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Abstract In this paper we analyze the differences in household incioeguality
among Italian regions. Using data from the 2008 Bank of ¥e®yrvey on Household
Income and Wealtta remarkable gap in inequality among different geograpteas
of the country has been observed. Besides, a thorough @éafythe theoretical and
practical aspects of obtaining parametric and non paraeanfidence intervals for
Gini's and Zenga’s inequality measures has been provided.pErformance of the
inferential procedures has been assessed and theiredfeess in developing a cross-

regional study is shown.
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1 Introdution and motivation

Since more than a century, economists and statisticians Ibegn concerned with
the problem of modeling income and wealth distributions arehsuring inequality.

Such research helps in making well informed decisions fected representatives,
businesses, unions and non-profit organizations, as weidasduals. In particular,

the assessment of relationships between inequality andlgis getting an increased
attention among scholars and policy makers, in connectitmather variables such
as human capital, employment, and so on. Furthermore, entetudies about EU
countries the evolution in time of regional disparities e@s to be related to the
dynamics of economic and monetary integration. Measuniggjuality is hence a

crucial issue for economics and social sciences.

Unfortunately, we cannot rely only on point estimates ofguity measures,
because in many empirical studies large standard erroreleerved (see, among
many others, Maasoumi 1997). Therefore, it is importantravigle methodologies
to assess whether differences in estimates are statigtghificant. In this work
we contribute to the issue by comparing parametric and noanpetric estimation
techniques. In particular, we will consider two parametaimilies, the Lognormal
and the Dagum models. Our purpose is to obtain confidencevitsefor Zenga’'s
new inequality measure (Zenga, 2007) and for Gini’s tradai index (Gini, 1914).
The aim is to verify what is actually gained when we explagt ithformation about the
underlying model. We will compare the two methodologieg#paetric versus non-
parametric) firstly in a simulation study, in order to assesgerage accuracy and
length. Afterwards, we employ the same techniques on reahire data, from Bank
of Italy’s Survey on Household Income and Wegtithobtain a cross-regional analysis
of differences in inequality. Our results show a remarkaalp in inequality among
different geographic areas of the country, ranging fromtthiewest level observed in

Aosta Valley, to its highest level in the Apulia region. Biess Gini's traditional index,
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we choose to analyze confidence intervals for Zenga's nequildéy index because
of its many interesting features: indeed, Zenga’s index i®analized inequality
measure; it is the area under a new inequality curve (Zer@@y)2and it may be
decomposed by subgroups as well as by income sources (Rag@ae8; Greselin
et al. 2009; Radaelli, 2010). For an analysis of the partidéoinduced by Zenga'’s
inequality curve in some well known models for economic sigributions, we refer
to Polisicchio and Porro (2008) and Porro (2008). Propedi¢he curve and its index
have been investigated in Polisicchio (2008) and Maffeaimd Polisicchio (2010).
For inferential results see Greselin and Pasquazzi (20@P§aeselin et al. (2010).
The rest of the paper is organized as follows. Section 2 gesva brief descrip-
tion of technical details for the computation of the conficeimtervals. Simulation
results developed to assess the performance of the inf@renbcedures are pre-
sented in section 3. In section 4 we present and discuss suitg®n inequality in
Italy’s regions. Conclusions and final remarks end the papsection 5. A detailed
description about the computation of parametric confidentvals derived from

Lognormal and Dagum families has been given in the Appendix.
2 Asymptotic confidence intervals

Let X1, X, ..., X, be an i.i.d. sample from an unknown distributibn Gini’s index

may be defined by
1
G(F) = [ 2(p—L(p:F))dP. @)
where
PE-1
() = o F O
Jo F(t)dt
is the Lorenz curve, while Zenga’s new measure is given by
! 1-p LWF>)
ZF:/ 1- =P dp. 2.3
") o< P 1-LmF)) " #2)

As usual, we assume that the supporfois a subset of the non negative real line.

<p<1 (2.2)

Moreover, in order that the two inequality measures be weflnéd we need to
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assume that the first moment Bfis finite. The rationale behind definition 2.3 is
straightforward. IndeeoL,(pT;F) is the mean income of the poorgsipercent of the

1-L

population, While%p;':) is the mean income of the remaining part of the popu-

lation. Notice that the ratio, sdy(p;F), between this two means takes on values in
[0,1]. Small values of this ratio correspond to high inequalityzen the two groups,
while large values correspond to situations close to equUtiysZ(F) is the mean,
i.e. a synthesis, of the point inequality measures giveh(pyF) =1—U(p;F).

If F is the empirical CDF associated to the observed sample, weestanate
the two inequality measures simply by pluggingﬁninstead ofF in (2.1), (2.2) and
(2.3). Under mild restrictions oR (Hoeffding, 1945; Greselin et al., 2009b) both

inequality measures may be represented as
. 10
T(F)=T(F)+ ZhT(Xi;F)—i-op(n’l/Z) (2.4)
i=

where theht (X;; F) is the influence function evaluated at the pofiti.e. (as usual

Ox denotes the distribution with unit mass at the pofint

ey i (E+A(S —F)) —T(F)

It follows that both inequality measures have normal asytiptistribution, i.e.
VA(T(F) ~T(F)) -5 N(0,67),

where oZ = Varg (hy (X;F)). Knowing a consistent estim@., for o, we may

compute the non-parametric nornfjal- 2a) confidence interval given by

(T(ﬁn) zla%ﬂ(ﬁmzla%) ,

wherez;_4 is the(1— a)-percentile of the standard normal distribution.

If F is known to belong to a parametric familo indexed by &-dimensional
real parameter vectd® ¢ © c R¥, then the two functionals in (2.1) and (2.3) are
functions of 8 and we will simply writeT (8) instead ofT(Fg). In this case we

may estimateT (6) by T (6,), where8, is the maximum likelihood estimate of the
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unknown value of8. If T and.%¢ satisfy suitable regularity conditions, then this

estimator is asymptotically normal and efficient, i.e.
Vi(T(8) -T(6)) - N(0,0(6)), (25)

whereo?(6) = 911,29L. In the variance expressidg andl ¢ indicate the (column)
vector of partial derivatives of with respect to the components of the parameter
vector and the information matrix at the unknown valuépfespectively. IfoZ(6)

is continuous irf, thena%(@n) is a consistent estimator of ().

