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Milan, Italy E-mail: leo.pasquazzi@unimib.it



2 Francesca Greselin, Leo Pasquazzi

Keywords Asymptotic confidence interval, Dagum, Gini, Income inequality,

Lognormal, Zenga.

Mathematics Subject Classification (2000)62D05· 62F12· 62G20· 62P25.

Abstract In this paper we analyze the differences in household incomeinequality

among Italian regions. Using data from the 2008 Bank of Italy’s Survey on Household

Income and Wealth, a remarkable gap in inequality among different geographicareas

of the country has been observed. Besides, a thorough analysis of the theoretical and

practical aspects of obtaining parametric and non parametric confidence intervals for

Gini’s and Zenga’s inequality measures has been provided. The performance of the

inferential procedures has been assessed and their effectiveness in developing a cross-

regional study is shown.
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1 Introdution and motivation

Since more than a century, economists and statisticians have been concerned with

the problem of modeling income and wealth distributions andmeasuring inequality.

Such research helps in making well informed decisions for elected representatives,

businesses, unions and non-profit organizations, as well asindividuals. In particular,

the assessment of relationships between inequality and growth is getting an increased

attention among scholars and policy makers, in connection with other variables such

as human capital, employment, and so on. Furthermore, in recent studies about EU

countries the evolution in time of regional disparities appears to be related to the

dynamics of economic and monetary integration. Measuring inequality is hence a

crucial issue for economics and social sciences.

Unfortunately, we cannot rely only on point estimates of inequality measures,

because in many empirical studies large standard errors areobserved (see, among

many others, Maasoumi 1997). Therefore, it is important to provide methodologies

to assess whether differences in estimates are statistically significant. In this work

we contribute to the issue by comparing parametric and non parametric estimation

techniques. In particular, we will consider two parametricfamilies, the Lognormal

and the Dagum models. Our purpose is to obtain confidence intervals for Zenga’s

new inequality measure (Zenga, 2007) and for Gini’s traditional index (Gini, 1914).

The aim is to verify what is actually gained when we exploit the information about the

underlying model. We will compare the two methodologies (parametric versus non-

parametric) firstly in a simulation study, in order to assesscoverage accuracy and

length. Afterwards, we employ the same techniques on real income data, from Bank

of Italy’s Survey on Household Income and Wealth, to obtain a cross-regional analysis

of differences in inequality. Our results show a remarkablegap in inequality among

different geographic areas of the country, ranging from theits lowest level observed in

Aosta Valley, to its highest level in the Apulia region. Besides Gini’s traditional index,
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we choose to analyze confidence intervals for Zenga’s new inequality index because

of its many interesting features: indeed, Zenga’s index is anormalized inequality

measure; it is the area under a new inequality curve (Zenga, 2007) and it may be

decomposed by subgroups as well as by income sources (Radaelli, 2008; Greselin

et al. 2009; Radaelli, 2010). For an analysis of the partial order induced by Zenga’s

inequality curve in some well known models for economic sizedistributions, we refer

to Polisicchio and Porro (2008) and Porro (2008). Properties of the curve and its index

have been investigated in Polisicchio (2008) and Maffeniniand Polisicchio (2010).

For inferential results see Greselin and Pasquazzi (2009) and Greselin et al. (2010).

The rest of the paper is organized as follows. Section 2 provides a brief descrip-

tion of technical details for the computation of the confidence intervals. Simulation

results developed to assess the performance of the inferential procedures are pre-

sented in section 3. In section 4 we present and discuss our results on inequality in

Italy’s regions. Conclusions and final remarks end the paperin section 5. A detailed

description about the computation of parametric confidenceintervals derived from

Lognormal and Dagum families has been given in the Appendix.

2 Asymptotic confidence intervals

Let X1,X2, ...,Xn be an i.i.d. sample from an unknown distributionF . Gini’s index

may be defined by

G(F) =
∫ 1

0
2(p−L(p;F))dp, (2.1)

where

L(p;F) =

∫ p
0 F−1(t)dt
∫ 1

0 F−1(t)dt
, 0< p< 1 (2.2)

is the Lorenz curve, while Zenga’s new measure is given by

Z(F) =
∫ 1

0

(
1− 1− p

p
· L(p;F)

1−L(p;F)

)
dp. (2.3)

As usual, we assume that the support ofF is a subset of the non negative real line.

Moreover, in order that the two inequality measures be well defined we need to
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assume that the first moment ofF is finite. The rationale behind definition 2.3 is

straightforward. Indeed,L(p;F)
p is the mean income of the poorestp percent of the

population, while1−L(p;F)
1−p is the mean income of the remaining part of the popu-

lation. Notice that the ratio, sayU(p;F), between this two means takes on values in

[0,1]. Small values of this ratio correspond to high inequality between the two groups,

while large values correspond to situations close to equity. ThusZ(F) is the mean,

i.e. a synthesis, of the point inequality measures given byI(p;F) = 1−U(p;F).

If F̂n is the empirical CDF associated to the observed sample, we may estimate

the two inequality measures simply by plugging inF̂n instead ofF in (2.1), (2.2) and

(2.3). Under mild restrictions onF (Hoeffding, 1945; Greselin et al., 2009b) both

inequality measures may be represented as

T(F̂n) = T(F)+
1
n

n

∑
i=1

hT(Xi ;F)+op(n
−1/2) (2.4)

where thehT(Xi ;F) is the influence function evaluated at the pointXi , i.e. (as usual

δX denotes the distribution with unit mass at the pointX)

hT(Xi ;F) = lim
λ↓0

T(F +λ (δXi −F))−T(F)

λ
.

It follows that both inequality measures have normal asymptotic distribution, i.e.

√
n
(

T(F̂n)−T(F)
)

L−→ N(0,σ2
T),

whereσ2
T = VarF(hT(Xi ;F)). Knowing a consistent estimorS2

T;n for σ2
T , we may

compute the non-parametric normal(1−2α) confidence interval given by
(

T(F̂n)− z1−α
ST;n√

n
;T(F̂n)+ z1−α

ST;n√
n

)
,

wherez1−α is the(1−α)-percentile of the standard normal distribution.

If F is known to belong to a parametric familyFΘ indexed by ak-dimensional

real parameter vectorθ ∈ Θ ⊂ R
k, then the two functionals in (2.1) and (2.3) are

functions ofθ and we will simply writeT(θ ) instead ofT(Fθ ). In this case we

may estimateT(θ ) by T(θ̂n), whereθ̂n is the maximum likelihood estimate of the
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unknown value ofθ . If T andFΘ satisfy suitable regularity conditions, then this

estimator is asymptotically normal and efficient, i.e.

√
n
(

T(θ̂n)−T(θ )
)

L−→ N(0,σ2
T(θ )), (2.5)

whereσ2
T(θ ) =

∂T
∂θ ′ I−1

θ
∂T
∂θ . In the variance expression∂T

∂θ andIθ indicate the (column)

vector of partial derivatives ofT with respect to the components of the parameter

vector and the information matrix at the unknown value ofθ , respectively. Ifσ2
T(θ )

is continuous inθ , thenσ2
T(θ̂n) is a consistent estimator ofσ2

T(θ ).

Besides the normal confidence intervals just described we will also consider dif-

ferent types of bootstrap confidence intervals, i.e. percentile, Bias Corrected Accel-

erated Bootstrap (Bca) and t-bootstrap confidence intervals.

