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Abstract

This paper analyzes market structures where leaders have a first mover advan-

tage and entry by the followers is endogenous. The strategy of the leaders is always

more aggressive than the strategy of the followers independently from strategic substi-

tutability or complementarity. Under quantity competition, the leader produces more

than any other firm and I determine the conditions for entry deterrence to be optimal

(high substitutability and constant or decreasing marginal costs). Under price compe-

tition, the leader sets a lower price than each follower, just the opposite than with an

exogenous number of firms. In contests the leader invests more than each follower. In

all these cases a leadership improves the allocation of resources compared to the Nash

equilibrium with endogenous entry.
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1 Introduction

This paper studies market structures where one or more firms have a first mover
advantage in the sense of Stackelberg (1934) on the other firms, but entry in
the market is endogenous, characterizes their equilibrium and performs welfare
analysis for some of the applications. These market structures emerge in many
sectors which are substantially competitive (a fringe of firms is ready to enter
whenever there is a profitable opportunity), but where some incumbent firms
have a competitive advantage over the followers (because of technological, his-
torical or legal reasons, or just because entry was not possible at an earlier
stage) and choose their strategies before them.1

While standard models of symmetric competition have been widely studied
in the presence of endogenous entry in a Marshallian tradition, traditional mod-
els with incumbent firms facing a competitive fringe of entrants have been mostly
limited to the analysis of markets with homogenous goods and entry deterrence,
for instance in the theories of limit pricing and of contestable markets (Baumol,
Panzar and Willig, 1982). More recently, Vives (1988) has analyzed games with
sequential entry of multiple firms, but without endogenizing the entry process
(see also Anderson and Engers, 1992, 1994). This paper is an attempt to pro-
vide a general characterization of Stackelberg equilibria with endogenous entry
of followers.
The analysis delivers a simple result: leaders facing endogenous entry are al-

ways aggressive compared to the followers, in the sense that they always produce
more under competition in quantities or they set lower prices under competition
in prices, while this is not necessarily the case when the number of firms is ex-
ogenous. With a fixed number of firms the leader is mainly concerned about the
reactions of the other firms to its own choices, but these reactions are opposite
according to whether strategic substitutability or complementarity holds. How-
ever, when entry is endogenous, the leader is mainly concerned about the effect
of its own choices on the entry decision: an accomodating behaviour would be
ineffective because (the induced) entry would make it unprofitable, while an ag-
gressive behaviour limits entry and spreads a small mark up over a large market
share.

1As well known, the commitment of the leaders to a strategy may not be credible in the
long run. Nevertheless, such a commitment represents a credible advantage in markets with a
short horizon or when strategies are costly to change. For instance, in some seasonal markets
firms choose their production level at the beginning of the season and it is hard to change such
a strategic choice afterward. In other markets, prices are sticky in the short run because the
information to reoptimize is costly or because a price change can induce adverse reputational
effects on the perception of the customers: being the first mover in the price choice provides the
leader with a credible commitment in the short run. In patent races, a preliminary investment
in research and development represents a solid commitment to an innovation strategy.
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While I develop the main analysis in a general framework that nests a num-
ber of models, I also study in detail some of these models, starting from com-
petition in quantities. When goods are imperfect substitutes and the average
cost function is U-shaped market leaders facing endogenous entry produce more
than their followers but entry occurs in equilibrium. However, when goods
are homogenous and marginal costs are constant, the leader finds it optimal
to increase output until no one of the potential entrants can obtain profits in
the market. Nevertheless, in both cases effective or potential entry induce the
leader to choose an extremely low price, and welfare is higher compared to the
corresponding Cournot equilibrium with endogenous entry. In models with com-
petition in prices, the impact of endogenous entry is even more radical. While
leaders facing an exogenous number of followers choose a higher price than their
competitors, leaders facing endogenous entry always choose a lower price than
each other firm and obtain positive profits (enjoying a first mover advantage).
I analyze the cases of Logit and Dixit-Stiglitz demands and verify that welfare
is also higher under Stackelberg competition with endogenous entry: again, the
lower price of the leaders improves the allocation of resources. Finally, also
different kinds of contests are nested in our general model. In these models
we have leaders facing endogenous entry that invest more than any other firm:
between the different applications, I will focus on patent races, where it emerges
again that the allocation of resources is improved when one of the firms acts as
a leader and entry is endogenous.
The analysis of Stackelberg competition with endogenous entry is closely

related with three older theoretical frameworks. The first is the literature
on entry deterrence associated with the socalled Bain-Modigliani-Sylos Labini
framework. The inital contributions by Bain (1956), Sylos Labini (1956) and
Modigliani (1958) took in consideration the effects of entry on the behaviour
of market leaders, but they were not developed in a coherent game theoretic
framework and were substantially limited to the case of competition with per-
fectly substitute goods and constant or decreasing marginal costs (which not by
chance, as we will see, are sufficient conditions for entry deterrence).
The second is the dominant firm theory, which tries to explain the pricing

decision of a market leader facing a competitive fringe of firms taking as given
the price of the leader (see Viscusi et al., 2005, Ch. 6). Assuming that the
supply of this fringe is increasing in the price, the demand of the leader is
total market demand net of this supply. The profit maximizing price of the
firm is above marginal cost but constrained by the competitive fringe. The
dominant firm theory provides interesting insights on the behaviour of market
leaders under competitive pressure, and this work tries to provide an alternative
game-theoretic foundation for its results.
The third is the theory of contestable markets by Baumol, Panzar and Willig

(1982), which is mostly focused on markets for homogenous goods without sunk
costs of entry, and it shows that the possibility of “hit and run” strategies by po-
tential entrants is compatible only with an equilibrium price equal to the average
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cost: in other words, a single potential entrant is enough to insure a competitive
behaviour of the incumbent. An interesting feature of this equilibrium is that
it corresponds to the one emerging under price competition where the incum-
bent sets its price before the entrants. In this paper I will try to examine more
general situations in which the goods are not necessarily homogenous, and the
incumbent leader and the followers can compete both in prices and quantities.
In such a case, only a potentially large set of competitors that guarantees that
entry can be regarded as endogenous induces a competitive behaviour of the
leader.
These results lead to a few policy implications. The general aggressive be-

haviour of the market leaders facing endogenous entry suggests that large mar-
ket shares and large extraprofits for these leaders can be the consequence of
a competitive behaviour induced by the competitive pressure of the entrants.
Therefore, in the field of antitrust policy, and in particular in investigations
concerning abuse of dominance, a preliminary examination of the entry condi-
tions is crucial to verify whether large market shares of the leaders can be a
sympthom of dominance.
The paper is organized as follows. Section 2 presents the general model

and derives the main general results, Section 3-5 study in detail applications
to models of competition in quantities, prices and in contests, and develop a
welfare analysis for each application. Section 6 discusses some extensions and
Section 7 provides some policy implications. Section 8 concludes. Proofs and
further extensions are left in the Appendix.

2 The model

In this section I will introduce a general model of market structure and study
Stackelberg equilibria with and without endogenous entry.
Consider many identical firms which are potential entrants in a market.

Each firm i active in the market chooses a single strategic variable xi ∈ X ⊂ R+
where the close set X is a strategy space. If n firms enter in the market, a set
of strategies delivers the net profit function for firm i:

πi = Π (xi,X−i)−K (1)

where the effects or spillovers induced by the strategies of the other firms on firm
i’s profits are summarized by X−i =

Pn
j=1,j 6=i h(xj) for some function h : X→

R+ which is assumed continuous, differentiable, positive and increasing, and
K ≥ 0 is a fixed cost of production. I assume that the function Π : X×R+ → R+
is twice differentiable and quasiconcave in xi with an optimal strategy x(X−i)
for any level of spillovers X−i, while spillovers are assumed to exert a negative
effect on profits, Π2 < 0, which, as we will see, is a necessary condition for
having free entry equilibria.2

2Subscripts denote derivatives. In order to focus on interesting issues I also assume that
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In general, it could be that Π12 is positive, so that we have strategic comple-
mentarity (SC), or negative so that we have strategic substitutability (SS). I will
define strategy xi as aggressive compared to strategy xj when xi > xj and as
accomodating when the opposite holds: notice that a more aggressive strategy
by one firm reduces the profits of the other firms. Most of the commonly used
models of oligopolistic competition are nested in our general specification: as
we will see, these include all symmetric models of competition in quantities,
models of competition in prices with Logit and Dixit-Stiglitz demand functions,
standard patent races, contests, rent seeking games, and others.
One of the firms is a leader in the sense that is a first mover in the choice

of the strategy.3 The other firms are the followers and the entry of these is
endogenous. Since a generic zero profit condition will determine the endogenous
number of firms, I will refer to the equilibrium as to a free entry equilibrium. In
particular, I will define a Stackelberg Equilibrium with Free Entry (SEFE) as a
subgame perfect equilibrium of the game with the following simple sequence of
moves:
1) in the first stage, a leader, firm L, enters, pays the fixed cost F and

chooses its own strategy, say xL;
2) in the second stage, after knowing the strategy of the leader, all potential

entrants simultaneously decide “in” or “out”: if a firm decides “in”, it pays the
fixed cost K;
3) in the third stage all the followers that have entered choose their own

strategy xi (hence, the followers play in Nash strategies between themselves).
In the last stage, the choice of each follower has to satisfy the first order

condition:
Π1 (xi,X−i) = 0 (2)

where X−i =
P

j 6=i h(xj) + h(xL). In this kind of games, given the number of
firms, a pure-strategy equilibrium exists if the reaction functions are continuous
or do not have downward jumps (see Vives, 1999). Unfortunately this may not
be the case due to the presence of fixed costs, but weak conditions for existence
have been studied for many applications.4 In this general framework I will
just assume existence of a unique symmetric equilibrium where all the followers

K ∈ (0,Π[x(χ), χ]) where χ = h(x(0)), which just means that if one firm is choosing the
monopolistic strategy (the optimal one given inactivity of the others), entry is profitable: the
market is not a natural monopoly.