Besides the normal confidence intervals just described Welsd consider dif-
ferent types of bootstrap confidence intervals, i.e. peilegmias Corrected Accel-
erated Bootstrap (Bca) and t-bootstrap confidence interval

For the non-parametric versions of these confidence interwee proceed as in
Greselin and Pasquazzi (2009) and estimate the bootssjbdiions by takindr =
9,999 resamples from the original sample (i.e. frEAr.r). As variance estimator for

o2 we use

10 -
Stn= "~ 2 b (X Fo)”,
n.&
and, following Efron (1987), we estimate the acceleratiomstant for the Bca confi-

dence intervals by

a— 1‘ zpzlhT(Xy'/:\n)s

® (srabr (% Fo2)

Heuristically, we may say that in the parametric versionthefconfidence inter-

75 (2.6)

vals nothing changes with respect to the non-paramettiogeéxcept thaFan plays
the role ofF,. Indeed, the expansion corresponding to (2.4) in the noarpetric

setting, may now be replaced by

12 dInfe(X),_,0T

T(6,)=T(0)+ n;T'e d—9+op(n*1/2), (2.7)

Where%‘ﬁfq> is the score vector (a column vector) of fhiln sample componeid

at the unknown true value &. Thus, we may use

~ dInfe(X L, oT
hr (X6:6h) = % 6-8 ' 38

. (2.8)
6=06n
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instead ot (X;; Fy) for estimating the variance? (6), which results in

1n
VEn= 1 hr(XiFg)?

1l aT _, dInfe(X)
~n2, 90|, ;'8

0-8, 6n 00
In the same way we just substitute(X;; Ifn) by hr (X;; @n) in (2.6) to get the estimate

d1n fg(X) =9

1=t Al
o—g, 00

0-8, 6h 060

0=6,

of the acceleration constant for the parametric Bca confiel@rterval.
A detailed discussion about the computation of parametididence intervals

derived from Lognormal and Dagum families is given in the Apgix.

3 Simulation results

In an effort to gauge the actual performance of the infea¢ptiocedures, we devel-
oped a simulation study to assess coverage and mean lengik obnfidence in-
tervals. As mentioned above, we considered two parenillitions, the Lognormal
and the Dagum distribution, with parameter values givernleynaximum likelihood
estimates obtained on the Italian equivalent income 8istion in 2006 ¢ = 9.6823
and d = 0.6093 for the Lognormala = 3.6781,b = 1926186 andp = 0.6875 for
the Dagum model). We drew 1000 samples from each parent distribution and com-
puted the parametric and non-parametric confidence iftefmaGini’'s and Zenga’s
new index. The coverage accuracies in Table 3.1 and Tabler8.the proportion of
confidence intervals that contain the true value of the iaétyumeasure, while the
mean lengths are the average of theQD lengths of the 95% confidence intervals.
From theory we expect that, because of the asymptotic effigief the ML estima-
tors, the parametric confidence intervals should be shtirger the non-parametric
ones. Indeed, in the light tailed Lognormal case (Table & hotice that the para-
metric confidence intervals clearly outperform the norapatric ones. The former
are both shorter and have larger coverage probability tharcorresponding non-

parametric ones. In estimating Gini’'s index with samplesipé 100pn averagethe
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Lognormal parent distribution

1-2a 0.9 0.95 0.975 0.99 mean length 0.9 0.95 0.975 0.99 mearhiengt
sample Normal confidence intervals Percentile confidence interval
size
Gini - non-parametric
100 0.8624 0.9200 0.9531 0.9769 0.0918 0.8452 0.8989 0.93270.9583 0.0913
200 0.8773 0.9363 0.9671 0.9828 0.0669 0.8716 0.9269 0.9553.9760 0.0668
400 0.8839 0.9347 0.9640 0.9844 0.0481 0.8759 0.9302 0.9590.9793 0.0480
Gini - parametric
100 0.8932 0.9461 0.9720 0.9886 0.0861 0.8847 0.9362 0.9649.9827 0.0861
200 0.8977 0.9493 0.9734 0.9877 0.0612 0.8976 0.9454 0.9693.9863 0.0612
400 0.8909 0.9452 0.9731 0.9888 0.0433 0.8891 0.9423 0.9703.9873 0.0433
Zenga - non-parametric
100 0.8671 0.9255 0.9593 0.9813 0.1040 0.8594 0.9104 0.9408.9657 0.1037
200 0.8784 0.9372 0.9658 0.9843 0.0745 0.8737 0.9296 0.95670.9766 0.0744
400 0.8781 0.9368 0.9671 0.9855 0.0532 0.8742 0.9287 0.95810.9790 0.0531
Zenga - parametric
100 0.8929 0.9469 0.9737 0.9895 0.1033 0.8847 0.9362 0.9649.9827 0.1033
200 0.8973 0.9496 0.9742 0.9882 0.0728 0.8976 0.9454 0.9693.9863 0.0728
400 0.8915 0.9449 0.9733 0.9890 0.0514 0.8891 0.9423 0.9703.9873 0.0514
Bca confidence intervals t-bootstrap confidence intervals
Gini - non-parametric
100 0.8691 0.9226 0.9543 0.9783 0.0940 0.8881 0.9403 0.9672.9864 0.1054
200 0.8807 0.9366 0.9657 0.9828 0.0685 0.8928 0.9461 0.9733.9880 0.0727
400 0.8837 0.9350 0.9644 0.9847 0.0488 0.8906 0.9413 0.9697.9876 0.0503
Gini - parametric
100 0.9018 0.9513 0.9768 0.9903 0.0880 0.9015 0.9487 0.9699.9832 0.0929
200 0.9002 0.9521 0.9761 0.9886 0.0619 0.9003 0.9492 0.972%.9866 0.0635
400 0.8928 0.9462 0.9744 0.9891 0.0436 0.8922 0.9477 0.973M.9894 0.0441
Zenga - non-parametric
100 0.8766 0.9286 0.9599 0.9824 0.1031 0.8865 0.9377 0.96870.9866 0.1117
200 0.8845 0.9377 0.9642 0.9837 0.0744 0.8955 0.9469 0.972%.9880 0.0783
400 0.8805 0.9358 0.9660 0.9850 0.0533 0.8873 0.9426 0.97110.9873 0.0549
Zenga - parametric

100 0.9018 0.9513 0.9768 0.9903 0.1029 0.9095 0.9593 0.9808.9925 0.1062
200 0.9002 0.9521 0.9761 0.9886 0.0727 0.9045 0.9562 0.9778.9905 0.0738
400 0.8928 0.9462 0.9744 0.9891 0.0514 0.8950 0.9490 0.9758.9911 0.0518

Table 3.1 Simulation results: coverages and mean lengths of confedenervals for Gini's and Zenga’'s
inequality measures. Samples are drawn from the Lognorisgiltition with parametery = 9.682300
and o = 0.609262

length of the interval decreases by)074 and the coverage improves h{ ™% (the
corresponding figures aredD68 and+1.08% for samples of size 200;@52 and
+0.77, respectively, for samples of size 400). Further, chrapainominal coverage
of 0.95, the coverage improves from havingnaximum difference from the nominal
of 5.11% to a value of B8% with samples of size 100 for the Lognormal model
(analogous results for the other cases). As for Zenga'sxintte length of the in-
terval decreases by @31 and coverage increases b8a62o, on average, when the
sample size is 100 (respectively0033 and 112% for samples of size 200;@D37
and 086% for samples of size 400).

