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Nodal sets of magnetic Schrödinger operators

of Aharonov–Bohm type and energy minimizing

partitions ∗

Benedetta Noris and Susanna Terracini

February 23, 2009

Abstract

We analyze the nodal set of the stationary solutions of a Schrödinger operator, in dimension

two, in presence of a magnetic field of Aharonov–Bohm type, with semi–integer circulation.

We determine a class of solutions such that the nodal set consists of regular arcs, connecting

the singular points with the boundary. In the particular case of one singular point, we prove

that the nodal regions, whenever they dissect the domain in three components, satisfy a min-

imal partition principle. Moreover we prove that such a configuration is unique and depends

continuously on the data.

MSC : 35B05, 35J10, 35J20, 35J25.
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1 Introduction

Let Ω ⊂ R2 be a simply connected domain with regular boundary and V (x) ∈ W 1,p(Ω) for some
p > 2. Given a point a ∈ Ω we consider the stationary magnetic Schrödinger operator

HAa,V = (i∇ + Aa)2 + V = −∆ + i∇ ·Aa + iAa · ∇ + |Aa|2 + V,

acting on complex valued functions U ∈ L2(Ω). Here the magnetic potential Aa : Ω → R
2 is such

that the associated magnetic field satisfies

Ba = ∇× Aa = πδak in Ω, Aa ∈ L1(Ω) ∩ C1(Ω \ {a}) (1)

where δa is the Dirac delta centered at a and k is the unitary vector orthogonal to the plane. We
are concerned with the boundary value problems

{

(i∇ + Aa)2Ua + V Ua = 0 in Ω \ {a}
Ua = Γ on ∂Ω,

(2)

where a (the concentration point of the magnetic field) is intended as a parameter, whereas the
complex boundary data Γ is fixed in a suitable class. In order to be more precise, let us define the
class of real boundary traces

g =







γ =
3
∑

i=1

σiγi :
γi ∈ C1(∂Ω), γi · γj = 0 for i 6= j
γi ≥ 0, σi = ±1
γ vanishes exactly three times on ∂Ω







.

∗Work partially supported by MIUR, Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”
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Then we consider complex boundary data in the following class

G = {Γ : ∂Ω → C : Γ = γeiΘ1 , Θ1 satisfies (i), (ii) below },

with suitable assumptions on the complex phase:

(i) Θ1 : ∂Ω → R is continuous except at one point x0 ∈ ∂Ω, where all the γi’s vanish;

(ii) the averaged jump (over one full angle) of the phase equals the circulation of the magnetic
field:

lim
x→x0

−
Θ1(x) = lim

x→x0
+

Θ1(x) + π. (3)

In Section 3 we prove that, under these assumptions on the magnetic potential and on the
boundary data, equation (2) is equivalent to a real elliptic equation on the twofold covering manifold
of Ω \ {a}. If we also assume the following coercivity condition on the scalar potential

∫

Ω

(

|∇ϕ|2 + V ϕ2
)

dx1dx2 > 0 ∀ ϕ ∈ H1
0 (Ω), (4)

then equation (2) admits a unique solution for every fixed a ∈ Ω, which is the minimizer of the
associated quadratic form:

QAa,V (U) =

∫

Ω

(

|(i∇ + Aa)U |2 + V |U |2
)

dx1dx2,

among all the complex functions sharing the same boundary trace Γ. We shall prove in Section 3
that, given γ, gauge invariance allows to define a function depending only on the position of the
singularity a (not on the particular choice of the complex phase Θ1, or of the magnetic potential):

a 7→ ϕ(a) = min{QAa,V (U) : U ∈ H1(Ω), U = Γ on ∂Ω}.

We are interested in studying the nodal set of the solutions of (2), that is the set N (Ua) =
{x ∈ Ω : Ua(x) = 0}. Notice that the nodal set of Ua is obtained intersecting the zero curves of
the real and imaginary parts ℜUa and ℑUa, therefore in general we expect it to consist of a few
singular points. However in Section 4 we prove

(1.1) Theorem. Let a ∈ Ω be fixed and Γ ∈ G. Consider a solution Ua of (2) under assumption
(1). Then the set N (Ua)

(i) depends only on |Γ| and on the position of the singularity a (not on the particular choice of
the magnetic potential Aa or of the complex phase Θ1);

(ii) is nontrivial and consists of the union of regular arcs, having endpoints either at ∂Ω, or at
an interior singular point of Ua, or at a;

(iii) there is at least one arc ending up at a.

If moreover V satisfies (4) then the nodal set of Ua consists of at most three arcs.

In case the nodal set is made of three arcs intersecting at a, we will say that a is a triple point
for Γ. Our aim is to understand the circumstances related to the occurrence of triple points; our
main results in this direction are the following:

(1.2) Theorem. Consider the set of equations (2) as the parameter a varies in Ω. Assume that
(1), (4) hold and Γ ∈ G. Then
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(i) (Criticality) if γ ∈ C1,1(∂Ω), then the function ϕ introduced above is differentiable and its
only critical points are triple points;

(ii) (Global uniqueness) every Γ ∈ G admits at most one triple point;

(iii) the set G̃ ⊂ G of boundary data which admit a triple point is open and dense in G (respect to
the L∞–norm);

(iv) (Continuous dependence of the triple point) the position of the triple point depends
continuously on the L∞–norm of the boundary data;

(v) (Continuous dependence of the nodal lines) if V (x) ∈W 1,∞(Ω), then the C1–norm of
the nodal lines depends continuously on the L∞–norm of the boundary data.

We also give another variational characterization of the triple point configuration, which is
related to the set function

Ji(ωi) = inf

{∫

Ω

(

|∇ui|2 + V u2
i

)

dx1dx2 :
ui ∈ H1(Ω), ui = 0 in Ω \ ωi

ui = γi on ∂Ω ∩ ωi

}

,

where γ =
∑3

i=1 σiγi ∈ g and ωi ⊂ Ω is any open set such that supp(γi) ⊂ ∂ωi. Then it holds

(1.3) Theorem. Let Γ ∈ G̃ and a be its triple point, so that Ω \ N (Ua) has three connected
components. Then the connected components are solution of the optimal partition problem

inf

{

3
∑

i=1

Ji(ωi) :
ωi open, supp(γi) ⊂ ∂ωi

∪3
i=1ωi = Ω, ωi ∩ ωj = ∅, i 6= j

}

. (5)

As it is shown in [6], the minimization problem above admits a unique solution, belonging to
the functional class

Sγ =







u = (u1, u2, u3) ∈ (H1(Ω))3 :
ui ≥ 0, ui = γi on ∂Ω
ui · uj = 0 a.e. x ∈ Ω, for i 6= j
−∆ui + V ui ≤ 0, −∆ûi + V ûi ≥ 0 i = 1, 2, 3







,

where the hat operator is defined as ûi := ui −
∑

j 6=i uj. Theorem 1.3 allows us to generalize the
result in [7], providing

(1.4) Theorem. Let Ω ⊂ R2 be a simply connected domain with regular boundary, γ ∈ g and
V (x) ∈ W 1,p(Ω), for some p > 2, satisfying (4). Then Sγ consists of exactly one element.

It is proved in [5] that this functional class also contains the limiting solutions of the competition-
diffusion system







−∆ui + V (x)ui = −κui

∑

j 6=i uj in Ω

ui ≥ 0 in Ω
ui = γi on ∂Ω

(6)

as κ→ +∞. Then our results, together with the ones contained in ([6, 5, 7]), also provide

(1.5) Theorem. Under the previous assumptions, every solution (u1,κ, u2,κ, u3,κ) of (6) satisfies

(i) the hole sequence ui,κ converges to a function ui in H1 ∩ C0,α for every α ∈ (0, 1), as
κ→ +∞;

(ii) the limiting triple (u1, u2, u3) achieves the minimum in Theorem 1.3.
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The paper is organized as follows. In Section 3 we take advantage of the classical gauge
invariance property, to prove that equation (2) is equivalent to a real elliptic equation on a Riemann
surface. In Section 4 we use this equivalence in order to show regularity of the nodal lines. A lot is
known in the case of real elliptic operators, we address the reader to [3, 12] for the planar case, but
also higher dimensions have been extensively studied, see [18, 19, 11, 21, 10]. We wish to mention
some of the results by Hoffmann–Ostenhof M. and T. and Nadirashvili, concerning Schrödinger
operators with singular conservative potentials [15, 16, 17]. As it concerns the Aharonov–Bohm
type magnetic potentials, few is known because of the very strong singularity. We will mainly
refer to [13], where the homogeneous Cauchy problem is studied. The recent paper [8] provides
regularity results for a large class of equations including (2). Section 5 contains the technical part
of the work, that is the proof of criticality (Theorem 1.2, (i)) and a local uniqueness result. Next,
in Section 6, we exploit the variational characterization of the triple point configuration, which also
provides the global uniqueness (Theorem 1.2, (ii)-(iv)). As we mentioned, this section is strongly
based on some previous results by Conti, Terracini and Verzini. Finally, in Section 7, we prove the
continuous dependence of the nodal lines on the data (Theorem 1.2, (v)).

2 Preliminaries on Aharonov–Bohm Schrödinger operators

We can assume w.l.o.g. Ω = D, the open unit disk in R2. This assumption is not restrictive thanks
to the Riemann mapping theorem (see for example [9], Theorem 6.42), and due to the conformal
equivariance of the problem, which will be proved in Section 3. Given a point a ∈ D we denote by
Da the open set D \ {a}.

Consider a non-relativistic, spinless, quantum particle moving in Da under the action of a
magnetic potential satisfying (1) and of a conservative potential V (x) ∈ W 1,p(D), p > 2. If we
neglect all multiplicative constants, the stationary Schrödinger operator associated to the particle is
the operatorHAa,V defined in the introduction. Although it remains in a region where the magnetic
field is zero, the particle will be affected by the magnetic potential. This phenomenon is usually
called Aharonov–Bohm effect, it was first pointed out in [2] and can be simulated experimentally
by the presence of a thin solenoid placed at a and aligned along the x3-axes. Notice that we can
equivalently substitute (1) with the conditions 1

∇× A = 0 in Da, A ∈ L1(Ω) ∩ C1(Ω \ {a}) (7)

with the following additional assumption on the normalized circulation:

1

2π

∮

σ

A · dx =
2n+ 1

2
, n ∈ Z (8)

for every closed path σ which winds once around the pole. We refer to [23] for a complete review
on magnetic Schrödinger operators and to [22] for the specific case of the A–B effect.

