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Chapter 1

1.1 General introduction

Proteins are at the basis of life. They are essential parts of every organism, are present in
every cell and cellular compartment, and are often protagonists in crucial biological
processes. They have structural, mechanical and transport functions, play an important
role in cell signalling, are involved in immune responses and, as enzymes, they catalyze
biochemical reactions. Moreover, proteins work cooperatively. Their association with
other proteins or peptides and their interaction with small molecules, lipids or nucleic
acids are fundamental for their function. Therefore, understanding the interaction
network of each protein is fundamental for the comprehension of its functions and of the
biological mechanisms in which it is involved. This can also provide crucial information for
the elucidation of several disease processes, allowing the design of new drugs aimed at
inhibiting disease-generated interplays or at restoring interactions that are vital for the
organism.

As proteins functions are determined by their three-dimensional structure, the
availability of high-resolution 3D structures of protein complexes are essential for a
complete understanding of the biochemical nature of the process in which they are
involved, and to facilitate the design of compounds that might influence it.

During the last decades, two experimental techniques, X-ray diffraction and nuclear
magnetic resonance (NMR), have been widely used and much improved to determine 3D
structures of proteins, both as monomers and in complex with small molecules and ions,
other proteins and peptides, or DNA and RNA. Their increasing success in resolving
protein structures is highlighted by the increasing number of depositions in the Protein
Data Bank (PDB) [1] every year.

However, despite the large improvements and the excellent results achieved by these
techniques (for example, the X-ray determination of the ribosome structure [2]), they still
have some limits. In fact, the crystallization of the protein (or complex) for X-ray
experiments is sometimes very difficult, since the growth of a crystal is strongly
dependent not only to the temperature, pH and solvent conditions, but also to the nature
of the protein and to the absence/presence of ions and ligands. NMR, on the other hand,
is suitable only for determining the structures of low molecular weight systems [3], thus it
is mostly used for resolving monomers.

Moreover, the nature of the interactions within protein complexes can affect the

successful application of these experimental techniques. For example, the majority of the
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associations that take place in the cell between proteins, or between proteins and other
molecules, are transient. The transient nature of these associations is essential for life,
since it allows the organism to answer in a fast and reversible way to environmental or
metabolic changes. Unfortunately, their nature makes also these interactions very likely
to disrupt under experimental conditions, thus, even if they are the most interesting to
understand, they are also the most difficult to study.

Due to the experimental restrictions described above and although a number of
structural genomics projects [4, 5] have been launched over the years, the number of
protein structures deposited in the PDB is still limited (around 70,000 at the end of
December 2010, as reported in the PDB). On the contrary, the number of known protein
sequences is much higher (around 523,000 at the end of December 2010, as reported in
the UniProtKB/Swiss-Prot database [6, 7]), thanks to several genomic sequencing projects
[8]. Consequently, in many cases it is necessary to predict the 3D structure of proteins
whose sequence is known by computational approaches. To this aim, in the last years
several methods aimed at predicting the 3D structures of both protein monomers and

proteins interacting with other molecules were developed.

1.2 Computational methods to predict protein structures

The most used bioinformatics methods that allow the prediction of protein monomers
structures are: protein folding algorithms, fold recognition methods, fragment-based
modelling and homology modelling.

Folding algorithms (called also ‘ab initio’ methods) exploit the observation that the same
protein sequence adopts almost invariably the same fold [9]. This suggests that such
conformation corresponds to the global minimum of free energy under physiological
conditions. Thus, these methods perform an extensive sampling of the conformational
space of the protein, for example by Molecular Dynamics, in order to find the energy
minimum associated to the native protein structure.

Fold recognition (or 'threading'), on the other hand, takes advantage of the observation
that the majority of the proteins fold into a limited number of topologies [10, 11]. These
methods 'thread' the sequence of the protein whose structure has to be predicted onto a
large number of different experimental structures and select the best sequence-structure

match [12, 13].
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Fragment-based algorithms are based on the structure similarity at a local level (some
residues) between proteins that are apparently not related [14, 15]. On this basis, they
function assembling fragments taken from experimental structures and then refining the
structure obtained.
Homology modelling (or ‘comparative modelling’) [16] derives from the observation that
evolutionary related (homologous) proteins have similar structures, even if they have
quite different sequences [17]. The structure of homologous proteins are therefore used
as a template to model the structure required.
This last method is one of the most widely used in protein structure prediction. This is
because of the great number of protein sequences currently available in public databases
and because it has been demonstrated that the expected reliability of the final model can
be estimated a priori and depends on the distance in homology between the protein
whose structure has to be predicted (target) and the one on which the structure is
modelled (template) [17].
The classical procedure for building an homology model can be summarized as follows:

1. identify a suitable template among proteins of known structure that are

homologous to the target;
2. build a sequence alighment between target and template;
3. assign the atomic coordinates of the backbone and of the identical side-chains of
the template to the target, according to the sequence alignment;

4. model the remaining side-chains and the non-aligned backbone regions;

5. refine the structure obtained.
Among these stages, the first two steps are the most crucial for a high-quality final model.
In particular, the selected template should be a protein whose experimental structure is
available and which is the best evolutionary related to the target. However, once there is
a choice of different possible templates with similar sequence identities for a particular
target, it may be difficult to reliably choose the most similar [18, 19]. The sequence
alignment, on the other hand, has to be biologically meaningful and should detect the
correspondence between amino acids that matches the evolutionary history of the
protein family [20, 21].
Moreover, the use of different modelling strategies and final refinements, starting from
the same template and alignment, can result in models at different quality. In fact, a

difference in modelling loops and side-chains frequently leads to models with the same
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overall quality, but different local accuracy. This difference may influence the results of
subsequent studies on the models, for example docking calculations, that require a very
accurate description of the binding site in order to obtain reliable results. Consequently,
critical testing of the quality of protein models is essential if they are to be applied with
confidence.

To assess the global and local quality of protein structural models, a number of quality
indices have been developed over the years [22, 23]. These indices are usually based on
the results of statistical analyses on the whole PDB (or on some subsets of it), taking into
account a number of structural features of experimental structures, and they assess if the
characteristics of the structures to analyze fall in the average of the reference structures.
Another class of model quality indices is composed by methods that generate statistical
potentials from a set of PDB structures and use them to evaluate the structure that has to
be examined.

A benchmarking of methods for protein structure prediction is carried on every two
years, through a world-wide experiment named CASP (Critical Assessment of techniques
for protein Structure Prediction) [24, 25], aimed at establishing the current state of the
art, identifying what progress has been made over the years and highlighting where
future efforts may be most productively focused. This blind modelling experiment has the
great merits of having raised the issue of objective evaluation of structure prediction
methods, prompting the development of model quality indices, and of having encouraged

the ideation of new and better performing modelling approaches.

1.3 Molecular docking calculations

Molecular docking is a computational approach that allows the prediction of the structure
of a receptor-ligand complex, starting from the structures of the two interacting partners
[26]. The biggest of the two interacting molecules is classified as ‘receptor’, while the
smallest is the ‘ligand’. In principle, these two molecules can be proteins, small molecules,
RNA, DNA, ect. However, at the present time, the most studied interactions are those
that occur among proteins (protein-protein docking) and between proteins and small
molecules (ligand-protein docking).

The majority of the currently available docking methods work in two steps:
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1. sampling: search in the conformational space of the relative orientations of the
interacting partners, in order to generate a set of tentative solutions (‘docking
poses’);

2. refinement and scoring of the generates poses, through the use of a force field
adequate to select the pose that is the most similar to the native structure of the
complex.

In principle, the sampling should take into account both the six degrees of translational
and rotational freedom of one body relative to another (intermolecular conformational
space) and the conformational degrees of freedom of the ligand and of the receptor as
single molecules (intramolecular conformational space). As for ranking the poses, the
scoring function should predict the loss of free energy occurring upon binding, accurately
calculating both the interaction and solvation energy of the complex and of the partners
considered as single and separate molecules. With respect to the achievement of these
goals, the two most popular classes of docking approaches, ligand-protein and protein-
protein, although developed roughly in the same vyears, have currently different

limitations and can achieve different degrees of accuracy.

1.3.1 Ligand-protein docking
Ligand-protein docking is extensively used by pharmaceutical companies. This is why,
over the years, enormous efforts have been made to improve the corresponding
software. In fact, these calculations help in cutting the time and financial investment
required for the development of novel pharmaceutical agents. In particular, these
methods have proven to be useful at different stages of the drug discovery process for
three main purposes [27]:

- predicting the binding mode of a known active ligand;

- predicting the binding affinities of related compounds from a known active

series;

- identifying new ligands using virtual screening.
The successful prediction of a ligand binding mode is the field where the most success has
been achieved. While the first docking algorithms treated both ligand and protein as rigid
bodies, a first great improvement has been the introduction of sampling algorithms able
to perform a near-complete search in the intramolecular conformational space of the

ligand [28]. Today, most docking programs treat the ligand as flexible with a rigid (or
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nearly rigid) receptor structure, while receptor flexibility remains one of the major
challenges in this field [29, 30]. A number of reviews report the performance of different
docking methods in terms of ability of reproducing the native binding mode [31-35] and
show that the best programs do predict the experimental pose in most of the times.

On the other hand, scoring functions, that can be both physical- or knowledge-based,
have still to be improved. In fact, they are frequently unable to distinguish near-native
poses from the others [35, 36]. Moreover, they usually strongly depend on the physico-
chemical features of the set of complexes they were trained on [31-35]. The limits of the
scoring functions determine also the limits of the currently available docking programs to
reliably reproduce even the rank of binding affinities, when considering a set of
compounds docked into a single protein [27, 34]. In spite of these limitations, a number
of successes are reported in literature about the application of ligand-protein docking to
the problem of identifying new ligands through virtual screening (see 37 for a review).
Moreover, the enhancements of computer performance allow now the screening of
hundreds of thousands molecules in a reasonable time and several docking algorithms
have been optimized and have been automated specifically for this use, which makes

ligand-protein docking calculations a sort of routinary process in drug discovery.

1.3.2 Protein-protein docking

The most substantial improvements in protein-protein docking algorithms, on the other
hand, have been prompted by a world-wide blind docking experiment, called CAPRI
(Critical Assessment of PRedicted Interactions) [38, 39]. This competition, similarly to
CASP, aims at periodically assessing the state of the art in protein-protein (and protein-
nucleic acids) docking and at underlining which progresses are made, trying to
understand the avenues of improvement that the docking community should open. Each
CAPRI experiment (round) is composed by two parts, which are designed to separately
assess the sampling and scoring stage of the currently available protein-protein docking
methods.

As CAPRI results point out, the sampling step of protein-protein docking algorithms is not
always successful, especially when conformational changes occur within the proteins
upon binding [40, 41]. In fact, due to the complexity of the search into the inter- and
intramolecular conformational space and to the huge computational time requested for

such a sampling, each protein-protein docking method suffers from some kind of
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approximation. Some algorithms (Fast Fourier Transform approaches, FFT, also called ‘ab
initio’) treat the proteins as rigid bodies and this allows them to effectively sample the
intermolecular space of the complex. Some other approaches (that make use of Monte
Carlo search, Molecular Dynamics or Energy Minimization), instead, treat the proteins as
flexible, but limit the intermolecular space search only to the areas of the protein surface
that may be interacting patches. These should be predicted by bioinformatics methods or
should be derived from experimental data [42, 43]. Recently, it has been developed the
idea that the limitations of the two sampling approximations would be overcome by the
combined use of docking methods belonging to these two different philosophies [44].

On the other hand, scoring functions are currently neither useful for predicting binding
affinities, as recently demonstrated on a benchmark of protein-protein complexes [45],
nor, at the present state of the art, they can discriminate between proteins that can or
cannot bind to another protein, as assessed in a very recent CAPRI round (confidential

data).

1.4 The use of homology models in docking calculations

The recent improvements in homology modelling techniques [46, 47], the development
of automated methods and the availability of models repositories like for example SWISS-
MODEL [48], the Protein Model Portal [49] and Modbase [50], have greatly extended the
use of homology models for subsequent experiments. In particular, due to the lack of
experimental structures for a number of pharmaceutical target proteins, the use of
protein models in docking, particularly for drug design applications, is rapidly growing
[51]. As a consequence, a topic of great interest is the assessment of the potentialities
and limits of the use of protein models in ligand-protein docking.

Several recent studies already dealt with the problem of identifying the relationship
between model quality and ligand-protein docking results accuracy, in some specific
cases of high throughput screening [52-58]. In those studies, the accuracy of the models
was indirectly estimated by the sequence identity with the template, whereas the
docking performance was quantified in terms of enrichment of known active compounds
against a background of molecules. The subject of those analysis were proteins that are
pharmaceutically relevant targets and their aim was to assess the reliability of high
throughput screening when a model of the target is used. From those studies, a wide

range of trends was obtained and a clear relationship between sequence identity and
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enrichment factor was not observed. However, from some of those works, a generally
accepted ‘rule’ emerged: models built with over 50% sequence identity with the template
are accurate enough for safe docking studies [51, 54, 59], since they are usually able to
globally reproduce the reference structure with high accuracy.

Although the overall model quality is indeed related to the expected structural
divergence between template and target [17], the above rule is not always valid when
applied to docking experiments, because additional factors play a role in determining the
actual accuracy of a modelled structure, as already mentioned in Paragraph 1.2.
Moreover, several studies were based on the hypothesis that the global Root Mean
Square Deviation (RMSD) of the model from the experimental structure can be directly
related to the ability of docking methods to reproduce the ligand pose in a specific
binding site. This fact, though, has never been rigorously demonstrated: a globally correct
model can indeed include a bad description of the active site and vice versa. This would
lead to accurate docking predictions for globally not accurate models with a modelled
binding site that is adherent to the native and, on the other way round, to wrong
predictions for globally very accurate models with a binding site geometry very different
from the native.

Only a large-scale benchmarking study recently published [57] suggested some
techniques to exploit comparative models at best in molecular docking screenings.
However, none of the model quality indices tested in that study (among them, the
identity percentage for the whole sequence and for the binding site) appeared suitable to
predict the accuracy of ligand docking with acceptable reliability.

From these observations it clearly emerges that deriving general relationships between
model quality and docking accuracy is central to a more effective use of docking
simulations. In the most desirable scenario docking accuracy would be predicted directly
from the quality of the protein model assessed by employing the model quality indices
already available to the modelling community.

It is conceivable that protein models will be exploited in future years also in protein-
protein docking studies, as suggested by the recent CAPRI trend of assessing docking
predictions on protein models [60, 61]. In this field, no extensive study has been made in
this direction until now. Therefore, it is now of great interest to assess both to which
extent models can be used in protein-protein docking to safely obtain accurate results —

for example defining a target-template sequence identity percentage above which
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accurate docking results are surely obtained — and to investigate if it is possible to predict
the accuracy of docking results on the basis of the quality of the modelled structure,

indicated by standard model quality indices.

1.5 Objectives of the thesis

This thesis was mainly focused on overcoming the limitations of the sampling stage of
ligand- and protein-protein docking methods and exploring the potentialities of
combining different computational techniques to broaden the possibility to predict the
structure of protein complexes.

For this reason, in the protein-protein docking field, to overcome the still existing
limitations of the available algorithms in the sampling stage, | decided to deal with the
development of a new strategy for the initial search stage. This was made following a very
recent tendency [44, 62-65], that has already proven its utility in the field of protein-
protein docking: the combination of docking programs that belong to the two principal
protein-protein search approximations, FFT and data-driven docking. This approach
allows to sum the strengths of the two search philosophies (fast and almost complete
intermolecular sampling for the first, accurate treatment of molecular flexibility for the
latter) and limit their weaknesses (lack of consideration of the intramolecular degrees of
freedom for the first, dependence on external data and on their accuracy for the latter).
On the other hand, to exploit the potentiality of the recent improvements of the
homology modelling techniques [46, 47] both in ligand- and in protein-protein docking, |
decided to focus part of my work on the effects of the use of homology models in docking
calculations, assessing the relationships between docking results accuracy and model
quality (evaluated with the most widely used model quality indices) and developing a

strategy to predict the goodness of docking results, on the basis of model quality [66].

1.6 Outline of the thesis

In this introduction, the main motivations for the work presented in the thesis were
explained.

The methods and programs used are presented in Chapter 2. In particular, Paragraph 2.1
treats the topic of homology modelling, Paragraph 2.2 presents an overview of model
quality indices, and Paragraph 2.3 and Paragraph 2.4 illustrate ligand- and protein-protein

docking, respectively.

10
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Chapter 3 is focused on overcoming the current sampling limitations of protein-protein
docking methods: it describes ZADDOCK, a new protein-protein docking approach that
combines FFT and data-driven search into a whole pipeline.

Chapter 4 and 5 focus on the use of homology models in ligand- and protein-protein
docking, respectively. In particular, in both chapters an analysis of the relationships
between model quality and docking results accuracy is presented. In Paragraph 4.2 is also
reported the description of a strategy to predict the goodness of ligand-protein docking
results on the basis of the quality of the model used.

In Chapter 6 the conclusions about this work are drawn and future perspectives in the

homology modelling and docking fields are presented.

11
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In this thesis, a number of programs was used. They were employed for: protein structure
prediction; ligand- and protein-protein docking; for evaluating the quality of the models

and the accuracy of docking results.

2.1 Protein structure prediction

The structure prediction part of this thesis was performed with the help of two methods:
MODELLER [67-69] and I-TASSER [70, 71]. The first is a homology modelling program, the

latter is a threading approach.

2.1.1 MODELLER
MODELLER [67-69] uses an automated approach to model protein structures by
homology modelling, through the satisfaction of spatial restraints. This program
implements different types of approaches for modelling and refinement; in the following
paragraphs the basic workflow will be described.
MODELLER works in three stages:

1. alignment of the target sequence to the template structure and generation of

the starting model;
2. extraction of spatial restraints;

3. optimization of the model by satisfying spatial restraints.

Alignment of the target sequence to the template structure and generation of the
starting model

The sequence of the target is first aligned to the structure of the template(s), following
the sequence alignment given in input to the program. An initial model is generated, on
the basis of the alignment.

Definition of spatial restraints

The restraints for modelling are derived directly from the alignment between the target
sequence and the template structure(s) and mainly involve structural features like for
example main-chain and side-chain geometrical properties, residue accessibility and
neighbourhood relationships, as well as sequence alignment properties. The complete list
is reported in Table 2.1. A statistical analysis of the relationships between pairs of
homologous structures is at the basis of the definition of the restraints; this analysis relies

on a database of 105 family alignments that included 416 proteins with known 3D

14
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structure. The obtained relationships are expressed as conditional probability density

functions (pdfs) and are used directly as spatial restraints. The spatial restraints and

CHARMM energy terms enforcing proper stereochemistry [72] are combined into an

objective function.

Optimization of the model by satisfying the spatial restraints

The final model is obtained by optimizing the objective function in Cartesian space. The

optimization is carried out by the use of the variable target function approach employing

methods of conjugate gradient and molecular dynamics with simulated annealing.

Table 2.1 — List of MODELLER spatial restraints.

Restraint name Variable
Amino acid residue type r
Main-chain dihedral angle ® O]
Main-chain dihedral angle W W
Secondary structure class (residue) t
Main-chain conformation class (residue) M
Fractional content of residues in the main-chain conformation class A a
Side-chain dihedral angle i, i=1,2,3,4 Xi
Side-chain dihedral angle xi class, i=1,2,3,4 ci
Residue solvent accessibility a
Average accessibility of two residues in one protein a
Residue neighbourhood difference between two proteins s
Average residue neighbourhood difference between two proteins S
Fractional sequence identity between two proteins i
Ca-Ca distance d
Difference between two Ca-Ca distances in two proteins Ad
Main-chain N-O distance h
Difference between two N-O distances in two proteins Ah
Average residue Biso b
Resolution of X-ray analysis R
Distance of a residue from a gap in alignment g
Average distance of a residue from a gap g

15
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Starting from an alignment, MODELLER generates a user-defined number of models, all
slightly different one from the other, obtained by varying the initial model.

The selection of the model (or models) to use for subsequent analyses is up to the user.
This can be made either by evaluating the models with standard structure quality indices
(see Paragraph 2.2) or by considering the values of the MODELLER objective function and

selecting the model(s) with the optimal values.

2.1.2 |-TASSER
I-TASSER [70, 71] is a hierarchical protein structure modelling approach which is based on
secondary structure-enhanced profile-profile threading alignment (PPA) and employs the
iterative implementation of the threading assembly refinement (TASSER) program [73].
The overall procedure is described in Figure 2.1 and is composed of 3 steps:

1. threading of the query sequence through the PDB;

2. first structure assembly, refinement and clustering;

3. structure re-assembly and model selection.

Structure assembly Structure re-assembly

Sequences

Lowest E structure

Figure 2.1 — The I-TASSER workflow (extracted from the original paper by Wu et al. [70]).

