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Introduction

This work concerns the study of some fundamental aspects of the geometry
of symmetric products of curves. These varieties play a very important
role in the development of the theory of algebraic curves. On one hand,
symmetric products of curves are exploited by Brill-Noether theory to study
special divisors on curves. On the other hand, they are deeply involved in
the classical theory of correspondences on curves.

We deal throughout with several problems on this topic and we mainly
focus on the case of the second symmetric product of a curve. In particular,
we treat both some classical problems - as the study of the ample cone in the
Néron-Severi group - and some attempts at extending the notion of gonality
for curves. In order to present the contents of this work we would like to
introduce some piece of notation together with our results.

Given a smooth complex projective curve C, we define its gonality as
the minimum integer d such that the curve admits a covering f : C −→ P1

of degree d on the projective line and we denote it by gon(C). If C is a
singular curve, we denote by ν : C̃ −→ C its normalization and we define
the gonality of C to be the gonality of the smooth curve C̃.

A first generalization of gonality is the notion of degree of irrationality
introduced by Moh and Heinzer in [41], which has been deeply studied by
Yoshihara (see [58], [53] and [59]). If X is an irreducible complex projective
variety of dimension n, the degree of irrationality of X is defined to be the
integer

dr(X) := min

{
d ∈ N

∣∣∣∣
there exists a dominant rational map
F : X 99K Pn of degree d

}
.

This number is clearly a birational invariant and having dr(X) = 1 is equi-
valent to rationality. Moreover, as any dominant rational map f : C 99K P1

can be resolved to a morphism, it follows that dr(C) = gon(C) and hence
the notion of degree of irrationality does provide an extension of gonality to
n-dimensional varieties.

We would like to recall that if there exists a dominant rational map
C 99K C ′ between curves, then gon(C) ≥ gon(C ′). On the other hand,

1



the existence of a dominant rational map X 99K Y between varieties of di-
mension n ≥ 2, does not lead to an analogous inequality for the degrees
of irrationality. Indeed there are counterexamples in the case of surfaces
(cf. [59] and [21]) and there are examples of non-rational threefolds that are
unirational (see for instance [20] and [31]).

Turning to symmetric products of curves, we deal with the problem of
computing the degree of irrationality of the second symmetric product C(2)

of a smooth complex projective curve C of geometric genus g. Clearly, there
is a strong connection between the existence of a dominant rational map
F : C(2) 99K P2 and the genus g of the curve C. For instance, rational
and elliptic curves are such that the degree of irrationality of their second
symmetric product is one and two respectively, whereas we shall see that if
the genus of C is g ≥ 2, then C(2) is non-rational and it does not admit a
dominant rational map on P2 of degree 2 (cf. Lemma 4.3.1).

Moreover, the degree of irrationality of the second symmetric product
seems to depend on the existence of linear series on the curve as well. In
particular, if C admits a degree d covering f : C −→ P1, it is always possible
to define a morphism C(2) −→ P2 of degree d2 by sending a point p+q ∈ C(2)

to the point f(p) + f(q) ∈ (P1)(2) ∼= P2. Hence the degree of irrationality
of the second symmetric product of a curve is bounded from above by the
square of the gonality. Furthermore, if C admits a birational mapping onto
a non-degenerate curve of degree d in P2 we may construct a dominant
rational map C(2) 99K P2 of degree

(
d
2

)
, which sends a point p + q ∈ C(2)

to the line l ∈ G(1, 2) ∼= P2 passing through the images of p and q in P2.
Moreover, it is possible to provide other dominant rational maps by using
g3
d’s as well (cf. Example 4.2.1). Thus we have the following upper bound

(see Proposition 4.2.2).

Proposition 1. Let C be a smooth complex projective curve. Let δ1 be the
gonality of C and for m = 2, 3, let δm be the minimum of the integers d such
that C admits a birational mapping onto a non-degenerate curve of degree d
in Pm. Then

dr(C(2)) ≤ min

{
δ2
1 ,

δ2(δ2 − 1)
2

,
(δ3 − 1)(δ3 − 2)

2
− g

}
.

In the case of hyperelliptic curves we prove the following (see Theorem 4.2.4).

Theorem 2. Let C be a smooth complex projective curve of genus g ≥ 2
and assume that C is hyperelliptic. Then

(i) 3 ≤ dr(C(2)) ≤ 4 when either g = 2 or g = 3;

(ii) dr(C(2)) = 4 for any g ≥ 4.
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When the curve is assumed to be non-hyperelliptic, the situation is more
subtle and it is no longer true that the degree of irrationality of C(2) equals
the square of the gonality of C for high enough genus. The following result
summarizes the lower bounds we prove on the degree of irrationality of
second symmetric products of non-hyperelliptic curves and we list them by
genus (cf. Proposition 4.2.6 and Theorem 4.2.9).

Theorem 3. Let C be a smooth complex projective curve of genus g ≥ 3
and assume that C is non-hyperelliptic. Then the following hold:

(i) if g = 3, 4, then dr(C(2)) ≥ 3;

(ii) if g = 5, then dr(C(2)) ≥ 4;

(iii) if g = 6, then dr(C(2)) ≥ 5;

(iv) if g ≥ 7, then
dr(C(2)) ≥ max { 6, gon(C) } .

Furthermore, if C is assumed to be very general in the moduli space Mg

with g ≥ 4, then
dr(C(2)) ≥ g − 1.

We point out that in Chapter 4 we shall present some examples of curves
such that dr(C(2)) does not satisfy equality in Proposition 1. It shall be
clear that the constructions of those examples do not apply to very general
curves. Moreover, under this assumption, the minimum degree we are able
to present for a dominant rational map C(2) 99K P2 is one of those in the
proposition above. Therefore we conjecture that for a curve C very general
in the moduli space Mg with g ≥ 2, the bound in Proposition 1 is actually
an equality, but Theorem 3 is at the moment our best bound.

Another attempt to extend the notion of gonality to n-dimensional va-
rieties is the following. Given an irreducible complex projective variety X,
we define the number

dg(X) := min



d ∈ N

∣∣∣∣∣∣

there exists a family E = {Et}t∈T

covering X whose generic member is
an irreducible d-gonal curve





and we may call it the degree of gonality of X. Notice that the generic
member Et is a possibly singular d-gonal curve, i.e. its normalization Ẽt

admits a degree d covering ft : Ẽt −→ P1. The degree of gonality is a
birational invariant and dg(X) = 1 if and only if X is an uniruled variety.
Moreover, dg(C) = gon(C) for any complex projective curve C.

Although this second extension of the notion of gonality appears less
intuitive and more artificial than the degree of irrationality, the degree of
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gonality has a nice behavior with respect to dominance. Namely, if there
exists a dominant rational map X 99K Y between two irreducible complex
projective varieties of dimension n, it is easy to see that dg(X) ≥ dg(Y ), as
in the one dimensional case.

We note that another proposal to extend the notion of gonality has been
recently presented in terms of pencils and fibrations (cf. [33]).

Dealing with the problem of computing the degree of gonality of the
second symmetric product C(2) of a smooth complex projective curve C,
it is easy to check that dg(C(2)) = 1 when the curve is either rational or
elliptic, and dg(C(2)) = 2 for any curve of genus two. Moreover, we prove
the following (cf. Theorem 3.2.1).

Theorem 4. Let C be a smooth complex projective curve of genus g ≥ 4.
For a positive integer d, let E = {Et}t∈T be a family of curves on C(2)

parametrized over a smooth variety T , such that the generic fiber Et is an
irreducible d-gonal curve and for any point P ∈ C(2) there exists t ∈ T such
that P ∈ Et. Then d ≥ gon(C).

For any smooth complex projective curve C, its second symmetric pro-
duct is covered by the family of curves X = {Xp}p∈C parametrized over C,
where Xp := {p + q ∈ C(2) | q ∈ C} is isomorphic to C. Hence we deduce
the following (see Theorem 3.2.2).

Theorem 5. Let C be a smooth complex projective curve of genus g ≥ 4.
Then dg(C(2)) = gon(C).

In order to prove our results, the main technique is to use holomorphic
differentials, following Mumford’s method of induced differentials (cf. [43,
Section 2]). In the spirit of [37], we rephrase our settings in terms of cor-
respondences on the product Y × C(2), where Y is an appropriate ruled
surface. A general 0-cycle of such a correspondence Γ ⊂ Y × C(2) is a
Cayley-Bacharach scheme with respect to the canonical linear series |KC(2) |,
that is, any holomorphic 2-form vanishing on all but one the points of a
0-cycle vanishes in the remaining point as well. The latter property imposes
strong conditions on the correspondence Γ, and the crucial point is to study
the restrictions descending to the second symmetric product and then to the
curve C.

A further important technique involved in the proofs is monodromy. In
particular, we consider the generically finite dominant map π1 : Γ −→ Y
projecting a correspondence Γ on the first factor, and we study the action of
the monodromy group of π1 on the generic fiber. Finally, an important role
is played by Abel’s theorem and some basic facts of Brill-Noether theory.

Another problem we treat on symmetric products of curves is the descrip-
tion of the cone Nef (C(2))R of all numerically effective R-divisors classes
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in the Néron-Severi space N1(C(2))R. This problem is reduced to estimate
the slope τ(C) of one of the rays bounding the two-dimensional convex cone
Nef (C(2))R. In [48], Ross uses a degeneration argument to prove a result
connecting the real number τ(C) for a generic curve C of genus g, with
Seshadri constants on second symmetric products of curves of genus g − 1.
Then he applies the latter result to improve the bound on τ(C) when C is
a very general curve of genus five. We follow Ross’ argument and - as an
application of Theorem 4 stated above - we give a further improvement on
the bounds on τ(C) in the cases of genus 5 ≤ g ≤ 8. In particular, we prove
the following (cf. Theorem 5.1.2).

Theorem 6. Consider the rational numbers

τ5 =
9
4

, τ6 =
32
13

, τ7 =
77
29

and τ8 =
17
6

.

Let C be a smooth complex projective curve of genus 5 ≤ g ≤ 8 and assume
that C has very general moduli. Then

τ(C) ≤ τg.

Let us now consider a smooth complex projective curve C of genus two.
The Abel map C(2) −→ J(C) is a generically finite morphism from the
second symmetric product to the two-dimensional Jacobian variety. It is
then possible to shift the problem of computing the degree of irrationality
of C(2) to J(C). The idea of constructing the examples we present in Chapter
6 comes both from the approach above, and from a joint work with Gian
Pietro Pirola and Lidia Stoppino, that deals with Galois closures of rational
coverings and Lagrangian varieties.

Let X be a smooth complex algebraic surface and consider the homo-
morphism

ψ2 :
2∧

H0(X, Ω1
X) −→ H0(X, Ω2

X).

The non-triviality of the kernel of this map leads to unexpected topological
consequences. The main classical result is the Castelnuovo-de Franchis The-
orem asserting that if there exist two non-zero forms ω1, ω2 ∈ H0(X, Ω1

X)
such that ω1 ∧ω2 6= 0 and ω1 ∧ω2 ∈ Ker ψ2, then X admits a fibration over
a curve of genus g ≥ 2. This result has been generalized by Catanese in [14].
Moreover, if ψ2 is not injective, the fundamental group of X turns out to
be a non-abelian group (see for instance [3] and [42]) and other topological
consequences have been studied in [7] in terms of topological index.

In the light of Castelnuovo-de Franchis Theorem it is interesting to study
when there exist non-trivial elements of Ker ψ2 that do not induce a fibration
on X. Some examples of this situation have been presented in [11], [13] and
[51].
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Following [7], we say that X is a Lagrangian surface if there exist a map
of degree one a : X −→ a(X) ⊂ A into an Abelian variety A of dimension
4 and a holomorphic 2-form ω ∈ H2,0(A) of rank 4 such that a∗(ω) = 0.
In that paper, the authors provide a sufficient condition for Lagrangian
surfaces to have non-negative topological index, and they conjecture that
the assertion holds for any Lagrangian surface (see [7, Conjecture 2]). We
shall present a family of examples of Lagrangian surfaces having negative
topological index, hence disproving the conjecture above. In particular, the
differential form ω shall be a non-trivial element of Ker ψ2 which does not
come from a fibration on X.

In order to produce our examples, the main point shall be to take the
Galois closure of suitable rational maps between surfaces. In [53], Tokunaga
and Yoshihara prove that the degree of irrationality of an Abelian surface
S containing a curve D of genus three is dr(S) = 3 (in particular, it could
be the case of the Jacobian variety of a genus two curve). Since D induces
a polarization of type (1,2) on the Abelian surface S, we shall follow the
study of Barth (cf. [8]), to give a detailed description of the linear pencil
induced by |D|. By opportunely blowing up S, we shall construct a degree
three covering S −→ F3 of the Hirzebruch surface F3 and we shall define the
surface X to be the Galois closure of such covering. Then we shall compute
the birational invariants of X that shall turn out to be a Lagrangian surface
with negative topological index.

Let us summarize the plan of this work. Chapter 1 has a preliminary
character. We shall recall several classical results in the theory of algebraic
curves and generalities on symmetric products of curves that will be useful
to understand the following.

In Chapter 2 we shall deal with correspondences with null trace on the
k-fold symmetric product of a smooth complex projective curve C. In order
to develop the main techniques to treat the problems of the following chap-
ters, we shall see how the existence of a correspondence with null trace on
C(k) influences the geometry of C (see Theorem 2.2.2 and Corollary 2.2.3).
In particular, these results shall descend as consequences from the study of
linear subspaces of Pn enjoying a condition of Cayley-Bacharach type (cf.
Section 2.3).

Chapter 3 is devoted to study deformations and gonality of curves lying
on second symmetric products of curves. The first result we shall present is
an extension of a result in [47] on curves lying on generic three-dimensional
Abelian varieties. Namely, we shall prove the following (see Proposition
3.1.1).

Theorem 7. Let C be a smooth complex projective curve of genus g ≥ 3 and
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assume that C is very general in the moduli space Mg. Then the Jacobian
variety J(C) contains neither rational nor hyperelliptic curves.

Clearly, under the assumption of the theorem, the second symmetric product
C(2) embeds into the Jacobian of C and hence there are neither hyperelliptic
nor rational curves lying on C(2) as well.

Then we shall turn to study the gonality of moving curves on second
symmetric products of curves. In particular, we shall discuss the degree of
gonality of C(2) and we shall prove Theorem 4 and Theorem 5 above.

Chapter 4 concerns the degree of irrationality of second symmetric pro-
ducts of curves. Initially, we shall present an overview of the known results
on the degree of irrationality of n-dimensional varieties. Then we shall fo-
cus on the case of second symmetric products of curves and we shall prove
Theorem 2 and Theorem 3 we stated above.

In Chapter 5 we shall turn to the nef cone Nef (C(2))R on the second
symmetric product of a generic curve C and we shall prove Theorem 6. The
argument of the proof is based on the main theorem in [48] together with
the techniques used by Ross, due to Ein and Lazarsfeld (see [22]).

Moreover, to be able to provide new bounds on the real number τ(C),
we shall discuss the self-intersection of moving curves on surfaces. Let X be
a smooth complex projective surface and let {(Et, xt)}t∈T be a non trivial
family of pointed curves covering X such that multxtEt ≥ m for any t ∈ T
and for some m ≥ 1. In [22] the authors prove that the self-intersection of
the general member the family is E2

t ≥ m(m − 1). Under the additional
hypothesis m ≥ 2, Xu proved that E2

t ≥ m(m− 1) + 1 (see [54]). We shall
improve the latter bound, and our result will turn out to be sharp. Namely,
we shall prove the following (see Theorem 5.2.2). We would like to note the
the same result has been independently obtained by Knutsen, Syzdek and
Szemberg in a recent paper (see [32]).

Theorem 8. Let X be a smooth complex projective surface. Let T be a
smooth variety and consider a family {(Et, xt)}t∈T consisting of a curve
Et ⊂ X through a very general point xt ∈ X such that multxtEt ≥ m for
any t ∈ T and for some m ≥ 2.
If the central fibre E0 is a reduced irreducible curve and the family is non-
trivial, then

E2
0 ≥ m(m− 1) + gon(E0).

Finally, the main result of this chapter shall follow by combining the lat-
ter theorem with Theorem 3.2.1 on the gonality of moving curves on second
symmetric products of curves.
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In Chapter 6 we shall develop examples of Lagrangian surfaces with
negative topological index. Any such a surface X shall turn out to be
provided of a holomorphic differential form ω ∈ ∧2 H0(X, Ω1

X) vanishing
on H0(X, Ω2

X) which is not induced by a fibration on X.
LetW(1, 2) denote the moduli space of smooth complex Abelian surfaces

with a polarization of type (1,2). We shall prove the following (see Theorem
6.1.4).

Theorem 9. Let S be a smooth complex Abelian surface and let L be a
line bundle on S providing a (1, 2)-polarization. Suppose further that the
pair (S,L) is general in W(1, 2). Then there exists a dominant degree three
morphism S −→ F3 from a suitable blow-up S of S to the Hirzebruch surface
F3. The minimal desingularization X of the Galois closure of the covering
is a surface of general type with invariants

K2
X = 198 c2(X) = 102 χ(OX) = 25 q = 4 pg = 28 τ(X) = −2.

Furthermore, X is a Lagrangian surface.
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Chapter 1

Generalities on symmetric
products of curves

The contents of this chapter are preliminary to the subjects we develop in
the rest of this work. In particular, we present several definitions and known
results concerning the symmetric products of curves. We omit the proofs
and we explicitly refer to the literature. We give a proof of those results of
which we were not able to find adequate references.

As there is a strong connection between the geometry of a curve and its
k-fold symmetric product, we start in Section 1 with the classical theory of
algebraic curves.

In the second Section we deal with the concept of monodromy for a ge-
nerically finite dominant morphism between varieties of the same dimension
and we give some basic definitions and results on this topic.

Section 3 concerns the Néron-Severi group of k-fold symmetric products
of curves. At first, we recall some important definitions and results on nu-
merical properties of divisors on algebraic varieties. Then we focus on sym-
metric products of projective curves by describing the numerical behavior
of particular divisors on them.

The fourth Section deals with linear series of special divisors on alge-
braic curves and some basic notions on Brill-Noether theory. Moreover, we
introduce a class of subvarieties of the symmetric product of a projective
curve induced by linear series on the curve.

Finally, in Section 5 we point out some connections between symmetric
products of curves and Grassmannians. Then, by recovering the varieties
presented in the previous section, we give a description of the canonical li-
near series on the symmetric product of a projective curve.

We shall work throughout over the field C of complex numbers. As
customary, we shall make the identification of invertible sheaves with line
bundles and of locally free sheaves with vector bundles. Furthermore, given
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a sheaf F of complex vector spaces over a topological space V , we shall set,
as usual

hi (V,F) = dimH i (V,F)

and
χ(F) =

∑
(−1)ihi (V,F) .

Given a variety X, we say that a property holds for a general point
x ∈ X if it holds on an open non-empty subset of X. Moreover, we say
that x ∈ X is a very general point if there exists a countable collection of
proper subvarieties of X such that x is not contained in the union of those
subvarieties.

1.1 Preliminaries on curves

In this preliminary section we shall recall some definitions and some impor-
tant results of the classical theory of curves that will turn out to be very
useful in the following chapters. Moreover, we shall define symmetric pro-
ducts of curves and we shall present some basic facts on these varieties. The
main reference sources shall be [1] and [26].

Throughout this work, by curve we mean a complete reduced algebraic
curve over the field of complex numbers. When we speak of smooth curve,
we always implicitly assume it to be irreducible. Given a curve C, we define
its arithmetic genus to be

pa(C) := 1− χ(OC).

Moreover, when C is assumed to be irreducible, we define the geometric
genus of C as the arithmetic genus of its normalization and we denote it by
g.

We say that a smooth curve of genus g is very general if its corresponding
point in the moduli space Mg is very general, i.e. it is outside of a countable
union of proper analytic subvarieties in Mg.

For a smooth curve C of geometric genus g, let K denote its canonical
line bundle. We recall that deg K = 2g − 2 and h0(C, K) = g. The first
result we present is the following.

Riemann-Roch Theorem. For any line bundle L on a smooth curve C
of genus g

h0(C,L)− h0(C, K L−1) = deg L− g + 1.

10



Let us consider the canonical map of C

φK : C −→ P
(
H0(C, K)

) ∼= Pg−1,

that is the holomorphic map associated to the base-point-free complete linear
series |K| of divisors of holomorphic 1-forms on C. The canonical image
φK(C) of C is a non-degenerate curve in Pg−1 and if C is non-hyperelliptic,
then φK is an embedding.

Looking at the canonical image φK(C) it is possible to restate Riemann-
Roch theorem in a geometric form. To this aim, we introduce a notation
that we will often use throughout this work. Given an effective divisor
D = p1 + . . . + pd, we denote by φK(D) the intersection of the hyperplanes
H ⊂ Pg−1 such that φK(C) ⊂ H or φ∗K(H) ≥ D. Notice that when φK is
an embedding and the pi’s are distinct points, then φK(D) is the ordinary
linear span in Pg−1 of these points.

With the notation above, Riemann-Roch theorem may be rephrased as
follows.

Geometric Version of the Riemann-Roch Theorem. If C is a smooth
curve of genus g > 1 and D ∈ Div(C) is an effective divisor, then

dim |D| = deg D − 1− dimφK(D).

In order to estimate the dimension of a given complete linear series,
another important classical result is given by

Clifford’s Theorem. Let C be a smooth curve of genus g. If D ∈ Div(C)
is an effective divisor of degree deg D ≤ 2g − 1, then

dim |D| ≤ deg D

2
.

Furthermore, if equality holds then either D is zero, D is a canonical di-
visor, or C is hyperelliptic and D is linearly equivalent to a multiple of a
hyperelliptic divisor.

Proof. See [1, p. 107].

Now, let C be a smooth curve of genus g. For an integer d ≥ 1, let us
consider the d-fold ordinary product of C

Cd = C × . . .× C

and let Sd be the d-th symmetric group. The d-fold symmetric product of C
is the quotient C(d) of the ordinary d-fold product Cd by the natural action
of Sd, that is

C(d) :=
Cd

Sd
.

11



Therefore C(d) is the projective variety of dimension d parametrizing the
effective divisors of degree d on C or, equivalently, the unordered d-tuples
of points of C. Furthermore, the d-fold symmetric product C(d) turns out
to be smooth (see [1, p. 18]).

Another important variety associated to a smooth curve C is the Jaco-
bian variety of C, which is the g-dimensional complex torus defined as

J(C) :=
H0(C,K)∗

H1(C,Z)
.

Then, by choosing a basis ω1, . . . , ωg of H0(C, K) and by fixing a point
p0 ∈ C, we define the Abel-Jacoby map

u : C(d) −→ J(C)

as

p1 + . . . + pd 7−→
(

d∑

i=1

∫ pi

p0

ω1, . . . ,

d∑

i=1

∫ pi

p0

ωg

)
.

We can now state the

Abel’s Theorem. Let D,D′ ∈ C(d) be two effective divisors of degree d
on a smooth curve C. Then D is linearly equivalent to D′ if and only if
u(D) = u(D′).

Proof. See [26, Chapter 2.2].

As customary, for d ≥ 1, let Picd(C) be the Picard Variety of C pa-
rametrizing the isomorphism classes of line bundles of degree d on C. Let
p0 ∈ C and let us define the Picard map as

v : C(d) −→ Pic0(C)
D 7−→ O(D − dp0).

Then it is possible to prove that there is an isomorphism Pic0(C) ∼= J(C)
such that for any choice of the base point p0 ∈ C, the resulting Abel and
Picard maps make the following diagram commute

C(d)

v

zzuuuuuuuuu
u

""FFFFFFFF

Pic0(C)
∼= // J(C)

In particular, given two effective divisors D,D′ ∈ C(d) of degree d on C,
they are linearly equivalent if and only if O(D) = O(D′) (See [50]).

To conclude this section we state two well known results dealing with
smooth curves mapping on another curve. The first one is

12



Riemann-Hurwitz Formula. Let C and C ′ be two smooth curves of genus
g and g′ respectively. Let f : C −→ C ′ be a non-constant holomorphic map
of degree d and let R ∈ Div(C) be the ramification divisor. Then

2g − 2 = d(2g′ − 2) + deg R .

Proof. See [26, p. 216].

When the map is defined by a linear series of degree d and dimension r,
we have the following.

Castelnuovo’s Bound. Let C be a smooth curve that admits a birational
mapping onto a non-degenerate curve of degree d in Pr. Then the genus of
C satisfies the inequality

g(C) ≤ m(m− 1)
2

(r − 1) + mε ,

where

m :=
[
d− 1
r − 1

]
and ε := d− 1−m(r − 1) .

Proof. See [1, p. 116].

1.2 Monodromy

In this section we shall briefly recall the concept of monodromy for a ge-
nerically finite dominant morphism between varieties and we shall present
some basic results on this topic. As will be clear in the following, the idea
underlying monodromy is constructing such a convenient morphism and us-
ing topological techniques to show that it is not possible to distinguish the
points -or subsets with the same cardinality- of the generic fiber.

Let X and Y be two complex algebraic varieties of dimension n and let
F : X −→ Y be a generically finite dominant morphism of degree d.

As in [29], let U ⊂ Y be a suitable Zariski open subset of X and let
V := F−1(U) ⊂ X so that the restriction F|V : V −→ U is an unbranched
covering of degree d.

