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Abstract

The aim of this paper is to investigate the roles of the parameters
in the inequality-analysis framework for the recently introduced Zenga
distribution. The main results are summarized in two different theo-
rems, which state that the two shape parameters of such distribution
are inequality indicators. The inequality-evaluating tools considered
are Lorenz curve with the related Gini concentration ratio and Zenga
inequality curve with the related inequality index I.

Keywords: Zenga distribution, Lorenz order, order based on I(p) curve,
convex order, inequality I(p) curve.

1 Introduction

In literature many distributions have been introduced in order to model
particular financial, economic or actuarial variables. All of them have some
important features, suitable to describe the variables of interest.

In Zenga (2010) a new distribution has been proposed: so far it seems to
be very useful to model economics variables like wealth and income distri-
bution. The advantages of such distribution have been described in several
works, like Zenga (2010), Zenga et al. (2010a) and Zenga et al. (2010b). Just
to report some of them:

1. the capability to assume very different shapes;

2. the guaranteed (for any admissable choice of the parameters) finiteness
of the expectation;

3. the paretian right-tail;
4. the fitting to real data.



For further details about the previous subjects, especially for the last one,
refer to Arcagni (2011).

In this paper the meaning of the parameters is investigated. Particular
attention is devoted to their interpretation as inequality indicators. This
subject is fundamental in inequality analysis, since it allows to understand
how the inequality of the distribution changes as a parameter varies.

The paper is organized as follows. In the next section some preliminary
definitions are recalled. In Section 3 three partial orders are introduced
and the links among them investigated. In Section 4 two ordering theorems
for Zenga distribution are stated and proved in detail. In the final section,
a conclusive assessment about the consequences for inequality analysis is
provided.

2 Preliminaries

The new distribution model introduced in Zenga (2010) has the probability
density function depending on the three positive parameters u, o, § and it is
given by:
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where B(a, b) denotes the mathematical Beta function

1
B(a,b) = /ta-l(l—t)”“ldt
0

_ T(a)L'(b)
 T(a+0b) (1)

where a > 0 and b > 0 and T" denotes the Gamma function
+00
T'(y) = / e vl dt y >0,
0

A complete analysis on Beta and Gamma functions can be found in
Lebedev (1972).

In the following X ~ Zenga(p,a,6) will be used to denote that the
random variable X follows Zenga distribution with density f(z; u, o, 8).

As shown in detail in Zenga et al. (2010a) and in Zenga et al. (2010b)
the density of Zenga distribution is very flexible: it is easy to see how many
behaviours can have, changing the values of the parameters. In Figures 1



and 2 some probability density functions and the corresponding distribution
functions are showed: in the first one, the value of the parameters x and «
is fixed and equal to 2, while in the second one, o changes and the other
two parameters are set to 2.
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Figure 1: Density (on the left) and distribution (on the right) functions of Zenga
model with =2 and 8 =2
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Figure 2: Density (on the left) and distribution (on the right) functions of Zenga
model with g =2 and a = 2

Zenga distribution is obtained as a mixture of the following particular



truncated Pareto distributions, introduced by Polisicchio (2008)

ﬂkl/z(l — k)22 pk<z<

] I®=

[z ulk) =
0 otherwise

with mixing function on the parameter k given by a Beta density with

parameters « > 0 and 8 > 0:

ka—l(l . k)@——l
B(a, 0)

O0<k<l1
g(k; o, 0) =

0 otherwise.

A first important feature of the conditional densities is that all of them have
the same expectation p > 0: this implies that u is also the expectation of
the mixture.

A second characteristic is that each of them has uniform I(p) curve with
inequality level equal to 1 — k with £ € (0,1). (see Polisicchio (2008) for
further details and proofs).

Altrought, the natural range of the parameter 6 is |0, o0, in the fol-
lowing only the case § > 1 will be considered. It is opinion of the author
that, with some changes in the proofs, the results can be extended to the
case 0 €]0, 1], but further investigations are necessary.

3 Inequality orders

In literature several stochastic orderings for distributions have been intro-
duced and extensively studied. The most suitable orders for inequality
analysis are the one based on Lorenz curve and the one based on inequality
I(p) curve. Another useful order is the convex one. In the following the
definitions of the aforementioned orders are recalled, and the links among
them is presented. A complete overview on this subject can be found in
Shaked and Shanthikumar (2007). It is important to underline that these
three are partial orders and not total ones.