3The exogeneity of this leadership can be a realistic description for markets with established
dominant firms, or where entry at an earlier stage was not possible for technological or legal
reasons, for liberalized markets that were once considered natural monopolies or those where
intellectual property rights play an important role. Later I will extend the model to multiple
leaders and endogenous leadership. I am extremely thankful to a referee for pointing out this
issue.

4For instance, see Amir and Lambson (2000) on Cournot games with perfectly substitute
goods and Vives (1999) for a survey. In general, under SC there are only symmetric equilibria
but there may be more than one, while under SS there is a unique symmetric equilibrium but
there may be other asymmetric equilibria.
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choose the same strategy xF (this happens in all our examples and, in general,
under a standard contraction condition, Π11 + (n− 2)h0(xF ) |Π12| < 0).5
Therefore, I will simply focus on a particular symmetric equilibrium for the

second stage of the game. This will be characterized by the first order condition:

Π1 [xF , (n− 2)h(xF ) + h(xL)] = 0 (3)

where I used the fact that the spillovers perceived by any follower are X−F =
(n−2)h(xF )+h(xL). Subscripts F and L will denote the representative follower
and the leader in the symmetric equilibrium through all the paper.

2.1 Exogenous entry

When the number of firms is exogenous, the standard results on Stackelberg
duopolies easily generalize. Given the number of firms n, total differentia-
tion of (3) implies that the reaction functions of the followers have a slope
dxF /dxL ∝ Π12 (xF ,X−F ). Therefore, an increase in the strategy of the leader
xL makes the followers more aggressive under the assumption of SC (Π12 > 0)
and more accommodating under SS (Π12 < 0). Consequently, in case of an
interior solution, the optimality condition for the leader can be easily derived
as:

ΠL1 (xL,X−L) =
ΠL2Π12(n− 1)h0(xF )h0(xL)
Π11 + (n− 2)h0(xF )Π12

whose right hand side has the sign of ΠL12 (xL,X−L). We then obtain the tradi-
tional result for which xL < xF under SC and xL > xF under SS: Stackelberg
competition with a fixed number of firms implies that the leader is aggressive
compared to each follower under SS and accommodating under SC.6 We now
turn to the case where the number of firms is endogenous.7

2.2 Endogenous entry

Now, let us consider endogenous entry. I will now provide an intuitive and
constructive argument to characterize the SEFE which will be useful in the

5This always holds for n = 2. With more than one follower, weaker conditions for unique-
ness are available for particular models. Nevertheless, one should keep in mind that whenever
asymmetric equilibria can emerge, as under quantity competition with strong increasing re-
turns (see Amir and Lambson, 2000), the predictive power of our selected equilibrium would
be diminished.

6The ambiguity of these results on the optimal behaviour of a leader is even deeper when
reaction functions are not monotonic, that is when SS holds in some regions and not in others.

7As usual in this literature I will simplify the analysis considering n as a real number
when larger than 2. A general treatment is more complex but the spirit of the result is
unchanged under regularity conditions. Anyway, as a referee noticed, the following analysis
can be interpreted as focusing on two extreme cases: one is a duopoly model in which entry
can possibly be deterred and the other is a model with one leader and many small firms in
which integer constraints can be ignored. In Etro (2007) I discuss how to derive the exact
equilibria taking the integer constraint on n into account.
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applications of the next section, leaving formal proofs to Appendix A.
Imagine that some followers enter in the market in equilibrium. Then, in

the last stage we still have the first order equilibrium condition for the followers
(3). Under our assumptions, the profits for the followers are decreasing in the
number of entrants,8 therefore in the second stage the followers enter in the
market until there are positive profits to be made, and one can impose the free
entry condition:

Π [xF , (n− 2)h(xF ) + h(xL)] = K (4)

The system (3)-(4) can be thought of as determining the behavior of the
followers in the second and third stages, namely as determining xF and n as
functions of the leader’s first stage action. But we can also look at these two
equations in a different way: they can be solved for the two unknowns (xF ,X−F )
which only depend on the fixed cost of production and not on the strategy of the
leader. Given (xF ,X−F ), there is a unique locus of (xL, n) pairs that satisfy
the equilibrium relation X−F = (n − 2)h(xF ) + h(xL). In other words, the
strategy of the followers is independent from the strategy of the leader, while
their number must change with the latter.9

Let us now move to the first stage and study the choice of the leader. As
long as entry takes place, the perceived spillovers of the leader can be written
as:

X−L = (n− 1)h(xF ) = X−F + h(xF )− h(xL) (5)

which depends on xL only through the last term, since we have just seen that
the pair (xF ,X−F ) does not depend on xL. We can use this result to verify
when entry of followers takes place or not. It is immediate that entry does not
occur for any strategy of the leader xL above a cut-off x̄L such that n = 2 or,
substituting in (5), such that:

X−F = h(x̄L) (6)

which clearly implies x̄L ≥ xF . Entry occurs whenever xL < x̄L. In such a case,
the leader chooses the optimal strategy to maximize:

πL = Π
L[xL,X−F + h(xF )− h(xL)]− F (7)

8Indeed we have:
dΠ

dn
=

Π2Π11h(xF )

Π11 + (n− 2)h0(xF )Π12
< 0

since Π2 < 0 and the denominator is negative under the stability assumption. In case profits
have a positive limit for n increasing, a free entry equilibrium requires high enough fixed costs.

9The invariance property (dxF /dxL = 0) is quite important since it shows that what
matters for the leader is not the reaction of each single follower to its strategy, but the effect
on entry. This is exactly the opposite of what happens in the Stackelberg equilibrium of the
previous section: when entry is exogenous the leader takes as given the number of followers
and looks at the reaction of their strategies to its own strategy; when entry is endogenous the
leader takes as given the strategies of the followers and looks at the reaction of their number
to its own strategy.
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which delivers the first order condition:10

ΠL1 [xL, (n− 1)h(xF )] = ΠL2 [xL, (n− 1)h(xF )]h0(xL) (8)

In this case the equilibrium values for xL, xF and n are given by the system
of three equations (3)-(4)-(8).
In general, the profit function perceived by the leader is an inverted U re-

lation in xL for any strategy below the entry deterrence level x̄L, and it takes
positive values just for xL > xF . Beyond the cut-off x̄L, it is downward sloping
(under the assumption that the market is not a natural monopoly). Conse-
quently, the entry deterring strategy is optimal only if it provides higher profits
than the locally optimal strategy characterized by (8). If we are just interested
in the qualitative behaviour of the firms, we can conclude as follows:

Proposition 1. A SEFE always implies that the leader is aggressive
compared to each follower, and each follower either does not enter or
chooses the same strategy as under Nash competition with free entry.

Before turning to the applications of this result, we briefly comment on
the comparative statics of the equilibrium. The impact of a generic parameter
affecting the profit functions is quite complicated and intuitions are hard to
grasp, but we can make some useful progress focusing on changes in the fixed
cost. It turns out that the results are typically the opposite if SS or SC holds.
For simplicity, let us assume Π22 ≥ 0, which will hold in our examples.11 We
obtain:

Proposition 2. Consider a SEFE where entry of followers tUnder
strategic substitutability, a) if Π12h

0(xF ) > Π11, the strategy of each
firm is increasing and the number of firms is decreasing in K, b) oth-
erwise, the strategy of entrants (leader) is increasing (decreasing) in
K. Under strategic complementarity, c) if ΠL12 < (=)ΠL22Π

L
1 /Π

L
2 , the

strategy of entrants and their number are decreasing while the strat-
egy of the leader is increasing in (independent from) K, d) otherwise,
the strategy of each firm is decreasing in K.

We will now verify these results in models of quantity and price competition
and in contests and we will also discuss the welfare implications of the specific
applications.

