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POINT AND INTERVAL ESTIMATION FOR SOME FINANCIAL
PERFORMANCE MEASURES
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SUMMARY

We study the estimators of three financial performance measures: the Sharpe Ratio, the

Mean Difference Ratio and the Mean Absolute Deviation Ratio. The analysis is per-

formed under two sets of assumptions. Firstly, the case of independent and identically

normally distributed returns is considered. After that, relaxing the normality assump-

tion, the case of independent and identically distributed returns is investigated. In

both situations, we study the bias of the estimators and we propose their bias-corrected

version. The exact and the asymptotic distribution of the three estimators is derived

under the assumption of i.i.d.-normal returns. Concerning the case of i.i.d. returns,

the asymptotic distributions of the estimators are provided. The latter distributions are

used to define exact or large sample confidence intervals for the three indices. Finally,

we perform a simulation study in order to assess the efficiency of the bias corrected

estimator, the coverage accuracy and the length of the asymptotic confidence intervals.

Keywords: financial performance measure, Sharpe Ratio, Mean Difference Ra-
tio, Mean Absolute Deviation Ratio, concentration measures, Statistical analysis
of financial data

1. INTRODUCTION

Most of the known financial performance measures are defined as the ratio
between a reward measure and a risk measure. For example, the well-known
Sharpe Ratio, the Mean Difference Ratio∗ (MD Ratio) and the Mean Absolute
Deviation Ratio (MAD Ratio) have this structure. For all these three indices,
the reward measure is the expected excess return (beyond some risk-free rate);
while the risk measures differ among the indices. In particular, the risk is
measured by the standard deviation of returns in the Sharpe Ratio, by the Gini
mean difference of returns in the MD Ratio and by the mean absolute deviation
of returns in the MAD Ratio.

The MD Ratio and the MAD Ratio were proposed to overcome the criti-
cism against the use of the standard deviation as risk measure. These criticisms

∗Departimento dei metodi Quantitativi per le Scienze Economiche ed Aziendali- Uni-
versit degli studi di Milano-Bicocca- Piazza dell’Ateneo Nuovo, 1, 20126 MILANO (e-
mail:l.decapitani@unimib.it).

†Departimento dei metodi Quantitativi per le Scienze Economiche ed Aziendali- Universit
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∗In literature, the Mean Difference Ratio is sometimes referred to as the Gini Ratio (see,
e.g., Farinelli et al., 2008). In this paper we do not use this nomenclature in order to avoid
confusion with well known Gini Concentration Ratio.
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are motivated by the fact that the standard deviation is the natural risk mea-
sure only when the distribution of returns is Gaussian, a fact contradicted by
empirical evidence which shows that the distributions of financial returns are
characterized by fatter tails than the normal distribution and slight asymmetry.

In this paper we derive Confidence Intervals (CIs) for the three mentioned
indices and we study the bias of their estimators. In detail, the paper is orga-
nized as follows. In Section 2. the definitions of Sharpe Ratio, MD Ratio and
MAD Ratio are provided. In Section 3. we analyze the case of independent and
identically normally distributed returns (i.i.d.-normal returns) and in Section 4.
we consider the case of independent and identically distributed returns (i.i.d.
returns). In Section 5. we describe the design of a simulation study performed
in order to assess the coverage accuracy of the large sample CIs and in order
to study the bias of the estimators of the three indices. In Section 6. and 7.
we discuss the main results obtained in the simulations. Finally, Section 8. is
devoted to the conclusions.

In the following, we denote with FH , µH and σ2
H the distribution function,

the expectation and the variance of the random variable (r.v.) H , respectively.
The Gini’s mean difference of H is denoted by ∆H and the mean absolute
deviation ofH is denoted by δH . Finally, σHK stands for the covariance between
the r.v.s H and K.

2. THE SHARPE RATIO, THE MD RATIO AND THE MAD RATIO

Let X be r.v. describing the return of a risky financial activity and let Y be
the r.v. representing the return of the risk free financial activity. The r.v.
D = X − Y describes the excess return of the risky financial activity with
respect to the risk free financial activity. The Sharpe Ratio (see Sharpe, 1966
and 1994) is given by:

ψ∗ =
µD√
σ2
D

=
µX − µY√

σ2
X + σ2

Y + 2σXY

. (1)

As pointed out in Sharpe (1994), this measure can be interpreted as the ex-
pected excess return per unit of risk where the risk is measured by the standard
deviation of D.

Similarly, the MD Ratio (see Shalit and Yitzhaki, 1984) and the MAD Ratio
(see Konno and Yamazaki, 1991) are, respectively, given by

ψ∗
∆ =

µD

∆D
and ψ∗

δ =
µD

δD
.

The interpretation of these two performance measures are similar to that of ψ∗.
Even if the formula (1) is the definition of ψ proposed in Sharpe (1994), in

literature the Sharpe Ratio is usually defined as

ψ =
(µX − µY )

σX
.
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That because, theoretically, the risk free financial activity has a constant return.
Therefore, Y is a degenerate r.v. on µY and ψ∗ ≡ ψ. According to the most
part of the literature, here we adopt this last “simplified” definition of Sharpe
Ratio and we assume that the risk free rate µY is known.

A similar simplification can be made for the MD Ratio and the MAD Ratio.
In particular, it is easy to verify that, for all a ∈ R, ∆H+a = ∆H and δH+a = δH .
If Y is degenerate on µY , it follows that ∆D = ∆X and δD = δX . Consequently,
the simplified definitions of the MD Ratio and of the MAD Ratio are

ψ∆ =
(µX − µY )

∆X
and ψδ =

(µX − µY )

δX
.

It can be noted that, under the assumption that µY is a known constant,
the just introduced simplified ratios depend only on the features of X . Then,
to simplify the notation, in the following we denote the risk free rate by ξ and
we drop the subscript X in σ2

X , ∆X , δX , and FX .

3. THE CASE OF I.I.D.-NORMAL RETURNS

Let X be a normal r.v. with parameters µ and σ: X ∼ N (µ, σ2). In this case
the MD Ratio and the MAD Ratio can be expressed as a scale transformation
of the Sharpe Ratio. In particular, it is well-known (see Johnson, Kotz, and
Balakrishnan, 1995a) that

∆ =
2σ√
π

and δ = σ

√
2

π
. (2)

It then follows that

ψ∆ =

√
π

2
ψ and ψδ =

√
π

2
ψ . (3)

Let X1, X2, ..., Xn be an i.i.d. sample from the normal distribution with
parameters µ and σ2. In order to estimate the Sharpe Ratio it is natural to use
the plug-in estimator

Ψ̂ =
(X̄ − ξ)√

S2

where X̄ and S2 denote the sample mean and the unbiased sample variance,
respectively:

X̄ =
1

n

n∑

i=1

Xi ; S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2 .

By the relations (3), the r.v.

Ψ̂∗
∆ =

√
π

2
Ψ̂
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is an estimator of the MD Ratio. Similarly, the r.v.

Ψ̂∗
δ =

√
π

2
Ψ̂

is an estimator of the MAD Ratio.
The properties of Ψ̂∗

∆ and Ψ̂∗
δ can be easily deduced from those of Ψ̂. For

this reason, in the remainder of this section, we will mainly focus on Ψ̂.
In order to obtain the exact distribution of the estimator Ψ̂, it is useful to

observe that
√
nΨ̂ =

√
n X̄−µ

σ +
√
nψ√(

(n−1)S2

σ2

)
/(n− 1)

. (4)

From expression (4), it is clear that the r.v.
√
nΨ̂ is defined as the ratio of two

r.vs. The r.v. in the numerator is Gaussian with mean (
√
nψ) and standard

deviation 1. The r.v. in the denominator is the square root of a chi square r.v.
divided by its degrees of freedom. Further, X̄ and S2 are independent since
X is normally distributed (see Mood, Graybill, and Boes, 1974, theorem 8, p.
243). As a consequence, the r.v. in the numerator and that in the denominator

of (4) are independent and the distribution of
√
nΨ̂ is non-central t with (n−1)

degrees of freedom and non-centrality parameter
√
nψ (see Johnson, Kotz, and

Balakrishnan, 1995b, ch. 31, p. 508).

REMARK 1 It is worthwhile to note that the distribution of the estimator Ψ̂
depends on the parameter ψ and not on the particular values of µ and σ. In
detail, let X1 ∼ N (µ1, σ

2
1) and X2 ∼ N (µ2, σ

2
2). Suppose that

µ1 − ξ

σ1
=
µ2 − ξ

σ2
= ψ∗ .

In this case the distribution of the estimators Ψ̂ is non-central t with (n − 1)
d.f. and non-centrality parameter

√
nψ∗ whether we sample from X1 or X2. In

financial terms: the estimator of the Sharpe ratio has the same distribution for
all the financial activities belonging on the same capital market line†.

It is now possible to define an exact CI for ψ. In detail, let tν,p(a) be
the p-quantile of a non-central t distribution with ν degrees of freedom and
non-centrality parameter a. Let ψ̂ be an estimate of ψ. The extremes of the
(1−α)-CI for ψ, denoted by (ψ−;ψ+), are the following (see Casella and Berger
(2002), ch. 9, p. 432 and Johnson, Kotz, and Balakrishnan (1995b), ch. 31, p.
510):

ψ+ : t(n−1),α
2

(
√
nψ+) =

√
n · ψ̂

ψ− : t(n−1),1−α

2

(
√
nψ−) =

√
n · ψ̂ .

(5)

The last two equations cannot be analytically solved but their solutions can be
easily numerically computed‡.

†For a definition of capital market line, see Sharpe (1964).
‡The R or Matlab programs to numerically solve equations (5) are available upon request.
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The CI just introduced improves the one based on the asymptotic distribu-
tion of Ψ̂ obtained in Jobson and Korkie (1981). In detail, in Jobson and Korkie
(1981) it is shown that

√
n(Ψ̂− ψ)

a∼ N
(
0;

2 + ψ2

2

)
. (6)

Form expression (6) the following asymptotic (1 − α)-CI can be obtained:

Ψ̂− z1−α

2

√
2 + Ψ̂2

2n
; Ψ̂− z1−α

2

√
2 + Ψ̂2

2n


 . (7)

Another aspect to consider in the estimation of ψ is the bias of Ψ̂. In Miller
and Gher (1978) it is shown that the estimator Ψ̂ is biased and E(Ψ̂) = ψ · d,
where

d =

√
n− 1

2

Γ
(
n−2
2

)

Γ
(
n−1
2

) .