Commenting the results of the Dagum case (Table 3.2), it pimant to keep in
mind the problem of non existence of the ML estimates dissdigsthe Appendix. In-

deed, the difference in coverage accuracy between the paiamnd non-parametric
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Dagum parent distribution

1-2a 0.9 0.95 0.975 0.99 mean length 0.9 0.95 0.975 0.99 mearhlengt
sample Normal confidence intervals Percentile confidence interval
size
Gini - non-parametric
100 0.8469 0.9088 0.9430 0.9691 0.0977 0.8759 0.9346 0.9633.9819 0.0968
200 0.8666 0.9229 0.9551 0.9752 0.0727 0.8802 0.9357 0.9644.9841 0.0722
400 0.8835 0.9384 0.9653 0.9832 0.0533 0.8897 0.9442 0.97210.9876 0.0532
Gini - parametric
100 0.7839 0.8439 0.8810 0.9042 0.0993 0.8092 0.8631 0.8919.9106 0.0994
200 0.8620 0.9175 0.9485 0.9678 0.0723 0.8730 0.9254 0.9539.9698 0.0723
400 0.8932 0.9459 0.9718 0.9862 0.0520 0.8938 0.9464 0.972@.9883 0.0520
Zenga - non-parametric
100 0.8486 0.9143 0.9506 0.9748 0.1218 0.8757 0.9336 0.9643.9833 0.1210
200 0.8644 0.9240 0.9596 0.9818 0.0890 0.8815 0.9359 0.9672.9870 0.0886
400 0.8781 0.9375 0.9676 0.9857 0.0647 0.8899 0.9456 0.9719.9883 0.0646
Zenga - parametric
100 0.8081 0.8645 0.8933 0.9140 0.1234 0.8263 0.8745 0.9029.9181 0.1234
200 0.8786 0.9276 0.9561 0.9727 0.0880 0.8841 0.9324 0.95870.9747 0.0881
400 0.8962 0.9499 0.9737 0.9891 0.0625 0.8983 0.9509 0.9742.9895 0.0625
Bca confidence intervals t-bootstrap confidence intervals

Gini - non-parametric

100 0.8279 0.8836 0.9213 0.9504 0.1016 0.8530 0.9135 0.9483.9725 0.1196
200 0.8514 0.9063 0.9401 0.9661 0.0758 0.8644 0.9206 0.9534.9778 0.0837
400 0.8757 0.9309 0.9581 0.9778 0.0553 0.8783 0.9339 0.9657.9833 0.0586
Gini - parametric
100 0.8182 0.8672 0.8939 0.9103 0.1045 0.8120 0.8678 0.8944.9141 0.1046
200 0.8806 0.9319 0.9584 0.9737 0.0742 0.8751 0.9290 0.9550.9714 0.0740
400 0.9004 0.9503 0.9735 0.9885 0.0526 0.8963 0.9497 0.9742.9889 0.0523
Zenga - non-parametric
100 0.8363 0.8939 0.9275 0.9564 0.1213 0.8603 0.9215 0.953D.9770 0.1359
200 0.8495 0.9064 0.9425 0.9680 0.0895 0.8678 0.9242 0.9562.9816 0.0973
400 0.8744 0.9263 0.9567 0.9773 0.0654 0.8793 0.9352 0.964.9843 0.0692
Zenga - parametric
100 0.8158 0.8677 0.8942 0.9116 0.1240 0.8251 0.8735 0.9010.9173 0.1252
200 0.8781 0.9304 0.9574 0.9744 0.0883 0.8831 0.9322 0.9589.9753 0.0886
400 0.8967 0.9505 0.9746 0.9874 0.0626 0.8994 0.9506 0.975M.9898 0.0626

Table 3.2 Simulation results: coverages and mean lengths of confedenervals for Gini's and Zenga’'s
inequality measures. Samples are drawn from the Dagumildigiton with parameters & 3.678111
b =1926186 and p= 0.687456

confidence intervals for samples of size= 100 is approximately equal to the pro-
portion of samples for which our root search algorithm ditlecamme up with ayood
solution of the likelihood equations (see section 2.2 ferftgures). Fon = 200 and

n = 400, when the problem of non-existence of the solutions efitelihood equa-
tions becomes negligible, the parametric Dagum confiderteevials perform clearly
better than the corresponding non-parametric ones. FaggaZeindex, the length of
the interval decreases by0D29 and coverage increases b¥8%, on average, when
the sample size is 200 (@34 and 115%, respectively, for samples of size 400).

Similar results have been obtained for Gini’'s measure.
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Summarizing, we may say that switching to parametric confidéntervals leads
to a considerable improvement in terms of coverage accu@achoth inequality

measures.

4 Cross-regional results of income inequality in Italy

In this section we compute the above confidence interval$sioi's and Zenga’'s
inequality measures on income samples from the 20 Italigioms. Our aim is to
assess differences in inequality among regions and to sloewtile methodology
developed above can be effective to this aim. The data coome fhe 2008 wave
of the Survey on Household Income and Wealth conducted byB#re of Italy.
Along with income, this survey reports different charaisties of 7,977 households
and their members such as geographic location, age, empltystatus etcetera. For
detailed information on the survey, we refer to the Bank alfyl{2008) publication.
Since the theory in the preceding section applies only tdipesncomes, we deleted
the non-positive incomes we found in the sample.

In order to treat data correctly in the case of different letwadd sizes, we work
with equivalent incomes, which we have obtained by dividing total household
income by an equivalence coefficient, which is the sum of isigssigned to each
household member. Following the modified OECD (Organirefie Economic Co-
operation and Developement) equivalence scale, we givghwvéito the household
head, 0.5 to the other adult members of the household, artd h8 members under
14 years of age (see Bank of Italy, 2008).

The confidence intervals we present in this section shooldelier, be interpreted
with some care. Indeed, as in virtually every large official®gy, the SHIW data were
collected according to a complex sample design, but the adstpresented in the

preceding sections apply only to simple random samplingré&fs growing attention

10verall, there are 19 non positive incomes in the sample: daih of the samples from Trentino,
Veneto, Liguria, Abruzzo, Molise and Sardinia, 2 in the sEmgrom Emilia Romagna and Campania, 3
in the sample from Sicily and 6 in the sample from Apulia.
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in the literature to methods for variance and interval eatiom for complex designs.
A correct use of these methods is however far from trivialj amany researchers
therefore stick with simple random sampling methods to gktast approximations
to the results they would have obtained if they employed mmvelved procedures.

In this work we will follow this custom.