For the non-parametric versions of these confidence intervals, we proceed as in

Greselin and Pasquazzi (2009) and estimate the bootstrap distributions by takingR=

9,999 resamples from the original sample (i.e. from̂Fn). As variance estimator for

σ2
T we use

S2
T;n =

1
n

n

∑
i=1

hT(Xi ; F̂n)
2,

and, following Efron (1987), we estimate the acceleration constant for the Bca confi-

dence intervals by

â=
1
6

∑n
i=1hT(Xi ; F̂n)

3

(
∑n

i=1hT(Xi ; F̂n)2
)3/2

. (2.6)

Heuristically, we may say that in the parametric versions ofthe confidence inter-

vals nothing changes with respect to the non-parametric setting, except thatFθ̂n
plays

the role ofF̂n. Indeed, the expansion corresponding to (2.4) in the non-parametric

setting, may now be replaced by

T(θ̂n) = T(θ )+
1
n

n

∑
i=1

∂ ln fθ (Xi)

∂θ ′ I−1
θ

∂T
∂θ

+op(n
−1/2), (2.7)

where∂ ln fθ (Xi)
∂θ is the score vector (a column vector) of thei-th sample componentXi

at the unknown true value ofθ . Thus, we may use

hT(Xi ; θ̂n) =
∂ ln fθ (Xi)

∂θ ′

∣∣∣∣
θ=θ̂n

I−1
θ̂n

∂T
∂θ

∣∣∣∣
θ=θ̂n

(2.8)
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instead ofhT(Xi ; F̂n) for estimating the varianceσ2
T(θ ), which results in

V2
T;n =

1
n

n

∑
i=1

hT(Xi ;Fθ̂n
)2

=
1
n

n

∑
i=1

∂T
∂θ ′

∣∣∣∣
θ=θ̂n

I−1
θ̂n

∂ ln fθ (Xi)

∂θ

∣∣∣∣
θ=θ̂n

∂ ln fθ (Xi)

∂θ ′

∣∣∣∣
θ=θ̂n

I−1
θ̂n

∂T
∂θ

∣∣∣∣
θ=θ̂n

.

(2.9)

In the same way we just substitutehT(Xi ; F̂n) by hT(Xi ; θ̂n) in (2.6) to get the estimate

of the acceleration constant for the parametric Bca confidence interval.

A detailed discussion about the computation of parametric confidence intervals

derived from Lognormal and Dagum families is given in the Appendix.

3 Simulation results

In an effort to gauge the actual performance of the inferential procedures, we devel-

oped a simulation study to assess coverage and mean length ofthe confidence in-

tervals. As mentioned above, we considered two parent distributions, the Lognormal

and the Dagum distribution, with parameter values given by the maximum likelihood

estimates obtained on the Italian equivalent income distribution in 2006 (γ = 9.6823

andδ = 0.6093 for the Lognormal;a = 3.6781,b = 19261.86 andp = 0.6875 for

the Dagum model). We drew 10,000 samples from each parent distribution and com-

puted the parametric and non-parametric confidence intervals for Gini’s and Zenga’s

new index. The coverage accuracies in Table 3.1 and Table 3.2are the proportion of

confidence intervals that contain the true value of the inequality measure, while the

mean lengths are the average of the 10,000 lengths of the 95% confidence intervals.

From theory we expect that, because of the asymptotic efficiency of the ML estima-

tors, the parametric confidence intervals should be shorterthan the non-parametric

ones. Indeed, in the light tailed Lognormal case (Table 3.1)we notice that the para-

metric confidence intervals clearly outperform the non-parametric ones. The former

are both shorter and have larger coverage probability than the corresponding non-

parametric ones. In estimating Gini’s index with samples ofsize 100,on average, the
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Lognormal parent distribution
1−2α 0.9 0.95 0.975 0.99 mean length 0.9 0.95 0.975 0.99 mean length

sample Normal confidence intervals Percentile confidence intervals
size

Gini - non-parametric
100 0.8624 0.9200 0.9531 0.9769 0.0918 0.8452 0.8989 0.93270.9583 0.0913
200 0.8773 0.9363 0.9671 0.9828 0.0669 0.8716 0.9269 0.95530.9760 0.0668
400 0.8839 0.9347 0.9640 0.9844 0.0481 0.8759 0.9302 0.95900.9793 0.0480

Gini - parametric
100 0.8932 0.9461 0.9720 0.9886 0.0861 0.8847 0.9362 0.96490.9827 0.0861
200 0.8977 0.9493 0.9734 0.9877 0.0612 0.8976 0.9454 0.96930.9863 0.0612
400 0.8909 0.9452 0.9731 0.9888 0.0433 0.8891 0.9423 0.97030.9873 0.0433

Zenga - non-parametric
100 0.8671 0.9255 0.9593 0.9813 0.1040 0.8594 0.9104 0.94080.9657 0.1037
200 0.8784 0.9372 0.9658 0.9843 0.0745 0.8737 0.9296 0.95670.9766 0.0744
400 0.8781 0.9368 0.9671 0.9855 0.0532 0.8742 0.9287 0.95810.9790 0.0531

Zenga - parametric
100 0.8929 0.9469 0.9737 0.9895 0.1033 0.8847 0.9362 0.96490.9827 0.1033
200 0.8973 0.9496 0.9742 0.9882 0.0728 0.8976 0.9454 0.96930.9863 0.0728
400 0.8915 0.9449 0.9733 0.9890 0.0514 0.8891 0.9423 0.97030.9873 0.0514

Bca confidence intervals t-bootstrap confidence intervals
Gini - non-parametric

100 0.8691 0.9226 0.9543 0.9783 0.0940 0.8881 0.9403 0.96720.9864 0.1054
200 0.8807 0.9366 0.9657 0.9828 0.0685 0.8928 0.9461 0.97330.9880 0.0727
400 0.8837 0.9350 0.9644 0.9847 0.0488 0.8906 0.9413 0.96970.9876 0.0503

Gini - parametric
100 0.9018 0.9513 0.9768 0.9903 0.0880 0.9015 0.9487 0.96950.9832 0.0929
200 0.9002 0.9521 0.9761 0.9886 0.0619 0.9003 0.9492 0.97250.9866 0.0635
400 0.8928 0.9462 0.9744 0.9891 0.0436 0.8922 0.9477 0.97300.9894 0.0441

Zenga - non-parametric
100 0.8766 0.9286 0.9599 0.9824 0.1031 0.8865 0.9377 0.96870.9866 0.1117
200 0.8845 0.9377 0.9642 0.9837 0.0744 0.8955 0.9469 0.97250.9880 0.0783
400 0.8805 0.9358 0.9660 0.9850 0.0533 0.8873 0.9426 0.97110.9873 0.0549

Zenga - parametric
100 0.9018 0.9513 0.9768 0.9903 0.1029 0.9095 0.9593 0.98080.9925 0.1062
200 0.9002 0.9521 0.9761 0.9886 0.0727 0.9045 0.9562 0.97780.9905 0.0738
400 0.8928 0.9462 0.9744 0.9891 0.0514 0.8950 0.9490 0.97580.9911 0.0518

Table 3.1 Simulation results: coverages and mean lengths of confidence intervals for Gini’s and Zenga’s
inequality measures. Samples are drawn from the Lognormal distribution with parametersγ = 9.682300
andδ = 0.609262

length of the interval decreases by 0.0074 and the coverage improves by 2.11% (the

corresponding figures are 0.0068 and+1.08% for samples of size 200; 0.0052 and

+0.77, respectively, for samples of size 400). Further, choosing a nominal coverage

of 0.95, the coverage improves from having amaximum difference from the nominal

of 5.11% to a value of 1.38% with samples of size 100 for the Lognormal model

(analogous results for the other cases). As for Zenga’s index, the length of the in-

terval decreases by 0.0031 and coverage increases by 1.86%, on average, when the

sample size is 100 (respectively 0.0033 and 1.12% for samples of size 200; 0.0037

and 0.86% for samples of size 400).