It is possible to prove that the bias factor d is greater than 1 for all n > 2.
Then, the estimator Ψ̂ tends to overestimate (underestimate) ψ when the later

is positive (negative). Further, the estimator Ψ̂u = d−1Ψ̂ is unbiased and it is

more efficient than Ψ̂.
In Jobson and Korkie (1981), the following, easy to calculate, approximation of
the bias factor d is given§:

d ≈ d1 =

(
1 +

3

4(n− 1)
+

25

32(n− 1)2

)
. (8)

A further approximation of the bias factor d can be derived as follows. First,
note that

d =

√
2(n− 1)

(n− 2)

(
Γ
(
n
2

)

Γ
(
n−1
2

)
)

. (9)

In Graham, Knuth, and Patashnik (1994) (see response to problems 9.60), it is
shown that

Γ
(
n
2

)

Γ
(
n−1
2

) =

√
n− 1

2

(
1− 1

4(n− 1)
+

1

32(n− 1)2
+O(n−3)

)
(10)

and, from expressions (9) and (10), it follows that

d ≈ d2 =
n− 1

n− 2

(
1− 1

4(n− 1)
+

1

32(n− 1)2

)
. (11)

§It is worthwhile to note that, in realty, the approximation of the bias factor d given in the
original article Jobson and Korkie (1981) contains, probably a typos. In particular the ap-
proximation given in Jobson and Korkie (1981) can be obtained from expression (8) replacing
(n− 1) with n: d ≈

(
1 + 3/(4n) + 25/(32n2)

)
. We also point out that this approximation is

sometimes recalled in the just cited uncorrect version (see, for example, Knight and Satchell,
2005). Finally, we remark that the uncorrect approximation is less accurate than the correct
one.
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It is easy to check by direct computation that the approximation (11) is more
accurate than approximation (8). Moreover, both d1 and d2 are greater than
1 for all n > 2 and, in more detail, 1 < d1 < d2 < d for all n > 2. As a
consequence, the approximately unbiased estimators Ψ̂u1 = d−1

1 Ψ̂ and Ψ̂u2 =

d−1
2 Ψ̂ are more efficient than Ψ̂. Naturally, Ψ̂u is more efficient than Ψ̂u2 which

is more efficient than Ψ̂u1.
Concerning the MD ratio and the MAD ratio, it is possible to observe that

an exact CI for ψ∆ and ψδ can be obtained by multiplying the extremes of the

CI for ψ by
√
π
2 and by

√
π
2 , respectively. In detail, the exact CI for ψδ is

(√
π

2
ψ−;

√
π

2
ψ+

)
, (12)

while the exact CI for ψ∆ is

(√
π

2
ψ−;

√
π

2
ψ+

)
. (13)

Analogously, large sample CIs for ψ∆ and ψδ can be obtained from the CI (7):


Ψ̂∗

δ − z1−α

2

√
π + Ψ̂∗2

δ

2n
; Ψ̂∗

δ + z1−α

2

√
π + Ψ̂∗2

δ

2n


 , (14)


Ψ̂∗

∆ − z1−α

2

√
π

4n
+

Ψ̂∗2
∆

2n
; Ψ̂∗

∆ + z1−α

2

√
π

4n
+

Ψ̂∗2
∆

2n


 . (15)

Finally, the estimators Ψ̂∗
∆u = d−1Ψ̂∗

∆ and Ψ̂∗
δu = d−1Ψ̂∗

δ are unbiased and

more efficient than Ψ̂∗
δ and Ψ̂∗

δ, respectively. Moreover, it is possible to introduce
approximately unbiased estimators for the MD ratio and the MAD ratio using
the approximations of the bias factor (8) and (11). Naturally, the usefulness
of the approximations d1 and d2 is low since, nowadays, computers manage to
calculate the values of the Γ function even for quite large values of its argument.

Also for the MD ratio and the MAD ratio we can observe that the features of
their estimators Ψ̂∗

∆ and Ψ̂∗
δ remains unchanged if we consider different financial

activities belonging on the same capital market line.
In Section 4. we show some additional asymptotic results concerning the

MD ratio and the MAD ratio under the assumption of i.i.d.-Normal returns.
The just cited results will be obtained as a special case of the more general
results derived under the assumption of i.i.d. returns.

4. THE CASE OF I.I.D. RETURNS

The estimators for the MD Ratio and the MAD Ratio proposed in the previous
section stem from the particular relations existing among the standard devia-
tion, the Gini Mean Difference and the Mean Absolute Deviation of a normal
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r.v.. In this section, we do not specify a particular parametric model for F .
Consequently, the estimators of ψ∆ and ψδ cannot be defined starting from the
estimators of the parameters of F . Then, we consider the following plug-in
estimators for ψδ and ψ∆:

Ψ̂∆ =
X̄ − ξ

∆̂
and Ψ̂δ =

X̄ − ξ

δ̂

where

∆̂ =
1

n(n− 1)

n∑

i=1

n∑

j=1

|Xi −Xj | and δ̂ =
1

n

n∑

i=1

|Xi − X̄| .

The exact distributions of Ψ̂, Ψ̂∆, and Ψ̂δ cannot be derived because F is
unknown. However, their limit distribution can be obtained. For that purpose,
it is useful to note that the MD Ratio and the MAD Ratio are strictly related
to two well-known concentration measures. In more detail, ψ∆ = (2G)−1 and

ψδ = (2P )
−1

where G = ∆/(2µ) and P = δ/(2µ) are the Gini concentration
ratio and the Pietra concentration ratio of the r.v. X−ξ. Consequently, several
results concerning the estimators of G and P can be used in the study of Ψ̂∆

and Ψ̂δ.

3.1 Limit distribution of Ψ̂ and CI for ψ

In order to derive the limit distribution of Ψ̂ the following well known result
is necessary (see Serfling (1980), p. 114 ):

THEOREM 1 Let X1, ..., Xn be an i.i.d. sample from F ad assume that
E[X4] <∞. It follows that

√
n

[
X̄ − µ
S2 − σ2

]
d→ NB

([
0
0

]
;

[
σ2 µ3

µ3 µ4 − σ4

])
(16)

where µk = E[(X − µ)k] and NB means “bivariate normal”.

Starting from expression (16), Lo (2002) derived the limit distribution of Ψ̂ by
the so called delta-method (see Serfling (1980), Theorem A in section 3.3, p.
122):

√
n(Ψ̂− ψ)

d→ N (0;V ) where V = 1− µ3

σ3
ψ +

(µ4

σ4
− 1
) ψ2

4
. (17)

The variance V can be consistently estimated by

V̂ = 1− µ̂3

S3
Ψ̂ +

(
µ̂4

S4
− 1

)
Ψ̂2

4

where µ̂3 and µ̂4 denote the third and the fourth sample central moment:

µ̂3 =
1

n

n∑

i=1

(Xi − X̄)3 ; µ̂4 =
1

n

n∑

i=1

(Xi − X̄)4 .
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Then, an asymptotic (1− α)-CI for ψ is

(
Ψ̂− z1−α

2

√
V̂ /n ; Ψ̂ + z1−α

2

√
V̂ /n

)
. (18)

3.2 Limit distribution of Ψ̂∆ and CI for ψ∆

In order to obtain the limit distribution of Ψ̂∆, we recall the following result,
due to Hoeffding (1948).

THEOREM 2 Let X1, ..., Xn be an i.i.d. sample from F ad assume that
E[X2] <∞. Then

√
n

[
X̄ − µ

∆̂−∆

]
d→ NB

([
0
0

]
;

[
σ2 γ
γ ζ2

])
(19)

where γ = 2(D − µ∆), ζ2 = 4(F −∆2) and

D =

∫ ∞

−∞

∫ ∞

−∞

x|x−y|dF (y)dF (x), F =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

|x−y||x−z|dF (z)dF (y)dF (x) .

In Hoeffding (1948) this result is used to derive the limit distribution of the
Gini Concentration Ratio. Here, starting from (19), the limit distribution of

Ψ̂∆ is obtained by the delta-method :

√
n(Ψ̂∆ − ψ∆)

d→ N (0;V∆) where V∆ =
σ2

∆2
− 2

γ

∆2
ψ∆ +

ζ2

∆2
ψ2
∆ . (20)

An unbiased and consistent estimator for ζ2 is given by (see Zenga, Polisicchio,
and Greselin, 2004):

ζ̂2 =
4n

(n− 2)(n− 3)

[
S2 + (n− 2)F̂ − (2n− 3)

2
∆̂2

]

where

F̂ =
1

n(n− 1)(n− 2)

n∑

i=1

n∑

j=1

n∑

l=1

|Xi −Xj ||Xi −Xl| −
2S2

n− 2
.

An unbiased and consistent estimator for γ is given by (see Johnson, Kotz, and
Balakrishnan, 1995b):

γ̂ = 2
[
D̂ − X̄∆̂

]
where D̂ =

1

n(n− 1)

n∑

i=1

n∑

j=1

Xi|Xi −Xj| .

So, the variance V∆ can be consistently estimated by

V̂∆ =
S2

∆̂2
− 2

γ̂

∆̂2
ψ∆ +

ζ̂2

∆̂2
Ψ̂2

∆
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and the following asymptotic (1− α)-CI for ψ∆ is obtained:
(
Ψ̂∆ − z1−α

2

√
V̂∆/n ; Ψ̂∆ + z1−α

2

√
V̂∆/n

)
. (21)

REMARK 2 Under the additional assumption that X is normally distributed,
the expression of the variance V∆ can be substantially simplified. In detail, in
Polisicchio and Zini (2000) it is shown that the covariance between the sam-
ple mean and the sample Gini mean difference is null when sampling from a
symmetric distribution. Further, in Zenga, Polisicchio, and Greselin (2004) the
expression of the functional F for the normal distribution is given:

F =
σ2

3π
(π + 6

√
3) . (22)

Thanks to expression (22) and remembering the relation between σ and ∆ re-
called in (2), the variance of V∆ results:

V∆ =
π

4
+

(
π + 6

√
3− 12

3

)
ψ2
∆ .

Consequently, under the assumption of i.i.d.-Normal returns the following asymp-
totic (1− α)-CI for ψ∆ can be introduced:


Ψ̂∆ − z1−α

2

√√√√ π

4n
+

(
π + 6

√
3− 12

3n

)

Ψ̂2

∆
; Ψ̂∆ + z1−α

2

√√√√ π

4n
+

(
π + 6

√
3− 12

3n

)

Ψ̂2

∆



 .

(23)

3.3 Limit distribution of Ψ̂δ and CI for ψδ

The limit distribution of Ψ̂δ can be obtained, once a time, by the delta-
method starting from the following result, due to Gastwirth (1974).

THEOREM 3 Let X1, ..., Xn be an i.i.d. sample from F ad assume that
E[X2] <∞. Then

√
n

[
X̄ − µ

δ̂2 − δ

]
d→ NB

([
0
0

]
;

[
σ2 κ
κ υ2

])

where

υ2 = 4p2σ2 + 4(1− 2p)

∫ µ

−∞
(x − µ)2dF (x) − δ2 ,

κ = 2pσ2 − 2

∫ µ

−∞
(x− µ)2dF (x) , and p = F (µ).

Gastwirth (1974) used this result to obtain the limit distribution of the Pietra

concentration ratio. In the same way we obtain the limit distribution of Ψ̂δ:

√
n(Ψ̂δ − δ)

d→ N (0;Vδ) where Vδ =
σ2

δ2
− 2

κ

δ2
ψδ +

υ2

δ2
ψ2
δ . (24)
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A consistent estimator of υ2 is given by υ̂2 =
(
4p̂2S2 + 4(1− 2p̂)µ̂−

2 − δ̂2
)
where

p̂ =
1

n

n∑

i=1

Ii , µ̂−
2 =

1

n

n∑

i=1

(Xi − X̄)2Ii and Ii =

{
1 , Xi < X̄
0 , otherwise

.

A consistent estimator of κ is given by κ̂ =
(
2p̂S2 − 2µ̂−

2

)
.

Consequently,

V̂δ =
S2

δ̂2
− 2

κ̂

δ̂2
Ψ̂δ +

υ̂2

δ̂2
Ψ̂2

δ

is consistent for Vδ and

(
Ψ̂δ − z1−α

2

√
V̂δ/n ; Ψ̂δ + z1−α

2

√
V̂δ/n

)
(25)

is an asymptotic (1− α)-CI for ψδ.