Let us now analyze the content of Tables 5.3, 5.4 and 5.5. Thedioup of
columns reports for each region the non-parametric poiitnates of the inequal-
ity measures and the corresponding 95% confidence intefMaéssecond and third
groups of columns refer to the parametric Lognormal and Braganfidence inter-
vals. Besides the maximum likelihood estimates of the iaétyumeasures, the val-
ues of the Supremum Class Anderson Darling test statistic, i

S =
6n 6n

iRl
2 Fa () (1 Fg (%))

and the p-values of the goodness of fit test based on thiststatie reported. The p-
value is the fraction of bootstrap replicates of the AD statiwhich is larger than the
value of the AD statistic observed on the original sampleilg\in the Lognormal
case the p-value is always based 989 bootstrap replicates, in the Dagum case
the number of bootstrap replicates for the computation @fpivalue may be larger,
since in case our root search algorithm does not find a localrman for some boot-
strap resample we put the value of the bootstrap replicateechD statistic equal to
infinity and take an additional resample in order to get any®899 bootstrap repli-
cates of the inequality measures and their studentizedower$or the computation
of the confidence intervals. The figures in brackets to tha o§the p-values for the
Dagum model are the number of resamples we needed to takeat ffeepralue of the

AD statistic equal to infinity when the ML estimates of thegraeters do not exist
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seems a hatural choice, as the probability of this eventstémaero if the Dagum
model is indeed theeue model.

The p-values for the Lognormal model reveal the rather poprdivided by this
model. Of the 20 regional income distributions considerethis work, the Lognor-
mal model seems to fit only those from Aosta Valley, TrentWeneto, Liguria, Um-
bria, Abruzzo, Basilicata, Calabria and Sardinia. The Daguodel performs better,
having a p-value larger than@25 in 18 out of the 20 regional income distributidns.

Figures 4.1 and 4.2 graphically show the normal, Bca andtdtiap confidence
intervals, for ease of comparison among regions and betthegrarametric and non
parametric types of estimation. The parametric Lognormdi@ Dagum confidence
intervals are reported only if the p-value for the model isager than @1. The re-
gions on the abscissa are ordered according to the value ofdih-parametric point
estimate of Gini's or Zenga’s measure. It is worth noting tha orderings induced
by the non-parametric point estimates of Gini’'s and Zengpaex are different, be-
cause different measures reveal different features ofrtbenie distribution (for a
deeper insight on this issue, see Greselin et al., 2010).

The non-parametric point estimates for the Gini (Zengagxrénge from (1621
(0.4137) in Aosta Valley to (8400 (06665) in Apulia. As perhaps expected, the dif-
ference between the non-parametric and the ML-estimatiedfiequality measures
is quite small (usually less thanQ2, with few exceptions given by Molise, Abruzzo
and Apulia) whenever, according to the p-value, the modeWll the data.

Finally, we will now comment on the confidence intervals. émgral, we observe
that the different methods to construct confidence interseém to have little impact
on interval locations (whenever the parametric model hasoa dit) but a slight im-
provement arises in establishing interval boundaries ywire compare results from
the parametric (giving shorter intervals) and the non patamapproach. Besides

this, we notice that even though moderately large sampéss sthe confidence inter-

2The only exceptions are Lazio and Campania regions.



Italian regions 2008 - 95% Confidence intervals for Gini's index (circle: non parametric, square: Dagum, diamond: Lognormal)
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Italian regions 2008 - 95% Confidence intervals for Zenga's index (circle: non parametric, square: Dagum, diamond: Lognormal)
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Fig. 4.2 Zenga's index: Confidence intervals based in the non-pandenéhe Lognormal and the Dagum parametric approachedtiertwenty Italian regions
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vals for the inequality measures are occasionally veryelafgr example, on the 445
observations from the Apulia region, the non-parametrienad confidence interval
for Gini's (Zenga's) index stretches from2¥98 to 04047 (06121 to 07290). The
corresponding Lognormal confidence interval is much shobgt the p-value for
the Lognormal model is virtually zero. The ML-estimates floe parameters of the
Dagum model do exist in this region giving raise to a good rhfid® data, assessed
by a p-value of QL426, so that we obtain the shorter Dagum confidence interval
stretching from @699 to 03207 (05875 to 06484). On the other side, the shortest
nonparametric interval arises for Piedmont, with a widti®.6098 for the Gini's in-
dex (respectively @456 for the Zenga'’s index). For Piedmont the estimatiomageld
on a sample of 789 statistical units, and we can rely on thepawametric and the
parametric Dagum approach.

The t-bootstrap confidence intervals in figures 4.1 and 4£2rasome instances
markedly right skewed, suggesting that convergence todhmal limit distribution
has not yet occurred for the considered sample sizes.

From Liguria data, the estimation of the Gini index gives a4parametric con-
fidence interval of about 6 percentage points, while therpatdc interval estimate
is 4 percentage points wide for the Lognormal and 5 percenpaints wide for the
Dagum model. In the case of the Zenga index, those figureeapectively 8 per-
centage points, 6 for the Lognormal and 7 for the Dagum. Tligsge are more
interesting if we rephrase them in terms of the point estnadithe index, giving a
relative variation of about 23% for the Gini and of only 14% fiee Zenga index.

When confidence intervals do not overlap, as in Aosta Valtey Abruzzi (non
parametric and Dagum confidence intervals), for example&amainambiguously as-
sess this difference to be statistically significant. So aregay that Aosta Valley has
the lowest degree of inequality with respect to all othefarg (with the only excep-
tion of Umbria). We can also infer that Umbria has a lower imddy in household

income than Emilia Romagna, Sardinia, Liguria, Basilicatad so on.
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5 Conclusions

The results reported and discussed in this paper concewss-pegional analysis of
household income inequality in Italy, based on real incom@a @doming from Bank
of Italy’s 2008 Survey on Household Income and Wealife observe considerable
differences among geographic areas as the estimates f@irh€&Zenga) index range
from a value of 00621 (04137) in Aosta Valley to (3400 (06665) in Apulia region,
denoting a remarkable gap. Further, looking for statistignificance of compar-
isons among regions, we explored parametric inference fiotsGind Zenga’s new
index of inequality and compared its performance with resfethe non-parametric
approach. We considered two common models in income asalys Lognormal
and the Dagum families. Recalling their popularity withonee distributions, we
saw that in our case the Lognormal model hardly fits the retal, deecause of its light
tail, while the Dagum model gives a further confirmation af d@bility to describe
income distributions, in almost all cases. The first resblésed on simulations, con-
firm that there is some advantage in terms of length and cgeexecuracy with para-
metric confidence intervals. However, as our applicatioftaly’s regional income
distributions shows, comparisons based on non-paranagitiparametric inferential

methods (when they may be applied) lead to almost the sansusions.