Commenting the results of the Dagum case (Table 3.2), it is important to keep in

mind the problem of non existence of the ML estimates discussed in the Appendix. In-

deed, the difference in coverage accuracy between the parametric and non-parametric
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Dagum parent distribution
1−2α 0.9 0.95 0.975 0.99 mean length 0.9 0.95 0.975 0.99 mean length

sample Normal confidence intervals Percentile confidence intervals
size

Gini - non-parametric
100 0.8469 0.9088 0.9430 0.9691 0.0977 0.8759 0.9346 0.96330.9819 0.0968
200 0.8666 0.9229 0.9551 0.9752 0.0727 0.8802 0.9357 0.96440.9841 0.0722
400 0.8835 0.9384 0.9653 0.9832 0.0533 0.8897 0.9442 0.97210.9876 0.0532

Gini - parametric
100 0.7839 0.8439 0.8810 0.9042 0.0993 0.8092 0.8631 0.89150.9106 0.0994
200 0.8620 0.9175 0.9485 0.9678 0.0723 0.8730 0.9254 0.95390.9698 0.0723
400 0.8932 0.9459 0.9718 0.9862 0.0520 0.8938 0.9464 0.97260.9883 0.0520

Zenga - non-parametric
100 0.8486 0.9143 0.9506 0.9748 0.1218 0.8757 0.9336 0.96430.9833 0.1210
200 0.8644 0.9240 0.9596 0.9818 0.0890 0.8815 0.9359 0.96720.9870 0.0886
400 0.8781 0.9375 0.9676 0.9857 0.0647 0.8899 0.9456 0.97190.9883 0.0646

Zenga - parametric
100 0.8081 0.8645 0.8933 0.9140 0.1234 0.8263 0.8745 0.90290.9181 0.1234
200 0.8786 0.9276 0.9561 0.9727 0.0880 0.8841 0.9324 0.95870.9747 0.0881
400 0.8962 0.9499 0.9737 0.9891 0.0625 0.8983 0.9509 0.97420.9895 0.0625

Bca confidence intervals t-bootstrap confidence intervals

Gini - non-parametric
100 0.8279 0.8836 0.9213 0.9504 0.1016 0.8530 0.9135 0.94830.9725 0.1196
200 0.8514 0.9063 0.9401 0.9661 0.0758 0.8644 0.9206 0.95340.9778 0.0837
400 0.8757 0.9309 0.9581 0.9778 0.0553 0.8783 0.9339 0.96570.9833 0.0586

Gini - parametric
100 0.8182 0.8672 0.8939 0.9103 0.1045 0.8120 0.8678 0.89440.9141 0.1046
200 0.8806 0.9319 0.9584 0.9737 0.0742 0.8751 0.9290 0.95570.9714 0.0740
400 0.9004 0.9503 0.9735 0.9885 0.0526 0.8963 0.9497 0.97420.9889 0.0523

Zenga - non-parametric
100 0.8363 0.8939 0.9275 0.9564 0.1213 0.8603 0.9215 0.95390.9770 0.1359
200 0.8495 0.9064 0.9425 0.9680 0.0895 0.8678 0.9242 0.95620.9816 0.0973
400 0.8744 0.9263 0.9567 0.9773 0.0654 0.8793 0.9352 0.96400.9843 0.0692

Zenga - parametric
100 0.8158 0.8677 0.8942 0.9116 0.1240 0.8251 0.8735 0.90140.9173 0.1252
200 0.8781 0.9304 0.9574 0.9744 0.0883 0.8831 0.9322 0.95890.9753 0.0886
400 0.8967 0.9505 0.9746 0.9874 0.0626 0.8994 0.9506 0.97500.9898 0.0626

Table 3.2 Simulation results: coverages and mean lengths of confidence intervals for Gini’s and Zenga’s
inequality measures. Samples are drawn from the Dagum distribution with parameters a= 3.678111,
b= 19261.86 and p= 0.687456

confidence intervals for samples of sizen = 100 is approximately equal to the pro-

portion of samples for which our root search algorithm did not come up with agood

solution of the likelihood equations (see section 2.2 for the figures). Forn= 200 and

n= 400, when the problem of non-existence of the solutions of the likelihood equa-

tions becomes negligible, the parametric Dagum confidence intervals perform clearly

better than the corresponding non-parametric ones. For Zenga’s index, the length of

the interval decreases by 0.0029 and coverage increases by 0.48%, on average, when

the sample size is 200 (0.0034 and 1.15%, respectively, for samples of size 400).

Similar results have been obtained for Gini’s measure.
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Summarizing, we may say that switching to parametric confidence intervals leads

to a considerable improvement in terms of coverage accuracyfor both inequality

measures.

4 Cross-regional results of income inequality in Italy

In this section we compute the above confidence intervals forGini’s and Zenga’s

inequality measures on income samples from the 20 Italian regions. Our aim is to

assess differences in inequality among regions and to show how the methodology

developed above can be effective to this aim. The data come from the 2008 wave

of the Survey on Household Income and Wealth conducted by theBank of Italy.

Along with income, this survey reports different characteristics of 7,977 households

and their members such as geographic location, age, employment status etcetera. For

detailed information on the survey, we refer to the Bank of Italy (2008) publication.

Since the theory in the preceding section applies only to positive incomes, we deleted

the non-positive incomes we found in the sample.1

In order to treat data correctly in the case of different household sizes, we work

with equivalent incomes, which we have obtained by dividingthe total household

income by an equivalence coefficient, which is the sum of weights assigned to each

household member. Following the modified OECD (Organization for Economic Co-

operation and Developement) equivalence scale, we give weight 1 to the household

head, 0.5 to the other adult members of the household, and 0.3to the members under

14 years of age (see Bank of Italy, 2008).

The confidence intervals we present in this section should, however, be interpreted

with some care. Indeed, as in virtually every large official survey, the SHIW data were

collected according to a complex sample design, but the methods presented in the

preceding sections apply only to simple random sampling. There is growing attention

1Overall, there are 19 non positive incomes in the sample: 1 ineach of the samples from Trentino,
Veneto, Liguria, Abruzzo, Molise and Sardinia, 2 in the samples from Emilia Romagna and Campania, 3
in the sample from Sicily and 6 in the sample from Apulia.
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in the literature to methods for variance and interval estimation for complex designs.

A correct use of these methods is however far from trivial, and many researchers

therefore stick with simple random sampling methods to get at least approximations

to the results they would have obtained if they employed moreinvolved procedures.

In this work we will follow this custom.

Let us now analyze the content of Tables 5.3, 5.4 and 5.5. The first group of

columns reports for each region the non-parametric point estimates of the inequal-

ity measures and the corresponding 95% confidence intervals. The second and third

groups of columns refer to the parametric Lognormal and Dagum confidence inter-

vals. Besides the maximum likelihood estimates of the inequality measures, the val-

ues of the Supremum Class Anderson Darling test statistic, i.e.

AD = sup
x

|Fn(x)−Fθ̂n
(x)|

Fθ̂n
(x)(1−Fθ̂n

(x))

= sup
i=1,2,...,n

|i/n−Fθ̂n
(xi)|

Fθ̂n
(xi)(1−Fθ̂n

(xi))

and the p-values of the goodness of fit test based on this statistic are reported. The p-

value is the fraction of bootstrap replicates of the AD statistic which is larger than the

value of the AD statistic observed on the original sample. While in the Lognormal

case the p-value is always based on 9,999 bootstrap replicates, in the Dagum case

the number of bootstrap replicates for the computation of the p-value may be larger,

since in case our root search algorithm does not find a local maximum for some boot-

strap resample we put the value of the bootstrap replicate ofthe AD statistic equal to

infinity and take an additional resample in order to get anyway 9,999 bootstrap repli-

cates of the inequality measures and their studentized versions for the computation

of the confidence intervals. The figures in brackets to the right of the p-values for the

Dagum model are the number of resamples we needed to take. To put the value of the

AD statistic equal to infinity when the ML estimates of the parameters do not exist
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seems a natural choice, as the probability of this event tends to zero if the Dagum

model is indeed thetruemodel.