REMARK 3 Under the further assumption of symmetry of F , it follows that
p = 1/2 and

∫ µ

−∞(x − µ)2dF (x) = σ2/2. Then, if F is symmetric, κ = 0

and υ2 = σ2 − δ2. In this case Vδ = σ2/δ2 + [(σ2 − δ2)/δ2]ψ2
δ . Moreover,

if it is assumed that F is Gaussian, thanks to expressions (2), we obtain that
Vδ = π/2 + [(π − 2)/2]ψ2

δ . As a consequence, under the assumption of i.i.d.-
Normal returns the following asymptotic (1−α)-CI can be used in place of that
provided in Section 3.:


Ψ̂δ − z1−α

2

√
π + (π − 2)Ψ̂2

δ

2n
; Ψ̂δ + z1−α

2

√
π + (π − 2)Ψ̂2

δ

2n


 . (26)

REMARK 4 Note that it is necessary to assume the existence of the fourth
moment of X in order to derive the limit distribution of Ψ̂ while it is only
necessary to assume the existence of the second moment of X to obtain the
limit distributions of Ψ̂∆ and Ψ̂δ. This observation is important since empirical
evidence suggests that the distribution of the returns of many financial activities
may have infinite fourth moment (especially when high frequency returns are
considered as shown in Genay et al., 2001). In these cases the CIs (18) cannot
be used. This is a potential limitation of ψ.

REMARK 5 An observation analogous to that of Remark 1 can be made also
in the context of the i.i.d. returns. In detail, if two financial activities have
the same Sharpe Ratio (MD Ratio or MAD Ratio) and the distributions of their
returns belong to the same location-scale family, then the limit distribution of
the estimators of the two Sharpe Ratio (MD Ratio or MAD Ratio) is the same.
To be more clear, let X1 and X2 be the r.v.s describing the returns of the two
financial activities and denote all the objects relating to Xi by the subscript i
(e.g., ψi is the Sharpe Ratio of Xi, Fi is the functional F associated to the

distribution of Xi, and so on). Let X2
d
= kX1 + h so that the distributions F1
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and F2 belong to the same location-scale family. It can be easily shown that, if
h = (1− k)ξ then ψ1 = ψ2 and V1 = V2. Then, asymptotically, Ψ̂1 and Ψ̂2 have
the same distribution. Analogously, it can be shown that D2 = k2(D1 − µ1∆1)
and F2 = k2F1. As a consequence, if h = (1 − k)ξ then ψ∆1 = ψ∆2 and

V∆1 = V∆2 so that Ψ̂∆1 and Ψ̂∆2 have the same limit distribution. A similar
result can be obtained also for the MAD Ratio since υ22 = k2υ21 and κ2 = k2κ1.

3.4 Bias of the estimators Ψ̂, Ψ̂∆, and Ψ̂δ

The estimators Ψ̂, Ψ̂∆, and Ψ̂δ are biased. Unlike the case of i.i.d.-Normal
returns, in this context is not possible to determine exactly their bias since F
is unknown. Then, we approximate the expectation of Ψ̂, Ψ̂∆, and Ψ̂δ recalling
the following Taylor series approximation of the function f(x, y) = x/y around
the point (a, b):

x

y
≈ a

b
+

1

b
(x − a) +

a

b2
(y − b)− 1

b2
(x− a)(y − b) +

a

b3
(y − b)2 . (27)

Concerning the case of the estimator Ψ̂, let (a, b) = (µ− ξ, σ) and let X̄ and S
replace x and y, respectively, in expression (27). Taking expectation on both

side of the resulting formula, we obtain an approximation of E[Ψ̂]:

E

[
X̄ − ξ

S

]
≈ E

[

ψ +
X̄ − µ

σ
+ ψ

(
S − σ

σ

)
− (X̄ − µ)(S − σ)

σ2
+ ψ

(
S − σ

σ

)2
]

= ψ

(
2− E[S]

σ

)
− E[(X̄ − µ)(S − σ)]

σ2
. (28)

The above expression depends on the unknown expectations E[S] and E[(X̄ −
µ)(S − σ)] which can be approximated using, once again, a Taylor series ex-
pansion. In detail, an approximation of E[S] can be derived starting from the
following Taylor approximation:

√
y ≈

√
b+

1

2
√
b
(y − b)− 1

8
√
b3
(y − b)2 . (29)

Let b = σ2 and let S2 replace y in (29). Taking expectation on both side of the
resulting expression and remembering that (see Johnson, Kotz, and Balakrish-
nan, 1995b)

E[(S2 − σ2)2] =
1

n

(
µ4 −

n− 3

n− 1
σ4

)
,

we obtain

E[S] ≈ σ − 1

8σ3
E
[(
S2 − σ2

)2]
= σ

[
1− 1

8n

(µ4

σ4
− 3
)
− 1

4(n− 1)

]
. (30)

In order to approximate the value of E[(X̄ − µ)(S − σ)], we first observe that

E[(X̄ − µ)(S − σ)] = E[X̄S]− µE[S] = σX̄S .
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Further, we recall the following Taylor series approximation:

x
√
y ≈ a

√
b+

√
b(x− a) +

a

2
√
b
(y − b) +

1

2
√
b
(x− a)(y − b)− a

8
√
b3

(y − b)2 . (31)

Let (a, b) = (µ, σ2) and let X̄ and S2 replace x and y, respectively, in (31).
After taking expectation on both sides, the following expression is obtained:

E[X̄S] ≈ µ3

2nσ
+ µ

(
σ − 1

8σ3
E
[(
S2 − σ2

)2]
)

.

Consequently

σX̄S ≈ µ3

2nσ
. (32)

Finally, plugging (30) and (32) into (28), we obtain

E
[
Ψ̂
]
≈ ψ

[
1 +

1

4(n− 1)
+

1

8n

(µ4

σ4
− 3
)]

− 1

2n

µ3

σ3
. (33)

In a similar way, the following approximations are derived:

E[Ψ̂∆] ≈ ψ∆

(
1 +

ζ2

n∆2

)
− γ

n∆2
; E[Ψ̂δ] ≈ ψδ

(
1 +

υ2

nδ2

)
− κ

nδ2
. (34)

From (33) and (34) it turn out that the estimators

Ψ̂′
u =

(
Ψ̂ +

1

2n

µ̂3

S3

)[
1 +

1

4(n− 1)
+

1

8n

(
µ̂4

S4
− 3

)]−1

, (35)

Ψ̂∆u =

(
Ψ̂∆ +

γ̂

n∆̂2

)(
1 +

ζ̂2

n∆̂2

)−1

, and Ψ̂δu =

(
Ψ̂δ +

κ̂

nδ̂2

)(
1 +

υ̂2

nδ̂2

)−1

(36)

are approximatively unbiased for ψ, ψ∆, and ψδ, respectively. However, the
variability of the just introduced bias-corrected estimators could be much higher
than the variability of uncorrected ones, because of the variability of the esti-
mators S, µ̂3, µ̂4, γ̂, ∆̂, ζ̂2, κ̂, δ̂2, and υ̂2. So, at this time, it is not possible to
assert that the approximately bias-corrected estimators are more/less efficient
than the plug-in estimators previously introduced.

2. DESIGN OF THE SIMULATION STUDY

In order to assess the coverage accuracy and the length of he large sample
CIs and in order to compare the efficiency of the approximatively unbiased
estimators with that of the plug- in estimators, we built a wide simulation
study. Several scenarios are considered both concerning the case of i.i.d.-Normal
returns and the case of i.i.d. returns. In each scenario, the coverage accuracy
of the large sample CIs is evaluated estimating the actual coverage of the CI by
the proportion of simulated CIs containing the true value of the ratio. Further,
the simulated Average Length (AL) of the different CIs is computed. Finally, in

12



order to compare the efficiency of the approximately bias-corrected estimators
and the uncorrected ones, we calculate in each scenario the simulated MSE and
the simulated bias of the two kind of estimators.

The differences among the scenarios considered concerns: the distribution
type of the r.v. X (12 different distributions), the standard deviation σ of
the r.v. X (3 different values), the value of ψ (3 different values), the sample
size (4 different values), the nominal coverage (4 different values). Globally,
(12× 3× 3× 4× 4) = 1728 scenarios are investigated.

In detail, for each of the different distributions considered, the design of the
simulation study is described below:

• sample sizes: 50, 100, 200, 400;

• number of replications: 104;

• nominal coverages of the large sample CIs: 0.9, 0.95, 0.975, 0.99;

• value of the (daily) risk free rate: 0.000068 (which correspond to an annual
rate of return of about 2.5%);

• values of the standard deviation of X : σ = 0.01, σ = 0.05, σ = 0.1. The
different values of σ are chosen coherently with the values of the standard
deviation of the daily returns of the equities of the S&P 100 in the period
2005-2007.

• values of the Sharpe Ratio: ψ1 = 0.05, ψ2 = 0.25, ψ3 = 0.5. In practice,
for each value of σ, three different value of µ are considered. The first
value of µ gives rise to a Sharpe Ratio of 0.05, the second gives rise to
ψ = 0.25, finally, the third gives rise to ψ = 0.5. As for the values of
σ, the different values of ψ are chosen on the base of the daily Sharpe
Ratios of the equities in the S&P 100 calculated from the returns of the
period 2005-2007. The values of ψδ and ψ∆ change among the scenarios
coherently with the particular value of (µ, σ) and the distribution shape.

As regards the distributions, under the hypotheses of i.i.d.-Normal returns, triv-
ially, we evaluate the properties of the large sample CIs introduced in Section
3. and of the CIs (26) and (23), sampling from a normal distribution. Under
the assumption of i.i.d. returns we investigate the features of the CIs (18), (21),
and (25) and the performances of the estimators (35) and (36) sampling from
the following distributions: Normal (N), Laplace (L), Student’s t with 5 (t5)
and 3 (t3) degrees of freedom, Skew Normal with low and high degree of pos-
itive and negative asymmetry (SNL±, SNH±), Skew t with 5 d.f. and with
low and high degree of positive and negative asymmetry (StL±, StH±). The
normal distribution is taken into account also under the setting of i.i.d. returns
because it is a useful basis for the comment of the results obtained sampling
from the others distributions. The Laplace distribution and the Student’s t
with 5 degrees of freedom are taken into account because they have fatter tails
than the normal. In detail, the Laplace distribution has higher kurtosis than
the normal distribution but it possess all the moments. On the contrary, the

13



Distribution γ1 γ2 Distribution γ1 γ2
Normal 0 0 Laplace 0 3

t with 3 d.f. 0 ∞ t with 5 d.f. 0 6
Skew N. (High as.) ±0.6670 0.5098 Skew N. (Low as.) ±0.4538 0.3051
Skew t (High as.) ±1.0758 8.9208 Skew t (Low as.) ±0.5527 6.8020

TABLE 1: Values of γ1 and γ2 for the 12 distributions considered. The values
relating the Skew t distribution are obtained by numerical integration.

Student’s t distribution with 5 d.f. has fatter tails than the normal distribution
and it does not possess moments of order higher than 4. The Student’s t with
3 degrees of freedom is investigated in order to evaluate the impact of the non-
existence of the fourth moments on the properties of the large sample CI for the
Sharpe ratio (see Remark 4). Further, we chose the Skew Normal distribution
(see Azzalini and Capitanio, 1999) in order to evaluate the impact of the asym-
metry on the performances of the large sample CIs. Four different parameters
setting of the Skew Normal distribution are taken into consideration: the first
(third) setting is characterized by a low degrees of positive (negative) asymme-
try (shape parameter equal to ±2), while the second (fourth) is characterized
by an higher degrees of positive (negative) asymmetry (shape parameter equal
to ±3). Finally we consider the Skew t distribution with 5 d.f. (see Azzalini
and Capitanio, 2003) because this last distribution shows, at the same time, fat
tails (only the moments up to order 4 exist) and asymmetry. As for the Skew
Normal distribution, we investigate four different parameters setting: the first
(third) is associated to a low degrees of positive (negative) asymmetry (shape
parameter equal to ±0.5), the second (fourth) to an higher degrees of positive
(negative) asymmetry (shape parameter equal to ±1). In Table 1 we give the
values of the third standardized moment γ1 (which is usually interpreted as an
index of asymmetry) and the excess kurtosis γ2 (which is commonly used in or-
der to measure the kurtosis and it is defined as the fourth standardized moment
minus 3) associated to each of the distribution considered.

