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Abstract

In this work we propose a new estimator for Zenga’s inequality measure in heavy

tailed populations. The new estimator is based on the Weissman estimator for high

quantiles. We will show that, under fairly general conditions, it has asymptotic normal

distribution. Further we present the results of a simulation study where we compare

confidence intervals based on the new estimator with those based on the plug-in esti-

mator.

1. Introduction

In this work we propose a new estimator for Zenga’s (2007) inequality measure in

heavy tailed populations. Zenga’s index is a recently introduced risk and inequality

measure, which is the based on the ratio between the lower and upper conditional

tail expectations. Let F (x) be the cdf of a non-negative random variable X , which

describes income, wealth, an actuarial risk or a financial loss. Throughout this paper

we shall assume that F is continuous. Let Q(s) be the quantile function and denote

the upper and lower conditional tail expectations by

CTEF (t) =
1

1− t

∫ 1

t

Q(s)ds, 0 ≤ t < 1,

and

CTE∗
F (t) =

1

t

∫ t

0

Q(s)ds, 0 < t ≤ 1,

1
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respectively. We may measure inequality between the ”poorest” t percent of the pop-

ulation and the remaining ”richer” part of it by

Z(t) = 1− CTE∗
F (t)

CTEF (t)
, 0 < t < 1,

and averaging Zenga’s inequality curve Z(t) over t we get Zenga’s inequality index

Z =

∫ 1

0

Z(t)dt,

which measures the overall inequality in the population.

Greselin et al. (2010) have recently derived the asymptotic normality of the plug-in

estimator for Z, assuming that E(X2+ǫ) < ∞ for some ǫ > 0. In this work we shall

be concerned with heavy tailed populations. More precisely, we will deal with the case

where F is regularly varying at infinity with tail index γ between 0.5 and 1. Formally,

we shall assume that

lim
t→∞

1− F (tx)

1− F (t)
= x−1/γ

for some γ ∈ (0.5, 1). Notice that it does not make sense to consider larger values of

γ since this would imply that F has infinite mean, in which case Zenga’s index is not

even defined.

The new estimator for Z we are going to introduce is based on the Weissman (1978)

estimator

q̃s :=

(
k

n

)γ̂n Xn−k:n

(1− s)γ̂n
, 1− k

n
< s < 1,

for large quantiles. In the definition of q̃s we indicate by X1:n < X2:n < · · · < Xn:n the

order statistics associated with the i.i.d. sample random variables X1, X2, ..., Xn ∼ F

and by k the sample fraction in the Hill estimator

γ̂n =
1

k

k∑

i=1

lnXn−i+1:n − lnXn−k:n

for the tail index γ.

If we estimate CTEF (t) and CTE∗
F (t) by

CTEn(t) =





1
1−t

(∫ 1−k/n

t
Qn(s)ds+

kX(n−k)

n(1−γ̂)

)
0 ≤ t < 1− k/n

(
k
n

)γ̂ X(n−k)

(1−t)γ̂ (1−γ̂)
1− k/n ≤ t < 1

and by

CTE∗
n(t) =

1

t
[CTEn(0)− (1− t)CTEn(t)] , 0 < t ≤ 1

respectively, we get the following estimator for Z:

Zn = 1−
∫ 1

0

CTE∗
n(t)

CTEn(t)
dt.
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In the above definition of CTEn and what follows we indicate by Q(t) and Qn(t) the

quantile function and its empirical counterpart (both functions are left-continuous).

Necir et al. (2010) have recently derived asymptotic normality of CTEn(t) (to be

precise of the expression in the first line of the definition) assuming that F satisfies

the generalized second order regular variation condition with second order parameter

ρ ≤ 0, i.e. assuming that there exists a function α(t) → 0 as t → ∞, which does not

change sign in a neighborhood of infinity, such that for every x > 0,

lim
t→∞

1

α(t)

(
1− F (tx)

1− F (t)
− x−1/γ

)
= x−1/γ x

ρ/γ − 1

ρ/γ
, (1.1)

and that the sample fraction k = kn → ∞ as n → ∞ in such a way that k/n → 0 and
√
k α(Q(1 − k/n)) → 0. In this paper we will see that the same set of assumptions

ensures the asymptotic normality of the new estimator for Zenga’s index as well. As

in Necir et al. (2010), the proofs are crucially based on the extreme value theory.

The rest of the paper is organized as follows. In section 2 we state the main theorem

and discuss its practical implementation. The proof of the theorem is deferred to

the appendix. In section 3 we present the results of a simulation study, where we

compare confidence intervals based on the new estimator with those based on the plug-

in estimator in a variety of settings. Conclusions and final remarks end the paper in

section 4.

2. Main theorem and Practical Implementation

Theorem 2.1. Assume that F satisfies condition (1.1) with 0 < γ < 1/2, ρ ≤ 0 and

let k = kn → ∞ as n → ∞ in such a way that k/n → 0 and
√
k α(Q(1− k/n)) → 0.

