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Interval estimation for the Sharpe Ratio when returns
are not i.i.d. with special emphasis on the GARCH(1,1)

process with symmetric innovations

Lucio De Capitani

Abstract In this paper, assuming that returns follows a stationary and ergodic stochas-

tic process, the asymptotic distribution of the natural estimator of the Sharpe Ratio

is explicitly given. This distribution is used in order to define an approximated con-

fidence interval for the Sharpe ratio. Particular attention is devoted to the case of

the GARCH(1,1) process. In this latter case, a simulation study is performed in order

to evaluate the minimum sample size for reaching a good coverage accuracy of the

asymptotic confidence intervals.

Keywords Sharpe ratio · stationary and ergodic process · generalized method of

moments · GARCH(1,1) process

1 Introduction

The Sharpe Ratio (Sharpe [17], [18], [19]) is probably the best known and applied

financial performance measure. It is used to measure the risk-adjusted performance of

a financial asset and to compare different portfolios of financial activities. The Sharpe

Ratio is defined using the standard deviation of returns (interpreted as a risk measure)

and the expected excess return (interpreted as reward measure) to determine the reward

per unit of risk. In more detail, let X be the random variable describing the log-returns

of a risky financial activity ad let ξ be the (log) risk-free rate of return. Let µ and σ be

the expected value and the standard deviation of X, respectively. The Sharpe Ratio is

defined as:

ψ =
µ− ξ

σ
. (1)

The Sharpe Ratio of a particular financial activity is usually estimated using a time

series of log-returns1. In particular, let X1, ..., Xn be a time series of returns and let X̄
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1 To ease the exposition, in the following we will refer to the log-returns simply as returns.
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and S2 be the sample mean and the unbiased sample variance, respectively. Usually,

in order to estimate ψ, the natural estimator Ψ̂ = X̄−ξ
S is used. In literature, there are

several results concerning the features of Ψ̂ . For example, Miller and Gher [13] studied

its bias in the case of independent and identically normally distributed returns (i.i.d.-

normal returns). Later Jobson and Korkie [10] derived the asymptotic distribution of

Ψ̂ , under the assumption of i.i.d.-normal returns:

√
n(Ψ̂ − ψ)

a∼ N
(
0; 1 +

1

2
ψ2
)

. (2)

The distribution (2) was used by Jobson and Korkie [10] to define asymptotic critical

regions for testing hypotheses on ψ and it can be used to build, by analytical inversion,

an approximated confidence interval for ψ. In De Capitani and Zenga [7], it is shown

that the coverage accuracy of the aforementioned asymptotic confidence interval is

good stating from the relatively small sample size of 50.

However, the results concerning the i.i.d.-normal returns are of little practical in-

terest because empirical evidence shows that the stock market returns cannot be con-

sidered normally distributed and serially independent. This observation motivates the

seminal works of Lo (2002) who studied the asymptotic behavior of Ψ̂ firstly removing

the normality assumption and secondly removing the independence hypotheses. Under

the i.i.d. hypotheses he obtained that

√
n(Ψ̂ − ψ)

d→ N (0; V ) (3)

where

V = 1 +
1

2
ψ2 − γ1ψ +

γ2
4
ψ2

and γ1 and γ2 stand for the third standardized central moment (usually interpreted

as an indicator of skewness) and for the fourth standardized central moment minus 3

(commonly interpreted as a kurtosis indicator), respectively:

γ1 =
µ3
σ3

and γ2 =
(
µ4
σ4

− 3
)
, µk = E[(X − µ)k] .

The distribution (3) can be used to define an asymptotic confidence interval for Ψ .

In De Capitani and Zenga [7] the coverage accuracy of this last confidence interval is

studied. In detail, simulation shows that in finite samples the actual coverage of the

confidence interval for ψ is lower than the nominal confidence level. Furthermore, it is

shown that the actual coverage depends strongly on the tails of the distribution of X

(the fatter the tails the worst is the coverage accuracy) and on the true value of the ratio

(the higher the value of ψ, the lower is the simulated coverage). As a consequence, the

minimum sample size necessary to assure a good coverage accuracy of the confidence

interval based on (3) increases from 50 (as in the normal case) to 400 and, when the ψ

is high and the tail of the distribution on X are fat, 400 is no longer sufficient2.

In order to determine the asymptotic distribution of Ψ̂ in the general context of

not-i.i.d. returns, Lo [12] observed that X̄ and S2 are GMM estimators of µ and

σ2, respectively. Assuming that all the regularity condition necessary to assure the

2 The impact of the tails and asymmetry of the distribution of X on the coverage accuracy
are discussed in details in De Capitani and Zenga [7].
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asymptotic properties of the GMM estimators hold, it is possible to conclude that (see,

e.g., Hall, [8] or Hansen, [9]):

√
n

[
X̄ − µ

S2 − σ2

]
d→ NB (0,ΣGMM ) (4)

where NB stands for “Bivariate Normal”. Starting from this last result and applying

the Delta Method (see Sen and Singer, [16]), Lo [12] concluded that

√
n(Ψ̂ − ψ)

d→ N (0; VGMM ) .

However, in Lo [12] the expression of ΣGMM and VGMM are not explicitly given. In

the aforementioned paper it is only observed that, for practical purposes the asymptotic

variance-covariance matrix ΣGMM , and then the variance VGMM , can be consistently

estimated using the well known Newey-West estimator (see Newey and West, [14]).

Christie [5] tries to bridge this latter gap but its approach was incorrect. In detail, he

explicitly derived the asymptotic distribution of Ψ̂ using the asymptotic theory of the

GMM estimator in the context of i.i.d. observation interpreting the results as they were

obtained through the general asymptotic theory of the GMM estimators. Furthermore,

the asymptotic variance VGMM he obtained was not written parsimoniously. Later,

Opdike [15] rationalized the expression given in Christie [5] finding, not surprisingly,

that VGMM is the same as V . However, Opdicke (2007) interpreted this equivalence

as an interesting result rather than pointing out the error of Christie [5].

In order to avoid further confusion, in this work we re-examine the problem of

determining the asymptotic distribution of Ψ̂ in the general case of not-i.i.d. returns.

In detail, the paper is organized as follows. In Section 2 the GMM and the general

assumptions assuring the validity of the asymptotic properties of GMM estimators

are recalled. In Section 3 the general result concerning the large sample properties

of the GMM estimators is particularized in order to determine the asymptotic joint

distribution of X̄ and S2. We think this analysis is useful in order to highlight the real

assumptions to be made in order to assure the asymptotic normality of Ψ̂ . Further, an

asymptotic confidence interval for ψ is introduced. In Section 4 the results of Section

3 are specialized to the case of the GARCH(1,1) process with symmetric innovations.

In Section 5 we describe the simulation study performed in order to asses the coverage

accuracy of the large sample confidence interval for ψ. Moreover, in this section we

discuss the computational details. In Section 6 the results of the simulations are given

and discussed. Finally, Section 7 is devoted to conclusions.