6. RESULTS: I.I.D.-NORMAL RETURNS

In the following we do not give all the detailed results obtained in the simu-
lation study because they require excessive space. Only the more interesting
results are given and discussed. However, the detailed results are available
upon request. We discuss first the results obtained under the assumption of
i.i.d.-Normal returns and later those obtained under the i.i.d. assumption.

First, we analyze the coverage accuracy of the large sample CIs (7), (14),
(15), (26), and (23). As explained in Remark 1, the features of the estimators

Ψ̂, Ψ̂∗
δ, Ψ̂

∗
∆ does not depends on the value of σ but only on the the sample size n

and on the true values of ψ, ψδ, and ψ∆, respectively. Simulations shows that an
analogous result holds also for the estimators Ψ̂δ and Ψ̂∆. Then, in Table 2 we
give the averages over the different values of σ of the simulated coverages. The
simulated coverage of the exact CIs are also given in order to take into account
of the variability due to the simulation. The main result is that the actual
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ψ1 ψ2 ψ3

100(1− α)% 90 95 97.5 99 90 95 97.5 99 90 95 97.5 99
CIs n=50

(5),(12),(13) 89.99 94.97 97.49 99.00 89.99 95.03 97.53 99.02 90.01 95.00 97.49 99.03
(7),(14),(15) 89.82 94.84 97.42 98.97 89.81 94.91 97.46 98.97 89.87 94.90 97.43 99.01

(26) 89.64 94.79 97.34 98.95 89.64 94.83 97.42 98.96 89.69 94.88 97.40 99.00
(23) 89.99 94.96 97.47 99.00 89.94 95.02 97.54 99.03 89.96 95.01 97.51 99.05

n=100
(5),(12),(13) 89.93 94.97 97.55 99.06 89.89 94.96 97.55 99.03 89.79 94.95 97.52 99.05
(7),(14),(15) 89.85 94.93 97.51 99.04 89.80 94.91 97.51 99.01 89.75 94.90 97.50 99.02

(26) 89.75 94.84 97.50 99.03 89.70 94.86 97.44 99.01 89.73 94.91 97.42 99.03
(23) 89.91 94.96 97.58 99.07 89.90 94.97 97.53 99.03 89.82 94.99 97.54 99.06

n=200
(5),(12),(13) 89.91 95.01 97.56 98.98 89.87 95.04 97.55 99.00 89.80 95.05 97.57 99.01
(7),(14),(15) 89.85 94.97 97.54 98.97 89.83 95.02 97.53 98.99 89.78 95.02 97.56 99.00

(26) 89.86 94.92 97.54 98.95 89.83 95.04 97.54 98.98 89.78 95.05 97.57 99.00
(23) 89.92 95.02 97.56 98.97 89.88 95.06 97.57 98.99 89.84 95.05 97.58 99.00

n=400
(5),(12),(13) 89.88 95.05 97.59 99.04 89.93 95.05 97.56 99.02 89.96 95.05 97.51 99.05
(7),(14),(15) 89.87 95.03 97.58 99.03 89.92 95.04 97.55 99.02 89.94 95.04 97.50 99.06

(26) 89.86 95.00 97.59 99.01 89.91 95.01 97.55 99.03 89.93 94.98 97.49 99.05
(23) 89.88 95.05 97.59 99.03 89.93 95.03 97.55 99.04 89.97 95.01 97.53 99.05

TABLE 2: Simulated coverage of the exact and large sample CIs for the Sharpe
Ratio, MAD Ratio and MD Ratio under the assumption of i.i.d.-Normal returns.

coverage of all the large sample CIs is quite similar to the simulated coverage
of the exact CI in all the scenarios considered. Then, a relatively small sample
size of 50 is sufficient in order to assure a good coverage accuracy for the CIs
(7), (14), (15), (26), and (23).

Concerning the length of the CIs, the simulated average lengths are given
in Table 3. Also in this case, the value of σ does not significantly influence
the results (as suggested by the Remark 1) and, consequently, in Table 3, the
averages over the different values of σ are given. In detail, the first part of
Table 3 contains only the simulated average length of the exact CI for the
Sharpe Ratio since the average lengths of the exact CIs for the MAD Ratio and
for the MD Ratio can be obtained multiplying these latter values by

√
π/2 and√

π/2, respectively. The length of the large sample CIs is evaluated calculating
the percentage relative variation of the lengths of the large sample CIs with
respect to the length of the exact ones:

100

(
average length of the exact CI− average length of the large sample CI

average length of the exact CI

)
% .

The percentage relative variation of the CIs (7), (14), and (15) is the same
because they differ only in scale. The simulations show that the large sample CIs
and the exact ones have quite similar average length. Indeed, all the percentage
relative variations are, in absolute value, lower than 1% and, in the most cases,
they are lower than 0.1%. Concluding, under the assumption of i.i.d.-normal
returns, it is possible to assert that a sample size of 50 is sufficient in order
to assure that all the large sample CIs investigated approximate very well the
exact CIs.
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ψ1 ψ2 ψ3

100(1− α)% 90 95 97.5 99 90 95 97.5 99 90 95 97.5 99
n Exact CI for the Sharpe Ratio: (5)
50 0.46800 0.55766 0.63773 0.73289 0.47523 0.56628 0.64759 0.74422 0.49711 0.59234 0.67740 0.77848
100 0.33001 0.39325 0.44971 0.51681 0.33503 0.39920 0.45652 0.52463 0.35018 0.41724 0.47716 0.54835
200 0.23306 0.27770 0.31757 0.36497 0.23658 0.28186 0.32238 0.37047 0.24717 0.29452 0.33685 0.38709
400 0.16469 0.19624 0.22442 0.25790 0.16715 0.19918 0.22778 0.26175 0.17460 0.20809 0.23794 0.27343
n Large sample CIs based on the asymptotic distribution (6): (7)-(14)-(15)
50 0.0088% 0.0088% 0.0089% 0.0090% 0.0309% 0.0310% 0.0312% 0.0316% 0.0920% 0.0921% 0.0925% 0.0929%
100 -0.0001% 0.0027% 0.0026% 0.0025% 0.0176% 0.0134% 0.0133 % 0.0134% 0.0482% 0.0440% 0.0437% 0.0437%
200 -0.0001% -0.0014% -0.0037% 0.0002% 0.0092% -0.0032% 0.0107% 0.0069 % 0.0163% 0.0144% 0.0260% 0.0227%
400 0.0000% -0.0002% -0.0007% -0.0014% 0.0019% 0.0054% 0.0065% -0.0016% -0.0013% 0.0191% 0.0074% 0.0037%
n Large sample CI for the MAD Ratio: (26)
50 -0.0826% -0.0826% -0.0826% -0.0824% -0.2903% -0.2902% -0.2900% -0.2895% -0.8617% -0.8617% -0.8613% -0.8609%
100 -0.0472% -0.0444% -0.0445% -0.0446 % -0.2461% -0.2503% -0.2504 % -0.2503% -0.8143 % -0.8185% -0.8188% -0.8188%
200 -0.0277 % -0.0290% -0.0312% -0.0274% -0.2301% -0.2426% -0.2286% -0.2325% -0.8087% -0.8105% -0.7988% -0.8022%
400 -0.0179% -0.0180% -0.0185% -0.0193% -0.2243% -0.2208% -0.2197% -0.2279% -0.8042% -0.7837% -0.7955% -0.7992%
n Large sample CI for the MD Ratio: (23)
50 0.0011% 0.0011% 0.0011% 0.0012% 0.0039% 0.0040% 0.0043% 0.0047% 0.0125% 0.0125% 0.0129% 0.0133%
100 -0.0057% -0.0029% -0.0030% -0.0031% -0.0137% -0.0178% -0.0179% -0.0179% -0.0543% -0.0584% -0.0587% -0.0587%
200 -0.0038% -0.0052% -0.0075% -0.0037% -0.0239% -0.0364% -0.0224% -0.0263% -0.0985% -0.1004% -0.0887 % -0.0921%
400 -0.0026% -0.0028% -0.0033% -0.0041% -0.0317% -0.0283% -0.0272% -0.0353% -0.1212% -0.1008% -0.1125% -0.1169%

TABLE 3: Simulated average length of the exact CIs for the Sharpe Ratio and percentage relative variation of the average
length of the large sample CIs with respect to the exact ones.
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7. RESULTS: I.I.D.-NORMAL RETURNS

7.1 Coverage accuracy of the large sample CIs

First we observe that, as suggested by Remark 5, the features of the large
sample CIs (18), (21), and (25) are not significantly affected by the value of
σ. Then, in the following, we discuss and give the averaged coverages over the
different value of σ. The simulated actual coverages of the CI for the Sharpe
Ratio, the MAD Ratio , and the MD Ratio are given in Table 4, Table 5, and
Table 6, respectively. The results highlight the impact of the asymmetry and
fat tails on the actual coverage of the large sample CIs. In detail, as suggested
by the results obtained sampling from the Student’s t, the fatter the tails, the
worst is the coverage accuracy. About the effect of the asymmetry, simulations
show that the coverage accuracy improves when sampling from a distribution
with positive γ1. On the contrary, the coverage accuracy worsens when sampling
form a distribution with negative γ1. In the scenarios analyzed, it seems that
the presence of fat tail is the element that have a greater impact on the coverage
accuracy. This fact is suggested mainly by the results obtained sampling form
the Skew Normal Distribution. Indeed, in these cases, we observe that the
simulated coverage of the large sample CIs is quite similar to its nominal value
also when n = 50 (a similar results is observed when sampling from the Normal
distribution).

From Table 4-6, it turn out that the CI for the MAD Ratio and the MD Ratio
are more accurate than the CI for the Sharpe Ratio. In details, the coverage
accuracy of the CIs (25) and (21) is more robust than the coverage accuracy of
the CI (18) with respect to: a) the presence of asymmetry, b) the presence of
fat tails, c) the true value of the performance index.

As regard to the impact of the true value of the index on the actual coverage,
we observe that, generally, the greater the true value of the performance index,
the worst the coverage accuracy. However, when ψ, ψδ, and ψ∆ increase, the
variations in the simulated coverage of the CI (25), and (21) are relatively
small while the changes in the simulated coverages of the CI (18) are greater.
This effect is more evident when sampling from the Laplace and Student’s t
distributions suggesting that the changes int the simulated coverages are grater
when the tail are fatter. In general, the CI for the MAD Ratio seem to have the
better coverage accuracy (even if the differences with the CI for the MD Ratio
are small).

