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Abstract 
In this paper we analyze a recurrence )(1 nn zfx =+ , where nz  is a weighted power mean of 

0x ,…., nx . Such an iteration scheme has been proposed to model a class of non-linear forward-looking 
economic models ( the state today is affected by tomorrow’ s expectation ) under bounded rationality; the 
agents employ a recursive learning rule to update beliefs using weighted power means of the past states. 
A proposition on the convergence of the dynamical system with memory, proven with a general weighted 
power mean, generalizes some results given in the literature, where only the arithmetic mean is 
considered. A power weighted mean with exponentially decreasing weights decreasing is proposed to 
simulate a fading memory. In this case the iteration scheme with memory is reduced to an equivalent 
two-dimensional autonomous map whose possible kinds of asymptotic behaviors are the same as those of 
a one-dimensional map. By this general technique it is proved, for a function f which maps a compact 
interval into itself, that the presence of a long memory has a stabilizing effect, in the sense that with a 
sufficiently strong memory convergence to a steady state is obtained even for an otherwise oscillating, or 
chaotic, dynamical system. In the appendix is considered an economic example from an overlapping 
generation models which leads to a harmonic mean. 
 
Keywords: Forward-looking models, Learning, Mann Iterations, Nonautonomous difference equations 
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1. Introduction 
 
A Mann iteration is an iterative scheme of the form: 
 
(1.1)  )(1 nn zfx =+  
 
where IIf →: , ⊂= ],[ baI +ℜ , and nz  is the arithmetic mean of all the previous values ix , 

ni ≤≤0 : 
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Such an iteration scheme has been used to model economic and social systems with agents who 
have not perfect foresight, so they learn from the past experiences using all the available 
information, that is present and past data, in order to calculate the expected values of future states. If 
n represents discrete time periods and nx  the value of the state variable in period n, nz  can be 
interpreted as the expected value (see e.g. Bray, 1983, Lucas, 1986, Balasko and Royer, 1996). 
Starting from the seminal paper of Mann (1953), iterations (1.1) have been studied by many 
authors, among others Borwein and Borwein (1991), Rhoades (1974), Aicardi and Invernizzi 
(1992). 
A recurrence of the form (1.1) with nz  given by an uniform arithmetic mean 
 

(1.4)  ∑
=+

=
n

k
kn x

n
z

01
1  

 
has been proposed by Bray (1983) as a learning mechanism. In this case the Mann iteration 
coincides with the Cesáro iteration, whose dynamics are very simple since in this case every Ix ∈0  
generates a sequence { }nx  converging to a fixed point of f (Franks and Marzek, 1971). This 
suggests a strong stabilizing effect of a distributed uniform memory since any kind of dynamics 
more complex than convergence towards a fixed point of f is excluded, and the only possibility of a 
non trivial dynamics is the existence of more than one fixed point of f in I, so that different basins 
of attraction must be considered. 
In this paper we propose a generalization of (1.2) expressed by the power mean 

(1.5)  
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The arithmetic mean (1.2) is a special case of the power mean (1.5) when 1=p , but other 
commonly used algebraic means can be obtained from (1.5), such as the weighted quadratic mean 
for 2=p  and the weighted harmonic mean for 1−=p . Furthermore the weighted geometric mean 
is obtained as a limiting case for 0→p , since  
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Of course if 0<p  the further condition 0>ix  for each i should be verified  
This study is motivated by the possibility that some learning mechanism can be expressed by the 
iteration scheme (1.1) with algebraic means of the form (1.5) with 1≠p  (an example is given in 
appendix A, and some properties of such means, as well as their applications, can be found in 
Vajani, 1981, ch.6). 
In Section 2 the iteration scheme (1.1) with (1.2) replaced by (1.5) is reduced to a first order 
nonautonomous recurrence, and some convergence results are given which generalize the results of 
Mann (1953) and Borwein and Borwein (1991), where only the arithmetic mean (1.2) is considered. 
In sections 3 the power mean (1.5) is considered with weights decreasing as the terms of a 
geometric progression. These are often used in applications since they describe, as suggested in 
Friedman (1973), agents which “form their expectations according to a weighted estimation 
procedure which exponentially discounts older observations”, that is, an exponentially fading 
memory. In this case the assumptions of the propositions of Section 2 do not hold, and more 
complex asymptotic dynamics can be obtained. The results of this section generalize, to the case of 
power means, the results given in Bischi and Gardini (1995) and Bischi et al. (1995) on Mann 
iterations which can be reduced to two-dimensional maps. 
 