2 Recalling the GMM

First of all, we briefly recall the Generalized Method of Moments (GMM) and the large

sample properties of the GMM estimators.

The GMM was introduced by Hansen [9] and, nowadays, it is commonly used,

especially by the econometricians. As shown in Hall [8], the GMM is substantially a

generalization of the minimum chi-square estimation method and many other classical

estimation procedures (such as the method of moments, ordinary least square, max-

imum likelihood and instrumental variables) fall into the GMM framework. A great

advantage of using the GMM is that the estimators obtained through this method
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are, under certain regularity conditions, consistent and asymptotically normally dis-

tributed. Further, these properties hold not only when the random variables used to

define the estimators are i.i.d. but also when they come from a strictly stationary and

ergodic stochastic process. Here we recall the definition of the GMM estimators and

we report a theorem stating their large sample properties. In doing that, we follows

the formalization of Hall [8] considering only the case of univariate stochastic process

and constant weighting matrix.

Let {Xt}t∈N be a strictly stationary discrete time stochastic process with state

space V ⊆ R and let θ ∈ Θ be the (k × 1) vector of parameters to be estimated. The

true value of θ is denoted by θ0. Consider the vector-valued function f : V × Θ →
R
q and suppose that E[f(Xt, θ)] = 0 if and only if θ = θ0. Roughly speaking, the

identity E[f(Xt, θ0)] = 0 represent the set of constraints, commonly referred to as

“orthogonality conditions” or “population moment conditions”, useful to perform the

estimation procedure. In detail, let (X1, ..., Xn) be a time series of length n from the

stochastic process {Xt}t∈N. On the basis of the random vector (X1, ..., Xn), the sample

average of f can be introduced:

gn(θ) =
1

n

n∑

t=1

f(Xt, θ) .

The GMM estimator θ̂ of θ0 is defined as θ̂ = argminθ Qn(θ) where

Qn(θ) = gn(θ)
′Wgn(θ) and W is a symmetric positive definite (q × q) matrix. For

a given realization (x1, ..., xn) of the random vector (X1, ..., Xn), the quadratic form

Qn(θ) coincide with a non-standard euclidean distance between the vector gn(θ) and

the origin 0. Then, the GMM estimator θ̂ is defined so as to make the sample average

gn(θ) as close as possible to the theoretical value of 0 prescribed by the population

moment conditions.

The GMM estimators possess the desirable large sample properties formalized in

the following theorem.

Theorem 1 Assume that the following conditions hold:

1. the process {Xt}t∈N is ergodic3;

2. Θ is a compact set and θ0 is an interior point of Θ;

3. the vector-function f satisfy the following regularity conditions: (i) f is continu-

ous on Θ for all xt ∈ V ; (ii) the derivatives matrix ∂f(xt, θ)/∂θ
′ exists and is

continuous on Θ for each xt ∈ V ;

4. the vector-function f and the random variable Xt satisfy: (i) E[f(Xt, θ)] exists finite

for every θ ∈ Θ and is continuous on Θ; (ii) E[∂f(Xt, θ)/∂θ
′] exists finite and is

continuous in some neighborhood of radius ǫ, say Nǫ, of θ0;

(iii) E[supθ∈Θf(Xt, θ)
′f(Xt, θ)] <∞; (iv) E[f(Xt, θ)f(Xt, θ)

′] <∞ for all θ ∈ Θ;

5. the matrix Gn(θ) = n−1
∑n

i=1
∂f(Xt, θ)/∂θ

′ converge uniformly to E[∂f(Xt, θ)/∂θ
′]

in a neighborhood Nǫ of θ0. That is:

∃ ǫ > 0 : sup
θ∈Nǫ

∥∥Gn(θ)−E
[
∂f(Xt; θ)/∂θ

′
]∥∥ p→ 0

where, for a given square matrix A, ||A|| =
√
tr(A′A).

3 For a formal definition of ergodicity, see, e.g., Karlin and Taylor [11].
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6. the variance-covariance matrix S = limn→∞ V ar[
√
ngn(θ0)] exists finite and defi-

nite positive;

Then, the GMM estimator θ̂ is consistent and asymptotically normally distributed:

– θ̂
p→ θ;

–
√
n(θ̂ − θ)

d→ N (0,H) where H = (G′

0WG0)
−1G′

0WSWG0(G
′

0WG0)
−1 and

G0 = E[∂f(Xt, θ0)/∂θ
′].

3 Asymptotic distribution of Ψ̂ and confidence interval for ψ when returns

are not i.i.d.

In this section, following the trace of Lo [12], we specialize theorem 1 to the context

of the estimation of the vector of parameter θ = [µ, σ2]′ where µ = E[Xt] and σ2 =

V ar[Xt] for all t ∈ N. From now on, we interpret {Xt}t∈N as the process of the returns

of a financial activity and we assume that R is the state space of the process. Further,

we suppose that {Xt}t∈N is strictly stationary, ergodic and

E[Xr
t ] <∞ for r = 1, 2, 3, 4 . (5)

In order to estimate θ it is natural to choose the method of moments estimator

θ̂ = [X̄, S2
b ] where S

2
b denote the (biased) sample variance. The estimator θ̂ can be

seen as the GMM estimator of θ defined by the population moment conditions

E

[
Xt − µ0

(Xt − µ0)
2 − σ20

]
=

[
0

0

]

induced by the function

f : R×Θ → R
2

(x;µ, σ2) 7→
[

x− µ

(x− µ)2 − σ2

]

and choosing W as the 2× 2 identity matrix.

Now, we analyze the assumptions of Theorem 1 in the context just introduced.

First of all, observe that assumption 1. is satisfied thanks to the hypothesis made at

the beginning of this section.

Assumption 2. require some additional observations. In detail, the most general para-

metric space for θ is R × R
+. This last parametric space is not compact because it

is not limited. However, it is reasonable to assume for µ and σ a lower and an up-

per bound. In particular, we can assume that µ ∈ [−µ∗, µ∗] where µ∗ is large enough

to cover all the value that an expected return of a financial activity can likely as-

sume. Analogously, we can suppose that σ2 ∈ [σ2−, σ
2
+] where σ2− > 0 and σ2+ are,

respectively, small and large enough to include all the reasonable values for the stan-

dard deviation of returns. Then, in the following, we assume that the parametric

space is given by Θ = [−µ∗, µ∗] × [σ2−, σ
2
+], which is compact, and we assume that

(µ0, σ
2
0) ∈ [−µ∗, µ∗]× [σ2−, σ

2
+].

In regards to assumption 3., the function f is clearly continuous on Θ for all x ∈ R.

Further, the elements of the derivatives matrix

∂f(x, θ)

∂θ′
=

[
−1 0

−2(x− µ) −1

]
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exist and are continuous on Θ for all x ∈ R as it is required.

Concerning assumption 4., we first observe that the elements of the matrices

E[f(Xt, θ)] =

[
µ0 − µ

σ20 − σ2

]
and E

[
∂f(x, θ)

∂θT

]
=

[
−1 0

µ− µ0 −1

]

are finite and continuous functions on Θ. Then, condition 4.(i) and 4.(ii) are fulfilled.