Then,
√
n (Zn − Z)√
k/nXn−k:n

= −
∫ 1−k/n

0

Bn(s)v(s)√
k/nQ(1− k/n)

dQ(s)

+
γ2 v(1− k/n)

(1− γ)2

√
n

k
Bn

(
1− k

n

)

−γ v(1− k/n)

(1− γ)2

√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds+ oP(1)

and hence we have √
n (Zn − Z)√
k/nXn−k:n

d−→ N(0, σ2),

where

σ2 =
γ4

(1− γ)4(2γ − 1)

∫ 1

0

CTE∗
F (t)

(1− t)CTEF (t)2
dt.
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The proof of the theorem is deferred to the appendix.

Notice that both the new estimator for Zenga’s index as well as the plug-in estimator

for its variance depend on the sample fraction k. In fact, in the former this dependence

is direct as well as mediated through the Hill estimator, while the latter depends on

k only through the Hill estimator. It is well known that the Hill estimator has large

variance for small values of k and large bias if k is large. We therefore need to balance

between these two shortcomings. Several adaptive procedures for an optimal choice of

k have been proposed in the literature. In the simulation study in the next section

we will employ the method of Cheng and Peng (2001). According to the simulation

results it works reasonably well.

3. Simulations

In this section we present the results of a simulation study to assess the performance

of the asymptotic normal confidence intervals based on the normal limit distribution of

the plug-in estimator and the new estimator. As parent distribution we used Zenga’s

model for economic size distributions (Zenga, 2010), a very flexible three parameter

family with paretian right tail. It depends on a scale parameter that coincides with the

model mean and two shape parameters θ and α, affecting the center and the tails of

the distribution, respectively. The interested reader may find more information about

Zenga’s model in Zenga et al. (2010a), (2010b).

In our simulations we set the parameter values to ML-estimates obtained on capital

income data from the 2001 wave of the ECHP survey. We considered three parent

distributions with low, intermediate and high tail index. Our simulation results (table

4) confirm that the confidence intervals based on the plug-in estimator suffer from

undercoverage. The new ones seem to solve this issue. They are slightly larger (cfr.

the quantiles of the estimated standard errors) but their coverage accuracy is almost

exact.

Appendix A

In this appendix we prove, under the assumptions of theorem 2.1, the following

asymptotic expansion

√
n (Zn − Z)√

k/nQ(1− k/n)
=

3∑

i=1

Tn,i + oP(1). (3.1)
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The three main terms in the expansion are given by

Tn,1 = −
∫ 1−k/n

0

Bn(s)v(s)√
k/nQ(1− k/n)

dQ(s),

Tn,2 =
γ2 v(1− k/n)

(1− γ)2

√
n

k
Bn

(
1− k

n

)
,

Tn,3 = −γ v(1− k/n)

(1− γ)2

√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds,

where, for each n, Bn is a Brownian bridge that approximates the empirical process

induced by the cdf transformations of the sample random variables and

v(s) =

∫ s

0

CTE∗
F (t)

CTEF (t)2(1− t)
dt, 0 < s ≤ 1.

It is easily verified that

E(T 2
n,1)−→ 2γ

2γ−1
v(1)2 E(Tn,1Tn,2)−→− γ2

(1−γ)2
v(1)2 E(Tn,1Tn,3)−→ γ

(1−γ)2
v(1)2

E(T 2
n,2)−→ γ4

(1−γ)4
v(1)2 E(Tn,2Tn,3)−→ γ3

(1−γ)4
v(1)2 E(T 2

n,3)−→ 2γ2

(1−γ)4
v(1)2,

so that √
n (Zn − Z)√

k/nQ(1 − k/n)

d−→ N(0, σ2), (3.2)

where

σ2 =
γ4

(1− γ)4(2γ − 1)
v(1)2.

By theorem 2.4.8 in de Haan and Ferreira (2006), the second order condition in (1.1)

and
√
kα(Q(1− k/n)) → 0 ensure that

√
k

(
Xn−k:n

Q(1− k/n)
− 1

)
= OP(1), (3.3)

so that we may substitute Q(1− k/n) with Xn−k in the limit relation in (3.2).

To prove (3.1), we first linearize Zn − ZF with respect to the CTE’s. This yields
√
n (Zn − Z)√

k/nQ(1− k/n)
= −

∫ 1

0

1

CTEF (t)

√
n (CTE∗

n(t)− CTE∗
F (t))√

k/nQ(1 − k/n)
dt+

+

∫ 1

0

CTE∗
F (t)

CTEF (t)2

√
n (CTEn(t)− CTEF (t))√

k/nQ(1− k/n)
dt+

+ rn,1 + rn,2,

(3.4)

where

rn,1 = −
∫ 1

0

(
1

CTEn(t)
− 1

CTEF (t)

) √
n (CTE∗

n(t)− CTE∗
F (t))√

k/nQ(1− k/n)
dt

rn,2 =

∫ 1

0

CTE∗
F (t)

CTEF (t)

(
1

CTEn(t)
− 1

CTEF (t)

) √
n (CTEn(t)− CTEF (t))√

k/nQ(1− k/n)
dt



6

We shall show below (in Appendix B) that

rn,1 = oP(1), (3.5)

rn,2 = oP(1). (3.6)

∫ 1

1−k/n

1

CTEF (t)

√
n (CTE∗

n(t)− CTE∗
F (t))√

k/nQ(1− k/n)
dt = oP(1), (3.7)

and finally that

∫ 1

1−k/n

CTE∗
F (t)

CTEF (t)2

√
n (CTEn(t)− CTEF (t))√

k/nQ(1− k/n)
dt = oP(1). (3.8)

Thus we have
√
n (Zn − Z)√

k/nQ(1− k/n)
= −

∫ 1−k/n

0

1

CTEF (t)

√
n (CTE∗

n(t)− CTE∗
F (t))√

k/nQ(1− k/n)
dt+

+

∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2

√
n (CTEn(t)− CTEF (t))√

k/nQ(1− k/n)
dt + oP(1).