16
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Threading of the query sequence through the PDB

The query sequence is first threaded through the PDB to identify appropriate local
fragments, which are then adopted for the structural assembly. The threading method is
a profile-profile alignment (PPA) approach, in which an alignment score between each
residue of the query sequence and the corresponding residue of the template structure is
calculated both on evolutionary and on structural similarity bases. In fact, it takes into
account both the probability of substitution between the residues and the match
between the secondary structure assignment by DSSP [74] for the template residue and
the secondary structure prediction by PSIPRED [75] for the corresponding query residue.
The Needleman-Wunsch dynamic programming algorithm [76] is used to find the best
match between the query and template sequences. A position-dependent gap penalty is
used: no gap is allowed inside the secondary structure regions, while gap opening (value
equal to 7.0) and gap extension (equal to 0.5) penalties apply to other regions and the
ending gap penalty is ignored.

First structure assembly, refinement and clustering

In the I-TASSER modelling step, a protein is represented by its Ca atoms and side chain
centres of mass (SG). Based on the PPA alignment, the chain is divided into continuous
aligned regions (more than five residues), whose local conformation remains unchanged
during assembly, and gapped ab initio regions. For computational efficiency, the Ca of
these ab initio residues lie on an underlying cubic lattice; whereas, for maximum
accuracy, the Ca of aligned residues are excised from the threading template and are off-
lattice. SGs are always off-lattice.

For a given alignment, an initial full-length model is built by connecting the continuous
secondary structure fragments through a random walk of Ca-Ca bond vectors of variable
lengths. During the initial model-building procedure, only excluded volume and geometric
constraints of virtual Ca-Ca bond angles are considered. The side-chain centre of mass is
determined by a two-rotamer approximation that depends on whether the local
backbone configuration is extended or compact.

The initial full-length models are submitted to parallel-exchange Monte Carlo sampling
[77] for assembly/refinement. Two kinds of conformational updates (off-lattice and on-
lattice) are implemented. Overall, the tertiary topology varies by the rearrangement of
the continuously aligned substructures, where the local conformation of the off-lattice

substructures remains unchanged during assembly.
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The assembly force field includes predicted secondary structure propensities from
PSIPRED, backbone hydrogen bonds, and a variety of statistical short-range and long-
range correlations (e. g. consensus predicted side-chain contacts or hydrophobic
interactions.) [73]. Moreover, it incorporates a term of predicted accessible surface area
(ASA), calculated through a two-state (exposed/bury) neural network (NN) [78], trained
on protein structures at high resolution.

Structure re-assembly and model selection

The structure trajectories of the first-round TASSER simulations are clustered by SPICKER
[79], an iterative structural clustering program. The cluster centroids are obtained by
averaging all the clustered structures after superposition. Following the clustering, the
TASSER Monte Carlo simulation is performed again, starting from the cluster centroid
conformations. The distance and contact restraints in the second-round TASSER are taken
from the combination of the centroid structures and the PDB structures searched by the
structure alignment program TM-align [80] based on the cluster centroids. The
conformation with the lowest energy in the second round is selected. Finally, the
program Pulchra [81] is used to add backbone atoms (N, C, O) and the program Scwrl_3.0
[82] is used to build side-chain rotamers. The sidechain-building procedure by Pulchra

and Scwrl does not modify the Ca coordinates.

2.2 Model quality indices

The quality of a protein structural model can be measured by the degree of structural
similarity to the native structure, but this implies the availability of the ‘answer’ to the
modelling problem. When this is not the case, the quality is estimated by comparison to
the template structure and by conformity to average properties of known protein
structures. Recently, moreover, new approaches based on machine learning have been
proposed to predict model quality.

In this thesis, models were assessed both by direct comparison to the known native
structures (‘calculated’ indices) and by using indices for model quality estimation and

prediction (‘predicted’ indices).

2.2.1 ‘Calculated’ indices
Direct comparison to the native structure was obtained by structural alignment using

three programs: DALILite [83], LGA [84] and ProFit [85]. The former generates a global
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alignment by optimization of both the number of structurally aligned residues and the
overall root mean square deviation (RMSD) of their corresponding Ca atoms. LGA
generates many different local superimpositions to detect regions where proteins are
similar, providing a combination of two sets of scores for Local/Global Alignment. ProFit
exploits an iterative procedure based on the conjugate gradient minimization method
that uses a succession of rotations to perform the superimposition of protein structures
[86].

According to the structural alignment results, the quality of the models was measured by
several indices aimed at evaluating both the global and local accuracy of the structures.
The global quality indices are:

— RMSD: the root mean square deviation on Ca atoms included in DALILite
structural alignment;

— DALI_ZSCORE: the statistical significance of the DALILite alignment compared to
a set of unrelated proteins;

— DALI_ZRATIO: the DALI_Zscore normalized by the Z-score of structural alignment
between model and template. This measure reflects the degree of modelling
success as the efficiency to reproduce the native better than the original
template [21];

— LGA_RMSD: RMSD of the residues of the model superimposed to the
corresponding residues of the native structure under the distance cut-off of 4 A
by LGA;

— GDT_TS and GDT_HA: average of the percentage of residues of the model that
can be superimposed to the native structure under a certain distance cut-off. In
particular: GDT_TS = (P1+P2+P4+P8); GDT_HA = (P0.5+P1+P2+P4)
where Pd is the percentage of residues superimposed under the cut-offs d (d = 1,
2,4,8 A for GDT_TS; d =0.5, 1, 2, 4 A for GDT_HA);

— LGA_S: combined (local and global alignment) LGA score [84] for the LGA
alignment.

The local quality was investigated by comparing the geometry of the modelled and native
binding sites (for ligand-protein docking cases) or interfaces (for protein-protein docking).
For ligand-protein docking, the residues in the active site were defined as the ones with
at least one heavy atom within 4 A of any of the ligand atoms.

The local quality indices considered for the ligand-protein docking part of this thesis are:
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— RMSD-s: the root mean square deviation on Ca atoms of the binding site
included in DALILite structural alignment;
— dRMSD-s: in general, the dRMSD is defined as the root mean square

deviation between the corresponding atomic distances in two structures:

(where a and b are the labels of the two structures, d the distance vectors, i and j
the indices of the atoms and N is the number of comparisons performed). For
the dRMSD-s the sum is performed over the heavy atoms of the side-chains in
the active site. Therefore this index records the deviation in the relative
positions of the side-chains and it is a suitable complement to the RMSD-s that
conversely describes the absolute deviation from the crystallographic geometry;
— ACS: the Atomic Contact Score, which evaluates the number of reproduced
contacts between the heavy atoms of protein and ligand, after a local
superimposition of the model onto the target structure [87]. The ACS evaluates
the fraction of the correctly modelled atomic contacts and penalizes the clashes

between the modelled binding site atoms and the ligand atoms:

Z(Cont,-xj'.ay —Cont ™)=Y Clash]";

Acs =1 .
ZCont,-,j
ij
Cont,-j = ! B
’ 0 otherwise

ash: ; = ’
" lo0  otherwise

where Cont is the number of contacts and Clash of clashes in the crystallographic
(Xray) and model (m) structures. The units are in A.
For the protein-protein docking, the interface backbone was defined as the backbone

atoms of the residues within 10 A of any heavy atom of the interacting partner and the
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interface side-chains as the side-chain heavy atoms of the residues within 5 A of any

heavy atom of the interacting partner. The local quality indices calculated in this thesis

are:

iRMSD_bb: the root mean square deviation on the backbone heavy atoms of the
interface calculated from ProFit alignment;
iRMSD_sc: the root mean square deviation on the side-chain heavy atoms of the
interface calculated from ProFit alignment;
fnat: fraction of native contacts with the interacting protein reproduced when
superimposing the interface of the model onto the interface of the native

structure in complex; it was calculated at a distance of 5 A.

2.2.2 ‘Predicted’ indices

Since the choice of the template greatly affects the modelling results [18], indices that

evaluate the model-template similarities (for both structure and sequence, both global

and local) were considered in the class of ‘predicted’ indices. Complementary to these

indices is the set of indices either derived by geometrical analysis of the models and

comparison with the average of a set of reference structures or based on statistical force

fields generated from analyses of high-resolution PDB structures.

The indices employed to evaluate the models by comparison with the templates are:

Global indices:

Seq_ld: the overall percentage of sequence identity between target and
template, evaluated on the sequence alignments used for modelling;

Seq_Sim: the overall percentage of sequence similarity between target and
template, evaluated on the sequence alignments used for modelling, by using
the BLOSUMG62 matrix [88];

RMSD(t): the root mean square deviation on Ca atoms included in the DALILite
model-template structural alignment;

LGA_RMSD(t): RMSD on Ca atoms of the residues of the model superimposed to
the corresponding residues of the template structure under the distance cut-off
of 4 A by LGA;

LGA_S(t): combined (local and global alignment) LGA score on Ca atoms for the

LGA model-template alignment.
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Local indices for the ligand-protein binding site:

Seq_ld-s: the percentage of sequence identity between target and template in
the binding site, evaluated on the sequence alignments used for modelling;
Seq_Sim-s: the percentage of sequence similarity between target and template
in the binding site, evaluated on the sequence alignments used for modelling, by
using the BLOSUMG62 matrix;

RMSD-s(t): the root mean square deviation on Ca atoms of the binding site

included in the DALILite model-template structural alignment.

Local indices for the protein-protein interface:

Seq_ld-i: the percentage of sequence identity between target and template at
the interface, evaluated on the sequence alighments used for modelling;
iRMSD_bb(t): the root mean square deviation on the backbone heavy atoms of

the interface calculated from the DALILite model-template alignment.

The 'statistical' predicted quality indices were calculated by using a number of web-

servers or programs for the assessment of model (or experimental structure) overall

quality:

From the PSVS web-server [89]:

MolProbity: MolProbity clashscore [90], which evaluates the number of overlaps
per thousand atoms;

Procheck: Procheck phi-psi score, which checks the stereochemical quality of the
phi and psi dihedral angles [91];

Prosall: Prosall score, which is based on knowledge-based potentials and
evaluates the structures in terms of atom-pair and protein-solvent interactions
[92];

Verify3D: Verify3D score, which analyzes the compatibility of a 3D-structure with

its own amino acid sequence [93].

From ProQ [94], which is a neural network-based model quality assessment program:
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LGscore: predicted score of structural similarity between model and target [95];
MaxSub: predicted score that takes into account the largest number of residues
for which all distances between the model and the native structure are shorter

than 3.5 A [96].
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From the web-server ModFOLD [97]:

— MaQscore: it combines scores obtained from different methods using a neural

network trained with the TM-score [98].
From the ModEval model evaluation server [99]:

— DOPE: Z-score of the DOPE potential, an atomic distance-dependent statistical
potential [100];

— TSVMod_RMSD: predicted RMSD (all Ca atoms) between model and native
structure; it is obtained from the TSVMod method [101], which uses a support
vector machine to predict the structural similarity between a model and the
corresponding native structure;

— TSVMod_Over: predicted fraction of Ca atoms within 3.5 A of their correct
positions in the native structure, also obtained by the TSYMod method [101].

From the QMEAN server for model quality estimation [102]:

— Qmean: score derived from statistical potentials taking into account torsion
angles, solvation, contacts and terms of agreement between predicted and
calculated secondary structure and solvent accessibility [103, 104];

— Qmean_Z: Z-score derived by the relation between the Qmean score value for
the query model and the scores of a non-redundant set of high-resolution X-rays

structures of similar size [105].

2.3 Ligand-protein docking with AutoDock
The ligand-protein docking calculations, in this thesis, were performed by using AutoDock
[29, 106, 107]. This program, as many other docking methods, works in 2 stages:

1. sampling of the conformational space of the complex;

2. scoring and ranking of the poses.

2.3.1 AutoDock sampling stage

In this thesis, the Lamarckian genetic algorithms sampling implemented by AutoDock was
used. These are genetic algorithms followed by a local search in the conformational space
of the ligand, performed on a fraction of the poses generated (a schematic workflow is

reported in Figure 2.2).
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TCnia Pate  Cnag ConowPes

Figure 2.2 — AutoDock Lamarckian genetic algorithms procedure (extracted from the original paper

by Morris et al. [107]). f(x) in the figure is the fitness function of the algorithm.

The genetic algorithm search starts with the definition of the genotype and the
phenotype. Given the fact that each docking pose is an individual, the arrangement of a
ligand can be defined by a set of values describing the translation, orientation and
conformation of the ligand with respect to the protein: these are the ligand state
variables. Each state variable corresponds to a gene, and the ensemble of genes
corresponds to the genotype. The atomic coordinates of the ligand, instead, correspond
to the phenotype. The total interaction energy of the ligand with the protein, evaluated
using the scoring function, corresponds to the fitness of each individual.

In genetic algorithms, random pairs of individuals are mated using a process of crossover,
in which new individuals inherit genes from either parent. In addition, some offspring
undergo random mutation, in which one gene changes by a random amount. Selection of
the offspring of the current generation occurs based on the fitness of each individual:
thus, solutions better suited to their environment reproduce, whereas poorer suited ones

die.
In AutoDock, the chromosome (or genotype) is composed by a string of real-valued

genes: three Cartesian coordinates for the ligand translation; four variables defining a

quaternion specifying the ligand orientation; and one real-value for each ligand torsion, in
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that order. In total, there is a one-to-one mapping from the state variables of the ligand
to the genes of the individual’s chromosome.

At each generation, a user-defined fraction of the population undergoes systematic local
search. This is performed both on the translation and rotation of the ligand and on the
torsions of its bonds by a modified version of the Solis and Wets method [108], that
allows the different types of genes to change with different step sizes.

In the Lamarckian genetic algorithm, genotypic mutation plays a different role than it
does in traditional genetic algorithms. Traditionally, mutation generates small changes in
the coordinates of the ligand's atoms. This allows a local search in the conformational
space. In Lamarckian genetic algorithms, instead, the local search plays this role, while
the mutation is needed only for its role in replacing alleles that might have disappeared

through selection.

The genetic algorithm iterates over generations until one of the termination criteria is
met. At the end of each docking, AutoDock reports the fitness, the state variables, and
the coordinates of the docked conformation. Moreover, it carries out conformational
cluster analysis on the docked conformations to determine which are similar, reporting

the clusters ranked by increasing scoring function value.

2.3.2 AutoDock scoring stage

AutoDock is a grid-based docking method. It precomputes an energy grid approximating
the protein. Since the interaction energy can then be approximated by calculating the
energy between atoms of the ligand and the appropriate grid points, the docking can be
accomplished much faster.

The scoring function adopted by AutoDock uses a semiempirical force field. This
estimates the energetics of the process of binding of the molecules in a water
environment using pairwise terms to evaluate the interaction between the two molecules
and an empirical method to estimate the contribution of the surrounding water.

The free energy of binding is considered equal to the difference between the free energy
of the complex and the sum of the free energy of ligand and protein in the unbound
state. Therefore the force field evaluates the binding in two steps. The first step evaluates
the intramolecular energetics of the transition from the unbound states to the

conformation that the ligand or protein will adopt in the bound complex. The second step
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evaluates the intermolecular energetics of combining the ligand and protein in their
bound conformations.
The force field includes six pair-wise evaluations (V) and an estimate of the

conformational entropy lost upon binding (ASconf):

L p—p P—L
AG = (Vbound v, nbound) (Vbound Vi nbound) (Vbound v, nbound+A5conf)

In this equation, L refers to the ligand and P refers to the protein. The first two terms are
intramolecular energies for the bound and unbound states of the ligand, and the
following two terms are intramolecular energies for the bound and unbound states of the
protein. The change in intermolecular energy between the bound and unbound states is
in the third parentheses. It is assumed that the two molecules are sufficiently distant
from one another in the unbound state that VP'Lunbound is zero.

The pairwise atomic terms include evaluations for dispersion/repulsion, hydrogen

2
i
0_2

bonding, electrostatics, and desolvation:
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The weighting constants W were optimized to calibrate the empirical free energy based
on a set of experimentally characterized complexes. The first term is a typical 6-12
potential for dispersion/repulsion interactions. Parameters A and B were taken from the
Amber force field [109]. The second term is a directional H-bond term based on a 10-12
potential [110]. The parameters C and D are assigned to give a maximal well depth of 5
kcal/mol at 1.9 A for OH and NH, and a depth of 1 kcal/mol at 2.5 A for SH. Directionality
of the hydrogen bond interaction E(t) is dependent on the angle t away from ideal
bonding geometry. Electrostatic interactions are evaluated with a Coulomb potential
where g are the charges and € is the dielectric constant. The final term is a desolvation
potential based on the volume (V) of the atoms surrounding a given atom, weighted by a
solvation parameter (S) and an exponential term based on the distance. The distance
weighting factor o is set to 3.5 A.

The force field is calibrated for a united atom model, which explicitly includes heavy

atoms and polar hydrogen atoms. Intramolecular energies are calculated for all pairs of
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atoms within the ligand (or protein, if it has free torsional degrees of freedom), excluding
1-2, 1-3, and 1-4 interactions.
The term for the loss of torsional entropy upon binding (AS..n) is directly proportional to

the number of rotatable bonds in the molecule (Nrs):
ASz:onf = Wconf Niors
The number of rotatable bonds include all torsional degrees of freedom.

2.3.3 Set up of docking simulations
The docking simulations were prepared with the following steps:
1. preparation of the structure of the ligand and selection of the torsions;
2. preparation of the structure of the receptor;
3. definition of the energy grid;
4

set up of the sampling and cluster analysis parameters.

Preparation of the structure of the ligand
All the ligands used in the ligand-docking calculations for this thesis were taken from the
CCDC/Astex Test Set [111], thus they were already minimized using the force field
implemented in Sybyl — MAXIMIN module [112]. Gasteiger charges [113] were added to
the ligands and the rotatable bonds were identified.
Preparation of the structure of the receptor
Polar hydrogens were added to the pdb structures of each receptor using AutoDockTools.
Gasteiger charges were added and the histidines were set as neutral, since the docking
process was simulated at pH=7.
Definition of the energy grid
For each protein, a grid was defined to allow the evaluation of the receptor energetic
contribution. The grid defines also the part of the protein that is accessible for the
conformational search of the ligand.
The following parameters were set up to define each grid:

— distance between grid point;

— center coordinates;

— number of points for each dimension.
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The default value of distance between grid points was chosen (0.375 A). The coordinates
of the center and the size of the grid were separately chosen on each single protein
structure, in order to contain the whole binding site.

Set up of the sampling and cluster analysis parameters

The AutoDock parameters used during the sampling are reported in Table 2.2.

The values of two parameters are in particular crucial for a thorough sampling of the
conformational space: the number of energy evaluations (ga_num_evals) and the number
of generations (ga_num_generations), because they determine when the Lamarckian
genetic algorithm generation step should stop. The values selected for these two indices

were far above the default parameters, in order to ensure a complete search.

Once the docking poses are generated and the scores are calculated, AutoDock, performs
a cluster analysis on the basis of their distance in RMSD. The maximum RMSD value that

two poses should have to be in the same cluster was set to 2 A.

Tab 2.2 — List of the AutoDock parameters and values used in this thesis.

Parameter name Meaning of the parameter Value

ga_run No. LGA runs 100

ga_pop_size No. of individuals for each LGA generation 150
Maximum no. of energy evaluations for each

ga_num_evals 25,000,000

LGA run

ga_num_generations | Maximum no. of generations for each LGA run 27,000

No. of best individuals retained for the next

ga_elitism . 1
generation

ga_mutation_rate Fraction of genetic mutation 0.02

ga_crossover_rate Fraction of crossover 0.8

ga_cauchy_alpha o parameter for Cauchy’s distribution 0.0

ga_cauchy_beta B parameter for Cauchy’s distribution 1.0

Fraction of individuals undergoing local search

Is_search_freq for each LGA generation 0.06
tran0 Initial translational coordinates (A) random
quat0 Initial rotational coordinates (°) random
dihe0 Initial torsional coordinates (°) random
tstep Ligand translational step (A) 0.2
gstep Ligand rotational step (°) 5.0
dstep Ligand torsional step (°) 5.0
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2.3.4 Docking results evaluation
To evaluate the results obtained by ligand docking into both the experimental structure
and homology models of the protein, the dRMSD was calculated between the ligand-site

distances in the docked complex and the X-ray ligand-site corresponding distances:

>3 ey —ar

N

dRMSD =

where x and m are the experimental and docked complex, respectively, d the vectors of
the distances between the ligand and the binding site heavy atoms, i and j the indices of
the atoms and N is the number of comparisons performed.

Using this index, the distance calculation takes into account only the deviation on the
relative position of the ligand to the residues belonging to the binding site and not, as it is
for the RMSD calculation, of the deviation on the absolute position of the ligand in the
pose from the crystallographic one. Therefore, when the dRMSD is used for assessing the
accuracy of the ligand docking into homology models, the structural differences between
the model and the experimental structure are excluded from the evaluation of the quality

of docking results.