In order to verify condition 4.(iii), observe that

f(xt, θ)
′f(Xt, θ) = (xt − µ)4 + (xt − µ)2 − 2σ2(xt − µ)2 + σ4 .

Consequently

sup
θ∈Θ

f(Xt, θ)
T f(Xt, θ) ≤M(xt)

4 +M(xt)
2 − 2σ2−m(xt)

2 + σ4+

where M(xt) = max[|xt +µ∗|, |xt −µ∗|] and m(xt) = min[|xt +µ∗|, |xt −µ∗|]. Let fXt

denotes the density of Xt. Thanks to assumption (5), we have that

E[M(xt)
h] =

∫ 0

−∞

(x− µ∗)hfXt
(x) dx+

∫
∞

0

(x+ µ∗)hfXt
(x) dx

< E[(Xt − µ∗)h] + E[(Xt + µ∗)h] <∞ h = 2, 4 .

Further, E[m(xt)
2] < E[M(xt)

2] < ∞ and then condition 4.(iii) follows. Finally,

condition 4(iv) is a direct consequence of (5).

Regarding condition 5., observe that

Gn(θ) =

[
−1 0

−2(X̄ − µ) −1

]

and, consequently,
∥∥∥∥Gn(θ)− E

[
∂f(Xt; θ)

∂θT

]∥∥∥∥ = |2(X̄ − µ0)| .

Condition 5. now follows from the ergodicity of the process {Xt}t∈N which assures that

X̄
qc→ µ0.

Finally, we analyze the condition 6. First of all, we observe that S is the asymptotic

variance-covariance matrix of the random variables

√
n(X̄ − µ0) and

√
n

(
1

n

n∑

i=1

(Xi − µ0)
2 − σ20

)
.

It is well known (see, e.g., Brockwell and Davis, [4]) that

V ar[
√
n(X̄ − µ0)] = n V ar[X̄] = σ20

[
1 + 2

n∑

i=1

(
1− i

n

)
ρi

]

where ρi denotes the correlation between X1 and Xi+1.

The variance of the random variable

√
n

(
1

n

n∑

i=1

(Xi − µ0)
2 − σ20

)
.
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in the case of not-i.i.d. observation can be derived as follows:

V ar

[
√
n

(
1

n

n∑

i=1

(Xi − µ0)
2 − σ20

)]
=

1

n
V ar

[
n∑

i=1

(Xi − µ0)
2

]

=
1

n

n∑

i=1

V
[
(Xi − µ0)

2
]
+

2

n

n∑

i=1

n∑

j=i+1

Cov
[
(Xi − µ0)

2; (Xj − µ0)
2
]
. (6)

Thanks to the strict stationarity of {Xt}t∈N we have that V ar
[
(Xi − µ0)

2
]
= (µ4−σ40)

for all i ∈ N and

Cov
[
(Xi − µ0)

2; (Xj − µ0)
2
]
= Cov

[
(Xi+h − µ0)

2; (Xj+h − µ0)
2
]

for all i, j ∈ N and for all h ∈ Z. Consequently

n
∑

i=1

n
∑

j=i+1

Cov
[

(Xi − µ0)
2; (Xj − µ0)

2
]

=

n−1
∑

i=1

(n− i)Cov
[

(X1 − µ0)
2; (Xi+1 − µ0)

2
]

=

n−1
∑

i=1

(n− i)
(

µ
2,2
i − σ40

)

where µh,ki = E
[
(X1 − µ0)

h(Xi+1 − µ0)
k
]
. In conclusion:

V ar

[
√
n

(
1

n

n∑

i=1

(Xi − µ0)
2 − σ20

)]
= (µ4 − σ40) + 2

n∑

i=1

(
1− i

n

)
(µ2,2i − σ40) .

Finally, we derive the covariance between

√
n(X̄ − µ0) and

√
n

(
1

n

n∑

i=1

(Xi − µ0)
2 − σ20

)
.

We have that:

Cov

[
√
n(X̄ − µ0);

√
n

(
1

n

n∑

i=1

(Xi − µ0)
2 − σ20

)]
=

= nE


 1

n

(
n∑

i=1

(Xi − µ0)

)
1

n




n∑

j=1

(Xj − µ0)
2






=
1

n

n∑

i=1

n∑

j=1

E
[
(Xi − µ0)(Xj − µ0)

2
]

=
1

n

n∑

i=1

E
[
(Xi − µ0)

3
]
+

1

n

n−1∑

i=1

n∑

j=i+1

E
[
(Xi − µ0)(Xj − µ0)

2
]
+

+
1

n

n∑

i=2

i−1∑

j=1

E
[
(Xi − µ0)(Xj − µ0)

2
]
.
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From the strict stationarity of the process {Xt}t∈N, it follows that

E
[
(Xi − µ0)

3
]
= µ3 for all i ∈ N and

Cov
[
(Xi − µ0); (Xj − µ0)

2
]
= Cov

[
(Xi+h − µ0); (Xj+h − µ0)

2
]

for all i, j ∈ N and for all h ∈ Z. Consequently

n−1∑

i=1

n∑

j=i+1

E
[
(Xi − µ0)(Xj − µ0)

2
]
=

n−1∑

i=1

(n− i)µ1,2i ;

n∑

i=2

i−1∑

j=1

E
[
(Xi − µ0)(Xj − µ0)

2
]
=

n−1∑

i=1

(n− i)µ2,1i .

Then, the covariance results:

Cov

[

√
n(X̄ − µ0);

√
n

(

1

n

n
∑

i=1

(Xi − µ0)
2 − σ20

)]

= µ3 +
n
∑

i=1

(

1−
i

n

)

(

µ
1,2
i + µ

2,1
i

)

From the results just given it follows that

S =



σ20 µ3

µ3 µ4 − σ40


+

+ lim
n→∞




2σ20

n∑

i=1

(
1− i

n

)
ρi

n∑

i=1

(
1− i

n

)(
µ1,2i + µ2,1i

)

n∑

i=1

(
1− i

n

)(
µ1,2i + µ2,1i

)
2

n∑

i=1

(
1− i

n

)
(µ2,2i − σ40)



.

As a consequence, condition 6. is satisfied if

lim
n→∞

n∑

i=1

(
1− i

n

)
ρi <∞ ;

lim
n→∞

n∑

i=1

(
1− i

n

)(
µ1,2i + µ2,1i

)
<∞ ;

lim
n→∞

n∑

i=1

(
1− i

n

)
(µ2,2i − σ40) <∞ .