The p-values for the Lognormal model reveal the rather poor fit provided by this

model. Of the 20 regional income distributions considered in this work, the Lognor-

mal model seems to fit only those from Aosta Valley, Trentino,Veneto, Liguria, Um-

bria, Abruzzo, Basilicata, Calabria and Sardinia. The Dagum model performs better,

having a p-value larger than 0.025 in 18 out of the 20 regional income distributions.2

Figures 4.1 and 4.2 graphically show the normal, Bca and t-bootstrap confidence

intervals, for ease of comparison among regions and betweenthe parametric and non

parametric types of estimation. The parametric Lognormal and/or Dagum confidence

intervals are reported only if the p-value for the model is greater than 0.01. The re-

gions on the abscissa are ordered according to the value of the non-parametric point

estimate of Gini’s or Zenga’s measure. It is worth noting that the orderings induced

by the non-parametric point estimates of Gini’s and Zenga’sindex are different, be-

cause different measures reveal different features of the income distribution (for a

deeper insight on this issue, see Greselin et al., 2010).

The non-parametric point estimates for the Gini (Zenga) index range from 0.1621

(0.4137) in Aosta Valley to 0.3400 (0.6665) in Apulia. As perhaps expected, the dif-

ference between the non-parametric and the ML-estimates ofthe inequality measures

is quite small (usually less than 0.02, with few exceptions given by Molise, Abruzzo

and Apulia) whenever, according to the p-value, the model fits well the data.

Finally, we will now comment on the confidence intervals. In general, we observe

that the different methods to construct confidence intervals seem to have little impact

on interval locations (whenever the parametric model has a good fit) but a slight im-

provement arises in establishing interval boundaries, when we compare results from

the parametric (giving shorter intervals) and the non parametric approach. Besides

this, we notice that even though moderately large sample sizes, the confidence inter-

2The only exceptions are Lazio and Campania regions.
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Fig. 4.1 Gini’s index: Confidence intervals based in the non-parametric, the Lognormal and the Dagum parametric approaches for the twenty Italian regions
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Fig. 4.2 Zenga’s index: Confidence intervals based in the non-parametric, the Lognormal and the Dagum parametric approaches forthe twenty Italian regions
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vals for the inequality measures are occasionally very large. For example, on the 445

observations from the Apulia region, the non-parametric normal confidence interval

for Gini’s (Zenga’s) index stretches from 0.2798 to 0.4047 (0.6121 to 0.7290). The

corresponding Lognormal confidence interval is much shorter, but the p-value for

the Lognormal model is virtually zero. The ML-estimates forthe parameters of the

Dagum model do exist in this region giving raise to a good model fit to data, assessed

by a p-value of 0.1426, so that we obtain the shorter Dagum confidence intervals

stretching from 0.2699 to 0.3207 (0.5875 to 0.6484). On the other side, the shortest

nonparametric interval arises for Piedmont, with a width of0.0298 for the Gini’s in-

dex (respectively 0.0456 for the Zenga’s index). For Piedmont the estimation is based

on a sample of 789 statistical units, and we can rely on the non-parametric and the

parametric Dagum approach.

The t-bootstrap confidence intervals in figures 4.1 and 4.2 are in some instances

markedly right skewed, suggesting that convergence to the normal limit distribution

has not yet occurred for the considered sample sizes.

From Liguria data, the estimation of the Gini index gives a non-parametric con-

fidence interval of about 6 percentage points, while the parametric interval estimate

is 4 percentage points wide for the Lognormal and 5 percentage points wide for the

Dagum model. In the case of the Zenga index, those figures are respectively 8 per-

centage points, 6 for the Lognormal and 7 for the Dagum. Thosefigure are more

interesting if we rephrase them in terms of the point estimate of the index, giving a

relative variation of about 23% for the Gini and of only 14% for the Zenga index.

When confidence intervals do not overlap, as in Aosta Valley and Abruzzi (non

parametric and Dagum confidence intervals), for example, wecan unambiguously as-

sess this difference to be statistically significant. So we can say that Aosta Valley has

the lowest degree of inequality with respect to all other regions (with the only excep-

tion of Umbria). We can also infer that Umbria has a lower inequality in household

income than Emilia Romagna, Sardinia, Liguria, Basilicata, and so on.
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5 Conclusions

The results reported and discussed in this paper concern a cross-regional analysis of

household income inequality in Italy, based on real income data coming from Bank

of Italy’s 2008Survey on Household Income and Wealth. We observe considerable

differences among geographic areas as the estimates for theGini (Zenga) index range

from a value of 0.1621 (0.4137) in Aosta Valley to 0.3400 (0.6665) in Apulia region,

denoting a remarkable gap. Further, looking for statistical significance of compar-

isons among regions, we explored parametric inference for Gini’s and Zenga’s new

index of inequality and compared its performance with respect to the non-parametric

approach. We considered two common models in income analysis: the Lognormal

and the Dagum families. Recalling their popularity with income distributions, we

saw that in our case the Lognormal model hardly fits the real data, because of its light

tail, while the Dagum model gives a further confirmation of its ability to describe

income distributions, in almost all cases. The first results, based on simulations, con-

firm that there is some advantage in terms of length and coverage accuracy with para-

metric confidence intervals. However, as our application toItaly’s regional income

distributions shows, comparisons based on non-parametricand parametric inferential

methods (when they may be applied) lead to almost the same conclusions.

6 Appendix

6.1 Lognormal confidence intervals

Recall first that a distribution belongs to the Lognormal family if its density function

is given by

f (x;γ,δ ) =
1

δ
√

2π
1
x

e
− 1

2

(
lnx−γ

δ

)2

, x> 0

for some−∞ < γ < ∞ and δ > 0. In our simulation study we used a Lognormal

parent distribution withγ = 0.6823 andδ = 0.6093, i.e. the maximum likelihood
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non-parametric Lognormal Dagum

Abruzzo (Sample sizen= 200, mean income 18,103.1887)
AD - 3.4861 2.0651

p-value - 0.0826 0.4548 (14,225)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2443 0.5491 0.2487 0.5541 0.2676 0.5834
normal 0.2239÷0.2673 0.5169÷0.5855 0.2383÷0.2853 0.5385÷0.6093 0.2500÷0.3115 0.5571÷0.6434

perc 0.2219÷0.2654 0.5134÷0.5817 0.2246÷0.2719 0.5165÷0.5879 0.2249÷0.2857 0.5239÷0.6093
Bca 0.2259÷0.2704 0.5197÷0.5896 0.2380÷0.2859 0.5378÷0.6071 0.2500÷0.3162 0.5572÷0.6476

t-boot 0.2251÷0.2702 0.5174÷0.5890 0.2399÷0.2939 0.5399÷0.6154 0.2505÷0.3218 0.5578÷0.6470

Aosta Valley (Sample sizen= 45, mean income 18,743.6443)
AD 1.8304 1.3251

p-value 0.3005 0.9223 (35,729)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.1621 0.4137 0.1690 0.4192 0.1822 0.4635
normal 0.1378÷0.1930 0.3566÷0.4691 0.1140÷0.1819 0.3145÷0.4444 0.1604÷0.2419 0.4217÷0.5868

perc 0.1298÷0.1854 0.3586÷0.4723 0.1332÷0.2007 0.3477÷0.4767 0.1244÷0.2055 0.3401÷0.5049
Bca 0.1379÷0.1934 0.3661÷0.4853 0.1125÷0.1813 0.3027÷0.4422 0.1618÷0.2691 0.1608÷0.2649

t-boot 0.1375÷0.1954 0.3631÷0.4676 0.1302÷0.1901 0.3353÷0.4562 0.4244÷0.6015 0.4227÷0.6143