Definition 1 Let X; and X3 be two continuous non-negative random vari-
ables with finite expectations. X is said to be larger (or more unequal) than
Xy in the Lorenz ordering (and it is note X1 > Xa), iff

LXl (p) < LX2 (p) Vp € (0’ 1)

where Lx,(p) ,i = 1,2, is the value assumed by the Lorenz curve of X; in p
(with i =1,2),



In analogy to the order based on Lorenz curve, Porro (2008) introduced
the order based on I(p) curve by the following definition.

Definition 2 Let X; and Xy be two continuous non-negative random vari-
ables with finite expectations. X1 is said to be larger (or more unequal) than
X2 in the ordering based on I(p) curve (and it is note X1 >5 Xa), iff

Ix,(p) = Ix, (p) vp e (0,1)

where Ix,(p) ,i = 1,2, is the value assumed by the inequality I(p) curve of
Xi inp (withi=1,2).

The partial order based on /(p) curve and the partial order based on L(p)
curve are equivalent, since as shown in Porro (2008), the next equivalence
lemma holds.

Lemma 1 (Equivalence Lemma) Let X; and X5 be two continuous non-
negative random variables, both with finite and positive expectation. Then:

X1 21 Xo & X1 21 Xo.

The last considered ordering is the well-known convex order, which is
approached in the next section. Unlike the previous ones, the convex order
needs the equality of the expectattions of the two random variables involved.

Definition 3 Let X; and Xs be two continuous non-negative random vari-
ables with finite expectations. X is said to be larger than X3 in the convex
order (and it is note X1 >cox Xa), iff

Elp(X1)] = E[p(X2)]

for all the convex functions ¢ : R — R, such that the expectations exist.

An important result involving the above partial orders holds: it will be
applied in the next section to prove the two main ordering theorems (see for
further details Shaked and Shanthikumar (2007) and Porro (2008)). It is a
generalization of the Equivalence Lemma and it can be stated as follows:

Proposition 1 Let X; and Xy be two continuous non-negative random
variables with the same finite expectation. Then

Xo<ex X1 & X210 X1 © Xo<1 X



4 Ordering theorems

In this section the main results of the papar are presented and proved. In or-
der to semplify the presentation, some useful lemmas and related corollaries
are introduced.

Lemma 2 Lety > 0 and Rf = {z € R : z > 0}. Then the function h,:

hy: R — RS
I'(x)

1’ ————————

Iz +y)

18 monotonically strictly decreasing.

Proof of Lemma 2
The derivative of the function hy, = h,(z) with respect to x is:

dhy(z) T'(@x)l'(z +y) - T(@)(z +y) .

de Tz +y)?
Recalling the definition of the digamma function :
#(o) = 1T = 1
it follows that:
dhy(z) _ T@Y@)(z+y) -T(@)yE+y)lz+y)
dx C(z+y))?
I'(z)[(z + y)
Ta+ o2 [(z) —p(z +y)].

It is well-known (see for example Abramowitz and Stegun (1964)) that
for x > 0, the digamma, function () is monotonically increasing: it implies

that 9 (z) —¢¥(x +y) < 0 and therefore -C%yg—)- < 0Vz € R{. So it is proved

that hy(x) is a monotonically decreasing function in Ry .

I(az)T(a1 + )
T(as + 9)0en) < -

Corollary 1 If0 < a1 < ag and y > 0, then

Proof of Corollary 1
By the lemma 2, if 0 < a1 < a3y it follows that:

hy(az) < hy(a),
that is, by definition of function h,:

I'az) I'ew)
Mag+y) T(a1+y)




or, equivalently:
I(ag)l (e +y)
Doz +y)T(ea)

Lemma 3 Let f : R — R(}L and g : R — IR(“)L two derivable, positive and
strictly decreasing functions. Then the function

p: R — R
z > plr) = f(z)g(z)

s monotonically strictly decreasing.

Proof of Lemma 3
The derivative of p is

< p(a) = F(2)g(x) + F(@)g'(x).

By hypothesis, f' <0, ¢’ <0, f >0, and g > 0, then it follows that dp/dx
is negative and therefore the thesis holds.

Another important result is the following (see Shaked and Shanthikumar
(2007) for proof and further details): it is a sufficient condition for the convex
order.

Lemma 4 Let X1 and Xy two continuous random variables with the same
expectation and probability density function f1 and fo respectively. If the
function fa — fi changes sign twice and the sign sequence is +, —, +, then
X1 <cox Xa.