Consider a point y ∈ U and let F−1(y) = {x1, x2, ..., xd} be its fiber.
For any loop γ : [0, 1] −→ U and for any point xj ∈ F−1(y) there exists a
unique lifting γ̃j of γ starting from xj . Then, by associating to any xj the
ending point γ̃j(1), we obtain a permutation σγ ∈ Sd. Since σγ depends on
the homotopy class of γ and the group Aut

(
F−1(y)

)
of the automorphisms

13



of the fiber is isomorphic to the d-th symmetric group Sd, we may define
the homomorphism

ρ : π1(U, y) −→ Aut
(
F−1(y)

) ∼= Sd

γ 7−→ σγ

which is the monodromy representation of the fundamental group π1(U, y).
In particular, we define the monodromy group M(F ) of F to be the image
of the above homomorphism.

Equivalently, it is possible to define the monodromy group of F as fol-
lows. The function field K(X) is an algebraic extension of K(Y ) of degree
d. Let L denote the normalization of the extension K(X)/K(Y ) and let
Gal(L/K(Y )) be the Galois group of L/K(Y ), that is the group of the
automorphisms of the field L fixing every element of K(Y ). Then the mo-
nodromy group M(F ) and the Galois group Gal(L/K(Y )) are isomorphic
(see [29, p. 689]). In particular, this implies that the monodromy group of
F is independent of the choice of the Zariski open set U .

For a generic point y ∈ Y , the monodromy group of F is a subgroup of
Aut

(
F−1(y)

)
and hence it acts on the fiber F−1(y). Furthermore, we have

the following.

Lemma 1.2.1. If F : X −→ Y be a generically finite dominant morphism
between two irreducible varieties of the same dimension. Then for the generic
point y ∈ Y , the action of the monodromy group M(F ) on the fiber F−1(Y )
is transitive.

Proof. To see this fact we argue as in [38, Lemma 4.4 p.87]. With the
notations above, let xi, xj ∈ F−1(y). As X is assumed to be irreducible, it
is possible to chose the Zariski open set U ⊂ Y such that V = F−1(U) is
connected. Hence we may find a path γ̃ on V starting at xi and ending at
xj . Therefore its image γ = F ◦ γ̃ on U is a loop with base point y and
σγ ∈ M(F ) is a permutation sending i to j.

Roughly speaking, the statement of the lemma may be rephrased by
saying that the points of the fiber over a generic point are undistinguishable.
We mean the following. Consider a generic point y ∈ Y and suppose that a
point xi ∈ F−1(y) enjoys some special property. Suppose further that as we
vary continuously the point y on a suitable open subset U ⊂ Y , that special
property is preserved as we follow the correspondent point of the fiber. Then
for any loop γ ∈ π1(U, y), we have that the ending point of the lifting γ̃ of γ
starting from xi must enjoy the same property. Hence the previous lemma
assures that there is no way to distinguish a point of the fiber over a generic
y ∈ Y from another for enjoying a property as above.

Analogously, when the action of the monodromy group M(F ) is m-times
transitive - i.e. it acts transitively on the set of ordered m-tuples of points
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of F−1(y) - the subsets of F−1(y) consisting of m points can not enjoy some
distinguishing property varying uniformly on a convenient Zariski open sub-
set of Y .

The following theorem descends from an argument of this type.

General Position Theorem. Let C ⊂ Pr be a non-degenerate - possibly
singular - curve of degree d. Then a general hyperplane meets C at d points
any r of which are linearly independent.

Proof. See [1, p. 109].

In the following chapters we often deal with rational dominant maps of
finite degree between irreducible varieties of the same dimension. So, it is
important to note that the assumption we made on F of being a generically
finite dominant morphism can be weakened. Namely, the monodromy group
of a map F is well-defined even in case F : X 99K Y is a generically finite
dominant rational map of degree d and hence all the results presented still
hold. To see this fact, we recall that such a map still induces a field ex-
tension K(X)/K(Y ) of degree d. On the other hand, one can just observe
that it is always possible to choose a Zariski open set U ⊂ Y such that the
restriction of F to F−1(U) is an unbranched covering of degree d.

1.3 Divisors on C(k) and the Néron-Severi group

This section concerns the Néron-Severi group of symmetric products of
curves. To start we shall recall some important definition and results on
numerical properties of divisors on algebraic varieties. Then we shall focus
on the k-fold symmetric product of a smooth curve C: we shall define some
particular divisors on C(k) and we shall recall their main numerical behavior.
The main reference source shall be [35] for the first part of this section and
[1, Chapter VIII] for the second one.

Let X be a complete irreducible algebraic variety over the field of com-
plex numbers.

We recall that two Cartier divisors D1, D2 ∈ Div(X) are said to be
numerically equivalent if (D1 · C) = (D2 · C) for every irreducible curve
C ⊂ X.

Then we define the Néron-Severi group of X as the quotient group
N1(X)Z of numerical equivalence classes of divisor on X. In particular,
it turns out to be a free abelian group of finite rank. We denote by ρ(X) its
rank and we call it the Picard number of X.
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An element D of the real vector space DivR(X) := Div(X) ⊗ R is said
to be a R-divisor on X and it is represented by a finite sum D =

∑
aiDi

where ai ∈ R and Di ∈ Div(X). By linearity, the intersection product and
numerical equivalence extend to R-divisors and we denote by N1(X)R the
resulting vector space. We say that a R-divisor D is ample if it can be ex-
pressed as a finite sum D =

∑
aiDi where ci > 0 and Di is an ample Cartier

divisor for any i.

Now, let us assume that X is a complex projective variety. Under this
assumption we have an important numerical characterization of ampleness.

Nakai-Moishezon criterion. Let D be a R-divisor on an irreducible com-
plex projective X variety. Then D is ample if and only if

(
Ddim V · V )

> 0
for every irreducible subvariety V ⊂ X.

Proof. See [12] or [35, Theorem 2.3.18].

As a consequence of this theorem we have that the ampleness of a R-
divisor on X depends only from its numerical equivalence class. Hence we
define the ample cone of X to be the convex cone Amp(X)R ⊂ N1(X)R of
all ample R-divisors classes on X.

A R-divisor D is said to be nef - or numerically effective - if (D · C) ≥ 0
for every curve C ⊂ X. As nefness depends just on a numerical condition,
we can define the convex cone Nef(X)R ⊂ N1(X)R of all nef R-divisors
classes on X, which is said the nef cone of X. We have the following.

Kleiman’s Theorem. Let X be an irreducible complex projective variety.
If D is a nef R-divisor on X, then

(
Ddim V · V ) ≥ 0 for every irreducible

subvariety V ⊂ X.

Proof. See [12] or [35, Theorem 1.4.9].

Furthermore, by the latter theorem it is possible to prove that the nef
cone Nef(X)R is the closure of the ample cone Amp(X)R in the Néron-
Severi space N1(X)R of X.

To conclude this discussion on numerical properties of R-divisors we state
a generalization of the well known Hodge index theorem (see [30, Theorem
1.9 p. 364]).

Generalized inequality of Hodge type. Let X be an irreducible complex
projective variety of dimension n and let D1, . . . , Dn be nef R-divisors on
X. Then

Dn
1 . . . Dn

n ≤ (D1 · . . . ·Dn)n .

Proof. See [35, Theorem 1.6.1].
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Now, we wold like to focus on symmetric products of curves. To this aim,
let us consider a smooth irreducible complex projective curve C of genus g
and for an integer k ≥ 2, let C(k) be its k-fold symmetric product.

Our first task is to define some important divisors on C(k). As the k-fold
symmetric product is a smooth projective variety, there is an isomorphism
between the groups of Cartier and Weil divisors, then we will make no
distinction between them hereafter (cf. [23, Chapter 2.1]).

Given a point p ∈ C, we define the divisor Xp as

Xp :=
{

p + Q |Q ∈ C(k−1)
}

.

Therefore Xp is the image of the inclusion map ιp : C(k−1) −→ C(k) sending
a point Q ∈ C(k−1) to the point p + Q ∈ C(k). We note that the numerical
equivalence class of Xp is independent of p and hence we simply denote by
x ∈ N1(C(k))Z such class.

Then we consider the diagonal map

dk : C(k−2) × C −→ C(k)

(Q, q) 7−→ Q + 2q

and we define the diagonal divisor ∆k to be the image of the diagonal map,
that is

∆k :=
{

Q + 2q | q ∈ C and Q ∈ C(k−2)
}

.

We denote by δ ∈ N1(C(k))Z the numerical equivalence class of ∆k.
Finally, let J(C) be the Jacobian variety of C and let us consider the

Abel-Jacobi map u : C(k) −→ J(C). Let Θ be the theta divisor on J(C) and
let θ be its class in the Néron-Severi group of the Jacobian. For simplicity,
we denote again by θ the numerical equivalence class u∗θ ∈ N1(C(k))Z.

With this notation, we have the following.

Lemma 1.3.1. The numerical equivalence class δ of the diagonal ∆k in
C(k) is given by

δ = 2 ((k + g − 1)x− θ) .

Proof. It is a special case of [1, Proposition 5.1 p.358].

It is easy to see that the ∆k is divisible by 2 and hence we can consider
the numerical equivalence class of ∆k/2 (see for instance [44]). Then we
have the following result on the Néron-Severi group of a generic curve of
genus g.

Lemma 1.3.2. Let C be a smooth reduced complex projective curve of genus
g and assume C very general in the moduli space Mg. Then the Néron-
Severi group N1(C(k))Z is generated by the numerical equivalence classes x
and δ

2 .
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Proof. See [1, p.359].

It follows that for any divisor D on C(k), its numerical equivalence class
can be expressed in the form

[D] = (a + b)x− b
δ

2
∈ N1(C(k))Z

for some real numbers a, b.

To conclude, we note that in Sections 5.1 and 5.3 we shall deal with
the problem of bounding the nef cone of the second symmetric product of
very general curves. Then we would like to recall some simple facts on
intersection of numerical equivalence classes on C(2).

If the curve C has genus g, the intersection numbers of the classes x and
δ
2 of N1(C(2))Z are

(x · x) = 1,
(δ

2
· δ

2

)
= 1− g and

(
x · δ

2

)
= 1.

Thus the intersection between divisor classes spanned by x and δ
2 is given

by ((
(a + b)x− b

δ

2

)
·
(
(m + n)x− n

δ

2

))
= am− bn g.

1.4 Subvarieties of the symmetric product induced
by linear series on the curve

In this section we shall focus on linear series on curves. Initially, we shall
deal with the varieties of special linear series on a curve. Then we shall in-
troduce some subvarieties of the k-fold symmetric product of a curve C that
are induced by linear series on C. We shall recall some results on them and
in the next section we shall see that some of these subvarieties are canonical
divisors on C(k).

Let C be a smooth irreducible projective curve of genus g. To start, we
follow [1, Chapter IV] to recall three kinds of varieties by a set-theoretical
description.

To this aim, let d > r ≥ 0 be two integer. The first variety we introduce
is Cr

d :=
{
D ∈ C(d) | dim |D| ≥ r

}
, that is the subvariety of C(d) parametri-

zing effective divisors on C moving in a linear series of dimension at least r.
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The second variety is given by

W r
d (C) :=

{
|D| ∈ Picd(C) | deg |D| = d and dim |D| ≥ r

}

and parametrizes the complete linear systems on C of degree d and di-
mension at least r. The following results provides an upper bound on the
dimension of W r

d (C).

Martens’ Theorem. Let C be a smooth curve of genus g ≥ 3. Let d be an
integer such that 2 ≤ d ≤ g− 1 and let r be an integer such that 0 < 2r ≤ d.
Then if C is not hyperelliptic

dimW r
d (C) ≤ d− 2r − 1.

If C is hyperelliptic
dimW r

d (C) ≤ d− 2r.

Proof. See [1, p. 109].

On the other hand, the dimension of W r
d (C) is bounded from below by the

Brill-Noether number

ρ(g, r, d) := g − (r + 1)(g − d + r)

and, when C is a very general curve, we have dimW r
d (C) = ρ(g, r, d).

Finally, we define the variety Gr
d(C) of linear series on C of degree d and

dimension exactly r, whose elements are said to be gr
d’s. Then if D ∈ Gr

d,
there exist a complete linear series L of degree d and a r-dimensional vector
space V ⊂ H0(C, L) such that D = P(V ). Furthermore, notice that any
complete D ∈ Gr

d can be thought as an element of W r
d .

So we may associate to any gr
d a subvariety of the k-fold symmetric

product as follows.

Definition 1.4.1. Let d ≥ k > r be some integers and let D be a gr
d on C.

The cycle of all divisors on C that are subordinate to the linear series D is
defined to be

Γk(D) := {P ∈ C(k) |E − P ≥ 0 for some E ∈ D}.
Remark 1.4.2. We would like to note that if D is not a base-point-free gr

d

and p ∈ C is a base point, then Γk(D) contains the divisor Xp = p + C(k−1)

as a component, that is p+p2+. . .+pk ∈ Γk(D) for any p2+. . .+pk ∈ C(k−1).
To see this fact, let D = P(V ), where V ⊂ H0(C, L) has dimension r and
L ∈ W r

d . For any q ∈ C, the set {s ∈ V | s(q) = 0} is a hyperplane of
P(V ) ∼= Pk−1. As the intersection of the k− 1 hyperplanes associated to the
pi’s is non-empty, there exists a non-zero section s ∈ V vanishing at each
pi. If p is a base point of D, then s(p) = 0 and p + p2 + . . . + pk ∈ Γk(D).

19



Notice that for any D ∈ Gr
d(C), the variety Γr+1(D) is a divisor on

C(r+1). Furthermore, the following holds.

Lemma 1.4.3. The map D 7−→ Γk(D) is a proper morphism from Gk−1
d to

the Hilbert scheme of (k − 1)-dimensional subvarieties on C(k).

Proof. Let us consider a family {Dt}t∈T of gk−1
d ’s on C parametrized by a

smooth curve T (see [1, p.182-184]) with 0 ∈ T . We have to check that
Γk(D0) is the (flat) limit of the Γk(Dt)’s as t → 0.

Let Ck be the k-fold ordinary product of C and let us consider the natural
quotient map π : Ck −→ C(k). Then we define the (k − 1)-dimensional
subvarieties Γ̃k(Dt) := π∗Γk(Dt) of Ck, i.e. they are given by the points
(p1, . . . , pk) ∈ Ck such that E− p1− . . .− pk ≥ 0 for some E ∈ Dt. To prove
the statement is equivalent to show that Γ̃k(Dt) −→ Γ̃k(D0)’s as t → 0.

For any t ∈ T , let Lt ∈ W k−1
d and Vt ⊂ H0(C,Lt) such that Dt = P(Vt).

Moreover, let U ⊂ T be an open set with 0 ∈ U and for any t ∈ U , let
{s1,t, . . . , sk,t} be a basis of Vt such that si,t → si,0 when t → 0. For
j = 1, . . . , k let πj : Ck −→ C be the projection on the j-th factor and
for any t ∈ U let us define the rank k vector bundle on Ck

Mt :=
k⊕

j=1

π∗j Lt

and the sections

Si,t := π∗1si,t ⊕ . . .⊕ π∗ksi,t ∈ H0(Ck,Mt) for i = 1, . . . , k.

Furthermore, let us consider the line bundle
∧k Mt on Ck and the section

St := S0,t ∧ . . . ∧ Sr,t ∈ H0(Ck,
∧k Mt). Therefore it is easy to see that for

any t ∈ U we have
Γ̃k(Dt) = (St)0 −

⋃

a,b

∆a,b ,

where (St)0 is the zero divisor of the section St and ∆a,b is the (a, b)-diagonal
of Ck, with a, b = 1, . . . , k and a 6= b. Clearly, St → S0 when t → 0 and
hence Γ̃k(D0) is the flat limit at 0 of the family of divisors Γ̃k(Dt).

In order to conclude this discussion, we state a lemma to calculate the
fundamental class of a variety induced by a gr

d.

Lemma 1.4.4. Let d ≥ k > r be some integers and let D be a linear series
of degree d and dimension r on C. Then the fundamental class γk(D) of the
cycle Γk(D) in C(k) is given by

γk(D) =
k−r∑

i=0

(
d− g − r

i

)
xi θk−r−i

(k − r − i)!
.

Proof. See [1, Lemma 3.2 p.342].
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1.5 Grassmannians and symmetric products

In this section we would like to recall some connection between Grassmann
varieties and symmetric products of curves. Our purpose is to present some
canonical divisors on the k-fold symmetric product.

To start, we briefly recall some basic definitions and facts on Grassman-
nians (see e.g. [26, Chapter 1 Section 5] or [28, Lecture 6] for details).

Let n ≥ k be some positive integer. The Grassmanniann G(k, n) is the
k(n − k)-dimensional variety parametrizing the k-dimensional vector sub-
spaces of Cn. Equivalently, G(k, n) could be thought as the variety of the
(k−1)-dimensional planes in Pn−1; in this case we denote it byG(k−1, n−1).

Let Λ ∈ G(k, n) be a k-dimensional vector subspace of Cn and let
{v1, . . . , vk} ∈ Cn be a basis of Λ. Then we may define the Plücker em-
bedding as

p : G(k, n) −→ P
(∧k Cn

) ∼= P(n
k)−1

Λ 7−→ v1 ∧ . . . ∧ vk .

Notice that we can represent the vector space Λ ⊂ Cn by a k × n matrix
whose rows are the vectors vi’s. Then the Plücker coordinates in P(n

k)−1 are
just the determinants of the k × k minors of such matrix.

Let V be a flag in Cn, that is V = (V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn) where any Vt

is a t-dimensional subspace of Cn.

Definition 1.5.1. Let a1, . . . , ak be a non-increasing sequence of integers
such that 0 ≤ ai ≤ n − k and let a = (a1, . . . , ak). Then we define the
Schubert cycle σa(V ) as

σa(V ) := {Λ ∈ G(k, n) | dim (Λ ∩ Vn−k+i−ai) ≥ i} .

Then, by setting bj = aj+1 for j = 0, . . . , k − 1 and by thinking the Vt’s as
(t− 1)-planes in Pn−1, we have

σa(V ) =
{
Λ ∈ G(k − 1, n− 1) | dim (Λ ∩ Vn−k+j−bj

) ≥ j
}

.

We remark that the Schubert cycles are subvarieties of the Grassmann va-
riety. Moreover, any Schubert cycle of the form

σ1(V ) = σ1(Vn−k) = {Λ ∈ G(k, n) | dim (Λ ∩ Vn−k) ≥ 1} .

maps into a hyperplane section of p (G(k, n)) ⊂ P(
n
k)−1. Therefore it is a

divisor on G(k, n) and σ1(V ) ∈ |OG(k,n)(1)|.
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Now, let C be a smooth projective curve of genus g ≥ 2 and let

φK : C −→ Pg−1

be the map associated to the canonical linear series |KC |. Moreover, consider
an integer k with 2 ≤ k ≤ g−1 and let C(k) be the k-fold symmetric product
of C. We recall that φK(C) is a non-degenerate curve in Pg−1, whose degree
is equal to g− 1 if C is hyperelliptic and 2g− 2 otherwise. Then by General
Position Theorem, we have that the general point p1 + . . . + pk ∈ C(k) is
such that φK(p1), . . . , φK(pk) are linearly independent points in Pg−1. Thus
we can define the rational map

ϕk : C(k) 99K G(k − 1, g − 1)

given by
p1 + . . . + pk 7−→ φK(p1) + . . . + φK(pk),

where φK(p1) + . . . + φK(pk) denote the linear span of the φK(pi)’s in Pg−1.

Remark 1.5.2. Let us consider the Abel map u : C(k) −→ J(C) and let
G : C(k) −→ T C(k) be the Gauss map sending a point P = p1+. . .+pk ∈ C(k)

to the tangent space TP C(k). If the pi’s are distinct, the image u∗
(
TP C(k)

)
of the derivatives of u is the linear span of the φK(pi)’s in Pg−1. Thus
the map ϕk above could be obtained by composing the Gauss map and the
derivatives of Abel map. As customary, we refer to ϕk as the Gauss map of
the k-fold symmetric product (cf. [17] and [18]).

Now, let us consider the canonical linear system |KC(k) | on the k-fold
symmetric product and let

ψk : C(k) −→ P
(
H0(C(k),KC(k))

)

be the associated map. The following holds.

Lemma 1.5.3. H0(C(k),KC(k)) ∼= ∧k H0(C, KC).

Proof. See [39].

In particular, P
(
H0(C(k),KC(k))

) ∼= P
(∧k H0(C,KC)

) ∼= PN and it is easy
to check that the diagram

C(k)

ϕk &&NNNNNN
ψk // PN

G(k − 1, g − 1)
p

88qqqqqqqqqqq

is commutative, where we set N :=
(
g
k

)− 1. Then we have the following.
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Lemma 1.5.4. Let C be a smooth projective curve of genus g ≥ 2. For
any L ∈ G(g − k − 1, g − 1), let πL : φK(C) 99K Pk−1 be the projection from
the (g − k − 1)-plane L of the canonical image of C in Pg−1 and let DL be
the associated linear series on C - not necessarily base-point-free - of degree
2g − 2 and dimension k − 1. Then the effective divisor

Γk(DL) = {P ∈ C(k) |E − P ≥ 0 for some E ∈ DL}

is a canonical divisor of C(k), that is Γk(DL) ∈ |KC(k) |.
Proof. Let L ∈ G(g−k−1, g−1) and let σ1(L) ⊂ G(k−1, g−1) be the corre-
sponding Schubert cycle. Since |KC(k) | = ψ∗k |OPN (1)| = ϕ∗k |OG(k−1,g−1)(1)|
and the Plücker embedding maps σ1(L) into a hyperplane section, it suffices
to prove that ϕ∗k σ1(L) = Γk(DL).

Let ω1, . . . , ωg ∈ H0(C,KC) be a basis and let φK : C −→ Pg−1 be the
canonical map. Without loss of generality, let L ⊂ Pg−1 be the (g − k − 1)-
plane given by x1 = . . . = xk = 0 and let πL be the projection from L on
the (k − 1)-plane xk+1 = . . . = xg = 0. Clearly, φ∗K(xi) = ωi for any i and
DL = P(VL), where VL ⊂ H0(C,KC) is the vector subspaces generated by
ω1, . . . , ωk.

So, let Λ ⊂ G(k − 1, g − 1) and let p1 + . . . + pk ∈ ϕ∗k(Λ) ⊂ C(k). If one
of the pi’s is a base point of DL - i.e. L contains one of the φK(pi)’s - then
the assertion is straightforward by Remark 1.4.2.

On the other hand, suppose that none of the pi’s is a base point of D.
Then Λ ∈ σ1(L) if and only if there exist λ1, . . . , λk ∈ C not all zero such
that λ1ωj (φK(p1)) + . . . + λkωj (φK(pk)) = 0 for all j = 1, . . . , k. This is
equivalent to say that there exists a non-zero section ω = µ1ω1+. . .+µkωk ∈
VL vanishing at the pi’s, that is p1 + . . . + pk ∈ DL.

In particular, with the notation above, we have that a generic point
p1 + . . . + pk ∈ C(k) lies on the divisor Γk(DL) if and only if the linear span
of the φK(pj) in Pg−1 is a point of the Schubert cycle σ1(L).

To conclude, we compute the numerical equivalence class of canonical
divisors on C(k). By setting d = 2g − 2 and r = k − 1 in the formulas of
Lemma 1.3.1 and Lemma 1.4.4, we have

γk(DL) = (2g − 2)x− δ

2

for any L ∈ G(g−k−1, g−1). Hence this is the numerical equivalence class
in N1(C(k)) of any canonical divisor on C(k).
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Chapter 2

Correspondences with null
trace and symmetric
products of curves

In this chapter we consider a smooth projective curve C of genus g and
its k-fold symmetric product C(k) with 2 ≤ k ≤ g − 1. Our aim is to
study the geometry of correspondences with null trace on Y ×C(k) for some
projective k-dimensional integral variety Y . The techniques and the results
of this chapter will be very useful to treat the more interesting problems of
Chapter 3 and Chapter 4.

In the fundamental paper [43], Mumford starts from Severi’s idea of using
regular 2-forms to the study of rational equivalence of 0-cycles on surfaces.
In [37], Lopez and Pirola use these techniques to study correspondences on
smooth surfaces in P3 and linear series on families of curves lying on these
surfaces. We start by arguing in a analogous way.

The first Section deals with preliminaries on correspondences. We follow
[43] and [37] to define the Mumford’s trace map and to recall some results
on correspondences with null trace on smooth varieties.

Section 2 is devoted to the study of correspondences on symmetric pro-
ducts of curves. If Γ ⊂ Y × C(k) is a correspondence of degree d ≥ 2 with
null trace, it is possible to define a rational map Y 99K C(kd). For a ge-
neral point y ∈ Yreg let p1 + . . . + pkd ∈ C(kd) be its image. Denoting by
φK : C −→ Pg−1 the canonical map of C, we prove that the linear span of
the φK(pi)’s has dimension lower than [kd

2 ] (see Theorem 2.2.2). Then we
deduce some consequences on the existence of special linear series on C (cf.
Corollary 2.2.3) and we present some examples of correspondences with null
trace on C(k).

In the last Section, we turn to linear subspaces of Pn satisfying a con-
dition of Cayley-Bacharach type. We note that the results of the second
Section descend from the main theorem of this one. In particular, we shall
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prove the following fact. Let Λ1, . . . ,Λd ⊂ Pn be some (k − 1)-dimensional
planes such that for every i = 1, . . . , d and for any (n − k)-plane L ⊂ Pn

intersecting Λ1, . . . , Λ̂i, . . . ,Λd, we have Λi∩L 6= ∅ too. Then the linear span
of the Λi’s has dimension lower than [kd

2 ] (cf. Theorem 2.3.2).