10Notice that the second order condition is:

DL = ΠL
11 − 2ΠL12h0(xL)−ΠL2 h

00(xL) +ΠL
22h

0(xL)2 < 0

that I assume to be satisfied at the interior optimum.
11Π22 > 0 in the case of quantity competition and perfectly substitute goods as long as

demand is convex, in our examples of price competition and in standard patent races.
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3 Competition in quantities

In this section I apply the general results on the SEFE to models of competition
in quantities. Let us consider a market where each firm i chooses the output xi
and faces an inverse demand pi = p(xi,X−i) which is decreasing in both argu-
ments. This implies that goods are substitutes, but not necessarily homogenous
- of course, in case of homogenous goods the inverse demand could be written as
p = p(X) for all firms, with X total output. If the cost function is an increasing
function c(xi), the profit for firm i is:

πi = xip (xi,X−i)− c(xi)−K (9)

with X−i =
Pn

j 6=i h(xj), p1 < 0 and p2 < 0. We can verify that the associ-
ated profit function is nested in our general form (1) under simple regularity
conditions.
To characterize the SEFE, let us start by looking at the last stages. Assume

first that the output of the leader is low enough that entry occurs in equilibrium
(we will verify later on when this is the case). The equilibrium first order
condition for the followers and the endogenous entry condition are:

p (xF ,X−F ) + xF p1(xF ,X−F ) = c0(xF )

xF p (xF ,X−F ) = c(xF ) +K

and they pin down the production of the followers xF and their spillovers X−F
independently from the production of the leader. Consequently, the profits of
the leader can be rewritten as:

πL = xLp (xL,X−L)− c(xL)−K

= xLp [xL,X−F + h(xF )− h(xL)]− c(xL)−K

whose maximization delivers the optimality condition:

p(xL,X−L) + xL [p1(xL,X−L)− p2(xL,X−L)h0(xL)] = c0(xL) (10)

Comparing the equilibrium optimality conditions of the leader and the followers,
and using the fact that goods are substitutes (p2 < 0), it follows that the leader
produces more than each follower. For these conditions to characterize the
equilibrium it must be that the alternative strategy of entry deterrence provides
lower profits to the leader. As intuitive, this happens when marginal costs are
strongly increasing in the output or there is little substitutability between goods.
In particular, when goods are homogenous, the inverse demand is simply

p(X), and the cost function is convex, the equilibrium condition for the leader
boils down to an equation between the price and its marginal cost. In such a
case, the equilibrium is fully characterized by the following conditions:

p(X) =
c0(x)
1− 1/� =

c(x) + F

x
= c0(xL) (11)
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where the first equality is a traditional mark up rule for the followers (with �
elasticity of demand), the second equality is the endogenous entry condition,
and the third one defines the pricing rule of the leader. Notice that while
the followers produce below the optimal scale (defined by the equality between
marginal and average cost), the leader produces above this scale and obtains
positive profits thanks to the increasing marginal costs.
We now provide two simple examples of SEFE in models of competition in

quantities where entry occurs.

Example 1: U-shaped cost function Consider homogenous goods and
linear demand p = a − X for all firms, where X =

Pn
j=1 xj is total output.

Imagine that the average cost function is U-shaped, and in particular that the
cost function is quadratic. Hence, the profit function for firm i is:

Π (xi,X−i) = xi (a− xi −X−i)− dx2i
2

(12)

Consider the last stage. Given the production of the leader xL, the equilibrium
output for the entrants is xF = (a− xL)/(n+ d), and the associated profits are
ΠF = (2 + d)(a − xL)

2/2(n + d)2. Under free entry, the zero profit condition
delivers the number of firms n = (a− xL)

p
(2 + d) /2K−d and the production

of each follower:

xF =

r
2K

2 + d
(13)

Hence total production is X = a− (1 + d)
p
2K/(2 + d), which is independent

from the leader’s production. The gross profit function of the leader in the first
stage, as long as there is entry, that is for n > 2 or xL < a−p2K(2 + d), is:

ΠL (xL,X−L) = (1 + d)

r
2K

2 + d
xL − d

2
x2L

which is concave in xL and maximized by:

xL =
1 + d

d

r
2K

2 + d
(14)

Accordingly, the output of the leader is always higher than the output of the
followers. The equilibrium number of firms is n = a

p
(2 + d) /2K−1/d−d+1.

This number is larger than two when d is positive and large enough, the size of
the market (a) is large enough (or the fixed costs are small enough); if this is
not the case we have an equilibrium with entry deterrence. Notice that under
Cournot competition with free entry each firm would produce the same as xF
derived above, and also total production would be the same, but the number
of firms would be larger by 1/d. For instance, if d = 1 Stackelberg competition
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eliminates one entrant and replaces its production with the leader producing
the double than any other firm.

Since we know from Mankiw and Whinston (1986) that the Cournot equilib-
rium with free entry is characterized by too many firms producing too little, it
is intuitive that Stackelberg competition with free entry improves the allocation
of resources inducing a reduction in the number of firms. This result holds for
any demand function as long as goods are homogenous, since our model implies
always that total production is the same under Stackelberg and Cournot com-
petition when entry is free, but a leader produces more than the followers and
there are less firms in the Stackelberg case. Hence, the associated reduction in
wasted fixed costs comes back in form of profits for the leader, which increases
welfare. In conclusion, consumer surplus is the same, but welfare is higher under
Stackelberg competition with endogenous entry:

Proposition 3. Consider quantity competition with homogenous
goods. Under endogenous entry, as long as there is entry of some
followers, Stackelberg competition in quantities is always Pareto su-
perior with respect to Cournot competition.

Example 2: Product differentiation The second example is a linear model
with product differentiation, where inverse demand is now pi = a− xi − biX−i
with b ∈ (0, 1),12 and c is the constant marginal cost. Profits for firm i are now
given by:

Π(xi,X−i) = xi (a− xi − bX−i)− cxi (15)

Under Stackelberg competition, as long as substitutability between goods is
limited enough (b is small) there are entrants producing xF = (a−bxL−c)/[2+
b(n− 2)], which simplifies to:

xF =
√
K (16)

when we endogenize the number of firms under free entry. The profit function
perceived by the leader is now:

ΠL (xL,X−L) = xL

h
(2− b)

√
K − (1− b)xL

i
that is maximized when the leader produces:

xL =
2− b

2(1− b)

√
K (17)

12This can be derived from the following quadratic utility of a representative agent:

U = a
n[
i=1

Ci − 1

2

 n[
i=1

C2i + b
[
i

[
j 6=i

CiCj

+C0

where Ci is consumption of good i and C0 is the numeraire.
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Again, the production of the leader is higher than the production of the followers.
Moreover, the leader will offer its good at a lower price than the followers,
namely:

pL = c+

µ
1− b

2

¶√
K < pF = c+

√
K (18)

The consequence is that entry of followers is reduced. Since consumers value
product differentiation in such a model the welfare consequences are complex.
Nevertheless, one can verify that the reduction in the price of the leader more
than compensates the reduction in the number of varieties, and consumer sur-
plus is strictly increased by the leadership.13 Therefore, in this case the con-
sumers strictly gain from the aggressive pricing strategy of the leader even if
this induces some firms to exit and reduces the number of varieties provided in
the market.
These examples have shown cases in which entry occurs, and shows that

the leader is always more aggressive than each follower. Notice that in both
examples the comparative statics with respect of the fixed cost was following
case a) of Prop. 2.

Let us now move to the equilibria where entry deterrence takes place. When
goods are homogenous or highly substitute, or when the marginal cost is de-
creasing, constant or not too much increasing, the optimality for the leader
implies a corner solution with entry deterrence. In our general formulation this
requires:

xF p(xF , x̄L) = c(xF ) +K ⇐⇒ x̄L = X−F − xF (19)

Notice that the entry deterring output must be decreasing in the fixed cost,
since this cost helps the leader to exclude the rivals, and it must approach the
average variable cost when the fixed cost (of entry for the followers) tends to
zero.
In the case of general demand functions for homogenous goods, we can ac-

tually find a simple sufficient condition for entry-deterrence which just depends
on the shape of the cost function:

13Using the quadratic utility that generates this demand function, in equilibrium we have:

U = Y +
1

2

 n[
i=1

x2i + b
[
i

[
j 6=i

xixj


where Y is the exogenous income of the representative agent.The gain in consumer surplus
from the presence of a leader when entry is endogenous is:

∆U =
b(2− b)F

8(1− b)
> 0

and the gain in welfare is ∆W = ∆U+πL. I am thankful to Nisvan Erkal and Daniel Piccinin
for insightful discussions on this point.
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Proposition 4. Consider quantity competition with homogenous
goods. Whenever marginal costs of production are constant or de-
creasing, Stackelberg competition in quantities with endogenous en-
try always delivers entry-deterrence with only the leader in the mar-
ket.

To verify this result, I will provide another example.

Example 3: Linear demand and constant marginal costs Consider the
simplest model of quantity competition, with linear demand p = a−X, which
derives from a quadratic utility, and constant marginal costs c. The profits of a
generic firm i are given by:

Π(xi,X−i) = xi (a− xi −X−i)− cxi (20)

In this case, already mentioned in Etro (2006a), the SEFE is characterized by
entry deterrence with the leader producing:

x̄L = a− c− 2
√
K (21)

and obtaining positive profits. The limit price in this SEFE p = c+2
√
K is above

the equilibrium price under Cournot competition with free entry. Nevertheless,
welfare is higher because the profits of the leader (associated with the savings in
fixed costs) are enough to compensate for the lower consumer surplus (associated
with the lower production).14

Notice that this limit price is above the one emerging in case of Stackelberg
competition in prices, which would lead to a price equating average cost as in
the theory of contestable markets.15 In both cases, the price converges to the
marginal cost when fixed costs disappear.

