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Predicting Bank Loan Recovery Rates in a
Mixed Continuous-Discrete model

Raffaella Calabrese

I propose to consider the recovery rate as a mixed random variable, obtained as the
mixture of a Bernoulli and a beta random variables. I estimate the mixture weights
and the Bernoulli parameter by two logistic regression models. For the recovery
rates belonging to the interval (0,1), I model, jointly, the mean and the dispersion
by using two link functions, so I propose the joint beta regression model that ac-
commodates skewness and heteroscedastic errors. The estimation procedure is the
maximum likelihood method. Finally, the methodological proposal is applied to a
comprehensive survey on loan recovery process of Italian banks. Macroeconomic
variables are relevant to explain the recovery rate and allow to estimate it in down-
turn conditions, as Basel II requires.

Key words: downturn recovery rate, mixed random variable, joint beta regression
model, logistic regression model

1 Introduction

While the prediction of the probability of default has been the subject of many anal-
yses during the past few decades, the prediction of recovery rates is relatively unex-
plored by the literature. The recovery rate is defined as the payback quota of the loan.
The Basel I Accord (Basel Committee on Banking Supervision (BCBS), 2004a,
paragraph 286-317) prefers to consider the “Loss Given Default”(LGD) which de-
notes the loss quota in the case of the borrower’s default and it is defined as one
minus the recovery rate. In this framework, banks adopting the advanced Internal-
Rating-Based (IRB) approach are allowed to use their own estimates of LGDs. Basel
II requires that the internal estimates reflect economic downturn conditions wher-
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ever necessary to capture risk accurately (BCBS, 2004a, paragraph 468). Therefore,
for each exposure, the LGD must not be lower than the average long-term loss rate,
weighted for all observed defaults for the type of facility in question. Moreover,
banks must account for the possibility that the LGD may exceed the weighted av-
erage value when credit losses are higher than average, thus modeling the so-called
“downturn LGD”. In the assessment of capital adequacy the downturn LGD is also
useful to stress testing processes (BCBS, 2004a, paragraph 434).

Within this research field, the main aim of this work is to propose a regression
model for the recovery rate in order to model jointly its mean and variance, given
some explanatory variables. At first, to represent the high concentration of data at
total recovery and total loss I consider the assumption introduced by Calabrese and
Zenga (2010): the recovery rate is a mixed random variable, given by the mixture of
a Bernoulli random variable and a continuous random variable with support (0,1).
In particular, in this work I assume that the continuous part is modeled by a beta
random variable, consistently with the distribution function estimate obtained by
Calabrese and Zenga (2010).

In order to analyze the influences of some explanatory variables on the continuous
part, I propose the joint beta regression that models jointly the expectation and the
dispersion by using two link functions and two covariate sets that could be differ-
ent. The model parameters are estimated by the maximum likelihood method. The
joint beta regression model accommodates skewness and heteroscedastic errors. To
estimate the Bernoulli parameter and the mixture weights I propose to apply two
logistic regression models.

The main advantage of my proposal is that it allows to examine the different influ-
ences of the same covariates on the extreme values and the recovery rates belonging
to the interval (0,1). By this characteristic I can analyse the assumption that special
conditions make a debtor pay back the full amount of debt or to pay back nothing,
rather than just a portion. This topic is pivotal in many works on the recovery risk,
e.g. Bellotti and Crook (2009), Grunert and Weber (2008), Schuermann (2005). Fur-
thermore, the regression model here proposed supplies accurate estimations for the
extreme values of the recovery rates, which are really important in recovery risk
analysis. Finally, another positive aspect of my proposal is that it allows to estimate
both the mean and the variance of the recovery rate knowing the covariate values.
At last, I apply the proposed approach to a comprehensive database (Banca d’Italia,
2001) of recovery rates on Italian bank loans. This survey is really important since
very few analyses on recovery rates of bank loans focus on continental Europe.
Moreover, I introduce some macroeconomic variables that let to obtain an estimate
in downturn conditions and to stress testing. Analogously to some results in the
literature (e.g. Acharya et al., 2007; Altman et al, 2005; Bellotti and Crook, 2009;
Caselli et al., 2008; Figlewski et al., 2007), these variables are significant to estimate
the recovery rates.

On the Bank of Italy’s data I compare the predictive accuracy of my proposal with
those of the fractional response model, proposed by Papke and Wooldridge (1996).
This model is applied by Bastos (2010), Chalupka and Kopecsni (2009), Dermine
and Neto de Carvalho (2006), Grippa et al. (2005) with different link functions
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(the logit, the log-log and the complementary log-log functions). The model here
proposed shows the highest out-of-time predictive accuracy in terms of the mean
absolute error and the mean square error for different forecasting periods of time.
The present paper is organized as follows. The next section is a brief literature re-
view. Section 3 presents the regression approach here proposed in which the joint
beta regression model is described. In section 4 the first subsection describes the
dataset of the Bank of Italy and the second shows the estimation results by apply-
ing the proposed model to these data. Then, subsection 4.3 presents the fractional
response model, proposed by Papke and Wooldridge (1996). In the following sub-
section the out-of-time predictive accuracies of the fractional response models with
different link functions are compared with that of my proposal on the Bank of Italy’s
data. Finally, the last section is devoted to conclusions. In appendix I report the score
functions and the Fisher information matrix of the parameters of the joint beta re-
gression model.

2 Literature review

In order to be compliant with the IRB approach of Basel II, banks must estimate the
probability of default, the LGD and the Exposure At Default (EAD). Most empir-
ical research focuses on modeling and estimating default probabilities, while only
recently the recovery analysis is attracting attention. Several studies consider re-
covery rates on corporate bonds (e.g. Bruche and Gonzalez-Aguado, 2008; Renault
and Scaillet, 2004; Schuermann, 2003), while few authors deal with bank loans
(e.g. Araten et al., 2004; Asarnow and Edwards, 1995; Calabrese and Zenga, 2010;
Caselli et al., 2008; Chalupka and Kopecsni, 2009; Dermine and Neto de Carvalho,
2006; Emery et al., 2004; Grippa et al. 2005; Grunert and Weber, 2009). Since loans
are private instruments, few data is available for empirical analyses. Noticeably, re-
covery rates on corporate bonds and on bank loans are significantly different. In
particular, Carty and Lieberman (1996), Schuermann (2003) show that the average
recovery rate on bank loans is higher than the one on bonds. On the contrary, the
results about the variability are discordant: Araten et al. (2004) assert that LGDs
on bank loans have greater variability than recovery rates on bonds, instead Schuer-
mann (2003) finds the contrary.