(3.9)

Like in Necir et al. (2010), we now write

CTEn(t)− CTEF (t) =
1

1− t
(An,1(t) + An,2) , 0 ≤ t ≤ 1− k/n, (3.10)

and

CTE∗
n(t)− CTE∗

F (t) =
1

t
(An,1(0)−An,1(t)) , 0 < t ≤ 1− k/n, (3.11)

where

An,1(t) =

∫ 1−k/n

t

(Qn(s)−Q(s)) ds, 0 ≤ t ≤ 1− k/n,

An,2 =
k/n

1− γ̂
Xn−k:n −

∫ 1

1−k/n

Q(s)ds.

Notice that

An,1(t) = −
∫ Q(1−k/n)

Q(t)

(Fn(x)− F (x))dx+ Vn

(
1− k

n

)
− Vn(t). (3.12)

where

Vn(t) =

∫ t

0

(Qn(s)−Q(s))ds+

∫ Q(t)

−∞
(Fn(x)− F (x))dx,

is the Vervaat process. In the appendix we list some properties of the Vervaat process,

which will be needed in this proof.
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Substituting (3.12) in (3.10) and (3.11), respectively, and changing the variables of

integration, we get

CTEn(t)− CTEF (t) =
1

1− t

[
−
∫ 1−k/n

t

en(s)√
n

dQ(s) + Vn

(
1− k

n

)
− Vn(t) + An,2

]

(3.13)

and (since Vn(0) = 0)

CTE∗
n(t)− CTE∗

F (t) =
1

t

[
−
∫ t

0

en(s)√
n

dQ(s) + Vn(t)

]
, (3.14)

where en(t) =
√
n(Fn(F

−1(t)) − t), is the uniform on [0, 1] empirical process. Substi-

tuting now (3.13) and (3.14) in (3.9), yields

√
n (Zn − Z)√

k/nQ(1− k/n)
= −

∫ 1−k/n

0

1

CTEF (t) t

∫ t

0
en(s)dQ(s)√

k/nQ(1− k/n)
dt

−
∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2(1− t)

∫ 1−k/n

t
en(s)dQ(s)√

k/nQ(1− k/n)
dt

+

√
nAn,2√

k/nQ(1− k/n)

∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2(1− t)
dt

+ rn,3 + rn,4,

(3.15)

where

rn,3 =

√
n√

k/nQ(1− k/n)

∫ 1−k/n

0

1

CTEF (t) t
Vn(t)dt

rn,4 = −
√
n√

k/nQ(1− k/n)

∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2
1

1− t

(
Vn

(
1− k

n

)
− Vn(t)

)
dt.

Below we shall show that

rn,3 = oP(1), (3.16)

and finally that

rn,4 = oP(1), (3.17)

as well.

Applying Fubini’s theorem in the first two terms in (3.15) yields
√
n (Zn − Z)√

k/nQ(1− k/n)
= −

∫ 1−k/n

0

en(s)wn(s)√
k/nQ(1− k/n)

dQ(s)

−
∫ 1−k/n

0

en(s)v(s)√
k/nQ(1− k/n)

dQ(s)

+

√
nAn,2 v(1− k/n)√
k/nQ(1− k/n)

+ oP(1),

(3.18)
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where

wn(s) =

∫ 1−(k/n)

s

1

CTEF (t) t
dt, 0 < s ≤ 1− (k/n)

v(s) =

∫ s

0

CTE∗
F (t)

CTEF (t)2(1− t)
dt, 0 < s ≤ 1.

Below we shall show that

∫ 1−k/n

0

en(s)wn(s)√
k/nQ(1− k/n)

dQ(s) = oP(1). (3.19)

Finally we choose a sequence of Brownian bridges Bn as in Result 1 that replaces the

emprical process en(s) in (3.18). In view of (3.19), this yields

√
n (Zn − Z)√

k/nQ(1− k/n)
= −

∫ 1−k/n

0

Bn(s)v(s)√
k/nQ(1− k/n)

dQ(s)

+

√
nAn,2 v(1− k/n)√
k/nQ(1− k/n)

+ rn,5 + oP(1),

(3.20)

with

rn,5 = OP(1)
1

nν1

∫ 1−k/n

0

(1− s)(1/2)−ν1v(s)ds,

for any 0 ≤ ν1 <
1
4
. Since

sup
0≤s≤1

v(s) < ∞, (3.21)

the integral in rn,5 remains bounded as n goes to infinity. Thus, it follows that

rn,5 = oP(1). (3.22)

Now, using the same sequence of Brownian bridges Bn as in (3.20), it may be shown

(see Necir et al., 2010 and references therein) that

√
nAn,2√

k/nQ(1− k/n)
=

γ2

(1− γ)2

√
n

k
Bn

(
1− k

n

)

− γ

(1− γ)2

√
n

k

∫ 1

1−(k/n)

Bn(s)

1− s
ds+ oP(1)

(3.23)

which finally, in view of (3.20), (3.21) and (3.22), yields the asymptotic expansion in

(3.1).