 
2. Convergence of recurrences with power means 
 
In the following we assume that the weights are obtained as 
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where, for each 0≥n , the )1( +n  dimensional vector of nonnegative weights 
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defines the relative influence of each state kx , k=0,   , n, in the computation of the average nz , and  
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so that (1.3) is satisfied. 
In this section we assume, as in Rhoades (1974) and in Borwein and Borwein (1991), that at each n 
the vector of relative weights is obtained by adding the last component without any change of the 
previous ones, that is, from ),...,,( 10

)(
n

n ωωωω =  we obtain =+ )1(nω ),,...,,( 110 +nn ωωωω . In this 
case we have  
 
(2.4)  11 ++ += nnn WW ω . 
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The iterative scheme (1.1) with a power mean (1.5) becomes  
 
(2.5)  )(1 nn zfx =+  
 
with 
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where f has at least one fixed point in I being it a continuous function which maps the compact set I 
into itself. 
Recurrence (2.5) with 1=p  is a Mann iteration, for which the following classical result holds: 
 
 Theorem (Mann, 1953). Let 1=p  and ∞→nW . If either of the sequences { }nx  and { }nz  
converges then the other also converges to the same point and their common limit is a fixed point of 
f. 
 
 In Rhoades (1974) and Borwein and Borwein (1991) a Mann iteration (1.1) is reduced to the 
following nonautonomous iteration, called segmenting Mann iteration 
 
(2.6)  )()1(1 nnnnn zftztz +−=+  
 
where Ixz ∈= 00 , and  
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From { }nz  the sequence of states { }nx  can be easily obtained as the images of nz  under f: 
 
(2.8)  )(1 nn zfx =+ . 
 
The following result is proved in Borwein and Borwein (1991): 
 
 Theorem (Borwein and Borwein, 1991). Suppose that { }nt  tends to zero. Then the sequence 
{ }nz  converges. 
 
In this section we generalize these theorems to the case of power mean with 1≠p . This can easily 
be done once the more general iterative scheme (2.5) is put into a recursive form, for the expected 
variables nz , similar to (2.6). In fact, even with 1≠p , from (2.5) we get: 
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from which, by using the definition (2.7) of nt  and the identity (2.4) we obtain what we shall call 
generalized segmenting Mann iteration,  
 

(2.9)  ( )pp
nn

p
nnnn zftztznFz

1

1 )]([)1(),( +−==+ . 
 
Also in this case the iterative process described by the nonautonomous first order difference 
equation is equivalent to the iterative process (2.5), in the sense that given an initial condition 

00 xz =  the sequence of expected values obtained from (2.9) is the same as that obtained from (2.5) 
(and the sequence of states is given by (2.8)). 
We recall that a fixed point (or stationary state) of the iteration (2.5) is defined as a value ∗x ∈ℜ  
such that if ∗= xx0  then (2.5) generates the sequence ∗= xxn  for each 0≥n . The following results 
are straightforward: 
 
 Proposition 2.1. (i) ∗x  is a fixed point of the iteration (2.5) if and only if it is a fixed point of 
the function f. 
(ii) ∗z  is a fixed point of ),( znF  if and only if it is a fixed point of f. 
 
We recall that a fixed point (or stationary state) of the nonautonomous difference equation (2.9) is 
defined as a value ∗z  such that ∗∗ = zznF ),(  for each n. 
The following proposition, which is proved in the appendix B, generalizes the theorems quoted 
above . 
 
 Proposition 2.2. (i) If ∞→nW  then the sequence { }nx  defined in (2.5) converges if and 
only if the sequence { }nz  in (2.9) converges and the two sequences converge to a common limit 
which is a fixed point of f. (ii) If in (2.9) { }nt  is a positive sequence which tends to zero then the 
sequence { }nz  is convergent. 
 