Due to the physical interpretation of the problem we require the operator to be self-adjoint;
we are now going to specify the domain of HA,V and the notion of weak solution. We first define
the operator on the all space R2

a := R2 \ {a} (extend the coefficients smoothly outside D) and
then restrict our attention to the unit disk. In a standard way we initially consider a symmetric
operator H0

A,V defined on a dense subspace of L2(R2) and then construct a self-adjoint extension.
Due to the singularity of the magnetic potential we need to impose additional conditions at the
singular point a, that is we define H0

A,V on the domain C∞
0 (R2

a) (complex valued functions). This
is a symmetric operator and the associated quadratic form is

QA,V (U) =

∫

R

(

|(i∇ + A)U |2 + V |U |2
)

dx1dx2,

1In the following we will omit the index a whenever the position of the singularity is fixed.
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defined on C∞
0 (R2

a). Note that it is lower semi-bounded, since V (x) ∈W 1,p(D), for some p > 2:

QA,V (U) ≥ −µ||U ||2L2(D),

where µ = ||V ||2L∞(D). Because of the strength of its singularity, the operator H0
A,V fails to be

essentially self-adjoint, nevertheless the Friedrichs extension allows us to extend H0
A,V to a self

adjoint operator. This particular choice corresponds to a particular physical interpretation of the
phenomenon (see [1]). The Friedrichs extension theorem ensures the existence of a unique self
adjoint operator HA,V , which extends H0

A,V , and which domain is the closure of C∞
0 (R2

a) respect
to the norm

||U ||A :=
(

QA,V (U) + (1 + µ)||U ||2L2(D)

)1/2

.

Next we turn back to the initial problem considering the restriction of HA,V to the unit disk.
A density result (see for example [20], Theorem 7.22) ensures that the domain can be equivalently
characterized as:

HA(D) = {U : D → C : U ∈ L2(D),

(

i
∂

∂xj
+Aj

)

U ∈ L2(D) j = 1, 2}.

Moreover, if U ∈ HA(D) then it satisfies the diamagnetic inequality

|∇|U |(x)| ≤ |(i∇ + A)U(x)|, a.e. x ∈ D, (9)

which ensures in particular that |U | ∈ H1(D) (see for example [20], Theorem 7.21).

Due to the regularity of the domain and thanks to the diamagnetic inequality, a trace operator
is well defined on HA(D), i.e. there exists a linear bounded operator

Tr : HA(D) → L1(∂D),

such that if U ∈ HA(D) ∩C(D) then TrU = U|∂D
.

Given a boundary data Γ ∈ W 1,∞(∂D) we say that U is a weak solution of (2) if the following
integral equality holds for every ϕ ∈ C∞

0 (R2
a)

∫

D

U [(i∇ + A)2ϕ+ V ϕ]dx1dx2 + i

∫

∂D

[Γ(i∇ + A)ϕ · ν + (i∇ + A)U · νϕ]dσ = 0.

3 Gauge invariance for A–B potentials with semi-integer

circulation

We are mainly interested in the analysis of the nodal set of solutions of (2), to this aim we will
take large advantage of the equivariance of HA,V under gauge transformations. In the first part of
this section we shall present a result contained in [13], related to the gauge invariance property of
magnetic operators of A–B type, having semi-interger circulation. In Proposition 3.9 we will prove
a generalization to the non-homogeneous Cauchy problem, in the case Γ ∈ G. In Section 3.1 we
will finally use this result to prove the existence of a bijection between the solutions of (2) and the
antisymmetric solutions of a real elliptic equation. Let us start with some preliminary definitions.

Let Ω ⊂ R2 be bounded domain, Ω̃ be a covering manifold and Π : Ω̃ → Ω be the associated
projection map. We endow Ω̃ with the locally flat metric obtained by lifting the Euclidean metric
of Ω, in such a way that Π is a local isometry.
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(3.1) Definition. For a function f : Ω → C we define the lifted function f̃ : Ω̃ → C as

f̃ = f ◦ Π.

For a path σ : [0, 1] → Ω and a point p ∈ Ω̃ such that Π(p) = σ(0) let σ̃ : [0, 1] → Ω̃ denote the
unique lifted path such that σ̃(0) = p and

σ = Π ◦ σ̃.

(3.2) Lemma. Let A and A′ satisfy (7) in Da. Let U ∈ HA(D) be a weak solution of HA,V U = 0
in Da, with Dirichlet boundary conditions. Assume moreover that

1

2π

∮

σ

(A′ − A) · dx ∈ Z,

for every closed path σ in Da. Then there exists U ′ ∈ HA(D), weak solution of HA′,V U
′ = 0 in

Da, such that |U ′| = |U |. We will say that A, A′ are gauge equivalent.

Proof. Assume first that
∮

σ
(A′ − A) · dx = 0, for every closed path σ in Da. Then there exists a

smooth function Θ : Da → R such that A′ = A+∇Θ. Let ϕ ∈ C∞
0 (Da), then a direct calculation

shows that eiΘ(i∇ + A)2ϕ = (i∇ + A′)2(eiΘϕ). Multiplying the equation by eiΘe−iΘ, we obtain

0 =

∫

D

U [(i∇ + A)2ϕ+ V ϕ]dx1dx2 =

∫

D

eiΘU [(i∇ + A′)2(eiΘϕ) + V eiΘϕ]dx1dx2,

thus U ′ = eiΘU . In case the normalized circulation is an integer, consider the universal covering
manifold of Da, say D̃a . Due to the fact that D̃a is simply connected and A and A′ satisfy (7),
there holds

∮

σ̃
(Ã′ − Ã) · dx = 0, for every closed path σ̃ on D̃a. Therefore there exists a smooth

real valued function Θ defined on D̃a such that ∇Θ = Ã′ − Ã. Now consider any two points
p, p′ ∈ D̃a such that Π(p) = Π(p′). Then for every path σ̃ on D̃a connecting p to p′ we have

Θ(p) − Θ(p′) =

∫

σ̃

∇Θ · dx =

∫

σ̃

(Ã′ − Ã) · dx

=

∫

σ

(A′ − A) · dx = 2πn,

for some n ∈ Z. Hence the function eiΘ is well defined on Da and we can proceed as in the case of
null circulation.

As a particular case of the previous lemma we infer that, whenever the circulation of A is an
integer, A is gauge equivalent to the null magnetic potential, which corresponds to the elliptic
operator H0,V = −∆ + V . We are now going to show that we can relate the operators HA,V

and H0,V also in the case of half integer circulation, provided we replace the domain Da with its
twofold covering manifold. This result was proved in [13] for the Dirichlet homogeneous case, let
us now describe it in detail for the non homogeneous problem, under the assumption Γ ∈ G. We
point out that the operators are not unitarily equivalent since, as we are going to see, there is a
one-to-one correspondence between eigenfunctions of HA,V and antisymmetric eigenfunctions of
H0,V .

The twofold covering manifold of Da is the following subset of C2

Σa = {(x, y) ∈ C
2 : y2 = x− a, x ∈ Da},

endowed with a Riemannian metric to be described. First of all notice that there are two projection
functions naturally defined on Σa:

Πx : (x, y) 7→ x Πy : (x, y) 7→ y,
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and they induce on Σa two different differential structures. Since Πx is only a local chart, the
following result will be useful.

(3.3) Proposition. There exists a global chart of Σa which coincides locally with Πx. In particular
it induces on Σa a locally flat Euclidean metric.

Proof. Consider on Da the discontinuous function

ϑa : Da → [0, 2π) (10)

which represents the angular variable of the polar coordinates centered at a. Then we have

y2 = x− a = ra(x)eiϑa(x),

where ra = |x− a|, and we can define the following parametrization:

Φ : [0, 4π) × [0, 1) → Σa ∪ {(a, 0)}
(r, ϑ) 7→

(

reiϑ,
√

ra(r, ϑ)ei ϑa(r,ϑ)
2

)

.

The function Φ is bijective on [0, 4π) × [0, 1) \ Φ−1(a, 0), therefore its inverse Φ−1 is well defined
on this domain, and it is the desired chart.

We will endow Σa with this metric. In particular, the differential and integral operators on Σa

coincide locally with the usual ones, hence we will denote them with the same symbol.

(3.4) Remark. In the definition (10) of the angle ϑa we usually consider it a discontinuous
function on a horizontal segment starting at the point a. Nevertheless we can decide to move the
discontinuity without altering the previous construction. In the future analysis in particular it
will be useful to consider ϑa discontinuous on two adjacent segments: the segment connecting the
origin with a and the segment connecting the origin with a point x0 ∈ ∂Ω.

Notation. We shall use the following notation for polar coordinates: x = reiϑ and x−a = rae
iϑa ,

while y = ρeiϕ, with the relation ρ =
√
ra, ϕ = ϑa

2 .

(3.5) Definition. On the twofold covering manifold we define a symmetry map G : Σa →
Σa, which associates to every (x, y) the unique G(x, y) such that Πx((x, y)) = Πx(G(x, y)),
that is G(x, y) := (x,−y). We say that a function f : Σa → C is symmetric if f(G(x, y)) =
f(x, y), ∀(x, y) ∈ Σa, and antisymmetric if f(G(x, y)) = −f(x, y), ∀(x, y) ∈ Σa.

Every function f defined on Da can be lifted on Σa as described in Definition 3.1, by means of
the projection Πx. Notice that f̃ is always symmetric in the sense of the preceding definition.

(3.6) Lemma. Let a ∈ D be fixed and A satisfy (1). Then there exists a smooth, multivalued
function Θ : Σa → R such that eiΘ is univalued on Σa and A = Πx(∇Θ).

