4θ

{

− M

4K2
1

Tr (Ai(p1)Āi(p2)A
j(p4)Āj(p3)) (4.5.6)

− N

4K2
2

Tr (Ai(p1)Āj(p3)A
j(p4)Āi(p2))

−
(

1

4K2
1

+
1

4K2
2

)

Tr (Ai(p1)Āi(p2)) Tr (Aj(p4)Āj(p3))

− 1

K1K2
Tr (Ai(p1)Āj(p3)) Tr (Aj(p4)Āi(p2))

}

B(p1 + p2)

Diagram 4.2(c) : With a convenient choice for the internal momentum, this diagram gives
rise to

2(c) =

∫

d4θ

{

M

2K2
1

Tr (DαAi(p1)D̄
βĀi(p2)A

j(p4)Āj(p3))

+
N

2K2
2

Tr (DαAi(p1)Āj(p3)A
j(p4)D̄

βĀi(p2))

+

(

1

2K2
1

+
1

2K2
2

)

Tr (DαAi(p1)D̄
βĀi(p2)) Tr (Aj(p4)Āj(p3))

+
2

K1K2
Tr (DαAi(p1)Āj(p3)) Tr (Aj(p4)D̄

βĀi(p2))

}

×
∫

d3−2ǫk

(2π)3−2ǫ

kαβ

k2(k − p1)2(k + p2)2
(4.5.7)

where D–algebra requires integrating two spinorial derivatives on the external fields.

Using the result (A.5.12) for the vector–like triangle in dimensional regularization,
this contribution vanishes due to the equations of motion (4.3.3) pαβ

1 DαA(p1) = 0 and
pαβ

2 D̄βĀ(p2) = 0.
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Diagram 4.2(d) : This is the first case where on–shell D–algebra and repeated use of the
equations of motion allow for a drastic simplification of the final result. We spell out the
calculation in full detail.

Computing the color factors we obtain only double trace structures. After performing
D–algebra we are led to

∫

d4θ

{(

1

2K2
1

+
1

2K2
2

)

Tr
(

DαAi(p1)D̄
βĀi(p2)

)

Tr
(

DγAj(p4)D̄
δĀj(p3)

)

− 1

K1K2

Tr
(

DαAi(p1)D̄
δĀj(p3)

)

Tr
(

DγAj(p4)D̄
βĀi(p2)

)

}

×
∫

d3−2ǫk

(2π)3−2ǫ

kαγkβδ

k2(k + p1)2(k + p1 + p4)2(k − p2)2
(4.5.8)

We first integrate by parts the D̄β derivative.
Using the equations of motions (4.3.2,4.3.3) we obtain

∫

d4θ

{(

1

2K2
1

+
1

2K2
2

)

Tr
(

Ai(p1)Āi(p2)
)

Tr
(

DγAj(p4)D̄
δĀj(p3)

)

− 1

K1K2

Tr
(

Ai(p1)D̄
δĀj(p3)

)

Tr
(

DγAj(p4)Āi(p2)
)

}

×
∫

d3−2ǫk

(2π)3−2ǫ

pαβ
1 kαγkβδ

k2(k + p1)2(k + p1 + p4)2(k − p2)2

−
{(

1

2K2
1

+
1

2K2
2

)

Tr
(

DαAi(p1)Āi(p2)
)

Tr
(

Aj(p4)D̄
δĀj(p3)

)

+
1

K1K2

Tr
(

DαAi(p1)D̄
δĀj(p3)

)

Tr
(

Aj(p4)Āi(p2)
)

}

×
∫

d3−2ǫk

(2π)3−2ǫ

pβγ
4 kαγkβδ

k2(k + p1)2(k + p1 + p4)2(k − p2)2
(4.5.9)

We concentrate on the first integral. The numerator can be rewritten as

pαβ
1 kαγkβδ = pαβ

1

[

kδγkβα − k2CδαCβγ

]

= (k + p1)
2kγδ − k2(k + p1)γδ (4.5.10)

Now, simplifying the squares at numerator against the ones at denominators we are left
with a linear combination of scalar and vector–like triangle integrals

∫

d3k

(2π)3

{

kαβ

k2(k + p1 + p4)2(k + p1 + p4 + p3)2
+

−kαβ

k2(k + p4)2(k + p4 + p3)2
+

−p2 kαβ

k2(k + p1)2(k + p1 + p4)2(k − p2)2

}

(4.5.11)

Exploiting the fact that in dimensional regularization the scalar triangle is zero, while the
vector–like one is proportional to a bubble integral (see Appendix B), the first term in
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(4.5.9) reduces to
∫

d4θ

{(

1

2K2
1

+
1

2K2
2

)

Tr
(

Ai(p1)Āi(p2)
)

Tr
(

DγAj(p4)D̄
δĀj(p3)

)

(4.5.12)

− 1

K1K2
Tr
(

Ai(p1)D̄
δĀj(p3)

)

Tr
(

DγAj(p4)Āi(p2)
)

}

× (p2)γδ

(p1 + p4)2
B(p1 + p4)

where equations of motion and momentum conservation have been used. Now, integrating
by parts the D̄δ derivative and using on–shell conditions, it can be further simplified to
∫

d4θ

{(

1

2K2
1

+
1

2K2
2

)

Tr
(

Ai(p1)Āi(p2)
)

Tr
(

Aj(p4)Āj(p3)
)

(4.5.13)

+
1

K1K2

Tr
(

Ai(p1)Āj(p3)
)

Tr
(

Aj(p4)Āi(p2)
)

}

× (p2 + p4)
2

(p1 + p4)2
B(p1 + p4)

We can apply the same tricks to the second integral in eq. (4.5.9). After a bit of algebra,
we obtain a similar expression which, summed to the rest, leads to the final expression
for the box diagram 2(d) in terms of a linear combination of bubbles

2(d) =

∫

d4θ

{(

1

2K2
1

+
1

2K2
2

)

Tr
(

Ai(p1)Āi(p2)
)

Tr
(

Aj(p4)Āj(p3)
)

(4.5.14)

+
1

K1K2
Tr
(

Ai(p1)Āj(p3)
)

Tr
(

Aj(p4)Āi(p2)
)

}

× [B(p1 + p2) − B(p1 + p4)]

Diagram 4.2(e) : The result for this diagram reads

2(e) = −
∫

d4θ

{

M

2K2
1

Tr
(

Ai(p1)Āi(p2)D
αAj(p4)D̄

βĀj(p3)
)

(4.5.15)

− N

2K2
2

Tr
(

Ai(p1)D̄
βĀj(p3)D

αAj(p4)Āi(p2)
)

− 1

K1K2

Tr
(

Ai(p1)D̄
βĀj(p3)

)

Tr
(

Āi(p2)D
αAj(p4)

)

}

× (p2)
γ

α

∫

d3−2ǫk

(2π)3−2ǫ

k δ
γ (k + p1 + p3)δβ

k2(k + p1)2(k + p1 + p3)2(k − p2)2

Elaborating its numerator, the integral can be rewritten as

∫

d3−2ǫk

(2π)3−2ǫ

k2Cβγ + k δ
γ (p1 + p3)δβ

k2(k + p1)2(k + p1 + p3)2(k − p2)2
= Cβγ T (p3, p4)+(p1 +p3)δβ QV

δ
γ (4.5.16)

As proved in Appendix B, the triangle and vector–like box integrals are O(ǫ) in dimen-
sional regularization (see eqs. (A.5.11, A.5.27)). Therefore, this diagram can be discarded
when ǫ→ 0.
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Diagram 4.2(f) : We now consider 1P–reducible diagrams. For graph 4.2(f) using the
one–loop correction to the gauge propagator given in eq. (2.2.15) we obtain

∫

d4θ

{

1

K2
1

(

N − M

4

)

Tr
(

DαAi(p1)Āi(p2)A
j(p4)D̄

βĀj(p3)
)

(4.5.17)

+
1

K2
2

(

M − N

4

)

Tr
(

Āi(p2)D
αAi(p1)D̄

βĀj(p3)A
j(p4)

)

+

(

1

4K2
1

+
1

4K2
2

+
2

K1K2

)

Tr
(

DαAi(p1)Āi(p2)
)

Tr
(

Aj(p4)D̄
βĀj(p3)

)

}

× (p4)αβ

(p1 + p2)2
B(p1 + p2)

We can integrate by parts the Dα derivative. Exploiting the equations of motion, the
only non–vanishing term is the one where the derivative hits D̄βĀj(p3), giving a factor

−pαβ
3 (p4)αβ = −(p3 + p4)

2. By momentum conservation, this cancels against the denomi-
nator in (4.5.17) and we finally obtain

2(f) = −
∫

d4θ

{

1

K2
1

(

N − M

4

)

Tr
(

Ai(p1)Āi(p2)A
j(p4)Āj(p3)

)

(4.5.18)

+
1

K2
2

(

M − N

4

)

Tr
(

Āi(p2)A
i(p1)Āj(p3)A

j(p4)
)

+

(

1

4K2
1

+
1

4K2
2

+
2

K1K2

)

Tr
(

Ai(p1)Āi(p2)
)

Tr
(

Aj(p4)Āj(p3)
)

}

× B(p1 + p2)

Diagram 4.2(g) : Finally, we consider the reducible triangle diagram. Performing on–
shell D–algebra we produce terms with four spinorial derivatives acting on the external
fields. After integrating by parts one of these derivatives, using on–shell conditions and
momentum conservation and relabeling internal and external momenta, we can write the
result as

−
∫

d4θ

{

N

K1K2

Tr
(

Ai(p1)D̄
βĀi(p2)D

αAj(p4)Āj(p3)
)

(4.5.19)

− M

K1K2
Tr
(

Ai(p1)Āj(p3)D
αAj(p4)D̄

βĀi(p2)
)

+

(

1

K2
1

+
1

k2
2

)

Tr
(

Ai(p1)D̄
βĀi(p2)

)

Tr
(

DαAj(p4)Āj(p3)
)

}

× (p1 + p2)γα

(p1 + p2)2

∫

d3−2ǫk

(2π)3−2ǫ

(k + p1)
γδ kδβ

k2(k + p1)2(k − p2)2
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We can elaborate the numerator of the integrand to obtain

∫

d3−2ǫk

(2π)3−2ǫ

k2δγ
β + pγδ

1 kδβ

k2(k + p1)2(k − p2)2
= δγ

β B(p1 + p2) + pγδ
1 TV δβ

= B(p1 + p2)

[

δγ
β − pγδ

1 (p2)δβ

(p1 + p2)2

]

(4.5.20)

where eq. (A.5.12) has been used together with on–shell conditions. Inserting back into
eq. (4.5.19), observing that on–shell (p1 + p2)γαp

γδ
1 (p2)δβ = (p1 + p2)

2(p2)αβ where (p2)αβ

vanishes when contracted with D̄βĀi(p2), we obtain

−
∫

d4θ

{

N

K1K2
Tr
(

Ai(p1)D̄
βĀi(p2)D

αAj(p4)Āj(p3)
)

− M

K1K2
Tr
(

Ai(p1)Āj(p3)D
αAj(p4)D̄

βĀi(p2)
)

+

(

1

K2
1

+
1

K2
2

)

Tr
(

Ai(p1)D̄
βĀi(p2)

)

Tr
(

DαAj(p4)Āj(p3)
)

}

× (p1)αβ

(p1 + p2)2
B(p1 + p2) (4.5.21)

On–shell conditions are once again helpful for reducing the structure of spinorial deriva-
tives acting on the external fields. In fact, integrating by parts the Dα derivative we
produce a term pαβ

2 that, contracted with (p1)αβ , cancels (p1 + p2)
2 at the denominator.

We finally obtain

2(g) = −
∫

d4θ

{

N

K1K2
Tr
(

Ai(p1)Āi(p2)A
j(p4)Āj(p3)

)

(4.5.22)

+
M

K1K2
Tr
(

Ai(p1)Āj(p3)A
j(p4)Āi(p2)

)

+

(

1

K2
1

+
1

K2
2

)

Tr
(

Ai(p1)Āi(p2)
)

Tr
(

Aj(p4)Āj(p3)
)

}

× B(p1 + p2)

We are now ready to sum all the results and obtain the one–loop effective action
needed for the evaluation of (Ai Āj A

k Āl) amplitudes.

Having reduced all the expressions to strings of external superfields with no derivatives
acting on them, multiplied by bubble integrals, we can group them according to their trace
structure. We have single trace contributions from diagrams 2(b), (f), (g) and double trace
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contributions from 2(a), (b), (d), (f), (g). Collecting them all, we obtain

∫

d4θ

{

− Tr (Ai(p1)Āi(p2)A
j(p4)Āj(p3)) λ̂

(

1

K1
+

1

K2

)

× B(p1 + p2)

− Tr (Ai(p1)Āj(p3)A
j(p4)Āi(p2)) λ

(

1

K1

+
1

K2

)

× B(p1 + p2)

(4.5.23)

+ Tr (Ai(p1)Āi(p2)) Tr (Aj(p4)Āj(p3)) ×
[

1

2

( |h1|2 + |h2|2
16π2

− 1

K2
1

− 1

K2
2

)

× B(p1 + p4) −
(

1

K1
+

1

K2

)2

× B(p1 + p2)

]

+ Tr (Ai(p1)Āj(p3)) Tr (Aj(p4)Āi(p2))

(

h1h̄2 + h2h̄1

32π2
− 1

K1K2

)

× B(p1 + p4)

− 1

32π2
Tr (Ai(p1)Āi(p2)) Tr (Ai(p4)Āi(p3)) |h1 + h2|2 × B(p1 + p4)

}

First of all, we observe that for M,N finite the quartic effective action, and consequently
the amplitude, vanishes when K2 = −K1 and h2 = −h1 = 4π/K. This is exactly the
N = 6 superconformal fixed point corresponding to the ABJ theory. This result was
expected and provides a non–trivial check of our calculation. In fact, in the ABJ model
the non–chiral amplitude is related to the chiral one by SU(4) symmetry and we have
already checked that the chiral amplitude is one–loop vanishing.

Taking M,N large and assuming the hi couplings of order of 1/Ki, only single trace
contributions survive in (4.5.23). In this case, the amplitude will vanish for K2 = −K1,
independently of the values of the chiral couplings. In particular, we have a vanishing
non–chiral amplitude for the whole set of N = 2 superCFT’s given by the condition (see
eq. (2.7.2) when M = N and K1 = K2)

|h1|2 + |h2|2 =
32π2

K2
(4.5.24)

We observe that the amplitude never vanishes for theories with K2 6= −K1, in particular
for superCFT’s which correspond to turning on a Romans mass in the dual supergravity
background. The same pattern occurs for the (Bi B̄

j Bk B̄
l) amplitudes. In fact, repeating

the previous calculation we obtain exactly the same expression (4.5.23) as a consequence
of the Z2 symmetry of the action under exchange V ↔ V̂ , A ↔ B, M ↔ N , K1 ↔ K2

and h1 ↔ h2.

Finally, we need consider mixed amplitudes of the type (Ai Āj B̄
k Bl). These give rise

to rather different trace structures. The contributing diagrams are still the ones drawn in
Fig. (4.2) with obvious substitution of one (A, Ā) couple with a (B, B̄) couple. Applying



4.5 One loop computations. 149

the same procedure as before, we get
∫

d4θ

{

2 Tr (Ai(p1)Āi(p2)B̄
j(p3)Bj(p4)) λ̂

(

1

K1
+

1

K2

)

× B(p1 + p2) (4.5.25)

+ 2 Tr (Āi(p2)A
i(p1)Bj(p4)B̄

j(p3))λ

(

1

K1

+
1

K2

)

× B(p1 + p2)

+ Tr (Ai(p1)Āi(p2)B̄
j(p3)Bj(p4))i6=j M

( |h1|2
16π2

− 1

K2
1

)

× B(p1 + p4)

+ Tr (Ai(p1)Āi(p2)B̄
i(p3)Bi(p4)) M

( |h2|2
16π2

− 1

K2
1

)

× B(p1 + p4)

+ Tr (Āi(p2)A
i(p1)Bj(p4)B̄

j(p3))i6=j N

( |h2|2
16π2

− 1

K2
2

)

× B(p1 + p4)

+ Tr (Āi(p2)A
i(p1)Bi(p4)B̄

i(p3)) N

( |h1|2
16π2

− 1

K2
2

)

× B(p1 + p4)

+ 2 Tr (Ai(p1)Āi(p2)) Tr (Bj(p4)B̄
j(p3))

(

1

K1
+

1

K2

)2

× B(p1 + p2)

+ 2 Tr (Ai(p1)Bj(p4)) Tr (Āi(p2)B̄
j(p3))

(

h1h̄2 + h2h̄1

32π2
− 1

K1K2

)

× B(p1 + p4)

}

Some comments are in order. ForM,N finite, these amplitudes vanish only at the ABJ(M)
fixed point, as expected. However, in contrast with the previous case, in the large M,N
limit a non–trivial dependence on the chiral couplings survives, which restricts the set of
superCFT’s with vanishing one–loop amplitudes to be only the ABJ(M) models.

In the ABJM case, this result is consistent with what has been found in Ref. [87] in
components and massive regularization, and in [81] by means of the generalized unitarity
cuts method.

4.5.2 The one–loop light–like Wilson loop.

The perturbative evaluation of the bosonic Wilson loop is simply obtained by expand-
ing the exponential to a given order in the gauge connections and then Wick contracting
the latter in the expectation value. This produces gauge propagators and integrations
over the affine variables αi (4.4.2), parameterizing the edges of the polygonal contour. Up
to one loop there is no need to specify the exact CSM theory we are considering, since the
contributions only come from the CS sector as we will show briefly. Moreover, pieces from
the two gauge groups are separated, hence we can perform the calculation for a generic
CS theory and eventually massage the result to reproduce the ABJ(M) cases.

The whole computation is intrinsically not supersymmetric and will be performed in
components, namely employing the propagator and the interaction vertices for the gauge
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vectors A and Â, which can be read off from the component action in (1.1.5). We now
review the essential ingredients for the calculation.

The propagator for the vector component of the gauge superfield is given by taking

Aαβ =
1√
2
D̄αDβ V

∣

∣ (4.5.26)

Using the algebra in Appendix A.1, we can turn from bispinor to vector notation

Aµ =
1√
2
γαβ

µ Aαβ (4.5.27)

Then the CS sector of the action in components reads

SCS = −i K
4π

∫

d3 xTr

(

Aµ ∂ν Aρ +
2

3
i AµAν Aρ

)

ǫµνρ (4.5.28)

The latter is invariant under the bosonic gauge transformation

Aµ → g(x) (Aµ − i ∂µ) g(x)−1 (4.5.29)

which can be derived from gauge invariance in superspace

eV → eiΛ̄ eV e−iΛ (4.5.30)

by applying D̄αDβ.

In order to compare to existing literature and for the sake of clarity we can also
transform the action from Euclidean to (+,−,−) signature, by Wick rotating x0 → −i t
and then changing sign to the invariants

S(−,+,+)
CS = −K

4π

∫

d3 xTr

(

Aµ ∂ν Aρ −
2

3
i Aµ Aν Aρ

)

ǫµνρ (4.5.31)

where the minus sign arises from ǫ0µν A0 . . . ,

S(+,−,−)
CS =

K

4π

∫

d3 xTr

(

Aµ ∂ν Aρ −
2

3
i AµAν Aρ

)

ǫµνρ (4.5.32)

which is the same as in [80]. We will use these conventions in this Section.

For CS theories the following convention relating the cubic interaction, gauge invari-
ance and the Wilson loop holds: given the action

S =
K

4π

∫

d3 xTr

(

Aµ ∂ν Aρ −
2

3
sAµAν Aρ

)

ǫµνρ (4.5.33)
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invariant under the gauge transformation

Aµ → g(x)

(

Aµ − 1

s
∂µ

)

g(x)−1 (4.5.34)

the Wilson loop is defined as

W =
1

N
TrP es

R

Aµ d z (4.5.35)

Hereafter we choose s = i and Minkowski signature.

After defining notations we come to the first order computation.

The one–loop contribution to the Wilson loop is obtained by expanding the path–
ordered exponential at second order in the gauge fields. Concentrating on one of the
gauge fields, let us say Aµ, it is given by

〈W (A) 〉1−loop =
i2

N

∑

i≥j

∫

dαi dαj ż
µ
i ż

ν
j 〈Tr (Aµ(zi)Aν(zj)) 〉 (4.5.36)

where αi, αj, i 6= j run independently between 0 and 1, whereas for i = j the integration
domain is meant to be 0 ≤ αi ≤ 1 and 0 ≤ αj ≤ αi. Dots indicate derivatives with respect
to the affine parameters.

Taking the expectation value yields gauge propagators. Plugging their explicit expres-
sion, which in our gauge reads

〈 (Aµ)
a
b(zi) (Aν)

c
d(zj) 〉 = − 1

8 πK
ǫµνρ

(zi − zj)
ρ

|zi − zj |3
δa
d δ

c
b (4.5.37)

into (4.5.36) determines the one–loop contributions.

According to the relative positions of the xi and xj points of the contour where the
gauge vectors get radiated, we obtain three different configurations, which are depicted
in Fig. 4.3 (taken from [80]).

Thanks to the antisymmetry of the ǫ tensor in (4.5.37), we may discard diagrams
(b) and (c), where the gauge vector is emitted and reabsorbed within the same edge, or
between two adjacent, respectively.

Only the contribution from diagram (c), where the gauge vector connects the (xi, xi+1)
and (xj , xj+1) edges, survives and is proportional to ǫµνρ x

µ
i,i+1 x

ν
i+1,j x

ρ
j,j+1 K(i, j), where

K(i, j) =
π4

2

∫ 1

0

dαidαj × (4.5.38)

1
[

(1 − αi) (1 − αj) x
2
i,j + αi αj x

2
i+1,j+1 + αj (1 − αi) x

2
i,j+1 + αi (1 − αj) x

2
i+1,j

]
3
2
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xipixi+1

x j p j x j+1

(a)
(b) (c)

Figure 4.3: One-loop contributions to the Wilson loop. Diagrams (b) and (c) are actually
vanishing.

Now, including all the coefficients and summing the analogous contribution coming
from Â, the one–loop Wilson loop can be written as

〈W (A, Â)〉1−loop = − 1

4π5

(

M

K1
+
N

K2

) n−2
∑

i=1

n−δi,1
∑

j=i+2

ǫµνρ x
µ
i,i+1 x

ν
i+1,j x

ρ
j,j+1 K(i, j) (4.5.39)

where the sum runs over all possible ways to connect two non–adjacent lines. In a polygon
with n edges these are n(n−3)

2
different contributions. We note that at this order matter

fields do not enter the calculation, and what we need is just the CS free action. Therefore,
this result is valid also for pure Chern–Simons theories, and we have left generic ranks
and CS levels to stress this generality.