Most of these empirical studies concern the U.S. banking system (Araten et al.,
2004; Asarnow and Edwards, 1995; Bruche and Gonzalez-Aguado, 2008; Carty
and Lieberman, 1996; Emery et al., 2004; Friedman and Sandow, 2003; Gupton and
Stein, 2002; Renault and Scaillet, 2004). More recent works consider the European
market (Bastos, 2009; Bellotti and Crook, 2009; Calabrese and Zenga, 2010; Caselli
et al., 2008; Dermine and Neto de Carvalho, 2006; Grunert and Weber, 2009).

In recovery risk analysis a pivotal topic is the forecasting of recovery rates. Gupton
and Stein (2002) assume that the recovery rate is beta distributed, so they transform
the LGDs of 1,800 U.S. defaulted loans, bonds and preferred stock from Beta to
Normal space. Finally, on the transformed market prices of these instruments af-
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ter default they apply a linear regression model. The model validation is performed
out-of-time, as later-explained this means that the model is fit using data from one
time period and tested on a subsequent period. On the one hand, also Bruche and
Gonzélez-Aguado (2008) assume that the recovery rate is beta distributed. On the
other hand, they extend the static beta distribution assumption of CreditMetrics
(Gupton et al., 1997) and KMV Portfolio Manager by modeling the beta parameters
as functions of systematic risk. In particular, Bruche and Gonzélez-Aguado (2008)
evaluate the out-of-time predictive accuracy of the model by the log-likelihood ra-
tio, the Akaike’s Information Criterion and the Bayesian information criterion on
2,000 defaulted bonds of US firms from 1974 to 2005.

Caselli et al. (2008) examine 11,649 distressed loans to households and small and
medium size companies from 1990 to 2004. LGD is estimated from cash-flows re-
covered after the default event. They test several linear regression models with dif-
ferent explanatory variables and they evaluate the out-of-time predictive accuracy.
A similar methodology is applied by Grunert and Weber (2009) on 120 recovery
rates of German defaulted companies in the years from 1992 to 2003. Unlike the
previous work, they evaluate the goodness of fit by an adjusted R>. Analogously to
this work, Grunert and Weber (2009) attach a great importance to very high or very
low recovery rates, so they investigate whether some factors influence the fact that
banks receive the EAD almost completely or only minimally by two logistic regres-
sion models.

A model widely applied to forecast the recovery rate is the the fractional response
model proposed by Papke and Wooldridge (1996) and explained in subsection 4.3.
Dermine and Neto de Carvalho (2006) apply the fractional response model with the
log-log link function on 373 non-performing loans granted to SMEs over the period
1995 to 2000. On the contrary, Grippa et al. (2005) choose the logit link function
for the fractional response model that is applied on more than 22,000 recovery rates
gathered by the same survey of the Bank of Italy analysed in this work. I specify that
they apply a different expression to compute the recovery rate from the one used in
this work and proposed by Calabrese and Zenga (2008, 2010).

Chalupka and Kopecsni (2009) compare the fractional response models with dif-
ferent link functions (logit, log-log and complementary log-log functions) and they
obtain that the log-log link function performs better to LGDs of Czech firm loans
defaulted in the period 1989-2007. Bellotti and Crook (2007) evaluate the perfor-
mance of different regression approaches on over 55,000 credit loans in default over
the period 1999 to 2005 in UK and they obtain that the fractional logit regression
shows the best out-of-sample predictive accuracy in terms of mean absolute error.
Although the need to estimate the downturn LGD is clearly framed (BCBS, 2004b,
2005), Basel II does not provide a specific approach that banks must use in cal-
culating this variable. In particular, the paragraph 468 (BCBS, 2004a) states that
banks have to consider macroeconomic downturn conditions when predicting re-
covery rates. The BCBS (2005) states that banks should use the growth of GDP and
the rate of unemployment as factors for the recovery rate prediction.

Different conclusions are obtained on this topic. The growth rate of GDP is sig-
nificant in calculating the loss rate for Altman et al. (2005) on US bonds and for
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Figlewski et al. (2007) also on US bonds. The same variable is not significant for
Bruche and Gonzélez-Aguado (2008) and Acharya and al. (2007). On the contrary,
the results agree on the relevance of the unemployment rate to explain the LGD
(Acharya et al., 2007; Bellotti and Crook, 2009; Bruche and Gonzélez-Aguado,
2008, Caselli et al., 2008).

Other macroeconomic covariates chosen in the literature to predict the recovery
rates are the interest rate (Bellotti and Crook, 2009; Figlewski et al., 2007), the
stock market return (Acharya et al., 2007; Figlewski et al., 2007), the investment
growth (Bruche and Gonzalez-Aguado, 2008; Caselli et al., 2008) and the inflation
(Figlewski et al., 2007).

A pivotal topic in the recovery risk analysis is the relationship between the de-
fault probability and the recovery rate (Altman et al., 2005). Bruche and Gonzélez-
Aguado (2008) and Altman et al. (2005) agree that recovery rates and default rates
are strongly correlated.

3 Modeling approach

Analogously to many models in the literature (e.g. Gupton et al., 1997), in this
work I consider the recovery rate as a random variable. Moreover, some approaches
(Gupton et al., 1997; Gupton and Stein, 2002) assume that the recovery rate is a beta
random variable.

A pivotal characteristic of the recovery rate distribution is the high concentration of
data at total recovery and total loss, as showed by Asarnow and Edwards (1995),
Calabrese and Zenga (2008, 2010), Caselli et al. (2008), Dermine and Neto de Car-
valho (2006), Grunert and Weber (2009), Renault and Scaillet (2004), Schuermann
(2003). Hence, the estimates of total loss and total recovery are crucially important
for banks.