Proof. By assumption (7) A admits a local potential on every domain not containing the singu-
larity. Let us compute the circulation of the lifted magnetic potential Ã. For every closed path σ̃
on Σa we have by construction:

1

2π

∮

σ̃

Ã · dx =
1

2π

∮

σ

A · dx ∈ Z,

since σ always turns an even number of times around the singularity. Proceding as in Lemma 3.2
we infer the existence of a multivalued function Θ : Σa → R such that and eiΘ is univalued on Σa

and Ã = ∇Θ. Therefore ∇Θ is symmetric and can be projected on Da, and this concludes the
proof.

9



(3.7) Remark. We deduce from Lemma 3.2 that every magnetic potential satisfying (1) can be
obtained from this specific one

A(x) =
i

2

x− a

|x− a|2 =
1

2

(

− x2 − a2

(x1 − a1)2 + (x2 − a2)2
,

x1 − a1

(x1 − a1)2 + (x2 − a2)2

)

by means of a gauge transformation. In this case the multivalued potential Θ is the function ϑa

2 ,
where ϑa is the angle defined in (10).

Let us now take into account the boundary data. The following lemma shows that, due to
gauge invariance, the phase of Γ is ininfluent for our purpose.

(3.8) Lemma. Let a ∈ D be fixed, A satisfy (1) and Θ1 satisfy (3). Then there exists a smooth,
multivalued function Θ : Σa → R such that eiΘ is univalued on Σa, Θ|∂Σa

= Θ1 and A′ := Πx(∇Θ)

is gauge equivalent to A. Moreover eiΘ is antisymmetric on Σa.

Proof. Consider the function ϑa discontinuous at x0 ∈ ∂D as pointed out in Remark 3.4, in such a
way that Θ1 − ϑa

2 is continuous on ∂D. Hence we can consider its harmonic extension on the disk:
{ −∆Ψ = 0 on D

Ψ = Θ1 − ϑa

2 on ∂D.

Then the desired potential is the function Θ : Σa → R defined by

Θ :=
ϑa

2
+ Ψ̃. (11)

Clearly Ψ̃ is univalued, moreover ei ϑa
2 is univalued on Σa by Lemma 3.6 and Remark 3.7. Then

notice that ϑa

2 (x, y) = ϑa

2 (G(x, y))+π, therefore ∇Θ is symmetric and its projection is well defined:

A′ := Πx(∇Θ) =
i

2

x− a

|x− a|2 + ∇Ψ.

The gauge equivalence comes from Lemma 3.2, since there holds

1

2π

∮

σ

(A′ − A) · dx = n+
1

2π

∮

σ

∇Ψ · dx = n ∈ Z.

Let us finally show that the function eiΘ is antisymmetric on Σa. Fix (x, y) ∈ Σa and let σ̃ :
[0, 1] → Σa be a path which joins (x, y) to G(x, y), then using the notations of Definition 3.1, there
holds

1

2π

∮

σ̃

Ã · dx =
1

2π

∮

σ

A · dx =
2n+ 1

2
, n ∈ Z.

Therefore:

Θ(G(x, y)) − Θ(x, y) =

∫

σ̃

∇Θ · dx = (2n+ 1)π,

and hence eiΘ(G(x,y)) = −eiΘ(x,y).

We can finally prove the existence of a one-to-one correspondence between solutions of (2) and
antisymmetric solutions of a real elliptic problem on the twofold covering manifold.

(3.9) Proposition. Let a ∈ D be fixed. Consider a solution U of (2) with A satisfying (1) and
Γ ∈ G. Then there exists an antisymmetric function u : Σa → R, weak solution of

{

−∆u+ Ṽ u = 0 in Σa

u = γ on ∂Σa,
(12)

and such that Πx(N (u)) = N (U).

10



Proof. As we have already noticed, the nodal lines are invariant under gauge transformations,
hence we can replace A with the magnetic potential A′ defined in the previous lemma. In order
to simplify the notations we will denote it again with A. The definition of u consists now of two
steps. Given U we first lift it on Σa in a symmetric way: evidently Ũ satisfies the Schrödinger
equation on Σa with potential Ã and boundary data Γ̃. The second step is to multiply Ũ by the
gauge phase: we define

u(x, y) := e−iΘ(x,y)Ũ(x, y). (13)

Notice that u|∂Σa
= γ, since the magnetic potential was wisely chosen in Lemma 3.8. We can now

take advantage of gauge invariance as in Lemma 3.2:

0 =

∫

Σa

Ũ [(i∇ + Ã)2ϕ+ V ϕ]dx1dx2 + i

∫

∂Σa

[Γ̃(i∇ + Ã)ϕ · ν + (i∇ + Ã)Ũ · νϕ]dσ

=

∫

Σa

u[(−∆)(e−iΘϕ) + Ṽ e−iΘϕ]dx1dx2 + i

∫

∂Σa

[γ(i∇)(e−iΘϕ) · ν + i∇u · ν(e−iΘϕ)]dσ.

Hence for every real valued test function ψ it holds

∫

Σa

(−∆ψ + Ṽ ψ)udx1dx2 +

∫

∂Σa

(γ∇ψ · ν − ψ∇u · ν)dσ = 0,

which is the weak form of (12). Being solution of an elliptic equation with real valued potential
and boundary data, u is real valued. Moreover it is the product of an antisymmetric function times
a symmetric one, hence it is antisymmetric.

(3.10) Remark. It should be clear from the proof that the previous proposition holds also if Γ
has an arbitrary number of zeroes, whereas the condition on the jump of Θ1 at x0 is of fundamental
importance.

3.1 Related real elliptic problems

We shall now obtain, starting from (12), a real elliptic equation defined on a bounded subset of
R2. This is performed in two different ways. In Lemma 3.13 we simply apply the projection Πy,
obtaining a real function which is suitable for the local analysis (see Section 4). In Lemma 3.14,
instead, we also compose with a Möbius transformation, in order to obtain a function defined in
the unit disk. This will be more appropriate for the analysis in Section 5, where the parameter a
varies. Let us start recalling some known properties of conformal maps.

Notation. Here and in the following we will often make the identification R2
⋍ C, writing

x = (x1, x2) = x1 + ix2. We shall use the following standard notation for the complex derivative

∂

∂x
=

1

2

(

∂

∂x1
− i

∂

∂x2

)

∂

∂x̄
=

1

2

(

∂

∂x1
+ i

∂

∂x2

)

,

where ∂
∂xi

denotes partial derivative.

(3.11) Lemma. Let Ω2 ⊂ C open and bounded and T (y) : Ω2 → Ω1 be a conformal map such
that T (∂Ω2) = ∂Ω1. Suppose f ∈ H1(Ω1) is a weak solution of −∆f +V f = 0 in Ω1, with V (x) ∈
L∞(Ω1). Then g(y) := f ◦ T (y) satisfies −∆g +Wg = 0 in Ω2, with W (y) = |∂T

∂y (y)|2V ◦ T (y).

Moreover if V satisfies (4) also W does, and the energy associated to the equation is preserved:

∫

Ω1

(|∇f(x)|2 + V (x)f(x)2)dx1dx2 =

∫

Ω2

(|∇g(y)|2 +W (y)g(y)2)dy1dy2.
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If moreover f ∈W 1,∞(∂Ω1), the following boundary complex integral is preserved:
∫

∂Ω1

∂f

∂x
(x)dx =

∫

∂Ω2

∂g

∂y
(y)dy.

(3.12) Remark. Notice that the projection Πy : Σa → R2 introduced in the previous section is a
global diffeomorphism of Σa onto its image, hence its inverse is well defined:

Π−1
y : Πy(Σa) → Σa

y 7→ (y2 + a, y).

Moreover Π−1
y is conformal on its domain2 and

∣

∣

∣

∂(Π−1
y )

∂y (y)
∣

∣

∣

2

= 4|y|2. In the following we shall

denote
Ωa = Πy(Σa) ∪ {(0, 0)}.

(3.13) Lemma. Under the same assumptions and notations of Proposition 3.9, the function
u(1)(y) := u ◦ Π−1

y (y) is an odd solution of the real elliptic equation

{

−∆u(1) + V (1)u(1) = 0 in Ωa

u(1) = γ(1) on ∂Ωa,

where V (1)(y) = 4|y|2Ṽ ◦Π−1
y (y) and γ(1)(y) = γ ◦Π−1

y (y). Moreover u(1) ∈ C2
loc ∩W 1,∞(Ωa) and

QA,V (U) =
1

2

∫

Ωa

(|∇u(1)|2 + V (1)(u(1))2)dy1dy2.

Proof. Due to Proposition 3.9, Lemma 3.11 and Remark 3.12, u(1) satisfies the equation in Πy(Σa);
moreover u(1) is clearly odd since u is antisymmetric on Σa. Let us show that we can extend u(1)

at the origin in such a way that the equation is satisfied in Ωa. Taking the complex derivative in
(13) we obtain (in a weak sense)

∂u

∂x
= e−iΘ

(

∂

∂x
− i

∂Θ

∂x

)

Ũ , (14)

which implies, together with Lemma 3.11,
∫

Ωa

|∇u(1)|2dy1dy2 =

∫

Σa

|∇u|2dx1dx2

=

∫

Σa

∣

∣

∣

∣

(

i∇ +
∂Θ

∂x

)

Ũ

∣

∣

∣

∣

2

dx1dx2

= 2

∫

D

|(i∇ + A)U |2dx1dx2 <∞

since U ∈ HA(D). Hence u(1) ∈ H1(Ωa) and the equation is satisfied also at the origin (since a
point has null capacity in R2).

(3.14) Lemma. Let u(1) : Ωa → R as in the previous lemma. There exists a conformal map
T ′

a : D → Ωa such that u(2)(y) := u(1) ◦ T ′
a(y) satisfies

{

−∆u(2) + V (2)u(2) = 0 in D
u(2) = γ(2) on ∂D,

where V (2)(y) = |∂T ′
a

∂y (y)|2V (1) ◦ T ′
a(y) and γ(2)(y) = γ(1) ◦ T ′

a(y).