One–loop Wilson loop in the ABJM model. We can derive the one–loop result
for the Wilson loop in ABJM without even performing a single calculation. This is due
to the definition of the Wilson loop (4.4.1). According to this the final result is given
by the sum over the two separate pure CS Wilson loops for the two gauge groups. Since
their coupling constants (the CS levels) are opposite, the sum exactly cancels, leaving a
trivially vanishing outcome. This cancelation will occur at any odd perturbative order
due to this Z2 symmetry, but is no longer true at even loops.

One–loop Wilson loop for generic CSM theories. The final result for the sum
(4.5.39) depends non–trivially on the explicit form of the integral Kij (4.5.38), which is
involved (although it is straightforward to get a close answer for the n = 4 case, in which
the Wilson loop trivially vanish by symmetry arguments). The evaluation of the integral
and the sum takes considerable effort and is postponed to the final part of this Chapter.

We next turn to the calculation of correlation functions of half–BPS operators. Their
light–like separation limit will turn out to be strikingly similar to the result (4.5.39) for
the Wilson loop, hence solving the sum over integrals (4.5.38) involved in it, will produce
the final result for both Wilson loops and correlators, at one loop.
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4.6 Correlation functions of half–BPS operators.

As recalled in the introductory Section 3.10, novel dualities were highlighted last year,
relating scattering amplitudes and Wilson loops to correlation functions of protected
operators in N = 4 SYM. In particular, the ratio between the correlation function of n
such operators at L loops, divided by its tree level counterpart is considered. When the
limit is taken where operators are inserted at light–like separated points xi (i = 1 . . . n),
this reproduces the L loop computation of a light–like Wilson loop whose contour is the
polygon defined by the set {xi}, in the adjoint representation

lim
x2

i,i+1→0

CL
n

C0
n

(x1, . . . , xn) = 〈W adj
Cn({xi}) 〉

(L) (4.6.1)

Since in the planar limit the Wilson loop in the adjoint representation coincides with the
square of that evaluated in the fundamental one, the relation above can be recast into

lim
x2

i,i+1→0

CL
n

C0
n

(x1, . . . , xn) =
[

〈W fund
Cn({xi}) 〉

(L)
]2

(4.6.2)

On the other hand (either independently or owing to the well–known amplitude/WL
duality), correlation functions are also connected to scattering amplitudes. More precisely
the conjectured relation reads

lim
x2

i,i+1→0
log

CL
n

C0
n

(x1, . . . , xn) = log M2
n (pi = xi+1,i) (4.6.3)

Some examples were provided in favor of this triality for N = 4 SYM.

It is interesting to investigate whether the amplitudes/WL/correlators dualities and
the existence of underlying hidden symmetries extend to classes of theories in different
dimensions for which a string dual description is known.
Here we will give preliminary evidence that this is the case.

In particular we will of course consider the general set of three dimensional N = 2,
U(M)K1 × U(N)K2 Chern–Simons matter theories with arbitrary (K1, K2) CS levels and
generic superpotential, which is the main subject of this thesis.

We will compute the first order corrections to correlation functions of gauge invariant
half–BPS scalar operators at weak coupling in perturbation theory.
Then the light–like limit of such a quantity, divided by the tree level contribution, is
taken. Finally we compare this to Wilson loops and amplitudes at the same perturbative
order to check whether and how the triality holds.

The main outcome of our analysis is that the light–like limit of one–loop correlation
functions, divided by the corresponding tree level expression, coincides with the one–
loop light–like n–polygonal Wilson loop, once the Feynman combining parameters of the
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correlator integral are identified with the affine parameters which parameterize the light–
like edges of the Wilson loop polygon.

While in the ABJM case, and whenever K2 = −K1 and M = N , the identification
gets trivialized by the fact that both the correlator and the Wilson loop are proportional
to a vanishing color factor, in the more general cases the color factor in front is not zero
and a non–trivial identification emerges.

In particular we find that both the light–cone limit of the correlator and the light–like
Wilson loop depend at one loop on a five dimensional two–mass–easy box integral. We
manage to compute the five dimensional box integral analytically and prove that a very
non–trivial cancelation between different permutations occurs yielding a vanishing result.
Nevertheless we stress that our identification between correlators and Wilson loops is valid
independently of the fact that they both eventually vanish, since it is already verified at
the level of their expressions in terms of integrals. Therefore, our result is a first non–
trivial hint at a correlator/WL duality at work in three dimensions.

In formulae, our final statement is then

lim
x2

i,i+1→0

C 1−loop
n

C tree
n

= 〈Wn〉1−loop = 0 , for any n (4.6.4)

This identity holds for any N = 2 CSM theory, for any value of the CS levels (allowed
by the perturbative regime) and for N,M finite (no planar limit is required). Hence it is
valid independently of the degree of supersymmetry and of conformality. Actually this is
a little bit more than expected: this is likely to be a consequence of the low perturbative
order to which we are working. Indeed the superpotential, which distinguishes theories
in supersymmetry, does not influence the one loop calculation at all. Moreover at one
loop order all N = 2 CSM theories are still superconformal, since as we proved in Section
2.2.2, the beta–functions are trivially zero [29, 24] and get non–vanishing starting from two
loops. We therefore speculate that theories with different number of supersymmetries and
with or without superconformal invariance will undergo a different destiny starting from
two–loops. In particular the conjectured WL/correlator duality is expected to continue
to hold for conformal theories, but is not granted for those which are not scale invariant.

As a byproduct, we can prove a quite general result on Wilson loops in Chern–Simons
theories. Indeed, having shown that the n–polygonal Wilson loop is zero at first order
for any value of the CS levels and independently of the chiral couplings, implies that our
reasoning can also apply to pure Chern–Simons theories, just setting matter fields and
one of the two gauge fields to zero. Therefore, our findings provide the analytical proof
of the conjecture made in [80] according to which one–loop light–like Wilson loops should
vanish in pure Chern–Simons theories.

Let us go back and consider the other side of the duality, namely the correlator/MHV
amplitude. The question whether this correspondence arises in three dimensional theories
can be answered quite partially at one–loop order for the particular case of four point
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amplitudes, due to our poor knowledge on higher point results beyond tree level. Indeed
we demonstrated in Section 4.2 that one–loop four point amplitudes might have quite
different behavior depending on the degree of symmetry of the corresponding theory.
In particular we confirmed the result that for N > 4, four–point scattering amplitudes
vanish at one loop [87], including the most interesting ABJ case. This suggests that the
duality might work for this theory. One should ask how far can this reasoning apply,
either considering higher point amplitudes or taking into account more general theories.
As concerns the first question we stress that the six point is already trickier since the
corresponding ABJ amplitude is not MHV from its Grassmann degree, hence it is not
clear which its dual objects should be, possibly supersymmetric extensions of Wilson loops
and correlation functions. The same obstruction holds for all higher point amplitudes as
well. As for theories with lower supersymmetry the concept of MHV amplitudes may
be by itself ill–defined and it is difficult to predict which duality, if any, may occur.
Therefore any tentative extension of the latter correlator/amplitude duality should not
be straightforward.

In what follows we will go into the details of the computation of correlation functions
of half BPS operators in Chern–Simons matter theories. In the first Section we lay the
basis of the calculation, then we account for a rather technical treatment of the integrals
emerging at one loop, and in Section 4.6.6 we write a closed expression for the light–
like limit of a generic n–point correlator. Then we demonstrate that the latter expression
actually evaluates to zero and finally make a comparison with Wilson loops and amplitudes
at one loop, establishing the aforementioned dualities at one loop order.

4.6.1 The n–point correlation functions

We begin with some generalities on correlators of BPS operators in CS matter theories
and their light–like limit.

Here we focus on weight one operators, which are the bilinear AB ones, leaving the
generalization to operators of higher dimension as an aside for Section 4.6.5. Hereafter
we will refer to these operators as O, together with their conjugates Ō

Oi
j (x) = Tr (Ai(Z)Bj(Z)) , Ōj

i (x) = Tr (Āi(Z) B̄j(Z)) (4.6.5)

where Z = (xµ, θα, θ̄α̇) and i, j are flavor indices that we omit in what follows.

Furthermore we want to restrict to the lowest component piece of the correlation func-
tions, belonging to the scalar sector of the theory. Keeping the computation manifestly
supersymmetric, this task is accomplished by selecting the surviving terms after setting
the fermionic superspace coordinates to 0 in the correlation function

Cn =
〈

O(Z1) Ō(Z2) · · ·O(Zn−1) Ō(Zn)
〉∣

∣

θi=θ̄i=0
(4.6.6)

In terms of superdiagrams, this is operatively performed by moving the spinorial deriva-
tives in such a way that a D2D̄2 acts on each fermionic delta function connecting external



156 Chapter 4. Amplitudes in ABJM: one–loop computations

fermionic coordinates δ(θi − θi+1). This yields the scalar part of the correlators since

D2D̄2 δ(θi − θi+1)
∣

∣

∣

θ=0
= 1.

In particular, at tree level, the correlation function simply gives the product of free
chiral propagators (1.4.17) which, evaluated at θ = θ̄ = 0, are simply 1

4π
1

|xi−xj | (in d = 3,

since no divergences are there at one loop).

In computing a generic correlation function one should also take into account all the
possibilities of contracting the fields. This entails that the correlator (4.6.6) will be in
fact a linear combination of connected and disconnected diagrams.

We want to concentrate on the connected part only. With this constraint on Wick
contractions, the correlator reads

C tree
n =

MN

(4π)n

∑

{i1,··· ,in}

1

xi1, i2

1

xi2, i3

· · · 1

xin, i1

(4.6.7)

where xi, j obviously stems for |xi−xj |, and the permutations are restricted to all the non–
cyclic ones which are allowed by chirality and flavor. Moreover a connected correlation
function of n bilinear operators O and Ō may be constructed only with an even number
of points. We will thus concentrate on the case n = 2m.

One further constraint comes when pursuing the light–like limit we are eventually
interested in. This picks up the most singular piece as x2

i, i+1 → 0 in the sum over connected
contributions (4.6.7). Since the light–like limit is taken between adjacent points where
operators are inserted, the cyclic order {1, 2, · · · , n} corresponds to the most divergent
term

C tree
n → MN

(4π)n

n
∏

i=1

1

xi, i+1

(4.6.8)

where i indices are all understood in Zn, xn+1 = x1.

Depicting the n insertion points on a plane, the Wick contractions associated to this
contribution draw a planar n–polygon with the operators at the vertices (See Fig. 4.4).
Of course, having chosen a different light–like limit would have selected another planar or-
dering. In view of a correlation function/MHV amplitude duality, this procedure parallels
color ordering, yielding a particular sequence of scattered particles.

4.6.2 One–loop corrections.

One loop corrections of any correlation function are trivially vanishing for the ABJM
theory. This can be ascertained diagrammatically by noticing that every one-loop correc-
tion to any object built from chiral propagators is obtained by joining two of them through



4.6 Correlation functions of half–BPS operators. 157
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A B

B A
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i-2 i+2

Figure 4.4: The correlation function of dimension–one operators in the light–like limit.

a vector line. Then, due to the quiver structure of ABJM and its opposite couplings for
the two gauge groups, every V correction between two legs is exactly canceled by the V̂
contribution. This will be still true in any quiver theory where

∑

ki = 0, however the
above argument fails for generic theories where the CS levels are unrelated, such as many
of those analyzed in Chapter 1, which will generally acquire first order corrections in the
M
K1

, N
K2

couplings, from gluons of the two gauge groups connecting edges of the n–polygon.
At this order, chiral interaction vertices from the superpotential do not contribute, so the
results are valid for any N = 2 theory. As we have shown in Chapter 1, a plethora of such
theories exists which preserves conformal invariance. We therefore expect the correlation
functions to vanish (in the light–like limit) for these theories at least, in order for the
WL/correlator duality to hold. Actually we will argue that the one loop vanishing occurs
non–trivially for all Chern–Simons matter theories with N = 2 supersymmetry.

We now study one loop corrections systematically.

There are basically two possible sources of such contributions: those arising when a
gluon is radiated and reabsorbed within the same chiral propagator and those where two
propagators exchange a gauge vector. The former are ruled out by D–algebra, as reviewed
in section 2.2.2 ¶, therefore one is left with a single kind of diagram.

Since the topology of supergraphs producing first order corrections is pretty much
unique, it is useful to analyze it in full generality. The prototype of one–loop interactions
is depicted in Fig. 4.5, representing a building block, which we will refer to as Tij , to be
inserted in the correlation function polygon. From this we will be able to reconstruct, by
suitable permutations, the final answer for a generic correlator. In Tij the edges xi, i+1

and xj, j+1 are connected by a wavy line representing either a V or a V̂ propagator.

Actually, there are two different configurations for the one–loop building block, de-

¶It is possible to perform D–algebra in such a way that no enough spinorial derivatives survive inside
the loop.
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i D2 D2 i+1D2 D2

jD2 D2j+1 D2 D2

0
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DαDα
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i D2 D2 i+1D2 D2
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0

n+1

DαDα

(b)

Figure 4.5: Building blocks for one–loop corrections.

pending on the chirality of the external vertices, as shown in figure 4.5. Diagram 4.5(a)
displays antichiral fields inserted at xi and xj and chiral fields at xi+1 and xj+1, whereas
in diagram 4.5(b) the converse occurs.

In order to evaluate these graphs, we keep in mind the prescription outlined above
to get the scalar component of the correlator, carrying out D–algebra in order to end
up with a non–vanishing result when evaluated at θk = θ̄k = 0, k = i, i + 1, j, j + 1.
Starting with the configurations of Fig. 4.5 for the spinorial derivatives, we first free the
gauge line from spinorial derivatives. This allows to use the associated δ56 to get rid of,
say, the θ6 integration. Then we go on freeing one of the chiral lines from derivatives by
integrating by parts at one of the θ5 vertex. This further allows to perform integration
over θ5 immediately. Among different terms which have got produced, the only non–
trivial contribution in the θk = θ̄k = 0 limit corresponds to a D2D̄2 operator surviving
on the three chiral propagators left in θ space. These derivatives are sufficient to kill
the fermionic delta functions setting θk = θ̄k = 0, leading to a non–vanishing expression.
As a result of the D–algebra, the ordinary Feynman diagram we are left with has three
space–time derivatives acting on chiral propagators, contracted by the three dimensional
Levi–Civita tensor.

Summing the contributions from the V and V̂ insertions, the final answer for the two
configurations is

T (a)
ij = − 2

(4π)4

(

1

K1

+
1

K2

)

ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j)

T (b)
ij =

2

(4π)4

(

1

K1
+

1

K2

)

ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j) (4.6.9)

in terms of the integral in configuration space

I(i, j) =

∫

d3x0 d
3xn+1

x0 i x0 i+1 x0 n+1 xj, n+1 xj+1, n+1
(4.6.10)
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In the next subsection we will elaborate on this integral. The bottom–line of our
computation is that it may be evaluated as a Feynman integral in five dimensions. In
particular, interpreting the xj variables as the dual coordinates of a set of 5d momenta
pj = xj+1 − xj , it reduces to a single box integral in five dimensions.

ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j) =

8

π2

ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1

xi, i+1 xj, j+1
×
∫

d5x0
1

x2
0i x

2
0i+1 x

2
0j x

2
0j+1

(4.6.11)

Besides reducing the number of involved integrations, this result also allows to easily
extract the divergent part in the light–like limit. Indeed the factor 1

xi, i+1 xj, j+1
, is such to

complete, together with the other n − 2 free propagators, the tree level correlator which
can then be reconstructed in front of the loop contribution.

The derivation of this result is rather technical and hinges on Feynman parameter-
ization and Mellin–Barnes representation, which are reviewed in Appendix A.5.1. The
antisymmetry of the Levi–Civita tensor is essential to finally get to (4.6.11). The lazy
reader may skip to Section 4.6.4, where this non–trivial result is used to push the com-
putation of the correlator on and take its light–like limit.

4.6.3 The emergence of a five dimensional integral

Here we spell out the detailed proof of eq. (4.6.11) which allows to express the double
three dimensional integral (4.6.10) as a one–loop five dimensional box integral.

We will adopt the shorthand notation, ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j) and choose i = 1, j = 3.

Although derivatives might have kept external, it proves convenient to let them act
on the propagators in the integrand

ǫµνρ ∂1µ ∂2ν ∂4ρ

∫

d3x0 d
3x5

1

x10 x20 x05 x35 x45
(4.6.12)

= −ǫµνρ

∫

d3x0 d
3x5

xµ
10 x

ν
20 x

ρ
45

(x2
10)

3/2 (x2
20)

3/2 (x2
05)

1/2 (x2
35)

1/2 (x2
45)

3/2
≡ I

We employ Feynman parameterization to the x0–integral, yielding

ǫµνρ

∫

d3x0
xµ

10 x
ν
20

(x2
10)

3/2 (x2
20)

3/2 (x2
05)

1/2
=

4

π3/2
Γ

(

7

2

)
∫ 3
∏

i=1

dyi δ(
∑

yi − 1)y
1/2
1 y

1/2
2 y

−1/2
3

∫

d3x0
ǫµνρ x

µ
10 x

ν
20

[(x0 − ρ1)2 + Ω1]7/2

(4.6.13)

where ρµ
1 = y1 x

µ
1 + y2 x

µ
2 + y3 x

µ
5 and Ω1 = y1 y2 x

2
12 + y1 y3 x

2
15 + y2 y3 x

2
25.
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Performing the shift xµ
0 → xµ

0 + ρµ
1 and integrating over x0 we obtain

4 ǫµνρ x
µ
15 x

ν
25

∫ 3
∏

i=1

dyi δ(
∑

i

yi − 1)
(y1 y2 y3)

1/2

(y1 y2 x
2
12 + y1 y3 x

2
15 + y2 y3 x

2
25)

2
(4.6.14)

At this stage we need to separate contributions in the denominator of (4.6.14), so as
to make the remaining x5 integration in (4.6.12) feasible. This is done thanks to the
Mellin–Barnes integral representation. According to the general identity

1

(k2 + A2 +B2)a
=

1

(k2)aΓ(a)

∫ +i∞

−i∞

dsdt

(2πi)2
Γ(−s)Γ(−t)Γ(a + s+ t)

(

A2

k2

)s(
B2

k2

)t

(4.6.15)
we can reexpress (4.6.14) as

4 ǫµνρ x
µ
15 x

ν
25√

π

i∞
∫

−i∞

du dv

(2πi)2

Γ
(

−u| − 1
2
− u| − v| − 1

2
− v|2 + u+ v|3

2
+ u+ v

)

(x2
12)

u+v+2 (x2
15)

−u (x2
25)

−v
(4.6.16)

where we have introduced the shorthand notation Γ(z1|...|zn) ≡ Γ(z1)...Γ(zn).

This allows to readily perform the x5–integration in (4.6.12). Once again, using Feyn-
man combining we can write (we neglect factors which are independent of x5)

−ǫµνρ

∫

d3x5
xµ

15 x
ν
25 x

ρ
45

(x2
15)

−u (x2
25)

−v (x2
35)

1/2 (x2
45)

3/2
= (4.6.17)

−2Γ(2 − u− v)

Γ(−u| − v)π

∫ 4
∏

i=1

dyi δ(
∑

yi − 1)y−u−1
1 y−v−1

2 y
−1/2
3 y

1/2
4

∫

d3x5 ǫµνρ x
µ
15 x

ν
25 x

ρ
45

[(x5 − ρ2)2 + Ω2]2−u−v

provided the following definitions hold

ρµ
2 = y1 x

µ
1 + y2 x

µ
2 + y3 x

µ
3 + y4 x

µ
4 (4.6.18)

Ω2 = y1 y2 x
2
12 + y2 y3 x

2
23 + y3 y4 x

2
34 + y4 y1 x

2
41 + y1 y3 x

2
13 + y2 y4 x

2
24

We the shift the integration momentum xµ
5 → xµ

5 + ρµ
2 , and integrate over x5 to produce

ǫµνρ x
µ
31 x

ν
32 x

ρ
34

2
√
π Γ(1

2
− u− v)

Γ(−u| − v)

∫ 4
∏

i=1

dyi
δ(
∑

yi − 1) y−u−1
1 y−v−1

2 y
1/2
3 y

1/2
4

Ω
1/2−u−v
2

(4.6.19)

Quite remarkably this expression exactly coincides with the Feynman parameterization
of a five dimensional scalar square integral with indices (−u,−v, 3/2, 3/2). More precisely,
we have

(4.6.19) = ǫµνρ x
µ
31 x

ν
32 x

ρ
34

1

2π

∫

d5x5
1

(x2
15)

−u (x2
25)

−v (x2
35)

3/2 (x2
45)

3/2
(4.6.20)
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The identification with a higher dimensional integral is just formal, and should be
intended at the level of its Feynman–parameterized form, where only Lorentz invariant
quantities appear. Therefore one can unambiguously identify five and three dimensional
invariants x2

i,j and deduce the observation above. Notice that the antisymmetry of the ǫ
tensor plays a central role, selecting a particular numerator, which produces (4.6.20) after
Feynman parameterization.

Back to the complete integral, we can plug (4.6.20) into (4.6.16) and we are left with

I =
2

π
3
2

ǫµνρ x
µ
13 x

ν
23 x

ρ
34

∫

d5x5

(x2
35)

3/2 (x2
45)

3/2
× (4.6.21)

∫ +i∞

−i∞

du dv

(2πi)2

Γ
(

−u| − v| − 1
2
− u| − 1

2
− v|2 + u+ v|3

2
+ u+ v

)

(x2
12)

u+v+2 (x2
15)

−u (x2
25)

−v

Again, this MB–representation can be identified with the one for a five dimensional scalar
triangle integral with exponents (3/2, 3/2, 3/2) for the propagators

I =
1

4π2
ǫµνρ x

µ
13 x

ν
23 x

ρ
34

∫

d5x0 d
5x5

1

(x2
01)

3/2 (x2
02)

3/2 (x2
05)

3/2 (x2
35)

3/2 (x2
45)

3/2
(4.6.22)

The crucial point at this stage is that the integral above is quite easily computable
resorting to unique triangles relations, derived in [88].

This technique, which we review in Appendix A.5.5, can be applied to particular
triangle integrals in D dimensions where the sum over propagator exponents matches the
dimension of the spacetime integration (some other similar relations are also available in
other cases as well [88]).

Under these uniqueness conditions, this relations allow to replace the triangle integral
by [88]

∫

dDx0

(x2
01)

α1 (x2
02)

α2 (x2
05)

α3

∣

∣

∣

α1+α2+α3=D
= (4.6.23)

πD/2
∏

i

Γ(D/2 − ai)

Γ(ai)

1

(x2
12)

D/2−α3 (x2
15)

D/2−α2 (x2
25)

D/2−α1

Despite our integral does not look of such kind, we can apply the following identity

T [D;α1, α2, α3; x
2
03, x

2
04, x

2
34] =

Γ(
∑

i αi − D
2
)

Γ(D −∑i αi)

∏

i

Γ(D
2
− αi)

Γ(αi)
× 1

(x2
34)

α2+α3−D/2
×

T
[

D;
∑

αi −
D

2
,
D

2
− α3,

D

2
− α2; x

2
03, x

2
04, x

2
34

]

(4.6.24)
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which is valid for a generic triangle

T [D;α1, α2, α3; x
2
03, x

2
04, x

2
34] =

∫

dDx5

(x2
05)

α1 (x2
35)

α2 (x2
45)

α3
, (4.6.25)

with arbitrary indices [88], to our x5–triangle in (4.6.22).