Of course if f has a unique fixed point Ix ∈∗ , then it is globally attracting in I , i.e. ∗→ xxn  for 
each Ix ∈0 . 
A typical example in which these propositions can be applied is that of a uniform power mean, that 
is with equal weights ωω =k  for any k. In fact in this case we have )1/(1 += ntn 0→  and 

∞→nW .This constitutes a generalization of the result of Franks and Marzek (1971) on the Cesàro 
iteration, since it includes the uniform arithmetic mean for 1=p , the uniform harmonic mean for 

1−=p , the uniform geometric mean for 0→p , and so on. 
 
 
3. Asymptotic dynamics with exponentially decreasing weights 
 
Another method for defining, at each n, the vector of relative weights, is that of assigning a fixed 
value to the weight of the last state, say 1)0(

0
)( == ωω n

n , and the values of the previous ones are 
obtained so that the ratio between two successive weights is fixed, say ρωω =+

n
k

n
k 1

)( /  , i.e. from 
)1,,...,,( 1)( ρρρω −= nnn  we obtain )1,,...,,( 1)1( ρρρω nnn ++ = , or, more concisely, 
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(3.1)  knn
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With these weights the following relation holds: 
 
(3.2)  nn WW ρ+=+ 11 , 
 
and the recurrence with fading memory becomes 
 
(3.3)  )(1 nn zfx =+  
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As already stressed in Section 1 these weights are often used in economic modelling (see Ganfolfo 
et al. 1991, Aicardi and Invernizzi, 1992) since, with a memory ratio )1,0(∈ρ , they represent the 
realistic assumption of an exponentially fading memory (see Friedman, 1979, Radner, 1983). Lt us 
first show that the relation (3.2) allows us to obtain, also in this case, a generalized segmenting 
Mann iteration. In fact we have  
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and defining  
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and making use of the identity (3.2), we get the required nonautonomous difference equation: 
 

(3.5)  ( )pp
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p
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When 1≥ρ  (non decreasing memory) the main results of section 2 can be applied, without 
substantial changes, also to the case of geometric weights. In the following we shall consider the 
more realistic case of memory ratio )1,0(∈ρ  (exponentially fading memory). In this case the 
propositions of Section 2 do not apply, because the sequence of partial sums nW  converges to the 
value )1/(1 ρ−=∗W  and the sequence nt , defined in (3.4), is not convergent to zero, being 

nt → )1( ρ− . For 0=ρ  (no memory of the past), the problem reduces to the study of the dynamics 
of an ordinary one-dimensional map )(1 nn xfx =+ . Since, as it is well known, the asymptotic 
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dynamics of this iteration may be periodic of period 1≥k , or aperiodic (i.e. chaotic) depending on 
the shape of the function f, we can expect complex dynamics also for 0>ρ .  
We have seen in Section 2 that the only possible fixed points of the generalized Mann iteration are 
the fixed points of the function f. One may ask if also different asymptotic states, as k-cycles, 

2≥k , are related to k-cycles of the map f. The answer is no. If 10 << ρ , and a k-cycle of (3.5) 
exist, then in general it is not a k-cycle of the map f. However such cycles are related to those of 
another one-dimensional (autonomous) map. This can be intuitively justified on the basis of the 
observation that the sequences of the time-dependent coefficients in the right hand side of (3.4) are 
convergent, since )1( ρ−→nt , so that the right hand side of (1.16) possesses an autonomous 
limiting form: 
 

(3.6)  )(1 nn zgz ρ=+ , with ( )ppp zfzzg
1

)]()[1()( ρρρ −+= . 
 
It comes natural to conjecture that the asymptotic behavior of (3.5) is related to that of the map 

)(zg ρ . That this is the case can be rigorously proved by making use of a two-dimensional map. Let 
us note, in fact, that the sequence of the partial sums nW  of the geometric weights can be defined 
recursively by (3.2) and this allows us to obtain a two dimensional map ),(),( 11 nnnn WzTWz =++  
defined as  
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T: 
nn WW ρ+=+ 11 . 

 
This map is equivalent to (3.5) if the initial condition is taken with 10 =W , i.e. 
 
(3.8)  )1,(),( 000 xWz = , Ix ∈0 . 
 