In order to determine the minimum sample size that assure a sufficient pre-
cision of the large sample CIs we introduce the following criterion. It is well
known that the t distribution approaches the Normal distribution when the d.f.
increases. Further, it is common to retain that the t distribution with 30 de-
grees of freedom is very well approximated by the Normal distribution. As a
consequence, when sampling form the Normal distribution, the large sample CI

(X̄ − z1−α/2

√
S2/n; X̄ + z1−α/2

√
S2/n) (37)

is considered accurate if n ≥ 30. The actual coverages of the just given CI
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Sharpe Ratio ψ1 ψ2 ψ3

100(1− α)% 90 95 97.5 99 90 95 97.5 99 90 95 97.5 99
dist. n
N 50 89.73 94.74 97.28 98.86 89.56 94.63 97.27 98.82 89.18 94.35 97.03 98.74

100 89.81 94.89 97.49 99.03 89.67 94.80 97.39 98.99 89.42 94.62 97.24 98.92
200 89.86 94.97 97.51 98.95 89.78 94.96 97.50 98.97 89.64 94.81 97.47 98.95
400 89.87 95.03 97.58 99.01 89.91 95.00 97.53 99.01 89.80 94.99 97.45 99.04

L 50 88.02 93.33 96.13 97.97 87.52 92.92 95.89 97.81 86.43 92.04 95.29 97.55
100 88.83 94.06 96.77 98.44 88.70 93.84 96.57 98.39 87.95 93.33 96.24 98.18
200 89.50 94.49 97.15 98.81 89.30 94.37 97.05 98.69 88.96 94.11 96.79 98.51
400 89.69 94.78 97.39 98.86 89.45 94.73 97.35 98.88 89.25 94.48 97.16 98.79

t5 50 88.28 93.52 96.40 98.27 88.00 93.32 96.27 98.21 86.75 92.46 95.73 97.85
100 88.78 94.08 96.81 98.51 88.47 93.85 96.66 98.48 87.71 93.21 96.18 98.17
200 89.37 94.53 97.13 98.71 89.11 94.25 97.06 98.68 88.52 93.73 96.66 98.49
400 89.51 94.58 97.22 98.77 89.30 94.49 97.13 98.78 88.83 94.11 96.88 98.63

t3 50 86.08 91.58 94.71 97.11 83.96 90.20 93.92 96.58 79.32 86.30 90.88 94.46
100 86.79 92.26 95.32 97.62 84.75 90.85 94.47 97.04 79.77 86.72 91.06 94.54
200 87.99 93.20 96.07 98.07 85.62 91.52 94.83 97.27 80.54 87.35 91.64 95.07
400 88.31 93.47 96.26 98.18 85.21 91.38 94.73 97.25 80.51 87.28 91.51 95.03

SNL+ 50 89.86 94.76 97.37 98.90 89.86 94.92 97.50 98.92 89.86 94.82 97.37 98.86
100 89.98 95.17 97.56 98.99 90.17 95.15 97.56 98.97 90.04 95.01 97.47 98.91
200 89.97 94.93 97.49 98.92 90.05 95.05 97.50 98.93 89.93 95.03 97.58 98.99
400 89.66 94.92 97.42 98.98 89.74 94.92 97.45 98.95 89.80 94.86 97.45 98.95

SNH+ 50 89.52 94.56 97.30 98.84 89.77 94.86 97.52 99.07 89.75 95.01 97.56 99.08
100 90.08 94.97 97.56 98.95 90.20 95.26 97.65 99.03 90.38 95.25 97.56 99.10
200 89.98 94.90 97.55 98.97 89.96 95.04 97.50 99.00 90.08 94.90 97.52 98.99
400 90.08 94.88 97.38 99.01 89.97 94.92 97.41 99.00 89.96 94.85 97.45 98.98

StL+ 50 88.41 93.64 96.42 98.31 88.65 93.88 96.62 98.42 87.70 93.30 96.19 98.19
100 89.19 94.21 96.84 98.61 89.45 94.43 97.01 98.68 88.41 93.84 96.57 98.47
200 89.43 94.55 97.04 98.76 89.52 94.67 97.16 98.80 88.76 94.19 96.93 98.67
400 89.62 94.76 97.35 98.80 89.68 94.65 97.29 98.84 89.06 94.24 96.96 98.69

StH+ 50 88.17 93.68 96.38 98.28 89.01 94.16 96.85 98.62 88.12 93.62 96.56 98.44
100 89.34 94.26 96.92 98.54 89.75 94.67 97.18 98.77 88.76 93.87 96.66 98.43
200 89.58 94.58 97.12 98.69 89.75 94.85 97.39 98.86 88.85 94.22 96.99 98.71
400 89.80 94.70 97.38 98.90 89.82 94.74 97.35 98.90 89.11 94.34 96.99 98.69

SNL- 50 89.79 94.81 97.23 98.76 89.22 94.52 96.91 98.61 88.49 94.07 96.63 98.39
100 89.76 94.89 97.40 98.96 89.52 94.58 97.29 98.89 89.08 94.24 97.05 98.75
200 89.98 95.07 97.39 98.96 89.78 94.94 97.35 98.93 89.53 94.80 97.33 98.89
400 90.07 95.07 97.60 99.06 89.98 95.04 97.61 99.08 89.81 94.95 97.65 99.03

SNH- 50 89.41 94.70 97.17 98.83 88.78 94.19 96.93 98.70 88.23 93.52 96.47 98.42
100 89.60 94.86 97.48 98.92 89.48 94.61 97.30 98.79 89.01 94.33 97.01 98.72
200 90.15 95.12 97.47 99.07 89.96 94.99 97.38 98.97 89.64 94.78 97.24 98.82
400 90.19 95.01 97.49 99.05 89.93 94.92 97.50 98.98 89.72 94.76 97.43 98.99

StL- 50 87.86 93.06 96.00 98.05 86.80 92.43 95.50 97.78 85.44 91.21 94.86 97.32
100 89.04 94.01 96.73 98.47 88.20 93.57 96.31 98.33 87.06 92.57 95.72 97.98
200 89.14 94.35 96.93 98.50 88.67 93.99 96.62 98.41 87.68 93.26 96.30 98.19
400 89.20 94.38 97.00 98.71 88.72 94.21 96.84 98.62 88.25 93.63 96.57 98.42

StH- 50 87.90 93.27 96.28 98.15 86.56 92.35 95.53 97.70 84.87 90.97 94.43 97.07
100 88.55 93.62 96.58 98.35 87.50 93.08 96.11 98.04 86.18 91.98 95.38 97.61
200 89.19 94.32 96.94 98.71 88.32 93.77 96.56 98.39 87.31 92.92 96.04 98.11
400 89.48 94.71 97.16 98.88 88.82 94.18 97.02 98.72 88.21 93.64 96.58 98.38

TABLE 4: Averages over the different values of σ of the simulated coverages of
the CIs for the Sharpe Ratio.
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MAD Ratio ψ1 ψ2 ψ3

100(1− α)% 90 95 97.5 99 90 95 97.5 99 90 95 97.5 99
dist. n
N 50 89.80 94.81 97.35 98.90 89.56 94.65 97.29 98.85 89.21 94.46 97.09 98.77

100 89.83 94.92 97.48 99.04 89.67 94.78 97.39 98.99 89.54 94.65 97.27 98.93
200 89.88 94.99 97.54 98.96 89.81 95.01 97.50 98.98 89.77 94.97 97.47 98.98
400 89.87 95.02 97.58 99.01 89.91 95.01 97.51 99.00 89.90 94.90 97.46 99.03

L 50 87.31 92.69 95.59 97.57 86.89 92.35 95.33 97.46 86.76 92.31 95.34 97.53
100 88.45 93.70 96.46 98.23 88.50 93.60 96.36 98.17 88.42 93.55 96.31 98.17
200 89.25 94.31 96.96 98.67 89.20 94.15 96.92 98.59 89.15 94.16 96.80 98.55
400 89.58 94.67 97.29 98.82 89.44 94.61 97.24 98.81 89.38 94.55 97.21 98.83

t5 50 88.36 93.61 96.43 98.32 88.16 93.49 96.34 98.20 87.93 93.36 96.29 98.21
100 88.95 94.25 96.95 98.58 88.85 94.05 96.81 98.57 88.68 93.96 96.74 98.52
200 89.51 94.64 97.23 98.77 89.38 94.51 97.25 98.79 89.30 94.41 97.09 98.76
400 89.63 94.64 97.27 98.84 89.59 94.67 97.24 98.84 89.54 94.58 97.27 98.81

t3 50 86.20 91.79 94.66 96.96 85.81 91.40 94.60 96.88 86.14 91.88 95.16 97.41
100 87.52 92.86 95.81 97.95 87.08 92.70 95.69 97.75 87.03 92.77 95.92 97.89
200 88.78 93.94 96.66 98.50 88.55 93.69 96.54 98.38 88.50 93.54 96.54 98.38
400 89.30 94.35 96.95 98.66 89.09 94.29 96.88 98.51 89.01 94.14 96.76 98.51

SNL+ 50 89.39 94.42 97.11 98.69 89.29 94.52 97.13 98.69 89.23 94.26 96.86 98.57
100 89.84 94.89 97.39 98.87 89.95 94.90 97.34 98.84 89.74 94.74 97.26 98.75
200 89.97 94.85 97.37 98.84 89.98 94.91 97.42 98.88 89.85 94.85 97.47 98.94
400 89.58 94.81 97.36 98.91 89.70 94.90 97.34 98.92 89.75 94.80 97.35 98.91

SNH+ 50 88.84 94.03 96.76 98.53 89.16 94.28 96.98 98.70 89.08 94.35 96.95 98.65
100 89.85 94.71 97.28 98.80 89.92 94.80 97.43 98.86 89.97 94.84 97.28 98.92
200 89.69 94.73 97.36 98.88 89.72 94.84 97.37 98.90 89.89 94.72 97.36 98.87
400 89.97 94.79 97.25 98.93 89.86 94.88 97.31 98.94 89.88 94.74 97.37 98.93

StL+ 50 88.33 93.61 96.43 98.24 88.26 93.64 96.41 98.28 88.42 93.68 96.49 98.40
100 89.27 94.27 96.90 98.66 89.25 94.26 96.94 98.63 89.05 94.23 96.95 98.68
200 89.50 94.60 97.07 98.77 89.50 94.63 97.11 98.77 89.62 94.63 97.10 98.78
400 89.75 94.83 97.33 98.86 89.74 94.86 97.33 98.87 89.67 94.75 97.41 98.84

StH+ 50 87.92 93.56 96.29 98.23 88.23 93.70 96.40 98.29 88.62 93.96 96.76 98.55
100 89.30 94.27 96.95 98.59 89.30 94.42 96.98 98.61 89.35 94.48 97.09 98.70
200 89.67 94.59 97.14 98.72 89.67 94.60 97.17 98.76 89.74 94.73 97.29 98.85
400 89.78 94.71 97.35 98.89 89.71 94.75 97.41 98.93 89.77 94.89 97.31 98.93

SNL- 50 89.89 94.93 97.33 98.83 89.40 94.68 97.11 98.74 89.05 94.30 96.86 98.58
100 89.79 94.95 97.39 98.95 89.59 94.69 97.31 98.83 89.45 94.43 97.11 98.75
200 89.95 95.07 97.39 98.98 89.90 95.00 97.44 98.93 89.74 94.85 97.47 98.91
400 90.07 95.06 97.59 99.07 90.02 95.09 97.56 99.05 89.98 95.02 97.57 99.03

SNH- 50 89.56 94.81 97.31 98.92 89.13 94.34 97.10 98.74 88.79 94.00 96.80 98.56
100 89.69 94.90 97.47 98.92 89.62 94.74 97.38 98.79 89.42 94.51 97.23 98.78
200 90.16 95.14 97.48 99.07 90.00 95.00 97.44 98.96 89.75 94.86 97.30 98.86
400 90.18 95.04 97.50 99.05 89.95 94.95 97.56 99.02 89.75 94.88 97.47 98.94