Identify D = 5 and α1 = α2 = α3 = 3/2, we thus obtain

I =
2

π4

ǫµνρ x
µ
13 x

ν
23 x

ρ
34

x34

∫

d5x0 d
5x5

1

(x2
01)

3/2 (x2
02)

3/2 (x2
05)

2 x2
35 x

2
45

(4.6.26)

By this step we can realize that the exponents of the x0 triangle are now (3/2, 3/2, 2)
and therefore satisfy the uniqueness condition α1+α2+α3 = D in five dimensions. Hence,
we can use the general result for unique triangles and finally write

I =
8

π2

ǫµνρ x
µ
13 x

ν
23 x

ρ
34

x12 x34

∫

d5x5
1

x2
5,1 x

2
5,2 x

2
5,3 x

2
5,4

(4.6.27)

This is the result quoted above in (4.6.11), which we will employ in the next section to
get the final answer for the correlator and its light–like limit.

4.6.4 One–loop results and their light–like limit

The result for the block (4.6.9), and its explicit realization in terms of the five dimen-
sional box integral (4.6.11) allow to reconstruct the whole one–loop contribution to the
correlation function.

This is achieved by simply summing over all possible insertions of the block into the
tree correlator, or, stated another way, by summing over any exchange of gluons between
two edges of the n–polygon.

Whenever such a gauge line extends between two adjacent edges the corresponding
contribution identically vanishes. This is due to the antisymmetry of the ǫ tensor. Indeed,
corrections to a corner of the polygon are realized at the level of the block Tij , by identify-
ing two insertion points carrying same chirality, say setting xi = xj+1 or xj = xi+1. Then
the structure ǫµνρ x

µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1 trivially gives a vanishing result. Hence the sum must

be restricted on gluon exchanges joining non–adjacent propagators. By a simple combi-

natorial exercise we can ascertain that these are

(

n
2

)

− n = n(n− 3)/2. A very similar

circumstance occurred in the calculation of the Wilson loop above.

Since the correlation functions alternates insertions of chiral and anti–chiral bilinear
operators, it follows that two lines where the gauge propagators are attached must have
the same chirality when they are separated by an odd number of matter propagators. In
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this situation the block T (a)
ij is suitable to be employed. In the opposite situation one

has to use the block T (b)
ij . The difference between the two choices just amounts to a an

exchange in the order of two displacement vectors in the contraction with the ǫ tensor.
This entails a relative minus sign. Furthermore, due to the choice of bilinear operators
of the form AB, whenever two matter propagators are separated by an odd number of
lines, they must carry the same flavor A or B. Since the cubic vertices with a gauge
vector and two chiral superfields appear with different signs depending on the A or B
nature of matter (see eq. (1.4.15)), a further minus sign emerges, compensating that from
D–algebra and making all contributions have the same sign.

In conclusion, taking into account color factors, the leading term of the correlation
function at one–loop reads

C 1−loop
n → Ctree

n × −1

π4

[

M

K1
+
N

K2

] n−2
∑

i=1

n−δi,1
∑

j=i+2

ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1 J (i, j) (4.6.28)

where the sum extends to the n(n − 3)/2 ways to connect two non–adjacent edges, and
J (i, j) is the five dimensional integral

J (i, j) =

∫

d5x0
1

x2
0i x

2
0i+1 x

2
0j x

2
0j+1

(4.6.29)

As anticipated above it is straightforward to realize that in the ABJM case and more
generally whenever K2 = −K1 and M = N the color factor in front of the correlator
vanishes, so that correlation functions are trivially zero at one loop for all these parity
preserving theories. The same happens for the BLG theory, as it can be easily checked
by computing the color factor for special unitary gauge groups SU(M) × SU(N) which
turns out to be (M − 1/M)/K1 + (N − 1/N)/K2.

We want to also address more general theories for which the color factor does not
vanish. The ABJ model, with different gauge group ranks, belongs to this class.

Before solving the problem in full generality for any n, we shall content with a simpler
case, namely the four–point correlation function, to investigate what happens.

There are only two possible ways of joining non–adjacent edges

C 1−loop
4 ∝ ǫµνρ (xµ

1 2 x
ν
2 3 x

ρ
3 4 + xµ

2 3 x
ν
3 4 x

ρ
4 1)

∫

d5x0
1

x2
01 x

2
02 x

2
03 x

2
04

(4.6.30)

Therefore, in this situation, one can conclude that the correlation function naively van-
ishes, due to the contraction with the ǫ tensor, without even computing the integral or
taking the light–cone limit. This phenomenon was already noticed in [80].

This simplicity is spoiled when looking into higher point correlators. In this situation
one really has to work out the J (i, j) integral. It is worth mentioning that this task
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was accomplished numerically in [80], ending up with a vanishing result for the six–point
correlator at one–loop. This led the authors to conjecture that this pattern should also
hold for higher points. In what follows we will confirm this intuition by an explicit analytic
computation.

To do this we want to have an analytical and handable expression for the five dimen-
sional integral. We recall that we eventually want to get the result for the limit where
the operators become light–like separated, x2

i, i+1 → 0, in order to test a correspondence
to light–like Wilson loops. Since the prefactor C tree

n in (4.6.28) is divergent in this limit,
we consider the ratio of the one-loop correlator to the tree level result. Then we can
directly take the light–like limit on the integral, which greatly simplifies the job, lowering
the number of possible invariants on which it could depend. These invariants correspond
geometrically to the proper length of the diagonals in the polygon. Actually each integral
should only depend on four of them at most.

In order to get a real output, we require the n(n− 3)/2 diagonals of the n–polygon to
be space–like (x2

i,j > 0, j 6= i+ 1).

We now focus on the integral (4.6.29). Shifting the integration variable x0 → x0 + xi

it becomes

J (i, j) =

∫

d5x0
1

x2
0 (x0 + xi, i+1)

2 (x0 + xi, j)
2 (x0 + xi, j+1)

2 (4.6.31)

and can be recognized to be a Feynman scalar box integral with external momenta xi, i+1,
xi+1, j, xj, j+1 and xj+1, i, in five dimensions though.

Taking the light–like limit generically only two of the external momenta are space–like,
whereas the other two are null. The massive legs being flowing onto opposite corners of
the box make it the two mass easy box. A special kinematic occurs whenever j = i + 2,
i.e. when the two edges are separated by a single line in the polygon. Then one more
external leg becomes massless and the integral simplifies further, becoming a one mass
box. These integrals are depicted in Fig. 4.6

We can now Feynman parameterize the scalar five dimensional box and perform the
x0 integration to get

J (i, j) =
π3

2

∫ 1

0

[dα]4
1

(

α1 α3 x2
i,j + α2 α4 x2

i+1,j+1 + α1 α4 x2
i,j+1 + α2 α3 x2

i+1,j

) 3
2

(4.6.32)

where the conventional measure [dα]4 = δ(1−∑4
k=1 αk)

∏4
k=1 dαk on Feynman parameter

space is present.

The following change of variables is quite customary to solve the δ function automat-
ically

α1 = (1− β1)(1− β3) , α2 = β1(1− β3) , α3 = (1− β2)β3 , α4 = β2β3 (4.6.33)
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xi, i+1

xi+1, j xj, j+1

xj+1,ı xi, i+1

xi+1, i+2 xi+2, i+3

xi+3,ı

Figure 4.6: The 5d integrals: two–mass easy and one–mass.

According to the shift above, the integral reads

J (i, j) =
π3

2

∫ 1

0

3
∏

i=1

dβi × (4.6.34)

β
− 1

2
3 (1 − β3)

− 1
2

[

(1 − β2) (1 − β1) x2
i,j + β1 β2 x2

i+1,j+1 + β2 (1 − β1) x2
i,j+1 + β1 (1 − β2) x2

i+1,j

]
3
2

We notice that the β3–integration can be trivially performed, leading to

J (i, j) =
π4

2

∫ 1

0

dβ1dβ2 × (4.6.35)

1
[

(1 − β2) (1 − β1) x2
i,j + β1 β2 x2

i+1,j+1 + β2 (1 − β1) x2
i,j+1 + β1 (1 − β2) x2

i+1,j

]
3
2

In the last paragraph we comment on this result and on its implications in the con-
jectured WL/correlator duality.

Connection with light–like Wilson loops As for the Wilson loops, the overall color
factor in (4.6.28) vanishes for all the theories with K2 = −K1 and M = N , ABJM case
included. For this set of theories the correlation functions/WL duality is then trivial at
the first perturbative order.

Interesting non–trivial results can be found, instead, for theories where the color factor
does not vanish. In fact, the main observation is that, identifying the affine parameters
αi, αj with the Feynman parameters β1, β2 in (4.6.35), the K(i, j) integral is precisely the
same as the integral J (i, j) arising in the computation of an n–point correlation function
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in the light–like limit. Since the integral (4.6.35) is the Feynman parameterization of a 5d
box integral, we can claim that also the one–loop Wilson loop can be formally expressed
in terms of a 5d scalar integral.

Therefore we stress that also in the ABJM case the identification is stronger than it
may appear, since the expressions for the Wilson loop and the light–like correlator are
equal already at the level of the integrands, before pursuing the computation to the end.

We can therefore claim the following relation to be true at first order

lim
x2

i,i+1→0

C 1−loop
n

Ctree
n

= 〈W (A, Â)〉1−loop (4.6.36)

all in terms of the 5d integral (4.6.29).

We note that the two expressions coincide, independently of the values of the couplings
K1, K2 and for any value of the gauge ranks (N,M), as no planar limit is required.

As pointed out in the introduction to this part, this result is more than expected
for the WL/correlator duality, since it ingenuously suggests that this relation should
hold for any CSM theory. Nevertheless we know that this conclusion is naive. Indeed
no information on the degree of supersymmetry and on conformality is present in both
computations. This dependence is expected at two loops, where non–trivial corrections
appear involving the matter fields and not only the CS gauge sector. We believe that a
higher loop calculation may severely restrict the class of theories for which the duality
survives, in particular conformal field theories are expected to exhibit this duality on
general grounds, as reviewed in the introduction.

4.6.5 Generalization to higher dimensional operators

Here we outline how to extend the result obtained at one–loop for bilinear operators to
higher dimensional ones. In particular we aim at showing that the computation for larger
half–BPS operators is simply obtainable from that for bilinears, provided the light–like
limit is taken, in order to select Wick contractions between adjacent operators only. The
derivation is nevertheless completely independent of the gauge groups involved and does
not require any planar limit.

For definiteness, suppose we consider n = 2m half–BPS operators of the general form
Oi = (AB)ki and complex conjugates Ōj̄ = (Ā B̄)kj̄ .

The most divergent part of connected correlators of higher dimensional operators in
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Figure 4.7: General form of the contributions to Ctree
n,2l . In Fig. (a), structure of the leading

divergent terms in the limit x2
i,i+1 → 0. In Fig. (b), the parameter a counts the number

of 〈AĀ〉 propagators in a set of s lines.

the light–like limit x2
i,i+1 → 0 at tree level reads

Ctree
n,2l ∝

2l−1
∑

s=1

T tree
s

T tree
s =

n/2
∏

j=1

(

1

x2j−1,2j

)s(
1

x2j,2j+1

)2l−s

(4.6.37)

Eq. (4.6.37) extends (4.6.8) to the l > 1 case. The general contribution in the sum
(4.6.37) is a polygon with edges alternately made by s and 2l − s propagators (see Fig.
4.6.5(a)). Each value of s defines a different topology Ts. In the rest of the discussion,
it is useful to divide each topology Ts into classes Ts,a where the parameter a counts the
number of 〈AĀ〉 propagators inside a block of s lines (see Fig. 4.6.5(b)).

One–loop corrections to Cn,2l are obtained by the insertion of a gauge propagator V

or V̂ in all possible ways between the edges of the polygon Ctree
n,2l .

As in the l = 1 case, the only non–trivial vector exchanges occur when the gauge prop-
agator connects two non–consecutive edges in the polygon. All other possible insertions
vanish due to D–algebra constraints (on the same leg) or to the antisymmetry of the ǫ
tensor (on adjacent edges).

The non–trivial corrections have the form (4.6.9). However, since now we have more
than one chiral propagator in each edge at disposal, we have more than one possibility to
insert a gauge line between the same two edges of the correlator.

The combinatorial factor is in principle different for corrections involving different
pairs of edges in each class Ts,a. However, a careful computation taking into account the
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relative signs between A and B vertices (1.4.15) and between the two building blocks
(4.6.9) shows that the combinatorics depends only on the (a, s) parameters and it thus
evaluates to a common factor for all corrections inside each Ts,a class, which can be then
factored out. Precisely, the one–loop correction to the generic Ts,a class reads

T 1−loop
s,a ∝ T tree

s,a × (s− 2a)2
n−2
∑

i=1

n−δi,1
∑

j=i+2

ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1 J (i, j) (4.6.38)

where J (i, j) is the five dimensional box integral (4.6.29).

This formula closely resembles eq. (4.6.28). In particular, the sums in these two
expressions coincide. Thus, having computed the one–loop corrections to the n–point
function for dimension–one operators, we immediately have the result for any T 1−loop

s,a .
The complete one–loop correction to the correlator Cn,2l can be then recovered through
(4.6.37).

4.6.6 One–loop vanishing of correlators and Wilson loops

In the final part of this Section we want to work out a simpler expression for both
Wilson loops and correlators in the light–like limit, out of the complicated sum (4.6.28).
To accomplish this task we first need to evaluate the five dimensional integral and then
combine the different contributions of the sum. The former is done in the following
paragraph, in the second we address the latter.

The five dimensional integral. We want to solve the integral over Feynman/affine
parameters

This can be done straightforwardly from (4.6.35), just with the help of Mathematica.
The outcome is that the general one–loop contribution to the n–point correlator corre-
sponding to a Feynman diagram where a vector line connects the xi,i+1 and xj,j+1 free
propagators, in the light–cone limit reads

ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1 J (i, j) = (4.6.39)

π4 Si, j log

[

(1 + xi+1,j Li, j) (1 + xi,j+1 Li, j)

(1 − xi+1,j Li, j) (1 − xi,j+1 Li, j)

(1 − xi,j Li, j) (1 − xi+1,j+1 Li, j)

(1 + xi,j Li, j) (1 + xi+1,j+1 Li, j)

]

where we have defined

Si, j =
2 ǫµνρ x

µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1

√

x2
i,j + x2

i+1,j+1 − x2
i+1,j − x2

i,j+1

√

x2
i,jx

2
i+1,j+1 − x2

i+1,jx
2
i,j+1

(4.6.40)
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Figure 4.8: The building blocks for the correlation functions only depend on the diagonals
of the polygon, which are drawn with dashed lines. Case (a) corresponds to the n(n−5)/2
blocks where all the involved diagonals are long. Case (b) depicts one of the n blocks
with short diagonals.

and

Li, j =

√

x2
i,j + x2

i+1,j+1 − x2
i+1,j − x2

i,j+1
√

x2
i,jx

2
i+1,j+1 − x2

i+1,jx
2
i,j+1

(4.6.41)

Focusing on the argument of the logarithm in (4.6.39) we note that it depends only on
the diagonals connecting the four vertices of the block xi, xi+1, xj and xj+1, as depicted
in Fig. 4.8(a). This is due to the fact that the correlator, being Poincaré invariant, has
to be a function of the only invariants that we can construct. In the light–like limit these
are the n(n− 3)/2 space–like diagonals ‖.

We distinguish two sets of diagonals. We call “short” diagonals those connecting two
vertices separated by a pair of light–like edges, whereas we call “long” diagonals the
remaining n(n− 5)/2 ones.

An example of the appearance of short diagonals is depicted in Fig. 4.8(b), where
the vertices xi+1 and xj are connected by a null edge, so the space–like segments xi, j and
xi+1, j+1 are short diagonals. In this case, the corresponding contribution can be obtained
from the general expression (4.6.39) by collapsing xi+1, j → 0, and as a result the logarithm
contains just three factors instead of four.

Going back to (4.6.39), by straightforward algebra we can rewrite the argument of the

‖Actually not all diagonals are independent and their number could in principle be reduced by the
Gram constraints. Since these constraints are difficult to implement we will not pursue this technique.



170 Chapter 4. Amplitudes in ABJM: one–loop computations

logarithm as

(1 + xi+1,j Li, j) (1 + xi,j+1 Li, j)

(1 − xi+1,j Li, j) (1 − xi,j+1 Li, j)

(1 − xi,j Li, j) (1 − xi+1,j+1 Li, j)

(1 + xi,j Li, j) (1 + xi+1,j+1 Li, j)
=

(1 + xi+1,j Li, j)
2 (1 + xi,j+1 Li, j)

2

(1 + xi,j Li, j)
2 (1 + xi+1,j+1 Li, j)

2 (4.6.42)

As proven in Section 4.6.6, Li, j’s are real functions as long as all the diagonals are space–
like. Under this assumption, eq. (4.6.42) is the square of a real expression and the
logarithm in (4.6.39) is well defined. A similar argument applies also to the case of short
diagonals, leading to the same conclusions.

Finally, inserting the result (4.6.39) back into eq. (4.6.28) and summing over all
possible contractions, we obtain the complete analytical result for the ratio C 1−loop

n /Ctree
n

in the light–like limit. The positiveness of the arguments of all logarithms allows us to
safely rewrite the sum as

C 1−loop
n

Ctree
n

= −
[

M

K1
+
N

K2

]

log

{

(4.6.43)

n−2
∏

i=1

n−δi,1
∏

j=i+2

[

(1 + xi+1,j Li, j) (1 + xi,j+1 Li, j)

(1 − xi+1,j Li, j)
(

1 − x2
i,j+1 Li, j

)

(1 − xi,j Li, j) (1 − xi+1,j+1 Li, j)

(1 + xi,j Li, j) (1 + xi+1,j+1 Li, j)

]Si, j







In general, this expression is not zero as long as the distances xi, j are arbitrary. However
they are not all independent, being the diagonals of a polygon in three spacetime dimen-
sions. In Section 4.6.6 we come back to this result and prove that it is actually zero when
implementing an explicit parameterization which constrains the xi, j segments to be the
diagonals of a three dimensional polygon.

4.6.7 Evaluation of the sum: the final answer.

In this part we give an analytical proof that the expression (4.6.43) vanishes for
any value of n. In other words, the light–like limit of n–point correlation functions of
dimension–one BPS operators and the light–like polygonal Wilson loop are zero at one
loop.

Given the identification (4.6.36), as a byproduct we also prove that light–like n–
polygonal Wilson loops vanish at first order. This result generalizes the one in [80] valid
only for n = 4, 6 and proves the conjecture made there that Wilson loops should be
one–loop vanishing for any n.

As we read in (4.6.43), the one–loop correction to a correlation function is proportional
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i-1 i+1

j-1j+1

i

j

(a)

i-1

i+1 =

j-1

j+1

i

j

(b)

Figure 4.9: In picture (a) the four blocks in which the reference diagonal xi,j is involved
are depicted. In picture (b) the case of a short diagonal and its three blocks is shown.
Each wiggled line has to be interpreted separately.

to the logarithm of a product of factors with schematic form
(

1±xLi, j

1∓xLi, j

)Si, j

. We prove that

this product always evaluates to 1.

In (4.6.43) the factors are grouped according to the pair of edges involved in a given
gauge vector exchange (see blocks in Fig. 4.5). The basic idea of the proof is to reorganize
them by grouping together all the factors which depend on the same diagonal xi,j. It is
easy to ascertain that each long diagonal is involved in four contributions, coming from
the four possible interactions connecting the edges which are adjacent to the diagonal
itself (See Fig.4.9 (a)). In the case of a short diagonal, one of these contributions vanishes
(it would be a correction to the vertex), thus we are left with just three pieces (See
Fig.4.9(b)).

Once this reshuffling of factors has been performed in (4.6.43), we prove that the
product of contributions involving the same reference diagonal evaluates to +1 for long
diagonals and to −1 for short ones. We consider a generic diagonal and parameterize all
distances in full generality, so that once we establish this property for one diagonal, we
can apply it to all the contributions to the correlator.

Let us focus on one particular diagonal xi,j , and suppose it is long. The corresponding
block of factors then depends only on the nearest neighbors of the vertices xi and xj,
which are xi−1, xi+1, xj−1, xj+1. These six points are parametrized by 18 coordinates.
However, four of them can be eliminated by light–likeness of the edges xi, i+1, xi, i−1,
xj, j+1, xj, j−1. By using translation invariance, we choose a convenient reference frame
where xµ

i = (0, 0, 0), so removing three more coordinates. Using rotational invariance, we
eliminate two further parameters by choosing xµ

j = (0, b, 0) where b > 0. In this way, the
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Figure 4.10: Parameterization of the block of contributions involving the same reference
diagonal xi, j.

reference diagonal lies in the t = 0 plane. We parameterize the rest of the block in terms
of the nine remaining variables as follows

xµ
i−1 = r1 (1, cosφ1, sinφ1) , xµ

i+1 = r3 (1, cosφ3, sinφ3)

xµ
j−1 = xµ

j + r2 (1, cosφ2, sinφ2) , xµ
j+1 = xµ

j + r4 (1, cosφ4, sinφ4) (4.6.44)

This parameterization is sketched in Fig. 4.10: the φi’s are the angles held by the pro-
jections of the light–like lines on the t = 0 plane, while the moduli of the ri’s measure
the lengths of these same projections. It is obvious that the edges are light–like and the
reference diagonal xi, j is space–like by construction. At this stage, the other diagonals
are not necessarily space–like. The request for them to be space–like implies that r1, r3
and r2, r4 should have separately the same sign, in order for adjacent segments to point
alternatively to the future and to the past. In the following we will assume that they are
all positive, but the final statement can be exhaustively shown to be valid for any choice
of these signs.