In fact, in such a case, the sequence { }nz  given by (3.7) coincides with the sequence obtained from 
the generalized segmenting Mann iteration (3.5) related to the same initial condition 0z . In other 
words, the projection on the z-axis of an orbit of the map T (with initial condition as in (3.8)) is the 
orbit of the nonautonomous iterative process (3.5). 
The map (3.7) is a triangular map, that is a map with the structure ))(),,((),( 21 WTWzTWzT = . We 

notice that the map T is not defined on the points of the line of equation 
ρ
1

−=W , but, since the 

initial conditions are to be taken on the line 1=W , we shall consider the restriction of T to the half-

plane 
ρ
1

−>W . In fact this half-plane is mapped into itself by T because the second difference 

equation in (3.7) gives an increasing sequence (the partial sums of the geometric series starting from 
1=W ) always converging to the limit  

 

(3.9)  
ρ−

=∗

1
1W . 
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This also implies that the line ∗=WW  is mapped into itself by T (i.e. is a trapping set), and is 

globally attracting for T in the half-space 
ρ
1

−>W  (which means that for any point in the domain 

ρ
1

−>W , the limit set of its orbit belongs to the trapping line ∗=WW ). In particular, any initial 

condition (3.8) has an orbit which is bounded in the rectangle JIS ×= , with ],1[ ∗= WJ , and the 
limit set of the orbit belongs to the segment of S on the line ∗=WW . Thus the limit set of any orbit 

in the domain 
ρ
1

−>W  is an invariant set of the restriction of T to the line ∗=WW , which is the 

one dimensional map )(zg ρ  given in (3.6). In other words, the limiting map (3.6) can be obtained 

from the two-dimensional map T by identifying a point ),( ∗Wz  on the line ∗=WW  with a point 
“z” on the real line. 
The above considerations prove the following proposition. 
 
 Proposition 3.1. Let IIf →: , 10 << ρ , ρg  defined as in (3.6) and T defined as in (3.7). 
Then 
(i) The orbits of the nonautonomous equation (3.5) are in one-to-one correspondence with the 
orbits of the autonomous two-dimensional map T associated with an initial condition on the line 

1=W . 
(ii) The invariant sets of T belong to the line ∗=WW . 
(iii) The invariant sets of T and those of ρg  are in one-to-one correspondence. 
(iv) An invariant set of T is attracting (resp. repelling) if and only if the corresponding invariant set 
of ρg  is attracting (resp. repelling). 
 
This proposition is useful in order to define which are the possible asymptotic sets of the recurrence 
(3.5), which are to be searched among the invariant sets of the limiting map. Now we investigate if 
the knowledge of stability/instability of the cycles of the map ρg , may be useful in order to decide 
on the “existence” and on the “stability” of cycles for the nonautonomous recurrence (3.5). 
An answer to this question can be obtained from an analysis of the global properties of T. In fact, 
from the properties of the limiting map ρg  we know the local properties of T near the asymptotic 

line ∗=WW  but, since the initial conditions for T must be taken on the line 1=W , we need a 
global study of the map T in order to obtain information on the properties of the nonautonomous 
equation (3.5). The following proposition gives an answer to this question 
 
 Proposition 3.2. Let A be a k-cycle, 1≥k , of the map )(zg ρ , 10 << ρ . Then: 
(i) if A is attracting, or attracting from one side, for the limiting map ρg  then it is an attracting 
cycle for the nonautonomous process (3.5), and hence )(Af  is an attracting set of the iteration 
(3.3); 
(ii) the basin of attraction D of the attractor )(Af  of (3.3) is given by the intersection of the two-
dimensional basin, say D, of the cycle A= { }∗WAx  of the map T (located on the trapping line 

∗=WW ) with the line of initial conditions :1=W D { } { }11 ×==∩ DW .  
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In this proposition the term attracting k-cycle, for the process with memory, means that the process 
generated by (3.3) converges asymptotically to the cycle starting from a set of initial conditions of 
measure greater than zero. It can be noticed that the attracting sets are not, in general, invariant sets 
(as usual for the nonautonomous processes). This means that starting from a point of a an attracting 
k-cycle the sequence { }nx  generated by (3.3) may not converge to the k-cycle, that is, the basin of a 
given attractor may not contain the points of the cycle itself. 
The principal idea emerging from these two propositions is that if the process (3.3) is considered 
with nn xz =  (no memory case) then its asymptotic behavior is given by the study of the map )(zf , 
whereas if an exponentially fading memory is considered its limit sets must be searched among the 
invariant sets of another one-dimensional autonomous map, the limiting map ρg  defined in (3.6), 
even if their basins of attraction can only be determined through a global study of the two-
dimensional map T. As we have already observed, only the fixed points of the map ρg  coincide 
with the fixed points of the map f, whereas the other invariant sets, k-cycles or chaotic sets, are in 
general different. 
Of course the shape of the map ρg  depends on that of f: in fact from the definition (3.6) the 
function )(zg ρ  is a power mean of z and )(zf , so for each Iz∈  
 