(7)

Observe that conditions (7) are stronger than the ergodicity assumption. In detail,

ergodicity assure that the following condition holds (see Davidson, [6]):

lim
n→∞

1

n

n∑

i=1

(
1− i

n

)
ρi = 0

lim
n→∞

1

n

n∑

i=1

(
1− i

n

)(
µ1,2i + µ2,1i

)
= 0

lim
n→∞

1

n

n∑

i=1

(
1− i

n

)
(µ2,2i − σ40) = 0

. (8)
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Conditions (8) do not assure the convergence of the series (7). For example, it can

happen that (8) are verified even if the terms ρi, µ
1,2
i and (µ2,2i − σ40) do not converge

to 0 as i increase.

The expression of S become easier if it is assumed that

∞∑

i=1

|ρi| <∞ ;

∞∑

i=1

∣∣∣µ1,2i

∣∣∣+
∞∑

i=1

∣∣∣µ2,1i

∣∣∣ <∞ ;

∞∑

i=1

∣∣∣µ2,2i − σ40

∣∣∣ <∞ .

(9)

In this case, we have that

lim
n→∞

n∑

i=1

(
1− i

n

)
ρi =

∞∑

i=1

ρi ;

lim
n→∞

n∑

i=1

(
1− i

n

)
µ1,2i =

∞∑

i=1

µ1,2i +

∞∑

i=1

µ2,1i ;

lim
n→∞

n∑

i=1

(
1− i

n

)
(µ2,2i − σ40) =

∞∑

i=1

(µ2,2i − σ40) ;

(10)

and S coincide with

S′ =




σ20

(
1 + 2

∞∑

i=1

ρi

)
µ3 +

∞∑

i=1

µ1,2i +

∞∑

i=1

µ2,1i

µ3 +

∞∑

i=1

µ1,2i +

∞∑

i=1

µ2,1i (µ4 − σ40) + 2

∞∑

i=1

(µ2,2i − σ40)




.

As is well known, the estimators S2 and S2
b are asymptotically equivalent. Then S is

the asymptotic variance-covariance matrix also for the random vector

√
n

[
X̄ − µ0
S2 − σ20

]
.

It is now possible to specialize Theorem 1 as follows.

Theorem 2 Let {Xt}t∈N be a strictly stationary and ergodic stochastic

processes with E[Xr
1 ] < ∞ for r = 1, 2, 3, 4. Let µ0 e σ20 denote the mean and the

variance of the process, respectively, and assume that
(
µ0, σ

2
0

)
∈ [−µ∗−;µ∗]× [σ2−; σ2+]

where µ∗ < ∞ and σ2+ < ∞ are arbitrarily large and σ2− > 0 is arbitrarily small. If

conditions (7) hold, then
[
X̄

S2

]
p→
[
µ0
σ20

]
and

√
n

[
X̄ − µ0
S2 − σ20

]
a∼ N (0,S) .

If conditions (9) hold, then
[
X̄

S2

]
p→
[
µ0
σ20

]
and

√
n

[
X̄ − µ0
S2 − σ20

]
a∼ N

(
0,S′

)
.
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By applying the Delta Method, the following corollary is obtained.

Corollary 1 Under the assumptions of Theorem 2, the estimator Ψ̂ is asymptotically

normally distributed. In detail,
√
n(Ψ̂ − ψ)

a∼ N (0, V ) where

1. if conditions (7) hold then

V =











1

σ0

−
µ0 − ξ

2σ3
0











′

S











1

σ0

−
µ0 − ξ

2σ3
0











= 1 +
1

2
ψ2 − γ1ψ + γ2

ψ2

4
+ 2 lim

n→∞

n
∑

i=1

(

1−
i

n

)

ρi +

−ψ lim
n→∞

n
∑

i=1

(

1−
i

n

)

(

µ
1,2
i

+ µ
2,1
i

σ3
0

)

+
ψ2

2
lim

n→∞

n
∑

i=1

(

1−
i

n

)

(

µ
2,2
i

σ4
0

− 1

)

.

2. if conditions (9) hold then

V ′ =











1

σ0

−
µ0 − ξ

2σ3
0











′

S′











1

σ0

−
µ0 − ξ

2σ3
0











= 1 +
1

2
ψ2 − γ1ψ + γ2

ψ2

4
+ 2

∞
∑

i=1

ρi − ψ

∞
∑

i=1

(

µ
1,2
i + µ

2,1
i

σ3
0

)

+
ψ2

2

∞
∑

i=1

(

µ
2,2
i

σ4
0

− 1

)

.

From the above expressions it can be observed that the asymptotic variance V is equal

to the variance obtained by Lo [12] in the i.i.d. case plus three terms that reflect the time

dependence in the process {Xt}t∈N. As suggested by Lo [12], under some additional

regularity conditions, the variances V and V ′ can be consistently estimated starting

from the Newey and West estimator of the variance-covariance matrix S (which is the

same as those of the variance-covariance matrix S′). In detail, in the present context

this last estimator is given by

ŜNW =

[
S2
b µ̂3
µ̂3 µ̂4 − S4

b

]
+

[
s1 s3
s3 s2

]

where

s1 =

m∑

j=1

(
1− j

m

)
 2

n

n∑

i=j+1

(Xi − X̄)(Xi−j − X̄)


 ,

s2 =

m∑

j=1

(
1− j

m

)


2

n

n∑

i=j+1

[
(Xi − X̄)2 − S2

b

] [
(Xi−j − X̄)2 − S2

b

]


 ,

s3 =

m∑

j=1

(
1− j

m

)


1

n

n∑

i=j+1

(Xi − X̄)
[
(Xi−j − X̄)2 − S2

b

]

+

n∑

i=j+1

[
(Xi − X̄)2 − S2

b

]
(Xi−j − X̄)



 ,
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and m is a function of the sample size n so that m = O(n1/4) to assure consistency.

Then, the Newey and West estimator of the variances V and V ′ is given by:

V̂NW =




1

S

− X̄ − ξ

2S3




′

ŜNW




1

S

− X̄ − ξ

2S3


 .

Concluding, the asymptotic confidence interval for ψ under the general and more

realistic assumption of Theorem 2 is:

(
Ψ̂ − z1−α

2

√
V̂NW

n
; Ψ̂ + z1−α

2

√
V̂NW

n

)
. (11)

4 Asymptotic distribution of Ψ̂ and confidence interval for ψ when returns

follow a GARCH(1,1) process with symmetric innovations

In this section we specialize the results of theorem 2 and corollary 1 to the case of the

GARCH(1,1) process. To ease the notation, in the remainder of this section we denote

the true value of the expectation and standard deviation of the process {Xt}t∈N simply

by µ and σ, omitting the subscript 0.