4 Competition in prices

The role of price leadership is often underestimated for two main reasons. The
first is that commitments to prices are hardly credible when it is easy and

14Indeed, adopting the standard definition of welfare, in the Cournot equilibrium with free
entry this is:

WC =
(a− c−√K)2

2
while in the SEFE it is:

WS =
X2

2
+ πL =

(a− c)2

2
− 3K

It can be verified that welfare is higher in the Stackelberg case for any K < 4(a − c)2/49,
which always holds when the market is not a natural monopoly, that is for K < (a− c)2/16.
15While we confined the analysis of SEFE to well-behaved profit functions, the general

concept applies also to the case of price competition with a leader and free entry. In such a
case the equilibrium requires a limit pricing by the incumbent satisfying p = a−x = c+F/x,
and corresponds to the equilibrium of the contestable market theory. In this sense, our SEFE
generalizes that theory.
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relatively inexpensive to change prices. While this is true for long term com-
mitments, it is also true that short term commitments can be credible in most
markets. In particular, when a price change requires substantial information
whose acquisition is costly and when it can exert adverse reputational effects on
the perception of the customers, a commitment to a fixed price can be reason-
able. Moreover, when a price change induces quick entry into the market or exit
from it, a commitment to a fixed price may have a stronger rationale: while this
is inconsistent with a situation in which the number of firms is exogenous, the
price commitment becomes a relevant option exactly when entry in the market
is endogenous.
The second reason for which a price leadership may poorly describe the

behaviour of market leaders is probably more pervasive and it relies on the
absence of a first mover advantage in simple models of competition in prices.
For instance, in standard duopolies, a price leader obtains less profits than its
follower, and for this reason neither one or the other firm would like to be
leaders: there is actually a second mover advantage. As we will see, this result
disappears and the first mover advantage is back exactly when entry in the
market is endogenous.
I will focus on a large class of models of price competition with imperfect

substitutability between goods where the direct demand can be written as:

Di = D

pi, nX
j=1,j 6=i

g(pj)

 (22)

withD1 < 0, D2 < 0, g(p) > 0 and g
0(p) < 0, which implies that demand of good

i decreases in pi and increases in any pj with j 6= i. For consistency with our
definitions, let us define the strategic variable as xi = 1/pi, and h(x) = g(1/x).
Then, assuming for simplicity a constant marginal cost c, we can write profits
as:

πi = (pi − c)D
³
pi,
P

j 6=i g(pj)
´
−K =

µ
1

xi
− c

¶
D

µ
1

xi
,X−i

¶
−K

where X−i =
P

j 6=i g(pj) =
P

j 6=i h(xj). Clearly, also this model is nested in our
general formulation (1) under simple regularity conditions. While the direction
of the strategic effect is not obvious, SC holds in most models of competition in
prices: this implies that leaders facing exogenous entry tend to be accomodating
setting higher prices than their followers.
Before analyzing the SEFE of this model, we present a few examples of well

known demand functions that belong to the class defined above. A first example
is given by the Logit demand:

Di =
Ne−λpiPn
j=1 e

−λpj (23)
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with N > 0 and λ > 0. This demand belongs to our class of demand func-
tions after setting g(p) = exp(−λp), which satisfies g0(p) < 0. Anderson et al.
(1992) have shown that this demand is consistent with a representative agent
maximizing the utility:

U = C0 −
µ
1

λ

¶ nX
j=1

Cj ln

µ
Cj

N

¶
(24)

when
Pn

j=1Cj = N and −∞ otherwise (total consumption for the n goods

is exogenous), under the budget constraint C0 +
Pn

j=1 pjCj = Y , with C0 as
the numeraire. This interpretation allows to think of 1/λ as a measure of the
variety-seeking behavior of the representative consumer.
Other important cases derive from the class of demand functions introduced

by Dixit and Stiglitz (1977) and derived from the maximization of a utility func-

tion of a representative agent as U = u
h
C0, V

³Pn
j=1 C

θ
j

´i
under the budget

constraint C0 +
Pn

j=1 pjCj = Y , where C0 is the numeraire, u(·) is quasilinear
or homothetic, V (·) is increasing and concave, and θ ∈ (0, 1] parametrizes the
substitutability between goods. For instance, consider the utility function:

U = Cα
0

 nX
j=1

Cθ
j

 1
θ

(25)

with θ ∈ (0, 1) and α > 0. In this case the constant elasticity of substitution
between goods is 1/(1−θ) and increases in θ. Demand for each good i = 1, ..., n
can be derived as:

Di =
p
− 1
1−θ

i Y

(1 + α)

µPn
j=1 p

− θ
1−θ

j

¶ (26)

which belongs to our general class after setting g(p) = p−
θ

1−θ , that of course
satisfies g0(p) < 0. Similar demand functions and related models of price com-
petition have been widely employed in many fields where imperfect competition
plays a crucial role, including the new trade theory, the newkeynesian macro-
economics, the new open macroeconomy and the endogenous growth theory.
Let us move now to the characterization of the SEFE in the general case and

in these examples. To focus on the most interesting situations, I will assume
that product differentiation is such that entry deterrence is never desirable for
the leader. Denoting with pF and pL the prices of the followers and the leader,
the optimality condition for the followers and the endogenous entry condition
are:

D (pF ,X−F ) + (pF − c)D1 (pF ,X−F ) = 0

(pF − c)D (pF ,X−F ) = K

15



and they pin down the price of the followers pF and their spillovers XF =
(n− 1)g(pF ), so that the profit of the leader becomes:

πL = (pL − c)D [pL, (n− 1)g(pF )− g(pL)]−K =

= (pL − c)D [pL,X−F + g(pF )− g(pL)]−K

Profit maximization delivers the equilibrium condition:

D(pL,X−L) + (pL − c) [D1(pL,X−L)−D2(pL,X−L)g0(pL)] = 0 (27)

which implies a lower price pL than the price of the followers, since the last
term on the left hand side is now negative. This is a crucial result by itself since
we are quite use to associate price competition with accommodating leaders
setting higher prices than the followers: this standard outcome collapses under
endogenous entry. Moreover, the leader is now obtaining positive profits, while
each follower does not gain any profits: the first mover advantage is back.

Example 4: Logit demand Consider the Logit demand (23). Using our
transformation of variables pi = 1/xi we obtain the gross profits:

Π(xi,X−i) =
Ne−λ/xi

e−λ/xi +X−i

µ
1

xi
− c

¶
(28)

where X−i =
P

j 6=i e
−λ/xj . Let us characterize the SEFE. First of all, as usual,

let us look at the stage in which the leader as already chosen its price pL and
the followers enter and choose their prices. Their first order condition can be
written as:

pi = c+
1

λ(1−Di/N)

where the demand on the right hand side depends on the price of the leader and
all the other prices as well. However, under free entry we must have also that
the markup of the followers exactly covers the fixed cost of production, hence
Di(pi−c) = K. If the price of the leader is not too low or the fixed cost not too
high, there is indeed entry in equilibrium and we can solve these two equations
for the demand of the followers and their prices in symmetric equilibrium:

pF = c+
1

λ
+

K

N
, DF =

λKN

N + λK
(29)

Notice that they do not depend on the price chosen by the leader. The profits
perceived by the leader are now:

πL = (pL − c)DL −K =
(pL − c)e−λpLDF

e−λpF
−K
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where we could use our previous results to substitute for pF and DF . Finally,
profit maximization by the leader provides its equilibrium price:

pL = c+
1

λ
< pF (30)

which is lower than the price of each follower and independent from the fixed
cost (Prop 2.c applies). Moreover, using the microfoundation pointed out by
Anderson et al. (1992) in terms of the quasilinear utility (24), one can show
that this equilibrium is Pareto efficient compared to the correspondent Bertrand
equilibrium with free entry: the reduction in the price of the leader reduces
entry, leaves unchanged consumer surplus and increases firms’ profits, inducing
an increase in total welfare (see the Appendix).

Example 5: Dixit-Stiglitz demand In the case of the isoelastic demand
(26) derived above from the utility function (25), using our transformation of
variables pi = 1/xi, we obtain the gross profits:

Π(xi,X−i) =
x

1
1−θ
i

³
Y
1+α

´
x

θ
1−θ
i +X−i

µ
1

xi
− c

¶
(31)

where X−i =
P

j 6=i x
θ/(1−θ)
j . In the SEFE we obtain the following equilibrium

prices:

pL =
c

θ
pF =

cY

θ [Y −K(1 + α)]
(32)

where of course the leader applies a lower mark up than each follower. Notice
that again the price of the followers increases in the fixed cost, while the price
of the leader is independent (Prop 2.c applies). It can be verified that in any
version of the Dixit-Stiglitz model where 1/(1− θ) is the constant elasticity of
substitution between goods and c is the marginal cost of production, as long as
entry is endogenous, the leader will choose the price pL = c/θ and the followers
will choose a higher price. Indeed, free entry pins down the price index that is
perceived by the leader, whose optimization problem is of the following kind:

max(pL − c)DL ∝ (pL − c)p
− 1
1−θ

L

which always delivers the price above. As a consequence, the leader produces
more than each follower and the number of followers is reduced compared to the
exact Dixit-Stiglitz equilibrium with free entry. Once again, however, consumer
surplus is not changed because the price index is unaffected. Since the leader
obtains positive profits, welfare is increased overall (see the Appendix).

We can summarize the results obtained from these two examples as follows:
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Proposition 5. In a model of price competition with Logit demand
or Dixit-Stiglitz demand and endogenous entry, a leader sells its vari-
ety at a lower price than the entrants, inducing a Pareto improvement
in the allocation of resources.

In all these models we can verify the existence of an unambiguous ranking
of market structures from a welfare point of view. Indeed, from the best to the
worst case for welfare we have: 1) free entry with a leader; 2) free entry without
a leader; 3) barriers to entry without a leader; 4) barriers to entry with a leader.