Now, it is possible to start the investigation about the roles of the distri-
bution parameters from the inequality point of view. First, it is interesting
to point out that for Zenga distribution y is a scale parameter (see Zenga
(2010)), then it is not relevant from the inequality point of view. This means
that every reasonable inequality-measuring tool, such as inequality curves,
inequality indexes, etc., must not be depending on it. It is clear therefore,
why the investigation about the role of the distribution parameters has to
be restricted to a and 6, considering u a fixed value.

The statement of the first ordering theorem is the following.

Theorem 1 (First ordering theorem) Let X; and X, two continuous
random variables such that:

o X1 ~ Zenga (4,1, 0)
o Xy~ Zenga (u, az,0)

where 0 > 1,0 < a1 < ag and u > 0. Then X9 <cx Xi.



Proof of Theorem 1
Obviously, the random variables X; and X3 have the same expected value

L.
Now, let f; denote the probability density function of X; ¢ = 1,2. In order to
apply Lemma 4, the number of sign changes of fo— f1 has to be determinated.
To do that, let g be the ratio between the two density functions, that is:

_f,
@) = @),

The function g for z €]0, ] is given by:

1 2\ "2 relu
hnd ke=1/2(1 — k)02 gk

1 2\ 32 re/w
s | = k2 12(1 — k)72 dk
e ) (1=

/ " k=121 — k)02 dk
B(Olz, 0) . J0
B(al, 6) /z/;l, kaz—l/?(l _ k)0—2 dk
0
while for z > p coincides with

1 pN\3/2 [He a1-1/2 -2
(—) /0 k (1 - k)2 dk

9(z)

_ 2uB(m,0) \z
g(x) - ——————1—_ (E>3/2 /ﬂ/m kaz_l/z(l B k)0*2 ik
2uB(ag,0) \z 0
ple
k21— k)2 dk
B(a210) ~/O ( )

B(O[], 0) /u/x ka2—1/2(1 _ k)B—-Q dk
0

It is important to note that g is continuous, since functions f; and fy are
continuous. Consider first the case z €]0, u).
The value of g as = approaches the extreme 0 is:

/ i k21— k)2 dk
lim g(z) = lim Blaz,) o

z—0+ z—0+ B(a1,0) /m/ﬂ ka2—1/2(1 - k)0*2 dk,
0

and then, by De ’'Hopital rule, it becomes:

1 (m)al—l/Z( z 62
1(z 1__)
lim g(x) = lim Blag,0) " \n L

z—0+ z—0+ B(ag,0) 1 <$)a2—1/2 (1 x)”*Z




. B(ag,d) [1\¥7 _ _
= 1 i et AN Bl a1 —o2 )
x——»nghr B(a,8) (,u) T +oo

As x approaches to u:

x/p
k1 72(1 — k)92 dk
li . . B(O‘?,e) »/0 ( )
im g(z) = lm Bl 0) [
o o b / k‘az—l/2(1 _ k)0—2 dk
0
B(ag,0) B(on +1/2,0 — 1)
B(ai,0) Blag +1/2,0 + 1)
INa)(ag + 0 — 1/2)F(O{1 +1/2)(a; + 6)
F(Ozg -+ 1/2)I‘(a2 -+ 6‘)I‘(a1)1"(a1 + 80— 1/2) '

Considering now the functions

h1/2 . R(_)‘_ - RBL
. I'(z)
I'(x+1/2)
and
h9+1/2 : Rg— - Ra'
) r(z)

Nz+60+1/2)
By Lemma 2 they are monotonically decreasing and consequently, the func-

tion hy/g - hgi1/2 is decreasing (by Lemma 3). So, for 0 < a1 < ag, it holds

that: T(ag)T(az +6 — 1/2) _ T(a1)T(a1 + 6 — 1/2)

I(ag +1/2)T (g +60) ~ T(aq +1/2) (a1 +6)

and therefore
lim g(z) < 1.