9

4. Appendix B

In this section we will prove negligibility of the remainder terms in appendix A. In

our proofs we will need the following lemmas.

Lemma 4.1. For each ǫ > 0, as small as desired, we have

sup
0≤t<1−k/n

(1− t) |CTEn(t)− CTEF (t)| = oP(1)
1√
k

(
k

n

)1−γ−ǫ

(4.1)

sup
0<t≤1−k/n

t |CTE∗
n(t)− CTE∗

F (t)| = oP(1)
1√
k

(
k

n

)1−γ−ǫ

(4.2)

Proof. By (3.13), (3.14) and (3.23), the proof reduces to showing that

1√
n

∫ 1−k/n

0

|en(s)|dQ(s) ≤ oP(1)
1√
k

(
k

n

)1−γ−ǫ

(4.3)

and that

sup
0≤t≤1−k/n

Vn(t) ≤ oP(1)
1√
k

(
k

n

)1−γ−ǫ

. (4.4)

By result 3, we immediately get

1√
n

∫ 1−k/n

0

|en(s)|dQ(s) ≤ OP(1)
1√
n

∫ 1−k/n

0

(1− s)1/2−ǫdQ(s)

Changing the integration variable on the RHS yields

1√
n

∫ 1−k/n

0

(1− s)1/2−ǫdQ(s) =
1√
n

∫ Q(1−k/n)

Q(0)

(1− F (x))1/2−ǫdx

∼ 2γ

1− 2ǫ

1√
k

(
k

n

)1−ǫ

Q(1 − k/n).

Since Q(1− k/n) = o((n/k)γ+ǫ), the proof of (4.3) is complete.

To get a bound for the LHS in (4.4), we use first property (c) of the Vervaat process

and then results 3 and 4. This yields

Vn(t) ≤ oP(1)
1√
n
(1− t)1/2−γ−2ǫ

But by hypothesis we have 1/2 − γ − 2ǫ < 0. For 0 ≤ t ≤ 1 − k/n we thus have the

following bounded for the RHS of the previous inequality:

oP(1)
1√
k

(
k

n

)1−γ−2ǫ

.

This completes the proof of (4.4). �
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Lemma 4.2. For each ǫ > 0, as small as desired, we have

sup
s≥1

√
k

Q(1− k/n)

CTEn

(
1− k

ns

)
− CTEF

(
1− k

ns

)

sγ+ǫ
= OP(1) (4.5)

and

sup
s≥1

√
n√

k/nQ(1− k/n)

CTE∗
n

(
1− k

ns

)
− CTE∗

F

(
1− k

ns

)

sγ+ǫ
= OP(1) (4.6)

Proof. Suppose that (4.5) is true. Then, by lemma (4.1), it is easily seen that (4.6) is

also true.

We shall now prove (4.5). Note that

CTEn

(
1− k

ns

)
− CTEF

(
1− k

ns

)

Q(1− k/n)
=

Xn−k:n

Q(1− k/n)

sγ̂

1− γ̂
− sγ

1− γ

+
sγ

1− γ
− CTEF

(
1− k

ns

)

Q(1− k/n)

We will prove the lemma by showing that

sup
s≥1

√
k

sγ+ǫ

∣∣∣∣
Xn−k:n

Q(1− k/n)

sγ̂

1− γ̂
− sγ

1− γ

∣∣∣∣ = OP(1) (4.7)

and that

sup
s≥1

√
k

sγ+ǫ

∣∣∣∣∣
sγ

1− γ
− CTEF

(
1− k

ns

)

Q(1− k/n)

∣∣∣∣∣ = o(1). (4.8)

Consider first the assertion in (4.8). Notice that

sγ

1− γ
− CTEF

(
1− k

ns

)

Q(1− k/n)
= s

∫ ∞

s

(
tγ − Q

(
1− k

nt

)

Q
(
1− k

n

)
)

1

t2
dt (4.9)

We will use the second order regular variation condition (1.1) to show that the integral

converges to 0 faster than k−1/2. By theorem 2.3.9 condition in de Haan and Ferreira

(2006), condition (1.1) is equivalent to

lim
t→∞

Q(1−1/(tx)
Q(1−1/t)

− xγ

α(Q(1− 1/t)
= xγ x

ρ − 1

ρ
, x > 0

and it implies that, for any positive ǫ and δ, there exists t0 > 1 (t0 depends on ǫ and

δ), such that for all t, tx ≥ t0,
∣∣∣∣

1

A0(t)

(
Q(1− 1/(tx))

Q(1− 1/t)
− xγ

)
− xγ x

ρ − 1

ρ

∣∣∣∣ ≤ ǫxγ+ρ max(xδ, x−δ)

for some function A0(t) ∼ α(Q(1− 1/t)). Applying this inequality with 0 < δ < |ρ| in
(4.8), yields, for large enough n,

√
k

sγ+ǫ

∣∣∣∣∣
sγ

1− γ
− CTEF

(
1− k

ns

)

Q(1− k/n)

∣∣∣∣∣ ≤
√
kA0(n/k)

(
1

|ρ| + ǫ

)
s1−γ−ǫ

∫ ∞

s

tγ−2dt.(4.10)
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Since

lim
s→∞

s1−γ−ǫ

∫ ∞

s

tγ−2dt = 0,

it follows that

sup
s≥1

s1−γ−ǫ

∫ ∞

s

tγ−2dt < ∞.