5 Contests

Another application of our model concerns contests where firms compete to
obtain a prize: for instance this could be a patent on new technologies in a
patent race, a prize in a principal-agent model, or a generic rent in a rent
seeking contest. There are many ways to model such a situation, but here I
will focus on the patent race introduced by Loury (1979) where firms choose an
up-front investment xi to obtain an innovation according to a Poisson process.
Technically, this is a patent race in the continuum with arrival rates of innovation
given by functions h(x) with h(0) = 0, h0(x) > 0 and h00(x) ≷ 0 for x ≶ x̂ for
some x̂ > 0. Hence, given the interest rate r and the value of the patent V , the
expected gross profit for firm i is:

πi =
h(xi)V

r + h(xi) +X−i
− xi −K (33)

which is again a particular case of our general model and implies SS (at the
turning point).
Imagine that one firm has a first mover advantage and invests before the

other firms in R&D.16 In such a case, the first order conditions and the free
entry condition for the followers imply a symmetric equilibrium between them
with investment implicitly given by:

h0(xF ) =
h(xF )

xF +K

µ
V

V − xF −K

¶
(34)

Let us focus on the case where entry takes place in equilibrium. Using the free
entry condition, the net profit of the leader can then be rewritten as:

πL =
h(xL)V

[r + h(xL) +X−L]
− xL − F =

h(xL)(xF +K)

h(xF )
− (xL +K)

from which the first order condition:

h0(xL) =
h(xF )

xF +K
(35)

16Notice that there is not a time-inconsistency issue here, since after the investment is made,
there cannot be a chance to change it. See Etro (2004, 2008) for discussions.
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defines an interior maximum when h00(xL) < 0: it follows that the investment
of the leader is higher than the investment of the followers. If we imagine that
the innovation as also a positive value, we can analyze the equilibrium from a
welfare point of view. Since the aggregate probability of innovation is unchanged
by the presence of a leader, but the number of firms and total R&D investment
are reduced, welfare must improve, as formalized below:

Proposition 6. A first mover firm in a contest with endogenous
entry invests more than any other firm and creates a Pareto improve-
ment in the allocation of resources compared to Nash competition.

Also in this case entry deterrence may occur when the marginal productivity
of the investment has a lower bound (for instance when h(x) is linear).

6 Extensions

The results of the previous sections can be extended in many directions to be
able to describe market structures in a more realistic way. This section will
consider a few: introducing a technological asymmetry between the leader and
the followers, extending the model to multiple leaders and endogenizing the
same leadership status (Appendix B and C discuss further extensions, allowing
for multiple strategies and introducing simple forms of heterogeneities).

6.1 Asymmetries between leader and followers

Weaker forms of our basic result, the general aggressive behaviour of leaders fac-
ing free entry, emerge even when we introduce technological differences between
firms. Here I will focus on a simple exogenous asymmetry between the leader
and the followers to verify under which conditions the leader is still aggressive.
I assume that the leader has the profit function:

πL = Π
L (xL,X−L, y)−K

where y > 0 is a new parameter specific to the leader. The basic assumptions
are ΠL3 ≡ ∂ΠL/∂y > 0 and ΠL (x,X, 0) = Πi (x,X). A first mover advantage is
often associated with some asymmetry between the leader and the followers. For
instance, it is natural to link the first mover advantage with some technological
or market advantage, as a lower marginal cost c(y) with c0(y) < 0. In general,
under asymmetry we obtain a strategy of the leader which depends on y, xL =
xL(y), and therefore the number of entrants, but not their individual strategy,
also depends on y. One can show:

Proposition 7. An asymmetric SEFE implies that the leader is
aggressive whenever ΠL13 ≥ ΠL23(ΠL1 /ΠL2 ) or y is small enough.
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The intuition is the following: an increase in the advantage of the leader
(that is in y) induces a higher incentive to aggressiveness if it raises the marginal
benefit from it more than the change in its marginal cost. Indeed the sufficient
condition could be rewritten as ∂(ΠL1 /Π

L
2 )/∂y ≤ 0, that is the marginal rate of

substitution between xL and X−L should be decreasing in y. If this condition
does not hold, it means that x0L(y) < 0, hence for a great enough y (a strong
enough asymmetry) the leader will be accommodating (xL(y) < xF ).
To exemplify how one can apply this result, notice that the leader with a

lower marginal cost than its followers will always be aggressive because under
competition in quantities we have ΠL13 > 0 and Π

L
23 = 0, and under competition

in prices we have ΠL13 > 0 and ΠL23 = −D2 (pL,X−L) c0(y) < 0. Similarly one
can examine other kinds of exogenous asymmetries (on the demand side, in
the financial structure, in complementary markets, and so on) and verify how
the incentives of the leader to be aggressive are changed. Another application
was developed in Etro (2004) where I extended patent races similar to those of
Section 5 to the case in which the incumbent monopolist has a flow of current
profits: while under Nash competition and free entry this incumbent would not
participate to the race, when the same incumbent has the leadership in the
contest, its investment is higher than that of any other firm.17 One can verify
that we are in the case in which the asymmetry does not affect the strategy of
the leader.18

6.2 Multiple leaders

Until now we considered a simple game with just one leader playing in the first
stage. Here we will consider the case in which multiple leaders play simultane-
ously in the first stage. Hence the timing of the game becomes the following:
1) in the first stage, m leaders simultaneously choose their own strategies; 2) in
the second stage, potential entrants decide whether to enter or not; 3) in the
third stage each one of the n−m followers that entered chooses its own strategy.
Later on we will discuss how to endogenize m.
We should consider two different situations: one in which entry of followers

is not deterred in equilibrium and one in which the leaders deter entry. Consider
first the case in which the number of leaders m is small enough, or the cost of
deterrence is large enough that entry of followers takes place in equilibrium. In

17Many real world innovations are obtained by dominant firms, especially in high-tech
sectors and pharmaceutical sectors, where leading companies (like Microsoft, Intel, Pfizer
or Merck) feature the highest R&D-turnover ratios. See Segerstrom (2007) for a related
discussion.
18If the leader has a flow of current profits y, its objective function becomes:

πL (y) =
h(xL)V + y

r + h(xL) +X−L
− xL −K

The independence of the leader’strategy from y is just an immediate consequence of Prop. 7
since ΠL

13 = ΠL
23(Π

L
1 /Π

L
2 ) = −h0(xL)/ [r + h(xL) +X−L]2 < 0.
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such a case, the behaviour of the leaders can be characterized in a similar fashion
to our basic analysis. Moreover, contrary to what happens when the number of
firms n in the market is exogenous (when the number of leaders m affects their
strategic interaction, their strategies and their profits), with endogenous entry,
the number of leaders does not affect their strategies and their profits:

Proposition 8. In a SEFE with m leaders, as long as there is en-
dogenous entry of some followers, each leader is aggressive compared
to each follower and its strategy and profits are independent from m.

This confirms the spirit of our results with a single leader. Now each one of
the leaders behaves in an aggressive way compared to the followers and also in-
dependently from the other leaders: even the profit of each leader is not affected
by the number of leaders, while the number of entrants is clearly decreased by
an increase in the number of leaders.
The situation is more complicated if there is entry deterrence in equilibrium.

In the case of an exogenous number of firms entry deterrence is a sort of pub-
lic good for the leaders, which introduces free-riding issues in their behavior.
Gilbert and Vives (1986) have analyzed this issue in a model with m leaders
facing a potential entrant, while Tesoriere (2006) has extended our model to
analyze m leaders facing endogenous entry in a linear model of competition in
quantities: while multiple equilibria can emerge, total output is equal or larger
than the entry deterrent output in all of them.

6.3 Endogenous leadership

After developing a Stackelberg model with multiple leaders and endogenous
entry of followers, it is natural to question what happens when the entry of
leaders is endogenous as well.
The simplest way to endogenize the number of leaders is by adding an initial

stage of the game where firms decide simultaneosly whether to become a leader
or not. Any firm can make an investment, say L, which provides the status
of leader in the market, while any firm that does not invest can only enter in
the market as a follower: in other words, commitment to strategies is costly.
As Prop. 8 suggests, as long as there is entry of followers, it must be that all
leaders obtain the same level of positive profits (which is independent from the
number of leadersm). Hence, if the investment needed to become leader is small
enough, there must be always incentives to invest to become leaders when this
does not deter entry of followers. Then, consider the largest number of leaders
compatible with some entry, say M < n. Given this number of leaders, another
firm may invest in leadership and subsequently engage in Nash competition
with the other leaders only (entry of followers is now deterred by construction).
If such an entry is profitable, the equilibrium must imply only leaders in the
market and an endogenous number m∗ > M derived from a free entry condition
with a fixed cost K + L (clearly this happens whenever the cost of leadership
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is zero or small enough). If this is not the case, the only equilibrium implies
m∗ =M firms investing in leadership and a residual competitive fringe of n−M
followers: once again, as Prop. 8 still implies, all leaders would be aggressive
compared to each follower.
Another interesting situation emerges when entry is sequential, so that there

is a hierarchical leadership. While a general treatment of sequential games
is complex, Vives (1988) and Anderson and Engers (1992, 1994) have fully
characterized sequential competition in quantities with linear costs and isoelastic
demand, and with an exogenous number of firms. Their analysis makes clear
that in case of endogenous entry the only possible equilibrium would imply
entry deterrence, a result confirmed by the analysis developed more recently by
Tesoriere (2006).