Let us now evaluate the product of the four contributions for the reference diagonal
xi, j, namely

(

1 + xi,j Li, j

1 − xi,j Li, j

)Si, j
(

1 + xi,j Li−1, j−1

1 − xi,j Li−1, j−1

)Si−1, j−1

(

1 − xi,j Li−1, j

1 + xi,j Li−1, j

)Si−1, j
(

1 − xi,j Li, j−1

1 + xi,j Li, j−1

)Si, j−1

(4.6.45)
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By plugging in the parameterization (4.6.44) we obtain a nice symmetric expression
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where Sign(x) is the sign function. We notice that the explicit parameterization allows us
to fix a loose end from Section 4.6.4, namely we have ascertained that the terms xi,j L... are
real positive functions. Furthermore we observe that the apparently awkward exponents
Si, j (4.6.40) are surprisingly just ± signs.
Expression (4.6.46) can be written in a compact fashion (here and in the following φ5 = φ1

is understood)

4
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(4.6.47)

We observe that the expression depends exclusively on the four angles of the parameter-
ization but not on any of the five dimensionful parameters. We also note that in each
contribution the arguments of absolute values and Sign functions are the same. Because
of that and using the fact that

(

1±x
1∓x

)±
= 1+x

1−x
we may simplify expression (4.6.47) to

obtain

4
∏

i=1

cos
(

φi+φi+1

2

)

+ sin
(

φi−φi+1

2

)

cos
(

φi+φi+1

2

)

− sin
(

φi−φi+1

2

) (4.6.48)

This is equivalent to

4
∏

i=1

cot

(

φi

2
− π

4

)

tan

(

φi+1

2
− π

4

)

= 1 (4.6.49)

Therefore, this completes the proof for long diagonals.



174 Chapter 4. Amplitudes in ABJM: one–loop computations

For a short diagonal xi, j, it suffices to take the result above and set e.g., xi+1 = xj−1.
Then the contribution involving Li, j−1 vanishes by construction leaving

cos
(

φ1+φ2

2

)

+ sin
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2

)

cos
(
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2

)

− sin
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2

)

cos
(

φ1+φ4

2

)

− sin
(
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2

)

cos
(

φ1+φ4

2

)

+ sin
(

φ1−φ4

2

)

cos
(

φ3+φ4

2

)

+ sin
(

φ3−φ4

2

)

cos
(

φ3+φ4

2

)

− sin
(

φ3−φ4

2

) (4.6.50)

When parameterizing as in eq. (4.6.44) the condition xi+1 = xj−1 is forced by choosing

r2 = r3, r3 cos (φ3) = b+ r2 cos (φ2), sin (φ3) = sin (φ2) (4.6.51)

These equations are solved by φ3 = π − φ2 and some function r2 = r2(a, φ3) which is
irrelevant. Plugging it into (4.6.50) finally simplifies the expression to −1, in a completely
analogous way as in the long diagonal case. Since there are n contributions of the short
type, and since n is even, the overall contribution of short diagonals is equal to +1.

Summarizing, we have shown that the combined collection of all short and long di-
agonal contributions to the argument of the logarithm is equal to +1. Therefore, the
logarithm is equal to zero, thus proving the vanishing of the n–point correlator and Wil-
son loops at one loop.

Moreover, the argument developed in Section 4.6.5 to connect the light–like limit of
correlation functions of bilinear operators to those of higher dimension, entails that since
the former vanish, so the latter do.





Chapter 5

Amplitudes in ABJM: two–loop
computations

In this Chapter we want to push the computation of four–point scattering amplitudes
for the ABJ(M) model to two–loop order. These are expected to be non–vanishing and
therefore able to give more useful insights on the fate of the WL/amplitude duality and
on dual conformal symmetry in three dimensional theories at loop level.

We first resum the calculation of the light–like Wilson loop at two loops on a contour
given by a four cusps polygon, performed in [80]. This is the best candidate to be the dual
object to the four–point amplitude, which is ”MHV” on Grassmann counting grounds.
Unlike the first perturbative order, the two–loop correction is non–trivial and thus suitable
to test the conjectured duality more properly.

Then we set up for the computation of the corresponding amplitude, which we will
approach by a direct manifestly N = 2 supersymmetric Feynman diagram analysis. Since
the difficulty of the calculation increases sensibly from one to two loops, we limit our anal-
ysis to the simplest superamplitude, i.e. the chiral one (4.5.1), arising from corrections
to the superpotential. For the ABJ(M) models supersymmetry ensures that all other
amplitudes are related to the chiral one [87]. Hence the simplest computation allows to
completely determine the whole spectrum of scattering amplitudes of four external parti-
cles. Therefore we will restrict to N = 6 supersymmetric theories only. The evaluation of
the chiral amplitude turns out to be feasible using a traditional Feynman diagrammatic
approach, since the number of involved graphs turns out to be quite limited. Henceforth
we succeed in determining it in an entirely analytical fashion.

The final answer reveals to be quite readable: in the ABJ theory the ratio between
the two–loop correction and the tree level result

M(2)
4 ≡ A(2−loops)

4

Atree
4

(5.0.1)

176
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gives

M(2)
4 = λλ̂

[

−(s/µ′2)−2ǫ

(2 ǫ)2
− (t/µ′2)−2ǫ

(2 ǫ)2
+

1

2
log2

(s

t

)

+ CA(M,N) + O(ǫ)

]

(5.0.2)

where λ = M/K, λ̂ = N/K, µ′ is the mass scale and CA(M,N) is a constant depending
on the ranks of the groups.

Setting the same ranks, i.e. in the ABJM model, the result reads

M(2)
4 = λ2

[

−(s/µ′2)−2ǫ

(2 ǫ)2
− (t/µ′2)−2ǫ

(2 ǫ)2
+

1

2
log2

(s

t

)

+ C + O(ǫ)

]

(5.0.3)

This amplitude exhibits remarkable properties, which we now briefly list anticipating
a more thorough discussion below

• First of all, up to an additive, scheme–dependent constant, this expression exactly
matches the second order expansion of the ABJ light–like four–polygonal Wilson
loop, once the IR regularization of the former is formally identified with the UV one
of the latter, and the particle momenta are expressed in terms of dual coordinates
(s = x2

13 and t = x2
24). Therefore, at least for the four–point amplitude, there is

evidence that the following identity embodying the WL/amplitude duality

log M4 = log 〈W4〉 + const. (5.0.4)

should hold true order by order in the perturbative expansion of the two objects.

• The WL/amplitude duality is intimately related to dual conformal invariance. When-
ever an amplitude possesses this symmetry (eventually broken anomalously by IR
divergences) it can be expressed as a linear combination of dual conformally in-
variant integrals. The fact that the four–point amplitude in ABJ(M) matches the
corresponding Wilson loop hints at the suspicion that it might invariant under dual
conformal symmetry. This can be expected since tree level amplitudes have been
shown to be dual conformally invariant, and through unitarity this property can
propagate to loop level, although in principle to the cut constructible piece of the
amplitude only. In fact, for the ABJM case, following [81] we can rewrite the result
(5.0.2) as a linear combination of scalar momentum integrals which are dual to three
dimensional truly conformally invariant integrals, well defined off–shell. As a con-
sequence, the four–point amplitude satisfies anomalous Ward identities associated
to dual conformal transformations [61], as dual conformal invariance is broken in
the on–shell limit by the appearance of IR divergences which require introducing a
mass regulator.

For the ABJ model the situation is slightly complicated by the appearance of a
non–trivial dependence on the parity–violating parameter σ = (M −N)/

√
MN in
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the mass–scale and in the constant CA. In fact, for M 6= N the two–loop ratio
(5.0.2) can be still written as a linear combination of dual invariant integrals only
up to an additive constant proportional to σ2. Therefore, for the ABJ theory the
dual conformal invariance principle combined with the unitarity cuts method is not
sufficient to uniquely fix the amplitude already in the case of four external particles.

For M = N , our result (5.0.2) coincides with the one in [81] obtained by making
the ansatz that dual conformal invariance should hold also at loop level. Therefore
our calculation supports that ansatz and provides a direct proof of the assumption
that dual conformal invariance should be the correct symmetry principle to select
the scalar master integrals contributing to the on–shell sector of the theory.

Having computed the two–loop amplitude by a genuine perturbative approach with-
out any a priori ansatz on its form, we can investigate whether dual conformal prop-
erties can be detected even at the level of Feynman diagrams. We have then studied
the two loop diagrams entering our calculation, out of the mass–shell and in three
dimensions. Since in three dimensions dual conformal symmetry rules out bubbles,
it is immediate to realize that, being some of our diagrams built by bubbles, it
cannot work at the level of the integrand on every single diagram. A less stringent
scenario could still allow for the possibility to see dual conformal invariance realized
at the level of the integrals and after summation of all the contributions. We have
made many numerical checks but the output is always negative: dual conformal
invariance is definitively broken at the level of Feynman diagrams and hence shad-
owed by the traditional method. It is only restored in the final on–shell answer.
This is not in contrast with what claimed before, since in three dimensions and in
dimensional regularization the integrals do not have in general a smooth limit on
the mass–shell.

• As outlined in section 3.7, another wonderful feature of scattering amplitudes in
N = 4 SYM in four dimensions is their underlying iterative structure, uncovered in
[56]. The result (5.0.2) strikingly resembles its four dimensional cousin, therefore
one might conjecture to identify it with the first order expansion of a BDS–like
exponentiation ansatz for the ABJ(M) model

M4 = e
Div+

fCS (λ,λ̂)

8

“

log2( s
t )+ 4π2

3

”

+C(λ,λ̂)
(5.0.5)

where C(λ, λ̂) is a scheme–dependent constant. The form of the ansatz is exactly
the same as in the four dimensional case in which the non–trivial part at first order
is completely encoded in the scaling function f , where here the four dimensional
scaling function of N = 4 SYM has been replaced by the three dimensional one,
fCS(λ, λ̂). One might object that this ansatz is quite meaningless because any
function may be regarded as the first term in an expansion series. However a non–
trivial indication supporting the ansatz is provided by the fact that the correct value
for fCS(λ, λ̂) matching our result, coincides exactly with that obtained in a totally
independent setting, from the conjectured asymptotic Bethe equations of ABJM
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[89]. Moreover, due to the similarity to the four dimensional result and since the
WL/amplitude duality seems to be working in three dimensions as well for four
particles (at least at first perturbative order), we expect our result to satisfy the
same conformal Ward identities as the four dimensional amplitude, which are a key
ingredient in explaining their exponentiation.

• In the N = 4 SYM case, the BDS exponentiation of scattering amplitudes occurs at
strong coupling as well. In this regime, according to the AdS/CFT correspondence
and owing to the Alday–Maldacena prescription [47], amplitudes evaluate to the
exponential of a minimal–area surface in the AdS5 dual background ending on a
light–like polygon, whose edges are determined by the particle momenta. In par-
ticular, since this algorithm is equivalent to that for computing light–like Wilson
loops in AdS, it provides evidence in favor of the amplitude/WL duality at strong
coupling, in agreement with the findings at weak coupling.

We investigate whether a similar prescription can be employed to compute scattering
amplitudes at strong coupling in the ABJ(M) models. Motivated by our hints
supporting the amplitudes/WL duality at weak coupling and BDS exponentiation,
we expect it to be the case. Indeed, focusing on the ABJM theory in the intermediate
regime K ≪ N ≪ K5, where a string–theoretical dual description is available, we
discuss the generalization of the Alday–Maldacena recipe to AdS4 × CP3. We find
that, apart from a rigorous prescription for the regularization procedure in AdS that
we have not developed properly, the five dimensional solution can be adapted to the
four dimensional case and the output is an expression for the four–point amplitude
given by eq. (5.0.5) where the scaling function assumes its leading value at strong
coupling, fCS(λ) ∼

√
2λ.

As announced we start reviewing the computation of the Wilson loop, then we turn
to amplitudes and after spelling out their explicit evaluation, we comment on the result
analyzing in more detail the items outlined above.

5.1 Wilson loop at two loops.

The two–loop correction to the Wilson loop is derived perturbatively, by expanding
the path–ordered exponential up to order four in the gauge field A (Â)∗. We first derive
its expression for the ABJM theory, setting the ranks of the gauge groups to be equal,
then we generalize this result to the ABJ model. We focus on one of the gauge groups
and afterwards consider the combination of the two.

The planar limit where the number of colors N is large is considered throughout

∗We temporarily switch to Lorentzian signature in order to stick to literature, transforming back to
the Euclidean in the end of this section.
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the computation. This allows for a considerable simplification, suppressing subleading
diagrams by a power of N2. Therefore non–planar contributions will be neglected.

The different topologies arise as follows:

• The second order expansion yields diagrams in Fig. 5.1(c − f), depending on the
relative positions of the insertion points, and contribute to two–loops when con-
sidering the one–loop corrected effective propagator. Diagrams where the insertion
points lie on the same edge again vanish as in the one–loop computation and have
been already neglected. In contrast to one–loop level, when the corrected gluon
propagator joins two adjacent edges (Fig. 5.1(f)), the result does not vanish. We
have shown the matter loop contribution only, since gluon and ghost corrections
exactly cancel in DRED regularization scheme employed here. This implies that
diagrams (c) and (d) actually cancel.

• The third order expansion produces diagram Fig. 5.1(b), after contraction with an
internal cubic gauge interaction vertex.

• The fourth order expansion leads to the topology drawn in Fig. 5.1(a). This is the
only one since corrections between two adjacent edges vanish as already ascertained
at one loop, and all other ways of contracting gauge fields are subleading in color.

(a)

j

i

k

(b)
(c)

(d) (e) (f)

Figure 5.1: Two–loop contributions to the four cusps Wilson loop in CSM theories in the
planar limit.
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5.1.1 Pure Chern–Simons Wilson loop.

Let us analyze contributions from the pure CS sector first. We start computing the
ladder diagram depicted in Fig. 5.1(a)

〈W4〉(2)ladder =
1

N
(i)4

∮

zi>zj>zk>zl

dzµ,ν,ρ,σ
i,j,k,l 〈TrAµ(zi)Aν(zj)Aρ(zk)Aσ(zl) 〉

= 2

(

N

k

)2
(

Γ
(

d
2

)

π
d−2
2

)2

Iladder(x
2
13, x

2
24) (5.1.1)

in terms of the integral

Iladder(x
2
13, x

2
24) =

∫

dsi,j,k,l
ǫ(żi, żl, zi − zl)

[−(zi − zl)2]
d
2

ǫ(żj , żk, zj − zk)

[−(zj − zk)2]
d
2

(5.1.2)

For definiteness we choose e.g. i = j = 3, k = l = 1 in the numerator we get

ǫ(ż3, ż1, z3 − z1)
2 = ǫ(p3, p1, z3 − z1)

2 = ǫ(x43, x21, x31)
2 = ǫ(x12, x23, x34)

2 =

= −1

4
x2

13 x
2
24 (x2

13 + x2
24) (5.1.3)

Since the integral is finite in d = 3 and we have a (−1)3 sign from the invariants in the
denominators we obtain

−1

[x2
13s̄is̄l + x2

24sisl]
3
2 [x2

13s̄j s̄k + x2
24sjsk]

3
2

(5.1.4)

and the integral evaluates to

Iladder(x
2
13, x

2
24) =

=
1

4

∫ 1

0

dsi

∫ si

0

dsj

∫ 1

0

dsk
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0

dsl
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13x
2
24(x
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24sisl]
3
2 [x2

13s̄j s̄k + x2
24sjsk]
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+ O(ǫ)

=
1

2

[

log

(

x2
13

x2
24

)

+ π2

]

+ O(ǫ) (5.1.5)

We then come to the vertex diagram Fig. 5.1(b), which turns out to be the most
involved. It gives

〈W4〉(2)vertex =
1

N
〈 (i)3

∮

zi>zj>zk

dzµ,ν,ρ
i,j,k Tr (AµAν Aρ)

(

i

∫

ddwLint(w)

)

〉

= − 1

N

k

4π

2

3
(i)5

∮

dzµ,ν,ρ
i,j,k

∫

ddw〈Tr (Aµ Aν Aρ) Tr (Aα Aβ Aγ(w)) ǫαβγ〉
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We give a few details on its evaluation in Appendix A.6. Basically, after performing
contractions and retaining the leading color pieces only, the diagram gives a sum over
integrals Iijk

〈W4〉(2)vertex = i

(

N

k

)2
1

2π

(

Γ
(

d
2

)

π
d−2
2

)3
∑

i>j>k

Iijk (5.1.6)

where

Iijk =

∫

dzµ
i dz

ν
j dz

ρ
k ǫ

αβγ ǫµασ ǫνβλ ǫργτ

∫

d3w
(w − zi)

σ (w − zj)
λ (w − zk)

τ

(−(zi − w)2)
d
2 (−(zj − w)2)

d
2 (−(zk − w)2)

d
2

(5.1.7)

Choosing for definiteness i = 3, j = 2 and k = 1, a lengthy calculation spelled out in the
Appendix shows that it finally reduces to the following integral over the affine parameters

I321 = i
8 π

d
2

Γ
(

1
2
d
)3 x

2
13x

2
42

∫ 1

0

ds1,2,3 (β1 β2 β3)
1
2

d−1

(

Γ (d− 1)

∆d−1
− 2 β1 s̄1 β3 s3 (x2

13 + x2
24) Γ (d)

1

∆d

)

(5.1.8)

where ∆ = −β1 β2 z
2
12 − β2 β3 z

2
23 − β1 β3 z

2
13. This integral is quite nasty and was solved

in [80] by resorting to numerical evaluation, whose result is given in the Appendix.

In the dimensional reduction scheme and Landau gauge where the computation is
performed, the contributions in the effective one–loop propagator, coming from a loop
of gauge vectors and ghosts (configurations 5.1(c − d)) exactly cancel. Then the two
diagrams evaluated suffice to determine the two–loop Wilson loop in pure CS

〈W4〉(2)CS = − 1

K2

[

1

2
log 2

(x2
13 πe

γEµ2)2ǫ + (x2
24 πe

γEµ2)2ǫ

ǫ
+

1

4
(a6 − 8 log 2 − π2)

]

(5.1.9)

a6 being a constant determined numerically (see Ref. [80])

5.1.2 ABJM Wilson loop.

The remaining contribution is enclosed in diagrams 5.1(e− f) In particular, focusing
on the matter contribution, we can insert the one–loop corrected gauge propagator [80]
into the second order expansion of the Wilson loop exponential and get

G(1)
µν (x) =

(

2π

K

)2
NδI

I

8

Γ(1 − d
2
)Γ(d

2
)2

Γ(d− 1) πd

(

Γ(d− 2)

Γ(2 − d
2
)

ηµν

(−x2)d−2
− Γ(d− 3)

4 Γ(3 − d
2
)
∂µ∂ν

1

(−x2)d−3

)

(5.1.10)
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neglecting the derivative piece, which is possible in our gauge choice this simplifies

G(1)
µν (x) = − 1

N

(

N

k

)2

π2−dΓ

(

d

2
− 1

)2
ηµν

(−x2)d−2
(5.1.11)

The contribution from the matter sector is obtained by summing over permutations of
the endpoints of the gauge effective propagator

〈W4〉(2)matter =
i2

N
Tr

∫

zi>zj

dzµ
i dz

ν
j 〈AµAν〉(1) (5.1.12)

= −N
∑

i>j

∫

dsidsjp
µ
i p

ν
jG

(1)
µν (zi − zj)

=

(

N

k

)2(

(4πeγE)2ǫ +
π2

2
ǫ2 + O(ǫ3)

)

∑

i>j

Iij

where Iij =
∫

dsidsj pi · pj(−(zi − zj)
2)2−d. Setting e.g. i = 2, j = 1, we have

I21 =

∫ 1

0

ds2ds1
p2 · p1

(−(z2 − z1)2)d−2
=

=

∫ 1

0

ds2ds1
x32 · x21

(−(z2 − z1)2)d−2
=

=

∫ 1

0

ds2ds1

1
2
x2

13

(−(z2 − z1)2)d−2
=

=

∫ 1

0

ds2ds1

1
2
x2

13

(−x2
13 s̄1s2)

d−2
=

− 1

2
(−x2

13)
3−d

∫ 1

0

ds2ds1
1

(s̄1s2)
1−2ǫ =

1

8

(−x2
13)

2ǫ

ǫ2
(5.1.13)

which is UV divergent.
Furthermore, there are two finite diagrams Ii+2,i. Setting again d = 3 and taking i =
3, j = 1 the integral yields

I31 =

∫ 1

0

ds3ds1
p3 · p1

−(z3 − z1)2
=

∫ 1

0

ds3ds1
x43 · x21

−(z3 − z1)2

= −1

2

∫ 1

0

ds3ds1
x2

13 + x2
24

−(x2
13 s̄1 s̄3 + x2

24 s1 s3)

=
1

2

∫ 1

0

ds3ds1
x2

13 + x2
24

x2
13s̄1s̄3 + x2

24s1s3

=
1

4

[

log2

(

x2
13

x2
24

)

+ π2

]

. (5.1.14)
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Taking the sum over all contributions we obtain

∑

i>j

Iij = −1

4

[

(−x2
13)

2ǫ

ǫ2
+

(−x2
24)

2ǫ

ǫ2
− 2 log2

(

x2
13

x2
24

)

− 2π2

]

, (5.1.15)

and thus the full matter part reads

〈W4〉(2)matter = −1

4

(

N

k

)2 [
(−x2

134πe
γEµ2 )2ǫ

ǫ2
+

(−x2
244πe

γEµ2 )2ǫ

ǫ2

−2 log2

(

x2
13

x2
24

)

− π2 + O(ǫ)

]

(5.1.16)

where we have restored the regularization scale µ2, which was dropped throughout the
computation. The complete two–loop correction is obtained by adding the CS part (5.1.9)

〈W4〉(2)ABJM = N2
[

〈W4〉(2)CS + 〈W4〉(2)matter

]

(5.1.17)

and the result can be rewritten in a form in which the ǫ−1 terms cancel

〈W4〉(2)ABJM = λ2

[

−1

2

(x2
13 µ

2
WL)2ǫ

(2ǫ)2
− 1

2

(x2
24 µ

2
WL)2ǫ

(2ǫ)2
+

1

4
log2

(

x2
13

x2
24

)

+
1

2
C

]

(5.1.18)

where λ ≡ N/K, µ2
WL = 8πeγEµ2 and

C = 3 ζ2 + 2 log 2 + 5 log2 2 − a6

4
(5.1.19)

Actually the numerical constant may be fitted by the following combination const. =
8
3
π2 + 12 log2(2) − 8 log(2), where curiously a piece of lower transcendentality appears.

Finally we have to add to this contribution the one coming from the other gauge field
Â. Since at two loops the coupling appears quadratically the U(N)−K piece is exactly
equal to the previous one, in contrast to what happens at one loop. Hence the final answer
can be read from (5.1.18), just doubling that expression

〈W4〉(2)ABJM = λ2

[

−(x2
13 µ

2
WL)2ǫ

(2ǫ)2
− (x2

24 µ
2
WL)2ǫ

(2ǫ)2
+

1

2
log2

(

x2
13

x2
24

)

+ C

]

(5.1.20)

Recently a generalization of this result was derived in [90], for light–like polygons with
any arbitrary number n of edges, finding a remarkable similarity with Wilson loops at
one loop in N = 4 SYM. We will not account for this here, since our main interest is in
the computation of the four–cusps Wilson loop, to match with scattering amplitudes.