Moreover, by the hypothesis on the function α(Q(1−1/t)),
√
kA0(n/k) → 0 as n → ∞

and thus the RHS in (4.10) converges to zero uniformly for s ≥ 1 as n goes to infinity.

This completes the proof of the assertion in (4.8).

Consider now (4.7) and note that

1

sγ+ǫ

(
Xn−k:n

Q(1− k/n)

sγ̂

1− γ̂
− sγ

1− γ

)
=

sγ̂−γ−ǫ

1− γ̂

(
Xn−k:n

Q(1− k/n)
− 1

)

+
sγ̂−γ−ǫ − s−ǫ

1− γ̂

+
s−ǫ(γ̂ − γ)

(1− γ̂)(1− γ)
.

(4.11)

We will show that each term on the RHS is uniformly bounded (for s ≥ 1) by a random

variable of order OP(1). To this aim we first observe that for s ≥ 1,

|sγ̂−γ−ǫ − s−ǫ| ≤





(
1− γ̂−γ

ǫ

)ǫ/(γ̂−γ) (
ǫ

ǫ−(γ̂−γ)
− 1
)
, if |γ̂ − γ| < ǫ and γ̂ 6= γ,

0, if γ̂ = γ

and that (
1− γ̂ − γ

ǫ

)ǫ/(γ̂−γ)(
ǫ

ǫ− (γ̂ − γ)
− 1

)
→ 0 if γ̂ → γ.

Since (Mason, 1982)

γ̂
P→ γ, (4.12)

it follows that

sup
s≥1

|sγ̂−γ−ǫ − s−ǫ| = oP(1), (4.13)

which, along with (3.3), implies that

sup
s≥1

√
ksγ̂−γ−ǫ

1− γ̂

(
Xn−k:n

Q(1− k/n)
− 1

)
= OP(1). (4.14)

In order to deal with the second and third term on the RHS of (4.11), we need to

know about the asymptotic behaviour of the Hill estimator. Under the second order

condition in (1.1) and the assumption on the asymptotic behaviour of the function

α(Q(1− 1/t)), we have (see theorem 3.2.5 in de Haan and Ferreira, 2006)

√
k(γ̂ − γ) = OP(1) (4.15)



12

By the mean value theorem, we may write the second term on the RHS in (4.11) in

the following way:

sγ̂−γ−ǫ − s−ǫ

1− γ̂
=

sγ
∗−γ−ǫ/4 ln s

sǫ3/4(1− γ̂)
(γ̂ − γ), (4.16)

where γ < γ∗ < γ̂, and thus, by (4.12), γ∗ P→ γ. Using now (4.13) with γ∗ in the place

of γ̂ and ǫ/4 instead of ǫ, the RHS in (4.16) may be written as

(sǫ/4 + oP(1)) ln s

sǫ3/4(1− γ̂)
(γ̂ − γ)

which, multiplied by
√
k, is bounded by

∣∣∣∣∣

√
k(γ̂ − γ)

(1− γ̂)

∣∣∣∣∣

for all s ≥ 1. By (4.15), it follows that

sup
s≥1

√
k
sγ̂−γ−ǫ − s−ǫ

1− γ̂
= OP(1). (4.17)

For the last term in (4.11), we immediately notice that (4.15) implies

sup
s≥1

s−ǫ(γ̂ − γ)

(1− γ̂)(1− γ)
= OP(1). (4.18)

Finally we notice that (4.11), (4.14), (4.17) and (4.18) imply that the assertion in (4.7)

is true. The proof of the lemma is thus complete. �

It is worth noting that the function A0(t), and thus also the function α(Q(1− 1/t),

are regularly varying at infinity with tail index ρ.

Proof of (3.5) and (3.6). We will show that
√
n√

k/nQ(1− k/n)

∫ 1

0

∣∣∣∣
1

CTEn(t)
− 1

CTEF (t)

∣∣∣∣ |CTE∗
n(t)− CTE∗

F (t)| dt = oP(1).

(4.19)

Notice that this implies both (3.5) and (3.6).

We proceed by splitting the integral into three parts

∫ 1

0

· · · =
∫ δ

0

· · ·+
∫ 1−k/n

δ

· · ·+
∫ 1

1−k/n

· · ·

and showing that each of them is of order oP(1) when multiplied by
√
n√

k/nQ(1−k/n)
.