The GARCH(1,1) model (see Bollerslev, [3]) is particularly useful in order to explain

the volatility clustering in financial time series and it is the most used parametric model

in the financial literature. The definition of the GARCH(1,1) process is the following:

Xt − µ = σtǫt
σ2t = α0 + α1(Xt−1 − µ)2 + βσ2t−1

where α0 > 0, α1 ≥ 0, β ≥ 0 and the random variables ǫt, (t = 1, 2, ...), referred to as

the innovations of the process, are i.i.d with E[ǫ1] = 0 and E[ǫ21] = 1. In addition, it
is common to assume that the innovations are normally distributed. However, in this
paper we consider the more general case of innovations with symmetric distribution
and finite fourth moment E[ǫ4t ] = h2 < ∞. In the following, we give the expressions

of σ2, µ3, µ4, ρi, µ
1,2
i , µ2,1i , and µ2,2i in terms of the parameters α0, α1, and β, h2 of

the GARCH(1,1) process. In doing that, we use the following notation: Yt = (Xt −µ),

γ = (α1 + β), d = (1− γ2 − (h2 − 1)α2
1). Firstly, it is well known that

E[Xt] = µ

E[Y 2
t ] = σ2 =

{ α0

1−γ
γ < 1

do not exists γ ≥ 1

E[Y 3
t ] = µ3 = 0 (12)

E[Y 4
t ] = µ4 =







h2σ
4

d
(1 − γ2) d > 0

do not exists d ≤ 0

E[YtYt−j ] = 0 = ρj j = 1, 2, ... (13)

In the following, according to the assumptions of the previous sections, we suppose

that µ4 < ∞. Observe that the assumption of existence of the fourth moment of Xt

imply that d > 0 and γ < 1.
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Now we derive the expression of µ1,2j . By the smoothing property of the conditional

expectation (see Billingsley, [2]) we have that

E[Y 2
t Yt−j ] = µ1,2j = E[Yt−jE[Y 2

t |Xt−1, Xt−2, ...]]

= E[Yt−j(α0 + α1Y
2
t−1 + βσ2t−1)E[ǫ2t ]]

= (α1 + β)E[Yt−jY
2
t−1]

= γE[Yt−jY
2
t−1] .

Iterating the above procedure, we obtain that

E[Y 2
t Yt−j ] = γjE[Y 3

t ] = 0 ∀j = 1, 2, ...; . (14)

Concerning to the product moment µ2,1j we have that

E[YtY
2
t−j ] = µ2,1j = E[Y 2

t−jE[Yt|Xt−1, Xt−2, ...]]

= E[Y 2
t−j(α0 + α1Y

2
t−1 + βσ2t−1)

1/2E[ǫt]]

= 0 ∀j = 1, 2, ... (15)

Finally we compute the product moment µ
2,2
j .

E[Y 2
t Y

2
t−j ] = µ2,2j = E[Y 2

t−j(α0 + α1Y
2
t−1 + βσ2t−1)E[ǫ2t ]]

=
(
α0E[Y 2

t−j ] + α1E[Y 2
t−jY

2
t−1] + βE[Y 2

t−jσ
2
t−1]

)

=

(
α2
0

1− (α1 + β)

)
+ (α1 + β)E[Y 2

t−jY
2
t−1]

=

(
α2
0

1− γ

)
+ γE[Y 2

t−jY
2
t−1] .

Iterating the above procedure we obtain:

E[Y 2
t Y

2
t−j ] =

(
α2
0

1− γ

) j−2∑

i=0

γi + γj−1E[Y 2
t Y

2
t−1]

=

(
α0

1− γ

)2 (
1− γj−1

)
+ γj−1E[Y 2

t Y
2
t−1]

= σ4 + γj−1
(
E[Y 2

t Y
2
t−1]− σ4

)
.

Focusing on E[Y 2
t Y

2
t−1], it turns out that

E[Y 2
t Y

2
t−1] =

(
α0E[Y 2

t−1] + α1E[Y 4
t−1] + βE[Y 2

t−1σ
2
t−1]

)

=

(
α0

α0

1− γ
+

(
α1 +

1

h2
β

)
E[Y 4

t−1]

)

= σ4(1− γ) +

(
α1 +

1

h2
β

)
h2σ

4

d
(1− γ2)

= σ4 + σ4
α1(h2 − 1)(1− βγ)

d
.
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Consequently,

µ2,2j = σ4
[
1 + γj−1

(
α1(h2 − 1)(1− βγ)

d

)]
∀j = 1, 2, ... (16)

It is now possible to derive the expression of V in terms of the parameters of the

GARCH model. In detail, from expression (12) it follows that the third standardized

central moment γ1 equals 0 while, from (13), we have that

lim
n→∞

n∑

i=1

(
1− i

n

)
ρi =

∞∑

j=1

ρj = 0 .

Analogously, from (14) and (15), it follows that

lim
n→∞

n∑

i=1

(
1− i

n

)(
µ
1,2
i + µ

2,1
i

σ3

)
=

∞∑

j=1

(
µ1,2j + µ2,1j

σ3

)
= 0 .

From (16), noting that (h2 − 1) > 0, (1− βγ) > 0, and 0 ≥ γ > 1 it follows that

∞∑

j=1

∣∣∣∣∣
µ2,2j

σ4
− 1

∣∣∣∣∣ =
α1(h2 − 1)(1− βγ)

d

∞∑

j=1

γj−1

=
α1(h2 − 1)(1− βγ)

d(1− γ)
<∞ .

Then

lim
n→∞

n∑

i=1

(
1− i

n

)(
µ2,2i

σ4
− 1

)
=

∞∑

j=1

(
µ2,2j

σ4
− 1

)
=
α1(h2 − 1)(1− βγ)

d(1− γ)
.

Consequently, the asymptotic variance of
√

(Ψ̂ − ψ) under the GARCH assumption is

VGARCH = 1 +
1

2
ψ2 + γ2

ψ2

4
+
ψ2

2

∞∑

i=1

(
µ2,2i

σ4
− 1

)

= 1 +
ψ2

4

[
(h2 − 1)(1 + γ)(1− β)2

d(1− γ)

]
(17)

= 1 +
(µ− ξ)2(1− γ)

4α0

[
(h2 − 1)(1 + γ)(1− β)2

d(1− γ)

]
. (18)

The variance VGARCH defined above can be consistently estimated in several ways, for

example using the Maximum Likelihood Estimation (MLE) method (once a particular

distribution for the innovations is fixed) or the Quasi Maximum Likelihood Estimation

(QMLE) method. A particular estimator will be introduced and described later. At

the moment, we simply observe that if V̂GARCH is consistent for VGARCH , then the

following large sample (1− α)-confidence interval for ψ can be introduced:

(
Ψ̂ − z1−α

2

√
V̂GARCH

n
; Ψ̂ + z1−α

2

√
V̂GARCH

n

)
. (19)
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5 Design of the simulation study and computational details

In order to evaluate the effective coverage and the length of the asymptotic confidence

intervals (11) and (19) we make a simulation study organized as follows.

– Data generating process. We suppose that the daily returns follow the

GARCH(1, 1) model with parameters α0 = 0.001, α1 = 0.1, β = 0.8. As regard

the parameter µ, we consider the three different values 0.0049, 0.0249, and 0.0499.

Finally, concerning the value of the daily risk free rate, we fix ξ = 0.00068 (which

corresponds to an annual rate of about 2.5% ). The three values of the Sharpe

Ratio associated to the different combination of parameters settings are: ψ = 0.05

when µ is small; ψ = 0.25 for the intermediate value of µ; ψ = 0.5 when µ is large.