2.1 Mumford’s trace map and correspondences
with null trace

In this section we recall the basic properties of Mumford’s induced differen-
tials and their applications to the study of correspondences with null trace.

Let X and Y be two projective varieties of dimension n, with X smooth
and Y integral.

Definition 2.1.1. A correspondence of degree d on Y × X is a reduced
n-dimensional variety Γ ⊂ Y × X such that the projections π1 : Γ −→ Y ,
π2 : Γ −→ X are generically finite dominant morphisms and deg π1 = d.
Moreover, if deg π2 = d′ we say that Γ is a (d, d′)-correspondence.
If Y ′ is an integral n-dimensional variety and Γ′ ⊂ Y ′ ×X is another corre-
spondence of degree d, we say that Γ and Γ′ are equivalent if there exists a
birational map f : Y ′ −→ Y such that Γ′ = (f × idX)−1(Γ).

So, let Γ ⊂ Y × X be a correspondence of degree d. Let us denote by
Xd = X × . . . × X the d-fold ordinary product of X and, for i = 1, . . . , d,
let pi : Xd −→ X be the projection map. Let Sd denote the d-th symmetric
group and let us consider the d-fold symmetric product X(d) = Xd/Sd of X
together with the quotient map π : Xd −→ X(d).

Then we define the set U := {y ∈ Yreg | dimπ−1
1 (y) = 0} and the mor-

phism
γ : U −→ X(d)

given by γ(y) 7−→ P1 + . . . + Pd, where π−1
1 (y) = {(y, Pi) | i = 1, . . . , d}.

By using Mumford’s induced differentials (cf. [43, Section 2]), we want
to define the trace map of γ.

To this aim, we consider a holomorphic n-form ω ∈ H0(X, Ωn
X) and the

(n, 0)-form

ω(d) :=
d∑

i=1

p∗i ω ∈ Hn,0(Xd),

which is invariant under the action of Sd. Thus for any smooth variety W
and for any morphism f : W −→ X(d), there exists a canonically induced
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(n, 0)-form ωf on W (see [43, Section 2]). In particular, we define the
Mumford’s trace map of γ as

Trγ : Hn,0(X) −→ Hn,0(U)
ω 7−→ ωγ

.

Another way to define the trace map of γ is the following. Let us consider
the sets V := {y ∈ U |π−1

1 (y) has d distinct points} and

X
(d)
0 := π


Xd −

⋃

i,j

∆i,j


 ,

where ∆i,j is the (i, j)-diagonal of Xd, with i, j = 1, . . . , d and i 6= j. More-
over, let us define the map

δd : Hn,0(X) −→ Hn,0(X(d)
0 )

ω 7−→ π∗(ω(d))

i.e. ω(d) is thought as a (n, 0)-form on X
(d)
0 . Then Imγ|V ⊂ X

(d)
0 and the

following holds (cf. [37, Proposition 2.1] and [21]).

Proposition 2.1.2. Trγ = γ∗|V ◦ δd.

So the above result gives an equivalent way to define the Mumford’s trace
map of γ.

To conclude this section we state a proposition on correspondence with
null trace which plays a fundamental role to prove the results in [21] and
[37]. To start, we recall the following definition (cf. [27]).

Definition 2.1.3. Let X be a smooth projective variety of dimension n
and let D be a complete linear system on X. We say that the 0-cycle
P1 + . . . + Pr ⊂ X(r) satisfies the Cayley-Bacharach condition with respect
to D if for every i = 1, . . . , r and for any effective divisor D ∈ D passing
through P1, . . . , P̂i, . . . , Pr, we have Pi ∈ D.

The following result shows that the property of having null trace of a
given correspondence Γ ⊂ Y ×X imposes a strong condition on the fibers of
the map π1 : γ −→ Y . In [37] it is presented in the case of correspondences
of surfaces, but it is still true when X and Y are n-dimensional varieties and
the proof follows the same argument (see for instance [21]).

Proposition 2.1.4. Let X and Y be two projective varieties of dimension
n, with X smooth and Y integral. Let Γ be a correspondence of degree d
on Y × X with null trace. Let y ∈ Yreg such that dimπ−1

1 (y) = 0 and let
π−1

1 (y) = {(y, Pi) ∈ Γ | i = 1, . . . , d} be its fiber. Then the 0-cycle P1+. . .+Pd

satisfies the Cayley-Bacharach condition with respect to |KX |, that is for
every i = 1, . . . , d and for any effective canonical divisor KX containing
P1, . . . , P̂i, . . . , Pd, we have Pi ∈ KX .
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We give a sketch of the proof which is based on interpreting locally what
having null trace means. Let Z = γ(V ) and consider a holomorphic form
ω ∈ Hn,0(X). Then one can see that Trγ(ω) = 0 if and only if δd(ω)|Z = 0.
Let z = P1 + . . . + Pd be a general point on Z and let ωPi :

∧n TPiX −→ C
be the linear form induced by ω at Pi. Then for every u ∈ ∧n TzX

(d)
0

∼=∧n
(⊕d

i=1 TPiX
)
, with u = u1∧ . . .∧un and uj = (vj1, . . . , vjd) one has that

δd(ω)(z)(u) =
∑d

i=1 ωPi(v1i ∧ . . . ∧ vni). Suppose that P1, . . . , P̂k, . . . , Pd lie
on the canonical divisor defined by ω, that is ωPi = 0 for any i 6= k. As Γ has
null trace, δd(ω)(z)(u) = ωPk

(v1k∧ . . .∧vnk) = 0. Finally, being v1k, . . . , vnk

arbitrary on TPk
X, one concludes that ωPk

= 0 as well.

2.2 Correspondences with null trace and symme-
tric products of curves

In this section we shall prove some results connecting the existence of a cor-
respondence with null trace on Y × C(k) and the geometry of the curve C,
for some k-dimensional variety Y . Then we shall present some examples of
correspondences with null trace on the k-fold symmetric product of C.

Let C be a smooth projective curve of genus g and let C(k) be its k-fold
symmetric product, with 2 ≤ k ≤ g−1. Our first task is to give a geometric
interpretation of the existence of a correspondence with null trace on C(k).

To this aim, let Y be a projective integral variety of dimension k and let
Γ ⊂ Y ×C(k) be a correspondence of degree d ≥ 2 with null trace. We recall
that the map π1 : Γ −→ Y is defined to be the restriction of the natural
projection map on Y and it is a generically finite dominant morphism of
degree d. Consider a generic point y ∈ Yreg and let

π−1
1 (y) = {(y, Pi) ∈ Y × C(k) | i = 1, . . . , d}

be its fiber, where Pi = pi1 + . . . + pik for i = 1, . . . , d. Proposition 2.1.4 as-
sures that the 0-cycle P1 + . . .+Pd satisfies the Cayley-Bacharach condition
with respect to the canonical linear series |KC(k) | on C(k), that is for every
i = 1, . . . , d and for any effective canonical divisor D ∈ |KC(k) | containing
P1, . . . , P̂i, . . . , Pd, we have Pi ∈ D.

Now, let φK : C −→ Pg−1 be the canonical map of C. Moreover, for
any (g − k − 1)-plane L ⊂ Pg−1, let us denote by πL : φK(C) 99K Pk−1 the
projection map from L of the canonical image of C in Pg−1 and let DL

denote the associated linear series on C. By Lemma 1.5.4 we have that the
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effective divisor

Γk(DL) := {P ∈ C(k) |E − P ≥ 0 for some E ∈ DL}
is canonical on C(k). Therefore by Cayley-Bacharach condition we have
that the 0-cycle P1 + . . . + Pd is such that for every i = 1, . . . , d and for
any L ∈ G(g − k − 1, g − 1) with P1, . . . , P̂i, . . . , Pd ∈ Γk(DL), we have
Pi ∈ Γk(DL).

Then consider the Gauss map ϕk : C(k) 99K G(k − 1, g − 1) sending a
point P = p1 + . . .+ pk to the linear span of the φK(pj)’s in Pg−1. We recall
that for any (g−k−1)-plane L ⊂ Pg−1 we have that P ∈ Γk(DL) if and only
if the (k − 1)-plane ϕk(P ) intersects L, that is ϕk(P ) ∈ σ1(L) (cf. Section
1.5).

Thus for every i = 1, . . . , d and for any L ∈ G(g−k−1, g−1) intersecting
the (k − 1)-planes ϕk(P1), . . . , ϕ̂k(Pi), . . . , ϕk(Pd), we have ϕk(Pi) ∩ L 6= ∅.
In particular, the ϕk(Pi)’s satisfy a condition of Cayley-Backarach type with
respect to (g − k − 1)-planes.

The following theorem provides a bound on the dimension of the linear
span in of (k − 1)-planes in Pn enjoying the property above. The proof will
be given in the next section.

Theorem 2.2.1. Let Λ1, . . . , Λd ⊂ Pn be linear subspaces of dimension
(k − 1) with the property that for every i = 1, . . . , d and for any (n − k)-
plane L ⊂ Pn intersecting Λ1, . . . , Λ̂i, . . . ,Λd, we have Λi ∩ L 6= ∅ too.
Then the dimension of their linear span S = Span(Λ1, . . . , Λd) in Pn is
s ≤ [

kd
2

]− 1.

It follows that the linear span of the (k − 1)-planes ϕk(P1), . . . , ϕk(Pd)
in Pg−1 has dimension lower than

[
kd
2

]
. Moreover, we recall that for any

point Pi = pi1 + . . . + pik ∈ C(k), the (k − 1)-plane ϕk(Pi) is defined to be
the linear span of φK(pi1), . . . , φK(pik) ∈ Pg−1. Hence we conclude that the
linear span of all the φK(pij)’s has dimension bounded by

[
kd
2

]− 1.

By summing up, we proved the following.

Theorem 2.2.2. Let C be a smooth projective curve of genus g and let Y
be a projective integral variety of dimension 2 ≤ k ≤ g − 1. Let Γ be a
correspondence of degree d ≥ 2 on Y × C(k) with null trace. For a generic
point y ∈ Yreg, let π−1

1 (y) = {(y, Pi) ∈ Γ | i = 1, . . . , d} be its fiber, where
Pi = pi1 + . . . + pik ∈ C(k) for i = 1, . . . , d.
Then the linear span of all the φK(pij)’s in Pg−1 has dimension

s ≤
[
k d

2

]
− 1.

29



As we anticipated, the latter result will turn out to be very useful to prove
some results in Chapter 3 and Chapter 4 on second symmetric products of
curves. Hence we shall apply Theorem 2.2.2 in the simplified version with
k = 2:

Given a correspondence Γ ⊂ Y × C(2) of degree d with null trace, for any
generic point y ∈ Yreg with fiber π−1

1 (y) = {(y, pi1 + pi2) ∈ Γ | i = 1, . . . , d},
the linear span of all the φK(pij)’s in Pg−1 has dimension s ≤ d− 1.

As an immediate consequence of Theorem 2.2.2 we have the following
result connecting the existence of correspondences with null trace on C(2)

and the existence of complete linear series on C.

Corollary 2.2.3. Suppose in addiction that C is non-hyperelliptic and that
the number of distinct pij’s is m > [kd

2 ]. Then C possesses a complete gr
m

with r ≥ 1.

Proof. For i = 1, . . . , d, let Pi = pi1 + . . . + pik. Let m be the number of
distinct pij ’s on C and let us denote by q1, . . . , qm these points. Consider
the divisor D = q1 + . . . + qm of degree m on C. As the curve C is non-
hyperelliptic, the canonical map is an embedding and the qt’s are all distinct.
Hence φK(D) is the linear span in Pg−1 of the φK(qt)’s and its dimension
is lower than [kd

2 ] by Theorem 2.2.2. Therefore by the geometric version of
Riemann-Roch theorem we have

dim |D| = m− 1− dimφ(D) ≥ m−
[
kd

2

]
≥ 1.

Thus |D| = |q1 + . . . + qm| is a complete gr
m on C with r ≥ 1.

Remark 2.2.4. In [27], Griffiths and Harris study 0-cycles on an algebraic
variety X satisfying the Cayley-Bacharach condition with respect to a com-
plete linear system |D|. In particular, given such a 0-cycle P1 + . . .+Pd and
the rational map φ|D| : X 99K Pr, they present some result on the dimension
of the linear span of the φ|D|(Pi)’s in Pr and, consequently, on the existence
of linear series on X. We note that we start from an analogous situation
with X = C(k), but the results of this section deal with the study of the
geometry of the curve C and not with X.

We conclude this section by presenting some examples of correspon-
dences with null trace on the k-fold symmetric product.

Example 2.2.5. For any dominant rational map F : C(k) 99K Pk of degree
d, the graph of F

Γ := {(y, P ) ∈ Pk × C(k) |F (P ) = y}
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is a (d, 1)-correspondence on Pk ×C(k) with null trace. To see this fact, no-
tice that the fiber F−1(y) over a generic point y ∈ Pk is given by d distinct
points P1, . . . , Pd ∈ X. Hence Γ is a reduced variety and the projection
π1 : Γ −→ Pk is a generically finite dominant morphism of degree d. More-
over, H0(Pk, Ωk) = 0 and hence Γ is a (d, 1)-correspondence on Pk × C(k)

with null trace.
Notice that this fact is still true for any smooth n-dimensional variety ad-
mitting a dominant rational map of degree d on Pn.

Example 2.2.6. Let f : C −→ P1 be a degree d map and for any point
Q ∈ C(k−1) consider the curve CQ := {p + Q ∈ C(k) | p ∈ C} lying on the k-
fold symmetric product C(k). As each CQ is naturally identified with C, we
can consider the map fQ : CQ −→ P1 induced by f under this identification.
Moreover, we define the varieties Y := P1 × C(k−1) and

Γ :=
{(

(z, Q), P
) ∈ Y × C(k) |P ∈ CQ and fQ(P ) = z

}
.

Then it is east to see that Γ is a (d, k)-correspondence on Y × C(k). Fur-
thermore, Y is a ruled variety. Therefore h0

(
Y, KY

)
= 0 and hence the

correspondence Γ has null trace.

Example 2.2.7. Let T be a (k − 1)-dimensional smooth variety and let
E = {Et}t∈T be a proper flat family of smooth curves lying on C(k) such
that any Et is a d-gonal curve (i.e. for any t ∈ T there exists a degree d
covering ft : Et −→ P1) and E covers C(k) (i.e. for any P ∈ C(k) there exists
t ∈ T such that P ∈ Et).

Let Y and Γ be the varieties of dimension k defined as Y := P1× T and

Γ :=
{(

(z, t), P
) ∈ Y × C(k) |P ∈ Et and ft(P ) = z

}
.

Then Γ ⊂ Y × C(k) is a correspondence of degree d with null trace. To see
this fact it suffices to argue as above and to observe that π2 : Γ −→ C(k) is
generically finite. Indeed, if there exist infinitely many curves of the family
passing through the generic point P ∈ C(k), then T would be at least a
k-dimensional variety.

2.3 Linear subspaces of Pn in special position

This section deals with sets of linear subspaces of the n-dimensional projec-
tive space satisfying a condition of Cayley-Bacharach type. In particular,
we shall prove Theorem 2.2.1 stated in the previous section.
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Let n and k be two integers with 2 ≤ k ≤ n and let G(k − 1, n) denote
the Grassmann variety of (k − 1)-planes in Pn. For an integer d ≥ 2, let us
consider a set of d points

{Λ1, . . . ,Λd} ⊂ G(k − 1, n)

and suppose that the associated 0-cycle Λ1 + . . . + Λd satisfies the Cayley-
Bacharach condition with respect to the complete linear series |OG(k−1,n)(1)|.

For any (n−k)-dimensional subspace L of Pn, let us consider the Schubert
cycle

σ1(L) := {Λ ∈ G(k − 1, n)|Λ ∩ L 6= ∅}
of the (k − 1)-planes of Pn intersecting L, which is an effective divisor of
|OG(k−1,n)(1)|. Thus the set {Λ1, . . . , Λd} ⊂ G(k−1, n) is such that for every
i = 1, . . . , d and for any L ∈ G(n−k, n) with Λ1, . . . , Λ̂i, . . . ,Λd ∈ σ1(L), we
have Λi ∈ σ1(L).

So it makes sense to give the following definition expressing a condition
of Cayley-Bacharach type for the linear subspaces Λ1, . . . ,Λd ⊂ Pn.

Definition 2.3.1. We say that the (k − 1)-planes Λ1, . . . ,Λd ⊂ Pn are in
special position with respect to (n−k)-planes if for every i = 1, . . . , d and for
any (n−k)-plane L ⊂ Pn intersecting Λ1, . . . , Λ̂i, . . . ,Λd, we have Λi∩L 6= ∅
too.

We note that the (k − 1)-planes in the definition are not assumed to be
distinct. In particular, it is immediate to check that two (k − 1)-planes
Λ1, Λ2 ⊂ Pn are in special position if and only if they coincide.

Thanks to Definition 2.3.1, we may rephrase Theorem 2.2.1 as follows.

Theorem 2.3.2. Suppose that the (k − 1)-planes Λ1, . . . ,Λd ⊂ Pn are in
special position with respect to (n− k)-planes of Pn. Then the dimension of
their linear span S = Span(Λ1, . . . ,Λd) in Pn is s ≤ [

kd
2

]− 1.

In order to prove this result, let us state the following preliminary lemma.

Lemma 2.3.3. Suppose that the (k − 1)-planes Λ1, . . . , Λd ⊂ Pn are in
special position with respect to (n− k)-planes of Pn. If there exists a linear
space R ⊂ Pn such that Λ1, . . . , Λ̂j , . . . , Λd ⊂ R, then Λj ⊂ R as well.

Proof. Let r denote the dimension of R. If r = n the statement is trivially
true, then let us assume r < n. As k−1 ≤ r we have that 0 ≤ r−k+1 ≤ n−k
and we can consider a (r − k + 1)-plane T ⊂ R. Then T intersects each of
the (k−1)-planes Λ1, . . . , Λ̂j , . . . , Λd. Therefore by special position property,
for any (n− k)-plane L containing T , the (k− 1)-plane Λj must intersect L,
thus Λj ∩ T 6= ∅. Therefore Λj meets every (r − k + 1)-plane T ⊂ R. Thus
Λj ⊂ R.
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Proof of Theorem 2.3.2. As usual, let us fix n ≥ d ≥ 2 and 2 ≤ k ≤ n.
Notice that if n ≤ [

kd
2

] − 1, the statement is trivially proved. Hence we
assume hereafter n ≥ [

kd
2

]
. We proceed by induction on the number d of

(k − 1)-planes.
Let Λ1, Λ2 ⊂ Pn be two (k − 1)-dimensional planes in special position

with respect to (n − k)-planes. Then we set R := Λ1 and Lemma 2.3.3
implies Λ2 ⊂ R. Hence R = Λ1 = Λ2 and [kd

2 ] − 1 = k − 1 = dimR. Thus
the statement is proved when d = 2.

By induction, suppose that the statement of the theorem holds for any
2 ≤ h ≤ d− 1 and for h-tuple of (k− 1)-dimensional linear subspaces of Pm

in special position with respect to (m− k)-planes, with m ≥ h.
Now, let Λ1, . . . ,Λd ⊂ Pn be (k − 1)-planes in special position with

respect to (n− k)-planes.
We first consider the case where is not possible to choose one of the Λi’s

such that it does not coincide with any of the others. In this situation, the
number of distinct Λi’s is at most

[
d
2

]
. Thus the dimension of their linear

span in Pn is at most k
[

d
2

]− 1 ≤ [
kd
2

]− 1 as claimed.
Then we consider the (k − 1)-plane Λ1 and we suppose -without loss of

generality- that it does not coincide with any of the others Λi’s. Then is
possible to choose a point p ∈ Λ1 such that p 6∈ Λi for any i = 2, . . . , d.
Moreover, let H ⊂ Pn be an hyperplane not containing p and consider the
projection from p on H

πp : Pn − {p} −→ H
q 7−→ pq ∩H .

For i = 2, . . . , d, let λi := πp (Λi) ⊂ H be the image of Λi on H. We
claim that the (k − 1)-planes λ2, . . . , λd ⊂ H are in special position with
respect to (n−1−k) planes of H ∼= Pn−1. To see this fact, let j ∈ {2, . . . , d}
and let l ⊂ H be a (n − 1 − k) plane intersecting λ2, . . . , λ̂j , . . . , λd. Since
p ∈ Λ1, it follows that the (n − k)-plane L := Span(l, p) ⊂ Pn intersects
Λ1, . . . , Λ̂j , . . . ,Λd. As they are in special position with respect to (n − k)-
planes, we have that L intersects Λj as well. Then, given a point qj ∈ L∩Λj ,
we have that πp(qj) ∈ l. In particular, l meets λj at πp(qj) and hence
λ2, . . . , λd ⊂ H are in special position with respect to (n− 1− k)-planes of
the hyperplane H ⊂ Pn.

By induction, the linear span S := Span(λ2, . . . , λd) ⊂ H has dimension
s ≤

[
k(d−1)

2

]
− 1. Then the linear space R := Span(λ2, . . . , λd, p) ⊂ Pn has

dimension dim R = dimS + 1 ≤
[

k(d−1)
2

]
≤

[
kd
2

]
− 1 for any k ≥ 2. Notice

that R contains Λ2, . . . ,Λd. Hence Λ1 ⊂ R as well by Lemma 2.3.3. Thus R
contains the linear span in Pn of all the Λi’s and the assertion follows.

At the beginning of this section we set k ≥ 2. We note that this assump-
tion is necessary in Theorem 2.3.2. For instance, let k = 1 and consider three

33



collinear points in Pn. Clearly, they are in special position with respect to
(n− 1)-planes and [kd

2 ]− 1 = 0, but they span a line.
On the other hand, when k = 2 the theorem assures that if {l1, . . . , ld} is

a set of d lines in special position with respect to (n− 2)-planes of Pn, then
their linear span has dimension lower than d. In particular, the following
examples show that this bound is sharp.

Example 2.3.4. In P3, let us consider three distinct lines l1, l2, l3. Then
they are in special position with respect to lines if and only if they lie on a
plane π ⊂ Pn and they meet at a point p ∈ π.

To see this fact, suppose that l1, l2, l3 are in special position with respect
to lines. Therefore they must lie on a plane π ⊂ P3 by Theorem 2.3.2. Then
consider the point p = l2 ∩ l3 and let r 6⊂ π be a line passing through p as in
figure (a). As r intersects both l2 and l3, it must intersect l1 too by special
position property. Hence p ∈ l1.

On the other hand, it is immediate to check that if three distinct lines of
P3 lie on the same plane and meet at a point (as in figure (b) below), then
they are in special position with respect to (n− 2)-planes.

(b)

l1

l3
l2

r

(a)

p π

l2

l1

l3

π
p

Example 2.3.5. If l1, . . . , l4 are four skew lines lying on the same ruling of
a quadric surface Q ⊂ P3, then they are in special position with respect to
lines in P3 and they span the whole space.

To see this fact it suffices to observe that Q is covered by two families
of skew lines, L and L′, such that any two lines l ∈ L and l′ ∈ L′ meet at a
point (see e.g. [26, p. 478]).

Example 2.3.6. In general, if l1, . . . , ld ⊂ Pd−1 are skew lines lying on a
non-degenerate surface S ⊂ Pd−1 of minimal degree, then they are in special
position with respect to (d− 3)-planes.
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Under these assumptions, S is a ruled surface of degree d− 2 (cf [26, p.
522]). If L ⊂ Pd−1 is a (d − 3)-plane intersecting l1, . . . , ld−1, then L ∩ S is
a curve C of degree ≤ d− 2. In particular, C does not lies on the ruling of
S and hence it must intersect ld too.
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Chapter 3

Deformation and gonality of
curves on second symmetric
products of curves

Let C be a smooth projective curve of genus g. In this chapter we focus on
the second symmetric product and we deal with some problems on curves
lying on the surface C(2).

In [47], Pirola proves that generic Abelian variety of dimension q ≥ 3
does not contain hyperelliptic curves of any genus. In Section 1, we start
from this result to prove that if C is a very general curve of genus g ≥ 3,
then there are neither rational nor hyperelliptic curves lying on the Jacobian
variety J(C) and hence on the second symmetric product C(2).

In the second Section we turn to study the gonality of moving curves
lying on C(2). By the results of the previous chapter, we prove that given a
curve C of genus g ≥ 4 and a family of d-gonal curves covering C(2), then d
is bounded from below by the the gonality of C. As a consequence of this
fact, we show that the degree of gonality of C(2) defined in the introduction
is dg(C(2)) = gon(C).

3.1 Gonality of curves lying on C(2)

Let C be a smooth complex projective curve of genus g ≥ 3 and let us assume
that C is very general in the moduli space Mg. Under this assumption, we
have that C is non-hyperelliptic and hence its second symmetric product
C(2) embeds into the Jacobian variety J(C) via the Abel map. Then, in
order to discuss the gonality of curves lying on C(2), we focus on curves
lying on the Jacobian variety J(C).
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To start, we recall that any Abelian variety does not contain rational
curves. Indeed, if R were a rational curve contained in an Abelian variety
A, then the inclusion map should factor through the Jacobian variety of R.
As the Jacobian variety of a rational curve is a point, we get a contradiction.