In order to supply accurate estimations for the extreme values, Calabrese and Zenga
(2010) propose to consider the recovery rate R as a mixed random variable, given
by the mixture of a Bernoulli random variable and a continuous random variable Y
with support (0,1)

P{R =0} r=0;
Fr(r)={ P{R=0}+[I—P{R=0}—P{R=1}]Fy(r) r€0.1) (1)
1 r=1.

where Fy denotes the cumulative distribution function of the random variable Y and
P{R = j} is the probability that the recovery rate R is equal to j with j =0, 1. Since
the beta probability density function is flexible, I assume that Y is a beta random
variable. By a nonparametric density estimation Calabrese and Zenga (2010) show
that this parametric model provides a good fit to data.

Hence, an important issue is to propose an estimation methodology for regression
model whose dependent variable is a mixed random variable. In order to understand
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the determinants of the mean u of the dependent variable, the generalized linear
models (McCullagh and Nelder, 1989) apply a strictly monotonic and twice differ-
entiable link function g(-) such that g() = x’a. There are several possible choices
for the link function g(-). When O < u < 1, a link function should satisfy the condi-
tion that maps the interval (0,1) onto the whole real line.

The recovery rates ri,rs,...,1, are assumed to be the observed values of indepen-
dent random variables R,R>, ..., R, such that R; has cumulative distribution func-
tion given by (1). In order to propose the regression model for the recovery rates
R1,R>,...,R, I prefer to use the following parametrization

- P{Ri =1}
- P{Ri =0} +P{R; =1}

a; bi:P{RiZO}—FP{Ri:l}. 2)
The beta density function of the random variable ¥; with parameters p; > 0 and
gi > 01is given by

pi—1 i—1
yir (I—y)* I'(pitai) pi-1
fOispisgi) == ( : _l) = (.l l.) ¥
B(pz;Qz) F(pl)r(ql)

where B(-,-) denotes the beta function and I'(-) the Gamma function.
By using (1) and (2) and by considering the n-vectors a’ = [a},az,...,a,], ' =
[b1,b2,....,bu], P = [p1,P2,---»Pn) and @' = [q1,42, ---,qn), the log-likelihood func-

tion based on a sample of n independent random variables R{,R», ..., R, is

I(a,b,p,q;r) = Y In(l—a;)+ ) Ingi+ Y Inbi+ ) Inb;i+ 4)
ri=0 ri=0

I’,‘=1 r,:l

(1—y)% " 0<yi<1 (3)

T Z In(1—b;)+ Z Inf(pi,qi,ri)

0<ri<1 O<ri<1

where f(p;,qi,r;) is the beta probability density function defined in (3).
I consider the Bernoulli random variable

_ JLA{R=0}U{Ri = 1};
Zi= { 0, otherwise. &)

The log-likelihood function (4) so becomes

l(a,b,p,qr) = ), [rilng;+(1—r)In(1—a;)]+ (6)
r,‘=0\/r,‘=1
+ ), [lnbi+(1—z)In(1=b)]+ Y. Inf(pigiri).
=0V z;=1 0<ri<l

It is important to note that in (6) the addend of the first sum represents the log-
likelihood function of the Bernoulli random variable I;

_ laRlzls
I’{O,R,-:O
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where P{I; = 1} = a;. Analogously, the addend of the second sum represents the
log likelihood function of the Bernoulli random variable Z;, defined in (5), where
P{Z; = 1} = b,. For that reason, in order to estimate the vectors a and b, I propose
to consider two logistic regression models given by

o exp(xia) bi exp(x;f) o
Tirepa) T Trexp(xp)
where o = [, a1, ..., 0y and B’ = [By, 1, ..., Bp] are the unknown parameter vec-

tors and X§ = [1,x;1, ...,x,-p] is the covariate vector. This approach is similar to the
one proposed by Bellotti and Crook (2009) that apply two logistic regression and
the ordinary least square methodologies in a decision tree model.

By considering the equations (7), the log-likelihood function (6) can be expressed
also as a function of o and 8

o, B,p,qsr) = ), [rixje—In(1+exp(xja))] + (®)
r,~:0\/r,~:1
+ ) [zxiB—In(1+exp(x;B))] +
zi=0V z;i=1
+ Y, Infy(pigirmi)-
0<ri<l

The maximum likelihood method is applied to estimate the unknown parameters o
and . The derivative of the log likelihood function (8) with respect to o and 3 are
respectively

exp(x[0t)

d
J0; (@ Ppar) = ) ["i-/’<r"1+exp(X§a))] ®

ri=0Vri=1
;}jl(a,ﬁ,p,q:r) = L [xij (Zi_mﬂ

zi=0Vz;=1

with j =0,1,..., p and x;0 = 1 Vi. By making the score functions for o and 8 (9)
equal to zero, the maximum likelihood estimates of o and 3, respectively, are ob-
tained by using a nonlinear optimization algorithm, such as a Newton algorithm or
a quasi-Newton algorithm (McLachlan and Krishnan, 1997).

By applying the model (1) and by knowing the covariates X, in order to estimate the
mean and the variance of the recovery rates I need to estimate the two vectors p and
q that represent the parameters of the beta probability density function f(p;,q;,r;)
used in the log-likelihood function (8). With this aim I propose the joint beta regres-
sion model in the following subsection.
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3.1 Joint beta regression model

This subsection focuses just on the continuous part of the recovery rate in the model
(1), given by the beta random variable Y. An interesting model where the depen-
dent variable is beta distributed is the beta regression approach, proposed by Ferrari
and Cribari-Neto (2004). In this model they prefer to use a reparameterization that
translates p and ¢ into a location parameter y and a dispersion parameter ¢

p pq p(l—p)

E) prqg " var(Y) (p+93?(p+q+1)  ¢+1° (10
where ¢ = p + ¢. Similarly to GLM models, Ferrari and Cribari-Neto (2004)’s
approach models only the mean u and they consider the dispersion parameter
¢ = p+ q as a nuisance parameter. On the contrary, by applying the same reparam-
eterization proposed by Ferrari and Cribari-Neto (2004) I model, jointly, the mean
U and the dispersion parameter ¢ of the response beta random variable Y, following
a similar approach to that used by Nelder and Lee (1991).