T

Now, the derivative of function g is:

W k=2 (1 — k)% dk
a4 (x)_i B(az,0)  Jo
dz”

dz B(ah 0) /x/u ka2—1/2(1 _ k)0—2 dk
0

a1—1/2 :L'/u, 0[2—1/2 (E/u
= - (E) / ka2—1/2(1 _ k)0—2 dk — <£> / ka1—1/2(1 - k)9—2 dk
Iz 0 K 0

= o [Tamwra|(2)" e ()" |

0 H K
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where

-2

_ B(ay,0) z\'2 | e az—1/2 02

The integrand function in equation (2) is strictly smaller than 0 for
k €]0,z/p| and it is zero for k = xz/u: that implies therefore that the
value of the integral is strictly smaller than 0: this means that dg(z)/dz is
negative and so g is a monotonically strictly decreasing function if z €]0, u).
Here a recap for z €)0, p):

e lim g(x) = +oo;
Jim g(z)

o lim g(z) < 1;

Ty
¢ g is a continuous strictly monotonic decreasing function,

therefore it follows that

Az €]0,p] : g(zo) = %(a:o) =1

that is
Itz €]0,4] : (f2— fi)(@o) =0. (3)
Equation (3) states that there exists only one sign change of function f; — f;

in the interval |0, u] and the sign sequence is —, +.

Let now x be greater than p (case = > p).
As before, the limits of function g if = approaches to the extreme values of
the interval are

/ v k=21 - k)02 dk;
0

lim g(z) = lim Blas,0) .
a—pt a—u+ B(a, ) /“/w k*2712(1 — k)02 dk;
0
_ F(ag)r(ag +6— 1/2)I‘(a1 +1/2) oy + 6) <1
T{ag +1/2)T (g + )T (a1)T(c1 + 0 — 1/2)
and
/ e k2 (1 — k)2 dk
lim g(z) = lim Blas,0) Jo
T->+00 z—+oo B(ai,6)

/ e k2272 (1 — k)2 dk
0
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that is, by De I’Hopital rule, it results that

lim g(z) = B(osy,6) <__f5) <g)a1—1/2 <1 B 5)04

z—+00 2560 B(oy,0) (__ M) (N)arl/? <1 _ N)O“z

2/ \z z

Bend) 2y

U

= lim

z—+oo Blai, 6) = oo

Now, the derivative of function g is:

v kY2 (1 — k)02 dk
i (x)_i B(a2a0) . Jo
dz?"" T 4z | B(ay, 0) /u/w
0

ka2—1/2(1 . k)@—? dk

—~1/2 [/ —1/2 [fu/=z
. (E)al / / ko2~ 1/2(1 — )02 gk, — <g_)a2 / f ko1=1/2(1 — k)02 dk
0 T 0

x
u/z a1—1/2 az—1/2
- . -2 | (B ap—1/2 _ [ H\? a;—1/2
a /0 (1—k) [(w) k (x) k dk
u/x a1—1/2 ag—o1
— . _\0-23.00-1/2 __/J’_ az—oy _/:l’_
a /O (1—k)°2k (x) [k (x> } dk (4)
where

‘= gEZj Z; (- %)H (-2) [ /OW k21— k) dk} ) <0.

As the previous case, the integrand function in equation (4) is strictly smaller
than 0 for k €]0, u/x[ and equal to 0 for k = p/z, therefore the value of the
integral is strictly smaller than 0: that implies that dg(z)/dx is positive and
so g is a monotonically increasing function if z > u.

So, for z > u:

o lim+ g(z) < 1;

T
e lim g(x)+ oo
T-+-4-00
¢ g is a continuous strictly monotonic increasing function,

therefore it follows that

h

7, (zo) =1

lazg>p : glxe) =

11



that is
3!1‘0>ﬂ, : (fg—fl)($0)=0. (5)

Equation (5) states that there exists only one sign change of function fo— fi
for x > p and the sign sequence is +, —. The matching of the restrictions
(3) and (5), gives that if z € R the function f; — f1 has only two sign
changes, with sign sequence —, +, —, therefore, by Lemma 4, it follows that
X9 <¢x Xi, and then the thesis of Theorem 1 is achieved.

The following result is an immediate consequence of Proposition 1.

Corollary 2 Under the same hypothesis of Theorem 1, it follows that:
X2 <p X1 and X2 <1 X3

The previous result states that for Zenga distribution, Lorenz curves
and the I(p) curves are nested if one parameter changes. In detail, it proves
that as the parameter # is fixed, then « is an inverse inequality indicator
for Lorenz curve and for the related Gini concentration ratio. That holds
also for the inequality I(p) curve and the related index I: the bigger «, the
less unequal the distribution.

The role of the parameter 8 is summarized in the next result.