StL- 50 87.95 93.18 96.11 98.09 87.47 92.96 95.92 97.92 87.20 92.77 95.76 97.90
100 89.28 94.23 96.91 98.53 88.90 94.07 96.74 98.49 88.54 93.78 96.55 98.43
200 89.37 94.57 97.11 98.68 89.28 94.31 96.96 98.62 89.07 94.21 96.93 98.54
400 89.34 94.60 97.14 98.78 89.24 94.48 97.11 98.82 89.24 94.33 97.11 98.75

StH- 50 88.15 93.52 96.39 98.29 87.61 93.04 96.05 98.03 87.30 92.72 95.75 97.86
100 88.82 93.89 96.79 98.49 88.64 93.78 96.62 98.39 88.24 93.61 96.42 98.34
200 89.38 94.53 97.16 98.81 89.19 94.34 97.12 98.74 88.90 94.26 96.91 98.64
400 89.74 94.85 97.29 98.97 89.43 94.71 97.26 98.92 89.34 94.67 97.25 98.85

TABLE 5: Averages over the different values of σ of the simulated coverages of
the CIs for the MAD Ratio.
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MD Ratio ψ1 ψ2 ψ3

100(1− α)% 90 95 97.5 99 90 95 97.5 99 90 95 97.5 99
dist. n
N 50 89.77 94.79 97.33 98.91 89.67 94.76 97.34 98.86 89.40 94.57 97.18 98.81

100 89.84 94.90 97.50 99.05 89.71 94.86 97.40 99.00 89.58 94.71 97.28 98.94
200 89.87 94.99 97.53 98.96 89.85 94.98 97.54 98.98 89.72 94.93 97.50 98.98
400 89.86 95.02 97.58 99.01 89.91 95.03 97.53 99.02 89.95 94.97 97.48 99.05

L 50 88.06 93.39 96.15 97.96 87.85 93.15 96.02 97.92 87.58 92.93 95.88 97.90
100 88.88 94.10 96.79 98.46 88.96 94.02 96.69 98.43 88.71 93.88 96.62 98.40
200 89.50 94.52 97.16 98.82 89.45 94.40 97.11 98.73 89.41 94.37 96.96 98.66
400 89.73 94.80 97.39 98.86 89.55 94.76 97.38 98.89 89.41 94.66 97.29 98.90

t5 50 88.46 93.71 96.54 98.35 88.43 93.66 96.51 98.34 88.15 93.57 96.44 98.31
100 88.98 94.26 96.97 98.62 88.88 94.17 96.87 98.64 88.77 94.03 96.78 98.57
200 89.50 94.66 97.24 98.78 89.41 94.48 97.26 98.75 89.36 94.45 97.08 98.75
400 89.64 94.66 97.27 98.83 89.60 94.66 97.23 98.84 89.49 94.58 97.21 98.82

t3 50 86.61 92.13 95.12 97.37 86.33 92.04 95.17 97.31 86.15 92.02 95.22 97.39
100 87.67 93.07 96.02 98.08 87.21 92.99 95.82 97.92 87.07 92.69 95.83 97.89
200 88.83 93.98 96.68 98.53 88.62 93.74 96.58 98.38 88.28 93.42 96.48 98.31
400 89.29 94.32 96.90 98.65 88.99 94.14 96.85 98.51 88.66 94.02 96.66 98.49

SNL+ 50 89.88 94.79 97.44 98.88 89.67 94.68 97.44 98.83 89.57 94.66 97.13 98.83
100 89.99 95.13 97.60 98.98 90.10 95.11 97.47 98.97 89.99 94.88 97.34 98.95
200 90.01 94.94 97.46 98.91 90.03 95.06 97.39 98.93 89.98 94.96 97.47 98.94
400 89.68 94.90 97.42 98.97 89.79 94.86 97.39 98.93 89.88 94.80 97.38 98.90

SNH+ 50 89.56 94.59 97.31 98.89 89.57 94.69 97.39 98.98 89.46 94.66 97.43 98.92
100 90.04 94.99 97.58 98.96 90.16 95.12 97.60 99.01 90.17 95.03 97.55 99.06
200 89.94 94.91 97.56 98.97 89.92 94.95 97.50 98.98 89.89 94.94 97.50 98.98
400 90.10 94.88 97.38 98.98 90.07 94.95 97.41 98.96 89.89 94.89 97.49 99.00

StL+ 50 88.45 93.76 96.49 98.34 88.64 93.90 96.68 98.43 88.79 94.10 96.73 98.53
100 89.30 94.29 96.96 98.67 89.48 94.30 96.99 98.68 89.37 94.29 97.07 98.75
200 89.53 94.63 97.10 98.80 89.62 94.65 97.14 98.81 89.66 94.73 97.20 98.85
400 89.74 94.84 97.37 98.85 89.77 94.78 97.36 98.86 89.71 94.77 97.34 98.89

StH+ 50 88.13 93.67 96.45 98.31 88.70 94.04 96.68 98.46 89.02 94.39 97.09 98.66
100 89.37 94.35 96.97 98.58 89.53 94.53 97.07 98.66 89.50 94.73 97.17 98.69
200 89.64 94.61 97.14 98.72 89.74 94.68 97.22 98.84 89.70 94.78 97.31 98.89
400 89.82 94.71 97.33 98.89 89.81 94.80 97.40 98.98 90.00 94.95 97.33 98.98

SNL- 50 89.84 94.82 97.31 98.83 89.37 94.70 97.10 98.73 89.16 94.39 96.86 98.55
100 89.79 94.91 97.41 98.95 89.67 94.71 97.35 98.88 89.48 94.44 97.17 98.84
200 89.98 95.08 97.40 98.98 89.81 95.01 97.41 98.95 89.77 94.83 97.42 98.96
400 90.06 95.09 97.59 99.05 90.03 95.07 97.57 99.08 89.96 94.97 97.63 99.06

SNH- 50 89.52 94.77 97.21 98.87 89.18 94.34 97.08 98.77 88.81 93.99 96.75 98.62
100 89.62 94.89 97.47 98.92 89.56 94.71 97.36 98.82 89.37 94.60 97.25 98.78
200 90.13 95.10 97.45 99.06 89.88 95.05 97.43 98.98 89.80 94.91 97.35 98.88
400 90.19 95.04 97.48 99.04 90.04 95.00 97.51 98.98 89.78 94.93 97.48 98.95

StL- 50 88.09 93.22 96.19 98.15 87.53 93.09 96.05 98.11 87.24 92.89 95.90 97.94
100 89.29 94.26 96.93 98.56 88.94 94.12 96.73 98.53 88.51 93.77 96.53 98.44
200 89.41 94.56 97.10 98.65 89.38 94.32 96.96 98.63 88.99 94.20 96.93 98.56
400 89.32 94.56 97.14 98.77 89.27 94.53 97.08 98.80 89.09 94.32 97.09 98.74

StH- 50 88.19 93.59 96.49 98.31 87.66 93.23 96.14 98.13 87.37 92.85 95.82 97.91
100 88.82 93.86 96.81 98.48 88.60 93.71 96.64 98.44 88.19 93.61 96.47 98.36
200 89.40 94.51 97.13 98.80 89.14 94.35 97.08 98.73 88.93 94.17 96.94 98.64
400 89.73 94.86 97.25 98.98 89.49 94.71 97.30 98.91 89.30 94.62 97.20 98.82

TABLE 6: Averages over the different values of σ of the simulated coverages of
the CIs for the MD Ratio.

20



(1− α) 0.9 0.95 0.975 0.99
actual coverage(aα) 0.8896 0.9407 0.9674 0.9848
ǫα = |(1 − α)− aα| 0.0104 0.0093 0.0076 0.0052
(1− α) + ǫα 0.9104 0.9593 0.9826 0.9952

TABLE 7: Comparison between the nominal and actual coverage probabilities
of the large sample CI (37).

Index Sharpe Ratio MAD Ratio MD Ratio
distribution ψ1 ψ2 ψ3 ψδ1 ψδ2 ψδ3 ψ∆1 ψ∆2 ψ∆3

N 50 50 50 50 50 50 50 50 50
L 200 200 200 200 200 200 100 200 200
T5 100 200 400 100 100 200 100 100 200
T3 >400 ≫400 ≫400 400 400 400 400 400 >400

SNL+ 50 50 50 50 50 50 50 50 50
SNLH+ 50 50 50 50 50 50 50 50 50
STL+ 100 100 200 100 100 100 100 100 100
STH+ 100 50 200 100 100 100 100 100 50
SNL- 50 50 100 50 50 50 50 50 50
SNH- 50 50 100 50 50 100 50 50 100
STL- 200 400 >400 100 100 200 100 100 200
STH- 200 400 >400 200 200 200 200 200 200

TABLE 8: Minimum sample sizes assuring a sufficient precision of the large
sample CIs (18), (25) and (21).

when n = 30 are given in Table 7 and, effectively, they are quite similar to their
nominal values.

Then, we think it is reasonable to take the values given in Table 7 as a
benchmark and, in the following, we assert that the simulated coverage of a
large sample CI is sufficiently close to its nominal value (1− α) if it belongs to
the interval (1− α− ǫα; 1− α+ ǫα) where ǫα is defined in Table 7.

The simulated coverages belonging to the just defined interval are written in
bold in Table 4-6. The application of the above criterion leads to the minimum
sample sizes given in Table 8.

It can be noted that, with the exception of the Student’s t with 3 df, a sample
size of 200 is always sufficient in order to assure a good coverage accuracy of
the CIs for the MAD Ratio and for the MD Ratio. Differently, a sample size of
400 is not always sufficient for the CIs for the Sharpe Ratio as it can be seen
in the case of the Skew t distribution with negative γ1. In the scenario of the
Student’s t with 3 df, as suggested by Remark 4, the coverage accuracy of the
large sample CI (18) is quite bad while n = 400 turn out to be sufficient for the
CI (25) and for the CI (21) with low and intermediate value of ψ∆. Finally, it is
worthwhile to note that the scenarios concerning the Skew t distribution are the
more realistic because the empirical distributions of the financial activities are
generally characterized by the presence of fat tails and asymmetry. Furthermore,

21



these are the cases in which the performances of the large sample CIs (25) and
(21) are quite better than the performances of the CI (18).

7.2 Length of the large sample CIs

Once again, we observe that the value of σ does not impact significantly on
the Average Length of the CIs. Consequently, the values given in Table 9 and
Table 10 are averages calculated over the different values of σ. In detail, in Table
9 the Average Lengths (ALs) obtained sampling from the Normal distribution
are given. The ALs obtained under the others scenarios are evaluated by the
percentage relative variation with respect to the lengths obtained sampling from
the Normal:

100

(
AL sampling form the Normal− AL sampling from another distribution

AL sampling form the Normal

)
% .

The values of the above index are given in Table 10. Observe that, in Table 10,
the values of (1−α) are not specified since the length of the CIs are proportional
to the quantiles of the standard normal distribution. As a consequence, the
percentage relative variations of the length are the same for all the values of
(1− α).

Simulations show that the features of the ALs of the CIs (25) and (21) are
quite different from those of the CI (18). In detail, as expected, the CIs (25)
and (21) tends to be larger if the parent distributions has tails heavier than
the Normal. On the contrary, the CI (18) tends to be larger if the parent
distributions has tails heavier than the Normal only for intermediate and large
values of ψ. About the effect of asymmetry, evidence from the Skew Normal
distribution suggests that the AL of CIs (18), (25), and (21) increases (decreases)
when the parent distribution becomes more negatively (positively) asymmetric.
When sampling from the Skew t distribution (which exhibits both asymmetry
and fat tails) we observe that, in a sense, the effect of the asymmetry prevails
on the effect of the fat tails in the case of the CI for the Sharpe Ratio. For the
other two indices the effect of the fat tails prevails. In detail, when sampling
form the StL+ and StH+, the CI (18) tends to be shorter than in the Normal
case also for intermediate and large values of ψ even if the presence of fat tails
should increase its AL. On the contrary, when sampling form the StL+ and
StH+, the CI (25) and (21) are larger than in the Normal case.