2.4 Protein-protein docking
Two different protein-protein docking methods were used in this thesis: ZDOCK [114,
115] and HADDOCK [116, 117]. The former uses a rigid-body FFT search algorithm, the

latter an energy minimization approach.

2.4.1 ZDOCK and ZRANK

ZDOCK is a protein-protein docking algorithm which generates docking poses optimizing
shape complementarity, desolvation and electrostatics by using Fast Fourier Transform
(FFT).

Representing the proteins in a simplified way and treating the molecules as rigid bodies, it
allows the generation of thousands of candidate poses in a relatively short time. This
allows an almost complete sampling of the intermolecular conformational space of the

complex, performed through a systematic search of the rotational and translational space
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for the ligand relative to the receptor, which remains fixed at its starting orientation. For
the rotational search, evenly distributed Euler angles (usually A=6°) are used. For each
rotation, the algorithm scans the translational space using FFT based on a three-
dimensional grid with step size of 1.2 A

In ZDOCK, in fact, each interacting protein is mapped to a 3D grid of NxNxN points. To the
cells of the grid are assigned appropriate values representing features of the part of the
protein mapped such as desolvation parameters, charges or values representing surface
exposure (see for example Figure 2.3). A separate 3D function composed by a real and
imaginary part is needed to represent each of these physical parameters, but they can be
linearly combined to form an overall score, that is what is optimized during the sampling

stage of ZDOCK.
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Figure 2.3 — The ZDOCK schema for the association of Pairwise Shape Complementarity function
values to the grid cells representing the protein surface (extracted from the original paper by Chen
et al. [115]). Protein atoms are indicated using circles, with open circles indicating surface atoms
and shaded circles indicating core atoms. For clarity, here the grid spacing equals atom diameter.
Grid points whose values are 0 have been omitted from the figure. The value assigned to each grid
point is indicated, with i = vV—1. For each grid point in the open space of RSC (not corresponding to
any atom), the number of atoms within a distance cutoff is recorded. Small arrows point out the

atoms that are within the distance cutoff of a grid and thus contribute to its score.
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The 3D functions used for the scoring are:

—  Pairwise shape complementarity (PSC) [115]:
for each grid cell, it records the position with respect to the surface of the
protein, thus it discriminates between the core residues, the surface residues
and the solvent (distinguishing between space far off or near the protein
surface).

— Desolvation (IFACE) [118]:
this derives from statistical potentials of desolvation. It takes into account the
atom type of the atom comprised in the grid cell, considering 18 atom types.

—  Electrostatics (ELEC) [119]:
the electrostatic contribution to the docking score is calculated based on the
Coulombic formula and is expressed as the correlation betwen the partial
charges of the ligand atoms with the electrostatic potential due to the receptor

atoms.

In this thesis, the poses generated by ZDOCK where scored by using ZRANK [120], a
scoring function that includes terms of van der Waals, electrostatics and desolvation in a

weighted linear sum:

Score = Wyadw EvdW + Welec_lrEelec_Ir + Welec_erelec_sr + stEds

where elec_sr is for ‘short-range electrostatics’ and elec_Ir for ‘long-range electrostatics’.
The van der Waals contribute is estimated using the Lennard-Jones 6-12 potential from
the CHARMM19 polar hydrogen potential [121]. This is calculated for all atoms at an
interatomic distance < 8.0 A. For electrostatics interactions, the Coulomb equation is
used, with a 1/r distance-dependent dielectric. For short-range electrostatics (distance <
5.0 A), partial charges from the CHARMM 19 polar hydrogen potential are used too. For
electrostatics interactions at distances greater than 5.0 A, only fully charged side chain
atoms are used, with charges assigned as in Gray et al. [122]. The fact that the short-
range electrostatics is determined using polar hydrogen partial charges allows for the
hydrogen bonding and polar forces to be calculated within the electrostatics. Pairwise

Atomic Contact Energy (ACE) [123] is used to calculate the desolvation energy.
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2.4.2 HADDOCK

HADDOCK [116, 117] is a docking method which makes use of hints about protein
interfaces to drive its sampling stage. This information can come from several different
sources, both experimental and theoretical [42, 43].

The residues that are believed to be involved in the interaction are defined, within the
program, as ‘active residues’; ‘passive residues’ are their solvent-accessible neighbours.
Active and passive residues are used to define a network of ambiguous interaction
restraints (AIRs) between the molecules to be docked. An AIR defines that a residue on
the surface of a biomolecule should be in close vicinity to another residue (or group of
residues) on the partner biomolecule when they form the complex. This is expressed as
an ambiguous distance restraint between all atoms of the source residue to all atoms of
all target residue(s) that are assumed to be in the interface of the complex (Figure 2.4).
The effective distance between all those atoms, diABeff, is calculated as follows:

N patom Nress N e
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where Naaiom indicates all atoms of the source residue on molecule A, N, the residues
defined as interface of the target molecule B, and Ng.om indicates all atoms of a residue
on molecule B. The 1/r® sum averaging mimics the attractive part of a Lennard-Jones
potential and ensures that the AIRs are satisfied as soon as any two atoms of the
biomolecules are in contact. The AIRs are incorporated as an additional energy term to

the energy function that is minimized during the docking.

Figure 2.4 — lllustration of AIRs used in
HADDOCK to drive docking (extracted from
the paper by Karaca et al. [124]). Active
residues correspond to residues

experimentally identified or predicted to

be at the interface. Passive residues are

@ Active Residue

@ Passive Residue surface neighbors of active residues. AIRs
are defined for each active residue with

the effective distance being calculated from the sum of all individual distances between any atom

of an active residue and any atom of all active and passive residues on the partner molecule.
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The ambiguous nature of these restraints allows the use of experimental data that often
provide evidence for a residue being at the interface as a driving force for the docking. In
fact, the AIRs define a network of restraints without specifying the relative orientation of
the molecules, minimizing the necessary search through conformational space needed to
assemble the interfaces and allowing a thorough sampling of the limited conformational
space defined by the constraints.
The workflow of HADDOCK consists in three steps:
— randomization of orientations and rigid-body energy minimization (EM) driven
by interaction restraints (it0);
— semi-flexible simulated annealing in torsion angle space in which side-chains and
backbone atoms at the interface are allowed to move (it1);
— final refinement in Cartesian space with explicit solvent (typically water).
In the last two stages, flexible segments are typically defined automatically based on the

identified intermolecular contacts.

Randomization of orientations and rigid-body energy minimization

In the randomization stage, the two molecules are positioned at 150 A from each other
and each protein is randomly rotated around its centre-of-mass.

After this, rigid body energy minimization is performed: first, four cycles of orientational
optimization are performed in which each protein in turn is allowed to rotate to minimize
the intermolecular energy function. Then both translations and rotations are allowed, and
the two proteins are docked by rigid body EM. The number of docking poses to be
generated at this step is user-defined. Typically, 10000 or 5000 solutions are produced
and the best 400 or 200 solutions in terms of intermolecular energies are then refined.
Semi-flexible simulated annealing in torsion angle space

The second stage consists of three simulated annealing refinements. In the first one (1000
steps from 2000 to 50 K, 8 fs time steps), the two proteins are considered as rigid bodies
and their respective orientation is optimized. In the second simulated annealing (4000
steps from 2000 to 50 K, 4 fs time steps), the side-chains at the interface are allowed to
move. In the third simulated annealing (1000 steps from 500 to 50 K, 2 fs time steps),
both the side-chains and backbone at the interface are allowed to move. This permits
some conformational rearrangements at the interface. The resulting poses are then

subjected to 200 steps of steepest descent EM.
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Final refinement with explicit solvent

The final stage consists of a mild refinement in an 8 A shell of TIP3P water molecules
[125]. A 2 fs time step is used for the integration of the equation of motions. The system
is first heated to 300 K (500 steps at 100, 200, and 300 K) with position restraints (kpos =
5 kcal mol™ A™) on all atoms except for the flexible side chains at the interface. MD steps
(5000) are then performed at 300 K with position restraints only on non-interface heavy
atoms (kpos = 1 kcal mol™ A®). During the final cooling stage (1000 MD steps at 300, 200,

and 100 K), the position restraints are limited to backbone atoms outside the interface.

The final structures are usually clustered by HADDOCK with the algorithm described in
Daura et al. [126], using a cut-off of 7.5 A RMSD, only counting the interface backbone
atoms of the ligand. The resulting clusters are ranked according to their average

interaction energies.

During the different stages of the docking protocols, solutions are scored as follows:

it0: score=0.01*E 4, +1.0%E . +0.01%E 4;p —0.01%BSA+1.0*E yo00p,
itl: score=1.0%E gy +1.0%E o +0.1%E 4;p —0.01%BSA+1.0*E jo50p,
water: score=10%E g +0.2%E o0 +0.1%E 4 g +LO*E yo50p,

Ear represents the (ambiguous interaction) distance restraint energy; BSA is the buried
surface area; E,qw and Eqe are the van der Walls and electrostatics energies calculated
with an 8.5 A distance cut-off using the OPLS united atom force field [127] and Egeson the

desolvation energy calculated using the parameters of Fernandez-Recio et al. [128].

2.4.3 Indices to evaluate protein-protein docking results
In this thesis, the protein-protein docking results presented in Chapter 3 were evaluated
by comparison with the experimental structure of the complex, according to the CAPRI
criteria [129]. These take into account three parameters:
— |-RMSD: RMSD on the ligand backbone, after superimposition of the receptors of
the docked and the native complex;
— i-RMSD: RMSD on the interface backbone, after superimposition of the interface
of the docked and the native complex;

— fnat: fraction of the native contacts found in the docking solution.

34



Computational methods

The interface backbone was defined as the backbone atoms of the residues within 10 A of
any heavy atom of the interacting partner; fnat was calculated at a distance of 5 A.

Thus, both the reproduction of the overall geometry and interactions of the complex are
used in evaluating docking results.

According to the values adopted by these parameters, the docking solutions are classified
in three categories, as reported in Table 2.3. The three-star solutions are those having the
highest accuracy, then come the two stars (medium accuracy) and the one star
(acceptable accuracy). The solutions that do not fall in these three categories are
classified as inacceptable.

The protein-protein docking results presented in Chapter 5 and obtained by docking one
protein into both the experimental structure and the homology models of the other
protein, instead, were evaluated only on the basis of their i-RMSD with respect to the

native complex.

Tab 2.3 — CAPRI rules for the assessment of protein-protein docking results.

Prediction category I-RMSD (A) i-RMSD (A)* fnat®
High accuracy (* * %) <1.0 <1.0 >0.5
Medium accuracy (% %) <5.0 <2.0 >0.3
Acceptable accuracy (%) <10.0 <4.0 >0.1
Incorrect >10.0 >4.0 <0.1

a) Interface residues are those within 10 A of the interacting partner.
b) Calculated on residues within 5 A of the interacting partner.
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Chapter 3

This chapter illustrates the development and testing of ZADDOCK, a new protein-protein
docking approach which is a combination of two of the best performing protein docking
methods that make use of different sampling strategies: rigid-body ab initio search
(zDOCK) and EM/MD sampling (HADDOCK).

Through an analysis of the performance of this new method on a wide and representative
set of protein-protein complexes corresponding to different types of interaction, we
demonstrated that ZADDOCK can be a reliable and useful tool, not only for generating
possible binding modes, but also for providing accurate information on the interactions
that take place in protein complexes and confirmed the potentiality of combining
different docking methods to overcome their limitations in sampling and sum their

strengths.

3.1 Introducing ZADDOCK, a new protein-protein docking method that
uses FFT search for interface prediction

As discussed in the introduction chapter, the search stage in protein-protein docking is a
crucial step, but it is constrained by the current computational limits. Nowadays, in fact, it
is not possible to perform a complete search in the conformational space of the
interacting partners, including a full flexible treatment of the partner molecules.
Consequently, every docking method is affected by approximations introduced in order to
make the sampling stage more efficient. Over the years, various strategies have been
developed to solve the sampling problem. Among them, the most popular approaches
are: fast Fourier transform (FFT), Monte Carlo (MC) search and energy
minimization/molecular dynamics (EM/MD). FFT-based methods [130] generate
thousands of conformations of the complex in a relatively short time, thus allowing an
almost complete search of the relative orientations in the conformational space. Since
they are very fast, they can be used even in the total absence of information regarding
the interaction patches. These methods have, however, the disadvantage of treating the
proteins as rigid bodies.

MC and EM/MD-based methods, on the other hand, can take into account the flexibility
of the individual partners. The limit of these approaches is that the sampling requires a
great amount of computational time. For this reason, the docking methods that
implement this kind of sampling usually need restraints to limit both the search of the

relative position of the partners and the flexible search. Restraints can be defined based
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on several sources, among which biophysical, biochemical and bioinformatics data [42,
43].

HADDOCK [116, 117] (for a detailed description of the method see Paragraph 2.4.2)
belongs to the second class of docking methods: it is based on a combination of rigid-
body EM-driven docking and flexible molecular dynamics refinement stages and relies
strongly on external information. The latter is both its main strength and weakness: it can
achieve high-accuracy results provided that sufficient data are available, but can also
easily be misled by wrong information [131]. In the absence of experimental information,
bioinformatics methods can be used to predict putative interface patches. This can be
done either using traditional interface prediction tools [132] that consider residues
conservation, interface propensities and physico-chemical characteristics of the amino-
acids exposed to the solvent, or by exploiting docking methods themselves [128, 133]. In
particular, this second strategy seems very promising, since it considers both proteins and
thus can be guided both by the physics of the interaction and by the complementarity in

the physico-chemical features of their surface and shape.

To explore the potentiality of this latest approach and allow the use of HADDOCK in
absence of any experimental information, we combined HADDOCK with ZDOCK [114,
115], an FFT docking software that does not require any input data, except the structures
of the interacting partners (for a detailed description of the method see Paragraph 2.4.1).
This integrated approach, ZADDOCK, allows to overcome the weaknesses of the isolated
approaches, combining in a synergistic manner their strengths to achieve better results.
In particular, the fast and almost complete rigid-body search of ZDOCK is used to sample
the relative orientations of the two interacting partners and to predict the interface
patches. The resulting initial binding modes are subsequently subjected to the flexible
refinement of HADDOCK to obtain high quality predictions. As a results, the main goals
achieved by ZADDOCK are:

- the possibility of using the flexible refinement stage of HADDOCK without the
need of any experimental data to guide the sampling step. This feature makes
ZADDOCK a powerful tool to study complexes for which no experimental
information is available and bioinformatics interface prediction fails;

- the improvement in the description of the interactions occurring inside protein

complexes, a key information to drive subsequent experimental work.
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The strategy of combining different docking methods with the aim of improving the final
results has been proposed also in some recent papers [44, 62-65] indicating that this is
indeed a very promising avenue to improve docking results. Pierce and Weng [64], in
particular, proposed a strategy for combining the initial search stage of ZDOCK with the
structural refinement of another docking methods, RosettaDock [122], which implements
side-chain repacking and a Monte Carlo search at the interface of the ligand. The
combination of those two methods, together with the development of a scoring function
ad hoc, did lead to very good docking results, improving the performance of ZDOCK in
terms of geometrical interface adherence of the docking poses to the native structures of

the complexes.

3.2 Computational approach: integration of ZDOCK and HADDOCK into
ZADDOCK

Two existing docking programs, ZDOCK 3.0 [118] and HADDOCK 2.1 [134], were combined
in a streamlined and automated procedure into ZADDOCK. The ZADDOCK workflow is
illustrated in Figure 3.1: the first two steps of ZADDOCK consist in a standard
ZDOCK+ZRANK procedure, while the last two steps coincide with the semi-flexible
simulated annealing (it1) and the final refinement stage (water) of HADDOCK (see
Paragraph 2.4 for a thorough explanation of the two docking approaches).

After having built topologies and missing atoms for the starting structures, the initial rigid
body docking stage is performed by FFT search using ZDOCK with a rotational sampling of
6° and a grid resolution of 1.2 A (corresponding to the fine sampling settings in ZDOCK).
The top 10000 docking solutions are written to disk. This step is followed by a re-ranking
stage, during which the top 10000 solutions generated by ZDOCK are ranked using ZRANK
[120]. The 400 best-scored solutions are then analyzed: for each of them, the contacts
between the Ca atoms of the two proteins that are within a 10 A cut-off (‘interface Ca’)
are extracted and a list of HADDOCK restraints is created. The distance restraints are set
to the measured Ca-Ca distance + 1.0 A error bound. These restraints are then used in
the two subsequent semi-flexible refinement steps. During this refinement, 50% of the
restraints are randomly discarded for each docking model, to allow some sampling
around the starting orientations. In order to deal with the severe clashes frequently
found in FFT-based docking models, the original HADDOCK refinement protocol was

modified: the Lennard-Jones potential was truncated at 1.5 A interatomic distance and
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then progressively increased to 0.5 A (the default value in HADDOCK) during the
simulated annealing stage in itl. Moreover, surface and centre-of-mass restraints were
tightened, to avoid a separation of the interacting molecules due to the high energy
caused by the clashes.

The final solutions after refinement in explicit solvent (water stage) are then ranked

based on the HADDOCK score defined as:

HADDOCKcore=1.0%E, gy +0.2% E oo +0.1%E g g+ 1.0%E ooy,

(see Paragraph 2.4.2 for a detailed description of the score).

The final predictions are also subjected to cluster analysis, as implemented in the
standard HADDOCK protocol (see Paragraph 2.4.2), using a cut-off of 7.5 A RMSD, only
counting the interface backbone atoms of the ligand. For the analysis reported in this
work, the resulting clusters were ranked according to the average interaction energies of

their four best-scored predictions.

2 unbound partners

¥
1. it0 ZDOCK

I
10000 docking solutions

v
2. re-ranking ZRANK
[

top 400 re-ranked solutions
v
3 extraction
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400 lists of restraints
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J HADDOCK
5. water refinement

v

400 refined solutions

Figure 3.1 — ZADDOCK workflow

41



Chapter 3

3.3 ZADDOCK performance

3.3.1 Test set

The performance of ZADDOCK was tested on the protein-protein docking benchmark 3.0
[135]. This benchmark set is composed of 124 protein-protein complexes of various types
divided into four groups:

— 13 antibody/antigen unbound (abbreviation: A);

12 antibody/antigen bound (AB);
— 35 enzyme/inhibitor (E);
64 other (O).

They are also classified by their level of difficulty [136]:

—  88rigid-body (r);

— 19 medium difficulty (m);

— 17 difficult (d).
The simplest cases are targets for which none of the components undergoes significant
conformational changes upon binding, whereas the most challenging are the ones for
which the binding causes large conformational changes. The percentage of rigid-body,
medium difficulty and difficult cases for each class of complexes is reported in Table 3.1.
For all cases, the docking was performed starting from the unbound structures when
available, and the protonation state of histidines was defined using the WHATIF

webserver [137].

The docking solutions were evaluated according to the CAPRI criteria [129], as described
in Paragraph 2.4.3. Superimposition of the structures and RMSD calculations were

performed using the McLachlan algorithm [86] as implemented in the program ProFit.

Table 3.1 — Percentage of rigid-body, medium difficulty and difficult cases present in each class of

complexes of the test set.

o ; o

Class % of rigid-body cases % of medcl:sn;sdlfflculty % of difficult cases
E 80% 14% 6%
] 59% 20% 20%
A 85% 8% 8%
AB 92% 0% 8%
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3.3.2 ZADDOCK compared to HADDOCK ab initio and CPORT+HADDOCK

As one of the goals of developing ZADDOCK was to allow the use of HADDOCK in the
absence of any experimental data or bioinformatics interface predictions, a first
comparison was made between the performance of ZADDOCK and HADDOCK: 1) run
without experimental restraints (‘ab initio’) and 2) guided by interface prediction data
obtained by CPORT [138].

The HADDOCK ab initio mode consists in performing the docking calculations with centre-
of-mass restraints corresponding to distance restraints defined between the geometric
centres of the Ca atoms of the various partners. The distance is automatically defined
based on the size of each molecule. This procedure allows to force contacts between the
two molecules, without defining specific restraints. CPORT [138] is a meta predictor for
protein-protein interfaces that combines predictions from up to six different servers. The
resulting predictions, tuned for high sensitivity (coverage of the true interface), can be

used to define active and passive residues in HADDOCK.

ZADDOCK results for ‘enzyme/inhibitor’ and ‘others’ docking cases of the benchmark 2.0
[139] were compared to the corresponding cases obtained with either ab initio or CPORT-
driven docking with HADDOCK [138]. The results are summarized in Figure 3.2, where the
histograms report the percentage of cases of the benchmark showing at least an
acceptable solution (one star or better, Fig. 3.2a) or a medium accuracy solution (two
stars or better, Fig. 3.2b) among the predictions. From the histograms, it is clear that
ZADDOCK outperforms by far HADDOCK ab initio, with the highest difference in the
percentage of acceptable solutions in the top100 (33%) (Fig. 3.2a). This is an expected
result since centre-of-mass restraints do not contain much information to guide the
docking and a more thorough sampling of the interaction space would be required:
HADDOCK was clearly not developed as an ab initio docking program.