– Distribution of the innovations. As regard the distribution of the innovations

{ǫt}t∈N we consider the standard Normal distribution (h2 = 3), the Laplace distri-

bution with unit variance and mean zero (h2 = 6) and the Student’s t with 5 degrees

of freedom rescaled by the factor (3/5)0.5 (in this way, the resulting distribution

has unit variance and h2 = 9).

– Sample sizes: n = 50; 100; 200; 400; 800; 1600.

– Nominal coverages: (1− α) = 0.9; 0.95; 0.975; 0.99.

– Iteration: 5× 104

In all the above scenarios, the actual coverage and the mean length of the confidence

intervals (19) and (11) are computed. We used the particular estimators of the variance

of Ψ̂ described below.

Concerning the estimators of the asymptotic variance VGARCH , in a preliminary

simulation study we investigate the properties of the estimator obtained plugging into

expression (18) the MLE estimators α̂∗

0, α̂
∗

1, β̂
∗ and µ̂∗ of the parameters α0, α1, β

and µ:

V̂ ∗

GARCH = 1 +
(µ̂∗ − ξ)2(1− γ̂∗)

4α̂0
∗

[
(h2 − 1)(1 + γ̂∗)(1− β̂∗)2

d(1− γ̂∗)

]
. (20)

where γ̂∗ = (α̂∗

1 + β̂∗) and d̂∗ = (1− (γ̂∗)2 − (h2 − 1)(α̂∗

1)
2). The MLE of the GARCH

parameters are obtained by numerical maximization of the following log-likelihood

function

– Gaussian innovations:

LG(α0, α1, β, µ|x) = −n
2
log(2π)− 1

2

n∑

i=1

[
log(σ2t ) +

(xt − µ)2

σ2t

]

where x = (x1, ..., xn),

– Laplace innovations:

LL(α0, α1, β, µ|x) = −n log(2
√
2)− 1

2

n∑

t=1

[
log
(
σ2t

)
+

√
2
|xt − µ|
σt

]

– Student’s t innovations (5 degrees of freedom):

Lt(α0, α1, β, µ|x) = −n log
(
3
√
3

8
π

)
− 1

2

n∑

t=1

[
log(σ2t ) + 6 log

(
1 +

(xt − µ)2

3σ2t

)]
.
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The preliminary simulation study shows that the estimator (20) is not adequate

because it often happens that the estimators obtained starting from a simulated time

series of returns are not coherent with the assumption of the existence of the fourth

moment of the process {Xt}t∈N, i.e. the estimates does not satisfy the condition d > 0.

In these cases the value of VGARCH and the confidence interval (19) do not exist. In

order to avoid this problem we consider the Constrained Maximum Likelihood Estima-

tors (CMLE) of the parameters of the GARCH model. In detail, the just mentioned

estimators are defined as the solution of the following optimization:





max
µ,α0,α,β

L•(µ, α0, α1, β|x)

sub d > 0

(21)

Let α̂0, α̂, β̂, and µ̂ denote the CMLE estimators just defined. A further estimators of

VGARCH can be obtained by replacing the MLE in expression (20) by the CMLE. In a

further preliminary simulation study, it turn out that the just introduced estimator im-

proves those provided by expression (20) but sometimes gives huge values of v̂GARCH .

A simple investigation shows that this fact happens when the estimated value of α0

is too small. In order to avoid this further problem we adopt the following “hybrid”

estimator of VGARCH :

V̂GARCH = 1 +
Ψ̂2

4

[
(h2 − 1)(1 + γ̂)(1− β̂)2

d(1− γ̂)

]
. (22)

Concerning the Newey-West estimator V̂NW , for the sake of simplicity, we do not

determine the value of the bandwidth by the automatic selection procedure proposed

in Newey and West [14] or Andrews and Monahan [1] but we set m = 5× n1/4.

All the simulation are performed in Matlab. The latter program was chosen because

it possesses the very powerful optimization function fmincon which was used in order

to solve the constrained optimization problem (21).

6 Results

The simulated actual coverage of the confidence intervals (11) and (19) are given in

Table 1 and Table 2, respectively. As it was easy to guess, simulations show that the

fatter the tails of the innovations and, consequently, of the distribution of the returns,

the worst the coverage accuracy of the large sample confidence intervals. Concerning

the confidence intervals based on the Newey and West variance estimators it can be

observed that the greater the true value of the Sharpe Ratio, the lower the actual

coverage of the asymptotic confidence intervals. Moreover, the actual coverage of the

confidence intervals (11) approaches the nominal level from the low. In our opinion,

the actual coverage of the large sample confidence interval (11) is sufficiently close to

its nominal value only when the sample size is 1600 and the true value of the Sharpe

Ratio is 0.05. In the other cases an even larger sample size is necessary to reach a good

coverage accuracy. Concerning the coverage accuracy of the confidence interval (19),

the actual coverage is not always decreasing in the true value of the Sharpe Ratio and

it does not always converge to the nominal confidence level from the low. For example,

the actual coverage tends to be greater than the nominal coverage in the case of the
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ψ 0.05 0.25 0.50
n 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99

Gaussian Innovations

50 0.7928 0.8600 0.9025 0.9368 0.7800 0.8474 0.8908 0.9282 0.7521 0.8225 0.8711 0.9108
100 0.8356 0.8956 0.9299 0.9594 0.8249 0.8861 0.9267 0.9561 0.7985 0.8652 0.9072 0.9432
200 0.8581 0.9170 0.9495 0.9729 0.8526 0.9101 0.9446 0.9699 0.8297 0.8929 0.9305 0.9604
400 0.8772 0.9325 0.9615 0.9812 0.8678 0.9258 0.9569 0.9783 0.8497 0.9104 0.9460 0.9711
800 0.8824 0.9373 0.9654 0.9842 0.8796 0.9343 0.9641 0.9823 0.8645 0.9228 0.9550 0.9780
1600 0.8895 0.9415 0.9692 0.9868 0.8852 0.9382 0.9662 0.9848 0.8738 0.9300 0.9628 0.9826

Laplace Innovations

50 0.7785 0.8447 0.8859 0.9235 0.7522 0.8210 0.8681 0.9081 0.6990 0.7722 0.8243 0.8708
100 0.8221 0.8850 0.9249 0.9540 0.7947 0.8612 0.9049 0.9391 0.7456 0.8198 0.8670 0.9093
200 0.8515 0.9109 0.9446 0.9692 0.8299 0.8913 0.9293 0.9591 0.7842 0.8560 0.9006 0.9374
400 0.8716 0.9275 0.9585 0.9796 0.8492 0.9094 0.9447 0.9695 0.8159 0.8822 0.9237 0.9534
800 0.8834 0.9365 0.9642 0.9830 0.8639 0.9200 0.9533 0.9776 0.8349 0.8991 0.9371 0.9662
1600 0.8886 0.9418 0.9683 0.9852 0.8740 0.9300 0.9608 0.9812 0.8526 0.9145 0.9494 0.9740