7.3 Evaluation of the performances of the bias corrected estimators

In order to compare the bias and the efficiency of the plug-in estimators
with that of the approximatively unbiased ones, we compute, for each scenario,
the simulated bias and MSE of the estimator Ψ̂, Ψ̂δ, Ψ̂∆, Ψ̂

′

u, Ψ̂δu, and Ψ̂∆u.
Evidence shows that the impact of the value of σ on the bias and on the MSE
is negligible. Consequently, in Table 11 and Table 12 we give the average over
the values of σ of the simulated bias an MSE. In order to ease comparisons, in
the just cited tables, the following gain/loss indices are given:

100

(
bias of the plug-in est.− bias of the approx. unbiased est.

true value of the ratio

)
%
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Sharpe Ratio ψ1 ψ2 ψ3

100(1− α)% 90 95 97.5 99 90 95 97.5 99 90 95 97.5 99
n
50 0.4675 0.5571 0.6371 0.7321 0.4734 0.5641 0.6451 0.7414 0.4917 0.5858 0.6700 0.7699
100 0.3299 0.3931 0.4496 0.5166 0.3345 0.3986 0.4558 0.5238 0.3483 0.4151 0.4747 0.5455
200 0.2330 0.2777 0.3176 0.3649 0.2364 0.2817 0.3221 0.3702 0.2465 0.2938 0.3359 0.3861
400 0.1647 0.1962 0.2244 0.2579 0.1671 0.1991 0.2277 0.2616 0.1743 0.2077 0.2376 0.2730

MAD Ratio
50 0.5902 0.7032 0.8042 0.9242 0.5977 0.7122 0.8144 0.9360 0.6262 0.7462 0.8533 0.9806
100 0.4148 0.4943 0.5653 0.6496 0.4211 0.5017 0.5738 0.6594 0.4418 0.5264 0.6020 0.6918
200 0.2926 0.3486 0.3987 0.4582 0.2973 0.3542 0.4051 0.4655 0.3121 0.3719 0.4253 0.4887
400 0.2066 0.2462 0.2815 0.3235 0.2099 0.2502 0.2861 0.3288 0.2204 0.2627 0.3004 0.3452

MD Ratio
50 0.4127 0.4918 0.5624 0.6464 0.4189 0.4992 0.5709 0.6560 0.4379 0.5218 0.5967 0.6857
100 0.2918 0.3476 0.3976 0.4569 0.2962 0.3529 0.4036 0.4638 0.3096 0.3690 0.4219 0.4849
200 0.2063 0.2458 0.2811 0.3231 0.2094 0.2496 0.2854 0.3280 0.2190 0.2609 0.2984 0.3429
400 0.1459 0.1738 0.1988 0.2284 0.1481 0.1764 0.2018 0.2319 0.1548 0.1844 0.2109 0.2424

TABLE 9: Averages over the different values of σ of the simulated AL of the
confidence interval (18) when sampling from the Normal distribution.

100

(
MSE of the plug-in est.−MSE of the approx. unbiased est.

MSE of the plug-in est.

)
%

Simulations show that the approximatively unbiased estimator generally have a
lower bias than the plug-in estimators. However, the gain/loss indices in Table
11 show that the bias reduction is negligible. Furthermore, Table 12 shows that
the increase in the variability of the approximatively unbiased estimators (due
to the estimation of the bias factors) over-compensates the bias reduction so
that the MSE of the plug-in estimators turn out to be (a little) lower than MSE
of the approximatively unbiased ones. Concluding, in the scenarios considered,
the plug-in estimator can be considered more efficient than the approximatively
unbiased ones.

7. CONCLUSION

In this paper we study some inferential aspects of the Sharpe Ratio, the MD
Ratio and the MAD Ratio.

Under the assumption of i.i.d.-normal returns, we obtain an exact CI for
each ratios and we study the coverage accuracy of the large sample confidence
intervals defined on the basis of the results in Jobson and Korkie (1981), Gast-
wirth (1974), and Hoeffding (1948). In a brief simulation study, we observe
that all the just cited large sample CIs approximate very well the exact ones
starting from the relively small sample size of 50. Moreover, after citing the
results concerning the bias of the plug-in estimator for the Sharpe ratio given in
Miller and Gher (1978), we improve the approximation of the bias factor given
in Jobson and Korkie (1981).

Under the assumption if i.i.d.-returns, we introduce a large sample CIs for
each ratio and we investigate their coverage accuracy in a wide simulation study.
We obtain that the large sample CIs for the MD Ratio and for the MAD Ratio
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Simmetric-heavy tailed distributions Global average
Laplace t with 5 d.f. t with 3 d.f.

Sharpe Ratio ψ1 ψ2 ψ3 ψ1 ψ2 ψ3 ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

n
50 -1.79 -0.45 3.29 -1.62 -0.63 2.25 -4.01 -1.22 6.56 -1.11 -0.27 2.12
100 -0.92 0.67 5.07 -0.99 0.44 4.44 -3.04 1.05 12.42 -0.72 0.45 3.80
200 -0.44 1.38 6.33 -0.54 1.36 6.50 -2.07 4.09 20.05 -0.43 1.16 5.56
400 -0.18 1.80 7.11 -0.27 2.02 8.16 -1.48 7.36 29.13 -0.25 1.85 7.38

MAD Ratio
50 7.90 9.36 13.54 4.92 5.69 7.97 9.97 12.50 19.83 4.27 4.95 7.01
100 10.27 11.70 15.63 6.59 7.38 9.63 14.96 17.34 24.44 5.68 6.34 8.33
200 11.49 12.88 16.68 7.49 8.32 10.61 18.41 21.02 28.28 6.50 7.18 9.16
400 12.18 13.61 17.41 8.00 8.84 11.15 20.83 23.49 30.88 7.02 7.74 9.78

MD Ratio
50 3.54 5.11 9.41 2.32 3.30 6.06 5.45 8.39 16.37 2.52 3.35 5.67
100 4.97 6.53 10.79 3.62 4.68 7.65 9.20 12.23 20.79 3.58 4.42 6.86
200 5.68 7.26 11.55 4.37 5.53 8.70 11.98 15.39 24.71 4.23 5.13 7.70
400 6.06 7.68 12.02 4.80 5.99 9.26 14.03 17.65 27.58 4.66 5.62 8.32

Distributions with positive or negative asimmetry
SNL+ SNH+ SNL- SNH-

Sharpe Ratio ψ1 ψ2 ψ3 ψ1 ψ2 ψ3 ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

50 -0.90 -4.58 -8.41 -1.14 -6.76 -12.70 1.03 4.82 8.95 1.74 7.31 13.31
100 -0.98 -5.02 -9.14 -1.37 -7.36 -13.57 1.13 5.23 9.67 1.74 7.75 14.20
200 -1.06 -5.22 -9.43 -1.50 -7.69 -14.03 1.13 5.40 10.03 1.69 7.92 14.62
400 -1.09 -5.29 -9.52 -1.57 -7.83 -14.20 1.13 5.48 10.20 1.69 8.06 14.90

MAD Ratio
50 -0.57 -4.97 -9.47 -0.84 -7.68 -14.78 1.72 6.14 10.73 2.50 9.15 15.96
100 -0.51 -5.10 -9.77 -1.04 -8.02 -15.24 1.84 6.39 11.10 2.55 9.35 16.33
200 -0.55 -5.16 -9.84 -1.11 -8.17 -15.46 1.86 6.46 11.21 2.45 9.28 16.27
400 -0.56 -5.17 -9.84 -1.16 -8.21 -15.49 1.83 6.45 11.23 2.45 9.35 16.42

MD Ratio
50 -0.40 -4.52 -8.79 -0.12 -6.57 -13.42 1.77 5.94 10.32 3.11 9.35 15.80
100 -0.36 -4.74 -9.29 -0.25 -6.95 -14.08 1.89 6.23 10.78 3.18 9.65 16.36
200 -0.39 -4.84 -9.46 -0.30 -7.13 -14.41 1.91 6.33 10.98 3.13 9.70 16.50
400 -0.41 -4.87 -9.50 -0.34 -7.20 -14.52 1.90 6.36 11.05 3.15 9.80 16.68

Distributions with positive or negative asimmetry and heavy tails
StL+ StH+ StL- StH-

Sharpe Ratio ψ1 ψ2 ψ3 ψ1 ψ2 ψ3 ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

50 -2.24 -3.99 -3.83 -2.74 -7.35 -10.01 -0.78 3.02 8.70 0.26 6.82 15.26
100 -1.82 -3.77 -2.90 -2.57 -7.81 -9.95 -0.01 4.80 12.05 0.95 9.03 19.50
200 -1.55 -3.56 -1.88 -2.47 -8.09 -9.35 0.46 6.17 14.93 1.59 11.00 23.35
400 -1.39 -3.24 -0.56 -2.42 -8.10 -8.35 0.89 7.44 17.52 2.00 12.64 26.77

MAD Ratio
50 4.24 1.71 0.77 3.83 -2.18 -6.54 5.97 10.04 15.56 7.35 14.74 23.54
100 5.79 2.97 1.69 5.24 -1.23 -6.09 7.72 12.07 17.81 9.02 16.87 26.06
200 6.64 3.66 2.22 6.17 -0.59 -5.74 8.62 13.12 19.01 10.00 18.12 27.56
400 7.21 4.21 2.77 6.62 -0.24 -5.50 9.19 13.84 19.88 10.64 18.98 28.65

MD Ratio
50 1.80 -0.17 -0.32 1.79 -3.35 -6.68 3.40 7.37 13.08 5.02 11.97 20.58
100 3.02 0.75 0.42 2.90 -2.80 -6.56 4.78 9.13 15.32 6.39 13.97 23.30
200 3.71 1.27 0.87 3.64 -2.40 -6.38 5.55 10.13 16.64 7.28 15.25 25.05
400 4.16 1.70 1.37 4.02 -2.16 -6.20 6.05 10.84 17.61 7.84 16.09 26.22

TABLE 10: Percentage relative variation of the AL of the large sample CIs with
respect to the ALs obtained sampling form the Normal distribution.
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Natual Est.s Appr. Unbiased Est.s Gain/Loss
Sharpe Ratio ψ1 ψ2 ψ3 ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

n 50 0.00182 0.00990 0.01999 0.00143 0.00796 0.01612 0.79% 0.78% 0.78%
100 0.00141 0.00603 0.01181 0.00116 0.00470 0.00912 0.50% 0.53% 0.54%
200 0.00049 0.00325 0.00669 0.00033 0.00244 0.00507 0.33% 0.33% 0.33%
400 0.00040 0.00203 0.00406 0.00032 0.00159 0.00319 0.17% 0.17% 0.17%

MAD Ratio ψδ1 ψδ2 ψδ3 ψδ1 ψδ2 ψδ3 ψδ1 ψδ2 ψδ3

n 50 0.00135 0.00799 0.01629 0.00086 0.00288 0.00540 0.72% 1.52% 1.62%
100 0.00115 0.00438 0.00842 0.00075 0.00168 0.00284 0.60% 0.80% 0.83%
200 0.00020 0.00187 0.00397 -0.00004 0.00051 0.00119 0.23% 0.41% 0.41%
400 0.00028 0.00112 0.00218 0.00014 0.00040 0.00071 0.21% 0.22% 0.22%

MD Ratio ψ∆1 ψ∆2 ψ∆3 ψ∆1 ψ∆2 ψ∆3 ψ∆1 ψ∆2 ψ∆3

n 50 0.00065 0.00392 0.00800 -0.00008 0.00028 0.00072 1.24% 1.57% 1.57%
100 0.00064 0.00224 0.00424 0.00027 0.00036 0.00047 0.81% 0.81% 0.81%
200 0.00002 0.00087 0.00192 -0.00017 -0.00012 -0.00006 -0.33% 0.32% 0.40%
400 0.00011 0.00054 0.00108 0.00001 0.00004 0.00008 0.20% 0.21% 0.22%

TABLE 11: Comparison between the bias of the plug-in estimators and that of
the approximately unbiased ones.