7 Policy implications

The endogenous entry approach is based on the idea that entry in a market is
a rational decision based on the profitable opportunities that are available in a
market. In this paper I adopted this approach to study the behaviour of market
leaders in the choice of their strategies, but the same approach can be used
to study preliminary strategic commitments by market leaders,19 horizontal
mergers20 and even cartels21 in markets where entry is endogenous. For this
reason, this approach could be fruitful to examine policy issues in markets where
entry is relatively easy, fast and sensible to the profitable opportunities, and it
can be regarded as endogenous at least in the medium term.
The main field of application is antitrust policy. The study of strategic inter-

actions in markets with endogenous entry may allow to build a bridge between
the two main approaches to antitrust: on one side the Chicago school, that has
focused its informal analysis on the role of free entry in constraining incumbent
firms, but has largely neglected the role of strategic interactions between firms
(see Posner, 2001), and on the other side the post-Chicago approach, that has
focused on the strategic interactions between incumbents and entrants mostly
without emphasizing the role of endogeneity of the market structure (for a sur-
vey see Motta, 2004).
The analysis of the behaviour of leaders in markets where entry is endogenous

is potentially relevant for the field of antitrust analysis which concerns abuse of
dominance (or monopolisation). In particular, it allows to re-examine the same
concepts of market power and dominance, which are too often automatically
associated with a large market share of the leading firm. Our analysis has
shown that leaders tend to be aggressive, or more aggressive compared to their

19See Etro (2006) and Etro (2007, Ch. 2) on predatory pricing, bundling, price discrimina-
tion, vertical restraints and other commitments that are relevant for antitrust purposes.
20See Davisdon and Mukherjee (2007), Erkal and Piccinin (2007) and Etro (2007, Ch. 2).
21See Etro (2007, Ch. 3).
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followers, exactly when entry is endogenous: in such a case, aggressive strategies
are associated with large market shares and positive profits for the leaders, but
also with low prices constrained by the behaviour of the followers.
In the basic model with homogenous goods, U-shaped cost functions and

competition in quantities, the equilibrium price equates the marginal cost of
the entrants augmented with a mark up depending on the elasticity of demand,
and it also equates their average cost of production, because entry exhausts all
the profit opportunities. At the same time, the leader produces to equate its
marginal cost to the price level: since the followers produce below the efficient
scale of production and the leader above it, the leader manages to obtain a larger
market share and positive profits. When we introduce product differentiation,
the leader keeps producing more than the other firms and also sells its product
at a lower price, under both competition in quantities and in prices. Similar
results emerge when competition is for the market, through investments in R&D
to obtain new products. In such a case, leaders invest more than the other
firms when entry in this competition is endogenous. Consequently, in case of
sequential innovations the same persistence of the leadership can be associated
with high contestability rather than with persistent market power.22

Our welfare analysis of markets with endogenous entry has emphasized that,
in all these cases, the presence of a leader induces an increase in welfare calcu-
lated as the sum of consumer surplus and profits. Moreover, when entry is not
entirely deterred, consumer surplus is either increased or left unchanged by the
presence of a leader. Therefore, entry has a crucial role in disciplining the be-
haviour of market leaders. Finally, when entry can be regarded as endogenous,
for instance when we are mainly concerned about the medium-long run and
entry is feasible in this horizon, a large market share of the leader should not be
a symptom of market power, but of an aggressive strategy induced by the com-
petitive pressure of the entrants. Therefore, in the field of antitrust policy, and
in particular in investigations concerning abuse of dominance, a preliminary
examination of the entry conditions is crucial to verify whether large market
shares of the leaders can be a symptom of dominance or just of competitive
pressure on the leaders.
Another field of application of the endogenous entry approach concerns trade

policy for exporting firms. As well known from the theory of strategic trade
policy, a government may tax or subsidize domestic firms that are active in in-
ternational markets for profit shifting reasons: such a policy allows to turn the
domestic firm into a Stackelberg leader, and to increase the net profits for the
country. For instance, when a domestic firm competes against a foreign com-
petitor in a third market, it is typically optimal to tax exports under strategic
complementarity and to subsidize exports under strategic substitutability: the

22In Etro (2007) I applied these arguments to the software market, arguing that the en-
dogeneity of entry in the competition in the market justifies the aggressive pricing policy,
the large market share and the extra profits of its leader, and the endogenity of entry in the
competition for the market justifies the persistence of its leadership.

23



reason is that the Stackelberg leader is accommodating in the former case and
aggressive in the latter. When entry in the international market is endogenous,
the same principle applies, but it is always optimal to subsidize exports, since
this induces the desired aggressive behaviour. In conclusion, the ambiguity of
the policy implications emerging with an exogenous number of firms is solved
when entry in international markets is regarded as endogenous, and the optimal
unilateral policy is always an export subsidy.23

8 Conclusion

This article examined the behaviour of firms with a first mover advantage over
their competitors in the choice of the market strategy. A general result emerg-
ing in the presence of endogenous entry is that leaders tend to behave in an
aggressive way, in particular they choose lower prices and higher output than
their followers. The study of the effects of endogenous entry on the behaviour
of the firms, on their commitments to adopt different strategies and the analysis
of the effects of these strategies on consumers could be fruitfully investigated
in the future. Finally, it would be interesting to verify some of the results ob-
tained above and in the related literature on endogenous entry in empirical or
experimental analysis.

23The optimal export subdisy reproduces the Stackelberg equilibrium with endogenous entry
where the domestic firm acts as a leader (see Etro, 2007, Ch.3). The same principle applies
to international R&D contests: in such a case, it is always optimal to subsidize R&D when
entry is endogenous (Etro, 2008).
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TESORIERE, A., 2006, “Endogenous Timing with Free Entry”, CORE Dis-

cussion Paper 06/93
VISCUSI, W. K., HARRINGTON, J. and VERNON, J., 2005, Economics

of Regulation and Antitrust, The MIT Press, Cambridge
VIVES, X., 1988, “Sequential Entry, Industry Structure and Welfare”, Eu-

ropean Economic Review, 32, pp. 1671-87
VIVES, X., 1999, Oligopoly Pricing. Old Ideas and New Tools, The MIT

Press, Cambridge

26



Appendix

Part A: Proofs
Proof of Prop 1: The system (3)-(4) defines the impact on xF and n of

changes in xL. Totally differentiating the system we have: dxF

dn

 = − 1
∆

 Π2h(xF ) −Π12h(xF )

−(n− 2)Π2h0(xF ) Π11 + (n− 2)Π12h0(xF )

 Π12h0(xL)dxL
Π2h

0(xL)dxL


where ∆ = Π11Π2h(xF ) and Π11 + (n− 2)Π12h0(xF ) + Π2h(xF ) < 0 (under the
contraction condition in case of SC), which implies stability. It follows that:

dxF
dxL

= 0
dn

dxL
=
−h0(xL)
h(xF )

< 0
dX−F
dxL

= 0
dX−L
dxL

= −h0(xL) < 0

which shows that the strategy of the followers is independent from the one of the

leader. Since this holds also for xL = xF , that replicates the Nash equilibrium with

endogenous entry, in a SEFE any active follower adopts the same strategy as in the

corresponding Nash equilibrium.

At the entry stage, entry of at least one follower takes place for any xL < x̄L,
where x̄L is such that:

Π [x(h(x̄L)), h(x̄L)] = K

and the profit of the leader is:

πL =

½
ΠL [xL, (n− 1)h(xF )]−K if xL < x̄L

ΠL(xL, 0)−K if xL > x̄L

¾
Therefore, the optimal strategy is given by x∗L that satisfies the first order condition:

ΠL1 [x
∗
L, (n− 1)h(xF )] = ΠL2 [x∗L, (n− 1)h(xF )]h0(x∗L)

if it is smaller than x̄L and such that:

ΠL {x∗L, (n− 1)h(xF )} > ΠL (x̄L, 0)

Otherwise the global optimum is the corner solution x̄L. We will finally show that

in equilibrium xL > x always. In case of corner solution, this is trivial. Consider
the case of an interior solution x∗L as defined above. Assume that x

∗
L ≤ xF ; then it

must be that X−F = (n− 2)h(xF )+h(x∗L) ≤ (n− 1)h(xF ) = X−L, which implies
Π(x∗L,X−L) ≤ Π(x∗L,X−F ) from the assumption Π2 < 0. But the optimality of
xF and the free entry condition imply Π(x∗L,X−F ) < Π(xF ,X−F ) = K. From
these inequalities it follows that Π(x∗L,X−L) < K, which implies negative profits for
the leader, contradicting the optimality of the interior solution. This implies that the

profit function of the leader must have a global optimum larger than xF . Q.E.D.
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Proof of Proposition 2. The effect of a change in the fixed cost on the
strategy and the number of followers are:

dxF
dK

=
[−Π12]
[Π11Π2]

dn

dK
=

·
Π11 + (n− 2)Π12h0(xF )

Π11Π2h(xF )

¸
+

∂n

∂xL

∂xL
∂K

The first derivative has the opposite sign of Π12. The second has a first negative
term (under the contraction condition when Π12 > 0) and a second ambiguous term.
It follows that d[X−F + h(xF )]/dK = [Π11 − h0(xF )Π12]/Π11Π2h(xF ). Totally
differentiating (8) we have:

∂xL
∂K

= −
£
ΠL12 − h0(xL)ΠL22

¤
[Π11 −Π12h0(xF )]

DLΠ11Π2h(xF )

where DL < 0 from the assumption that the second order condition is satisfied. It

follows that:

dn

dK
∝
·
Π11 + (n− 2)Π12h0(xF ) + h0(xL)

h(xF )DL
[Π11 −Π12h0(xF )]

£
ΠL12 − h0(xL)ΠL22

¤¸
The result follows immediately after noticing from (8) that h0(xL) = ΠL1 /ΠL2 . Q.E.D.
Proof of Prop 3: In a SEFE the number of firms is nS and each active follower

produces x. In a Cournot equilibrium with free entry, the number of firms is nC and

each one produces the same as x by Prop. 1, with welfare:

WC =

nCxZ
0

p(j)dj − nC [c(x) +K] =

nCxZ
0

p(j)dj − p(nCx)nCx

where we used the zero profit condition p(nCx)x = c(x) + K. Under SEFE, the
number of firms nS satisfies the zero profit condition:

p
£
xL + (n

S − 1)x¤x = c(x) +K

which implies the same total production in the two cases xL + (n
S − 1)x = nCx.