In [47], Pirola studies rigidity and existence of curves of small geometric
genus on generic Kummer varieties. As a consequence of the main theorem
he deduces that a generic Abelian variety of dimension q ≥ 3 does not
contain hyperelliptic curve of any genus, where elliptic curves are considered
as special cases of hyperelliptic curves. Since for any three-dimensional
Abelian variety there exists an isogeny to a Jacobian variety of a genus
three curve, we deduce that for any very general curve C of genus three, its
Jacobian variety J(C) does not contain hyperelliptic curves. Thus by using
a degeneration argument we have the following.

Proposition 3.1.1. If C is a very general curve of genus g ≥ 3, the Jaco-
bian variety J(C) does not contain hyperelliptic curves.

Proof. As we said above, the case of genus three is a consequence of Theorem
2 in [47]. Then by induction on the genus, suppose that the statement holds
for every very general curve of genus g − 1.

So, consider a very general curve D of genus g− 1 and a smooth elliptic
curve Y , together with two points p ∈ D and q ∈ Y . Let C0 be the nodal
curve obtained by gluing D and Y at p and q. Let C −→ ∆ be a proper flat
family over a disc ∆ such that the fiber over 0 ∈ ∆ is C0 and for any t 6= 0
the fiber Ct is a smooth curve of genus g.

Then consider the Jacobian bundle over ∆ of C, that is J(C) −→ ∆ with
J(C)t = J(Ct) for all t ∈ ∆ − {0}. By contradiction, assume that the fiber
J(Ct) of J(C) contains a hyperelliptic curve Et for very general t ∈ ∆−{0}.
Hence - up to restrict the disk ∆ - we can define the following map of families
over the punctured disk ∆− {0}

E ϕ //

##FF
FF

FF
FF

FF J(C)

zzuuuuuuuuu

∆− {0}

where E = {Et}t∈∆−{0} and ϕt : Et ↪→ J(Ct) is the inclusion map.
We have J(C)0 = J(D)×J(Y ) = J(D)×Y . Let π1 : J(D)×Y −→ J(D)

denote the natural projection map on the first factor. Let E0 ⊂ J(D) × Y
be the flat limit of the family of hyperelliptic curves E at t = 0. Since the
very general fiber Et generates J(Ct) as a group, then E0 must generate
J(D) × Y . Thus π1(E0) ⊂ J(D) cannot be 0-dimensional and hence it is
a non-rational curve on J(D). Then E0 has some non-rational irreducible
components that are all hyperelliptic curves (cf. [4, p. 14]). Therefore
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all the irreducible components of π1(E0) are hyperelliptic and we have a
contradiction because D has genus g−1 and its Jacobian variety J(D) does
not contain hyperelliptic curves by induction.

As a consequence of the proposition, the following holds.

Corollary 3.1.2. Let C be a very general curve of genus g ≥ 3. Then there
are neither rational curves nor hyperelliptic curves lying on C(2).

Remark 3.1.3. We note that if the genus of C is g < 3, its second symme-
tric product C(2) contains both rational and hyperelliptic curves. This fact
is clear when C is a rational curve, because C(2) ∼= P2. If C is an elliptic
curve, then the fibers of the Abel map C(2) −→ J(C) ∼= C are isomorphic
to P1. Moreover, as elliptic curves are considered to be a special case hy-
perelliptic curves, we have that C(2) is covered by a one-dimensional family
of curves isomorphic to C. Analogously, when g = 2, C(2) is covered by hy-
perelliptic curves and the fiber of the g1

2 via the Abel map is a rational curve.

3.2 Deformation of curves on C(2)

In this section we deal with the gonality of moving curves on the second
symmetric product of a smooth curve and we discuss the degree of gonality
of this surface.

We recall that we defined the degree of gonality of an irreducible complex
projective variety X to be the integer

dg(X) := min



d ∈ N

∣∣∣∣∣∣

there exists a family E = {Et}t∈T

covering X whose generic member is
an irreducible d-gonal curve



 .

Then let C be a smooth complex projective curve of genus g and let
us consider its second symmetric product. The degree of gonality of C(2)

in cases of low genera is easily given. When C is a rational curve, then
C(2) ∼= P2 and hence dg(C(2)) = 1. On the other hand, if C is supposed
to be an elliptic curve, we have that the second symmetric product of C is
birational to C × P1, then dg(C(2)) = dg(C × P1) = 1 (cf. Remark 3.1.3).

For any g ≥ 0, the second symmetric product C(2) is covered by the
family E = {Xp}p∈C of curves parametrized over C, where

Xp := C + p = {p + q | q ∈ C} .
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Clearly, any Xp is isomorphic to C and hence gon(Xp) = gon(C). Therefore
the degree of gonality of the second symmetric product of a curve of genus
g ≥ 0 is

dg(C(2)) ≤ gon(C). (3.1)

In particular, as the only rational curve lying on a hyperelliptic curve of
genus two is the fiber of the g1

2 via the Abel map u : C(2) → J(C), we have
that dg(C(2)) = 2 for any curve C of genus g = 2.

Then we have the following theorem bounding from below the degree
of gonality of C(2). The argument of the proof is essentially based on two
results. The first one is Theorem 2.2.2 we proved in the last chapter and the
second result is Abel’s theorem. We note that this result will turn out to be
useful in Chapter 5 to compute new bounds for the cone of ample divisor
classes in the Néron-Severi group of C(2).

Theorem 3.2.1. Let C be a smooth complex projective curve of genus g ≥ 4.
For a positive integer d, let E = {Et}t∈T be a family of curves on C(2)

parametrized over a smooth variety T , such that the generic fiber Et is an
irreducible d-gonal curve and for any point P ∈ C(2) there exists t ∈ T such
that P ∈ Et. Then d ≥ gon(C).

Moreover, under the further assumption g ≥ 6 and Aut(C) = {IdC}, we
have that equality holds if and only if Et is isomorphic to C.

Proof. Notice that C is a hyperelliptic curve of genus g ≥ 4, the only rational
curve lying on C(2) is the fiber of the g1

2 via the Abel map u : C(2) → J(C).
Therefore the gonality of the generic curve Et must be d ≥ 2 = gon(C) and
the assertion follows.

Then we assume hereafter that C is non-hyperelliptic. As C(2) is two-
dimensional and E is a family of curves, up to restrict E to a subvariety of
T , we can assume that T has dimension one. Aiming for a contradiction,
we assume further that d < gon(C). We split the proof in some parts.

Step 1 [Correspondence on C(2)]. For any t ∈ T , let νt : Ẽt −→ Et be
the normalization of Et and let ft : Ẽt −→ P1 be a morphism such that
deg ft = gon(Ẽt) = d.

Setting Y := P1 × T , we may define a correspondence Γ on Y × C(2) as
the Zariski closure of the set (cf. Example 2.2.7)

{(
(z, t), P

) ∈ Y × C(2) |P ∈ (Et)reg and ft ◦ ν−1
t (P ) = z

}
.

Notice that both the projection maps π1 : Γ −→ Y and π2 : Γ −→ C(2) are
dominant morphisms. Since deg ft = d for generic t ∈ T , we have that π1 is
a generically finite morphism of degree d. Moreover, π2 is generically finite
too: if there exist infinitely many curves of the family passing through the
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general point P ∈ C(2), then T would be at least a 2-dimensional variety.
Finally, being Y a ruled surface, we have that h0(Y, KY ) = 0 and hence
Γ ⊂ Y × C(2) is a correspondence of degree d with null trace.

For a very general point (z, t) ∈ Y , let

π−1
1 (z, t) = {((z, t), Pi

) ∈ Y × C(2) | i = 1, . . . , d} (3.2)

be its fiber, where Pi = p2i−1 + p2i. Moreover, let D = D(z,t) ∈ Div(C) be
the effective divisor given by

D := p1 + . . . + p2d =
m∑

j=1

njqj (3.3)

for some positive integers nj = multqj (D) and where the qj ’s are assumed
to be distinct points of C.

Step 2 [ nj = 1 for all j ]. Suppose that nj = 1 for any j = 1, . . . , m,
that is m = 2d and the points defining D are all distinct. As usual, let
φK : C −→ Pg−1 be the canonical embedding of C and let φK(D) be the
linear span of the points φK(pi)′s in Pg−1. As Γ is a correspondence of degree
d on C(2) with null trace, by Theorem 2.2.2 we have that dimφK(D) ≤ d−1.
Thus by the geometric version of Riemann-Roch theorem we have

dim |D| = deg D − 1− dimφK(D) ≥ 2d− 1− (d− 1) = d =
deg D

2
.

Therefore we have that either D is zero, D is a canonical divisor or C is
hyperelliptic by Clifford’s theorem. We recall that C is assumed to be non-
hyperelliptic. Furthermore, as 0 < d < gon(C) ≤

[
g+3
2

]
, we have that

0 < deg D = 2d < 2g − 2 for any g ≥ 4 and hence we have a contradiction.

Step 3 [ nj > 1 for some j ]. On the other hand, let us suppose that the
points p1, . . . , p2d are not distinct, i.e. the integers nj are not all equal to 1.
For any a = 1, . . . , 2d, let us consider the set

Qa := {qj ∈ Supp D |nj = a}

of the points of D such that multqj (D) = a. Notice that the cardinality of
any Qa is at most

[
2d
a

]
.

As the nj ’s are not all equal to 1, there exists ā > 1 such that the
corresponding set Qā is not empty. Without loss of generality, suppose
Qā = {q1, . . . , qs}, where s ≤ [

2d
ā

]
is the cardinality of Qā.

Since Y is connected, the fibers of π1 over generic points of Y have the
same configuration, i.e. the cardinality of any set Qā is constant as we vary
the point (z, t) on an opportune open set U ⊂ Y . Thus we may define a
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rational map ξ : Y 99K C(s) sending a generic point (z, t) ∈ Y = P1 × T to
the effective divisor q1 + . . . + qs ∈ C(s). For a very general t ∈ T , let

ξt : P1 × {t} −→ C(s)

(z, t) 7−→ q1 + . . . + qs

be the restriction of ξ to the rational curve P1×{t} ⊂ Y and let us consider
the composition with the Abel map

P1 × {t} ξt−→ C(s) ↪→ J(C) .

As P1 × {t} is a rational curve mapping into a Jacobian variety, the latter
map is constant. Hence by Abel’s theorem, either |q1+ . . .+qs| is a complete
linear series of degree s and dimension at least 1, or ξt is a constant map.
Being ā > 1 and s ≤ [

2d
ā

]
, we have s ≤ d < gon(C). Then |q1 + . . .+ qs| can

not be such a linear series.
Therefore the map ξt must be constant. By the construction of ξt, this

fact means that for any z ∈ P1 the divisor D = D(z,t) - defined in (3.3)
by the fiber π−1

1 (z, t) - must contain all the points q1, . . . , qs, that are now
fixed. We recall that π−1

1 (z, t) is given by the points ((z, t), Pi) ∈ Y × C(2)

such that Pi ∈ Et and ft ◦ ν−1
t (Pi) = z. Hence one of the Pi’s must lie on

the curve C + q1, one on C + q2 and so on. As we vary z on P1, the Pi’s
must vary on Et, but the latter condition must hold. It follows that the
curve Et must have at least s irreducible components Et1, . . . , Ets such that
Etj ⊂ C + qj for j = 1, . . . , d. Since Et and C + qj are irreducible curves,
we deduce s = 1 and Et = C + q1. Then we get a contradiction because
C + q1

∼= C and hence d = gon(Et) = gon(C).
Thus we conclude that the gonality d of the generic Et is d ≥ gon(C).

Step 4 [ d = gon(C) ]. Now, let C be a curve of genus g ≥ 6 with
Aut(C) = {IdC} and let us suppose that the d = gon(Ẽt) = gon(C). We
want to prove that Et and C are isomorphic.

To this aim, let us consider the correspondence Γ defined above and a
generic fiber π−1

1 (z, t) =
{(

(z, t), Pi

)}
as in (3.2), with Pi = p2i−1 + p2i.

By arguing as in Step 2 we deduce that if the pi’s can not be distinct. If
they were distinct, then dim |D| = deg D

2 and - by Clifford’s theorem - we
would have that either D is zero, D is a canonical divisor or C is hyper-
elliptic. We note that the assumption Aut(C) = {IdC} implies that C is
non-hyperelliptic. Moreover, the degree of D is positive and

deg D = 2d = 2gon(C) ≤ 2
[
g + 3

2

]
< 2g − 2 for any g ≥ 6.

Hence the divisor D is neither zero nor canonical and we have a contradic-
tion.
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Then we follow the argument of Step 3 and for the generic t ∈ T we may
define the map ξt : P1 × {t} −→ C(s), with s ≤ d.

If s < d = gon(C), the only possible choice is s = 1 because of the
irreducibility of Et. Hence Et and C turn out to be isomorphic.

On the other hand, suppose that s = d = gon(C). Then ā = 2 and the
divisor D in (3.3) has the form D = 2(q1 + . . . + qd). In particular - without
loss of generality - the points Pi ∈ C(2) are given by

P1 = q1 + q2, P2 = q2 + q3, . . . , Pd−1 = qd−1 + qd and Pd = qd + q1.

Now, we fix a point p ∈ C and we define an automorphism α : C −→ C
sending a point q ∈ C to the unique point q′ ∈ C such that q + p and q′ + p
lie on the same fiber of π1. Thus α is a non-trivial automorphism on C and
this situation can not occur because Aut(C) = {Idc}.

Therefore by (3.1) and Theorem 3.2.1 we have the following.

Theorem 3.2.2. Let C be a smooth complex projective curve of genus g ≥ 4.
Then dg(C(2)) = gon(C).

To conclude our survey on the degree of gonality of second symmetric
products of curves, it remains to estimate the case of genus three. As any
curve C of genus g = 3 possess a g1

3, we have that dg(C(2)) = 2 if C is
hyperelliptic and 2 ≤ dg(C(2)) ≤ 3 otherwise. We note that when C is
assumed to be very general in M3, Corollary 3.1.2 assures that C(2) does
not contain hyperelliptic curves and hence dg(C(2)) = 3. Unfortunately, we
are not able to deduce the same when C is neither generic nor hyperelliptic.
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Chapter 4

Degree of irrationality of
symmetric products of curves

Let C be a smooth complex projective curve C of genus g. Our purpose is
to study the degree of irrationality of the second symmetric product of C,
that is the minimum integer d such that C(2) admits a dominant rational
map F : C(2) 99K P2 of degree d.

In Section 1 we introduce the notion of degree of irrationality in terms of
fields extensions and we give a geometric interpretation. In order to give an
overview on the degree of irrationality of n-dimensional algebraic varieties,
we recall the known results on this topic.

In Section 2 we turn to discuss the problem of computing the degree of
irrationality dr(C(2)) of the second symmetric product C(2) in dependence on
the genus g and on the gonality of the curve C. When C is either a rational
or an elliptic curve, the problem is totally understood. Then we focus on
hyperelliptic curves and we prove that dr(C(2)) = 4 for any such a curve of
genus g ≥ 4. On the other hand, when C is assumed to be non-hyperelliptic
we show that degree of irrationality of C(2) is bounded from below by the
gonality of the curve and we improve this bounds for low genera. Finally,
we prove that the degree of irrationality of a generic curve C of genus g ≥ 5
is bounded from below by g − 1.

The last two sections are devoted to prove the results of Section 2. In par-
ticular, in the third Section we menage the non-hyperelliptic case, whereas
in the fourth Section we conclde with the hyperelliptic one. We note that
an important role in the proofs is played by monodromy, Abel’s Theorem
and the main results of Chapther 2 on correspondences with null trace on
symmetric products of curves.
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4.1 Generalities on degree of irrationality

In this section we shall introduce the notion of degree of irrationality of an
algebraic variety defined over a field k and we shall recall some interesting
results on this topic.

The notion of degree of irrationality arises in an algebraic context. Let
k and L be two fields such that L is a finitely generated extension of k
of transcendence degree n. In [40], Moh and Heizer define the degree of
irrationality of L over k to be the integer

dr(L) := min

{
m = [L : k(x1, . . . , xn)]

∣∣∣∣
x1, . . . , xn are algebraically
independent elements of L

}
.

Form a geometric point of view, suppose that k is an algebraic closed field
of characteristic zero and let V be an algebraic variety over k of dimension n.
Then the degree of irrationality of V is defined as the degree of irrationality
of its rational function field K(V ) over k. As is well known, there is an
equivalence between the category of the finitely generated extensions over
k and the category of dominant rational maps between algebraic varieties
over k. Therefore the definition above may be rephrased as follows

dr(V ) := min

{
d ∈ N

∣∣∣∣
there exists a dominant rational map
F : V 99K Pn

k of degree d

}
.

Clearly, the degree of irrationality is a birational invariant of algebraic
varieties. Moreover, it can be thought as a generalization to higher dimen-
sion of the notion of gonality for curves. Indeed, every dominant rational
map f : C 99K P1 of degree d defined over a smooth algebraic curve C can
be resolved to a morphism and hence dr(C) = gon(C).

In particular, when C is a smooth algebraic curve, there are several re-
sults concerning the problem of determining its gonality. In this direction,
one can think to the results on existence of special divisor we stated in Sec-
tion 1.4 and to the famous Wirtinger theorem asserting that if C ⊂ P2 is a
smooth plane curve of degree d ≥ 4, then its gonality equals d− 1.

Since the end of the nineteenth century, several mathematicians dealt
with problem of rationality for algebraic variety of dimension higher dimen-
sion.

After the work of Moh and Heinzer (see [40] and [41]), the author who
more deeply studied the problem of compute the degree of irrationality of
algebraic surfaces is Hisao Yoshihara. In [58] he proves some results con-
cerning the degree of irrationality of irreducible surfaces of degree d in P3

and the following theorem (see [58, Theorem 3]).
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Theorem 4.1.1. Let S be an irreducible algebraic surface. If S is bira-
tionally equivalent to P1 × C, where C is a smooth curve, then dr(S) =
gon(C). If S is an Abelian surface, then dr(S) ≥ 3. If S is an hyperelliptic
surface, then 3 ≤ dr(S) ≤ 12. If S is an Enriques surface, dr(S) = 2.

Moreover, Tokunaga and Yoshihara prove in a following paper that the
degree of irrationality of any Abelian surface containing a smooth curve of
genus 3, is three (cf. [53, Theorem 0.2]). We note that the construction
made to prove the latter result shall be the starting point of the study we
shall do in the last chapter of this work.

We note that the assertion on Abelian surface in Theorem 4.1.1 can be
generalized to n-dimensional Abelian varieties as an immediate consequence
of the results in [2]. Namely, the degree of irrationality of any Abelian vari-
ety A of dimension n is dr(A) ≥ n + 1 (cf. [53]).

Another work concerning several problems on the degree of irrationa-
lity is represented by the unpublished Ph.D. thesis of Cortini (see [21]). In
this work, she studies some open problems presented by Yoshihara at the
end of [58]. Cortini deals with the degree of irrationality of smooth hyper-
surfaces in Pn and K3 surfaces; furthermore, she completes the study of
Yoshihara on the degree of irrationality of smooth surfaces in P3. In par-
ticular, Cortini gives a characterization of the surfaces S ⊂ P3 of degree d
having dr(S) = d− 2, and proves that any other smooth surface in P3 has
degree of irrationality equal to d− 1.

4.2 Degree of irrationality of second symmetric
products of curves

In this section we shall present several result on the degree of irrationality
of the second symmetric product of a smooth complex projective curve C of
genus g ≥ 0. Our discussion will be developed in dependence on the genus
and the gonality of the curve. The proofs of all the results we shall state
will be included in the next section.

Let C be a smooth complex projective curve of genus g and let C(2) be
its second symmetric product. We would like to study the degree of irratio-
nality dr(C(2)) of the surface C(2), that is the minimum integer d ∈ N such
that there exists a dominant rational map F : C(2) 99K P2 of degree d.

To start, we focus on the cases g = 0 and g = 1. In particular, when
C is either a rational or an elliptic curve, the problem of determining the
degree of irrationality of C(2) is totally understood.
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Namely, if C is a rational curve, then C(2) ∼= P2. Hence the second
symmetric product is a rational surface and dr(C(2)) = 1.

On the other hand, when C is an elliptic curve we have dr(C(2)) = 2. To
prove this fact, let us consider the Jacobian variety J(C) of C and the Abel
map u : C(2) −→ J(C). By Abel Theorem each fiber of u over a point is iso-
morphic to P1. Since J(C) ∼= C, we have that C(2) is covered by a family of
rational curves parametrized by C and hence C(2) is birational to the surface
C × P1. We recall that C × P1 is not a rational surface (cf. [6, Proposition
III.21]), then dr(C(2)) = dr(C × P1) > 1. The curve C admits a degree two
covering f : C −→ P1, hence we may define a map G : C × P1 −→ P1 × P1

of degree two by setting G(p, y) := (f(p), y). Finally, being P1 × P1 and P2

birational surfaces, we conclude dr(C(2)) = dr(C × P1) = 2.

Now let us assume that C is a smooth complex projective curve of genus
g ≥ 2. Under this assumption, the problem of computing the degree of
irrationality of C(2) is still open. Our aim is to study this situation by
giving some bounds on dr(C(2)). As we mentioned above, we remand the
reader to the next sections for the proofs of the results we shall state in the
following.

Firstly we note that C(2) is not a rational surface. Furthermore, the
second symmetric product of a curve of genus g ≥ 2 does not admit a
degree two dominant rational map on the complex projective plane (see
Lemma 4.3.1) and hence

dr(C(2)) ≥ 3. (4.1)

Clearly, the existence of a dominant rational map F : C(2) 99K P2 de-
pends on the geometry of C and there are some connections between the
degree of irrationality of the second symmetric product and the existence of
linear series on the curve.

In particular, suppose that C is a d-gonal curve and let us consider a
g1
d on C inducing a non-constant morphism f : C −→ P1. Then is always

possible to define a dominant morphism of degree d2 as

F : C(2) −→ (
P1

)(2) ∼= P2

p + q 7−→ f(p) + f(q)
(4.2)

and hence we deduce the obvious upper bound

dr(C(2)) ≤ (gon(C))2 . (4.3)

Moreover, if C admits a g2
d that induces a birational mapping ψ : C −→ P2

onto a non-degenerate curve of degree d, then we may define the dominant
rational map of degree

(
d
2

)

G : C(2) 99K G(1, 2) ∼= P2 (4.4)
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sending a point p + q ∈ C(2) to the line through ψ(p) and ψ(q) in P2.
The following example provides a further construction of dominant ra-

tional maps on C(2).

Example 4.2.1. Let µ : C −→ P3 be a birational map onto a non-degenerate
curve of degree d. Consider a plane h ⊂ P3 and for any p, q ∈ C, let lpq ⊂ P3

denote the line passing through µ(p) and µ(q). Then we may define the
dominant rational map

H : C(2) −→ h ∼= P2

p + q 7−→ lpq ∩ h .
(4.5)

We note that the map H has degree equal to (d−1)(d−2)
2 − g. Indeed, the

degree of H is the number of bi-secant line to µ(C) passing through a general
point y ∈ h. Then let us consider the projection πy : µ(C) −→ P2. As the
number of such bi-secant lines equals the number of nodes of the image
C ′ := (πy ◦ µ)(C), and C ′ is a curve of degree d on P2, we conclude that
deg H = pa(C ′)− g(C ′) = (d−1)(d−2)

2 − g.

Thus we have the following upper bound on the degree of irrationality
of the second symmetric product.

Proposition 4.2.2. Let C be a smooth complex projective curve. Let δ1 be
the gonality of C and for m = 2, 3, let δm be the minimum of the integers
d such that C admits a birational mapping onto a non-degenerate curve of
degree d in Pm. Then

dr(C(2)) ≤ min

{
δ2
1 ,

δ2(δ2 − 1)
2

,
(δ3 − 1)(δ3 − 2)

2
− g

}
.

If the curve C is assumed to be hyperelliptic, inequalities (4.1) and (4.3)
assure that dr(C(2)) is either 3 or 4. The following example shows that there
are curves of genus 2 - and hence hyperelliptic - with dr(C(2)) = 3. It is a
particular case of a construction made in [53] by Tokunaga and Yoshihara.

Example 4.2.3. Let C be a smooth curve of genus g = 2 and let J(C) be
its Jacobian variety. Assume that the surface J(C) contains a smooth genus
three curve D. Then by [53, Theorem 0.2] there exist a rational surface
Y and a dominant rational map γ : J(C) 99K Y of degree 3. Therefore
by composing γ and the Abel map u : C(2) −→ J(C) we get a degree three
dominant rational map from C(2) to the rational surface Y . Thus dr(C(2)) =
3.

Unfortunately, except for the example above, we are not able to establish
the degree of irrationality of C(2) when C is a hyperelliptic curve of genus
g = 2, 3. On the other hand, when the genus of C is greater than 3 we prove
the following theorem which resolves the problem in the hyperelliptic case.
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Theorem 4.2.4. Let C be a smooth complex projective curve of genus g ≥ 4.
If C is hyperelliptic, then dr(C(2)) = 4.

In particular, under the assumption of the theorem, the degree of irrationa-
lity of C(2) is as great as possible. Moreover, looking at the map in (4.2),
we have that there is a dominant rational map F : C(2) 99K P2 of minimal
degree which is actually a morphism.

So let us assume that C is a non-hyperelliptic curve of genus g ≥ 3.
The following theorem shows a further connection between the degree of
irrationality of C(2) and the gonality of C.

Theorem 4.2.5. Let C be a smooth complex projective curve of genus g ≥ 3
and assume that C is non-hyperelliptic. Then

dr(C(2)) ≥ gon(C).

Notice that when the curve is trigonal, the latter bound coincides with (4.1).
In particular, this is the case when g = 3, 4. On the other hand, when g ≥ 5
we are able to present some improvements of the bound in the statement.