6 Appendix

6.1 Lognormal confidence intervals

Recall first that a distribution belongs to the Lognormalifsuifiits density function
is given by
X— 2
— ; }ei% (lnTy> ,
0v2mX

for some—o < y < 00 andd > 0. In our simulation study we used a Lognormal

f(xy,0) x>0

parent distribution withy = 0.6823 andd = 0.6093, i.e. the maximum likelihood
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non-parametric Lognormal Dagum
Abruzzo (Sample sizey = 200, mean income 18031887)
AD - 3.4861 2.0651
p-value - 0.0826 0.4548 (14,225)
Gini Zenga Gini Zenga Gini Zenga
point est. 0.2443 0.5491 0.2487 0.5541 0.2676 0.5834
normal 0.2239-0.2673 0.51690.5855 0.23830.2853 0.53850.6093 0.25000.3115 0.55710.6434
perc 0.2219-0.2654 0.51340.5817 0.22460.2719 0.51650.5879 0.22490.2857 0.52390.6093
Bca 0.2259-0.2704 0.51970.5896 0.23860.2859 0.53780.6071 0.2500-0.3162 0.55720.6476
t-boot 0.225%-0.2702 0.51740.5890 0.23990.2939 0.53990.6154 0.25050.3218 0.55780.6470
Aosta Valley (Sample sizer = 45, mean income 18436443)
AD 1.8304 1.3251
p-value 0.3005 0.9223 (35,729)
Gini Zenga Gini Zenga Gini Zenga
point est. 0.1621 0.4137 0.1690 0.4192 0.1822 0.4635
normal 0.1378-0.1930 0.35660.4691 0.11460.1819 0.31450.4444 0.1604-0.2419 0.42170.5868
perc 0.1298-0.1854 0.35860.4723 0.13320.2007 0.34770.4767 0.1244-0.2055 0.340%0.5049
Bca 0.1379-0.1934 0.36610.4853 0.11250.1813 0.30270.4422 0.16180.2691 0.16080.2649
t-boot 0.1375-0.1954 0.36310.4676 0.13020.1901 0.33530.4562 0.4244.0.6015 0.42270.6143
Apulia (Sample sizey = 445, mean income 1#70.4706)
AD - 70785.5222 63.7935
p-value - 0.0000 0.1426 (11,662)
Gini Zenga Gini Zenga Gini Zenga
point est. 0.3400 0.6665 0.3323 0.6660 0.2976 0.6230
normal 0.2798-0.4047 0.61230.7290 0.309%0.3510 0.63930.6884 0.26990.3207 0.58750.6484
perc 0.2821-0.4055 0.605%0.7207 0.31130.3523 0.64030.6891 0.27490.3260 0.59740.6586
Bca 0.2953-0.4377 0.61980.7433 0.30950.3506 0.638%0.6871 0.27330.3234 0.58980.6496
t-boot 0.2875-0.4853 0.61310.7738 0.31220.3534 0.64040.6894 0.2720.0.3234 0.58770.6498
Basilicata(Sample sizen = 128, mean income 12619247)
AD - 6.3792 2.1434
p-value - 0.0169 0.3388 (12,527)
Gini Zenga Gini Zenga Gini Zenga
point est. 0.2716 0.5907 0.2857 0.6069 0.2709 0.5932
normal 0.2462-0.3011 0.55130.6345 0.23750.3033 0.54160.6313 0.2143-0.3017 0.5212-0.6328
perc 0.2422-0.2966 0.54660.6296 0.25090.3166 0.55740.6470 0.2419-0.3301 0.5530-0.6656
Bca 0.2465-0.3022 0.55230.6352 0.23620.3027 0.53490.6294 0.2216-0.3027 0.5217-0.6334
t-boot 0.2464-0.3024 0.55230.6361 0.24640.3086 0.54630.6351 0.225%-0.3050 0.5237%-0.6347
Calabria (Sample sizen = 190, mean income 1887.3514)
AD - 4.0953 1.9182
p-value - 0.0561 0.5553 (16,409)
Gini Zenga Gini Zenga Gini Zenga
point est. 0.2759 0.5941 0.2797 0.5987 old old
normal 0.2526-0.3029 0.56030.6321 0.2304-0.2847 0.53060.6056 0.1914-0.2627 0.4952-0.5866
perc 0.2492-0.2996 0.55550.6273 0.25090.3054 0.55740.6329 0.2485-0.3202 0.560%-0.6515
Bca 0.2529-0.3038 0.56050.6322 0.22760.2840 0.52050.6046 0.2182-0.2612 0.520%-0.5860
t-boot 0.2525-0.3043 0.56020.6325 0.23960.2874 0.53540.6084 0.2083-0.2613 0.501%-0.5864
Campania(Sample sizer = 625, mean income 18238394)
AD - 3,857,032.5014 35.3209
p-value - 0.0000 0.0005 (10,000)
Gini Zenga Gini Zenga Gini Zenga
point est. 0.3093 0.6462 0.3466 0.6826 0.3156 0.6509
normal 0.2843-0.3357 0.61750.6780 0.32320.3591 0.65660.6970 0.3038-0.3466 0.6347-0.6850
perc 0.2842-0.3353 0.61490.6752 0.32830.3641 0.66130.7021 0.2853-0.3276 0.6167%-0.6672
Bca 0.2879-0.3414 0.6194-0.6810 0.32330.3592 0.655%0.6968 0.3039-0.3492 0.6349-0.6847
t-boot 0.286%0.3418 0.61810.6818 0.32540.3604 0.6567.0.6975 0.3038-0.3513 0.6345:-0.6864
Emilia Romagna(Sample sizen = 718, mean income 23320146)
AD - 33.3814 2.4770
p-value - 0.0009 0.1895 (10,000)
Gini Zenga Gini Zenga Gini Zenga
point est. 0.2556 0.5741 0.2715 0.5873 0.2495 0.5664
normal 0.2392-0.2728 0.55070.5997 0.25560.2826 0.56560.6031 0.2261-0.2585 0.5349-0.5802
perc 0.2389-0.2725 0.54860.5975 0.25790.2849 0.56780.6059 0.2407%-0.2732 0.5524:-0.5976
Bca 0.2409-0.2756 0.55230.6020 0.25610.2828 0.565%0.6030 0.2286-0.2585 0.535%-0.5803
t-boot 0.2408-0.2760 0.55210.6031 0.25680.2835 0.56560.6035 0.2287%-0.2586 0.5360-0.5804