2With respect to the locally flat metric on Σa.
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Proof. Proceding as in [7] we consider the Möbius transformation:

Ta : D −→ D, Ta(x) =
x+ a

āx+ 1
. (15)

It is well known that Ta is a conformal map, such that Ta(∂D) = ∂D and Ta(0) = a. Let now
T̃a(x, y) : Σ0 → Σa be the lifting of Ta. More precisely, if we denote for the moment reiϑ :=

Ta(x) − a, we have T̃a(x, y) = (reiϑ + a,
√
rei ϑ

2 ). Thanks to Lemma 3.11, it only remains to prove
that the map T ′

a : D → Ωa, defined by T ′
a = Πy ◦ T̃a ◦ Π−1

y , is conformal. Indeed it is clearly
conformal outside the origin, since the complex square root is well defined and conformal on the
twofold covering manifold Σa. Moreover it is bounded and hence it admits a conformal extension
at the origin (see for example [9], Proposition 4.3.3).

(3.15) Remark. In the previous lemma we have equivalently

V (2)(y) = 4|y|2
∣

∣

∣

∣

∂Ta

∂x
(y2)

∣

∣

∣

∣

2

V ◦ Ta(y2), γ(2)(y) = γ ◦ Ta(y2).

4 Properties of the nodal set

Aim of this section is the proof of Theorem 1.1. Let us start recalling some known properties of
the nodal set and singular points of solutions of real elliptic equations of the following kind

{

−∆f + V f = 0 in Ω
f = γ on ∂Ω,

where Ω ⊂ R
2 is a bounded domain and V ∈ L∞(Ω), γ ∈W 1,∞(∂Ω) are real valued functions. By

standard regularity results and Sobolev imbedding f ∈ C1,α
loc (Ω) ∩W 1,∞(Ω), ∀α ∈ (0, 1).

(4.1) Definition. We say that y0 ∈ N (f) is a singular point if ∇f(y0) = 0. We say that it is a

zero of order (or multiplicity) n if ∂kf
∂y (y0) = 0, ∀k ≤ n.

A classical result by Hartman and Wintner (see [12]), states that

(4.2) Theorem. Assume that f is a non trivial solution of the previous equation.

(i) The interior singular points of f are isolated and have finite multiplicity n ∈ N (n ≥ 1).

(ii) The nodal set of f is the union of finitely many connected arcs, locally C1,α, with endpoints
either at ∂Ω or at interior singular points.

(iii) If f has a zero of order n at y0, then it satisfies the asymptotic expansion

f(ρ, ϕ) =
ρn+1

n+ 1

{

cn+1 cos[(n+ 1)ϕ] + dn+1 sin[(n+ 1)ϕ]
}

+ o(ρn+1),

where y−y0 = ρeiϕ and cn+1, dn+1 are real constants, not both zero. Moreover an expression
for the first non zero coefficients of the expansion is

cn+1 − idn+1 = 2i

∫

∂Ω

∂f

∂y
hn+1 dy −

∫

Ω

−∆f hn+1 dy1dy2

where the first integral is a complex line integral, whereas the second one is a double integral
in the real variables y1, y2, and

hn+1(y) = − 1

2π

1

(y − y0)n+1
.
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We shall now prove that, under the assumptions we are considering, we can still recover similar
properties for the magnetic Schrödinger equation. The behaviour of the nodal lines is unaltered
far from the singular point a, but undergos meaningful changes in a neighbourhood of it.

(4.3) Theorem. Let a ∈ D be fixed. Consider a solution U of (2) with A satisfying (1) and
Γ ∈ G.

(i) The nodal set of U is the union of finitely many connected arcs, locally C1,α, with endpoints
either at ∂Ω, or at an interior singular point of U , or at a. Moreover there is at least one
nodal line with endpoint at a.

(ii) If x0 6= a is an interior singular point, then properties (i),(iii) of Theorem 4.2 hold, in
particular there is an even number of C1,α arcs meeting at x0.

(iii) In a neighbourhood of a, U satisfies for some odd k ≥ 1 the asymptotic formula

U(ra, ϑa) = eiΘ(ra,ϑa) ra
k
2

k

[

ck cos

(

k

2
ϑa

)

+ dk sin

(

k

2
ϑa

)]

+ o(ra
k
2 ), (16)

where x− a = rae
iϑa . In particular there may be an odd number of nodal lines ending at a.

(iv) The first non zero coefficients of the asymptotic formula can be expressed as

ck − idk = 4i

∫

∂D

Gk

(

∂U

∂x
− iAU

)

dx− 2

∫

D

Gk(i∇ + A)2U dx1dx2, (17)

where the first integral is a complex line integral, whereas the second one is a double integral
in the real variables x1, x2, and

Gk = − 1

2π

e−iΘ

(x− a)
k
2

. (18)

Notice that Remark 3.10 still holds here.

Proof. Consider the function u(1) : Ωa → R defined in Lemma 3.13: it clearly satisfies the properties
collected in the previous theorem. Notice than that Πy is locally holomorphic on every open set
which does not contain the point (a, 0) ∈ Σa. Therefore the local properties of the nodal lines are
preserved in the composition and U satisfies Theorem 4.2 at every singular point different from
a. In order to prove that there is at least one nodal line with endpoint at a, observe that Ωa is
symmetric with respect to the origin and u(1) is odd. This implies that the nodal set of u(1) is also
symmetric and in particular there are at least two arcs of nodal line having an endpoint at the
origin.

In order to prove (iii) let us consider the asymptotic expansion of u(1) near the origin. Since
u(1) is odd respect to the origin, Theorem 4.2 (iii) gives, for some odd k ≥ 1

u(1)(ρ, ϕ) =
ρk

k

[

ck cos(kϕ) + dk sin(kϕ)
]

+ o(ρk),

where y = ρeiϕ. From the definition of u(1) we can recover3 an expression for u:

u(ra, ϑa) =
ra

k
2

k

[

ck cos

(

k

2
ϑa

)

+ dk sin

(

k

2
ϑa

)]

+ o(ra
k
2 ).

3Remember that we endowed Σa with the locally flat metric induced by Πx, and we denote x − a = raeiϑa

14



Notice that the last expression is well defined on Σa, since the complex square root function is
continuous on the twofold covering manifold. Finally, (13) provides the corresponding expression
for Ũ which, being symmetric, can be projected on D, providing (16).

Let us go back to the asymptotic expansion of u(1) near the origin. As in the previous theorem
we have

ck − idk = 2i

∫

∂Ωa

∂u(1)

∂y
hk dy −

∫

Ωa

−∆u(1) hk dy1dy2, with hk(y) = − 1

2π

1

yk

Let us remark again that the first integral is a complex line integral, whereas the second one is a
double integral in real variables. We are now going to perform a change of variables in order to
obtain an expression for the coefficients depending only on U . Using Lemma 3.11, we can shift the
last integral on Σa obtaining

ck − idk = 2i

∫

∂Σa

∂u

∂x
gk dx−

∫

Σa

−∆u gk dx1dx2,

where gk(x, y) = hk ◦ Πy(x, y). Taking the complex derivative in (14) we obtain

−∆u = −4
∂

∂x̄

∂u

∂x
= −4e−iΘ

(

∂

∂x̄
− i

∂Θ

∂x̄

)(

∂

∂x
− i

∂Θ

∂x

)

Ũ

= 4e−iΘ

[

− ∂

∂x̄

∂

∂x
+ i

(

∂Θ

∂x

∂

∂x̄
+
∂Θ

∂x̄

∂

∂x

)

+
∂Θ

∂x̄

∂Θ

∂x

]

Ũ

= e−iΘ(i∇ + Ã)2Ũ .

Replacing the last expression in the integral we obtain

ck − idk = 2i

∫

∂Σa

e−iΘgk

(

∂Ũ

∂x
− iŨ

∂Θ

∂x

)

dx−
∫

Σa

e−iΘgk(i∇ + Ã)2Ũ dx1dx2.

In order to conclude the proof it is sufficient to define

Gk(x, y) = e−iΘgk(x, y) = e−iΘhk ◦ Πy(x, y),

and then to observe that both integrands are symmetric on Σa, therefore the last expression can
be projected on D.

Proof of Theorem 1.1. Property (i) was proved in Lemma 3.8 and Proposition 3.9; properties (ii)
and (iii) were proved in the preceding theorem. We claim that, under the additional assumption
(4) on the potential V (x), every nodal line of U can not be a closed curve. Notice first that u(1)

satisfies the maximum principle, since it is shown in Lemma 3.11 that (4) is preserved by conformal
transformations. Thus the nodal lines of u(1) can not be closed curves (by the unique continuation
property for real elliptic equations, see for example [12]) and this property is preserved by the
projections Πx,Πy. Now assume also that Γ vanishes exactly three times on ∂D, then by simple
geometric considerations we infer that there can be at most three nodal lines.

(4.4) Corollary. Under the previous assumptions, assume that the nodal set of U is made of more
than one arc. Than only two configurations are possible:

1. The nodal set of U is made of two arcs. One of them has an endpoint at a, the other one
has both endpoints at ∂D. The asymptotic expansion (16) holds with k = 1.

2. The nodal set of U is made of three arcs intersecting at a (i.e. a is a triple point for Γ). The
asymptotic expansion (16) holds with k = 3.
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Proof. We can distinguish the number of nodal lines depending on the choice of the signs σi = ±1
in the definition of γ. If σi are all equal, then γ(1) changes sign exactly two times and, by the
maximum principle, the nodal set of u(1) consists of exactly two arcs meeting at the origin. In this
case the nodal set of U is made of one arc and there can not be any triple point. Assume instead
that one of the σi is different from the others, then γ(1) changes sign exactly six times. Taking
advantage of the maximum principle again, it is easy to see that the only possible configurations
are the ones described in the statement.

5 Local uniqueness

In order to prove Theorem 1.2, we first establish here point (i) and a local uniqueness result.
Thoroughout this section we fix a boundary data Γ ∈ G and consider the set of equations (2), as
a varies in D, under assumptions (1) and (4). We will stress the dependence on the parameter a
of each quantity, since the position of the singularity is now a variable of the problem.

Let us fix the gauge of the magnetic potential. In the following Aa and Θa denote respectively
the vector potential and the scalar potential introduced in Lemma 3.8. Moreover we will denote ua

the function defined in (13) and u
(1)
a , u

(2)
a the functions introduced in Lemma 3.13, 3.14 respectively.