The following result summarizes the bounds on the degree of irrationality
of C(2) and we list them by genus.

Proposition 4.2.6. Let C be a smooth complex projective curve of genus
g ≥ 3 and assume that C is non-hyperelliptic. Then the following hold:

(i) if g = 3, 4, then dr(C(2)) ≥ 3;

(ii) if g = 5, then dr(C(2)) ≥ 4;

(iii) if g = 6, then dr(C(2)) ≥ 5;

(iv) if g ≥ 7, then
dr(C(2)) ≥ max {6, gon(C)} .

In particular, we note that that for 4 ≤ g ≤ 7

dr(C(2)) ≥ g − 1, (4.6)

but the same inequality does not hold for any genus, as we can realize from
the following examples.

Example 4.2.7. For an integer d ≥ 2, let C be a non-hyperelliptic curve of
genus g ≥ 2d2 + 2 provided of a degree d covering f : C −→ E on an elliptic
curve E (a particular case of this setting is given by bielliptic curves of genus
greater than 9). Then we can define the dominant morphism C(2) −→ E(2)

of degree d2 sending the point p + q ∈ C(2) to f(p) + f(q) ∈ E(2). As
we saw at the beginning of this section, dr(E(2)) = 2 and there exists a
dominant rational map E(2) 99K P2 of degree 2. Therefore we obtain by
composition a dominant rational map C(2) 99K P2 of degree 2d2. Thus
dr(C(2)) ≤ 2d2 < g − 1.
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Example 4.2.8. By arguing analogously, if C is a non-hyperelliptic curve
of genus g ≥ 3d2 + 2 admitting a non-constant morphism of degree d ≥ 2
over a genus two curve D as in Example 4.2.3, it is immediate to check that
dr(C(2)) ≤ 3d2 < g − 1.

On the other hand, when C is assumed to be generic in its moduli space,
we prove bound (4.6) for any genus, i.e. the degree of irrationality of C(2)

is bounded from below by g − 1.

Theorem 4.2.9. Let C be a smooth complex projective curve of genus g ≥ 4
and assume that C is very general in the moduli space Mg . Then

dr(C(2)) ≥ g − 1.

We point out that the constructions we made in Example 4.2.7 and
4.2.8 are based on particular structures of the curves involved and they
do not apply to very general curves. Furthermore, if C is a very general
curve of genus g ≥ 2, the minimum degree of a dominant rational map
C(2) 99K P2 we are able to construct is given by one of the maps we use to
establish Proposition 4.2.2. We recall that the minimum degree of a gr

d on a
generic curve of genus g is given by Brill-Noether number (see Section 1.4).
Therefore, with the notation of Proposition 4.2.2, we have

δ1 =
[
g + 3

2

]
, δ2 =

[
2g + 8

3

]
and δ3 =

[
3g + 15

4

]
.

Thus the leading terms of the bounds in the proposition are 1
4 g2, 2

9 g2 and
9
32 g2 respectively. Hence the bound provided by the g2

d’s is asymptotically
the lowest. In particular, it seems natural to conjecture that it is actually
the degree of irrationality of C(2) when C is a very general curve of high
enough genus.

4.3 The non-hyperelliptic case

In this section we shall prove the most of the results presented in the previ-
ous one. In particular, we shall focus on the statements where C is assumed
to be non-hyperelliptic. We note that - up to do slight adjustments - the
proofs follow the same argument and hence they could appear somehow
repetitive. An important role in the proofs will be played by monodromy,
Abel’s Theorem and the main results of Chapther 2 on correspondences with
null trace on symmetric products of curves.

Let C be a smooth complex projective curve C of genus g and let us
denote by C(2) its second symmetric product.
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To start, we prove inequality (4.1). The argument of the proof is due
to Hisao Yoshihara, who showed an analogous statement for Abelian and
hyperelliptic surfaces (see [57, Theorem 2] and [58, Theorem 3]).

Lemma 4.3.1. Let C be a smooth complex projective curve of genus g ≥ 2.
Then dr(C(2)) ≥ 3.

Proof. As C(2) is not a rational surface, we have to prove that it does not
admit a dominant rational map F : C(2) 99K P2 of degree two. Aiming for a
contradiction, we assume the contrary.

As in [57], there exists a composition of blow-ups σ : S −→ C(2) such
that S is a double covering of a smooth rational surface Y . Let F̃ : S −→ Y
be the degree two morphism and let τ : S −→ S be the involution defined
by F̃ .

Since the irregularity of C(2) is q(C(2)) = h0(C(2), Ω1
C(2)) = g ≥ 2 we have

q(S) = h0(S, Ω1
S) ≥ 2. Thus there exist two holomorphic 1-forms ω1, ω2 ∈

H0(S, Ω1
S) such that ω1∧ω2 6= 0. Being Y a rational surface, then it has not

holomorphic forms. Therefore F̃∗ωi = 0 and hence τ∗ωi +ωi = 0 for i = 1, 2,
that is τ∗ωi = −ωi for i = 1, 2. Furthermore, we must have F̃∗(ω1 ∧ω2) = 0,
but τ∗(ω1 ∧ ω2) = τ∗ω1 ∧ τ∗ω2 = ω1 ∧ ω2 6= 0, a contradiction.

Now, before proving other results of the previous section, we fix some
piece of notation and we state three preliminary lemmas.

Throughout this section, by F : C(2) 99K P2 we denote a dominant ratio-
nal map of minimal degree, that is d := deg F = dr(C(2)). Moreover, for a
point y ∈ P2, we consider its fiber

F−1(y) = {p1 + p2, . . . , p2d−1 + p2d} ⊂ C(2). (4.7)

and we define the divisor Dy ∈ Div(C) associated to y as

Dy := p1 + p2 + . . . + p2d−1 + p2d . (4.8)

Then, by a simple monodromy argument, we have the following.

Lemma 4.3.2. There exists an integer 1 ≤ a ≤ d such that for the very
general point y ∈ P2 and for any j = 1, . . . , 2d

multpj (Dy) = a.

In particular, the divisor Dy defined above has the form

Dy = a (q1 + q2 + . . . + qm) ,

where m = 2d
a and the qj’s are distinct point of C.

52



Proof. Let G : C × C 99K P2 be the dominant rational map of degree 2d
obtained by composing the map F : C(2) 99K P2 and the natural quotient
map π : C × C −→ C(2), that is G(p, q) := F (p + q) for any p + q ∈ C(2).
Let y ∈ P2 be a generic point and let

G−1(y) = {(p1, p2), (p2, p1), . . . , (p2d−1, p2d), (p2d, p2d−1)} ⊂ C × C

be its fiber. Then the divisor Dy := p1 + . . . + p2d is uniquely determined
by the fiber G−1(y). Moreover, if m is the number of distinct points of
{p1, . . . , p2d} and we denote by q1, . . . , qm these points, we have that Dy has
the form

Dy =
m∑

j=1

aj qj

for some positive integers aj := multqj (Dy). Therefore we have to prove
that a1 = . . . = am.

As C × C is a connected surface, we have that the action of the mono-
dromy group M (G) ⊂ S2d of G is transitive (see Lemma 1.2.1). Hence it
is not possible to distinguish any point of the fiber G−1(y) from another.
Then for any (r, s), (v, w) ∈ G−1(y) we have that multr(Dy) = multv(Dy)
and mults(Dy) = multw(Dy). In particular, we can not distinguish the
points (r, s) and (s, r), hence multr(Dy) = mults(Dy). Thus the divisor
Dy must have the same multiplicity at any pi, i.e. there exists an integer
1 ≤ a ≤ 2d such that a = multpi(Dy) for any i = 1, . . . , 2d. Moreover a must
divide 2d and the number m of distinct points in {p1, . . . , p2d} is m = 2d

a .
Finally, being y generic on P2, we have that the number of distinct pj ’s is
at least 2. Hence m ≥ 2 and a ≤ d.

The second lemma is a consequence of Abel’s theorem.

Lemma 4.3.3. With the notation above, given a generic point y ∈ P2 with
associate divisor Dy = a (q1 + q2 + . . . + qm), we have that the linear series
|q1 + q2 + . . . + qm| is a complete gr

m on C with r ≥ 2.
Moreover, the integer a is lower than d = deg F .

Proof. Thanks to the previous Lemma we are able to define the rational
map ξ : P2 99K C(m) sending a generig point y ∈ P2 to the effective divisor
q1 + q2 + . . . + qm ∈ C(m). As the image of y ∈ P2 depends on its fiber via
the rational dominant map F : C(2) 99K P2, we have that ξ is non constant.
Consider the resolution ξ̃ : R −→ C(m) of ξ and the composition with the
Abel-Jacobi map

R
ξ̃−→ C(m) u−→ J(C),

where R is a rational surface. By the universal property of Albanese mor-
phism, the above map factors through the Albanese variety Alb(R) of the
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rational surface R. As Alb(R) is 0-dimensional, the composition u ◦ ξ̃ is
a constant map. Being ξ non-constant, by Abel’s theorem it follows that
for all the generic points y ∈ P2, the divisors q1 + q2 + . . . + qm are all li-
nearly equivalent. Furthermore, as y vary on a surface, we deduce that the
complete linear series |q1 + q2 + . . . + qm| has dimension r ≥ 2.

To conclude, we recall that 1 ≤ a ≤ d. If a were equal to d, then m = 2
and the linear series |q1 + q2| would have degree 2 and dimension 2. Hence
a < d.

Finally, the third important lemma is an immediate consequence of The-
orem 2.2.2 on correspondences with null trace on symmetric products of
curves.

Lemma 4.3.4. Let C be a non-hyperelliptic curve of genus g ≥ 5 and let
F : C(2) 99K P2 be a dominant rational map of degree d < g − 1.
With the notation above, given a generic point y ∈ P2, we have that the
points p1, . . . , p2d ∈ C in (4.7) and (4.8) are not distinct, that is a 6= 1.

Proof. For the generic point y ∈ P2, let us consider its associate divisor
Dy = p1 + . . . + p2d. By contradiction, suppose that p1, . . . , p2d are distinct
points of C. Let us consider the graph of the rational map F : C(2) 99K P2

Γ :=
{

(y, p + q) ∈ P2 × C(2) |F (p + q) = y
}

. (4.9)

It is easy to see that Γ ⊂ P2 × C(2) is a correspondence with null trace
of degree d = deg F (cf. Example 2.2.5). Let φK : C −→ Pg−1 denote
the canonical map of C. Then by Theorem 2.2.2 we have that the linear
span of the points φK(p1), . . . , φK(p2d) in Pg−1 has dimension at most d−1.
Moreover, the pi’s are assumed to be distinct, then the linear span of their
images in Pg−1 coincides with φK(Dy) and hence dimφK(Dy) ≤ d−1. Thus
by the geometric version of Riemann-Roch theorem we have

dim |Dy| = deg Dy − 1− dimφK(Dy) ≥ 2d− 1− (d− 1) = d =
deg Dy

2
.

Therefore by Clifford’s theorem we have that either C is hyperelliptic, Dy

is zero or Dy is a canonical divisor by Clifford’s theorem. By assumption C
is a non-hyperelliptic curve and 0 < d < g − 1, thus 0 < deg Dy < 2g − 2
and hence we have a contradiction.

Now, we shall prove all the results of the previous section. For the
reader’s convenience, we state again the assertions and we start from the
non-hyperelliptic case.
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Theorem 4.3.5. Let C be a smooth complex projective curve of genus g ≥ 3
and assume that C is non-hyperelliptic. Then

dr(C(2)) ≥ gon(C).

Proof. To start, we note that if the genus of C is either g = 3 or g = 4, then
it is a trigonal curve. So, by Lemma 4.3.1 we have dr(C(2)) ≥ 3 = gon(C)
and the assertion follows.

Then let us assume that g ≥ 5 and let F : C(2) 99K P2 be a dominant
rational map of degree d = dr(C(2)). Aiming for a contradiction we assume
d < gon(C).

For a generic point y ∈ P2, let us consider the associated divisor Dy

defined in (4.8). Thanks to Lemma 4.3.2 there exists 1 ≤ a ≤ d such that

Dy = a (q1 + q2 + . . . + qm) ,

where m = 2d
a and the qj ’s are distinct points of C. By Lemma 4.3.3, the

linear series |q1 + q2 + . . . + qm| is a complete gr
m of C with r ≥ 2. Clearly,

m must be at least equal to the gonality of C. In particular we have m > d
and hence the unique possibility is a = 1.

To conclude the proof, we recall that the gonality of a curve C of genus
g is gon(C) ≤

[
g+3
2

]
. In particular, it follows that gon(C) ≤ g − 1 for any

g ≥ 5. As C is assumed to be a non-hyperelliptic curve of genus g ≥ 5 and
d < gon(C), Lemma 4.3.4 assures that a > 1, a contradiction.

Proposition 4.3.6. Let C be a smooth complex projective curve of genus
g ≥ 3 and assume that C is non-hyperelliptic. Then the following hold:

(i) if g = 3, 4, then dr(C(2)) ≥ 3;

(ii) if g = 5, then dr(C(2)) ≥ 4;

(iii) if g = 6, then dr(C(2)) ≥ 5;

(iv) if g ≥ 7, then
dr(C(2)) ≥ max {6, gon(C)} .

Proof. As a consequence of Lemma 4.3.1 we have that dr(C(2)) ≥ 3 and
assertion (i) follows.

As usual, let F : C(2) 99K P2 be a dominant rational map of degree
d = dr(C(2)) and for a generic point y ∈ P2, we consider the associated di-
visor Dy = a (q1 + q2 + . . . + qm), where 1 ≤ a ≤ d and the qj ’s are distinct
points of C. Then we proceed by steps.
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Step 1 [ g ≥ 5 ⇒ d ≥ 4 ]. We assume that C has genus g ≥ 5 and
we prove that dr(C(2)) ≥ 4. Aiming for a contradiction, we suppose that
d = deg F = 3.

By Lemma 4.3.3, we have that |q1 + q2 + . . . + qm| is a complete linear
series on C of degree m and dimension r ≥ 2. As C is non-hyperelliptic and
g ≥ 5, Marten’s theorem assures that dimW r

m(C) ≤ m − 2r − 1. As the
number of qj ’s is m = 2d

a = 6
a and the dimension is r ≥ 2, we have that

W r
m(C) has non-negative dimension only if a = 1.
Since g ≥ 5 and d = 3, we have that d < g − 1 and hence the integer a

can not be equal to 1 by Lemma 4.3.4. Therefore we have a contradiction.
Thus d ≥ 4 and assertion (ii) follows as a consequence.

Step 2 [ g ≥ 6 ⇒ d ≥ 5 ]. We prove that dr(C(2)) ≥ 5 for any non-
hyperelliptic curve C of genus g ≥ 6. By the previous step, it suffices to
see that C(2) does not admit dominant rational maps on P2 of degree 4. By
contradiction, let us assume d = deg F = 4.

The argument is the very same of step 1. Thanks to Lemma 4.3.3 and
Marten’s theorem, we deduce 0 ≤ dimW r

m(C) ≤ m− 2r− 1 with r ≥ 2 and
m = 2d

a . Since d = 4, it follows that a = 1, but this situation can not occur
by Lemma 4.3.4. Then we have a contradiction and assertion (iii) holds.

Step 3 [ g ≥ 7 ⇒ d ≥ 6 ]. To conclude, we assume that C has genus
g ≥ 7 and we prove that dr(C(2)) ≥ 6. Thanks to Step 2, we have to show
that the degree of irrationality of C(2) is different from 5. Again we argue
by contradiction and we suppose d = deg F = 5.

As above, the inequality 0 ≤ dimW r
m(C) ≤ m − 2r − 1 holds, where

r ≥ 2 and m = 2d
a . In this situation, the only possibilities are a = 1 and

a = 2. Since d = 5 < g−1 and C is a non-hyperelliptic curve of genus g ≥ 7,
the integer a must differ from 1 by Lemma 4.3.4.

On the other hand, suppose that a = 2. Then m = 5 and the above
inequality implies r = 2. In particular, the linear series |q1 + . . . + q5| is a
complete g2

5 on C. As m is prime, the map C −→ P2 defined by the g2
5 is

birational onto a non degenerate curve of P2. Hence Castelnuovo’s bound
gives g ≤ 6, a contradiction.

Thus dr(C(2)) ≥ 6 and assertion (iv) follows from Theorem 4.3.5.

Theorem 4.3.7. Let C be a smooth complex projective curve of genus g ≥ 4
and assume that C is very general in the moduli space Mg . Then

dr(C(2)) ≥ g − 1.

Proof. When g = 4 the assertion is straightforward from Proposition 4.3.6.
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Then let us assume g ≥ 5 and let F : C(2) 99K P2 be a dominant rational
map of degree d = dr(C(2)). We argue by contradiction and we suppose
d < g − 1.

For a generic point y ∈ P2, we consider its fiber

F−1(y) = {p1 + p2, . . . , p2d−1 + p2d} ⊂ C(2).

and the associated divisor Dy = p1 + . . .+ p2d. By Lemma 4.3.2 there exists
an integer 1 ≤ a ≤ d such that Dy = a (q1 + q2 + . . . + qm), where m = 2d

a
and the qj ’s are distinct points of C.

By assumption we have that C is non-hyperelliptic. Moreover, d < g−1
and hence a 6= 1 by Lemma 4.3.4.

We claim that a 6= 2. If a were equal to 2, it would mean that for
any i = 1, . . . , 2d, would exist k 6= i such that pi = pk. So, by fixing a
generic point q ∈ C, we could define a map ςq : C −→ C as follow: for
p ∈ C, ςq(p) ∈ C is the unique point such that F (p + q) = F (ςq(p) + q).
Clearly, ςq would be an automorphism of C. Furthermore, as the generic
fiber of F is given by distinct points of C(2), we would have that generically
ςq(p) 6= p and hence ςq would not be the identity of C. Then we would have
a contradiction, because the only automorphism of a very general curve is
the trivial one. Thus a ≥ 3.

Thanks to Lemma 4.3.3, the linear series |q1 +q2 + . . .+qm| is a complete
gr
m with r ≥ 2 and hence W r

m(C) has non-negative dimension. We recall
that when C is a very general curve, the dimension of W r

m(C) equals the
Brill-Noether number ρ(g, r,m) := g − (r + 1)(g − m + r). In particular,
|q1 + q2 + . . . + qm| ∈ W 2

m(C) and hence ρ(g, 2,m) ≥ 0. It follows that

m ≥ 2g + 6
3

On the other hand, we have a ≥ 3 and d < g − 1. Therefore

m =
2d

a
<

2g − 2
3

and we get a contradiction.

Remark 4.3.8. As we mentioned in the previous section, the techniques we
use do not work to improve Theorem 4.3.7. The obstruction is that we are
not able to prove an assertion analogous to Lemma 4.3.4 without assuming
deg F < g − 1. Indeed, when deg F = g − 1 the divisor Dy is canonical on
C and Clifford’s theorem leads no longer to a contradiction.

To conclude, we note that by the very same techniques is possible to give
bounds on the degree of irrationality of the k-fold symmetric product C(k)

of a smooth complex projective curve of genus g, but we would obtain a less
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precise picture. Namely, if F : C(k) 99K Pk is a dominant rational map of
degree d, the divisor Dy associated to the fiber over a generic point y ∈ Pk

has degree kd. Since we need deg Dy < 2g − 2, the more we increase the
integer k, the more we have to increase the genus g to have some information
on dr(C(k)).

In order to provide some upper bounds on the degree of irrationality of
C(k), we may readjust the constructions we made - by using gr

d’s on C - to
show Proposition 4.2.2 in the previous section. Moreover, one could deal
with this problem by embedding the k-fold symmetric product in a suitable
projective space as well (see for instance [19]).

4.4 The hyperelliptic case

In order to conclude the proofs of the results stated in the second Section,
here we deal with Theorem 4.2.4. Namely, we shall prove that if C is an
hyperelliptic curve of genus g ≥ 4, then the degree of irrationality of C(2) is
four. Although the techniques we shall use in the proof shall be very similar
to those of Section 3, this situation shall be slightly different and hence we
preferred to menage it in a different section.

This section is entirely devoted to prove the following (see Theorem
4.2.4).

Theorem 4.4.1. Let C be a smooth complex projective curve of genus g ≥ 4.
If C is hyperelliptic, then dr(C(2)) = 4.

Let f : C −→ P1 be the g1
2 on C and let ι : C −→ C denote the induced

hyperelliptic involution. We recall that
(
P1

)(2) ∼= P2 and under this iden-
tification we can define a dominant morphism C(2) −→ P2 of degree 4 by
sending a point p + q ∈ C(2) to the point f(p) + f(q) ∈ P2. Furthermore,
Lemma 4.3.1 guarantees that the degree of irrationality of C(2) is at least 3.
Thus

3 ≤ dr(C(2)) ≤ 4

and hence to prove Theorem 4.4.1, it suffices to show that C(2) does not
admit a dominant rational map of degree 3 on P2.

So, let F : C(2) 99K P2 be a dominant rational map of degree d and
suppose by contradiction that d = 3. For a generic point y ∈ P2, let

F−1(y) = {p1 + p2, p3 + p4, p5 + p6} ⊂ C(2) (4.10)

be its fiber and let Dy = p1+. . .+p6 ∈ Div(C) be the divisor associated to y.

We note the following important fact. Since C(2) is a connected sur-
face, the action of the monodromy group M(F ) ⊂ S3 on the fiber (4.10) is
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transitive by Lemma 1.2.1. Furthermore, let G : C × C 99K P2 be the map
obtained by composing F and the natural quotient map π : C ×C −→ C(2)

and let
G−1(y) = {(p1, p2), (p2, p1), . . . , (p6, p5)} ⊂ C(2) (4.11)

be its fiber over y. As C × C is a connected surface as well, we have that
M(G) ⊂ S6 acts transitively on G−1(y). It follows that there is no way to
distinguish neither the points of the fiber F−1(y) nor those of G−1(y) by
some property varying continuously as y varies on P2.

Let φK : C −→ Pg−1 be the map defined by the canonical linear series on
C. As C is assumed to be hyperelliptic, φK is the composition of the double
covering map f : C −→ P1 and the Veronese map νg−1 : P1 −→ Pg−1 (see
e.g. [38, Proposition 2.2 p. 204]). In particular, the image φK(C) ⊂ Pg−1 is
set-theoretically the rational normal curve of degree g − 1 and the covering
φK : C −→ φK(C) has degree two. Then two distinct points p, q ∈ C has
the same image if and only if they are conjugated under the hyperelliptic
involution ι : C −→ C.

Let Γ :=
{
(y, p + q) ∈ P2 × C(2) |F (p + q) = y

}
be the graph of F . In

this situation Γ ⊂ P2 ×C(2) is a correspondence with null trace of degree 3.
Therefore, by Theorem 2.2.2 the linear span of the points φK(p1), . . . , φK(p6)
is a plane π ⊂ Pg−1. In particular, the lines

l1 := φK(p1)φK(p2), l2 := φK(p3)φK(p4) and l3 := φK(p5)φK(p6)

must intersect at a same point p ∈ π as in figure (a) below (cf. Section 2.2
and Example 2.3.4).

π

l2

l1

l3

πp

(a)

(b)

l3
l2

l1

The point y ∈ P2 is generic and hence we can assume - without loss
of generality - that p1 and p2 are not conjugate under the hyperelliptic
involution, that is φK(p1) 6= φK(p2). As the points of the fiber (4.10) of F are
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indinstinguishable, it follows that φK(p3) 6= φK(p4) and φK(p5) 6= φK(p6)
as well.

As the φK(pi)’s lie on the intersection of π with the rational normal
curve φK(C), the φK(pi)’s must be at most three distinct points. Suppose
that they are exactly 3 distinct points of Pg−1. Since we can not distin-
guish the points of the fiber (4.11), we deduce that each φK(pi) has exactly
two the preimages on C. Therefore we can suppose φK(p2) = φK(p3),
φK(p4) = φK(p5) and φK(p6) = φK(p1). Hence the lines l1, l2 and l3 lie on
π as in figure (b) above. As those line must also lie as in figure (a), it is
easy to see that the must coincide. It follows that the three φK(pi)’s are
collinear, but this is impossible because φK(C) does not admit any trisecant
line.

Therefore the φK(pi)’s are exactly two points of φK(C). We recall that
by Lemma 4.3.2, there exists 1 ≤ a < d such that the divisor Dy associated
to y has the form Dy = a(q1 + . . . + qm), where m = 2d

a and the qj ’s are
distinct points of C. In our case d = 3 and hence a = 1, 2.

If a = 2 we have m = 3. Hence there are two points q1, q2 mapping on
φK(p1) and q3 on φK(p2), but this situation cannot occur because we are
distinguishing points. On the other hand, suppose that a = 1 and m = 6.
As both φK(p1) and φK(p2) has two preimages on C, the qj ’s must be at
most four distinct points. Thus we have a contradiction and the assertion
of Theorem 4.2.4 holds.
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Chapter 5

The nef cone of the second
symmetric products of curves

In this chapter we study the cone Nef (C(2))R of all numerically effective
R-divisors classes in the Néron-Severi space N1(C(2))R when C is a very
general curve.

In [48, Section 4], Ross gives new bounds on the nef cone on the second
symmetric product of a very general curve of genus five. His argument is
based on the main theorem in [48] together with some techniques due to Ein
and Lazarsfeld (see [22]). We follow Ross’ argument to improve the bounds
on Nef (C(2))R when C is assumed to be a very general curve of genus
5 ≤ g ≤ 8 (see Teorem 5.1.2). In particular, the refinement is a consequence
of Theorem 3.2.1 in Chapter 3 and of Theorem 5.2.2 in the second Section
of this chapter.