Student’s t Innovations

50 0.7789 0.8454 0.8896 0.9259 0.7559 0.8229 0.8704 0.9102 0.6974 0.7714 0.8250 0.8716
100 0.8243 0.8883 0.9256 0.9542 0.7926 0.8615 0.9044 0.9395 0.7422 0.8159 0.8663 0.9087
200 0.8513 0.9095 0.9444 0.9691 0.8242 0.8878 0.9279 0.9573 0.7745 0.8448 0.8914 0.9300
400 0.8679 0.9253 0.9563 0.9776 0.8436 0.9054 0.9423 0.9700 0.7975 0.8684 0.9122 0.9479
800 0.8802 0.9351 0.9651 0.9835 0.8581 0.9175 0.9518 0.9746 0.8233 0.8887 0.9288 0.9589
1600 0.8886 0.9419 0.9679 0.9858 0.8696 0.9274 0.9589 0.9799 0.8370 0.9021 0.9398 0.9673

Table 1 Actual coverage of the large sample confidence interval (11) for the Sharpe Ratio

Laplace innovations while it tends to be lower than the nominal coverage in the case

of Student’s t innovations. In general, we retain that the confidence interval (19) has a

better coverage accuracy than the confidence interval (11). In particular, in the most

cases, a sample size of 50 can be considered sufficient in order to reach a good coverage

accuracy when the innovations are Gaussian. In the case of the Laplace innovations,

we observe a less uniform situation. In detail, when the value of the Sharpe ratio is

small (0.05), a sample size of 800 is necessary. In the other cases, a sample size of 50

can be considered sufficient for the confidence intervals with nominal coverage 0.95,

0.975, and 0.99. Finally, when the innovations follows the Student’s t distribution, a

good coverage accuracy for all the confidence levels is reached only in the case of small

value of the Sharpe Ratio and sample size 1600 (a similar result was obtained with the

Newey-West variance estimator).

ψ 0.05 0.25 0.50
n 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99

Gaussian Innovations

50 0.9166 0.9595 0.9803 0.9919 0.9007 0.9500 0.9757 0.9903 0.8899 0.9401 0.9679 0.9852
100 0.9106 0.9565 0.9792 0.9922 0.9014 0.9501 0.9740 0.9897 0.8953 0.9430 0.9688 0.9854
200 0.9049 0.9540 0.9781 0.9918 0.9050 0.9520 0.9751 0.9895 0.8983 0.9467 0.9714 0.9869
400 0.9034 0.9537 0.9772 0.9911 0.9032 0.9528 0.9768 0.9898 0.9026 0.9476 0.9724 0.9876
800 0.8994 0.9506 0.9753 0.9907 0.9010 0.9507 0.9750 0.9898 0.9008 0.9501 0.9740 0.9887
1600 0.8984 0.9497 0.9747 0.9900 0.8990 0.9492 0.9741 0.9892 0.9003 0.9498 0.9751 0.9901

Laplace Innovations

50 0.9368 0.9721 0.9880 0.9966 0.9109 0.9624 0.9839 0.9943 0.8984 0.9444 0.9694 0.9863
100 0.9348 0.9730 0.9891 0.9966 0.9121 0.9528 0.9752 0.9896 0.9019 0.9450 0.9691 0.9858
200 0.9243 0.9676 0.9852 0.9951 0.9159 0.9559 0.9772 0.9903 0.9103 0.9510 0.9726 0.9877
400 0.9127 0.9614 0.9831 0.9942 0.9164 0.9577 0.9787 0.9909 0.9168 0.9553 0.9751 0.9886
800 0.9073 0.9546 0.9781 0.9919 0.9136 0.9566 0.9783 0.9909 0.9192 0.9580 0.9781 0.9912
1600 0.9013 0.9516 0.9758 0.9903 0.9097 0.9561 0.9779 0.9907 0.9163 0.9593 0.9787 0.9906

Student’s t Innovations

50 0.8773 0.9199 0.9387 0.9491 0.8004 0.8457 0.8662 0.8772 0.6962 0.7357 0.7544 0.7673
100 0.8825 0.9240 0.9420 0.9535 0.7645 0.8097 0.8341 0.8492 0.6944 0.7259 0.7419 0.7527
200 0.8904 0.9330 0.9523 0.9633 0.7605 0.7951 0.8149 0.8304 0.7332 0.7608 0.7752 0.7843
400 0.8938 0.9396 0.9607 0.9722 0.8011 0.8328 0.8479 0.8572 0.8042 0.8282 0.8412 0.8479
800 0.8988 0.9461 0.9676 0.9797 0.8658 0.8960 0.9101 0.9179 0.8728 0.8966 0.9079 0.9138
1600 0.9015 0.9509 0.9720 0.9859 0.9153 0.9465 0.9612 0.9687 0.9275 0.9528 0.9633 0.9693

Table 2 Actual coverage of the large sample confidence interval (19) for the Sharpe Ratio
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ψ 0.05 0.25 0.50
n 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99

Gaussian Innovations

50 0.4896 0.5834 0.6672 0.7667 0.5395 0.6429 0.7352 0.8449 0.6582 0.7843 0.8969 1.0307
100 0.3373 0.4020 0.4597 0.5283 0.3689 0.4395 0.5026 0.5776 0.4459 0.5313 0.6076 0.6983
200 0.2355 0.2806 0.3209 0.3687 0.2553 0.3042 0.3479 0.3998 0.3052 0.3637 0.4159 0.4780
400 0.1656 0.1973 0.2257 0.2593 0.1779 0.2120 0.2425 0.2786 0.2106 0.2510 0.2870 0.3298
800 0.1168 0.1392 0.1592 0.1829 0.1249 0.1488 0.1702 0.1956 0.1470 0.1751 0.2003 0.2302
1600 0.0825 0.0983 0.1125 0.1292 0.0880 0.1048 0.1199 0.1378 0.1032 0.1230 0.1407 0.1616

Laplace Innovations

50 0.5423 0.6462 0.7390 0.8493 0.6928 0.8255 0.9441 1.0850 1.0148 1.2092 1.3828 1.5891
100 0.3611 0.4302 0.4920 0.5654 0.4682 0.5578 0.6379 0.7331 0.6896 0.8217 0.9397 1.0799
200 0.2452 0.2922 0.3341 0.3840 0.3189 0.3800 0.4345 0.4994 0.4688 0.5586 0.6388 0.7341
400 0.1696 0.2021 0.2311 0.2656 0.2171 0.2586 0.2958 0.3399 0.3153 0.3757 0.4296 0.4937
800 0.1185 0.1412 0.1615 0.1856 0.1477 0.1760 0.2013 0.2313 0.2103 0.2506 0.2866 0.3294
1600 0.0833 0.0992 0.1135 0.1304 0.1010 0.1203 0.1376 0.1581 0.1420 0.1692 0.1935 0.2223

Student’s t Innovations

50 0.4683 0.5580 0.6381 0.7333 0.4979 0.5933 0.6785 0.7798 0.6122 0.7295 0.8342 0.9587
100 0.3321 0.3957 0.4525 0.5201 0.3728 0.4442 0.5080 0.5838 0.5172 0.6163 0.7048 0.8099
200 0.2365 0.2819 0.3223 0.3704 0.2871 0.3421 0.3912 0.4496 0.4167 0.4965 0.5679 0.6526
400 0.1686 0.2008 0.2297 0.2640 0.2194 0.2615 0.2990 0.3436 0.3449 0.4110 0.4700 0.5401
800 0.1196 0.1425 0.1629 0.1872 0.1671 0.1992 0.2278 0.2617 0.2665 0.3175 0.3631 0.4173
1600 0.0844 0.1005 0.1150 0.1321 0.1203 0.1433 0.1639 0.1884 0.1920 0.2287 0.2616 0.3006

Table 3 Average length of the large sample confidence interval (19).