Apulia (Sample sizen= 445, mean income 14,770.4706)
AD - 70785.5222 63.7935

p-value - 0.0000 0.1426 (11,662)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.3400 0.6665 0.3323 0.6660 0.2976 0.6230
normal 0.2798÷0.4047 0.6121÷0.7290 0.3097÷0.3510 0.6393÷0.6884 0.2699÷0.3207 0.5875÷0.6484

perc 0.2821÷0.4055 0.6057÷0.7207 0.3113÷0.3523 0.6403÷0.6891 0.2749÷0.3260 0.5971÷0.6586
Bca 0.2953÷0.4377 0.6198÷0.7433 0.3095÷0.3506 0.6381÷0.6871 0.2733÷0.3234 0.5898÷0.6496

t-boot 0.2875÷0.4853 0.6131÷0.7738 0.3122÷0.3534 0.6404÷0.6894 0.2720÷0.3234 0.5877÷0.6498

Basilicata(Sample sizen= 128, mean income 14,261.9247)
AD - 6.3792 2.1434

p-value - 0.0169 0.3388 (12,527)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2716 0.5907 0.2857 0.6069 0.2709 0.5932
normal 0.2462÷0.3011 0.5513÷0.6345 0.2375÷0.3033 0.5416÷0.6313 0.2143÷0.3017 0.5212÷0.6328

perc 0.2422÷0.2966 0.5460÷0.6296 0.2509÷0.3166 0.5574÷0.6470 0.2419÷0.3301 0.5530÷0.6656
Bca 0.2465÷0.3022 0.5523÷0.6352 0.2362÷0.3027 0.5349÷0.6294 0.2216÷0.3027 0.5217÷0.6334

t-boot 0.2464÷0.3024 0.5523÷0.6361 0.2464÷0.3086 0.5463÷0.6351 0.2251÷0.3050 0.5237÷0.6347

Calabria (Sample sizen= 190, mean income 14,087.3514)
AD - 4.0953 1.9182

p-value - 0.0561 0.5553 (16,409)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2759 0.5941 0.2797 0.5987 old old
normal 0.2520÷0.3029 0.5603÷0.6321 0.2304÷0.2847 0.5306÷0.6056 0.1914÷0.2627 0.4952÷0.5866

perc 0.2492÷0.2996 0.5555÷0.6273 0.2509÷0.3054 0.5574÷0.6329 0.2485÷0.3202 0.5601÷0.6515
Bca 0.2529÷0.3038 0.5605÷0.6322 0.2270÷0.2840 0.5205÷0.6046 0.2182÷0.2612 0.5201÷0.5860

t-boot 0.2525÷0.3043 0.5602÷0.6325 0.2390÷0.2874 0.5354÷0.6084 0.2083÷0.2613 0.5011÷0.5864

Campania (Sample sizen= 625, mean income 12,523.8394)
AD - 3,857,032.5014 35.3209

p-value - 0.0000 0.0005 (10,000)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.3093 0.6462 0.3466 0.6826 0.3156 0.6509
normal 0.2843÷0.3357 0.6175÷0.6780 0.3232÷0.3591 0.6560÷0.6970 0.3038÷0.3466 0.6347÷0.6850

perc 0.2842÷0.3353 0.6149÷0.6752 0.3283÷0.3641 0.6613÷0.7021 0.2853÷0.3276 0.6167÷0.6672
Bca 0.2879÷0.3414 0.6194÷0.6810 0.3233÷0.3592 0.6551÷0.6968 0.3039÷0.3492 0.6349÷0.6847

t-boot 0.2867÷0.3418 0.6181÷0.6818 0.3254÷0.3604 0.6567÷0.6975 0.3038÷0.3513 0.6345÷0.6864

Emilia Romagna (Sample sizen= 718, mean income 23,532.0146)
AD - 33.3814 2.4770

p-value - 0.0009 0.1895 (10,000)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2556 0.5741 0.2715 0.5873 0.2495 0.5664
normal 0.2392÷0.2728 0.5507÷0.5997 0.2556÷0.2826 0.5650÷0.6031 0.2261÷0.2585 0.5349÷0.5802

perc 0.2389÷0.2725 0.5486÷0.5975 0.2579÷0.2849 0.5678÷0.6059 0.2407÷0.2732 0.5524÷0.5976
Bca 0.2409÷0.2756 0.5523÷0.6020 0.2561÷0.2828 0.5651÷0.6030 0.2286÷0.2585 0.5351÷0.5803

t-boot 0.2408÷0.2760 0.5521÷0.6031 0.2568÷0.2835 0.5656÷0.6035 0.2287÷0.2586 0.5360÷0.5804

Table 5.1 Cross-regional levels of income inequality expressed by the Gini and the Zenga indexes, fol-
lowed by their 95% confidence intervals, in non-parametric (columns 1-2) and parametric setting (columns
3-6), for Italian regions from Abruzzo to Emilia Romagna (segue).
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non-parametric Lognormal Dagum

Friuli (Sample sizen= 253, mean income 23,412.4072)
AD - 175.2041 3.4627

p-value - 0.0000 0.0704 (10,024)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.3143 0.6519 0.3269 0.6595 0.2985 0.6373
normal 0.2562÷0.3772 0.5926÷0.7215 0.3159÷0.3694 0.6464÷0.7110 0.2758÷0.3378 0.6125÷0.6903

perc 0.2579÷0.3769 0.5827÷0.7094 0.2992÷0.3531 0.6249÷0.6900 0.2604÷0.3221 0.5836÷0.6616
Bca 0.2692÷0.4009 0.5987÷0.7291 0.3156÷0.3675 0.6457÷0.7058 0.2773÷0.3431 0.6134÷0.6891

t-boot 0.2631÷0.4555 0.5935÷0.7738 0.3172÷0.3776 0.6469÷0.7136 0.2779÷0.3429 0.6136÷0.6917

Lazio (Sample sizen= 413, mean income 19,815.4741)
AD - 10,328,146.4376 31.6265

p-value - 0.0000 0.0006 (9,999)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2945 0.6291 0.3372 0.6718 0.3067 0.6448
normal 0.2730÷0.3173 0.6013÷0.6592 0.3393÷0.3822 0.6739÷0.7242 0.2893÷0.3391 0.6240÷0.6845

perc 0.2721÷0.3162 0.5983÷0.6563 0.3153÷0.3580 0.6454÷0.6954 0.2755÷0.3252 0.6055÷0.6656
Bca 0.2740÷0.3190 0.6017÷0.6596 0.3390÷0.3804 0.6739÷0.7194 0.2901÷0.3461 0.6246÷0.6867

t-boot 0.2737÷0.3193 0.6014÷0.6604 0.3398÷0.3892 0.6746÷0.7259 0.2900÷0.3429 0.6242÷0.6852

Liguria (Sample sizen= 314, mean income 22154.2403)
AD - 4.2168 1.3990

p-value - 0.0531 0.8331 (13,711)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2677 0.5839 0.2648 0.5777 0.2617 0.5769
normal 0.2381÷0.2997 0.5463÷0.6259 0.2278÷0.2676 0.5245÷0.5817 0.2346÷0.2859 0.5401÷0.6098

perc 0.2370÷0.2984 0.5412÷0.6203 0.2448÷0.2841 0.5482÷0.6047 0.2385÷0.2899 0.5438÷0.6142
Bca 0.2421÷0.3066 0.5484÷0.6295 0.2263÷0.2677 0.5194÷0.5820 0.2378÷0.2889 0.5423÷0.6117

t-boot 0.2409÷0.3111 0.5482÷0.6347 0.2333÷0.2685 0.5282÷0.5827 0.2369÷0.2879 0.5408÷0.6109