In particular, let Y;,Y>,...,Y, be independent beta random variables, where each Y;,
with i = 1,2,...,n, follows the density

,u[(p—l O —
Y (1—y)hitioi-t _ r'(¢:) yu;(b;—l(l _yi)¢i—ui¢i—1
)

I (is i 9) = B(uidi, & — wi0)) (o)) (¢ — i

where y; € (0,1), 1 > ; > 0 and ¢; > 0, with mean and variance given by the
equations (10). To joint model the mean (; and the parameter ¢;, since 0 < y; < 1
and ¢; > 0 with i = 1,2,...,n, I suppose that the link function g(+) is the logit function
and the link function (+) is the log function

8() = log =i h(gn) = log(9) = ~W}6. an

it follows that !
= . =e e 12
=l (12)

with i =1,2,...,n, where 1 and 8 are vectors of respectively k and m unknown re-
gression parameters, v; and w; are the two vectors of observations on respectively k
and m covariates (k +m < n), which are assumed fixed and known.

Furthermore, I point out that the mean u and the parameter ¢ depend on two dif-
ferent vectors of covariates, respectively v and w. By such characteristic, the model
here proposed can consider some variables in the vector w; that are relevant just
for the parameter ¢; and not for the mean ;. I underline that the variance of ¥; is
a function of y; and ¢;, as given by the equation (10) and, as a consequence, of the
covariate values v; and w;, so such model accommodates the heteroscedastic errors.
Moreover, since the beta distribution is flexible, the skewness and the multimodality
are also accommodated.

For the interpretation of the parameter vector 1, I suppose that the value of the
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Jj-th regressor (with j = 1,2,..,k) is increased by ¢ unit and all other independent
variables remain unchanged. Let u* denote the mean of y under the new covariate
values, whereas ( denotes the mean of ¥ under the original covariate values. It is
easy to show that
oy /(=) 03
p/(1—p)

* 1— *
e equals the odds ratio M (with j =1,2,..,k). Hence, if n); is positive,

w/(1—p)

from the first equation in (12), the mean u* is higher than y and from the equation
* 1 T
(13) also the odds ratio M is higher than one.

p/(1—u)

Analogously, for the interpretation of the parameter vector 0, I suppose that the
value of the h-th regressor (with & = 1,2,..,m) is increased by c unit and all other
independent variables remain unchanged. I denote the parameter ¢ under the origi-
nal covariate values and ¢* under the new covariate values. It is easy to show that

e O = % (14)

with h = 1,2,..,m. If 6y, is positive, from the second equation in (12) the parameter
¢* results lower than ¢. Moreover, if the mean u* does not depend on the A-th
regressor, from the second equation in (10) the variance of the dependent variable
Y increases when the value of the A-th regressor is increased by c¢ unit. If also the
mean depends on the A-th regressor, the variance of Y increases when it is satisfied

the following condition
prl—pr) ¢ +1

> . (15)
p(l—p) = o+1
Some sufficient conditions for the inequality (15) to hold are
LIS > 0,6, >0and 6, > N (16)
o1, >0,6, <0and 6, < —7nj. 17
A sufficient condition so that the variance of Y decreases is
o1, <0 and 6, > 0, (18)

when u and ¢ depend on the same A-th covariate.
In order to estimate the two vectors 1 and 6 of parameters, the maximum likelihood
method is performed. The log-likelihood function is

, evgn—wl’«e e—wl’ﬂ
InI"(e ™% — InI" — | -l | ——= | +
1+4e"ill 1+e"ill

eVin—w;o e~ Wi
+ | ————-1In(i)+ | ——=—-1|n(l—y;)|. (19)
1+ evm (i) 11+ evm (1—yi)

n

1(7779) = Z

i=1
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Since the beta distribution is a two parameter full exponential family and the log-
likelihood function satisfies a given condition (Barndorff-Nielsen, 1978, pp. 151),
the maximum likelihood estimators exist and are unique.

The score function and the Hessian can be obtained explicitly in terms of the
polygamma function, where the polygamma function of order m is defined as the
(m+ 1) derivative of the logarithm of the gamma function I"(-)

IMy(z) "l (2)
omz - omtlz; -

dlogl(z) 8F(z)

dz I'(z)
7> 0. The score functions are obtained by differentiating the log-likelihood function
with respect to the unknown parameters 1 and 0, respectively,

dl(n,6 é vin—w;6 -w;o vin—wio )
M:Z Xij - 5 |9 ¢ ) -o| | +l0g2
8”/ i=1 [1+evfn} 1+ e"%iM 1 +e¥il 1—y;

for

For m = 0 this function is called digamma function y(z) =

LGNS S e T n-wo
e [ =g
96, l; "It evin ¢ "\ Trem
€7w§9 /
—¢ | ——= | +log(1—y;)+e"Mlog(yi) |, (20)
L+e¥i

with j =1,2,....,k; h=1,2,...,m, where y; is a realization of the recovery rate with
O<yi<landi=1,2,...n

The asymptotic standard errors of the maximum likelihood estimators of the pa-
rameters in the models are given by the Fisher information matrix whose elements

are
T T T
v,-,-v,-qevfn*Zerb—eVzn} oo\ [ e
: PJ (e BrPYY (L
{l-l—e"fn} 14e%T 14e%in

2
E(&(n9»
an;on,
2 T Wl
2%1(n,0) U To i evin—wi o T
—E ihWui —wi 6 — 7 ) — Y P
( aehaeu ) ; Vintui¢ 1+g"iTn ¢ 1_|_eV,~TTI ¢ (e )+
1 -wle
¢ [
1+e%iM 14"l

(321(77, 9)) o wipvije'i 2w/ ¢’ Ik vTTIq)/ et i Q1)
= —eVi —_—
9196 i=1 [1 +evi ﬂ] I 4evin 14

-
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with j,g=1,2,....;0k; h,u=1,2,...;m; i = 1,2,...,n. From the Fisher’s information
matrix I note that the parameter vectors 17 and 6 are not orthogonal, so their maxi-
mum likelihood estimators are dependent and can not be computed separately.

The maximum likelihood estimators of 17 and 6 are obtained by making the score
functions (20) equal to zero and do not have closed-form. Hence, they need to be
obtained by numerically maximizing the log-likelihood function using a nonlinear
optimization algorithm, such as a Newton algorithm or a quasi-Newton algorithm
(McLachlan and Krishnan, 1997). The optimization algorithms require the specifi-
cation of initial values to be used in iterative scheme.