The differences between ZADDOCK and CPORT+HADDOCK are less extreme, with
ZADDOCK outperforming CPORT+HADDOCK in all cases except for the number medium
and high accuracy solutions at the top (Fig. 3.2b): CPORT+HADDOCK ranks a two- or
three-star solution at the top in 8% of the cases, while this percentage for ZADDOCK is
5%. These results are rather unexpected, since they mean that the combination of a
mainly geometric docking method with an energy-based flexible refinement achieves

better results than when using interface predictions.
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Figure 3.2 — Comparison of the performance of ZADDOCK, HADDOCK ab initio and
CPORT+HADDOCK. Percentage of cases of the benchmark for which at least one structure of: a) one
star (or better) quality or b) two star or better quality was obtained among the whole set of docking
solutions (top 400) or the best 100, 10 or 1.

3.3.3 ZADDOCK results on different classes of complexes

To determine the generality and versatility of ZADDOCK, its performance was evaluated
separately for the different classes and difficulties of the complexes in the benchmark set.
The histograms in Figure 3.3 report the percentage of cases of the various complex
classes for which at least a one-star (or better) solution (Fig. 3.3a) or a two-star (or better)
solution (Fig. 3.3b) was found among the final set of refined predictions.

For the enzyme/inhibitor (E), antibody/antigen unbound (A) and antibody/antigen bound
(AB) classes, the percentage of one-star solutions is above 65%. This value decreases for
the top 100 and top 10 solutions. One can also observe a clear difference in performance
between the various classes of complexes, with the enzyme/inhibitor complexes
performing best. The other two categories have values above 30% both for the top 100
and the top 10 predictions. When considering the top ranked solutions, the three classes
show again about the same performance. Interestingly, for the one-star (or better)
predictions ZADDOCK showed nearly the same overall performance when evaluated over
the AB and A classes. This indicates that the method is not very sensitive to the
conformation of the starting structure (bound or unbound). Good results were achieved
also for the most difficult category, ‘others’, that is characterized by a very high degree of
heterogeneity. For the two-star (or better) solutions, the same scenario can be observed:
the best performance was achieved for the E class, followed by the AB, A and O

categories.
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Figure 3.3 — ZADDOCK performance on the classes of complexes of the benchmark (E =
enzyme/inhibitor, O = others, A = antibody/antigen unbound, AB = antibody/antigen bound). The
histograms report the percentage of cases of the benchmark for which at least one structure of: a)
one star (or better) quality or b) two star or better quality was obtained among the whole set of

docking solutions (top 400) or the best 100, 10 or 1.

Note that the differences between classes also reflect to some extent their distribution
between easy, medium and challenging cases. A similar performance for rigid-body and
medium-difficulty cases is found when considering the percentage of one-star (or better)
predictions among the top 400 (Fig. 3.4a and 3.4b). When considering only the top 100 or
top 10, better results are found for the rigid-body cases. The difference in performance
for these two classes becomes negligible when considering only the best-ranked pose.
This means that the sampling stage of ZADDOCK is able to achieve similar results for the
complexes for which minor or medium changes occur upon binding. Scoring, on the other
hand, fails to recognize many near-native structures in the top 100 and 10 for the
medium-difficulty cases, penalizing thus the cases for which the starting structures differ
more from the bound form. As for the difficult complexes (RMSD > 2.2 A for the interface
Ca atoms between unbound and bound conformation), in only about 10% of the cases is
a one-star solution present among the final refined predictions. This is not surprising
since rigid-body docking is unable to sample large conformational changes that occur
upon binding and the semi-flexible refinement stage in HADDOCK can only lead to rather
small rearrangements (typically up to a maximum of 2 A). Clearly, if the rigid-body initial
search does not sample near-native conformations, the refinement stage is unable to

generate medium-accuracy predictions.

45



Chapter 3

a) atleast * b) atleast *x %
mr @m md
100 100
90 90
80 80
70 70
® 60 | 8 60
® 50 8 s0
o o
x 40 X 40
30 30
20 20
10 + 10
0 0
8 8 S e S S e e
< = a g 3 b ° g
Q Q o had Q Q o had
2 2 - L L -

Figure 3.4 — ZADDOCK performance on the classes of difficulty of the benchmark (r = rigid-body, m
= medium difficulty, d = difficult). The histograms report the percentage of cases of the benchmark
for which at least one structure of: a) one star (or better) quality or b) two star or better quality was

obtained among the whole set of docking solutions (top 400) or the best 100, 10 or 1.

In summary, this analysis indicates that ZADDOCK performs homogeneously well for all
the categories of complexes in the benchmark set depending on their degree of difficulty

(conformational changes).

3.3.4 ZADDOCK compared to ZDOCK+ZRANK

To assess the effect of the flexible refinement on the overall performance of the method,
the results of the ZDOCK+ZRANK stage and of the whole ZADDOCK process were
compared (Fig. 3.5).

During the refinement, no significant changes occurred in the number of test cases for
which a one-star solution is found among the entire set of predictions. Considering the
top 100 predictions, the HADDOCK scoring function seems slightly better than ZRANK in
detecting the one-star solutions. Considering the two- and three-star solutions,
ZDOCK+ZRANK performs a bit better with a 35% success percentage compared to 31% for
ZADDOCK. It appears thus that a number of good (two-stars or higher) solutions are lost
during the refinement step. This can be attributed to clashes in the initial rigid-body pose
that were removed in the flexible refinement stage at the cost of the accuracy of the

model (see below).
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Figure 3.5 — Comparison of the performance of ZADDOCK and ZDOCK+ZRANK. Percentage of cases
of the benchmark for which at least one structure of: a) one star (or better) quality or b) two star or
better quality was obtained among the whole set of docking solutions (top 400) or the best 100, 10

orl.

The rank of the first acceptable model (one star) in the top 400 predictions was also
analyzed (Table 3.2) to compare the two methods. A better ranking of the best-scored
pose implies, in fact, a higher probability of detecting a near-native prediction among the
docking poses. For 79 cases of the benchmark at least one acceptable model was present
in the top 400 docking poses; for one case (2HMI), the acceptable model was lost after
refinement. In 53% of the successful cases the flexible refinement leads to an
improvement in ranking, while the initial ZRANK scoring performed better in 37% of the

cases (and 10% did not change).

Note however that the classical scoring in HADDOCK is performed on a cluster basis and
not individual structures. The standard HADDOCK cluster analysis was performed on the
final ZADDOCK solutions, ranking the clusters obtained on the basis of the average score
of the four best-scored poses included in each cluster. The results highlighted that in 64%
of the cases which presented at least an acceptable solution among the top 400
predictions at least one cluster could be found that contained a star pose among the four
best scored (‘star-cluster’) (some statistics on the best-ranked star-clusters are reported

in Table 3.3). Moreover, 38% of those ‘star-clusters’ were ranked as first.
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Table 3.2 — Rank of the first-ranked star solutions for ZDOCK+ZRANK and ZADDOCK for the cases for
which acceptable (one star) models were found in the top 400 solutions. Cases for which ZADDOCK

improved the rank are indicated in bold.

PDBID | rank ZDOCK+ZRANK | rank ZADDOCK PDBID rank ZDOCK+ZRANK | rank ZADDOCK
1A2K 288 30 INCA 20 255
1ACB 29 9 INW9 324 162
1AHW 6 2 10PH 237 44
1AVX 2 1 1PPE 1
1AY7 17 4 1QFW_HL 1
1B6C 1 1 1ROR 25 77
1BJ1 1 2 1RLB 13 26
1BUH 144 64 151Q 242 302
1BVK 1 87 1mMQ 154 26
1BVN 1 2 1UDI 180 323
1CaGlI 4 2 1VFB 117 111
1DFJ 1 1 1WE) 4 1
1E6E 2 2 iwail 53 1
1E6) 28 8 1XD3 2 8
1E96 102 107 1XQs 13 1
1EAW 2 2 1yvBe 2
1EER 151 35 170K 6 115
1EFN 27 144 175Y 52 21
1EWY 8 35 1ZHI 40 17
1F34 120 108 2B42 7 4
1F51 203 86 2BTF 16 4
1FSK 1 2 2CFH 143 42
1GP2 261 156 2FD6 39 101
1GPW 3 2 2H7V 263 214
1GRN 342 128 2HLE 1 4
1HE1 50 22 2HMI 280 -
112Mm 132 80 2HRK 167 310
1I9R 22 54 2125 206 175
11QD 1 1 2JEL 142 64

1J2) 3 8 2MTA 66 54
1JPS 13 1 2NZ8 277 149
1K4C 352 244 208V 3 8
1K5D 277 221 2073 76 66
1K74 1 3 2PCC 6 13
1KXP 7 2 2SIC 1 1

1MAH 2 1 2SNI 12 19
1MLO 1 1 2UUY 11 16
1IMLC 39 120 2VIS 292 320
IN2C 292 20 7CEl 3 4
1IN8O 54 12
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Table 3.3 — Statistics for the best-ranked ‘star clusters’ for the cases for which clusters containing

acceptable (one star) models among the four best-scored elements were found. (Continues)

PDBID cIustear HADDOCK score® no. average iRMSD" average fnat®
rank’ of structures
1ACB 5 125.27 7 4.18+0.70 0.28 + 0.09
1AHW 12 635.20 15 3.16 £ 0.40 0.45+0.10
1AVX 1 -160.85 58 3.21+0.95 0.58+0.17
1AY7 11 -30.50 6 4.06+0.34 0.49 +£0.06
1B6C 1 -217.43 79 2.73+0.25 0.77 £0.07
1BJ1 1 -86.52 29 2.08 £0.15 0.78 £ 0.05
1BVN 1 -174.04 60 1.90£0.23 0.71+£0.06
1CGI 1 -163.56 64 3.68+0.41 0.45+0.04
1DFJ 1 -288.81 34 2.80+0.15 0.65+0.06
1E6E 1 -149.80 73 2.06+0.14 0.50+0.07
1E6)J 4 27.45 25 2.26+0.14 0.73+0.14
1E96 18 250.35 6 3.58+0.33 0.42 +0.09
1EAW 1 -161.68 38 1.98 £0.15 0.71+0.06
1EFN 19 166.65 6 4.13+0.28 0.30+£0.01
1EWY 7 24.09 17 3.71+0.77 0.36+0.14
1F34 27 825.05 5 3.53+0.81 0.31+0.08
1F51 12 267.14 12 4.51+0.65 0.21+£0.04
1FSK 1 -141.60 71 1.94 £0.15 0.78 +£0.03
1GPW 1 -85.22 23 3.27+0.77 0.52+0.17
1HE1 10 43.46 7 3.76 £ 0.71 0.39+£0.07
11Qb 1 -108.01 59 3.87+0.85 0.33+0.03
1J2) 2 -101.82 20 3.95+0.21 0.39+0.07
1JPS 5 377.17 7 2.79+0.16 0.62 +£0.12
1K74 1 -168.25 72 2.32+0.54 0.64 +0.10
1KXP 1 -182.12 30 3.15+043 0.41+£0.06
1MAH 1 -166.54 56 1.67 £ 0.06 0.81+0.10
1MLO 1 -168.12 82 2.25+0.39 0.77 £0.02
1IMLC 21 428.84 9 2.29+0.19 0.70 £ 0.05
1IN8O 7 54.90 16 2.22+£0.05 0.80 £ 0.06
1PPE 1 -165.43 222 2.03+0.48 0.74+£0.13
1QFW_HL 1 -146.79 24 4.21+0.58 0.59+0.15
1ROR 11 212.65 5 4.48 +1.06 0.33+0.29
1WEJ 3 -44.39 30 1.73 £0.09 0.74 +0.06
1XD3 9 58.98 8 4.24+0.64 0.23+0.07
1XQS 2 -149.82 18 3.18 £0.12 0.55+0.03
1YVB 2 -71.62 23 2.56+0.74 0.36+0.12
170K 13 15.09 12 3.35+0.63 0.28+0.11
175Y 12 55.48 15 3.92+0.43 0.30+0.10
1ZHI 13 331.04 13 2.82+0.45 0.64 +0.07
2B42 3 408.91 14 3.19+0.27 0.59+0.05
a) Rank on the basis of the average HADDOCK score of the four best-scored elements of the
cluster.

b) Statistics on the four best-scored elements belonging to the cluster.
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Table 3.3 — (Continued)

PDBID CIUStir HADDOCK score” no. average iRMSD" average fnat’
rank of structures
2BTF 4 241.01 11 5.31+1.68 0.25+0.11
2FD6 14 449.47 6 3.30+0.58 0.54+0.16
2H7V 25 783.33 5 4.38 +0.40 0.54 +0.04
2HLE 1 -198.06 47 3.40+0.75 0.57+0.12
2125 26 619.25 4 3.12+0.46 0.38 £0.09
2PCC 2 -49.20 24 4.58 +0.85 0.21+0.11
2SIC 1 -115.21 38 1.68 £0.25 0.79 £ 0.05
2SNI 4 84.29 8 2.72+0.37 0.49+0.19
2UUY 20 305.78 15 2.66+0.16 0.70+0.04
7CEIl 2 -208.77 60 2.42+0.10 0.82+0.03
a) Rank on the basis of the average HADDOCK score of the four best-scored elements of
the cluster.

b) Statistics on the four best-scored elements belonging to the cluster.

3.3.5 Comparison of the structural quality of the docking models

To detect whether the flexible refinement step improved the structures generated during
the rigid body docking stage, an analysis of the clashes, i-RMSD and fraction of native
contacts was performed. A clash was defined as a contact with a distance < 2 A between
heavy atoms belonging to the two interacting proteins. As reported in Table 3.4, almost
all docking predictions coming from ZDOCK+ZRANK contain clashes (96%) and all the
cases of the benchmark had, among their solutions, at least one structure with clashes.
The average number of clashes per 1000 A% of BSA (buried surface area) is 3.18. After
refinement, only 0.2% of the docking poses and 5 cases out of 124 (4%) still have clashes
(number of clashes per 1000 A® of BSA is 0.00), indicating that ZADDOCK refinement
protocol is successful in improving the quality of the interface of the rigid-body docking

predictions.

Table 3.4 — Atom clashes analysis to the top 400 models®.

% of structures % of cases average number
docking step with clashes with clashes of clashes
(out of 49600) (out of 124) per 1000 A> BSA
ZDOCK+ZRANK 96% 100% 3.18 £2.02
ZADDOCK 0.2% 4% 0.00+0.01

a) Aclashis defined as an intermolecular heavy atom — heavy atom distance < 2A.
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As for the interface RMSD and the fraction of native contacts, both the entire set of top
400 solutions and only the models having i-RMSD < 4.0 A (which will be called, from now
on, ‘near-native’ solutions) were analyzed to assess the structural improvement caused
by the refinement stage. The histograms in Fig. 3.6 show that, on average, the i-RMDS
values of the entire set improved after refinement for a majority of the case (around
74%). Taking into account only the ‘near-native’ predictions, only about 23% improved,
the remaining solution having increased i-RMSD values after refinement (average i-RMSD
difference: 0.38 A). Given the presence of a high number of structures with clashes, the
proteins are slightly pulled apart as a result of the refinement in order to eliminate the
bad contacts, which causes the i-RMSD values of the ‘near-native’ solutions to increase in
most cases. Note that fixing the backbone and only refining or repacking side-chains does
not allow to remove the clashes.

When considering fnat values, 20% of the cases improved (average fnat improvement of
0.006), 71% were unchanged and only 10% got worse. As for the ‘near-native’ solutions,
the majority of them (about 55%) showed a higher fraction of native contacts after
refinement, a minority did not change and about 38% got worse.

The accuracy improvement in reproducing the interactions between the two partners at
atomic details is a very valuable achievement, since ZADDOCK is meant to be used for
cases for which no experimental information is available. For such cases, being able to
correctly predict contacts is of interest to guide wet-lab experiments or to gain a better

understanding of the functioning of a complex.
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Figure 3.6 — Structural improvement in terms of a) i-RMSD and b) fnat for all the cases of the

benchmark, considering the whole set of docking solutions (all) or only the 'near-native' (n-n).
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These results are in accordance with what has already been published about the
capability of the HADDOCK refinement to change the i-RMSD and fnat values of the rigid-
body solutions [117]: while the improvement in i-RMSD values is limited, the fnat of the

final predictions is usually very much improved.

3.3.6 Performances of ZADDOCK on an example case
From the above analysis, the typical result of ZADDOCK on a test case, compared to rigid-
body docking only, can be generalized as follows:

—  better ranking of the best-scored acceptable solution;

limited (if any) improvement in i-RMSD values;

— improved fraction of native contacts;

— almost no clashes at the interface.
The complex of the Bovine chymotrypsinogen with a Human pancreatic secretory trypsin
inhibitor (PDB ID: 1CGl) illustrates nicely these findings. It belongs to the
enzyme/inhibitor case, classified as rigid-body in the docking benchmark 3.0. Overall
statistics about the number of acceptable solutions, best rank and average number of

clashes are reported in Table 3.5 while the structural improvement is given in Table 3.6.

Table 3.5 — Comparison of ZDOCK+ZRANK and ZADDOCK results for the Bovine chymotrypsinogen —
Human pancreatic trypsin inhibitor complex (PDBID: 1CGl).

number of acceptable® | rank of the first average number
docking step solutions acceptable of clashes’
(top 400) solution per 1000 A% BSA
ZDOCK+ZRANK 65 4 3.47 £1.97
ZADDOCK 71 2 0.00 £0.00

a) (i-RMSD < 4A or I-RMSD < 10A) and fnat 2 0.1.
b) A clash is defined as an intermolecular heavy atom — heavy atom distance < 2A.

Table 3.6 — Structure improvement after flexible refinement of the ZDOCK+ZRANK solutions for the

1CGI case.
accuracy % improved % no-change % worse
parameter n-n° solutions n-n° solutions n-n° solutions
i-RMSD 18.6 0.0 81.4
fnat 67.4 9.3 23.3

a) n-n = ‘near-native solutions, defined as docking poses with i-RMSD < 4A.
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In Figure 3.7 is reported, as an example, one of the acceptable solutions found for this
complex. While no clashes are present in this model, 21 clashes are found in the initial
rigid-body solution, which are all relieved after refinement at the cost of the i-RMSD
which increases from 2.70 A to 2.94 A. At the same time, the fraction of native contacts
improves significantly from 0.41 to 0.65. A decrease of the accuracy of the backbone
positioning is thus compensated by the plasticity of the side-chains. A detailed view of a
few key interacting residues is shown in Figure 3.7, illustrating the improvement after
ZADDOCK refinement. In fact, half of the hydrogen bonds of the native complex are found
as contacts in the considered ZADDOCK solution and 65% of the non-bonded contacts,

even if they don’t present the same exact side-chain geometry.
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Figure 3.7 — Interatomic distances at the interface of the complex (PDBID: 1CGl). a) native
interactions between receptor (green) and ligand (light purple); b) example of one ZDOCK+ZRANK
solution (receptor: cyan, ligand: dark grey); c) the corresponding final ZADDOCK model (receptor:

orange; ligand: yellow).

3.4 Conclusions

HADDOCK has shown consistent strong performance in CAPRI, belonging to the best
performing protein-protein docking methods. As recently discussed, the use of
information to guide the docking process is both its strength and weakness [131]. In the
absence of any information, HADDOCK has difficulty in selecting near-native solutions for
the refinement stage, as demonstrated in a recent paper by de Vries [138]. In order to
allow its use even in the absence of any experimental or predicted data, we have
developed ZADDOCK, that combines the flexible refinement of HADDOCK with ZDOCK, an
FFT docking method whose sampling of the intermolecular conformational space is fast

and complete.

53



Chapter 3

Benchmarking ZADDOCK on a representative set of various classes of complexes has
indicated an overall good performance provided no major conformational changes are
taking place upon binding, a limitation of any rigid-body FFT-based docking approach. The
resulting refined models show improved fractions of native contacts with pretty much
clash-free interfaces, a significant improvement upon rigid-body only docking.

ZADDOCK will be made available in a future releases of HADDOCK and will also be
included into the HADDOCK web server (http://haddock.chem.uu.nl/services/HADDOCK),

in order to facilitate its use by a broad structural biology community.
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Chapter 4

In this chapter, a large-scale experiment aimed at defining to which extent homology
models can be used in ligand-protein docking is described. This was performed on a
diverse set including experimental structures and homology models for a group of
representative ligand-protein complexes. A wide spectrum of model quality was sampled
using templates at different evolutionary distances and several strategies for target-
template alignment and modelling. The models obtained were evaluated with a selection
of the most used and well-performing model quality indices. The binding geometries
were generated using AutoDock, one of the most cited docking programs. In Section 4.1,
the background ideas, the proposed computational approach and the results of this study
are presented and discussed. Moreover, in Section 4.2 a novel strategy to predict the
accuracy of docking results based on indices of model quality is proposed and its

reliability is demonstrated for a study case.