Consider first the term with
∫ δ

0
· · · . By (4.1) we see that it is bounded by

√
n√

k/nQ(1− k/n)

1

CTE2
F (0) + oP(1)

∫ δ

0

1− t

1− δ
|CTEn(t)−CTEF (t)||CTE∗

n(t)−CTE∗
F (t)|dt
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and using (4.1) again, we may bound the latter expression by

oP(1)

(k/n)γ+ǫQ(1− k/n)

1

CTE2
F (0) + oP(1)

1

1− δ

∫ δ

0

|CTE∗
n(t)− CTE∗

F (t)|dt.

Since, for small enough ǫ > 0,
√
n(k/n)γ+ǫQ(1 − k/n) → ∞ as n → ∞, we need to

show that ∫ δ

0

|CTE∗
n(t)− CTE∗

F (t)|dt = Op(n
−1/2).

By (3.14) this will be true if
∫ δ

0

1

t

∫ t

0

|en(s)|dQ(s)dt = OP(1) (4.20)

and ∫ δ

0

√
nVn(t)

t
dt = oP(1). (4.21)

Now, apply Fubini’s theorem in (4.20) to get
∫ δ

0

|en(s)| ln(δ/s)dQ(s),

which, by result 3, is bounded by

OP(1)

∫ δ

0

s1/2−ǫ ln(δ/s)dQ(s) = OP(1).

This proves (4.20). To see that (4.21) is also true, we first use the bound in property

(c) of the Vervaat process in result 2. This yields
∫ δ

0

√
nVn(t)

t
dt ≤

∫ δ

0

|en(t)||Qn(t)−Q(t)|
t

dt

≤ OP(1)

∫ δ

0

t−1/2−ǫ|Qn(t)−Q(t)|dt

≤ oP(1)

∫ δ

0

t−1/2−ǫ(1− t)1/γ−ǫdt

In the above chain of inequalities we used result 3 in line two and result 4 in line three.

Since the integral in line three is finite, this completes the proof of (4.21) and of the

fact that
√
n√

k/nQ(1−k/n)

∫ δ

0
· · · = oP(1).

We now turn our attention to the term with the
∫ 1−k/n

δ
part of the integral in (4.19).

Using lemma (4.1) we see that it is bounded by

oP(1)√
kQ(1 − k/n)

(
k

n

)1−2γ−2ǫ
1

δ

∫ 1−k/n

δ

1

(1− t)CTE2
F (t) + oP(1)

dt,

where
1√

kQ(1− k/n)

(
k

n

)1−2γ−2ǫ

= o(1),
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since, for each ǫ > 0, (k/n)γ−ǫQ(1− k/n) → ∞, and

∫ 1−k/n

δ

1

(1− t)CTE2
F (t) + oP(1)

dt = OP(1),

since, for each ǫ > 0, CTEF (t)(1− t)γ−ǫ → ∞ as t approaches 1.

Finally, we shall deal with the term with the
∫ 1

1−k/n
· · · part of the integral in (4.19).

Changing the integration variable, this term may be written as

√
n√

k/nQ(1− k/n)

∫ ∞

1

[
CTEn

(
1− k

ns

)
− CTEF

(
1− k

ns

)] [
CTEn

(
1− k

ns

)
− CTEF

(
1− k

ns

)]

CTEn

(
1− k

ns

)
CTEF

(
1− k

ns

) k

n

1

s2
ds.

and, by lemma 4.2, it is bounded by

OP(1)√
k

k

n
Q

(
1− k

n

)∫ ∞

1

s2γ+2ǫ−2

CTEn

(
1− k

ns

)
CTEF

(
1− k

ns

)ds

which in turn is bounded by

OP(1)√
k

k

n

Q
(
1− k

n

)

CTEn

(
1− k

n

)
∫ ∞

1

s2γ+2ǫ−2

CTEF

(
1− k

ns

)ds.

Since, again by lemma 4.2, CTEn (1− k/n)
P→ ∞ and since, by Lebesgue’s monotone

convergence theorem, ∫ ∞

1

s2γ+2ǫ−2

CTEF

(
1− k

ns

)ds = o(1),

it finally follows that the
∫ 1

1−k/n
· · · part is of order oP(1) as well.

Proof of (3.7) and (3.8). Changing the integration variable, the rest term in (3.7)

may be written as

∫ ∞

1

1

CTEF

(
1− k

ns

)
√
n
[
CTE∗

n

(
1− k

ns

)
− CTE∗

F

(
1− k

ns

)]
√

k/nQ(1− k/n)

k

n

1

s2
ds, (4.22)

and the rest term in (3.8) as

∫ ∞

1

CTE∗
F

(
1− k

ns

)

CTEF

(
1− k

ns

)
√
k
[
CTEn

(
1− k

ns

)
− CTEF

(
1− k

ns

)]

Q(1− k/n)

1

s2
ds. (4.23)

By lemma 4.2 we see that (4.22) is bounded by

OP(1)
k

n

∫ ∞

1

sγ+ǫ−2

CTEF

(
1− k

ns

)ds

and that (4.23) is bounded by

OP(1)CTE∗
F (1)

∫ ∞

1

sγ+ǫ−2

CTEF

(
1− k

ns

)ds.
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Notice that both bounds are of order oP(1), since, by Lebesgue’s monotone convergence

theorem, ∫ ∞

1

sγ+ǫ−2

CTEF

(
1− k

ns

)ds = o(1).