Lombardy (Sample sizen= 844, mean income 25,119.3734)
AD - 1,182,207,030.5158 226.0723

p-value - 0.0000 0.0258 (10,264)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.3220 0.6539 0.3315 0.6650 0.3081 0.6382
normal 0.2978÷0.3471 0.6284÷0.6815 0.3111÷0.3409 0.6408÷0.6763 0.2819÷0.3212 0.6072÷0.6516

perc 0.2983÷0.3475 0.6267÷0.6797 0.3166÷0.3459 0.6469÷0.6818 0.2957÷0.3348 0.6249÷0.6691
Bca 0.3019÷0.3527 0.6309÷0.6851 0.3108÷0.3410 0.6397÷0.6762 0.2862÷0.3220 0.6113÷0.6519

t-boot 0.3002÷0.3531 0.6293÷0.6860 0.3130÷0.3416 0.6417÷0.6766 0.2842÷0.3214 0.6077÷0.6517

Marche (Sample sizen= 354, mean income 20,695.0153)
AD - 471,034,784.5457 347.5015

p-value - 0.0000 0.0388 (10,403)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2936 0.6189 0.3266 0.6591 0.2815 0.6118
normal 0.2572÷0.3323 0.5770÷0.6660 0.2792÷0.3247 0.6016÷0.6566 0.2548÷0.3076 0.5834÷0.6504

perc 0.2567÷0.3316 0.5713÷0.6607 0.3029÷0.3484 0.6297÷0.6846 0.2565÷0.3092 0.5736÷0.6408
Bca 0.2632÷0.3422 0.5798÷0.6706 0.2815÷0.3245 0.6012÷0.6567 0.2576÷0.3105 0.5841÷0.6517

t-boot 0.2610÷0.3503 0.5776÷0.6778 0.2857÷0.3256 0.6038÷0.6577 0.2584÷0.3084 0.5842÷0.6503

Molise (Sample sizen= 137, mean income 17,100.6103)
AD 16.7838 1.9577

p-value 0.0026 0.3262 (11,210)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.3026 0.6356 0.3183 0.6491 0.3348 0.6688
normal 0.2671÷0.3428 0.5902÷0.6890 0.2609÷0.3318 0.5781÷0.6661 0.3101÷0.4034 0.6359÷0.7438

perc 0.2635÷0.3395 0.5807÷0.6804 0.2815÷0.3522 0.6012÷0.6890 0.2688÷0.3611 0.5938÷0.7005
Bca 0.2722÷0.3510 0.5933÷0.6930 0.2584÷0.3313 0.5684÷0.6648 0.3100÷0.4292 0.6363÷0.7534

t-boot 0.2703÷0.3576 0.5911÷0.7017 0.2715÷0.3359 0.5819÷0.6687 0.3105÷0.4294 0.6365÷0.7498

Piedmont (Sample sizen= 789, mean income 19,844.2667)
AD - 49.3686 2.1106

p-value - 0.0004 0.3041 (10,027)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2292 0.5319 0.2379 0.5376 0.2234 0.5241
normal 0.2147÷0.2445 0.5100÷0.5556 0.2180÷0.2408 0.5067÷0.5421 0.2057÷0.2336 0.4997÷0.5421

perc 0.2142÷0.2438 0.5082÷0.5531 0.2263÷0.2490 0.5193÷0.5546 0.2134÷0.2411 0.5059÷0.5483
Bca 0.2155÷0.2455 0.5102÷0.5556 0.2167÷0.2407 0.5037÷0.5419 0.2070÷0.2338 0.5000÷0.5419

t-boot 0.2156÷0.2458 0.5106÷0.5563 0.2199÷0.2412 0.5082÷0.5425 0.2076÷0.2337 0.5007÷0.5425

Table 5.2 Cross-regional levels of income inequality expressed by the Gini and the Zenga indexes, fol-
lowed by their 95% confidence intervals, in non-parametric (columns 1-2) and parametric setting (columns
3-6), for Italian regions from Friuli to Piedmont (continuation).
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non-parametric Lognormal Dagum

Sardinia (Sample sizen= 334, mean income 15,826.8052)
AD 8.5697 2.1011

p-value 0.0125 0.2506 (10,084)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2581 0.5746 0.2683 0.5827 0.2798 0.6068
normal 0.2379÷0.2799 0.5459÷0.6063 0.2742÷0.3127 0.5908÷0.6456 0.2718÷0.3205 0.5968÷0.6630

perc 0.2362÷0.2785 0.5422÷0.6028 0.2489÷0.2871 0.5543÷0.6088 0.2402÷0.2891 0.5510÷0.6169
Bca 0.2390÷0.2818 0.5464÷0.6070 0.2742÷0.3088 0.5911÷0.6372 0.2711÷0.3211 0.5966÷0.6577

t-boot 0.2392÷0.2825 0.5467÷0.6082 0.2744÷0.3207 0.5913÷0.6495 0.2710÷0.3275 0.5968÷0.6649

Sicily (Sample sizen= 526, mean income 13,364.4196)
AD 27.0621 3.5450

p-value 0.0012 0.0855 (10,170)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.3349 0.6721 0.3441 0.6797 0.3133 0.6494
normal 0.3046÷0.3668 0.6408÷0.7065 0.3263÷0.3653 0.6594÷0.7043 0.2726÷0.3255 0.6062÷0.6635

perc 0.3036÷0.3665 0.6371÷0.7031 0.3239÷0.3634 0.6559÷0.7013 0.3017÷0.3544 0.6350÷0.6920
Bca 0.3083÷0.3723 0.6425÷0.7081 0.3260÷0.3653 0.6585÷0.7034 0.2780÷0.3254 0.6030÷0.6641

t-boot 0.3071÷0.3752 0.6409÷0.7108 0.3278÷0.3681 0.6597÷0.7054 0.2795÷0.3254 0.6083÷0.6638

Trentino (Sample sizen= 173, mean income 21,645.1988)
AD - 2.6089 1.7095

p-value - 0.1568 0.4141 (10,334)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2599 0.5787 0.2618 0.5734 0.2419 0.5591
normal 0.2072÷0.3170 0.5144÷0.6541 0.2118÷0.2652 0.5005÷0.5783 0.2100÷0.2720 0.5187÷0.6099

perc 0.2103÷0.3179 0.5063÷0.6431 0.2337÷0.2873 0.5311÷0.6091 0.2128÷0.2751 0.5078÷0.5998
Bca 0.2210÷0.3521 0.5236÷0.6738 0.2094÷0.2645 0.4916÷0.5774 0.2148÷0.2778 0.5217÷0.6152

t-boot 0.2148÷0.3644 0.5161÷0.6947 0.2208÷0.2675 0.5064÷0.5809 0.2152÷0.2738 0.5204÷0.6113

Tuscany (Sample sizen= 619, mean income 23,840.4409)
AD - 23.6587 2.7008

p-value - 0.0013 0.1764 (10,437)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2492 0.5590 0.2545 0.5628 0.2340 0.5380
normal 0.2335÷0.2661 0.5361÷0.5842 0.2411÷0.2689 0.5431÷0.5842 0.1971÷0.2332 0.4861÷0.5362

perc 0.2326÷0.2655 0.5336÷0.5818 0.2401÷0.2680 0.5411÷0.5823 0.2353÷0.2711 0.5400÷0.5898
Bca 0.2350÷0.2679 0.5374÷0.5853 0.2407÷0.2685 0.5420÷0.5831 0.2242÷0.2327 0.5220÷0.5364

t-boot 0.2342÷0.2682 0.5367÷0.5862 0.2425÷0.2708 0.5442÷0.5857 0.2033÷0.2326 0.4888÷0.5360