4.1 Analysis of the relationships between the accuracy of docking results
and the quality of protein models

As discussed in the introduction, homology modelling techniques have made significant
contributions at different stages of the drug discovery process, including ligand docking
[51, 56, 59], but, given the strong dependence of docking results on the accuracy of the
protein structure, the use of good quality models is crucial for such studies.

The problem of identifying the relationship between model quality and docking results
accuracy was investigated in some specific cases of high throughput screening [52-54, 56,
140]. However, no clear trend resulted from such studies and, at the present time, there
are no general rules for predicting the accuracy of docking results on homology models,
even though this would be of great interest both for the docking and the modelling

community.

In particular, standard indices to measure the quality of models with reference to the
experimental structures [87] could be used for identifying an existing correlation between
model quality and docking accuracy, whereas indices of quality assessment, that can be
derived without knowledge of the native structure, could provide knowledge-based rules
for directly predicting the quality of docking results. Due to the importance and potential
of such indices for structure prediction, new methods have been recently developed and

a new prediction category, 'model quality assessment', was introduced since the 7"
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edition of the Critical Assessment of Techniques for Protein Structure Prediction (CASP)
experiment [141], but their potential in ligand-protein docking has still to be tested and
exploited.

On the basis of the above considerations, the aim of this experiment was to investigate
the relationships between the accuracy of ligand docking into homology models and the
quality of the models, and to verify if state-of-the-art indices for model quality
assessment can be regarded as reliable tools for direct and a priori prediction of the

accuracy of docking simulations [66].

4.1.1 Computational approach

Reference set of protein-ligand complexes

The test set selected for this work is composed by a reference group of X-ray protein
structures and by a corresponding dataset of theoretical models. The reference group
was chosen from structures included in the CCDC/Astex Test Set [111], a large and diverse
set of known protein-ligand complexes developed for validating ligand-protein docking
methods. A subset of cases with resolution of 2.0 A or better was extracted and it was
further pruned excluding: structures containing cofactor molecules, more than one
ligand, or metal ions in the binding site; proteins whose binding site is defined by more
than one chain; multiple entries of the same protein. Moreover, complexes containing
ligands with more than 10 rotatable bonds were excluded to reduce the CPU time needed
for docking. The resulting reference set includes 21 structures of complexes, spanning
several different protein folds and having different functions (see Table 4.1 for a
description and Figure 4.1 and 4.2 for a view of the ligands and the protein structures).
Some of the proteins in the selected reference set are relevant drug targets: the
neuraminidase from influenza virus (PDB ID: 1A4Q), the protein-tyrosine phosphatase 1B
(1C83), that is a therapeutic target in several disease, including diabetes, cancer, and
inflammation, the urokinase-type plasminogen activator (1EJN), whose inhibition
represents a promising target for antimetastatic therapy, the acetyltransferase that
catalyzes the O-acetylation of the antibiotic chloramphenicol (3CLA) and the
progesterone and estrogen receptors (1A28 and 3ERT). The set is also characterized by
ligands with broadly different chemical characteristics, from peptides to aromatic
carboxylic acids, from carbohydrates to nucleobases. Among them, some are

pharmaceutically relevant molecules, like for example 3,5,3’,5-tetraiodo-L-thyronine
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(PDB ligand identifier: T44), used to treat patients with thyroid problems, 4-
hydroxytamoxifen (OHT), a selective estrogen receptor modulator, and chloramphenicol

(CLM), a broad-spectrum antibiotic.

Table 4.1 — Test cases and selected templates. In bold are highlighted the templates for which an

holo form was chosen for modelling. (Continues)

Complex No. of Template
PDB ID Protein name . CATH ID Ligand ID Seq_Id (%)
. residues PDB ID
(chain ID)

1NQ7 17
1A28 (A) Progesterone receptor 256 1.10.565.10 STR 1yYuc 21
2AM9 55
1voz 31
. 2BAT 32
1A4Q (A) Neuraminidase 390 2.120.10.10 DPC 2HTS 35
2HTV 37
. - 1TLF 18
1ABF L'arab'"oie.b'nd'“g 306 | 3.40.50.2300 FCA 2DRI 21
protein 2GBP 2
Protein-tyrosine 1RPM 34
1C83 (A) phosphatase 18 298 3.90.190.10 OAI 26T 37
1MDC 24
2FT9 27

1CBS Cellular retinoic-acid- 137 2.40.128.20 REA 3IFB 30

binding protein type Il

1FTP 38

1CBI 77

10P8 23

Urokinase-type 1PPF 26

1EIN (A) plasminogen activator 253 2:40.10.10 AGB 1ELT 33
1YBW 38

Transthyretin 1002 26

1ETA (1) (prealbumin) 127 2.60.40.180 T44 1TFP 79
1IE4 84

1FEN Retinol binding protein 183 2.40.128.20 AZE 1EXS 21
111U 82

Lysine-, arginine-, ornithine- 1XT8 =

1LST binding protein 239 3.40.109.10 LYS 1GGG 30
1HSL 71

1102 19

2LDX 23

6LDH 24

1MLD (A) Malate dehydrogenase 314 3.40.50.720 cT 1HYG 27
1SMK 56

1EMD 59

1Ql7 24

1wucC 29

1ABR 33

. 1IHWM 36

1MRG Alpha-momorcharin 263 3.40.420.10 ADN 1CF5 53
1MRJ 64

1BRY 66

1NIO 70
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Table 4.1 — (Continued)

Complex

PDB ID Protein name No. of CATHID | LigandiD | T8PPIt | o0 1d (%)
. residues PDB ID
(chain ID)

1R4P 17

1RLO 22

1APA 29

. . 2MLL 33

1MRK Alpha-trichosanthin 247 3.40.420.10 FMC 1RTC 37

1NIO 60

1CF5 62

1MRG 64

10)1 27

1DYT 28

10NC 30

1ROB Ribonuclease A 124 3.10.130.10 C2P 1B1I 32

1AGI 36

1RNF 42

177X 70

- 1WBI 27

1SRJ (A) Streptavidin 121 2.40.128.30 NAB 1Y52 30

1QYe6 15

1A7S 30

1FIW 34

1YBW 38

. 2F91 43

1TNG Trypsin 229 2.40.10.10 AMC 1HI8 6

1H4W 73

1A0J 74

1TRN 75

2A31 82

1G3U 17

1GKY 23

. . 1AKE 28

1UKZ Uridylate kinase 203 3.40.50.300 AMP 1283 2

1TEV 48

1UKE 52

1MV5 18

1VHL 19

1TEV 25

Adenylate kinase 1283 26

2AK3 (A) isoenzyme-3 226 3.40.50.300 AMP 1UKE 27

2AK2 40

2AKY 41

2AR7 58
Chloramphenicol

3CLA 213 3.30.559.10 CLM 1INOC 47
acetyltransferase

1NQ7 21

3ERT (A) Estrogen receptor alpha 261 1.10.565.10 OHT 1PKS 2

6RNT Ribonuclease T1 104 3.10.450.30 2AM 1RMS 65

1B9B 43

’ ) 1R2R 53

7TIM (A) Triosephosphate isomerase 247 3.20.20.70 PGH TWYI <3

1MO00 54
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PDB ID: 1A28 PDB ID: 1A4Q

PDB ID: 1CBS PDB ID: 1EJN

PDB ID: 1ETA PDB ID: 1FEN

Figure 4.1 — 3D structures of the complexes in the test set. The proteins are represented in cartoon,
the ligands in sticks (blue). The different secondary structure elements of the proteins are
characterized by different colours: helices in red; strands in yellow. In green are represented the

loop regions. The PDB ID of the complex is reported under each structure. (Continues)
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PDB ID: 1LST

L) CL"
q )J@M\

Sl - =
&

PDB ID: 1MRG

A7
AN,

Fo
~N

e
(

&%
~, )
AN Y=
o
B, |
U‘:GL'}DJ

PDB ID: 1TNG

Figure 4.1 — (Continued)

|-@® =~
LA A EC N T\ AR P
e ) W

{ ”.1'(\@
Ny 7. B\ 17 3P N
Y R ol Y

e /

PDB ID: 1MRK

\ A\A(\/\
(\%'!,/
S \/KJ/

PDB ID: 1SRJ

PDB ID: 1UKzZ

61



Chapter 4
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Figure 4.1 — (Continued)
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Homology modelling procedures

A schematic workflow of this work is reported in Figure 4.3. Two different strategies were
employed to generate the modelling dataset: a fully automated modelling method, which
employs a prediction server, and a traditional homology modelling procedure. This
consists of three major steps: identification of candidate template structures, alignment
of the target to the template and structural modelling of the target on the template
structure.

The choice of the programs for each step and the details of the protocol for the
traditional homology modelling procedure were based on recent assessments of
homology model strategies [21] and template selection strategies [18], in order to
reproduce standard homology modelling experiments as well as to obtain a large range of

model quality.

Identification of candidate templates was performed by sequence similarity search using
PSI-BLAST [142] with default parameters until convergence was reached. Each target was
searched against a database of all proteins of known structure from the NCBI database.
The resulting candidate lists were reduced by elimination of all hits having low statistical
significance (BLAST E-value greater than 0.01) or alignment length shorter than 85% of
the target sequence. A statistical analysis on the distribution of sequence identities
between target and template was performed and the final subset of template candidates
was selected to provide a reliable sampling of different evolutionary distances. In order to
avoid backbone modelling errors in the binding site, all the selected templates do not
contain gaps in the alignment of the active site region, this being defined as the list of
residues with at least one atom within 4 A of any of the ligand atoms. This step clearly
reduced the candidate template list (e.g. 6RNT, where only one template remained), but

it did not result in the complete exclusion of any of the original targets.

Alignments of target and template sequences were performed with three independent
tools: a sequence-sequence (T-Coffee [143]), a profile-profile (PRALINE [144]) and a
structure-structure (TM-align [80]) alignment method. They were selected in order to
obtain sequence alignments between target and template at different levels of accuracy.
T-Coffee was used for obtaining both single and multiple sequence alignments; this

method carries out a progressive alignment driven by all the pair-wise local and global
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sequence alignments. PRALINE, a dynamic programming-based method that employs a
profile-based progressive sequence alignment protocol, was employed for multiple-
template alignments. Finally, TM-align, a method to identify the best structural alignment
between protein pairs that combines the TM-score rotation matrix and dynamic
programming, was used for generating single-template structural alignments.

Model construction was performed by using MODELLER 9v1 [67], which implements an
approach to comparative modelling by satisfying spatial restraints derived from the
alignment of the target sequence with the template structure. The method is described in

Paragraph 2.1.1.

For each target, an additional model was generated by using the automated server I-
TASSER, that was ranked as the best method in the server section of the latest CASP
experiments [145]. I-TASSER is a hierarchical protein structure modelling approach based
on the secondary-structure enhanced Profile-Profile threading Alignment (PPA) and the
iterative implementation of the Threading ASSEmbly Refinement (TASSER) program [70,
71] (for a detailed description, see Paragraph 2.1.2).

test set selection
(experimental structures of complexes)

A 4

templates selection

A 4

docking
into the experimental structures

V. A 4

structural quality
assessment

homology modelling >

)

docking into models

S|
>

A\ 4
docking results
accuracy evaluation

v

analysis of the correlation between
docking accuracy and structural quality

Figure 4.3 — Workflow of the project.
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Model quality indices
Models were assessed both by direct comparison to the known native structures
(“calculated’ indices) and by using indices for model quality estimation and prediction

(‘predicted’ indices).

Direct comparison of each model to the corresponding native structure was obtained by
structural alignment using two programs: DALIlLite [83] and LGA [84]. The former
generates a global alighment by optimization of both the number of structurally aligned
residues and the overall root mean square deviation (RMSD) of their corresponding C-a.
atoms. The latter generates many different local superimpositions to detect regions
where proteins are similar, providing a combination of two sets of scores for Local/Global
Alignment (LGA). According to the structural alignment results, the global quality of the
models was measured by six indices (see Paragraph 2.2): the RMSD on C-o atoms;
DALI_Zscore; DALI_Zratio; GDT_TS; GDT_HA; LGA_S; LGA_RMSD.

The local quality was measured by three indices: the site RMSD based on DALI alignments
(RMSD-s), the amino acids in the active site being defined as the residues with at least
one atom within 4 A of any of the ligand atoms; the dRMSD (distance Root Mean Square
Deviation) among the heavy atoms of the sidechains in the active site (dRMSD-s); and the

Atomic Contact Score (ACS) [87].

In the class of ‘predicted’ indices some indices that evaluate the model-template
similarities were considered. On the basis of the T-Coffee alighments, the percentage of
sequence identity and similarity for the whole sequence length (Seq_Id, Seq_Sim) and
only for the active site (Seq_Id-s, Seq_Sim-s) were calculated for each target — template
alignment. The following indices were also calculated for the model — template structural
alignments generated with DALILite and LGA: RMSD(t), RMSD-s(t), LGA_RMSD(t),
LGA_S(t).

Complementary to these indices is the set of ‘predicted’ indices derived by geometrical
analysis of the models performed by submission to the Protein Structure Validation
Software (PSVS) web server [89]. This server integrates analyses from several widely-used
structure quality evaluation tools, including: PROCHECK [91], Verify3D [93], Prosall [92],
MolProbity [90]. From the extensive output of the server, the following indices were

chosen for our analysis: Z scores from Prosall, Verify3D, MolProbity, and the
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Procheck(phi, psi) index (Procheck). Other methods among the recent proposals for
Model Quality Assessment were also included in the analysis: ProQ [94], that predicts the
final quality of a single model as the expected LGscore [95] and MaxSub [96] indices, and
the ModFOLD server [97] that calculates the MQscore index.

A detailed description of the single indices can be found in Paragraph 2.2.

Molecular docking calculations

AutoDock 4 [29, 106] and its graphical front-end AutoDockTools (ADT) were used to set
up and perform docking calculations (see Paragraph 2.3).

Experimental structures were downloaded from the Protein Data Bank while theoretical
models were constructed as described above; for the former all water molecules, ions
and ligands were removed from the original files. Polar hydrogen atoms were added to
each protein structure (both crystallographic structures and models). The structures of
the ligands were directly extracted from the CCDC/Astex Test Set [111], therefore their
bond lengths and angles were already optimized; AutoDock tool AutoTors was employed
to identify the ligands rotatable bonds. The proteins were treated as rigid bodies during
docking simulations.

Grid maps with 0.375 A spacing were defined for each collection of experimental
structures and corresponding models to include the protein binding site. Lamarckian
Genetic Algorithms, as implemented in AutoDock, were employed to perform docking
calculations. The maximum number of energy evaluations and of generations were set to
25 million and to 27000 respectively and 100 runs, each with a population of 150
individuals, were performed for each calculation. Random starting positions, orientations
and torsions were used for the ligands, their translational step was set to 0.2 A, the
quaternion step to 5.0° and the torsion step to 5.0°. Cluster analysis was performed by
AutoDock with a RMSD cut-off of 2 A. All other parameters were default settings.

In order to evaluate the docking results, the dRMSD was calculated between the model
ligand-site distances and the X-ray ligand-site corresponding distances. Using this index,
the distance calculation takes into account only the deviation on the relative position of
the ligand to the residues belonging to the binding site and not, as it is for the RMSD
calculation, of the deviation on the absolute position of the ligand in the pose from the
crystallographic one. Therefore, the structural differences between the model and the

experimental structure are excluded from the evaluation of the quality of docking results.
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For each docking case, the dRMSD was evaluated both for the lowest energy pose,
according to the Autodock scoring function (dRMSD), and for the lowest dRMSD pose
(mindRMDS), in order to investigate the correlation between the quality of the models

and the accuracy of docking results.

4.1.2 Results

Test set variety

The reference group of 21 X-ray structures of ligand-protein complexes (Table 4.1) is
composed by proteins having different chain lengths (100 to 400 residues) and a large
spectrum of structural characteristics. Three different CATH classes (mainly o, mainly J3,
o—f) [146] and a wide range of architectures and topologies are represented.

For each protein in the reference set, several theoretical models were developed by
different homology modelling strategies. The template structures were selected to cover
a wide range of evolutionary distances with the target. A preliminary analysis of the
distribution of the sequence identities of the candidate templates highlighted a bimodal
trend for each similarity search result, with the highest peak at 20-30% identity and the
second one at high values (50-80%) (one example is reported in Fig. 4.4a). In order to
reproduce a similar distribution in the test case, templates were selected in a range of
identity from 15 to 85%, accurately enriching the number of representatives for low
percentages (see Fig. 4.4b), since these are the most difficult cases, on which it would be
interesting to know if docking can give accurate results. The 92 selected templates (Table
4.1) include both apo and holo structures, the latter characterized by ligands which are

usually different from the ones bound in reference structures.

Model quality variety
For each target several models were generated using Modeller: two single-template
models for each selected template and two multiple-template models; moreover, an
additional model was obtained using the automated server I-TASSER. The resulting set
includes 245 models.
The quality of each model was at first evaluated by direct comparison with the native

structure, employing the ‘calculated’ indices reported in Paragraph 4.1.1.
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Figure 4.4 — a) Sequence identity distribution of the templates found for one of the test set cases
(Progesterone receptor — reference PDB ID: 1A28), reported here as an example. b) Sequence

identity distribution of the templates chosen for the project (see text).

The modelled set provides a wide spectrum of both global and binding site quality. Some
examples are shown in Figure 4.5. The collection of modelled structures includes a
significant number of good predictions and medium-low resolution models: the majority
of RMSD values (Fig. 4.5a) are below 2 A, while only 30% of the models show a lower
conformity to the target, with RMSD values in the range 2-4 A, and a few exceptions are
of very low quality. Accordingly, with a small exception of 4 models, the DALI_Zscore
values are always higher than 10, demonstrating that the models have the correct fold
with statistical significance [83]. All the DALI_Zratio values are instead lower than 1,
indicating a better agreement of the model to the template than to the native structure
for all the cases. The trends of the three global indices based on LGA alignment are similar
to those shown for DALI indices: the histogram of the GDT_HA values (Fig. 4.5b) shows
that the majority of models have scores over 50, indicating a good similarity to the target,
while 30% are in the range 20-50, and few models show poor conformity to the native
structure.

This picture is slightly different for the active site where the distribution of site RMSD
values (RMSD-s, Fig. 4.5c) is slightly skewed compared to the one for global RMSD and the
group of models with a poorly reproduced binding site (about 10%, with values greater
than 4 A) does not include all the models with the worst RMSD. On the other hand, the
ACS index of binding site quality shows a more uniform distribution (Fig. 4.5d), with about
40% of cases having binding sites modelled with high accuracy (ACS > 0.6), about 40%
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with intermediate quality and the remaining cases with incorrectly modelled binding sites

(ACS<0.2).
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Figure 4.5 — Distributions of some ‘calculated’ indices of model quality for the modelling set: a)
RMSD, b) GDT_HA, c) RMSD-s, d) ACS.

Correlations between ‘calculated’ indices

The degree of correlation between the ‘calculated’ indices was measured by Spearman's
rank coefficient, p and the absolute values are reported in Table 4.2. This coefficient is
generally more appropriate than Pearson’s for handling non-normal distributions, as
those we obtained for some indices (see for example the RMSD-s in Figure 4.5c). Values in
Table 4.2 show that the indices calculated on the basis of the LGA structural alignment
are highly correlated to each other (p absolute values from 0.97 to 1.00), as the elements
of this group provide a very similar ranking of global model quality. Interestingly,
DALI_Zratio is also highly correlated to both the GDT_TS and the GDT_HA scores (p =
0.90). On the basis of this correlation analysis, only the results for a representative index

of this group, GDT_HA, will be reported and discussed in the following. On the contrary,
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all the three indices related to the binding site quality will be considered, since each of
them seems to provide an information partially different from the others.

Lower p absolute values are observed when comparing indices of global quality with
those of site quality. This confirms that there is no general trend for models with accurate

backbone geometry to have accurately modelled binding sites [87].

Correlations between ‘predicted’ and ‘calculated’ indices

The analysis of the pairwise correlations between the ‘predicted’ indices indicated in
Paragraph 4.1.1 (Table 4.2) shows high correlation values (|p| > 0.90) between Seq_Id
and Seq_Sim, Seq_Ild-s and Seq_Sim-s, as well as between model-template RMSD
calculated by using DALI (RMSD(t)) or obtained from the LGA alignment (LGA_RMSD(t)).
The two indices calculated with the model quality assessment program ProQ (LGscore and
MaxSub) were also highly correlated.