(5.1) Lemma. Under the previous notations there holds

‖u(2)
a1

− u(2)
a2

‖C1
loc(D) ≤ C|a1 − a2|α,

for some α > 0. Moreover the same estimate holds for u
(1)
a , locally on Ωa1 ∩ Ωa2 .

Proof. The proof relies on the fact that the functions u
(2)
a are defined in D for every a. By

assumptions and standard imbeddings, V ∈ C0,α(D) for some 4 α > 0 and γ ∈ C0,1(∂D). Using
Remark 3.15 and remembering that the Möbius transformation Ta(y

2) is regular, it is easy to see
that

‖V (2)
a1

− V (2)
a2

‖L∞(D) ≤ C|a1 − a2|α, ‖γ(2)
a1

− γ(2)
a2

‖L∞(∂D) ≤ C|a1 − a2|.

On the other hand u
(2)
a satisfies an elliptic Cauchy problem (see Lemma 3.14), hence by standard

regularity results there holds

‖u(2)
a1

− u(2)
a2

‖W 2,p
loc (D) ≤ C|a1 − a2|α, ∀ p ∈ (0,+∞),

which gives the thesis. Finally observe that u
(1)
a is the composition of u

(2)
a with a regular function

(by Lemma 3.14 again), hence the same estimate holds, whenever it is well defined.

(5.2) Remark. The previous lemma implies some local estimates in case of triple point configura-
tion. In order to simplify the notation, assume here that the origin is a triple point. By Corollary
4.4 we infer |u0| ≤ Cr3, |∇u0| ≤ C′r2 in Dr. Hence the preceding lemma allows the following
estimates in a small ball containing the singularity:

‖u(1)
a ‖L∞ , ‖∇u(1)

a ‖L∞ ≤ C|a| in D√
2|a|,

and the same holds for u
(2)
a . Moreover differentiating u

(1)
a on ∂D√

2|a| we obtain |∇ua(x)| ≤
‖∇u(1)

a ‖L∞(D√
2|a|

)/
√
x, which yields

‖ua‖L∞ ≤ C|a| in D2|a|, ‖∇ua‖L∞ ≤ C
√

|a| on ∂D2|a|.

4We can choose α ∈ (0, 1 − 2/p), if V ∈ W 1,p(D) with p < +∞, and α ∈ (0, 1) if V ∈ W 1,∞(D). Here the
constant C depends on α.
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(5.3) Lemma. Assume γ ∈ C1,1(∂Ω), then the function

a 7→ ϕ(a) = min{QAa,V (U) : U ∈ HA(D), U = Γ on ∂D}.

is differentiable for every a ∈ D.

Proof. We can rewrite ϕ(a) in the following way:

ϕ(a) =

∫

D

(

|(i∇ + Aa)Ua|2 + V |Ua|2
)

dx1dx2 =
1

2

∫

D

(

|∇u(2)
a |2 + V (2)

a (u(2)
a )2

)

dy1dy2.

Let us start showing the existence of the partial derivatives of ϕ(a); without loss of generality we
can consider the derivative in the direction a = (a, 0), centered at the origin. Notice that there

exist the weak derivatives
∂V (2)

a

∂a ∈ Lp(D) and
∂2γ(2)

a

∂a2 ∈ L∞(∂D); this is due to Remark 3.15 and to
the assumption V ∈W 1,p(D), γ ∈ C1,1(∂D). If we prove that

lim
a→0

∥

∥

∥

∥

∥

V
(2)
a − V

(2)
0

a
− ∂V

(2)
a

∂a

∣

∣

a=0

∥

∥

∥

∥

∥

Lp(D)

= lim
a→0

∥

∥

∥

∥

∥

γ
(2)
a − γ

(2)
0

a
− ∂γ

(2)
a

∂a

∣

∣

a=0

∥

∥

∥

∥

∥

W 1,p(D)

= 0, (19)

then standard regularity results for elliptic equations ensure the existence of w ∈ H1(D), solution
of the following equation

{

−∆w + V
(2)
0 w +

∂V (2)
a

∂a

∣

∣

a=0
u

(2)
0 = 0 in D

w =
∂γ(2)

a

∂a

∣

∣

a=0
on ∂D,

such that

lim
a→0

∥

∥

∥

∥

∥

u
(2)
a − u

(2)
0

a
− w

∥

∥

∥

∥

∥

H1(D)

= 0.

This implies the existence of the partial derivative

∂ϕ

∂a
(0) = 2

∫

D

(

∇u(2)
0 · ∇w + V

(2)
0 u

(2)
0 w

)

dy1dy2.

Hence let us prove (19). In order to simplify notations we denote here R(a, y) := Ta(y2), where Ta

is defined in (15). It is sufficient to estimate the following quantity (as a → 0) since, by Remark
3.15, the other terms are regular:

∥

∥

∥

∥

V (R(a, y)) − V (R(0, y))

a
− ∂V (R(a, y))

∂a

∣

∣

a=0

∥

∥

∥

∥

Lp(D)

=

=

∥

∥

∥

∥

∫ 1

0

[

∇xV (R(ta, y))
∂R(ta, y)

∂a
−∇xV (R(0, y))

∂R(a, y)

∂a

∣

∣

a=0

]

dt

∥

∥

∥

∥

Lp(D)

.

By Lusin’s theorem, the integrand converges to zero outside an arbitrarily small set. Then applying
Lebesgue convergence theorem, we obtain the first relation in (19). The second one can be proved

in a similar way. In order to prove differentiability we test the equation for u
(2)
0 with w, obtaining

∂ϕ

∂a
(0) = 2

∫

∂D

w∇u(2)
0 · νdσ.

The continuity of this function, with respect to a, comes from Lemma 5.1 and from the regularity
of γ.
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Proof of Theorem 1.2, (i). A triple point is a critical point of ϕ. Without loss of generality
we can assume the triple point to be the origin (applying the conformal map Ta defined in (15)),
hence we need to show

lim
|a|→0

ϕ(a) − ϕ(0)

|a| = 0

The main idea is to split ϕ(a) − ϕ(0) into the sum of two integrals:

ϕ(a) − ϕ(0) =

∫

D

(

|(i∇ + Aa)Ua|2 − |(i∇ + A0)U0|2 + V (|Ua|2 − |U0|2)
)

dx1dx2

= I + II,

where I is the integral on a small ball D2|a|, and II is the remaining term. As it concerns the
integral in the exterior annulus, the main observation is that both u0 and ua are well defined
on the twofold covering manifold Σ0 \ Π−1

x (D2|a|). Indeed a scalar potential Θa can be defined
on Σ0 \ Π−1

x (D2|a|), proceeding as in Lemma 3.8, and this allows to define a function ua as in
Proposition 3.9. With some abuse of notation we still use the notation ua, as in Proposition 3.9,
since both functions have the same projection on D, and Σ0 is endowed with the metric induced
from D. In particular Remark 5.2 still holds and moreover

{

−∆(ua − u0) + Ṽ (ua − u0) = 0 in Σ0 \ Π−1
x (D2|a|)

ua − u0 = 0 on ∂Σ0.

Hence by Lemma 3.11 we have

II =
1

2

∫

Σ0\Π−1
x (D2|a|)

∇(ua − u0) · ∇(ua + u0) + Ṽ (ua − u0)(ua + u0)dx1dx2

≤ C

(

∫

D\D2|a|

|∇(ua − u0)|2
)1/2

+ C′
(

∫

D\D2|a|

(ua − u0)
2

)1/2

.

On the other hand the equation for ua − u0 gives
∫

D\D2|a|

(

|∇(ua − u0)|2 + V (ua − u0)
2
)

dx1dx2 ≤
∫

∂D2|a|

|ua − u0|
∣

∣

∣

∣

∂

∂ν
(ua − u0)

∣

∣

∣

∣

dσ

≤ |∂D2|a|| sup
∂D2|a|

{|∇(ua − u0)||ua − u0|}

≤ C|a|5/2,

where we used Remark 5.2 in the last inequality. We infer II ≤ C|a|5/4.

As it concerns the integral in D2|a| we have similarly

I ≤ C

(

∫

D√
2|a|

|∇(u(2)
a − u

(2)
0 )|2

)1/2

+ C′
(

∫

D√
2|a|

(u(2)
a − u

(2)
0 )2

)1/2

.

Notice that here we need to apply a slightly different transformation respect to Lemma 3.14. To
be more precise we consider the map

Sa : D2|a| −→ D2|a|, Sa(x) = 2|a|x+ 2|a|a
āx+ 2|a| .

With abuse of notation we denote the function u
(2)
a , which still satisfies Remark 5.2. Hence we can

apply this remark as we did with II, and finally obtain

lim
|a|→0

I + II

|a| = lim
|a|→0

|a|1/4 = 0.
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Triple points are the only critical points of ϕ. Assume that the origin is not a triple point for
Γ, we are going to show that ϕ′(0) 6= 0. By Corollary 4.4, the solution has the following asymptotic
expansion around the origin5

U0(r, ϑ) = CeiΘ0r
1
2 cos(

ϑ

2
− α) + o(r

1
2 ). (20)

Hence there is exactly one nodal arc η ending at the origin and there exists a radius h such that
U0(x) 6= 0, ∀ x ∈ Dh \ {η ∪ {(0, 0)}}. Let w : Dh → R be the (nonnegative) solution of

{

−∆w + V w = 0 in Dh

w = |u0| on ∂Dh.

Let now a = η ∩ ∂Dh in such a way that |a| = h. We define a new function za : Σa → R as

za =

{

σ(x)w̃(x) x ∈ Π−1
x (Dh)

σ(x)|ũ0| x ∈ Σa \ Π−1
x (Dh),

where σ = ±1 in such a way that za is antisymmetric on Σa. If Θa : Σa → R is defined as in
Lemma 3.8, then Za = Πx(e−iΘaza) is well defined in D, Za ∈ HA(D) and its complex derivative
satisfies the analogous of equation (14). Moreover by definition there holds ϕ(a) ≤ QAa,V (Za),
hence

ϕ(0) − ϕ(a) ≥
∫

D

[

|(i∇ + A0)U0|2 − |(i∇ + Aa)Za|2 + V (|U0|2 − |Za|2)
]

dx1dx2

=

∫

Dh

[

|∇u0|2 − |∇w|2 + V (u2
0 − w2)

]

dx1dx2.