Umbria (Sample sizen= 267, mean income 18,926.5312)
AD - 4.2205 2.3714

p-value - 0.0520 0.1829 (10,138)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.1952 0.4782 0.2037 0.4819 0.2051 0.4934
normal 0.1727÷0.2195 0.4399÷0.5204 0.1895÷0.2233 0.4577÷0.5156 0.1989÷0.2378 0.4826÷0.5505

perc 0.1721÷0.2189 0.4358÷0.5161 0.1867÷0.2201 0.4519÷0.5093 0.1729÷0.2115 0.4363÷0.5034
Bca 0.1751÷0.2231 0.4415÷0.5230 0.1896÷0.2233 0.4572÷0.5144 0.1989÷0.2262 0.4833÷0.5261

t-boot 0.1746÷0.2258 0.4409÷0.5269 0.1916÷0.2267 0.4600÷0.5190 0.1990÷0.2441 0.4834÷0.5544

Veneto (Sample sizen= 596, mean income 20,567.9419)
AD 7.8753 2.2449

p-value 0.0166 0.2945 (10,815)
Gini Zenga Gini Zenga Gini Zenga

point est. 0.2880 0.6122 0.2862 0.6076 0.2823 0.6052
normal 0.2616÷0.3158 0.5816÷0.6458 0.2718÷0.3030 0.5883÷0.6304 0.2673÷0.3074 0.5860÷0.6373

perc 0.2613÷0.3155 0.5789÷0.6426 0.2700÷0.3013 0.5852÷0.6275 0.2575÷0.2977 0.5723÷0.6243
Bca 0.2652÷0.3211 0.5838÷0.6488 0.2715÷0.3024 0.5873÷0.6290 0.2680÷0.3089 0.5863÷0.6374

t-boot 0.2640÷0.3232 0.5826÷0.6506 0.2733÷0.3052 0.5892÷0.6319 0.2680÷0.3106 0.5863÷0.6390

Table 5.3 Cross-regional levels of income inequality expressed by the Gini and the Zenga indexes, fol-
lowed by their 95% confidence intervals, in non-parametric (columns 1-2) and parametric setting (columns
3-6), for Italian regions from Sardinia to Veneto (end).

estimates obtained on the Italian equivalent income distribution in 2006, from which

we generated 10,000 simple random samples of sizen= 100, 200 and 400.

In this model the likelihood equations have a solution at every point of the sample

space (i.e. points ofRn with strictly positive coordinates), and the maximum likeli-
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hood estimators of the parameters are given by

γ̂n =
1
n

n

∑
i=1

lnXi , δ̂n =

√
1
n

n

∑
i=1

ln2Xi − γ̂2
n. (6.1)

The Lorenz curve and Gini’s index are respectively given by (Zenga, 1984)

L(p;γ,δ ) = Φ
(
Φ−1(p)− δ

)
0< p< 1

and

G(γ,δ ) = 2Φ(δ/
√

2)−1.

The value of Zenga’s index may be obtained by substitutingLF(p) with L(p;γ,δ ) in

(2.3) so that, by simple algebra

Z(γ,δ ) =
∫ 1

0

p−Φ(Φ−1(p)− δ )
p{1−Φ(Φ−1(p)− δ )}dp, (6.2)

where the integral has to be computed by numerical methods. In order to get the influ-

ence valueshT(Xi ,θ ) we need the gradient vectors of the two inequality functionals

with respect to the parameters. Sinceγ is a scale parameter, we just need to compute

the derivatives of the two functionals with respect toδ . For Gini’s index we easily get

∂G
∂δ

=
√

2φ(δ/
√

2),

whereφ is the standard normal density function. For Zenga’s index in (6.2) we may

take the derivative under the integral sign. Thus, we obtain

∂Z
∂δ

=

∫ 1

0

1− p
p

φ(Φ−1(p)− δ )
[1−Φ(Φ−1(p)− δ )]2

dp.

Finally, recalling that the Lognormal information matrix is given by

I =
[ 1

δ 2 0
0 1

2δ 4

]

and that the score function is given by

∂ ln f (x;γ,δ )
∂δ

=
1
δ

[(
lnx− γ

δ

)2

−1

]
, (6.3)
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we see that

hG(x;γ,δ ) = 23/2δ 3

[(
lnx− γ

δ

)2

−1

]
φ(δ/

√
2)

when dealing with Gini’s index, whereas

hZ(x;γ,δ ) = 2δ 3

[(
lnx− γ

δ

)2

−1

]∫ 1

0

1− p
p

φ(Φ−1(p)− δ )
[1−Φ(Φ−1(p)− δ )]2

dp

when Zenga’s index is considered.

6.2 Dagum confidence intervals

F belongs to the Dagum family if its density function is given by

f (x) =
apxap−1

bap
[
1+

(
x
b

)a]p+1 , x> 0

for somea,b, p > 0 (Kleiber and Kotz, 2003). Notice that the first moment of a

Dagum distribution is finite if and only ifa> 1, and therefore the inequality measures

we consider in this paper are only defined for the subfamily ofDagum distributions

with a> 1.

As in the Lognormal case, we used the maximum likelihood estimates from the

Italian equivalent income distribution as parameter values for the parent distribution.

Thus we simulated 10,000 samples from the Dagum distribution witha = 3.6781,

b = 19,262 andp = 0.6875 in order to analyze coverage accuracy and length of

confidence intervals for Gini’s and Zenga’s new index.

Given an i.i.d. samplex1,x2, ...,xn, the likelihood equations for the Dagum family

are given by 



n
a
+ p

n

∑
i=1

ln
(xi

b

)
− (p+1)

n

∑
i=1

ln
( xi

b

)

1+
(

b
xi

)a = 0

np− (p+1)
n

∑
i=1

1

1+
(

b
xi

)a = 0

n
p
+a

n

∑
i=1

ln
(xi

b

)
−

n

∑
i=1

ln
[
1+

(xi

b

)a]
= 0

(6.4)
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However, no explicit solution of this system is known. The MLestimation problem is

easier to handle if we observe that the natural logarithm of aDagum random variable

follows a generalized logistic distribution with density function given by

f (y) =
α
σ

e−
x−θ

σ
(

1+e−
x−θ

σ
)α+1 , −∞ < y< ∞,

where−∞ < θ < ∞ andα,σ > 0. Notice thatθ andσ are the location and scale

parameter, respectively, whileα is a shape parameter that affects asymmetry. The

parameters of the generalized logistic distribution are related to those of the Dagum

distribution by the relations

a=
1
σ
, b= eθ , p= α.

Thus, the problem of solving the system in (6.4) is equivalent to the problem of

finding a solution of the likelihood equations of the generalized logistic distribution,

which are given by




n
α
−

n

∑
i=1

ln
(

1+e−
yi−θ

σ
)
= 0

− n
σ
+

1
σ

n

∑
i=1

yi −θ
σ

− α +1
σ

n

∑
i=1

yi−θ
σ

1+e
yi−θ

σ
= 0

n
σ
− α +1

σ

n

∑
i=1

1

1+e
yi−θ

σ
= 0

(6.5)

In our simulation study we employed an iterative two step procedure for solving this

system. At stepi we first find an updateθi andσi of the location and scale parameters

through a single Newton-Raphson step applied to the last twoequations of the system

(6.5). Then we useθi and σi in the first equation in order to get an updateαi of

the shape parameter. If the likelihood function has a local maximum, this two step

procedure will converge to it provided that the starting point (α0, θ0, σ0) is not too far

from the solution. The initial values for this algorithm arethus of crucial importance.