The identification of the most effective indices for quality prediction was based on the
Spearman correlation coefficients for pairwise comparisons of ‘predicted’ and ‘calculated’
indices (Table 4.2): the ‘predicted’ indices with the highest correlation with a ‘calculated’
index are expected to be more powerful in prediction. In particular, the indices having
|p| > 0.70 with respect to both RMSD and GDT_HA, taken as a reference, are: Seq_Id
(and the correlated Seq_Sim), RMSD(t) (and LGA_RMSD(t)), the corresponding indices
evaluated in the binding site, the MolProbity and Verify3D Z-scores. The expected
relationship between target-template sequence identity and the RMSD [17] is observed
(Fig. 4.6a), and the plot confirms that, also in this set of structures, models with Seq_/Id
greater than 50% have RMSD values lower than 2 A. On the other hand, Seq_Id shows
lower correlation coefficients with respect to the ‘calculated’ site quality indices, RMSD-s,
dRMSD-s and ACS (Table 4.2). The plot in Figure 4.6b highlights that models with Seq_Id
values both greater and lower than 50% can give accurately modelled binding sites.

The same analysis described above for the whole test set was performed on the two
subsets of models generated starting from T-Coffee and TM-align pair-wise sequence
alignments. A wide spectrum of model quality is obtained also from models generated
using a single strategy. Moreover, the expected relationship between the target-template
sequence identity and the RMSD was also found for these subsets of models and the
trend of relation between sequence identity and RMSD-s showed by the whole set of

models was present also in these cases (data not reported).
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Figure 4.6 — Correlation between some ‘calculated’ model quality indices ( a) RMSD, b) RMSD-s) and
the model-template sequence identity (Seq_Id). Four cases with RMSD-s values higher than 12 A

were excluded from the plot b) for a clearer representation.

The results of the analysis of the correlation between all the quality indices considered in
this work are reported in Table 4.3 and 4.4 for the T-Coffee and the TM-align subsets,
respectively. The same observation as for the whole set of data can be made for these
subsets. The main difference between the subsets and the whole set (Fig. 4.7 and Tables
4.2, 4.3 and 4.4) is the higher correlation found between the MQscore and the LGA
indices (LGA_RMSD, GDT_TS, GDT_HA and LGA_S) for the T-Coffee subset.

Docking results accuracy

The docking experiments were aimed at reproducing the binding geometries
corresponding to all the protein-ligand complexes in the reference set. To this end,
molecular docking calculations were performed on both the protein experimental
structures and the associated group of structural models, for a total of 266 simulations.
During the docking process, the protein was treated as a rigid body and only the ligand
flexibility was considered, by including the torsional degrees of freedom of all the ligand
rotatable bonds. Cluster analysis of the poses was performed using AutoDock for each
docking simulation.

In the majority of the cases, the results indicated an efficient sampling of the inter- and
intra-molecular conformational space, associated with a reduced number of highly
populated clusters of poses. In some cases (around 20% of the total docking runs), the

first cluster was scarcely populated, thus indicating a poor sampling convergence.
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Figure 4.7 — Differences in correlations within model quality indices (see text). In the upper half of
the matrix, as divided by the dashed line, difference between the absolute values of p Spearman
obtained for the whole modelled set and for the T-Coffee models. In the lower half of the matrix,
difference between the absolute values of p Spearman obtained for the whole modelled set and for
the TM-align models (lower half of the matrix). The colours represent different degree of
differences: in white |Ap| < 0.05; in light grey 0.05 < |Ap| < 0.10; in dark grey 0.10 < |Ap| < 0.15; in
black |Ap| 20.15.

The accuracy of the geometries obtained was evaluated by calculating the dRMSD
between the model ligand-site distances and the X-ray ligand-site corresponding
distances. The distribution of the dRMSD values for the best-scored docking poses is
reported in Figure 4.8. In more than 50% of the experiments the top ranked docking pose

reproduces the experimental geometry with good accuracy (dRMSD < 3 A). About 25% of
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the dRMSD values are in the range 3- 5 A, whereas in the remaining cases high values
(dRMSD > 5 A) are observed. As expected, this last group includes the entries for which a
poor convergence of the sampling was observed. As an example of the values of dRMSD
associated to different outcomes of docking calculations, the binding geometries
obtained in four docking simulations of the same complex (PDB ID: 1UKZ), are shown in
Figure 4.9. A satisfactory reproduction of the experimental geometry is associated with
dRMSD < 3 A and an accurate description of the backbone of the native binding site in the
model (Fig. 4.9a and 4.9b). dRMSD values in the intermediate range 3-5 A (Fig. 4.9¢)
indicate a slightly misplaced location of the ligand in the binding site, associated with
translational and/or rotational displacements from the experimental binding geometry
and a minor displacement of the backbone of the native binding site in the model. For
dRMSD > 5 A (Fig. 4.9d) docking failed to reproduce the binding geometry and a
completely incorrect backbone of the native binding site is present in the modelled

structure.

For three complexes (PDB ID: 1C83, 3CLA, 6RNT), binding geometries very different from
the experimental ones were obtained even when ligands were docked into the protein X-
ray structure, obtaining RMSD values > 2 A for both the best-scored and the most
adherent to the experimental binding geometry poses. Accordingly, the poses obtained
for the associated modelled structures were incorrect, too. The results obtained for these
three complexes (18 cases) were excluded from the analysis on the relationships between
model quality and docking results accuracy, because the performance associated with

these results would be unrelated to the quality of the modelled structure.

dRMSD (A)

Figure 4.8 — Distribution of the dRMSD index of docking results for the whole test set.
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Figure 4.9 — Uridylate kinase — adenosine monophosphate complex (PDB ID: 1UKZ). Binding
geometries obtained by docking calculations (blue sticks) compared to the experimental geometry
(red sticks): a) ligand docking pose for the protein experimental structure (green cartoons); b)
ligand docking pose for a protein model of high quality (cyan cartoons); c) ligand docking pose for a
protein model of medium quality (yellow cartoons); d) ligand docking pose for a protein model of
low quality (violet cartoons). Under each structure are reported the accuracy of docking results

(dRMSD) and two ‘calculated’ indices of model quality: RMSD and RMSD-s.

It is conceivable that some observed inefficiencies of docking calculations are associated
with the well known general limitation of the scoring functions implemented in docking
programs: while the sampling procedure is able to generate good results, the scoring
scheme is currently able to discriminate active from non-active in an ensemble of ligands,
but it is often incorrect in ranking the binding poses generated for the same ligand and,
consequently, in discriminating the ‘true’ pose from the others [34, 36]. The hypothesis

that this limitation could affect the results of this work was investigated by analysing the
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relation between the dRMSD values for the best-scored pose (dRMSD) and the absolute
minimum dRMSD to the crystallographic geometry that was obtained in our docking runs
(mindRMSD). The plot in Figure 4.10a confirms that, in many cases, the best-scored pose
does not correspond to the best geometrical pose and highlights that this trend is
observed in the whole range of values. On the other hand, Figure 4.10b shows that the
deviation between the scores of the first ranked poses and those of the best geometrical

poses is generally limited.
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Figure 4.10 — Docking results: a) relation between dRMSD values for the best scored poses (dRMSD)
and the minimum dRMSD values obtained (mindRMSD); b) relation between the AutoDock scores
for the best scored poses (best score) and AutoDock scores for poses with the minimum dRMSD

values (score mindRMSD).

Relationships between model quality and docking results accuracy

In addition to the test set, three structurally homogeneous subsets of complexes were
analyzed independently to provide an insight on the role of fold specificity. Each subset
was assembled selecting complexes whose proteins share the same fold and are
evolutionary related, as indicated by the CATH classification in the same Homologous
Superfamily (see Table 4.1):

— 2AK3 + 1UKZ: Adenylate kinase isoenzyme-3 — Adenosine monophosphate
complex + Uridylate kinase — Adenosine monophosphate complex [CATH ID:
3.40.50.300];

— 1CBS + 1FEN: Cellular retinoic-acid-binding protein type Il — Retinoic acid
complex + Retinol binding protein - All-trans axerophthene complex [CATH ID:

2.40.128.20];
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— 1EJN + 1TNG: Urokinase-type plasminogen activator — N-(1-adamantyl)-N'-(4-
guanidinobenzyl) urea complex + Trypsin — Aminomethylcyclohexane complex

[CATH ID: 2.40.10.10].

The results of the correlation analysis of the ‘calculated’ and ‘predicted’ indices with
docking accuracy are reported in Table 4.5. The correlations were calculated with the
dRMSD of the best-scored docking pose and, in addition, with the dRMSD of the poses
that reproduced at best the experimental binding geometry (mindRMSD).

In the analysis of the whole test set, satisfactory correlations were obtained between
dRMSD and all the ‘calculated’ indices of model quality, with the highest values for the
site quality indices. The plots of the docking dRMSD vs. the GDT_HA, RMSD-s and dRMSD-
s indices are shown as examples in Figure 4.11. As it is shown from data in Table 4.5,
correlations are higher for the subsets of proteins belonging to the same fold than for the
entire test set or the T-Coffee and TM-align subsets, both for the site and the global

quality indices.
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Table 4.5 — Correlations (absolute values of Spearman's rank coefficient) between some selected
model quality indices and docking dRMSD and mindRMSD (in brackets), for the whole test set and

for some subsets (see text).

Whole test set | T-Coffee set | TM-align set | 2AK3+1UKZ | 1CBS+1FEN | 1EJN+1TNG

(248 cases) (89 cases (89 cases) (36 cases) (22 cases) (36 cases)

RMSD 0.66 (0.74) 0.64 (0.64) 0.58 (0.63) 0.56 (0.61) 0.87(0.91) 0.78 (0.78)
GDT_HA 0.67 (0.74) 0.69 (0.68) 0.63(0.68) | 0.71(0.78) | 0.85(0.92) | 0.79(0.80)
RMSD-s 0.75 (0.83) 0.72 (0.74) 0.76 (0.81) | 0.88(0.92) | 0.77(0.81) | 0.65(0.71)
dRMSD-s 0.68 (0.80) 0.70 (0.78) 0.67(0.77) | 0.87(0.93) | 0.80(0.83) | 0.72(0.83)
ACS 0.70 (0.75) 0.73(0.72) 0.69 (0.72) 0.90 (0.88) 0.76 (0.87) 0.82 (0.80)
Seq_Id 0.62 (0.66) 0.56 (0.56) 0.51(0.58) 0.64 (0.63) 0.87 (0.86) 0.71(0.76)
RMSD(t) 0.53(0.53) 0.49 (0.50) 0.58 (0.61) 0.67 (0.65) 0.75 (0.82) 0.38 (0.38)
LGA_RMSD(t) 0.54 (0.55) 0.49 (0.49) 0.58 (0.63) | 0.73(0.70) | 0.84(0.89) | 0.43(0.52)
LGA_S(t) 0.19 (0.23) 0.18 (0.22) 0.21(0.30) | 0.59(0.51) | 0.41(0.64) | 0.34(0.42)
Seq_ld-s 0.63 (0.66) 0.56 (0.54) 0.56 (0.62) | 0.58(0.61) | 0.93(0.80) | 0.76(0.79)
RMSD-s(t) 0.66 (0.65) 0.67 (0.63) 0.66 (0.68) 0.87 (0.86) 0.85(0.76) 0.67 (0.55)
MolProbity 0.55 (0.62) 0.50 (0.49) 0.41(0.47) 0.51 (0.54) 0.86 (0.90) 0.83(0.77)
Procheck 0.04 (0.08) 0.09 (0.15) 0.06 (0.06) 0.35(0.41) 0.46 (0.45) 0.59 (0.50)
Prosall 0.40 (0.48) 0.43 (0.50) 0.34 (0.40) 0.58(0.67) | 0.79(0.90) | 0.35(0.45)
Verify3D 0.57 (0.63) 0.60 (0.62) 0.47 (0.47) | 0.65(0.72) | 0.67(0.76) | 0.63(0.72)
LGscore 0.49 (0.50) 0.47 (0.47) 0.38(0.41) | 0.65(0.74) | 0.65(0.82) | 0.45(0.48)
MaxSub 0.45 (0.49) 0.47 (0.45) 0.37(0.43) 0.59 (0.57) 0.62 (0.82) 0.62 (0.57)
MQscore 0.38 (0.45) 0.44 (0.52) 0.28 (0.38) 0.63 (0.69) 0.60 (0.45) 0.51 (0.54)

Similar trends were obtained for the mindRMSD (Table 4.5) and in this case, where the
errors associated to the incorrect ranking of the best pose were eliminated, the resulting
correlation coefficients are in general higher both for the test set and the subsets. For the
‘calculated’ indices considered, all the resulting |p| values for the whole set are greater
than 0.7, and |p| = 0.83 and 0.80 were found for the RMSD-s and the dRMSD-s,
respectively. This indicates a high correlation between docking accuracy and both the
global adherence of the modelled binding site to the experimental structure and the
accuracy of the side-chain conformations in the site.

An investigation of the possibility of developing multivariate models by regression
analyses of dRMSD and mindRMSD, versus all the ‘calculated” model quality indices was
also performed. From this regression analysis, R’ coefficients of 0.63 and 0.73 were
obtained. Interestingly, the three site quality indices were the most statistically significant

in the models obtained (with P-values lower than 0.001), thus confirming that indices of
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conformity to the native binding site are the most informative in the evaluation of
docking results accuracy.

The relationships between docking dRMSD (and mindRMSD) and each ‘predicted’ quality
index were also investigated. The results of the pairwise correlation analysis for these
indices are reported in Table 4.5, both for the test set and for the subsets. The best
correlations for the whole test set are those obtained for the global sequence identity
with the template, Seq_Id, as well as for the indices of conformity of the modelled
binding site with the template site, Seq_Id-s and RMSD-s(t). The resulting p absolute
values are higher than 0.6 in both the relationships with docking dRMSD and mindRMSD,
with slightly higher values for the latter index.

The same trend is found when considering the two subsets of T-Coffee and TM-align
models: the index that correlates at best with both the dRMSD and the mindRMSD is the
RMSD-s(t), followed by the Seq_Id and Seq_Id-s for both the subsets and by the RMSD(t)
and LGA_RMSD(t) for the TM-align models.

The p values found for these indices on the whole set of models indicate the presence of
trends but preclude the possibility of building predictive models of general use. In
particular, the plot of dRMSD vs. Seq_Id (Fig. 4.12) indicates that the commonly accepted
‘rule’ that only models with over 50% sequence identity with the template are suitable
for docking studies is not reliable. In fact, in many cases for which Seq_Id > 50%, docking
results with dRMSD values from 2 to 8 A were obtained. Conversely, in some cases

acceptable results (JRMSD < 2 A) were obtained by using models with Seq_Id < 50%.
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Figure 4.12 — Plot of docking dRMSD vs. model-template sequence identity (Seq_/d).
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Noticeably, for the three quality indices that are better correlated in the whole set with
the docking dRMSD (and mindRMSD) the correlation coefficients are higher in the three
homogeneous subsets (0.6 < |p| < 0.9) than in the whole test set (Table 4.5), as are the
correlations with the ‘calculated’ quality indices. Moreover, in some of the three subsets
the correlations with an index of global structural conformity to the template, RMSD(t),
and the statistical Z scores MolProbity and Verify3D emerge with comparable p values. It
can be concluded that in the three subsets all the six most effective indices for model
quality prediction (Seq_Id, RMSD(t), Seq_Ild-s, RMSD-s(t), MolProbity and Verify3D)
correlate well with docking accuracy.

It has been observed that the ‘predicted’ model quality indices that showed low
correlation with the ‘calculated’ indices (Table 4.2), do not correlate with the indices of
docking accuracy (Table 4.5). Therefore the ability to predict the quality of a structural
model appears to be a necessary pre-requisite, even if not sufficient for predicting the
accuracy of the docking results on that model.

Finally, as for the ‘calculated’ indices, a regression analysis of dRMSD and mindRMSD vs.
all the ‘predicted’ quality indices was performed to investigate the possibility of
developing multivariate models for the relationship between docking and homology
modelling accuracy. The RMSD-s(t) and Verify3D indices were the most statistically
significant in the global models (with P-values less than 0.01). The R’ coefficients resulting
from the bivariate models of dRMSD and mindRMSD vs. these two indices are indeed
higher than what obtained for the monovariate models (R* = 0.49 and R® = 0.48,
respectively). However, these models are still only suitable in regression, since they

explain about 50% of the variance of the data.

4.1.3 Discussion

Homology models have been increasingly used in ligand-protein docking [51, 56, 59],
significantly extending the list of targets available for drug design. Consequently, there is
nowadays a great interest in assessing the effects of inaccuracies in protein models on
the prediction of protein-ligand interactions [52-54, 56, 140] and in finding general
criteria to estimate in advance the accuracy of docking results given the quality of the
model [57].

In this work the model features that mostly affect docking accuracy were identified

through a large-scale theoretical experiment on a diverse set of ligand-protein complexes.
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By studying the relationships between docking accuracy and ‘calculated’ quality indices,
as expected, good correlations were found in groups of models of the same protein-
ligand complex. For example, for the 16 docking runs performed on different models of
1UKZ (Figure 4.9) the docking dRMSD correlates with all the ‘calculated’ quality indices
with |p| > 0.85. An unexpected result was that good correlations emerged also within
groups of different complexes whose proteins are structurally similar (see Table 4.5). As
an example, some docking poses for the 1EJN + 1TNG subset are reported in Figure 4.13.
The structural superimposition of the two experimental complexes (Fig. 4.13a) confirms a
high similarity at the fold level and structurally very well conserved binding sites. The
increase of dRMSD of the binding poses correlates well with the decrease of model
quality reported in Figures 4.13b-e. Considering the whole subset (36 docking cases), the
dRMSD correlates well with all the ‘calculated’ quality indices (see Table 4.5). This
agreement was observed in all the three selected subsets of complexes. To this extent, it
is remarkable that this result is independent of the similarity of the ligands: in the first
case the proteins bind the same ligand (adenosine monophosphate for 2AK3 and 1UKZ);
in the second the ligands have similar structures but different functional groups (the all-
trans axerophthene in 1FEN differs from the retinoic acid in 1CBS for the presence of a
methyl group instead of a carboxyl group); while in the 1EJN + 1TNG set, the ligands have
different structures (see caption in Figure 4.13 for details).

When the correlation analysis was extended to the whole test set, where proteins span a
large spectrum of structural characteristics (see Table 4.1), lower correlation coefficients
were found for indices of global model quality (Table 4.5). This suggests that errors in
modelling different folds affect the correlation with docking accuracy in different ways.
On the contrary, the correlations of dRMSD with indices of binding site quality are
similarly high when considering either the complete set or the single subsets. Also a
multivariate regression analysis confirmed that the conformity to the native binding site
is the most relevant feature to provide accurate docking results.

In particular, the accuracy in modelling the conformations of the active site sidechains
plays an important role in docking into homology models, as shown by the dRMSD-s
index. To this extent the ability to include dynamic changes occurring in protein binding
sites upon ligand binding is becoming a central issue in molecular docking and many
efforts have been made over the past years in developing new docking methods that

allow fitting and scoring of flexible ligands in flexible binding sites.
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Figure 4.13 — Some docking results for the 1EJN + 1TNG subset of protein-ligand complexes:
Urokinase-type plasminogen activator — N-(1-adamantyl)-N'-(4-guanidinobenzyl) urea complex +
Trypsin — Aminomethylcyclohexane complex. a) The two experimental structures of the complexes
upon structural superimposition of the proteins: 1EJN, protein coloured in yellow, ligand in orange;
1TNG, protein in cyan, ligand in blue; b), c) 1EJN: two binding geometries obtained by docking
calculations for protein models of different qualities (models in grey, ligands in black), compared to
the experimental geometry (yellow and orange); d), e) 1TNG: two binding geometries obtained by
docking calculations for protein models of different qualities (models are coloured in purple and

ligands in pink), compared to the experimental geometry (cyan and blue).
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These approaches include simulation of the sidechain flexibility during docking,
constrained geometrical simulations, ensemble docking to structure sets (from Molecular
Dynamics or Monte Carlo methods, rotamer libraries, experimental determinations), or
optimization of docked solutions obtained from rigid-receptor docking [30, 147-149]. The
results of this work confirm the importance of the development of such strategies also for
extending the use of docking methods to homology models.

A wide choice of docking methods is currently available. In order to make this research
more useful for the scientific community, the most widely used and tested method for
ligand-protein docking [36], AutoDock [29, 106] was selected. Due to limitations imposed
by the program when a large conformational space has to be searched [29], it was
decided not to employ a recently added option that allows inclusion of protein side-chain
flexibility. While this is a more simplified approach to the docking problem, it allows a
direct interpretation of the errors associated with the inaccuracies in modelling the active
site.

Additionally a difficulty in evaluating the relationships between docking results and model
accuracy can arise from the known difficulties of many available docking methods in
ranking in a correct way the calculated poses [34, 36]. In this work it was verified that
indeed, in some of the cases of the test set, the top ranked poses identified by Autodock
reproduced poorly the experimental geometry (Figure 4.10a). When the poses that
absolutely better reproduced the experimental binding geometry (mindRMSD) were
evaluated (Table 4.5), as expected, better correlations were found. On the other hand, it
was observed that the ranking errors were always associated to very limited differences
in score (Figure 4.10b). Accordingly, similar conclusions regarding the relationships with
the model quality indices were derived for the best geometrical poses as for the best
scored poses: there is a higher correlation in homogeneous subsets for global quality

indices and a better overall performance of site quality indices.