Hence the welfare will be:

WS =

xL+(n
S−1)xZ

0

p(j)dj − (nC − 1)c(x)− c(xL)− nSK =

=

nCxCZ
0

p(j)dj − p(nCx)nCx+
£
xL + (n

S − 1)x¤ p(nCx)
−(nS − 1)c(x)− c(xL)− nSK

= WC + xLp
£
xL + (n

S − 1)x¤− c(xL)−K =WC + πL > WC
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which proves the claim. Q.E.D.
Proof of Prop 4: Adopt a generic cost function c(x) with c00(x) ≤ 0. Imagine

an equilibrium without entry deterrence. The zero profit condition, stated in the proof

of Prop. 3, determines the total production and, therefore, it determines also the

inverse demand at the level:

p[xC(nS − 1) + xL] =
K + c(x)

x

where x is always the equilibrium production of the followers, which corresponds to the
equilibrium production in the Cournot equilibrium with free entry. Then, the profit

function of the leader becomes:

ΠL(xL) = xLp[x(n
S − 1) + xL]− c(xL) = xL

·
K + c(x)

x

¸
− c(xL)

with:

ΠL0(xL) =
K + c(x)

x
− c0(xL) > 0 ΠL00(xL) = −c00(xL) ≥ 0

since p(·) > c0(x) > c0(xL) for any xL > x. Accordingly, the leader always gains
from increasing its production all the way to the level at which entry is deterred. This

level satisfies the zero profit condition for nS = 2, that is p (x+ x̄L) = [K + c(x)] /x.
Since the right hand side is also equal to p(nx) by the zero profit condition in the
Cournot equilibrium with free entry (see the proof of Prop. 3), it follows that the

entry deterrence strategy is exactly x̄L = (n
C − 1)x. Q.E.D.

Proof of Prop 5: Total expenditure Ȳ for the representative agent is given

by an exogenous part Y and the net profits of the firms
Pn

i=1 πi, which is zero in the
Nash-Bertrand equilibrium with endogenous entry, but equal to the positive profits

of the leader πL in the Stackelberg equilibrium with endogenous entry. The welfare

comparison derives from the calculation of indirect utilities (24) for the Logit model

and (25) for the Dixit-Stiglitz model in both cases. Labeling with W (Ȳ ) the indirect
utility in function of total expenditure Ȳ , in the Logit case we have for both equilibria:

W (Ȳ ) = Ȳ +
N

λ
ln

µ
1 +

N

λK

¶
−N(1 + λc)− λK

and in the Dixit-Stiglitz case we also have for both equilibria:

W (Ȳ ) =
θ
¡
αȲ
¢α £

Ȳ −K(1 + α)
¤

c (1 + α)
1+α

·
(1− θ)Ȳ

(1 + α)K
+ θ

¸ 1−θ
θ

Since they are both increasing in total expenditure, the utility of the representative

agent must be higher under Stackelberg competition with endogenous entry. Q.E.D.
Proof of Proposition 6. Clearly (34) and (35) show that h0(xL) < h0(xF )

and hence xL > xF ≡ x. Net profits for the leader are:

πL =
(xL +K)(x+K)

h(x)

·
h(xL)

xL +K
− h(x)

x+K

¸
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Imagine that the social value of the innovation is V ∗. Under Nash competition with
nN firms investing x each, welfare can be expressed as:

WN =
nnNh(x)V ∗

r + nNh(x)
− nNx− nNK

Under Stackelberg competition with a leader investing xL and nS − 1 followers in-
vesting x, using the fact that nNh(x) = h(xL) + (n

S − 1)h(x), we have an increase
in welfare:

WS =

£
h(xL) + (n

S − 1)h(x)¤V ∗
r + h(xL) + (nS − 1)h(x) − xL + (n

S − 1)x− nSK

= WN +
(x+K) (xL +K)

h(x)

·
h(xL)

xL +K
− h(x)

x+K

¸
> WN

Notice that the second term is πL > 0. Q.E.D.
Proof of Prop 7: The analysis of the last stage is the same as before, and in

particular dxF /dxL = 0. Now, the leader’s first order condition becomes:

ΠL1 [xL,X−F + h(xF )− h(xL), y] = Π
L
2 [xL,X−F + h(xF )− h(xL), y]h

0(xL)

which defines a continuous function xL = xL(y). It follows that:

x0L(y) ∝ ΠL13 [xL,X−F + h(xF )− h(xL), y]−ΠL23 [xL,X−F + h(xF )− h(xL), y]h
0(xL)

Clearly, when the condition in the proposition holds, we have x0L(y) ≥ 0 and xL(y) ≥
xL(0) > xF from Prop. 1. Otherwise, since xL(0) > xF , continuity implies that

there is a neighborhood of xL(0) for y small enough where xL(0) > xL(y) > xF .
Q.E.D.
Proof of Prop 8: The analysis is similar to the basic one, but now total

differentiation provides dxF /dxL = 0 and dn/dxL = −h0(xL)/h0(xF ). Moreover
we have:

dxF
dm = 0, dn

dm = 1− h(xL)
h(xF )

< 0

The first order conditions for each one of the leaders become:

ΠL1 (xL,X−L) = Π
L
2 (xL,X−L)h

0(xL)

where X−L = (n−m)h(xF ) + (m− 1)h(xL). Totally differentiating this condition
and using dn/dm it follows that dxL/dm = 0. The profit of each leader is not affected
by the number of leaders since:

dπL
dm

= ΠL2

·
h(xL)− h(xF ) + h(xF )

dn

dm

¸
= 0

which concludes the proof. Q.E.D.
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Part B: Generalized Stackelberg games.
In this section, we generalize the model of Stackelberg competition to the case of

positive spillovers and objective functions affected separately by the number of agents,

and we discuss a few applications of the results. The aim is to show that the driving

factors leading to the aggressive behaviour of a leader facing endogenous entry keep

working in more general models than those studied in our main analysis, even if other

factors may work as well. Consider the following profit function:

πi = Π̃(xi, βi, n)−K (36)

with Π̃x ≷ 0 for x ≶ x(β), Π̃xx < 0, Π̃n ≤ 0 and no assumptions on Π̃β and on
the cross derivatives. When the number of firms is exogenous, the traditional results

on Stackelberg competition can be extended in a straightforward way. When entry is

endogenous, which requires regularity conditions that guarantee that dΠ̃/dn < 0, the
characterization of the SEFE is more complex. In the last stage, for a given leader’s

strategy xL we can derive the following comparative statics:

dxF
dxL

= −h
0(xL)[Π̃xβΠ̃n + Π̃βΠ̃xn]

∆

dn

dxL
=
−h0(xL)Π̃xxΠ̃β

∆
(37)

where ∆ ≡ Π̃βΠ̃xxh(x) + Π̃nΠ̃xx + (n − 2)h0(x)[Π̃nΠ̃xβ + Π̃xnΠ̃β ] > 0 is the

determinant of the equilibrium conditions in the last stage (profit maximization Π̃x =
0, and free entry Π̃ = K). The effect of a change in the leader’s strategy on the
followers’strategy is ambiguous and the equilibrium condition for the leader’ strategy

can be derived as:

Π̃Lx =
h0(x)h0(xL)(n− 1)[Π̃xβΠ̃n + Π̃βΠ̃xn]Π̃Lβ

∆
+

h0(xL)Π̃xxΠ̃β
h
Π̃Lβh(x) + Π̃

L
n

i
∆

(38)
The sign of the right hand side determines whether the leader will be aggressive

or not. Of course, for Π̃n = Π̃xn = 0 we are back to the basic case examined
in the text. In case of negative spillovers (Π̃βh

0(x) < 0) the second term on the

right is always negative and we can conclude that the leader is aggressive whenever

Π̃xβ < −Π̃βΠ̃xn/Π̃n, while an accommodating behavior can only emerge in case of
strong strategic complementarities.