(3.10)  ))(,max()())(,min( zfzzgzfz ≤≤ ρ . 
 
This means that the graph of ρg  always belongs to the area between the bisectrix and the graph of f, 
and the graphs of f and ρg  intersect at the common fixed points. 
The derivative of the function ρg  is: 
 

(3.11)  ( ) ( ))()]()[1()]()[1()( '11
1

' zfzfzzfzzg ppp
p

pp −−
−

−+−+= ρρρρρ  
 
and if ∗z  is a positive fixed point of f it becomes  
 
(3.12)  )()1()( '' ∗∗ −+= zfzg ρρρ  
 
which implies  
 
(3.13)  ( ) ( ))(,1max)()(,1min ''' ∗∗∗ ≤≤ zfzgzf ρ  
 
If 0=∗z , i.e. 0)0( =f , )(' ∗zg ρ  is not defined. However in this case  
 

lim
0+→z

( )ppfzg
1

'' )]0()[1()( ρρρ −+=  

 
so (3.13) holds even for 0=∗z .  
If 1)(1 ' <<− ∗zf , so that ∗z  is an attracting fixed point of the map f, then (3.13) implies 

1)(1 ' <<− ∗zg ρ , thus ∗z  is attracting for the map ρg  too. If 1)(' >∗zf , so that ∗z  is a repelling 



 10

fixed point of f, then ∗z  may be attracting or repelling for ρg . In particular, if 1)(' >∗zf  then ∗z  is 

repelling also for ρg  since from (3.13) we have )()(1 '' ∗∗ << zfzg ρ , while 1)(' −<∗zf  gives 

1)()( '' << ∗∗ zgzf ρ  and in this case ∗z  may be attracting for ρg .  

More exactly if 1)(' −<∗zf  let ρ~ )1,0(∈  be defined as  
 

(3.14)  
1)(
1)(~

'

'

−
+

= ∗

∗

zf
zfρ . 

Then the sufficient condition for the stability of the fixed point of the map ρg , 1)(' <∗zg ρ , which 

can be written as 1)(
1
1 ' <<
−
+

− ∗zf
ρ
ρ  is satisfied for 1~ << ρρ , i.e. with a sufficiently strong 

memory. These arguments are summarized in the following proposition, whose part (ii) states the 
stabilizing effect of a strong memory. 
 
 Proposition 3.3. Let ∗z  be a fixed point of f. 
(i) If 1)(' <∗zf  then also 1)(' <∗zg ρ  for each )1,0(∈ρ ; 

(ii) if 1)(' −<∗zf  a value )1,0(∈ρ  exists, given by (4.5), such that 1)(' <∗zg ρ  for 1~ << ρρ ; 

(iii) if 1)(' >∗zf  then also 1)(' >∗zg ρ . 
 
This proposition allows us to distinguish, among the fixed points of the map f, those which will be 
attracting for the process with a sufficiently strong memory (in particular with a uniform memory, 
obtained in the limiting case 1→ρ ). 
 
 
4. Conclusions 
 
In this paper an iterative scheme of the form )(1 nn zfx =+ , where nz  is a weighted power mean of 
all the previous state variables nxx ,...,0 , has been studied. The results given extend, to a general 
class of commonly used algebraic means, including arithmetic, quadratic, harmonic, and geometric 
means with arbitrary weights, some the results existing in the literature for arithmetic mean only. 
These iterative schemes can be used to model learning mechanisms in economic and social systems 
where the agents use all available past data to compute expected values by some averaging method. 
A particular distribution of weights, exponentially decreasing like the terms of a convergent 
geometric series of ratio ρ  (called memory ratio), has been used to investigate the effects of a 
fading memory on the asymptotic properties of the discrete process. This has been obtained through 
the reduction of the problem to the study of an equivalent two-dimensional triangular map whose 
asymptotic behavior is governed by a one-dimensional map. 
This allows us to state that the presence of a strong memory, that is, with a memory ratio close to 1, 
has a stabilizing effect. 
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Appendix A. A learning mechanism which leads to a harmonic mean. 
 