In order to prepare for this comparison we turn to Euclidean signature, by just chang-
ing the signs of the invariants. This does not produce any sensible change, since only the
ratio of the two Lorentz invariants in the problem appears.
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5.1.3 ABJ Wilson loop.

Then we wish to extend the result (5.1.20) to the larger class of ABJ models, taking
into account the possibility for the two gauge groups to have different ranks. At two
loops, the contributing diagrams are the same as in the ABJM case, but with different
color coefficients. It is convenient to introduce two ’t Hooft couplings λ = M/K and

λ̂ = N/K. It follows that the most convenient perturbative parameter is λ̄ =
√

λλ̂, while

σ =
λ− λ̂

λ̄
, (5.1.21)

measures the deviation from the ABJM theory.

As stated in Section 4.4, we have two different candidates for the ABJ Wilson loop at
disposal, given in (4.4.3) and (4.4.5). We analyze the two–loop correction for both.

1. Following the definition (4.4.3),

〈W4〉ABJ =
1

M +N

{

TrU(M) P e
i

R

Cn
Aµ d zµ

+ TrU(N) P e
i

R

Cn
Âµ d zµ

}

(5.1.22)

which naturally arises when writing the gauge field as a (M + N) × (M + N)
square matrix, A = diag(A, Â), we just have to take the results from the Wilson
loop in ABJM and change the relative coefficients of the pure gauge and the matter
contributions. The former gets multiplied by a color factorM3 andN3, for the A and
Â pieces respectively. The color factors of latter are M2 N and N2 M , respectively.

〈W4〉(2)ABJ =
1

M +N

{

(M3 +N3) 〈W4〉(2)CS + (M2N +N2 M) 〈W4〉(2)matter

}

= (M2 −MN +N2) 〈W4〉(2)CS +MN 〈W4〉(2)matter (5.1.23)

where 〈W4〉(2)CS and 〈W4〉(2)matter are still given in eqs. (5.1.9) and (5.1.16), respectively.

Inserting their explicit expressions and rescaling the regularization parameter as

µ′′ 2
WL = 23+σ2

π eγE µ2 (5.1.24)

up to terms of order ǫ, the final answer reads

〈W4〉(2)ABJ = λ̄2
{

− (x2
13 µ

′′ 2
WL)

2ǫ

(2ǫ)2
− (x2

24 µ
′′ 2
WL)

2ǫ

(2ǫ)2
+

1

2
log2

(

x2
13

x2
24

)

+ C ′′
}

(5.1.25)

where

C ′′ =
3

2
(σ2 + 2) ζ2 + 2(σ2 + 1) log 2 − σ2 + 1

4
a6 + (σ2 + 1)(σ2 + 5) log2 2 (5.1.26)

It is straightforward to check that taking σ → 0, the above expression reduces to
the result (5.1.20) for the Wilson loop in ABJM, rescaling (5.1.29) and constant
(5.1.31) included.
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2. We take under exam the second possible candidate for the Wilson loop in ABJ
theory whose expression we recall (4.4.5)

〈W4〉(2)ABJ =
1

2M
TrU(M) P e

i
R

Cn
Aµ d zµ

+
1

2N
TrU(N) P e

i
R

Cn
Âµ d zµ

(5.1.27)

At two loops, it is distinguished from the previous one by a slightly different com-
bination of the expressions (5.1.9, 5.1.16)

〈W4〉(2)ABJ =
1

2
(M2 +N2) 〈W4〉(2)CS +MN 〈W4〉(2)matter (5.1.28)

However, provided that we define

µ′ 2
WL = 23+σ2/2 π eγE µ2 (5.1.29)

the calculation leads exactly to the same result as before

〈W4〉(2)ABJ = λ̄2
{

− (x2
13 µ

′ 2
WL)

2ǫ

(2ǫ)2
− (x2

24 µ
′ 2
WL)

2ǫ

(2ǫ)2
+

1

2
log2

(

x2
13

x2
24

)

+ C ′
}

(5.1.30)

where now

C ′ =
3

4
(σ2 + 4) ζ2 + (σ2 + 2) log 2 − σ2 + 2

8
a6 +

(σ2 + 2)(σ2 + 10)

4
log2 2 (5.1.31)

Again, taking σ → 0 we are back to the ABJM result (5.1.20).

Up to two loops, the two definitions (4.4.3) and (4.4.5) for the Wilson loop in ABJ
theory differ only by the choice of the mass scale and the scheme–dependent C constants.
At this stage we do not have any tool to discriminate between the two.

The above result suggests that one should identify
√

MN
k

as the effective ’t Hooft
coupling for ABJM, at least at two loops. At weak coupling it may be reasonable, at
strong coupling it would sound strange since the ’t Hooft coupling is read from the AdS4

radius, which only depends on N in the ABJ solution. However in the same paper it is
argued that supersymmetric U(M)k × U(N)−k CS is well defined only if |M − N | < k.
At weak coupling, where k ≫ N,M all values of M and N are allowed, however at strong
coupling, where k ≪ N,M it seems that the difference |M − N | should be very small
compared to N , so that

N
k
−

√
MN
k

N
k

∼ M −N

2N
<

1

2

k

N
≪ 1 (5.1.32)

meaning that the ’t Hooft couplings N
k

and
√

MN
k

are basically equivalent (or, said another
way, the ABJ solution is considered as far as the probe limit of |M −N | small holds).
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This feature that the dependence on the parity violating parameter is quite trivial is a
peculiarity due to the low perturbative order. A significant contribution may come at four
loops and higher, and is on general grounds expected to break parity invariance under the
exchange M ↔ N . However, as far as we are concerned, all perturbative computation
has always displayed a dependence on σ in even powers, preserving parity invariance. We
will come back to this point later on.

In the next Section we turn to the subject of scattering and, after deriving a closed
result for the four–point amplitude at two loops, we make the desired comparison with
the Wilson loop.

5.2 Scattering at two loops

We restrict to the ABJ model for which we have found that all the four–point am-
plitudes vanish at one loop. This result is consistent with the one–loop vanishing of the
Wilson loop and leads to conjecture the existence of a WL/amplitudes duality for this
theory. To give evidence to this conjecture, we evaluate four–point scattering amplitudes
at two loops.

We study amplitudes of the type (AiBj A
k Bl), where the external A, B particles carry

outgoing momenta p1, . . . , p4 (p2
i = 0).

At two loops, in the planar sector, the amplitude can be read from the single trace
part of the two–loop effective superpotential

Γ(2)[A,B] =

∫

d2θd3p1 . . . d
3p4 (2π)3 δ(3)(

∑

i
pi) ×

2π

K
ǫikǫ

jl tr
(

Ai(p1)Bj(p2)A
k(p3)Bl(p4)

)

g
∑

X=a

M(X)(p1, . . . , p4) (5.2.1)

where the sum runs over the six 1PI diagrams in Fig. 5.2, plus the contribution from
the 1P–reducible (1PR) graph in Fig. 5.2(g) where the bubble indicates the two–loop
correction to the chiral propagator.

In (5.2.1) we have factorized the tree level expression, so that M(X)(p1, . . . , p4) are

contributions to A(2)
4 /Atree

4 .

In order to evaluate the diagrams we fix the convention for the upper–left leg to carry
outgoing momentum p1 and name the other legs counterclockwise. The momentum–
dependent contributions in (5.2.1) are the product of a combinatorial factor times a sum
of ordinary Feynman momentum integrals arising after performing D–algebra on each
supergraph (more details can be found in [86]). There are a total of four diagrams of the
classes (b), (c), (f) and (g), eight diagrams of the classes (d) and (e) and two diagrams
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(b) (c)

(d) (e) (f)

(a)

(g)

Figure 5.2: Diagrams contributing to the two–loop four–point scattering amplitude. The
dark–gray blob represents one–loop corrections and the light–gray blob two–loop ones.

of the class (a). The color/flavor factors Ci for them are given by

Ca = (4π)2 λ2+λ̂2

2
Cb = (4π)2 λ2+λ̂2

8
Cc = (4π)2 8λλ̂−λ2−λ̂2

2

Cd = (4π)2 λ2+λ̂2

4
Ce = (4π)2 λλ̂ Cf = −(4π)2 λλ̂ (5.2.2)

while diagram (g) contains subdiagrams with different color/flavor factors and these can-
not be factorized.

Diagram 5.2(a) : We begin with the simplest graph which, after D–algebra, reduces to
the following factorized Feynman integral

Ds
a = µ4ǫ

∫

ddk

(2π)d

ddl

(2π)d

−(p1 + p2)
2

k2 (k + p1 + p2)2 l2 (l − p3 − p4)2
(5.2.3)

where µ is the mass scale of dimensional regularization.

The k and the l bubble integrals can be separately evaluated using the result (A.5.9),
so obtaining

Ds
a = −G[1, 1]2

(

µ2

s

)2ǫ

(5.2.4)

In order to determine the corresponding contribution to the amplitude, we need to sum
over all the independent configurations of the external momenta. Inserting the corre-
sponding color/flavor factors we obtain

M(a) = −8π2(λ2 + λ̂2)G[1, 1]2

(

(

µ2

s

)2ǫ

+

(

µ2

t

)2ǫ
)

= −3

2
ζ2(λ

2 + λ̂2) + O(ǫ) (5.2.5)
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Diagram 5.2(b) : After D–algebra, it gives

Ds1

b = µ4ǫ

∫

ddk

(2π)d

ddl

(2π)d

2(p3 + p4)
2

l2 (l + k)2 (k − p4)2 (k + p3)2
(5.2.6)

Performing the l integration with the help of Eq. (A.5.9) , we obtain a triangle integral
with a modified exponent in one of its propagators

Ds1
b = µ4ǫG[1, 1]

∫

ddk

(2π)d

2(p3 + p4)
2

(k2)1/2+ǫ (k − p4)2 (k + p3)2
(5.2.7)

We Feynman–parameterize the denominator and integrate over momentum k. Taking
into account that we are working on–shell (p2

i = 0) we finally get

Ds1
b =

µ4ǫ 2sG[1, 1] Γ(1 + 2ǫ)

(4π)d/2Γ(1/2 + ǫ)

1
∫

0

dβ1dβ2dβ3 δ(
∑

i βi − 1)β
−1/2+ǫ
1

(β1β2p
2
4 + β1β3p

2
3 + β2β3s)1+2ǫ

p2
3,4→0

−−−−→ 2G[1, 1]Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)d/2Γ(1/2 − 3ǫ)

(

µ2

s

)2ǫ

(5.2.8)

where Γ2(−2ǫ) signals the presence of an on–shell IR divergence.

Summing over the four inequivalent configurations of the external legs multiplied by
the correct vertex factors, the contribution to the amplitude reads

M(b) = 8π2(λ2 + λ̂2)
G[1, 1]Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)d/2Γ(1/2 − 3ǫ)

(

(

µ2

s

)2ǫ

+

(

µ2

t

)2ǫ
)

=
λ2 + λ̂2

8

[

1

(2ǫ)2

(

s

πe−γEµ2

)−2ǫ

+
1

(2ǫ)2

(

t

πe−γEµ2

)−2ǫ

− 5

2
ζ2 + O(ǫ)

]

(5.2.9)

Diagram 5.2(c) : This diagram may result problematic, being infrared divergent even
when evaluated off–shell. In fact, after D–algebra, the particular diagram drawn in Fig.
5.2(c) gives rise to the following integral

Ds1
c =

µ4ǫ

2

∫

ddk

(2π)d

ddl

(2π)d

Tr(γµγνγργσ) p
µ
3 (k − p3)

ν (k + p4)
ρ pσ

4

l2 (l + k)2 k2 (k − p4)2 (k + p3)2
(5.2.10)

which, performing the bubble l integral and using the identity

Tr(γµγνγργσ) pµ
3 (k− p3)

ν (k+ p4)
ρ pσ

4 = (p3 + p4)
2k2 − p2

3(k+ p4)
2 − p2

4(k− p3)
2 (5.2.11)

can be separated into three pieces

Ds1
c =

1

4
Ds1

b − 1

2
G[1, 1]G[1, 3/2 + ǫ] (p2

3)
−2ǫ − 1

2
G[1, 1]G[1, 3/2 + ǫ] (p2

4)
−2ǫ (5.2.12)
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While the first term is the off–shell well–behaving Feynman integral in Eq. (5.2.8) that in
the on–shell limit produces 1/ǫ poles, the second and third terms are badly divergent even
off–shell. However, we can show that these unphysical divergences are cured when we add
the 1PR diagrams corresponding to two–loop self–energy corrections to the superpotential,
as depicted in Fig. 5.2(g).

In fact, for example the contribution from the diagram with the two–loop correction
on the fourth leg as drawn in the picture, yields

D4
g = −8π2(8λλ̂− λ2 − λ̂2)G[1, 1]G[1, 3/2 + ǫ] (p2

4)
−2ǫ + 32π2λλ̂ p2

4 B(p4)
2 (5.2.13)

where color factors have been included.

It is easy to realize that the first term of this expression is off–shell infrared divergent,
but precisely cancels the third term in (5.2.12) when all the vertex factors of diagram
5.2(c) are taken into account. On the other hand, the second term in (5.2.13) comes from
a double factorized bubble which vanishes on–shell.

Since in a similar way the second term in (5.2.12) gets canceled by a diagram with a
two–loop correction on the third leg, summing diagrams 5.2(c),(g) and their permutations
we are finally led to the following interesting identity

M(c) + M(g) =
λ2 + λ̂2 − 8λλ̂

λ2 + λ̂2
M(b) (5.2.14)

Diagram 5.2(d) : Diagrams of type (d) may be calculated using Mellin-Barnes techniques.
Specifically, after D–algebra the diagram in figure gives rise to the integral

Ds1
d = µ4ǫ

∫

ddk

(2π)d

ddl

(2π)d

Tr(γµγνγργσ) pµ
4 (p3 + p4)

ν (k + p4)
ρ (l − p4)

σ

(k + p4)2 (k − p3)2 (k + l)2 (l − p4)2 l2
(5.2.15)

Using the identity (A.5.6) and the on–shell conditions, it can be rewritten as

Ds1
d =

−sΓ(1/2 − ǫ)

(4π)d/2Γ(1 − 2ǫ)

i∞
∫

−i∞

dz

2πi
Γ(−z|1 + z|3/2 + ǫ+ z| − 1/2 − ǫ− z)

× µ4ǫ

∫

ddk

(2π)d

1

(k2)3/2+ǫ+z [(k + p4)2]−z (k − p3)2
(5.2.16)

The integral over k can be easily performed by Feynman parameterization, leading to

Ds1
d = −µ4ǫ Γ(1/2 −ǫ|1 +2ǫ| −2ǫ)

(4π)dΓ(1 −2ǫ|1/2 −3ǫ)

×
i∞
∫

−i∞

dz

2πi
Γ(1 + z|3/2 + ǫ+ z| − 1/2 + ǫ− z| − 1 − 2ǫ− z)

= − Γ3(1/2 − ǫ)Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)dΓ2(1 − 2ǫ)Γ(1/2 − 3ǫ) (s/µ2)2ǫ
(5.2.17)
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where the remaining integral over the complex variable z has been performed by using
the Barnes first Lemma (A.5.7).

Taking into account the eight permutations with corresponding flavor/color factors we
obtain

M(d) = −16π2(λ2 + λ̂2)
Γ3(1/2 − ǫ)Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)dΓ2(1 − 2ǫ)Γ(1/2 − 3ǫ)

(

(

µ2

s

)2ǫ

+

(

µ2

t

)2ǫ
)

=
λ2 + λ̂2

4

[

− 1

(2ǫ)2

(

s

4πe−γEµ2

)−2ǫ

− 1

(2ǫ)2

(

t

4πe−γEµ2

)−2ǫ

+
7

2
ζ2 + O(ǫ)

]

(5.2.18)

Diagram 5.2(e) : Using the identities derived in [86] it is possible to write this diagram
as a combination of contributions (b) and (d). It holds that

(1 + S34)Ds1
e = (1 + S34)Ds1

d + Ds1
b − p2

3B(p3)
2 − p2

4B(p4)
2 (5.2.19)

where Ds1
e is the particular diagram of type (e) drawn in the figure and the operator

(1 + S34) symmetrizes the diagram with respect to the third and fourth leg. Notice the
presence of a double factorized bubble which can be dropped on–shell. Accounting for all
permutations and flavor/color factors we thus find that

M(e) = 4
λλ̂

λ2 + λ̂2

(

M(d) + 2M(b)
)

(5.2.20)

Diagram 5.2(f) : The most complicated contribution comes from this diagram, as it
involves a non–trivial function of the s/t ratio. Surprisingly, after some cancelations it
turns out to be finite.

The D–algebra for the specific choice of external momenta as in figure results in the
Feynman integral

D234
f = µ4ǫ

∫

ddk

(2π)d

ddl

(2π)d

−Tr(γµγνγργσ) p
µ
4 p

ν
2 k

ρ lσ

k2 (k − p2)2 (k + l + p3)2 (l − p4)2 l2
(5.2.21)

Again, using Eq. (A.5.6) for the k integral and working on-shell, we obtain

D234
f =

Γ(1/2 − ǫ)

(4π)dΓ(1 − 2ǫ)

i∞
∫

−i∞

dz

2πi
Γ(−z)Γ(1 + z)Γ(3/2 + ǫ+ z)Γ(−1/2 − ǫ− z)

× µ4ǫ

∫

ddl

(2π)d

Tr(γµγνγργσ) pµ
4 p

ν
2 (l + p3)

ρ lσ

l2 (l − p4)2 [(l + p3)2]−z [(l + p2 + p3)2]3/2+ǫ+z
(5.2.22)
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It is convenient to separate the l integral in two pieces by using the on–shell identity

Tr(γµγνγργσ) p
µ
4 p

ν
2 (l + p3)

ρ lσ
∣

∣

∣

on–shell

= −(s+ t) l2 + Tr(γµγνγργσ) pµ
4 p

ν
2 p

ρ
3 l

σ (5.2.23)

The first piece in (5.2.23) contains an l2 factor which cancels the l2 propagator in (5.2.22)
leading to a simple triangle which is straightforwardly evaluated as we did for the previous
diagram.

The second piece is a vector–box integral which after Feynman parameterization can
be written in terms of a second 1–fold Mellin–Barnes integral. Interchanging the order of
the two Mellin–Barnes integrals and solving for the original one in (5.2.22) with the first
Barnes lemma (A.5.7), the total result is

D234
f =

(s+ t)Γ3(1/2 − ǫ)µ4ǫ

(4π)dΓ(1/2 − 3ǫ)Γ2(1 − 2ǫ)



− Γ(1 + 2ǫ)Γ2(−2ǫ)

s1+2ǫ
+

+
1

t1+2ǫ

i∞
∫

−i∞

dv

2πi
Γ(−v)Γ(−2ǫ−v)Γ(−1− 2ǫ−v)Γ2(1+v)Γ(2+2ǫ+v)

(s

t

)

v



 (5.2.24)

The contour of the Mellin–Barnes integral in the second term of the last expression is not
well–defined in the limit ǫ → 0, reflecting the presence of poles in ǫ. The reason is that
in this limit the first pole of Γ(−1 − 2ǫ−v) collapses with the first pole of Γ2(1 +v). In
order to have a well defined contour in the ǫ→ 0 limit, we can deform the contour so that
it passes on the right of the point v = −1 − 2ǫ and include the residue of the integrand
in this point. Surprisingly, it turns out that this residue exactly cancels the first term
in (5.2.24) so that we obtain a simple 1–fold Mellin-Barnes integral which is finite in the
limit ǫ→ 0

D234
f =

(1 + s/t)Γ3(1/2 − ǫ)

(4π)dΓ2(1 − 2ǫ)Γ(1/2 − 3ǫ)(t/µ2)2ǫ
(5.2.25)

×
+i∞
∫

−i∞

dv

2πi
Γ(−v)Γ(−2ǫ− v)Γ∗(−1 − 2ǫ− v)Γ2(1 + v)Γ(2 + 2ǫ+ v)

(s

t

)

v

(5.2.26)

This integral can be calculated in the ǫ → 0 limit by closing the contour and performing
the infinite sum of all the residues inside it. Taking into account all four permutations of
the diagram and flavor/color factors we finally obtain

M(f) = λλ̂
(

1
2
log2(s/t) + 3ζ2

)

+ O(ǫ) (5.2.27)

We are now ready to collect the partial results (5.2.5, 5.2.9, 5.2.14, 5.2.18, 5.2.20,
5.2.27) and find the four–point chiral superamplitude at two loops. After some algebra,
and redefining the mass scale as

µ′2 = 2σ2/2 (8πe−γE µ2) (5.2.28)



5.3 Discussion 193

the result can be cast into the following compact form

M(2) ≡ A(2 loops)
4

Atree
4

= λ̄2

[

−(s/µ′2)−2ǫ

(2 ǫ)2
− (t/µ′2)−2ǫ

(2 ǫ)2
+

1

2
log2

(s

t

)

+ CA + O(ǫ)

]

(5.2.29)

where λ̄ =
√

λλ̂ =
√
MN/k and CA is a constant given by

CA =
(

4 − 5
4
σ2
)

ζ2 +
(

1 + 1
2
σ2
) (

3 + 1
2
σ2
)

log2 2 (5.2.30)

We note that the mass scale and the constant depend non–trivially on the parity–violating
parameter σ defined in eq. (5.1.21). Since it only appears as a square, parity is not
violated at this stage. As a check, we observe that for σ = 0 the result reduces to the
ABJM amplitudes computed in [82].

5.3 Discussion

We now discuss the main properties of our result (5.3.9) for the four–point amplitude
at two loops.

First of all, in the ABJM case (σ = 0) the result coincides with the one in [81] obtained
by applying generalized unitarity methods. In particular, the effective mass scale is the
same and the analytical expression for the constant CA|σ→0 = 4ζ2 + 3 log2 2 matches the
numerical result of [81].

In Ref. [81] the result has been found by assuming a priori that in the planar limit
dual conformal invariance should work also at quantum level. In fact, an ansatz has been
made on the general structure of the amplitude which turns out to be a linear combination
of integrals that, if extended off–shell, are well defined in three dimensions and exhibit
conformal invariance in the dual x–space (pi = xi − xi+1).

On the other hand, our calculation relies on a standard Feynman diagram approach
which does not make use of any assumption. The identification of the two results is then
a remarkable proof of the validity of on–shell dual conformal invariance for this kind of
theories.

5.3.1 Amplitudes/WL duality

In the general ABJ case, if we write the Mandelstam variables in terms of the dual
ones, s = x2

13 and t = x2
24, up to a (scheme–dependent) constant our result matches those

in Eqs. (5.1.30, 5.1.25) for the two–loop expansion of a light–like Wilson loop, once we
formally identify the IR and UV rescaled regulators of the scattering amplitude and the
Wilson loops as µ′2 = 1/µ′2

WL or µ′2 = 1/µ′′ 2
WL.
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Since the Wilson loop is conformally invariant in the ordinary configuration space, the
identification of the two–loop amplitude with the corresponding term in the WL expansion
is a further proof of dual conformal invariance in the on–shell sector of the theory.