The first Section is devoted to introduce the problem and to recall the
main results on this topic.

In Section 2 we turn to deformations of singular curves on surfaces. We
consider families of singular curves covering a smooth complex projective
surface X and we deal with the problem of estimate the self-intersection of
the members of such families. In particular, we give a sharp bound improving
a result of Ein and Lazarsfeld (see [22, Corollary 1.2]).

At the end, in the third Section we prove the new bounds on Nef (C(2))R.

5.1 Generalities on the nef cone of C(2)

Let C be a smooth irreducible complex projective curve of genus g ≥ 0
and let us assume that C is very general in the moduli space Mg. Let us
consider the second symmetric product C(2) of C and let N1(C(2))Z be its
Néron-Severi group.
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As in Section 1.3, fixing a point p ∈ C, we define the divisor Xp :=
{p + q|q ∈ C} and the diagonal divisor ∆ := {q + q|q ∈ C}. Let x and δ
denote their numerical equivalence classes in N1(C(2))Z. By Lemma 1.3.2
we have that the vector space N1(C(2))R of numerical equivalence classes
of R-divisors is spanned by the classes x and δ

2 , hence any numerical class
α ∈ N1(C(2))R can be written in the form α = (a + b)x− b δ

2 .

Our aim is to describe the two-dimensional convex cone Nef (C(2))R of
all numerically effective R-divisors classes on C(2) and this is equivalent to
determine its two boundary rays.

The first one is the dual ray of the diagonal divisor class via the intersec-
tion pairing. Namely, since the diagonal is an irreducible curve of negative
self intersection, it spans a boundary ray of the effective cone of curves.
Thus one boundary of the nef cone is given by the classes orthogonal to the
diagonal class, that is {α ∈ N1(C(2))|(δ ·α) = 0}. Hence this ray is spanned
by the numerical equivalence class (g − 1)x− δ

2 .
The other ray is spanned by the class

(τ(C) + 1)x− δ

2
,

where τ(C) is the real number defined as

τ(C) := inf{t > 0|(t + 1)x− δ

2
is ample}

= min{t > 0|(t + 1)x− δ

2
is nef} .

Hence the problem of describing the cone Nef (C(2))R is equivalent to com-
pute τ(C). Notice that if (t + 1)x− δ

2 is an ample class of N1(C(2))R, then
it must have positive self intersection and hence

τ(C) ≥ √
g .

When the genus of the curve C is g ≤ 3, the problem is totally under-
stood.

If g = 0, we have C(2) ∼= P2. So the classes x and δ
2 coincide with the

hyperplane class. Therefore (t + 1)x− δ
2 = tx and hence τ(C) = 0.

If g = 1, it is well known that the nef cone Nef (C(2))R is the closure
of the effective cone of curves NE (C(2)) and a class α ∈ N1(C(2))R is nef if
and only if α2 ≥ 0 and (α · h) ≥ 0 for some ample class h (see [35, Lemma
1.5.4]). Thus we deduce τ(C) = 1 by taking α = (τ(C)+1)x− δ

2 and h = x.
In the other two cases it is possible to compute τ(C) by finding explicit

irreducible curves of negative self-intersection and by imposing orthogonality
with such curves.
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When g = 2, C is an hyperelliptic curve and the g1
2 defines a curve on

C(2) with class 2x − δ
2 (cf. Lemma 1.4.4 and Lemma 1.3.1) and negative

self-intersection. Then we have (2x − δ
2) · ((τ(C) + 1)x − δ

2) = 0 and we
deduce τ(C) = 2.

If g = 3, there exists an irreducible curve on C(2) with numerical equi-
valence class 16x − 6 δ

2 (for details see [34] and [16]). By arguing as above
we compute τ(C) = 9

5 .

When C is a very general curve of genus g ≥ 4, there is an important
conjecture - due to Alexis Kouvidakis - asserting that the nef cone is as large
as possible. Namely,

Conjecture 5.1.1 (Kouvidakis). If C is a very general curve of genus g ≥
4, then τ(C) =

√
g.

In [34], the statement has been proved when g is a perfect square. More-
over, Kouvidakis proved that

τ(C) ≤ g

[
√

g]

for any very general curve of genus g ≥ 5. The cases g = 5 and g ≥ 10 have
been recently improved.

In particular, by using a bound on the Seshadri constant at g general
points of P2 (see [52]), as a consequence of a result due to Ciliberto and
Kouvidakis (cf. [16] and [48, Corollary 1.7]), we have that

τ(C) ≤
√

g√
1− 1

8g

for any very general curve of genus g ≥ 10. Furthermore, when C is a genus
five curve with very general moduli, Ross proved that τ(C) ≤ 16/7 (cf. [48,
Section 4]).

In third Section of this chapter, we prove the following.

Theorem 5.1.2. Consider the rational numbers

τ5 =
9
4

, τ6 =
32
13

, τ7 =
77
29

and τ8 =
17
6

.

Let C be a smooth complex projective curve of genus 5 ≤ g ≤ 8 and assume
that C has very general moduli. Then

τ(C) ≤ τg.
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In particular, by comparing the nubers in the statement with the bounds on
τ(C) listed above, we have

τ5 <
16
7

and τg <
g

[
√

g]
for g = 6, 7, 8.

Thus the Theorem 5.1.2 gives a slight improvement to the bounds on τ(C).

5.2 Deformations of singular curves on surfaces

To start, we would like to note that the theorem we prove in the following
has been obtained also by Andreas Leopold Knutsen, Wioletta Syzdek and
Tomasz Szemberg in a recent paper (see [32]).

Following [22], let X be a smooth complex projective surface and let
∆ be a smooth curve or a disk with 0 ∈ ∆. Then let us consider a one-
parameter family {(Et, xt)}t∈∆ consisting of curves Et ⊂ X plus a point
xt ∈ Et. Setting t = 0, the deformation (Et, xt) of (E0, t0) determines a
Kodaira-Spencer map

ρ : T0∆ −→ H0(E0, N)

where N := OE0(E0) is the normal bundle to E0 in X.
For a point y ∈ E0, let my denote the maximal ideal sheaf of y. We say

that a section s ∈ H0(X, N) vanishes at order at least k at the - possibly
singular - point y ∈ E0 if s is a section of the subsheaf N ⊗mk

y ⊂ N . Then
the following holds.

Lemma 5.2.1. Assume that multxtEt ≥ m for all t ∈ ∆. Then the section
ρ

(
d
dt

) ∈ H0(E0, N) vanishes to order at least m− 1 at x0.

Proof. See [22, Lemma 1.1]

Under the hypothesis of the lemma, let us assume in addiction that E0

is a reduced irreducible curve and the family {(Et, xt)}t∈∆ is non-trivial.
Ein and Lazarsfeld prove that in this situation the self-intersection of E0 is
bounded from below, namely E2

0 ≥ m(m− 1) (see [22, Corollary 1.2]).
By assuming that the curve E0 is singular at x0 - that is m ≥ 2 -

the latter bound has been improved by Xu. In particular, he proves that
E2

0 ≥ m(m− 1) + 1 (cf. [54, Lemma 1]).

The following result is a further improvement of these bounds and the
proof follows the same argument. As usual, given a - possibly singular -
curve E, we denote by ν : Ẽ −→ E its normalization and by gon(E) the
gonality of the smooth curve Ẽ.
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Theorem 5.2.2. Let X be a smooth complex projective surface. Let T be
a smooth variety and consider a family {(Et, xt)}t∈T consisting of a curve
Et ⊂ X through a very general point xt ∈ X such that multxtEt ≥ m for
any t ∈ T and for some m ≥ 2.
If the central fibre E0 is a reduced irreducible curve and the family is non-
trivial, then

E2
0 ≥ m(m− 1) + gon(E0). (5.1)

Proof. As in [22], let us consider the blowing-up f : X ′ −→ X of X at x0

and let F ⊂ X ′ be the exceptional divisor. Let E′
0 be the strict transform

of E0. Then E′
0 = f∗E0 − kF with k = multx0E0 ≥ m and hence E′

0 is the
blowing-up of E0 at x0.

Since each xt is a singular point of Et, the variety T parametrizing the
family must be at least two-dimensional. Then, up to consider a subfamily,
we assume that the dimension of T is 2. Let (t1, t2) ∈ C2 be the local
coordinates of T around t = 0.

Consider the sections s1 = ρ
(

d
dt1

)
, s2 = ρ

(
d

dt2

)
∈ H0(E0,OE0(E0)) of

the normal bundle to E0 in X, where ρ is the Kodaira-Spencer deformation
map form the tangent space to T at 0 into H0(OE0(E0)). Thus, by Lemma
5.2.1 and being the family non-trivial, s1 and s2 induce two non-zero sections

s′1, s
′
2 ∈ H0

(
E′

0 , f∗(OE0(E0))⊗OX′((1−m)F )|E′0
)

.

By last two sections we define a map φ : E′
0 −→ P1 which extends to a map

φ̃ : Ẽ0 −→ P1, hence

E2
0 = degOE0(E0) = deg f∗(OE0(E0))|E′0 ≥
≥ (m− 1)(F · E′

0) + deg φ ≥ m(m− 1) + gon(Ẽ0)

and this concludes the proof.

Notice that if every curve of the family is reduced and irreducible, then
the inequality (5.1) holds for any such curve.

Furthermore, the bound in the statement is sharp. This fact is clear
from the following examples.

Example 5.2.3. On P2 let us consider the 8-dimensional family C of all the
cubic curves with a node. Let p1, . . . , p6 ∈ P2 be six general points and let
C′ = {Ct, yt} be the two-dimensional subfamily of C of all the plane cubics
Ct passing through the pi’s with a node at yt.

Let X be the surface obtained by blowing up P2 at the pi’s and let
E = {Et, xt} be the family on X such that Et is the strict transform of Ct

and xt is the inverse image of the node. Then the family E is such that the
generic member satisfies equality in the (5.1) above.
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To see this fact, notice that multxtEt = 2 for any t and that the generic
member of the family is irreducible and reduced. Moreover, the normaliza-
tion of each Et is a rational curve and hence gon(Et) = 1. Therefore, by
setting m = 2, we have m(m − 1) + gon(Et) = 3. On the other hand, the
self-intersection of any Et is given by the self-intersection of Ct minus the
number of blown-up points, that is E2

t = 9− 6 = 3.

Example 5.2.4. By arguing as above, let C be the family of dimension 11 of
the quartic curves on P2 with a singularity of order 3. Then let us fix nine
points p1, . . . , p9 ∈ P2 and let us consider the two-dimensional subfamily
C′ = {Ct, yt} of C such that any Ct passes through the pi’s with singular
point at yt.

So let X be the blow-up of P2 at the pi’s and let E = {Et, xt} be the
family on X of the proper transforms of the Ct’s with singular point at
xt ∈ X. Since E2

t = 16− 9 = 7 and the normalization Ẽt of Et is a rational
curve, we have that generically E2

t = m(m − 1) + gon(Et), where m is
assumed to be multxtEt = 3.

Remark 5.2.5. As we said above, in [32] the authors start from [49] and
prove a result analogous to Theorem 5.2.2, under the more general hypothe-
sis of considering a family of pointed reduced irreducible curves parametrized
over a two-dimensional subset U ⊂ Hilb(X) (cf. [32, Theorem A]). More-
over, they prove a more precise statement asserting that E2

0 = m(m− 1) +
gon(E0) if and only if E0 is smooth outside x0 and x0 is an ordinary m-
tuple point of E0 (cf. [32, Theorem 2.1]). Then they apply this theorem to
Seshadri constants on surfaces.

We note that our proof works under the same hypothesis, but we pre-
ferred to maintain the original statement.

5.3 Bounds on the nef cone of C(2)

In this section, we shall follow [48, Section 4] to prove Theorem 5.1.2.

In order to present the main theorem in [48], we would like to recall the
definition of Seshadri constants on a surface. So, let us consider a smooth
complex projective variety X and a nef class L ∈ N1(X)R. We define the
Seshadri constant of L at a point y ∈ X to be the real number

ε (y; X, L) := inf
E

(L · E)
multyE

,

where the infimum is taken over the irreducible curves E passing through y.
The following result connects Seshadri constants on the second symme-

tric product of a curve of genus g − 1 and the ample cone of the second
symmetric product of a very general curve of genus g.
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Theorem 5.3.1. Let D be a smooth curve of genus g − 1. Let a, b be two
positive real numbers such that a/b ≥ τ(D) and for a very general point
y ∈ D(2)

ε

(
y; D(2), (a + b)x− b

δ

2

)
≥ b.

Then for a very general curve C of genus g,

τ(C) ≤ a

b
.

Proof. See [48, Theorem 1.2]

For the reader’s convenience, we recall the statement of the result we
aim to prove.

Theorem 5.1.2.Consider the rational numbers

τ5 =
9
4

, τ6 =
32
13

, τ7 =
77
29

and τ8 =
17
6

.

Let C be a smooth complex projective curve of genus 5 ≤ g ≤ 8 and assume
that C has very general moduli. Then

τ(C) ≤ τg.

To start with the proof, let us consider a very general curve C of genus
g = 5. We want to prove that

τ(C) ≤ 9
4

. (5.2)

To this aim, let D be a very general curve of genus g(D) = g − 1 = 4
and let D(2) be its second symmetric product. Then set a = 9, b = 4 and
consider the numerical equivalence class

L := (a + b)x− b
δ

2
∈ N1(D(2)). (5.3)

Since τ(D) = 2, by Theorem 5.3.1 we deduce that to prove inequality
(5.2) it suffices to show that for a very general point y ∈ D(2)

ε(y ;D(2), L) ≥ b = 4, (5.4)

i.e. there is not a reduced and irreducible curve E passing through a generic
point y ∈ D(2) such that (L · E)/multyE < b = 4.
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Let us consider the set F of pairs (F, z) such that F ⊂ D(2) is a reduced
irreducible curve, z ∈ F is a point and (L · F )/multzF < 4. Since F con-
sists of at most countably many algebraic families and the point y ∈ D(2) is
assumed to be very general, inequality (5.4) will be checked if each of these
families is discrete [22, Section 2].

Aiming for a contradiction, let us assume that there exists a family
E = {(Et, xt)}t∈T such that for any t ∈ T the curve Et ⊂ D(2) is reduced
and irreducible, the point xt ∈ Et is very general on D(2) and

(L · Et)
multxtEt

< b = 4. (5.5)

As in [48], we note that for any reduced irreducible curve E ⊂ D(2)

passing through a very general point y ∈ D(2) we have

(L · E) ≥ b = 4. (5.6)

To see this fact, let [E] = (n + γ)x − γ(δ/2) ∈ N1(D(2)) be the numerical
equivalence class of E. Since the class x is ample, (x · E) = n > 0 and the
claim is easily checked when γ ≤ 0.
Then assume γ > 0. Being τ(D) = 2, the diagonal is the only curve of
D(2) with negative self intersection. Moreover, there exist at most finitely
many irreducible curves of zero self intersection and numerical class given
by (n+γ)x−γ(δ/2). Hence we can assume that E2 = n2−4γ2 > 0 because
y ∈ D(2) is a very general point. Therefore for any γ > 0 we have that
n ≥ 2γ + 1 and (L · E) = 9n− 16γ ≥ 2γ + 9 > 4.

Thus by (5.5) and (5.6) we deduce that multxtEt > (L · Et)/4 ≥ 1 for
any t ∈ T . Being Et reduced, for a general point z ∈ Et the multiplicity of
Et at z is one, therefore the family {(Et, xt)}t∈T is non-trivial.

Without loss of generality, let us assume that the central fibre (E0, x0)
is such that

m := multx0E0 ≤ multxtEt

for any t ∈ T . Hence by Theorem 5.2.2 we have that the curve E0 has self
intersection E2

0 ≥ m(m − 1) + gon(E0). Moreover, by Theorem 3.2.1 we
have gon(E0) ≥ gon(D) and hence

E2
0 ≥ m(m− 1) +

[
(g − 1) + 3

2

]
= m(m− 1) + 3. (5.7)

Finally, by (5.5) we deduce that (L · E0) ≤ 4m − 1. Thus by Hodge Index
Theorem we have

m(m− 1) + 3 ≤ E2
0 ≤

(L · E0)2

L2
≤ (4m− 1)2

17
, (5.8)
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but this is impossible. Hence we proved that if C is a very general curve of
genus g = 5, then τ(C) ≤ 9

4 .

To conclude the proof of Theorem 5.1.2, we apply the very same argu-
ment to the cases g = 6, 7, 8, starting from the lower value of g.

In each of these situations we choose the integers a and b to be the
numerator and the denominator of τg. Then we consider a very general curve
D of genus g(D) = g − 1 and the numerical equivalence class L ∈ N1(D(2))
defined by (5.3). As 9

4 < 32
13 < 77

29 < 17
6 we have that the hypothesis of

Theorem 5.3.1 are still satisfied. Then we argue as above and we obtain the
analogous of (5.8) given by

m(m− 1) + t ≤ E2
0 ≤

(L · E0)2

L2
≤ (bm− 1)2

a2 − (g − 1)b2
.

for an opportune integer t depending on the genus g. When g = 6 - and
hence D has genus 5 - t equals the gonality of D, that is t =

[
(g−1)+3

2

]
= 4.

On the other hand, suppose that either g = 7 or g = 8. Notice that
E0 is a singular curve and hence it is not isomorphic to the smooth curve
D of genus g − 1. Moreover, being D very general, it has no non-trivial
automorphism. Thus Theorem 3.2.1 assures that gon(E0) ≥ gon(D) + 1 =[

(g−1)+3
2

]
+ 1. Then t = 5 for g = 7 and t = 6 when g = 8.

Therefore it remains to check that there are no real values of m satisfying
the latter inequality for a, b and g as above.
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Chapter 6

Galois closure and
Lagrangian surfaces

In this chapter we produce examples of Lagrangian surfaces having nega-
tive topological index. In particular, we consider a smooth complex Abelian
surface S admitting a rational covering of degree three on a rational surface
Y . Then the Lagrangian surface X shall be obtained as minimal desingu-
larization the Galois closure of the covering.

In Section 1 we present an overview on Lagrangian surfaces and we state
a theorem summarizing the results of this chapter (see Theorem 6.1.4).

The second Section is devoted to study Abelian surfaces with a polari-
zation L of type (1,2).

In Section 3 we give a detailed description of the induced linear pencil
|L|. In particular, we study all the curves contained in |L| and we interpret
double and triple points on S in terms of elements of the pencil.

Section 4 concerns the construction of the triple covering. We prove that
there exist a suitable blow-up S of S resolving the indeterminacy locus of the
rational covering S 99K Y . In particular, we obtain a degree three covering
S −→ F3 of the Hirzebruch surface F3.

In the fifth Section we describe geometrically the Galois closure of the
covering.

At the end, in Section 6 we compute the birational invariant of X, we
determine the Albanese variety of X and we conclude by proving that X is
a Lagrangian surface.

6.1 Lagrangian surfaces

Let X be a smooth complex algebraic surface and consider the Albanese
morphism a : X −→ Alb(X). The holomorphic part of the induced homo-
morphism on cohomology a∗ : ∧∗ H1(X,C) = H∗(Alb(X),C) −→ H∗(X,C)
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is an homomorphism of graded algebras and the part of degree two is given
by the homomorphism

ψ2 : ∧2 H0(X, Ω1
X) −→ H0(X,Ω2

X).

The non-triviallity of the kernel of ψ2 leads to several topological conse-
quences. The first one is provided by the well-known Castelnuovo-de Fran-
chis Theorem, which asserts that if there exists a couple of non-zero dif-
ferential 1-forms w1, w2 ∈ H0(X,Ω1

X) such that w1 ∧ w2 ∈ Ker ψ2 and
w1 ∧w2 6= 0, then X admits a fibration over a curve of genus ≥ 2. We note
that this result has been generalized by Catanese [14] to n-dimensional va-
rieties and to any map ψk :

∧k H0(X, Ω1
X) −→ H0(X, Ωk

X) with k = 1, . . . , n
(cf. [14]).

Moreover, the non-injectivity of ψ2 implies that the fundamental group
of X is non-abelian (see [3] and [42]). Other topological consequences have
been studied for instance in [7] in terms of topological index.

As regards of Castelnuovo-de Franchis Theorem it turns out to be in-
teresting to study surfaces provided of non-trivial elements of Ker ψ2 not
inducing a fibration on X. Example of this surfaces have been developed by
Bogomolov and Tschinkel in [11] and by Sommese and Van de Ven in [51].
Moreover, in [13] are presented some examples of surfaces with non-trivial
elements in the kernel of the whole map a∗.

In this chapter we shall deeply study other examples of surface having a
differential form ω ∈ Ker ψ2 not inducing a fibration on X.

In order to give a complete description of our work, we follow [7] and we
introduce some definitions.

Definition 6.1.1. We say that a smooth surface is Lagrangian if there exist
a map of degree one b : X −→ b(X) ⊂ A into an Abelian variety of dimension
4 and a (2, 0)-form ω ∈ H2,0(A) of rank 4 such that b∗(ω) = 0.

Now, let us suppose that X is a smooth complex algebraic surfaces such
that Ker ψ2 is non-trivial. Given a holomorphic form ω ∈ Ker ψ2, we denote
by V ⊂ H0(X, Ω1

X) the subspace of minimal dimension such that ω ∈ ∧2V .
Moreover, we denote by Ω1

X the torsion free sheaf defined as the image of
the evaluation map V ⊗OX −→ Ω1

X .

Definition 6.1.2. We say that the surface X is generalized Lagrangian if
there exists a non zero-form ω ∈ Ker ψ2 of rank 4 and rankΩ1

X = 2. In
other words, there exist ω1, . . . , ω4 ∈ H0(X,Ω1

X) generating generically Ω1
X

and such that ω = ω1 ∧ ω2 + ω3 ∧ ω4 vanishes on H0(X,Ω2
X).

In particular, any Lagrangian surface is generalized Lagrangian.
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Now, consider subsystem of the canonical linear series given by the image
of ∧2V in H0(X, Ω2

X), and let FV be its base locus. In [7], the authors prove
that under some hypothesis on FV , any generalized Lagrangian surface has
non negative topological index [7, Theorem 1.2]. Moreover, they conjecture
the following (see [7, Conjecture 2]).

Conjecture 6.1.3. Let X be a Lagrangian surface. Then the topological
index is τ(X) ≥ 0.

Now, let S be a smooth complex Abelian surface and let C ⊂ S be a
smooth curve of genus three. By [53, Theorem 0.2] we have that S admits
a dominant rational map of degree three S 99K Y on a rational surface
Y . Moreover, the curve C induces a linear pencil |L| on S which gives a
polarization of type (1,2) on S. Then let W(1, 2) denote the moduli space
of Abelian surfaces with a (1, 2) polarization. Throughout the next sections
we prove the following.

Theorem 6.1.4. Let S be a smooth complex Abelian surface and let L be
a line bundle on S providing a (1, 2)-polarization. Suppose further that the
pair (S,L) is general in W(1, 2). Then there exists a dominant degree three
morphism S −→ F3 from a suitable blow-up S of S to the Hirzebruch surface
F3. The minimal desingularization X of the Galois closure of the covering
is a surface of general type with invariants

K2
X = 198 c2(X) = 102 χ(OX) = 25 q = 4 pg = 28 τ(X) = −2.

Furthermore, X is a Lagrangian surface. In particular, X is generalized
Lagrangian with V = H0(X, Ω1

X).

In particular, the surface X in the assertion is a Lagrangian surface with
negative topological index. Thus Theorem 6.1.4 disproves Conjecture 6.1.3.

6.2 Abelian surfaces of type (1, 2) and bielliptic
curves

In this section we shall introduce the main subjects involved in our con-
struction. By an Abelian surface with a (1, 2) polarization we mean a
pair (S,L) such that S is a smooth complex Abelian surface and L a line
bundle over S of degree 4. Let us denote by W(1, 2) the moduli space of
Abelian surfaces with a (1, 2) polarization. We note that given such a pair
(S,L) ∈ W(1, 2), the line bundle L is necessarily ample. Moreover, being
h0(S,L) = 1

2 degL = 2, the linear system |L| induces a linear pencil on S.
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In [8], Wolf Barth gives a complete treatment of these surfaces and we
shall recall here the results we need.

Given a couple (S,L) ∈ W(1, 2), there exists an irreducible curve C ∈ |L|
if and only if L is not of the form OS(E + 2F ) where E and F are elliptic
curves in S such that E·2 = F ·2 = 0 and (E · F ) = 1. Moreover, if there
exists an irreducible element in |L|, then the general member is smooth, and
the linear pencil |L| has 4 distinct base points {p0, p1, p2, p3}.

Let us suppose that there exists such an irreducible curve C ∈ |L|.
Observe that C ·2 = 4, and that by adjunction it has arithmetic genus 3.
Barth proves that in this case C is either smooth of genus 3, or an irreducible
curve of geometric genus 2 with one double point.

Let us fix the origin of S at the base point p0 ∈ S of the pencil |L|.
Then the pi’s are points of order 2 in S (cf. [8, p. 47]). Indeed, consider the
natural isogeny TL : S −→ Pic0(S) = S∨ defined by associating to t ∈ S the
invertible sheaf L−1 ⊗ t∗L. Barth proves that {p0, p1, p2, p3} ∼= Ker TL ∼=
Z/2Z× Z/2Z. Hence the pi’s are fixed by the (−1)-involution on S.