We select them by least squares fitting the three quartiles ofthe generalized logistic

distribution with shape parameterα = 1 to the corresponding quartiles of the natural
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logarithm of the sample observations. Since the quantile function of the generalized

logistic distribution, given by

y(t) = θ +σ ln

(
tα

1− tα

)
, 0< t < 1,

is linear inθ andσ , we find a closed form solution for the initial values. Indeed,

puttingα0 = 1 and denoting byQ1, Q2 andQ3 the quartiles of the natural logarithm

of the sample observationsxi , we see that the initial valuesθ0 andσ0 are given by the

least squares solution of the linear system




Q1 = θ −σ ln3

Q2 = θ

Q3 = θ +σ ln3,

which yieldsθ0 = (Q1+Q2+Q3)/3 andσ0 = (−Q1 ln3+Q3 ln3)/(2ln2 3). In our

simulations we allow for each sample a maximum number of 1,000 iterations of the

two step procedure above (making an exception for the samplecoming from Aosta

Valley, for which we needed 5,000 iterations to reach convergence, due to the very

small sample size of 45 statistical units). If the algorithmreduces the gradient of the

likelihood function to a value smaller than 10−12 within the iterations, we test the

hessian matrix for negative definiteness at the solution. Ifthis test is positive we con-

clude that the solution is a local maximum of the likelihood equation. Notice that

beyond a bad choice of the initial values, there may be another simple reason why

this procedure does not deliver a local maximum. Indeed, as Shao (2002) points out,

there exist points in the sample space such that a solution ofthe likelihood equa-

tions in (6.5), and therefore also of the system in (6.4), does not exist. Nevertheless,

with probability tending to 1 as the sample size increases, there exists a sequence of

solutions of the likelihood equations of the generalized logistic distribution that is

consistent and asymptotically normally distributed (Abberger and Heiler, 2000).
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So how do we handle samples on which the algorithm does not deliver a local

maximum? And what happens if it finds a local maximum, but the inequality mea-

sures are not defined at that point (i.e. the ML estimate of theparametera is not larger

than 1)? Our answers to these questions depend on whether we are dealing with a

bootstrap resample or not. In the former case we simply discard the sample and take

another bootstrap resample until we reach a total of 9,999 bootstrap resamples such

that the algorithm converges to a local maximum at which the inequality measures are

defined. Otherwise, if the sample we are dealing with is one oftheoriginal samples

from the Dagum parent distribution of the simulation study,we use it for estimating

the probability of the subset of the sample space on which theML estimates of the

inequality measures do not exist. For the Dagum parent distribution in our simula-

tion study corresponding to the sample sizesn = 100, 200 and 400 these estimates

are given by 0.0712, 0.0141 and 0.0010, respectively. It is worth noting that, among

the samples drawn from the Dagum parent distribution, we never observed one giv-

ing rise to a solution provided by the algorithm outside the domain of the inequality

measures (i.e. a solution witha≤ 1).

In any case, for the 20real samples from regional income distributions we deal

with in the application shown in section 4, the algorithm wasalwaysable to calculate

the ML estimates. Let us now turn to the expressions of the inequality measures in the

Dagum model. The Lorenz curve and Gini’s index are respectively given by (Dagum,

1977)

L(t;a,b, p) = B

(
t1/p; p+

1
a

;1− 1
a

)
, 0< t < 1 (6.6)

and

G(p,a,b) =
Γ (p)Γ (2p+1/a)
Γ (2p)Γ (p+1/a)

−1. (6.7)

In (6.6) we usedB(t;a;b) to indicate the beta cdf, whileΓ (x) indicates the Gamma

function in (6.7). Substituting the Lorenz curve in the formula of Zenga’s index, we
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get

Z(p,a,b) =
∫ 1

0

t −B
(
t1/p; p+ 1

a;1− 1
a

)

t[1−B
(
t1/p; p+ 1

a;1− 1
a

)
]
dt. (6.8)

As noticed at the beginning of this section, the Lorenz curve, and thus the two in-

equality measures, are defined if and only ifa> 1.

In order to get the influence valueshT(Xi ,θ ) in the Dagum case we need the gra-

dient vectors of the two inequality functionals with respect to the parameters. Since

b is a scale parameter, we just need to compute the derivativesof the two functionals

with respect toa andp. For Gini’s index in (6.7) it is easily checked that

∂G
∂a

=
G+1

a2 [ψ(p+1/a)−ψ(2p+1/a)],

∂G
∂ p

= (G+1) [ψ(p)+2ψ(2p+1/a)+2ψ(2p)−ψ(p+1/a)],

whereψ(x) is the digamma function, i.e the derivative of lnΓ (x).

The partial derivatives of Zenga’s new index with respect tothe parameters of

the Dagum family are rather cumbersome expressions. We do not report them here.

For computational convenience, we suggest not to use the analytic expressions, but to

approximate the partial derivatives of Zenga’s index by Newton’s difference quotient.

Finally, we need the score function (a vector valued function) ∂ ln f (x;θ )/∂θ and

the information matrixIθ to compute the parametric influence values in (2.8) for the

Dagum family. If we putn = 1 in the system of likelihood equations in (6.4) and

multiply the second equation bya/b, we get the components of the score function on

the LHS, while the components of the information matrix can be found, for example,
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in Kleiber and Kotz (2003). We report them here for completeness:

I11 =
1

a2(2+ p)

{
p[(ψ(p)−ψ(1)−1)2+ψ ′(p)+ψ ′(1)]+2[ψ(p)−ψ(1)]

}
;

I12 =
p−1− p[ψ(p)−ψ(1)]

b(2+ p)
;

I22 =
a2p

b2(2+ p)
;

I13 =
ψ(2)−ψ(p)

a(1+ p)
;

I23 =
a

b(1+ p)
;

I33 =
1
p2 .
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Reale Istituto Veneto di Scienze, Lettere ed Arti. Anno Accademico 1913–1914,
LXXII(2) Premiate Officine Grafiche C. Ferrari, Venezia, 1201–1248 (1914)

Greselin F. and Pasquazzi L.: Asymptotic confidence intervals for a new inequality
measure. Communications in Statistics: Computation and Simulation38(8), 17-42
(2009)

Greselin F., Puri M.L., Zitikis R.:L-functions, processes, and statistics in measuring
economic inequality and actuarial risks. Statistics and Its Interface,2, 227–245
(2009)

Greselin F., Pasquazzi L., Zitikis R.: Zenga’s New Index of Economic Inequality,
Its Estimation, and an Analysis of Incomes in Italy. Journalof Probability and
Statistics DOI 10.1155/2010/718905 (2010)

Hoeffding W.: A Class of Statistics with Asymptotically Normal Distribution. The
Annals of Mathematical Statistics,19(3), 293–325 (1948)

Kleiber C. and Kotz S.: Statistical Size Distributions in Economics and Actuarial
Sciences. Wiley, Hoboken, NJ (2003)



Cross-regional results on income inequality in Italy: issues and evidence from survey data 27

Maasoumi E.: Empirical analysis of Welfare and Inequality.In: M.H. Pesaran and
P.Schmidt (eds.) Handbook of Applied Econometrics. Blackwell (1994)

Maffenini W., Polisicchio M.: How potential is the I(p) inequality curve in the anal-
ysis of empirical distributions. Technical report No. 186,Dipartimento di Metodi
Quantitativi per le Scienze Economiche Aziendali, Università degli Studi di Milano
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