Table 5.1 Cross-regional levels of income inequality expressed byGii and the Zenga indexes, fol-
lowed by their 95% confidence intervals, in non-parameta@ymns 1-2) and parametric setting (columns
3-6), for Italian regions from Abruzzo to Emilia Romagnag(se).
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AD
p-value

point est.
normal
perc
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t-boot

non-parametric

Gini

0.3143
0.2562-0.3772
0.2579-0.3769
0.2692-0.4009
0.2631-0.4555

Gini

0.2945
0.2736-0.3173
0.272%0.3162
0.274@-0.3190
0.27370.3193

Gini

0.2677
0.238%-0.2997
0.2376-0.2984
0.2421-0.3066
0.2409-0.3111

Gini

0.3220
0.2978-0.3471
0.2983-0.3475
0.3019-0.3527
0.3002-0.3531

Gini

0.2936
0.2572-0.3323
0.256%-0.3316
0.2632-0.3422
0.2616-0.3503

Gini

0.3026
0.2671-0.3428
0.2635-0.3395
0.2722-0.3510
0.2703-0.3576

Gini

0.2292
0.214%-0.2445
0.2142-0.2438
0.2155-0.2455
0.2156-0.2458

Lognormal

Friuli (Sample sizer = 253, mean income 23124072)

Zenga
0.6519
0.59260.7215
0.58270.7094
0.59870.7291
0.59350.7738

175.2041
0.0000
Gini

0.3269
0.31590.3694
0.29920.3531
0.31560.3675
0.31720.3776

Zenga
0.6595
0.64640.7110
0.62490.6900
0.6457.0.7058
0.64690.7136

Lazio (Sample sizer = 413, mean income 18154741)

Zenga
0.6291
0.60130.6592
0.59830.6563
0.60170.6596
0.60140.6604

10,328,146.4376

0.0000
Gini
0.3372
0.33930.3822
0.31530.3580
0.33960.3804
0.33980.3892

Zenga
0.6718
0.67390.7242
0.6454-0.6954
0.67390.7194
0.67460.7259

Dagum
3.4627
0.0704 (10,024)
Gini Zenga
0.2985 0.6373
0.27580.3378 0.61250.6903
0.2604-0.3221 0.58360.6616
0.27730.3431 0.6134.0.6891
0.2779.0.3429 0.61360.6917
31.6265
0.0006 (9,999)
Gini Zenga
0.3067 0.6448

0.2893-0.3391
0.2755:-0.3252
0.2901:-0.3461
0.2900-0.3429

Liguria (Sample sizen = 314, mean income 22152403)

Zenga
0.5839
0.54630.6259
0.54120.6203
0.54840.6295
0.54820.6347

4.2168
0.0531
Gini
0.2648
0.22780.2676
0.24480.2841
0.22630.2677
0.23330.2685

Zenga
0.5777
0.52450.5817
0.54820.6047
0.51940.5820
0.52820.5827

1.3990
0.8331
Gini
0.2617

0.2346:-0.2859
0.2385:-0.2899
0.2378-0.2889
0.2369-0.2879

Lombardy (Sample sizen = 844, mean income 25193734)

1,182,207,030.5158 226.0723
0.0000 0.0258
Zenga Gini Zenga Gini
0.6539 0.3315 0.6650 0.3081
0.62840.6815 0.31130.3409 0.64080.6763 0.28190.3212
0.6267.0.6797 0.31660.3459 0.64690.6818 0.295%0.3348
0.63090.6851 0.31080.3410 0.63970.6762 0.28620.3220
0.62930.6860 0.31360.3416 0.64170.6766 0.28420.3214
Marche (Sample sizen = 354, mean income 26950153)
471,034,784.5457 347.5015
0.0000 0.0388
Zenga Gini Zenga Gini
0.6189 0.3266 0.6591 0.2815
0.57760.6660 0.27920.3247 0.60160.6566 0.25480.3076
0.57130.6607 0.30290.3484 0.62970.6846 0.25650.3092
0.57980.6706 0.28150.3245 0.60120.6567 0.25760.3105
0.57760.6778 0.28570.3256 0.60380.6577 0.2584-0.3084
Molise (Sample sizer = 137, mean income 1700.6103)
16.7838 1.9577
0.0026 0.3262
Zenga Gini Zenga Gini
0.6356 0.3183 0.6491 0.3348
0.59020.6890 0.26090.3318 0.57810.6661 0.31030.4034
0.5807.0.6804 0.28150.3522 0.60120.6890 0.26880.3611
0.59330.6930 0.25840.3313 0.5684-0.6648 0.3100-0.4292
0.59110.7017 0.27150.3359 0.58190.6687 0.31050.4294
Piedmont (Sample sizer = 789, mean income 1844.2667)
49.3686 2.1106
0.0004 0.3041
Zenga Gini Zenga Gini
0.5319 0.2379 0.5376 0.2234
0.51060.5556 0.21860.2408 0.50670.5421 0.20570.2336
0.50820.5531 0.22630.2490 0.51930.5546 0.21340.2411
0.51020.5556 0.2167.0.2407 0.5037.0.5419 0.2070-0.2338
0.51060.5563 0.21990.2412 0.50820.5425 0.20760.2337

0.6240-0.6845
0.6055-0.6656
0.6246-0.6867
0.6242-0.6852

(13,711)
Zenga
0.5769
0.540%-0.6098
0.5438-0.6142
0.5423-0.6117
0.5408-0.6109

(10,264)
Zenga
0.6382
0.60720.6516
0.62490.6691
0.61130.6519
0.607%0.6517

(10,403)
Zenga
0.6118
0.5834.0.6504
0.5736.0.6408
0.58410.6517
0.58420.6503

(11,210)
Zenga
0.6688
0.63590.7438
0.59380.7005
0.63630.7534
0.63650.7498

(10,027)
Zenga
0.5241
0.49970.5421
0.50590.5483
0.5000-0.5419
0.500%0.5425

Table 5.2 Cross-regional levels of income inequality expressed byGii and the Zenga indexes, fol-
lowed by their 95% confidence intervals, in non-parameta@ymns 1-2) and parametric setting (columns
3-6), for Italian regions from Friuli to Piedmont (contintian).
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non-parametric