We shall complete the proof by showing that the following quantity

lim
|a|→0

ϕ(0) − ϕ(a)

|a| ≥ lim
h→0

1

h

∫

Dh

[

|∇u0|2 − |∇w|2 + V (u2
0 − w2)

]

dx1dx2

is greater than a positive constant. In order to estimate the limit we perform a change of variables:

u(h)(y) =
1√
h
u0(hy

2,
√
hy), w(h)(y) =

1√
h
w(hy2).

These functions satisfy the rescaled problems
{

−∆u(h) + hV (hy2)u(h) = 0 in D

u(h) = 1√
h
u0(hy

2,
√
hy) on ∂D,

{

−∆w(h) + hV (hy2)w(h) = 0 in D

w(h) = |u(h)| on ∂D,

and moreover, by (20), u(h) satisfies the asymptotic expansion

u(h)(ρ, ϕ) = Cρ cos(ϕ− α) + o(
√
hρ),

where as usual y = ρeiϕ. This ensures the existence of a limit function u∞ such that
{

−∆u∞ = 0 in D
u∞(ρ, ϕ) = C cos(ϕ− α) on ∂D

and ‖u(h) − u∞‖C1(D) → 0, as h→ 0.

As a consequence, ‖|u(h)| − |u∞|‖W 1,p(∂D) → 0, ∀p ∈ (1,+∞), which implies

{

−∆w∞ = 0 in D
w∞(ρ, ϕ) = |C cos(ϕ− α)| on ∂D

and ‖w(h) − w∞‖H1(D) → 0, as h→ 0.

5Here, respect to equation (16), we have set α = arctan(d1/c1) and C = c1/ cos α 6= 0.
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Therefore we have obtained

lim
|a|→0

ϕ(0) − ϕ(a)

|a| ≥ 1

2

∫

D

[

|∇u∞|2 − |∇w∞|2
]

dy1dy2.

This can be easily evaluated, since we know u∞ and w∞ explicitly. Indeed, choosing the coordinates
in such a way that α = 0 we have

u∞ = Cρ cos(ϕ),

∫

D

|∇u∞|2dy1dy2 = C2π,

and

w∞ =
2|C|
π

[

1 + 2

∞
∑

n=1

(−1)n

1 − 4n2
ρ2n cos(2nϕ)

]

,

which gives

∫

D

|∇w∞|2dy1dy2 =
32C2

π

∞
∑

n=1

n

(1 − 4n2)2

≤ 32C2

π

[

1

9
+

∫ ∞

1

t

(4t2 − 1)2
dt

]

≤ 44C2

9π
.

This finally gives ϕ′(0) ≤ C2

2

(

44
9π − π

)

≤ −C2

2 and concludes the proof.

(5.4) Remark. The first part of the previous proof also provides

lim
|a1−a2|→0

||Ua1 − Ua2 ||L2(D)

|a1 − a2|
= 0,

whenever a1 is a triple point.

The last technical result that we need to prove the local uniqueness is a complex formulation
of Green’s theorem, in case of magnetic potential.

(5.5) Lemma. Let Ω ⊂ C be a regular domain and Φ,Ψ ∈ C1(Ω,C). Let A ∈ C1(Ω) be a vector
potential, such that ∇Θ = A. Then there holds

∫

Ω

Ψ(i∇ + A)2Φ dx1dx2 = 2i

∫

∂Ω

Ψ

(

∂

∂x
− i

∂Θ

∂x

)

Φ dx+

+ 4

∫

Ω

(

∂

∂x
− i

∂Θ

∂x

)

Φ ·
(

∂

∂x̄
+ i

∂Θ

∂x̄

)

Ψ dx1dx2.

Proof. It is sufficient to apply the following complex formulation of Green’s formula (see for example
[9], Appendix A):

∫

Ω

∂F

∂x̄
dx1dx2 = − i

2

∫

∂Ω

Fdx,

with

F = −4
∂

∂x

(

e−iΘΦ
)

eiΘΨ.

(5.6) Theorem. (Local uniqueness) Consider the set of equations (2) under assumptions (1)
and (4), where the parameter a varies in D and the magnetic potential Aa varies under gauge
transformations. Assume that Γ ∈ G admits a triple point aΓ ∈ D. Then there exist ε > 0, such
that, for every boundary data Λ ∈ G satisfying ||Γ − Λ||L∞(∂D) < ε, there exists exactly one aΛ

(triple point for Λ) such that |aΓ − aΛ| < ||Γ − Λ||L∞(∂D).
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Proof. The following argument takes some ideas from Proposition 3.2 in [7], where the authors
study the particular case V = 0. Let us recall that in the following Aa and Θa are as in Lemma
3.8 and Ua denotes the solution of (2) with this specific potential. We can assume w.l.o.g. that
aΓ = 0 (applying the conformal map TaΓ defined in (15)), therefore we are assuming that the
function U0 has a triple point at the origin.

In order to prove local uniqueness we shall apply the implicit function theorem to the map

G ×D → R
2

(Λ, a) 7→ (c1(a), d1(a)) (21)

where c1(a), d1(a) are the first coefficients of Ua which appear in the asymptotic expansion (16)
(Ua is the solution with boundary data Λ and singularity at a). Corollary 4.4 ensures that a is
a triple point if and only if c1(a) = d1(a) = 0. Therefore the theorem is proved provided we can
locally solve this equation for a in a neighbourhood of (Γ, 0).

First of all we observe that (21) defines a C1 function. Indeed it comes from the proof of

Theorem 4.3 that (c1(a), d1(a)) = ∇yu
(1)
a (0), and regularity can be proved proceeding as in Lemma

5.3.6 Therefore we only need to show that the 2 × 2 Jacobian matrix

∇a(c1(a), d1(a))
∣

∣

∣

a=0

is invertible. By Theorem 4.3, (iv), the first nonzero coefficients in the asymptotic expansion of
Ua can be expressed as

c1(a) − id1(a) = 4i

∫

∂D

G1,a

(

∂

∂x
− iAa

)

Ua dx− 2

∫

D

G1,a(i∇ + Aa)2Ua dx1dx2, (22)

with

G1,a = − 1

2π

e−iΘa

(x − a)
1
2

.

Notice that the differential operator commutes with the integral since the functions
∂G1,a

∂a (x) ≃
1

(x−a)3/2 belong to L1(D) for every a. The main difficulty here is that we do not know the behaviour

of Ua with respect to the variation of the parameter a, therefore we need to manipulate the last
expression before differentiating. In order to get rid of the boundary integral in (22), we introduce
a new function Fa : D → C, solution of the equation

{ (

∂
∂x̄ + i∂Θa

∂x̄

)

Fa = 0 on D
Fa = G1,a on ∂D.

Applying Green’s formula (Lemma 5.5), equation (22) becomes

c1(a) − id1(a) = 2

∫

D

(Fa −G1,a)(i∇ + Aa)2Ua dx1dx2

= 2

∫

D

(Fa −G1,a)(i∇ + A0)
2U0 dx1dx2 + 2

∫

D

(Fa −G1,a)(V U0 − V Ua) dx1dx2.

(23)

Instead of computing the derivative of the last expression with respect to a, it will be convenient

to apply the differential operator
(

∂
∂a + i∂Θa

∂a

)

∣

∣

∣

a=0
. Since U0 has a triple point at the origin we

6Here we do not need additional regularity on the boundary data, since the estimates are local.
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have
(

∂

∂a
+ i

∂Θa

∂a

)

(c1(a) − id1(a))
∣

∣

∣

a=0

=
∂

∂a
(c1(a) − id1(a))

∣

∣

∣

a=0
− i

∂Θa

∂a

∣

∣

∣

a=0
(c1(0) − id1(0))

=
∂

∂a
(c1(a) − id1(a))

∣

∣

∣

a=0
,

therefore the differential operator coincides in this case with the complex derivative respect to a
(evaluated in a = 0). Next applying Remark 5.4 we obtain

2

∣

∣

∣

∣

∫

D

(Fa −G1,a)(V U0 − V Ua) dx1dx2

∣

∣

∣

∣

≤ 2||V ||L∞(D)||Fa −G1,a||L2(D)||U0 − Ua||L2(D) = o(|a|).
Hence the last term in (23) is ininfluent in the computation of the derivative, and we have

(

∂

∂a
+ i

∂Θa

∂a

)

(c1(a) − id1(a))
∣

∣

∣

a=0

=

∫

D

(i∇ + A0)
2U0

((

∂

∂a
+ i

∂Θa

∂a

)

Fa

∣

∣

∣

a=0
−
(

∂

∂a
+ i

∂Θa

∂a

)

G1,a

∣

∣

∣

a=0

)

dx1dx2. (24)

We can differentiate G1,a directly:
(

∂

∂a
+ i

∂Θa

∂a

)

G1,a = − 1

4π

e−iΘa(x)

(x− a)
3
2

=
1

2
G3,a.

Notice that we obtain a multiple of the function defined in (18) for k = 3, which gives information
about the asymptotic behaviour of the solution at order three. Then we differentiate the equation
for Fa:

{ (

∂
∂x̄ + i∂Θa

∂x̄

) (

∂
∂a + i∂Θa

∂a

)

Fa = 0 on D
∂Fa

∂a =
∂G1,a

∂a on ∂D.

Using Green’s formula again (Lemma 5.5), we obtain:

∫

D

(

∂

∂a
+ i

∂Θa

∂a

)

Fa · (i∇ + A0)
2U0 dx1dx2

= 2i

∫

∂D

(

∂

∂a
+ i

∂Θa

∂a

)

G1,a ·
(

∂

∂x
− i

∂Θa

∂x

)

U0 dx

= 2i

∫

∂D

G3,a ·
(

∂

∂x
− i

∂Θa

∂x

)

U0 dx.

Replacing in (24) we obtain

(

∂

∂a
+ i

∂Θa

∂a

)

(c1(a) − id1(a))
∣

∣

∣

a=0

= 2i

∫

∂D

G3,0

(

∂

∂x
− i

∂Θ0

∂x

)

U0 dx−
∫

D

G3,0(i∇ + A0)
2U0 dx1dx2.