The analysis of the relationships between docking accuracy and model quality indices
derived without any knowledge of the protein experimental structure was performed to
verify if an a priori prediction of the quality of docking experiments with homology
models would be possible. The analysis was performed by employing a set of widely used

measures, selected from a large number that have been proposed [89, 141]. The goal of
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this work was not to provide a comprehensive review of these indices, but to make an
assessment of their use in predicting the quality of docking results.

Among the ‘predicted’ indices, the ones showing the best correlations with the
‘calculated’ quality indices (Table 4.2) were considered the most promising for the
prediction of docking results accuracy. These include indices that evaluate both the global
(Seq_Id, RMSD(t)) and local (Seq_ld-s, RMSD-s(t)) conformity of the model to the
template as well as scores (MolProbity [90] and Verify3D [93]) derived by comparison
with average properties of known protein structures. However, even if they are effective
in predicting the overall quality of the structures, none of these indices comparably
correlates with the calculated quality of the binding site. In particular, the target-
template sequence identity, that is a widely employed predictive index, gave interesting
results. For the test set considered, in many cases the accuracy of the modelled binding
site is not directly related to high sequence identity values (Figure 4.6b) and, consistently,
a poor predictability of the docking accuracy was found when the correlations between
docking dRMSD and Seq_Id were analyzed (see Figure 4.12 and Table 4.5).

Correlation analysis of the dRMSD for the best scored docking pose with all the selected
‘predicted’ indices confirmed these findings (Table 4.5). Acceptable correlations were
found only between the dRMSD and the indices of conformity to the template that are
mostly related to the calculated model quality, in particular the two indices of binding site
quality (Seq_ld-s, RMSD-s(t)). However, for all the ‘predicted’ indices, the mono- and the
multivariate regression analyses report weaker correlations than for the ‘calculated’
indices and, due to a lower percentage of explained variance, these models could not be
reliable in prediction.

Interestingly, coherently to what was observed for ‘calculated’ indices, in the three
homogeneous subsets of proteins the correlations of some ‘predicted’ indices with
dRMDS (and mindRMSD) were stronger and all the most effective indices for model
quality prediction (Seq_ld, RMSD(t), Seq_ld-s, RMSD-s(t), MolProbity and Verify3D)
appeared more suitable for docking accuracy prediction (Table 4.5).

On the basis of this observation, these indices were proposed for predicting docking

results accuracy for structurally related proteins.
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4.2 A strategy to predict the accuracy of docking poses obtained by using
homology models

A relevant outcome of our analysis on the correlations between docking accuracy and
model quality indices (see Paragraph 4.1) [66] was the observation that no clear trend
exists when evaluating these relationships on heterogeneous groups of proteins. When,
instead, proteins belonging to the same CATH superfamily are analyzed, some quality
indices showed a certain degree of correlation with docking accuracy. This allowed us to

define a strategy for predicting docking results accuracy on homology models.

4.2.1 Computational approach

A workflow of the proposed approach is reported in Figure 4.14.

This consists in: modelling (by homology modelling and ligand-protein docking) a series of
complexes whose structure is available in the PDB and whose proteins are homologous to
the one that has to be studied; evaluating the docking results by comparison to the native
structure of the complex; evaluating the quality of the models. The information produced
in this way is used to obtain a multivariate linear regression model that is then employed

to predict the accuracy of docking results for the model of interest.
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Figure 4.14 — Workflow of the proposed prediction strategy.

88



The use of homology models in ligand-protein docking experiments

4.2.2 Application to a study case

The results obtained from the analysis described in Paragraph 4.1 on the subset
1CBS+1FEN were used to develop a multivariate linear regression model. The variables
included in the model were the ‘predicted’ indices with highest correlation (|p| > 0.65)
with docking results accuracy for the subset: Seq_Id, Seq_Ild-s, RMSD(t), RMSD-s(t),
MolProbity and Verify3D (see Table 4.5).

The multivariate model obtained for the subset 1CBS+1FEN (14 points in total) is the

following:

dRMSD = - 5.39 + 0.16 Seq_Id — 0.09 Seq_Ild-s + 5.07 RMSD(t) + 2.86 RMSD(t)-s — 0.16
MolProbity — 0.67 Verify3D

It is suitable for regression (R® = 0.97) and for prediction (Q” = 0.84).

The resulting multivariate model mainly depends on: target-template global sequence
identity and global RMSD, thus highlighting that an overall good adherence of the
template to the target is important for docking; the sequence identity and RMSD
between model and template in the binding site, underlining the importance of a
structural description of the binding site similar to the native, that can be modelled at
best when it is highly conserved in terms of physico-chemical properties.

The model was used to predict the accuracy of docking results in a new case not included
in the original test set, belonging to the same CATH homologous superfamily as 1CBS and
1FEN: the complex between human cellular retinol-binding protein Il and retinol (PDB ID:
2RCT, sequence identity equal to 37% and 18% with 1CBS and 1FEN, respectively). Two
different homology models were generated for this structure, from two different
templates, one at low sequence identity (31% - rat intestinal fatty acid binding protein —
PDB ID: 1ICN), and the other at high sequence identity (90% - rat cellular retinol-binding
protein Il — PDB ID: 10PA). The sequences of the templates were aligned to the target
with T-Coffee, to obtain pair-wise sequence alignments and the two models were
generated using Modeller as described in Paragraph 4.1.1. The models were evaluated by

calculating Seq_Id, Seq_Id-s, RMSD(t), RMSD-s(t), MolProbity and Verify3D.

Some selected ‘calculated’ and ‘predicted’ quality indices for the models generated for

the cellular retinoic binding protein are reported in Table 4.6.
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Table 4.6 — Values of some selected ‘calculated’ and ‘predicted’ model quality indices for the two

homology models generated for the cellular retinoic binding protein (PDB ID: 2RCT).

Modelname | RMSD | RMSD-s Seq_Id | Seq_Id-s | RMSD(t) | RMSD-s(t) | MolProbity | Verify3D

2RCT_1ICN 2.07 2.53 313 37.5 0.66 0.78 -15.58 -1.28

2RCT_10PA | 0.90 0.74 90.2 93.8 0.15 0.11 -7.38 -1.61

As expected, the model deriving from the template at higher sequence identity — both
globally and in the binding site (2RCT_10PA) — showed lower RMSD values both with the
native overall structure and the binding site. However, it has to be said that the model
generated from the template at 30% sequence identity (2RCT_1ICN) is not dramatically
different from the native structure, having a global RMSD value of about 2 A.

The docking of the retinol into the two models was performed using AutoDock, following
the procedure described in Paragraph 4.1.1.

In Figure 4.15 the results of the modelling and the docking are reported and compared
with the native structure of the complex.

Based on the values of the model quality indices derived for the structures, the docking
accuracy was predicted, using the multivariate model, obtaining predicted dRMSD values
equal to 5.29 A for the 2RCT_1ICN model and to 4.38 A for 2RCT_10PA. Strikingly, for the
two models generated starting from templates at very different sequence identity, also in

the binding site, not so different docking results accuracy was predicted.

Figure 4.15 — Modelling and docking results for the complex between the human cellular retinol-
binding protein Il and retinol (PDB ID: 2RCT). a) and b): experimental structure of the complex (in
cyan the protein, in blue the ligand), superimposed to the models obtained by using 1ICN (in
yellow) and 10PA (purple) as templates and to the relative docking results (in orange and magenta,

respectively).
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The results of this prediction, compared to the real docking accuracy, are very interesting:
a very small difference (0.37 A and 0.65 A for the model built by using 1ICN and 10PA) is
found between the dRMSD calculated by comparison with the known experimental
structure and the dRMSD obtained applying the prediction model, as shown in Figure
4.16 and in Table 4.7.

This is a demonstration of the validity of this approach to predict docking results accuracy
on the basis of model quality indices.

In summary, these results not only confirmed our observations on the large-scale analysis
described in Paragraph 4.1 but also open a way for the prediction of the accuracy of
ligand-protein docking results based on model quality indices. This can be of great help in

several drug design projects for which no experimental structure of the protein target is

available.
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Table 4.7 — Values of actual and predicted dRMSD for the docking results on the homology models
generated for the cellular retinoic binding protein (PDB ID: 2RCT).

Modelname Actual dRMSD (A) Predicted dRMSD (A) A(A)
2RCT_1ICN 5.66 5.29 0.37
2RCT_10PA 3.73 4.38 0.65
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This chapter illustrates a preliminary analysis performed on a set of modelled and
experimental protein structures aimed at assessing the potentialities of the use of
homology models in protein-protein docking experiments. Through the selection of
templates at different evolutionary distances, a wide range of model quality was
spanned. The modelling and the docking steps were set up with the purpose of
minimizing errors derived from target-template sequence alignment or docking
limitations in sampling the conformational space of protein complexes. The quality of the
models obtained was evaluated with a large number of model quality indices, selected
also on the basis of the results obtained for an analogous study performed on ligand-
protein complexes (see Chapter 4). The preliminary results presented in this chapter
indicate that this could be an appropriate and fruitful way to investigate how model

quality influences the accuracy of protein-protein docking results.

5.1 Analysis of the relationships between the accuracy of docking results
and the quality of protein models

As discussed in the introduction, the recent improvements of homology modelling
techniques have greatly extended the possibility of modelling protein structures with
increasing accuracy. As discussed in Chapter 4, in the last years this fact has prompted us
and other Authors at investigating the possibility of using theoretical protein models for
ligand-protein docking and at assessing the strengths and limitations of such applications
[51-54, 56, 59, 66, 140]. This subject is assuming increasing relevance also in the protein-
protein docking field, as testified by the latest CAPRI rounds, in which is often asked to
the participants to model the structure of one or both the interacting molecules [60, 61].
In fact, the possibility of performing protein-protein docking simulations even without the
knowledge of the native structure of one or more partners would significantly extend the
list of complexes that could be studied, with great repercussions in the fields of
biochemistry, medicinal chemistry and similar disciplines.

In particular, the detection of the model features that mainly influence the accuracy of
docking results and, consequently, the possibility of predicting a priori their degree of
confidence (on the basis of standard quality indices or appropriate strategies) would be of
great interest. However, until now, no systematic study that investigate the accuracy of

protein-protein docking results using homology models has been published.
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In this work, a preliminary study was performed to analyze the potentiality of the use of
homology models in protein-protein docking. A selection of model quality indices
assessing the model-target structural difference (global and at the interface) was used in
order to define which are the most relevant model characteristics for obtaining accurate
docking results. In addition, indices assessing the model-template differences related to
their evolutionary distance, as well as a set of statistical indices of model quality were
employed to verify the possibility of predicting docking results accuracy without any

knowledge of the native structure.

5.2 Computational approach

5.2.1 Test set of protein-protein complexes and homology modelling strategy

The selected test set is composed by a reference group of X-ray protein structures and a
corresponding dataset of theoretical models. As reference group, six recent CAPRI targets
were chosen (see Table 5.1 for a brief description of the complexes and Figure 5.1 for a
view of the structures). They are representative of different kinds of interactions and
include complexes with different kinds of functions [150-153]. They were selected among
the CAPRI cases for which the docking method used in this work, HADDOCK [116, 117], in
its most recent versions (2.0 and 2.1) [134], showed a very good performance [117, 131],
in order to avoid any error deriving from an incapability of the docking method to treat

such complexes.

The workflow of this work is reported in Figure 5.2. A traditional homology modelling
strategy was employed to generate the modelling dataset: first, candidate templates
structures were identified, then target-template alignments were performed and in the
end each target was modelled on each of its template structure.

The choice of the programs for each step and the details of the protocol for the
traditional homology modelling procedure were based on recent assessments of
homology model strategies [21] and template selection strategies [18], in order to
reproduce standard homology modelling experiments as well as to span a large range of

model quality.

Identification of candidate templates for both the partner proteins of each CAPRI target

was performed by sequence similarity search using PSI-BLAST [142] with default
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parameters until convergence was reached. Each target was searched against a database
of all proteins of known structure from the NCBI database.

Among the candidate templates detected in this way, all hits having low statistical
significance (BLAST E-value greater than 0.001) or alignment length shorter than 85% of
the target sequence were eliminated. Among the remaining hits, templates having from
20% to 80% sequence identity with the corresponding target were selected. In order to
obtain an homogeneous sequence identity distribution, if several targets fell in the same
5% identity region, only one was selected (see Table 5.1 for a description of the selected

templates).

Table 5.1 — Test cases and selected templates.

CAPRI Complex PDB ID Protein name Template PDB ID Seq_Id
target (chain ID) (chain ID) (%)
. 2VNG6 (A) 33
10HZ (A) CelIqusorrgseIi;cszoldmg 3KCP (A) 62
T11/T12 P 1AOH (A) 72
2VN6 (B) 34
10HZ (B) Endo-1,4-beta-xylanase Y 1DAQ (A) 49
3B5L (B) 40
2B42 (B) 44
T18 176G (C) Endo-1,4-beta-xylanase | 1TEL (B) 45
1XYN (A) 52
2ZVY (A) 23
Peptidoglycan-associated 2K1S (A) 28
T26 2HQS (€) lipoprotein 1R1M (A) 31
2AIZ (P) 67
Ubiquitin-conjugating enzyme SHEK(A) 26
2025 (A) a Ez-ésnga & enzy 1YH2 (A) 39
1TTE (A) 42
T27 2GMI (A) 30
SUMO-1-conjugating enzyme 2C40 (B) 35
202
025 (C) UBC9 173D (A) 40
2GID (A) 56
1MKW (K) 34
- . 1FXY (A) 55
T40 3E8L (A) Cationic trypsin 187X (E) 65
1H9H (E) 79
2KOD (X) 53
ot 2WPT (A) Colicin-E2 immunity protein 1366);? ((é)) ZZ
1FR2 (A) 65
- 2ERH (B) 69
2WPT (B) Colicin-E9 1MZ8 (B) 20
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In order to minimize the errors derived from the alignments between target and template
sequences, a structure-structure alignment method, DALILite [83], was employed to
generate the alignments for modelling. This was recently assessed as the structural
alignment method that shows the best agreement with the NCBI's human-curated
Conserved Domain Database (CDD) [154].

Model construction was performed by using MODELLER 9v8 [67], which implements an
approach to comparative modelling by satisfying spatial restraints derived from the
alignment of the target sequence with the template structure. The method is described in
Paragraph 2.1.1. For each alignment, 100 models were generated following the standard
MODELLER procedure; the models were ranked by DOPE score [100], as implemented in
MODELLER, and the best 10 were retained for docking.

T18-1T6G

T27-2025

T41-2WPT .

Figure 5.1 — Structures of the complexes in the test set. The proteins are represented in cartoon
and different colours discriminate the different molecules in each complex. Under each structure is

reported the number of the corresponding CAPRI target and the PDB ID associated to the complex.
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Figure 5.2 — Workflow of the project.

5.2.2 Model quality indices

As in the ligand-protein docking project described in Chapter 4, models were assessed
both by direct comparison to the known native structures (‘calculated’ indices) and by
using indices for model quality estimation and prediction (‘predicted’ indices). The
correlations found in that study [66] drove the selection of the indices to be used in this
analysis. In fact, only one index was selected among the quality indices that resulted
strongly correlated (for example, the group of indices derived from LGA structural
alignments), and the quality indices that were found completely uncorrelated with
docking accuracy where discarded beforehand, guessing that they would be

uninformative also in this case.

Direct comparison of each model to the corresponding native structure was obtained by
structural alignment using the programs DALILite [83], Profit [85] and LGA [84]. These
methods are accurately described in Paragraph 2.2, together with all the quality indices
mentioned in this paragraph. According to the structural alignment results, the global

quality of the models was measured by two indices: the RMSD on Co atoms and GDT_TS.
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The local quality, which has proven to be crucial for the accuracy of docking results in the
ligand-protein docking case, was measured by three indices: i/RMSD_bb; iRMSD_sc and
fnat. The first is a measure of backbone adherence of the modelled to the native
interface; the last two, instead, consider the difference in the interface side-chain

geometry between model and target structure.

In the class of ‘predicted’ indices some indices that evaluate the model-template
similarities were considered (see Paragraph. 2.2.2). On the basis of the target-template
alignments, the percentage of sequence identity for the whole sequence length (Seq_/d)
and only for the interface (Seq_Ild-i) were calculated. The indices RMSD(t) and
iRMSD_bb(t) were also calculated for the model-template structural alignments
generated with DALILite.

In addition, a set of ‘predicted’ indices derived by geometrical analysis or evaluation of
the models by statistical potentials was employed (see Paragraph. 2.2.2). These indices
are: MolProbity [90] and Verify3D [93] (from the PSVS server [89]), DOPE [100],
TSVMod_RMSD and TSVMod_Over [101] (from the ModEval — Model Evaluation Server by
Sali [99]), Qmean [103, 104] and Qmean_Z (from the Qmean server [102]).

5.2.3 Protein-protein docking calculations

HADDOCK 2.1 [134] was used to perform docking calculations (see also Paragraph 2.4.2).
In order to minimize the errors deriving from an insufficient sampling of the
conformational space of the complex, the crystallographic interatomic distances < 3.9 A
between the interacting partners were supplied to the docking program as input
restraints.

Experimental structures were downloaded from the Protein Data Bank while theoretical
models were built as described above. Polar hydrogen atoms were added to each protein
structure and the protonation state of histidines was defined using the WHATIF
webserver [137]. The docking was performed for each target using both the experimental
structures of the two partners, to have a reference of the best results that HADDOCK can
achieve with the restraints provided, and the experimental structure of each target with
each model of the corresponding partner. As input structures for each docking run, the
ensemble of the top 10 models, according to the DOPE score, as implemented in

MODELLER 9v8, was given to HADDOCK.
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For each docking run, 1100 poses were generated in itO step and only the best 200 were
subjected to refinement in itl and water steps.

The docking results were evaluated by calculating the i-RMSD with respect to the
experimental structure of the complex (see Paragraph 2.4.3). The poses retained for
evaluating the relationships between docking results accuracy and model quality were
those showing the minimum i-RMSD in each docking run. This choice was made to avoid

scoring errors, which could affect the results of the subsequent correlation analyses.

5.3 Results

5.3.1 Model quality variety

For each target and each template 10 models were generated using MODELLER. Out of
them, one was selected for model quality assessment, according to docking results. The
resulting set includes 30 models.

The quality of each model was at first evaluated by direct comparison with the native
structure, employing the ‘calculated’ indices reported in Paragraph 5.2.2. The modelled
set provides a broad spectrum of quality, both global and at the interface, as shown in
Figure 5.3.

The distribution of the global RMSD values (Fig. 5.3a) shows that the majority of the
models have a high adherence to the overall fold of the native structure, with RMSD
values below 2 A; some medium-resolution models (RMSD values in the range of 2-4 A)
are also present. A minority of the models (7%) show a low similarity with the native
structure. This situation reflects also in the distribution of GDT_TS values (Fig. 5.3b): the
majority of the structures have GDT_TS values above 80, thus showing a very good
adherence with the native structures; 30% of the models have GDT_TS values in the
range of 50-80 and only 13% show values below 50 (however, not lower than 40).

The same scenario appears when considering the structural similarity at the interface (Fig.
5.3c-e). The distribution of the i/RMSD_bb values (Fig. 5.3c) shows that the majority of the
models have iRMSD_bb values below 2 A, a minority are in the range of 2-4 A and only
the 13% show iRMSD_bb values above 4 A. When considering the side-chains at the
interface (Fig. 5.3d-e), the same overall distribution is found, with the majority of models

showing iRMSD_sc values below 4 A and fnat values above 0.7.
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5.3.2 Correlations between model quality indices

The degree of correlation between the model quality indices was measured by
Spearman's rank coefficient, p, and the absolute values are reported in Table 5.2.

The high p values (all above 0.75) demonstrate that very strong correlations exist within
‘calculated’ indices. Moreover, no strong difference was found between the correlations
within the global quality indices (RMSD and GDT_TS) and the interface quality indices
(iIRMSD_bb, iRMSD_sc and fnat). Also the degree of correlation between these two sets of
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indices is similar to intra-set correlations (see for example GDT_TS vs. iRMSD_bb, that
show a p = 0.94). This is in disagreement with what found and reported in Chapter 4 for
ligand-protein cases and may derive from the fact that protein-protein interface residues
are more spread over the protein surface than the binding sites of small molecules, thus
the evaluation of interface adherence corresponds also to a description of the fold

coherence between model and target structure.