Gini

0.2581
0.2379-0.2799
0.2362-0.2785
0.239@-0.2818
0.2392-0.2825

Gini

0.3349
0.3046-0.3668
0.3036-0.3665
0.3083-0.3723
0.307%0.3752

Gini

0.2599
0.2072-0.3170
0.2103-0.3179
0.2216-0.3521
0.2148-0.3644

Gini

0.2492
0.2335-0.2661
0.2326-0.2655
0.2356-0.2679
0.2342-0.2682

Gini

0.1952
0.1727-0.2195
0.172%-0.2189
0.175%-0.2231
0.1746-0.2258

Gini

0.2880
0.2616-0.3158
0.2613-0.3155
0.2652-0.3211
0.2646-0.3232

Lognormal Dagum
Sardinia (Sample sizen = 334, mean income 1826.8052)
8.5697 2.1011
0.0125 0.2506 (10,084)
Zenga Gini Zenga Gini Zenga
0.5746 0.2683 0.5827 0.2798 0.6068
0.54590.6063 0.27420.3127 0.59080.6456 0.27180.3205 0.59680.6630
0.54220.6028 0.24890.2871 0.55430.6088 0.24020.2891 0.55100.6169
0.5464.0.6070 0.2742.0.3088 0.59110.6372 0.27130.3211 0.59660.6577
0.5467.0.6082 0.2744.0.3207 0.59130.6495 0.27100.3275 0.59680.6649
Sicily (Sample sizer = 526, mean income 1364.4196)
27.0621 3.5450
0.0012 0.0855 (10,170)
Zenga Gini Zenga Gini Zenga
0.6721 0.3441 0.6797 0.3133 0.6494
0.64080.7065 0.32630.3653 0.6594-0.7043 0.2726:0.3255 0.60620.6635
0.63740.7031 0.32390.3634 0.65590.7013 0.301%0.3544 0.6350-0.6920
0.64250.7081 0.3260-0.3653 0.65850.7034 0.2780-0.3254 0.6030-0.6641
0.64090.7108 0.32780.3681 0.659%0.7054 0.27950.3254 0.60830.6638
Trentino (Sample sizer = 173, mean income 26451988)
2.6089 1.7095
0.1568 0.4141 (10,334)
Zenga Gini Zenga Gini Zenga
0.5787 0.2618 0.5734 0.2419 0.5591
0.51440.6541 0.21180.2652 0.5005-0.5783 0.2100-0.2720 0.518%0.6099
0.50630.6431 0.233%0.2873 0.53130.6091 0.21280.2751 0.50780.5998
0.52360.6738 0.2094-0.2645 0.49160.5774 0.21480.2778 0.521%0.6152
0.51610.6947 0.22080.2675 0.5064-0.5809 0.21520.2738 0.5204.0.6113
Tuscany (Sample sizen = 619, mean income 2840.4409)
23.6587 2.7008
0.0013 0.1764 (10,437)
Zenga Gini Zenga Gini Zenga
0.5590 0.2545 0.5628 0.2340 0.5380
0.53630.5842 0.24130.2689 0.54330.5842 0.19740.2332 0.486%0.5362
0.53360.5818 0.240%0.2680 0.54130.5823 0.23530.2711 0.5400-0.5898
0.53740.5853 0.240%0.2685 0.5420-0.5831 0.22420.2327 0.5220-0.5364
0.53670.5862 0.24250.2708 0.54420.5857 0.20330.2326 0.48880.5360
Umbria (Sample sizer = 267, mean income 18265312)
4.2205 2.3714
0.0520 0.1829 (10,138)
Zenga Gini Zenga Gini Zenga
0.4782 0.2037 0.4819 0.2051 0.4934
0.43990.5204 0.18950.2233 0.457%0.5156 0.19890.2378 0.4826:0.5505
0.43580.5161 0.186%0.2201 0.45190.5093 0.17290.2115 0.43630.5034
0.44150.5230 0.1896:0.2233 0.45720.5144 0.19890.2262 0.48330.5261
0.44090.5269 0.19160.2267 0.4600-0.5190 0.19900.2441 0.4834-0.5544
Veneto (Sample siza = 596, mean income 2667.9419)
7.8753 2.2449
0.0166 0.2945 (10,815)
Zenga Gini Zenga Gini Zenga
0.6122 0.2862 0.6076 0.2823 0.6052
0.58160.6458 0.27180.3030 0.58830.6304 0.26730.3074 0.5860-0.6373
0.57890.6426 0.27000.3013 0.58520.6275 0.25750.2977 0.57230.6243
0.58380.6488 0.27150.3024 0.58730.6290 0.2680-0.3089 0.58630.6374
0.58260.6506 0.27330.3052 0.58920.6319 0.2680-0.3106 0.58630.6390
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Table 5.3 Cross-regional levels of income inequality expressed byGii and the Zenga indexes, fol-
lowed by their 95% confidence intervals, in non-parameta@ymns 1-2) and parametric setting (columns

3-6), for Italian regions from Sardinia to Veneto (end).

estimates obtained on the Italian equivalent income digtion in 2006, from which

we generated 1000 simple random samples of size= 100, 200 and 400.

In this model the likelihood equations have a solution atgpeint of the sample

space (i.e. points dR" with strictly positive coordinates), and the maximum likel
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hood estimators of the parameters are given by

,/%zmzxi — 2. (6.1)

The Lorenz curve and Gini's index are respectively givendsnga, 1984)

~ 1"'I =
Vn ni: >(h 6[1

L(py,0) =@ (@ Y(p)—6) O<p<l

and

G(y,8) = 20(5/V2) - 1.

The value of Zenga’s index may be obtained by substituting) with L(p;y,d) in
(2.3) so that, by simple algebra

o (p)-9)
208 || o oo 1p) 5

where the integral has to be computed by numerical methoasder to get the influ-

)}dp, (6.2)

ence valuesit (X, 8) we need the gradient vectors of the two inequality functi®na
with respect to the parameters. Since a scale parameter, we just need to compute

the derivatives of the two functionals with respecdtd-or Gini’'s index we easily get

G

whereg is the standard normal density function. For Zenga’s inde6i2) we may

take the derivative under the integral sign. Thus, we obtain

0_2_/‘11—p PP -0
5 Jo p P

[1- o(@-Y(p) - &)

Finally, recalling that the Lognormal information matrigiven by
1

-5 4]

0 2%

and that the score function is given by

oInf(x;y,6) 1| /Inx—y 2
TSKT) B ] (6:3)
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we see that
. 3253 | (INX—y 2
ha(x; y,8) = 2%/25 ——) 1 0(5//2)

when dealing with Gini’s index, whereas

hz(x;y,8) = 28° l(mxé_ V)Z 1] /ol Lp 0000 g,

P [1-®(®1(p)- )

when Zenga’s index is considered.

6.2 Dagum confidence intervals

F belongs to the Dagum family if its density function is given b
apar-1

X) = ajp+1’
b2P[1+(§)°]

for somea,b,p > 0 (Kleiber and Kotz, 2003). Notice that the first moment of a

x>0

Dagum distribution is finite if and only # > 1, and therefore the inequality measures
we consider in this paper are only defined for the subfamilpafum distributions
with a > 1.

As in the Lognormal case, we used the maximum likelihoodrests from the
Italian equivalent income distribution as parameter valioe the parent distribution.
Thus we simulated 1000 samples from the Dagum distribution wih= 3.6781,

b = 19,262 andp = 0.6875 in order to analyze coverage accuracy and length of
confidence intervals for Gini's and Zenga'’s new index.