Finally (17) allows us to conclude

∂

∂a
(c1(a) − id1(a))

∣

∣

∣

a=0
=

1

2
(c3(0) − id3(0)).

Hence the derivation with respect to a of the first order one lead to the coefficient of order three
in the asymptotic expansion of U0 in a neighbourhood of its singularity. Finally, Corollary 4.4
ensures that it does not vanish as a complex number.
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6 Energy minimizing partitions

In this section we shall prove all the remaining results stated in the introduction, apart from
Theorem 1.2, (v), which will be object of the last section. More precisely, we show a relation
between the solutions Ua of (2) and the functional class Sγ defined in the introduction, and then we
concentrate on the proof of Theorem 1.4. Then, in order to conclude, we just apply previous results
by Conti, Terracini and Verzini. Apart from establishing an interesting variational characterization,
the relation between Ua and Sγ is the tool that allows us to prove global uniqueness, starting from
local uniqueness. Throughout this section we will always assume γ ∈ g, V satisfies (4) and Ω to
be the unitary disk.

Let us start recalling the known properties of Sγ , we refer to [4, 6, 5, 7] for the proofs and
further details; first of all we need some definitions. For any u = (u1, u2, u3) ∈ Sγ we define the
support of each density as ωi = {x ∈ D : ui(x) > 0}. The multiplicity of a point x ∈ D (with
respect to u) is

m(x) = ♯{i : measure(ωi ∩B(x, r)) > 0 ∀r > 0},
where B(x, r) is the disk centered at x of radius r. Notice that 1 ≤ m(x) ≤ 3. The first result is
related to the regularity of functions in Sγ .

(6.1) Theorem. If u ∈ Sγ then u ∈ W 1,∞(D). As a consequence, every ωi is open and x ∈ ωi

implies m(x) = 1.

Then, by definition of Sγ , every density satisfies a differential equation on its support, and a
differential equation locally far from the singular point:







−∆ui + V ui = 0 in ωi

ui = γi on ωi ∩ ∂D
ui = 0 in D \ ωi







−∆(ui − uj) + V (ui − uj) = 0 in ωi ∪ ωj

ui − uj = γi − γj on (ωi ∪ ωj) ∩ ∂D
ui − uj = 0 on D \ {ωi ∩ ωj}.

As far as the regularity of the free boundary is concerned, the following properties hold for the
two-dimensional problem.

(6.2) Theorem. Let u ∈ Sγ , then

(a) each ωi is connected;

(b) a point x ∈ D is singular for u if and only if m(x) = 3;

(c) there exists exactly one point au ∈ D such that m(au) = 3;

(d) each interface ηij := ∂ωi ∩ ∂ωj ∩ {x ∈ D : m(x) = 2} is (either empty or) a connected arc,
locally C1,α for every α ∈ (0, 1), with endpoints either at ∂D or at au;

(e) the following asymptotic estimate holds in a neighbourhood of au

u(r, ϑ) = r3/2

∣

∣

∣

∣

c cos

(

3

2
ϑ

)

+ d sin

(

3

2
ϑ

)∣

∣

∣

∣

+ o(r3/2) as r → 0,

where (r, ϑ) denotes a system of polar coordinates around au and c, d are real constants.

With some abuse of notation, we will call au a triple point for the function u. Let us first point
out the relation between the elements of Sγ and the solutions of the magnetic equation (2), which
is once again a real elliptic equation on the twofold covering manifold.
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(6.3) Lemma. Let u ∈ Sγ and a = au be its triple point. If a ∈ D then there exists Γ ∈ G
such that, for every Aa satisfying (1), the solution U of (2) verifies N (u) = N (U). Moreover if
u1 6= u2 ∈ Sγ then U1 6= U2.

Proof. Let (u1, u2, u3) ∈ Sγ , then by Theorem 6.2 there exists exactly one point a ∈ D of multi-
plicity three with respect to u. If a ∈ D, we can consider the twofold covering manifold Σa. Than
we define a new function on Σa, that with some abuse of notation will be called again u, in the
following way:

u(x, y) :=

3
∑

i=1

σ(x, y)ui ◦ Πx(x, y),

where σ(x, y) is ±1 in such a way that u has alternate sign on two adjacent supports. Then u is
antisymmetric on Σa and, by virtue of Theorems 6.1 and 6.2, (e), it satisfies

{

−∆u+ Ṽ u = 0 in Σa

u = γ on ∂Σa,
(25)

where as usual Ṽ (x, y) = V ◦Πx(x, y) and γ(x, y) =
∑3

i=1 σ(x, y)γi ◦Πx(x, y). Let now Γ = e−i ϑa
2 γ

(ϑa defined in (10)) and Aa as in Remark 3.7, then the corresponding solution of (2) satisfies the
statement, by Proposition 3.9. By gauge invariance, the same holds for every Aa satisfying (1).
Notice that, by construction, a is a triple point for Γ. The second part of the statement is a direct
consequence of Proposition 6.6.

(6.4) Remark. As a consequence of Theorem 6.2, we infer that G \ G̃ consists of the traces Γ such
that the corresponding real γ satisfies aγ ∈ ∂D.

Let us now concentrate on the proof of Theorem 1.4; we divide it in several steps. First of all
notice that Lemma 6.3, together with the local uniqueness result Theorem 5.6, immediately gives
the following local uniqueness result for Sγ (which is the analogous of Proposition 3.2 in [7]).

(6.5) Proposition. Let u ∈ Sγ and aγ ∈ D be its triple point. Then there exist ǫ > 0, δ > 0 such
that for every λ ∈ g with ‖γi − λi‖L∞(D), i = 1, 2, 3, there exists exactly one aλ ∈ D, triple point
for λ, such that |aγ − aλ| < δ.

The second step for the proof of Theorem 1.4 is the following proposition. It is proved in
[7], and can be easily adapted to our problem since it only makes use of the maximum principle
(ensured by condition (4)).

(6.6) Proposition. Let u, v ∈ Sγ , then

(i) if au ∈ ∂D then v ≡ u;

(ii) if au = av then v ≡ u;

Proof of Theorem 1.2, (ii)-(iv), Sketch. Proceeding as in [7], we can deduce from Proposition 6.5
that Sγ consists of exactly one element, then Lemma 6.3 concludes the proof. Let us sketch the
ideas contained in [7]. First of all by Proposition 6.6 it is possible to assume that the triple point
is in the interior of the domain. Assume by contradiction that u 6= v ∈ Sγ , than they can be
connected in a continuous way to the same minimal solution of (5), with an appropriate boundary
datum. Finally the uniqueness result for the minimal solution (see Theorem 6.7, (ii) below) gives
a contradiction.
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Now that we proved that Sγ consists in exactly one element, Theorems 1.3 and 1.5 are an
immediate consequence of the following results by Conti, Terracini and Verzini. They state that
Sγ contains both the solution of the variational problem (5), and the limiting solutions of the
competition–diffusion system (6), in case of strong competition. As a consequence of uniqueness,
we infer that the two problems in fact coincide.

(6.7) Theorem. (i) For every κ > 0, system (6) admits (at least) a solution (u1,κ, u2,κ, u3,κ) ∈
(H1(D))3. Moreover there exists (u1, u2, u3) ∈ Sγ such that, up to subsequences, ui,κ → ui

in H1(D) as κ→ +∞;

(ii) the minimization problem (5) admits a unique solution, which belongs to Sγ .

7 Continuous dependence of the nodal arcs with respect to

the boundary trace

Aim of this section is the proof of Theorem 1.2, (v); let us start giving a more precise formulation
of the result. Respect to the previous sections, here we let the boundary trace vary. Given Γ ∈ G̃,
we first single out its triple point a (recall Remark 6.4). Then we consider equation (2) with the
magnetic field centered at a. As a consequence, every function Ua considered in this section has a
triple point, and its nodal set consists of three arcs meeting at a.

Notation. In the following we will denote Γa any trace belonging to G̃, having a triple point at
a, and ηa(t) a regular parametrization of one nodal arc of Ua.

In addition to the usual assumptions (1) and (4), suppose also

V (x) ∈W 1,∞(D),

then it holds

(7.1) Theorem. In the setting described above, fix a subset Ω̃ ⊂⊂ D and an α ∈ (0, 1/2). Given
Γa1 , let ǫ as in Theorem 5.6, and Γa2 such that ‖Γa1 − Γa2‖L∞(∂D) < ǫ. Then there exists a
constant C > 0 such that

||ηa1 − ηa2 ||C1,α(Ω̃) < C||Γa1 − Γa2 ||L∞(∂D),

for a suitable choice of the nodal arcs and of the parametrization.

The rest of the paragraph is devoted to the proof of this result, hence we tacitly assume the
hypothesis and notations of the theorem.

(7.2) Remark. Without loss of generality we can choose a1 = 0, a2 = a. Define

O = {a ∈ D : ||Γa − Γ0||L∞(∂D) < ǫ}.

By Theorem 5.6, there exists a constant C such that

|a| < C||Γa − Γ0||L∞(∂D), ∀ a ∈ O.

As a consequence, we can equivalently study the dependence of the nodal lines with respect to the
position of the singularity.

As usual we denote u
(2)
a the function introduced in Lemma 3.14. Proceeding as in Lemma 5.1

it is easy to prove

25



(7.3) Lemma. Let V ∈ W 1,∞(D), then

(i) ‖V (2)
a1 − V

(2)
a2 ‖L∞(D) ≤ C|a1 − a2|, ‖γ(2)

a1 − γ
(2)
a2 ‖L∞(∂D) ≤ C|a1 − a2|;

(ii) ‖u(2)
a1 − u

(2)
a2 ‖C1,α

loc (D) ≤ C|a1 − a2|, for every 0 < α < 1.

The following result relates ηa with the nodal lines of u
(2)
a , which will be denoted η

(2)
a .

(7.4) Lemma. Fix α ∈ (0, 1). If ‖η(2)
a −η(2)

0 ‖C1,α(Ω̃) ≤ C|a|, ∀ a ∈ O, then there exists a constant

C′ such that ‖ηa − η0‖C1, α
2 (Ω̃)

≤ C′|a|, ∀ a ∈ O.