We remind that the two results (5.1.30, 5.1.25) in Section 3 correspond to two possible
definitions of Wilson loop in ABJ models. At this stage, the result (5.3.9) seems to match
both. However, if we compare the rescaled mass regulators, we see that apart from the
sign of the Euler constant, in the result for the amplitude µ′ looks like µ′

WL in eq. (5.1.29),
whereas it is quite different from µ′′

WL in Eq. (5.1.24). Although there is no particular
reason for the two mass scales to match exactly, this might be a first indication that the
definition (4.4.3) for the light–like Wilson loop dual to scattering amplitudes is preferable.

5.3.2 Dual conformal invariance

As for the N = 4 SYM case, in the ABJ models the two–loop on–shell amplitude
divided by its tree–level contribution, when written in terms of dual variables has the same
functional structure as the second order expansion of a light–like Wilson loop. Wilson
loops are invariant under the transformations of the standard conformal group of the
ABJ theory, even though UV divergences break this symmetry anomalously. Hence, the
on–shell amplitude should inherit this symmetry, possibly anomalously broken by IR
divergences.

In fact, in the N = 4 SYM case where the amplitudes/WL duality also works, the
perturbative results for planar MHV scattering amplitudes divided by their tree–level
contribution can be expressed as linear combinations of scalar integrals that are off–shell
finite and dual conformally invariant [91, 43] in four dimensions. Precisely, once written in
terms of dual variables, the integrands times the measure are invariant under translations,
rotations, dilatations and special conformal transformations. Dual conformal invariance
is broken on–shell by IR divergences that require introducing a mass regulator. Therefore,
conformal Ward identities acquire an anomalous contribution [61].

A natural consequence of our findings is that the two–loop result for three dimensional
ABJ(M) models should also exhibit dual conformal invariance, and then it should be
possible to rewrite the final expression (5.3.9) for the on–shell amplitude as a linear
combination of scalar integrals which are off–shell finite in three dimensions and manifestly
dual conformally invariant at the level of the integrands. Indeed, for the ABJM case this
has been proved in Ref. [81] where the amplitude has been obtained by the generalized
unitarity cuts method, based on the ansatz for the amplitude to be dual conformally
invariant.

Following [81], we introduce a set of independent scalar integrals I1s, I2s, I3s, I5s ≡
I1s − I4s which correspond to the following off–shell, three dimensional, dual conformally
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Figure 5.3: Graphical representation of dual conformally invariant integrals.

invariant expressions

I1s =

∫

d3x5 d
3x6

(2π)6

x4
13

x2
15 x

2
35 x

2
56 x

2
16 x

2
36

(5.3.1)

I2s =

∫

d3x5 d
3x6

(2π)6

x2
13 x

2
24

x2
15 x

2
35 x

2
45 x

2
16 x

2
26 x

2
36

(5.3.2)

I3s =

∫

d3x5 d
3x6

(2π)6

x2
13 x

2
24

x2
35 x

2
45 x

2
56 x

2
26 x

2
16

(5.3.3)

I4s =

∫

d3x5 d
3x6

(2π)6

x4
13 x

2
25 x

2
46

x2
15 x

2
35 x

2
45 x

2
56 x

2
16 x

2
26 x

2
36

(5.3.4)

plus their t–counterparts obtained by cyclic permutation of the (1, 2, 3, 4) indices. Their
graphical representation is given in Fig. 5.3.

The appearance of the particular combination I1s − I4s is not an accident. In fact, due
to the presence of internal cubic vertices, the integrals I1s, I4s are IR divergent also off–
shell and then ill–defined in three dimensions. Dual conformal invariance would require
to discharge these integrals. However, as we show in Appendix C, taking the linear
combination I1s − I4s the off–shell divergences cancel and I5s is well–defined in three
dimensions.

The on–shell evaluation of these integrals in D = 3 − 2ǫ dimensions reveals that

I2s ∼ O(ǫ2) I3s + I3t = −I1s − I1t (5.3.5)
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Thus, the actual basis for the four–point scattering amplitude reduces to I1s, I5s, I1t, I5t.
Evaluating them and defining µ̄2 = 8πe−γEµ2, one finds [81] †

I1s + I1t = − 1

16π2

[

(s/µ̄2)
−2ǫ

2ǫ
+

(t/µ̄2)
−2ǫ

2ǫ
+ 2 − 2 log 2

]

+O(ǫ) (5.3.6)

I5s + I5t = − 1

8π2

[

(s/µ̄2)
−2ǫ

(2ǫ)2
+

(t/µ̄2)
−2ǫ

(2ǫ)2
− (s/µ̄2)

−2ǫ

2ǫ
− (t/µ̄2)

−2ǫ

2ǫ

−1

2
log2

(s

t

)

+ 2 log 2 − 2 − 3 log2 2 − 4 ζ2

]

+O(ǫ) (5.3.7)

Using these results, it is easy to see that for the ABJM theory, the two–loop amplitude
(5.3.9) for σ = 0 can be written as

M(2)
4

∣

∣

∣

ABJM
= (4πλ)2

[

1

2
I5s + I1s + (s↔ t)

]

(5.3.8)

Remarkably, this linear combination not only reproduces correctly the non–trivial part of
the amplitude, but also fits the numerical constant CA. In particular, it is such that the
non–maximal transcendentality terms in (5.3.6), (5.3.7) cancel.

We can now generalize this analysis to the ABJ models where the amplitude has the
same functional structure of the ABJM one, except for a non–trivial dependence on the
σ parameter in the mass scale and in the CA constant. Because of the appearance of σ,
we find that in terms of the integrals (5.3.6, 5.3.7) given as functions of the µ̄2 scale, the

M(2)
4 ratio can be written as

M(2)
4

∣

∣

∣

ABJ
= (4πλ̄)2

[

1

2
I5s(µ̄

2) +

(

1 +
σ2

2
log 2

)

I1s(µ̄
2) + (s↔ t)

]

+ Cres (5.3.9)

where Cres is a residual constant given by

Cres = λ̄2 σ2

(

log2 2 − 5

4
ζ2 + log 2

)

(5.3.10)

The non–trivial appearance of σ2 in the coefficients might reflect the fact that in the ABJ
case one cannot factorize completely the color dependence outside the combination of
integrals. This would suggest that a generalization of the unitarity cuts method should
be employed where the trace structures are not stripped out. Nevertheless, it is not
difficult to see that the application of such a method would never reproduce the log 2
coefficient in front of I1s, I1t.

One would be tempted to conclude that ABJ amplitudes cannot be computed by
unitarity cuts methods. However, a way out is to start from a linear combination of (5.3.6,

†In [81], the constant part of (I5s + I5t) has been evaluated numerically. However, a posteriori one
can check that the numerical factor is well reproduced by the analytical expression in (5.3.7).
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5.3.7) integrals where the mass parameter has been rescaled as µ̄2 → µ′2 = µ̄22σ2/2. Doing
that, we find that the two loop ratio can now be written as

M(2)
4

∣

∣

∣

ABJ
= (4πλ̄)2

[

1

2
I5s(µ

′2) + I1s(µ
′2) + (s↔ t)

]

+ C ′
res (5.3.11)

where

C ′
res = λ̄2 σ2

[(

2 +
σ2

4

)

log2 2 − 5

4
ζ2

]

(5.3.12)

The situation has drastically improved, since rational coefficients in front of the integrals
indicate that the same result could be obtained by unitarity cuts method. However, in
that approach the question of why and how fixing a priori a non–standard mass scale in
the dual invariant integrals remains an open problem.

Except for the particular case M = N , in general the basis of scalar integrals selected
by dual conformal symmetry reproduces the four–point amplitude only up to a constant.
This is a quite different result compared to what happens in the ABJM and N = 4
SYM cases where dual conformal integrals reproduce exactly the four–point amplitude.
However, at the order we are working, the difference is only by a constant and dual
conformal invariance is safe, as well as the anomalous Ward identities which follow.

At higher loops, we expect the non–trivial dependence on σ to affect also the terms
depending on the kinematic variables. It would be very interesting to check whether this
phenomenon may spoil dual conformal invariance or higher order amplitudes could still
be expressed as (σ–dependent) combinations of dual conformal invariant integrals. For
this reason, it would be extremely important to evaluate the amplitude at four loops.

In the ABJM theories, comparing the result for the amplitude obtained by ordinary
perturbative methods with the one obtained by unitarity cuts method, we can write

M(2)
4 =

∑

i

ci Ji

∣

∣

∣ D = 3 − 2ǫ
on − shell

=
∑

n

αn In

∣

∣

∣ D = 3 − 2ǫ
on − shell

(5.3.13)

where Ji are momentum integrals associated to the Feynman diagrams in Fig. 5.2, whereas
In are the scalar integrals (5.3.1-5.3.4).

Since the linear combination on the right hand side, when written strictly in D = 3
with x2

i,i+1 6= 0 is dual conformally invariant, the natural question which arises is whether
also the left hand side shares the same property.

In order to answer this question, we investigate the behavior of the Feynman integrals
Ji under dual conformal transformations, off–shell and in three dimensions. After rewrit-

ing them in terms of dual space variables, we implement the inversion x2
ij → x2

ij

x2
i x2

j
and

ddxi → ddxi

(x2
i )d , which is the only non–trivial conformal transformation to be checked.
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As in four dimensions the invariance under inversion rules out triangle and bubble–like
diagrams, similarly in three dimensions it forbids the appearance of bubbles. Therefore,
just looking at the integrands, we see that the integrals associated to diagrams 5.2(a)–
5.2(b) cannot be separately dual conformal invariant. Moreover, despite the fact that
diagrams 5.2(d)–5.2(f) consist of triangles only, non–trivial numerators spoil invariance
under inversion, as well.

Nevertheless, these considerations on the integrands may fail in very special cases.
As an example, we consider the double bubble diagram 5.2(a). In dual coordinates, the
corresponding integral reads

B = x2
13

∫

d3x5

x2
15 x

2
35

∫

d3x6

x2
16 x

2
36

(5.3.14)

Performing inversion, this integral gets mapped into a double triangle integral

T = x2
13 x

2
1 x

2
3

∫

d3x5

x2
5 x

2
15 x

2
35

∫

d3x6

x2
6 x

2
16 x

2
36

(5.3.15)

If we evaluate them off–shell, we obtain B = T = 1/64 (see eqs. (A.5.9, A.5.10)).
Therefore, the double bubble diagram is invariant under inversion at the level of the
integral, even if it is not invariant at the level of the integrand.

Motivated by this example we may wonder whether dual conformal invariance on the
left hand side of eq. (5.3.13) could be restored at the level of the integrals. By numerical
evaluating the integrals associated to the independent topologies 5.2(b), 5.2(d) and 5.2(f)
and to their duals, obtained by acting with conformal inversion, we find that every single
integral is not by itself dual conformally invariant.

However, one may still doubt that the situation could improve when summing over all
scattering channels, or summing all the contributions to get the total off–shell amplitude.

We find that, even if for every single diagram the sum over permutations of external
legs definitively improves the result, as for a large sample of momentum configurations
the integral and its dual look very close to each other, they never appear to be exactly
invariant, neither does the total sum.

We thus conclude that the off–shell amplitude computed by Feynman diagrams is
not dual conformally invariant. In other words, the identity (5.3.13) is not an algebraic
relation between different basis of integrals, as if it were the case it should be valid for any
value of the kinematic variables. Instead, it holds only when the integrals are evaluated
on the mass–shell and in dimensional regularization. This is not puzzling if we take into
account that in three dimensions and in dimensional regularization the on–shell limit is
not a smooth limit for the integrals. It would be interesting to investigate what happens
when using a different regularization, for example the one suggested in [92, 93].

In any case, our result reinforces the statement that dual conformal invariance is a
(anomalous) symmetry only of the on–shell sector of the theory.
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5.3.3 The basis of dual conformally invariant integrals

In this Section we give the proof that the linear combination I5s ≡ I1s − I4s of scalar
integrals defined in (5.3.1, 5.3.4), when evaluated in three dimensions, is free from IR
divergences. This allows to conclude that the actual basis for two–loop amplitudes is I1s,
I2s, I3s, I5s plus their t–counterparts.

We consider I4s in (5.3.4) and apply the following identity

x2
46 = x2

56 + x2
45 + 2 x45 · x56 (5.3.16)

to its numerator, thus decomposing it as (we neglect the factor x2
13)

x2
25 x

2
46 x2

25 x2
25 2x2

25= + +

where arrows indicate contractions of the corresponding variables at the numerator (see
Fig. 5.2 for the labeling of momenta and dual variables). Here we already recognize
the emergence of the infrared divergent integral I1s, a triangle–box which could diverge,
having unprotected cubic vertices, and a double–box whose cubic vertices are mitigated
by the presence of a non–trivial numerator.

We focus on the triangle–box and handle it by using the identity

x2
25 = x2

56 + x2
26 − 2 x56 · x26 (5.3.17)

in the numerator factor. The final result can be cast into the following graphical relation

x2
25 x

2
46 x2

25 2 2x2
25= − +

+ +

where the IR divergence has been completely isolated in the last term. Therefore, taking
the linear combination I1s − I4s the divergences cancel at the level of the integrands and
we are left with a well–defined dual conformally invariant integral.
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5.3.4 BDS–like ansatz

The striking correspondence between the four–point amplitudes of ABJM theory at
two loops and the one of 4d N = 4 SYM at one loop led us to conjecture [82] (see also
[81]) that a BDS–like ansatz [56] may be formulated also for the three–dimensional case

M4 = eDiv+
fCS (λ)

8 (log2 ( s
t )+8 ζ2+6 log2 2)+C(λ) (5.3.18)

where fCS(λ) is the scaling function of ABJM. The analogy between the two theories
is due to the fact that they share similar integrable structures, with asymptotic Bethe
equations related by an unknown function h(λ) [89]-[94]. This leads to a connection
between anomalous dimensions of composite operators and, in particular, to the following
relation between the scaling functions [89]

fCS(λ) =
1

2
fN=4(λ)

∣

∣

∣

∣
√

λ
4π

→h(λ)

(5.3.19)

in terms of the interpolating function h(λ) that needs to be determined in perturbation
theory. Since the scaling function governs the coefficients of the kinematic part of the four–
point amplitude in N = 4 SYM by means of the BDS exponentiation, one is tempted to
conjecture that an analogue resummation may also hold in the ABJM case, giving rise to
equation (5.3.18). This formula is confirmed at two loops by the results of [82, 81]. Since
at weak coupling h(λ) is known up to the forth order [95, 96, 71], we easily find

fCS(λ) = 4 λ2 − 24 ζ2 λ
4 + O(λ6) (5.3.20)

and the ansatz (5.3.18) provides a prediction for the four–loop expression of the finite

remainder F
(4)
4 (in the notation of [56]) for the ABJM four–point scattering amplitude

[82]

F
(4)
4 =

λ4

8
log4

(s

t

)

+ λ4

(

3

2
log2 2 − ζ2

)

log2
(s

t

)

+ Consts (5.3.21)

Now we discuss how this scenario might be affected by the generalization to the ABJ
case, where integrability is not expected to be trivially preserved. We first note that
the final expression (5.3.9) is the result of summing many contributions which in general
are proportional to the homogeneous couplings λ2, λ̂2 and to the mixed λλ̂ one. It is
interesting to observe that at this order, it is possible to redefine µ2 in such a way that
in all the terms depending on the kinematic variables, the contributions proportional to
the homogeneous couplings cancel, leading to an expression which is basically identical
to the one for ABJM, except for the substitution N2 → MN . This also happens for the
WL computed in Section 2.

This phenomenon has been also observed in the evaluation of the spin–chain Hamil-
tonian associated to the two–loop anomalous dimension matrix for single–trace operators
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[97] and in the two–loop contribution to the dispersion relation of magnons [70]. This
special dependence on the coupling constants is a signal that parity symmetry along with
integrability are preserved at least at two–loop order even if ABJ theory is manifestly
parity breaking. At four loops only the dispersion relation, i.e. the eigenvalue of the
Hamiltonian of spin chains with a single excitation, is known to date. It has been con-
firmed by explicit computations and the following expansion for the interpolating function
has been found [95, 96, 71]

h2(λ̄, σ) = λ̄2 − λ̄4
[

4 ζ2 + ζ2 σ
2
]

(5.3.22)

From the last term of this expression it is clear that, even if the departure from the ABJM
case becomes non–trivial, still the function turns out to depend quadratically on σ and
thus parity breaking is not visible. This might indicate that integrability is not broken
also at the four-loop level.

Therefore it seems plausible that, at least up to four loops, the planar limit of ABJ
scattering amplitude could behave in the same way as in the ABJM case, being governed
by the scaling function f(λ̄, σ) obtained through (5.3.19) where we replace h(λ) with
h(λ̄, σ).

Since at weak coupling h(λ̄, σ) is known up to four loops [95, 96, 71], we find

fCS(λ̄, σ) = 4 λ̄2 − 4 (6 + σ2) ζ2 λ̄
4 + O(λ̄6) (5.3.23)

It is then easy to see that the four–point amplitude at order λ̄2 can be identified with the
first order expansion of an exponential of the type in eq. (5.3.18) with fCS(λ̄, σ) = 4λ̄2.

Moreover, this would lead to a prediction for the four-loop expression for the finite
remainder of the ABJ four–point amplitude to be given by

F
(4)
4 =

λ̄4

8
log4

(s

t

)

+ λ̄4

[

1

2

(

1 + 1
2
σ2
) (

3 + 1
2
σ2
)

log2 2 −
(

1 +
9

8
σ2

)

ζ2

]

log2
(s

t

)

+Consts

(5.3.24)
At four loops the parity–violating parameter is expected to play an active role and the
theory could present a very different behavior with respect to the ABJM case. It would
be interesting to check this expression by a direct computation.

5.3.5 The amplitude at strong coupling

In N = 4 SYM a recipe for computing scattering amplitudes at strong coupling
has been proposed by Alday and Maldacena [47] within the context of the AdS/CFT
correspondence. According to their prescription, the amplitude for n gluons is obtained
by computing the minimal area of a surface in the AdS5 dual background, ending on a
light–like n–polygon, whose edges are determined by the gluon momenta

M = e−
R2

AdS5
2π

A + O
(

1√
λ

)

(5.3.25)
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Here RAdS5 stems for the AdS radius and determines the dependence on the ’t Hooft
coupling (R2

AdS5
=
√

g2N ≡ √
λSY M).

After a suitable regularization of this area, the four–gluon amplitude M4, to first order
in

√
λSY M , matches exactly the BDS ansatz, where the strong coupling scaling function

is plugged in. This provides a remarkable check on the BDS ansatz as well as a hint
towards the WL/scattering amplitude duality, since the strong coupling computation of
the amplitude strikingly parallels that of a light–like Wilson loop.

Motivated by the analogy with the four dimensional case and by evidence in favor
of WL/amplitude duality and BDS exponentiation, we investigate the ABJM four–point
amplitude at strong coupling, by following the same steps as in [47].

At strong coupling where the ’t Hooft parameter λ = N/K is large, and in the inter-
mediate regime K ≪ N ≪ K5 the AdS/CFT correspondence provides a dual description
of the ABJM in terms of type IIA supergravity on AdS4 × CP3.

The dual background in the string frame is

ds2 =
R3

K

(

1

4
ds2

AdS4
+ ds2

CP
3

)

(5.3.26)

where in ls units the AdS4 radius is given by R2
AdS4

= R3

4 K
=

√
25 π2 K N

4 K
=

√
2π

√
λ.

A first indication that the general prescription for computing scattering amplitudes
at strong coupling could still be (5.3.25) with the parameters conveniently adapted to
the three dimensional model, comes from observing that the ratio of the two AdS radii
coincides with the ratio of the scaling functions at leading order in the couplings. In fact,
taking into account that for N = 4 SYM at strong coupling

f(λSY M) =

√
λSY M

π
+ O

(

λ0
)

(5.3.27)

whereas for the ABJM theory [89]–[98]

fCS(λ) =
√

2 λ+ O
(

λ0
)

(5.3.28)

it is easy to see that
R2

AdS5

R2
AdS4

=
f(λSY M)

fCS(λ)

∣

∣

∣

leading
(5.3.29)

Moreover, the string solution (3.6.4) in AdS5 describing a four–point amplitude/light–
like WL for N = 4 SYM at strong coupling [47] may be straightforwardly embedded
in AdS4 as well, since the fifth coordinate of AdS5 was set to 0 there. Therefore the
four–point amplitude should be trivially readable from the N = 4 SYM result (5.3.25)
by changing the AdS radius. Indeed this supports the extension of the BDS–like ansatz
(5.3.18) to strong coupling.
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The subtle point in identifying the N = 4 solution with the ABJM one comes with
regularization of infrared divergences. In [47], the strong coupling analogue of dimensional
regularization is spelled out. This amounts to continuing the dimensions of the Dp–branes
sourcing the AdS5×S5 background from p = 3 to p = (3−2ǫ). Correspondingly, the new
solution for the modified metric leads to the expression

Sǫ =

√
λD cǫ
2π

∫ Lǫ=0

rǫ
(5.3.30)

for the regularized world–sheet action that, once minimized, will provide the four–point
amplitude (here cǫ is an ǫ dependent constant and λD is the dimensionless ’t Hooft coupling
in dimensional regularization).

In the context of ABJM we have not been able to find a similarly well–motivated
regularization procedure ‡. However, guided by the analogy between the four–point ABJM
and N = 4 SYM amplitudes at weak coupling, we are tempted to employ the prescription
(5.3.30) to regularize the action also in the AdS4 context. Following the same steps as
for the N = 4 SYM case, it leads to a strong coupling version of the ABJM four–point
amplitude given by

M4 = e
Div+

√
2λ
8

“

log2( s
t )+ 4π2

3

”

+Consts+O
“

1√
λ

”

(5.3.31)

where the leading infrared divergence is

Div
∣

∣

leading
= −

√
2

ǫ2

√

λµ2ǫ

sǫ
−

√
2

ǫ2

√

λµ2ǫ

tǫ
(5.3.32)

Even though this prescription lacks strong motivations, it definitely captures the essential
features of the amplitude, such as the leading singularity and the coefficient of the non–
trivial finite piece, which matches the strong coupling value of the ABJM scaling function
(5.3.28).

The generalization to the ABJ model is not straightforward. Here the situation is
slightly subtler, since concerns have arisen on the integrability of the corresponding σ–
model in the dual description [70]. Nevertheless, to first order at strong coupling we still
expect the amplitude to be described by (5.3.31). The reason is that unitarity requires
l = |M−N | < K [12]. Hence at strong coupling, where M,N ≫ K, the shift in the ranks
is negligible compared to

√
λ of ABJM, and it affects the solution at higher orders only,

starting from O
(

1√
λ

)

[99].