My suggestion is to use as an initial point estimate for 7] the ordinary least squares
estimate of this parameter vector obtained from a linear regression of the trans-
formed response

_ (1 — )

i — - 17
2 var(Y;)

with i =,1,2,...,n. By applying the delta method I derive the following approxima-
tion 5
var[logit(Y;)] = var {logit(,ui) + Y- ,ui)aulogit(,ui)} ,

so I obtain that
var(¥;) ~ varllogit (%)) i (1 — )2,

with i =,1,2,...,n. Hence, I use the approximation

1
67 (1 — ;)

~

0 =~

_ 1‘
evifl
with fi; = P L where 7} and é; are, respectively, the ordinary least squares esti-
mate and residual from the linear regression of the transformed response. As initial
point estimate for 6 I use the ordinary least squares estimate obtained from a linear
regression of the transformed value —In(¢;) on w;, withi=,1,2,...,n.
I define this approach joint beta regression model since the distribution of the de-
pendent variable is assumed to be a beta distribution, analogously to Ferrari and
Cribari-Neto (2004), but, unlike the beta regression model, I model jointly the ex-
pectation and the dispersion of the dependent variable.

3.2 Mean and variance estimates of recovery rates

By considering the model (1) here proposed, the mean and the variance of the re-
covery rate R are respectively

E(Ri) = E(],')P{(Ri = O) U (R,’ = 1)} +E(Y,)P{0 <R; < 1} (22)
var(R;) = var(l;)P{(Ri=0)U(R; = 1)} +var(Y;))P{O<R; < 1} +
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HE() — ER)PP{(R = 0)U (R = 1)} +[E(Y) — ER)PP{O < R, < 1}

with i = 1,2,...,n, where I denotes a Bernoulli random variable and Y a beta ran-
dom variable. I underline that my model allows to estimate both the mean and the
variance of the recovery rate.

By using the estimates of o and f that make the score functions (9) equal to zero,
and by obtaining u and ¢ from the joint beta regression model, the mean and the
variance estimates of the recovery rates are given by

~

ﬁii),‘ +4:(1-5;) (23)
(=) s
—b) R (A #)+bi(ﬂi— i)’

0i+1

E(Ry)

var(R;) = aibi(1—a;) + (1

withi=1,2,....,n.

4 Data application

4.1 The Bank of Italy’s survey

The Bank of Italy conducts a comprehensive survey on the loan recovery process
of Italian banks in the years 2000-2001. Its purpose is to gather information on the
main characteristics of the Italian recovery process and procedures, by collecting
information about recovered amounts, recovery costs and timing.

By means of a questionnaire, about 250 banks are surveyed. Since they cover nearly
90% of total domestic assets of 1999, the sample is representative of the Italian re-
covery process. I consider 144,996 data for which all the covariate values are known.
I highlight that the data concern individual loans which are privately held and not
listed on the market. In particular, loans are towards Italian resident defaulted bor-
rowers from the 31/07/1975 to the 31/12/1998 and written off by the end of 1999.
The definition of default the Bank of Italy chooses in its survey (Banca d’Italia, 2004
p.I110) is tighter than the one Basel Committee on Banking Supervision (BCBS)
(20044, paragraph 452) proposes. The difference is given by the inclusion of transi-
tory non-performing debts.

Since this survey considers loans privately held, it is difficult to assign them a mar-
ket price, so necessarily the Bank of Italy applies the ultimate recovery approach
(Friedman and Sandow, 2003) to compute the recovery rate. Hence, the exposure
represents the outstanding debt at the time of default and the Bank of Italy considers
the recovery as the actual recovery amount. I highlight that in this analysis I apply
the expression proposed by Calabrese and Zenga (2008, 2010) to compute the re-
covery rate that constrains this variable within the interval [0,1].

This survey collects two main kinds of information: aggregate information about re-
covery procedures of banks and individual characteristics of loans whose recovery



Predicting Bank Loan Recovery Rates in a Mixed Continuous-Discrete model 13

process is concluded by 1999. With regard to the former subject!, private agree-
ments are the most used recovery procedure and they show the shortest length of
recovery procedure with a mean of 4.5 years. About this topic, Caselli et al. (2008)
highlight that the Italian bankruptcy discipline, in force when the survey is con-
ducted, do not bring about a quick liquidation of defaulted firms’ assets. The length
of recovery proceedings influences the costs of recovery procedures, which are then
reflected in a higher LGD. Hence, different insolvency laws could cause national
differences in the recovery process, so great importance is attached to our analysis
of the Italian banking system.

However, the average recovery rate is 0.3846, the median value is 0.3333 and the
standard deviation is 0.3395. These values show a less efficient Italian recovery pro-
cess than the one represented by Caselli et al. (2008) for the period 1990-2004. In
fact, in that analysis the average LGD is 0.54, the median is 0.56 and the standard
deviation is 0.43.

4.2 Estimation results

I apply the regression model proposed in this work to the Bank of Italy’s database.
I consider the recovery rate as a mixed random variable whose cumulative distribu-
tion function is given by (1). This application is interesting since it concerns loans,
on which the availability of data is very difficult, in the Italian recovery process,
which could be different from other countries.

The recovery rate is considered as a dependent variable in a regression model. In
particular, I apply the model here proposed to estimate the recovery rate. In order to
model jointly the mean and the variance of the recovery rate R, given by the equa-
tions (23), I need to estimate the parameters a,b, L, ¢. As above explained in the
section 3, in order to estimate the parameter a I apply a logistic regression model,
represented by the first equation in (7), just on the extreme values of the recov-
ery rates. Moreover, in order to estimate the parameter b I apply a second regression
model, represented by the second equation in (7), whose dependent variable is given
by the dummy variable Z defined in (5). Finally, to estimate the parameters y and ¢
I apply the joint beta regression model proposed in the subsection 3.1.

Since the aim of this regression model is to estimate the recovery rate at the time
of default, all the covariates are known in that moment and not during or in the end
of the recovery process. In a previous work (Calabrese and Zenga, 2008) the pres-
ence of collateral or personal guarantee and the exposure at default result significant
in estimating the recovery rate. For that reason I consider a dummy variable that
represents the presence of collateral or personal guarantee (CG) and the logarithm
of the exposure at default (InEAD) as explanatory variables. In order to investigate
the influence of the geographic areas on the recovery rate, I introduce four dummy
variables that represent five Italian macro areas (SI=South Italy, CI=Central Italy,

1 For more details see Banca d’Italia (2001) and Grippa et al. (2005).
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NEI=North East Italy, NWI=North West Italy) in the regression model.