Table 5.2 — Correlations between model quality indices (absolute values of Spearman's rank

coefficient). The darker colours represent stronger correlations.
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RMSD
GDT_TS
iRMSD_bb
iRMSD_sc
fnat
Seq_Id
Seq_ld-i
RMSD(t) 0.54|0.58 | 0.54 | 0.44 0.27
iRMSD_bb(t) | 0.53 | 0.45 | 0.50 | 0.30| 0.25] 0.50 | 0.33
MolProbity 0.47
Verify3D | 0.59 | 0.42 | 0.56 | 0.59 | 0.61] 0.55| 0.51| 0.39| 0.26 | 0.36
DOPE 0.38|0.51|0.15 0.44
TVSMod_RMSD 0.56 0.38|0.59
TVSMod_Over 0.56 | 0.57| 0.28| 0.56
Qmean | 0.33]0.48| 0.22 | 0.28|0.22] 0.34| 0.22| 0.40| 0.17 | 0.28| 0.19 | 0.28 | 0.34| 0.35
Qmean_Z|0.33]0.49| 0.23(0.28|0.21|0.34| 0.22|0.41| 0.17 | 0.27|0.17 | 0.27 | 0.33| 0.34

Strong correlations were also observed among some ‘predicted’ indices. As expected, the
percentage of global sequence identity (Seq_Id) is highly correlated with the sequence
identity evaluated at the interface (Seq_Id-i) (p = 0.81). The same is found for the model-
template global RMSD (RMSD(t)) with the model-template RMSD at the interface
(iIRMSD(t)) (p = 0.79). Moreover, the three indices calculated with the ModEval server
(DOPE, TSVMod_RMSD and TSVMod_Over) showed a strong correlation. The two indices
calculated with the Qmean server (Qmean and Qmean_Z) were also highly correlated.

Moreover, from the values reported in Table 5.2 it is clear that several ‘predicted’ quality
indices are also correlated with ‘calculated’ indices: Seq_Id, Seq_Id-i, MolProbity, DOPE,
TSVMod_RMSD and TSVMod_Over have p > 0.60 with all the ‘calculated’ indices. In
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particular, the expected relationship between the target-template sequence identity and
the target-model RMSD [17] is observed (Fig. 5.4a). In accordance with what observed for
ligand-protein complexes (see Chapter 4), models with Seq_Id values both greater and
lower than 50% can give accurately modelled interfaces (Fig. 5.4b). Anyway, from the plot
in Figure 5.4b a Seq_Id cut-off for safely obtaining models showing a very accurate
description of the backbone geometry at the interface (iRMSD bb < 3 A), can be
detected. This corresponds to Seq_Id values above 40%.

The analysis of the correlations between ‘calculated’” and ‘predicted’ indices highlighted
also the accordance between the RMSD calculated between model and native structure

(RMSD) and the RMSD predicted using TSVMod (TSVMod_RMSD) (p = 0.76).
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Figure 5.4 — Correlations between Seq_/Id and: a) RMSD; b) iRMSD_bb.

5.3.3 Docking results accuracy

The docking experiments were aimed at reproducing the binding geometries
corresponding to all the protein-protein complexes in the reference set. To this end,
molecular docking calculations were performed both on the protein experimental
structures and the associated group of structural models. However, during the docking
runs, one of the two interacting partners was always a crystallographic structure. The
accuracy of the docking poses obtained was evaluated by calculating the i-RMSD with
respect to the native structure of the complexes. The pose showing the lowest i-RMSD for
each docking run was taken into account for the subsequent analyses.

The distribution of the iRMSD values for the selected docking poses is reported in Figure
5.5. In the majority of the cases, docking results accurately reproduced the experimental

binding geometry (iRMSD < 2 &), in 23% of the cases the iRMSD was in the range of 2-4 A,
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while in a minority of the cases it was above 4 A. Interestingly, this latter group of results
contains only docking solution for one case: the complex between the ubiquitin-
conjugating enzyme E2-25 kDa and SUMO-1-conjugating enzyme UBC9 (PDBID: 2025,
corresponding to the CAPRI target no. 27). This had been a controversial case during
CAPRI, because of two possible binding modes and small interfaces, that could be due to
the crystal packing [60]. Especially the small size of the interface of this complex (870 A%
could be the cause of the relatively poor performance of docking for this case, together
with a poor adherence to the native interface shown by the models generated for the

ubiquitin-conjugating enzyme (Fig. 5.6).
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Figure 5.5 — Distribution of iRMSD values.

iRMSD_bb = 6.1A iRMSD_bb = 7.54 iRMSD_bb = 9.0 A

Figure 5.6 — Models generated for the Ubiquitin-conjugating enzyme E2 (PDB ID: 2025, chain A) (in
a) blue, b) magenta and c) orange), superimposed on the native structure (cyan) in complex with
the SUMO-1-conjugating enzyme UBC9 (PDB ID: 2025, chain C) (grey, mesh representation). The
corresponding CAPRI target is T27.
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The accuracy of docking results was also evaluated by analyzing the percentage of poses
with iRMSD values < 1 A (‘high-accuracy predictions’), or < 2 A (‘medium-accuracy
predictions’), or < 4 A (‘acceptable-accuracy predictions’). The results of this analysis for

each test case, are reported in Figure 5.7.
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Figure 5.7 — Docking results for each test case: percentage of structures (out of the whole set of

docking predictions) that show an iRMSD < 4.0 A (dark grey), < 2.0 A (light grey) or < 1.0 A (black).
‘Reference’ refers to the docking of the experimental structures; for the docking on the models, the

PDB ID of the template used for modeling is reported under the corresponding histogram.
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As expected, high-accuracy predictions are more difficult to find than the others, even
when both the docked partners are experimental structures. However, for some of the
test cases (target 12, target 40 and target 41), a great amount of medium-accuracy
solutions and even some high-accuracy predictions are found among the generated
docking poses. For target 18 and 26 mostly acceptable solutions are found for the docking
runs that involved models. For target 27, in accordance with the high values of iRMSD
found, almost no acceptable solutions were generated during the docking on homology

models.

5.3.4 Relationships between model quality and docking results accuracy

The Spearman's rank coefficients for the correlation analysis of the ‘calculated’ and
‘predicted’ indices with docking accuracy are reported in Table 5.3. Some examples of
correlation plots between iRMSD and ‘calculated’ and ‘predicted’ indices are reported in
Figure 5.8 and 5.9, respectively.

Strong correlations were found between iRMSD and all the ‘calculated’ indices.
Interestingly, the lowest p values (|p| = 0.81) are those obtained for the indices of model-
target adherence of interface side-chain geometry (iRMSD_sc and fnat). This confirms the
ability of HADDOCK in treating the interface side-chain flexibility and suggests that errors
in side-chain geometry can be adjusted by HADDOCK flexible refinement.

Table 5.3 — Correlations between iRMSD and model quality indices (absolute values of Spearman's

rank coefficient).

‘Calculated’ indices iRMSD ‘Predicted’ indices iRMSD
RMSD 0.87 Seq_Id 0.78
GDT_TS 0.87 Seq_Id-i 0.64
iRMSD_bb 0.90 RMSD(t) 0.52
iRMSD_sc 0.81 iRMSD_bb(t) 0.53
fnat 0.81 MolProbity 0.75
Verify3D 0.46
DOPE 0.62
TVSMod_RMSD 0.61
TVSMod_Over 0.59
Qmean 0.22
Qmean_Z 0.23
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Figure 5.8 — Correlation between iRMSD and some examples of ‘calculated’ indices: a) RMSD; b)
iRMSD_bb.

a) 7 . b) 7 .
6 6
- -
- -
5 5
€4 ** €4 .
[a] a
2 3
3 - 3 -
x . ¢ x . *%
) * 40 , . * * .
¢ e * 2 * %
1 ¢ . 3 1 ML
® 4 *% o0 7Y
0 : — 0 : ‘
0 10 20 30 40 50 60 70 80 90 100 -20 -15 -10 -5 0 5
Seq_lId (%) MolProbity
¢ 7 .
6
-
-
5
""::4 :
a
2
o
z 3 *> -
2 * e ¢
- . . .
o o %"Q Figure 5.9 — Correlation between iRMSD
1 » - . -
Mg A R and some examples of ‘predicted” indices:
0 :
4 3 2 4 0 4 a) Seq_id; b) MolProbity; c) DOPE.
DOPE

Satisfactory correlations between ‘predicted’ indices and docking results accuracy were
also obtained. High p values were found for Seq_Id (|p| = 0.78) and Seq_Id-i (|p| = 0.64).
Strikingly, for the test cases here considered, the relation between Seq_Id and iRMSD

values (Fig. 5.9a) allows to detect a cut-off for safely obtaining very accurate docking
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results (iRMSD < 3 A). Similarly to what observed in Paragraph 5.3.2 for the correlation
between Seq_Id and i_RMSD_bb, this corresponds to Seq_Id > 40%. If this observation
will be valid also for a broader and statistically significant test set, the cut-off of 40%
sequence identity could become a very useful guide for the selection of templates for
modelling structures to be used in protein-protein docking experiments, if a safe docking
is strongly required. This does not implies, however, that only non-accurate docking
results are obtained from models deriving from templates with Seq Id < 40%, as
demonstrated by the plot in Figure 5.9a, where very good results are reported even for
Seq_Id values < 20%. In addition to this, surprisingly, good correlations were obtained
also for indices that do not take into account the model-template similarity: MolProbity
(Ip| =0.75), DOPE (|p| = 0.62) and TSVMod_RMSD (|p| = 0.61).

In Figure 5.10 an example of such correlations within a test case is reported. The docking
results for the experimental structures of the ligand and receptor for target 40, together
with the results of docking calculations of two models at different accuracy generated for
the trypsin are shown in the figure. As reported, higher target-template percentage of
identity, values of MolProbity clashscore nearer to 0 and lower DOPE scores (which

indicate good models) correspond to more accurate docking results.

p ¢
W} 'v > W
iRMSD = 0.5 A iRMSD =1.08A iRMSD = 2.7 A

Seq_ld=100% Seq_ld=52% Seq_ld=27%
MolProbity =-0.72 MolProbity =-13.1 MolProbity =-16.8
DOPE = -1.78 DOPE = -1.22 DOPE = -0.69

Figure 5.10 — Docking results for the Serine proteinase inhibitor A in complex with Cationic trypsin
(PDB ID: 3E8L, CAPRI T40). In blue and in magenta, the experimental structure of the complex.
Superimposition of the best docking pose for: a) the trypsin experimental structure (yellow); b) and
c) two models generated for the trypsin (red and green, respectively). The corresponding values of

iRMSD for the docking results and Seq_Id, MolProbity and DOPE for the models are reported.
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5.4 Discussion and future perspectives

In the last years, the use of homology models in ligand-protein docking has significantly
extended the possibility of studying drug-protein interactions for medicinal chemistry
purposes [51, 56, 59]. This has not yet happened for protein-protein docking, for which
some limitations at both the sampling and scoring stage still exist. The increasing use of
homology models in CAPRI rounds [60, 61], however, indicates the need of extending
protein-protein docking calculations also to modelled structures. This would extend the
list of protein-protein interactions that could be studied, but will also require some
guidelines that state to which extent accurate docking results can be achieved when using
theoretical models instead of experimental structures.

In this work, a preliminary analysis was performed to assess which model features are the
most crucial in determining the accuracy of docking results. Moreover, a set of model
quality indices was considered to assess if it is possible to predict docking results accuracy
on the basis of a standard analysis of model quality.

As expected, strong correlations were found between docking accuracy and ‘calculated’
indices, both of global and local (at the interface) quality. It was interesting to verify that
the use of a docking method able to handle the flexibility of the protein interface resulted
in a little weaker correlation between iRMSD and indices of adherence of interface side-
chain geometry (iRMSD_sc, fnat), compared to the ones found for global RMSD or
interface backbone geometry (iRMSD_bb). In fact, it is conceivable that the ability of
HADDOCK in dealing with flexibility could help in minimizing errors deriving from a poor
accuracy in modelling the side-chains at the interface, thus leading to accurate docking
results.

Among the ‘predicted’ indices, the ones showing the best correlations with docking
results accuracy belong to different classes of model quality indices. Some are indices of
global and local conformity of the template to the target (Seq_Id and Seq_Id-i); their
strong correlations with docking results accuracy confirm the importance of the choice of
the good template [18] for modelling. In particular, from the preliminary analysis here
performed, it seems that a first guideline to obtain safely accurate docking results on
homology models could be to chose templates with sequence identity with the target
equal or above 40%. Some other ‘predicted’ indices that show high correlations with
docking results accuracy are scores derived by comparison with average properties of

known protein structures (MolProbity [90], TSVMod_RMSD and TSVMod_Over [101]) or
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by an energetic analysis of the models (DOPE [100]); their high correlation values with
iRMSD suggest that they may be used for predicting docking results accuracy, even
without the knowledge of the native structure of the target protein.

However, the set of models used for this work is too small and therefore not statistically
significant to develop a reliable approach for predicting the accuracy of protein-protein

docking results.

These preliminary results, obtained for docking calculations driven by crystallographic
restraints and for models generated starting from structure-structure alignments in order
to minimize docking and modelling errors, will be the basis for future work. The test set
will be enlarged, different alignment strategies will be used and different restraints will
be exploited to guide the docking. This will lead to a larger and more comprehensive
analysis of the problem and could result in a strategy to a priori predict docking results

accuracy on the basis of model quality indices.
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Conclusions and future perspectives



Chapter 6

The principal aim of this thesis was to overcome the limitations of the sampling stage of
ligand- and protein-protein docking approaches, exploring the potentialities of combining
different computational techniques to broaden the possibility of predicting the structure
of protein complexes. In particular, in the protein-protein docking field, | combined two
docking methods, each belonging to one of the two mainly used sampling approaches,
with the aim of obtaining an algorithm that could overcome the limitations of the two
and sum their strengths. Moreover, both for ligand- and protein-protein docking, |
focused on the topic of docking calculations on homology models, assessing if it is
possible to a priori predict the accuracy of docking results on the basis of the evaluation
of the model quality.

These aims were motivated by two facts. The first is that both ligand- and protein-protein
docking have recently become protagonists in molecular modelling, as they are valid tools
for the prediction of the structure of protein complexes. In addition, the recent
improvements in homology modelling techniques and the development of model
repositories, that nowadays make models available for a large community, have
prompted the use of protein models for docking calculations. Therefore, in the last years
it raised the need of both developing more and more reliable tools for molecular
modelling and defining some guidelines to obtain accurate prediction of the structure of
protein complexes. These goals are particularly relevant when only poorly accurate
information (e.g. no interface indication for protein-protein docking, or protein models

instead of experimental structures) is available.

6.1 The combination of different approaches as a powerful tool to
improve the initial search stage of protein-protein docking methods

In Chapter 3 I illustrated the development and performance of ZADDOCK, a combination
of ZDOCK and HADDOCK, which exploits and merges the fast rigid-body search performed
by ZDOCK and the accurate flexible refinement in explicit solvent of HADDOCK. The
analysis of ZADDOCK performance on a wide test set, representing different types of
complexes and of interactions, showed that accurate docking results can be obtained by
this new method, thus achieving two goals. The first was the possibility of using
HADDOCK without the need of any experimental data to guide the sampling step, in order
to study complexes for which no experimental information is available and bioinformatics

interface prediction fails. The second was to obtain an accurate description of the
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intermolecular interactions occurring in protein complexes, which is a key information to

drive subsequent experimental work.

The quality of ZADDOCK results indicates that the strategy of combining different
computational techniques is a very promising avenue for the development of new
docking approaches, which will be aimed at coping with the most difficult docking cases.
These are the complexes for which big conformational changes occur upon binding or no
information about the interface is available.

Since each class of sampling strategy implemented in the different docking methods is
optimal for a specific class of docking problems, in fact, it is conceivable that a
combination of several protein-protein docking approaches could help to reach improved
results. For example, as it was implemented in ZADDOCK, FFT docking methods could be
used to generate in a fast way a series of initial docking poses, to be refined with EM
algorithms. Another refinement procedure could be, for example, the combination of an
EM search that treats the backbone as flexible with MC search for the optimization of the
side-chains positions at the interface.

Moreover, in order to cope with cases for which significant conformational changes occur
upon binding, computational techniques that predict protein flexibility [155-160] and
generate an ensemble of possible conformations for the flexible structures could be
combined with an available docking method in an integrated cross-docking approach. The
limits of such an approach would certainly be the CPU time requested for calculations and
the number of false positives generated, which, currently, scoring functions would not be
able to distinguish from the real near-native solutions. Thus, the development of such
methods would require also faster search algorithms as well as more accurate scoring
functions. Another trend, opened by Wolfson and collaborators with the development of
FlexDock [161], is the combination of hinge prediction with the docking of the rigid parts
of the flexible molecule followed by the building of consistent configurations of the entire

protein from these candidate parts.

On the other hand, as it has been demonstrated in CAPRI experiments, accurate
indications about the interface are a very valuable guide for protein-protein docking,
having great influence on the accuracy of docking results. Unfortunately, for some cases

of interest, no experimental data suggesting which are the residues involved in the
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interaction are available and bioinformatics interface prediction are not reliable. This
could be due, for example, to the variety of interacting partners and of binding modes of
these proteins or to a lack of known homologues on which a statistic could be performed.
In such cases, the use of fast docking algorithms (for example, FFT approaches) could be
of some help for interface prediction. In fact, provided that the right conformation for
binding is given to those methods, their ability in finding shape complementary regions
allows them to determine with a certain accuracy which parts of the surface of both the
interacting partners are the most probable to be at the interface. An example of such
strategy was published very recently by Weng and collaborators: they exploited the fast
search of their docking method, ZDOCK, for interface prediction in the latest CAPRI
rounds, obtaining reliable predictions for the majority of the complexes analyzed [162]. In
addition, the observation made in the latest CAPRI assessment that some docking
methods show a better performance in interface prediction than the average of the
standard bioinformatics interface prediction approaches [133], encourages the future

development of such strategies.

6.2 The use of homology models for docking calculations: hints to obtain
accurate results

In Chapter 4 and Chapter 5 it was investigated how the quality of homology models, used
instead of experimental structures in ligand- and protein-protein docking calculations,
influences the accuracy of docking results. The final aim of these analyses was to assess
the possibility of a priori predicting the accuracy of docking results on the basis of model
quality. This was demonstrated with the development of a prediction strategy for ligand-
protein docking, and will be the next step for protein-protein docking, after a broadening
of the test set to allow a statistically significant analysis of the data.

The trends found in the two docking fields are quite different. In fact, while in ligand-
protein docking evident correlations between docking results accuracy and model quality
were found especially in structurally similar cases, the preliminary results found for the
protein-protein docking simulations indicated stronger and more general correlations.
This allows to speculate that a general rule could be found for predicting a priori the
accuracy of docking results, on the basis of some specific model quality indices. The
difficulty in finding general relationships between docking results and model quality for

ligand-protein docking experiments reflects what was already observed by other Authors
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in terms of relations between enrichment and target-template sequence identity [52-58]
and explains why until now no general rule for predicting docking results accuracy on the
basis of model quality is available.

However, on the basis of the results obtained in this thesis, it is conceivable that a
promising avenue to obtain strong general correlations, and consequently a general
prediction rule, in ligand-protein docking, could be the development of knowledge-based
potentials for model quality assessment derived from specific information of homologous

proteins, as for example the one proposed by Panjkovich et al. [163].

Another difference between the two cases is the crucial importance, found in ligand-
protein docking results, of the geometrical reproduction of the native binding region,
which did not show the same influence on the accuracy of the results in protein-protein
docking. This observation clearly reflects the difference in treating the flexibility of the
binding region between the two docking approaches. While, in fact, most protein-protein
docking algorithms can treat the proteins as flexible with accurate results, this is still a far
achievement for ligand-protein docking methods [29, 30, 147, 164], whose results,
consequently, strongly depend on an accurate description of the binding site geometry.

The possibility of overcoming this limitation would be of great interest for the molecular
modelling community. Therefore, recently most ligand-protein methods have
incorporated algorithms able to treat the side-chains in the receptor binding site as
flexible. Examples of these approaches are: Monte Carlo search, rotamer libraries,
ensemble docking into sets of structures derived from MD trajectories or from NMR
structure determinations. Other methods do not explicitly include flexibility, but make
use of soft potentials. However, each different approach is affected by limitations in
computational performance or in accuracy. Therefore, a new tendency was proposed also
in this field, which is to combine several strategies in order to improve the reliability of

docking into flexible proteins [30].

Another way of improving docking results accuracy for homology models could be to
generate different homology models starting from different templates and use them in
cross-docking calculations. This would minimize the errors deriving from template
selection and increase the possibility of a good description on the binding region, thanks

to the variability of the structures submitted to docking, as suggested also by Fan et al.
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for ligand-docking [57]. Also in this case, good results could be obtained from such a
strategy only if scoring functions would be implemented at the point that they can
discriminate near-native docking solutions from the others. Otherwise, this approach
could be used in combination with a strategy to a priori predict the accuracy of docking
results on homology models, which could indicate the most suitable models to obtain

accurate docking results.
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