Proof of (3.16) and (3.17). Notice that

rn,3 =
1√

k/nQ(1− k/n)

∫ 1−k/n

0

1

CTEF (t) t
Vn(t)dt ≥ 0

by property b) in result 2 about Vervaat processes and that

rn,3 ≤ 1√
k/nQ(1− k/n)

∫ 1−k/n

0

1

CTEF (t) t
|en(t)||Qn(t)−Q(t)|dt

≤ oP(1)√
k/nQ(1− k/n)

∫ 1−k/n

0

(1− t)γ+ǫ

CTEF (t) t
|en(t)|dt

≤ oP(1)√
k/nQ(1− k/n)

∫ 1−k/n

0

(1− t)γ+ǫ

CTEF (t) t
t1/2−ǫdt

In the second line we used property c) in result 2 about Vervaat processes and in the

third and fourth line we used results 4 and 3, respectively. Since the integral in the

last line remains bounded as n goes to infinity and since, by the hypothesis on the tail

index,
√

k/nQ(1− k/n) goes to infinity, the last bound is of order oP(1) and the proof

of (3.16) is complete.

In order to prove (3.17), we split the remainder term in two parts

r
(1)
n,4 = −

√
n√

k/nQ(1− k/n)
Vn

(
1− k

n

)∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2
1

1− t
dt

and

r
(2)
n,4 =

√
n√

k/nQ(1− k/n)

∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2
1

1− t
Vn(t)dt,

and show that each of them is of order oP(1). Indeed, the integral r
(1)
n,4 remains bounded

as n goes to infinity and, by properties b) and c) in result 2 about Vervaat processes,

we have

0 ≤
√
n√

k/nQ(1− k/n)
Vn

(
1− k

n

)
≤

∣∣∣∣
√

n

k
en

(
1− k

n

)∣∣∣∣
∣∣∣∣
Qn(1− k/n)

Q(1− k/n)
− 1

∣∣∣∣ ,

where √
n

k
en

(
1− k

n

)
= OP(1)

and, by (3.3),
Qn(1− k/n)

Q(1− k/n)
− 1 =

Xn−k:n

Q(1− k/n)
− 1 = oP(1).
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This proves that r
(1)
n,4 = oP(1). For r

(2)
n,4 we may again use properties b) and c) in result

2 about Vervaat processes along with results 3 and 4, to get

0 ≤ r
(2)
n,4 ≤ 1√

k/nQ(1− k/n)

∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2
1

1− t
|en(t)||Qn(t)−Q(t)|dt

≤ OP(1)√
k/nQ(1− k/n)

∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2
(1− t)−1/2−ǫ|Qn(t)−Q(t)|dt

≤ oP(1)√
k/nQ(1− k/n)

∫ 1−k/n

0

CTE∗
F (t)

CTEF (t)2
(1− t)−1/2−γ−2ǫdt

Since the latter integral remains bounded as n goes to infinity and since, by the hy-

pothesis on the tail index
√

k/nQ(1− k/n) → ∞, this implies that r
(2)
n,4 = oP(1).

Proof of (3.19). By result 3, we have
∫ 1−k/n

0
en(s)wn(s) dQ(s)√

k/nQ(1− k/n)
≤ OP(1)√

k/nQ(1− k/n)

∫ 1−k/n

0

s1/2−ǫwn(s)dQ(s)

Since
√

k/nQ(1 − k/n) → ∞, our task reduces to showing that the integral on the

RHS remains bounded as n goes to infinity. But this is certainly true since
∫ 1−k/n

0

s1/2−ǫwn(s)dQ(s) =

∫ 1−k/n

0

s1/2−ǫ

∫ 1−k/n

s

1

CTEF (t) t
dt dQ(s)

=

∫ 1−k/n

0

1

CTEF (t) t

∫ t

0

s1/2−ǫdQ(s) dt

≤
∫ 1−k/n

0

Q(t)

CTEF (t) t1/2+ǫ
dt

and

lim
t→1

Q(t)

CTEF (t)
= lim

s→∞

Q(1− 1/s)

s
∫∞
s

Q(1− 1/s)s−2ds
= 1− γ.
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Appendix C

This section contains some results that we used in our proofs.

Result 1. There exists a probability space (Ω,A, P ) carrying a sequence U1, U2, ... of

independent random variables uniformly distributed on (0, 1) and a sequence of Brow-

nian bridges Bn, 0 ≤ s ≤ 1, n = 1, 2, ... such that for the uniform empirical process

en(s) =
√
n{Gn − s}, 0 ≤ s ≤ 1,

and the quantile process

βn(s) =
√
n{s− Un(s)}, 0 ≤ s ≤ 1,

where

Gn(s) =
1

n

n∑

i=1

1(s ≥ Ui), 0 ≤ s ≤ 1,

and, with U1,n ≤ U2,n ≤ · · · ≤ Un,n denoting the order statistics corresponding to

U1, U2, ..., Un,

Un(s) =

{
Uk,n, if (k − 1)/n < s ≤ k/n, k = 1, 2, ..., n

U1,n, if s = 0,

we have

sup
0≤1−(1/n)

nν1
|en(s)− Bn(s)|
(1− s)

1
2
−ν1

= OP(1) (4.24)

and

sup
0≤1−(1/n)

nν2
|βn(s)− Bn(s)|
(1− s)

1
2
−ν2

= OP(1), (4.25)

where ν1 and ν2 are any fixed numbers such that 0 ≤ ν1 < 1
4
and 0 ≤ ν2 < 1

2
. The

statement in (4.25) follows from theorem 2.1 in M. Csorgo et al. (1986), while the

statement in (4.24) is contained in Corollary 2.1 of the above paper.