Theorem 2 (Second ordering theorem) Let X, and X, two continuous
random variables, such that:

o X1 ~ Zenga (i, o, 61)
o Xy ~ Zenga (i, c, 62)
where 1 < 1 <0y, a>0 and u>0. Then X1 <cx Xo.

Proof of Theorem 2
The proof is very similar to proof of Theorem 1. Also in this case the ratio
g of the two density functions f; of X; (i = 1,2) is considered:

r

/ " ko2 (1 — k)2 dk
B(a,01) fo/n a—1/2 652 B
k*~12(1 — k)%2-2 gk
f 0
g(z) = ?i( ) = )
w/x
k>3 (1 - k)12 dk
Bt S o
B(aa 01) /u/x ka~1/2(1 _ k)92—2 dk
\ 0

12



The behavior of function g at the extreme values of the domain is described
by the following two limits:

) _ T(0) (o + 01)
A 9(8) = S o6y
: _ I'(02)T(a + 01)
L 9(@) = I'(a + 62)L(61)
and, by Corollary 1 it holds that:
L(02)' (o + 61) <1
F(Ol + 02)P(91) )

Instead, if x approaches to yu:

: _ lim _ T(02)T(a+ 61)(0; — 1) (a + 02 — 1/2)
Jm g(x) = hm, 9(@) = F 0T (6T (@ + 0, — /2T (65— 1)°

(6)

The limit in (6) is greater than 1, since by Lemma 2 it holds that

I(a+602—1/2)  T(a+6s)
Ma+60:-1/2) " T(a+61)

and that
L@ -1) _ T()
[0, —1) = T'(62)’
therefore
[(a+6,-1/2) T(6:~1) S [(a+62) T(61)
M(a+61—1/2) T(#2—1)  T(a+61) T(6)
that is

D(6)T (e + 0)D(6 —~ DI+ 0~ 1/2)
I(a+62)0(0)(a+ 61 —1/2)T'(02 — 1) ’
Here the importance of the hypothesis # > 1 is evident: the previous
equations make sense only under this assumption.
It can be proved that g is strictly monotonic increasing in the interval
10, ], and strictly monotonic decreasing if x > p, since for z €]0, uj:

d /w/u 1 B x 012 B o 02—01
—g(z) = z- Kk /21—k”12<1——) 1—k)0%20 (1= dk
79(@) A (1-k) . (1-k) p

with

-2

B(a, 62) <m>o‘—1/2 /w/“ 1/2/ 77052

z=——22 (2 kY222 4k >0,
nB(e,01) \ 0 &)

13



then dg(x)/dz > 0 if z € [0; p]; while for z > u:

di (z) = w./u/w ka~1/2(1_k)01—2 (1 _ H)91—2 [(1 3 k)92“91 3 ( 3 ﬁ)oz—el} b
z 0 T

xr

with

v %%:‘% (g)wl/? (“g) [/Ou/m k12 () P2 dk-} ~ <0

and therefore dg(z)/dz < 0 for z > p.
So, as in Theorem 1, it follows that:

e in |0, 1] there exists only one point where the function fo — f; changes
sign, and the function has the sign sequence +, —;

e if >  there exists only one point where the function fy — f; changes
sign, and the function has the sign sequence —, +,

therefore fo — fi changes sign only twice in ]RaL with sign sequence +, —, +:
by Lemma 4 it holds that X1 <cx Xos.

As the previous case, the following result can easily achieved, using
Proposition 1.

Corollary 3 Under the same hypothesis of Theorem 2, it follows that:
X1 <1 Xo and X1 <1 Xo.

The previous result states that for Zenga distribution, Lorenz curves and
the I(p) curves are nested if parameter « is fixed and § changes: this means
that 6 is a direct inequality indicator for Gini concentration ratio (index
related to Lorenz curve) and for the inequality index I (related to the I(p)
curve): the bigger 8, the more unequal the distribution.

5 Conclusions

In this paper, the roles of the parameters of Zenga distribution in terms
of inequality have been investigated. The distribution parameter p has
been excluded, since it is a scale parameter, therefore it does not affect the
inequality level at all. The other two parameters has been analyzed and
it has been proved that as 6 is fixed, « is an inverse inequality indicator,
while € is a direct inequality indicator, as the « is fixed. These results are
very important, since Zenga distribution seems to be largely useful to model
wealth, financial, actuarial and especially, income distributions: in all these
cases it is fundamental to understand how a change of the parameters affects
the inequality level.
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