Caselli et al. (2008) show that the LGDs for loans to households and to small and
medium enterprises are statistically different. In order to understand if this charac-
teristic is a determinant of the recovery rate, I introduce a dummy variable that is
equal to one when the borrower belongs to a consumer family (CF).

Since internal estimates for the LGD must reflect economic downturn conditions
(BCBS, 2004 paragraph 468), as explained in section 2, macroeconomic variables
are introduced in the regression model in order to represent the state of the economic
cycle.

Compliant to Basel II (BCBS, 2005) and analogously to many empirical studies
(Acharya et al., 2007; Altman et al., 2005; Bellotti and Crook, 2009; Bruche and
Gonzdlez-Aguado, 2008; Caselli et al., 2008; Figlewski et al., 2007), the chosen
macroeconomic variables are the interest on delayed payment (IR), the unemploy-
ment rate (UR), the growth of GDP (GDP) and the default rate (DR), all evaluated
at the time of default. The source of the first and the third variables is the Statistical
Bulletin of the Bank of Italy, for the others the International Monetary Fund.

Since the macroeconomic variables are available from 1985, in this analysis I con-
sider 144,966 loans that defaulted between January 1985 and December 1999 and
whose recovery process is written off within December 1999. I underline that the
size of the sample here considered is significantly much higher than the sample size
considered in most of empirical studies in the literature. For example Bellotti and
Crook (2009) examine over 55,000 credit card accounts in default and Caselli et al.
(2008) consider 11,649 bank loans. I specify that the sample size for Grippa et al.
(2005)’s multivariate analysis is over 22,000 loans. Although Grippa et al. (2005)
consider the same survey of the Bank of Italy (Banca d’Italia, 2001), their sample
size is much lower than the one here analysed since they consider only the loans for
which all data are available.

I point out that the model here proposed allows to analyze the different influences
of the same covariates on the discrete and the continuous parts of the recovery rate.
Some authors (e.g. Bellotti and Crook, 2009; Friedman and Sandow, 2003; Grunert
and Weber, 2009; Schuermann, 2003) hypothesize that the extreme values of the
recovery rates show different characteristics from the ones belonging to the interval
(0,1), but they can not verify this statement with an appropriate methodology. In
order to achieve this aim, the covariate sets X, v and w, considered in the equations
(7) and (12), coincide.

Since bank aims at forecasting the recovery rate, in order to avoid the overfitting,
data are divided in two groups that refer to different periods of time. The model is
fitted on the data concerning a given period and the predictive accuracy is evalu-
ated in the aftermath. Hence, the parameters of the regression model here proposed
are estimated on 134,937 defaults occurred from 1985 to 1998. In subsection 4.4
the predictive accuracy is measured on the out-of-time sample of 10,059 loans that
defaulted in 1999. Moreover, in order to analyse the accuracy for different forecast-
ing periods of time, in the same subsection I consider also two out-of-time samples
given by the defaults occurred from 1998 to 1999 and from 1997 to 1999. The model
is fitted on loans defaulted respectively from 1985 to 1997 and from 1985 to 1996.
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Some authors in the literature, e.g. Bellotti and Crook (2009) and Dermine and de
Carvalho (2005), maintain that a good macroeconomic model of LGD should have
training data across the entire business cycle. In fact, the Bank of Italy’s data con-
cern a long recovery period of time of 14 years, including Eighties expansion and
the early Nineties recession in Italy.

High correlation among macroeconomic variables is a drawback since it leads to
multicollinearity in the regression model and therefore the parameter estimators
could be biased. In order to measure the severity of multicollinearity I compute
the Variance Inflation Factor (VIF) (Greene, 2000, p.257-258) for each macroeco-
nomic variable in an ordinary least square regression model. Since VIF values are
lower than 5, the level of multicollinearity is tolerable.

The following table® reports the parameter estimates and the p-values in round
brackets obtained by the application of the methodological proposal of this work
to the Bank of Italy’s data. The p-values lower than 0.0001 are omitted in Table
I. Choosing a level of significance of 0.1%, all the variables are significant except

Logistic Regression|Logistic Regression| Joint Beta Regression
[ B n 0
Constant| -1.5308(0.0004) -1.5126 -0.9955 -3.1461
IR -0.0713 -0.1111 -0.0466 -0.0251
UR 0.1087(0.0061) 0.3727 0.1229 0.2066
GDP -0.0331(0.1137) -0.1693 -0.0138 -0.0661
DR 0.0975 -0.1052 -0.0206 -0.0364
InEAD -0.0897 -0.6459 -0.0023(0.0045)| 0.0916
CG 1.1140 -0.2333 0.5084 -0.1132
CF 0.4357 -0.5883 -0.0682 -0.0564
CI -0.6407 -0.0804(0.00722) 0.0982 -0.0052
SI -0.1912 0.0877(0.0060) | 0.0248(0.0005) | 0.0674
NEIL -0.7677 0.4448 -0.0753 0.1688
NWI -0.7440 0.6032 -0.1272 0.1221

Table 1 Parameter estimates on 134,937 defaults occurred from 1985 to 1998.

for the unemployment and the GDP growth rates in the logistic regression model
for o estimate, the two dummy variables for the Centre and the South of Italy in
the logistic regression for 3 estimate model and the logarithm of the EAD for the
expectation of the joint beta regression model.

The results on the influence of the EAD on the recovery rates are very interesting
since empirical studies lead to contrasting conclusions on this topic: Asarnow and
Edwards (1995), Carty and Lieberman (1996) find no significant influence of the
loan size on LGDs, instead Dermine and Neto de Carvalho (2006), Grippa et al.
(2005) hit upon that the recovery rates decrease when the loan size increases. From
this work the logarithm of the EAD has an inverse relationship with the mean re-
covery rate for both the discrete and the continuous parts, as Table 1 shows. Since

2 1 obtain these results by using the package “LogicReg” for the logistic regression model and as
optimization procedure “optim” with the method “Nelder-Mead” of R-program.
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the condition (18) is satisfied, the EAD has an inverse relationship with the variance
of the continuous part of the recovery rate, coherently with Calabrese and Zenga
(2008).