ψ 0.05 0.25 0.50
n 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99

Gaussian Innovations

50 0.3840 0.4576 0.5233 0.6013 0.3924 0.4676 0.5347 0.6145 0.4183 0.4984 0.5700 0.6551
100 0.2934 0.3497 0.3999 0.4595 0.3015 0.3593 0.4108 0.4721 0.3256 0.3879 0.4436 0.5098
200 0.2172 0.2588 0.2959 0.3401 0.2246 0.2676 0.3060 0.3516 0.2459 0.2931 0.3351 0.3852
400 0.1580 0.1883 0.2153 0.2474 0.1642 0.1957 0.2238 0.2571 0.1819 0.2167 0.2478 0.2848
800 0.1136 0.1354 0.1548 0.1779 0.1187 0.1415 0.1618 0.1859 0.1330 0.1585 0.1813 0.2083
1600 0.0812 0.0967 0.1106 0.1271 0.0851 0.1013 0.1159 0.1332 0.0962 0.1146 0.1311 0.1507

Laplace Innovations

50 0.3761 0.4481 0.5125 0.5889 0.3934 0.4688 0.5361 0.6161 0.4391 0.5232 0.5984 0.6876
100 0.2887 0.3440 0.3934 0.4521 0.3046 0.3629 0.4150 0.4770 0.3487 0.4154 0.4751 0.5460
200 0.2149 0.2560 0.2928 0.3365 0.2294 0.2733 0.3126 0.3592 0.2709 0.3228 0.3692 0.4243
400 0.1569 0.1869 0.2138 0.2456 0.1701 0.2027 0.2319 0.2664 0.2063 0.2459 0.2812 0.3231
800 0.1132 0.1349 0.1543 0.1773 0.1247 0.1486 0.1699 0.1952 0.1550 0.1847 0.2112 0.2427
1600 0.0812 0.0967 0.1106 0.1271 0.0905 0.1078 0.1233 0.1417 0.1150 0,1370 0,1567 0,1801

Student’s t Innovations

50 0.3779 0.4504 0.5150 0.5919 0.3915 0.4665 0.5335 0.6131 0.4338 0.5169 0.5912 0.6794
100 0.2893 0.3447 0.3942 0.4530 0.3038 0.3620 0.4140 0.4758 0.3456 0.4118 0.4710 0.5413
200 0.2145 0.2556 0.2923 0.3359 0.2287 0.2725 0.3116 0.3581 0.2692 0.3208 0.3668 0.4216
400 0.1566 0.1866 0.2134 0.2453 0.1703 0.2029 0.2320 0.2666 0.2070 0.2467 0.2821 0.3242
800 0.1131 0.1348 0.1542 0.1772 0.1254 0.1495 0.1709 0.1964 0.1577 0.1879 0.2149 0.2470
1600 0.0811 0.0966 0.1105 0.1269 0.0918 0.1094 0.1251 0.1438 0.1187 0.1415 0.1618 0.1859

Table 4 Average length of the large sample confidence interval (11).

About the average length of the large sample confidence intervals we observe that

the confidence interval (11) has a average length lower than the those of the confidence

interval (19). The differences in the average length tend to decrease when the sample

size increases.

7 Conclusions

In this paper we re-examine the problem of determining the asymptotic distribution of

the natural estimator of the Sharpe Ratio under the general setting of not-i.i.d.returns.

In detail we point out that the various and technical regularity conditions assuring the

consistency and the asymptotic normality of the GMM estimators recalled in Lo [12]

can be a lot simplified when the particular estimator under investigation is Ψ̂ . In detail

the regularity condition required for the validity of the large sample properties of Ψ̂

are the following: the stochastic process followed by the returns is strictly stationary,
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ergodic, with finite fourth moment and it satisfy the conditions (7). Moreover, we

explicitly give the expression of the asymptotic variance of
√
n(Ψ̂ − ψ). Starting from

that result, it is possible to define a large sample confidence interval for ψ provided that

a consistent estimator for the asymptotic variance is defined. As suggested by Lo [12],

the asymptotic variance could be consistently estimated stating from the Newey-West

estimators of the variance-covariance matrix of the random vector (X̄, S2). As shown

in Corollary 1, the asymptotic variance of
√
n(Ψ̂ − ψ) depends on infinite unknown

parameters. This can lead to several estimation problems which could be avoided re-

expressing the asymptotic variance in terms of a finite number of parameters once a

“good” parametric model for the process is introduced. In particular, we suppose that

the returns follow the GARCH(1,1) process with symmetric innovations and we obtain

the expression of the asymptotic variance of
√
n(Ψ̂ −ψ) in terms of the four parameter

α0, α1, β, and µ.

In a simulation study we evaluate the performances of the general large sample

confidence interval (11) and of the confidence interval derived under the GARCH as-

sumption. The simulations show that the confidence interval based on the Newey-West

estimator has a worst coverage accuracy than those based on the GARCH model. It is

worthwhile to note that the over-performance of the GARCH-based confidence interval

can be due to the fact that we really simulate a GARCH(1,1) process and, consequently,

the confidence interval (19) does not suffer from misspecification error. However, the

main object of the simulation study was to determine the minimum sample size as-

suring a good coverage accuracy of the large sample confidence intervals. Concerning

this aspect, we observe that the general confidence intervals require a huge sample

size in order to reach a good coverage accuracy: in the most cases 1600 observation

are not sufficient. A slightly different conclusion can be made about the confidence

interval based on GARCH assumption. The latter shows a very different behavior for

the different models for the innovations considered. In detail, when the innovations are

Gaussian, a sample size of 50 is generally sufficient to reach a good coverage accuracy

while a sample size of 1600 turn out to be insufficient in the most cases when the inno-

vations have the Student’s t distribution with 5 d.f. Concluding, the results obtained in

the simulation study reveal that, although the asymptotic theory of GMM estimators

allows to derive the expression of asymptotic confidence intervals for the Sharpe ratio

also when returns are not i.i.d., these results should be applied with caution because

the confidence intervals obtained could have an effective coverage very different from

the nominal one.
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