Given ani.i.d. samplg, xo, ..., Xn, the likelihood equations for the Dagum family

are given by Ny
g+ pz‘ln (%) —(p+ 1)_: 1|: ((i))a =0
np(prl)_iﬁlga =0 (6.4)
%+ai|n (%) - _im 1+ (%)a} —0
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However, no explicit solution of this system is known. The EHtimation problem is
easier to handle if we observe that the natural logarithmégum random variable

follows a generalized logistic distribution with densitynction given by

x=6

a e

fly) =

g

—0<y<®
—9 a+l’ ?
o (1+e*XT)

where—ow < 8 < 0 anda,o > 0. Notice thatd and o are the location and scale
parameter, respectively, while is a shape parameter that affects asymmetry. The
parameters of the generalized logistic distribution alatee to those of the Dagum
distribution by the relations
1

a=_, b=e’, p=a.
Thus, the problem of solving the system in (6.4) is equiviatenthe problem of
finding a solution of the likelihood equations of the genieead logistic distribution,

which are given by

n 0
ﬂlem(ue*yT):o
a .
n 120y L a+1g y“
-2 EZ Y (6.5)
1+e0
Eia+1“
0 Ai14els

In our simulation study we employed an iterative two stepcpdure for solving this
system. At stepwe first find an updaté andg; of the location and scale parameters
through a single Newton-Raphson step applied to the laséguations of the system
(6.5). Then we usé; and g; in the first equation in order to get an updateof
the shape parameter. If the likelihood function has a locimum, this two step
procedure will converge to it provided that the startingéa, 8o, 0p) is not too far
from the solution. The initial values for this algorithm aheis of crucial importance.
We select them by least squares fitting the three quartiliseofeneralized logistic

distribution with shape parameter= 1 to the corresponding quartiles of the natural



Cross-regional results on income inequality in Italy: ssand evidence from survey data 23

logarithm of the sample observations. Since the quantiietfan of the generalized
logistic distribution, given by

a

y(t):9+aln(ﬁ), O<t<1,

is linear in 6 and o, we find a closed form solution for the initial values. Indeed
putting ap = 1 and denoting by, Q> andQ3 the quartiles of the natural logarithm
of the sample observatioms we see that the initial valuély andoy are given by the

least squares solution of the linear system

Q1=06-0In3
Q=6
Q3=06+0alIn3,

which yieldsf = (Q1 4+ Q2+ Qz)/3 andgp = (—Q1In3+Q3In3)/(2In?3). In our
simulations we allow for each sample a maximum number, 600Q iterations of the
two step procedure above (making an exception for the sacgmeng from Aosta
Valley, for which we needed,500 iterations to reach convergence, due to the very
small sample size of 45 statistical units). If the algoritteduces the gradient of the
likelihood function to a value smaller than 1% within the iterations, we test the
hessian matrix for negative definiteness at the solutiahigftest is positive we con-
clude that the solution is a local maximum of the likelihoaguation. Notice that
beyond a bad choice of the initial values, there may be ansih®le reason why
this procedure does not deliver a local maximum. Indeedhas $002) points out,
there exist points in the sample space such that a solutidheofikelihood equa-
tions in (6.5), and therefore also of the system in (6.4) sdu# exist. Nevertheless,
with probability tending to 1 as the sample size increasesetexists a sequence of
solutions of the likelihood equations of the generalizegidtic distribution that is

consistent and asymptotically normally distributed (Atgee and Heiler, 2000).
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So how do we handle samples on which the algorithm does niviedel local
maximum? And what happens if it finds a local maximum, but trexjuality mea-
sures are not defined at that point (i.e. the ML estimate gbénemetea is not larger
than 1)? Our answers to these questions depend on whetheewdeaing with a
bootstrap resample or not. In the former case we simply distee sample and take
another bootstrap resample until we reach a total 889 bootstrap resamples such
that the algorithm converges to a local maximum at whichitlegiiality measures are
defined. Otherwise, if the sample we are dealing with is onte@briginal samples
from the Dagum parent distribution of the simulation studlg,use it for estimating
the probability of the subset of the sample space on whictvthestimates of the
inequality measures do not exist. For the Dagum parentilaligion in our simula-
tion study corresponding to the sample sires 100, 200 and 400 these estimates
are given by 0712, 00141 and @010, respectively. It is worth noting that, among
the samples drawn from the Dagum parent distribution, wemnekiserved one giv-
ing rise to a solution provided by the algorithm outside tbendin of the inequality

measures (i.e. a solution with< 1).

In any case, for the 2fal samples from regional income distributions we deal
with in the application shown in section 4, the algorithm \ehgaysable to calculate
the ML estimates. Let us now turn to the expressions of thguakty measures in the

Dagum model. The Lorenz curve and Gini's index are respelgtiyiven by (Dagum,

1977)
L(t;a,b,p):B(tl/p;eré;l—g), O<t<1 (6.6)
and
_ ' (pr2p+1/a)
G(p,a,b) = I'(2p)l'(p+1/a)_1' (6.7)

In (6.6) we used(t; a;b) to indicate the beta cdf, while (x) indicates the Gamma

function in (6.7). Substituting the Lorenz curve in the falmof Zenga's index, we
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get

1t B(tYPptli1_ 1
Z(pab)= [ ("ip+5i1-s) (6.8)

0 tl1-B(tYPp+1;1-1)]
As noticed at the beginning of this section, the Lorenz cuavel thus the two in-

equality measures, are defined if and onlg if 1.

In order to get the influence valubs(X;, 8) in the Dagum case we need the gra-
dient vectors of the two inequality functionals with respiecthe parameters. Since
bis a scale parameter, we just need to compute the derivatithe two functionals

with respect ta andp. For Gini's index in (6.7) it is easily checked that

‘;_(j _ Ga_*gl [W(p+1/2) — w(2p+1/a)],
JG

ap (G+1)[¢(p)+2¢(2p+1/a) +2¢/(2p) — Y(p+1/a)],

wherey(x) is the digamma function, i.e the derivative of 1(x).

The partial derivatives of Zenga's new index with respecthi® parameters of
the Dagum family are rather cumbersome expressions. We teport them here.
For computational convenience, we suggest not to use thgtiarexpressions, but to

approximate the partial derivatives of Zenga'’s index by Mave difference quotient.

Finally, we need the score function (a vector valued fumttin f(x; 6)/06 and
the information matrix y to compute the parametric influence values in (2.8) for the
Dagum family. If we putn = 1 in the system of likelihood equations in (6.4) and
multiply the second equation kay/'b, we get the components of the score function on

the LHS, while the components of the information matrix carfdund, for example,
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in Kleiber and Kotz (2003). We report them here for completmn

1= @ {pl(W(P) — w(1) ~ D2+ ¢/ (p) + @' (V)] + 21w (p) — W(L)]}:
1, — P=1-pY(p) — ()]
12 b(2+ p) '
| &p
22 22+ p)
_ Y2 —y(p).
13 all+p)
| a
BT b1+p)’
1
|33— E
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