Another important result is that the (−1)-involution on S restricts to
an involution ι on any curve C ∈ |L|. In particular, it induces a degree 2
morphism π : C −→ C/〈ι〉.

Now, the surface S is naturally isomorphic to the generalized Prym va-
riety P (π) associated to this morphism. In order to fix the ideas and the
notation, let us briefly recall how P (π) is constructed in our cases. Let us
distinguish the smooth and singular case.

Suppose first that C ∈ |L| is a smooth curve. By the Riemann-Hurwitz
formula, the quotient C/〈ι〉 is a smooth elliptic curve E. Consider the
embedding of E into the second symmetric product C(2)

E ∼= {p + ι(p), p ∈ C} ⊂ C(2),

and compose this map with the Abel embedding C(2) ↪→ J(C). This is just
the inclusion given by pullback on the Picard schemes

π∗ : Pic0(E) ∼= E ↪→ Pic0(C) ∼= J(C).

Then, by composing the Jacobian embedding with the quotient map, we
have a well defined morphism η : C −→ J(C)/π∗E, which is an embed-
ding satisfying η(C)2 = 4 (see [8, Proposition (1.8)]). The Abelian surface
J(C)/π∗E is the generalized Prym P (π) variety associated to π. Then we
have the following (cf. [8, Chapter 1]).

Lemma 6.2.1. Let (S,L) ∈ W(1, 2) and C ∈ |L| be a smooth curve. Then
there exists a degree two morphism π : C −→ E to an elliptic curve E such
that S is naturally identified with P (π) = J(C)/π∗E.
Conversely, if C is a smooth genus three curve provided of a bielliptic map
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π : C −→ E, we have that C is embedded in P (π) as a curve of self-
intersection 4.

On the other hand, let us consider the case when C ∈ |L| is a singular ir-
reducible curve. As we recalled above, C is an irreducible curve of geometric
genus two with one double point at q ∈ C. Hence q is either a node or a cusp.
We claim that it is necessarily a node. To see this fact, let ν : C̃ −→ C denote
the normalization of C. Consider the Jacobian embedding η : C̃ → J(C̃) and
the isogeny ϕ : J(C̃) −→ S given by its universal property. Both these mor-
phisms have injective differential, then also ν = ϕ ◦ η does and hence q is a
node.

Let q1, q2 ∈ C̃ be the preimages of q. The (−1)-involution on S extends
to an involution ι : C −→ C that fixes p0, . . . p3. Clearly, q is fixed by ι as
well and the quotient C/〈ι〉 is an irreducible curve of arithmetic genus 1
with one node (and hence its geometric genus is zero). It is immediate to
see that the points {ν−1(p0), . . . , ν−1(p3), q1, q2} are the Weierstrass points
of C̃.

The isogeny ϕ : J(C̃) −→ S has degree two. Indeed, the curve C̃ has
self-intersection 2 in the Jacobian J(C̃), while ν∗C̃2 = C2 = 4 in S. Hence
there exists a torsion point ε ∈ J(C̃) such that ϕ is the quotient map induced
by the involution z 7→ z + ε. As usual, Let us identify J(C̃) with Pic0(C̃).
We note that q1 − q2 is 2-torsion because the qi’s are Weierstrass points of
C̃ and these two points are identified in S. Therefore ε ∼ q1 − q2 in C̃.

Now, let us denote by G ∼= Z/2Z the order 2 subgroup of J(C̃) generated
by q1−q2. The generalized Prym variety P (π) associated to π is the quotient
J(C̃)/G. Thus we proved the following.

Lemma 6.2.2. Let (S,L) ∈ W(1, 2) such that there exist an irreducible
singular curve C ∈ |L|. Then S is naturally identified with P (π) = J(C̃)/G.

6.3 Torsion points and geometry of the pencil |L|
Let (S,L) ∈ W(1, 2) be such that there exists an irreducible C ∈ |L|. As we
noticed above, the general element of the linear pencil |L| is smooth; more-
over, it is a non-hyperelliptic curve (see [53, Claim 2.5]). In this section we
shall describe both singular and hyperelliptic members of |L| and we shall
study the torsion points of the surface S with respect to the elements of the
linear pencil.

We assume hereafter that any element of |L| is irreducible. By the clas-
sification of the possible curves in the linear pencil (cf. [8, p. 46]), this
amounts to ask that there are no curves of the form E1 + E2, where E1
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and E2 are smooth elliptic curves contained in S meeting at two points.
We note that this condition is satisfied on a suitable Zariski open subset of
the moduli space W(1, 2). Furthermore, it would follow from the stronger
requirement on S of being a simple Abelian surface, but this latter assump-
tion is generic, i.e. it is satisfied only outside of a numerable union of closed
subsets of W(1, 2).

Under this assumption, we shall see that |L| has exactly 12 singular
members, corresponding to the twelve order two points of S differing from
the pi’s (see Proposition 6.3.1). Moreover, the linear system shall contain
exactly 6 smooth hyperelliptic elements that are related to a particular sub-
group of the points of order 4 (cf. Lemma 6.3.2 and Proposition 6.3.3).
Finally, in Proposition 6.3.4 we shall give a characterization of the triple
points of S in terms of the canonical images of the corresponding curves of
the linear pencil.

Now, let S̃ be the surface obtained by blowing up S at the base points
{p0, . . . , p3} and let

f : S̃ −→ P1 (6.1)

be the fibration induced by the pencil |L|. We denote by E0, . . . , E3 the four
exceptional curves of the blow up, that are sections of f .

Proposition 6.3.1. Let (S,L) ∈ W(1, 2) be such that any element of |L| is
irreducible. The linear pencil has 12 singular elements that are all irreducible
curves of geometric genus 2 with one node. These nodes are the points of S
of order 2 different from the pi’s.

Proof. The first part of the proposition has already been established in Sec-
tion 6.2. We saw also that the singular points are points of order 2 in S. As
S has 16 points of order 2, four of which are the base points p0, . . . , p3, it
remains to prove that there are 12 singular elements in the linear pencil. To
this aim, we use a formula on the invariants of the fibration f : S̃ −→ P1. The
topological characteristic of S̃ is c2(S̃) = 4. The topological characteristic of
any smooth fiber F is e(F ) = 2− 2g = −4, whereas e(N) = e(F ) + 1 = −3
for any singular fiber N . By applying the formula in [6, Lemma VI.4] for
fibrations of surfaces, we obtain

4 = c2(S̃) = e(P1)e(F ) +
n∑

1

(e(N)− e(F )) = −8 + n,

where n is the number of singular fibers. It follows that n = 12.
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The other special elements of the linear pencil |L| are the smooth hyper-
elliptic curves. For any index 1 ≤ i ≤ 3, let us consider the set of points of
S defined as

Pi := {x ∈ S | 2x = pi} .

Any of the Pi’s is a set of 16 particular order 4 points in S. By the following
two results we shall see that there exists a partition Pi = Ai ∪Bi in subsets
of order 8, such that any smooth hyperelliptic curve in |L| passes through a
unique subset of those, whose 8 elements are the Weierstrass points on the
curve.

Lemma 6.3.2. Let x ∈ Pi and let D be the element of |L| passing through
x. Then D is smooth.

Proof. Suppose by contradiction that D is a singular curve. Let ν : D̃ −→ D
be the normalization of D and let q1, q2 ∈ D̃ be the inverse images of the
node. By abuse of notation, let us denote by pi’s the inverse images ν−1(pi)’s
and by x the inverse image of x in D̃. We recall that {p0, . . . , p3, q1, q2} are
the Weierstrass points of the genus 2 curve D̃. Thanks to Lemma 6.2.2 we
have that S is naturally identified with J(D̃)/G, where G denotes the order
two subgroup of J(D̃) generated by q1 − q2. In terms of this identification,
the equality 2x = pi in S means that either

2x ∼
D̃

p0 + pi or 2x ∼
D̃

p0 + pi + q1 − q2.

The first equivalence is impossible because p0 + pi does not belong to the g1
2

for any i 6= 0. On the other hand, by applying the hyperelliptic involution
σ to the second equivalence, we have 2x ∼

D̃
2σ(x). Hence x is a Weiestrass

point of D̃ and we get a contradiction.

Proposition 6.3.3. Let (S,L) ∈ W(1, 2) be such that any element of |L| is
irreducible. The linear pencil has 6 smooth hyperelliptic elements.
Moreover, given such an element D, the hyperelliptic involution j of D in-
duces a permutation of the base points not fixing any of them.

Proof. Let C be a smooth hyperelliptic curve belonging to |L|. By Barth’s
construction we presented in the previous section, such a curve has a biellip-
tic involution ι : C −→ C. As ι and j commute, j induces a permutation on
the fixed points of ι, which are exactly the pi’s. Clearly, such permutation
does not fix any point of the pi’s and the second part of the statement is
established.

If x ∈ C is a Weierstrass point, by what we observed above we have that
2x ∼C p0 + pi for some i ∈ {1, 2, 3}. Hence 2x = pi in S. We show that this
property identifies the hyperelliptic members of |L|.

Let us fix x ∈ P1 and let D ∈ |L| be the curve passing through x. By
Lemma 6.3.2 we have that D is smooth. In particular, we can identify S
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and J(D)/π∗E, where E is the quotient of D by the bielliptic involution.
Notice that p1 ∈ D, hence - under the above identification - we have that
there exists s ∈ D such that

2x− 2p0 ∼D p1 + s + ι(s)− 3p0

in D. It follows that 2x ∼D 2ι(x). Since x is not fixed by the bielliptic
involution ι, 2x induces a g1

2 on D. Hence D is hyperelliptic and x is one of
its Weierstrass points. Moreover, the other 7 Weierstrass points necessarily
satisfy the equality 2y = p1 in S, so they must belong to P1.

Moreover, by choosing one point x′ ∈ P1 \ D ∩ P1, we obtain another
hyperelliptic curve D′ ∈ |C|.

Making the same construction for p2 and p3, we obtain the other 4
hyperelliptic curves.

The following result provides a geometric description - in terms of the
linear pencil - of the points of order 3 as well.

Lemma 6.3.4. Let p 6= pi be a point of S and let C ∈ |L| be the curve
passing through p. The following are equivalent:

(i) p is a point of order 3 of S;

(ii) C is a non-hyperelliptic curve of |L| and its canonical image C ⊂ P2

has an inflection point of order 3 at p with tangent line p0p.

Proof. Suppose that C is the element of the pencil passing through a point
p of order three. If C is smooth, let E = C/〈ι〉 be its bielliptic quotient.
Using the identification S = J(C)/π∗E, the assumption implies that there
exists a point s ∈ C such that

3(p− p0) ∼C s + ι(s)− 2p0. (6.2)

Hence 3p ∼C s + ι(s) + p0 and this induces a base point free g1
3 on C. In

particular, assumption (i) implies that C is non-hyperelliptic.
Let us prove the equivalence separately in the smooth and the singular

case.

Suppose that C is smooth and non-hyperelliptic. By (6.2) there exists
r ∈ C such that

3p + r ∼C p0 + s + ι(s) + r ∼C KC .

The latter equivalence proves that p is an inflection points of order 3 for the
canonical image C ⊂ P2 with tangent line rp. To complete the first part of
the proof we need to show that r = p0. To this aim, observe that

p0 + ι(s) + s + r ∼C KC ∼ ιKC ∼C p0 + s + ι(s) + ι(r).
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Then r = ι(r) and hence r is one of the pi’s. On the other hand we have
KC ∼C p0 + p1 + p2 + p3, then the unique possibility is r = p0.

To prove the converse, suppose that C is a smooth non-hyperelliptic
curve whose canonical image has an inflection point of order 3 at p with
tangent line p0p, i.e. 3p + p0 ∼C KC . For some points a, b ∈ C, let
2p0 + a + b ∼C KC be the divisor cut out by the tangent line to C at
p0. Notice that 2p0 + a + b ∼C KC ∼C ιKC ∼C 2p0 + ι(a) + ι(b). There-
fore either a = ι(b) with a 6= b or a = ι(a). In any case, the relation
3(p− p0) ∼C s + ι(s)− 2p0 holds for some s ∈ C and hence 3p = 0 in S.

Then let us suppose that C is nodal. As usual, we identify S with
J(C̃)/G. Notice that the canonical immersion of C corresponds on C̃ to the
birational morphism associated to K

C̃
+ q1 + q2. Let p be a point of order 3

in S and let C be the element of the linear pencil passing through p. This
fact leads to the relation 3p ∼

C̃
3p0 + q1− q2 in C̃. Since both p0 and q2 are

Weierstrass points, we have q2 ∼C̃
2p0 − q2. Hence

3p + p0 ∼C̃
2p0 + q1 + q2 ∼C̃

K
C̃

+ q1 + q2

as wanted. The converse is now straightforward.

6.4 The triple covering construction

Let f : S̃ −→ P1 be the fibration defined in (6.1). Let us consider the
homomorphism of sheaves

f∗f∗ωf (−E0) −→ ωf (−E0),

and the relative rational map induced from it

S̃
γ //_______

f

ÂÂ>
>>

>>
>>

> P(f∗ωf (−E0)) := Y

wwooooooooooooo

P1

Notice that γ is a generically finite map of degree 3. Indeed, the restriction
γ|F : F −→ P1 to the general smooth non-hyperelliptic fiber F of f , is the
projection of the canonical image of F ⊂ P2 from the point p0 = F ∩ E0.
We note that similar constructions are studied in [53, Proposition 2.1] and
[15].

In this section we want to study in detail the rational map γ : S̃ 99K Y .
To start, we want to compute explicitly the vector bundle Y = P(f∗ωf (−E0))
over P1. Then we shall resolve its indeterminacy points and we shall compute
the ramification locus of the obtained triple cover.
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Proposition 6.4.1. With the notation above, Y is a minimal rational sur-
face and

Y = P(OP1(2)⊕OP1(−1)) ∼= F3.

Proof. Let us first compute the rank 3 vector sheaf f∗ωf . By using - for
instance - a decomposition theorem of Fujita [25], we see that

f∗ωf = OP1(α)⊕O⊕2
P1 ,

where α := deg f∗ωf = χ(O
S̃
)− χ(OF )χ(OP1) = 2.

Then we focus on f∗ωf (−E0). By Grauert’s Theorem [30, Chapter III
Corollary 12.9], we have that R1f∗OS̃

(E0) is a locally free sheaf in the case
at hand. Hence by relative duality

R1f∗OS̃
(E0) ∼= (f∗ωf (−E0))

∨ .

Let us consider the short exact sequence of sheaves

0 −→ O
S̃
−→ O

S̃
(E0) −→ OE0(E0) −→ 0

and the long exact sequence induced by the pushforward

0 → f∗OS̃
→ f∗OS̃

(E0) → f∗OE0(E0) → R1f∗OS̃
→ R1f∗OS̃

(E0) → 0.

We observe that f∗OS̃
∼= OP1 , f∗OE0(E0) ∼= OP1(−1) - and by using again

relative duality - we have

R1f∗OS̃
∼= (f∗ωf )∨ = OP1 ⊕OP1 ⊕OP1(−2).

Hence, the latter sequence can be reduced to the last three sheaves, as follows

0 −→ OP1(−1) −→ OP1 ⊕OP1 ⊕OP1(−2) −→ R1f∗OS̃
(E0) −→ 0.

Since there are no non-trivial morphisms from OP1(−1) to OP1(−2), the
image of the first morphism OP1(−1) −→ OP1 ⊕OP1 ⊕OP1(−2) is contained
in the piece OP1 ⊕ OP1 of the second sheaf. Hence OP1(−2) injects into
R1f∗OS̃

(E0) and R1f∗OS̃
(E0) = OP1(−2)⊕OP1(β) for some β. Finally, by

computing the degrees of these sheaves, we deduce that β = 1.

We note that the rational map γ : S̃ 99K Y is not a morphism. Indeed,
a point b ∈ S̃ is an indeterminacy point for γ if and only if the associated
morphism of sheaves f∗f∗ωf (−E0) −→ ωf (−E0) is not surjective in b (cf.
[30, Chapter II.7]). Clearly, this morphism is surjective away from the sec-
tions Ei, with 1 ≤ i ≤ 3. On the other hand, by restricting this morphism
to any such Ei, we obtain the morphism

OEi(−1)⊕OEi(2) −→ OEi(1),
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which vanishes - scheme-theoretically - at two points. Let us consider the
restriction of γ to the fibers of f . On the smooth non-hyperelliptic fibers, as
well as on the singular ones, it is easy to check that it is everywhere defined.
So, let D be a smooth hyperelliptic fiber and let pi = Ei∩D, with 1 ≤ i ≤ 3.
By Proposition 6.3.3 we have that the hyperelliptic involution maps p0 in a
point pk ∈ {p1, p2, p3}. Then

h0(D,ωD(−p0 − pk)) = h0(D, ωD(p0 + pk)) = 2 = h0(D, ωD(−p0))

and hence pk is a base point for the linear system |ωD(−p0)| ∼= ωf (−E0)|D.
Therefore the rational map γ has 6 indeterminacy points, lying two by

two on the sections Ek’s, each for any hyperelliptic fiber. For j = 1, 2 and
k = 1, . . . , 3, let us denote each of these points by bjk, with the convention
that b1k, b2k ∈ Ek.

Let S be the blow-up of S̃ at the bjk’s and let f̄ : S −→ P1 be the induced
map f̄ . Then we have the following commutative diagram.

S
δ //

f̄ ÂÂ?
??

??
??

? S̃

fÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

P1

For j = 1, 2 and k = 1, . . . , 3, let Gjk be the exceptional divisor over bjk.
By abuse of notation, we denote by E0, ..., E3 ⊂ S the strict transforms
of the sections E0, ..., E3 ⊂ S̃ and by D ⊂ S the strict transform of any
hyperelliptic fiber D ⊂ S̃. Then we have the following.

Proposition 6.4.2. The sheaf f̄∗OS(E1 + E2 + E3) induces a morphism

S̃
γ //

f̄ ÂÂ?
??

??
??

? Y

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

P1

which extends the rational map γ.

Proof. We recall that the rational map γ : S̃ 99K Y is induced by the sheaf
f∗ωf (−E0) = f∗OS̃

(E1 + E2 + E3). We just have to show that γ restricts
to a well defined morphism on any fiber. Away from the Gjk’s, the map γ
coincides with γ. Then let us consider the total transform of the hyperelliptic
fiber D ⊂ S̃, which is given by D ∪ Gjk for some j and k. Without loss of
generality, let k = 1. The sheaf defining the restiction of γ to the Gj1

is OS(E1 + E2 + E3)|Gj1
∼= OGj1(1) and hence γGj1

: Gj1 −→ P1 is an
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isomorphism. On the other hand, the restriction of the map γ to D is given
by the sheaf

OS(E1 + E2 + E3)|D = OD ((E2 ∩D) + (E3 ∩D)) = OD(p2 + p3).

By Proposition 6.3.3, the points p2 and p3 are conjugate under the hyper-
elliptic involution of D. Hence the linear system |p2 + p3| on D is the g1

2.
Therefore γD∪Gj1

has no base points and turns out to be a morphism of
degree three to P1, as in figure below. Here p0 denote the intersection of the
fiber with E0, bjk = Gjk ∩ Ek and b̄jk = Gjk ∩D.

Gjk

2 : 1

1 : 1

D
P1

p0
bjk

b̄jk

Figure 6.1: total transform on S of the hyperelliptic fiber of f

So the map γ is a triple covering. To conclude this section, we compute
the numerical equivalence class of its ramification divisor.

Lemma 6.4.3. The ramification divisor Rγ ⊂ S has the following numerical
class in N1(S)Z:

Rγ ≡ E0 + 3
3∑

k=1

Ek + 2
3∑

k=1

(G1k + G2k) + 5F.

Proof. The Néron-Severi group of Y is generated by the numerical class of
a fiber Γ and by the class of the section C0 with minimal self-intersection.
Moreover, KY ≡ −5Γ− 2C0. By the formula for blow-ups, we have

KS ≡
3∑

k=0

Ek + 2
3∑

k=1

(G1k + G2k). (6.3)

We note that γ∗C0 = E1 + E2 + E3. Indeed, the sections Ek’s are −3-
curves on S and they do not intersect the ramification locus Rγ . As their
images are −3-curves in Y , the Ek’s map to the negative section C0. Finally,
KS ≡ Rγ+γ∗KY by Riemann-Hurwitz formula and the assertion follows.
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6.5 The Galois closure of the covering

In this section we shall construct geometrically the Galois closure W of the
covering γ : S −→ Y . To this aim let us recall the definition of Galois closure
of a finite morphism.

Given a finite morphism ψ : Z −→ T of degree d between normal surfaces,
consider the induced degree d field extension K(T ) ↪→ K(Z). Let L be the
Galois closure of this field extension and let Zgal be the normalization of Z
in L (see for instance [36]).

Definition 6.5.1. With the notation above, the normal surface Zgal pro-
vided of the induced morphism Zgal −→ T is the Galois closure of the
morphism ψ.

Now, let W be the surface defined as

W :=
{
(p, q) ∈ S × S | p 6= q and γ(p) = γ(q)

} ⊂ S × S. (6.4)

We shall prove that W is a normal - possibly singular - surface and it shall
turn out to be the Galois closure of the covering γ (see Proposition 6.5.2
and Proposition 6.5.5).

Let α1 : W −→ S be the projection on the first factor of S × S and
consider the diagram

W

ÃÃ@
@@

@@
@@

@

α1

²²
S

f
²²

γ // Y

ÄÄ~~
~~

~~
~~

P1

We note that α1 is a generically degree two morphism. Indeed, for a gene-
ral point p ∈ S, the inverse image of γ(p) consists of three distinct points
{p, q, r} and hence α−1

1 (p) = {(p, q), (p, r)}. Moreover, as α1 does not con-
tract any curve on W we conclude that it is a double covering.

Proposition 6.5.2. The surface W has an action of the symmetric group
S3 such that the quotient is the surface Y and the quotient by any order two
subgroup is S. In particular, the normalization of W is the Galois closure
Sgal of γ.

Proof. Let y ∈ Y be a general point and let

(γ ◦ α1)−1(y) = {(p, q), (p, r), (q, r), (q, p), (r, p), (r, q)} ⊂ W
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be its fiber consisting of six distinct points, where {p, q, r} = γ−1(y) ⊂ S.
Let us consider the involution σ3 ∈ Aut(W ) permuting the factors and

let σ1 ∈ Aut(W ) be the involution induced by α1, that is σ3(p, q) = (q, p)
and σ1(p, q) = (p, r). Then we define the automorphism % := σ1 ◦ σ3 and
the subgroup G := 〈σ1, %〉 of Aut(W ) generated by σ1 and %. We note
that the order of % is 3 and that the generators of G satisfy the relation
% · σ1 = σ1 · %2. Thus the group G acting on W is a non-commutative group
of order 6 isomorphic to S3.

It is easy to check that the orbit of (p, q) is exactly the fiber (γ◦α1)−1(y).
Hence the quotient variety W/S3 is Y .

To conclude, let us consider the three involutions σ1, σ2 := % ◦ σ1 and
σ3 of the group G. Being σ1 the involution associated to the map α1, we
have W/〈σ1〉 = S. Then we note that σ2(p, q) = (r, q), therefore σ2 is
the involution induced by the natural projection α2 : W ⊂ S × S −→ S
on the second factor. Finally, let α3 : W −→ S be the map defined by
α3(p, q) = r, where r is the third point of the fiber of γ on y = γ(p). Hence
α−1

3 (r) = {(p, q), (q, p)}, and α3 turns out to be the double covering whose
associated involution is σ3.

In order to show that the surface W is normal - and hence it is actually
the Galois closure of γ : S −→ Y -, we shall give a detailed description of
the branch divisor Bα1 ⊂ S of the morphism α1. In particular, we shall
compute its numerical equivalence class and we shall prove that Bα1 is a
reduced curve with at most simple singularities.

Let F ⊂ S be a fiber of the morphism f̄ : S −→ P1 and consider the
restriction γ|F : F −→ P1 of the morphism γ to F . As usual, for i = 0, . . . , 3
let pi = Ei ∩ F .

We recall that when F is a non-hyperelliptic - possibly singular - fiber,
the map γ|F is the projection of the canonical image of F ⊂ P2 from the
point p0 = F ∩ E0. We define the following subsets of F

A := {p ∈ F r {p0} | ∃ q ∈ F r {p, p0} : p0p is tangent at q}

and

B := {p ∈ F r {p0} | p is an inflection point of order 3 with tangent p0p} .

Notice that the points of A and B correspond to the configurations (a) and
(b) in Figure 6.2 below.

On the other hand, let F = D ∪Gjk where D is a smooth hyperelliptic
curve of genus 3. Then the restriction of γ to F is described in Proposition
6.4.2 (see also Figure 6.1). In particular, γ|D : D −→ P1 is the hyperelliptic
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map and γ|Gjk
: Gjk −→ P1 is an isomorphism. We define the subset of F

given by

T :=
{

p ∈ Gjk | ∃ q ∈ D : q is a Weierstrass point and γ|F (p) = γ|F (q)
}

.

The following lemma describes the intersection of the branch curve with
each fiber.

Lemma 6.5.3. Let F ⊂ S be a fiber of the morphism f̄ : S −→ P1. With
the notation above, the restriction Bα1|F of the branch divisor Bα1 to F is
given by one of the following.