Result 2. The Vervaat process, defined by

Vn(t) =

∫ t

0

(Qn(s)−Q(s))ds+

∫ Q(t)

−∞
(Fn(x)− F (x))dx,

has the following properties:

(a) Vn(0) = 0,

(b) Vn(t) ≥ 0 for all t ∈ [0, 1],

(c)
√
nVn(t) ≤ |en(t)||Qn(t)−Q(t)|, where en(t) =

√
n(Fn(Q(t))− F (Q(t))) is the

uniform empirical process.
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Result 3. For any ǫ > 0 as small as desired,

sup
x∈R

√
n (Fn(x)− F (x))

F (x)(1/2)−ǫ(1− F (x))(1/2)−ǫ
= OP(1),

Result 4. (Mason, 1982) If E(Xr) < ∞ for some r > 1, then

sup
0<s<1

(1− s)1/r|Qn(s)−Q(s)| = oP(1).
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The authors are grateful to Prof. Ričardas Zitikis of the University of Western

Ontario (Canada), for providing invaluable help and advice in the initial phase of this

research.



19

Table 4.1. Simulation results: estimates of some quantiles of the plug-in estimator

for the standard errors and estimated coverage accuracies of confidence intervals for

Zenga’s index. The ”average k” column reports the average of the estimates for the

optimal sample fraction while the ”max cov” column reports the estimates of the

probability that the Hill estimator takes on a value in the interval (0.5, 1).

plug-in estimator new estimator

Zenga distribution with α = 1.8594 and θ = 29.3769 ⇒ γ = 0.3497 and Z = 0.9603

Estimated standard errors

n min median max mean min median max mean average k

1000 0.0024 0.0037 0.0114 0.0039 0.0028 0.0046 0.1612 0.0055 94

2000 0.0019 0.0027 0.0113 0.0028 0.0022 0.0032 0.1629 0.0036 33

4000 0.0015 0.0020 0.0102 0.0020 0.0017 0.0023 0.0393 0.0024 42

Estimated coverage probabilites

n 0.9000 0.9500 0.9750 0.9900 0.9000 0.9500 0.9750 0.9900 max cov

1000 0.8694 0.9234 0.9635 0.9787 0.9187 0.9598 0.9824 0.9896 0.9973

2000 0.8773 0.9312 0.9691 0.9849 0.9229 0.9646 0.9856 0.9927 0.9986

4000 0.8802 0.9369 0.9721 0.9852 0.9204 0.9645 0.9866 0.9937 0.9995

Zenga distribution with α = 0.9068 and θ = 7.0462 ⇒ γ = 0.5244 and Z = 0.9588

Estimated standard errors

n min median max mean min median max mean average k

1000 0.0034 0.0053 0.0182 0.0058 0.0036 0.0071 0.2355 0.0076 80

2000 0.0027 0.0041 0.0159 0.0045 0.0029 0.0052 0.1098 0.0054 111

4000 0.0021 0.0031 0.0148 0.0035 0.0023 0.0037 0.0115 0.0038 138

Estimated coverage probabilites

n 0.9000 0.9500 0.9750 0.9900 0.9000 0.9500 0.9750 0.9900 max cov

1000 0.8141 0.8833 0.9314 0.9542 0.8683 0.9280 0.9655 0.9774 0.9988

2000 0.8296 0.8949 0.9414 0.9605 0.8828 0.9394 0.9735 0.9851 0.9999

4000 0.8440 0.9054 0.9457 0.9630 0.8896 0.9437 0.9789 0.9891 1.0000

Zenga distribution with α = 0.4113 and θ = 8.7133 ⇒ γ = 0.7086 and Z = 0.9887

Estimated standard errors

n min median max mean min median max mean average k

1000 0.0002 0.0023 0.0057 0.0024 0.0013 0.0046 0.0434 0.0052 187

2000 0.0000 0.0018 0.0046 0.0020 0.0012 0.0036 0.0516 0.0041 64

4000 0.0002 0.0015 0.0043 0.0016 0.0009 0.0027 0.0302 0.0032 71

Estimated coverage probabilites

n 0.9000 0.9500 0.9750 0.9900 0.9000 0.9500 0.9750 0.9900 max cov

1000 0.6555 0.7359 0.8158 0.8567 0.7544 0.7815 0.8041 0.8155 0.8503

2000 0.6598 0.7431 0.8189 0.8620 0.8402 0.8738 0.8975 0.9073 0.9403

4000 0.6723 0.7478 0.8173 0.8562 0.8809 0.9119 0.9347 0.9459 0.9799
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