The presence of collateral or personal guarantee strongly affects the mean of re-
covery rates, as shown by Chalupka and Kopecsni (2009), Friedman and Sandow
(2003), Grippa et al. (2005), and the signs of the estimate coincide with the ex-
pectations. For the discrete part, the dummy variable for the consumer family (CF)
shows that the mean recovery rate given that the borrower belongs to a consumer
family is higher than the one for nonconsumers. This ordering is reverse for the con-
tinuous part of the recovery rates. This interesting result shows that for a bank the
full recovery is easier if the borrower belongs to a consumer family. The cause of
this characteristic could be the larger resort to collateral and personal guarantee for
consumer families. Analogously to Grippa et al. (2005), the geographic areas are
relevant determinants for the recovery rates.

I highlight that the default rate has a different influence on the means of the discrete
and the continuous parts. This difference could be due to different discrimatory
powers achieved by bank for the two groups: the extreme values of recovery rates
could be characterized by higher discrimatory power than the one achieved for the
continuous part.

Moreover, Table 1 shows that the macroeconomic variables have the same influence
on the means of the discrete and the continuous parts. In particular, the sign of the
estimate for the interest rate on delayed payment coincides with the expectations.
Instead, this agreement fails for the unemployment and the GDP growth rates. The
cause of these results could be that the interest on delayed payment has a short-term
influence on the recovery rates, instead this influence could be of long-term for the
unemployment and the GDP growth rates. A similar consideration is involved in
Bellotti and Crook (2009)’s work.

4.3 The comparison with the fractional response model

As above-mentioned, in order to guarantee that the predicted recovery rates lie in the
unit interval (0,1), in GLMs the link function g(-) maps the interval (0,1) on the real
axis. A wide choice of link functions g(-) is available. Three functions commonly
used are

1
o the log-log function E[—log(—log(R))|x] =x'A (25)
e the complementary log-log function E [—log (—log(1 —R)) |x] =x'A. (26)

R
o the logit function E {log (R) |X} =x'1 (24)

The main drawback of these link functions is that the equations (24), (25) and (26)
cannot be true if R takes on the values 0 or 1 with positive probability. Since the ex-
treme values 0 and 1 have a pivotal role in recovery risk analysis, some authors, i.e.
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Bastos (2009), Chalupka and Kopecsni (2009), Grippa et al. (2005), Dermine and
Neto de Carvalho (2006), apply the fractional response model proposed by Papke
and Wooldridge (1996) in order to overcome this problem. The estimation proce-
dure of the fractional response model is a quasi-likelihood method that consists of
the maximization of the Bernoulli log-likelihood function

li(A) = rilog|G(x{A)] + (1 — r;)log[1 — G(x/A)], 27)

fori=1,2,...,n, where 0 < G(-) < 1 is the inverse of the link function g(-). Because
equation (27) is a member of the linear exponential family, the quasi-maximum
likelihood estimator of A, obtained from the maximization problem

male,-(/’L),
Aia

is consistent for A and +/n-asymptotically normal, regardless of the distribution of
R; conditional on x;, provided that

E(Ri|x;) = G(xiA),

with i = 1,2,...,n. In particular, Grippa et al. (2005) apply the fractional response
model with a logit link function, so its inverse results

1y eXp(xid)
Gxid) = 1+exp(xiA)

On the contrary, Dermine and Neto de Carvalho (2006) choose the log-log link
function, so they obtain

G(xA) = exp(—exp (~x/A)).

In Bastos (2009)’s analysis the logit and the log-log link functions do not exhibit
substantial differences in forecasting performance.

Finally, Chalupka and Kopecsni (2009) consider also the complementary log-log
link function, whose inverse is

G(xI'A) =1—exp(—exp(—x/ A)).

By comparing the three above-mentioned link functions, Chalupka and Kopecsni
(2009) show that the log-log model performs better.

The main difference among these three link functions is that the logit link function
is symmetric, the log-log is right-skewed and the complementary log-log is left-
skewed. This means that the best link function in terms of forecasting performance
depends on the distribution skewness of recovery rates.
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4.4 Out-of-time predictive accuracy

In this subsection I compare the predictive accuracy of the regression model here
proposed with the one of the fractional response model. In the latter model I consider
the logit, the log-log and the complementary log-log link functions, analysed in the
previous subsection. The predictive accuracy of the models is assessed using two
performance measures. The Mean Square Error (MSE) is defined as

1
MSE: *Z(ri—fi)z
ni

where r; and 7; are the actual and the predicted recovery rates on loan i, respectively.
The Mean Absolute Error (MAE) is defined as

1
MAE = fZ\r,-—M.
iz

Models with lower MSE and MAE forecast actual recoveries more accurately.
Since the developed models may overfit the data, resulting in over-optimistic es-
timates of the predictive accuracy, the MSE and the MAE must be assessed on a
sample which is different from that used in estimating the model parameters. Since
this work focuses on the predictive accuracy, the models are fitted on data referring
to a period of time and the predictive accuracy is measured on a subsequent period.
The accuracy so evaluated is known as out-of-time predictive accuracy.

At this point, I compare the out-of-time predictive accuracy of my proposal with the
fractional response model on the Bank of Italy’s data for different forecasting pe-
riod of time. Since the Bank of Italy’s data cover the period from 1985 to 1999, the
predictive accuracy within one year is evaluated on defaults that occurred in 1999
and the models are fitted on loans defaulted from 1985 to 1998. For the forecast
within two years the models are fitted on loans defaulted from 1985 to 1997 and
the out-of-time sample is given by the defaults from 1998 to 1999. Finally, for the
forecast within three years the models are developed using defaults from 1985 to
1996 and the accuracy is measured on defaults that occurred from 1997 to 1999.
Table 2 reports the MAE and the MSE for each model and for each forecasting pe-
riod of time. Since for a bank the overestimation of the recovery rate is more risky
than the underestimation, I compute the parts of the MSE and the MAE due to the
negative errors r; — 7; < 0. I indicate them by MSE™ and MAE™, respectively, and
also their values are reported in Table 2. Therefore, the percentages of the errors
MSE™ and MAE™ are worked out on the respective errors MSE and MAE and their
values are reported in Table 2 between round brackets.