To exemplify the way to use this result, we will employ models of product dif-

ferentiation already adopted by Erkal and Piccinin (2007) in the study of mergers

in markets with endogenous entry. Let us consider a generalized model of product

differentiation that derives from the following utility function:

U = a
nX
i=1

Ci − 1
2

 nX
i=1

C2i + b
X
i

X
j 6=i

CiCj

+ C0

where Ci is consumption of good i and C0 is the numeraire. Goods are homogenous
when b = 1 and they are imperfectly substitutable otherwise. These preferences
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generate the system of inverse demand functions of Example 2. However, inverting

the system, we obtain the direct demand functions:

Di =
a− pi +

b
1−b

P
j 6=i (pj − pi)

1 + b(n− 1)
It can be verified that the profit function associated with this case is not nested in the

framework of the text, but it is nested in the general framework (36). Nevertheless,

it is well behaved and it is decreasing in the number of firms for given strategies.

Since prices are strategic complements, the Stackelberg equilibrium with an exogenous

number of firms is characterized by a higher price for the leader compared to the

followers. However, the SEFE is characterized by a lower price for the leader compared

to the followers. Moreover, the price of the leader is below the equilibrium price in the

Nash equilibrium with free entry, while the price of the followers is above it and the

number of products is reduced.24 In the long run, prices turn into strategic substitutes:

the reduction in the price of the leader induces the followers to increase their prices.

Consider now the Shubik (1980) demand, derived from the utility function:

U = a
nX
i=1

Ci − n

2(1 + µ)

 nX
i=1

C2i +
µ

n

Ã
nX
i=1

Ci

!2
with µ > 0 representing the degree of substitutability between goods (with perfect
homogeneity for µ→∞). We can derive the direct and inverse demand functions for
firm i as:

Di =
1

n

a− pi(1 + µ) +
µ

n

nX
j=1

pj

 , pi = a− 1

1 + µ

nxi + µ
nX
j=1

xj


Of course, the associated profit functions are not nested in our basic model because

they depend on the number of firms. However, they are nested in the generalized

version (36), which allows us to derive conclusions on the behaviour of market leaders

24Assume zero marginal costs. The optimality condition of the followers and the endogenous
entry condition imply the following equilibrium relation between the price of the followers pF
and the number of firms n:

pF =

v
F (1− b)[1 + b(n− 1)]

[1 + b(n− 2)
A reduction in the price of the leader pL reduces entry and, according to this relation, it
increases the price of the followers. The profit of the leader is:

πL =
pL

1 + b(n− 1)
�
a− pL +

b(n− 1)
1− b

(pF − pL)

�
− F

where both n and pF depend on pL. Since ∂πL/∂nbpL=pF< 0, it is optimal for the leader to
reduce the number of firms compared to the Nash equilibrium with free entry.
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even if we cannot explicitly solve for the equilibria with endogenous entry. Under

competition in quantities we have:

Π̃(xi, βi, n) =

·
a− (n+ µ)xi + µβi

1 + µ

¸
xi − cxi

where the strategic variable is output xi and βi =
P

j 6=i xj . Notice that Π̃β < 0,

Π̃n < 0, Π̃xβ < 0 and Π̃xn < 0, hence both terms on the right hand side of (38)
are negative: this implies that a market leader facing endogenous entry will always

be aggressive, that is produce more than each follower. This should not surprising,

since according to (37), an increase in the production of the leader has now a negative

impact on both the number of followers and on their production as well.

Let us switch to the case of competition in prices, in which profits can be written

as:

Π̃(pi, βi, n) =
(pi − c)

n

h
a− pi(1 + µ) +

µ

n
(pi + βi)

i
where the strategic variable is the price pi and βi =

P
j 6=i pj (notice that we did

not use the transformation of the strategic variable employed in the main text for

competition in prices). We now have Π̃β > 0, Π̃n < 0, Π̃xβ > 0 and Π̃xn < 0.
This implies that, according to (37), an increase in the price of the leader increases

the price of the followers (strategic complementarity in action), but it also promotes

entry: the former effect increases the profits of the leader, the latter reduces them.

As a consequence, on the right hand side of (38) the first term is negative and the

second one can be positive. In this case, the leader facing endogenous entry would

reduce its price and the followers would reduce their prices as well (prices are strategic

complements in both the short and long run). As a consequence the number of varieties

provided in the market would decrease. Nevertheless, consumer surplus would strictly

increase because of the generalized reduction in prices.25

A final application of the generalized model can be obtained reinterpreting a simple

model with heterogenous firms. Imagine that the profit function for firm i is πi =
A(i)Π (xi, βi) − F , where A(i) is a parameter of profitability (or a multiplicative
shock to profitability) which differs across firms and decreases in the ordering of entry

of the firms, which is indexed by i. Notice that the optimality condition for each
follower, Π1(x, β) = 0, is independent from the specific value of A, while entry
occurs until the nth firm obtains zero profits, that is A(n)Π(x, β) = K. Then,

the model is isomorphic to the generalized model with profit function Π̃(xi, βi, n) =
A(n)Π(xi, βi), and one can verify that the leader is not necessarily aggressive. In
particular we now have dx/dxL ≷ 0 if Π12 ≷ 0: when SS holds the aggressiveness
of the leader is strengthened, while under SC, this aggressiveness is dampened and

it may even be reversed. Intuitively, the leader takes in consideration that a more

aggressive strategy will reduce entry as usual, but such a change will also increase the

profitability of the marginal firm, which changes the strategic interaction between the

followers.

25These result derive from joint work with Nisvan Erkal and Daniel Piccinin.
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Part C: Multiple strategies
Now, I will outline how a weaker version of the result on aggressive leaders gener-

alizes when firms choose multiple strategic variables. Imagine that each firm chooses a

vector of K ≥ 1 strategic variables xi = [xi1, xi2, ..., xiJ ] ∈ RJ+, and its well behaved
profit function can be written as:

πi = Π

xi;X
j 6=i

h(xj)

−K

with h : RJ+ → R+ differentiable and increasing in all its arguments. Examples are

models of multimarket competition, competition in quality and price, patent races

with multiple investments and so on. Clearly these are very important cases in real

markets. Results on the behaviour of leaders in similar markets with an exogenous

number of firms are complicated and ambiguous since they depend on all the possible

cross derivatives and hence on many specific properties of the markets. Nevertheless,

under free entry, a weaker version of our result still holds.

Define firm i on average more aggressive than firm k if h(xi) > h(xk). Then,
in equilibrium we have a vector x for the followers which is independent from the

leader’strategies, and the following equilibrium conditions:

∂ΠL (xL,X−L)
∂xLj

=

µ
∂h(x)

∂xLj

¶
∂ΠL (x,XL)

∂βL
≤ 0 for all j

This does not imply that the leader is more aggressive in all strategies, but that

is always more aggressive in some strategies. Moreover, it follows that a SEFE with

multiple strategic variables always implies that the leader is on average more aggressive

than each follower. To prove this, denote with xi = [xi1, xi2, ..., xiJ ] the strategies of
a firm i. Assume again that a symmetric equilibrium in the strategies of the followers

exist. The system of J + 1 equilibrium conditions for the second stage:

∂Π [xF , (n− 2)h(xF ) + h(xL)]

∂xFj
= 0 for j = 1, 2, .., J

Π [xF , (n− 2)h(xF ) + h(xL)] = K

pins down the vector xF and X−F = (n−2)h(xF )+h(xL). Consequently the profit
of the leader is:

πL = Π
L [xL, (n− 1)h(xF )]−K = ΠL [xL,X−F + h(xF )− h(xL)]−K

which is maximized by the vector xL that satisfies the system of J first order condi-
tions:

∂ΠL (xL,X−L)
∂xLj

=
∂h(xL)

∂xLj

∂ΠL (xL,X−L)
∂X−L

where clearly X−L = (n − 1)h(xF ). Imagine that there is such an interior equi-
librium with h(xL) ≤ h(xF ). Then it must be that X−F ≤ X−L, which implies
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Π(xL,X−L) ≤ Π(xL,X−L) from the assumption Π2 < 0. But the optimality of
xF and the free entry condition imply Π(xL,X−L) < Π(xF ,X−F ) = K, hence
Π(xL,X−L) < K, which contradicts the optimality of the interior solution. This
implies that h(xL) > h(xF ).

To see how to use this result, let us extend our basic model of price competition

with the choice of a second strategy, the quality of the product. In such a model with

vertical differentiation, each firm can offer a product of quality qi at a price pi, and
the marginal cost for this quality level, c(qi), is increasing and convex in quality. Let
us assume that consumers allocate their demand comparing the quality/price ratios

of the different products. Then, expected profits are:

πi = D

pi
qi
,
X
j 6=i

g

µ
pj
qj

¶ [pi − c(qi)]−K

Defining θi = qi/pi as the quality/price ratio for firm i, this model satisfies our
conditions with:

Π

θi, qi;X
j 6=i

h(θj , qj)

 = D

 1
θi
,
X
j 6=i

h(θj , qj)

 ·qi
θi
− c(qi)

¸

where h(θj , qj) = g(1/θi). We cannot say whether the leader will offer a good

with both a lower price and a higher quality, but only that the good of the leader

will be better than the goods offered by the followers at least in one of these two

dimensions. Nevertheless, we can also say that the leader will be more aggressive than

the followers on average, which means, according to our definition, that h(θL, qL) >
h(θ, q). But this implies g(1/θL) > g(1/θ) or, using the fact that g is a decreasing
function, that θL > θ. We can then conclude that the leader will supply a good with
a better quality/price ratio than each other follower. Of course, more complex forms

of multidimensional models remain to be studied.
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