Natual Est.s Appr. Unbiased Est.s Gain/Loss
Sharpe Ratio ψ1 ψ2 ψ3 ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

n 50 0.0217 0.0234 0.0286 0.0219 0.0236 0.0288 1.10% 0.94% 0.56%
100 0.0111 0.0120 0.0149 0.0112 0.0121 0.0150 0.98% 0.92% 0.78%
200 0.0059 0.0064 0.0080 0.0059 0.0065 0.0081 0.89% 0.90% 0.92%
400 0.0031 0.0034 0.0044 0.0031 0.0035 0.0044 0.88% 0.94% 1.06%

MAD Ratio ψδ1 ψδ2 ψδ3 ψδ1 ψδ2 ψδ3 ψδ1 ψδ2 ψδ3

n 50 0.0382 0.0404 0.0473 0.0381 0.0402 0.0468 -0.22% -0.41% -0.91%
100 0.0198 0.0209 0.0243 0.0198 0.0209 0.0243 0.36% 0.23% -0.06%
200 0.0106 0.0112 0.0130 0.0107 0.0112 0.0131 0.52% 0.43% 0.19%
400 0.0057 0.0060 0.0070 0.0057 0.0060 0.0070 0.60% 0.48% 0.20%

MD Ratio ψ∆1 ψ∆2 ψ∆3 ψ∆1 ψ∆2 ψ∆3 ψ∆1 ψ∆2 ψ∆3

n 50 0.0180 0.0191 0.0223 0.0180 0.0190 0.0222 -0.32% -0.37% -0.51%
100 0.0094 0.0099 0.0115 0.0094 0.0099 0.0116 0.17% 0.13% 0.06%
200 0.0050 0.0053 0.0062 0.0050 0.0053 0.0062 0.28% 0.26% 0.19%
400 0.0027 0.0028 0.0033 0.0027 0.0028 0.0033 0.31% 0.26% 0.14%

TABLE 12: Comparison between the MSE of the plug-in estimators and that
of the approximately unbiased ones.
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have quite better features than the CI for the Sharpe Ratio. In detail, we high-
light that the CIs for the MD Ratio and for the MAD Ratio are more robust with
respect to the presence of asymmetry and fat tails in the parent distribution,
especially when the later does not posses all the moments (such as the Student’s
t or the Skew t). Since the only difference between the three indicators is the
variability measure used to quantify the risk, the differences in the performances
of the large sample CIs can be attributed to the different features of the esti-
mators S2, δ̂ and ∆̂ and to their different covariance with the sample mean X̄.
In detail, the evidence we obtain can be partially motivated by the fact that
some desirable properties of S2 are based on stronger assumption than those
necessary in the case of ∆̂ and δ̂. For example, ∆̂ and δ̂ are weakly consistent
(i.e. they converge in probability to the true value of ∆ and δ, respectively)
if the parent distribution possess the first moment; while the existence of the
second moment is required for the weak consistency of S2. Moreover, ∆̂ and δ̂
are asymptotically normally distributed if the parent distribution possess second
moment (as shown in Theorems 2 and 3). On the contrary, the existence of the
fourth moment is required for the asymptotic normality of S2 (see Theorem 1).
For these reasons, as shown in Polisicchio (2006), when the parent distribution
have fat tails, it could be more appropriate to measure the variability using ∆
or δ because the properties of their estimators become better than those of S2

as the weight of the tails increases¶. Moreover, as for the asymptotic normality
of S2, the CI for the Sharpe Ratio here considered is based on the theoretical as-
sumption of existence of the fourth moment of the parent distribution. Indeed,
its coverage accuracy dramatically worsens when sampling from the Student’s
t with 3 degrees of freedom, which does not possess moments of order greater
than 2. This is a potential limitation of the Sharpe Ratio since empirical evi-
dence suggests that the distribution of the returns of many financial activities
may have infinite fourth moment (especially when high frequency returns are
considered as shown in Genay et al., 2001). On the contrary, the CIs for the
MAD Ratio and for the MD Ratio (which are based on the less stringent the-
oretical assumption of existence of the second moment) have a good coverage
starting from the sample size of 400 when sampling from the Student’s t with 3
degrees of freedom. Another interesting observation is that the actual coverage
probability of the CI for the Sharpe Ratio decreases significantly when the true
value of the ratio increases while the coverage probability of the CIs for the
MAD Ratio and for the MD Ratio is more stable with respect to variation of
the true value of the corresponding ratio. In general, with the exception of the
Student’s t with 3 d.f., a sample size of 200 is sufficient to reach a good coverage
accuracy of the CIs for the MAD Ratio and for the MD Ratio in all the scenarios

¶Furthermore, as shown in Polisicchio (2006) and in Johnson, Kotz, and Balakrishnan
(1995a) (ch. 13, p. 136), even if we sample from a normal distribution in order to estimates

σ, the estimators based on δ̂ and ∆̂ given by

σ̂∆ = ∆̂

√
π

2
and σ̂δ = δ̂

√
π

2
,

have an efficiency very close to that of S2 which is, indeed, based on the conjoint sufficient
statistics (

∑
n

i=1
Xi ;

∑
n

i=1
X2

i
) for (µ ; σ2).
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considered. Concerning the confidence interval for the Sharpe Ratio, a sample
size of 400 is still inadequate when sampling from the Skew t distribution with
negative asymmetry, which are, indeed, scenarios of practical interest.

Another aspect we investigate under the assumption of i.i.d.-returns, is the
bias of the plug-in estimators. In particular, we approximate the bias of the
three estimators and we introduce an approximately unbiased estimators for
the three indices. In the simulation study we compare the efficiency of the plug-
in estimators with that of the approximately unbiased ones. We obtain that
the plug-in estimators are, in general, more efficient than the the bias-corrected
estimators.

RIASSUNTO

In questo lavoro si studiano le proprietà degli stimatori di tre misure di performance

delle attività finanziarie note come Sharpe Ratio, MAD Ratio e MD Ratio. L’analisi

viene svolta in due particolari contesti. In primo luogo si ipotizza che i rendimenti

siano indipendentemente ed identicamente normalmente distribuiti (n.i.i.d.). In se-

guito, si rilassa l’ipotesi di normalità e si ipotizza che i rendimenti siano indipen-

dentemente ed identicamente distribuiti (i.i.d.). In entrambi i contesti si studia la

distorsione degli stimatori dei tre indici di performance e si propone una correzione

della distorsione. Nel caso dei rendimenti n.i.i.d. si ottiene la distribuzione esatta dei

tre stimatori e si richiama la loro distribuzione asintotica. Nel contesto dei rendimenti

i.i.d., si deriva la distribuzione asintotica dei tre stimatori. Le distribuzioni asintotiche

ed esatte appena menzionate vengono utilizzate per costruire intervalli di confidenza

esatti o asintotici per le tre misure di performance. In ultimo, si svolge uno studio

di simulazioni finalizzato a valutare l’efficienza degli stimatori corretti e la copertura

effettiva degli intervalli di confidenza asintotici.

REFERENCES

Azzalini, A., Capitanio, A. (1999). Statistical applications of the multivariate
skew-normal distribution. J.Roy.Statist.Soc., series B, 61, 579–602.

Azzalini, A., Capitanio, A. (2003). Distributions generated by perturbation of
symmetry with emphasis on a multivariate skew-t distribution. J.Roy.Statist.Soc.,
series B, 65, 367–389.

Casella, G., Berger R.L. (2002). Statistical Inference, 2nd ed., Duxbury.

Farinelli, S., Ferreira, M., Rossello, D., Thoeny, M., Tibiletti, L. (2008). Be-
yond Sharpe ratio: Optimal asset allocation using different performance ratios.
Journal of Banking & Finance, 32(10), 2057–2063.

Gastwirth, J.L. (1974). Large sample theory of some measures of income in-
equality. Econometrica, 42, 191–196 (1974)

Genay, R., Dacorogna, M., Muller, U., Picket, O., Olsen, R. (2001). An intro-
duction to high-frequency finance. Academic Press, San Diego.

27



Graham, R.L., Knuth, D.E., Patashnik, O. (1994). Concrete Mathematics: A
Foundation for Computer Sciences. Addison-Wesley.

Hoeffding, W. (1948). A class of statistics with asymptotically normal distribu-
tion. The Annals of Mathematical Statistics, 19, 293–325.

Jobson, J., Korkie, B. (1981). Performance Hypothesis Testing with the Sharpe
and Treynor Measure. The Journal of Finance, 36, 889–908.

Johnson, N.L., Kotz, S., Balakrishnan N. (1995a). Continuous Univariate Dis-
tributions, vol. 1, 2nd ed., Wiley.

Johnson, N.L., Kotz, S., Balakrishnan N. (1995b). Continuous Univariate Dis-
tributions, vol. 2, 2nd ed., Wiley.

Knight, J., Satchell, S. (2005). A Re-Examination of Sharpe’s Ratio for Log-
Normal Prices, Applied Mathematical Finance, 87–100.

Konno, H., Yamazaki, H. (1991). Mean-absolute deviation portfolio optimiza-
tion model and its application to Tokio stock market. Management Science, 37,
519–531.

Lo, A.W. (2002). The Statistics of Sharpe Ratio. Financial Analyst Journal,
58, 36–52.

Miller, R., Gehr, A. (1978). Sample Bias and Sharpe’s Performance Measure:
A Note. Journal of Financial and Quantitative Analysis.

Mood, A.M., Graybill, F.A., Boes, D.C. (1974).Introduction to the theory of
statistics. McGraw-Hill, New York.

Opdyke, J.D. (2007). Comparing Sharpe Ratios: So Where are the p-values?.
Journal of Asset Management, 8.

Polisicchio, M. (1997). Stimatore corretto della covarianza fra media e differenza
media campionaria. Quaderni di Statistica e Matematica Applicata alle Scienze
Economico-Sociali dell’Universit degli Studi di Trento, vol. XIX-n2, 233–237.

Polisicchio, M., Zini, A. (2000). Covarianza fra media campionaria e differenza
media: aspetti formali e relazioni con l’asimmetria. Statistica, 73–86.

Polisicchio M. (2006). A few remarks on the estimation of some variability
measures. Statistica & Applicazioni, Vol. IV, numero speciale 2, 31–47.

Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics, Wi-
ley.

Shalit, H., Yitzhaki S. (1984). Mean-Gini, Portfolio theory, and the pricing of
risky asset. Journal of Finance, 39, 1449–1468.

Sharpe, W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium
under Conditions of Risk. The Journal of Finance, 19, No. 3, 425–442.

Sharpe, W.F. (1966). Mutual fund Performance. Journal of Business, January,
119–138.

28



Sharpe, W.F. (1994). The Sharpe Ratio. Journal of Portfolio Management,
Fall, 49–58.

Zenga, M., Polisicchio, M., Greselin, F. (2004). The variance of Gini’s Mean
Difference and its estimators. Statistica, 456–475.

29


	1
	2