By the results reported in Table 2 my proposal exhibits both the MAE and the MSE
lower than the respective errors of all the three fractional response models for each
forecasting period of time. By the results reported in Table 2 my proposal exhibits
both the MAE and the MSE lower than the respective errors of all the three frac-
tional response models for each forecasting period of time.
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Forecasting period of time| Error Models
Continuous-discrete Fractional
log-log logistic complementary log-log

MAE |0.3328 0.4077 0.4040 0.4005

within one year MSE [0.1370 0.1802 0.1768 0.1745
MAE™|0.2131 (64.03%) |0.3162 (77.56%)[0.3100 (76.73%)|0.3043 (75.98%)
MSE™ [0.0641 (46.79%)  |0.1349 (74.86%)|0.1295 (73.25%)|0.1253 (71.81%)

MAE |0.3478 0.3675 0.3664 0.3682

within two years MSE [0.1500 0.1570 0.1564 0.1583
MAE™|0.1681 (48.33%)  |0.2133 (58.04%)[0.2117 (57.78%)|0.2220 (60.29%)
MSE™ [0.0544 (36.27%) |0.0843 (53.69%)|0.0831 (53.13%)|0.0911 (57.55%)

MAE |0.3349 0.3477 0.3424 0.3460

oy MSE [0.1435 0.1455 0.1431 0.1447
within three years |\ ynp -\ 1448 (43.24%)  |0.1853 (53.29%)[0.1711 (49.97%)|0.1776 (51.33%)
MSE™ [0.0441 (30.73%) [0.0681 (46.80%)|0.0599 (41.86%)|0.0641 (44.30%)

Table 2 Forecasting accuracy measures of different models over different forecasting horizons on
the out-of-time sample.

Furthermore, I can observe that the fractional response models with different link
functions (logit, log-log and complementary log-log) do not exhibit substantial dif-
ferences in forecasting performance. A similar result is obtained by Bastos (2010)
only for fractional logit and log-log models. On the contrary, Chalupka and Kopec-
sni (2009) show that fractional log-log model performs better than fractional logit
and complementary log-log models.

By focusing my attention just on the negative errors r; — 7; < 0, Table 2 shows that
both the MAE™ and the MSE™ of my proposal are significantly lower than the re-
spective errors of all the three fractional response models for each forecasting period
of time. This result is mainly due to the overestimation of the null recovery rates by
the fractional response models. Analogously to Araten et al. (2004), Asarnow and
Edwards (1995), Caselli et al. (2008), Friedman and Sandow (2003), the percentage
of null recovery rates is relevant (22.88%).

It is interesting to note that for a given model, as the forecasting period of time in-
creases, the importance of the underestimation errors decreases. Since data concern
defaults by the end of 1998 and written off by the end of 1999, the percentage of
null recoveries in the out-of-time sample decreases as the forecasting period of time
increases. Consequently, the underestimation errors decreases. From this character-
istic I can deduce that my proposal is preferable for different sample percentages of
the extreme values of the recovery rates.

5 Conclusions remarks

In this work I aim at proposing a regression model for the recovery rate. At first, to
represent the high concentration of data at total recovery and total loss I assume that
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the recovery rate is a mixed random variable, given by the mixture of a Bernoulli
and a beta random variables. To estimate the Bernoulli parameter and the mixture
weights I propose to apply two logistic regression models. For the continuous part
of the recovery rate I propose the joint beta regression that accommodates skewness
and heteroscedastic errors.

The main advantage of my proposal is that it allows to analyse the different influ-
ences of the same covariates on the extreme values and the recovery rates belonging
to the interval (0,1). Another positive aspect is that my proposal allows to estimate
both the mean and the variance of the recovery rate, knowing the covariates.
Afterwards, I apply the regression model here proposed to the Bank of Italy’s data.
Compliant to Basel II (BCBS, 2005) I introduce some macroeconomic variables
that are significant in predicting recovery rates. An interesting result is the different
influence of the default rate on the means of the discrete and the continuous parts.
Since the extreme values of the recovery rates have a pivotal role in the recovery risk
analysis, the fractional response model, proposed by Papke and Wooldridge (1996),
is widely used in the literature.

The comparison of the out-of-time predictive accuracy of my proposal and the one
of the fractional response model shows that the first is preferable for different fore-
casting periods of time and for different sample percentages of the extreme values
of the recovery rates.
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6 Appendix

In this appendix I obtain the score functions and the Fisher information matrix for
1, 0. The notation used here is defined in the subsection 3.1. At first, in order to
compute the score functions I consider the following equations

9li(n,0) _ dli(ui,¢i) dpi  9Li(n,60) _ Il(ui,¢) I9;

on;  dw  In; 20,  d¢ 6, %)

with j =1,2,....k; h = 1,2,...,m. From equations (12) and (19) I obtain that

OLi(fis §i) N X

T = w0 + 0 (91— ) + ilog T

(i, ;

(a“qyd)) = w(00) — iy (uids) — (1— m)y(9 — i) + mlog(y) + (1 — ) log(1 — y:)
o _ xen 0 _ e 0
an; {1+ex§nr 26, "

with j=1,2,....k; h=1,2,...,m; i = 1,2,...,n. Substituting the former results and
the expressions (12) in equations (28) the score functions (20) are obtained.

The second order partial derivatives of the log-likelihood function with respect to
parameters (U;, ¢;) are

azi is Yi

ig(zi.q)) = — 07V (i) — ¥ (9 — ig)]

921i(1i, 9 / , ,

za(;;@ = ' (yi) — 179" (i) — (1= )9 (Wi — i) (29)

and the second order partial derivatives of the parameters L; and ¢; with respect to
the regression parameters 1) and 0 are

’ X/
(92[.11' _ )ijhexin{lie 177]
an;ong, [1_ex§nr
az(Pi —-wW.o
96,00, wpwye (30)

with j,g=1,2,...k; h,u=1,2,....m; i = 1,2,...,n. The Fisher information is the
negative of the expectation of the second derivatives of the log-likelihood with re-
spect to the regression parameters 1] and 6

_E (azll(n76)> _ azll(nae) 82.ui
an;ong, d%y;  In;on,
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_E (azll(n76)> _ azll(nae) 82‘])1'

26,06, 920, 96,06,

21(n.6)
_E<821f(n,9)> &[ an; }

anjaeh - (96}, G

with j,q=1,2,...0k; hyu=1,2,...om; i = 1,2,...,n. In the first two equations of
(31) I substitute the results (29) and (30), so I obtain the first two equations of (21).
From the last equation of (31), I compute the derivative of the first result in (20)
with respect to 8y, so I obtain the last equation of (21).
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