‡Although cutoff regularization works fine in three dimensions, we prefer to insist on a dimensional–like
one in order to compare with our expression (5.3.9).
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Appendix

A.1 Notations and conventions

We work in three dimensional euclidean N = 2 superspace described by coordinates
(xµ, θα θ̄β), α, β = 1, 2 .

Spinorial indices are raised and lowered as (we follow conventions of [11])

ψα = Cαβψβ ψα = ψβCβα (A.1.1)

where the C matrix

Cαβ =

(

0 i
−i 0

)

Cαβ =

(

0 −i
i 0

)

(A.1.2)

obeys the relation

Cαβ Cγδ = δα
γ δ

β
δ − δα

δ δ
β

γ (A.1.3)

Spinors are contracted according to

ψχ = ψα χα = χα ψα = χψ ψ2 =
1

2
ψα ψα (A.1.4)

Dirac (γµ)α
β matrices are defined to satisfy the algebra

(γµ)α
γ (γν)γ

β = −gµνδα
β − ǫµνρ (γρ)

α
β (A.1.5)

An explicit realization of such matrices can be found in terms of Pauli matrices

(γµ)αβ = {−i σ0, σ1, σ3} =

{(

−i 0
0 −i

)

,

(

0 1
1 0

)

,

(

1 0
0 −1

)}

(A.1.6)
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(γµ)αβ = {i σ0, σ1, σ3} =

{(

i 0
0 i

)

,

(

0 1
1 0

)

,

(

1 0
0 −1

)}

(A.1.7)

(γµ)α
β = {−i σ2, i σ3, −i σ1} =

{(

0 −1
1 0

)

,

(

i 0
0 −i

)

,

(

0 −i
−i 0

)}

(A.1.8)

(γµ) β
α = {i σ2, i σ3, −i σ1} =

{(

0 1
−1 0

)

,

(

i 0
0 −i

)

,

(

0 −i
−i 0

)}

(A.1.9)

Trace identities needed for loop calculations can be easily obtained from the above
algebra

Tr(γµ γν) = (γµ)α
β (γν)β

α = −2 gµν (A.1.10)

Tr(γµ γν γρ) = −(γµ)α
β (γν)β

γ (γρ)γ
α = −2 ǫµνρ (A.1.11)

Tr(γµ γν γρ γσ) = (γµ)α
β (γν)β

γ (γρ)γ
δ (γσ)δ

α =

= 2 (gµν gρσ − gµρ gνσ + gµσ gνρ) (A.1.12)

Using these matrices, vectors and bispinors are exchanged according to

coordinates : xµ = (γµ)αβ x
αβ xαβ = 1

2
(γµ)

αβ xµ

derivatives : ∂µ = 1
2
(γµ)αβ ∂αβ ∂αβ = (γµ)αβ ∂µ

fields : Aµ = 1√
2
(γµ)

αβ Aαβ Aαβ = 1√
2
(γµ)αβ Aµ

(A.1.13)

It follows that the scalar product of two vectors can be rewritten as

p · k =
1

2
pαβ kαβ (A.1.14)

Superspace covariant derivatives are defined as

Dα = ∂α +
i

2
θ̄β ∂αβ , D̄α = ∂̄α +

i

2
θβ ∂αβ (A.1.15)

and satisfy the anticommutator

{Dα, D̄β} = i ∂αβ (A.1.16)

The components of a chiral and an anti-chiral superfield, Z(xL, θ) and Z̄(xR, θ̄), are a
complex boson φ, a complex two-component fermion ψ and a complex auxiliary scalar F .
Their expansions are given by

Z = φ(xL) + θαψα(xL) − θ2 F (xL)

Z̄ = φ̄(xR) + θ̄αψ̄α(xR) − θ̄2 F̄ (xR) (A.1.17)
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where xµ
L = xµ + iθγµθ̄, xµ

R = xµ − iθγµθ̄.

The components of the real vector superfield V (x, θ, θ̄) in the Wess-Zumino gauge
(V | = DαV | = D2V | = 0) are the gauge field Aαβ , a complex two-component fermion λα,
a real scalar σ and an auxiliary scalar D, such that

V = θαθ̄α σ(x) + θαθ̄β
√

2Aαβ(x) − θ2 θ̄αλ̄α(x) − θ̄2 θαλα(x) + θ2 θ̄2D(x) (A.1.18)

The vector superfields (V, V̂ ) are in the adjoint representation of the two gauge groups
U(M) × U(N), that is V = VAT

A and V̂ = V̂AT̂
A, where TA are the U(M) generators

and T̂A are the U(N) ones.

The U(M) generators are defined as TA = (T 0, T a), where T 0 = 1√
N

and T a (a =

1, . . . ,M2 − 1) are a set of M ×M hermitian matrices. The generators are normalized as
Tr(TATB) = δAB. The same conventions hold for the U(N) generators.

For any value of the couplings, the action (1.3.1) is invariant under the following gauge
transformations

eV → eiΛ̄1eV e−iΛ1 eV̂ → eiΛ̄2eV̂ e−iΛ2 (A.1.19)

Ai → eiΛ1Aie−iΛ2 Bi → eiΛ2Bie
−iΛ1 (A.1.20)

where Λ1,Λ2 are two chiral superfields parameterizing U(M) and U(N) gauge trans-
formations, respectively. Antichiral superfields transform according to the conjugate of
(A.1.20). The action is also invariant under the U(1)R R–symmetry group under which
the Ai and Bi fields have 1

2
–charge.

A.2 Gauge invariance of the superspace CS action.

In this Appendix we explicitly compute the variation of the CS action in N = 2
supersymmetric formalism and show that it yields a total spinorial derivative, namely the
action is gauge invariant. We consider just one gauge group

SCS =
K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

V D̄α
(

e−tVDαe
tV
)

]

and gauge transformations

eV → eiΛ̄eV e−iΛ e−V → eiΛe−V e−iΛ̄ (A.2.1)
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We conveniently rewrite the CS action as

SCS =
K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

D̄α
(

e−tVDαe
tV
)

e−tV ∂te
tV
]

(A.2.2)

We apply gauge transformations

S ′
CS =

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

D̄α
(

eitΛe−tV e−itΛ̄Dαe
itΛ̄etV e−itΛ

)

eitΛe−tV e−itΛ̄∂te
itΛ̄etV e−itΛ

]

(A.2.3)

which gives

S ′
CS =

∫

d3x d4θ

∫ 1

0

dt Tr
[

D̄α
(

eitΛe−tVDαe
tV e−itΛ

)

eitΛe−tV e−itΛ̄∂te
itΛ̄etV e−itΛ

]

(A.2.4)

Then we apply the following identity for (anti)commuting differential operators A and B

A
(

MBM−1
)

= ±MB
(

M−1AM
)

M−1 (A.2.5)

where the minus(plus) sign occurs for (anti)commuting operators. Here we identify A =
D̄α, B = Dα, which anticommute, and M = eitΛe−tV

S ′
CS =

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

eitΛe−tVDα

(

etV e−itΛD̄αeitΛe−tV
)

etV e−itΛeitΛe−tV e−itΛ̄∂te
itΛ̄etV e−itΛ

]

(A.2.6)

simplifying to

S ′
CS =

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

eitΛe−tVDα

(

etV D̄αe−tV
)

e−itΛ̄∂te
itΛ̄etV e−itΛ

]

(A.2.7)

We can transform back, using (A.2.5) the other way around

S ′
CS =

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

eitΛD̄α
(

e−tVDαe
tV
)

e−tV e−itΛ̄∂te
itΛ̄etV e−itΛ

]

(A.2.8)

Now we perform the t derivative

S ′
CS =

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

eitΛD̄α
(

e−tVDαe
tV
)

e−tV e−itΛ̄

[

∂t

(

eitΛ̄
)

etV e−itΛ + eitΛ̄∂t

(

etV
)

e−itΛ + eitΛ̄etV ∂t

(

e−itΛ
)

] ]

(A.2.9)

and rearrange the expression as

S ′
CS =

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

D̄α
(

e−tVDαe
tV
)

e−tV e−itΛ̄∂t

(

eitΛ̄
)

etV

+D̄α
(

e−tVDαe
tV
)

e−tV ∂t

(

etV
)

+ eitΛD̄α
(

e−tVDαe
tV
)

∂t

(

e−itΛ
)

]
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where in the second term we recognize the original CS superspace action (again by use of
(A.2.5))

S ′
CS = SCS +

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

D̄α
(

e−tVDαe
tV
)

e−tV e−itΛ̄∂t

(

eitΛ̄
)

etV

+eitΛD̄α
(

e−tVDαe
tV
)

∂t

(

e−itΛ
)

]

(A.2.10)

Applying (A.2.5) on the first term and using the cyclicity of the trace yields

S ′
CS = SCS +

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

Dα

(

etV D̄αe−tV
)

e−itΛ̄∂t

(

eitΛ̄
)

+D̄α
(

e−tVDαe
tV
)

∂t

(

e−itΛ
)

eitΛ
]

(A.2.11)

and using chirality of Λ and Λ̄ the variation of the action under gauge transformations
can be cast into a total spinorial derivative

S ′
CS = SCS +

K

4π

∫

d3x d4θ

∫ 1

0

dt Tr
[

Dα

(

etV D̄αe−tV e−itΛ̄∂t

(

eitΛ̄
))

+D̄α
(

e−tVDαe
tV ∂t

(

e−itΛ
)

eitΛ
)

]

(A.2.12)

A.3 Finite remainders for higher point amplitudes.

In this Appendix we list the finite remainders for N = 4 SYM amplitudes with more
than four external gluons.

The finite remainders are given by

F (1)
n (0) =

1

2

n
∑

i=1

gn,i , (A.3.1)

where

gn,i = −
⌊n/2⌋−1
∑

r=2

log

(

−t[r]i

−t[r+1]
i

)

log

(

−t[r]i+1

−t[r+1]
i

)

+Dn,i + Ln,i +
3

2
ζ2 , (A.3.2)

In the above formula ⌊x⌋ stems for the greatest integer less than or equal to x and all
indices are understood to be cyclic mod n. Momentum invariants are indicated by
t
[r]
i = (ki + · · · + ki+r−1)

2.
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The structure of Dn,i and Ln,i depends upon whether n is odd or even. In the even
case n = 2m they read

D2m,i = −
m−2
∑

r=2

Li2

(

1 − t
[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

)

− 1

2
Li2

(

1 − t
[m−1]
i t

[m+1]
i−1

t
[m]
i t

[m]
i−1

)

L2m,i =
1

4
log2

(

−t[m]
i

−t[m]
i+1

)

(A.3.3)

In the odd case n = 2m+ 1 they are

D2m+1,i = −
m−1
∑

r=2

Li2

(

1 − t
[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

)

L2m+1,i = −1

2
log

(

−t[m−1]
i

−t[m+1]
i

)

log

(

−t[m]
i+1

−t[m+1]
i−1

)

. (A.3.4)

A.4 The SU(2, 2|4) superconformal algebra.

Here are listed the (anti)commutator algebra of su(2, 2|4). The Lorentz generators
Mαβ , Mα̇β̇ and the SU(4) R–symmetry ones RA

B are understood to act canonically. The
dilatation generator D acts on others J

[D, J] = dim(J) J (A.4.1)

and its eigenvalues are the dimensions of the operators, in particular

dim(P) = 1 , dim(Q) = dim(Q) =
1

2
, dim(S) = dim(S) = −1

2
(A.4.2)

The remaining non-trivial commutation relations are,

{QαA,Q
B

α̇ } = δB
APαα̇, {SA

α , Sα̇B} = δA
BKαα̇

[Pαα̇, S
βA] = δβ

αQ
A

α̇ [Kαα̇,Q
β
A] = δβ

αSα̇A,

[Pαα̇, S
β̇

A] = δβ̇
α̇QαA, [Kαα̇,Q

β̇A
] = δβ̇

α̇SA
α

[Kαα̇,P
ββ̇] = δβ

αδ
β̇
α̇D + Mα

βδβ̇
α̇ + Mα̇

β̇δβ
α

{Qα
A, S

B
β } = Mα

βδ
B
A + δα

β RB
A + 1

2
δα
β δ

B
A(D + C)

{Q
α̇A
, Sβ̇B} = M

α̇

β̇δ
A
B − δα̇

β̇
RA

B + 1
2
δα̇
β̇
δA
B(D − C) (A.4.3)

In the following the following shorthand notation will be employed

∂iαα̇ =
∂

∂xαα̇
i

, ∂iαA =
∂

∂θαA
i

, ∂iα =
∂

∂λα
i

, ∂iα̇ =
∂

∂λ̃α̇
i

, ∂iA =
∂

∂ηA
i

(A.4.4)
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The generators of the ordinary, configuration space superconformal algebra.

pα̇α =
∑

i

λ̃α̇
i λ

α
i , kαα̇ =

∑

i

∂iα∂iα̇ ,

mα̇β̇ =
∑

i

λ̃i(α̇∂iβ̇), mαβ =
∑

i

λi(α∂iβ)

d =
∑

i

[1
2
λα

i ∂iα + 1
2
λ̃α̇

i ∂iα̇ + 1], rA
B =

∑

i

[−ηA
i ∂iB + 1

4
δA
Bη

C
i ∂iC ]

qαA =
∑

i

λα
i η

A
i q̄α̇

A =
∑

i

λ̃α̇
i ∂iA

sαA =
∑

i

∂iα∂iA, s̄A
α̇ =

∑

i

ηA
i ∂iα̇

c =
∑

i

[1 + 1
2
λα

i ∂iα − 1
2
λ̃α̇

i ∂iα̇ − 1
2
ηA

i ∂iA] (A.4.5)

The generators of the dual superconformal algebra are constructed starting from their
canonical action on dual (x, θ) coordinates, and complementing them in order the preserve
the constraints

(xi − xi+1)αα̇ − λi α λ̃i α̇ = 0 , (θi − θi+1)
A
α − λiαη

A
i = 0 (A.4.6)

which define dual space itself, modulo constraints. Then

Pαα̇ =
∑

i

∂iαα̇ , QαA =
∑

i

∂iαA , Q
A

α̇ =
∑

i

[θαA
i ∂iαα̇ + ηA

i ∂iα̇], (A.4.7)

Mαβ =
∑

i

[xi(α
α̇∂iβ)α̇ + θA

i(α∂iβ)A + λi(α∂iβ)] , M α̇β̇ =
∑

i

[xi(α̇
α∂iβ̇)α + λ̃i(α̇∂iβ̇)]

(A.4.8)

RA
B =

∑

i

[θαA
i ∂iαB + ηA

i ∂iB − 1
4
δA
Bθ

αC
i ∂iαC − 1

4
δA
Bη

C
i ∂iC ] (A.4.9)

D =
∑

i

[−xα̇α
i ∂iαα̇ − 1

2
θαA

i ∂iαA − 1
2
λα

i ∂iα − 1
2
λ̃α̇

i ∂iα̇] (A.4.10)

C =
∑

i

[−1
2
λα

i ∂iα + 1
2
λ̃α̇

i ∂iα̇ + 1
2
ηA

i ∂iA] (A.4.11)

SA
α =

∑

i

[−θB
iαθ

βA
i ∂iβB + xiα

β̇θβA
i ∂iββ̇ + λiαθ

γA
i ∂iγ + xi+1 α

β̇ηA
i ∂iβ̇ − θB

i+1 αη
A
i ∂iB] ,

(A.4.12)

Sα̇A =
∑

i

[xiα̇
β∂iβA + λ̃iα̇∂iA] (A.4.13)

Kαα̇ =
∑

i

[xiα
β̇xiα̇

β∂iββ̇ + xiα̇
βθB

iα∂iβB + xiα̇
βλiα∂iβ + xi+1 α

β̇λ̃iα̇∂iβ̇ + λ̃iα̇θ
B
i+1 α∂iB ]

(A.4.14)
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A.5 Integrals in dimensional regularization.

In this Appendix we list a number of properties for momentum integrals entering the
evaluation of four–point scattering amplitudes.

We work in dimensional regularization, d = 3−2ǫ, with dimensional reduction (spinors
and ǫ–tensors are kept strictly in three dimensions).

A.5.1 Tools.

When evaluating one–loop bubbles and two–loop factorized and composite bubbles we
used the G[a, b] functions defined by

G[a, b] =
1

(4π)d/2

Γ(a+ b− d/2) Γ(d/2− a) Γ(d/2 − b)

Γ(a) Γ(b) Γ(d− a− b)
. (A.5.1)

Moreover, we introduce the compact notation Γ(a1|...|an) = Γ(a1)...Γ(an).

In order to write a momentum integral in its Feynman parameterized form, the basic
identity is

1

Aα1
1

. . .
1

Aαn
n

=
Γ(α1 + · · ·+ αn)

Γ(α1 | . . . |αn)

1
∫

0

dβ1 . . . dβn δ(β1 + · · ·+ βn − 1) βα1−1
1 . . . βαn−1

n

(β1A1 + · · · + βnAn)α1+···+αn
,

(A.5.2)
where Aj are generic propagators. The integration over Feynman parameters makes often
use of the identity

1
∫

0

dβ1 . . . dβn δ(β1 + · · ·+ βn − 1) βα1−1
1 . . . βαn−1

n =
Γ(α1 | . . . |αn)

Γ(α1 + · · ·+ αn)
(A.5.3)

The most complicated computations of the one and two–loop on–shell amplitude were
performed using Mellin-Barnes representations [100, 101]. These representations are based
on the identity

1

(k2 +M2)a
=

1

(M2)aΓ(a)

1

2πi

i∞
∫

−i∞

dsΓ(−s)Γ(s + a)

(

k2

M2

)s

, (A.5.4)

where the contour is given by a straight line along the imaginary axis such that indenta-
tions are used if necessary in order to leave the series of poles s = 0, 1, · · · , n to the right
of the contour and the series s = −a,−a − 1, · · · ,−a− n to the left of the contour.



214 Chapter A. Appendix

After Feynman–parameterizing a triangle integral and using (A.5.4), the following
formula holds
∫

ddk

(2π)d

1

k2µ1(k − p)2µ2(k + q)2µ3
=

1

(4π)d/2
∏

i Γ(µi)Γ(d−∑i µi)
×

×
i∞
∫

−i∞

ds dt

(2πi)2

Γ
(

−s|−t|d
2
−µ1−µ2−s|d

2
−µ1−µ3−t|µ1+s+t|∑iµi− d

2
+s +t

)

(p2)−s (q2)−t (p+ q)2(s+t+
P

i µi−d/2)
(A.5.5)

while for a vector–like triangle we have
∫

ddk

(2π)d

kν

k2µ1(k − p)2µ2(k + q)2µ3
=

=
(4π)−d/2

∏

i Γ(µi)Γ(d−∑i µi + 1)

i∞
∫

−i∞

ds dt

(2πi)2

Γ
(

−s|−t|µ1+ s+ t|∑iµi− d
2
+s+t

)

(p2)−s (q2)−t (p+ q)2(s+t+
P

i µi−d/2)
×

[

Γ(d
2
−µ1−µ2−s|d

2
−µ1−µ3−t+1)p ν−Γ(d

2
−µ1−µ2−s+1|d

2
−µ1−µ3−t)q ν

]

(A.5.6)

where the multiple contours are taken using the convention already mentioned for the
relative position of the poles. When the position of a pole is chosen differently compared
to the convention, it is customary to use the notation Γ⋆(z) for the gamma function
involved.

We can proceed along similar lines for writing the Mellin–Barnes representation for
box diagrams, vector–like boxes, etc. Using these representations, along with the Barnes
first lemma

i∞
∫

−i∞

ds

2πi
Γ(a + s)Γ(b+ s)Γ(c− s)Γ(d− s) =

Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
(A.5.7)

we have been able to compute one and two–loop amplitudes in a manifestly analytical
way, without performing numerical evaluations.

In passing from momentum to configuration space the following formula for multidi-
mensional Fourier transforming (in Euclidean signature) proves useful

∫

ddp
e−ipx

(p2)ν = π
d
2 2d−2ν Γ

(

d
2
− ν
)

Γ (ν)

1

(x2)
d
2
−ν

(A.5.8)

A.5.2 Bubbles.

At one–loop, the evaluation of simple bubbles is required. Feynman parameterizing
the integrand and working off–shell (p2 6= 0), we easily obtain

B(p) ≡
∫

d3−2ǫk

(2π)3−2ǫ

1

k2(k + p)2
= G[1, 1]

1

|p|1+2ǫ
∼ 1

8 |p| + O(ǫ) (A.5.9)



A.5 Integrals in dimensional regularization. 215

where we have defined |p| ≡
√

p2 and G[a, b] is given in (A.5.1). On the other hand, if
we are on–shell, p2 = 0, the integral reduces to a tadpole–like integral and in dimensional
regularization it vanishes.

A.5.3 Triangles.

We begin by evaluating the scalar triangle diagram of Fig. A.1.

k − p1

p1

k

p2

k + p2

−p1 − p2

Figure A.1: The triangle diagram.

When the external momenta are off-shell (p2
i 6= 0), the integral can be computed in

three dimensions with no need for regularization. Since for D = 3 the triangle with
propagator exponents (1, 1, 1) satisfies the uniqueness condition [88], it evaluates to a
rational function

T (p1, p2) ≡
∫

d3k

(2π)3

1

k2 (k − p1)2 (k + p2)2

=
1

8|p1||p2||p1 + p2|
(A.5.10)

The corresponding integral, when evaluated on–shell (p2
i = 0) and in dimensional regu-

larization, can be easily treated by Feynman parameterization and is given by

T (p1, p2) ≡
∫

d3−2ǫk

(2π)3−2ǫ

1

k2 (k − p1)2 (k + p2)2

∣

∣

∣

∣

p2
i =0

=
Γ(3/2 + ǫ)Γ2(−1/2 − ǫ)

(4π)
3
2
−ǫΓ(−2ǫ)

1

|p1 + p2|3+2ǫ

∼ −ǫ 1

2|p1 + p2|3
+ O(ǫ2) (A.5.11)

Therefore, in dimensional regularization and on–shell limit, the scalar triangle can be set
to zero.
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We then consider the on–shell, vector–like triangle. Again, by Feynman parameteri-
zation, it is straightforward to show that the integral is given by

T αβ
V (p1, p2) ≡

∫

d3−2ǫk

(2π)3−2ǫ

kαβ

k2 (k − p1)2 (k + p2)2

∣

∣

∣

∣

p2
i =0

=
Γ(3/2 + ǫ)Γ(1/2 − ǫ)Γ(−1/2 − ǫ)

(4π)
3
2
−ǫΓ(1 − 2ǫ)

(p1 − p2)
αβ

|p1 + p2|3+2ǫ

ǫ→0−−→ B(p1 + p2)
(p2 − p1)

αβ

(p1 + p2)2
(A.5.12)

where B(p1 + p2) is the bubble in (A.5.9).