Thanks to this result, we can work with η
(2)
a , for a fix α ∈ (0, 1). The main tool for our analysis

will be the following (Theorem 2.1 in [14]), which describes the local behaviour of the solutions
of real elliptic equations, in a planar domain. It is an improvement of the result by Hartman and
Wintner that we recalled in Section 4.

(7.5) Proposition. If u
(2)
a has a zero of order n at the origin, then there exists a complex valued

function ξ̃a(y) of class C0,α, with ξ̃a(0) = 0, such that

u(2)
a (ρ, ϕ) =

ρn+1

n+ 1

{

cn+1(a) cos[(n+ 1)ϕ] + dn+1(a) sin[(n+ 1)ϕ] + ξ̃a(ρ, ϕ)
}

, (26)

where cn+1(a), dn+1(a) are real constants, not both zero, depending on the parameter a. Equiva-
lently there exists ξa(y) ∈ C0,α(D), such that

2
∂u

(2)
a

∂y
(y) = ynξa(y), ξa(0) = cn+1(a) − idn+1(a) 6= 0. (27)

Moreover for every k ≤ n the following Cauchy formula is available

2

yk

∂u
(2)
a

∂y
(y) = − i

π

∫

∂D

1

zk(z − y)

∂u
(2)
a

∂z
(z) dz +

1

2π

∫

D

−∆u
(2)
a (z)

zk(z − y)
dz1dz2 (28)

where the first integral is a complex line integral, whereas the second one is a double integral in the
real variables z1, z2. Note that the double integral is absolutely convergent.

Using some ideas in [14], Theorem 2.1, we can prove the following estimate.

(7.6) Lemma. Suppose that u
(2)
a has a zero of order n ∈ Z at the origin, for every a ∈ O. Let ξa

be the function defined in (27). Then there exists a constant C such that

‖ξa1 − ξa2‖C0,α(Ω̃) ≤ C|a1 − a2|,

for every a1, a2 ∈ O.

Proof. We prove this result by induction on k, where for every k ≤ n we define

Tk : O → C0,α(Ω̃,C)

a 7→ 2

yk

∂u
(2)
a

∂y
.
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Let us start proving that T0 is uniformly continuous. Recalling that an integral expression for
Tk(a) is (28), it is enough to show that

∣

∣

∣

∣

∣

− i

π

∫

∂Ω̃

(

∂u
(2)
a1

∂z
− ∂u

(2)
a2

∂z

)

(

1

z − y1
− 1

z − y2

)

dz

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

1

2π

∫

Ω̃

(

−∆u(2)
a1

+ ∆u(2)
a2

)

(

1

z − y1
− 1

z − y2

)

dz1dz2

∣

∣

∣

∣

≤ C|a1 − a2||y1 − y2|α,

for every α > 0. The first integral is smooth in y, hence it is sufficient to apply Lemma 7.3. As it
concerns the second integral, following [14], Theorem 2.1, we write
∣

∣

∣

∣

∫

Ω̃

(

V (2)
a1
u(2)

a1
− V (2)

a2
u(2)

a2

)

(

1

z − y1
− 1

z − y2

)

dz1dz2

∣

∣

∣

∣

≤
∫

Ω̃

(

|V (2)
a1

||u(2)
a1

− u(2)
a2

| + |V (2)
a1

− V (2)
a2

||u(2)
a2

|
)

∣

∣

∣

∣

1

z − y1
− 1

z − y2

∣

∣

∣

∣

dz1dz2

≤
(

||V (2)
a1

||L∞(D)||u(2)
a1

− u(2)
a2

||L∞(D) + ||V (2)
a1

− V (2)
a2

||L∞(D)||u(2)
a2

||L∞(D)

)

∫

Ω̃

|y1 − y2|
|z − y1||z − y2|

dz1dz2

≤ C|a1 − a2||y1 − y2| log |y1 − y2|,
where, in the last inequality, we used Lemma 7.3. This concludes the proof for k = 0. Now assume
that Tk is uniformly continuous for some k < n, that is

∥

∥

∥

∥

∥

2

yk

∂u
(2)
a1

∂y
− 2

yk

∂u
(2)
a2

∂y

∥

∥

∥

∥

∥

C0,α(Ω̃)

≤ C|a1 − a2|,

and let us prove that Tk+1 is uniformly continuous. Since k < n and the origin is a zero of order

n for u
(2)
a , we have limy→0

1
yk

∂u(2)
a

∂y = 0 ∀a. As a consequence, the inductive assumption gives

sup
y∈Ω̃

1

|y|k+α

∣

∣

∣

∣

∣

∂u
(2)
a1

∂y
(y) − ∂u

(2)
a2

∂y
(y)

∣

∣

∣

∣

∣

≤ C|a1 − a2|.

Following [12] we use the identity

u(2)
a (ρ, ϕ) =

∫ ρ

0

(

∂ua

∂y1
(t, ϕ) cosϕ+

∂ua

∂y2
(t, ϕ) sinϕ

)

dρ

which implies, together with the previous inequality

|(u(2)
a1

− u(2)
a2

)(y)| ≤
∫ 1

0

|y|
∣

∣

∣

∣

∣

2

(

∂u
(2)
a1

∂y
− ∂u

(2)
a2

∂y

)

(ty)

∣

∣

∣

∣

∣

dt ≤

≤
∫ 1

0

C|y||a1 − a2||yt|k+αdt ≤ C|a1 − a2||y|k+1+α, (29)

in Ω̃. Now we can proceed as in the case k = 0:
∣

∣

∣

∣

∣

∫

Ω̃

−∆u
(2)
a1 + ∆u

(2)
a2

zk+1

(

1

z − y1
− 1

z − y2

)

dz1dz2

∣

∣

∣

∣

∣

≤



||V (2)
a1

||L∞(D)

∥

∥

∥

∥

∥

u
(2)
a1 − u

(2)
a2

zk+1

∥

∥

∥

∥

∥

L∞(D)

+ ||V (2)
a1

− V (2)
a2

||L∞(D)

∥

∥

∥

∥

∥

u
(2)
a2

zk+1

∥

∥

∥

∥

∥

L∞(D)



 |y1 − y2| log |y1 − y2|,

≤ C|a1 − a2||y1 − y2| log |y1 − y2|,
where we used (29) in the last inequality.
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(7.7) Remark. In our case, the previous lemma applies with n = 2. Notice also that the same
estimate holds for the function ξ̃a defined in (26).

In order to prove the theorem, we choose a branch of nodal line, having an endpoint at the
origin, i.e.

η(2)
a : (T1, T2) → C, lim

t→T1

η(2)
a (t) = 0,

with T1, T2 eventually infinite. Then the curve satisfies η̇
(2)
a (t) = −iκa(t)

∂u(2)
a

∂ȳ (η
(2)
a (t)), with the

condition u
(2)
a (η

(2)
a (t)) = 0, where κa(t) is any real function, sufficiently regular in (T1, T2). Since

every u
(2)
a has a zero of order two at the origin, we choose

κa(t) =
1

|η(2)
a (t)|2

.

Passing to polar coordinates η
(2)
a (t) = ρa(t)eiϕa(t), the equation becomes







ρ̇a = 1
|y|3

(

y1
∂u(2)

a

∂y2
− y2

∂u(2)
a

∂y1

)

= − 1
|y|3ℑ(y3ξa(y))

ϕ̇a = − 1
|y|4

(

y1
∂u(2)

a

∂y1
+ y2

∂u(2)
a

∂y2

)

= − 1
|y|4ℜ(y3ξa(y)).

(30)

(7.8) Lemma. With this choice of the parametrization the interval (T1, T2) is bounded, in partic-
ular we can choose T1 = 0.

Proof. Computing the velocity of the curve we have

|η̇(2)
a (t)| =

1

|η(2)
a (t)|2

∣

∣

∣

∣

∣

∂u
(2)
a

∂ȳ
(η(2)

a (t))

∣

∣

∣

∣

∣

= |ξa(η(2)
a (t))| → |ξa(0)| =

√

c3(a)2 + d3(a)2 as t→ T1,

where c3(a), d3(a) are the first nontrivial terms in the asymptotic expansion (27). Hence t is
asymptotically a multiple of the arc length as t→ T1 and the lemma is proved.

End of the proof of Theorem 7.1. Writing the equation of the curve in polar coordinates we have

η̇
(2)
a (t) = eiϕa(t)(ρ̇a(t) + iρa(t)ϕ̇a(t)). Therefore we wish to show that, for every α ∈ (0, 1) there

exist constants K1,K2 such that

‖ρ̇a − ρ̇0‖C0,α(0,T2) + ‖ρaϕ̇a − ρ0ϕ̇0‖C0,α(0,T2) ≤ K1|a|,
‖ϕa − ϕ0‖C0,α(0,T2) ≤ K2|a|,

for every a ∈ O. Then, applying Lemma 7.4 and Remark 7.2, the theorem is proved.

The first inequality comes directly from equations (30) and from Lemma 7.6, by regularity
results for ordinary differential equations. Let us prove the second one.

Both ξ̃a(y) and ξa(y)− ξa(0) satisfy Lemma 7.6 and vanish in 0, hence there exists C such that

max

{

sup
y∈Ω̃

|ξa(y) − ξa(0)|
|y|α , sup

y∈Ω̃

|ξ̃a(y)|
|y|α

}

≤ C ∀a ∈ O. (31)

Moreover from u
(2)
a (ηa(t)) = 0 we deduce

c3(a) cos(3ϕa) + d3(a) sin(3ϕa) + ξ̃a(ηa(t)) = 0.
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Therefore the equation for ϕ̇a can be written as

ϕ̇a = − 1

|y|(c3(a) cos(3ϕ) + d3(a) sin(3ϕ)) − 1

|y|4ℜ[y3(ξa(y) − ξa(0))]

=
ξ̃a(y)

|y| − 1

|y|4ℜ[y3(ξa(y) − ξa(0))],

and we can conclude applying again Lemma 7.6 and Lemma 7.8.
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1012.

[23] Rozenblum, G., and Melgaard, M. Schrödinger operators with singular potentials. In
Stationary partial differential equations. Vol. II, Handb. Differ. Equ. Elsevier/North-Holland,
Amsterdam, 2005, pp. 407–517.
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