(i) Let F be a smooth non-hyperelliptic fiber. Then

Bα1|F =
∑

p∈A

p + 2
∑

p∈B

p + 2p0

if p0 = F ∩ E0 is an inflection point of order 4 on F and

Bα1|F =
∑

p∈A

p + 2
∑

p∈B

p

otherwise.

(ii) If F = N is a nodal fiber of geometric genus 2, then

Bα1|F =
∑

p∈A

p + 2
∑

p∈B

+2p0.

In particular, the tangent line to F at p0 meets the node transversally.

(iii) If F = D ∪Gjk with D hyperelliptic, then Bα1|F =
∑

p∈T p + 2p0.

Proof. Let p ∈ F ∩ Bα1 be a branch point on a fiber F and let (p, q) =
α−1

1 (p) ∈ W , where q ∈ F ∩ Rγ . By giving a local description of Bα1 in
a neighborhood of a total ramification point of γ, its easy to see that the
multiplicity mp(Bα1 |F ) of Bα1 |F at p is equal to the multiplicity mq(Rγ |F )
of Rγ |F at q.

[ Case (i) ] To start, let us consider a smooth non-hyperelliptic fiber F .
Since γ|F : F −→ P1 is the projection of the canonical image of F ⊂ P2 from
the point p0 = F ∩ E0, the canonical divisor Kp ∈ Div(F ) cut out by the
line p0p is one of the following (cf. Figure 6.2 below):

(a) p0 + p + 2q (b) p0 + 3p (c) 4p0 (d) 2p0 + 2q (e) 3p0 + p
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(f)

p0

p q

(a)

p
p0

(b)

p0

(c)

qp0

(e)

(d)

p0
q

p0

q

Figure 6.2: branch points of α1 on the fibers of f

We remark that cases (d) and (e) cannot occur. To see this fact, we
recall that the points p0, . . . , p3 are collinear and they are the only fixed
points under the action of the bielliptic involution ι on F . Moreover, the
divisor ι∗KF is still canonical. So, if p0p were a bi-tangent line as in (d)
- that is Kp = 2p0 + 2q with p = p0 and q 6= p0 - we would have that
ι∗Kp = 2p0 + 2ι(q). As the tangent line to F at p0 is tangent at q, we
deduce that q is fixed by ι as well. Hence q = pi for some i 6= 0, but this is
impossible because the pi’s are collinear.

Analogously, suppose that p0 is an inflection point for F as in case (e),
that is KF = 3p0 + p with q = p0 and p 6= p0. Thus ι∗KF = 3p0 + ι(p) and
p = ι(p) = pi for some i 6= 0, a contradiction.

When Kp = p0 + p + 2q as in (a), then p ∈ A and q is a ramification
point of index 2. Hence mp(Bα1 |F ) = 1.

Condition (b) is equivalent to have an inflection point of order 3 at p
with tangent line p0p, that is p ∈ B. In this case p is a total ramification
point of γ and hence mp(Bα1 |F ) = 2.

Then Bα1|F =
∑

p∈A p + 2
∑

p∈B p + 2p0 if p0 is an inflection point of
order 4 - as in (c) - and Bα1|F =

∑
p∈A p + 2

∑
p∈B p otherwise.

[ Case (ii) ] Now, let F = N ⊂ S be a nodal fiber and let p ∈ N∩Bα1 . As
the restriction γ|F : F −→ P1 is the projection from p0 ∈ F ∩E0, we deduce
that two configurations analogous to (a) and (b) above are still possible
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away from the node. On the other hand, the cases (c), (d), (e) cannot occur
and there is the following additional configuration: the tangent line at p0

meets the node transversally (see Figure 6.2 (f)).
To see this fact, denote by q ∈ F the node and let L = p0q be the line

through p0 and q. We recall from Proposition 6.3.1 that q 6= pi for all i.
Let ν : P̃2 −→ P2 be the blow-up of P2 at q and let F̃ ⊂ P̃2 be the strict
transform of F ⊂ P2. Then for any pair of lines L′, L′′ ⊂ P2 we have that
ν∗(L′ ∩ F ) and ν∗(L′′ ∩ F ) are linearly equivalent divisors on F̃ . Consider
the points {p0, p, q} = L ∩ F . As p0 and q are fixed by the action of the
involution ι on F , we have that p is fixed as well. Hence either p = q or
p = p0. The same argument works for the line Li through q and pi, with
i = 1, . . . , 3. We want to prove that p = p0.

Suppose by contradiction that p = q. Hence L is one of the two tangent
lines at q. Notice that the four lines L,L1, L2, L3 must be distinct because
p0, . . . , p3 are collinear. Thus there exist two of those lines that are tangent
in the corresponding pi. Without loss of generality, let L1 and L2 these lines.
Let ri := ν−1(pi) and {q1, q2} = ν∗q. Therefore ν∗(L ∩ F ) = r0 + q1 + 2q2,
ν∗(L1∩F ) = 2r1+q1+q2 and ν∗(L2∩F ) = 2r2+q1+q2 are linear equivalent
divisors on F̃ . Thus r0+q1 is equivalent to 2r1, but this is impossible because
|2r1| is the g1

2 on F̃ (cf. Proposition 6.3.1).
Then p = p0 as in configuration (f). Hence the section E0 meet F

transversally at p0 and the node q ∈ Rγ with mq(Rγ |F ) = 2. Moreover, we
note that this fact implies that the cases (c), (d) and (e) are not possible.
Thus Bα1|F =

∑
p∈A p + 2

∑
p∈B +2p0.

[ Case (iii) ] It remains to study the branch locus on the fibers of the
form F = D ∪Gjk, where D is a smooth hyperelliptic curve of genus 3. Let
w1, . . . , w8 ∈ D be the Weierstrass point and let g1, . . . , g8 ∈ Gjk such that
γ(wt) = γ(gt) for any t. Hence the gt’s lie on Bα1 and for any t we have
that wt ∈ Rγ with mwt(Rγ |F ) = 1.

The last branch point on this fiber is the point p0. Indeed, the hyper-
elliptic involution maps p0 into the point b̄jk := D ∩ Gjk (see Proposition
6.3.3 and Figure 6.1). Hence b̄jk ∈ Rγ and it is a singular point of F . Thus
mb̄jk

(Rγ |F ) = 2 and Bα1|F =
∑

p∈T p + 2p0.

Thanks to the previous lemma we can compute the numerical equivalence
class of the branch locus Bα1 .

Lemma 6.5.4. The branch divisor of α1 has the following numerical class
in N1(S)Z:

Bα1 ≡ −2E0 + 4
3∑

i=1

Ei + 20F − 4
3∑

i=1

(Gi1 + Gi2). (6.5)
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Proof. As the points of order 3 on an Abelian surface are finitely many,
Lemma 6.3.4 assures that the generic smooth non-hyperelliptic fiber F of
f̄ : S −→ P1 has no flex points. Hence the ramification divisor Rγ ⊂ S of
γ meets F at 10 points of ramification index 2. Let q ∈ Rγ ∩ F one of
these points and let p ∈ Bα1 ∩ F such that p0 + p + 2q is the canonical
divisor on F cut out by the line L = p0q. As (Bα1 + 2Rγ)|F∩L = p + 2q ∈
|KF (−p0)|, we have that (Bα1 +2Rγ)|F is 10 times the g1

3 defining γ|F , that
is (Bα1 + 2Rγ)|F ≡ 10(E1 + E2 + E3)|F .

Since (F ·Gjk) = (F · F ) = 0 for any j = 1, 2 and k = 1, 2, 3, there exist
some integers m,njk such that

Bα1 ≡ −2Rγ + 10(E1 + E2 + E3) + mF +
3∑

k=1

(n1kG1k + n2kG2k)

≡ −2E0 + 4
3∑

k=1

Ek + (m− 10)F +
3∑

k=1

((n1k − 4)G1k + (n2k − 4)G2k).

Then (Bα1 ·F ) = 10 and from the description of Lemma 6.5.3, we have that
(Bα1 · Gjk) = 8 and (Bα1 · Ek) = 0. Thus we deduce m = 30 and njk = 0
for any j and k.

Therefore we can now prove the following.

Proposition 6.5.5. The branch divisor Bα1 is reduced and has at most
simple singularities, that is W is normal with only rational double points as
singularities. In particular W is the Galois closures Sgal of γ.

Proof. Thanks to Lemma 6.3.4, the general fiber F does not contain any
inflection point. Moreover, (Bα1 · F ) = 10 and by Lemma 6.5.3 we know
scheme-theoretically the intersection. Hence the divisor Bα1 |F consists of
ten distinct points. As Bα1 does not contain any vertical with respect to f ,
we can conclude that it is reduced. This is equivalent to W being a normal
surface (see [46, Proposition 1.1]).

From Lemma 6.5.3, we see that locally Bα1 has intersection multiplicity
at most 2 with any fiber. This implies that it can have at most double
points, i.e. all the possible singularities of Bα1 are simple points of type
An (cf. [5, p. 61-65]). These singularities of the branch locus give rise to
rational double points of W .

We remark that the W is not necessarily smooth, because the branch
curve Bα1 may have some singularities. Indeed W is non-singular if and
only if Bα1 is non-singular (see [45]).
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6.6 The Lagrangian surface and its invariants

This section is devoted to complete the proof of Theorem 6.1.4. Let X be
the minimal desingularization of the Galois closure W defined in (6.4). We
shall first compute the basic invariants of X. Then we shall prove that the
Albanese variety of X is S × S and that X is a Lagrangian surface.

By abuse of notation, let E0, Gjk, F ⊂ W be the pullbacks of E0, Gjk, F ⊂
S. For i = 1, . . . , 3, the curve Ei does not meet the branch locus Bα1 , hence
its pullback consist of to curves E′

i and E′′
i . Thanks to Proposition 6.5.5,

we are able to compute explicitly the invariants of X.

Theorem 6.6.1. The minimal desingularization X of the surface W is a
surface of general type, with invariants

K2
X = 198 c2(X) = 102 χ(OX) = 25 τ(X) = −2.

Proof. To start, let us suppose that Bα1 - and hence W - is smooth. Let
us check that the surface W does not contain −1-curves. The −1-curves on
W come either from the −1-curves L ⊂ S such that Bα1 ∩ L = ∅ or from
the −2-curves on S entirely contained in the branch divisor Bα1 (see [46,
Proposition 1.8]). We note that the only −1-curves on S are E0 and the
Gjk’s, but they intersect Bα1 . On the other hand, S does not contain any
−2-curve.

Then we set X = W and the formulas to compute the invariants of X
are the following (see [45]):

K2
X = 2

(
K2

S
+ 2pa(Bα1)− 2

)− 3
2
B2

α1

c2(X) = 2c2(S) + 2pa(Bα1)− 2

χ(OX) = 2χ(OS) +
pa(Bα1)− 1

2
− B2

α1

8
,

where pa(Bα1) denote the arithmetic genus of the branch curve. We note
that S is obtained by blowing up ten times an abelian surface, therefore
c2(S) = 10 and χ(OS) = 0. Moreover, by the adjunction formula and (6.5)
we have

2pa(Bα1)− 2 =
(
(KS + Bα1) ·Bα1

)
= 80.

By applying equations (6.3) and (6.5) to the above formulas we compute
K2

X = 198, c2(X) = 102 and χ(OX) = 25. Therefore the topological index
of X is

τ(X) =
1
3

(
K2

X − 2c2(X)
)

= −2.

Thanks to the Enriques-Kodaira classification, we have that X is a surface
of general type (cf. [5, p. 188]).
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Now, let us assume that Bα1 is singular. Hence Bα1 has only simple
singularities by Proposition 6.5.5. To deal with this situations we consider
the canonical resolution of the double covering α1 : W −→ S (cf. [5, Section
III.7]). We have the following diagram

W ′ //

²²

W

α1

²²

S ′ // S,

where S ′ is obtained by blowing up S in order to perform the embedded
resolution of Bα1 ⊂ S and W ′ is the smooth surface obtained as a double
covering of S ′ such that the branch divisor is the strict transform of Bα1 .
By [5, Section III.7] it follows that W ′ does not contain −1-curves, thus W ′

is the minimal desingularization X of W . Finally, the formulas to compute
the Chern invariants of X are the same we used above (see [5, Theorem 7.2
p. 89] and [5, Section V.22]) and the proof ends.

The surface X is the minimal desingularization of W ⊂ S × S, hence
the map X −→ S is a generically finite dominant morphism. Thanks to
Proposition 6.5.2, we have that there is an action of the symmetric group
S3 on W , and such a group action is naturally inherited by X as follows.

For 1 ≤ i ≤ 3, let us consider the double coverings βi : X −→ S, where β1

is induced by the projection on the first factor α1 : W −→ S, β2 is induced
by the projection α2 on the second factor and β3 is the covering induced by
the involution on W ⊂ S×S permuting the factors. Moreover, let τi be the
involution of X associated to βi. Then the subgroup 〈τ1, τ2, τ3〉 ⊂ Aut(X)
is isomorphic to S3.

We recall the symmetric group S3 has three irreducible representations
(cf. [24, Section 1.3]). The trivial representation U is a one-dimensional
C-vector space such that σu = u for any σ ∈ S3, u ∈ U . The anti-invariant
representation U ′ is one-dimensional as well and σu′ = sgn(σ)u′ for any
σ ∈ S3, u′ ∈ U ′. The standard representation Λ is the C-vector space of
dimension two given by Λ := {(z1, z2, z3) ∈ C3 | z1 + z2 + z3 = 0}, where we
fixed the standard basis {e1, e2, e3} of C3 and σei = eσ(i) for any σ ∈ S3,
i = 1, 2, 3. With this notation, we have the following.

Proposition 6.6.2. Let Λ be the standard representation of S3. Then
H0(X, Ω1

X) = Λ ⊕ Λ and consequently the irregularity of X is q(X) = 4.
Moreover, X is a generalized Lagrangian surface with V = H0(X, Ω1

X).

Proof. Let ω ∈ H0(S, Ω1
S
) be an holomorphic 1-form on S. By the definition

of the βi’s it is immediate to check that for {i, j, k} = {1, 2, 3},
τ∗i β∗i ω = β∗i ω and τ∗j β∗i ω = β∗kω. (6.6)
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In particular, under the identification 〈τ1, τ2, τ3〉 ∼= S3 with σβ∗i ω := β∗σ(i)ω
for σ ∈ S3, we have

τ∗1 ↔ (23), τ∗2 ↔ (13) and τ∗3 ↔ (12).

Furthermore, we note that the 1-form β∗1ω + β∗2ω + β∗3ω is S3-invariant. As
the quotient X/S3 is the rational surface Y = F3 - which does not admit
1-forms - we deduce that β∗1ω + β∗2ω + β∗3ω = 0 on X and hence

β∗3ω = −β∗1ω − β∗2ω. (6.7)

We want to prove that the kernel of ψ2 : ∧2 H0(X, Ω1
X) −→ H0(X, Ω2

X)
possesses a non-trivial element. To this aim, let us consider a basis {ω1, ω2}
of the space H0(S, Ω1

S
) and let V ⊂ H0(X, Ω1

X) be the subspace spanned
by the pullbacks via the βi’s of ω1 and ω2. As the 1-forms β∗1ω1, β∗2ω1,
β∗1ω2, β∗2ω2 are independent on X, by the relation (6.7) we have that the set
{β∗1ω1, β∗2ω1, β∗1ω2, β∗2ω2} provides a basis of V .

Notice that the form

ω := β∗1ω1 ∧ β∗1ω2 + β∗2ω1 ∧ β∗2ω2 + β∗3ω1 ∧ β∗3ω2 ∈ ∧2H0(X, Ω1
X) (6.8)

is S3-invariant. As the surface Y = X/S3 is rational, we have h0(Y,Ω2
Y ) = 0

and hence ω must be zero as a 2-form on X, that is ω ∈ Ker ψ2. Further-
more, by relation (6.7) we have

ω = (2β∗1ω1 + β∗2ω1) ∧ β∗1ω2 + (2β∗2ω1 + β∗1ω1) ∧ β∗2ω2 (6.9)

and the associated matrix is given by

Aω :=




0 0 1 1
2

0 0 1
2 1

−1 −1
2 0 0

−1
2 −1 0 0


 .

Since Aω is invertible, we conclude that ω has rank 4 and hence it provides a
non-trivial element of Ker ψ2. In particular, V = 〈β∗1ω1, β∗2ω1, β∗1ω2, β∗2ω2〉
is the subspace of H0(X, Ω1

X) of minimal dimension such that ω ∈ ∧2V .

We note that the vector space H0(X, Ω1
X) admits a decomposition into

the direct sum of the irreducible representations of S3 (see [24, Proposition
1.8 p. 7]), that is

H0(X, Ω1
X) = U⊕a ⊕ U ′⊕b ⊕ Λ⊕c for some a, b, c ∈ N. (6.10)

Since Y = X/S3 is a rational surface, H0(X, Ω1
X) does not contain any

invariant element. Therefore we have a = 0.
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Moreover, it is immediate to check that the two-dimensional subspaces
of V

V1 := 〈β∗1ω1, β∗2ω1, β
∗
3ω1〉, V2 := 〈β∗1ω2, β∗2ω2, β

∗
3ω2〉 ⊂ V (6.11)

provide two copies of the standard representation Λ. In particular, we have
V = V1 ⊕ V2

∼= Λ ⊕ Λ and c ≥ 2. In order to conclude the proof, we have
then to show that V = H0(X, Ω1

X), that is b = 0 and c = 2.

We note that each of the Vj ’s defined above has a 1-form β∗1ωj + β∗2ωj

invariant under the action of τ∗3 and a 1-form β∗1ωj − β∗2ωj anti-invariant
under the action of τ∗3 . Then both the 2-forms

(β∗1ω1 + β∗2ω1) ∧ (β∗1ω2 + β∗2ω2) and (β∗1ω1 − β∗2ω1) ∧ (β∗1ω2 − β∗2ω2)

turn out to be invariant under the action of τ∗3 . Clearly, the first one is
equal to β∗3ω1 ∧ β∗3ω2. In particular, it is the pullback via β3 of the 2-form
ω1 ∧ ω2 on S. Since ω1 ∧ ω2 is a generator of the one-dimensional vector
space H0(S, Ω2

S
), we have that β∗3ω1 ∧ β∗3ω2 gives a non-zero holomorphic

2-form on X, that is β∗3ω1 ∧ β∗3ω2 6∈ Ker ψ2. As a consequence we have that

(β∗1ω1 − β∗2ω1) ∧ (β∗1ω2 − β∗2ω2) 6∈ Ker ψ2 (6.12)

as well. To see this fact, suppose by contradiction that (6.12) does not hold.
The Lagrangian form ω ∈ ∧2H0(X, Ω1

X) defined in (6.8) is such that

ω =
3
2

β∗3ω1 ∧ β∗3ω2 +
1
2

(β∗1ω1 − β∗2ω1) ∧ (β∗1ω2 − β∗2ω2) .

Therefore we have that β∗3ω1 ∧β∗3ω2 ∈ Ker ψ2 too, which is a contradiction.

In order to see that b = 0, we suppose by contradiction that there exists
a 1-form η ∈ H0(X, Ω1

X) belonging to the anti-invariant representation U ′

of S3. Let ν1 := (β∗1ω1 − β∗2ω1), ν2 := (β∗1ω2 − β∗2ω2) and let us consider the
vector space R := 〈η, ν1, ν2〉. Since η, ν1, ν2 are all anti-invariant under the
action of τ∗3 , we have that η ∧ ν1, η ∧ ν2 and ν1 ∧ ν2 are 〈τ∗3 〉-invariant. We
recall that the quotient X/〈τ∗3 〉 is S and h0(S, Ω2

S
) = 1. Moreover we proved

above that ν1 ∧ ν2 6∈ Ker ψ2. Thus the image of the map

ψ := ψ2|∧2R : ∧2 R −→ H0(X, Ω2
X)

is one-dimensional. Therefore Ker ψ has dimension 2.
We consider the subspaces 〈ν1 ∧ ν2, ν1 ∧ η〉 and 〈ν2 ∧ ν1, ν2 ∧ η〉 of

∧2H0(X, Ω1
X). Their intersection with Ker ψ has necessarily dimension one.

So, there exist s, t, w, z ∈ C such that ν1 ∧ (sη + tν2), ν2 ∧ (wη + zν1) ∈
Ker ψ. In particular, there exist a rational function h on X such that
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ν1 = h(sη + tν2) and hence ν2 ∧ (wη + zν1) = ν2 ∧ (w + h zs)η ∈ Ker ψ.
Then we have that ν2 = h2η for some rational function h2 on X. Analo-
gously, there exists h1 ∈ K(X) such that ν1 = h1η. Thus ν1 ∧ ν2 ∈ Ker ψ,
a contradiction. Therefore we have b = 0.

To conclude, we have to show that c = 2. To this aim, let us consider a
copy of the standard representation Λ. It is easy to see that the action on Λ
of any order two subgroup of S3 - for instance 〈τ∗3 〉 - splits Λ into the direct
sum of two one-dimensional vector spaces; one of them is invariant under
the action of 〈τ∗3 〉, whereas the other one is anti-invariant.

If c were greater than 2, it would exist a standard representation V3

different from V1 and V2 we defined in (6.11). Then it would exist a 1-form
η, which would be anti-invariant under the action of τ∗3 . Then we could
repeat the very same argument as above and we would get a contradiction.
Therefore c = 2.

Thus V = H0(X, Ω1
X) = Λ⊕ Λ and q(X) = h0(X, Ω1

X) = 4.

In particular, by the above proposition we have that the geometric genus of
X is pg(X) = 28.

Now, we would like to deal with the Albanese variety of X. To this aim,
it is useful to analyze some special fibers of the induced fibration

φ := f ◦ α1 : X −→ P1,

where f : S −→ P1 is the fibration inherited from S̃ (cf. (6.1)).
Let D ⊂ S be a smooth hyperelliptic element of |L|. With the same

notations of Proposition 6.4.2, let F = D ∪ Gjk be the corresponding fiber
of f : S −→ P1. Then Gjk is a copy of P1 attached to D at a point (see
Figure 6.1). Moreover, let H ⊂ X denote be the pullback of F ⊂ S.

Lemma 6.6.3. The fiber H has three connected components D1, D2, D3,
which are all copies of D attached two by two in one node. Moreover, by a
suitable choice of the indices 1 ≤ i ≤ 3, the restriction βi|Di

: Di −→ Gjk

of degree two morphism βi : S × S −→ S is the hyperelliptic map, whereas
βj |Di

: Di −→ D is the identity map for any j 6= i.

Proof. The first part of the statement follows from the description of the
branch locus Bα1|F given in Lemma 6.5.3. Namely, Bα1|Gij

consists of the 8
Weierstrass points of the hyperelliptic map D −→ P1 ∼= Gjk, whereas Bα1|D
is given by the base point p0 of |L| with multiplicity 2. Thus the inverse
image of Gjk - say D1 - is a copy of D, while the inverse image of D is given
by the two copies D2 and D3 of D attached in one node.

The second statement follows from the definition of X ⊂ S × S and
of the βi’s. Given a general point q ∈ P1 ∼= Gjk, its preimages via γ|F
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are q ∈ Gjk and the two preimages of the hyperelliptic map q1, q2 ∈ D.
The corresponding fibers of β1 are (q, q1) and (q, q2). Hence β1|D1

is the
hyperelliptic map. On the other hand, β2(q, q1) = q1, β2(q, q2) = q2, and
β3(q, q1) = q2, β3(q, q2) = q1, as wanted.

Proposition 6.6.4. The Albanese variety of X is Alb(X) = S × S.

Proof. We recall that S is obtained by blowing up the Abelian surface S.
By composing the map X −→ W ⊂ S × S and the map S × S −→ S × S,
we have a morphism X −→ S × S. The universal property of the Albanese
morphism induces a morphism of Abelian varieties θ : Alb(X) −→ S × S.
We note that the map θ is an isogeny, indeed by Proposition 6.6.2 we have
dimAlb(X) = q(X) = 4 = dim (S × S). Thus there is an inclusion induced
in homology

θ∗ : H1(X) = H1(Alb(X)) −→ H1(S × S) = H1(S)×H1(S).

We want to prove that θ∗ is surjective, i.e. that θ is an isomorphism of
Abelian varieties.

Let us consider one of the fibers H = D1∪D2∪D3 we studied in Lemma
6.6.3. Then the image of D2 in S × S is β1(D2) = D × {0}. We recall that
given any smooth member C ∈ |L|, Lemma 6.2.1 assures that the Abelian
surface S is naturally identified with J(C)/E, where E is an elliptic curve.
Then S fits in the following sequence of Abelian varieties

1 −→ E −→ J(D) a−→ S −→ 1. (6.13)

We note that the image of the composite homomorphism

H1(D2) −→ H1(X) θ∗−→ H1(S)×H1(S)

is H1(S) × {0}. Indeed, the latter map is naturally identified with the
homomorphism H1(D) = H1(J(D)) −→ H1(S) induced in homology by
the sequence (6.13), which is surjective because the map a in (6.13) has
connected fibres.

By the very same argument applied to D1 we prove that the image of θ∗
contains {0} ×H1(S) as well, and the assertion follows.

Then we conclude the study of X by stating the following.

Theorem 6.6.5. X is a Lagrangian surface.

Proof. By Propositions 6.6.2 and 6.6.4, and by definition of the Galois clo-
sure, it is easy to deduce that the Albanese morphism X −→ S×S is a one
to one morphism. Hence X is a Lagrangian surface.
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J. Math. Soc. Japan, 31(1) (1979), 85–86.

[41] T. T. Moh and W. Heinzer, On the Lüroth semigroup and Weierstrass
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