An important observation is that, as a consequence of the on–shell conditions, the
vector–like triangle satisfies the following identities

TV(p1, p2) · (p1 + p2) = −TV(p1, p2) · (p3 + p4) = 0 (A.5.13)

A.5.4 Boxes.

We now consider scalar and vector–like box diagrams drawn in Fig. A.2.

p1

k − p1

p2

k − p1 − p2

p4

p3

k + p4

k

Figure A.2: The box diagram.

In terms of the Mandelstam variables, the scalar integral is written as

Q(s, t) =

∫

d3−2ǫk

(2π)3−2ǫ

1

k2 (k − p1)2 (k − p1 − p2)2 (k + p4)2

∣

∣

∣

∣

p2
i =0

(A.5.14)

while the vector–like integral is

Qµ
V =

∫

d3−2ǫk

(2π)3−2ǫ

kµ

k2 (k − p1)2 (k − p1 − p2)2 (k + p4)2

∣

∣

∣

∣

p2
i =0

(A.5.15)
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The scalar integral can be evaluated at leading order in ǫ. Feynman parameterizing
the integrand in eq. (A.5.14) we obtain

Q(s, t) =
Γ(5/2 + ǫ)

(4π)3/2−ǫ

∫

dy1 dy2 dy3 dy4 δ(
∑

i yi − 1)

(y1 y3 s+ y2 y4 t)5/2+ǫ
(A.5.16)

Expressing the denominator as a Mellin Barnes integral

1

(y1 y3 s+ y2 y4 t)5/2+ǫ
=

1

Γ(5/2 + ǫ)

∫

du

2πi
Γ(−u)Γ(u+ 5/2 + ǫ)

(y1 y3 s)
u

(y2 y4 t)5/2+ǫ+u
(A.5.17)

and integrating on the Feynman parameters we obtain a one–fold representation

2 ǫ (1 + 2ǫ)

(4π)D/2 Γ(1 − 2ǫ) t5/2+ǫ

∫

du

2πi
Γ(−u)Γ2(−3/2−ǫ−u)Γ(5/2+ǫ+u)Γ2(1+u)Xu (A.5.18)

We note that the MB integral is multiplied by an ǫ factor and the integral itself is well
defined when ǫ→ 0. Therefore, to leading order in ǫ we have

Q(s, t) =
ǫ

4π3/2 t5/2

∫

du

2πi
Γ(−u)Γ2(−3/2 − u)Γ(5/2 + u)Γ2(1 + u)Xu + O(ǫ2)

≡ ǫ

4π3/2 t5/2
(f1(X) + f2(X)) + O(ǫ2) (A.5.19)

where X = s/t. By closing the contour on the right, f1(X) is the sum of the residues at
the poles of Γ(−u), whereas f2(X) is the contribution from the poles of Γ2(−3/2 − u).

The f1(X) function is easily computed and gives

f1(X) = π2

∞
∑

n=0

(−X)n n!

Γ(5/2 + n)
= 4π3/2

(
√

1 +X

X3/2
log(

√
X +

√
1 +X) − 1

X

)

(A.5.20)

The f2(X) function is more complicated since we have to deal with double poles. A first
set of manipulations leads to

f2(X) =
π

X3/2

∞
∑

n=0

Γ(−1/2 + n)(−X)n

n!
(logX + Ψ(−1/2 + n) − Ψ(1 + n)) (A.5.21)

where Ψ(x) is the digamma function.

The first term in (A.5.21) is easily summed to
∞
∑

n=0

(−X)n Γ(−1/2 + n)

n!
= −2

√
π
√

1 +X (A.5.22)

The second series in (A.5.21) can be summed by using the trick

∞
∑

n=0

(−X)n Γ(−1/2 + n)Ψ(−1/2 + n)

n!
=

d

da

( ∞
∑

n=0

(−X)n Γ(a+ n)

n!

)

a=−1/2

=
d

da

(

Γ(a)

(1 +X)a

)

a=−1/2

= 2
√
π
√

1 +X (log(1 +X) − Ψ(−1/2)) (A.5.23)
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For the third term in (A.5.21) we use the following identity

Ψ(1 + n) = −γE +

1
∫

0

1 − tn

1 − t
dt (A.5.24)

to rewrite the digamma function inside the series. By exchanging the order of the sum
and the integral and summing the series, we obtain

∞
∑

n=0

(−X)n Γ(−1/2 + n)Ψ(1 + n)

n!
= 2

√
π



γE

√
1 +X −

1
∫

0

dt

√
1 +X −

√
1 + tX

1 − t





= −2
√
π
√

1 +X
(

Ψ(−1/2) + 2 log(1 + 1√
1+X

)
)

+ 4
√
π (A.5.25)

where the integral in the first line has been performed using Mathematica.

Summing (A.5.22, A.5.23, A.5.25), after many non–trivial cancelations and simplifi-
cations we obtain as a final result

Q(s, t) =
ǫ

(
√
s t)3

[√
s+ t log

(√
s+

√
t+

√
s + t√

s+
√
t−√

s+ t

)

− (
√
s+

√
t)

]

+ O(ǫ2) (A.5.26)

The vector–like box integral (A.5.15) can be computed by using the same methods
as before or, equivalently, by using Passarino–Veltman reduction to write it as a linear
combination of scalar integrals. In any case, at leading order in ǫ, we obtain

Qµ
V =

ǫ

2(
√
s t)3

{

1√
s+ t

log

(√
s+

√
t+

√
s+ t√

s+
√
t−√

s + t

)

[s (p1 − p4)
µ + t (p1 + p2)

µ]

−
√
t (p1 − p4)

µ −√
s (p1 + p2)

µ

}

+ O(ǫ2) (A.5.27)

It is interesting to note that the projections of QV in the directions of p1 and p4 become
very simple

Q.p1 =
ǫ

4

(

1

s3/2
− 1

t3/2

)

+ O(ǫ2) and Q.p4 =
ǫ

4

(

1

t3/2
− 1

s3/2

)

+ O(ǫ2) (A.5.28)

since the logarithm term drops.

In fact, these two projections, can be calculated to all orders in ǫ. Writing k · p1 and
k · p4 in the numerator of (A.5.15) as the difference of two squares, the integral reduces to
the difference of two triangles. Therefore, using the results of Subsection B.2, we obtain

Q.p1 =
Γ(3/2 + ǫ)Γ2(−1/2 − ǫ)

2 (4π)D/2Γ(−2ǫ)

(

1

t3/2+ǫ
− 1

s3/2+ǫ

)

Q.p4 =
Γ(3/2 + ǫ)Γ2(−1/2 − ǫ)

2 (4π)D/2Γ(−2ǫ)

(

1

s3/2+ǫ
− 1

t3/2+ǫ

)

. (A.5.29)
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Since the leading term for ǫ→ 0 coincides with the expressions (A.5.28), this is a consis-
tency check of our results.

A.5.5 Uniqueness.

In this section we review the technique of unique triangles, allowing a straightforward
computation of some particular integrals. A triangle integral is said to be unique, when-
ever the indices (powers) of its propagators (α, β, γ) sum up to the dimension d of the
integration measure α + β + γ = d. If this is the case, then [88] the triangle evaluates to
a simple rational function. In x–space it is

T (d; α1, α2, α3) ≡
∫

ddx
1

[(x− x1)2]α1 [(x− x2)2]α2 [(x− x3)2]α3

α1+α2+α3=d−−−−−−−−→ π
d
2 Γ
(

d
2
− α1

)

Γ
(

d
2
− α2

)

Γ
(

d
2
− α3

)

Γ (α1) Γ (α2) Γ (α3)
(A.5.30)

1

[(x2 − x1)2]
d
2
−α3 [(x3 − x2)2]

d
2
−α1 [(x3 − x1)2]

d
2
−α2

When a triangle is not unique, some relations between triangles in generic dimension d
may prove useful to transform indices of inverse propagators

T (d; α1, α2, α3) =
Γ
(
∑3

i=1 αi − d
2

)
∏3

i=1 Γ
(

d
2
− αi

)

Γ
(

d−∑3
i=1 αi

)
∏3

i=1 Γ (αi) (x2
32)

α2+α3− d
2

T
(

d;

3
∑

i=1

αi −
d

2
,
d

2
− α3,

d

2
− α2

)

(A.5.31)

T (d; α1, α2, α3) =
1

(x2
32)

α1+α2− d
2 (x2

32)
α1+α2− d

2

T
(

d; α2, α1, d−
3
∑

i=1

αi

)

(A.5.32)

T (d; α1, α2, α3) =
Γ
(
∑3

i=1 αi − d
2

)
∏3

i=1 Γ
(

d
2
− αi

)

Γ
(

d−∑3
i=1 αi

)
∏3

i=1 Γ (αi)

T
(

d; d
2
− α1,

d
2
− α2,

d
2
− α3

)

(x2
21)

α1+α2− d
2 (x2

31)
α1+α3− d

2 (x2
32)

α2+α3− d
2

(A.5.33)
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A.6 Vertex diagram of the two–loop Wilson loop cor-

rection.

In this Appendix we give full details of the calculations concerning the vertex diagram
in the computation of the two–loop corrections to the Wilson loop. The vertex diagram
Fig. 5.1(b) is given by

〈W4〉(2)vertex =
1

N
〈 (i)3

∮

zi>zj>zk

dzµ,ν,ρ
i,j,k Tr (AµAν Aρ)

(

i

∫

ddwLint(w)

)

〉

= − 1

N

k

4π

2

3
(i)5

∮

dzµ,ν,ρ
i,j,k

∫

ddw〈Tr (Aµ Aν Aρ)Tr (AαAβ Aγ(w)) ǫαβγ〉

There are two non–vanishing contraction, plus cyclic permutations per each. However
one is subleading in N :

(AA
µ )ab (AB

ν )bc (AC
ρ )ca (AD

α )de (AE
β )ef (AF

γ )fd δ
AD δBE δCF → δae δbd δbf δce δaf δcd = N

(A.6.1)

and the other order N3

(AA
µ )ab (AB

ν )bc (AC
ρ )ca (AD

α )de (AE
β )ef (AF

γ )fd δ
AE δBD δCF → −δaf δbe δbe δcd δaf δcd = −N3

(A.6.2)

where the minus sign comes from the (suppressed) ǫ to compensate the different contrac-
tion of Lorentz indices. Hence this gives

= i

(

N

k

)2
1

2π

(

Γ
(

d
2

)

π
d−2
2

)3
∑

i>j>k

∫

dzµ
i dz

ν
j dz

ρ
k ǫ

αβγ ǫµασ ǫνβλ ǫργτ

∫

d3w
(zi − w)σ (zj − w)λ(zk − w)τ

(−(zi − w)2)
d
2 (−(zj − w)2)

d
2 (−(zk − w)2)

d
2

= −i
(

N

k

)2
1

2π

(

Γ
(

d
2

)

π
d−2
2

)3
∑

i>j>k

∫

dzµ
i dz

ν
j dz

ρ
k ǫ

αβγ ǫµασ ǫνβλ ǫργτ

∫

d3w
(w − zi)

σ (w − zj)
λ (w − zk)

τ

(−(zi − w)2)
d
2 (−(zj − w)2)

d
2 (−(zk − w)2)

d
2

(A.6.3)

The numerator of the expression above can be simplified, leading to

dzµ
i dz

ν
j dz

ρ
k ǫ

αβγ ǫµασ ǫνβλ ǫργτ (w − zi)
σ (w − zj)

λ (w − zk)
τ =

= pµ
i dsi p

ν
j dsj p

ρ
k dsk ǫ

αβγ ǫµασ ǫνβλ ǫργτ (w − xi)
σ (w − xj)

λ (w − xk)
τ =

= pµ
i dsi p

ν
j dsj p

ρ
k dsk

(

δβ
σ δ

γ
µ − δγ

σ δ
β
µ

)

ǫνβλ ǫργτ (w − xi)
σ (w − xj)

λ (w − xk)
τ
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where in the first line terms proportional to p inside z have been dropped thanks to
antisymmetry of ǫ’s.
Selecting for definiteness i = 3, j = 2 and k = 1

ds3 ds2 ds1

(

pγ
3 p

ν
2 p

ρ
1 (w − x3)

β(w − x2)
λ(w − x1)

τ+

−pβ
3 p

ν
2 p

ρ
1 (w − x3)

γ(w − x2)
λ(w − x1)

τ
)

ǫνβλǫργτ

= ds3 ds2 ds1 [ǫ (p2(w − x3)(w − x2)) ǫ (p1p3(w − x1))+

−ǫ (p2p3(w − x2)) ǫ (p1(w − x3)(w − x1))]

= ds3 ds2 ds1 [− (ǫ (p2wx2) + ǫ (p2x3w))) ǫ (p1p3(w − x1))+

+ǫ (p2p3(w − x2)) (ǫ (p1wx1) + ǫ (p1x3w) − ǫ (p1x3x1))]

= ds3 ds2 ds1 [− (ǫ (x3wx2) − ǫ (x2x3w))) ǫ (p1p3(w − x1)) +

+ǫ (p2p3(w − x2)) (ǫ (p1x31w) − ǫ (p1x3x1))]

= ds3 ds2 ds1 ǫ (p2p3(w − x2)) (ǫ (p1x31w) − ǫ (p1x31x1))

= ds3 ds2 ds1 ǫ (p2p3(w − x2)) ǫ (p1x31(w − x1))

= ds3 ds2 ds1 ǫ (p2p3(w − x2)) ǫ (p1p2(w − x1))

Finally the integral becomes

I321 =

∫

ddw

∫ 1

0

ds1,2,3
ǫ (p2p3(w − x2)) ǫ (p2p1(w − x1))

(−(z3 − w)2)
d
2 (−(z2 − w)2)

d
2 (−(z1 − w)2)

d
2

(A.6.4)

Or alternatively, shifting w → w+ z2 and neglecting pieces vanishing due to the antisym-
metry of the ǫ symbol

I321 =

∫

ddw

∫ 1

0

ds1,2,3
ǫ (p2p3w) ǫ (p2p1w))

(−(z32 − w)2)
d
2 (−w2)

d
2 (−(z12 − w)2)

d
2

(A.6.5)

On this we perform Feynman parameterization

−
∫

ddw

∫ 1

0

ds1,2,3(−1)
3
2

d Γ
(

3
2
d
)

Γ
(

1
2
d
)3 (β1 β2 β3)

1
2

d−1

ǫ (p2p3(w − x2)) ǫ (p1p2(w − x1))

[β3 (z3 − w)2 + β2 (z2 − w)2 + β1 (z1 − w)2]
3
2

d

= −
∫

ddw

∫ 1

0

ds1,2,3(−1)−
3
2

d Γ
(

3
2
d
)

Γ
(

1
2
d
)3 (β1 β2 β3)

1
2

d−1

ǫ (p2p3(w − x2)) ǫ (p1p2(w − x1))

[(w − ρ)2 + β1 β2 z2
12 + β2 β3 z2

23 + β1 β3 z2
13]

3
2

d
(A.6.6)
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We shift w → w + ρ where ρ = β1 z1 + β2 z2 + β3 z3. In the numerator we get

ǫ (p2p3(w − x2)) → ǫ (p2p3(w + β1 z1 + β2 z2 + β3 z3 − x2))

= ǫ (p2p3(w + β1 z1 + β2 x2 + β3 x3 − x2))

= ǫ
(

p2p3(w + β1 z1 − β̄2 x2 + β3 x3)
)

= ǫ (p2p3w) + β1 ǫ (p2p3z1) − β̄2ǫ (p2p3x2) + β3ǫ (p2p3x3)

= ǫ (p2p3w) + β1 ǫ (p2p3(x1 + s1 p1)) − β̄2ǫ (x3x4x2) − β3ǫ (x2x4x3)

= ǫ (p2p3w) + β1 ǫ (p2p3x1) + β1 s1 ǫ (p2p3p1)) − β̄2ǫ (x3x4x2) − β3ǫ (x2x4x3)

= ǫ (p2p3w) + β1 ǫ (p2p3x1) − β1 s1 ǫ (p2p3x1)) + β1 s1 ǫ (p2p3x2)) +

− β̄2ǫ (x3x4x2) − β3ǫ (x2x4x3)

= ǫ (p2p3w) + β1 s̄1 ǫ (p2p3x1)) + β1 s1 ǫ (x3x4x2)) + β̄2ǫ (x4x3x2)+

− β3ǫ (x2x4x3)

= ǫ (p2p3w) + β1 s̄1 ǫ (p2p3x1)) − β1 s1 ǫ (x4x3x2)) + β1ǫ (x2x4x3)

= ǫ (p2p3w) + β1 s̄1 ǫ (p2p3x1)) + β1 s̄1 ǫ (x4x3x2))

= ǫ (p2p3w) + β1 s̄1 ǫ (p2p3x1)) + β1 s̄1 ǫ (p3p2x2))

= ǫ (p2p3w) − β1 s̄1 ǫ (p2p3p1))

and

ǫ (p1p2(w − x1)) → ǫ (p1p2(w + β1 z1 + β2 z2 + β3 z3 − x1))

= ǫ (p1p2(w + β1 x1 + β2 x2 + β3 z3 − x1))

= ǫ (p1p2w) − β̄1 ǫ (p1p2x1) + β2 ǫ (p1p2x2) + β3 ǫ (p1p2z3)

= ǫ (p1p2w) − β̄1 ǫ (x2x3x1) − β2 ǫ (x1x3x2) + β3 ǫ (p1p2z3)

= ǫ (p1p2w) − β̄1 ǫ (x2x3x1) − β2 ǫ (x1x3x2) + β3 ǫ (p1p2x3) + β3 s3 ǫ (p1p2p3)

= ǫ (p1p2w) − β̄1 ǫ (x2x3x1) − β2 ǫ (x1x3x2) + β3 ǫ (x1x2x3) + β3 s3 ǫ (p1p2p3)

= ǫ (p1p2w) + β̄1 ǫ (x1x3x2) − β2 ǫ (x1x3x2) − β3 ǫ (x1x3x2) + β3 s3 ǫ (p1p2p3)

= ǫ (p1p2w) + β3 s3 ǫ (p1p2p3)

Taking the product we retain only the quadratic and constant terms in w, the linear being
vanishing when integrated.

ǫ (p2p3w) ǫ (p1p2w) − β1 s̄1 β3 s3 ǫ (p1p2p3)
2 (A.6.7)
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The quadratic term is proportional to 1
d
gαβǫ

µναǫρσβ pµ
2p

ν
3p

ρ
1p

σ
2 w

2, giving 1
d
(p2 · p1 p3 · p2 −

p2
2 p3 · p1)w

2 = 1
d
p2 · p1 p3 · p2w

2 = 1
4 d
x2

13x
2
42 w

2. The Feynman integral over w gives

1

4 d
(−1)−

3
2

d

∫

ddw
x2

13x
2
42w

2

[w2 + β1 β2 z2
12 + β2 β3 z2

23 + β1 β3 z2
13]

3
2

d
(A.6.8)

= i
1

d
(−1)−

3
2

d

∫

ddwE
x2

13x
2
42 − w2

E

[−w2
E + β1 β2 z2

12 + β2 β3 z2
23 + β1 β3 z2

13]
3
2

d

= −i 1

4 d

∫

ddwE
x2

13x
2
42 w

2
E

[w2
E − β1 β2 z

2
12 − β2 β3 z

2
23 − β1 β3 z

2
13]

3
2

d

= −i π d
2

1

4 d

d

2

x2
13x

2
42 Γ (d− 1)

Γ
(

3
2
d
)

[−β1 β2 z2
12 − β2 β3 z2

23 − β1 β3 z2
13]

d−1

The piece without any w in the numerator yields

− β1 s̄1 β3 s3 ǫ (p1p2p3)
2 (−1)−

3
2

d

∫

ddw
1

[w2 + β1 β2 z2
12 + β2 β3 z2

23 + β1 β3 z2
13]

3
2

d

= −i β1 s̄1 β3 s3 ǫ (p1p2p3)
2 (−1)−

3
2

d

∫

ddwE
1

[−w2
E + β1 β2 z2

12 + β2 β3 z2
23 + β1 β3 z2

13]
3
2

d

= −i β1 s̄1 β3 s3 ǫ (p1p2p3)
2

∫

ddwE
1

[w2
E − β1 β2 z2

12 − β2 β3 z2
23 − β1 β3 z2

13]
3
2

d

= −i π d
2 β1 s̄1 β3 s3 ǫ (p1p2p3)

2 Γ (d)

Γ
(

3
2
d
)

1

[−β1 β2 z2
12 − β2 β3 z2

23 − β1 β3 z2
13]

d

= i π
d
2 β1 s̄1 β3 s3

1

4
x2

13x
2
24(x

2
13 + x2

24)
Γ (d)

Γ
(

3
2
d
)

1

[−β1 β2 z
2
12 − β2 β3 z

2
23 − β1 β3 z

2
13]

d

Collecting everything altogether

−
∫ 1

0

ds1,2,3(−1)
3
2

d Γ
(

3
2
d
)

Γ
(

1
2
d
)3 (β1 β2 β3)

1
2

d−1

(

−i π 1
8
d

2

x2
13x

2
42 Γ (d− 1)

Γ
(

3
2
d
)

∆d−1
+ i π

d
2 β1 s̄1 β3 s3

1

4
x2

13x
2
24(x

2
13 + x2

24)
Γ (d)

Γ
(

3
2
d
)

1

∆d

)

= i 8 π
d
2

1

Γ
(

1
2
d
)3 x

2
13x

2
42

∫ 1

0

ds1,2,3 (β1 β2 β3)
1
2

d−1

(

Γ (d− 1)

∆d−1
− 2 β1 s̄1 β3 s3 (x2

13 + x2
24) Γ (d)

1

∆d

)

= i
8 π

d
2

Γ
(

1
2
d
)3 x

2
13x

2
42

∫ 1

0

ds1,2,3 (β1 β2 β3)
1
2

d−1

(

Γ (d− 1)

∆d−1
− 2 β1 s̄1 β3 s3 (x2

13 + x2
24) Γ (d)

1

∆d

)
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where ∆ = −β1 β2 z
2
12 − β2 β3 z

2
23 − β1 β3 z

2
13. This integral is quite nasty and was solved

in [80] by resorting to numerical evaluation, which leads to

I321 =
iπ

d
2
+1

8

Γ(d− 1)

Γ
(

d
2

)3

[

2 log(2)
(−x2

13)
2ǫ + (−x2

24)
2ǫ

ǫ
+ log2

(

x2
13

x2
24

)

+ a6 + O(ǫ)

]

(A.6.10)

where a6, is a numerical constant explicitly worked out in [80]. Finally the result for the
full diagram yields

〈W4〉(2)vertex = −
(

N

k

)2
[

log(2)

4

4
∑

i=1

(−x2
i,i+2 µ

2πeγE)2ǫ

ǫ
+

1

4
log2

(

x2
13

x2
24

)

+
1

4
a6 − 2 log(2)

]

.

(A.6.11)
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