We consider an economic system whose law of motion is expressed in the classical forward-looking 
form 
 
(A.1)  )( )(

1
e

nn xfx +=  
 
where )(

1
e

nx +  represents the expected value of the state variable x  for the next time period, and will 
be identified, in the following, with the expected variable nz . We suppose that the agents use all the 
available data to compute the expected value as a linear combination of the values of the past: 
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=  and nW  is the sum of the relative weights. We now introduce the further 

assumption, similar to that proposed in Benassy and Blad (1989), that also the relative weights )(n
kω  

are estimated on the basis of the past observations. Since )(n
kω  represents the relative influence of 

the past value kx  on the expected value, we assume that the it is computed on the basis of the 
observed influence of kx  on the present value nx , that is from the relation k

n
kn xx )(ω≅  the agents 

compute 
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All in all, we have  
 

∑

∑
−

=

−

= == 1

0

1

0

1n

k k

k
n

n

k k

n

n

x

nx
W

x
x

z  

 
from which the law of motion (A.1) becomes 
 

)(1 nn zfx =+  with ∑
−

=

=
1

0

111 n

K kn xnz
 

 
 
Appendix B. Proof of proposition 2.2. 
 
(i) First we shall see, under the assumption ∞→nW , that if nx  is convergent then also nz  
converges to the same limit. 
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Let 0>→ qxn  (the case 0=q  will be treated separately). Then, for each p , pp
n qx → , i.e. for 

each 0>ε  an 0>N  exists such that  
 
(B.1)  εε +<<− pp

n
p qxq   for Nn > . 

 
Now we shall prove that 0)( →− pp

n qz , that is pp
n qz →  which implies qzn → . 

For Nn >  we have  
 
(B.2) 
 

pp
k

n

Nk Nn

k

n

Nnp
k

N

k
k

n

pp
k

n

Nk n

kp
k

N

k n

kpp
k

n

k n

kpp
n qx

WWW
WW

x
W

qx
W

x
W

qx
W

qz −
−

−
+=−+=−=− ∑∑∑∑∑

+==+=== 10100

1)(
ω

ω
ωωω  

 
 
From the right inequality in (B.1) we have  
 

(B.3)  pp

n

Nnp
k

N

k
k

n

pp
n qq

W
WW

x
W

qz −+
−

+≤− ∑
=

)(1)(
0

εω  

 

since  1
1

=
−∑

+=

n

Nk Nn

k

WW
ω

. 

 
Analogously, from the left inequality in (B.1) we have  
 

(B.4)  pp

n

Nnp
k

N

k
k

n

pp
n qq

W
WW

x
W

qz −−
−

+≥− ∑
=

)(1)(
0

εω  

 
Since ∞→nW  and the kω  are bounded, from (B.3) follows that  
 
(B.5)  lim

∞→n
ε≤− )( pp

n qz  

 
and from (B.4) 
 
(B.6)  lim

∞→n
ε−≥− )( pp

n qz  

 
Since ε  is arbitrarily small (B.5) and (B.6) prove that  lim

∞→n
0)( =− pp

n qz . 

Consider now the case 0→nx . If 0>p  the arguments above can be applied with no substantial 
modifications. If 0<p , since the nx  are supposed to be positive, we have that +∞→p

nx , i.e. for 
each 0>M  an 0>N  exists such that  
 
(B.7)  Mx p

n >  for Nn > . 
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For Nn >  we have  
 

∑∑∑
+=+==

>+=
n

Nk n

kp
k

n

Nk n

kp
k

N

k n

kp
n W

Mx
W

x
W

z
110

ωωω
 

 
and since M  can be arbitrarily large this implies +∞→p

nz , from which, since 0<p , follows 
0→nz .  

To complete this part of the proof it remains to show that the common limit is a fixed point of f. 
Indeed, since f is continuous, from qzn →  follows that )()( qfzf n → . But )(1 nn zfx =+  so that 

)(qfq = . 
We assume now that nz  converges and we prove that also nx  converges to the same limit. If 

rzn →  then )(rfxn →  because f is continuous. From the argument above, it must also be 
)(rfzn →  which implies )(rfr = . 

(ii) Since, for +ℜ⊆=∈ ],[0 baIz , the whole sequence { }nz  is contained in I , it has at least one 
limit point. We shall see that it must be unique. 
From (2.9), rewritten as  
 
(B.8)  [ ]( )p

n
p

nn
p
n

p
n zzftzz −=−+ )(1  

 
we deduce that, since 0→nt  , nz  and )( nzf  are bounded, for each 0>ε  a 0>m  exists such that  
 
(B.9)  ε<−+

p
n

p
n zz 1   for mn >  

 
Following the argument used by Borwein and Borwein (1991) let us assume, for sake of 
contradiction, that ξ  and η , with ba ≤<≤ ηξ , are two distinct limit points. A consequence of this 
assumption is that zzf =)(  for each ),( ηξ∈z . In fact let c be a point such that ηξ << c . If 

ccf >)(  then, by the continuity of f, a ),0( c∈δ  exists such that  
 
(B.10)  zzf >)(  whenever δ<− cz   
 
Since η  is a limit point for { }nz  a mN >  exists such that )( czN −<− ηη  which implies .czN >  
It follows that czn >  for each Nn > . To prove this we separately analyze the cases of positive and 
of negative p. Consider first 0>p . If δ+<< czc N , from (B.10) follows NN zzf >)(  which 

gives, since 0>p , [ ] p
N

p
N zzf >)( . From (B.8) follows p

N
p
N zz >+1  (remember that 0>nt ) and this 

implies NN zz >+1  because 0>p . If δ+≥ czN  we have pp
N cz )( δ+≥  so that: 

 
(B.11)  ppppp

N
p
N

pP
N

p
N

p
N

pp
N cccczzczzzcz −++−>−++−≥−+−=− +++ )()(111 δεδ  

 
where (B.9) has been used. Since c<δ  from the binomial series we have: 

...
!3

)2)(1(
2

)1()( 33221 +
−−

+
−

++=+ −−− ppppp cpppcppcpcc δδδδ  



 14

so that 1)( −>−+ ppp cpcc δδ  for 1≥p ,  

and )
2

1()( 2 δδδ pccpcc ppp −
−>−+ −  for 10 << p . Thus if for 1≥p  we take 10 −<< pcpδε  or, 

for ,10 << p  )
2

1(0 2 δδε pccp p −
−<< − , (B.11) gives 01 >−+

pp
N cz  which, for 0>p , implies 

czN >+1 . 
Consider now 0<p . If δ+<< czc N  from (B.10) follows NN zzf >)(  which gives, since 0<p , 

[ ] p
N

p
N zzf <)( . From (B.8) follows p

N
p
N zz <+1  which implies NN zz >+1  because 0<p . If 

δ+≥ czN  we have pp
N cz )( δ+≤  so that: 

 
(B.12)  ppppp

N
p
N

pp
N

p
N

p
N

pp
N cccczzczzzcz −++<−++−≤−+−=− +++ )()(111 δεδ  

 
where (B.9) has been used. From the binomial series with 0<p  we have 1)( −<−+ ppp cpcc δδ  so 
that if we take 10 −−<< pcpδε  (B.12) gives 01 <−+

pp
N cz  which, for 0<p , implies again 

czN >+1 . 
Hence, by induction, czn >  for Nn ≥  against the assumption that c<ξ  is a limit point of { }nz .  
If ccf <)(  a similar reasoning contradicts the assumption that η  is a limit point. Thus ccf =)(  
for each ηξ << c .  
Now, if for a given n  we have ηξ << nz  then nn zz =+1  and so nn zz =  for each nn ≥  which 
contradicts the fact that ξ  and η  are both limit points. If this is not the case, since { }nz  cannot 
oscillate out of the interval ),( ηξ  because of (B.9), taking )( ξηε −<  it remains η>nz  or ξ<nz  
for each n, and again this excludes the possibility that ηξ <  be both limit points. Therefore { }nz  
converges to its unique limit point. 
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